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Erratum

The widths of the wet-etch wires in Chapter 3 have been miscalculated. References to
these wet-etch measurements should be ignored.



RS

(to Lotika)



"Why is it that you physicists always require so much expensive equipment?
Now the Department of Mathematics requires nothing but money

for paper, pencils and waste paper baskets, and the
Department of Philosophy is better still. It doesn't even ask

Jfor waste paper baskets."

— A quote in a philosophy book.
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Outline of thesis

This thesis contains a study of electrical transport in n*t-GaAs wires fabricated
by electron beam lithography and silicon tetrachloride reactive-ion etching.

The etching is done at ion energies around 300 eV. At these energies, damage is
known to be created in the wires being fabricated. To characterise the amount of
sidewall damage, the conductances of wires of different widths are measured, and the
minimum conducting width (cut-off width) is found. The measurements show that dry-
etching gives a higher cut-off width than wet-etching. Dry-etching at energies in the
range 280-380 eV seem to give similar cut-off widths, whereas etching for progressively
longer periods of time clearly increases the cut-off width.

A quantitative model is developed to account for these measurements. Defect
profiles for top surface and sidewall damage are obtained. Comparisons to DLTS
profiles indicate that defect diffusion can be ignored to a good approximation, and a
simple exponential source function used to model defect formation. Assuming a two-
level defect structure, conductances for wires, and sheet conductances for etched
epilayers, are calculated by numerically solving Poisson's equation. It is found that a
single source function, characteristic of the etch process, gives an excellent fit to all the
wire conductance measurements. The model thus accounts for differences in carrier
concentration, epilayer thickness and etch time/depth. The analysis indicates that defects
are created at a far higher rate at the sidewalls than expected. This is thought to be due
to the flux of ricochet and sputtered material from the top surface being etched.

Low temperature measurements of submicron length n*-wires in a magnetic field
reveal fluctuations in longitudinal, Hall and nonlocal configurations. The phase
coherence length is found to decrease as the wire is made narrower. Measurements of

weak localisation in a very narrow wire suggest that the boundary scattering in these
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wires is predominantly diffuse. Measurements of weak localisation over a range of
temperatures indicate three contributions to the phase breaking rate: an electron-phonon
term, an electron-electron term, and a temperature independent term. Two electron-
electron scattering mechanisms are examined, but cannot be distinguished by the
measurements. The temperature independent term, and the dependence of the coherence
length upon wire width, are discussed in terms of magnetic scattering between
conduction electrons and unpaired electrons trapped in defect states along the edge of
the depletion region.

The Hall measurements are shown to probe voltage fluctuations associated with a
phase coherent region. This is confirmed by measurements at a cross-junction. It is
also shown that the symmetric and antisymmetric components of the conductance
fluctuations in a wire can be manifestly decoupled by making the wire width much
narrower than the probe width.

The low temperature electrical response of nt-wires to a pulse of light is
measured in a zero magnetic field. Random telegraph signals are observed in both
longitudinal and transverse ("Hall") measurements. These are explained in terms of

electron interaction with defects along the edge of the depletion region.
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Chapter 1

Introduction

A variety of influences — scientific, commercial, military, etc. — have driven the
evolution of electronics, starting from the point-contact detectors in the very early 1900s,
to the "hi-fi" systems and personal computers nearly 90 years on. Vacuum tube
technology was largely spawned from investigations into fundamental physical
phenomena of interest at the turn of the century. Refinement of the silicon point-contact
detector during the war effort led to the development of the first point-contact transistor
at the Bell Labs in 1947. Thereafter, growing commercial pressure led to the
development of integrated technology, on which the semiconductor industry is currently
built.

Exploitation of semiconductor technology has primarily focussed on the use of
silicon, coupled with photolithography as the main fabrication tool. Progress has
generally been measured by how small minimum features sizes of devices can be made.
Since the first monolithic devices appeared around 1958 there has been a steady
downward trend in this size. As the limits of scaling are reached, questions pertaining to
the further evolution of electronics arise. Several wide-ranging philosophies are already
under active investigation.

At the forefront of these is the continued scaling of conventional circuits

(employing MOSFETSs, MESFETS, efc.), with photolithography being supplanted by
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higher resolution lithographic techniques, employing electron-beams, ion-beams or X-
rays. With ultimate resolution achieved, further evolution using "conventional" (i.e.
current-day) electronics would rely on a systems-level approach, where the focus of
attention is not on the devices themselves but on the way they are connected together.
Good examples of this are systems based on neural networks.

More ambitious and radical ideas for the future are based on bioelectronics, where
organic matter is expected to perform complex functions, or molecular electronics,
where logic functions are performed (in some manner) at an atomic level. Yet further
ideas for future development are based on currently accessible lithographic technology,
but rely on new physical phenomena for circuit operation. These include quantum
electronics, where quantum interference effects are utilised, and single-electron
electronics, where single electron effects are utilised.

The 1980s saw developments in the physics of nanostructures, which have given
foundation to the hope that new and useful circuit devices will emerge in the areas of
quantum and single-electron electronics. These developments have resulted, in part,
from the use of high resolution fabrication techniques, such as electron-beam
lithography and dry-etching, and from improved material quality, obtained using
molecular beam epitaxy. Although practical electronic circuits are still lacking, a large
amount of understanding has been gained — and continues to be gained — about all
aspects of what goes on in structures at dimensions of a few tens of nanometres.

The work described in this thesis pertains to a specific type of nanostructure, a
long thin rib of conducting material, called a "wire." Under special conditions these
structures exhibit effects characteristic of a 1-dimensional system. The wires used in
this thesis are fabricated from heavily n-doped epitaxial gallium arsenide, using
electron-beam lithography and dry-etching. Although these wires are not practical
circuit devices, the effects studied do exhibit limitations that will be experienced in
making any devices of a similar type, as well as yielding much interesting and relevant
physics.

Chapter 2 is concerned with methods of fabrication, and techniques for the
measurement of conductance, the quantity of primary interest in such structures. The
use of dry-etching is known to modify properties of the material being etched. Chapter
3 reviews the current status of experimental studies on this dry-etch "damage," and
summarises what is known about simple defects in gallium arsenide. To assess the

effect of damage, conductance measurements have been made on dry-etched wires at
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room temperature, and the results are also presented in this chapter. In Chapter 4, the
information contained in Chapter 3 is used to form a mathematical model of how
damage affects the conductance of wires. Numerical solutions to the problem are
presented.

The subsequent two chapters are concerned with low temperature quantum effects
observed in dry-etched wires. Chapter 5 describes the basic theory required to
understand these effects. Much of this theory is now several years old, and (with slight
exceptions) is reasonably well established. Chapter 6 contains the results of low
temperature measurements made on the above wires. The new effects found are
explained in the context of the theory reviewed in Chapter 5. Finally, Chapter 7 contains

a summary of the work presented in the thesis.



Chapter 2

Experimental methods

2.1 Outline

The first half of the chapter is concerned with device fabrication. The primary tool
used is electron-beam lithography. A brief review of electron-beam lithography,
describing the electron-beam machine and the main fabrication techniques, is given. In
the structures made, an important step during fabrication has been the use of reactive-ion
etching which is also explained. The section ends with notes on the precise fabrication
steps used.

The second half of the chapter is concerned with methods required to make
measurements on completed devices. The basic quantity to be found is the sample
resistance (or conductance). The simplest approach to this is to perform a d.c.
measurement, and indeed this is done whenever possible. However, circumstances arise
where the signal levels that must be monitored are so low that such measurements
become exceptionally difficult. Here a.c. methods prevail. The basic theory behind a.c.
and d.c. techniques is described. Also included are brief accounts of cryogenic systems
and superconducting magnets, since these form an integral part of the measurement

apparatus in many cases.
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2.2 Device fabrication

2.2.1 Electron-beam lithography

Over the years several methods of writing patterns onto semiconductor substrates
have evolved. Traditionally photolithography has been — and still is — the predominant
form. However, in endeavours to achieve absolute miniaturisation, photolithography
suffers from a severe drawback. Feature sizes on a photolithographic mask are
diffraction limited: too small, and the ultra-violet light forms a diffraction image on the
photoresist beyond. Several technologies have emerged which allow patterns to be
defined, where dimensions are an order of magnitude smaller than those achievable with
photolithography [although methods to "beat" the resolution limits of photolithography
are continually being sought, e.g. Todokoro et al. (1991)]. Chief among these are X-
ray lithography and electron-beam (e-beam) lithography. In terms of flexibility and
ease of use, especially when processing small jobs, e-beam lithography is perhaps the
most well suited of all these methods for defining ultrasmall patterns. Its main
drawback, however, is the lack of achievable throughput as compared to
photolithography and X-ray lithography. As such, the major current uses of e-beam
lithography have been limited to mask production for photolithography, and as a
research tool in nanolithography.

In the work to be described all processing steps were carried out by e-beam. The
basic machine is a Philips PSEM 500 scanning electron microscope specially converted
for lithography [Mackie (1984), Adams (1990)]. A simplified schematic diagram is
shown in Fig. 2.1. The source of the electrons is a heated tungsten filament at the top of
the column. The beam of electrons emerging from this source is directed and focussed
into a spot at the bottom of the column by a series of magnetic lenses [see Agar (1980)
for more information on electron optics]. The sample sits on a motor-driven stage at the
bottom of the column. The spot can be scanned over areas of the sample under
computer control. This is how patterns are written. The pattern may be repeated on
other areas of the sample by moving the stage which is also under computer control.

The pattern written on the sample must somehow be "recorded.” That is, the
sample must be coated with a medium which is responsive to the electron beam. This
medium is referred to as resist. Typically, the areas of the resist exposed by the e-beam
are dissolved away using some suitable solvent. Thus, an image of the scanned pattern

is left on the sample. The lithographic process is then completed by using the
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remaining resist as a mask, either for depositing metals on the sample (metallisation), or
for removing surfaces not covered by the resist (e.g. by wet-etching). Resists,

metallisation and etching are the topics of the next few sections.

electron- electron source
optic

column
deflection system
(partially computer

controlled)
sample
sits here

Figure 2.1: Schematic diagram of an e-beam machine. The electrons are directed onto the

sample by a series of magnetic lenses.

2.2.2 Resists

After the advent of e-beam systems (viz. electron microscopes), and the
realisation that this provided an avenue to vastly reduced lithographic dimensions,
suitable e-beam resists were sought for. During the mid-1960s it was discovered that
PMMA (polymethyl methacrylate — commercially known as Perspex) had many of the
qualities desirable of an e-beam resist [Haller et al. (1968)]. Since then, many other
forms of resist have also been developed, with usage dependent on intended application
[e.g. Wolfstddter er al. (1990)]. However, PMMA is the one currently in most
widespread use for nanolithography.

Resists fall into two general categories: positive and negative. Depending on the
type of resist, electrons interacting with it will either break its constituent long-chain
molecules into smaller ones, or induce cross-linking between them [Binnie (1985)]. In
the former case, developing the resist in a suitable solvent removes the "broken”
molecules, i.e. the pattern left in the resist is the pattern scanned by the e-beam, as

shown in Fig. 2.2(a). This is known as a positive resist. PMMA is an example of a
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positive resist. In the other case, developing the resist removes the regions unexposed
by the e-beam, as shown in Fig. 2.2(b). This is known as a negative resist. HRN (high
resolution negative resist) is an example of a negative resist. PMMA is usually
developed with methyl-isobutyl ketone (MIBK) diluted in isopropyl alcohol (IPA). HRN
is developed in undiluted MIBK.

e-beam

. a) positive resist
resist after @ po
development

ubstrate

(b) negative resist

Figure 2.2: The effects of e-beam exposure on positive and negative resists. Any exposed
positive resist is removed upon development, whereas for negative resist the unexposed

regions are removed.

Resist is applied to the surface of a sample by spin-coating. A few drops are
deposited at the centre of the chip, following which the chip is revolved on a spinner at
several thousand revolutions per minute (rpm). The resist should spread itself over the
surface in a uniform layer, with any excess being thrown off during spinning. The
thickness of the resist is primarily determined by two factors [Binnie (1985)]: (i) the
viscosity of the resist solution, and (ii) the spin speed. Resist thickness is unaffected by
the total spin time after an initial transient stage. Less viscous solutions and higher spin
speeds result in thinner resist layers. The viscosity depends on the amount of resist
there is dissolved in an appropriate solvent. For PMMA the solvent is either
chlorobenzene (for thicker layers) or 'o'-xylene (for thinner layers). For HRN it is
Microposit thinner. After spinning, the resist is dried by baking in an oven.

The single most important use of PMMA is in the metallisation of samples by the
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technique of lift-off, as demonstrated in Fig. 2.3 [Hatzakis (1967)]. For correctly
exposed samples, details of the electron-resist-substrate interaction [see Broers (1988)
for a brief review of this] cause the developed PMMA to have an overhanging profile
[Fig. 2.3(a)]. When metal is evaporated onto the sample from directly above, it deposits
on the sample surface and on the resist surface [Fig. 2.3(b)]. Now if the PMMA is
dissolved away (usually in acetone), the metal that was previously on the resist is "lifted-
off," and only the pattern on the sample remains [Fig. 2.3(c)]. This is how metallisation

levels are transferred onto a sample.

overhang metal

(a) after exposure and (b) after metallisation (c) after lift-off
development

Figure 2.3: The lift-off process using a single layer resist. The process relies on the

formation of an overhang in the resist profile prior to metallisation.

The above method works well for thick layers of resist. However, for high-
resolution lithography thinner layers are required, and as shown in Fig. 2.4(a) the
overhang these give may be insufficient to allow lift-off. The solution to this is to use a
bilayer system of resist [Beaumont et al. (1981)]. The sensitivity of a resist, i.e. how
easily it is exposed by the electrons, is dependent on the mean molecular weight of its
constituent polymeric chains. A higher molecular weight resist will give smaller
linewidths for a given electron dosage as compared to lower molecular weight resists.
Thus by using higher molecular weight resist on top of lower molecular weight resist
[Fig. 2.4(b)], the profile shown in Fig. 2.4(c) will be obtained after exposure and
development. An overhang has been engineered, and lift-off is again possible. For the
bilayer systems used below, PMMA of two different molecular weights are used. These
are referred to as "BDH" (lower molecular weight), and "Elvacite" (higher molecular

weight).
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metal e-beam

bilayer

thin resist resist

substrate

(a) single thin layer (b) bilayer resist (c) after development

Figure 2.4: The lift-off process with thin bilayer resist. Lift-off is not possible with a single
thin layer resist, as shown in (a). With a properly chosen resist combination, an overhang can

be artificially induced in thin resist systems, as shown in (b) and (c).

2.2.3 Metallisation: ohmics and Schottkys

The predominant use of the lift-off technique is to pattern ohmic and Schottky
contacts. It is also used to pattern interconnect metallisation (low resistance connections
between two parts of a circuit) and masks for etching. Ohmic contacts are necessary in
most devices, as these provide the electrical connection between the active parts of the
semiconductor and the outside world. A contact is said to be a good ohmic if its /-V
curve is linear around the origin, and the corresponding resistance is acceptable.
Schottky contacts should exhibit diode characteristics, viz. high resistance under
reverse bias, and lower resistance under forward bias. It is also desirable for Schottky
contacts to have a high reverse breakdown voltage. [See Sze (1981), Ch. 5, for more
information on the electrical behaviour of ohmics and Schottkys.]

For gallium arsenide (GaAs), the most popular ohmic systems are gold/
germanium/nickel (Au/Ge/Ni) alloys [Braslau (1983)]. Au is a natural choice for an
ohmic since it is such a good conductor. However, it is found that almost any metal
deposited on GaAs forms a Schottky, and Au is no exception. On the other hand when
the underlying GaAs is very heavily doped, the Schottky characteristics deteriorate and
will in fact, for sufficient doping, give good ohmic behaviour. Since Ge is a dopant for
GaAs, the philosophy behind using a Au/Ge ohmic system is clear: the Ge should
make the GaAs beneath the contact very heavily doped, and an ohmic should result.

To ensure that the Ge is incorporated into the GaAs and a proper alloy formed, the
sample must be annealed at temperatures high enough to cause alloying of the Au/Ge

and GaAs. For GaAs, the temperature at which alloying occurs varies with the ratio of
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Au/Ge used. The temperature is found to be a minimum for a ratio of approximately
88%(Au):12%(Ge) by weight. This is the eutectic point, and corresponds to a
temperature of about 340-360 C for GaAs. The incorporation of Ge into the GaAs in a
straight Au/Ge alloy is not reliable, however. A small quantity of Ni (around 1-2% by
weight) is therefore included in the recipe to "prepare" the GaAs for Ge incorporation.
The combined Au/Ge/Ni recipe is found to work very well. [A more detailed account of
ohmic formation can be found in Ogawa (1980). An alternative ohmic system involving
the use of germanium/palladium has been demonstrated to work by Marshall et al.
(1985).] For extremely heavily doped GaAs the precise ratios of Au/Ge/Ni become less
important, and good ohmics are formed over a range of compositions around the

eutectic point.

mask mask
- original surface - --

substrate

(a) after wet-etch (b) after dry-etch

Figure 2.5: The effects of wet- and dry-etching. Wet-etches are generally isotropic, producing
rounded profiles, whereas dry-etches can be made anisotropic, with much more vertical etch

profiles.

2.2.4 Etching

Etching involves the removal of surface layers of the sample. This is usually done
to define the active (i.e. the current-carrying) regions of the device. There are two basic
methods of etching. Wet-etching involves the use of chemical solutions to remove
material via a chain of reactions. In dry-etching, the sample is bombarded by a flux of
ions. Surface removal here proceeds via physical sputtering, chemical reactions, or a
mixture of both. Fig. 2.5 shows the outcome of typical wet- or dry-etches. The
difference is manifest. In the case of the wet-etch, etching occurs in the lateral as well as
the vertical direction: it is isotropic. This leads to an undercutting of the mask — highly
undesirable, especially if the mask is very narrow. The dry-etch on the other hand

occurs predominantly vertically: it is anisotropic. This makes it preferable over wet-
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etching for defining very narrow features. However, the sputtering component of the
dry-etch mechanism weighs against it. This difficulty does not occur in wet-etching.

Wet-etching can be done with many different kinds of etch solution. A review of
some of the possibilities is given by Barnard and Blagden (1984). The basic etching
mechanism is fairly simple. One component of the etch solution serves to oxidise the
semiconductor surface, another component strips the oxide. The two processes occur in
parallel, with a rate determined by the concentration of the various components. Typical
GaAs etches will comprise three components: (i) hydrogen peroxide as the oxidising
agent; (ii) hydrochloric acid, sulphuric acid or ammonium hydroxide as the deoxidising
agent; and, (iii) de-ionised water to dilute the solution. In general, wet-etch profiles are
much more complicated than indicated in Fig. 2.5(a). The profile will depend not only
on the composition and concentration of the etch, but also on the material being etched,
its crystallographic orientation, and sometimes also on the ambient temperature. The
same type of etch in varying concentrations can give overcuts, undercuts, steps, etc.
Refer to Barnard and Blagden (1984) for more details. New etch solutions should be
tested before use.

Dry-etching can also be done with a variety of etching species and etching
methods. The primary method used below is reactive-ion etching (RIE) [Bollinger et
al. (1984) give a brief review of this]. A simplified schematic diagram of a RIE system
is shown in Fig. 2.6. With the system under vacuum, the etch gas is introduced into the
chamber. The top electrode is grounded, and the bottom electrode (the cathode) driven
by an r.f. signal. This generates the plasma. The plasma in turn induces a dark space
near the cathode, and a voltage drop (the d.c. self-bias) across the dark space. The d.c.
self-bias is determined mainly by the strength of the r.f. signal (the etch power). The
electric field due to the d.c. self-bias causes a downward flow of ions from the plasma
across the dark space. If a sample is placed on the cathode, the ions will strike the
sample from a vertical direction. Etching will occur in this direction if the ions react
chemically with the semiconductor to form volatile compounds which are then pumped
away. In practice, etching will also occur due to sputtering of the sample surface by the
ions.

Both wet- and dry-etching require masks to be used to protect regions that are to
remain unetched. For wet-etching the mask is usually resist. One major potential
problem exists when using resist. If its adhesion to the surface is poor the resist will

peel off in the etch, and the sample will be destroyed. Adhesion may be promoted by:
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Figure 2.6: Schematic diagram of a reactive-ion etching chamber. Ions are accelerated across
the dark space and impinge upon the sample which is placed on the cathode. Here the ions

react with the semiconductor resulting in the semiconductor being etched.

ensuring a clean surface prior to spinning the resist;
thoroughly baking the resist;

not using strong etch solutions for too long;

using the adhesion promoter HMDS (sometimes helps); and,

ensuring that the air humidity is not too high (important for some resists).

Metal masks can also be used.

the

The mask for dry-etching too can be resist or metal. The exact choice depends on

etch gas being used. The devices fabricated below have primarily been etched in a

silicon tetrachloride (SiCl,) plasma. Both HRN and nickel (Ni) masks have been used.

Nichrome (NiCr) is also possible in place of the Ni. Several factors govern the choice

for a particular pattern:

®

(i)
(i)

@iv)

Ni is deposited using PMMA and lift-off. Lines defined by lift-off tend to be
more uniform than lines made with HRN.

HRN is easier to process — no metallisation step necessary.

Ni is perhaps more robust than HRN for long etches, or etches done under a high
d.c. self-bias. This is largely due to the non-rectangular profile of the HRN [c.f.
Fig. 2.2(b)]. Parts of the HRN near the edges may become etched right through.
After a SiCly etch, the Ni reacts with any residual chlorine left in the chamber to
form nickel chloride. This has a bubbly appearance, and is useless as a mask for

further etching. HRN has no such problems.
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(v) The HRN mask cannot be removed easily after the etch. This will cause problems
if the etch depth is required to be measured, and cannot be used if Schottky gates
are to be subsequently deposited on the etched structure. The Ni can be stripped
using hydrochloric acid.

(vi) Lift-off has a high failure rate for extremely dense patterns. Here there is little

choice but to use HRN. This is the main criterion for the use of HRN in Chapter 6.

Figure 2.7: Schematic diagram n-GaAs

showing the structure of the n-

GaAs epilayer used.

u-GaAs

substrate

2.2.5 Process notes

All the devices to be described are made using GaAs, predominantly heavily n-
doped epilayer material (Fig. 2.7) grown by the Glasgow University Molecular Beam
Epitaxy (MBE) Group. Three lithographic levels are used to make the devices. The
smallest features defined are etch masks for the actual wire structure. Ohmics are also
defined, to allow current flow into and out of the structure. Finally, to allow easy wire-
bonding to the sample, the ohmic lines are extended and terminated with large square
pads. Fig. 2.8 shows a typical finished pattern. All steps are done by e-beam. In the
notes below, resists are identified by their composition. The percentage value refers to
the amount by weight of resist in the dissolving solvent (see §2.2.2).
(i) Ohmic level. 15% BDH is spin-coated at 5000 rpm for 60 sec. This is then baked
at 180 C for several hours. After pattern exposure, the resist is developed in 1:1 IPA:
MIBK at 23 C for long enough to ensure that all the resist has been removed from the
exposed regions (usually > 30 sec). The sample is then metallised with Au/Ge/Ni, lift-
off being in acetone. Prior to metallisation, the surface oxide is removed by a short dip
in 4:1 H,O:HCIL. This improves the quality of the ohmics. The ohmics are annealed at
around 340 C for 30 sec on an electrically heated strip, in an atmosphere of argon/
hydrogen (95%/5% by volume).
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EY;
ohmics
bonding pads

B cchmask

Figure 2.8: Pattern written by e-beam lithography. Three levels are defined. The wire level

is magnified in the bubble. If Ni is used as the etch mask, it is removed after dry-etching.

(i) Dry-etch. Either bilayer PMMA or single layer HRN is used. To define a Ni
mask, bilayer 4% BDH / 2.5% Elvacite is spun on at 5000 rpm for 60 sec. The BDH is
baked at 180 C for about an hour, with a further bake of several hours after the Elvacite
is spun on. The exposed sample is developed in 2.5:1 IPA:MIBK at 23 C for 1 min 20
sec. 30-40 nm Ni is then evaporated onto the sample followed by lift-off in acetone.
No deoxidation etch is performed. If HRN is used, it is spun on at 7000 rpm for 60 sec
and baked at 120 C for 30 min. It is developed by several short dips in neat MIBK, with
thorough intermediate rinses in IPA. This minimises solvent absorption by the HRN,
and is continued until the unexposed HRN is cleared. The sample is then dry-etched. If
Ni is used, it is subsequently stripped in 1:1 H,O:HCl. The dry-etching is generally
done with d.c. self-bias voltages between 280-380 V (corresponding to etch powers of
100-150 W). The machine is a Plasmatech RIE 80. The chamber is subjected to an
oxygen preclean prior to the etch run. The table temperature is maintained at 40 C.
(iii) Bonding pads. These are deposited as in step (i). The anneal is not necessary
here.

Steps (ii) and (iii) above are interchangeable. If the mask is defined as the final

lithographic step, the chip may be cleaved prior to etching. This allows comparisons
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between different etch conditions to be made using only one chip, thereby saving

lithography time.

2.3 Measurement methods

2.3.1 Measurement of resistance

The basic method of measuring a resistance is to use Ohm's Law. Knowing the
current (7) through the resistor, and the potential drop (V) across it, the resistance is
given by R = V/I. The current can usually be measured quite accurately, so the problem
reduces to one of finding the voltage. The two ways this can be done are shown in Fig.
2.9.

lead lead voltage probe
sample sample T v
lead lead voltage probe
(a) 2-terminal measurement (b) 4-terminal measurement

Figure 2.9: Diagrams illustrating 2- and 4-terminal resistance measurements. The 4-terminal

measurement is preferred since errors due to lead resistances are minimised.

The first method typically uses stimulus-measurement units (SMUs). These can
supply current and simultaneously monitor the voltage at which the current is being
supplied. This is known as a 2-terminal resistance measurement. It is the quickest and
easiest way to measure the resistance. However, the value it yields is not quite accurate.
As seen in Fig. 2.9(a), the potential drop is measured not only across the sample, but

also across the leads. Hence the resistance value measured is that of the sample plus
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that of the leads. This is no problem if the lead resistance is an insignificant fraction of
the sample resistance, but is obviously in error otherwise. The Hewlett Packard 4145B
allows such measurements to be made fairly simply. This is used primarily for testing
lead continuity and the state of the sample. Serious resistance measurements are rarely

made this way, although exceptions do arise.

current source voltmeter voltage source voltmeter

sample

(- current meter
cooa (virtual earth)

(a) low resistance measurement (b) high resistance measurement

Figure 2.10: The two basic methods of performing 4-terminal resistance measurements. The

method used depends on the voltage drop permissable across the sample.

The second method is a 4-terminal resistance measurement [Fig. 2.9(b)]. Here
probes are brought out from either side of the sample, and a voltmeter attached to these.
If the resistance presented to the circuit by the voltmeter (its input resistance) is
sufficiently high, then it will not disturb the currents flowing in the rest of the circuit
significantly. In this case, a reasonably accurate measurement of the potential drop
across the sample, and hence of the sample resistance, can be made. Keithley and
Hewlett Packard produce a range of instruments to supply and measure d.c. currents
and voltages, which conform to the requirements for making the above measurements.

There are two ways of making 4-terminal resistance measurements, one
appropriate for low resistance samples, the other for high resistance samples. In the

former case, the circuit is driven by a current source [Fig. 2.10(a)], and in the latter by a
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voltage source [Fig. 2.10(b)]. Adopting this procedure prevents either excessive
currents passing through the sample, or excessive voltages being developed across it.
The d.c measurements described above are fine for voltages much bigger than
about 100 uV. Smaller voltages are much harder to measure since they tend to become
engulfed in noise. Other problems also exist with d.c. measurements. If two dissimilar
metals are brought together, a d.c. potential can exist across the junction. When the
junction is in the voltage measuring part of the circuit, this leads to errors in the
measured voltage. Such a junction also acts as a thermocouple. If the temperature
drifts, so will the voltages. This adds further to the measurement errors. [See Keithley
et al. (1984) for more details on low-level d.c. measurements.] Such problems are

circumvented by using a.c. methods.

2.3.2 The lock-in technique

The methods of measuring resistance 2-terminally and 4-terminally using a.c
signals are analogous to the methods mentioned in §2.3.1. When using a.c. the
principle being evoked is that of linear response: if a circuit is excited at a particular
frequency, its response will also be at that frequency, with the strengths of excitation and
response being linearly related. In practice the circuit may also respond at harmonics or
sub-harmonics of the exciting frequency. In any case, if the amplitudes of the voltage
across the sample and the current through it are known, the ratio gives the resistance.
With two modifications any of the circuits shown in Figs. 2.9 and 2.10 can be used for
a.c. measurements: the d.c current/voltage sources should be replaced by signal
generators; and the current/voltage monitors should be replaced by lock-in amplifiers
(lock-ins).

. , multiplier
d1ffer§ntla] (phase-sensitive low-pass amplifier
amplifier detector) filter
input
€ output

- \ e
reference d.c. level
Crp»

Figure 2.11: Block diagram of the main functional units of a lock-in amplifier.



EXPERIMENTAL METHODS 18

A lock-in is basically a sensitive a.c. voltmeter. Fig. 2.11 gives a simplified
schematic diagram of the main functional units of a lock-in. At the heart of a lock-in is
a phase-sensitive detector (PSD) [Horowitz and Hill (1989), Ch.13]. Two signals are
fed into the PSD: one is the input signal from the sample; the other is a reference
sinewave derived from the excitation to the sample. The input signal will generally be a
superposition of the sample's response to the excitation and the unwanted noise
affecting the measurement. It is the job of the PSD to separate these two. Its output will
be a d.c. level proportional to the amplitude of the sample's response to the excitation.
This then goes through some smoothing and further amplification before appearing as a
measurement,

Many sources of interference can affect low-level measurements (see next section
for more details). In general, the amount of noise depends on the frequency being
considered. Thus, certain ranges of frequency will be "quieter" than others. The
frequencies at which these ranges lie depend primarily on the environment around the
measuring apparatus. The whole idea behind using a.c. excitations and lock-ins is to try
to make the measurement at a frequency where the effect of noise at other frequencies is
minimised. This is the crux of the lock-in technique, and with care signals down to a

few tens of nanovolts can be measured.

2.3.3 Interference in measurements

Two sources of measurement error have been mentioned already in §2.3.1:
junction potentials and drift. The former is a d.c. voltage, and the latter can be regarded
as extremely low frequency noise. For any reference frequency above a Hertz (Hz) or
so, both of these signals will be ignored by the lock-in.

Capacitive and inductive coupling are further sources of noise. Capacitive
coupling occurs when changing electric fields in the environment induce changing
currents in the measuring circuit. This effect can be reduced somewhat by using coaxial
("coax") cables with BNC connectors. If the outer conductor of the coax is properly
grounded, the core should be completely screened from stray electric fields outside.
Inductive coupling occurs when changing magnetic fields in the environment induce
currents in the measuring circuit. This effect can be minimised by using twisted pairs of
coax cables. This reduces the loop area through which the magnetic field acts, and
hence lowers the inductance of the circuit.

A potentially troublesome source of interference in the measurements is
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microphonic noise. If the measuring circuit vibrates in any way, changing capacitances
in the circuit induce changing voltages. The BNC connections tend to be the biggest
source of microphonics, although the main body of the coax cable will also generate a
small amount. This noise form can be minimised by ensuring that all cables are secured
to a solid surface. A large component of microphonic noise can be eliminated by
ensuring that the circuit is properly grounded.

Incorrect grounding is the most important remaining source of interference in
low-level measurements. If the circuit is earthed at more than one point, ground-loops
are formed. For low-level measurements the two ground points are actually at slightly
different potentials, leading to errors in the measurement. Thus low-level measurements
should be done with at most one ground point. Ground-loops are avoided by
decoupling the ground in the measurement circuit from those of all the instruments (so
the measuring circuit is completely floating), and grounding to an independent (not
mains) earth.

Other sources of interference also exist. These include 1/f and shot noise which
arise in any measurements. Either of these can affect the measurements, and must be
"smoothed" out using the time-constant settings on the lock-ins. Mains noise,
electromagnetic noise from other equipment in the lab, ezc. should not present a
problem provided a sensible excitation frequency is chosen (although excessive
amounts of such noise can cause electron heating which is detrimental to low-

temperature measurements).

2.3.4 Cryogenic systems and superconducting magnets

Many of the measurements require the sample to be at very low temperatures.
Several methods are used to achieve this. The simplest is just to immerse the sample in
a liquid helium (4 K) bath. This has been done for some of the measurements made in
Chapter 6. More sophisticated methods require the use of cryostats. Here the
temperature of the sample may be varied to an extent by balancing the flow of cold
helium gas and the heat generated from a small heating element near the sample. Base
temperatures are achieved by switching the heater off.

Some of the cryostats used incorporate medium-size superconducting coils in
their design. The coils sit in the same helium that cools the sample. With this
arrangement, moderate magnetic fields up to around 7 tesla can be applied to the sample.

Magnetoresistance measurements can thus be made.
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2.3.5 Automation of measurements

All the measurements are automated. The instruments are connected to a
computer via IEEE (also called GPIB) or RS232 interfaces. The instruments can then be
interrogated via software, and the data stored digitally for later analysis. The use of x-y
recorders is generally cumbersome, and becomes unmanageable when several

instruments have to be monitored simultaneously.
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Chapter 3

Characterisation of dry-etch
damage

3.1 Outline

Dry-etch damage is not completely understood. Although many techniques have
evolved to characterise this damage, i.e. to say whether one etch process is better than
another, the precise mechanisms of damage formation, and the exact nature of the
damage itself, are not yet known. This chapter looké at some of the experimental
aspects of dry-etch damage, and lays the groundwork for the development of a model
for etch damage in Chapter 4. After introducing some basic facts about native defects in
GaAs, some of the damage characterisation techniques that have been developed are
described. The information some of these techniques yield on SiCl,-etch damage in
particular is highlighted. The cut-off method is a straightforward technique of
characterising sidewall damage. The method is applied to the case of SiCl,-etched nt-
GaAs wires, yielding useful information. Some additional low temperature measure-

ments on these wires give further supporting information.

22
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3.2 Introduction

At some stage during device fabrication the active regions of the device need to be
defined. This may be done either by damaging the surrounding areas (e.g. by boron
implantation), or by etching. Both wet- and dry-etching can be used. However, when
very small features need to be defined the isotropic behaviour of wet-etches can cause
problems (see §2.2.4). For this reason much effort has gone into investigating the
suitability of dry-etch methods for the fabrication of nanostructures. The main problem
here is the electrical and optical damage that may be incurred by the material during
etching. This is believed to be caused by the physical component of the etching
mechanism (see §2.2.4).

That dry-etching, especially at high energies, can "damage" the underlying material
is not in doubt. Many different techniques suggest that structural and compositional
changes can occur in the material as a result of the etching. Although the body of
knowledge is growing, a detailed understanding is as yet lacking on exactly how such
damage propagates into the material, or indeed what form the damage takes. Such an
understanding is desirable in certain instances, since the effects on device performance
can then be assessed with greater confidence. When modelling transport through
nanostructures, for example, it would be very useful to know exactly how the damage
affects parameters such as mobility, or the mean free path. More realistic models may
then be developed, leading to a better understanding of experimental observations.

In the next few sections, the current status of thinking on dry-etch damage is
surveyed, and new experimental data on dry-etched n*-wires is presented. This,
together with evidence from recent DLTS and surface-etching measurements, allows a
phenomenological model for the distribution of defects in a dry-etched structure to be
developed in the next chapter.

3.3 Defects in semiconductors

3.3.1 Lattice defects
Defects come in many different forms. Before attempting to understand better the
nature of dry-etch damage, a summary of current knowledge on defects and defect states

is given. Defects can be separated into two broad categories: point defects and
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extended defects. The difference is simply in spatial extension, with point defects being
very much more localised.

Point defects include vacancies, interstitials, and substitutional impurities such as
the Si-donor in GaAs. Their presence in the host lattice can have a substantial effect on
the material properties. The aforementioned Si impurity in GaAs is easily ionised,
thereby enhancing electrical conduction. Cr-doping works in reverse, trapping electrons
and making the GaAs highly resistive. Optically, defect levels within the energy gap
may act as non-radiative recombination centres (e.g. Au-doped silicon), or as radiative
recombination centres (e.g. N-doped GaAsP). Some of these effects are desirable,
others are detrimental.

The properties of point defects are usually understood by analysing the defect
potential. If the defect potential is weak, electron states centred on the defect well extend
for several lattice spacings in all directions. In such cases, the effective mass
Schrodinger equation describes the defect properties very well [see for example
Stoneham (1975) for further details of the effective mass approximation]. If the defect
potential is weak at long distances, but significant in the unit cell within which the defect
is situated, the effective mass Schrodinger equation must be augmented by a "central cell
correction.” As the defect potential becomes more singular, other techniques must be
used to study the defect properties. Such defects states are generally termed deep levels,
even though their exact energy may not be "deep" [see Jaros (1982)].

Extended defects include many types of dislocations and faults in the lattice.
Dislocation loops, for example, may form if a small region of crystal is inserted into the
lattice (or removed from it). Hayes and Stoneham (1985), Ch. 3, and Kittel (1986), Ch.
20, give further examples. Extended defects of this nature act as sinks for point defects
and free carriers. As such, their presence in significant numbers will usually have
deleterious consequences on material properties. Detailed modelling of extended
defects is much harder than that of point defects, and only general properties can usually
be calculated [extreme examples of which may be found in Klienert (1989)].

3.3.2 Point defects in GaAs

There are six types of intrinsic point defect in GaAs: Ga and As vacancies,
interstitials or antisites. The usual notation for these is to write Xy where X is the
defect type, and Y is its location. Thus, V5 denotes a vacancy on the arsenic sublattice,

Ga; a gallium interstitial, and Asg, an arsenic on the gallium sublattice (arsenic antisite).
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Interaction between intrinsic point defects will produce point defects with different
characteristics [see Bourgoin et al. (1988) for a review]. Thus, for example, the
complex Asg,-As; (arsenic antisite coupled to an arsenic interstitial) is currently
believed to be a possible structure for the deep trap EL2 (see §3.3.3).

