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ABSTRACT

The work deals with the static analysis of plane stress, pla-
ne strain, axisymmetric and shell reinforced concrete structures
subject to short and long term loading conditions. Nonlinear
short term material properties and structural nonlinear geometric
behavior is considered. The effect of time factors is adopted in
a linear form because of the lack of well established nonlinear
models for creep and shrinkage of concrete.

The Total and Updated Lagrangian formulation of the problem
is used to derive structural governing equations via the princip-
le of virtual displacements. The adopted formulation is suitable
for structures with large deflections, large rotations but small
strains. Constitutive smeared-type equations for both 2D and 3D
analysis of reinforced concrete are also considered.

For the 2D analysis isoparametric elements with variable
number of nodes (four to nine) with Lagrangian approximation of
geometry and displacements are employed using a simple linear ma-
terial model accounting for cracking, crushing as well as for
smooth tension stiffening of concrete. The reinforcement is mode-
led by piece-wise linear elastic isotropic constitutive equa-
tions.

For shell analysis, the degenerated Ahmad’s shell element
using Serendipity, Lagrange and Heterosis geometry and displace-
ment interpolating hierarchical approach 1is adopted. Special
attention is focused on the problem of shear locking and thus
full, selective and reduced integration rules are dealt with.
Constitutive equations are assumed which are elastic-plastic for
both concrete and steel materials. Also tension stiffening and
compression hardening and softening of concrete is included.

Nonlinear solution techniques are comprehensively reviewed
and consequently some of them are significantly improved. A new
algorithm for the solution of nonlinear equations, which is based
on Newton-Raphson, Arc-length and Line search methods, has been
developed.

Analysis considering shrinkage and creep has also been deve-

loped. The Step-by-step analysis using the Dirichlet series ap-



proximation to the creep function was adopted and its problem of
numerical instability has been overcome.

The derived theory has been extensively tested for both short
and long term loading conditions. Short term analyses focus espe-
cially on the accuracy of the material models being used and on
shell behavior near the loss of stability. This type of analysis
has been feasible only with the implementation of a very robust
nonlinear equation solver, which 1is capable of dealing with
structural snap through and snap back phenomena. The long term
analyses concentrate on the accuracy of various simplified solu-
tion techniques, comparing these results with the Step-by-step
method. The collective results show that full time analysis is
necessary to assess serviceability structural conditions, whilst
the time factor is negligible for the total structural strength
with a failure mechanism being controlled mainly by time-
independent reinforcement. The above conclusions are applicable
for the structures investigated herein, (i.e. relatively thin and
well reinforced), and should not be generalized for any arbitrary
structure.

All developments in the work have been programmed into the
nonlinear program NONSAP (University of Berkeley, USA) and CON-
CRETE (University of Swansea, U.K.). In addition other software
has been created, such as material preprocessing program, library

with graphics accessible from the FORTRAN environment etc.
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3/

de

NOTATION

In this work the following system of notation is used:

Matrix, vector and scalar variables are printed in bold, un-
derlined and italic fonts respectively, e.g. K, p, i. Constant
scalars are written in standard font, e.g. E. For some special

scalar constants and/or variables greek alphabetic is used.

For indexed entities the left superscript denotes the time
corresponding to the value of the entity, the left subscript
denotes the configuration with respect to which the value is
measured and subscripts on the right identify the relation-
ships to the coordinate axis. Thus for example tﬂtrij deno-
tes element i,j of stress tensor T at time t+dt with respect

to the original (undeformed) configuration.

For derivatives the abbreviated notation will be used, i.e.
all right subscripts that appear after a comma declare deriva-

tives. For example:

tedt _ 0 t+dt
0 1,) axj 1

It follows a list of the most frequently used symbols. More

tailed description is available near the text or equation where

the particular symbol referred.

a, b, c..,A, B, C...,x ,B ... = material constants

‘v = volume at time t

B = angle of cracks

cF= elastic material rigidity matrix

c*= elastic plastic material rigidity matrix

OCUPS= i,j,r,s element of the tangential material rigidity tensor



8( ) = variation operator

61J = i,j element of Kronecker’'s delta tensor.
ate1
5?~3—= i,j element of strain rate tensor at time t

0eU = j,j element of the linear part of strain increment

e = m,n element of ordinary strain tensor at time t
mn

;slj= i,j element of Almansi strain tensor at time t

;£1j= i,j element of Green-Lagrange strain tensor at time t

;cij= i,j element of Cauchy-Green strain tensor at time t
N = acceleration/dumping coefficient for Line search method
ef = plastic part of strain

e = strain when material cracked

E = Young’s modulus

E(t’) = function for Young's modulus

f; = material compression strength

f; = ftu= material tension strength

*F(...), ®f(...) = yield (loading) functions

t+AtF“_l) = the vector of nodal point forces equivalent to the

o=
internal stresses from previous iterations

o(t,t’) = _E%?T3 [ 1+ ¢(t,t’)] = creep compliance function

G = shear modulus

*H(..) = hardening function

h = k-th shape function in natural coordinate system

I, I, I3 = 1st, 2nd and 3rd invariants of Cauchy stress tensor

I, I;, I; = 1st, 2nd and 3rd invariants of strain tensor

J, J, J = 1st, 2nd and 3rd invariants of deviatoric Cauchy
stress tensor

J;, J;, J; = 1st, 2nd and 3rd invariants of deviatoric strain

tensor



<
1

~
!

K
L

t
0
t

K
0

J

acobian of transformation to natural coordinate system

bulk modulus

linear part of stiffness matrix

= nonlinear part of stiffness matrix

NL

A = load multiplier for Arc length method

n

01}

t+d;R = the work of external forces at time ¢

= ji,j element of the nonlinear part of strain increment

00,0, = principal stresses

2

r, s, t = coordinates in natural coordinate system
o t= octahedral normal stress
ocC
¢ = mean normal stress
m
01) = i,Jj element of Cauchy stress tensor
ij= i,j element of deviatoric Cauchy stress tensor
gslj = j,j element of 2nd Piola-Kirchhoff tensor at time t
tS = surface area at time t
roc = octahedral shear
T = mean shear
m
trij = i,j element of Cauchy stress tensor at time ¢
toij = I,j element of Jaumann stress rate tensor at time t
t = time of our interest of structural behavior
t’= time, when the structure was loaded
t t t . . .
u, u, u3 = point displacements at time t
t+dt t . . . s
u.= Xi- X1 is i-th element of vector of displacement incre-
ments at time t
Ag(”= g(”— g“—l) is the displacement increment in the
i-th iteration
t t t . . .
X, X, X3 = point coordinates at time ¢

€, x, ® coordinates in the principal stress coordinate system



1. INTRODUCTION

1.1 Brief overview.

Concrete in the form of a structural material has been used
since Roman times. In ancient times the most important problem
was its very low strength in tension, but fortunately the disco-
very that concrete can be reinforced by steel bars has nowadays
reduced this drawback.

At the time of the industrial revolution interest in rein-
forced concrete significantly increased and this involved inte-
rest in more accurate analysis of reinforced concrete structures.
Many researchers and engineers have produced many methods to ana-
lyze various types of reinforced concrete structure but most were
based on empirical formulae and engineer’s professional judgment
rather than on mathematical and mechanical theories of material
and structural behavior. This was due to the inherent complexity
of reinforced concrete material behavior as a composite of steel
and concrete, as well as the different material characteristics
of concrete in compression and tension regimes.

Another problem was the mathematical modeling of structures
themselves. Again only empirical formulae based on experimental
results or experience with already finished structures were avai-
lable and only later some theories based on linearqapproach has
been introduced.

Nowadays the situation in structural analysis and material
modeling is much better. The development of the finite element
method and the availability of very powerful computer techniques
enable relatively accurate predictions of structural response to
loading even near to collapse. This has encouraged designers to
consider lighter and more efficient structures.

This trend has been accompanied by the efforts of scientists
to solve emerging problems which were earlier unattractive. For
example, stability problem;:qugghlinear treatment of structural

geometry and material response etc. However despite the enormous



work already being done there are still many problems to be sol-
ved in the future.

Another problem in this area is the practical employment of
theoretical research results. People working in design enterpri-
ses usually have no time to systematically study sophisticated
methods being produced by universities, research institutes etc.
and the only way to pass to them the newly developed theories is
to produce simplified design instructions in building codes or
preferably to produce powerful software background. This software
must guide them in a "user friendly" way through a whole analysis
and eventually check user provided data. Programs of this sort
are usually called Expert Systems and they are constructed as a
"rational" superstructure above computer-aided design systems
(CAD).

Today many programs for structural analysis are available.
The vast majority, however, are based on linear finite element
theories. These are supplemented by programs for detailed concre-
te design (dimensions, reinforcement etc.) according to building
codes. Hence nonlinear design procedures provided in building
standards are used in conjunction within accurate results ob-
tained by overall linear analysis of a structure. If we are res-
tricted to use only about fifty percent of the material strength
and if we do not design some especially light structures the abo-
ve software is quite justified and the adopted simplifications
cause only negligible errors. Unfortunately attempts to produce
more economic structures as well as attempts to build structures
which were in earlier times technically impossible, force engi-
neers to provide more accurate solutions and designs, and ob-
viously nonlinearity must be considered during the whole analy-
sis.

Today there are some powerful nonlinear solution systems
available in the world. Some of the most advanced are ADINA, DIA-
NA, NASTRAN and LUSAS, whilst STRUDL and PAFEC support some limi-
ted nonlinearity. In addition there are many single purpose non-

linear programs that solve, for instance, plane beam structures,



shell buckling analysis etc. However there is still a high demand
for new nonlinear software.

The primary purpose of this work is the modeling of
reinforced concrete structures, particularly plane stress, plane
strain, axisymmetric and shell structures. This will Egraow
discussed in more detail. The problem can be divided into the
following parts:

- Assembling of overall governing equations that characterize
structure shape, loading etc.,
- Material behavior prediction,

- Solution of assembled set of nonlinear equations,

Results interpretation.

The most usual method for considering the governing structu-
ral equations is the principle of virtual work. It is a versatile
tool for defining structural behavior and can be used for any ty-
pe of material model, loading condition, structural shape etc.
Because the displacement variant of structural analysis is usual-
ly preferred, the particular principle of virtual displacement is
employed. However, for particular problems some other structural
definition can be utilized, for example, variational principles,
Clapeyron principles etc.

Material behavior, and especially reinforced concrete beha-
vior, represents a very difficult problem. The traditional
Hooke’s law, that leads to linear analysis, can now be replaced
by much more sophisticated models. They comprise, for example,
nonlinear hyperelastic and incremental hypoelastic models, elas-
tic plastic models with hardening in compression zones and stif-
fening in tension zones (near cracks), endochronic, progressive
fracture models and many others. Nevertheless most nonlinear
programs use "traditional" elasto-plastic models for concrete in
compression and linearized models for cracking in tension regi-
mes. Many yield and loading functions have been developed as well
as expressions for hardening and tension stiffening. Despite this
there is still a lack of information for general three dimen-

sional cases and also most results are applicable only for short-



term monotonically increasing loading. Additional problems are
in obtaining the proper material constants for the above models.
Realizing that some endochronic models comprise twenty and even
more material characteristics it is apparent that here experimen-
tal work is very important.

In practice less complicated material models are usually
used in conjunction with material values recommended in building
codes, and supplemented by some laboratory tests. Reinforcing
steel is quite satisfactorily modeled by elastic-plastic material
(Von Mises) or by part-linear models.

The assembled nonlinear set of equations are solved iterati-
vely and the loading is applied by increments. The well estab-
lished procedure for equation solution is the Newton-Raphson met-
hod or its simplified version, the Modified Newton-Raphson met-
hod. In recent times new methods have been developed (Quasi New-
ton methods, Arc-length methods, Line search etc.)}.

A special group of solution procedures are perturbation met-
hods. They have advantages, especially in stability problens,
when whole classes of possible structural imperfections can be
studied. However their practical use is difficult because they
are very complex and there exists no proof that the computed re-
sults give the "lowest" energy and hence the most probable struc-
tural response. Thus they are used by people with an adequate
theoretical background rather than as a practical design tool for
ordinary engineers.

The way results are interpreted is not unique. Some CAD
software are capable of providing facilities up to the final
drawing stage of structural design including sophisticated and
powerful graphics etc. On the other hand ordinary nonlinear prog-
rams usually finish by printing and plotting of displacements and
internal stresses.

The study of reinforced concrete structures under long-term
loading has received little attention. There is a lack of both
experimental data and practical software development. This is due

to the fact that long-term laboratory tests are expensive and



analytical solution, comprising the combination of geometrical
nonlinear solution, material nonlinearity and time phenomena such
as creep and shrinkage, represents very complex and challenging
analysis. It is only in very recent times that such a solution
could be attempted. The problem is particularly difficult for
shell analysis. Since there is a high interest in very thin
structures spanning over tens of meters it is evident that it is
worthwhile to be concerned with this problem. Although shrinkage
and creep may not significantly influence the stresses in many
cases, the importance of creep on structural deformations and
thus serviceability is indisputable. It can binlimiting factor

for bearing capacity of this type structures.




1.2 Objective and scope, starting position.

This work deals with the nonlinear analysis of reinforced
concrete structures. Particular attention is focused on two di-
mensional plane stress, plane strain and axisymmetric structures
as well as to degenerated three dimensional shell structures.

Several aspects of nonlinear analysis are considered,
including the creation and assembly of the general governing
equations using the principle of virtual work applied to both
Total and Updated Lagrangian formulations for geometric
nonlinearity, the modeling of constitutive equations, and
procedures for the solution of the nonlinear equations. Special
attention is paid to the time dependent factors of concrete, i.e.
to creep and shrinkage.

In addition to this theoretical development, the major part
of this work was the extension of two software packages, NONSAP
[44], [45] and CONCRETE [42], into which all developed theory has
been programmed, tested and prepared for practical use.

A major objective was to develop all software for PC compu-
ters so that as many users as possible can make use of them. The
software was developed for people who need to perform accurate
analysis of reinforced structures without access to a supercom-
puter or Cray-like techniques and without first-hand theoretical
and practical experience of this type of analysis. Therefore ana-
lysis and programs aim for user friendliness and require no spe-
cial computing facilities.

The basic objectives can be summarized in detail as follows:

Theoretical part:

1/ To produce a state-of-art report on some current concepts
used in nonlinear analysis of reinforced concrete. This comprises
the following aspects:

-Problem formulation using Total and Updated Lagrangian




approaches applied under the principle of virtual work,
-Review of the currently most widely used material models for
concrete and steel materials,
-Description and discussion of the procedures based on the
Newton-Raphson method and their modification for the
solution of nonlinear equations,

-Overview of methods for creep and shrinkage analysis.

2/ To introduce compression hardening and softening into

elasto-plastic material model for concrete.

3/ To develop more powerful algorithms for the solution of

nonlinear equations.

4/ To use the step-by-step solution method for creep and
shrinkage analysis. This includes the development of procedures
for approximations of creep and shrinkage functions by Dirichlet
series [38] and in particular treatments for dealing with ill

conditioning and stability of this problem.

5/ To test the above theoretical models and provide analyti-

cal evidence on structural behavior with special emphasis to:

- short and long term constitutive equations,

- robustness and efficiency of the developed nonlinear equa-
tions solver,

- comparison of the accuracy of various simplified creep and
shrinkage methods with the Step-by-step methods. Here both
serviceability and ultimate structural conditions should
be investigated. The effect of reinforcement ratio and

structural loading level is also a matter of concern.

Comparison of the obtained results with results from indepen-

dent sources.




Practical part:

The above theories are applied for two dimensional plane
strain/stress structures, axisymmetric structures and thin and
moderately thick 3D shell structures. Two nonlinear finite ele-
ment programs have been used as a basis for the new developments:
"NONSAP" produced by K. J. Bathe, [44], [45], for 2D RC structu-
res, and "CONCRETE" developed by E. Hinton and D. R. J. Owen,
[42], for 3D degenerated RC shells (called CONCRZ2 by authors).

The work includes the following:

1/ In order to develop software for PC environment the first
step was to modify and transfer mainframe versions of the

programs NONSAP and CONCRETE to PCs and MSDOS operating system.

2/ Programming and implementing the newly derived nonlinear
equations solver into NONSAP and CONCRETE. The algorithm can work
either fully automatically or by manual adjustment of optional
solution parameters (step length, type of Arc-length constraint,
employment of Line search etc.). NONSAP uses the band variable
sky-line housekeeping procedures whilst the CONCRETE uses the
frontal solution techniques. Therefore two sets of procedures we-

re created.

3/ The development of a small graphics library for plotting
using ICL CG 6400 graphic terminals, HP plotters, .DXF interfaces
in cooperation with AUTOCAD software as well as IBM PC compatible
video monitors (HERCULES, CGA, EGA etc.). In order to save inter-
nal memory no standard graphic package is used, the whole grap-
hics being supported only by a standard FORTRAN environment.

The developed library is used for graphic output of geometry
and deformations from nonlinear analysis performed by the NONSAP
(the program NONGRAPH) as well as by the CONCRETE (the program
CONCRPLOT).



Both NONGRAPH and CONCRPLOT work in interactive mode and
support some basic functions such as zooming, plotting of selec-
ted parts of structure (boxing, by group of elements) etc. In ad-
dition the .DXF interface enables the use of all facilities pro-
vided by AUTOCAD, for example ’hide’ function, and modifying

created pictures.

4/ Programming a material preprocessor for the following
creep and shrinkage models (the program MATERIAL):

-CEB FIB 1978 model [31],

-ACI 78 model [32],

-Bazant-Panula model I [48],

-Bazant-Panula model II [32],
and the creation of the software for their approximation by Diri-
chlet series. In order to avoid numerical stability problems the
program automatically deselects excessive shape modes from a to-
tal class of approximation functions.

The data from this are compatible with both NONSAP and CONC-
RETE programs (in binary form) and are plotted on the graphic mo-
nitor. Hence the user has a very convenient control over this
step of the problem solution. Also the input data for material
definition is required in a very user friendly form.

To enable a quick orientation in results pertaining to par-
ticular creep and shrinkage model in conjunction with the user
supplied data (material constants and loading condition) a simple
analysis of a concrete bar is available directly within the prog-
ram MATERIAL. This very fast step can avoid a time expensive so-
lution of an analyzed structure with improper concrete model.