The properties of the intrinsic point defects and their complexes have been
extensively studied over the years, since they can be produced in a controlled fashion by
bombarding the GaAs with an energetic beam of electrons [Pons and Bourgoin (1985)].
An impinging electron, with energy up to 1 MeV, dissipates its energy to the lattice in a
series of collisions, producing Frenkel pairs (interstitial coupled to a vacancy, e.g. V, -
As)). The density of defects created in this way can be calculated (theoretically) as a
function of incoming electron energy. It has been found that the gallium interstitial
tends to be quite mobile, and that the Frenkel pair Va-Ga; readily recombines.
Electron irradiation thus generally creates defects on the arsenic sublattice. Lim ef al.
(1987) have directly measured the energy required to create a Frenkel pair to be around
10 eV. This is in accord with theoretical estimates.

Intrinsic point defects have been identified and characterised by a variety of
methods [Bourgoin er al. (1988)]. Of these, the twin techniques of electron
paramagnetic resonance (EPR) and electron nuclear double-resonance (ENDOR) can
provide a unique signature for the defect. Both rely on the electron-nuclear spin-spin
interactions, within the defect (EPR), and between the defect and its surroundings
(ENDOR); and since the interactions are sensitive to the exact structure of the defect, the
constituent components of the defect can in principle be deduced [see also Hayes and
Stoneham (1985)]. The electrical properties of the defect can be found from a variety of
techniques, the best of which is perhaps deep-level transient spectroscopy (DLTS) [see
Lang (1974) for a description of this], which can give information such as defect
concentration, energy level and capture cross-section, and identify whether the defect is a
majority or minority carrier trap. These and other methods have together allowed a
reasonable level of understanding to be attained about the simple defects in GaAs
[Bourgoin et al. (1988)].

3.3.3 The DX-centre and EL2 in GaAs
The two interesting deep-level traps in GaAs are the DX-centre and EL2. The

DX-centre was first observed in low temperature Hall measurements in AlGaAs



CHARACTERISATION OF DRY-ETCH DAMAGE 26

[Nelson (1977)]. Many models for this defect have been proposed, and its exact origin
is still debated [Baraff (1991)]. The DX-centre has several distinguishing
characteristics. Nelson (1977) observed that at temperatures of less than about 60 K,
electrons excited out of the defect by optical pumping were not readily recaptured upon
removal of the light (persistent photoconductivity, or PPC). It is found that electrons
trapped in DX-centres can be emitted by thermal excitations of ~0.1 eV, or optical
excitations of ~1.0 eV. Since thermal excitations involve lattice vibrations, whereas
optical excitations do not (Franck-Condon transition), a large lattice relaxation is
believed to occur when the DX-centre becomes filled [Lang and Logan (1977)]. Theis
et al. (1985) observed that the DX-centre must be related to the donor impurity, i.e.
the usual shallow donor state becomes a deep level when it is DX-like. Finally, the DX
ground state gives the appearance of being related to the band structure, since it is only
observed when the subsidiary L-valley in AlGaAs (or GaAs under pressure) becomes
the minimum [e.g. Mizuta et al. (1985)]. However, Chadi and Chang (1988) have
argued that this is only an illusion, showing that this apparent dependence can have

another cause.
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Figure 3.1: Simplified configuration co-ordinate diagram for the DX-centre. When the defect

fills, a change in the configuration co-ordinate results. This represents the lattice relaxation.

The properties of many defects can be summarised using configuration co-
ordinate diagrams [see Hayes and Stoneham (1985), Ch. 2]. Lang and Logan (1977)
drew the first configuration co-ordinate diagram for the DX-centre, with an associated
large lattice relaxation as shown in Fig. 3.1. This shows that the DX-centre has a

barrier to both emission and capture. Lang et al. (1979) explained this with a model
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where the DX-centre was a donor-vacancy complex (e.g. 8i-V, ). However, recent
models treat the DX as arising solely from the Si-donor, arguing [e.g. Morgan (1986)]
that a donor-defect complex is inconsistent with measurements of DX-centres in GaAs
under hydrostatic pressure. Currently favoured models stem from the work of Chadi
and Chang (1988). In these models, the DX-centre is formed when a Si-donor in a
substitutional site is displaced in the direction of an interstitial site, resulting in two
electrons becoming trapped (i.e. the DX is negatively charged, not neutral as previously
thought). Although problems still exist, the evidence in favour of such a model is
mounting [see Mooney (1991)].

The structure of the defect EL2 is also still debated, currently thought to be either
the Asg, antisite, or the Asg,-As; complex. Bourgoin et al. (1988) give its
configuration co-ordinate diagram and a summary of its properties. Like the DX-
centre, EL2 is donor-like with an associated large lattice relaxation. Its main
distinguishing characteristic is its presence in bulk (not MBE-grown) GaAs in
concentrations of 10'%-102® m where it is believed to be responsible for the semi-
insulating nature of the material.

3.4 Dry-etching with SiCl,

3.4.1 Characterisation of dry-etch damage

Identification of the defects involved in dry-etch damage has proved to be very
difficult, and no clear picture is as yet available. The situation is complicated by the fact
that many different types of eiching gases and mechanisms are used, so the type of
defects introduced may vary from case to case. A great variety of techniques have been
used to study this problem, with many yielding the simple qualitative observation that
the material has slightly modified properties once it has been etched. In some cases,
phenomenological models have been developed to try to explain the observations, and
indeed this is the basic approach adopted in the next chapter. None of these models,
however, gives a detailed microscopic understanding of the defects themselves.

Electrical, radiation and imaging techniques have been used to characterise
damage. Taneya et al. (1989) have used photoluminescence to show that etching can
introduce non-radiative recombination centres to a significant depth (~0.7 Mm in their

study). Raman spectroscopy, which utilises the phonon-photon interaction in crystals,
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has been used by Lishan ez al. (1989) to show that the surface depletion depth in GaAs
can be increased by the etching. Watt et al. (1988) have also used Raman spectro-
scopy to show that the crystal structure at the etched surface is slightly modified.

Modification of the etched surface is also indicated by measurements of barrier
height, leakage current and breakdown voltage of Schottky diodes [e.g. Pang et al.
(1983)]. Thoms ez al. (1986) have shown that depletion regions at etched sidewalls are
larger than would be expected from a knowledge of the free-carrier concentration in the
material. Finally, using transmission electron microscopy (TEM) Cheung et al. (1990)
have directly observed that etching modifies the stoichiometry of the material near
etched sidewalls.

The above methods have largely been used to assess the performance of different
types of etch with respect to how much damage they create. It has been found that
damage is greatest for sputtering type etches (such as those involving the noble gases),
and decreases as the etch is made more "reactive" [see, for example, Lishan ez al.
(1989)]. With reactive-ion etching the damage is found to decrease as the energy of the
bombarding ions is reduced, being almost negligible for the recently developed ECR
technique [e.g. Cheung et al. (1989)].

3.4.2 SiCl, reactive-ion etching

The basic configuration used for silicon tetrachloride (SiCly) etching is shown in
Fig. 2.6. Chlorine radicals formed in the plasma are transported across the dark space,
whereupon they react with the GaAs to form volatile gallium and arsenic chlorides
(GaCl, and AsCly). The products are pumped away and new etch gas is fed into the
system in a continuous cycle.

Since the basic chemical reaction relies on the presence of the chlorine, other
chlorine-containing gases (such as boron tetrachloride or carbon tetrachloride) can also
be used. Yet further reactive-ion processes use gases such as methane/hydrogen, Freon
12, etc. The underlying theme behind the use of all of these processes is that some
volatile gallium or arsenic compound is formed. Silicon tetrachloride provides a
relatively fast, highly anisotropic etch, removing typically 200 nm per minute of GaAs,
and producing vertical sidewalls and a smooth (though not always perfectly flat) etched

surface. The etching in this thesis is done exclusively with SiCl,.
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3.4.3 Characterisation of SiCl,-etch damage

In addition to the chemical reactions mentioned above, it is also possible for the
incoming ions to collide with the GaAs surface, and dissipate energy to it. The resulting
damage has been characterised by many of the techniques outlined in §3.4.1. For later
reference, it is useful to collect together specific pieces of information on SiCly-etching
obtained from these investigations.

TEM observations by Foad et al. (1991) show that the defect density decreases
roughly monotonically going away from the etched sidewall. XPS measurements by
Foad (1992a) show that the etching causes arsenic depletion in the top few nanometres
of the material, which appears to tie in with the observations of non-stoichiometry from
the TEM. Measurements of sheet resistance as a function of etch depth by Foad et al.
(1992b) appear to show a slight difference between wet-etching and SiCl, dry-etching.

Perhaps the most revealing information has been obtained by Johnson et al.
(1992) using DLTS on SiCl -etched n-GaAs surfaces. Five distinct defect levels were
resolved, labelled N1-NS, all being majority-carrier (electron) traps. Measurements of
defect density show a roughly exponential dependence with depth for most of the traps.
None of the detected traps corresponds to any of the simple defects discussed in §3.3.2,

although these DLTS measurements were not capable of detecting very shallow traps

(e.8. Vpo).

3.5 Experiments on SiCly-etched nt+-wires

3.5.1 The cut-off method

Thoms et al. (1986) demonstrated a ready technique of measuring sidewall
depletion depths. Consider the conductance of the rib of conducting material ("wire")
shown in Fig. 3.2. This has been formed from epitaxial n*-GaAs on an undoped
GaAs buffer, etched to give the required shape (see §3.5.2).

The conductance of the wire is measured by applying a current through the
sample, and measuring the voltage. The measured value is related to the dimensions of
the wire and the depletion depths by the resistance formula R = pL/A. From Fig.
3.2(b), the conducting cross-sectional area is, A = (w - 2x )X(t - x,), where ¢ is the
epilayer thickness, x is the sidewall depletion depth, and x;, is the top surface depletion
depth (assumed to be unaffected by the etching). The depletion region at the interface is
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almost entirely in the u-GaAs, and so may be ignored (as is affirmed by the numerical
simulations in the next chapter). Knowing the sheet resistance, R ,» Of the material gives
the conductance,

= 1 - =_—1
G R.L W -2xa, Rs net - xg)” (3.1

where n is the carrier concentration, and 4 the electron mobility. In practice R may

be obtained directly from a Van der Pauw measurement. An estimate of x, is then
obtained by measuring the conductances of wires of varying widths, and fitting Eq. (3.1)
to the data.

depletion region
conducting core
\

L measure
voltage

T pass current

(a) plan of wire (b) cross-section (c) surface depletion

Figure 3.2: The wire conductance is found as shown in (a). The conducting part of the wire
is the n-doped GaAs not including the depletion region, as shown in (b). (c) shows the

profile of the depletion region caused at the surface of GaAs by the pinning of the Fermi level.

In Eq. (3.1), x,; is a phenomenological parameter. In principle, this distance could
either represent a true depletion depth (obtained by solving the Poisson equation), or
resistivity changes near the etched sidewall could be giving the appearance of a
decreased conducting width. In practice, the number of defects necessary to give the
required resistivity change is much bigger than the number required to give a true
change in the depletion depth (according to the model to be developed in Chapter 4).
Since the number of defects necessary for the latter is already of the same order of
magnitude as the measured defect concentration (see Chapter 4), it will be assumed that

resistivity changes are not the principle cause of the effecs observed. Thus, x, is
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assumed to be obtainable from the Poisson equation.

In a completely undamaged sample x, = x,, where x,, is obtained from the one-

dimensional Poisson equation as shown in Fig. 3.2(c):
d%E.(x) eNp dE
= — ; E = 9 < = 0 ’

where E_ is the conduction band edge energy (in eV), N, is the doping density, € =

3.2)

£y€,, and ¢ is the surface potential arising from surface pinning [see Rhoderick and
Williams (1988) for more details of surface effects]. In GaAs, the Fermi level is pinned

near mid-gap at the surface, so ¢, = 0.7 eV at room temperature. Solving for x,, gives,

260, 12

eN D
Thus, an undamaged or wet-etched sample is expected to obey Eq. (3.1) but with

X0 = (3.3)

x4 replaced by x;,. In measured dry-etched wire samples x, is found to be larger than
Xo- Mechanisms by which this is possible are discussed in Chapter 4, but the effect is
attributed to dry-etch damage. The distance 2x, is called the cut-off width, since it is

the width at which the wire conductance should go to zero.

3.5.2 Sample fabrication

The samples are fabricated as outlined in §2.2.5. The etch mask consists of a set
of four wires of length L = 10 um and of different widths (Fig. 2.8). The material used
is heavily doped (around 10%* m3) MBE-grown n*-GaAs of thickness 50-85 nm. The
material was predominantly grown by the Glasgow University MBE Group, although
some layers were also obtained from IMEC. Some wet-etched wires were also prepared.
Here the dry-etch step is replaced by two wet-etch steps, the first for large area isolation,
the second to define the wires. PMMA was used as the mask, and 200:2:1 H,O:
NH,OH:H, O, as the etch solution. The sample was etched for about 3 minutes with
the solution at 7 C. SEMs of the wires are shown in Fig. 3.3.

3.5.3 Experimental results on cut-off widths

The two quantities to be measured are the width of the wire, and its conductance.
Since the depletion depth being inferred is only a few tens of nanometres in extent, both
the width and the conductance must be measured with care. Errors greater than about
10-15% in either quantity would lead to unacceptable scatter in the data points, and

consequently reflect poorly on the fitted value of x; in Eq. (3.1).
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Figure 3.3: Above is an SEM of a dry-etched wire, below an SEM of a wet-etched wire. The

patterns used allow 4-terminal measurements of the conductance to be made.
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The measurement of width is made slightly harder since the wires are rarely of
uniform width, varying (for lithographic reasons) by as much as 10 nm down their
length. Thus a single width measurement is insufficient. Instead 11 measurements are
made down the length of the wire, and the average of these taken as the representative
width. Measurements of width are made on the Hitachi S-900 electron microscope at
magnifications of up to X300K. Due to screen non-linearities in normal TV mode, a
slow scan mode is used. The manufacturers claim a calibration accuracy of a few
percent. This has been verified independently by measurements of magnetoresistance
oscillations in superlattice structures [Cusco (1990); see also Davison et al. (1990)],
and by measurements of surface acoustic waves using grating transducers [McEnaney
(1991)]. In both these cases, experimental data gives a length which agrees with

dimensions measured on the electron microscope.

current source voltage monitor

device on
probe station

Figure 3.4: Set-up used to measure resistance of wire. This is the same measurement

configuration shown in Fig. 2.10(a).

Conductance measurements are made using the circuit shown in Fig. 3.4. This is
not the ideal configuration for conductances below about 1 uS, but works well for
higher conductances. The measurements are four-terminal to eliminate the effects of the
sample contacts, and the voltmeter has a high input impedance, which further reduces
errors (see §2.3.1). Currents smaller than 1 pA are used. The voltage is measured at 11
different values of current, with the least squares gradient giving the required
conductance. The current is maintained sufficiently small to ensure that the I-V curve is

always linear, i.e. negligible sample heating occurs.
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Figure 3.5: Effects of dry-etching on wire conductances. The solid lines represent Eq. (3.1)
with x; = xq , where x is given by Eq. (3.3) for the appropriate material doping density.
Dry-etching is seen to reduce the conductance of a wire from its expected zero damage (wet-

etch) value.
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~68 nm e ~130 nm

conducting
core
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Figure 3.6: Schematic cross-section (not to scale) of a wet-etch wire. The epilayer thickness
is 85 nm. The top surface depletion depth (zero damage) is ~40 nm. The width w is taken
to be the width at the middle of the conducting part of the epilayer. This means that ~136 nm

must be subtracted from the measured wire width to give w.

Fig. 3.5 shows experimental (room temperature) measurements of wire conduct-
ances for two different epilayers. Fig. 3.5(a) shows results for a 50 nm thick GaAs
epilayer with carrier concentration 6.5x1024 m-3 and mobility 0.14 m? V-1 s-1; and Fig.
3.5(b) shows results for a 85 nm thick epilayer with carrier concentration 6.5%x102 m3
and mobility 0.31 m2 V-1 s-1. All the wires are 10 um long. Fig. 3.5(b) shows the
conductances of a set of wet-etched wires. Fig. 3.6 show the cross-sectional profile of
one of these wet-etched wires. The sides of the wire are overcut by roughly 45°, and the
etch depth is about 130 nm. The measured width (averaged over 11 separate
measurements) is the width at the base of the wire, which is clearly not a good
representative wire width. Instead, the wire width, w, is taken to be the mean width of
the conducting part of the epilayer, i.e. ~136 nm less than the measured width. The
solid lines in Fig. 3.5(a) and 3.5(b) represent Eq. (3.1) with x; = x,, i.e. the "zero
damage" case. Itis seen that the conductances of the wet-etch wires lie very close to this
line. The difference is due in part to experimental uncertainty in the exact etch depth
and angle of overcut, and in part to the fact that Eq. (3.1) is a 1-dimensional formula
applied to a 2-dimensional problem. See also §4.4.3, where the 2-dimensional problem
is solved in full.

Four sets of experimental points for dry-etched wires are shown in Fig. 3.5(a),
obtained for self-bias voltages of 280 V, 315V, 340 V and 380 V. The corresponding
etch powers lie in the range 100-150 W. The etch time was 30 s for all the samples
[with an etch rate of around 200(x10) nm min-1]. The change in bombarding energy
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from 280 eV to 380 eV seems to have little effect on the measured conductance within
experimental error, since all four sets of points lie roughly on the same line, cutting off
at around 60 nm. The choice of Ni or HRN as the etch mask does not affect this result.
Fig 3.5(b) shows wires etched at 310 V, but for times 36 s, 48 s and 90 s. In contrast to
the case where the bombardment energy was varied, changes in the etch time do have a
marked effect on the wire conductance, the cut-off width rising from 160 nm at 36 s, to
about 250 nm at 90 s.

The fact that the only apparent difference between the lines representing Eq. (3.1)
and the corresponding lines for the dry-etched wires is a shift along the x-axis (with
little change in gradient), indicates that the sidewall depletion depth is increased as a
result of dry-etching. The unchanged gradient vindicates the earlier assertion that the
top surface depletion depth (and hence R) is unaffected by the etching. Thus, the dry-
etching affects only the regions adjacent to the sidewalls.

From the two sets of data given in the two graphs, where the carrier concentration
was varied by an order of magnitude, the relation,

xg = (2.220.2) xp , 34
seems to approximately hold for an etch time of ~30 s and energies around 300 eV.
Thus, it appears as though the ratio of the measured sidewall depletion depth (i.e. after
dry-etching) to the nominal [Eq. (3.3)] depletion depth is approximately independent of
the carrier concentration. Measurements on two-terminal wires at several intermediate
doping concentrations also indicate that relation (3.4) approximately holds [A R Long,
M Kinsler, I K MacDonald, J J Thompson, unpublished]. In the next chapter, this
observation together with the measurements of Fig. 3.5, are explained in terms of a

quantitative model.

3.5.4 Hot electron effects

As the above wires are cooled, their transport behaviour exhibits new features
[Long et al. (1990)]. If the wire is pulsed with a high electric field for several seconds,
the subsequent low field conductance is found to be reduced from its original value.
The conductance then recovers back towards its original value with a rate dependent on
the temperature of the sample. Fig. 3.7 shows typical traces for a 230 nm wide wire.

The important piece of information given by this measurement is that the
predominant defect introduced by the etching is an electron trap, in agreement with
DLTS measurements (§3.4.3). In principle, it may also be possible to deduce the trap
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depth from measurements done at different temperatures. In the steady state, the free
carriers are described by an equilibrium Fermi-Dirac distribution f,(E), as is the
distribution of filled defect states. In a strong electric field, the conduction electrons in
this heavily doped material are described by a new distribution, f(E), with an electron
temperature T,; different from the lattice temperature. [Nag (1980), Ch. 11, gives
further details of the description of hot electron distribution functions.]
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Figure 3.7: Conductance of a 230 nm wide wire (fabricated from ~3.0x1024 m-3 carrier
concentration material) as a function of time, after a ~3x10° V m-! field pulse had been

applied across it for 60 s. The rate of recovery decreases at lower temperatures.

If the field is maintained for any length of time, the distribution of trapped
electrons in the defect states, f(E), will start relaxing towards the new distribution
f(E). If the field is then removed, the conduction electron distribution will relax to the
steady state value much faster [Main et al. (1990) estimate that this occurs in a few
nanoseconds for nt structures] than the trapped electron distribution. Since the
trapped charge affects the depletion depth and hence the conductance, curves similar to
that of Fig. 3.6 are expected. Also, since lower temperatures affect emission and capture
rates from defect levels, the observed rate of recovery should also change. A more
quantitative analysis of the effect is possible using a Shockley-Read-Hall type of
analysis [Shockley and Read (1952)] which assumes negligible lattice relaxation

associated with the defects, but this is not presented here. The main problem with the



CHARACTERISATION OF DRY-ETCH DAMAGE 38

analysis is that the exact heated electron distribution is unkown.

3.5.5 Photoconductance effects

If the above wires are pulsed with light instead of a high field, then the
conductance transient is observed to go the opposite way, i.e. the conductance is
initially increased from its original value, then decays back towards the steady state
[Long et al. (1990)]. At low temperatures, the decay back to the steady state is found
to take an exceedingly long time. The effect is reminiscent of PPC associated with DX-
centres (see §3.3.3), but a large lattice relaxation need not necessarily be invoked
(although is is certainly possible). Instead, the fact that empty traps are in the depletion
region spatially separated from the free carriers is sufficient to provide a barrier against
recapture. However, as carriers slowly do become trapped the conductance decays back
towards the steady state. These measurements, as in §3.5.4, demonstrate that the

predominant defect levels are electron traps.
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Chapter 4

Model for SiClz-etch damage

4.1 Outline

The information presented in Chapter 3 clearly suggests that depletion regions in
n-GaAs are extended as a result of SiCly-etching (at energies greater than about 200
eV). In this chapter, it is shown how this can happen if deep electron traps are
introduced into the sample as a result of energy/momentum transfer from the
bombarding ions to the lattice. Expressions for the distributions of these defects are
derived for both top surface etching and sidewall etching. It appears that to a good
approximation defect diffusion can be ignored when calculating these distributions.

Assuming these defects are deep electron traps, the conductances of etched
structures can be calculated by solving Poisson's equation. This is done for both wires
and epilayers. It is found that the model can quantitatively account for all the
experimental data on wire conductances obtained in the previous chapter, when a single
defect source function is defined for SiCls-etching of GaAs at a particular energy.
Qualitative comparisons with experiments on surface etched epilayers indicate that the

model may be extensible to forms of etch other than SiCl,.

41
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4.2 Models for dry-etch damage

4.2.1 Requirements of the model

Clearly it is the purpose of any model to explain the observed effects as
consistently (internal and external) as possible. In the case being considered here,
DLTS indicates the presence of at least five electron traps (hole traps, shallow states, and
levels resonant with the conduction band are other possibilities) whose microscopic
structure is uncertain. Therefore, there is insufficient evidence for a microscopic
understanding of SiCl,-etch damage formation and propagation, and any model must be
built on the basis of phenomenology.

The basic purpose of the model will be to try to explain the experimental results of
§3.5.3 on wire conductances, in as quantitative a manner as possible. This is non-trivial,
since several quite different parameters were varied in the experiments. The model must
explain the variation in cut-off width not only with carrier concentration, but also with
etch time. The epilayer thickness was also varied in the experiments, but this is perhaps
less significant. Since the evidence (see §§3.4.1 and 3.5.3) points to depletion regions
in n-GaAs extending as a result of dry-etching, several mechanisms by which this is

possible are studied in turn.

4.2.2 Effects of surface

The main surface parameter that affects the depletion depth, given by Eq. (3.3), is
the surface potential ¢_. In the experiments of §3.5.3, the depletion depth is observed to
increase by a factor of 2 or more. This requires a change in ¢ of a factor of 4 or more,
i.e. from 0.7 eV to 2.8 eV, putting the Fermi level at the surface of the GaAs well
outside the bandgap. This is clearly unphysical, both in relation to the band structure,
and since it implies an enormous hole concentration at the surface of the sample [as a
very rough estimate, p ~ (2my,(E-E,)/h?)3? [37? ~ 1027 m3]. An increase in §;

cannot therefore by itself explain the increase in depletion depth caused by dry-etching.

4.2.3 The DX-model

The initial interest in this model arose from the observations of PPC-like behaviour
in §3.5.5 [Long et al. (1990)]. The apparent dependence of measured depletion width
on doping density [c.f. Eq. (3.4)] added credence to the model. However, despite
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providing a natural explanation for these observations, the model has several faults
which become apparent after further analysis.

As a starting point, some form of DX-centre is required in the etched wire.
According to current models of DX-centres in Si-doped GaAs (see §3.3.3), the DX
level is not the ground state of the Si-donor in GaAs at atmospheric pressure, the level
being resonant with the conduction band, about 0.26 eV above the conduction band
edge. Thus, this type of DX-centre cannot be responsible for the effects of dry-etching
on the conductance. Instead, the XPS data of arsenic depletion, and TEM observations
of non-stoichiometry near the etched sidewalls (see §3.4.2) suggest — albeit
inconclusively ~ that arsenic vacancies are introduced into the sample in significant
numbers by the etching. Recalling the model of Lang er al. (1979), it is possible that
the required DX-behaviour could be obtained from a Si-V, ; complex (see §3.3.3).

empty charge density electric field
donor levels

s filled
! donor levels

=Y
1~

-

T 7

1

(4

~~=z-F

surface
¢

T
X4 X, x=0

(a) energy diagram (b) charge density (c) electric field variation

Figure 4.1: Illustration of how a DX-type defect would affect the surface depletion region at
an etched sidewall. The defect energy levels in (a) are only schematic — the effect of lattice

relaxation is not shown.

The apparent doping dependence of the measured depletion width seems to follow
most naturally if the DX-type defect has the same charge states as the Si-donor. Thus,
it would be positively charged when empty, but neutral when occupied by an electron.
With this being the case, some simple analysis yields the depletion depth that would be
expected. Consider Fig. 4.1(a), which shows the distribution of filled and empty defect
levels near the sidewall. Such diagrams are ubiquitously used in studies of deep traps

[see for example Kimerling (1974), or Rhoderick and Williams (1988)]. Let c denote
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the fraction of Si-donors that have become coupled to an arsenic vacancy, and have
become "deep." In the steady state, all such deep levels lying beneath Egare assumed to
be filled, as shown in the diagram. Hence these donors will become neutral upon
capturing an electron, and the charge distribution will be as indicated in Fig. 4.1(b), with
the corresponding field profile in Fig. 4.1(c). The fields (in units eV m-1) are given by:

1-
i =T 1y =P ey B, @D

where N is the doping density, and € = gy¢,. The potential is simply given by the
area beneath these curves. Taking the Fermi level as the zero of energy gives conditions
on the conduction band edge: E(x,) = ¢, and E(x,) = ¢, where ¢, is the trap depth,
and ¢, is the surface potential. The areas are easily calculated giving,

e(1-a)Np e(1-a)Np eNp
¢;=—-28—x%; ¢s=¢,+-—8—x xz+2—€x%. (42)
Solving for x; and x, gives the depletion depth:
26 \12] | ¢, \12 "
Xd=X1+X2= m [ m + (¢s + a¢t) . (43)

It is easily seen that the ratio x,/x,, where x; is the "damage free" depletion depth
given by Eq. (3.3), is independent of the doping density, which is the desired result.

After this success, any attempts at further analysis exposes the weaknesses of the
model. Eq. (4.3) for the depletion depth has two "adjustable” parameters (i.e. whose
values are unknown): the fraction of donors that are coupled to arsenic vacancies, «,
and the trap depth, ¢,. Although there would appear to be great freedom in what values
these parameters might adopt, this is not the case. It is found that for almost any value
of ¢, in the upper half of the energy gap, o takes values in excess of 0.8. In other
words, in excess of 80% of the donors develop deep levels and are not ionised, even at
room temperature. Such high values of ¢ give cause for concern.

The formation of Si-V, for such a large proportion of donors requires a high
degree of correlation between the donor and vacancy positions. Assuming that the
donors and vacancies are distributed randomly through the sample, and that the complex
only forms for nearest-neighbour coupling, a rough estimate may be made of the
density of V, required to give the factor a. Since the Si-donor sits on the gallium
sublattice, it is surrounded by four arsenic sites. If the probability of one of these sites
being vacant is o, then roughly o/4 of the arsenic lattice sites in the whole sample are
vacant. For o > 0.8, this involves around 20% of the arsenic in the crystal. Although
overestimated, this number still seems unrealistically large.

A further weakness of the model lies in the fact that any of the above types of
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defect lying within the conducting core of the wire, would trap electrons too. With such
a large number of defects, a marked change in conductivity (or sheet resistance) should
result from the etching, in disagreement with the observations of §3.5.3. The fact that
o must be constant to several tens of nanometres [at least 120 nm from each sidewall
for the 90 s data in Fig. 3.5(b)] is also not plausible, since this requires a constant
density of V, _ to exist over this depth, and there appears to be no mechanism by which
this can occur as a result of dry-etching. For such reasons, a dry-etch damage model

based on a donor-defect DX-type centre seems untenable.

Figure 4.2: Schematic drawing of energy
levels of defect used to explain the effects

of dry-etch damage.

surface

4.2.4 Use of a two-level defect

The main problem with the DX-model is that the charge transition resulting from
electron trapping, i.e. Sit — Sigx, does not affect the depletion region as strongly as
required. This means that @ must be unrealistically large to give the measured
conductance values. A better solution to the problem is to consider the defect being
introduced by the dry-etching as existing independently of the Si-donors, and having
energy levels roughly as shown in Fig. 4.2.

Two energy levels are postulated, serving a two-fold purpose: (i) the lower energy
level primarily determines the sidewall depletion depth, and (ii) the upper energy level is
the one giving rise to the warm electron effects (§3.5.4) and gives the DLTS signal. The
numerical analysis in the next few sections will show that such a defect energy level
structure allows the results of §3.5.3 to be modelled very well. It should also be
remembered that five defect levels are measured in the DLTS of SiCl,-etched GaAs (see
§3.4.3), not just one. Thus, the defect in Fig. 4.2 is meant to be representative of the
defects introduced by the dry-etching. That is, the postulated defect represents the
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combined effect of all the defects that may actually be present.

Having postulated an energy level structure for the defect, conductance
calculations further require the defect distribution in the etched structures to be known.
Since defects can diffuse, the distributions will initially be obtained by solving the
diffusion equation. However, by comparing the formulae to profiles measured by
DLTS, it will subsequently be argued that defect diffusion can be ignored (to a good

approximation) in the problem.

4.3 Defect distributions in etched structures

4.3.1 Defect formation and propagation

It was stated in §4.2.4 that a defect distribution will initially be sought from
amongst the solutions to the diffusion equation. To find the desired solution, certain
assumptions must be made about defect formation and propagation into the material
(specification of boundary conditions, and source terms in the diffusion equation). The
problem of defect formation has been widely studied previously. Radiation damage in
the form of intrinsic point defects [Bourgoin et al. (1988)] has already been mentioned
in §3.3.2. Formation of intrinsic point defects was also the favoured explanation of
Dubonos and Koveshnikov (1990) in explaining data obtained by 2 keV bombardment
of GaAs using argon ions. Typical energies used in SiCl, etching are around 300 eV
(cf. §3.5.3). Since Frenkel pair formation requires around 10 eV [Lim et al. (1987)],
and line dislocation formation typically requires 10 eV per interatomic spacing [Hayes
and Stoneham (1985), Ch. 3], the low energy bombardment used in SiCls-etching is
more likely to create point defects than extended ones. The problem of defect formation
and propagation will be mathematically stated in two different ways, corresponding to
two slightly different physical pictures.

In one picture, bombarding ions are envisaged to transfer some energy to the
crystal surface leading to the formation of Frenkel pairs solely at the surface. These
then dissociate, and the defects migrate into the crystal by diffusion. This case is treated
as a nonhomogeneous boundary condition to the diffusion equation, viz. a non-zero
defect flux pointing into the crystal is specified at the surface being etched. In the
second picture, defects are created not only at the surface, but also some distance within

the material. A number of studies [Taneya et al. (1989); Dubonos and Koveshnikov
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(1990); Johnson et al. (1992)] appear to show an exponential distribution of defects
going away from the etched surface. So this case is treated by including an exponential
source term in the diffusion equation. The source term relates to the transfer of
energy/momentum from the bombarding ion to the lattice, and may find some
microscopic justification in future analyses. The precise mathematical formulation of
the two cases, and the corresponding solutions, are given in the next two sections. Fits
to DLTS profiles will then be used to determine which (if either) is more physical.

Of the two cases stated above, diffusion plays a much bigger role in the first to
drive defects into the sample. Although Dubonos and Koveshnikov (1990) appear to
observe significant defect diffusion, even at room temperature, the reproducibility of the
width-conductance curves of §3.5.3 seems to suggest otherwise. If this is so, it would
appear that the effects of diffusion should be negligible. However, this need not be so.
During etching, any transfer of energy from the bombarding ions, which is below the
threshold for creating defects, will dissipate as heat to the lattice (or the electronic
states). Chadderton (1965), Ch. 3, shows that this may be treated as a problem in heat
diffusion, and will result in the creation of a transient temperature field in the structure
during etching. Since diffusion processes usually have a strong temperature
dependence [see, for example, Boltaks (1963), Ch. 2], this represents a possible
mechanism for enhancing diffusion during dry-etching. In solving for the defect
distribution, however, the diffusion coefficient is assumed to be constant.

In addition to diffusion, other processes for defect motion exist which are ignored
or are insignificant in the problem to be solved. The projected range of 300 eV ions is
at most a few Angstroms [e.g. Sze (1985), Ch. 10], so ion penetration can be safely
ignored. Taneya et al. (1989) show that ion channelling (albeit for 10 keV Ga* ions)
should also be insignificant in such problems, although they do not discount secondary
channelling effects. Other effects may not be so insignificant. If the diffusing defects
are charged (as has been postulated in §4.2.4), then the electric field due to the donor
ions and other defects may assist the diffusion process ["stress-assisted diffusion” —
see, for example, Shewmon (1963), Ch. 1]. This would add a drift term to the diffusion
equation, and would require the diffusion and Poisson equations to be solved in a self-
consistent manner. The defect may also change charge state as its energy level crosses
Ejp, adding further complications. In principle, defects can interact (e.g. recombination
of a vacancy-interstitial pair), requiring an entire series of coupled diffusion equations to

be solved. Such a generalised approach has been used, for example, by Orlowski
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(1988) to study impurity diffusion in silicon. All these latter complications are ignored.
In §8§4.3.2-4.3.3 defect distributions are obtained both for etched top surfaces, and
for etched sidewalls. The former can be fitted to DLTS profiles (which are measured on
etched top surfaces), as well as being used in sheet conductance calculations for etched
epilayers [c.f. measurements of Foad et al. (1992) - see §3.4.3]. The sidewall defect
distributions are used in conductance calculations for dry-etched wires. The discuss-
ions later in this chapter will highlight important differences in damage formation

mechanisms between top surface etching and sidewall etching (§4.4.3).

4.3.2 Defect distribution in one-dimension (top surface damage)

Two methods by which defect generation and migration into the etched sample can
occur have been described in §4.3.1. It is the purpose of this and the subsequent
sections to find which (if either) describes experiments better, primarily by comparing to
the DLTS profiles measured by Johnson et al. (1992). In this section, the defect
distribution for an etched epilayer is found.

If the finite size of the etched sample is ignored, its symmetry reduces the problem
to that of solving the one-dimensional diffusion equation. However, this is not a
standard boundary value problem since the surface at which the boundary conditions
(viz. conditions on the defect flux) are applied, is moving. This is very similar to
problems involving impurity redistribution during epitaxial growth or oxide growth (on
Si) etc., except that different boundary conditions are used [Runyan (1965)].
Analogous problems also exist in thermal physics, such as the melting of ice or laser
ablation of metals, collectively known as Stefan problems [see, for example, Crank
(1981), or Ockendon and Hodgkins (1975)], although the problem at hand is simpler to
solve. In what follows, the defect density for top surface damage is written Iy,?).

(a) In the first case, defects are created solely at the etched surface, and migrate
into the material through diffusion. The surface is assumed to be being removed at a
constant rate v (which is roughly true for SiCl,, apart from a short induction time at the
start). The moving boundary value problem is thus,

Da_z__i)l'(y,t)=0; y2wvt, t20, (4.42)
dy? ot 5

—o0. -Dl%)  =F,, lim IyH=0, 4.4b
0 =0, D] =Fi. lm v (4.4b)

where y is the vertical distance from the original surface of the sample [see Fig. 4.3(a)],



4.3 DEFECT DISTRIBUTIONS IN ETCHED STRUCTURES 49

t is the time, and D is the defect diffusion coefficient. The restriction y > vr allows
for the motion of the surface. The flux is given by -D VI"according to Fick's first law
of diffusion (the diffusion equation being Fick's second law). The defects are assumed
to be diffusing in from the surface with a constant flux of magnitude F,. The solution
is obtained by transforming Eq. (4.4) into a drift-diffusion equation, and Laplace
transforming in time (Appendix A.1):

I, =F, f dr (4.5)

1 rw2upr Y+W
B V7Dt 2D

where Y = y-vr' is measured from the etched surface [see Fig. 4.3(a)], and Tis the etch
time.

original top surface

Y o|w
etched top surface
Y=yw

(a) top surface etching (b) sidewall etching

Figure 4.3: Co-ordinate systems used to calculate defect distributions. In sidewall etching,

damage only penetrates through the region of sidewall exposed to the bombarding ion flux.

(b) In the second case, defect creation within the sample is allowed, with the defect
flux at the etched surface being zero. Defect creation is described by the exponential

source function in Eq. (4.6a) The problem here is stated as:

D'(%Ez“ - —) Iy, =-G, e 0-viA ;o oy2w, t20, (4.6a)
ITy,0)=0, -D(a—r) =0, ylim Iy, =0. (4.6b)
y=vt e

Again, the restriction y 2 v¢ allows for the motion of the etched surface. G, and A are
phenomenological parameters describing the rate of defect creation and the mean
creation depth (assuming a steady bombarding ion flux). The solution is obtained in a

similar manner to the previous case (Appendix A.1):
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T
IY,n= G—wl eV (1-¢r) - DG,y f dr' [1-e-T)]
0

wA
1 w"2iuny V Y+vr'
X e +v)/ADE | _ 7 orf , 4.7
YaDt 2D 24D¢ (4.72)
where,
v D
o= —A,— - 27 . (47b)

Again, Y is measured from the etched surface [see Fig. 4.3(a)], and 7is the etch time.

Egs. (4.5) and (4.7) for the defect distributions both contain a number of
parameters. The etch depth can be measured on an SEM, or by Talystep. The induction
time for SiCly is usually very small, so the etch time is also known This leaves the
"free” parameters F, and D in Eq. (4.5), and G, A and D in Eq. (4.7). When
calculating conductances in later sections it will be found that the trap depth, ¢,, is also a
parameter. However, calculations show that the exact value of ¢, makes little difference
to the conductance. This is because ¢, only affects the amount of charge trapped in the
upper level of the defect shown in Fig. 4.2, which is not very significant.