Also a direct graphic interpretation of results is available.

5/ The implementation of the Step-by-step method into CON-
CRETE and NONSAP programs to include creep and shrinkage analy-

sis.



Despite the fact that all created software is developed for
PC computers, the programs and subroutines are written in stan-
dard Fortran 77 and thu;wZimply transferable to any other- machi-
ne. Small difficulties might emerge in the case of graphic func-
tions. Hence these are cumulated in a separated library, are des-
cribed in detail and thus it should be no problem to modify them

for any other particular configuration.
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1.3 Thesis layout.

The objective of this section is to give information about
the thesis layout.

Chapter Two deals with the derivation of the general conti-
nuum governing equations for Total and Updated Lagrangian formu-
lation. All expression$are based on the incremental form of the
principle of virtual displacements.

Chapter Three brings together the many possibilities of ma-
terial modeling of concrete. Special attention is focused on 1li-
nearized models which account for cracking, crushing and mixed
mode failure, to nonlinear initially isotropic models (hyper-
elastic, incremental hypoelastic etc), to orthotropic and to
elasto-plastic models. The essential part of this chapter deals
with formulation of failure criteria. A variety of failure models
is presented from the simplest with only one parameter to very
advanced formulations with many material constants. This chapter
also includes detailed description of constitutive equations used
in the developed software, including their enhancements.

The steel constitutive equations are not discussed directly
but it can be used by part linear Hooke’s rule or elasto-plastic
model with Von Mises yield condition.

Chapter Four is concerned with the implementation of theories
derived in Chapter Two (the governing equations) and Chapter
Three (material models) for 2D problems. Plane stress/strain and
axisymmetric analyses are discussed. This is in fact the theore-
tical description of the finite element used in the program NON-
SAP.

Chapter Five deals with shell analysis. All resulting equa-
tions are presented in detailed form prepared for direct algo-
rithmisation. Some problems such as locking etc. are overviewed.
The discussed theories are used in the program CONCRETE.

Chapter Six is concerned with the solution of the governing
nonlinear equations. Some current "standard" solution techniques

are presented after which the Arc-length and Line search methods
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are employed to compile new efficient solution schemes. This com-
prises a possible variable step length constraints as well as the
optimization of some other parameters. The theoretical results of
this chapter are used to improve the original band variable sky-
line solver in NONSAP and the frontal solver in the program CONC-
RETE. The primary aim is to construct all subroutines in the most
independent way and hence to make them simple to use in any other
nonlinear finite element package.

Chapter Seven brings together all practical results of
short-term analyses using the developed software. At the very be-
ginning a list of all performed analyses is given, each with a
brief explanation about which particular problems are dealt with.
In addition the header of every analysis contains detailed de-
scription of the studied phenomena.

The objective of Chapter Eight is creep and shrinkage analy-
sis. At first some recognized material models are discussed, the-
reafter the most widely used methods for time dependent analysis
are reviewed. Finally attention is focused on the step by step
procedure using approximations by Dirichlet series [38]. This
method is used in both CONCRETE and NONSAP programs.

Chapter Nine presents results of several long-term analyses.
The method of presentation is similar to that in Chapter Seven.
This chapter and Chapter Seven tests in practice all theoretical
developments derived in the thesis.

Chapter Ten contains user’s and programmer’s considerations
of the developed software. The first section describes general
aspects of the environment. Several versions of the software have
been developed. Their efficiency and hardware requirements are
discussed in the second section of this chapter. The third chap-
ter brings a brief picture of user-software communication. An
example of input data for material preprocessing program MATERIAL
is given. Finally, the fourth and last section deals with techni-
cal and programmer's considerations. A short description of all
subroutines used in the software is given as well as for example

programs’ overlay structures etc. This section is valuable only

12



for those aiming to enhance the program environment.

The work is concluded and summarized in Chapter eleven.
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2. GENERAL CONTINUUM GOVERNING EQUATIONS.

In this chapter the general governing continuum equations
for nonlinear analysis will be presented. It should be noted that
there are many variants of nonlinear analysis depending on how
many nonlinear effects are accounted for.

For a linear analysis we must satisfy the following
simplifications:

1/ The constitutive equations must be linear, in other words we
use the generalized form of Hooke’s law, leading to a
materially linear solution.

2/ The geometric equations relating strains and displacements
must be linear, that is quadratic terms are neglected.

3/ Both loading and boundary conditions must be conservative.
This means that they are constant throughout the whole analy-
sis irrespective of structure deformation, time etc.

Provided all three restrictions are satisfied the relation-
ships between loading and deflection are linear. A linear solu-
tion is much simpler than a nonlinear one and therefore it is im-
portant to know when such a simplification is acceptable and
their adoption does not cause too high an error.

Generally linear constitutive equations can be employed for
a material which is far from its failure point, usually up to
about 50% of maximum strength. Of course this depends on the type
of material, e.g. rubber needs to be considered as a nonlinear
material much earlier. But for usual civil engineering materials
this is satisfactory.

Geometric equations can be linearized if the deflections of
a structure are much smaller than its dimensions. This must be
satisfied not only for the whole structure but also for its
parts. The geometric equations for the loaded structure can then
be written using the original (unloaded) geometry.

Also important is that a linear solution is permissible only
in the case of small strains. This is closely related to material

properties because if strains are high, the stresses are usually,
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although not necessarily, high also.

Despite the fact that for the vast majority of structures
linear simplifications are quite acceptable, there are structures
when it is necessary to take in account some nonlinearity. The
resulting governing equations are then much more complicated and
normally do not have a closed form solution. Consequently some
nonlinear iterative solution scheme must be used. In addition
computation costs increase enormously and without computer
support practical nonlinear analysis is impossible. Hence the
first aim of every engineer is to apply linear relationships if
at all possible.

Nonlinear analysis can be classified into various levels:

a/ Nonlinear material behavior only needs to be accounted for.
This is the most common case for ordinary reinforced concrete
structures. Because of serviceability limitations, deforma-
tions are relatively small. However the very low tensile

strength of concrete needs to be accounted for.

b/ Deformations (either displacements only or both displacements
and rotations) are large enough that the equilibrium equations
must use the deformed shape of the structure. However the re-
lative deformations (strains) are still small. The complete
form of the geometric equations, including quadratic terms,
have to be employed but constitutive equations are linear.
This group of nonlinear analysis includes most stability pro-

blems.

c/ The last group uses both material and geometric nonlinear
equations. In addition it is usually not possible to suddenly
apply the total value of load but it is necessary to integrate

in time and/or loading increments. This is the most accurate and

general approach but unfortunately is also the most complicated.

Before carrying out a complex nonlinear analysis it is
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always good practice to perform an independent linear solution in
order to obtain some "feel" for the response of a structure, and
to be able to evaluate the influence of linear simplifications on
the response of the structure. It sometimes happens that a nonli-
near solution will miss the lowest energy solution. For example
this is the case for the perturbation method where there is no
proof that "lowest" deformation mode has really been found. In
these situations it is usually worthwhile to understand the 1li-
near behavior of a structure.

There are two basic possibilities for formulating the gene-

ral structural behavior based on its deformed shape:

Lagrange formulation.

In this case we are interested in the behavior of infinite-
simal particles of volume dV. Their volume will vary dependent on
the loading level applied and, consequently, on a scale of cur-
rent deformations. This method is usually used to compute struc-

tural behavior in civil engineering.

Euler formulation.

The essential idea of Euler’s formulation is to study the
"flow" of the structural material through infinitesimal and fixed
volumes of the structure. This is the favourite formulation for
fluid analysis, analysis of gas flow, tribulation etc. where

large material flows exist.

For structural analysis, however, lLagrangian formulation is
better and therefore attention will be restricted to this. Two
forms of the Lagrangian formulation are possible. The governing
equations can either be written with respect to the undeformed
original configuration at time t = O or with respect to the most
recent deformed configuration at time t. The former case is

called Total Lagrangian formulation (TL) whilst the latter is
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called the Updated Lagrangian formulation (UL).

It is difficult to say which formulation is better because
both have their advantages and drawbacks. Usually it depends on a
particular structure being analyzed and which one to use is a
matter of engineering judgment. Generally, provided the
constitutive equations are adequate, the results for both methods
are identical. The problem of which one to use will be discussed
later when the necessary theoretical background has been

developed.

2.1 General problem formulation.

In most cases a structure must be loaded by many loading in-
crements and at each increment an iterative scheme needs to be
employed to obtain a solution. This is the basic idea of so-
called incremental iterative procedures.

The total loading is divided into many increments which are
subsequently applied to the structure at different times. The
main task of an analysis is to compute the response of the struc-
ture after applying a load increment. In order to do this we need
to know the state of the structure at time t before applying the
loading increment and we analyze the structural behavior at time ¢
+ At after its application. This procedure is repeated as many

times as necessary to reach the final (total) level of loading.

This is depicted in Figure 2.1. At time t = O the volume of
structure is 0V, the surface area is °S and any arbitrary point M
has coordinates OXI, OX2 and 0X3. Similarly at time t the same
structure has a volume tV, surface area tS and coordinates of
point M txl, tx2 and t)(3. Similar definitions apply for time t+dt

also by replacing t by (t + At).
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Fig. 2.1 The movement of body of structure in Cartesian coordina-

te systen.

For the derivations of nonlinear equations it is important
to use clear and simple notation. In this thesis the system of
notation used in [1] will be adopted throughout, although some-
times it may not be the most convenient.

- Displacements u are defined in a similar manner to that
adopted for coordinates, hence tu1 is the i-th element of the

displacement vector at time t,
_t+dt

Xi—tX1 is i-th element of vector of displacement
increments at time ¢, (for the sake of simplicity index t is
already omitted: we are always interested in the "current" time
increment),

- Generally the left superscript denotes the time corres-
ponding to the value of the entity, the left subscript denotes
the configuration with respect to which the value is measured and
subscripts on the right identify the relationships to the coordi-
t+dt

nate axis. Thus for example orij denotes element i,j of
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stress tensor T at time t+dt with respect to the original (unde-
formed) configuration.

- For derivatives the abbreviated notation will be used,
i.e. all right subscripts that appear after a comma declare deri-

vatives. For example:

t+dt _ 0 tedt
01,] axX i
J

The general governing equations can be derived in the form
of a set of partial differential equations (for example by using
the displacement method) or an energy approach can be used. The
final results are the same.

One of the most general methods of establishing the gover-
ning equations is to apply the principle of virtual work. There
are three basic variants of this:

1/ The principle of virtual displacements,
2/ The principle of virtual forces,

3/ The Clapeyron divergent theorem.

Using the virtual work theorems it is possible to derive se-
veral different variational principles (Lagrange principle, Cla-
peyron principle, Hellinger-Reissner principle, Hu-Woshizu prin-
ciple etc.). These are popular especially in linear analysis.
They can be used to establish equilibrium equations, to study
possible deformation modes in finite element discretization etc.
Unfortunately in nonlinear analysis they do not always work.

All the following derivations will be presented in their
displacement form and consequently the principle of virtual dis-
placements will be used throughout this thesis. Details of other
formulations of the continuum equations can be found in [3].

The following section deals with the definition of the
stress and strain tensors which are usually used in nonlinear

analysis. All are symmetric.
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2.2 Stress tensors.

Nowadays many different types of stress tensor are used in
nonlinear mechanics. However only three of them are totally sa-

tisfactory and these will now be defined:

Cauchy stress tensor.

This tensor is well known from linear mechanics. It expres-
ses the forces that act on infinitesimal small areas of the de-
formed body at time t. Sometimes these are also called "engi-
neering" stress. The Cauchy stress tensor is the main entity for
checking ultimate stress values in materials. In the following

text it will be denoted by <.

2nd Piola-Kirchhoff stress tensor.

The 2nd Piola-Kirchhoff tensor is a fictitious entity,
having no physical representation as in the case of the Cauchy
tensor. It expressgthe forces which act on infinitesimal areas of
body in the undeformed configuration. Hence it relates forces to
the shape of the structure which no longer exists.

The mathematical definition is given by:

(o]
‘s = ¢ «% «tr x% /2.1/
0o i} [o] t i,m mn t j,n
0

where tg- is the ratio of density of the material at time O

and t,

trmn is the Cauchy stress tensor at time t,

o) . . . .
tXl is the derivative of coordinates
,m
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Using inverse transformation, we can express the Cauchy

stress tensor in terms of the 2nd Piola-Kirchhoff stress tensor,

v = «'x o« fs # tx /2.2/
mn P Omi 01 O n,]

The elements ;X . are usually collected in the so-called

Deformation gradient matrix:

' = [V* tf] /2.3/
0 (o)
T
where YT = 60 H 60 ; ao
% a%x a°x
1 2 3

The ratio o%— can be computed using:
% = *p » det ;x /2.4/

Expression /2.4/ is based on the assumption that the weight
of an infinitesimal particle is constant during the loading pro-
cess.

Some important properties can be deduced from definition
/2.1/:

- at time 0, i.e. the undeformed configuration, there is no

distinction between 2nd Piola-Kirchhoff and Cauchy stress tensors

t

because gX = E, the unity matrix, and the density ratio og- =1

- 2nd Piola-Kirchhoff tensor is an objective entity in the
sense that it is independent of any movement of the body provided
the loading conditions are frozen. This is a very important pro-
perty. The Cauchy stress tensor does not satisfy this because it

is sensitive to the rotation of the body.
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Jaumann stress rate tensor.

Contrary to the previous tensors, the Jaumann stress rate
tensor expresses not direct stress values but their rates. It is
also a fictitious entity and is usually used in the most complica-
ted nonlinear analysis when load (time) increments must be inte-
grated (and not applied suddenly). It is also objective and is

defined by:

t% = Yo tr * tQ - tt * tQ /2.5/

> y . /2.6/
at 8 Xl at a Xj

The value of Jaumann stress tensor depends not only on cur-
rent loading condition but also on the loading history (e.g. in

the case of hypoelastic materials).

2.3 Strain tensors.

Similar to stress tensors, there are many strain tensors
suitable for nonlinear analysis, but we will restrict our des-
criptions to the five which are energy conjugate with the above

stress tensors:

Green-Lagrange strain

This is the energy conjugate of the 2nd Piola-Kirchhoff ten-
sor and its properties are similar (i.e. objective etc.). It is

defined by:

t
e =— [ ty o+t o+t oty ] /2.7a/
o1y 2 0i,j O 3j,i O k,i O Kk,]
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It can be proved (1], [3] that this tensor represents accu-
rate values of strains. It can be demonstrated that if we-calcu-
late the length of an infinitesimal fibre prior and after defor-
mation in the original coordinates, we get directly the terms of

the Green-Lagrange tensor.

Cauchy-Green tensor

Cauchy-Green tensor is an arbitrary tensor defined by:

t _t t

c = * /2.8/
0'ij 0 k,i 0 k,j

and is often used to calculate the Green-Lagrange tensor by:
t 1 t

€ == c -8 /2.7v/

01y 2 0 1ij 1]

where aij’denotes the Kronecker’s delta tensor.

Strain rate tensor:

The Strain rate tensor is the energy conjugate of the Jau-
mann stress rate tensor and its properties are similar. Its defi-

nition is given by:

d e a u a u
ij 1 i J

= " . /2.9/
at=d Xj at=0 Xi

at 2

Ordinary strain tensor:

This is the most commonly used strain tensor, comprising
strains which are often called Engineering strains. Its main im-
portance is that it is used in linear mechanics as a counterpart

to the Cauchy stress tensor.
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1 du du
e =~ LI n /2.10/
t mmn 2

atx atx
n m

This is a very important but unobjective entity. The follow-

ing very helpful relation can be proved:

. atxm a‘xn
8(e ) = * (e )
0 ij BQX! aoxj t mn /2.11/

where & is the operator for variation.

Using /2.11/ it is simply demonstrated that the 2nd Pio-
la-Kirchhoff tensor is the energy conjugate of the Green-Lagrange

strain tensor.

Almansi strain tensor.

This is the energy conjugate of the Cauchy stress tensor and

its properties are similar (i.e. non-objective etc.). It is defi-

ned by:
te =—1 [ tu + tu - tu * tu. ] /2.12/
o1y 2 0 i,y O j,i Ok,i O k,]J

The Almansi strain and Cauchy stress tensors are sometimes
preferred to the Green-Lagrange and 2nd Piola-Kirchhoff tensors
when a material model defined in engineering stresses and strains

is used and the analysis is defined in the UL formulation.

2.4 The principle of virtual displacements applied to Total

and Updated Lagrangian formulations.
The objective of this section is to present how the

principle of virtual displacement can be applied to the analysis

of a structure. For completeness both the Lagrangian Total and
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Updated formulations will be discussed. In all derivations it is
assumed that the response of the structure up to time t is known.
Now at time t + At we apply a load increment and using the
principle of virtual displacement we can define the response of
the structure during that time. Hence we are interested in a

so-called incremental solution.
From virtual work of the structure we can write:

for Total formulation:

Vf{ trdts . s(tt9te )} av = g /2.13/
0 0o ij 0O 1)

for Updated formulation:

VJ{ trdts o tedt )} av = tratp /2.14/
t toij tiJ

where OV, 'V denotes the structure volume corresponding to
time O and t and “*®®R is the total virtual work of the external
forces. The symbol 8 denotes the variation of the following enti-
ty.

Since energy must be invariant with respect to the reference
coordinate system, /2.13/ and /2.14/ must lead to identical re-

sults. After substitution we get:
a/ Lagrange total formulation.

From /2.1/ and /2.7/,

0
trdtg p 0 . tHat_ 0

S —_—
0 1) t+dtp t+dt {,m mn t+dt j,n

/2.15/
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t+dt - 1 t+dt t+dt
6( oeu] B 6[7( oti,37 oyt
, tdt . Erdt )] /2.
0 k,i 0 k,}
In incremental form:
t+dts = ts + /2
071 0 1] 0 1}
tedt | _ e + 7 /2
0 tj O ij 0 1j 0 i}
where
> | i)
e =—|u + u + u * u + u * u
0 1j 2 lo’t,5 03,1 Ok, Ok,j OKk,j OKk,i
/2.
= the linear part of strain increment
n -1 u * u /2.
0'1j 2 0k,i O Kk,}
= the nonlinear part of strain increment
t+dt _t + /2

u u u
01,) 01,j 01,)

o( e =@ ) 2 on):
0 1) 0 1] 01}

a[te]=o
0 1}

Substituting /2.16/ through /2.21/ in /2.13/ we get:

VJ’[“‘“S » 8("%e )]dV = V[(ts + s ]
o] 0 1} 0 1) (o) 0 1) 0 1)
* & te + e + 7 ] dv =
0 i) 0 1) 0'i}

V[ s x s(te ) av + (this is always zero)
0. 071} 0 1]

+ VJ“S * 8(e ) dV +
0.J o0 "1j 0 1}
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t
+ OVI Siy * 8ny ) v+
+ vf s x&8(e )av + (this is also zero)
0,4 071j 0 1
+ vf S *8(e ) dv +
0J 0713 13
+ °v“[ oSy, * Sgn, ) av /2.22/

Introducing the constitutive relation:

S = C * [ e + 7 ] /2.23/
0 i) 0 ijrs O rs O 'rs
OVI{Ocijrs(Oers * Onrs) * a(oexj+ Onlj) *
te _ tedt,
. oS, . 5(0%)} av = R
- Vf ‘s = 8(e ) dv /2.24/
0 0 i} 0 i}

Now assuming linearization of the strain increment in the
first term of /2.24/ we obtain the final form of the governing

equations:

e + —> e
O rs nrs O rs

t
va Ocljrs Oers* 6(Oeij) v+ f Oslj * 6(OT,lj) av

= tratp _ v‘[ S % 8(e ) av /2.25/
0 (o) 0 ij 0 ij

b/ Lagrangian Updated formulation:

For the deformed configuration, the derivation of the equi-
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valent expression to /2.25/ is similar. The only differences are
that the index for the reference configuration is changed from O
to t and some terms of /2.19/ can be omitted.

From /2.1/ and /72.7/:

t
t+dt - P t * t+dt * t

= ¥
t i t+dtp t+dt i,m mn t+dt j,n

/72.26/

+ u * u )] /72.27/

In incremental form:

t+dt, _ t
tsij- tij+ tsij /2.28/

tte =% 4+ e + 9 /2.29/
t 1) t 1y ot 1) t 1]

where
t
8 =
t 1)

1
e = u + u /2.30/
t i) 2 (tT1,5 t 3,1

= the linear part of strain increment

n =+ u *xu /2.31/
t 1y 2 tk,i tKk,j '

= the nonlinear part of strain increment

tsU tCijrs* [ters + tnrs] /72.32/

Similarly to the Total formulation:
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+
tVf{tCljrs[ters * tnrs] * a(teij tnij) *

t t+dt
+ o . a(tnu)} av = "R

_V[ t-r *» 8(e ) dv /2.33/
t ij t 1)

After linearization, e + n —>e and the final equa-
t rs rs t rs

tion takes the form:

<+ =
tVf tcljrs &ra” a(telj) ar f Ty ¥ a(tnij) av

= Watp VJ ‘T *x 8(e ) av /2.34/
t t ij t 1]

The work done by the external forces:

So far only the incremental virtual work has been consi-
dered. This Qork is balanced by the work done by the external
forces, expressions for which are now briefly summarized. Their
derivation is similar to that obtained using linear mechanics;
moreover the differences between the Total and Updated formula-
tions are negligible. Therefore only the final expression for the

Total variant is presented:

trdtp = V[“d“fb * s(u ) dv +
0 0 0 i o1

+ sJ‘t"dtfs *» 8(u ) ds +
0 (o] i o i
2 t+dt
+ %% »—— %1 ws(u)av /2.35/
0 at2 01

where fs!, fbl are surface and body forces, %s denotes
integration with respect to the surface with the prescribed boun-
dary forces and the last term of /2.35/ accounts for inertia for-

ces (applicable for dynamic problems only).
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Thus all the relationships for incremental analysis have now
been presented. It should be noted that the assumption of- linea-
rization in /2.24/ and /2.33/ leading to /2.25/ or /2.34/ means
that the structure must be solved in an iterative manner. In
practice after every iteration (either at the same time or after
a time increment) we must compare the resulting external and
internal forces and if the differences are unacceptably high,
another iteration is necessary to dissipate the difference. The
applied forces (i.e. the R.H.S of /2.34/ or /2.25/) become these

unbalanced forces.

The solution equations were presented in the compact ana-
lytical form but for practical examples (structures) it is now
necessary to discretize them (both in space and time). Apart from
the loading condition however, this depends on the elements being
used to model the structure.

Two special groups of elements will be discussed later.
Chapter Four deals with plane stress, plane strain and axisym-
metric elements whilst Chapter Five is concerned with shell ele-
ments. The discretization procedure for many other elements are

available in the literature (e.g. [1]).
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3. CONSTITUTIVE EQUATIONS.

This chapter is concerned with the constitutive equations
for reinforced concrete structures. The first part deals with ex-
perimental evidence about concrete behavior. The second part
first introduces some basic mechanical entities (e.g. what it is
deviatoric or m plane, definition of stress and strain invariants
etc.) and thereafter,attention is focused on numerical modeling
of concrete behavior. It includes failure criteria and constitu-
tive equations, (both linear and nonlinear). Finally the material
models used in programs CONCRETE and NONSAP are discussed.

Nowadays many different expressions for modeling the beha-
vior of concrete and reinforced concrete exist. Despite this,
there is still a lack of generally applicable models. This situa-
tion is caused by the fact that all practical material models
deal with concrete from a macroscopic point of view. The material
models are created either by data fitting from which general re-
lationships between stress and strain are obtained or some purely
mathematical model is extended which often has nothing in common
with the real material.

Unfortunately these alternatives can not be used in all si-
tuations. Usually they work satisfactory provided that the struc-
ture is analyzed in material conditions similar to those during
the experiment. Over the years many models have been postulated
which are applicable for special circumstances but under other
conditions give poor performance.

Recently there has been increasing interest in the study of
concrete at microscopic level but practical usable results have
not yet been provided.

In the following, each model will be accompanied by a des-
cription of conditions for which it is applicable. Some of the
models will be given in total form, some in incremental form but
it should be noted that both CONCRETE and NONSAP work in incre-
mental form only. The only exception to this strategy is in the

program CONCRETE in the tension-tension 2zone for concrete in
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order to simplify the formulation of tension stiffening rela-

tions.

3.1 Experimental evidence about concrete behavior.

Concrete has been used as a building material for many years
and therefore an enormous number of different experimental tests
have been done to study its behavior. To date uniaxial stress-
strain behavior is well documented and many results have also
been collected for two dimensional loading situations. One of the
most widely used studies are the results published by Kupfer et.
al. [40] which nearly covers the complete range of possible 2D
loading conditions. In the case of three dimensional loading the
situation is much worse and to the author’s knowledge work simi-
lar to [40] is still lacking. Of course this lack of experimental
data is caused by the large amount of different types of 3D load-
ing possibilities as well as the demand on laboratory equipment.

An especially neglected area is experiments dealing with
long-term loading. Usually available data are based on measure-
ments done on some important real structure and hence are appli-
cable only for special types of loading, structural shape and ty-
pe of concrete. This problem will be discussed in more detail in
Chapter 6 which considers time-dependent phenomena for concrete,
i.e. shrinkage and creep.

Concrete is a composite material of coarse aggregate and
mortar which comprises a mixture of small aggregate particles,
cement paste and water. Its physical behavior is very complex and
depends on the structure of the composite material. The most im-
portant properties are water-cement ratio, ratio of cement to ag-
gregate, aggregate properties etc. Concrete is a brittle material
with tensile strength about one tenth of its compressive
strength. This complicates all models for constitutive equations.
Its stress-strain behavior is affected mainly by micro- and mac-
rocracks which are located mostly at the interface between coarse

aggregate and mortar. Many microcracks occur in concrete before
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loading. They are caused by shrinkage, thermal expansion of ce-
ment paste, segregation etc. After loading the progression of
these cracks and the creation of new ones is mainly responsible
for nonlinear stress-strain behavior.

A typical stress-strain curve in uniaxial compression test
is shown in Figure 3.1. There are three basic stages in this dia-
gram. In the first stage for stress up to about 30% of maximum
compressive stress f;, the stress-strain relationship is nearly
linear. The stress O.3f; is called the limit of elasticity. Fur-
ther on, up to about 75% of f;, concrete exhibits nonlinear beha-
vior. However the crack propagation at this second stage is still
stable. In the third stage, up to failure, unstable fracture pro-
pagation is the main characteristic. It 1is primarily caused by
cracks through the mortar. These cracks join bond cracks at the
surface of nearby aggregates and form crack zones. After this
further deformations localize and finally major cracks parallel

to the direction of applied load cause failure of specimen.

Lateral Strain Axial Strain

A o

0.002 0.000 -0.002 €

Fig. 3.1 Typical uniaxial compressive stress-strain diagram [40].

Uniaxial tension stress-strain tests show that 1limit of
elasticity is in this case about 65-80% of the ultimate tensile

strength f;. The regime of stable crack propagation is much shor-
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ter and the unstable crack propagation starts very soon. That is
why concrete is quite brittle in nature. The typical stress-

strain curve of concrete specimen subject to uniaxial tension is

depicted in Figure 3.2.

o (MPa)
}
T !

3t }( gauge length: 40 mm

f

—

Alum)

1
50 100

Fig. 3.2 Uniaxial tensile stress-elongation curve [62].

A very important property of concrete is strain softening.
This is applicable for compression as well as for tension regi-
mes. Figure 3.3 shows typical uniaxial compressive stress-strain
curves obtained from strain controlled tests.

It is still debated whether the softening branch of the
curves reflects material property or it represents rather the
response of the structure formed by the specimen together with
its complete loading system (van Mier, 1984). The latter hypothe-
sis is supported in Figure 3.4 which presents post-peak uniaxial
compression stress-strain curves for cylindrical specimens of
different height (van Mier, 1984). The observed curves signifi-
cantly differ. However if we plot the stresses against elonga-
tions (displacements) rather then strains, the three curves exhi-

bit nearly identical pattern.
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Fig. 3.3 Uniaxial compressive stress-strain curves for concrete

[64].
Even after creation of major cracks concrete still contribu-

tes to the total strength of reinforced concrete elements. A rea-

son of this, for example, is the bond between reinforcement and

concrete macro-particles which yet has not cracked or crushed.
This phenomenon is called tension stiffening. In practice it is
very difficult to distinguish between strain softening and stif-

fening and therefore the constitutive equations usually simulate

them both together.
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Fig. 3.4 Influence of specimen height on uniaxial stress-strain

curve [65].

Typical stress-strain diagrams for multiaxial compressive

loading of cylindrical specimens are shown in Figure 3.5 [61].

i i T T ] T ‘
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Fig. 3.5 Stress-strain curves under multiaxial compression

(stress, strain positive in compression).

It is now well known that concrete behavior in one direction
is significantly influenced by stress conditions in the other di-
rections. The lateral confining and axial strains at failure in-
crease with increasing confining stress, however beyond some
threshold the further increasing of lateral stresses will decrea-
se the values of axial strains at failure. This property is obvi-
ous from Figure 3.6 where volumetric strain is plotted against

the stress in biaxial compression tests.
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Fig. 3.6 Volumetric strain under biaxial compression [40].

It can be seen that under compressive loading with confining
pressure concrete exhibits a certain degree of ductility before
failure. In a two dimensional equal compression-compression
stress-state fhe concrete strength increases approximately by 20%
compared to the uniaxial strength f;. The Poisson’s ratio is
about 0.18 for nearly all types of concretes, : . Fhe higher g
compression strength the lower value of Poisson’s ratio. Its value
is stable until about 75 % of peak loading. Thereafter it increa-
ses to 0.5 near to the failure stage, (i.e. incompressible sta-
te).

A typical uniaxial working diagram of concrete subject to
cyclic loading is depicted in Figure 3.7.

The increasing number of cycles gradually degrades the mate-
rial stiffness. This property is well simulated by plastic-

fracturing material models.
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Fig. 3.7 Cyclic uniaxial compressive stress-strain curve [63].

More information about the experimental behavior of concrete
is provided in ref. [2] which gives an overview of the experimen-
tal results. Other information is also presented in ref. [41],

particularly fér plate bending conditions.

3.2 Basic entitijes.

The stress state at a particular point can be expressed with
respect to many coordinate systems. For the purposes of constitu-
tive equations the most commonly used are Cauchy stresses (i.e.
real stresses) in a coordinate system which is defined by the di-
rections of the principal stresses at this point.

The essential feature of this coordinate system is that vo-
lumetric strain axis can be defined (01 =0, = 03), perpendicular
to which are octahedral planes. See Fig. 3.8. The deviatoric pla-
ne is a special case of the octahedral plane lying in the first
quadrant of principal stress space.

The m plane is a deviatoric plane which satisfies the equa-
tion X o= 0, that is the plane in which the hydrostatic part of

stress equals zero.

The following notation will be used:
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[ o0 03] - coordinate system created by the principal

stress vector at a particular peoint,

[ 11; Iz; I3] - 1st, 2nd and 3rd invariants of the Cauchy

stress tensor,

{ J1; J2; J3] - 1st, 2nd and 3rd invariants of the

deviatoric Cauchy stress tensor,

where
I =0 =0 +0 + o0
1 i 1
I =_£.* (I ~¢c *0 J=0c*0 +0c %0 +0*0C
2 2 J
I =-l-* C % 0 * 0 =0 % 0C_ %0 /3.1/
3 3 ij ik jk 1 2 3
1 _ 1 _
Toct- 3 % Ty T LT
S =0 -0 *3J
1] 1] i)
2
roct- —5— * J2
_ 2
Tm— ? * JZ
and where:

015 is an element of the Cauchy stress tensor,

sij is an element of the deviatoric Cauchy stress tensor,

o;ctand T o 2r€ the normal and shear components of stress
in the deviatoric plane,

o and T are the normal and shear components of stress

acting on an infinitesimal sphere of the body.
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Deviatoric stress invariants are computed by replacing o
by sij. We can also define strain invariants I;, I; and I; ané
deviatoric strain invariants J;, J; and J; by replacing the ele-
ments of the stress tensor by terms of the strain tensor.

The stress state at a material point can also be described
by using £, y and ©® coordinates. The € coordinate represents the
volumetric part of the stress (the direction coincides with the
normal to the m plane), yx is deviatoric part of the stress (act-
ing in the m plane) and ® defines the angle of shear in the =
plane, measured from the projection of the o, coordinate axis on-

to the m plane to the vector x. Anti-clockwise rotation is defi-

ned as positive (see Fig. 3.8).

/(\ Stress vector at point

/ \ Deviatoric part x
/ \| | Hydrostatic part £

Deviatoric

/
plane \ #<i/
The normal of deviatoric

and 7 plane

Fig. 3.8 Stress state at point P in principal stress coordinate

system.

40



The principal stresses are ordered according to:
c >0 >0 /3.2/
1 2 3

and the following relationships exist for &, x and @:

£€=V3) »c =V@3) *¢o
m oct
x=T/(5E) »t =V(3) T
m oct
J
cos( 3@ ) =2 YB) 3 0<@< 3 /3.3/
2 J(3/2)
2

In addition the following relationships also exist:

o, L s (Jz) cos(0) "
c_ | = o + —_—— cos(8 - —=—m)
2 oct 3 2
o c V(3) cos(0 + mx —
3 oct 3
n
0<KB®<K—=; 0o >0_>0 /3.4/
3 1 2 3

The strain level at a point in a structure is described by a
strain tensor eij or the volumetric strain e, and deviatoric

strain tensor elj, defined by

=g —_é_*e * 3§ /3.5/

b
=3
0]
01
(]
[y}
<

1]
™
L}
—~
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3.3 Failure criteria for concrete.

3.3.1 Overview of failure criteria.

Failure criteria are of central importance in modeling
constitutive equations. Usually they distinguish a pre-failure
material state from a material in the fatal state. Many failure
criteria have been postulated, most being derived from experimen-
tal results.

The following general characteristics have been identified
for concrete near failure

-in pure hydrostatic compression, failure cannot happen,

-the curve describing material failure is directly related
to the level of hydrostatic stress € (11)' The higher the
compression the higher the allowable yx,

—-the shape of failure envelopes in deviatoric planes is
nearly circular under high hydrostatic compression and more
triangular under low hydrostatic compression or hydrostatic
tension,

-the tension-compression strength ratio (the ratio of the
tension-compression meridian) is always less than one, i.e.

Xt

< 1, (the compression and tension meridians correspond

(o]
to ® = 60°, and © = 0° respectively),
X
t

-for the mn plane, (Z o= 0), the above ratio is

[
approximately 0.5 whilst for nearly hydrostatic compression

it is close to 0.8,
-the envelope on the deviatoric plane and the meridian
failure envelope are smooth and convex.
Some of the most commonly used failure models will be briefly
discussed. They will be presented according to the number of va-
riables defining the criterion. More information can be found in
refs. [2] and [60]. Their meridians and cross sections near fai-
lure are shown in Fig. 3.9. Finally failure models used in the

present work will be presented in more detail.

42
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Fig. 3.9 Deviatoric and meridian cross sections of failure

criteria discussed in Sec. 3.3.
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One parameter models.

This group of failure criteria represents the most simple
models and provide only a coarse approximation to real behavior.
The failure stage of the material is characterized by one mate-
rial parameter which is readily identified.

The Cut-off criterion [2] is the most widely used stress-
based criterion and was first published by Rankine in 1876. Fai-
lure occurs if any principal stress exceeds the fixed value defi-
ned for maximum normal stress. This value is quite independent of
the stress condition in the material prior to failure. It is
often used as an additional criterion to other failure criteria,
and is most often employed for tension zones in concrete where it
has provided satisfactory accuracy.

It was found that failure in concrete, especially in com-
pressive zones, is more sensitive to the value of mean shear than
principal stresses. This is the main idea of the shear-based
Tresca failure criterion. In this, failure occurs if the mean
shear in concrete is higher than the maximum allowable shear.