4.3.3 Defect distribution in two-dimensions (sidewall damage)

To solve for the sidewall damage in a wire, a few simplifying assumptions will be
made concerning the structure geometry. The defect distribution will be found for a
single sidewall (an etched step). The diffusion equation will be applied over the quarter
plane x 2 0, y 2 0. This entails ignoring the etched surface, as shown in Fig. 4.3(b).
All the defects are assumed to enter the material from the section of sidewall exposed to
the bombarding ions. The flux of bombarding ions is assumed to be constant, so there
is a uniform generation of defects over the exposed sidewall. The etch rate, v, is
assumed to be constant, with the induction time being negligible (as in §4.3.2). The two
cases discussed in §4.3.1 are treated separately. The sidewall defect distribution is
denoted ITr,?).

(a) In the first case, all defects are generated at the surface, so the defect flux over

the exposed sidewall is a non-zero constant. The problem may be stated as:

(DVZ-%)I“(r,t)=O; x20, y=0, (4.82)
d . .
Ir,p)=0, -D (g o =0, rh_gnoo Inr,p) =0, (4.8b)

0
D (é.ii)x:o - Fy [1-60-w)], (4.80)
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where x and y are as shown in Fig. 4.3(b), ¢ is the time, V is the two-dimensional
gradient operator, and F, is the magnitude of the defect flux. The O-function

appearing in the boundary condition (4.8c) is defined,

_ 0, y<0
60) = 1, y>0°

Its presence describes the downward motion of the etched surface, exposing larger and

4.9)

larger sections of sidewall. An integral representation for ITr,?) can be obtained from

Egs. (4.8) using the Green function method (see Appendix A.2):

T

x2/AD At Y Y
r)=F | drs rid 2\ erfe| 2TV 4.10
e =h) & sz |° °{2W) 7] ° C(zv—A‘D r (410

where 7 is the etch time, v the etch rate, and A¢' = 7-¢’. This gives the defect
distribution when defects are created purely at the surface.

(b) In the second case, the defect fluxes are zero on the surfaces of the sample
being etched, but a source term is added to the diffusion equation to allow for defect

generation a small distance away from the etched sidewall. The diffusion equation now

becomes:
(DV2 - %’ I,y = -Gy e¥*[1-6y-v)]; x20, y>0, (4.11a)
0 0 .
Ir,0)=0, -D(g " 0, -D(g | =0, rh_r)an(r,t) =0, (4.11b)

where G, and A are phenomenological parameters describing the rate of defect
creation and the mean depth to which they are created. As before, the 6-function
describes the downward motion of the etched surface, and again the problem may be

solved using the Green function method (Appendix A.2):

T
G1 a2 [ oan e YDA x A | YDAE x
=_- ' - f +
Ir,7) 4fodteD e™* erf 7 2V'D—Z?'+e erfl— D&
y-v y+vr'
rfi - erfc] , 4.12
*|° C(2\/TD t) 2/Dar @12

where 7is the etch time, v the etch rate, and A" = 7.

4.3.4 Fit to DLTS profiles

Defect concentrations in SiCls-etched GaAs have been measured by both Lootens
et al. (1991) and Johnson et al. (1992). The latter used the same machine and etch
conditions that were used to fabricate the wires of §3.5.3, so Egs. (4.5) and (4.7) have

been fitted to their measurements. Unfortunately, these measurements have been
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plagued by order of magnitude sample-to-sample variations in measured defect
concentrations, the reason for which is uncertain. Nevertheless, the measurements reveal
up to five defect levels, all with concentrations varying roughly exponentially with depth
from the etched surface.

Typical DLTS profiles obtained by Johnson et al. (1992) are shown in Fig. 4.4.
The five defect levels are labelled N1-N5. Since N2 is the most abundant, Egs. (4.5)
and (4.7) will be fitted to its profile. Thus, the assumption is that N2 is the primary
defect responsible for depletion region extension. Since the charge states of N2 are
unkown, this defect may indeed nor be responsible for the decrease in conductance
after dry-etching, but for the sake of argument, its profile is nevertheless used to extract
some useful information. In the numerical analysis to follow, it also will be assumed
that the depth of the upper level in Fig. 4.2 is ~0.34 eV, the measured depth of the level
N2. The lower level of Fig. 4.2 is assumed to be filled always.

1024 d T Y T Y T T T
°
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".‘E +
s s, X ~
'§ 1022 i +A : + O A
& +
8 ° o
g ° o
8102 F ° 85 2
1020 ) . ] . ] !
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depth from etched surface (nm)

Figure 4.4: DLTS measurements of defect profiles in SiCly-etched GaAs [Johnson et al.
(1992)]. The straight line is a fit of Eq. (4.13) to the profile of the level N2. The

corresponding parameters are A= 13.5nm and G| = 1.02x1023 m3 51,

With the parameters v = 200 nm min-! and 7= 30 s, Eq. (4.5) can be fitted with
F; ~ 1016 m-2 g1 and D ~ 10-17 m2 s-! (these are order of magnitude fits, which is

sufficient for the present analysis), and Eq. (4.7) with G; ~ 1023 m3 51, 4 ~ 10 nm
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and D ~ 1022 m2 s-1 (this latter fit is not unique, but is typical for small values of D).
It is immediately evident from these numbers that a fit to Eq. (4.5) requires a very high
value of diffusion coefficient. For many defects in GaAs, such high values of D are
unreasonable except at very high temperatures (perhaps several hundred Celsius). If
such heating were to occur during etching, serious consequences on etching
characteristics would result [e.g. Pearton et al. (1989)]. On the basis of this, it would
seem that the first method of defect formation and propagation discussed in §4.3.1 is
unrealistic, and so should not be pursued further.

Numerical evaluation of the integrals in (4.7) and (4.12) show that a further
simplification can be made in the analysis. As D is made smaller, both these
expressions approach limiting forms. It is easily shown that putting D = 0 in Egs.

(4.6a) and (4.11a), and integrating with respect to time gives,
.o =/—1—€le'ym(l-e"”/’1), (4.13)
for the top surface etching, and
Ix,y,7) = G e¥* ('L‘- %) , (4.14)

for sidewall etching. Eqs (4.7) and (4.13) agree to better than 1% for D < 10-19 m2 s-1,
and Eqgs. (4.12) and (4.14) agree to better than 1% for D < 1022 m2 s'1. As D is
increased by a few orders of magnitude above these values, the error only increases to
~10%. At the same time, the corresponding change in the calculated wire conductance
is less than 1 uS. Thus, it would seem that provided the defect diffusion coefficient is
not extremely large, D can more or less be ignored from the problem altogether, with
very little error. Since Egs. (4.13) and (4.14) are basically obtained by integrating the
source function G e* over the etch time, this corresponds to a picture where defects
remain roughly where they are created. Eqs. (4.13) and (4.14) are used in all analyses
to follow. It will be shown later that Eq. (4.14) gives an excellent description of the
etching results of §3.5.3.

Exponential defect distributions (one-dimensional) have been used in several
previous models on dry-etch damage [e.g. Mullins and Brunnschweiler (1976), and
Taneya et al. (1989)]. However, Eq. (4.13) is somewhat more fundamental than any of
these in that it tries to relate the distribution to actual etching parameters. Eq. (4.13) is
also a concise mathematical expression of the graphical analysis presented by Ide ez al.
(1989) on the effects of etch rate on the amount of damage observed in dry-etched top

surfaces.
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A least squares fit of Eq. (4.13) to the profile of N2 yields A = 13.5 nm and Gy
= 1.02x1023 m™3 s°1, where v = 200 nm min-! and 7 = 30 s were used. The fit is the
straight line in Fig. 4.4. Although these values of A and G, will not be used directly,
they can be usefully compared to the corresponding values obtained for sidewall etching
when wire conductances are calculated later in this chapter. This gives possible insights

into differences between damage formation at top surfaces and sidewalls.

4.4 Conductances of etched structures

4.4.1 Conductances for etched wires

Using the expressions for the defect density, and the defect energy level structure
discussed in §4.2.4, the conductance of an etched wire may be computed. This is done
by first integrating the two-dimensional Poisson equation to find the conduction band
edge, E(x,y). This gives the free carrier density which is then integrated to give the
conductance.

In addition to the defect charge, the Poisson equation will also contain the donor
density, Ny, and the free electron and hole concentrations, n(x,y) and p(x,y). The

free electron concentration is assumed to be given by,

n(x,y) = f dE g.(E) fo(E) , (4.15)
EC(x Dy )
where g (E) is the free electron density of states for a parabolic band, and f,(E) is the

equilibrium Fermi-Dirac distribution:

*\3/2
(E) =ﬁ(3’—’;—) E-E)". 4.16)
h

P8 = T EigT EEET (4.17)

where Efis the Fermi level (chemical potential), and m; = 0.067m,. The density of
states function above is not strictly accurate for such a heavily doped system. A better
expression would take into account such effects as band non-parabolicity, the density of
states tail and other corrections appropriate for the high doping density [Shklovskii and
Efros (1984)]. The free hole concentration is assumed to be given by,

By(x.y)
p(x,y) = f dE gw(E)[1 - fo(E)], (4.18)

-0

where g, (E) is the hole density of states summed over the light and heavy hole bands:
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/2 * \3/2
_ 1 |[2my, 2myy 12
en(E) =1 [( % ) " (—hz— Ey-E)2. 4.19)
Here my;, = 0.082my, and mj;, = 0.45m,. The valence band edge is given by,
54x10% T2
E,(x,y)=E.(x,y)-E,, E,=152-"—""__ .
v(x,y) = Ec(x,y) e =152 T30 (4.20)

where the energy gap varies with temperature [Sze (1985), Ch. 1].

If the defect level has a depth ¢, below the conduction band edge, the density of
trapped charge in the upper level of Fig. 4.2 will be given by I,y 0f (E (x,)-0,).
Thus, the total charge density associated with the defects from the left sidewall is,

N0y = Ty, 01| 1 +folEce,y)is - ). 4.21)
There will be a similar contribution from the right sidewall. As has been discussed in
§4.3.4, it will be assumed that ¢, = 0.34 eV, the depth measured for the N2 defect by
Johnson et al. (1992).

Putting all the expressions together gives the Poisson equation for E Y):

ViEGy =S [ No-Ne3 Z(M) N L)

NI - NTGY)rs ] , (4.22)

where all energies are measured in eV, and the electron and hole densities have been
rewritten in a more convenient form using the Fermi-Dirac integral of order 3
[Blakemore (1962)]:

2 [~ 2124,
F1p(m) == J(; e (4.23)

N_and N, are the effective densities of states at the conduction and valence band edges
respectively. If desired, the Fermi-Dirac integral can be approximated by one of several
analytical expressions: the Boltzmann factor for 1 < -3 [Sze (1985), Ch. 1}; Sommer-
feld's asymptotic expansion for 77> 3 [Blakemore (1962)]; or the implicit expressions
due to Joyce and Dixon (1977) for intermediate values of 77. Blakemore (1962)
considers yet further approximations. For the purposes of solving the Poisson
equation, however, the integral will be evaluated numerically. The Poisson equation is
solved over the rectangular cross-section of the wire, with the potential being fixed at 0.7
eV on the top surface and sidewalls, and the field set to zero at the substrate (these are
the boundary conditions). The method of solution is discussed further in Appendix
B.4.
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Once the conduction band edge is obtained by solving the Poisson equation, the

free electron concentration, n(x,y), is given by evaluating the Fermi-Dirac integral. The

conductance is then,

G(w)=% j dx I dy n(x,y), (4.24)
0

0
where p is the electron mobility, L and w are the wire length and width, and the

double integral is performed over the cross-sectional area of the wire [see Appendix
B.1]. The contribution to the conductance from the hole population is negligible and is

ignored.

4.4.2 Sheet conductances for etched epilayers

Calculation of the sheet conductance of an epilayer proceeds in an analogous
manner to that of the wire conductance, except the corresponding one-dimensional
formulae are used. First the one-dimensional Poisson equation is solved to give the
conduction band edge energy, E_(y). From this the electron concentration, n(y), is
found, which is then integrated to give the sheet conductance.

The Poisson equation with defect charge N (y) arising from surface damage
[cf. Eq. (4.21)] is,

2 -
d 5;?)%[1\, N.F /Z( C/g,)T Ef) N5 z(gzkf;ﬁ);vﬂy)] (4.25)

where all energies are measured in eV. This equation is solved with the potential being

fixed at 0.7 eV on the etched surface, and the field set to zero at the substrate. The
electron concentration is found from E_(y) using the Fermi-Dirac integral. The sheet

conductance is then given by,

©o

G(vp)=e ,uf n(Y) dY (4.26)

0
where Y is measured from the surface of the etched sample, and vz is the etch depth.

The method of solution of the Poisson equation, and the method for evaluating the

integral in Eq. (4.26), are outlined in Appendices B.1-B.3.

4.4.3 Comparison with experimental wire conductances
Using the methods presented above, the conductances of nt-wires can be
calculated with and without damage. Fig. 4.5 shows the results of calculations made for

zero damage for the 50 nm 6.5x1024 m-3 GaAs epilayer, with a set of experimental
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points measured for dry-etched wires included for comparison. For zero damage, the
curves given by Egs. (3.1) and (4.24) differ slightly. Although both give roughly the
same sheet resistance (same gradient), the two-dimensional calculation appears to cut-
off 7-8 nm above 2x,, where x is given by Eq. (3.3).

The reason for this can be seen by studying the two-dimensional potential profile
within the wire. Fig. 4.6 shows the variation in E_(x,y) over the cross-section of a 50
nm wide wire, as obtained from the Poisson equation, Eq. (4.22). Compare this with
Fig. 3.2(b), which was used to derive Eq. (3.1). Note the curvature of the depletion
region at the corners of the epilayer in Fig. 4.6. The curvature effectively adds a few
nanometres to the nominal cut-off width of an undamaged wire, and is the reason for the
difference noted above. This difference also explains why the wet-etch points in Fig.
3.5(b) are slightly shifted from the line given by Eq. (3.1) with x; = x;,. The two-
dimensional calculation of wire conductance versus width also shows a curvature at low

conductances, evident in Fig. 4.5. Again, this is due to the two-dimensional nature of

the problem.
60 T
° (3
L
o.‘
~ 40 | K -
% measurements for
§ dry-etched wires |
2
=
8 20 -
. Eq. (4.24)
0 ' 1 N 1 2 1 .
0 50 100 150 200
wire width (nm)

Figure 4.5: The lines are calculated conductances for zero damage. The points are measured
for wires fabricated from the 6.5x1024 m-3 material, using 300 V etching for 30 s, with HRN
as the etch mask.
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Fig. 4.7 shows all the relevant experimental data of §3.5.3, together with calculated
conductances for the damaged wires. The parameter values used [for Eq. (4.14)] were
A =9(1) nm, G| = 5.5(x0.2)x1023 m3 -1, and v = 200(x10) nm min-!, and it is
evident that the fit is excellent (the errors given above indicate the ranges over which
these parameters can be varied before the fit deviates by a more than a few percent). The
result is significant. It shows that given the source function Gle"‘/'1 [cf. Eq. (4.11)]
with the parameter values above, the effects of SiCl-etching of GaAs at energies of
~300 eV on the conductances of wires are completely determined, with respect to

variations in carrier concentration, epilayer thickness, and etch time/depth.

meshSize = 2.50 nm
wireWidth = 50.00 nm
etchDepth = 100.00 nm
surfacePotential = 0.70 eV

energ\

depth

Figure 4.6: Two-dimensional profile of conduction band edge as calculated by solving the

Poisson equation. The wire is 50 nm wide, and is made from the 6.5x1024 m-3 material.
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mask
ions from
. 48 C plasma \
Figure 4.8: Components of the primary
bombarding flux impinging upon a
.. sputtered

sidewall as it is being etched.

ricochet

Comparing the above parameters with those obtained for top surface damage (see
§4.3.4), where 4 ~ 13.5 nm and G; ~ 1.02x1023 m-3 s-1, also reveals something
interesting. Since ion collisions with the top surface are predominantly "head-on,"
whereas those with the sidewall are mainly "glancing," sidewall damage would be
expected to be far less severe than top surface damage. Davis and Tiwari (1991) [see
also Davis (1991)] have pointed out that the image potentials at the sidewall may deflect
incoming ions away from their near-vertical trajectories, so that the collisions may in fact
be less glancing than originally anticipated. Nevertheless, A and G, would still be
expected to be considerably less for sidewall damage than for top surface damage.
Although 1 is slightly smaller, it is seen that G, is slightly greater for sidewalls than
for top surfaces. Thus, defects appear to be created at a much higher rate at sidewalls
than would be intuitively expected.

There are several possible reasons for this. The most interesting is that it is the
effect of a secondary ion flux impinging upon the sidewall, in addition to the primary
ion flux from the plasma. This flux most likely comprises ricochet ions and sputtered
material from the surface being removed, as shown in Fig. 4.8. The flux density arising
from such processes must be significant compared to the primary ion flux density to
give the observed creation rate.

In addition to the above, inadequacies in the model [i.e. Eq. (4.14)], or
inaccuracies in the DLTS measurements could be further explanations of why the rate of
defect creation at the sidewalls appears to be so large compared with the corresponding
value for top surfaces. Until further developments are made, these possibilities must

also be born in mind.
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4.4.4 Comparison with experimental sheet conductances

Foad et al. (1992) have measured the sheet conductance of a 140 nm thick
3.0x10%4 m-3 GaAs epilayer as a function of etch depth for various forms of etch,
including wet-etch and SiCl,;-RIE at 290 V, amongst others. Two sets of measurements
using SiCly-etching were made. One indicated that SiCl, and wet-etching were roughly
similar, the other that SiCl, did indeed give some damage, resulting in a 10-15 nm
extension in the surface depletion depth. Using the parameter values obtained from the
DLTS fit (4 = 13.5 nm and G; = 1.02x1023 m-3 s1) gives a calculated conductance
versus etch depth curve which indicates a roughly 3-4 nm extension in the surface
depletion depth. This lies somewhere between the two curves measured experimentally,

and the comparison is inconclusive. A better comparison requires further work to be
done.

10 T
~ 8 ]
[7¢]
3
8 6 zero damage i
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3
& 4 “\ -
8 with higher .,
3 damage
: —
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0 M 1 M M

0 50 100 150

etch depth (nm)

Figure 4.9: Calculation of sheet conductance of a dry etched epilayer of thickness
140 nm and carrier concentration 3.0x1024 m-3. Two curves are shown, one for

etching with zero damage, the other for etching with damage. See text for details.

Perhaps more interesting are the calculated curves shown in Fig. 4.9. The straight
line is the zero damage case. The other line is calculated with 4 = 14 nm, G, = 102
m-3 s-1 and v= 170 nm s-1. It is seen that the amount of damage appears to saturate
after a short period. This form of curve is very similar to what has been observed for

CH,/H, etching, and what is expected for dry-etching with the inert gases, such as Ar,
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Ne, etc. [Foad et al. (1992)]. Eq. (4.13) shows that decreasing v or increasing A has
a similar effect on the prefactor as increasing G,. Taneya ez al. (1989) using Ga*t
FIB/Cl, etching, and Dubonos and Koveshnikov (1990) using Ar-plasma etching
believe that various types of point defect are introduced into their etched material by the
etching process. With this being the case, the defect distribution Eq. (4.13) derived in
§4.3.4 should also be applicable to these forms of etches too. However, a complete set
of data is as yet lacking for any of these forms of etch to allow model parameters to be

fitted uniquely.
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Chapter 5

Quantum transport in mesoscopic
systems

5.1 Outline

The general problem of quantum transport in crystalline systems has been studied
for many decades. Use of electron-beam lithography through the 1980s opened up new
areas of research for experimental physicists. At the same time, theorists were
uncovering new approaches for understanding the nature of transport in the systems
being studied experimentally. These investigations still continue.

Of particular interest are two regimes of low temperature quantum transport. The
first involves the use of very pure samples, where the electron mean free path is very
long and electron waveguiding effects are at the fore. This is the quantum ballistic
regime. As more scatterers are introduced into the system, the electron mean free path
decreases, and the quantum ballistic phenomena are replaced by quantum diffusive
phenomena. This is the second regime of interest, often called the mesoscopic regime.
Electron transport in mesoscopic systems are described using the laws of quantum
mechanics, but due to the diffusive nature of the problem, some complex and interesting
effects result. It is the purpose of this chapter to outline the basic ideas of quantum
transport in the mesoscopic regime. These ideas will then be used in Chapter 6 to

understand the effects being measured in nt-GaAs wires at low temperatures.

65
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5.2 Mesoscopic systems

5.2.1 Electron coherence

Quantum interference effects in nanostructures typically manifest themselves in
conductance measurements. On a qualitative level, such effects can be understood in
terms of single electron states (wavefunctions). Electron-lattice, electron-impurity, and
electron-electron interactions all affect the motion of an electron through the
semiconductor. An electron starting off in a particular state will end up in a different
state as a result of these interactions — a process called scattering. The types of
scattering predominating during a particular measurement will determine whether

interference effects are observable, or whether they are destroyed, i.e. averaged away.

scatterer
P
electron /\
source - YAPB
AANANANANNNANNN B

Figure 5.1: Electron motion from point A to point B can either be direct, or indirect via

scattering off point P. The type of scattering at P can be either coherent or incoherent.

Fig. 5.1 shows how an electron "wave" can propagate from point A to point B by -
two different paths. One path goes directly from A to B, whereas the other is scattered
at P. The scattering at P can be either coherent ("preserving” the phase of the electron
wave), or incoherent ("destroying" the phase of the electron wave). In coherent
scattering, the phases of the electron wave before and after scattering will have a definite,
fixed relationship. The phase could remain completely unchanged, or there could be a
known phase shift as a result of the scattering. [A study of phase shifts in the partial
wave analysis of scattering experiments was much beloved of particle physicists several
decades ago. Although less grand, the scattering in the present context can be thought

of in an analogous manner — see, for example, Mahan (1981), Ch. 4] In incoherent
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scattering, the electron phase becomes completely undefined after the scattering event —
the electron loses its phase "memory" as a result of the scattering. This is called phase
breaking.

Now, let g be the amplitude at B of the wave travelling directly from A to B,
and ypp be the corresponding amplitude of the wave that has been scattered at P. In

real samples there are typically a large number of scattered paths, not just one. Thus, in

addition to Wupg, there will also be amplitudes VAQB> WARB> --- arising from
scattering at Q, R, ... . If the scattering is incoherent, then by direct analogy with the
addition of incoherent sources of light,

vl = |wasP + [waps? + |waqaf? + -+ 5.1)

where yjp is the wavefunction amplitude at B. The net result of this sum is that inter-
ference effects are "smoothed out," and the wave nature of the electron motion is hidden.
This corresponds to the classical limit of electron transport, described by classical
electron diffusion.

The situation is altered drastically when the scattering is predominantly coherent.
In this case, it is the wavefunction amplitudes that add (not the "intensities"):

VB = WAB + WAPB + WAQB + - - = ydirect 4 yseatt | (5.2)
where ydirect =y, g, and y5Ct = Wupp + Yagp + ... are the direct and scattered
components contributing to yg. Two cases are of interest here. If yscatt — ( in the
sample, then the electron transport is said to be quantum ballistic. The boundaries of the
sample can then "guide" the electron waves (boundary scattering is not included in
yseatt) much as in microwave waveguides. The low scattering limit can be realised in
nanostructures fabricated using ultra pure MBE-grown GaAs/AlGaAs heterolayers. The
last 4-5 years have seen the discovery of a number of ballistic phenomena, leading to a
hive of activity in this area. Examples include the quantised conductance of a quantum
point contact [van Wees et al. (1988); Wharam et al. (1988)], the quenching of the
Hall effect [Roukes et al. (1987)], and coherent electron focussing in a perpendicular
magnetic field [van Houten ez al. (1989)]. For a detailed review, see Beenakker and van
Houten (1991).

When yscatt in Eq. (5.2) is not so small (but still the result of coherent
scattering), interference effects are still observable, although their description and
analysis is much more complex. This corresponds to the regime of quantum diffusion,
where the electrons scatter (perhaps frequently) in going from A to B, but their wave

nature remains intact. The resulting interference effects require changes to the classical
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descriptions of their diffusive motion. Some of the effects are discussed later in this
chapter. This will lay the groundwork for attempting to understand the measurements

on nt-GaAs wires in Chapter 6. In the next few subsections, the above arguments on

coherence are quantified slightly.

5.2.2 Length, time and energy scales

Quantum interference is affected by a number of factors, e.g. scattering,
temperature, applied magnetic field, ezc. The effect of these factors on the quantum
interference may be quantified by introducing a number of parameters. The relative
values of these parameters helps in the understanding of quantum interference effects.
First, the various scattering processes affecting electron motion are dealt with.

Impurity scattering of electrons is generally elastic, i.e. energy conserving, since
the impurities are much more massive than the electron, and will therefore gain a
negligible amount of kinetic energy during the collision. [It will be assumed that energy
is not transferred to electrons bound to the impurity. This is a good approximation
provided the energy of the conduction electron is not too high.] Typically, impurity
scattering will preserve the electron phase, and interference effects will still be possible.
The mean distance between elastic scattering events is denoted /, the elastic mean free
path. [Strictly speaking, a distinction should be drawn between small angle and large
angle scattering, but for the present argument such complications are ignored.] The
mean time between elastic collisions is 7 = /vy, where v is is Fermi velocity. Such
collisions usually determine the diffusion coefficient of the electrons at the Fermi

surface,

vl
=" 53
D 7 (5.3)

where d is the dimensionality of the sample. [Scattering at the system boundaries can
also affect D. See §6.2.5.]

The electron-lattice interaction, via electron-phonon scattering, is very deleterious
to interference effects. At high! temperatures it is the dominant scattering mechanism,
and interference effects are hard to observe. Energy is invariably transferred in such
scattering processes. If the energy transferred is much smaller than kgT, then the
scattering is effectively elastic (or quasi-elastic); if the energy transferred is comparable

to k3T, the scattering is inelastic. [Since the Debye temperature, 6p, generally

1 The exact meaning of "high" here depends on a number of material parameters, such as impurity

density, carrier concentration, efc.
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determines the highest phonon energies, electron-phonon scattering will tend to be
quasi-elastic if kT > kpOp, and inelastic otherwise. See, for example, Blatt (1968),
Ch. 5, or Seeger (1984), Ch. 6.] The number of inelastic electron-phonon collisions per
second (scattering rate) may be written t‘;%,, where Ton is the mean time between
collisions. In reality there may be several different types of inelastic electron-phonon
interaction, SO 'L}‘,}, represents the net scattering rate due to all of these.

Inelastic electron-phonon scattering is not the only contribution to the inelastic
scattering rate, 1‘},1. Electron-electron scattering also contributes to 1:;,1 since one electron
can lose energy to another (their indistinguishability does not affect this). Thus, like
electron-phonon scattering, electron-electron scattering is phase breaking. Denoting the
electron-electron scattering rate 7:;, the combined inelastic scattering rate is the sum,

11,1
Tin Tph Tee
The current-carrying electron states are those diffusing at the Fermi surface. The

54

effective (mean) distance travelled by these electrons between inelastic collisions is
defined,

Lin=(D7a)'?, (5.5)
called the inelastic scattering length, where D is the diffusion coefficient.

Slight complications can arise in impurity scattering due to the spin of the
conduction electron. If high atomic number nuclei are present in the sample, then the
spin-orbit interaction will be important. The spin-orbit Hamiltonian is given by [Zeiger
and Pratt (1973), Ch. 1; Chakravarty and Schmid (1986)],

Hso=-—t 6. [vwmyxil , (5.6)
4m*c?

where the components of ¢ are the Pauli spin matrices, V(r) is the impurity potential, F
is the electron velocity, and m" is its effective mass. The effect of the spin-orbit
interaction is to change the phase of the spin part of the electron wavefunction
[Bergmann (1984)]. This is an elastic process, and it does not destroy the phase

coherence of the electron. The spin-orbit scattering length is Lgp = (D T50)1/2, where

the spin-orbit scattering rate, tg-}),, contributes to the net elastic scattering rate, 1. In
metals, these two rates can be related by [Meservey and Tedrow (1978)],

L (a2 5.7

G (5.7

where o = e?/4meghc = 1/137 is the fine structure constant, and Z is the atomic
number,

If the impurity has a net spin, then the exchange interaction between the
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conduction electron and the impurity electrons will be important. The interaction can be
written [Mahan (1981), Ch. 1; Chakravarty and Schmid (1986)],

Hy=-Jo-S, (5.8)
where © is the electron spin, § is the net impurity spin, and J is the coupling constant
which is proportional to the exchange integral. Like the impurity interactions discussed
above, the interaction represented by H. is elastic. However, unlike the ones above, it is
also phase breaking. The interaction is variously referred to as magnetic scattering, or
- spin-flip scattering. The magnetic scattering length is L, = (D7,)!/2, where the
magnetic scattering rate, 7;!, contributes to both the elastic scattering rate, and the phase
breaking rate. In magnetic scattering, the spin on the conduction electron rotates by a
certain amount, as does the spin on the impurity [Bergmann (1984)]. This randomises
the phase in the spin part of the electron wavefunction, and leads to the loss of
coherence [Stern ez al. (1990) give a more detailed argument].

The above are the most important scattering processes affecting quantum
interference measurements. The various processes affect either the elastic scattering
length, /, or the coherence (phase breaking) length, L, = (D7,)!/2, where the phase
breaking rate is ’%1. In the literature, L;, is often used in place of Ly, but this is strictly
only true when magnetic scattering is insignificant in the sample being considered. The
coherence length also goes under the name Thouless length (Ly;,). In Aharonov-Bohm

experiments (§5.3.1) it is found that [van Haesendonck (1991)],

11,1 (5.9)
T¢ Tin Ts

but in weak localisation experiments (§5.3.2) the relation [Hikami et al. (1980); van

Haesendonck (1991)],

11,2 (5.10)
T Tin  Ts

applies. Measurements of weak localisation can often provide a useful method of
deducing Té,l and 1;10 for the sample under study. However, it is much harder to
deconvolute T{,{ and 1:;1 from 'L"‘,,l [Bergmann (1984)]. It is generally found that 1:;01 oc
T?, and 13y, is temperature independent, where p depends on the scattering
mechanisms prevalent in the sample, and also on the sample dimensionality.

Two energy scales are of considerable importance. Finite temperatures smear out
the Fermi surface over an energy range ~ kgT. This scale ultimately controls the
observability of all quantum effects, since if kgT is high enough, all such effects

disappear. In terms of a "scattering” length, kg7 becomes the thermal diffusion length,
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Ly = (Dtp)'/2 = (hD/kgT)'2. The thermal diffusion length is discussed further in
the next subsection, in the context of energy averaging. Also important is the energy,
eV, gained by an electron in traversing a region across which there is a potential
difference, V. If eV > kpT, then the electrons often behave as if they were at an
effective temperature, T,; ~ eV/kg > T. In this case, it is T,; (not T) which enters as
the relevant temperature in expressions relating to the electron gas. This can either be a
good or bad thing, depending on the requirements of the experiment.

The strength of the magnetic field sets two further scales which can affect
quantum interference. Electrons moving in a plane with a perpendicular applied
magnetic field, will tend to undergo a cyclotron motion with frequency @, = eB/m*. If
the path of these orbits lies within a phase coherent region, then Landau levels are
formed [e.g. Ando et al. (1982)],

N( ) : 5 11)
]‘[ I') oc ex - s .

where Lp = (h/eB)12 is the magnetic length, and N is the Landau index. The Landau
wavefunction thus has a Gaussian envelope, with approximate radius ~ Lg (for N = 0).
The length scale Ly is therefore identified as the quantum cyclotron radius. [The
expression for Ly is readily obtained by equating the rotational kinetic energy of a
classical particle undergoing cyclotron motion, 3 m*a)chg, to the energy of the N =0
Landau level, ;2 a. For higher Landau levels the quantum cyclotron radius becomes
(2N+1)12Lg. The classical cyclotron radius is obtained by equating the centrifugal
force, m*wczrc, to the Lorentz force, evgB, i.e. r, = hkp/eB.] Landau levels form
when Lp < L, but only become experimentally observable when their width in energy
(due to thermal broadening, disorder broadening, etc.) is much smaller than 4 @,.

An applied magnetic field will also tend to lift any spin degeneracy of conduction
electrons in the sample under study. The magnetic moment of an electron may be

written,

W=- gS:B S, (5.12)

where pg = eh/2m* is the Bohr magneton, g; is the spin g-factor, and S is the spin
angular momentum of the electron. The orientational potential energy of the electron is
-t-B, so the Zeeman splitting between the spin up and spin down electrons is [Zeiger
and Pratt (1973), Ch. 1],

AEz=-pi-B+pr-B=gupB , (5.13)
where g is the effective Landé g-factor in the material, and S-B =+ ;hB. The Zeeman
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splitting provides an energy scale which can be compared, for example, to kpT. If
gpB > kgT, then it may be possible to resolve the two spin states experimentally. If
g1pB < kpT, then the two spin states are still effectively degenerate.

In general, the processes above can be compared in one of several equivalent ways.
Three of these ways (as length, time and energy scales) are shown in Fig. 5.2, and have
been used above. Bergmann (1984) also uses equivalent magnetic field scales to

compare the different scattering mechanisms:

h
By = . 5.14
X 4eDty (5.14)
This is equivalent to comparing the scattering rate, since By o< 7.
Figure 5.2: Diagram showing the equi- @
valence between using length, time or £ h hD 12
X == X =T
energy scales to compare different X Ex
processes.
~— ()
Lx = (D))"
5.2.3 Energy averaging

The phase breaking processes described above are not the only ways that
interference effects can be destroyed. Quantum effects should be strongest at the
absolute zero of temperature, where all the contributing electrons (viz. those at the
Fermi surface) have the same energy, and hence are described by the same probability
density function (or wave function, up to an arbitrary phase factor). When the
temperature is raised, the Fermi surface is smeared out, and electrons in different energy
levels can contribute to the interference process. Since electrons in different energy
levels are expected to have different wavefunctions (strictly modulus squared of the
wavefunction amplitudes), it may be thought that the more distinct energy levels there

are, the greater will be the averaging of the overall interference effect. However, this is

only partially correct.



5.2 MESOSCOPIC SYSTEMS 73

several = AE only one
_bands add coherent
incoherently band
- f(E) » f(E)
HIGH TEMPERATURE LOW TEMPERATURE

Figure 5.3: Illustration of energy averaging. Electrons within an energy range AE contribute
to the same interference pattern. If kgT > AE then there are several bands which contribute

differently to the interference. f(E) is the Fermi-Dirac distribution function.

If T is the electron temperature, electrons within a range of energies kpT around
the Fermi level, Ef, will contribute to the conduction process. However, only electrons
within a band of energies AE can be regarded as having the same probability density
function. When AE > kT then all the current-carrying electrons will contribute to the
same interference pattern. But if AE < kT, there will effectively be several bands of
electrons (see Fig. 5.3) whose interference patterns are essentially uncorrelated. The
interference pattern thereby produced is some average over these bands, and is
diminished from the effect obtained from just a single band. This is called energy
averaging. It may be naively thought that AE is just the spacing between the distinct
energy levels of the system. However, this is not so: AE can be much much larger than
the level spacing. It is in fact related to the uncertainty in an energy level due to the time
taken by an electron in diffusing across the sample, as the following argument due to
Thouless (1977) shows.

Consider a sample of size L within which an electron is diffusing. If the

diffusion coefficient is D, then the mean time taken for the electron to cross L is,
L2

D

If the electron phase is coherent across L, then the electron entering and leaving L can

o= (5.15)
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be regarded as scattering into and out of an electron state, with mean lifetime 7. This
finite lifetime introduces an uncertainty in the energy of this state, called the correlation
(or Thouless) energy:

h

Ec = (5.16)

All electrons within a range of enegy E of one another can effectively be regarded as
having the same energy, i.e. they will have the same probability density function. In
other words, E; can be identified with AE of Fig. 5.3. Thus, for energy averaging not
to occur requires E > kT, or, using Egs. (5.15) and (5.16):

nD |2
Eﬁ) . (5.17)
The right hand term of Eq. (5.17) is defined as Ly, the thermal diffusion length

(though L is sometimes defined with /4 rather than #). Thus, for no energy averaging

L<

to occur within a phase coherent sample, its size must be less than Ly, i.e. the

inequality L < L must be satisfied.

5.2.4 Mesoscopic systems

Based on the length scales introduced above, the sample under study can be placed
into one of three regimes, depending on the sample size, L. (i) The quantum ballistic
regime, L <[, L » L;. Here the electron traverses the sample without suffering any
form of scattering, elastic or inelastic. This generally requires very pure samples and
very low temperatures. Some of the effects observed in this regime have already been
mentioned in §5.2.1. (ii) The quantum diffusive regime, / <L <L o Ly. Here the
electron is permitted to suffer elastic collisions in traversing the sample, but no phase
breaking is allowed to occur. The problem is thus diffusive in nature. However, since
the electron state remains phase coherent during all the scattering events, this is not
classical diffusion, but quantum diffusion. (iii) The classical regime, L >> [, L » Ly.
This represents the normal, everyday world, where quantum interference effects have
been completely washed away. Electron transport is described by classical diffusion.

The remainder of this thesis is concerned primarily with case (ii) above, where
quantum diffusive effects dominate the transport behaviour of the systems being
measured. This will be referred to as the mesoscopic regime. Ballistic phenomena are
extremely difficult to obtain in the n*-GaAs used. However, the dimensions of
structures fabricated in nt-GaAs by e-beam lithography and dry-etching are small
enough that they do fall within the mesoscopic regime.
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kFI<1 kFl»l

Figure 5.4: Highly disordered systems can be characterised by the condition kgl < 1, where
the electron wavelength is comparable with the scattering length. For weak disorder, kpl >>

1, where the electron wavelength is much smaller than the scattering length,

Quantum electronic systems can also be characterised in terms of the value of the
product kgl, where kp, is the Fermi wavevector, and / the elastic mean free path. The
limit £zl < 1 is usually satisfied in the presence of strong disorder (small /). As seen
in Fig. 5.4, this corresponds to the case where the wavelength of the electron is bigger
than the distance between scatterers. The electron state becomes localised, and no
conduction can take place. The inequality k! >> 1, where the electron manages to
propagate some distance between scattering events, is called the weak disorder limit.
The special significance attached to the value of the product kyl is that kpl >> 1
corresponds to the limit where the quantum corrections to classical transport parameters
are (in principle) small, and can be calculated using perturbative expansions in the
small parameter (k/)-1. Note that quantum effects will arise irrespective of the value of
kgl provided L, > [, but it is the case kgl >> 1 that will be relevant to the systems
studied in Chapter 6.