This criterion fits experimental data much better than the
Rankine Cut-off criterion, but unfortunately it is not smooth.
This can cause problems during numerical iterative solutions. An
alternative is the Von Mises failure criterion where the maximum
mean shear is replaced by the maximum octahedral shear, leading
to a smooth failure surface.

The Tresca and Von Mises failure criteria are most suitable
for concrete under stress conditions close to hydrostatic pres-
sure. In particular the Von Mises criterion in combination with

the Rankine Cut-off (for tension) provides reasonable results.

Two parameter models.

Experimentally obtained stress-strain curves show that the

peak stress value in concrete is directly dependent on the value
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of hydrostatic stress. Hence it is advantageous to use a variable
failure threshold which depends on the hydrostatic stress. This
is the basic idea of two parameter models such as Mohr-Coulomb
and Drucker-Prager models.

Two parameters failure criteria use variable cross-sections
of the failure surface. However there is affinity between them
which is contrary to experimental evidence. Despite this inaccu-
racy both criteria are often used (Mohr-Coulomb for concrete and

Drucker-Prager for rocks).

MOHR-COULOMB failure criterion:

According to Mohr-Coulomb, failure occurs if the shear
stress exceeds a value which is a linear function of normal
stresses ¢. The Tresca criterion is a special case of this. The
failure surface in deviatoric plane is hexahedronal in shape.

Used in combination with the Rankine Cut-off criterion the
three parameter Cowan criterion [2] is obtained, (originally pub-
lished in 1953). This criterion has been satisfactorily used in
practice, and is also used in program NONSAP. It will be discus-

sed in more detail later.

DRUCKER - PRAGER failure criterion:

This criterion is an extension of the Von Mises criterion.
The failure surface in the deviatoric plane ha;&shape ofmcone.
Setting the constant corresponding to hydrostatic compression

equal to zero leads to the Von Mises criterion.

Three parameter models.

There are two basic inaccuracies associated with two parame-
ters models. The first is the affinity of cross sections with
respect to volumetric compression and the other is the linear re-
lationship between volumetric stress and volume of failure enve-
lopes in deviatoric planes. This should be parabolic at least.

This group of failure models is capable of avoiding one of
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these drawbacks, whilst the other remains. Hence they can be di-

vided into two basic groups:

Group a:

A parabolic relationship defines the meridian whilst there
is affinity between cross sections which remain always circular.
The BRESLER-PISTER criterion (1958) [2] is an example of failure
criteria of this group. For low value of & it provides results

close to those using the Rankine Cut-off criterion.

Group b:

The relationship between volumetric stress and the meridian
value remains linear but deviatoric-cross sections are no longer
circular, their shape being a function of the angle of similari-
ty. The WILLAM - WARNKE criterion [2], [60] is probably the most
widely used criterion of this type. Its failure surface is smooth
and convex. It creates a base for the five parameter WILLAM-
WARNKE criterion [2] (discussed later). Accurate results have
been obtained with this criterion.

Nowadays there are many other criteria of this type
available, for example ARGYRIS (1974), [2]. More information is
provided in refs. [2] and [60].

Four parameter failure criteria.

Using one more material parameter, it is possible to estab-
lish more accurate models for failure prediction. However in-
creasing the number of material constants also increases the nu-
merical labour and, more seriously, it becomes more difficult to
obtain the relevant material constants used by the model. Hence
sometimes the benefit from using better failure criterion is a
priori neutralized by using inaccurate input data for the mate-
rial constants.

An example is the OTTOSEN failure criterion (1974), [2].

This criterion is suitable for any stress combination in concre-
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te, its meridian sections are parabolic and cross-sections change
their shape from nearly circular to triangular depending on the
value of volumetric stress. With a parameter setting of constant
the criterion degrades to the Von Mises criterion.

Another example is the HSIEH failure criterion [2] which sa-
tisfies all convexity requirements. However the deviatoric cross

sections are not smooth.

Five parameters failure criteria.

An example of five parameters failure criteria is the five
parameters WILLAM-WARNKE failure criterion [2]. This is direct
extension of the three parameter Willam - Warnke criterion which
has been already mentioned. All experimentally established pro-
perties of the failure surface are satisfied (smoothness, conve-
xity etec.).

The only drawback is that the convexity requirements leads
to failure when only hydrostatic compression is present, which

contradicts experimental evidence.

Fajilure criteria based on fracture mechanics.

The other possible approach to the problem of concrete
failure can be based on fracture mechanics. Nowadays a massive
literature on this topic is available, for example works of Ba-
zant and Tsubaski [8]. The main concept is that occurrence of
failure depends not only on the stress state at one distinct
point but also on its surrounding area. Energy criteria then de-
terminate whether a crack will propagate into the surrounding
area. The result is that these models also observe areas close to
their position and predicted results are usually more accurate.
Unfortunately their use is also more complicated.

We will not discuss these models here in more detail since

it involves the concept of damage theory, which is outside the
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scope of this work. Further details can be found in [60] and the

work of Dougill (1975,1976) and others.

3.3.2 Mohr-Coulomb failure criterion combined with Rankine

Cut-off used in programn NONSAP.

The failure criterion defined by a combination of the Mohr-
Coulomb and Rankine Cut-off criteria represents one of the most
popular failure surfaces for two dimensional problems. The given
accuracy is usually satisfactory and the criterion is at the same
time simple to use. For compression-compression and compression-
tension zones the Mohr-Coulomb criterion is used. For the ten-
sion-tension zone, Mohr-Coulomb usually overestimates the mate-
rial strength and thus the Rankine Cut-off criterion is used in-
stead to define the ultimate tension in concrete.

The ultimate quantity defining failure is mean shear stress
and this will now be discussed in more detail for 2D condition.

Mathematically the failure is expressed by:

1 + sind 1 - sind

1 "2C cos® %27 2C cost ! /3.06/

o

where o, > o, are principal stresses and ¢, C are two mate-
rial constants, the angle of internal friction and the material
cohesion. The derivation of /3.06/ is straightforward using Mohr
circles.

The material constants & and C can be identified from
uniaxial strength in compression f; and tension f;, (or alter-
natively in shear f;). Substituting o, = —f; and o, = 0 into
/3.06/ leads to one equation. Similarly o, = f;, (or o, = f;) and
o, = O leads to a second equation. The solution of the required

material constants from those equations is then straightforward.
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A third material constant is necessary to define the peak
value for tension for Rankine Cut-off criterion, wusually

the tensile strength f; in the form:

max( o ; o) = £’ /3.07/
1 2 t

The program CONCRETE uses an elastic-plastic material mo-
del for the constitutive equation, in which both compression
hardening and tension stiffening are included. It implies that
the material state is primarily defined by a plasticity Yield
function or a subsequent loading surface. These will be presented
later in the section concerned with constitutive equation mode-
ling. Similar to the model used in NONSAP, the main failure cri-
terion here is also combined with the Rankine Cut-off for the
tension-tension zone.

The function defining the loading surface after the begin-
ning of plasticity in a material must also be limited. Theoreti-
cally it is possible to design expressions for loading functions
so that they are applicable until the material is completely de-
stroyed, however in practice this is very difficult to achieve
and is not very useful. Due to serviceability and additional rea-
sons, it is satisfactory to define loading functions for a limi-~
ted stress or strain range, so that if damage in the material ex-
ceeds some ultimate level, the total loss of both rigidity and
stress in the material can be assumed.

There are many possibilities for defining this additional
ultimate failure surface. In program CONCRETE an expression very
similar to the loading surface is used for the sake of
simplicity. The only difference is that stress entities are

replaced by strain entities. Its mathematical form is given by:
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B(-3J)) + al} = ¢ /3.08/
where e is ultimate value of total strain extrapolated from
uniaxial test results,
J; is the second deviatoric strain invariant,
I; is the first strain invariant and
«, B are material constants and are the same as defi-
ned for the yield function. There are calculated
to fit the Kupfer et. al [40] failure surface.
These will be discussed when presenting the Yield

function in Section 3.5.3.

The expression /3.08/ does not represent the most sophisti-
cated solution, nevertheless it works well for most practical
examples. Note that some other authors (e.g. Hinton [42]) use as

a J; a negative value defined by /3.1/.

3.3.4 Crushing coefficient.

A natural question is how to define material behavior after
material failure has occurred in a particular part of the
structure.

The simplest solution is to omit rigidity and stresses in
the failure zone, but this is a very coarse approximation.
Usually it is necessary to adopt more accurate treatment within
failed areas, according to their mode of failure. This is the
main idea for introducing a crushing coefficient.

Generally there are two basic modes of concrete failure. The
first is the consequence of excessive values of tensile stress,
(either due to tension or shear), leading to the creation of
cracks. The second is the crushing of concrete in which case the
concrete degrades to a material with properties similar to a loo-
se material (e.g. sand).

In the latter case complete los® of material rigidity and

internal stress is justified but in the former we have to account
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for material stiffness in direction parallel to cracks. This is
done by assuming an orthotropic material with nearly zero
rigidity perpendicular to the crack but with the original
rigidity value parallel to the crack. However if the material is
partly destroyed by cracking and partly by crushing, an accurate
solution is very difficult. One possibility is to use a linear
combination of rigidities corresponding to both failure modes.
The coefficients defining this combination are established
according to how much each particular mode of failure
participated in the failure condition.

The pure crack failure mode can be roughly characterized by:
c =20;, 0. >0_>c0 /3.09/

1 1 2 3
or alternatively using stress invariants:

1 ° o

V J2 cos® +——— | =20; 0 =6 =60

Vs

The simplest way to mathematically characterize crushing
failure mode in a material is to assume that all strains
corresponding to principal stresses must be negative. Thus:

e =0 /3.10/

Assuming elasticity the substitution of stresses to /3.10/

leads to
o, - u(oa + 03) =0

or /3.11/ if stress invariants are used

V' J, cose + 1-28) ;.9 0°< @ = 60 °

21/3—(1+;1) 1

/3.11/
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A comparison of /3.09/ and /3.11/ leads directly to the so

called crushing coefficient:

I

1
vagﬂ Vf;; cos®

x =

/3.12/

If « = 1 we assume that material failure is due to a pure
1+

1 -2u’
occurs. For intermediate values of «, a coefficient v defines

cracking mode. On the other hand if a = pure crushing
the ratios of failure modes such that for cracking v = 1 and for
crushing v = 0 and intermediate values are linearly
interpolated.

After failure it is assumed that the orthotropic material
has nearly zero rigidity perpendicular to the crack and v times
the rigidity of the original material for directions parallel to
the crack.

This approach is only a first approximation for dealing with
multi-mode failure criteria, but based on experience with program

NONSAP its use is generally satisfactory.

3.3.5 Failure criteria for steel.

Steel behaves as a isotropic elastic-plastic material and
thus a failure criterion can be defined by the ultimate loading
surface similar to its Yield function. The situation is further
simplified considering that reinforcing bars are only one

dimensional elements. This approach is employed in this work.

3.3.6. Interaction of concrete and reinforcing bars in

cracks.

Experimental evidence shows that after cracks have been

formed concrete continues to contribute to structural rigidity in
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a direction perpendicular to the cracks. This is because cracks
occur at finite intervals and the surround material between them
can still contribute to the structural stiffness, especially if
reinforcement is present. Two possible solutions have been sug-
gested for dealing with this phenomena. The first one accounts
for a post-cracking concrete contribution by artificially in-
creasing the reinforcing bar rigidity near € the concrete ul-
timate strain in the uniaxial tension test.

The second approach, (used here), assumes some post cracking
residual material rigidity in the concrete. This is usually defi-
ned by a tension stiffening rule which will be discussed in Sec-
tion 3.4.

More information about behavior close to cracks, which is
not relevant to this thesis, is summarized in ref. [41]. It
should be noted that the bond-slip between the concrete and
reinforcing bars is important in some situations, especially in
detailed studies. For the sake of simplicity this phenomena are

not accounted for in this work.
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3.4 Linear elastic constitutive models for concrete

accounting for cracking and crushing.

The simplest constitutive equations for any material, inc-
luding concrete, is their linear modeling by Hooke’s law. If in
addition, crack occurrence is accounted for, the resulting mate-
rial model serves as a fair approximation to real material beha-
vior. This model is quite applicable to a large range of structu-
res which fail due to yielding of reinforcement rather than com-
pression collapse of concrete. Hence it is especially applicable
for shell or moderately deep bending structures etc. In the case
of high volumetric compression levels the results tend to over-
estimate concrete stiffness because no ductility, (or plastici-
ty), is assumed.

In order to specify crack creation as well as crushing of
concrete, the models need to be supplemented by simple failure
criteria. In the case of crushing failure we usually assume a
complete loss of material rigidity and stresses whilst in the ca-
se of cracking, an orthotropic material is adopted. The orthotro-
pic axis are assumed to coincide either with the principal stress
axes or with directions of principal strains. The stiffness in
the direction parallel to a crack is assumed unchanged. The stif-
fness in the perpendicular direction is set to zero and appro-
priate normal stress is released unless tension stiffening is
adopted. If in subsequent loading history the crack closes again,
the original isotropic material is reinstated.

Some models take into account normal and shear residual
stiffness across the crack, (due to aggregate interlocking, rein-
forcing dowel etc.), and they will be discussed later.

In cases of mixed crack/crushing failure modes the crushing
coefficient approach presented in Section 3.3.4 is often employ-
ed.

In the following, simple linear constitutive models will be
presented for the case of two dimensional and axisymmetric load-

ing conditions. Its extension to shell analysis is straightfor-
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ward and will not be given explicitly. Also in this case we
assume that cracks can occur perpendicular to the element plane

only and hence the similarity with 2D models.

Constitutive equations of this type are based on Hooke’s law
specifying linear relationships between strains and stresses.
These equations are well known and only final expressions are

presented.

For general three dimensional loading:

E pE

A011=(1 + #)Aeij+ (1 + p)(1 - 2u) Askkaij

/3.13/

where E is Young’s modulus, p is Poisson’s ratio and Ac and
Ae are stress and strain increments. SiJ is the Kronecker’s &
tensor (611= 1 for i = j, 61j= 0 for i # j)

In the case of 2D problems /3.13/ can be abbreviated to:

Axisymmetric problem (z-axis is axis of symmetry):

(yz®= Yor= %0~ Tors 0). See Fig. 3.10 showing the adopted

notation.
- - . 1T -
Ao (1 -u) pu 0 K’ Ae

r r
Ao (1 - ) 0 n Ae

z - E z
Atrz (1 + pw)(1 - 2u) sym. (1 -2u)72 0 Aarrz
Ace (1 - ) As®

/3.14/
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. ——— . S

Axis of rotation

Fig. 3.10 Notation for axisymmetric problem.

Plane strain in plane (x-v):

(e=y =9y =1 =1 =0)
z zy zZx zy zZx

Ao (1 - p) p 0 Ae
X E X
boo | =1= w) (1 - 2u) (1= p 0 be,
A-cxy sym. (1 - 2u)/2 A'a'xy
/3.15/

Ao‘z can be calculated using /3.13/:

- E u
b T v (T =20

(0g + Ae ) = p(bo + Ao ) /3.16/
x y X y
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Plane stress in plane (x-vy):

(o-:z' =y =T =T = 0)
z zy zx zy zx

Aax 1 1 0 wa
Ao =———l£—?;— 1 0 Ayy
y —
At (1 -u) sym. (1 - 2u)/2 At 73.11/
Xy Xy
Ac =0,
z
Ae =—FE _ (Ae + Ae ) /3.18/
z 3 S 1 X y

Although equations /3.14/ through /3.18/ were presented for
stress and strain increments, because of their linearity the same

form can be used for relationships between total values.

Proceeding to the constitutive equation for cracked concre-
te, because of our restriction to 2D problems, a crack can be
created in the x-y plane only (see Figure 3.11). The coordinate
system x’-y’ parallel with the crack is based on the assumption
that x’ axis is normal to direction of principal stress respon-
sible for the crack creation. The angle between axes x and x’ is

denoted B and is positive for an anti-clockwise rotation.
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i

x<r) x<r)

Fig. 3.11 Crack pattern in x-y plane.

After crack occurrence the equations /3.14/ to /3.18/ are

replaced by /3.19/:

- i - -
(Aa'x Ex R uEx, (Acx s
Ac , 0 Ae |
y - y y
AT ’ ’ G ’ » o A7 » »
x'y x’y x'y
Ao sym. E Ae
z z z J

/3.19/

where E = E = E’ is the original Young’s modulus and EW
X z

are residual values of Young’'s modulus perpendicular to

’

and Gx,
the cr;;k and the shear modulus along the crack.

For the cases of plane strain and axisymmetry after the
crack formation, we deal with a plane stress problem in plane x’-

z and hence E’ = ——ji—?;, whilst in the case of a plane stress

1-unu
problem after cracking the solution degrades to a one dimension

situation with E' = E. Here E is Young’s modulus for a virgin
concrete in one dimension, p is Poisson’s ratio. Notice that

Poisson’s ratio in the x’'-y’ lane is assumed zero ( = 0).
xiy!
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This is justified (see for example refs.

[(141).

Equations /3.19/ are provided in x’-y’ coordinate system and

therefore it is necessary to transform them to the original x-y

system. This takes the form:

Ag =D AE .
where:
¢t s%c? s cd ouc?
s*; s’c; ps®
D= sym. 82C? usc E
i 1
g%, s2c%,-s 3 o
c*;s%c; o0
sym. s2c2, o | B,
. ’ 0
2sc?; -25%c?; -sc(c?- s?)
2s%c?;  sc(ci- s?)
sym. (c®- s®?/2 ;

/3.20/

where C = cosfB, S = sinB and B is the crack angle.

B is computed using the direction of principal stresses just

prior to failure:

n=1
X

c -0

x 1
n=
y T

Xy
n

B = arctg(-—g)
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Note that o, > o and is the in-plane principal stress

prior to cracking.

Similar to equation /3.21/ we can derive transformation re-
lations for the stress vector [o#,O},,rxy,,oz] to the x-y coor-

b4

dinate system.
c =0 coszﬁ + o sinZB - sin28 T
x x?* y? x’y’

2]

. 2 2 .
oc=0 sinB + 0 cos B + sinZ2B T
y % y’ X'y

T = (¢ -0 ) sinB cosB + T cos2f
xy x’ y’ x,y’

Note, that in order to be able to use the transformation ru-

1

le for tensors, in Ae we have to consider not ¢y v but € ==2?7
- X X

y Xy

[{3] and after transformation to reset ny back again.