5.2.5 The Landauer formula

The fact that electrons behave like waves for sufficiently small samples (L < L)
has required a reappraisal of the usual methods of calculating conductances (e.g. via the
Boltzmann equation). A relatively concise formulation of the problem has been
achieved by Biittiker (1986), extending an idea originally due to Landauer [for reviews,
see Datta and McLennan (1990), or Stone and Szafer (1988)].
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Figure 5.5: The Landauer formula relates the conductance of an arbitrary mesoscopic system
to the electron transmission probabilities between the different leads attached to it. The Hall

geometry has six such leads.

Consider the system shown in Fig. 5.5, which shows a conducting region with a
number of leads attached. For example, this could be a Hall geometry, with six leads.
The leads can be used either for passing current or for measuring voltage. Voltage
probes are defined by the condition that no net current should flow into them.

A quantity Rij,mn may be defined, which is the resistance measured across leads
m and n (i.e. m and n are the voltage probes) with current being driven through leads
iandj. In the Hall geometry of Fig. 5.5, Ry4 53 would describe an ordinary 4-probe
longitudinal resistance measurement, and Ry4 6 a Hall measurement. If 7(E) is the
probability amplitude of an electron of energy E being transmitted from lead / into lead
k, and  is the chemical potential of the electrons in lead , then a Landauer formula
relates the current in any particular lead to the () and g, [see Datta and McLennan

(1990)]. The measured resistance may then be written in the form,

h,um'ﬂn
Ry = - Hortin (5.18)
e Sy

where Sij is some function of the #,(E) and u;, and (i,, - 4,)/e is the potential
difference between leads m and n. This method of calculating the quantum
conductance of a phase coherent sample is called the Landauer-Biittiker formalism.

The interesting quantity in Eq. (5.18) which brings out the quantum mechanical
nature of the problem, is S;j- The quantity S;; relates to how well the sample scatters

the electron waves entering it into the output leads, and therefore encompasses all the
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quantum interference effects that are occuring. Alternatively, if the wavefunction could
be found for the electron in the sample, Sij would be related to the modulus square of
the amplitude of the wavefunction in leads i and J. Explicit expressions for Sij can be

found in simple cases. For example, this has been done for the Hall geometry of Fig.
5.5 by Biittiker (1988).

(a) Aharonov-Bohm ring (b) ideal measured curve

conductance

S
I

magnetic field

measure voltage

Figure 5.6: Device used to observe the Aharonov-Bohm oscillations. These oscillations

occur in the conductance as a function of applied perpendicular magnetic field.

5.3 Quantum interference effects

5.3.1 The Aharonov-Bohm effect

Although the Aharonov-Bohm effect is not studied experimentally in this thesis, it
does provide a useful frame of reference for explaining effects which are (see §5.3.2
and §5.3.3). One way of understanding the Aharonov-Bohm effect is demonstrated in
Fig. 5.6. Current is passed through a loop, and the voltage measured between two
sidearms [Fig. 5.6(a)]. If the electron wavefunction is coherent across the device, then
application of a magnetic field through the loop causes its conductance to oscillate about
a mean value, G, with a period:

ag=lLl (5.19)
es

where S is the area of the loop. This is shown in Fig. 5.6(b).
The implications of Eq. (5.19) are discussed, for example, in Aharonov and Bohm

(1959), or in Olariu and Popescu (1985). A qualitative explanation of the effect is
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readily obtained. The electron propagates as a wave in both the upper and lower arms of
the loop, the waves interfering upon reaching the output of the device. If the interference
at the output is constructive, then the electrons pass through and the conductance is
high; if it is destructive, then the electrons cannot get through and the conductance is
low. A magnetic field passing through the loop affects the phases of the electron waves
in the upper and lower arms differently. The net phase difference between the

interfering waves is given by,
6¢=3f Ad=Lfo, (5.20)
loop h

where A is the vector potential, ® is the flux passing through the loop, and the line
integral is performed around the loop. The line integral is converted into a surface
integral using Stokes' Theorem. Eq. (5.19) for the period of the conductance
oscillations is recovered by requiring that 8¢ = 2.

The Aharonov-Bohm effect as described above (strictly speaking, this is only an
Aharonov-Bohm effect if B is confined to the middle of the loop) was first observed by
Chambers (1960) using a magnetised iron whisker in the column of an electron
microscope. The geometry of Fig. 5.6 was used to observe the solid-state version of
this effect many years later, by Webb ez al. (1985). They used a gold loop, fabricated
by e-beam lithography. MilliKelvin temperatures were required to observe the
oscillations which had a very small amplitude (< 0.5% of the mean). Since then, the
effect has also been observed in semiconductor [Timp et al. (1987)] as well as other
metallic systems. The conductance-field curves are usually further complicated by the
presence of lower-frequency aperiodic oscillations, arising from the disorder in the
system (see §5.3.3). The h/e oscillations can usually be picked out by Fourier
transforming the data with respect to the field variable.

The h/e Aharonov-Bohm effect will be utilised in the explanation of universal
conductance fluctuations in §5.3.3. There also exists an h/2e effect (as well as higher
harmonics) as found experimentally by Sharvin and Sharvin (1980). This is illustrated
in Fig. 5.7. In the h/e effect the two electron paths depart from P and interfere at Q; in
the h/2e effect, the two paths start and end at the same point. In the /e effect, the
area is encircled by a single charge e, giving Eq. (5.20) for the phase change, and (5.19)
for the periodicity; for the 4/2e effect, the single charge is replaced by a double charge,
so in Eqgs. (5.19) and (5.20) the substitution e — 2e should be made. The h/2e

oscillations in fact comprise coherent backscattering (where the two paths differ only in
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sense — see §5.3.2) as well as the first harmonic Aharonov-Bohm oscillations (where the
two paths can differ completely). The h/e and h/2e oscillations can be found in the
same sample, and are distinguished by Fourier transforming the data [e.g. Ford et al.
(1988)].

Mention should also be made of the significance of the Aharonov-Bohm effect to
physics. In performing the experiment on the device shown in Fig. 5.6(a), the magnetic
field is applied normal to the plane of the page. In the true Aharonov-Bohm effect, the
magnetic field would be non-zero only inside the loop, such that the electrons in the
loop experience zero magnetic field. Then, changing the field at the centre of the loop
would still cause oscillations at the output, even though the electrons in the device never
experience any magnetic field. In classical physics, the potentials are largely a
mathematical aid to calculating the fields: the electrostatic and vector potentials (¢,A)
are in some respects superfluous to the classical description of nature, and what really
matters are a knowledge of the electric and magnetic field strengths (E and B).
However, the Aharonov-Bohm effect shows that at a quantum level, E and B do not fully
describe nature, and in fact it is ¢ and A that are the important quantities.

(a) h/e effect

time-reversed

(b) contribution to 4/2e effect (c) contribution to hf2e effect

Figure 5.7: (a) Normal h/e Aharonov-Bohm effect. Two mechanisms contribute to the

hf2e effect: (b) coherent backscattering (§5.3.2), and (c) a true harmonic.
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The Aharonov-Bohm effect is not isolated to magnetic fluxes. An electrostatic
version also exists [Washburn er al. (1987))]. Indeed, these two effects can be
combined using the 4-vector potential A* = (§,A). The gravitational Aharonov-Bohm
effect has also been observed [Colella et al. (1975)]. Wu and Yang (1975) have shown

that in theory the effect can occur for nuclear, in addition to electromagnetic and

gravitational, interactions.

5.3.2 Weak localisation

Since impurity scattering is usually elastic (non phase breaking), quantum effects
can be expected even when the system contains large numbers of such scatterers. The
two limits of weak and strong disorder should be distinguished. If the density of
scatterers is extremely high, it is found that electron states which would classically be
expected to diffuse, actually become "trapped” (localised) within a certain region of the
material when quantum effects are taken into account [Anderson (1958)]. In the
opposite limit of weak disorder, scattering of the electron waves from the impurity
potentials gives rise to quantum corrections which modify the classical conductivity [see,

for example, Ashcroft and Mermin (1976), Ch. 1, for a discussion of the Drude model],

net
00 =—> (5.21)
m

where n is the electron concentration, 7is the mean free time between elastic scattering

events, and m” is the effective mass of the electron. These corrections usually result in
a decrease in the conductivity of the sample. In contrast to the previous (strong) form of
localisation, this is called weak localisation. It should be noted that the conductivity can
also be decreased via a modification to the normal electron-electron interaction due to
the disorder (see later).

The existence of weak localisation was first noted by Abrahams ez al. (1979). A
physical picture of the effect has been given by Bergmann (1984). The effect of weak
localisation on the conductivity may be understood from Fig. 5.8. This shows two
electron paths emanating from a point P, and returning to the same point. Both
electron waves follow the same contour, but in opposite directions. The paths are said

to be time-reversed.2 This is basically the same as the loop shown in Fig. 5.7(b) for

2 The time-reversal operator is defined T: (r,p,0) — (r,-p,-0), where r and p are the position and
momentum of the electron, and o is its spin. Applying T to the Schrodinger equation, ihy = Hy, gives
ihy=THy. For B = 0, and for zero coupling to impurity spins, the Hamiltonian is time-reversal
invariant, i.e. TH = H. Thus, the Schridinger equation becomes - ihy = Hy, and the only difference
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the h/2e Aharonov-Bohm effect. The arguments used here are similar to those used to
explain coherence in §5.2.1. The wavefunction amplitudes of the two scattered electron
waves in Fig. 5.8 are written y, and w_. Whether interference occurs or not as a
result of the electron waves traversing the loop and meeting back at P again depends on
the type of scattering present in the sample. If the scattering is incoherent, then the wave
"intensities" add: ’

[wef® = [l + w2 = 22 (5.22)
where ¥/, is the wavefunction amplitude of the electron once it has returned to P, and

w2 =|wuP =]y . There is no interference. This corresponds to the case of classical
diffusion, so Eq. (5.22) is the classical result.

If on the other hand the scattering is coherent, then interference occurs at P, and,
i =l + wP =4y, (5.23)
where the superposition at P is phase coherent, so the amplitudes of the two electron
waves are equal (Y, = y_=y). Eq. (5.23) is the quantum equivalent of Eq. (5.22).
The probability of an electron returning to its point of departure is thus seen to be twice
as high for quantum diffusion, as compared to classical diffusion. This is the
phenomenon of weak localisation. The quantum diffusion coefficient (and hence the

conductivity) is therefore lower than the value expected classically.

X
—— time-reversed
% paths
v
Pyuv

~ .
elastic scattering

off impurity

Figure 5.8: The origin of weak localisation lies in the interference of two time-reversed paths.
The crosses represent elastic impurity scattering. With no magnetic field applied, the

interference at P is completely phase coherent.

is a change in the sign of the time [Zeiger and Pratt (1973), App. 9]. Saying that two electron
trajectories are time-reversed means that one can be transformed into the other simply by reversing the

direction of the arrow.
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The process depicted in Fig. 5.8, where the two paths are time-reversed, is called
coherent backscattering [Bergmann (1984)]. Such processes can significantly modify
the Drude conductivity [as originally noticed by Langer and Neal (1966)]. The
calculated conductivity depends on the dimensionality of the sample [Abrahams et al.
(1979); Lee and Ramakrishnan (1985)],

_ e? 1
o3p(L) =0y + _, (5.24a)

A3 L

2 L
ol)=0p - S—Im=, 5.24b
hn? | ( )

o2

owpl)=0p - —L, (5.24¢)

hm
where 0 is the Drude conductivity (5.21), L is the sample size, and [ is the elastic

mean free path. An interesting point to note about these expressions is their sample size
dependence. Conductances, being extensive quantities, are expected to show a size
dependence. Conductivities, on the other hand, are classically intensive quantities, and
should show no such dependence. Egs. (5.24) show the surprising result that quantum
conductivities do show a dependence on the sample size.

The above expressions apply at the absolute zero of temperature, where electron
coherence is expected to extend over an infinite volume. For nonzero temperatures, the
effective phase coherent region is reduced by phase breaking scattering processes. In |
this case, the sample size L in Egs. (5.24) should be replaced by the coherence length,
Ly. An explicit temperature dependence can be obtained by writing L, = (D7,)1/2.
Assuming a power-law variation of the dephasing rate with temperature [%l e TP]

gives L p=aTl P2 , where a is a proportionality factor. This then gives [Abrahams and
Ramakrishnan (1980); Lee and Ramakrishnan (1985)]:

2
osp(T) =0y + —e—lTp/z, (5.25a)
3 a
2
p e T
=0p + ——In{—], (5.25b)
op(T) = oy o T (To)
2
o1p(T) =0y - %T'P’z, (5.25¢)
T

where T} is a constant.

Eq. (5.25b) shows that the correction to the two-dimensional conductivity is
logarithmic in temperature. Experiments to investigate this effect, by Dolan and Oshraff
(1979), showed that there was indeed a In T dependence in the conductivity of thin
films, but the magnitude of the prefactor did not agree with the theory [Anderson et al.
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(1979)]. Soon afterwards, Al'tshuler et al. (1980) [see also Finkel'shtein (1983), and

Al'tshuler and Aronov (1983)] showed thataln T dependence in the conductivity also

arises from the electron-electron interaction as modified by the disorder [Lee and

Ramakrishnan (1985)]:

o2
2

where the two terms in the square brackets represent the exchange and direct

oxp(T) = 6y + y 2-3F1In(Ty), F<<1, (5.26)

interactions, and 7is the mean time between elastic scattering events. To lowest order,
the localisation and interaction effects are additive [Lee and Ramakrishnan (1985)], so
the logarithmic dependence from the interaction term, in a sense, disguises the true weak
localisation effect. In dimensions other than 2, a value of p = 1 in Egs. (5.25) leads to a
similar indistinguishability in the temperature dependences of the two effects.

It would appear that the two effects cannot always be distinguished using simple
conductance measurements. Fortunately, however, the localisation and interaction
effects can be distinguished by another means. Coherent backscattering exists only
because of the totally constructive interference occurring at point P between the two
time-reversed paths. If the strict phase relationship between the two electron waves is
broken in any way, the effect is immediately diminished. Application of a magnetic field
does just that. By analogy with the 4/2e Aharonov-Bohm effect, any magnetic flux
passing through the loop of Fig. 5.8 will induce a phase difference between the two
paths. Since the interference at P can no longer be completely constructive, so the
effects of weak localisation begin to disappear, and the conductivity rises. This results
in characteristic positive slopes at low fields in the magnetoconductance curves of
weakly disordered samples.

As a function of the magnetic field, the conductivity of a two-dimensional weakly
disordered sample can be written [Al'tshuler et al. (1980); Hikami ez al. (1980)]:

o B.T) = o OT) -~ | s | LR (5:27)
D D an2 | T2 4eBDt) Y\2 4eBD7y )|’

where T4 is the mean time between phase breaking collisions, y(x) is the digamma
function [see Abramowitz and Stegun (1965) for its properties], and the magnetic field
B is applied normal to the sample. The term o,(0,T) is the combined conductivity
arising from both localisation and interaction effects. In some limits, the above
expression can be simplified a little by using the asymptotic (x >> 1) approximation for

the digamma function, y(3+x) =1nx. In the limit Lg >> [, the first digamma
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function in Eq. (5.27) can be approximated by a logarithm. For very small fields, the
condition Lg >> L holds, and the second digamma function can also be approximated
by a logarithm. In this case, Eq. (5.27) basically reduces to Eq. (5.24b).

For thin wires, the result is different, given by [Al'tshuler and Aronov (1981)]:

2 -112
o@.1) = opO1) - (L L (5.28)
hrn\Ly Dt

where D1z = 3L} /w2 for a wire of rectangular cross-section, w is the wire width, L
= (h/eB)'2 is the magnetic length, and the field is applied in a direction perpendicular
to both the length and the width of the wire. In the limit B — 0, Eq. (5.28) reduces to
Eq. (5.24c).

Continuing the analogy with the 4/2e Aharanov-Bohm effect, a simple estimate
may be made of the approximate field strength required to completely suppress the
weak localisation. Fig. 5.7(b) shows that passing a flux of h/2e through the area
encircled by the two electron paths induces a phase change of 2x between these paths.
Thus, coherent backscattering between the time-reversed paths in Fig. 5.8 should be
completely suppressed by passing a flux of roughly 4/2e through the area traced out
by the paths. Thus, the positive magnetoconductance will last up to field of roughly,

AByp ~ — 7z (5.29)
¢

where L ¢2, is the area over which the electron wave is coherent. [Up to a factor of 27,
this is the same as saying that weak localisation is suppressed when the magnetic length
becomes smaller than the coherence length, Lg < Ly, where Ly = (7/2¢B)!/2 is the
magnetic length for a particle with charge 2¢”.] Since the interaction contribution to the
conductivity is unaffected by low magnetic fields, the two causes of the In T
dependence can thus be distinguished. The interaction effect is modified by a stronger
magnetic field. This happens when the spin degeneracy of the time-reversed paths is
lifted, and strong spin scattering exists in the material (gugB >> kgT, and gupB >>
htgy or hT;h).

Bergmann (1984) has shown that the formulae (5.27) and (5.28), expressing the
weak localisation correction to the conductivity as a function of the applied magnetic
field, can be very useful in extracting the coherence length, Ly, in the sample. All the
parameters in Eqs. (5.27) and (5.28) are known, with the exception of Ly. This means
that L, can be used as an "adjustable" parameter to fit the theory to the experiment (i.e.
fit the equations to the positive magnetoconductance at small field). Values of L,

obtained in this way have been found to agree very well with estimates obtained by other
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methods. Having fitted the weak localisation effect, parameters relating to the interaction
effect can then be deduced [Lee and Ramakrishnan (1985)1.

It should be noted that interference between the two paths in Fig. 5.8(a) need not
lead to weak localisation and positive magnetoconductance. When there is strong spin-
orbit scattering in the sample (due to the presence of heavy-nucleus impurities, e.g. Au)
then the interference between the two paths is actually slightly destructive, i.e. the
conductivity is slightly higher that the Drude value. This is called weak anti-
localisation. Application of a magnetic field now causes a negative magnetoconduct-
ance. An expression analogous to Eq. (5.27) can be derived, which includes the effects

of spin-orbit scattering [Hikami ez al. (1980); Bergmann (1984)]. This allows both L¢
and Lg to be extracted from the measurements.

il L

phase coherent

area, S¢ interference

Figure 5.9: Typical electron trajectories across a phase coherent sample. Interference

between such trajectories leads to fluctuations in the conductance.

5.3.3 Universal conductance fluctuations

It was mentioned in connection with the Landauer formula, Eq. (5.18), that the
quantum conductance of a phase coherent sample was determined by how it scattered
incoming electron waves. Measurements of weak localisation above can also be thought
of in terms of the Landauer formula, where the incoming electron waves are
backscattered to exactly the same point from which they entered the sample (the word
"sample" here is used in the same sense as in Fig. 5.5, i.e. not including the leads).
However, in the actual measurement of the longitudinal conductance, there are normal
scattered trajectories going from one current lead to the other, as shown in Fig. 5.9, in

addition to the backscattered trajectories. For phase coherent samples, these trajectories
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are found to significantly affect the quantum transport behaviour.

The interference arising from backscattered trajectories is simple in the sense that
the two electron waves always add coherently at the return point. The interference
arising from the trajectories of Fig. 5.9 are much more complex. In numerical studies,
Stone (1985) showed that the interference depended in a crucial way on the impurity
configuration in the sample. The changes in the interference patterns led to changes in
the calculated conductance of the sample, as given by the Landauer formula: different
impurity configurations generally gave different quantum conductances.

The extreme sensitivity of the conductance to the impurity configuration is the
central characteristic of the type of interference. The argument can be stated in a more
quantitative way. Consider an extremely large number of phase coherent samples (an
ensemble) which are identical in every respect, except in the positions of their impurities.
Define G to be the conductance of a typical sample, and G = {G) to be the ensemble
average of the conductance, where ensemble averaging (averaging over all impurity
configurations) is denoted by the angular brackets. The fluctuation of the conductance
of a particular sample from the mean conductance is 6G = G - G;. The root mean
square fluctuation in conductance is thus,

8Gms = (6622 =[(G2)- G3['2 . (5.30)
Al'tshuler (1985), and Lee and Stone (1985) showed the remarkable result that the root
mean square (rms) fluctuation of the conductances of the samples in this ensemble, is a
constant: 8G,,,; ~ €2/h. This result is independent of both the detailed form of the
impurity potential, and the exact geometry of the sample. The only requirement is that
the sample be phase coherent.

The distribution function for small fluctuations is approximately Gaussian

[Al'tshuler ez al. (1986)]:

8G2 2
O0G) o< exp |- , 0G <=—<< Gy, (5.31)
0enl ). s

2

rms
i.e. f(6G)AG is proportional to the number of samples with a conductance lying in

the range Gy + G £ % (or Gy - G £ 5). Al'tshuler et al. (1986) have shown that for
large 8G, the distribution function deviates from the Gaussian, developing a (In)?
dependence within the exponential. From the arguments following Eq. (5.30), it is
understood that the same distribution (5.31) applies, irrespective of the value of Gy,
provided G >> e2/h.

The above result shows that any two samples randomly chosen from the ensemble



5.3 QUANTUM INTERFERENCE EFFECTS 87

will have conductances which differ on average by ~ ¢2/p. Feng, Lee and Stone
(1987) have shown that two such samples need differ by the position of just a single
impurity. They show that moving a strong scattering centre a distance of roughly k7 is
sufficient to change the conductance (on average) by ~ e2/h. This shows just how
sensitive the quantum conductance is on what appear to be minute details.

The theoretical studies described above were initiated in an effort to understand
some very complex low temperature magnetoresistance curves measured in the
experiments of Umbach et al. (1984). These experiments had initially set out to find
the periodic Aharonov-Bohm oscillations in very small metal rings. Instead they found
a complex aperiodic structure, where the conductance varied apparently randomly but
as a precise function of the applied magnetic field, B. The curves were completely
reproducible over long periods of time, provided the sample was maintained at low
temperatures. Experiments on Silicon MOS inversion layers [e.g. Kwasnick et al.
(1984); Licini et al. (1985)] revealed similarly complex conductances curves, but this
time as a function of the Fermi level, E; (which is related to the gate voltage). Again,
these curves were completely reproducible provided the sample was maintained at a low
temperature. Lee and Stone (1985) coined the term "universal conductance
fluctuations" (UCFs) to describe these effects. These are "universal” in the sense that
the fluctuations are insensitive to the degree of disorder, or the precise geometry of the
sample, provided the sample is phase coherent.

It is not immediately apparent how the theory, where the impurity positions are
changed, relates to the experiment, where either B or Efis varied (but the impurity
configuration does not change3). In fact, Al'tshuler et al. (1986) have shown that the
above are all equivalent, and that changing B or E¢by a certain amount corresponds to
completely changing the impurity configuration. This is the basis of the "ergodic
hypothesis" which states exactly the above equivalence. [The ergodic hypothesis is
fundamental to the ensemble description of statistical thermodynamic systems. As an
example, consider the time-averaged behaviour of such a statistical system. Rather than
study the dynamics of the system as a function of time, the Gibbs prescription of
"hiding" the dynamics by considering an infinite ensemble of similar systems, is
followed. The ensemble in effect contains all possible states that the system could be in

as it evolves with time. The ergodic hypothesis states that the final result should be the

3 This point has been studied in detail by Taylor ez al. (1988) for n*-GaAs wires. The impurity
configuration in these samples was found to change significantly only if the sample temperature was
raised above ~80 K.
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same for both descriptions. This need not hold in general, however. See Landau and
Lifshitz (1986), Ch. 1. In the present case, three parameters can be varied. Al'tshuler ez
al. (1986) effectively showed that the same ensemble can be used to describe the
"evolution” of the phase coherent sample as any of these parameters is varied.]
Physically, as either B or E(is changed, the potential "landscape” seen by the electrons
at the Fermi surface is also changed. This then leads to the fluctuations in the
conductance. By the ergodic hypothesis, these fluctuations should also have an rms
value ~ e2/h.
The study of fluctuations is assisted considerably using the correlation function
F(AE,AB), introduced by Lee and Stone (1985):
F(AE,AB) = (G(Ef,B) - Gol % [G(Ef+AE,B+AB) - Gol)
= (G(E;,B) G(E;+AE,B+AB)) - G% , (5.32)
where Gy ={G(EB)) is the mean conductance, and the angular brackets denote
ensemble averaging. It further turns out [Lee er al. (1987)] that F is not a function of
Ef, but is a function of B. The correlation function gives an indication of how the
conductances at two different values of field compare. Thus, F (0,By) = 1 indicates
perfect correlation with periodicity B, in field, i.e. G(B) = G(B+B,) always,
whereas F(0,B,) = 0 indicates no correlation. The expected form of the correlation
function is shown in Fig. 5.10 [Lee and Stone (1985)]. At AE,AB = 0, the correlation
is perfect. However, for larger differences in energy or field, the correlation decays, and
eventually tends to zero (as is expected for "random" signals).
The correlation function evaluated at AE = AB = 0, gives the variance of the
conductance fluctuations, so the rms value is just the square root:
0G s = VF(AE=0,AB=0) , (5.33)

For zero magnetic field (e.g. in Si MOS inversion layer systems), the corresponding

rms fluctuations turn out to be [Lee ez al. (1987)],

5G 1.088 , d=3
— -1 0862 ,d=2 forB=0, (5.34)
e%/h

0729 ,d=1

where d is the dimensionality of the phase coherent region (assumed to be a cube,
Square, or wire).- At stronger magnetic fields, the rms fluctuations are different [Lee ez
al. (1987)]:

5G 078 , d=3
IS = 0.61 , d=2  forB>AByy , (5.35)
e*/h

052 ,d=1
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F

Figure 5.10: Expected correlation A

Fd
function for a UCF measurement. The 0
variance of the fluctuations, and the Fo/2
correlation energy and field can be
obtained from the curve. —_—

Ec B¢ AE.AB

where AByy; is defined in Eq. (5.29). These differ from the B = 0 rms fluctuations by
a factor of % Spin-orbit scattering, magnetic scattering, and Zeeman splitting of the
electron spiné also modify 6G,,,; [Lee et al. (1987); Feng (1989)].

The value F = F/2 (see Fig. 5.10) also has a special significance in that it

defines the correlation energy, E, and the correlation field, Be:

F(Ec,0) = F(0,B¢c) = % . (5.36)

The correlation terms, E¢ and By, are the characteristic scales between dips or peaks in
the fluctuation curves. The correlation energy turns out to be [Lee and Stone (1985)]:
_n2hD
L2
where D is the electron diffusion coefficient, and L is the sample size. Up to a factor

c > 5.37)

of 72, this is the same as the correlation energy that was defined in Eq. (5.16). In both
cases, Ec is the change in electron energy required to take the electron "out" of the
coherent band [c f. Fig. 5.3] it is currently in, and place it in an uncorrelated band.

The correlation field is [Lee et al. (1987)]:

~h1l 38
B¢ ¢S, (5.38)

where Sy is the phase coherent area normal to the magnetic field. [This statement
requires further elaboration when energy averaging is expected to occur. For details, see
Lee eral. (1987).] This value for correlation field can be obtained by a simple heuristic
argument. By analogy with the #/e Aharonov-Bohm effect, a phase change of 27
between the two paths shown in Fig. 5.9 would be sufficient to completely change the
interference pattern. This would correspond to a flux of h/e passing through the area
of the loop, which for typical pairs of paths is the sample area, S ¢ A flux of h/e
through an area Sy gives the field B¢ in Eq. (5.38).
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S¢ =WL¢ l

Figure 5.11: In a long wire, the fluctuations from several phase coherent regions add

incoherently. The result is an rms conductance fluctuation smaller than expected.

The values of rms fluctuations given above are valid for T = 0, and for a phase
coherent sample, L ~ L,. At finite temperatures, or for L > Ly, averaging will occur
and the value of 8G,,,; will be reduced. For simplicity consider the quasi-1-
dimensional wire of Fig. 5.11, which has width w < L¢, and length L. IfL > L¢, then
the sample is no longer phase coherent, there being roughly N =L/L, coherent
regions within the sample. Let R4 be the resistance of one of these phase coherent
regions, and R be the resistance of the whole wire, so that R ¢ =R/N. The rms
conductance fluctuation of one of these regions is 5G¢ = €2/h. The corresponding
resistance fluctuation is found by differentiating Ry = 1/Gy, i.e. ORy = 6G¢R% If the
conductance of each phase coherent region is fluctuating independently of the others,
the total fluctuation will be the rms fluctuation of N resistors in series:

ORrms = (6R1)? + (OR2)? + --- + (ORy)?

2
= VN@G,RDT = —L & g2 (5.39)

Hence,

O0G s = 22 —| — , Ly<<Ly<L . (5.40)

L h
Thus, as N is made progressively larger, &G,,,; becomes smaller, 6G,,,; o< N-32, and

OR s - (L¢)3/2 e?

in the limit N — oo, the classical conductance for the sample is recovered.

More generally, the result (5.40) changes depending on the relative values of L,
Ly and Ly (the latter is the thermal diffusion length which describes energy averaging).
The exact dependences can be found from the correlation function [Al'tshuler and
Khmel'nitskii (1985); Lee ez al. (1987)]:
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Ly (Lo\\2
T2 d=1, Lr<<rs<r, (5.41a)
8G L\ @-dr
ﬁ ~ (f) ,d=23, Lr<<Ly<L , (5.41b)
Ly &P
T ,d=123, Ly<<Ly<L , (5.41¢)

where d is the dimensionality of the sample with respect to interference effects. Eq.
(5.40) is recovered from (5.41c) by putting d = 1. Dependences with L, L, and L,
[where Lz = (hD/gupB)'/2 — see §5.2.2] are discussed in Lee er al. (1987).

In cases where L< L, it is experimentally found that the measured rms
fluctuation can exceed e2/h [Benoit et al. (1987); Skogpol et al. (1987)]. However,
this does not mean that the above theory is incorrect. Instead, the theory is to be
modified slightly, calling into question the role of the voltage probes in the quantum
conductance measurement. This introduces ideas of "nonlocality" in these types of

measurements. Nonlocality will be discussed further in Chapter 6.
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Chapter 6

Fluctuations and quantum noise
phenomena

6.1 Outline

In this chapter, the low temperature conductance of submicron length SiCl,-etched
n*-GaAs wires is studied. In these wires, strong conductance fluctuations are
observed as a function of applied magnetic field, not only in the longitudinal
measurement discussed in the theory of Chapter 5, but also in Hall and nonlocal
configurations. The measurements of weak localisation and UCFs suggest that although
electron scattering from the edges of the sidewall depletion region is predominantly
diffuse elastic, a contribution to the phase breaking rate also arises. This is discussed in
the context of the model on dry-etch damage in Chapter 4. The Hall measurement is
shown to probe fluctuations associated with the phase coherent region at the junction.

The low temperature time-dependent response of SiCl,-etched n*-wires to pulse
of light appears to show random jumps in the conductance. These random telegraph
signals, as they are called, have been observed in both two-terminal and four-terminal
wires, and also in transverse ("Hall") measurements. The theory for this is based on the
sensitivity of the quantum conductance to the exact impurity configuration within the

sample.
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6.2 The longitudinal measuremenf

6.2.1 Sample fabrication and measurement system

The wires used here are fabricated in the way described in Chapter 2. The material
is grown by MBE, and comprises a 50 nm n*-GaAs epilayer on top of an undoped
GaAs buffer (see Fig. 2.7). This is the same material that was used in the experiments
of Chapter 3. Van der Pauw measurements give a material carrier concentration of
about ~6.5x10%* m3, and a mobility ~0.14 m2 V-1 s-1 at room temperature. The
etching is done in SiCl, at 300 V for 30 s, the mask being HRN. Note that the
experiments discussed in Chapter 3 showed no difference (within experimental error)
between using HRN and Ni as the etch mask. The reasons for using HRN have been
summarised in §2.2.4. SEM:s of typical structures that have been fabricated are shown
in Fig. 6.1. After fabrication, the samples are bonded onto non-magnetic TO5 headers,

and mounted in a *He cryostat equipped with a ~6 T superconducting magnet.

Figure 6.1: Typical structures fabricated for studying conductance fluctuations. Both are

based on Hall geometries. See text for further details.
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Several important parameters are given in Table 6.1 for 1-, 2- and 3-dimensional
Fermi surfaces. For the material being used, electron diffusion occurs in 3 dimensions
(see also §6.2.2), so only the last column of Table 6.1 is relevant. It is seen that kel >>
1 irrespective of the dimensionality of any prospective structure, so the material satisfies
the weak disorder condition required by the theory of Chapter 5. Generally for the
wires studied in this section, the conductances are much greater than e2/h, so the
system is said to be metallic. [The material is also metallic in the sense that the electron
gas is degenerate: because of screening the electrons do not freeze out, and the sample
retains its Fermi surface even at the lowest temperatures. ]

Fig. 6.2 shows the circuit used to perform the measurements. A -40 dB (divide by
100) attenuator is used to obtain low excitation voltages. One lock-in is used to monitor
the voltage across a 560 kQ test resistor placed in series with the sample. This allows
the current through the sample to be known. Two further lock-ins are used to monitor
voltages in the sample itself. The lock-ins are read at regular intervals by a computer,
which stores the data. The computer is also connected to the magnet power supply (not
shown), which allows magnetic field readings to be taken.

I - I<¥ IEEE bus
REF

signal generator == —>

ﬁ iii lock-in JVREF

3w |, =
1 H- HT
-40dB

attenuator

560 kQ test

resistor

Figure 6.2: Configuration used to measure sample conductances. A low frequency ac

excitation is used. The test resistor allows the current through the sample to be determined.



99

6.2 THE LONGITUDINAL MEASUREMENT

['wu o8 = 'm se uoye st

IpIM undnpuod oY) ‘seud (1 Yl 104] s 1-01XE"S =1 SI WM 301 UBW ONISE]d SY) PUE ‘WU G'LE = I

SI SSOUYOIY) SUTONPUOD Y, "30BLINS [ULID [RUOISUSWIP-E 1O -7 -] & Surwnsse 1S 1-A W $1°0 Anprqow pue

¢ W 01X59 = dy UOnNenuddu0d Joured yim safeqide syen- 4 Wi (G 10§ s1ojowered [RURIN :1°9 dqeL,

!

0€ = &&y

wu g1 = IV =tu7
un\*ay

" € _
S (W LTQ'0 = £ffaE = €@

wu Mm =1%4 = m~

RZ
SE

Su =¢€4

&
wu g°01 ||um,«

W OIX8'C = ¢ ENzZE) =€y

W 0TXG'9 = IN = £y

OvI =2y
L%y

wu o8y = Alv =u7
y\¢ QY

(ST =l =1q

wu Iy =1 =9

RZ
oy

mE O—.XHNI =14

z
wuyg ||«|~«

W OIXTT =4 CN2T) =YY

W Soﬂx.v.N =ldN =TN

OIX8y = 1y iy
il (1 ) p3udy
wr of = N:A laqy =y UOISOJJIP [euLIay)
S Wgeg=Nla=1qg JUIADIJ20D
oe uorsnjjip
d
wilpg=1la=1 %MMMMQ
- A100[eA
1S 0D =y = e i
ki p3udporem
Eﬁﬁgclllﬁd o
¢ JOI30AIABM
Wo01X6'9 = TNy = 1 U
Ayisuap

W 01Xy = UIMan = 1N 1M

TRUOISUWIP-¢

[EUOISUAWIP-T

[eUOISUSWIP- T

e, e



FLUCTUATIONS AND QUANTUM NOISE PHENOMENA 100

C
B
E A
F
H
J

Figure 6.3: The device used in the measurements of conductance fluctuations. The working
contacts are labelled A-J. The topology of the structure allows a variety of measurements to

be made using just the one sample.

6.2.2 Fluctuations in the longitudinal measurement

The origins of universal conductance fluctuations (UCFs) were explained in
§5.3.3. In metals, UCFs are observed at milliKelvin temperatures, since only then is the
coherence length significant compared to the sample size (the elastic mean free path is
very short in metals — of the order of the interatomic spacing). In addition to this, the
very high conductivity of metals means that €2/ fluctuations tend to be a very small
fraction of the mean conductance (< 0.5%). On the other hand, in high mobility
materials (e.g. high purity GaAs/AlGaAs heterostructures) the elastic mean free path
can be comparable to the coherence length, and electron transport in these systems is not
strictly quantum diffusive. The theory of Chapter 5 must then be modified [see, for
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example, Beenakker and van Houten (1988), or Bird et al. (1990)]. The n*t-GaAs
wires of Chapter 3 lie between these two limits. The conductivity is not as high as it is
in metals, and at 4 K the phase coherence length is many times longer than the elastic
mean free path, so mesoscopic effects are readily observed.

UCFs in n*-GaAs wires have already been extensively studied, for example, by
Whittington ez al. (1986), and Taylor ez al. (1988a). Wires 10 pm in length showed
fluctuations of < 2% of the mean conductance. Since the wire length was much greater
than the coherence length, a partial averaging of the interference patterns resulted in rms
conductance fluctuations much less than e%/h. In this thesis wires of much smaller
length (< 1 um) are used. The exact structure on which measurements have been made
is shown in Fig. 6.3. The topology of this structure gives a great deal of flexibility in
the types of measurement that can be made. The contacts in Fig. 6.3 have been labelled

A-J. The unlabelled contacts were faulty, and were not used.

v

: L =600 nm 1 L =470 nm 1 L =400 nm
wire A w =240 nm wire B w =200 nm wire C w =190 nm

Figure 6.4: Three different wire segments across which 4-terminal measurements of

conductance fluctuations are made. The lengths and widths are estimates from Fig. 6.3.

The standard 4-terminal conductance measurement discussed in Chapter 2 is used
to study the UCFs in this structure. The conductances of three different wire segments
can be measured, as shown in Fig. 6.4. These have lengths (A) 600 nm, (B) 470 nm,
and (C) 400 nm, where the lengths are measured between the centres of the voltage
probes. The respective physical widths are roughly (A) 240 nm, (B) 200 nm, and (C)

190 nm. It must be remembered that the conducting width is roughly 60 nm less than
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the physical width due to sidewall depletion (see Chapter 3).

Fig. 6.5 shows UCF traces measured for the three wire segments A, B, and C, with
the sample being at a temperature of 4 K. The magnetic field was varied from 0 to 3 T.
Two traces are shown for wire A. These curves look almost like noise, except for one
important pdint — the two traces for wire A were taken at different times (rou ghly 40 min
apart), and yet are more or less identical. Thus, although appearing like random noise,
the complex arrangement of peaks and troughs are, in fact, perfectly reproducible
allowing for noise in the measuring circuit. Many similar such measurements, on this
and other samples, show that these curves are reproducible only if the sample is
maintained at a low temperature. Cycling the sample to room temperature and back to 4
K always produces a different trace.

Taylor et al. (1988b) have done a careful study of the effects of reproducibility in
n*-GaAs wires. They find that the curve (also called a magnetofingerprint) remains
reproducible provided the sample is maintained at temperatures of much less than ~100
K. In these studies, the authors argued that charge trapped in the resonant DX-level in
GaAs was responsible for the observed effects. In general, however, any changes
associated with any defect present in the sample would lead to the same effects. Thus,
redistribution of charges trapped in defects introduced by dry-etching, or indeed
diffusion of these defects, cannot be precluded. By the same token, the presence of
mobile defects inherent in the sample (interstitial impurities, efc.) will also contribute to
changes in the UCF trace. In addition to thermal cycling, redistribution of trapped
charge can also occur through the application of light pulses [e.g. Davison et al.
(1990)], or voltage spikes [e.g. Mailly et al. (1989)].

The root mean square fluctuation, 6G,,,, in the conductances of the curves shown
in Fig. 6.5 are roughly 0.42 e%/h, 0.60 e2/h and 0.82 e2/h for the 600 nm, 470 nm
and 400 nm long wires respectively. The fluctuations are calculated after subtracting off
a linear background rise in the conductance with field. This linear rise remains at high
temperatures, and is due to the classical Hall effect manifesting itself in the longitudinal
measurement. See also §6.3.2. The change in 8G,,,; with length would suggest that
averaging or scaling of the fluctuations is taking place with length A log-log plot of
wire length, L, versus 6G,,, is shown in Fig. 6.6. A least squares fit gives 3G, s o<
L-188, This is very close to the L-3/2 relation expected from a chain of 1-dimensional
(ID) phase coherent regions [see Eq. (5.41)]. The curve is not exactly L-3/2 because it
is actually an admixture of L2 as well as L3/ — see also §6.2.3.
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Figure 6.6: Variation in measured rms fluctuation (in units of €2/h) with wire length. The
dotted line is a least squares fit. The wires appear to behave 1-dimensionally with respect to

fluctuation effects.

For a 1D system, Eq. (5.35) shows that an rms conductance fluctuation of 0.52
€%/h is expected. The values for wires B and C are, in fact, larger than this. Why this
can happen is discussed in §6.2.3, where estimates will be made of Ly in these wires.
For wire A, the rms fluctuation is less than 0.52 e2/h. For 1D averaging and Ly < Ly,
Eq. (5.40) gives,

[ 1 8Gyms\?B3
L¢-(m 2 ) L. (6.1)

Thus for wire A, L¢ =~ 520 nm. A further estimate of L¢ will be made in §6.2.4 using
the correlation function of Lee and Stone ( 1985). The weak localisation effect in the
measurements of Fig. 6.5, although present, are strongly affected by fluctuations. This
cannot therefore be used to give yet another estimate of Ly

The "1D" above does not necessarily refer to the actual dimensionality seen by the
electrons (i.e. the dimensionality of the Fermi surface). Main et al. (1990) measured
the dependence of the UCF curve on the orientation of n+t-GaAs wires with respect to
the direction of the applied magnetic field. The conducting core of the wire was roughly
35%35 nm, and UCFs were observed for all orientations. This implies that the electron
trajectories within the wire are 3-dimensional, not 1-dimensional. In the present case,
the conducting core is of a roughly similar size, so the trajectories here should be 3-

dimensional also. Thus, the electrons behave 3-dimensionally with respect to diffusion,
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but the wire is 1-dimensional with respect to the fluctuation effects. The 3D nature of
the Fermi surface is also inferred from the fact that there are several electrically
quantised subbands [with transverse energies given by Eppy ~ hz(k,%l + k2)/2m*] occup-
ied within this wire.
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1 1 10

T ~ eViky (K)

Figure 6.7: Effect of increasing the excitation voltage. For Teﬁc > 4 K, the fluctuation

amplitudes are reduced.

The value of phase coherence length, L¢, obtained above is of the same order of
magnitude as the thermal diffusion length for electrons diffusing in 3-dimensions, Ly ~
180 nm, obtained from Table 6.1. However, the large fluctuations in wires B and C
imply that Ly, Ly > 470 nm (see §6.2.3), so it is possible that the value of Ly in Table
6.1 is slightly underestimated. An estimate of Ly can be made from Fig. 6.7 which
shows the effect of Joule heating on the rms fluctuations of wire A. The rms
conductance fluctuation in wire A was measured for different excitation voltages. A
voltage V across the sample corresponds to a temperature T r=eV/kp. The figure
shows that for T > 4 K (the lattice temperature), the fluctuation amplitudes are
reduced. This can happen because of changes in either Ly or Ly (the latter through the
temperature dependence of electron-electron scattering).

Weak localisation measurements of Ly in §6.2.6 (albeit for a different wire),

Suggest that L, may be almost temperature independent near 4 K in these dry-etched
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wires. In this case, the decrease in 6G,,,; seen in Fig. 6.7 is primarily due to L.
From Eq. (5.41a), 0G,,,; o< Ly < T-1/2 for Ly < Ly and a temperature independent
Ly. Fitting to Fig. 6.7 gives Ly ~ 420 nm at 4 K. This value is slightly larger! than
that in Table 6.1. It seems possible that in wires A, B and C the magnitudes of the UCFs
is being limited not by Ly, but by L. However, the important conclusion from this
section and the next is that L¢ #Z 500 nm for wires A, B and C.

6.2.3 Role of voltage probes in the quantum conductance measurement

The above estimate for L4 in wire A is larger than the probe-to-probe spacings, L,
for both wires B and C. Indeed, the large fluctuations measured for these latter wires is
also indicative of Ly > L. Benoit et al. (1987), and Skogpol et al. (1987) have shown
that in 4-terminal measurements where L is decreased below L & the measured
conductance does not saturate at ~ e2/h. Instead, it is the rms fluctuation in measured
voltage that saturates, i.e. as the probe spacing goes to zero, the measured voltage
does not go to zero, but saturates at the value it attained for L, ~ L¢. Denote 6V¢ =
IR%SG¢ as the rms voltage fluctuation when L ~ L¢, where 7 is the current, R¢ =
R L/w, is the resistance of the phase coherent region, 5G¢ = e2/h is its rms
conductance fluctuation, R is the average sheet resistance of the material, and w is the
conducting width of the wire. Then for L < L¢, the following relation is found to hold

experimentally:
I e? (LyV?
0Grms = ) Vy ~ 7(‘1?) ) (6.2)

where 6G,,,, is the measured rms conductance fluctuation. Thus, instead of the
dependence 6G,,,, o< L-3/2 as it was for L < L, [Eq. (5.40)], the dependence becomes
0G,,s o< L2 for L >Lgy. So, the fluctuation amplitude of the conductance actually
diverges as the probe spacing is made smaller. This explains why 6G,,, > 0.52 e2/h
for wires B and C.

The cause of this phenomenon is the 4-terminal nature of the conductance
measurement [Maekawa er al. (1987); Baranger et al. (1988); Kane et al. (1988)].
This is illustrated in Fig. 6.8. The theory of Chapter 5 was concerned with the fwo-
terminal conductance, where the current leads were being used as the voltage probes.
Thus, the voltage "probes" are effectively always connected to a sample of size L ~ Ly,

as shown in Fig. 6.8(a), and a "universal" fluctuation of 8G,,,, ~ €2/h is always

1 Note that there are different conventions for defining L (e.g. bar on 4 or not). Values of Lt
should therefore generally be treated as estimates.
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measured for the phase coherent region. This is fine when comparing with experiments
where the voltage probes are spaced further apart than the coherence length, but not so
otherwise.

When the probes are within a coherence length of one another, then the phase
coherent region can extend into the voltage probes as shown in Fig. 6.8(b). The voltage
probes then no longer measure the potential at the point at which they are connected to
the wire, but a different potential as determined by the electron interference. Theoretical
analysis shows that in this case the rms fluctuation in the measured voltage should
become independent of the probe-to-probe spacing. This is an interesting demonstr-
ation of the nonlocal nature of the quantum conductivity [as defined by Maekawa et al.
(1987)].

L<Ly voltage probe

current leads also phase coherent

act as voltage probes region current lead

L=Ly Ly
(a) 2-terminal (b) 4-terminal

Figure 6.8: Difference between 2-terminal and 4-terminal quantum conductance measurements.
In the 4-terminal case, the voltage probes will not necessarily measure the potential at the

point of contact with the main wire.

Using Eq. (6.2), estimates can be made of the coherence lengths in wires B and C.

Since the rms conductance fluctuation in a 1D wire is 0.52 e%/h, Eq. (6.2) gives,
_ 1 6Grms 12
- (675—2 eX/h )
With values of L of 470 nm and 400 nm, wires B and C give coherence lengths of 505

(6.3)

nm and 502 nm respectively. These are similar to the values obtained for wire A which
is roughly 40 nm wider. As noted before, these values may in fact be influenced by L.
However, the important point is that Ly # 500 nm.

On the question of the role of the voltage probes in the quantum conductance

measurement, a relevant measurement may be made using the structure of Fig. 6.3. The
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longitudinal conductance for wire A (L =~ 600 nm) above was measured using contacts
E and F as the voltage probes. Instead, it is also possible to use contacts E and H. Fig.
6.8 shows two traces of the conductance of wire A, one obtained using voltage probes
E-F, the other using voltage probes E-H. It is clear that although the two traces are very
similar, the correlation is perhaps not as good as that between the two traces shown in
Fig. 6.5. This indicates that there are a small number of phase coherent electron
trajectories extending at least 400-500 nm down these probes from the main wire.
Clearly, the correlation between the two traces of Fig. 6.5 would be expected to decrease
as the probe H is moved closer to the main body of the wire. The measurements in Fig.
6.9, although not very significant, do indicate a small effect. [Note that the UCFs of Fig.
6.5 and 6.9 are different because the sample was cycled up to room temperature and

back down to 4 K (the mean conductances are also slightly different).]

51 v T r T
voltage probes FE
voltage probes HE

conductance (e2/h)

48

magnetic field (tesla)

Figure 6.9: UCF traces obtained for wire A using two different voltage probe configurations.

The correlation is good, but not as good as for the two measurements using the same set of

probes, as shown in Fig. 6.5.
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6.2.4 Use of the autocorrelation function

The correlation function, F(AE,AB), introduced by Lee and Stone (1985), was
shown in §5.3.3 to be useful in extracting information from UCF curves. Eq. (5.32)
defined the correlation function as an ensemble average over all impurity configurations.
For the experimental curves of this chapter, the correlation function must be written as
an average over all values of magnetic field. In discrete form this is,

Fi=po 1}:) [Gj- C1x [Gjsi-Cl, i=1,..,N, 6.4)
where Z is a normalisation constant, and G is the mean conductance averaged over all
values of field:

G=1¥" 6. 6.5)
In the above, N is the number of points measured, Gj is the measured conductance at
field B;, and F; is the value of the correlation function for the field difference AB =
Bj,; - Bj (where the B/'s are assumed to be evenly spaced), i.e. F; is equivalent to
F(AB). By the ergodic hypothesis, the correlation function defined in Eq. (6.4) for Z
= 1 is entirely equivalent to the definition in Eq. (5.32). For the purposes of this
chapter, the correlation function will be normalised so that F 0O =1ie.Z=
(6G,,)2. With this definition, F(AB) is just the autocorrelation function for the UCFE
curve.

Several precautions are required when taking autocorrelations of experimental data
such as those in Fig. 6.5. The UCFs typically consist of "rapid" fluctuations
superimposed on much slower changes (in Fig. 6.5, for example, there are slow
background rises in the conductance as a function of field). By definition, the

autocorrelation function is related to the Fourier power spectrum of the data by,
F(AB) = f 8G(B+AB) 8G(B) dB = ¥ {|5GF}, (6.6)

where G = G-G denotes the deviation from the mean conductance, 8G is the Fourier
transform of &G, and -1 is the inverse Fourier transform operator. [The above
follows simply from the convolution theorem.] Clearly, any systematic trends in 6G
(e.g. slowly rising/falling background) will contribute significantly to lower frequency
Fourier amplitudes. However, these only have meaning when the data includes several
periods of this lower frequency background. In the case at hand, the UCFs measured in
Fig. 6.5 and in later sections sometimes show a slow linear background rise in

conductance with field (due to the Hall effect). To find the correlation between the
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fluctuations, this background rise must be subtracted off. If this is not done, then the
autocorrelation function will simply reflect the fact that there is a slow background rise,
and give little information besides.

By the same token, autocorrelations cannot be taken over very small field ranges,
where there is too little information. Suitable criteria for judging what field range to take
are that it should be several times larger than B, the correlation field; that the range
should not include "slow" background trends unless these are the objects of study; and

that varying the field range slightly does not affect the resulting value of B.

10 y I ' T . ;
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Figure 6.10: Autocorrelation functions for the UCF traces of Fig. 6.5. These give roughly

similar correlation fields for the wires A, B and C.

. /|
wire A wire B wire C

probe spacing, L (nm) 600 470 400
physical width, w (nm) 240 200 190
conducting width, w; = (w-60) (nm) 180 140 130
correlation field, B (T) 0.050 0.054 0.050
coherence length, L¢ =~ hfeBcwy  (nm) 460 547 637
estimate of Ly from 8G,,g (nm) 520 505 502

.|
Table 6.2: Estimates of phase coherence length made for wires A, B and C using the

autocorrelation function defined in the text. Note that L < L¢ for wires B and C.
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The autocorrelation functions of the curves shown in Fig. 6.5 were calculated over
the full range of field 0-3 T, after subtracting off the linear background rise. The
resulting autocorrelation functions are shown in Fig. 6.10. The correlation field is
defined by the condition F(B() =3, from which estimates of the coherence length for

each wire méy be found using Eq. (5.38):
h 1

~—

e BcW1 )

6.7)

where w; is the conducting width of the wire, assumed to be 60 nm less than the
physical width. The resulting values of Ly are shown in Table 6.2.

Table 6.2 shows that the correlation field for each of the wires is roughly the same,
corresponding to a phase coherent area Sy = h/eB¢ = 8x10-14 m2. Clearly, for wires
B and C this phase coherent area "spills" into the voltage probes, since the resulting
estimates of L, are greater than the probe spacing. Allowing for the errors this
introduces into the estimate of L¢, the values of L¢ obtained for all three wires are
roughly in line with the magnitudes of the rms fluctuations observed in the previous two

sections.

6.2.5 Boundary scattering and classical and quantum size effects

Scattering from the edges (or boundaries, or surfaces) of a sample are an
important consideration in experiments with structures where two boundaries are within
an elastic mean free path of one another. This leads to size effects, i.e. effects which
occur purely because of the influences of the sample boundaries. Two limits of elastic
boundary scattering exist, as shown in Fig. 6.11. In the diagram, the edge of the sample
occurs where the Fermi level crosses the conduction band edge, creating a potential
barrier to electron motion. If the boundary is perfectly smooth, the scattering is
specular: the angle of incidence of the electron wave equals the angle of "reflection.” If
the boundary is perfectly rough, the scattering is diffuse: the electron wave is scattered
with equal probability in all directions.2 In the general case there will be a mixture of
both specular and diffuse scattering.

Electron scattering from rough surfaces has been studied by several phenomen-
ological approaches. Ziman (1960), Ch. 11, for example, considers the surface as
having features of a certain average height, 7, and width, A. As would be expected,

when Az >> 1,A (where Ay is the Fermi wavelength) the electron does not "see" these

2 In the diffuse reflection of light, an observer would see the same amount of reflected light
independent of the angle of viewing.
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features, and the scattering is specular. On the other hand, if Az < 7,A then the
electron can resolve the surface roughness, and the scattering becomes more diffuse.
A particularly simple way of characterising surface scattering involves the single
parameter p, called the specularity coefficient or Fuchs parameter, which gives the
probability of an electron being scattered specularly from a surface [Fuchs (1938);
Ziman (1960), Ch. 11]. Thus, p = 1 corresponds to perfectly specular scattering, while

p = 0 corresponds to perfectly diffuse scattering.

% N

SPECULAR DIFFUSE

Figure 6.11: Ilustrations of specular and diffuse boundary scattering. Both forms of

scattering are elastic.

In general, there would appear to be no wide consensus as to which method of
fabrication gives what type of boundary scattering. The electron focussing experiments
of van Houten ez al. (1989) show that electron scattering from the potential underneath
a Schottky gate in a high mobility 2DEG structure is predominantly specular (p ~ 1).
In electron focussing experiments where the boundary was defined by ion implantation
or by wet-etching, the scattering was found to be more diffuse, with values of p down to
about 0.35 [Nakamura et al. (1990); Nihey er al. (1990)]. Analysis of magneto-
resistance curves for GaAs/AlGaAs wires created by removing a very small amount of
material by dry-etching, and for wires created by ion implantation, appeared to show that
here the scattering was predominantly specular [van Houten ez al. (1986); van Houten
et al. (1988); Hiramoto et al. (1989)], although it must be stressed that the theory

being applied was only developed for the two limits p = 0 and p = 1, so intermediate

3 The whole argument about specular or diffuse scattering surfaces is just a restatement of something
familiar from optics, microscopy, nuclear and particle physics, etc., that to resolve finer detail in an

object requires a probe with a shorter wavelength.



6.2 THE LONGITUDINAL MEASUREMENT 113

values of p could not have been distinguished. However, wires created by ion-beam
damage appear to show more diffuse scattering [Thornton ez al. (1990)].

How boundary scattering affects such thing as mobility, resistivity, etc. depends
on whether it is specular or diffuse. This is illustrated in Fig. 6.12 which shows a
typical electron trajectory undergoing either specular or diffuse collisions with the
boundary. In both cases, interactions within the sample are assumed to be negligible, so
only boundary scattering occurs. In specular scattering, the forward component of the
electron momentum is always preserved. Since the forward motion is unaffected by the
presence of the boundaries, so the mobility, diffusion coefficient, efc., will be unaffected
by specular scattering. However, in the diffuse scattering case, there is a good chance of
the electron trajectory being backscattered in the direction from which it came. In this
case, the mobility and diffusion coefficient will both decrease from their values in the
bulk (far from any boundaries). These will have corresponding effects on the resistivity,

etc.

SPECULAR DIFFUSE

Figure 6.12: In specular scattering, the forward component of the momentum is unaffected by
the scattering, so the mobility is unchanged by the presence of the boundary. In the diffuse

case, the electron can be backscattered, so the mobility drops.

The classical effects of boundary scattering (i.e. without consideration of
 interference between electron waves) have been extensively studied in metals for many
decades now [see Pippard (1989), Ch. 6]. In "large" samples, the electrons suffer many
more collisions with impurities in the bulk of the sample than they do with the surface.
Hence, the main parameter affecting the resistivity of the sample is the elastic mean free
path, / (here defined as the mean distance between backscattering events):
hkp

o= 6.8)

This is just the inverse of the Drude conductivity, Eq. (5.12). As the sample is made

smaller, the electrons interact more and more with the boundaries. If the scattering is
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perfectly diffuse, then the effect of the boundary will be to reduce the effective mean free
path, and hence increase the resistivity in the manner described previously. Invoking

Matthiessen's rule, the resistivity can be written,

hk}r(l 1
Peff =—
ne

1L
where [, is the mean distance travelled by the electron before it is backscattered

6.9)

(diffusely) by the boundary, called the boundary scattering length. The term within the

parentheses in Eq. (6.9) just comes from the sum of two elastic scattering rates.

LN

ZERO FIELD LOW FIELD HIGH FIELD

Figure 6.13: Classical size effect of an applied magnetic field on diffusely scattered
trajectories. At intermediate fields, backscattered trajectories still exist. At high fields,

backscattering is suppressed, and electrons far from the boundary are not influenced by its

presence.

If w is the width of a wire, then the electron will typically make wy/l, specular
collisions with the boundary (assuming !/ >> w, and I, >> w) before a diffuse
backscattering event occurs. In other words, there are ~ w/l,, specular scattering events
for each diffuse scattering event, so the probability that a particular scattering event will
be diffuse is roughly 1/(1+w/l,) = I,/w (assuming [, >> w). In terms of the
specularity coefficient, the probability that a particular scattering event will be diffuse is
(1-p). Equating the two probabilities gives,

Iy = ll_"l; : | (6.10)

This relation has been used to extract approximate values of p in 2DEG wires (see, for

example, Thornton et al. (1990)]. In metal wires, it is found that [, = w, i.e. the
scattering is perfectly diffuse (p ~ 0) [see Pippard (1989), Ch. 6].

The effect of the backscattered trajectories of Fig. 6.12 in increasing the resistivity

of a sample, is reminiscent of the effect of coherent backscattering discussed in §5.3.2
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(although it must be stressed that the former is a classical effect, the latter a quantum
interference effect). Indeed, the analogy does not stop there. Fig. 6.13 shows how the
classical backscattered trajectories can be affected by the application of a perpendicular
magnetic field [Pippard (1989), Ch. 6; Thornton et al. (1990)]. In weak magnetic
fields (when the classical cyclotron diameter is larger than the wire width, 2r,>w), an
electron will tend to "skip" along one edge of the sample until it interacts with a bulk
impurity which transfers it to the other edge. This also constitutes a backscattered
trajectory. Whether the conductance rises or falls as a result, depends on whether the
total number of backscattered trajectories is increased or decreased when the field is
applied (which depends on the relative values of / and w). In strong magnetic fields
(when 2r, < w), electrons near one edge of the sample will skip on paths closer to that
edge. The probability of an electron being scattered from one edge of the sample to the
other becomes very small. Electron motion away from the edges is then governed by
the elastic mean free path (the boundaries have little effect), and the bulk value of
diffusion coefficient is restored. Thus, as the increasing magnetic field suppresses the
number of backscattered trajectories, a positive magnetoconductance is observed, very
similar to that seen due to the suppression of weak localisation

In addition to the classical size effects discussed above, there are also quantum
size effects. In §5.3.2 it was shown how pairs of closed time-reversed trajectories led to
the phenomenon of weak localisation. Beenakker and van Houten (1988a) have shown
that closed time-reversed paths which scatter elastically off sample boundaries, can
modify the weak localisation theory. For 1-dimensional wires, the Al'tshuler-Aronov

formula, Eq. (5.28), is modified by the effects of boundary scattering to give:
e2ff1 1 Yy2 (1 1  1yi2
oipB.T) = 0(0.1) - —||—+—] - |[Z+—+—= ,  (6.11a)
mwh |\Ly Dtp Ly Dtg I
where Ly is the coherence length, / is the elastic mean free path, and,
Cilf CoLir
B = 3 + 2 -
W VE w
Here Ly = (h/eB)!/2 is the magnetic length, w is the wire width, vy is the Fermi

(6.11b)

velocity, and C; and C, are parameters dependent on the specularity of the boundary
scattering. For diffuse scattering in a wire, C; = 4% and C, = 3, and for specular
scattering, C; = 9.5 and C, = 4.8. Note that putting D7z = 3(h/weB)?2 and taking the
limit / << L, in Eq. (6.11a) recovers the Al'tshuler-Aronov formula.

Although Egs. (5.28) and (6.11) can generally be fitted to the same positive
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magnetoconductance curves (albeit with different parameter values), their realms of
applicability are very different. The Al'tshuler-Aronov formula was derived strictly for
the limit / << w, i.e. where the effects of the boundary are completely negligible. The
Beenakker-van Houten formula above is slightly more general in that it can be applied to
the limit / >> w also [a limit previously studied by Dugaev and Khmel'nitskii (1984)
for perfectly diffuse scattering], and that the effects of specular or diffuse boundary
scattering can be incorporated via the relation (6.11b). It is also useful in studying the
case when [ ~ Ly, as occurs in high mobility 2DEG structures [see van Houten
(1988)]. In applying either formula, it is required that the sample be sufficiently long
that the motion is diffusive along the length of the wire, not ballistic. Beenakker and van
Houten (1988b) have shown that boundary scattering may also affect UCFs (although
they only apply their theory to study a 2D channel).

6.2.6 Effects of boundary scattering in nt-wires

In analysing their UCF data, Taylor et al. (1988a) noted that some form of surface
scattering appeared to be contributing to the phase breaking rate, 1,},1, and that the effect
was larger for a narrower wire. In earlier sections, wires of conducting width between
180 nm down to 130 nm appeared to give similar values of coherence length, Lg% 500
nm, with no evidence for effects due to surface scattering. In this section, however,
narrower wires are studied, and there is evidence here for a width-dependent influence
on the coherence length.

Fig. 6.14 shows the narrowest wire studied. This structure is different from that
shown in Fig. 6.3, being less flexible. The central wire in the structure is roughly 90 nm
wide, with the distance between the centre of one probe to the centre of the other being
500 nm. The conducting width is roughly 30 nm (although there may be some
uncertainty in this — see later). This will be called wire E. Another wire that is studied,
wire D, has the same geometry as wire E, but with length 590 nm and physical width
160 nm. Wire D has a similar length to wire A, but has roughly half the conducting
width (~100 nm as opposed to ~180 nm).

Fig. 6.15 shows a 4 K longitudinal measurement on wire D. Comparing this with
the corresponding measurements of Fig. 6.5 reveals two immediate differences. Firstly,
wire D shows a much larger weak localisation effect at zero field relative to the
fluctuations, as compared to Fig. 6.5. Secondly, the rms conductance fluctuation is

smaller, 8G,,,; =~ 0.21 €2/h (calculated for the range B > 0.5 T, after subtracting off
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the linear background rise). Three separate estirriates may be made for the coherence
length in this wire.

A fit of the low field positive magnetoconductance gives several pieces of
information. The correction terms in Egs. (5.27) and (5.28) for 2-dimensional (2D)

films and 1-dimensional (1D) wires may be written in terms of conductances as,

2
AGyp(B) = e2 Wi+ £ -y i i = (6.12)
2n%h | \2 4Bl 2 4eBL}
2 271-172
AGip®) = =1 iz+l(wleB , (6.13)

where L is the probe-probe spacing, wy is the conducting width, / is the elastic mean
free path, y is the digamma function, and Ly is the "free" parameter to be adjusted to fit
the experimental curves. A method of evaluating the digamma function is given in
Appendix B.5. The asymptotic approximation for the first digamma function in Eq.
(6.12) can only be used when B << 0.06 T, which is too small a field range in the

present context.

wire | L (nm) w (nm)
D 590 160
E 500 90

Figure 6.14: SEM of narrowest wire studied, wire E. Wire D has the same geometry, but

with slightly larger dimensions.
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wire D

0.0 " 1 M L A 1 N
0.0 0.1 02 0.3 04

AB (tesla)

Figure 6.16: Autocorrelation function for UCF trace of wire D in Fig. 6.15.

The positive magnetoconductance for wire D cannot be fitted to the 2D formula.
Not only is the shape of the calculated curve wrong, but the zero field conductance
correction cannot be obtained for realistic values of coherence length.4 However, an
excellent fit can be obtained using the 1D formula, as shown in the inset of Fig. 6.15,
using the parameters L = 590 nm, w; = 100 nm, and Ly =300(x10) nm. This gives
an estimate for the coherence length in wire D, as well as showing that this wire is 1D
with regard to the weak localisation effect. [Note that weak localisation measures Ly
and not Lr, since it is insensitive to energy averaging. Weak localisation relies on the
phase of the electron wave being unchanged upon its return to the point of departure.
This does not depend on what energy the electron is at, so energy averaging has no
effect. See Lee er al. (1987).] There will be an error in this value of L, since
fluctuations are expected to affect the weak localisation correction.

Since 6G,,, = 0.21 e2/h for wire D is less than the 0.52 e2/h expected for a

1D wire, averaging must be occurring. Assuming the averaging of a chain of

4 This is easily seen by writing Eq. (5.24b) in terms of conductance, and rearranging the correction

part to give the coherence length:
2
Ly=1lexp (—L—Zz—h-AGzD
w1 2
Using L = 590 nm, w; = 100 nm, / = 53 nm, and AG,p = 39 US gives Ly =~ 600 um which

would imply 6G,,, .~ 5x105 e2/h.

rms
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independently fluctuating phase coherent regions, gives Ly = 322 nm from Eq. (6.1).
Finally, the autocorrelation function for the UCFs of wire D is calculated (forB>0.5T)
after subtracting off the linear background trend, as shown in Fig. 6.16. The correlation
field is B = 0.080 T, giving Ly~ 520 nm from Eq. (6.7). This is slightly higher than

the previous two estimates.

11.0

Pred
o
in

conductance (e2/h)

L
o
(=]

9'5 2 1 1 1 M L M 1 A L N
0 1 2 3 4 5 6

magnetic field (tesla)
Figure 6.17: UCF trace for the narrowest wire, wire E. This shows "little" fluctuations, as

well as much longer period fluctuations.

Fig. 6.17 shows a 4 K UCF trace obtained for wire E (L = 500 nm, w; ~ 30 nm).
This curve is qualitatively even more different from the curves in Fig. 6.5 than was the
case for wire D. The weak localisation is not suppressed till much higher fields, in
addition to which the fluctuations are more complex than the ones observed for the
wider wires. These UCFs have a high frequency component, as well as a much lower
frcquency component.5 The former "small" fluctuations will be studied later in §6.3.2

in the context of fluctuations in the Hall voltage. The UCF trace as a whole has an rms

—

5 Unfortunately in measurements on this device, the sample was being affected either by poor
lectrical screening or by stray light (the cryostat used in this instance had windows which were
Perhaps not adequately sealed), since the UCF trace would change completely after a period of 1-2
hours, However, two consecutive runs did give reproducible UCFs, although the correlation was poorer

than that in measurements on other samples.
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conductance fluctuation 6G,,,; = 0.25 e2/h, giving Ly = 307 nm from Eq. (6.1). The
form of the autocorrelation function for this trace, shown in Fig. 6.18, is primarily
determined by the lower frequency fluctuations. The correlation field is B = 0.53 T,
giving Ly = 260 nm.

The fit to the low field magnetoconductance for wire E is done for several
temperatures. The measured curves are shown in Fig. 6.19. These curves cannot be
fitted to the 2D formula, Eq. (6.11). With L = 500 nm, and conducting width w; = 30
nm, these curves cannot be fitted to the 1D formula, Eq. (6.12), either. Instead, it is
found that very good fits can be achieved using w; = 15 nm, i.e. a higher field is
required to suppress the localisation than would be expected for w; = 30 nm. Eqg.
(6.12) was derived by Al'tshuler and Aronov (1981a) with the assumption that elastic
impurity scattering was the dominant diffusion mechanism in the wire. However, for
wire E, w; ~ 30 nm, but the elastic scattering length is / = 53 nm. Since [ >w, a
certain amount of boundary scattering is inevitable, and the Al'tshuler-Aronov formula
would not be expected to hold. Thus, boundary scattering must be affecting the field

required to suppress the localisation.

1.0 v | v i v I v 1

08 wire E -

06 .

F(AB)

04 -

02 F .

0 0 1 1 1 I 1 1 1 2
0.0 02 04 0.6 0.8 1.0

AB (tesla)

Figure 6.18: Autocorrelation function for the UCF trace of wire E. The shape of this is

primarily determined by the "slow" fluctuations in the UCF trace shown in Fig. 6.17.
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Figure 6.20: Comparison between specular and diffuse fits to the T = 38 K weak

localisation measurement for wire E. The diffuse fit is a little better.

In §6.2.5 both classical and quantum contributions to the magnetoconductance
were described. In that section, it was shown that classical size effects are dependent on
I, whereas quantum size effects depend (as ever) on Ly In nt-material, / is largely
insensitive to temperature (this is not so in 2DEGs, as indicated by the high mobilities
that are achieved at low temperatures), whereas L is much more strongly temperature
dependent. The fact that the low field magnetoconductance in Fig. 6.19 grows with
decreasing temperature is indicative of quantum interference. Further, classical
contributions to the magnetoconductance would primarily be expected when the
classical cyclotron diameter is smaller than the conducting width of the wire. For w; ~
30 nm, this would only happen for B > 6 T. These considerations indicate that the
measurements of Fig. 6.19 do indeed represent weak localisation effects, and that the
Beenakker-van Houten theory should be used in their interpretation.

The Beenakker-van Houten formula, Eq. (6.11), can be applied either for perfectly
diffuse or perfectly specular scattering. As with the Al'tshuler-Aronov formula, the
magnetoconductance curve for wire E cannot be fitted using a conducting width w; =
30 nm. Fig. 6.20 shows the best fits possible for the T = 38 K curve using parameters
L =500 nm and w; =20 nm. A coherence length Ly = 198(+1) nm is required in
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both cases [i.e. L¢ is fitted to the nearest nanometre in the diffuse case, and a different
value of Ly does not improve the fit in the specular case]. Although there is only a
slight difference between the specular and diffuse scattering fits [only a small difference
is expected — see Beenakker and van Houten (1988a)], the diffuse fit is better. The fit
with specular scattering at T = 38 K can be improved by using w; = 15 nm (this is as
for the Al'tshuler-Aronov formula, except a different value of Ly is required). Athigher
temperatures a good fit for specular scattering can only be achieved using w; = 20 nm.
On the other hand, the diffuse scattering values of C; and C, give consistent fits at all
temperatures using L = 500 nm and w; = 20 nm always, as shown by the solid lines in
Fig. 6.19. It should be noted that for these fits the diffusion coefficient was maintained
at its bulk value, D = 0.017 m? s-1, although technically it should be less than this for
the reasons outlined in §6.2.5 [see Beenakker and van Houten (1988a)]. If a smaller
value of D is used, then the conducting width, w;, required for a good fit would have to
be reduced.

In Fig. 6.19, the low field magnetoconductance of the 4 K curve is strongly
perturbed by fluctuations, so the "correct" value of Ly cannot be determined from just
one curve. A better estimate can be found by taking the zero field correction, AG1p,
averaged over several different UCF traces (see Footnote 5). [Such an averaging
procedure was demonstrated to be useful by Mailly and Sanquer (1991). The averaging
"removes" the fluctuations, but leaves the weak localisation corrections.] This gives
AGip =44 WS (averaged over 7 traces). So, using Eq. (5.24¢) gives,

Lo~ZE AGipL~284nm (6.13)
[4

which in turn gives the 4 K fit shown in Fig. 6.19. [The 4 K experimental points
(ignoring the fluctuations) in Fig. 6.19 are fitted reasonably well by this value of Ly
However, other measured 4 K curves would have shown a poorer fit.]

The values of L, obtained from the fits in Fig. 6.19 are plotted as a function of
temperature in Fig. 6.21. Using 'L;},l = D/L%, the points in Fig. 6.21 can be plotted in
terms of scattering rate as a function of temperature. This is done in Fig. 6.22. The
dependence looks almost linear, but this is illusory. [Black et al. (1979) have derived a
linear T dependence for the 3D scattering rate due to the presence of "two-level
systems." Despite the fact that the defects introduced by the dry-etching are imagined
to have two levels, one of these levels is always occupied (according to the model), so
these defects are not really "two-level systems" at all. It would be wrong, therefore, to

try to invoke this mechanism to explain the data of Fig. 6.21.]
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Figure 6.21: Temperature dependence of coherence length in wire E. The fit is made by
including electron-phonon and electron-electron scattering rates in the phase breaking rate.

The measured coherence lengths also require a temperature independent term to be included.
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At low temperatures the dominant phase breaking mechanism is expected to be
electron-electron scattering. Now, wire E is 1D with respect to electron-electron
interactions (but has a 3D Fermi surface), since its conducting width, wy ~ 30 nm, and
conducting thickness, #; = 37.5 nm (epilayer thickness minus top surface depletion
depth), are both less than Ly or Ly in this wire. The temperature dependence of
electron-electron scattering in 1D can be described by a power law, 7} o T, where p
=2, 3 or 5 In clean metallic systems (no disorder, or I >> Lr), electron-electron
scattering is described by the Landau-Baber dependence, 7;} o< T ?, for a 3D Fermi
surface [Kaveh and Wiser (1984)]. In the presence of disorder (I < L), this becomes
modified. Al'tshuler and Aronov (1981b) show that for 1D systems the disorder
modified electron-electron scattering rate is given by,

1 e2D (kBT)IIZ

—_— o~ —_—

Tee RGL\hD
where D is the diffusion coefficient, G is the wire conductance, and L its length. On

(6.14)

the other hand, Al'tshuler et al. (1982) show that phase breaking can also occur when
the electron interacts with fluctuations in the externally applied electromagnetic field
(which is equivalent to electron-electron scattering with energy transfers 6E << kgT).

This gives the scattering rate,

2/3
1_ (@62 "B_T) , (6.15)

Ty “\ToL h?
called the Nyquist rate. In the n*-GaAs samples being used, the electron-electron
contribution to 1:;,1 is expected to take one of these latter two forms.

Apart from the electron-electron contribution to 1'(;,1, there are two other
contributions. The first is the electron-phonon scattering rate. At very low
temperatures, T << 6p (where 8p ~ 240 K is the Debye temperature), the wavevector
of thermal phonons is given by g = kgT/hc, where ¢ ~ 3x103 m s-1 is the velocity of
sound [see Blakemore (1982) for a review of the major properties of GaAs]. The
corresponding wavelength is ~36 nm at 4 K. The wire is thus 3D as far as the phonons
are concerned. Also g/ ~ 9, which corresponds to the "clean" limit (g/ >> 1). For 3D

electron-phonon scattering in this limit, Thouless (1977) gives the approximation,

T\3
19 (pl)ﬂlﬁ;_("f?_) (6.16)
Ton 6p U3\ hc

where v is the Fermi velocity, and I is the resistance ratio [I" = p3p0/pg, Where
P30o is the resistivity at 300 K, and py is the residual resistivity].

Fig. 6.22 also indicates that at T = 0, the phase breaking rate is non-zero, i.e.
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there is a temperature independent contribution$ to 1';,1. This is denoted 7;'. Hence
the net phase breaking rate is given by,

TL¢ = TLO + AeeTP + AppT? (6.17)
where AeeT_v is given by one of Egs. (6.14) or (6.15).