Equations /3.20/ and /3.21/ were presented for an x-y-z coordi-
nate system with a crack in the x-y plane. For axisymmetric si-
tuation it is necessary to replace indexes x, y, z by r, s, ©
respectively. In the case of plane stress (plane strain) problems

o (ez) equals zero and expressions similar to /3.18/ and /3.16/

must be derived.

An important feature of this model is that after cracks
have occurred, the residual rigidities Ey, and Gwy’ are
retained.

This is in agreement with experimental evidence. Nevertheless,
some authors (for the sake of simplicity) neglect them both

leading to the following expressions (recommended in [2]):

a/ Plane stress (plane x-y):

stress vector
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e=[e; e; € 1 ... strain vector

increment of stress due to

increment of strain Ae
strain increment

B ... angle of crack.

b(B) = [ cos?(B), sin®(B), sin(B)*cos(B) ]

QL(B)T = [ cosz(B), sinz(B), 2sin(B)*cos(B) 1

E ... Young’s modulus
I ... identity matrix
i ... Poisson’s ratio

Ac = ( E {b(B)*b(B)") * &c

-( I-{b(®)*p (B)) * o /3.22/

b/ Plane strain:

{(B)*(B)") * Ae

-( I-{p(B)*p" (B)") * o /3.23/
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¢/ Axisymmetric problem:

AO‘r T Aer
Ao b(B)*b(B)" ; ub(B) Ae
z E z
= * *
ATr'z 1-112 T Aerz
rb(B) ;1
Aoe Ae@

o

(I-b(B)*b” (1)T); 0 N
T

0 . 0 orz

®

/3.24/

Note that equations /3.22/ through /3.24/ comprise stress
changes Ac due to strain changes Ae (first term) and also stress
changes due to crack occurrence (released stresses, in the second
term of R.H.Sj. Hence they are applicable only for the step when
the concrete has just cracked. For the following steps (or itera-

tions) the second terms of /3.22/ to /3.24/ are omitted.

Returning to the general case which includes residual mate-
rial rigidities after cracking, it is necessary to specify cor-
rectly the shear modulus G*,y, and Young modulus Ey, in equation

/3.20/. In the following, four often used methods are presented.
Model a/.

The simplest way of establishing G;,y, and E;, is shown in
Figure /3.12/:
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Ftu - — Gy

016

0.1 'F'tu

cr . Cut %

Fig. 3.12 Evaluation of ¢ , and Gx,y, - method a/.
y

The model assumes a piece wise linear relationship diagram
for the normal stress perpendicular to the crack. The model
assumes that the strain normal to the crack, €, can be taken as
a measure of the crack width. The wider the crack the smaller the
normal stress. Beyond €. {(the ultimate tensile uni?xial stz;}n)
the corresponding stress is constant and equal toc fraction "the
original tensile strength. Young’'s modulus Ey, is computed by
taking the derivative of oy, with respect to e.

The shear modulus after cracking is also reduced to about
10% its original value and kept constant for further loading.

Mathematically the model is expressed by:

Normal stress:
€ - ¢

o =24 [1 + 9t y'] for € >e = ¢
y' 2 g€ — ¢ ut y? cr
ut cr

do | ft 1
E =—Y =" /3.25/
y* de 2 € - €

y’ cr ut

and

ftu
S T EW= 0 for ey) € .
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where ftu is ultimate tension normal to the crack just

before its creation,

€ 1is strain € corresponding to f , (usually f =f’)
cr y tu tu t°
€. is ultimate one dimensional strain .

u

Shear modulus:

quﬂ= 0.05G to 0.15G /3.26/
This model represents a very simple approach which causes
some difficulties with the numerical treatment of the problem (to

be discussed later). More details are available in ref. [9].

Model b/.
In order to provide a more accurate model the following ex-

pressions have also been recommended [10], and are shown in Fig.

3.13. These comprise also linear relationships.

Normal stress:

8 ’
« [oc -y ]
2 tul 1 €
c = °r for ae > e =z ¢ /3.27/
y’ oa -1 1 cr y’ cr
% feu ( 1 ]
E = -
y' o -1 €
1 cr
and ¢ =0; E =0 for € > a €
¥ y’ y’ 1 cr
Shear modulus:
(Bl - Bz) eyv
Coy™ CTB =TT [ By ‘e—c;)* B, G 73.28/

for e > e = ¢
3 cr y? cr
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G =B G for cy,> 338

cr

The additional material constants «, o, Bl, B and,B3 are

2

set experimentally or numerically.

Ftu — —

Aofiul

cr : cr1 Y

Fig. 3.13 Evaluation of o and G*,y, - method b/.

Based on results presented in [10] the following values are

suggested:

« = 10; a= 0.6; B1= 1; BZ=0.1; Ba= 10
The other possibility is to relate constants o and x, to
fracture energy Gr of concrete (i.e. energy which is necessary to

create a crack of unit surface):

o £

1 cr
Gf=J (o, 1 dc] /3.29/
y c
£
cr

where lC is a characteristic crack length.
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Substituting /3.27/ to /3.29/ we get:

G=0.5a a1 f ¢
f 1 2 ¢ tu cr

2G
£

l1.e. 0’.1 “2=—T— /3.30/

£
c tu cr

and length 1c can be assumed for 2D situations as:

1= V[;ﬂ /3.31/

where A is the area corresponding to the sampling point. The
fracture energy for normal concretes varies between 50 N/m to

200N/m.

Model c/.

This model represents a different approach. The basic idea
is to divide the total value of strain in the direction normal to
the crack ey, into two parts. The first part Aeco corresponds to
the strain in the uncracked concrete and the second part Aecr to

the strain in the crack [14], i.e. ey,= Ae + Aec.

co r

The above equations can be derived from the assumption that

after cracking stress equilibrium must be satisfied:

where:

chr= Aecr Et stress in crack (the second part of strain),

Ao;°= Aeco E stress in virgin concrete (the first part of

strain),
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and the compatibility condition:
Ae = Ae + Ae .
cr c

y o

Using the above equations we can write:

Ae = ———=—Ac /3.32/

__B E
AT 'y 1 - B [2(1 + p.)] Ala’x’y’

and for unloading phase:

E Esec
Ao'y’=?-:E_ Aey, /3.33/
sec
B E
My T-B [2(1 ) Moy
where:
Ao ,, Ae , Ay , ., AT, are as previously defined,
y y X'y x'y
Et is Young’s modulus which relates the change of stress in
the direction normal to the crack Aoy, to the change
of strain in direction normal to the crack €orer (the

first part),

E .. 1s the secant modulus based on o},and €, (for unload-
ing only),

B is a material parameter defining shear reduction after

crack formation.

The shear and Young's modulus are calculated as usual by ta-

king appropriate derivatives.
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Model d/.

The above models provide results of satisfactory accuracy,
but unfortunately their discontinuities sometimes causes serious
trouble for nonlinear equation solvers. Thus smoother methods of

modeling the residual rigidities have been recommended [39]:

Y
fiup — @ Gxy”’
G @
BG[

fo(ey’) l
aEFtJ~ l
e '
l
|

1 , QA LL — 2 —— -2

‘Scr* Ecr*al 8y, Ecr 63 Ecr* Ey‘

Fig. 3.14 The functions fv(ey,) and fG(ey,) in model d/.

This model is similar in shape to model b/ but the piece
wise linear relationships are replaced by a hyperbolic function

for both o , and G, = as follows:
y X’y

_ _ k
}’—f(sy,) = a +—€_’_—'_E /3.34/
y
where y and f(e |) are either o , or Gwy, and constants a,
y

b, k are computed from the requirements that f(ey,) must fit
points 1, 2 and is tangential to a constant residual value (see
Figure 3.14), i.e. point 3 is at .

This leads to:

e —-b
_ - cr
Gx,y,— G Bz + (1 Bz)'E;T:_B /3.35/
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where 81’ 82 and 33 are three material constants to be set

experimentally or numerically and

_AC - B
b =x 1
where

B, - B €

=_1 2 . = . —_cr
A‘.2(1—,32) » B=eg 3 C=—-(1+8)
Similarly for o

€ - b

c =f [L—] /3.36/
y’ tu ey,— b

where «, o are additional material constants and

AC - B
=37
where
ul 8cr
A= —2—; B=€cr; C = 7] (1+a2).

do € -b
cr

/3.37/

vy’ aey’ tu (e -b)

Some final remarks on the above material models:.

The last model, method d/, was implemented into NONSAP and
some previously reported numerical troubles, such as oscillation
around the structural response corresponding to cracked and un-
cracked material conditions, disappeared. For shell analysis,

(program CONCRETE), method b/ is used thru this work.
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The value ftu in model /d is not constant, (providing that
the Mohr-Coulomb criterion failed) and depends particularly on
the level of volumetric stress. Hence for every sampling point
with a crack, in order to preserve the continuity of the normal
stress across the crack, the peak tension ftu must be remembered.
If more crack directions are allowed then for every new direction
an additional value must be stored. Obviously this strategy de-
mands a lot of computer storage. For this reason some authors
(models a/, b/) prefer to sacrifice the continuity and use a re-
duced uniaxial tension strength f; instead. In addition, a simi-

lar situation arises with the shear modulii in cracks.

If residual rigidities are neglected after cracking then the
stress state degrades to 222r% dimensional problem, and hence the
next failure leads to total failure.

If, however, residual rigidities are taken into account, it
allows creation of an additional set of cracks after some further
loading. There are two possibilities for treating these. The
first is based on the simple assumption that the second set of
cracks must be normal to the previous cracks and no additional
set is possible. This is used in program CONCRETE. The second
approach is to calculate the direction of the second set of
cracks using the current stress state. It is assumed again that
the crack direction is the direction of the principal stress o,

In addition to the above approaches we should mention so-
called fixed and rotating crack models. The basic concept of the
former is that a crack, once created, doesn’t change its direc-
tion. The latter calculates a new crack direction every time the
material rigidity matrix is evaluated. In practice this causes
the crack to "rotate". This idea is justified by some experi-
mental evidence which suggests a single crack is never created
but rather small areas of micro cracks occurs. The particular di-
rection of material weakening is then a function of current load-
ing (or stress) state in appropriate zone.

The fixed crack models are adopted thru this work.
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A final source of doubt is whether to base crack direc-
tions on principal stresses or on principal strains. la the
author’s opinion this question has not yet been resolved.. Never-
theless principal stresses are used more for their easier treat-

ment rather than for more accurate results.
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3.5 Nonlinear constitutive equation for concrete.

The objective of this section is to present some of the most
widely used nonlinear constitutive equations for concrete. They
are usually combined with the linear models discussed in the pre-
vious section and can be used with any of the failure criteria
discussed previously.

Generally nonlinear constitutive equations are usually used
only for the compression regime whilst the tension regime is co-
vered adequately by linear relationships. There are many types of
nonlinear equations, for example hyperelastic, hypoelastic, elas-
tic-plastic, endochronic etc. and there are special groups based
on fracture mechanics. As in the previous section nonlinear mo-
dels can also be treated as smeared or discrete. An important
additional division of nonlinear models is whether they are
assumed to predict concrete response for monotonic or cycling
loading conditions or even for dynamic loading. Some models are
of the secant type (hyperelastic models) where the current
stress-strain relationships is independent of previous history;
hypoelastic models, on the other hand, are examples of constitu-
tive equations which account for all previous loading paths.

In the following, examples of initially isotropic, orthotro-
pic and elastic-plastic models are presented because they are the
most frequently used material models in current nonlinear finite

elements methods.

3.5.1 Isotropic models.

This group of models is characterized by the assumption of
initial isotropy in the concrete. During the loading process an
anisotropic material is created. There are two basic types in
this group. The first extrapolates uniaxial nonlinear stress-
strain behavior to 2D and 3D solutions using a form of constitu-

tive equations similar to /3.13/ with variable Young’s modulus
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and Poisson’s ratio. The second type is based on nonlinear rela-

tions defining the bulk and shear modulij .

3.5.1.1 Model with variable Es and M.

This is one of the simplest nonlinear models for concrete.
The basic entities are variable Young’s modulus Es and Poisson’s
ratio B, In order to extend uniaxial relationships for ES and B
to 2D or 3D situation a nonlinearity index B is introduced which
defines the ratio of the maximum current stress to the critical
compression stress at failure.

The compression at failure is computed using any failure
criterion in which the ratios of main and lateral stresses are
the same as for the current loading condition. In other words the
critical compression stresses are assumed to be a multiple of the
current stresses.

For the uniaxial relationship between Es and strain € Sargin

(1971) [2] derived the following relationship:

2
—A(‘“’ ]+(D—1)[§ ]
-0 _ c c
f) - - . 2 /3.38/
¢ 1-(A—2)[ ]+D[ ]
€
[o] (o]
Eo
where A is ratio the T

[o]

E_ 1is initial (virgin) Young’s modulus,

f)
Ec= ec is the secant modulus at failure,

Cc
D is a parameter defining the shape of

descending part of the stress-strain diagram,
€ 1s the maximum compressive strain at

(o}
failure,

€ is the current compression strain.
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A=2, D=1
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Fig. 3.15 Diagram for ¢ - € according to Sagrin -~ (uniaxial

case).

The function for Poisson’s ratio ®

form:

2

= gy - (=)’

where B8 is the nonlinearity index,

Ba is set approximately to 0.7,

is recommended in the

for 1

17
®
v
w

for 8 = B
/3.39/

u  and H, are the secant and initial Poisson’s ratios,
s

M, is Poisson’s ratio at failure (0.5).
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Fig. 3.16 The Mo B diagram.

In practice a factor A, the multiple of current loading com-
pared to failure, is first calculated; B = A"'. The second step
is to obtain the maximum compression strain € corresponding to
failure. Thereafter the ratio 8/8c is calculated from which the
stress o and Poisson’s ratio u are computed using equations
/3.38/ and /3.39/. Hence using the values of ¢ and € the current
secant modulus is calculated which is then substituted into
equation /3.13/ with Poisson’s ratio 1in order to calculate all
stresses.

The main advantages of this model is its simplicity and the
smooth modeling of the descending part of the stress-strain dia-

gram. The uniaxial stress - strain relationship provided by Sar-

gin can be replaced by any other suitable equation.

3.5.1.2 Model with variable bulk ES and shear gsmodulus.

The main idea of this model is very similar to the previous
model, the only difference being that the variable material con-
stants Es and p_ are replaced by variable bulk modulus KS and
shear modulus Gs.

Approximate functions for both Ks and GS are established by

fitting numerous experimental results for 2D stress states to
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functions K =K (I ) and G =G (J_) or K=K (¢ ) and G =G (¢t ).
s s 1 s s 2 s s oct s s oct
The independent variables I1 and J2 are used in order to en-
sure the independence of the loading history. Alternatively
strain entities can be used instead. These models can be subdivi-
ded into those which use secant relationships or those which use

tangential relationship.
a/ Secant relationships.

1/ 2D state: K=K (y ), G=G (y )
s s oct s s oct

/3.40/
[ ] [ 1 ;3K -2G 0 T e 7
X s S X
2(3K +G )
S s
o =4G(3K+G)§3*K—2*G]S; 1 ;0 £
y s s s s s y
3K +4G 2(3%K +4xK
— s S s s
T 0 ; O ; 3K +4G €
| xy . L s s | L xyl
4(3K +G )
s s
/3.41/

The experimentally derived functions Ks, Gs are supplemented

by the failure criterion:

o = f’t = 02 for the tension-tension zone,

9
]

(1 + 0.8 oz/f’ )f’t for the tension-compression zone,
c

°~1 0.2 : ¢2 0‘1
f_+ + + 3.65f—, =0

c c

( 012 02) for the compression-compression zone.
/3.42/

where f’t, f’ are the uniaxial tensile and compressive
c

strengths respectively,
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€ , 7 are the octahedral volumetric and shear
oct oct

strains respectively.

2/ 3D problem: K=K (¢ ), G=G (y )
s s oct s s oct
For the 3D case we must use K=K (¢ ) and G =G (y ) be-
s s oct s s oct
cause the previous assumption KS=KS(7°ct) involves a linear rela-

tionship between volumetric changes and hydrostatic stress [2].

The detailed derivation of equations similar to /3.41/ is

trivial. Suitable expressions for functions K and GS [2] are:
s

(e /c)
K (e ) oct

s oct

KO[ ab +d ]

(-7 t/r)
Go[ mq °° -ny +t]

oct

G (¥ )

s oct

/3.43/

where a,b,c,d,m,q,r,n,t are material constants and Ko and Go
are the initial bulk and shear modulii. They must be identified
experimentally.

The 3D situation /3.43/ must also be accompanied by appro-

priate failure criteria.

b/ Tangential relationships.

Tangential relationships are based on the same functions for
’bulk and shear modulii as the secant relationships but now it is
necessary to take appropriate derivatives. For the 3D case these
take the form:

aG

s —
A‘coct'._. (Gs+ 7oct* a'a’oct ] A’yoct’. B G’I‘ Ayoct
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K
Ao = 3(K +e  *
oct s 9

oct

s

Ae = K Ase
oct T oct
oct

/3.44/

where At , Ac , Ay and Asg . are increments of cor-
o ocC

ct oct oct

responding entities.

For the 2D case, (i.e. K=K (y ), G=G (¥ )), the equa-
s s oc s s oct

t
tion for Am}ct is replaced by:

€ . oK
Ac = ( s K+ 425 * s e ] Ae
kl s ¥ k1 x1

oct

oct oct

/3.45/

where Skl is k,1 element of the Kronecker’s delta tensor and
ekl is element k,1 of the deviatoric strain tensor.

After soﬁe manipulation similar equations to /3.41/ in in-
cremental form can be obtained.

It should be noted that these models are only suitable for
monotonic loading conditions and that the volumetric and shear
behavior are treated independently of each other. This is con-
trary to experimental evidence and the following model attempts

to remedy this.