Fig. 6.22 shows fits of Eq. (6.17) to the experimental points. As it turns out, the
data can be fitted equally well for both p =% and p =3. [This problem has been noted
previously by Heraud et al. (1987).] For p =} the fit is given by 75! = 1.4x1011 s-1,
A, =2.5x1010 51 K-2/3 and A, = 2.6x105 s'1 K-3. For p = ; the corresponding
values are 75" = 1.1x1011 51, A4,, = 5.0x1010 s-1 K-1/2 and A,y = 3.3x103 571 K3,
The values of A,, obtained here can be compared to the theoretical estimates of Eqs.
(6.14) and (6.15). For wire E, G ~ 0.4 mS, L = 500 nm and D = 0.017 m2 s-1. The
theoretical and experimental values of A,, are summarised in Table 6.3. Unfortunately,
there appears to be approximate agreement for either case. Thus, the method of fitting
scattering rates does not seem to be able to distinguish which type of electron-electron
scattering mechanism (if either) dominates the low temperature phase breaking rate [this
was also the conclusion reached by Heraud er al. (1987)]. Experiments by others
[e.g. Thornton et al. (1986) for 2DEG wires] suggest that electron-electron scattering

with small energy transfers should in fact dominate at low temperatures (i.e. ,%1 = T,'Vl).

L
p=3(disorder)  p=3(Nyquist)

experimental fit 5.0x1010 2.5x1010

theory 1.1x1011 9.5x1010
.|

Table 6.3: Comparison of values of A,, obtained experimentally and theoretically, with the
experimental fits being done to Eq. (6.17). The measured data cannot distinguish between the

two forms of scattering.

6 In light of Footnote 5, it could be argued that the saturation of Ly in Fig. 6.21 is actually caused
by electrical interference, g1v1ng an electron temperature of ~10-20 K. However, the observation of a
T-12 dependence in Fig. 6.7 characteristic of energy averaging is in itself evidence of a temperature
independent L¢ [Washburn et al. (1985)] in those measurements, where the electron temperature is
known to be ~4 K. This would suggest that the curve of Fig. 6.21 for wire E is more real than
illusory, and that the electron temperature is nearer 4 K than 10-20 K.
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The temperature independent term 7! in these wires is of considerable interest.
Such a term is frequently observed in different systems, and a variety of causes have
been suggested. Previously, Taylor et al. (1988) [see also Main et al. (1990)] in
measurements on nt-GaAs wires, noted a width dependence of the temperature
independeﬁt term, and concluded that some form of surface scattering was the cause. In
measurements of fluctuations in wires A, D and E, the fact that the rms conductance
fluctuation decreases with decreasing wire width clearly suggests a dependence of 1;,1
on the conducting width. [The AB = 0 value of the Lee-Stone correlation function is
unaffected (directly) by boundary scattering, so the rms fluctuations are not reduced
because of this. See Beenakker and van Houten (1988b).] If the phase breaking rate in
each of these wires could be described by Eq. (6.17) with the same values of A,, and
Apy, then the width dependence of r;,,l requires that 7y is a function of the wire width.
[A., and A, are not expected to be strongly affected by the presence of the
boundaries.]

In light of the model on dry-etch damage in Chapter 4, a temperature independent
phase breaking rate could be related to the defect states near the etched sidewalls. Two
possible mechanisms are evident. Inelastic scattering of free electrons by empty defect
states within the wire is one possibility, although whether this would have a significant
temperature dependence or not is uncertain. Another possibility is magnetic scattering
due to the interaction between the spin of the conduction electron and the unpaired spin
of an electron trapped in a defect state. Magnetic scattering should be temperature-
independent over the range of temperatures used (in spin glasses the Kondo effect gives
a slight temperature dependence at very low temperatures). The defect used in Chapter
4 had two levels. If both levels are filled, the net spin should be zero. Hence, only the
defects placed within the depletion region, which have trapped only one electron, will
contribute to a magnetic scattering rate. The clearly emphasises the role of electron
scattering from the edges of the depletion region, since only then would the conduction
electron and defect be close enough for scattering to occur.

The scattering time 7, ~ 7 ps gives a length Ly ~ 350 nm. Comparing this to the
length of wire E, L = 500 nm, shows that there are roughly 1-2 such scattering events
as the electron diffuses down the wire. From the sidewall defect distribution obtained in
Chapter 4, a simple estimate may be made of the number of defects contributing to the
scattering mechanism in question. Assume that the sidewall defect distribution is given

(very roughly) by I'(x,v7/2,7) [from Eq. (4.14)], where x is the distance from the
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sidewall, v = 200 nm min-! is the etch rate, and 7= 30 s is the etch time. The edge of
the sidewall depletion region is at x = x; = 30 nm. The conducting thickness of the
epilayer is #; = 37.5 nm. If the uncertainty in energy of the electron is kgT, then the
uncertainty in the position of the edge of the depletion region is Ax ~ (2€9€,kgT/
€2Np)172 = 0.28 nm, where Np = 6.5x1024 m3 is the donor density. [Up to a factor,
Ax is just the Debye length corresponding to the transition region between the depletion
region and the conducting core.] The electrons will primarily interact with the defects
lying within Ax of the "edge" of the depletion region. The total number of such defects
between the voltage probes in wire E is given by,

No ~ 2Axt;LxI” x%f) = GiAxyLre ™ ~3 | (6.18)

where L = 500 nm, G, = 5.5x1023 m-3 s-! is the defect creation rate at the sidewall,
and A = 9 nm is the mean depth to which defects are created (these values were
obtained in §4.4.3). Thus, it appears that the electron interacts with ~3 scatterers as it
diffuses from one voltage probe to the other.

The effect of these scatterers on the electron coherence depends on the relative
values of [ and wy. If wy </, then the electron spends more time interacting with the
edge of the depletion region than it does with impurities within the wire. In this case, the
electron is more likely to encounter one of the defect scatterers. As w is increased, the
electron interacts less with the edge, and the corresponding effects are smaller. These
arguments are identical to those used in discussing size effects in §6.2.3, with L, being
used in analogy to the boundary scattering length, /,. In essence then, this argument
says that the temperature independent contribution to the phase breaking rate is due to a
size effect, and (in principle) should not be present in large samples. The top surface
depletion region does not contain such defects, so its presence should not affect the

phase breaking rate.

6.2.7 Coexistence of localisation and fluctuation effects

The UCF traces for wires A, D and E show that the rms conductance fluctuation
decreases with wire width. However, the magnitude of the corresponding zero field
weak localisation correction remains unchanged at roughly AG ~ e2/h. This
observation shows that localisation and fluctuation effects must be distinct, which is
what the usual theory says. Taylor ez al. (1988) have proposed a simple model which
suggests that fluctuations are a manifestation of weak localisation. The model relies on

closed time-reversed paths as in weak localisation. However, such paths only exist in
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weak magnetic fields, such that Lg > [, where the curvature of the electron trajectories
can be ignored. At sufficiently high fields, time-reversed paths will no longer exist, and
one of the basic assumptions of the model no longer holds. Such a model would not
therefore seem able to account for fluctuations at any significant values of field, and the
intended link between localisation and fluctuation effects is lost.

It should be stated that localisation and fluctuation effects are only distinct in the
limit kgl >> 1. As the sample becomes more disordered, it is found that localisation
does affect the rms conductance fluctuation. Signs of this appear in the distribution
function of the fluctuations [Eq. (5.31)], which becomes progressively more non-

Gaussian as the sample is made more disordered. See, for example, Lerner (1991).

6.3 Hall and nonlocal measurements

6.2.2 The Hall measurement

The classical Hall effect, observed in a transverse measurement configuration
(e.g. using the Hall geometry shown in Fig. 5.5), arises from a balancing of the Lorentz
force, -evxB, and the force due to the Hall field, -¢eEy. The measured I-V curve

shows a linear dependence of the Hall voltage, V};, with applied magnetic field strength,

vu=—_B, (6.19)
napé
where n_ _ is the sheet carrier concentration, and B is the component of the field

2D
pointing in a direction normal to the plane of the device. In 2DEGs and Si inversion

layers at low temperatures, when the coherence length becomes sufficiently long,
Landau quantisation leads to plateaux forming in the Hall conductance, I/V};, measured
as a function of field. This is known as the (integer) quantum Hall effect. [A fractional
version also exists, which is a many-body effect associated with the electron gas in a
magnetic field.] In n+-GaAs, the elastic mean free path is sufficiently small that the
quantum Hall effect is not observed (although weak Shubnikov-de Haas oscillations can
be seen at high enough fields).

With the working contacts, only a single Hall configuration can be measured
using the device shown in Fig. 6.3. This is shown in Fig. 6.23. This Hall resistance is
written Rj¢ g4, which denotes current flow between contacts J-C, and a voltage

measurement between contacts E-A. At high temperatures, a measurement of Rjc g4
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yields the linear relation expected from Eq. (6.19). The gradient of this measurement
gives a material carrier concentration of ~5.0x1024 m-3, not the 6.5x102* m-3 measured
by Van der Pauw. The reason for this difference may be due to fluctuations in doping
density across the wafer. However, the measured cut-off widths in Chapter 3 were
always found to lie within a small range of values around 60 nm, despite a large number
of samples being made from the material. Thus, the differences in doping density
across the wafer do not seem to affect the cut-off width beyond this small range. The
parameter values given in Table 6.1 only change by a few percent if the carrier

concentration is 5.0x1024 m-3 instead of 6.5x1024 m-3.

S

Figure 6.23: The Hall measurement

Rjc g4 made using the device of Fig. 6.3.

transverse voltage (LLV)

N 1 N 1 i
0 1 2 3
magnetic field (tesla)

Figure 6.24: 4 K measurement of a Hall voltage using the configuration shown in Fig. 6.23.

Superimposed on the classical linear Hall voltage are reprodicible fluctuations.
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At 4 K, the measured curve changes. Two measurements of R jc s taken at 4 K
are shown in Fig. 6.24. Superimposed on the classical linear Hall rise are definite,
reproducible fluctuations. Qualitatively, the fluctuations look just like the ones observed
in the longitudinal measurement, although the magnitudes cannot be compared directly.
Fluctuations in a direct Hall measurement have been studied experimentally by Hansen
et al. (1990), and theoretically by Ma and Lee (1987). As for the longitudinal
measurement, the cause of these fluctuations lies in the interference between the many
electron trajectories that exist in the sample. This interference results in electric fields
with random magnitude and direction being created near the voltage probes, giving the
“random" fluctuations [Al'tshuler and Khmel'nitskii (1985); Kane et al. (1988)].

A comparison between the fluctuations in the longitudinal and Hall measurement
cannot be made using conductance, since the Hall conductance diverges as B — 0.
Instead, the discussion in §6.2.3 suggests a different method by which these two
quantities may be compared. In that section it was stated that voltage probes attached to
a phase coherent region always measure an rms voltage fluctuation that is independent
of the probe spacing. Here it will be shown that experimentally this is also true for the
case where the voltage probes are in a Hall — as opposed to a longitudinal —
configuration. In other words, the fluctuations associated with the Hall measurements
are just the rms voltage fluctuations associated with a phase coherent region.

The wire has length L, conducting width w;, and resistance R. The coherence
length in the wire is Ly Since L > L, the measured longitudinal voltage scales with
both wire width and probe spacing. The expectation is that the fluctuations in the Hall
measurement are just fluctuations associated with a phase coherent region, so the
longitudinal rms voltage fluctuation must be scaled to a wire of length Ly and width w,,
where w), is the conducting width of the voltage probe. Now 6V,, = IR26G,, is the
voltage fluctuation in the longitudinal measurement. If L >L ¢ then 6G,, =
(Ly/L)326G 4, where 6G is the rms conductance fluctuation of a phase coherent
region. Also if R, is the resistance of a phase coherent region of width W), Where Wy
<Ly, then R = (wpL/wiLy)Ry. Hence, the equivalent rms voltage fluctuation of a
wire of length L, and conducting width w, is,

L ¢)1/2 w1 )2

This relation was also derived by Hansen et al. (1990). Hansen ez al. (1990) further

Wy - (6.20)

show that a more accurate expression can be derived:
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Lo\12 wy [ 2wyw, + 202 |12
aveq=(—¢) ﬂll*w”-%} Ve . (6.21)
L W, (w1 + wp)

If the assertion concerning voltage probes connected to phase coherent regions is
correct, then the relation 6V, ~ 8V, is expected to hold. Here 6V, is the rms voltage
fluctuation in the Hall measurement once the classical voltage given by Eq. (6.19) is
subtracted off.

The rms voltage fluctuation in the Hall measurement of Fig. 6.24 is OV, =561V,
where the applied current is / = 16.72 nA. The corresponding rms fluctuation in wire
A (cf. Figs. 6.4 and 6.22) for the same current level is 6V,, = 78 nV. Using Eq.
(6.21) and L = 600 nm, w; = 180 nm, wy, =130 nm, and Ly = 520 nm, gives 8Veq =
92 nV. Allowing for uncertainty in the parameter values used, this is in reasonable
agreement with 8V,,. Hall measurements on wire E (see Fig. 6.14) gave OV, =221
nV and 6V,, = 3.25 uV for a current / = 32.67 nA. Using L = 500 nm, w; ~ 30 nm,
w, = 180 nm, and L, ~ 300 nm, gives 6Veq = 397 nV. Again there is reasonable
agreement. The agreement found for these wires is better than that found by Hansen et
al. (1990), where 6V, and 6V, only agreed to within an order of magnitude or so. It
is possible that the differences between 6V, and 6V,, are due to uncertainties in L,
within the probe and wire, and perhaps additional geometrical effects. Hansen et al.
(1990) also acknowledge the fact that wp, ~ L in one of their devices, which would
undoubtedly affect 6V,,. In the limit w, >> L, the fluctuations in the Hall measure-
ment would be expected to average to zero.

As one further test, the fluctuations at the cross-junction itself can be measured, as
shown in Fig. 6.25. Two measurements can be performed using the four contacts, one
where the voltage probes are on the same side of the current (giving 6V,,), the other
where the probes are on opposite sides (giving 5ny). Both measurements in Fig. 6.25
were made using the same excitation voltages, and give 6V, = 50 nV, and 6ny =35
nV. Allowing for geometrical effects, these values are in very good agreement, and
show that the voltage fluctuations measured by probes attached to a phase coherent
region (in this case the junction itself), are independent of the position of the probes
with respect to the current path. Any differences arise for reasons mentioned
previously.

One last point of interest to note about these direct Hall measurements is the B =
0 value of measured Hall voltage. The results of Hansen et al. (1990) and those above

show that at low temperatures a finite "Hall" voltage is measured despite the field being
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zero. This follows naturally from the idea that the measured voltage is a superposition
of the true Hall voltage, and of a fluctuating term (which can be non-zero at B = 0)
caused by electron interference [Al'tshuler and Khmel'nitskii (1985)].

6.3.2 Symﬁetries of the 4-terminal conductance

In the measurement shown in Fig. 6.17 of the longitudinal fluctuations of wire E,
it was noted that the curve appeared to comprise a small, short period component, as well
as a larger much longer period component. The longer period component was attributed
to fluctuations in the longitudinal conductance. Fig. 6.26 shows the short-period
component in terms of a voltage with the linear background subtracted off. The rms
voltage fluctuation is 6V, = 296 nV (where the current is I = 32.68 nA). Also shown
in the figure are the fluctuations in the Hall measurement, with the classical Hall voltage
subtracted off. The rms value of these is 5ny =221 nV. Itis seen that the magnitudes
of the rms fluctuation are very similar for the two measurements.

The similarity does not end there. The autocorrelation function for each curve is
also shown in Fig. 6.26. The respective values for the correlation field are BE =~ 0.035
T, and BZ = 0.062 T. These values of BF and B are very similar (allowing for errors
due to the small field range over which they were computed), and are much smaller than
the value ~0.53 T obtained for the longitudinal fluctuations taken as a whole. These
comparisons point to the conclusion that the same fluctuations are manifesting
themselves in the two separate measurements. It will be asserted below that this is
indeed the case, and that the measured fluctuations are associated with fluctuations in the
antisymmetric part of the conductance.

Early measurements of fluctuations [e.g. by Umbach et al. (1984)] revealed that
the 4-terminal conductance was not symmetric with respect to magnetic field, i.e. G(-
B) # G(B). The reason for this remained a puzzle for a while until Biittiker (1986)
showed that it was in fact due to the 4-terminal nature of the measurement. He showed
that the symmetry is restored if the current and voltage leads are swapped when the field
is inverted, i.e. Gjj,(-B) = Gy, ;;(B). This is just a statement of the Onsager-
Casimir symmetry relations familiar from the study of classical conductors [more
generally from the study of reversible processes — see Landau and Lifshitz (1960), Ch.
3], and shows that the 4-terminal quantum conductance measurement is analogous to a

4-terminal measurement of a classical conductor in this respect.
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Following the classical analogy, Benoit et al. (1986) showed that the conductance
fluctuations could be split into a symmetric part, Gg(B) = G4(-B), and an
antisymmetric part, G4(B) = -G4(-B), so,

_ G(B) = Gs(B) + Ga(B) . (6.22)
They further showed that the symmetric part was associated with the wire itself, whereas
the antisymmetric part was associated with fluctuations around the regions of the
probes. This is also born out by theoretical calculations [e.g. Kane et al. (1988)].
This means that the magnitude of the antisymmetric component of the voltage
fluctuations is largely independent of the probe spacing, whereas the symmetric
component will decay [confirmed experimentally by Benoit et al. (1987) and Hauke et
al. (1990)]. However, since the measured voltage across the wire increases with wire
length, so the relative magnitude of the antisymmetric component becomes smaller and
smaller, until for very long wires, these fluctuations cannot be distinguished from the
background noise.

The above would suggest an explanation for the effect observed in Fig. 6.26. The
Hall measurement probes the fluctuations only in the region of the voltage probes.
Thus, the fluctuations in G4 are measured. The longitudinal measurement, on the other
hand, probes the fluctuations not only near the voltage probes (G,), but also along the
length of the wire itself (i.e. Gg). This would therefore suggest that the small
fluctuations seen in Fig. 6.26 are in fact fluctuations associated with Gy, i.e.
fluctuations in the region of the voltage probes. In the measurements of Benoit et al.
(1986), the conducting widths in the wire and the probe were similar, w; ~ w,, so Gg
and G4 had to be decoupled by making more than- one measurement. However, for
wire E above, w; << w),, and the two different contributions are manifestly separated in

the single longitudinal measurement (Fig. 6.17).

6.3.3 Nonlocal fluctuations

The longitudinal and Hall measurements have already been discussed. Apart from
these two, there exists a third more intriguing possibility, as shown in Fig. 6.27. The
voltage is effectively measured at a single point on the current path. Intuitively, a zero

voltage would always be expected,’ and the measurement seems somewhat pointless.

71In fact, due to the finite width of the wire, a small classical voltage is expected according to the
Van der Pauw formula. However, as the length L is made longer, this classical voltage should tend to

zero roughly as e"L/Wp, where Wp is the probe width.
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However, in the quantum regime this idea is radically altered, and a zero voltage is no
longer found.

Fig. 6.27 also shows the two different ways this measurement can be done using
the device of Fig. 6.3. In one case L = 400 nm, in the other L = 470 nm, where L is
roughly the distance separating the voltage probes from the classical current path. Two
traces of the measured voltage as a function of applied magnetic field for L = 470 nm
are shown in Fig. 6.28. Reproducible fluctuations are seen, very similar to those
observed for the longitudinal and Hall measurements. These fluctuations are
uncorrelated with the fluctuations measured in the other configurations, showing that the
electron paths contributing to these are not the same. The fluctuations are superimposed
on a constant non-zero background voltage. This background voltage scales with
current and remains at high temperatures, and is attributed to a classical (Van der Pauw)
voltage. The measurements for the L = 400 nm case gives similar fluctuations except
with a larger rms value, and a higher constant background voltage.

Since the fluctuations arise in measurements away from the classical current path,
the effect is called nonlocal (or remote). Such nonlocal fluctuations have been
extensively studied experimentally in Sb, Au and Si-inversion layer wires [Benoit ez al.
(1987); Skogpol et al. (1987); Hauke et al. (1990); Washburn (1991)], and are well
understood theoretically [DiVincenzo and Kane (1988); Baranger et al. (1988)]. The
measurements made on n*-wires above adds nothing new [Geim et al. (1991) have
also observed nonlocal fluctuations in nt-wires], so the present discussion is limited to

a few brief comments.

apply current

measure voltage

Figure 6.27: In nonlocal measurements the voltage probes are "remote” from the classical

current path. The two measurements possible using the structure of Fig. 6.3 are shown.
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phase coherent region

typical electron
trajectory penetrating
voltage probes

Figure 6.29: Mechanism for nonlocal fluctuations. Coherent electron trajectories extend from
the classical current path towards the remote voltage probes. This creates fluctuating electric

fields at the voltage probes, which are detected as a fluctuating voltage measurement.

Nonlocal fluctuations occur for exactly the same reasons that voltage fluctuations
saturate at a finite value for voltage probes attached to a phase coherent region (see
§6.2.3). This is illustrated in Fig. 6.29. Coherent electron trajectories extend from the
classical current path into the region of the voltage probes. Since the resultant
interference patterns at the mouths of the two voltage probes are different, the electric
fields at these points are also different. As the magnetic field is swept, the magnitudes
of the electric fields fluctuate, leading to fluctuations in the measured voltage. Since
there is a finite probability of a trajectory losing its coherence at any point along the
length L, the number of such trajectories is exponentially damped. More detailed
theoretical analysis yields a nonlocal voltage fluctuation [DiVincenzo and Kane (1988)]:

Vyem = OV eLlls | (6.23)
where 8V, is the voltage fluctuation measured when L — 0 (cf. §6.2.3). Theory
yields the value a = 1.1, and a = 1 as L — oo. The value of a has a slight depend-

ence on the exact geometry used. Experimentally, the value a = 1.2+0.3 is found for

narrow wires [Hauke ez al. (1990)].
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wire | L (nm) w (nm)
P 600 180
Q 1700 180
R 600 370

Figure 6.30: Two-probe wires used to study random telegraph signals in response to light

pulses.

6.4 Photoconductance

6.4.1 Random telegraph signals in 2-probe wires

It has already been mentioned that the conductance of a mesoscopic sample is very
sensitive to the exact configuration of the scatterers in the sample. Al'tshuler and Spivak
(1985), and Feng et al. (1986) have shown that displacing so much as one scatterer is
sufficient to change the quantum conductance on average by ~ e%/h. Classically, no
change in the conductance is expected, since the classical conductivity depends only on
the total number of scatterers rather than on their positions.

From the work in Chapters 3 and 4, it is known that SiCl, dry-etching at around
300 V produces wires with a distribution of defect levels near the sidewalls. Since the
charge states of these levels can change by frapping or detrapping carriers, it would be

expected that this may lead to time-dependent changes in the measured ¢conductance.
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Such changes would therefore reflect the dynamics of electron interaction with the
defect levels. Two methods may be used to study such time-dependent effects in these
nt-wires. The first is to apply high voltages, which have the effect of heating the
electron gas in the manner described in §3.5.4, thereby encouraging electron interaction
with defect states [a method used, for example, by Mailly ez al. (1989)]. The second is
to apply a light pulse to the sample and measure the time-dependent response [e.g.
Bykov et al. (1988)]. This is the method used in this part of the present work.

The time-dependent response to a light pulse in these nt-wires generally contains
"pulses” in the conductance versus time. These random telegraph signals (RTS), as they
are called, have been observed in many other types of structures, e.g. ultra-small Si
MOSFETs [Ralls et al. (1984)], dry-etched GaAs/AlGaAs wires [Ochiai ez al. (1988);
Mailly and Sanquer (1990)], quantum point contacts [Cobden et al. (1991)], and
others. This section and the next both study RTS. In some respects, these fluctuations
are similar to the magnetic field fluctuations. However, the relative magnitude of these
fluctuations is much smaller, §G,,,, << e?/h. This means that they tend to be
experimentally observable only for low conductance wires, i.e. wires very close to cut-
off. Enough measurements could not be made to prove conclusively that these are

quantum fluctuations, but the wires are in a regime where such effects are expected.

REF

signal generator [ —> lock-in *REF
- eHEe | BN
ia i TR i
sample

-
=

560 kQ test

resistor

Figure 6.31: Measuring circuit used with two-probe wires. The measurement is 4-terminal,

but the resulting conductance includes a contribution of leads as well as from the wire.
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The devices used here were fabricated from MBE-grown epitaxial n*-GaAs with
a carrier concentration of 9.0x1023 m3 s-! and a mobility 0.20 m2 V-1 s-1. The cut-off
width for dry-etched wires made from this material is around 170 nm, and kgl = 12 in
the bulk. Initial studies were made on four probe wires similar to those used in §6.2.
Unfortunately, in these wires the voltage probes were generally so resistive that their
response to the light pulse was affecting the measurements. Instead, two probe wires
were used for these experiments. A typical device is shown in Fig. 6.30. The
measuring circuit is shown in Fig. 6.31. The devices are two probe, but a 4-terminal
conductance measurement is made. This means that the total measured conductance is a
combination of the wire conductance, and the lead conductances.

Three wire dimensions were used: (P) L = 600 nm, w = 180 nm; (Q) L = 1.7
pm, w = 180 nm; and (R) L = 600 nm, w = 370 nm. The widths are physical widths.
The conducting widths are roughly 170 nm less. Under illumination, the measured
conductances were Gp = 213 uS, Gy = 6.1 uS, and Gp = 40.5 uS. The
measurement was made at a temperature of 4 K. The wires were illuminated with red
light for several seconds, and the conductance was monitored after removal of the light.
Fig. 6.32 shows the measured conductances as a function of time for each of the wires.
Of the three curves, only wire P appears to show any significant noise. Wire Q
becomes cut-off after 100-200 seconds, and wire R shows only noise from the
measuring circuit. Wire P has a width near the cut-off width (in the steady state), and a
comparatively short length.

The response to the light pulse has two components. One is the falling
background conductance apparent in all the devices for ¢ < 200 s, which is due to the
recombination of excess carriers generated by the light. The second, which is prominent
in wire P, is a pulse like structure. Some of the more "definite" pulses (without
becoming too subjective) in Fig. 6.32 are marked with an arrow. These pulses are still
observed 15 hours after the initial illumination, as evident in the inset of Fig. 6.32. The
step changes in conductance are explained in the theory of Al'tshuler and Spivak (1985),
and of Feng er al. (1986) as being caused by a sudden change in the impurity
configuration within the wire. This is analysed in more detail below.

The rms fluctuation measured for wire P (after the background is subtracted off)
is 6Gp = 0.011 e2/h. When the conductance was remeasured roughly 15 hours after

the initial illumination (see inset to Fig. 6.32), the rms fluctuation was slightly less, 6Gp
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= 0.007 e?/h. The mean conductance was about 5.5 pS. In analogy with the
fluctuations with respect to magnetic field, a time autocorrelation function, F(Af), can
be computed. This is shown in Fig. 6.33. The condition F(z,) =5 defines the
correlation time z., which is the time scale over which the fluctuations occur. In the
initial measurement on wire P, the autocorrelation function gives ¢, = 70 s. In the
second measurement (13 hours after the initial illumination) the correlation time is
similar.

1'0 1 ] T
J
& 05 |- / \\ 1/, hours later 7
immediately after \<\
illumination \\\
0.0 M I M 1 1 ‘:\~
0 50 100 150 200

At (seconds)

Figure 6.33: Time autocorrelation function for the time-dependent measurements of Fig. 6.32.

The correlation time remains roughly the same 15 hours after the initial illumination.

Since its conducting width is roughly w; = 10 nm, wire P is expected to behave
1-dimensionally (1D) with respect to quantum interference effects (although it is still
3D with respect to electron diffusion). Unfortunately, weak localisation measurements
were not made on this material, so the coherence length, L¢, is not well known.
However, from the values obtained in §6.2 (albeit for a different material), and from the
trend in L, with conducting width, L, for wire P would be expected to lie somewhere
in the range 100-200 nm. From the mobility, the elastic mean free path is / ~ 39 nm.
Since / > wy, some size effects are expected.

According to Feng et al. (1986), the rms change in conductance expected from

the displacement of a scatterer through a distance & in a wire of length Lyis,

e2 1 (LY\2[ [sin kpdr/2)2 |12
%o-Sala) | Frbn ] | (©24
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where A is the cross-sectional (conducting) area of the wire, and kg is the Fermi
wavevector. Since wire P has a length L > Ly, the rms fluctuation 6Gp is related to
6G through the averaging relation, Eq. (5.40): 8Gp = (Ly/L)*26G 4, where L =
600 nm. Eg. (6.24) can be used to obtain an estimate for ér. Take L¢ ~ 200 nm. For
a carrier concentration of 9.0x1023 m-3, the top surface depletion depth is 33.5 nm, &z
= 3.0x108 m-l, and kpl = 12. Thus, solving Eq. (6.24) for kpér gives, kpér = 0.34, or
or ~ 1 nm. In other words, a scattering centre would need to be displaced roughly 1
nm to give the observed changes in conductance in Fig. 6.32.

Using the defect distributions obtained in Chapter 4, a rough estimate may be
made of the number of defects within the length of wire P, which are involved in the
measured effects. Take the defect distribution at an etched sidewall to be I'(x,vt/2,7)
[from Eq. (4.14)], where x is the distance from the sidewall, v = 200 nm min-! is the
etch rate, and 7= 30 s is the etch time. If w, = 170 nm is the measured cut-off width
for the material, then in the steady state the sidewall depletion depth is roughly ~ w/2.
Under illumination, deep traps are emptied and the sidewall depletion depth is closer to
the nominal depletion depth, x, = (2€,€,9/eNp)1/2 = 33.5 nm, where ¢, = 0.7 eV is
the surface potential, and N = 9.0x1023 m-3 is the doping density. Thus, allowing for
the two sidewalls, the total number of defects emptied is roughly,

electron trapping/

detrapping
- o N ---Ef
. - h - Ec‘

T s S o gefect states ~
empty hole trapping/
detrapping
v Ey v

(a) steady state (b) during illumination (b) after illumination removed

Figure 6.34: Model for the random telegraph signals in response to illuination. The RTS
arise from charge trapping/detrapping from defect states at the edge of the depletion region

once the illumination has been removed.
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x‘ﬂ)
’2,
wc/2

= G11(t-xo)L f dx e ~ 36. (6.25)
X0
Here ¢ = 50 nm is the epilayer thickness, L = 600 nm is the length of wire P, G; =

W2
N;~ 2(t-x0)L[ dxI”

X0

5.5x1023 m3 s-1 is the defect creation rate at the sidewall, and A = 9 nm is the mean
depth to which defects are created (the values of G, and A for SiCl, etching at 300 V
were obtained in §4.4.3). Eq. (6.25) shows that around 36 defects are involved in giving
the effects of Fig. 6.32.

A model can now be built to try to explain the fluctuations observed in the above
wires. The two-level defect used in Chapter 4 is assumed to be introduced by the dry-
etching. Before illumination, all defect levels below Eare filled [Fig. 6.34(a)]. During
illumination, many of these levels will empty either through electron emission, or hole
capture, so the conductance is higher than without illumination [Fig. 6.34(b)]. Once the
illumination is removed, many of the ~36 defect levels fill within 100-200 seconds. A
few defects which are closer to the edge of the depletion region may start trapping and
detrapping carriers from the conducting core of the wire in a nonequilibrium manner
[Fig. 6.34(c)]. The changes in scattering potential may be local changes in the sidewall
depletion depth, which "emulate" the effect of a scatterer moving ~1 nm. As one defect
traps then detraps an electron, a "pulse” is observed in the measured conductance.
These effects can, in principle, continue for ever. In the wider wire R, electrons interact
less with the boundaries (see §6.2.4), so the fluctuations are far smaller.

If the times the electron spends in the two states are denoted 7; and 7,, then

assuming the level occupation is determined by a Boltzmann factor gives,
CNEEY
(%) kgT |’

where E; and E, are the energies of the two levels measured with respect to the Fermi

(6.26)

level. As an estimate, the system spends roughly 3-4 times as long in the lower
conductance state than it does in the higher conductance stater, so 7, ~ 47;. From Eq.
(6.26) this implies, (E, - E1) ~ 19 meV. This either means two close defect levels
separated by this energy, or a defect level that is ~19 meV above or below the Fermi
level. In one case the electron is moving between two defects, in the other, electrons are

being exchanged between the defect and the conducting core of the wire.
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Several further measurements would have proved that the above fluctuations have a
quantum origin. First, since Ly decreases with increasing temperature, the fluctuations
should decay with temperature according to a power law dependent on the dominant
phase brcal;ing mechanism. This has been done for example by Bykov et al. (1989)
who also studied photoconductance fluctuations. Measurement of the UCF trace with
respect to magnetic field before and after illumination should, in principle, be different
since the scattering configuration will have changed [e.g. Davison er al. (1990)].
Finally, measurement of the above fluctuations in a magnetic field should yield an rms
fluctuation which is a factor of Y2 less than that measured without the field [e.g. Mailly
et al. (1989)]. This is the same factor of Y2 reduction mentioned in §5.3.3.

It should also be mentioned that other mechanisms exist whereby defect motion
can cause changes in the measured conductance. In one theory, changes in conductivity
are brought about by changes in effective scattering cross-section when one defect
moves in the vicinity of another. This latter theory applies for the limit / > Ly, (rather
than Ly >/ as in the UCF theory), and would not be expected to apply for the wires
above. See Pelz and Clarke (1987), or Hershfield (1988). For very small samples, the

observed conductance changes could also be a (classical) size effect.

6.4.2 Random telegraph signals in Hall geometries

The measurements of conductances in §6.4.2 showed random telegraph signals
(RTS) in a two-probe wire. In the current section, RTS is observed not only in the
longitudinal, but also in the transverse measurement. The device is similar to the Hall
geometry shown in Fig. 6.14. It is made from the 9.0x1023 m3 carrier concentration
material, has a physical width w = 180 nm, centre-to-centre probe spacing L = 530 nm,
and a probe width of 240 nm (i.e. these wires allow 4-terminal measurements, and the
probes are sufficiently wide that their photoconductance does not significantly affect the
measurements). The response of this structure to illumination was measured both in the
longitudinal and transverse ("Hall") configurations, at 4 K in zero magnetic field. The
primary initial aim was to try to find correlations (or lack of) between these two
measurements. To this end, a voltage was applied across the sample, and two lock-ins
used to to simultaneously monitor the longitudinal and transverse voltages. [A third
lock-in to record the current was not available at the time, so the conductances are not
accurately known, only the voltages.] Thus, the measuring circuit corresponds to that

of Fig. 6.2, with the attenuator and test resistor removed.
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6.4 PHOTOCONDUCTANCE
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Fig. 6.35 shows the longitudinal and transverse measurements made after removal
of the illumination from the sample (at time ¢ = 0). Both show clear steps. The
structure in the longitudinal measurement is very distinctive in that the voltage switches
between two definite levels with a period of 20-30 s. The new thing in the current set of
measurements is that a step structure is also observed in the transverse measurement,
where classically no voltage would be expected (for zero magnetic field).

The step structure in the longitudinal measurement is far more regular than that
observed in §6.4.1. However, the basic mechanism for the step change is the same, viz.
a sudden change in the scattering potential. The fact that the conductance switches so
regularly between two levels indicates that the scattering potential is also switching
regularly between two configurations. From Fig. 6.35 it is evident that the electron
spends roughly the same amount of time in either level. In Eq. (6.26) this means 7; ~
75, and hence E; ~ E;. In other words, the electron appears to move between two
nearby defect levels at the same energy. Every now and again, the electron escapes into
the conduction band, leading to a break in the structure. But then another electron
becomes trapped, and the RTS starts up again.

The step structure in the transverse measurement is more erratic, showing little
correlation with the longitudinal measurement. Al'tshuler and Khmel'nitskii (1985) have
pointed out that zero correlation should be expected between transverse and longitudinal
UCF measurements. However, in the present case, the steps are due to sudden changes
in the scattering potential. Thus, if the same defect motion is causing the steps in the
longitudinal and transverse voltages, a correlation is expected in the times at which the
steps occur (although not so in the magnitude or sense). It is clear from Fig. 6.35 that
the defects responsible for the longitudinal effect have no influence on the transverse
measurement. However, it would be expected that the defects affecting the transverse
measurement should affect the longitudinal measurement, but whether this is true or not
is difficult to judge. The mean transverse voltage is also seen to be offset from zero.
This is the effect of a finite "Hall" voltage at B = 0 due to fluctuation effects, as
mentioned in §6.3.1.

As a final point of interest, it is worth noting that if the RTS in the longitudinal
measurement is caused by electron motion in the potential of two defect states, then the
electron must be localised either near one defect, or near the other. This is perhaps an

obvious statement to make, until the related problem is considered of an electron in a
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double well potential. If the electron always maintains phase coherence (i.e. it is in an
energy eigenstate), then the time-independent Schrodinger equation may be solved to
obtain a wavefunction for the electron in this potential. Now, this wavefunction is
spread across both wells, so quantum mechanically speaking it cannot be known
whether the electron is in one well or the other. However, the measurement of Fig. 6.35
definitely asserts that the electron is either in one defect, or in the other. This indicates
that the electron must lose phase coherence in moving from one defect to the other (i.e.
there is some time dependent perturbation acting on the electron state), so presumably
this motion is phonon-assisted. The mean lifetime of the electron in one of these

defects is then an indication of the strength of the electron-phonon-defect coupling.
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Chapter 7

Summary and conclusions

The work described in this thesis has focussed on electrical transport in dry-
etched n*-GaAs wires, both at room temperature and at much lower temperatures. The
wires were fabricated using electron-beam lithography and SiCl, reactive-ion etching.
The materials used comprised heavily Si-doped GaAs epilayers grown by molecular
beam epitaxy. The narrowest wires studied had widths of about 70-80 nm.

Characterisation of the dry-etch damage in the sidewalls of these wires was done
in Chapter 3, by measuring the wire conductance as a function of the wire width.
Materials with carrier concentrations 6.5x10%* m™ and 6.5x10% m™ were used, with
the etching being done at energies between 280-380 V. The minimum conducting
width (the cut-off width) in dry-etched wires was found to be larger than the
corresponding width for wet-etched wires. The "extra" sidewall depletion was attributed
to sidewall damage incurred as a result of the etching.

Sidewall damage was found to be insensitive to a variation in the d.c. self bias of
the etch over a range 280-380 V for an etch time of 30 s, using the 6.5x1024 m™3
material. Over this range, the width-conductance curve remained unchanged within
experimental error. However, wires etched for different times were found to give very
different width-conductance curves, the cut-off width increasing from about 160 nm for
a 36 s etch, to about 250 nm for a 90 s etch, using the 6.5x1023 m material. For
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equivalent etch times the ratio of the measured cut-off width to the nominal cut-off width
(as calculated from the carrier concentration) was found to be roughly independent of
the carrier concentration (which was varied by an order of magnitude).