Experimental evidence shows that pure deviatoric stress cau-
ses not only deviatoric but also volumetric strains. Hence the
basic idea of this model is to calculate some "pseudo" volumetric
stress 0’°ct due to € .t despite the fact that it is actually
caused by T oot i.e.

c

o’ =3K € /3.46/

oct s oct

The value for 0"0ct is given by equation /3.47/, which is

based purely on experimental results:
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o’ 1.3

T
oct oct

£’ o -2.4 f’
c [1+ 0.444 [-———f?“ ) j ©

c

/3.47/

Thus the strain - stress relationships take the form:

T
= oct
Woct G
s
[ooct * o“,oct:]
€ v = 3K /3.48/

Having established these constitutive equations for octahed-
ral strains their modification into a form similar to equation

/3.41/ is straightforward.

3.5.2 Orthotropic models.

Orthotropic models represent another large group of consti-
tutive equations used to model concrete behavior. The basic idea
is to consider concrete as a orthotropic material in which its
properties in a particular direction are calculated with regard
to the stress level in this direction.

Instead of using 815 in direction i we introduce a single
strain elu which simulates the effect of eij, (j =1, 2, 3), in-
to the 1D state.

e = /3.49/
1 -p

where o, is principal stress in direction i.
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0J,0k are principal stresses in lateral directions

j, k.

Because €. (i = 1, 2, 3) fully represents the strains in
the material established under the assumption of one dimensional
conditions, we can now simply use any uniaxial stress - strain
relationship applied independently for each direction i =1, i =
2 etc. and obtain the corresponding stresses.

Alternatively it is also possible to use a direct formula-
tion of orthotropic equations. However the presented approach is

usually used because of its simplicity and clarity.

3.5.2.1 Orthotropic model for monotonic loading.

The above concept will be now demonstrated on a simple 3D
hypoelastic model for concrete (i.e. the model is dependent on
loading history).

The essential uniaxial relationship between the strain €.

and stress 01 is assumed in the form [2]:

= /3.50/
[0 n
ic iu ic
n-1+
£

where o, is the principal stress i, I =1, 2, 3,
o is ultimate value of the principal stress i,
€. is ultimate strain corresponding to Tt
€. is the uniaxial strain simulating the effect of
elj’ Jj=1, 2, 3; defined by /3.49/,
n influences the shape of the curve defined by

/3.50/ and is given by:
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E:O 81
n = i /3.51/
Eoe -0

where Eo is the initial Young’s modulus.

Taking the derivative of /3.50/ we obtain the tangential

Young’s modulus El in the form:

€
1 - v nin - 1) le
60{ i i
[o} [ o]
E = =
i d¢e € 2
iu iu
n-1#+
P €

/3.52/

Hence the final form of constitutive equations is:

Ao E 0 Ae

1 1 1

Ao E Ae
= 2 -

Atla sym G13 Ae

~ ) o — -

El(l “32)’ E1E2(“12“'23+“13)' E1E3(“12“32+“13)’ 03030

2 ]/
E,(1mu;) VEE (mypy #1005 0505 0
2

~ Ea(l—ulz) ; 0; 0;0
= #»*

G ; 0;0

12
G ;0
23
| G1s)
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Ae
Ae
« o |05, /3.53/
Ae
12
Ae
23
Ae
- 13-
where:
2 _ . 2 _ . 2 _
Ko Mg Hopd Byg™ Hyg Hai BT g By

2 2 2
¢ =0 M7 By3™ Hyg 2“12”13”23)

Gij=__6-[ E* Ej- 2“11 EiEj— [“jkl E “kil Ejlz]

[any

The volumetric and shear properties are quite independent.
These relationships have been presented for the 3D situation but
its modification for 2D or axisymmetric conditions is straight-

forward.

3.5.2.2 Orthotropic model for cvyclic loading.

This model [11] is similar to the model presented in
the previous section but now the uniaxial stress - strain rela-
tionships also include unloading and subsequent reloading stages.

(See Fig. 3.17). Using notation defined in Fig. 3.17 then:

1. Loading phase:

For loading (i.e. the path 4 in Fig. 3.17) the previous

model for monotonic loading is used.
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b’O

ol Q=

M ————

Fig. 3.17 Loading condition.

2. Unloading from the envelope curve:
The unloading curve is defined by a parabola having infinite

slope at (o; ; C;u), i.e. the point where unloading occurs (see
u

path B in Fig. 3.17):

€ e; 8; 2
T_=0.162 | +0.332 | -— /3.54a/
[ 4 f >4 £ .

ic

This curve intersects the strain axis, i.e. for 0l= 0., at

strain € :
r
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, 2
0.334e | /3.54b/

€
ic

e = 0.162¢’ +
r iu

and final expressions for the uniaxial unloading are then:

Stress-strain curve:

b4

(ei -g) R
CHEED =-——-——35——£- (0 -0’ ] /3.54c/
‘ fu

Tangential Young’s modulus:

E = 1 /3.54d/

-

! e; -
2y [ [ al]
, 2 iu iu
o

3. Unloading at intermediate stress:

Unloading phase from intermediate stress, i.e. from the
point (ov; ev), (path C in Fig. 3.17),is similar to the path B.
Equations /3.54/ are used again, but the point (o;u; e;u) is re-

placed by the point (ov; € ).
v

4. Reloading at intermediate case:
In this case, (path D in Fig. 3.17), similar expressions to
those for the loading phase A are used. However the initial

Young’s modulus Eo is replaced by Erox defined by

Gi o.d

E =0 = /3.55a/
>4 €

iu d

where the point (od; cd) is the point from which reloading
occurs. The final expressions for the stress-strain curve and

Young’s modulus are then in the following form:
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Stress-strain curve:

c -0 n e € )
- = =T /3.55b/
ol - o‘d iu— E:r n eic- er
€ n-1+
£
ic r
E o1 (e1 - ed)
n = r hd /3.55¢c/
E (¢ -€ )-(c -o¢c)
roOi d i

Young’s modulus:

€€ n} ( o %y
1 -|—"||nn-1)|——°
€ - ¢ € - €
ic r) | \ ic r
E= /3.55d/

i (€ - € Yn|2
fu r
n-1+|—
€ - €

3.5.3. Elastic-plastic models.

One of the most widely used material model are elastic-
plastic constitutive equations. Similar to the previous models,
these equations are usually used only for compression and mixed
compression-tension loading conditions whilst for pure tension
zones linear-elastic models with cracking procedures are satis-

factory.

The elastic-plastic material model is based on the existence
of the following functions:
-a yield function which defines under what stress conditions
plastic yielding in the material starts,
-a flow rule which defines the relationship between the stresses
and plastic deformations,

-a loading function which modifies the definition of the Yield
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function with respect to the amount of plastic deformation.

This is achieved by using a so-called hardening function.

In classical theory of plasticity the total strains are di-
vided into two parts. The first, tefj, corresponds to elastic be-
havior of material (i.e. strain due to Hooke’s law) and the se-
cond part, tsr;j,corresponds to plastic flow, 1i.e. teij= tsfj
tefj. Assuming isothermic conditions and isothermic hardening ru-

-+

les we can write:

tf(ttrij) - %(k) =0 or

t1?(t<r”,t1<) =0 /3.56/

where tK(k) is a hardening function of an arbitrary parameter
k, (usually plastic strains tsfj),

tf(tO'U) is a Yield function (or loading surface for

higher loading levels),

t’F(to'U,tK) is another form of the Yield function.

It should be noted that both tf(to-U) and “K(k) represent
stresses and are in units of stresses.

The simplest definition of flow rule is the so-called nor-
mality rule which assumes plastic strains to be normal to the
loading surface tF(tO‘U,tK), hence its name.

Mathematically this can be expressed by:

t
sef =tHIdF /3.57/

H a'c
1]

where A is a scalar factor dependent on the loading histo-

ry. There are some objections to the use of this flow rule for

concrete because experimental evidence suggests that there is no

affinity between the yield and failure surfaces. In addition con-
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crete properties in compression differ from those in tension.
Consequently other nonassociative and nonproportional rules have
been developed (e.g. [4] and [60]). However, for the sake-of sim-
plicity, the normality rule is still used most often for concre-
te, without sacrificing too much accuracy.

The main problem with nonassociative rules is that they pro-
duce nonsymmetric material rigidity matrices. Nonproportional ru-
les, in addition, assume a nonlinear form of the plastic strain

definition in /3.57/.

As already mentioned the tK(k) function expresses hardening
in the material beyond the initial yielding surface. Basically

there are three possibilities (Fig. 3.18):

1/ Function tK(k) is constant, independent of the plastic state
in the material and leads to a perfectly plastic material mo-
del.

2/ Kinematic strain hardening, in which case the volume of the
yield surface is constant but the Yield function itself moves
with respect to plastic strains.

3/ Isotropic strain hardening, when the Yield function does not
move but its volume changes dependent on the plastic strains.
Based on the experimental evidence it was found that for con-
crete this is the best choice and thus in the following this

type of hardening will be used.
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i
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Fig. 3.18 Hardening rules.

The parameter k in the hardening function tK(k) represents

work hardening due to plasticity and is defined by:

k="w= f s (@<’ ) av /3.58/
ij ij ,

. t, t t P .
Hence if we assume f( vlj) and 81) are independent, we can

write:
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*K(k) = tK(telzj) /3.59/

which states only that the hardening function is a function

of plastic strains.

Because tF‘ = 0 and also th = 0 we can write:

t t
OF 50 + 3F 5P -0 /3.60/

ato

ij ij

*q,, = atF /3.61/
] do
iJ
oo .2 F*
1 atef
ij
t T _ ot t t t t
g =1 qQyr Gppr Ggpr 2% dp,, 2% 9,5 2* 95 ]
t T _ t t t t t
P - [ Pu» pzzr p33: 2% p1 ) 2* p23v 2% p13 ]

/3.62/

we can write for the factor tA using equation /3.57/:

t T E
' = g C d¢ /3.63/
t Tt t T E t
p a+ g C g

and for the stress increment 8¢ we can write:
3¢ = C° (g - 8¢7) = c¥ s¢ /3.64/

where C° is elastic rigidity material matrix,
c® is elastic-plastic material matrix,

8¢ and 8¢’ are the total and plastic strain increments
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respectively.

The elastic plastic matrix c*f is defined by:

E tg (CE tg)T

t t T JEt
p da+ a C g

/3.65/

EP E C
t T

The eqﬁations /3.64/ and /3.65/ are defined for the loading

conditions, i.e.:

d*f = — Y g% >0 /3.66/

or the equivalent condition:

tF(“«r“,t"AtK) >0 /3.67/
In other cases, i.e unloading and reloading up to the maxi-
mum loading level reached before, we assume an elastic material

only and hence CEP = CE.

The scalar product tp?ﬂ; is a derivative of so-called har-
dening function K(tefj). Its basic features are best illustrated
by reference to the uniaxial loading case (Fig. 3.19). It is as-
sumed that in the elastic range, Hook’s law with Young's modulus

E is applicable and beyond it, Et can be used.

90



- dc ao 1 1 - Et

1 -EVE
t

/3.68/
Substituting /3.68/ into /3.65/ leads to C™ = E, in the

plasticity range.

=

Fig. 3.19 Uniaxial case for K’ (7).

Establishing the hardening function for a real material un-
der multiaxial loading is a very difficult problem and hence the
results from the uniaxial case are normally used. This is done by
introducing an effective or generalized stress *%> and plastic

strain ‘&’ that represents the loading condition in the material.

= S
ij 1)
/3.69/
t~p 2 tP tP
€ = /= e
3 1j 1)
where tsU, te:j are the deviatoric stress and deviatoric

plastic strain respectively.

It can be shown that for the uniaxial case (twl # 0, tcz =

t
o= 0; tcf # 0, t : ¢ §= —-értef due to plastic flow) these
corresponds to ‘e and ep, the total stress and plastic strain, as

o

follows:
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t~ 3 t t _ /3 t ot ot t 2 _t 2
o ]/37 Sy Sy VZ;-{[ o, ( o to + 03)/3] + 2 o&] }

= 0o =0 /3.70/

tP _ v/é% tP tP V/(__{[t P_t €P+t€;+teP)/3] . 2[__1_t f]z}

L =0
= P =t /3.71/

Thus in practice, the hardening parameter is measured for
the uniaxial test and its extrapolation to the multiaxial case is
achieved by employing effective stress and effective plastic

strain in place of uniaxial stress and plastic strain.

A different possible approach to extrapolate the hardening

parameter from the uniaxial conditions is as follows:

From the previous definition of plastic strain (eq. /3.57/),

*q (eq. /3.62/) and k (eq. /3.58/) we can write:

t
tef - t—Atef + AtCP - c-AtCT . t-.7t atF - t-Atef +tA tg
J ] 1) b ate 3
i}
/3.72/
t t t At t P t-At t_ t
k=wp=fo- (@%e" ) av o A%T= "% A g

Similarly for the uniaxial case:

t P t-At P t_P_ t- At P
€ = € + A'¢e € + A 1

/3.73/

92



k=""= % (%" av & "M a'e"= A
P
t

A

e ' = £ (0%

/3.73°/

Hence comparing /3.73/ and /3.72/ we can write:

t-At .t
[

t_Atg “A b o= £( )’A  and

. t—Atg tl tg

A= — /3.74/
f( c )

Expression /3.74/ for *A is thereafter used directly in
/3.73/ which leads to ‘e’ the for uniaxial case and hence we can
use the hardening function K’ (®¢F) for the uniaxial condition.

The program CONCRETE uses this latter approach.

It should be noted that the whole problem is nonlinear be-
cause in order to compute the stresses, we need to know the plas-
tic strains and vice versa. Therefore all the equations above are
solved step-by-step (i.e. a forward integration of the hardening
function) and after several steps it is necessary to reduce the
stresses back to the loading surface [1], [43]. The following

number of integration steps are recommended in [43]:

8
f,

[+

n=1+

[ f(tou) - f’] /3.75/

where

f; is concrete compressive strength (positive),

f(toij) is the yield value for stress 1level computed wunder
the assumption of elastic behavior in the current increment,

f’ is either the yield value from the previous step or for the

current step when the concrete just starts to be plastic.
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An example of one the simplest yield functions for concrete
is the VON MISES criterion combined with the normality rules,
i.e.:

t 1t t t

F =— s s - K /3.76/
2 ij ij

t . .
where sl are the deviatoric stresses.

More complex yield functions with non-associative plastic
strain flow rule are presented, for example, in [4], (for 2D ca-

se), and in [60], (for 3D case).

In this work, for plane stress, plane strain and axisym-
metric analysis an elastic-plastic model is used. It comprises
VON-MISES Yield condition and hardening defined similarly to
/3.68/. In other words two values need to be defined for Young’'s
modulus, one corresponding to the elastic regime (E) and one cor-
responding to the plastic regime (Et)

For shell analysis a more accurate yield surface is defined

by the function:

t t _ _ Lt _
F(I1’J2’ oo) = V/B( 3J2) + a11 % 0 /3.77/

where Il, Jz are first and second deviatoric stress
invariants,
«, B are material constants,
too is the equivalent effective stress taken from

the compressive stress of a uniaxial test,
and the sign of J2 correspond to the definition /3.1/.

Equation /3.77/ can be also expressed in terms of

principal stresses by:
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t2  t2 t 2 t ot t_t t ot
BlCeo + o + ¢ ) - (6. 0+ o o+ oc_oc| +
1 2 3 12 13 2 3

) = % /3.78/
3 0

t t
+alc + o +
1 2
or in a global form as:

t2  t2 tz t_t t_ ot t_t
B[( e + - + o° )= (0. o+ o o + o o )+

11 22 33 11 22 11 33 22 33
t_ 2 t 2 t 2 t t t t 2
+ 3]t + 1T+ T + aloc + o _+ o ) =T
12 13 23 11 22 33 )
/3.79/

This Yield function is used for the the shell element in

. t . . . .
which 033 stress is zero, and hence its final form is:

t 2  t2 t_t t 2  t2  t.2
B[( ot e )- ¢ o__+ 3[ 8+ T+ T ]]

22 11 22 12 13 23
t . t t 2
+a(c + o ) =To /3.80/
11 22 )

The material constants «, B were set according to the re-

sults of Kupfer et. al. [40] as follows:

R
]

0.355 ‘o
o]
/3.81/
1.355

™
]

These correspond to biaxial data in which the equal biaxial
compressive strength is 16% greater than the uniaxial compression
strength. If we assume @« = 0 and B8 = 1, equation /3.80/ degrades
to the VON MISES yield surface.

Substituting « and B into /3.80/ leads to the final expres-

sion:

t t 2.t 2 t t t 2 t 2
o= c + o + c + o _+ 20 0o + c + o _-
7l 11 22) { LA 11 22 11 22) B [ 11 22
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1/2

- %t 4 3[t12 + B2 4 b2 ) ] } /3.82/
11" 22 12 13 23 i
where parameter ¥y =-§§—-= 0.1775.
0

The resulting failure criterion and loading functions are

depicted in Fig. 3.20 and Fig. 3.21 respectively.

To account for compression hardening and later strain
softening effects the material model employs the conventional
"Madrid Parabola" [42] for the ascending part of Fig. 3.22 and
another parabolic function, derived here, for the descending
part.

In the ascending part the material is assumed to be in elas-
tic regime up to uniaxial stress O.3f;. Beyond that we can write:

t ‘ 1 Eo 2

c =E g -— € /3.83/
o 0 2 €

[o]

where Eo is the initial elasticity modulus,
€ is total uniaxial strain, € = €,
£, is total uniaxial strain at peak stress f; (i.e. at

failure).

Substituting for elastic strain €E=-%} /3.83/, then
0
‘c =-E e + V2P e & /3.84/
) 0 o o

for 0.3f; = ¢ =f

where e is the plastic component of the uniaxial strain and
21’
c
E ’
0
failure the plastic and elastic parts of strain are equal. The

eo can be taken as or in other words we assume that near

96



function K’ (*¢’) is derived by taking the derivative of /3.84/

with respect to plastic strain:

) =— °= Eo( 1+ /9 ] /3.85/

For the descending part, € € (eo; emm), another parabolic
function is derived from the following requirements:
-compatibility of ascending and descending branches at strain €,

(functional values and their derivatives),
-for € = € . must o, = 0.

The derivation of this parabolic function is similar to the

one for the ascending branch and thus only the final equations

are presented:

t -b'+ 1% b2— 4ac

c_ = /3.85°/
o] 2a
where:
-2
a=E
o}
2 P
2 - 4
b max + max
£’ E
c o]
P
4f’ (¢ - ¢€)
max P.,2 2
c = + (e)" - ¢
E max
)
and ¢ is maximum compressive uniaxial strain in concrete.

max
Beyond this value the material is assumed to crush resulting in

zero rigidity and zero stresses. The function K’(tep) is equal to

zero throughout the whole descending part.
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Note that extrapolation from the uniaxial state in /3.85/ to
the 3D state is performed using equations /3.74/ through /3.75/

and not by the effective stress and strain approach as expressed

by equation /3.69/.

eo-a for 191 kplemd

o——0 f, + IN kp/cm?

= 1., * 53¢ kp/em? l f‘l
cu
sv’"lu'
— T, L
L N -
==y L
-12 0 8 -06 -04/—(1‘27 leu
\ (1
'.-‘\'-04 /T
A // '
\/n
It 'Y
4 ¢ 7% | S 0sd
v M 'IU ’CU
' *5
24 o |

Fig. 3.20 2D representation of failure criterion in CONCRETE.
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Fig. 3.21 Yield and loading functions in the program CONCRETE.
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Fig. 3.22 Hardening function H’ in the program CONCRETE.

3.5.4 Other types of constitutive equations.

In addition to the above constitutive equations there are

many other ways of creating material models for concrete. Usually
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these are more sophisticated and potentially more accurate, but
careful consideration should be given as to whether a more accu-
rate model is worthwhile or not. Sometimes inaccuracies in an
analysis due to other phenomenon are more important than inaccu-
racies due to the material model, for example the finite element
discretization, loading and boundary conditions, input material
constants etec.

Generally, improvements of concrete models include the fol-

lowing features:

1/ Account is taken not only of the stress-strain condition
at a particular point but also of conditions in its
neighborhood.

2/ Unloading and reloading paths in concrete are more accu-
rately defined.

3/ Account is taken of the additional factors such as creep,
shrinkage, temperature and humidity effects etc.

4/ The behavior of concrete under dynamic conditions is inc-
luded in order to carry out the dynamic analysis of rein-

forced concrete structures.

Among the more important work concerning more sophisticated
concrete modeling are, for example, the progressive fracture mo-
del developed by DOUGILL [5], the endochronic models of SOERENSEN
[6] and models presented by BAZANT [7] based on fracture mecha-

nics.

3.6 Constitutive models for steel.

In the previous section we were concerned with constitutive
equations and failure criteria for concrete. Modeling of steel
behavior is much simpler because steel is an isotropic material
and its properties in the tension and compression regimes are si-
milar. An important property of the stress-strain diagram is a
relatively high ductility.

These properties make modeling of Treinforcing steel
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straightforward. The most widely used models for constitutive
equations are piece wise linear elastic isotropic models and elas-
tic plastic models in which the VON MISES Yield function is
employed. Hardening, if accounted for, is assumed to be linear

as depicted in Fig. 3.19.

Steel softening is neglected. The failure criterion is
usually defined by the RANKINE Cut Off criterion or by a failure
function in the shape of the VON MISES Yield function.

The fact that most reinforcing elements can be assumed as

one dimensional also simplifies their modeling.

3.7 Constitutive equations for reinforced concrete.

Basically there are two methods for dealing with reinforced
concrete. The first is to use so-called smeared modeling and the
second is to employ discrete models.

The essential idea of the first group of models is to smear
the heterogenity caused by material failure, (e.g. cracks), wit-
hin some area, which is the area usually associated with an in-
tegration point of the finite element mesh. Reinforced concrete
constitutive equations are defined by superimposing concrete and
steel contributions in the R/C composite. This implies the adop-
tion of identical strains at any point in the reinforced concrete
material and thus bond-slip etc. is not accounted for. Hence sin-
ce material models for concrete and steel has already been speci-
fied, the constitutive equations for reinforced concrete are also
defined. This approach is relatively simple and can be used to
compute large and complex shaped structures. If we are interested
in overall structural analysis this simplification is quite jus-
tified.

In the second group concrete and reinforcing steel are
treated separately and in a different way prior and post failure.

These models are called discrete models. Using the finite element
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method it is necessary to employ different types of finite ele-
ment for the steel bars, the surrounding concrete and also per-
haps the interface elements which connect the concrete and steel.
These models are accurate and can account for nearly all pheno-
mena of a reinforced concrete composite. Unfortunately they are
very computationally expensive. Thus this type of models is best
restricted to local analysis or analysis of structural details.
An additional disadvantage is that different types of finite ele-
ment are needed for modeling cracks, crushed zones and so on.
This implies that we must a priori specify where the failure zo-
nes will occur and if purely estimated the results of a long ana-
lysis can be nonsense. Hence due to the type of the present ana-
lysis, the computational demands and the above difficulties of
discrete models, in this work the first group, i.e. smeared mo-

dels, is preferred.

CONCRETE.

In summary a brief overview will be now given of the models
used in this work including an explanation why these models were
employed.

Both NONSAP and CONCRETE use smeared type constitutive equa-
tions in which the response of reinforced concrete is evaluated
by superimposing concrete and steel responses. No bond slip

between concrete and reinforcement is accounted for.
NONSAP.
Concrete:
The piece wise linear constitutive equations defined in Sec.

3.4 were used to model concrete behavior. This model is

supplemented by the Mohr-Coulomb and Rankine Cut-Off failure
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criteria (Sec. 3.2.2) and the tension stiffening model /d/ (eq.
/3.35/-/3.37/).

After crushing no material rigidity and stresses are assu-
med. The post-cracking regime is governed by a tension stiffening
law and only one set of cracks in a fixed direction, parallel to
the maximum principal stress when the crack occurred, is defined.
For cases when part crushing and part cracking failure occur the
crushing coefficient is used (Sec. 3.3.4).

In addition the elastic plastic model with hardening was
already available in the NONSAP library of material models,
including the VON MISES Yield function.

Steel:
Reinforcement is modeled by one dimensional steel element
for which piece wise linear constitutive equations are used.

Shear effects are neglected and hence no dowel is accounted for.

These material models have been incorporated into NONSAP be-
cause of their simplicity. It is considered that NONSAP is crea-
ted primarily for dynamic analyses and thus no sophisticated and

time consuming models are feasible.

CONCRETE.

Concrete:

Concrete is modeled by elastic plastic constitutive equa-
tions, (Sec. 3.5.3). The Yield function and subsequent loading
surfaces are defined by eq. /3.82/. Failure conditions are deter-
mined by expressions presented in Sec. 3.3.3. After crushing no
material stresses and rigidity are assumed. For tension regimes,
the Rankine Cut-Off criterion is used and the cracking regime is
governed by the the stiffening model /b (eq. /3.27/-/3.31/). The
fixed crack approach is used with the second set of cracks being

perpendicular to the first one. The hardening and softening para-
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bolas (egs. /3.85/ ,/3.85’/) in compression were also implemen-

ted.

Steel:
Reinforcement is modeled by layers consisting of smeared
uniaxial steel bars. For constitutive equations the elastic plas-

tic model with linear hardening is used.

Most of these constitutive equations were already in the
original version of the program. In this work compression harden-
ing and softening were implemented to improve the high compres-
sion regime behavior. Collective experience proves this model to
be a good compromise between computational cost and resulting ac-

curacy.
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4. TwO DIMENSIONAL AXISYMETRIC, PLANE STRESS AND PLANE
STRAIN ELEMENTS.

This Chapter presents the complete formulation for two/ the
dimensional isoparamet-ic bilinear and biquadratic elements used
in this work. Interest will focus on the overall formulation of
element matrices pertaining to the element geometry. The isopa-
rametric formulation of one, two and three dimensional elements
belongs to "classic" element formulations. This is not because of
its superior properties but due to the fact that it is a versati-
le and general approach and, also important, easy to understand.
Some other types of element provide more accurate results, espe-
cially when restricted to static analysis. For example the family
of hybrid elements usually give much better results for the
stress fields. Nevertheless, isoparametric elements are used
frequently because they contain no hidden difficulties, and are
robust and reliable in use. This is very important in nonlinear
analysis because there are usually problems enough, for example
with material modeling, and it is undesirable to mix this sort of
problem with, for instance, the fact that geometric equations are
satisfied only in integral form (Hellinger—Reissner principle)
etc.

The first part of this Chapter deals with the basic geometry
of the elements, particularly the geometric and displacement
approximations. The second part uses these to develop the
complete formulation. Here we will follow the concepts of Chapter
two, including notation.

It should be noted there is little difference in the formu-
lation of plane stress and plane strain elements, the only dif-
ference being the material rigidity matrix. This was presented in
Chapter three and will not be repeated here. For the axisymmetric
element, the situation is more complex. Generally the coordinates
X and y in plane stress/strain analysis correspond to coordinates
r (radial) and s (parallel to axis of rotation) respectively and
terms due to €.a (circumferential direction) will be given sepa-

rately.
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For the sake of generality, both total and updated Lagran-
gian formulation will be discussed. The choice of which of them
is more suitable for a particular analysis dependents on the form

of constitutive equations used.

4.1 Geometry and displacement approximation.

In isoparametric formulation the approximation of element
geometry and displacements is identical. This is not the general
case, however, because some elements use one approximation for
geometry and a different approximation for displacement fields
(e.g. semi~loof elements).

Let us consider the quadrilateral nine point element depic-
ted in Fig. 4.1.

5,, %, CONFIGURACE AT TIME ¢

CONFIGURACE AT TIME O

LOCAL COURDINATE SYSTEM r.s

‘s, . O3y

Fig 4.1. Two dimensional element, natural and global coordinate

systems.
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The approximation functions are constructed in such a way
that only the four corner nodes and their corresponding modal
shapes are mandatory. All other nodes can be, but need not be,
incorporated.

If only four nodes are used, the element is bilinear, whilst
a complete nine point definition corresponds to the biquadratic
formulation including a "bubble" function in the centre of the
element. This versatility of formulation is very advantageous be-
cause it allows mesh refining or use of more coarse divisions in
some areas.

The main idea of coordinate approximation within the element

is given by:

k
k=1
/4.1/
t N t k
X = Z h x
2 k ‘2
k=1

where hk is a shape function corresponding to node k,
txt, tx: are coordinates X, and X, of joint k at time
t,
txi, tx1 are coordinate of an arbitrary point within
the element,

N is the number of element nodes.

The main idea of isoparametric formulation is to map the co-
ordinate system X, X, to a natural coordinate system r, s, (see
Figure 4.1), where an element of any original shape, including

curved boundaries, is transformed to a regular quadrilateral with

- . . . t 1 1

straight boundaries of size of 2 x 2 units. For example X tx2
t.2 t.2

are transformed to r1 = 1, 51 =1, X1’ x2 to r, = -1, s, = 1

etc. This approach allows the element formulation to be indepen-
dent of the original element shape.

The construction of the interpolation functions hk is as

follows:
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1/ every function hk must be equal to one for r, s corresponding
to node k,
2/ every function hk must be equal to zero for r, s corresponding

to any other element node.

As already mentioned, the four corner nodes and their modes
are always incorporated. The expressions for the bilinear case

are given by:

1
hl——4—(1+r)(1+5)
h = —l-(l -r)(1 + s)
2 4
/4.2/
_ 1 _ _
h3- T(1 I‘)(l S)
h = 21+ -s)
4 4

Now let us add, for example, the shape mode corresponding to
node five which is located in the center between nodes one and
two, (see Fig. 4.1):

In order to satisfy the condition that hs is equal to zero
at points one through four, and at the same time equal to one at
joint five, it is necessary to use a quadratic function in the
r-direction whilst a 1linear function 1is sufficient in the

s-direction . Hence the expression for hs is given by:

h = %(1 - + s) /4.3/

It is easy to check that both the above constraints are sa-
tisfied by h3, h4 and hhs’ but the second constraint is violated
by the previous definitions (4.2) for h1 and h2 for the new node
five. The remedy is to subtract their values given by h5 at node
5 from their values, (i.e. a half of hs)' Hence, including node

five, the definition for h1 and h2 is as follows:

1 1

h1 = T(l +r)(1 +s) - —z-—hs /4.4/
_ 1 _ 1
hZ S T(l r)(1 + s) —Z—hs
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Generally if we introduce any new node to the element appro-
ximation, the new shape function must satisfy the two constraints
and thus for all previously defined nodes everything is satisfac-
tory. Thereafter every previously defined function must be chec-
ked with respect to the new node. If its value is zero then no
correction is required. If it is not zero, the value is zeroced by
adding the appropriate fraction of the mode shape which cor-
responds to the newly introduced node.

This process is simply checked. The sum of all the incorpo-
rated shape functions at any point of the element must always be

one, mathematically expressed by:

Z h (r,s) =1 /4.5/
k=1

where r, s are coordinates of arbitrary element point.

Using this concept all nine interpolation functions are pre-
sented in Table 4.1. Note again that h1 through h4 are mandatory
while h5 through h9 are optional. If any of the latter is used,
the appropriate correction of previous functions must be made.
Fig. 4.2 illustrate some of the mode shapes for hi. This concept
of the natural coordinate system h1 is sometimes called hierar-

chical natural coordinate systenm.
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Fig. 4.2 Examples of some interpolation functions hi.
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Additional correction in node j if
No Function defined:
j=5_| j=6 | j=1 | j=8 | j=9

1 1 1 1

hl —4—(1 + r)(l + S) _*"Z—hs 71’18 Thg
1 1 1 1

h, _4_(1 -1+ s) -~ hg| —o Ry B
1 1 1 1

h| 70 -001-s) 7 hel ~7hy, T
1 1 1 1

h4 —'4—(1 + r)(l - S) "’*—2—h7 _2-h8 ThQ
1 2 1

hS —2—(1 -r )(1 + S) ?h9
1 2 1

hG 7(1 r)(l - S) —2'—h9
1 2 1

h7 ?(1 r ](1 - S) ?hg
1 2 1

ha ?(1+r}(1—s) —z—h9

hy| (1 - r2ya - s%)

Tab. 4.1 Interpolation functions for 2D element.

For displacements and displacement increments, exactly iden-
tical approximation functions are used. So analogous to /4.1/ we

can define:

N
t t k
u = h u
Zk=1 k 1
/4.6/
N
t. _ t k
U, = Z h u,
k=1
N
u, = Zk_l hk 4,
/4.7/
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where tu:, u? (j =1, 2) are the displacements and displace-
ment increments, respectively for coordinate j at joint k and ti-
me t. Hence the simplicity of this formulation.

Both displacement and geometry of the element are defined by
functions of the local coordinates r and s. The relationship bet-
ween r, s and tXl, tx2 is given by /4.1/. To calculate element
matrices we also need to derive expressions for the derivatives
of displacement with respect to original coordinate system txl,
txz.

It is easy to calculate the derivatives with respect to na-
tural coordinate system r, s. Let us assume we have some function

f(txftxz) defined in r,s coordinate system so that we know its

derivatives with respect to these local coordinates,
ie. of(r,s) and of(r,s) -
ar as
of (*x ,"x ) of (", “x)
Now and can be expressed by:
t t
a x1 a x2

af(r,s) or af(r,s) os

atx ar atxl as atx

|
+

/4.8/

af(r,s) or . af(r,s) @8s

atx ar th as atx
2 2

These can be used to express derivatives with respect to the

.. . t. ot
original coordinates xl, x2 as follows:

t t ot t t. ot

af(r.s) a X, arf( X xz) a X, arf ( X xz)
= +

ar or t ar t

9x ax
1 2

/4.9/
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t

t Lt t t ot
8 X, af ( X x2) F.} X, af ( X, le

af(r,s) _ .
ds as atx as atx
1 2
Hence:
t t t t
af( Xy xz) _ -1 3 * af(r,s) 3 *2 af(r,s)
= J _
t as ar ar as
a°x
1
/4.10/
t ot t t
a1 ( Xy xz) - 8 ¥, af(r,s) g Xy of(r,s)
—_—= J |- +
t as ar ar ds
aI'x
atxl atxz t t t t
_ 9 °x ad x d’x dJx
ar ar 1 2 2 1
where J = det = -
t t ar as ar as
dx ax
1 2
s ’ 8s

J is sometimes called the Jacobian of transformation and is
important because its value is equal to the area of element. Thus
if we know the derivatives with respect to the local coordinate
system, those with respect to the global system are simply calcu-
lated.

Note, that in the case of axisymmetric elements, the third

direction (circumferential) is treated directly.

4.2 Element matrices assembly.

The general incremental continuum mechanics equations were
presented in Chapter two and form the basis of general nonlinear
displacement finite element analysis. Now using the expressions

from the last section and invoking the principle of virtual dis-
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placements the governing finite element equations will be formu-
lated.

Problem formulation is similar to linear analysis, the only
differences being that the final equations are assembled for load
increments only and are based on the 2nd Piola-Kirchhoff (stress)
and Green-Lagrange (deformation) tensors for Total Lagrangian
formulation and on Cauchy (stress) and Almansi (deformation) ten-
sors for the Updated Lagrangian formulation.

These tensors have already been defined in Chapter two. The
objective here is to discretize the previously presented expres-
sions.

All expressions will first be defined using Total Lagrangian
formulation, after which they will be modified for Updated La-
grange formulation. We assume only static condition, but exten-

sions to dynamics are obvious.

Total Lagrangian formulation.

The main governing equations take the form:

(tK . tK ) AE(i)= t+AtB _ t+AtE(x—1) /4.11/
oL O NL 0

where ;KL is the linear part of stiffness matrix,

;KNL is the nonlinear part of stiffness matrix,

paP= Mo Y

is the displacement increment in

the i-th iteration,

t+Atp is the loading vector applied at time t + At
(total),
t+A;E(P4) is the vector of nodal point forces equiva-

lent to the internal stresses from previous iterations.

The following correspondence exists between analytical and

discretized expressions:
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R

J‘ c e ose Cav K Au
O ijrs O rs O 1ij oL
[s]

0 OL O O L
v
/4.12/
J‘ s 549 %ar = %k au'?
01 013 0 NL —
OV

k= J‘ BT s B %ar
O NL O NL O O LN

[s]

v

and finally

e
0 1) 0 1} o—

where the notation is identical to Chapter two.