A model for the dry-etch damage has been developed in Chapter 4, which
describes véry well the above measurements on n*-wires. The dry-etch damage is
assumed to comprise charged defects. Initially, defect distributions for top surface and
sidewall damage were obtained by solving the one- and two-dimensional diffusion
equations. Two cases were examined. In one, defects are created solely at the surface
being etched, following which they migrate into the structure by diffusion. In the other,
defects are created a small distance from the surface, following which they can again
diffuse. Fits to DLTS-measured defect profiles indicated that diffusion affects the form
of the defect profiles significantly only for unrealistically high values of defect diffusion
coefficient. For values of diffusion coefficient smaller than about 1029 m2 s, the
derived expressions tend to limiting forms.

Very simple analytical formulae for top surface and sidewall defect distribution
were obtained by assuming an exponential defect source function, and ignoring defect
diffusion altogether. The theory has two parameters, the defect creation rate at the
surface being etched, and the mean depth to which defects are created. The defect
distribution for an etched sidewall was then used to calculate the conductances of dry-
etched wires. This was done by assuming a two-level defect, with the lower level being
permanently occupied. Numerical solutions of the two-dimensional Poisson equation
then gave the required wire conductances. It was found that using a single source
function gave an excellent fit to all of the width-conductance measurements made
previously. The fit worked despite variations in carrier concentration, epilayer thickness
and etch time/depth. It thus appears as if the source function is characteristic of the etch
process being used.

The analysis seems to show that sidewall damage is created at a significant rate (of
the same order of magnitude) compared to top surface damage as measured by DLTS.
Since bombarding ions strike the sidewall at a predominantly grazing angle, whereas the
top surface is struck head-on, it would be expected that the creation rate at sidewalls
should be much less. The fact that it is not indicates the presence of an additional
bombarding flux. This is thought to be the flux of ricochet and sputtered material
leaving the surface of the etched GaAs with significant energies. These damage creation

processes should be much reduced with low energy etching, for example using electron
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cyclotron resonance technology.

The low temperature quantum transport properties of n+-wires have also been
measured, as described in Chapter 6. Reproducible fluctuations were observed in
longitudinal, transverse and nonlocal measurement configurations. These are all caused
by interference between the many electron trajectories existing in the sample. The
observed effects were analysed using the theories of weak localisation and universal
conductance fluctuations reviewed in Chapter 5.

The scaling of the fluctuations in the longitudinal measurement with length
suggested that the wires were 1-dimensional (1D) with respect to interference effects
(even though they have a 3D Fermi surface). Fits to weak localisation also indicated 1D
behaviour. Wires wider than ~130 nm showed the largest fluctuations, with narrower
wires giving progressively smaller fluctuations. This was shown to be due to a
decreasing coherence length with decreasing wire width. The fluctuation amplitude for
the wider wires, and analysis of the autocorrelation function, indicated a phase coherence
length 7 500 nm. A more precise determination could not be made since the thermal
diffusion length in these wires had a similar value. The narrower wires gave a phase
coherence length ~300 nm, independent of the thermal diffusion length.

The narrowest wire studied had a conducting width of ~30 nm. Since the elastic
mean free path in the material is ~50 nm, the issue of boundary scattering was raised.
The weak localisation observed in this wire was fitted to the theory of Beenakker and
van Houten, which is a modification of the usual Al'tshuler-Aronov theory to allow for
the presence of the boundaries. Fits of the experimental curves to the theory indicated
that the scattering from the edge of the depletion region in these wires is predominantly
diffuse.

Measurements of weak localisation in this wire at temperatures in the range 4-105
K gave the corresponding phase breaking rates. There were three separate contributions
to the phase breaking rate: an electron-phonon term, an electron-electron term, and a
temperature independent term. Two different electron-electron scattering rates were
considered: the disorder modified electron-electron scattering rate, and the rate due to
electron-electron collisions with small energy transfers (the Nyquist rate). It was found
that the experimental points could be fitted to either mechanism equally well. Theory
asserts that one or other should be the dominant electron-electron phase breaking
mechanism, but this could not be discerned from the measurements.

The fact that the coherence length decreases for narrower wires suggests that
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boundary scattering may be the cause of the temperature independent phase breaking
rate observed above. This has been discussed in the context of the model developed for
dry-etch damage in Chapter 4. One possibility is magnetic scattering between the
conduction electrons and unpaired electrons trapped in defect states near the edge of the
depletion region. Such a model is consistent with all the observation made above, but a
more systematic study is required to definitely confirm this.

A brief study has also been made of fluctuations in the Hall voltage.
Measurements on Hall geometries indicated that voltage probes placed in a Hall
configuration do in fact measure voltage fluctuations associated with a phase coherent
region. This was affirmed by measurements made at a cross-junction, where the
magnitude of the voltage fluctuations was shown to be independent of which pair of
leads was used to inject current, and which pair was used as the voltage probes.

Longitudinal measurements on the narrowest wire (~30 nm conducting width)
showed long period fluctuations as well as much shorter period fluctuations. The long
period fluctuations were attributed to interference between electron trajectories traversing
the length of the wire. Hall measurements on this wire gave fluctuations which were
very similar to the small fluctuations observed in the longitudinal measurement. It was
argued that both, in fact, had the same origin, viz. interference between electron
trajectories in the vicinity of the voltage probes. In most longitudinal measurements the
contribution of electron trajectories travelling the length of the wire, and those confined
to the region of the voltage probes, can only be deconvoluted by making more than one
measurement. However, in the present case since the main wire was much narrower
than the voltage probes, the two components were manifestly separated in the same
longitudinal measurement.

Low temperature measurements have also been made of the time-dependent
response of narrow n*-wire to brief periods of illumination. A two-probe wire showed
pulses in the conductance one the illumination had been removed. These random
telegraph signals were attributed to charge trapping and detrapping from defect levels at
the edge of the depletion region. Using the expression for sidewall defect density
obtained in Chapter 4, it was shown that only a handful of defects were involved in
giving the observed effects.

Random telegraph signals were also observed in simultaneous longitudinal and
transverse measurements on a 5-probe wire in a zero magnetic field. Very pronounced

regular structure was observed in the longitudinal measurement. The steps occurring
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the transverse measurement were less frequent. The lack of correlation between the
longitudinal and transverse measurements indicated that two set of defects were
probably responsible for the measured curves.

Thus, electrical transport has been characterised for dry-etched n*-GaAs wires.
The fact that a quantitative theory has been found, which describes remarkably well the
effects of dry-etching on the conductance of samples, may prove useful in other areas of
nanofabrication where dry-etching is involved. The study could beneficially be
extended to other etch gases and dry-etch methods. In this case, a quantitative analysis
could be carried out, for example, on the effects of damage as a result of the dry-
recessing of nanometre-scale MESFETs, or on the effects of the non-radiative
recombination centre distribution on the luminescence of quantum dots and wires.

The quantum transport measurements on the n*-structures have little significance
for practical quantum electronic devices. However, they do illustrate some of the
difficulties that must be overcome if reliable (wholly deterministic) devices are to be
made. Fluctuation phenomena are observed in many semiconductor nanostructures, and
are currently viewed as a serious impediment to the successful exploitation of other
quantum interference phenomena, such as Aharonov-Bohm type effects. On the
positive side, the study of fluctuation phenomena has led to a much better understanding
of transport in weakly disordered mesoscopic systems.




Appendix

A. Derivation of defect distributions

A.1 Derivation of top surface damage distribution

The equation that will be solved here is,

2
(Da—- a_) Ty =-Ge WA, y>y >0, (A.1a)
dy? ot
Iy,0=0, D(?—E) =F,, lim Iy =0. (A.1b)

This is treated as a mathematical problem, but the equation is not reduced to
dimensionless form. The domain of the problem, y > v¢, ¢t 2 0, does not allow the
Green function method to be easily applied. Instead the problem is solved by the
method of Laplace transforms. To apply a Laplace transform in time, the domain y > 0,
t > 0 is required. This is achieved by using the co-ordinate transformation (y,£) —

(y-wt,1) which gives the drift-diffusion equation,

92 0 a) YA
- - N =-Gye” 5 yZO, t_>.0, (A2a)
( 2y o ;@) ‘
- g —— = i , =O. A.2b
oo =0, D] =Fi. im0 (A2b)

Multiplying both sides of each equation in (A.2) by e, and integrating with respect to

time from 0 to e (and using integration by parts to transform the time derivative):

161
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2
(D%+;/§y‘— s)f(ys)—-—ey/)” y=0, (A.3a)
Fy
-D — _ — 4
where,
T(,s) =J Ny,Hetdr . (A4
0

is the Laplace transform of I(y,r). Eq. (A.3a) is a second order ordinary differential
equation in y, and may be solved as such. The general solution is given by the sum of
the complementary function and the particular integral. The complementary function is
a solution to the associated homogeneous problem (source term set to zero). Using a
trail solution I of =Ae?® in Eq. (A.3a), with G, =0, gives the quadratic equation,
Da%’-va-s =0 . (A.5)
Solving for a gives,
T =Aexp|- E%(WA/VQTDS) . (A.6)
Only the positive root of Eq. (A.5) has been retained in the complementary function.
The negative root is discarded by the requirement that I" be bounded at infinity [second
condition in Eq. (A.3b), which is actually more stringent than simply boundedness].
The particular integral for Eq. (A.3) is given by any particular solution, obtained by any
means. Using the trail solution T pi = BeY* in Eq. (A.3a), this time retaining the

source term, gives,

%-Y;_Bs.—.-%. A7)
Solving for B gives the particular integral,
where,
11- f—z . - (A9)
Thus, the most general solution to Eq. (A 3a), which is also bounded at infinity, is,
T(y,s) =Tof+ Ipi = Aexp|- i (v+«/ VZ+4Ds)| + ( n ) eYt . (A10)

The parameter A is found by applymg the boundary condition on JI7dy [first
condition in Eq. (A.3b)]. This gives the unique solution to Eq. (A.3), which may be

written as the sum of three terms:

TF'=N+0h+15, (A.11)
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where,
i) = ( " w) eVt (A.11a)
2F
To(.s) = [ /—z——)] ,
2Fys) o m) (v+ V2+4Ds (A.11b)

2DG
T, = - L [-__y JVira )] N
3(7,5) e (v D) exp 2D(v+ v2+4Ds (A.11c)

Each of these terms may be inverted in turn. Eq. (A.11a) is easily inverted by applying

the Laplace inversion formula, and integrating using the method of residues

(alternatively using tables):

C+100
Nnep = 5.15 f Ti.setds = %e-ﬂ[l-e-“] i (A.12)

C-ieo
The second term is inverted with a little help from the convolution theorem. Applying

the inversion formula, and rearranging:

Dyyd) = % f Toys)e™ ds (A.13)

oo

C+ioo
Fy 1 v v 11 y v
eIV2D ds e '\/ —+§ ) —exp[- —ZAl —+s
1D 2mi J; e (2v— s VD V 4D

Now, using the change of variables,

V2
=1 +95, (A.14)
gives,
c'+Hoo
Lo, = — eV g vD —_ 1 r ut 1 eVuiD
V—D_ 2m )i (u-v3/4D) (v2YD+Yu)
rc'+i°o
= 1 eyV2D o-v¥j4D —1— due” Fu) Gw) , (A.15)
m 27 Jc'-ioc
where,
=~ 1
Fu) = ————, (A.153)
) (u-v%/4D)
Guy = (A.15b)
(vi2VD +Vu)
F(u) is inverted by integrating using the method of residues:
C+ice
1 = _ V4D
= — Fue* du=¢" . (A.16)

5(u) may be inverted using a result from Abramowitz and Stegun (1965), formula
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(29.3.88), which states,

O =S oo b= S g st o™ rtdavis X
§) = < h@)= - ae® e erf —], A.l
s o actete c{a t+2ﬁ) (A.17)
where erfc is the complementary error function. This gives,
' 2
eY/MDt y 2 v [1
0 = -V ViD el [ Ly Y | A.18
8 Ymt  2VD 2V D 2Dr (A.18)
Applying the convolution theorem,
1 C'Hoo t
1—2_7;] du e“Fu)G(u) = j dr fit-r)g(@) , (A.19)
C'-ioo 0

finally gives;

t
1 yev2ape Vv y+vr'
Iy(y,t) = F1} df e O+VE)MDE __ orfy
20) IL {\(——FEDI 2D 2Dt

The procedure used for I, may be repeated to invert T’3 Applying the inversion

} . (A.20)

formula, and using the change of variables (A.14):

C'+ioo
Iy.n = - —v%gl-e-yv/w ovaiaD 1 ] du et D

2|, (u-vY4D)u-vY4D+w) (vi2YD+Yu)
C'+ico
= - %—yv/ﬂ’ VD j du e Fa)Gu) | (A21)
where,
Fw) = 1 , (A.21a)
(u-v¥/4D)(u-v¥4D+w)
- WD
G = — (A21b)
(v2{D+Yu)
Integrating by the method of residues,
fl) = e [, (A22)

and g(?) is given by Eq. (A.18) again. The convolution theorem now yields,

t \J
v ) vV +Vi
Ly, = D6y f dr' [1-e )] {—1——e‘0+"’)2/40‘-——erfa(y )} (A.23)
0

w YnDr 2D \oVDr
Thus, the desired solution of Eq. (A.1) is given by,
Iy, = M) + Lo + 1300) . (A.24)

The solution to the problem where defects are created solely at the surface, Eq. (4.5), is
found by taking G, = 0, and using the replacements y — Y and  — 7. The solution

to the problem where defect creation occurs within the material, Eq. (4.7), is found by
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taking F'; = 0, and again using the above replacements.

A.2 Derivation of sidewall damage distribution

The problem to be solved here may be written in the general form,

(DV2 - —g—t) nrp)=-grp; x20,y20, (A.252)

0 d
Ir,0)=0, -D(———Ij) =fy,0), -D(—r) =0, Im ITr,)=0, (A.25b)
0x | x=0 ay y=0 r—eo
where r = (x,y). This will be solved using the Green function method [see Mackie

(1989)]. Usually, this entails inverting equations such as (A.25a) by some transform

method to give the solution in the form,

I~ -j Gg + boundary terms, (A.26)

where G is the Green function for the problem. In the present case, the diffusion
operator is not self-adjoint, and a variant of the above technique must be used. It turns
out that the solution to Eq. (A.25) can indeed be written in the form (A.26), but with the
Green function, G, replaced by the adjoint Green function, G*. This adjoint Green
function will turn out to have the same functional form as G, but will satisfy different
boundary conditions.

To find the adjoint Green function, G must first be found for the associated
problem with zero boundary conditions. The Green function for the quarter plane x 2
0, y = 0 is most easily found by first working out the Green function for the infinite
domain, -e0 < X,y < o, and then using the method of images (it can also be found using
the Fourier cosine transform directly on the quarter plane). This latter Green function is
specified by,

(D V% - 8_) Go(rtr' ) =3%(r-r') 8(t-1); -0 <Xy <eo (A.27a)

ot
lim Go=0, lim (V,Go)=0 . (A.27b)
r— oo r—oo
Multiplying both sides of Eq. (A.27) by e¥(), and integrating with respect to r (with
an integration by parts to transform the Laplacian) gives the transformed equation,
(-Dk’- - g?) Go(k;t,t) = 8(-1) (A.28)
where, |

Golk;t,t') = f d%r Go(r,tr't) eX ) (A.29)

is the Fourier transform of G, and the integration is performed over all space. Eq.

(A.28) is a first order ordinary differential equation:
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oG, ~
a_t" + Dk2Gy = -8(r-1') . (A.30)
The left hand side of this may be written as a total derivative by multiplying the equation

by the integrating factor eP¥*;
Z—t((?o ePK) = DK (1) | (A31)

from which,
Go = -eD¥@) (A.32)

Hence the Green function for the infinite domain is,

1
Go(rt;r't) =
0 ) (

2] d%k Go(k;t,r) e
m)

= | % pearikeay [ %y iAo
2r 2

=00 -00

"1 n2 "2 '
- -[ex"Y Hy-y")1/AD At
DAL € N (A33)

where Ar' = t-¢, and the definite integrals have been performed by "completing the
squares.” Hence, the Green function for the infinite domain is seen to be none other the
two-dimensional Gaussian centred on the point (x',y"). Now, the Green function for

the quarter plane is specified by,

(DV% - %) G(rgrt) =8@r)8@¢r); x20,y20, (A.34a)
G@a#r'=0)=0, D(Q(—;— =0, -D(g——G—) =0, (A.34b)
0x | x=0 dy y=0
lim G=0, lim (V,G)=0 . (A.34¢c)
r— e r— oo

The solution to this is given simply by summing four Gaussians of the form (A.33)

centred on the points (ix',xy') [this is the method of images, by anology to

corresponding problems in electrostatics involving point charges in restricted domains]:
_Gex)? (x+x)?

e"p: ADA? ADAY

2 02
x[exp{-%—)%} N exp{- %%ﬂ . (A35)

Now, the adjoint Green function, G, for Eq. (A.34) is the Green function for the

AnDAr

Grtrt) =

+ exp

adjoint diffusion operator. Thus, G* has an equation of motion,

(DV% + ) Grr et = ) 8-t ; 120,20, (A.36)

ot
with boundary conditions that have yet to be determined. To find the functional form of

G*, and the boundary conditions it satisfies, multiply Eq. (A.34a) on both sides by

G*(r,;r" 1), and integrate over r and £
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j d*r dt G* (DV% - g—t) G= j d’r dt G+ 8%(r-r') 8(s-1')
= GTr,ire") . (A37)
Integrating the diffusion operator by parts:
ad

G ire") = I d’rdtG (DV2+§) G*

+ I d’r dt{V- (G*DVG - GDVG*) + %(—G*G)}
= G rpt)- I dxdy (-G*G)=g + | dxdy (-G*G)s=1
[waforo-002| + [ waloniE-ar)
—Idxdt(G*D%g—-GD% =0+fdxdt(G+D%;-GDég7+)=°’o :
(A.38)

where Gauss' theorem has been used to convert the volume integral over r,t into surface
integrals, and for convenience the restriction 0 < ¢ < 7 is placed on the time, where the
surfaces are defined by the six hyperplanes x =0,y =0,x =co,y =0,z =0and t =
7. Using the conditions on G given in Egs. (A.34b) and (A.34c¢), the above reduces to,

{1 ) VAL " o n (I ) aG+
GHa'\ir'e" = G@" ey - | dydt{\-GD
x=0

ox
+
- f dx dt (-Gnagy + I dxdy (-G*Ger . (A.39)
=0
The adjoint Green function is defined such that its functional form is,
G +(I",t';l‘",t") = G(l’",t";l",t') , (A.40)

i.e. its functional form is exactly that of G, except with the parameters swapped. To
satisfy this definition, the adjoint pundary conditions are defined in such a way that the
"extra" terms in Eq. (A.39) vanish, i.e.,
JoG*

0X Jx=0 dy

The requirement that Gt be bounded (actually zero) as x,y — oo is automatically

(G+)t=1' = O’ -D = O ’ 'D( ) -0 =0. (A.41)

satisfied by the boundedness of G, through Eq. (A.39) and the limiting conditions on
G in Eq. (A.34c). Hence, Egs. (A.36) and (A.41) together with the conditions for
boundedness, give a unique specification of the adjoint Green function, the solution
being Eq. (A.35) with the swap (r,£) ¢> (r',f).

The original problem, Eq. (A.25) is now solved as follows. Multiply Eq. (A.25)
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by G* and integrate over r and #:

(
-1 d&rat G+ =Id2rdtG+(DV2--g—t)F

C—

= j d’r dt T|DV? + -g?) G* + I dr dt{V- (G*DVI- IDVG*) + %(-mr)
=I-|dya G*Da—r) - dxdt(G*D?—I:) | axdy(-G*DNho , (A42)
ox Jx=0 ay y=0

where in the last step Gauss' theorem has been used to convert the volume integral into a
surface integral [cf. Eq. (A.38)], and the adjoint boundary conditions have been used.
Using the boundary conditions on I"then gives,

r= -[ d’r dt G*g + f dy dt (G*f J=0 . (A43)

This is exactly in the form (A.26) except with G replaced by G*. With,
o) = F1[1-6(y-v0)] , (A43a)
g(r,t) = Gre™*[1-6-w)] , (A.43b)

Eq. (A.43) may be written,

F(l",t') = -Glf

T oo vt
dr f dx'J dy Gy, Ty t) e/t
0

0 0

T vt
-F 1f dr f dy' Gy, Tt x=0y\r) . (A44)
0 0

Substituting in the appropriate expression for G, and after much tedious algebra, the
final answer is arrived at:

_G1 | paa2 [ it g PA 2 ot i /AT . x
T(r,'t)——4—L dr e”4 e * erfc 7 2VT)TI'+€ erf 7 +2W

T

y-v y+ve

IV ) e
X[e’fc(erD F)© C{zvm) '
T

2 4 { 1

e* 14D At y-vt y+vt
' rf - erfc , A 45)

R ey | DA DA (
0
where erfc is the complementary error function:
2 " u?
=-—=1 e“du. (A.46)
erfc(2) T IZ

Now identifying 7 as the etch time, and putting Af' = 7', gives Eq. (4.10) when G,
=0, and Eq. (4.12) when F; =0.
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B. Numerical methods

B.1 Cubic spline interpolation

Interpolated functions are used in a number of places in the numerical
calculations. The Fermi-Dirac integral, for instance, is required to be evaluated many
hundreds of times during the solution of the Poisson equation, which slows the
calculation down considerably. To circumvent this problem, a cubic spline interpolation
function is built to represent the integral. Likewise, once the conduction band edge
energy, E_, has been calculated by the Poisson solver, an integral needs to be performed
to find the conductance. Since E, is only known at the mesh points, the integral could
be done using a crude sum over the mesh points. However, a little more accuracy is
achieved by fitting a smooth cubic spline interpolation function over the mesh points,
and integrating this function (by the method of Romberg — see below).

The method of interpolating using cubic splines is explained in more detail in
Press et al. (1989), Ch. 3. What follows is a very brief summary. Let the set of
ordered pairs {(x;,y,)} i = 1,...,.N, represent the known values of a function y, i.e. y;
= y(x;). Further, let the x; be evenly spaced, i.e. x;,1-X; = h [cubic splines can be

defined without this restriction]. Then the cubic spline interpolation function is defined,

y = y(x) = Ay; + Byins + LA+ ARy + BBy (B.1)
where,
Xi+1-X X-Xi
= — - — B.2
A== B=T, (B.2)
and,
Xis1 SXSX; | B.3)

The parameters y;" are determined below. Thus, for x given between two "mesh
points" as in Eq. (B.3), the interpolated value of y is given by Eq. (B.1). The

parameters y;" are defined by the set of equations,

=0, (B.42)
‘é‘yi-l"'%yi +é—}’i+1 = '};E[)’Hl'z)’i"')’i-l] , i=2,.,N-1, (B.4b)
w=0. (B.4c)

This system of equations can be written in matrix form and solved as such, to give the
y;". Knowing these, all the parameter values on the right hand side of Eq. (B.1) are
known, so Eq. (B.1) represents a function which interpolates the original data set. The

set of equations in Eq. (B.4) ensures that this interpolation function is continuous up to
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the first derivative.

B.2 Integrating by th'e method of Romberg

At several stages during the calculations, definite integrations are performed of
known functions (the Fermi-Dirac integral, the diffusion equation solutions for the
defect distribution, and the interpolation function representing the conduction band edge
when calculating the conductance). These integrations are performed using the method
of Romberg. The algorithm is described in Press ez al. (1989), Ch. 4, to which the
reader is referred. The basic idea is that the function is summed over successively finer
meshes, with extrapolations to zero mesh size being made at each step. The process is
brought to an end once a specified tolerance is reached. [This is an extremely crude
description which does no justice to the algorithm. Several subtleties in the method of
extrapolation ensure that convergence is reached much more rapidly than in other
integration algorithms which also use extrapolations to zero mesh size. Details in Press
et al. (1989).] Note that the method works for a defined function, not tabulated values

(for which, e.g., Simson's rule may be used).

B.3 Solving the 1-dimensional Poisson equation

The 1-dimensional Poisson equation,

d2¢(y)—- - gﬂ =
TP, 00 =03 =0 ®.5)

where L is the system length, and ¢, is the surface potential, is very easy to solve

numerically. Let ¢; = ¢(y;) and p; = p(y;) be the values of ¢ and p on the mesh
points y;, i = 0,...,.N which are assumed to be uniformly spaced, i.e. y; . 1-¥; = h.
Then Eq. (B.5) can be replaced by a finite difference equivalent [e.g. Gerald (1970),
Ch. 9]:

d’O = ¢S ’ ) (B.Ga)
L[d’i+1-2<l>i+<l’i-1] =-p;, i=1.. N1, (B.6b)
h? 1

-27[¢N-¢N-2] =0 . (B.6)

Since the p; are known, the system of equations represented by Eq. (B.6) may be

written in matrix form, and solved as such.
The actual 1-dimensional Poisson equation that must be solved, Eq. (4.25), is

considerably more complicated than Eq. (B.5). The equation required to be solved is of

the form,
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2
4 d‘;’? L= RO, 60)= 4, (%)FL -0, ®.7)
where R is a function of ¢(y). This equation is solved by a relaxation method,
whereby a zeroth order ("order" means "step") estimate ¢(® is successively refined
towards the solution, ¢*) — ¢ for k sufficiently large. At each order k, the
replacement,

Rip®O@)] - p*D(y) (B.8)
is made in Eq. (B.7). The equation is then of the form (B.5), and can be solved to give
the next order estimate, ¢(k+1), Actually, to ensure stability of the method, a slight
modification must be made to this procedure. Thus, the method is as follows.

(1) The zeroth order estimate is made by assuming a simple charge distribution:

Oy . ) €NDIE,Y<¥o
P0) {O .¥> Yo (B.9)

where N, is the donor density, yo = (2e¢/eNp)!/2 is the nominal ("damage free")
depletion depth, and energies are measured in eV. Inserting Eq. (B.9) into Eq. (B.5)
and solving, gives ¢9). This then gives a first order estimate for the charge, p)(y) =
R[¢OM)].

(2) Using this estimate of p®(y), Eq. (B.5) is again solved to give @,,,. Rather

than setting ¢® = ¢,,.,, which is unstable, the next order estimate is taken as,

¢® = afpey, + (1-a)p*D (B.10)
where a is some constant chosen to ensure convergence at a reasonable rate. Then
p%(y) = R[¢OG)].

(3) The above process is repeated until the difference between ¢®1) and ¢® is
within some predefined tolerance:

llg®-p® D]l <€, (B.11)
where ¢ is the tolerance, and Ii...Il is a suitably defined norm.

(4) Once this convergence has been achieved, the electron density in the structure
is found by evaluating the Fermi-Dirac integral, and the conductance in turn found from
this. This gives the conductance for a particular mesh size. The whole calculation is
then repeated for several successively smaller mesh sizes. The final calculated value of

conductance is taken as the extrapolation to zero mesh size.

B.4 Solving the 2-dimensional Poisson equation

Solving the 2-dimensional Poisson equation is analogous to the 1-dimensional



APPENDIX 172

case, except relaxation is used twice, so to speak. The 2-dimensional Poisson equation,

92 9?2
(ax—2 + -a?) oxy) =-plxy) , (B.12a)
¢(0,)7) = ¢(W,}’) = ¢(x’0) = ¢s ’ (%)y:w =0 » (B12b)

where ¢, is the surface potential, w is the wire width, and v7is the etch depth, is solved
using the method of successive over relaxation, as described in Press et al. (1989), Ch.
17. An initial estimate of ¢ is successively refined towards a convergent solution of Eq.
(B.12), with the process being terminated once some specified tolerance is reached. If
¢,-j = ¢(x,-,yj), i=0,.,M andj =0,..,N, then the derivative boundary condition is
specified by imposing,
oin=¢iN2 , i=0,.. .M, (8.13)
at the start of each iteration of the relaxation process.
As in the 1-dimensional case, the actual 2-dimensional Poisson equation that must

be solved, Eq. (4.22), is much more complicated than Eq. (B.12). This is of the form,

02 92
g‘z_ + a_y'z—) «x:y) = 'R[¢(x’y)] s (B°14)

with boundary conditions given by Eq. (B.12b). R is a function of ¢(x.y). As before,

the equation is solved by a relaxation method, where R is replaced by a simple function
at each step [cf. Eq. (B.8)] to give an equation of the form (B.12). The method is as
follows.

(1) A zeroth order estimate of ¢ is made by assuming the simple charge
distribution,

p(o) (ty) ~ { eNp/e , near sidewalls within epilayer B.15)

0 ,otherwise
where N, is the doping density, and energies are measured in eV. This is fed into Eq.
(B.12), which is solved by successive over relaxation to give ¢, This gives
PO@,y) = RIFOxY)].

(2) Eq. (B.12) is again solved to yield ¢,,,- As for the 1-dimensional case, the
next order estimate is taken as,
0P = afpew + (1-a)p*V (B.16)
where a is suitably chosen to ensure convergence. Then pG+D(x,y) =
R[¢POy)].
(3) The process is repeated until some tolerance is reached.

(4) Once convergence is reached, the resulting conduction band edge gives the
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wire conductance. The whole calculation is repeated for several successively smaller
mesh sizes. The calculated conductance is taken to be the extrapolation to zero mesh

size.

B.5 The digamma function

The digamma function is defined [see Abramowitz and Stegun (1965), Ch. 6],
d
==z 1
y(2) pE InT(2) , B.17)

where,

o0

@)=} w”le“du, (B.18)
0
is the gamma function. The function is required for fitting the low field weak

localisation magnetoconductance of 2-dimensional films. An efficient numerical
method for evaluating In I'(z) is given by Press et al. (1989), Ch. 6. The digamma
function may then be calculated using,

V() = -217[111 T(z+h) - In T@-h)] (B.19)

for a small constant A.

C. Progam listings

C.1 Progam listing 1: wire conductances

This program is used to solve the wire conductance problem as defined in §4.4.1.
Wire dimensions and material parameters are defined at the start of the program. The
mesh size is also specified here. It must be ensured that all dimensions are in multiples
of this mesh size. The output of the program is the wire conductance. The program is
run several times for a particular wire, with successively smaller mesh sizes. The

desired conductance is then the extrapolation to zero mesh size.

/7
// Description: Solves the 2D Poisson equation to find the conduction band edge Ec in

// a dry-etched wire structure. An analytically obtained defect distribution
// function can be included, the defects being electron traps with charge

// states 1- (empty) to 2- (full). A double integral is then

// performed to give the wire conductance.

// Language: Domain/C++ implementation of Release 2.0 AT&T Ct+ Translator.
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// Machine used: HP 9000 (Apollo) Series 400 workstation.

// Author: M Rahman, Glasgow University.
// Started: 22 May 1991.
//

#include <stdio.h> // for standard input and output
#include <math.h> // for fabs(),erf(),erfc() etc

#define YES 1
#define NO 0

//

// Physical constants and parameters.

7/

#define CHARGE 1.602e-19

#define PERMITTIVITY 8.854e-12
#define ETA REIATIVE 13.1

#define ELECTRON MASS 9.1lle-31
#define hBAR 1,055e-34

#define BOLTZMANN_CONSTANT 1.38e-23

double topSurfacePotential=0.7,

int

sidewallPotential=0,7,

meshSize=10,0e-9,

wirelLength=10e-6,

wireWidth=50e-9,

epiThickness=50e-9,

dopingDensity=6.5e24,

interfaceDensity=dopingDensity,

mobility=0.14,

mass_e=0.067*ELECTRON_MASS,

mass_h=0.47*ELECTRON_MASS, // using hh=0.45m; 1h=0.082m

temperature=300.0,

mix=0,015, // mixing factor for relaxation procedure

F1=0.74el5, // defect current density from surface {if used) units: num/area/sec
D=le~22, // defect diffuslon coefficient

Etr=0.34, // trap depth measured from conduction band edge

1Lx=%e-9, // damage source = Gl*exp (-X/Lx) (if used)

Gl=5.5e23, // strength of damage source at surface (if used) units: num/volume/sec
etchDepth=100e-9,

etchRate=3,33e-9, // =3.33 nm/s usually

etchTime=etchDepth/etchRate;

constantFlux=NO, // =NO if exponential source is used instead of constamt flux
includeDamage=YES;

const double e div_eta = CHARGE/ (PERMITTIVITY*ETA_RELATIVE);
double kT = BOLTZMANN_CONSTANT*temperature,

beta = CHARGE/KT,

Nc 2.0*exp(1.5*log(mass_e*kT/(2.0*PI*hBAR*hBAR))),
Nv 2.0*exp(l.5*log(mass_h*kT/(2.0*PI*hBAR*hBAR))),
Nc_2_div_sqrtPI = Nc*2.0/sqgrt (PI),

Nv_2_div_sqrtPI = Nv*2.0/sqrt(PI);

1/

// Main declarations.

//
//
//
//
//
//

Charge density in wire. Also acts as the source term for the Poisson egnm.

Nd[][] =
Ec[][] = Conduction band edge. The 2D Poisson equation is solved tc obtain this.
Gd[][] = Defect density in wire. Assumed to be a solution to the diffusion equation.

eD,eD2,hD, hD2: Used for cubic spline interpolation of electren and hole densities.
Ele,...: Determines range over which spline interpolation is carried out.

//

#define MAX_ARRAY SIZE 270
#define NUM SPL 200

174
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typedef double Array [MAX ARRAY SIZE] [MAX ARRAY SIZE];
typedef double (*funcPtr) (double);
typedef double splArray[NUM SPL];

const double Ele=-1.0, E2e=2.0, dEe=(E2e-Ele)/NUM SPL,
Elh=-2.4, E2h=0.6, dEh=(E2h-Elh)/NUM SPL;

Array Nd={0}, Ec={0}, Ec_old={0}, Gd={0};
splArray eD={0}, eD2={0}, hD={0}, hD2={0};

//
// Function prototypes.
//
vold ConvertToChargeDensity (Array f, int jmax, int lmax);

double residual (Array f, Array u, int j, int 1);

vold solve (Array f, Array u, int jmax, int lmax, double rjac, int mits, double eps):
vold integrate(funcPtr func, double a, double b, double& ss, int proper);

void buildspline(double* y, double* y2, int n, double dx);

double splineValue (splArray y, splArray y2, double x, double xlo, double dx);

/7
// Miscellaneous routines.
//
// DESCRIPTION:

/7 These routines do small manipulations on the data.
// FUNCTIONS:

/7 fitToMesh() - Ensures that the passed parameter is a multiple of the mesh size.
// MakeConstant (} - Set the entire array to a constant value.
/7

vold fitToMesh (double& alength) { alength=meshSize*int (alength/meshSize+0.5); }

void MakeConstant (double* a, int jmax, int lmax, double setValue) {
for (int 3j=0; j<=jmax; j++) for (int 1=0; l<=lmax; l++) a[jmax*j+l] = setValue;

//
// Routines to calculate carrier concentrations.
//
// DESCRIPTION:

/7 Calculate the electron and hole densities by numerically evaluating the Fermi-Dirac
/7 integral of order 1/2, represented as F_1 2 below.

// FUNCTIONS:

//  Eg() - Returns the GaAs energy gap as a function of temperature.

// FDintegrand() - Integrand of the Fermi-Dirac integral. The integral is evaluated at
// FDarg, which is set before the integrating routine is called.

/7 F 120 -~ Evaluates the Fermi-Dirac integral at the specified value.

// Nelectron() - Returns the number of electrons given the local conduction band

// energy, by calling F 1_2.

/7 Nhole () - As for Nelectron but for holes.

// electronDensity () - Returns the electron density, by calling Nelectron() or by

// calling the previously calculated spline function.

// holeDensity(} - As for electronDensity but for holes.
// BuildSplineForElectronDensity() - Fits a cubic spline to the electron denslty as a

// function of Ec. Using the spline function instead of continually
/7 evaluating the Fermi-Dirac integral speeds up the relaxation

7/ " procedure for the Poisson equation.

// BuildSplineForHoleDensity({) - Fits a cubic spline to the hole density.

//  Bulld

7/

double Eg(double T) { return (1.52-(5.4e-4*T*T)/{T+204.0)); }

double FDarg=0.0; // to be set before calling FD_integrand
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double FD_integrand(double z) { return sqrt (z) / (1.0+exp (z+FDarg)); }

double F_1 2(double x) {
double result=0.0;
FDarg=x;
integrate (funcPtr (FD_integrand),0.0,15.0, result,YES);
return result;

double N_electron(double E) { return Nc_2_div_sqrtPI*F 1 2(beta*E); }
double N_hole(double E) { return Nv_2_div_sqrtPI*F_1 2(-beta*E); }

double electronDensity (double E) {
return (E<Ele || E>E2e~dEe) ? N_electron(E) : splineValue (eD,eD2,E,Ele,dEe);

double holeDensity(double E) {
return (E<Elh || E>E2h-dEh) 2? N_hole(E) : splineValue (hD,hD2,E,Elh,dEh);

void BuildSplineForElectronDensity () {
double p=Ele;
for (int 1=0; 1<NUM_SPL; i++, p+=dEe) eD[i]=N_electron(p):
buildspline (eD, eD2,NUM SPL, dEe) ;

void BuildSplineForHoleDensity() {
double p=Elh;
for (int 1=0; i<NUM SPL; 1++, pt=dEh) hD[i]=N_hole(p);
buildSpline (hD, hD2,NUM SPL,dEh);

// Routines to calculate defect concentrations.

// DESCRIPTION:

/7 Calculate the defect density Gd(j]{l], arising from each sidewall by numerically
// evaluating either of two integrals, depending on the status of the variable

// constantFlux: constantFlux=YES causes damage_constantDefectFlux () to be evaluated;
//  constantFlux=NO causes damage exponentialSource to be evaluated.

// FUNCTIONS:

// damage constantDefectFlux() - Represents an integral solution of the homogeneous
// diffusion equation in the quarter plane {x>=0,y>=0}, with non-homogeneous
// boundary conditions, -D.dG/dx=F1 at the sidewalls, where G is

/7 written as Gd[3][1] in the program.

// damage exponentialSource() - Represents an integral solution of the nonhomogeneous
// diffusion equation in the quarter plane {x>=0,y>=0}, with source term

// g=Gl.exp (-x/Lx), and homogeneous boundary conditions.

// BuildDefectDensityFunction() - Evaluates one of the above integrals at each mesh
// point in the wire. The result 1s stored in array Gd[j][1].

// BuildDefectDinsityFunction2 () - assigns the array Gd{j][1] with values obtained from
// the simplified form of the defect distributions.

//

double X=0.0, Y=0.0; // set before integrating damageIntegrand
double damage constantDefectFlux(double t} {
double _4Dt=4.0*D* (etchTime-t), sqrt_! 4Dt=sqrt (_4Dt),
x_dependentPart = exp(-X*X/_4Dt),
y_dependentPart = erfc((Y-etchRate*t)/sqrt_: 4Dt)-erfc((Y+etchRate*t)/sqrt 4Dt) ;
return x_dependentPart*y_dependentPart/sqrt_éDt,

double damage_exponentialSource (double t) |
double Dt=D* (etchTime-t), sqrtDt=sqrt(Dt}, sqrt_4Dt=2.0*sqrtbt,
sqrtDt_div_Lx=sqrtDt/Ix, X ¢ div_Lx=X/Lx, X_ div_sqrt_4Dt=X/sqrt_4Dt,
x_dependentPart = exp (-X_div Lx)*erfc(sqrtDt div_Ix-X_div_sqrt ¢ 4Dt)
+ exp (X div Lx)*erfc(sqrtDt div_Ix+X _div_sqrt_4Dt),
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y_dependentPart = erfc((Y—etchRate*t)/sqrt_4Dt)-erfc((Y+etchRate*t)/sqrt 4Dt) ;
return exp (sqrtDt_div_Ix*sqrtDt_div_Ix) *x_dependentPart*y dependentPart;
}

void BulldDefectDensityFunction(Array Gd, int jmax, int Imax} {
double N_defect=1e20, preFactor = (constantFlux) ? Fl/sqrt (PI) : 0.25*Gl;
funcPtr damageDistribution = (constantFlux) ?
funcPtr(d?mage_constantDefectFlux) : funcPtr (damage exponentialSource);
MakeConstant ( {(double*)Gd, jmax, lmax,0.0);
for (int J=0; j<=jmax; N_defect=1e20, j++) for (int 1=0; l<=lmax && N_defect>1.0; 1l++) {
X=double (j) *meshSize; Y=double (l)*meshSize;
integrate (damageDistribution,0.0, etchTime,N_defect,NO);
Gd[]) [1] += (N_defect *= preFactor); Gd[jmax-j][1l] += N_defect;
}

vold BuildDefectDensityFunction2 (Array Gd, int Jjmax, int lmax) {

double N defect=0.0;

MakeConstant ( (double*)Gd, jmax, lmax, 0.0);

for (int 3=0; j<=jmax; j++) for (int 1=0; l<=lmax; 1++) {
X=double (}) *meshSize; Y=double (1) *meshSize;
N_defect = Gl*exp (-X/Lx) * (etchTime-Y/etchRate);
Gd[J][1] += N_defect; Gd[Jjmax-3][1l] += N_defect;

}

// Routines to calculate the total charge concentration.

// DESCRIPTION:

// These routines provide the source term for the 2D Poisson equation,

// FUNCTIONS:

// CalculateChargeConcentration() - Sums the electron, hole, defect, and trapped-electron
// densities, with -ve charge for defects and trapped electrons. Electrons are

// assumed to be trapped with the equilibrium Fermi-Dirac distribution.

// ConvertToChargeDensity() - Scales the number densities above to give charge density.

vold CalculateChargeConcentration(Array Nd, int jmax, int lmax) {
int ldepth = int (lmax*epiThickness/etchDepth+0.5);
for (int 3=0; j<=jmax; j++) for (int 1=0; li<=lmax; 1++) {
Nd[j][1] = -electronDensity(Ec[3][1]) + holeDensity(Ec[j][1]-Eg(temperature))?
if (includeDamage) Nd[J][1l) -= Gd[9][1]1*(1.0+1.0/(1.0+exp(beta* (Ec[]j) [1]-Etr))));
} for (3j=0; j<=jmax; j++) for (1=0; l<=ldepth; 1++) Nd[j][1] += dopingDensity;

void ConvertToChargeDensity (Array f, int jmax, int lmax) {
double scaled e_div_eta = e_div_eta*meshSize*meshSize;
for (int J=0; j<=jmax; j++) for (int 1=0; l<=lmax; 1++) £(3][1] *= scaled e div_eta;

//
// Numerical routines.
//
// DESCRIPTION:

// C++ implementations of routines taken from Numerical Recipes (Pascal). Page numbers

// below refer to the book, which should be consulted for further details.
// FUNCTIONS:

// resldual () - Evaluates the residual for the diffusion equation.

// totalResidual () - Finds the sum of the residuals over the entire mesh.

//  solve() _ Solves Poisson equation with Eg=const on top and sides, and
’/ dEg/dx=0 on the bottom ('sor' p7l17).

//  extrapolate() - Used for polynomial extrapolations (‘polint*' p92).

//  trapzd() - Used for closed interval definite integrals (*trapzd' pl25).
//  midpnt () - Used for open ended definite integrals (‘midpnt' pl32).

//  integrate() - Integrates the given function using the method of Romberg. If
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// proper=YES then integrates over a closed interval ('qromb’ pl29),
/7 otherwise over an open interval ('qromo' pl33).

// buildspline{) - Bullds an interpolating cubic spline using the given data points
// ('spline' p99).

// splinevalue() - Returns the interpolated spline fit at value x ('splint’ pl00) .
/7

double residual-(Array f, Array u, int 3, int 1) {
return u(j+1] (1]1+ul3-1] [1]+u3] [1+1]+u3] [1-1]-4*u[I] [1]-£[3] [1]:
}

double totalResidual (Array f, Array u, int jmax, int lmax) {
double anorm=0.0;
for (int j=1; j<jmax; j++) for (int 1=1; l<lmax; l++) anorm+=fabs (residual (f,u,3,1));
return anorm;

vold solve(Array f, Array u, int jmax, int lmax, double rjac, int mits, double eps) {
double anormf=totalResidual (f,u, jmax, lmax), omega=1l.0, anorm=anormf+1.0, resid=0.0;
for (int n=l1; n<=mits && (anorm>eps*anormf || n<3); n++) {
for (int 3=0; j<jmax; j++) Ec[]][lmax]=Ec[j] [lmax-2];
for (j=1, anorm=0.0; Jj<jmax; j++) for (int l=(n+j)%2+1; l<lmax; 1+=2) {
anorm += fabs(resid=residual (f,u,J,1));
uf3][1l] += omega*resid/4.0;
} omega = 1.0/(1.0-rjac*rjac*{(n==1)20.5:0.25*omega)) ;

void extrapolate{double *xa, double *ya, int n, double x, double& y, double& dy) {
double *c = new double[n], *d = new double(n};
int ns=1;
double dif = fabs(x-xa[0]), dift=0.0;
for (int i=0; i<n; i++) {
if ((dift=fabs(x-xa[l1]))<dif) { ns=i; dif=dift; }
cfi] =d[i] = yali};
} y=yalns--];
for (int m=1; m<n; mt+) {
for (1=0; i<n-m; i++) {
double ho=xa[i]-x, hp=xa[i+m]-x, den=(c[i+1]=-d[i])/(ho-hp);
d[i]=hp*den; c[i]=ho*den;
} v += (dy=(2*ns<n-m)?c[ns+1]:d{ns--]);
} delete c; delete d;
}

void trapzd(funcPtr func, double a, double b, double& s, int n, int& Trapzdit) {
if (n==1) { TrapzdIt=l; s = 0.5* (b-a}* (func(a)+func(b}); }
else {
double del=(b-a)/TrapzdIt, x=a-0.5*del, sum=0.0; // NB here x=a+0.5*del-del
for (int j=0; j<TrapzdIt; j++) sum += func(x+=del);
s = 0.5*s+ (b-a) *sum/ (TrapzdIt*=2);

}

void midpnt (funcPtr func, double a, double b, double& s, int n, int& MidpntIt) {
i1f (n==1) { MidpntIt=1; s = (b-a)*func(0.5*(a+b}); }

else {
double del=({b-a)/(3.0*MidpntIt), ddel=del+del, x=a-0.5%*del, sum=0.0;

for (int j=0; j<MidpntIt; J++) { sum+=Ffunc (x+=del); sum+=func(x+=ddel); }
s = s/3.0+ (b-a)*sum/ (MidpntIt*=3};

}

vold integrate (funcPtr func, double a, double b, double& ss, int proper) {
const double eps=(proper)?le-3:0.01, df=(proper})?24.0:9.0;
const int jmax=20, jmaxp=21, k=5
double *h = new double[jmaxp], *s = new double [jmaxp] 7
double *c = new double[k], *d = new double(k]s
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h([0]=1.0; double dss=ss+1.0; int iter=0;
for (int 3=0; J<Jmax && fabs(dss)>eps*fabs(ss); J++) {
if (proper) { trapzd(func,a,b,s([]j},3+1,1iter); }
else { midpnt (func,a,b,s[i],J+1,iter); }
if (3>k-1) {
for (int 1=0; i<k; 1++) { c[l)=h[j-k+i]; d{i]=s[3-k+1]; }
extrapolate(c,d, k,0.0, ss,dss);
} s{3+11=s[3]1; h[3+1l1=h[J]/df;
} delete d; delete c; delete s; delete h;
}

vold buildSpline(double* y, double* y2, int n, double dx) {
double *u = new double[n], p=0.0;
y2[0]=-0.5, uf[0]=0.0;
for (int i=1; i<n-1; i++) {
y2[i] = -0.5/(p=0.5*y2[1-1]+2.0};
uli] = (y[i+1]+y[i-11-2.0*y[i])/dx;
ufi] = (3.0*u(i}/dx-0.5*uli-1])/p;
} y2[n-1] = (~0.5*u[n-2])/(0.5*y2[n-2]+1.0);
for (i=n-2; 1>=0; i--) y2[i] = y2[i)*y2[i+1]+uli];
delete u;

double splineValue (double* y, double* y2, double X, double xmin, double dx) {
int klo=int ((x~-xmin)/dx);
double xlo=double(klo)*dx+xmin, a=(xlo+dx-x)/dx, b=(x-xlo)/dx;
return a*y{klo]+b*y[klo+l]+ ((a*a*a-a)*y2[klo]+ (b*b*b-b)*y2[klo+1l])*dx*dx/6.0;
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7/

// Main calculational routines.

//

// DESCRIPTION:

// These routines allow the 2D Poisson equation with an arbitrary source term to be

// solved using a relaxation method. This gives the conduction band edge Ec[J][1l].

// A numerical double integral over the resulting local electron density then gives

//  the conductance.

// FUNCTIONS:

//  SetBoundaryValues() - Set the boundary values of Eg[][].

// FindZerothOrderSolution() - Artifically puts some charge into the epilayer region

// of the wire and integrates the Polsson equation to find a zeroth
// order solution for the full problem.

// FindFinalSolution() - Iterates solutions of the Poisson equation, starting from the
// zeroth order solution, until convergence is reached. A relaxation
// procedure is used to lterate successive solutions: (1) A solution
// is obtained to Ec[][] by calling solve(). (2) This gives a new

// electron distribution which is used in the next iteration. (3) The
// values of Ec[][] used in the next iteration are weighted averages
// of the current solution with the previous sclution. (4) Repeat

// until the totalResidual is within the specified tolerance. This
// gives the desired solution.

//  Nelectron dx() _ Used for evaluating the x-integral in the double integral for the
// conductance. This forms the integrand for Nelectron dx dy().

// Nelectron dx dy() - Used for evaluating the double integral for the conductance.

// WireConductance() - Evaluates the wire conductance by first interpolating the

// conduction band edge using a mesh of cubic splines, and then

// integrating the resulting spline function using Nelectron_dx dy ().
//  SolveProblem /() ~ Calls the above functions to get the solution. First find a

/7 zeroth order solution to start the relaxation procedure with.

// Solve the Poisson equation to obtain the conduction band edge.

// Finally use this to obtain the electron density and hence the

// conductance of the wire.

//

void SetBoundaryValues (Array a, int jmax, int lmax) {

for (int j=0; Jj<=jmax;
for (int 1=0; l<=lmax;

J++) a[3jl[0] = topSurfacePotential;
1++) a[0](1] = aljmax][1] = sidewallPotential;
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void FindZerothOrderSolution(Array Nd, Array Ec, int jmax, int lmax, double rijac) {

MakeConstant ( (double*)Ec, jmax, lmax, 0.0) ;
MakeConstant ( (double*)Nd, jmax, lmax, 0.0);
SetBoundaryValues (Ec, jmax, lmax) ;
double depletionEstimate = sqrt (2.0*sidewallPotential/(e_div_eta*dopingDensity)),'
int jdepl = ipt(jmax*deplet1onEstimate/wirew1dth+0.5),

ldepl = int (lmax*depletionEstimate/etchDepth+0.5),

ldepth = int (lmax*epiThickness/etchDepth+0.5);
jdepl = (Jdepl<2)?2:jdepl; ldepl = (ldepl<2)?22:ldepl;
for (int j=0; Jj<=jmax; j++) for (int 1=0; l<=ldepth; 1l++) Nd[4][1l] = 0.2*dopingDensity;
for (J=0; j<jdepl; j++) for (1=0; l<ldepth; 1++)

Nd[j] [1] = Nd[Jjmax-3}[1] = dopingDensity:

for (1=0; l<ldepl; 1++) for (j=0; j<=jmax; j++) Nd[3][1l] = 2.0*dopingDensity;
for (J=0; J<=jmax; Jj++) Nd[])[ldepth]=0.3*interfaceDensity;
ConvertToChargeDensity (Nd, jmax, lmax) ;
solve (Nd, Ec, Jmax, lmax,rjac,100,0.05);

void FindFinalSolution(Array Nd, Array Ec, int jmax, int lmax, double rjac, double mix) {
double eps=le-4;
double anorm bef=0.0, anorm aft=anorm bef+l.0;
int ldepth = int (lmax*epiThickness/etchDepth+0.5);
for (int iter=l; iter<500 && anorm aft>eps*anorm_bef; iter++) {
CalculateChargeConcentration (Nd, jmax, lmax) ;
ConvertToChargeDensity (Nd, jmax, 1max) ;
for (int 3=0; j<=jmax; j++) for (int 1=0; l<=lmax; l++) Ec_old[]J][1l]=Ec[]][1];
if (iter==1) anorm bef=totalResldual (Nd,Ec, jmax,lmax);
solve (Nd, Ec, jmax, 1lmax, rjac, 200,0.1);
for (3=0; j<=jmax; j++)} for (1=0; l<=Imax; 1++)
Ec[J][1) = (1.0-mix)*Ec old[]][1]+mix*Ec(]][1];
anorm_aft=totalResldual (Nd, Ec, jmax, lmax);

double *spl_j, *spl_j2;
double Nelectron dx(double x) {
return electronDensity (splineValue(spl_j,spl_3j2,x,0.0,meshSize}); }

int hi;
double *Ecl2[NUM SPL};
double Nelectron dx dy(double y) {
for (int j=0; j<hj; J++) spl_j[j]=splineValue((double*)Ec[j],Ech[j],y,0.0,meshSize);
buildspline(spl_j, spl_j2,hj,meshsSize);
double halfResult=0.0;
integrate (Nelectron_dx,0.0,wireWidth/2.0, halfResult, YES);
return 2,0*halfResult;

double WireConductance(Array Ec, int jmax, int lmax) {
int half jmax=int (jmax/2)+1;
double *Ecj = new double[half jmax}, *Ecj2 = new double[half jmax], conductance=0.0;
for (int j=0; j<half jmax; 3++)
buildSpline ( (double*)Ec[j],Ecl2[]j] = new double [1max] , lmax, meshSize) ;
spl_3=Ecj, spl_3j2=Ecj2, hj=half jmax;
integrate (Nelectron_dx_dy,0.0, etchDepth, conductance, YES) ;
delete Ecj; delete Ec]2;
for (j=half_ jmax-1; 3>=0; J--) delete Ecl2[3]);
return conductance*CHARGE*mobility/wireLength;

vold SolveProblem() {
fitToMesh (wireWidth); fitToMesh (epiThickness); fitToMesh (et chDepth) ;
int Jmax=int (wireWidth/meshSize+0.5), 1max=1int {etchDepth/meshSize+0.5);
double riac = (cos (PI/(jmax+l})+cos (PI/ (lmax+1)))/2.0;
FindZerothOrderSolution (Nd, Ec, jmax, lmax, rjac);
printf("integrating for nel ...\n"); BuildsplineForElectronDensity();
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printf(“integrating for hol ...\n"); BulldSplineForHoleDensity();
if (includeDamage) {
printf (*building defect density ...\n"); BuildDefectDensityFunction (Gd, jmax,lmax); }
FindFinalSolution(Nd, Ec, jmax, lmax, riac,mix) ;
printf(“Calculating conductance ... \n"};
print f ("CONDUCTANCE = %e\n",WireConductance (Ec, jmax, 1max)) ;

//
void main() {
SolveProblem() ;

C.2 Program listing 2: sheet conductances

This program is used to solve the epilayer sheet conductance problem as stated in
§4.4.2. The parameter 'simulationDepth' determines the length of the system over which
the 1-dimensional Poisson equation is solved. The progam gives the sheet conductance
for the structure. The program is run several times with successively smaller mesh

sizes. The desired sheet conductance is the extrapolation to zero mesh size.

//

// Description: Solves the 1D Poisson equation to find the conduction band edge Ec in
// a dry-etched epilayer. An analytically obtained defect

// distribution function can be included, the defects being electron

/7 traps with charge states 1- (empty) to 2~ (full).

// Language: Domain/C++ implementation of Release 2.0 AT&T C++ Translator.

// Machine used: HP 9000 {Apollc) Series 400 workstatlion.

// Author: M Rahman, Glasgow University.

// Started: 28 July 1991.

//

#include <stdio.h> for standard input and output
#include <math.h> for fabs(),erf(),erfc() etc

#define YES 1
#define NO 0

//
// Physical constants and parameters.
//

#define CHARGE 1.602e-19

#define PERMITTIVITY 8.854e-12
#define ETA_RELATIVE 13.1

#define ELECTRON_ MASS 9.11e-31
#define hBAR 1.055e-34

#define BOLTZMANN_CONSTANT 1.38e-23

double surfacePotential=0.7,
meshSize=10.0e-9,
epiThickness=140e-9,
simulationDepth=300e-9,
dopingDensity=3.0e24,
interfaceDensity=dopingDensity,
mokbility=0.17,
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mass_e=0.067*ELECTRON_MASS,
mass_h=0.47*ELECTRON_MASS, // using hh=0.45m; 1h=0.082m
temperature=300.0,
mix=0,07, // mixing factor for relaxation procedure
F1=0.74el5, // defect current density from surface (if used) units: num/area/sec
D=1le-19, // defect diffusion coefficient
Etr=0.34, // trap depth measured from conduction band edge
Ly=14e-9c // damage source = Gl*exp(-Y/Ly) (if used)
Gl=1,0e24, // strength of damage source at surface (if used) units: num/volume/sec
etchDepth=135e-9,
etchRate=2.83e~-9, // =3.33 nm/s usually
etchTime=etchDepth/etchRate;
int constantFlux=NO, // =NO if exponential source 1s used instead of constant flux
includeDamage=YES;

const double e_div_eta = CHARGE/ (PERMITTIVITY*ETA RELATIVE);
double kT = BOLTZMANN CONSTANT*temperature,
beta = CHARGE/kT,
Nc = 2.0*exp(l.5*log (mass_e*kT/(2.0*PI*hBAR*hBAR))),
Nv = 2,0*exp(l.5*log(mass_h*kT/(2.0*PI*hBAR*hBEAR)})),
Nc_2_div_sqrtPI = Nc*2.0/sqrt (PI),
Nv_2_div_sqrtPI = Nv*2.0/sqrt (PI);

//

// Main declarations.

//

// Nd[] = Charge density in wire. Also acts as the source term for the Poisson egn.
// Ec[) = Conduction band edge. The 2D Poisson equation 1s solved to obtain this.

// Gd[] = Defect density in wire. Assumed to be a solution to the diffusion equation.
// eD,eD2,hD, hD2: Used for cubic spline interpolation of electron and hole densities.
// Ele,...: Determines range over which spline interpolation is carried out.

//

#define MAX ARRAY SIZE 2000
#define NUM_SPL 200

typedef double Array[MAX ARRAY SIZE];
typedef double (*funcPtr) (double);
typedef double splArray[NUM SPL];

const double Ele=-1.0, E2e=2.0, dEe=(E2e-Ele)/NUM_SPL,
Elh=-2.4, E2h=0.6, dEh=(E2h-Elh)/NUM_SPL;

Array Nd={0}, Ec={0}, Ec_old=(0}, Gd={0};
splArray eD={0}, eD2={0}, hD={0}, hD2={0};

//
// Function prototypes.
//
void ConvertToChargeDensity(Array £, int Jmax) ;

double residual (Array f, Array u, int 3, int 1); .

void solve(Array f, Array u, int jmax, int mits, double eps);

vold integrate (funcPtr func, double a, double b, double& ss, int proper);
void buildSpline (double* y, double* y2, int n, double dx};

double splinevValue (splArray y, splArray y2, double X, double xlo, double dx);

/7
// Miscellaneous routines.
//
// DESCRIPTION:

// These routines do small manipulations on the data.

// FUNCTIONS:

//  fitToMesh ()} _ Ensures that the passed parameter is a multiple of the mesh size.
/7 MakeConstant () - Set the entire array to a constant value.

7/
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vold fitToMesh(double& alength) { aLength=meshSize*int (alength/meshSize+0.5); }

void MakeConstant (double* a, int jmax, double setValue) {

for (int 3=0; j<=Jmax; j++) a[]j] = setValue;
}
7/
// Routines to calculate carrier concentrations.
//

// DESCRIPTION:

// Calculate the electron and hole densities by numerically evaluating the Fermi-Dirac
// integral of order 1/2, represented as F_1_ 2 below.

// FUNCTIONS:

// Eg () - Returns the GaAs energy gap as a function of temperature.

// FDintegrand() - Integrand of the Fermi-Dirac integral. The integral is evaluated at
// FDarg, which is set before the integrating routine is called.

// F 120 - Evaluates the Fermi-Dirac integral at the specified value.

// Nelectron() - Returns the number of electrons given the local conduction band

/7 energy, by calling F 1_2.

// Nhole () - As for Nelectron but for holes.

// electronDensity () - Returns the electron density, by calling Nelectron() or by

17/ calling the previously calculated spline function.

// holeDensity() - As for electronDensity but for holes.
/7 BuildSplineForElectronDensity() - Fits a cubic spline to the electron density as a

// function of Ec. Using the spline function instead of continually
// evaluating the Fermi-Dirac integral speeds up the relaxation

// procedure for the Poisson eguation.

// BuildSplineForHoleDensity() - Fits a cubic spline to the hole density.

//

double Eg(double T) { return (1.52-(5.4e-4*T*T)/(T+204.0}); }

double FDarg=0.0; // to be set before calling FD_integrand
double FD_integrand(double z) { return sqrt (z) / (1.0+exp (z+FDarg)); }

double F_1 2(double x) {
double result=0.0;
FDarg=x;
integrate(funcPtr(FD_integrand),0.0,lS.O,result,YES);
return result;

}

double N_electron(double E) { return Nc_2_div_sqrtPI*F_1_2(beta*E); }
double N_hole(double E) { return Nv_2_div_sqrtPI*F_1_2(-beta*E}; }

double electronDensity (double E) {
return (E<Ele || E>E2e~dEe) ? N_electron(E) : splineValue(eD,eDz,E,Ele,dEe);

double holeDensity(double E) {
return (E<Eih || E>E2h-dEh} 2 N_hole(E) : splineValue(hD,hDZ,E,Elh,dEh);

void BuildSplineForElectronDensity () {
double p=Ele;
for (int 1=0; 1<NUM SPL; it++, pt=dEe) eD[i]=N_electron(p):
buildSpline (eD, eD2,NUM SPL,dEe};

void BulldSplineForHoleDensity () {
double p=Elh;
for (int i=0; i<NUM SPL; i++, pt+=dEh}) hD[1]=N_hole (p);
buildSpline(hD,hDZ,NUM_SPL,dEh);
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// Routines to calculate defect concentrations.

// DESCRIPTION:

// Calculate the defect density Gd[J]([l], arising from each sidewall by numerically
// evaluating either of two integrals, depending on the status of the variable

// constantFlux: constantFlux=YES causes damage_constantDefectFlux() to be evaluated;

/7 constantFlux=NO causes damage_exponentialSource to be evaluated.
// FUNCTIONS:

// damage_constantDefectFlux () - Represents an integral solution of the homogeneous
/7 diffusion equation 1n the quarter plane {x>=0,y>=0}, with non-homogeneous
// von-Neumann boundary conditions, -D.dG/dx=F1 at the sidewalls, where G is
// written as Gd(J] (1] in the program.

// damage_exponentialSource() - Represents an integral solution of the nonhomogeneous
// diffusion equation in the quarter plane {x>=0,y>=0}, with source term

// =GO.exp (-x/Ly), and homogeneous von-Neumann boundary conditions.

/7 BuildDefectDensityFunction() - Evaluates one of the above integrals at each mesh
// point in the wire. The result is stored in array Gd[J].

// BulldDefectDensityFunction2 () - evaluates the defect density using the simplified
// expression for top surface damage distribution.

//

double Y=0.0, T=0.0, w=etchRate/Ly-D/(Ly*Lly), D_div_PI=D/PI;
double damage convolutionIntegral (double t) {
double _4Dt=4.0*D*t, Y _plus_vt=Y+etchRate*t,
f_Tt=exp (w* (t-T))-1.0,
hl_t=0,5*etchRate*erfc ((Y_plus_vt)/sqrt (_4Dt) ),
h2_t=sqrt (D_div_PI/t)*exp(-Y_plus vt*Y plus vt/_4Dt);
return £ Tt*(hl_t-h2 t);

double damage constantFlux(double t) {
double _4Dt=4.0*D*t, Y plus_vt=Y+etchRate*t,
hl_t=exp({-Y_plus_vt*Y plus vt/ _4Dt),
h2_t=0.5%et chRate*erfc (Y_plus_vt/sqrt (_4Dt) VH
return sqrt(D_div_PI/t)*hl_t-h2 t;
}

void BulldDefectDensityFunction(Array Gd, int jmax) {
if (etchTime) {
double convolution result=0.0;
for (int j=1; I<=jmax; J++) {
Y=double (j) *meshSize;
if (constantFlux) {
integrate (damage_constantFlux, 0.0, T=et chTime, convolution_result,NO};
Gd[4] = Fl*convolution_result/D;
} else {
integrate (damage__convo1utionIntegral, 0.0, T=etchTime, convolution result, NO)
Gd[3] = Gl*(‘exp(-Y/Ly)*(l.O-exp (-w*'l’))+convolution_result/Ly) /u;

}
} else { MakeConstant (Gd, jmax,0.0); }
}

vold BulldDefectDensityFunction?2 (Array Gd, int jmax) {
for (int 3=0; j<=imax; j++) {
Y=double (j) *meshsize;
Gd[j] = Gl*Ly*exp(-Y/Ly)*(1.0-exp (-etchRate*etchTime/Ly) ) /etchRate;

//
// Routines to calculate the total charge concentration.
//
// DESCRIPTION:

// These routines provide the source term for the 2D Poisson equation.
// FUNCTIONS:
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// CalculateChargeConcentration() - Sums the electron, hole, defect, and trapped~electron
// densities, with -ve charge for defects and trapped electrons. Electrons are

// assumed to be trapped with the equilibrium Fermi-Dirac distribution.

// ConvertToChargeDensity () ~ Scales the number densities above to give charge density.
//

void CalculateChargeConcentration(Array Nd, int jmax) {
int Jjdepth = 1nt(jmax*(epiThickness—etchDepth)/simulationDepth+0.5):
for (int 3=0; j<=Jmax; J++) {
Nd[j] = -electronDensity(Ec[3j]) + holeDensity (Ec[3]-Eg (temperature)) ;
if (includeDamage) Nd[3j] -= Gd[J]1*(1.0+1.0/(1.0+exp (beta* (Ec[J]-Etxr}))};:
} for (j=0; j<=jdepth; j++) Nd[]] += dopingDensity;
}

void ConvertToChargeDensity(Array f, int jmax) {
double scaled e div_eta = e div_eta*meshSize*meshSize;
for (int j=0; j<=Jjmax; j++) £[J] *= scaled_e_div_eta;
}

// Numerical routines.

// DESCRIPTION:

// C++ implementations of routines taken from Numerical Recipes (Pascal). Page numbers
// below refer to the book, which should be consulted for further details.

// FUNCTIONS:

//  totalResidual() - Finds the sum of the residuals over the entire mesh.

// solve () - Solves Poisson equation with Eg=const on the surface, and dEg/dx=0
// near the substrate.

//  extrapolate() - Used for polynomial extrapolations ('polint' p92).

// trapzd () — Used for closed interval definite integrals (‘'trapzd*® pl25).

// midpnt () — Used for open ended definite integrals ('midpnt‘' pl32).

//  integrate() -~ Integrates the given function using the method of Romberg. If

// proper=YES then integrates over a closed interval ('qromb' pl29),
// otherwise over an open interval ('qromo' pl33).

/7 buildsSpline () - Builds an interpolating cubic spline using the given data points
// (*spline' p99).

/7 splinevValue () - Returns the interpolated spline fit at value x ('splint' pl00).
//

double totalResidual (Array Nd, Array Ec, int jmax)} {
double resid=0.0;
for (int j=1; j<jmax; Jj++) resid += fabs(Ec[j+1}-2.0*Ec[Jj]+Ec[J-1]-Nd[]]);
return resid;

voild solve (Array Nd, Array Ec, int jmax) {
Nd[1]-=(Ec[0]=surfacePotential), Ec[l]=-2.0, Nd[Jjmax]=0;
for (int 4=1; j<jmax~1; 3++) { Nd[3+1] -= (Nd[j] /= Ec[J]1); Ec[j+1]=-2.0-1.0/Ec[]i]; }
Nd[Jmax] += Nd[Jmax-2]-(Nd[jmax-1]/=Ec[Jjmax-1])/Ec[Jjmax-2];
Ec[jmax] = Nd[jmax]/(1.0-1.0/(Ec[Jmax-1]*Ec[Jjmax-2]));
for (J=jmax-1; 3>0; j--) Ec[]J]=Nd[3]-Ec[J+1]1/Ec[]];

void extrapolate(double *xa, double *ya, int n, double x, double& y, double& dy) {
double *c = new double[n], *d = new double[n];
int ns=1;
double dif = fabs(x-xa[0]), dift=0.0;
for (int 1i=0; i<n; i++) {
if ((dift=fabs(x-xa[l]))<dif) { ns=i; dif=dift; }
c[i} = d[i} = yalil:
} y=ya[ns--];
for (int m=1; m<n; m++) |
for (i=0; i<n-m; 1i++} {
double ho=xa({i]-x, hp=xa{i+m]-x, den=(c[i+1]-d[1])/ (ho-hp);
dfil=hp*den; c[i]=ho*den;
} ¥ += (dy=(2*ns<n-m) ?c[ns+l]:d[ns--]};
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} delete c; delete d;

vold trapzd(funcPtr func, double a, double b, doublet s, int n, ints& TrapzdIt) {
if (n==1) { TrapzdIt=l; s = 0.5* (b-a) * (func(a)+func(b)); }
else {
double del=(b-a)/TrapzdIt, x=a-0.5*del, sum=0.0; // NB here x=a+0.S5*del~-del
for (int J=0;.J<TrapzdIt; J++) sum += func(x+=del);
s = 0.5*s+ (b-a) *sum/ (TrapzdIt*=2);

void midpnt (funcPtr func, double a, double b, double& s, int n, ints MidpntIt) ({
if (n==1) { MidpntIt=1; s = (b-a)*func(0.5*%(a+b)); }
else {
double del=(b~-a)/(3.0*MidpntIt), ddel=del+del, x=a-0.5*del, sum=0.0;
for (int j=0; Jj<MidpntIt; Jj++) { sumt+=func(x+=del); sumt+=func(x+=ddel); }
s = §/3.0+ (b-a) *sum/ (Midpnt It*=3) ;

vold integrate (funcPtr func, double a, double b, double& ss, int proper) {
const double eps=(proper)?1e-3:0.01, df=(proper)?4.0:9.0;
const int jmax=20, 3jmaxp=21, k=5;
double *h = new double[Jjmaxp], *s = new double[jmaxp]:
double *c = new double(k], *d = new double[k];
h[0]=1.0; double dss=ss+1.0; int iter=0;
for (int 3=0; Jj<imax && fabs(dss)>eps*fabs(ss); J++) {
if (proper) { trapzd(func,a,b,s[]j],J+1,iter); }
else { midpnt(func,a,b,s[]], 3+1,1iter); }
if (>k-1) |
for (int i=0; i<k; i++) { c[i)=h[J-k+i]; d[l)=s[J-k+i]; }
extrapolate (c,d, k,0.0,ss,dss);
} s[3+1]1=s[3); h[3+1]=h[]]/df;
} delete d; delete c; delete s; delete h;

vold buildSpline(double* y, double* y2, int n, double dx) {
double *u = new double[n], p=0.0;
y2[0]=-0.5, u[0]=0.0;
for (int i=1; i<n-1l; i++) {
y2{i] = -0.5/(p=0.5*y2[1-11+2.0);
ufi] (y[i+1]1+y[1-1]-2.0*y[1])/dx;
ufi) {(3.0*u[1])/dx~0.5*uf{i-1])/p;
} y2[n-1) = (~0.5*u[n-2])/(0.5*y2[n-2]+1.0);
for (i=n-2; i>=0; i--) y2[i] = y2[i]*y2[i+1]+u(i];
delete u;

double splineValue (double* y, double* y2, double x, double xmin, double dx) {
int klo=int ( (x-xmin)/dx):
double xlo=double (klo)*dx+xmin, a=(xlo+dx-x)/dx, b=(x-xlo)/dx;
return a*y[klo]+b*y([klo+ll+((a*a*a-a)*y2[klo]+(b*b*b~b)*y2[klo+l])*dx*dx/6.0;

/7
// Main calculational routines.
//
// DESCRIPTION:

// These routines allow the 2D Poisson equation with an arbitrary source term to be
/7 solved using a relaxation method. This gives the conduction band edge Ec[3]1[1].
// A numerical double integral over the resulting local electron density then gives

//  the conductance.

// FUNCTIONS:

// SetBoundaryValues() -~ Set the boundary values of Eg[][].

// FindZerothOrderSolution() - Artifically puts some charge into the epilayer region

/7 of the wire and integrates the Poisson equation to find a zeroth
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order solution for the full problem.

FindFinalSolution{) - Iterates solutions of the Poisson equation, starting from the
zeroth order solution, until convergence is reached. A relaxation
procedure is used to iterate successive solutions: (1) A solution
is obtained to Ec[][] by calling solve(). (2) This glves a new
electron distribution which is used in the next iteration. (3) The
values of Ec[][] used in the next iteration are weighted averages
of the current solution with the previous solution. (4) Repeat
until the totalResidual is within the specified tolerance. This
gives the desired solution.

Nelectron dx () - Used for evaluating the x-integral in the double integral for the
conductance. This forms the integrand for Nelectron dx dy ().

Nelectron dx_dy() — Used for evaluating the double integral for the conductance.

sheetConductance () - Evaluates the sheet conductance by first interpolating the
conduction band edge using a mesh of cubic splines, and then
integrating the resulting spline function using Nelectron dx dy().

SolveProblem () - Calls the above functions to get the solution. First find a
zeroth order solution to start the relaxation procedure with.
Solve the Polsson equation to obtain the conduction band edge.
Finally use this to obtain the electron density and hence the
conductance of the wire.

void FindZerothOrderSolution(Array Nd, Array Ec, int Jjmax) {
MakeConstant ( (double*)Ec, jmax,0.0) ;
MakeConstant ( (double*}Nd, jmax,0.0) ;
double depletionEstimate = sqrt (2.0*surfacePotential/ (e div_eta*dopingDensity));
int jdepl = int (Jmax*depletionEstimate/simulationDepth+0.5),

jdepth = int (jmax* (epiThickness~etchDepth)/simulationDepth+0.5);

jdepl = (jdepl<2)22:jdepl;

for (int j=0; j<jdepl; 3I++) Nd{j] =dopingDensity;
ConvertToChargeDensity (Nd, jmax) ;
solve (Nd, Ec, Jmax) ;

void FindFinalSolution(Array Nd, Array Ec, int jmax, double mix) ({
double eps=le-4;
double anorm bef=0.0, anorm_aft=anorm bef+l.0;
int jdepth = int (jmax* (epiThickness-etchDepth)/simulationDepth+0.5);
for (int iter=1; 1iter<2000 && anorm aft>eps*anorm bef; iter++) {

CalculateChargeConcentration (Nd, jmax);
ConvertToChargeDensity (Nd, jmax) ;
for (int 3=0; Jj<=jmax; j++) Ec_old[3]=Ec[]};
if (iter=1) { anorm bef=totalResidual (Nd,Ec, jmax); }

else { anorm aft=totalResidual (Nd,Ec, Jmax); }
solve (Nd, Ec, jmax) ;
for (j=0; j<=jmax; Jj++) Ec[j] = (1.0-mix)*Ec_old[jl+mix*Ec[]]:

double *splE, *splE2;
double Nelectron_dy (double y) {
return electronDensity (splineValue (splE,splE2,y,0.0,meshsize)); }

double sheetConductance (Array Ec, int jmax) !
double Nintegral=0.0, *Ec2;
buildspline(Ec,Ec2 = new double[jmax], jmax,meshsSize);
splE=Ec, splE2=Ec2;
integrate(Nelectronkgy,o.o,simulationDepth,Nintegral,YES);
delete Ec2;
return CHARGE*mobility*Nintegral;

void SolveProblem() {
fitToMesh (simulationDepth); fitToMesh(epiThickness); fitToMesh (etchDepth) ;
int jmax=int (simulationDepth/meshSize+0.5);
FindZerothOrderSolution (Nd, Ec, jmax) ;
printf("integrating for nel ...\n"); BulldSplineForElectronDensity ()

187
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printf("integrating for hol ...\n"); BuildsplineForHoleDensity () ;
1f (includeDamage) {
printf (*building defect density ...\n"); BuildDefectDensityFunction (Gd, jmax); }
FindFinalsolution(Nd, Ec, jmax,mix);
printf("integrating for conductance ...\n"};
printf (“SHEET CONDUCTANCE = %$e\n", sheetConductance (Ec, jmax)});
}

//
vold main(} {

SolveProblem() ;
}
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