Expressions for tBT, g’ , t§ etc., pertaining to an ele-
- oL’ ONL' O

ment, will now be derived.

Starting with incremental strains, then:

t t
>4 u + u u + Uu u +
0 11 01,1 01,101,1 02,10 2,1

1 2 2
¥ 7[(0111’1) + (ouz,l)] /8.13 /

>4 u + u u + Uu u +
02 o022 01,201,2 02,20 2,2

+ 1[(u )2+ (u )2]

2 {'on,2 02,2

1 1 t
€ — | u + u + = u u + u u_ _+
0 12 2 lo1,2 0 2,1 2 01,10 1,2 02,10 2,2

t t 1
+ u u + u u + = |(u u ) +
01,20 1,1 02,20 2,1] 2 [ 01,101,2

+ (u u_ )
02,102,2
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= 1 . t oo L [ 1 ] (for axisymmetric

1 analysis only)
where:

;uhj’ oul,J are the derivatives with respect to j coordina-
te, (oxj), of the i-th element of the displacement vector and its
increment respectively at time t, all measured in the original,
undeformed coordinate system, and

oexj is the increment of element (i,j) of the Green-Lagrange
strain tensor, again in the original coordinate system.

The linear strain-displacement transformation matrix takes

the form:

where
T
e = e ; e ; 2e _; e is the linear part of
o- 011’ 0 22 0 12’ 0 33
the strain increment,
and
(1) 1 1 2 2 3 3 N N
Au = Au "= U3 U3 U ;3 U U3 U3 eosns u;u are
= 1 2 1 2 1 2 1 2

displacement increments.
N is the number of element nodes (4 through 9).

The matrix ;BL is divided into two parts:
tg = tg 4+t
OL OLl OL2
/4.14/

The first matrix is given by:

0 L1
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01,1
0
01,2
01,2” 01,1
h1
o- ;0
1
where h
0 k,
k
u
j
0—
and b'q

0 ; O
02,1’ 03,1’ ’
0 ; O ;
02,2 ' 03,2’
02,2 02,1’ 0°3,2” 03,1’
hz h3
o 0 o s 00
X
1 1
dh
_ Kk
o’
d x
j
t+At k t k
u u |,
J J
N 0.k
=) %
k=1

The second part of ;BL is given by:

oLz

1 h

11 0 1,1
1 h

12 0 1,2

[111 oh1,2+
h,

1l —
33 0=
x
1

.
b4

1 h
21 0 1,1

.
k4l

1 h
22 01,2

Lz oh1,1]; [121 oh1,2+ Lo oh1,1];
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N,1
0 ;
O N,2
h : _h
N,2’ O N,1
hN
— 0
0—
X
/4.15/



1 h 1 h
11 0 N,1 21 0 N,1

1 h ) h
12 O 'N,2 22 0 N,2

[1 h _+ 1 h ]; (1 h + 1 h ]
11 0 N,2 712 0 N,1 21 0 N,2 22 O N,1

hN
; 0
’ 733 o- !
X
1 -
where -
N t k
= z h u
11 0 k,1 1
k=1
N t k
1 = z h u
22 0k,2 2
k=1
N t k
= z h u
21 0 k,1 2
k=1
N t k
1 =z h u
12 0k,2 1
k=1
N t k
X h u
0 k,1 1
- =1
33 0-
X

The nonlinear strain-displacement transformation matrix ta-

kes the form:
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0 NL
; 0 ; O ; 0
01,1’ > 02,1’ ' 03,1’ ’ ’
0 ; O ; O
01,2’ 02,2’ '’ 03,2’ ’ i
0 ; O 0 ;
= 01,1’ ‘o 2,1’ 03,1’ ’
0 h 0 0 ;
‘01,2 02,2’ ' 03,2’ ’
h1 hz h3
o— 3 0 H o— ’ 0 s 0—_ s 0 ’ H
1 1 1

The 2nd Piola Kirchhoff stress matrix and tensors take the

form:
r s % . 0 0 01
0O 11" 0 12
s . % . 0 ; 03 0
021 0 22
‘s = 0; 0 ;% ;¢ ; tg =
(o] 0 11" O 12 o=
o ; 0 ¢ ; ¢
0 21 0O 22;
0; 0; 0 3; 0 ;°%s
- 0 33

-tS -

/4.17/

All derivatives are with respect to the original coordinate

system. Since the expressions are in the r, s natural coordinate

system,

Loading terms take form:

I t+Ath su odV + I t+Ath su odA o t+AtB
°, 01 1 i

o o1
A
where

t+AtR - J- HT t+Atf
°y

£ odV + f [ Hs]r t+Ath %44
= (o] °A

o
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s . . .
H, H are surface and volume interpolation matrices, and

t+A;§B, t+A;£5 are vectors of body and surface forces defined per

unit volume and surface respectively.

The structure of H° and H is trivial and therefore are not
given explicitly. Their rows consist of interpolation functions
Ohj

As discussed in Chapter two the Total formulation leads to
more sophisticated expressions for the calculation of the Green-
Lagrange strain tensor, but also uses the 2nd Piola Kirchhoff
tensor which has no physical meaning. Thus if we are interested
in real stresses, we must transform them to the Cauchy stress
tensor. On the other hand, the linear part of the stiffness ma-
trix is computed only once and stays constant through all subse-
quent computation.

This completes the definition of the Total Lagrangian formu-

lation. The Updated Lagrangian formulation is presented next.

Updated Lagrangian formulation.

In the Updated formulation the coordinate system is defined
by the original coordinates increased by the total displacements
from the previous solution (iterations).

It is easier to calculate the Green-Lagrange strain tensor,
because :uhj are zero. Also the 2nd Piola Kirchhoff tensor is
identical to the Cauchy tensor (with respect to the t configura-
tion the structure is not deformed) and no transformation is ne-
cessary. This is very important when we have to use constitutive
equations defined in engineering stresses and strains. The penal-
ty is that all computations must be repeated in every iteration.

The main governing equations take the form:

(t t (1)_ t+At t+At _(1-1)

K + K ) Au "'= R - E /74.19/
tL  tAN T = t

where EKL is the linear part of the stiffness matrix,
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:KL is the nonlinear part of the stiffness matrix,

i D (i-1
puM= g Vo D

is the displacement increment in

the 1i-th iteration,

t+AtE is loading the vector applied at time t + At
(total),
t+AtF(b4) is the vector of nodal point forces equiva-

L=
lent to the internal stresses from previous iterations.

The following correspondence exists between analytical and

discretized expressions:

t

c e Se ‘av '« au't
tti_lrst.rs t i tL —

R

t L
v
and
/4.20/
r sm . tav = x_au‘!

e Moty t NL —

v
t - J‘ toT t, ot t v
t NL Lt ML t LN

v
J‘ e ‘dv = t1-"=Jt13T ‘r tav
1yt 1) t— t =

t t

v v
where the notation is identical to Chapter two.
Expressions for ;BE, :B;L, T etc., pertaining to an element

Wwill now be derived:
Starting with incremental strains then
_ 1 2 2

tf1 "0 T2 [(tul,l) * (tuz,l) ] 74.21/
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where:

t

tuij, tuij are derivatives with respect to j coordinate,
’ ’

(txj), of the i-th element of the displacement vector and its in-

crement respectively at time t, all measured in deformed coordi-

nate system, (pertaining to the previous iteration),

tcij is increment of (i,j) element of Green-Lagrange strain

tensor, again in the deformed coordinate system.

The linear strain-displacement transformation matrix takes

the form:

t
= B Au
t= t'L —
where
T
e = e s 2 ;e is the linear part of
t= t 117 t 22 t 12’ t 33
the strain increment,
and
(1) 1 1 2 2 3 3 N N
Au = Au = Uu; u; u; U; u; U; «cou. u; u are
= = 1 2 1 2 1 2 1 2

displacement increments,

N is the number of element nodes (4 through 9).

The matrix :BL is given by:
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tL
h ; O 0 i h ; 0 h 0
t 1,1’ T pe, 1’ t'3,1’ ’ > ¢ N,1°
0 o] ; O 0
e, 2’ * oy 2,2’ *¢3,2] ’ *eUN, 2
= . h . .. ;
t1,2° ti1,17 ¢ 2,2" t 2,1° t 3,27 t 3,1’ > ¢N,2° t'N,1
h1 h2 h3 hu
t— H 0 ’ T ’ 0 H t—‘ ’ 0 ’ H t— H 0
X X b'4
1 1 1 1
ahk
where h = ———, /74.22/
t k,J t
ax
3
k t+At k t k
= u ,
J ] J
t— N t k
and x = Z h x .
1 k 1
k=1

The nonlinear strain-displacement transformation matrix ta-

kes the form:

‘B - /4.23/
t NL
t 1,1; 0 *ei2,1’ 0 i th3,1' 0 ' * ot N,l; 0
’ 0 ’ h s 0 ’ H 0 ’ M H O
t 1,2 t 2,2 t 3,2 t'N,2
o ; O H ; O ; h ; H o
= t1,1 t 2,1 t 3,1 t N,1
O s h » 0 ’ ; O ’ ? ’ o i) h
t1,2 t 2,2 t 3,2 t N,2
h h h h
: H 0 H "i H 0 ’ _3_ H 0 3 H _N— H 0
t= t— ts t=
1 X 1 1
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and the 2nd Piola Kirchhoff stress matrix and tensors take

the forms:

T ; T ; 0 ; 0 ; 0 ]
11 12 ot -
t t T
; T..; 0 53 0 ;O
21 22 t.
tr = 0 0 t ; t 0 , tr = 22
11 12 = t
t t T2
o ; 0 ; ; 0
21 22; t
0o; 0; 03; 0 ;°" T
- 33
/4.24/
The loading takes the form:
j trAL B sy tay 4 f trbt oA 5y taq ~ tthtg
t t 1 i t t 1 i
v A
where /4.25/

t+AtB - J' HT t+At£§ tay + j ( HS]T t+At£A taa
.t t t, t

and H°, H are surface and volume interpolation matrices and
t+A:§F, t+A:£A are vectors of body and surface forces defined per
unit volume and surface respectively.

This completes the definition for the Updated Lagrangian

formulation.

Finally it should be noted that the above discretized forms
of expressions for both Total and Lagrangian formulations are in-
tegrated by the Gaussian integration rules at 2 x 2, 3 x 3 or 4 x
4 sampling points. Obviously, considering nonlinearity of the
element, the more integration points, the better the results, for
example the more gradual cracking of the element. Based on the
collective experience, the 4 x 4 integration rule is a good com-
promise between accuracy and computational cost.

Both Total and Updated element formulations are used in this

work. Reinforcement is modeled by isoparametric bar elements.
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5. GENERAL SHELL ELEMENT.

The objective of this chapter is to present the shell ele-
ment used in this work. Similar to the previous chapter all deri-
vations will be based on the general formulation derived in Chap-
ter two and the constitutive equations and failure criteria in
Chapter three.

First a brief general overview of shell modeling is given.
Thereafter attention will focus on Ahmad’s degenerated shell ele-
ment. Three modifications of this element are included: Lagran-
gian, Serendipity and Heterosis variants of geometry and displa-
cement field approximation. Also in order to avoid or minimize
element membrane and shear locking full, selective and reduced
integrations are considered. The resulting element behavior is
discussed at the end of the chapter.

Following Total Lagrangian formulation of the problem, the
principle of virtual displacements will be used to assemble the
incremental form of the governing equations. Transformation to
Updated Lagrangian formulation is simple and hence will be not

presented explicitly.

Shell structural analysis represents one of the most compli-
cated of structural problems. Consequently many simplifying as-
sumptions must be adopted. There are generally four main possibi-
lity for shell element formulation.

The simplest way is to divide a shell structure into many
triangular flat elements. It was and may still be the most popu-
lar approach to shell analysis. Elements are relatively simple
because they do not deal with difficulties accompanying curvili-
near geometry of the elements. Usually a shell element is con-
structed by simple overlaying of plate and plane stress elements.
This concept however leads to discontinuities between element -
domains if the structure is not planar.

The second group of shell elements are those based directly

on some particular shell theory for curvilinear elements. Now-
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adays many formulations exists for both thin and deep shells. Un-
fortunately completely general shell theory would be too complex
and consequently the problem arises as to which phenomena of
shell behavior are important and which negligible.

The third group represents theories where shell structures
are considered as complete 3D structures. Usually a 3D isopara-
metric element is used. This approach allows for structure curva-
tures and at the same time its formulation is relatively simple.
The time cost of analysis is however higher, even if an efficient
15 point integration scheme is used. The other drawback of this
approach is that bending stiffness is overestimated in the case
of thin shells.

The last group of shell element formulations is based on the
3D element concept again but employing appropriate assumptions,
the problem is transformed into 2D space. The element third di-
mension through the element thickness is integrated in analytical
form or by trapezoidal numerical integration, (i.e. layer con-
cept). The latter case is necessary for materially nonlinear ana-
lyses.

One of the most popular elements in the fourth group is the
degenerate continuum element (see Fig 5.1), originally proposed
by Ahmad et al. [54]. In this formulation the complexity of gene-
ral shell theory is avoided by direct discretization of the 3D
continuum equations. Following general shell element theory each
node of an element has five degrees of freedom, i.e. three dis-
placement and two rotations in planes normal to the mid-surface

of element.
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Fig 5.1 Three dimensional shell element, (a)

and the
corresponding degenerated shell element, (b, cJ.
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Ahmad’s original linear formulation of the element has been
gradually but significantly improved by using reduced or selecti-
ve integration schemes, Lagrange approximation of displacement
etc. and by the introduction of nonlinear behavior. Because of
its good properties this element has been adopted in this work

and is now discussed in more detail.

5.1 Geometry and displacement fields for degenerated element.

Throughout all derivations of this element, isoparametric

formulation is adopted.

Geometry.

The coordinates of top and bottom element surface is used to

define the element geometry:

t t _top t bot
Xl N x N x1
t t 1 +t |t top 1 -t |t _bot
X =K = h ——— | 'x + h ——|x
2 = k 2 2 k 2 2
t k=1 t _top k=1 t_bot
b ¢ b'q X
3 3 k 3 k
/5.1/

where N is number of nodes per element,
hk(r,s) is the k-th interpolation function,

r, s, t are isoparametric coordinates (see Fig. 5.2),

t top t_bot

X x
. t_bot

o o

X, Pl and X, are vectors of the top and bottom
t_top t_bot

b'¢ b'g

3 k 3 Kk

coordinates of point k (Fig.5.2).
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At each nodal point a special coordinate system is defined

by:
vl ve v3
1 1 1
vl = vl ;. v2 = ve ; v3 = v3
—x 2 —x 2 —k 2
vl ve v3
3"k 3k 3k

/5.2/7

Vector ggk at point k is defined as a line joining the bot-

tom and top coordinates at this point (prior to deformation).

The second vector defining local nodal point coordinate sys-

tem, is normal to ggk and is parallel to the plane of the

vl ,
0 o
global X, and x, axes. Hence:

[V11]k= [V33]k; [Vlz]k= 0.0 and [V13]k= - [V31]k.
/5.3/

o

or in the case that v3 is parallel to gz(i.e. [V31]k=

[V33]k= 0)
[V111k= - [V32]k; [V12]k= [vi 1 = 0.

3k

The last vector is defined as a vector product of the two

previous vectors:

vz =v3 x vl
—k —x "
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Fig 5.2 Degenerate shell nodal and

axes, (b) systems.

130



Using the above vectors equation /5.1/ can be rewritten in

the following form:

t t mid t
b 4 b'4 v3
t ! t N t 11d N t |t !
m .
x| =x = Z h | x + h —= | v3_ | [thick]
2 k 2 k 2 2 k
t =1 t_mid =1 t
X v3
3 3 k k

/5.4/
where [thick]k is element thickness at node k (i.e. distance

between top and bottom points) and

t _mid t _top t _bot
X X X
t 11d 1 t % t % t
m o (o]
P's = = P+ |*x /5.5/
2 2 2 2
t mid t top t_bot
X X X
3 k 3 k 3 k

are the coordinates of the mid surface, used whenever "glo-
bal" access to the structure is necessary. Note that the defini-
tion of approximation functions hk(r,s) differs slightly from the
2D element depending on which variant for approximation is used,
(Lagrange, Serendipity or Heterosis elements). Their definition

is given later together with a discussion of element integration.

Displacement field approximation.

The displacement approximation is similar to the above ap-
proximation of geometry. Each node has three displacements in the
direction of global coordinates axes 051, 052, 053 and two rota-
tions about vectors vl and v2.

Thus the displacement vector takes the form:
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t 1 t N t ! N t
u | =us= Z hk u| * Z hk ——z-[thlck]k*
t k=1 t k=1
u u
3 3"k
/5.6/
-tva; fvi
t ! t ta’
-v2; vl
2 . 2 tB,
-v2; vl k
73 k

and the displacement vector at point k has the form:

t t t t t o, .ty T
u-= [ uou; U e B ]k .

Its first three components are global displacements but the
rotations are defined in the local point coordinate system (hence

mark). The terms ta’, tB’ mean rotation about tv1 and tv2
—k —"

respectively. The three displacements are measured in the mid-

surface plane.

5.2 Strain and stresses definition.

The 2nd Piola Kirchhoff stress and Green Lagrange strain
tensors will be used again. In the case of linear and nonlinear
compressive zones (i.e. where an elastic-plastic material model
is applicable) constitutive equations are defined using stress
and strain invariants independent of the geometric transformation
of the elements. Thus, it does not matter whether the element
constitutive equations are specified for deformed or undeformed
element configurations. In tension zones (strain softening ex-
pressions), for the sake of simplicity, the difference between
Cauchy and 2nd Piola Kirchhoff tensor is neglected and the latter
tensor is directly used where "real” Cauchy stresses ought to be
substituted. This simplification is feasible because in practice

they do not significantly differ and tensile strength of con-
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crete is low.
The constitutive equation for steel is based on an elastic-

plastic material model.

The essential importance in the stress and strain defini-
tions is that they have their own local coordinate system (this
is different from the “node local coordinate system" explained in
the previous section). This system corresponds to the mid-surface
of the element and is used at sampling (integration) points.

. 0 ) ) .
Its coordinate vectors x’ , x’ and x’ are defined by:
=1’ == =3

- - - -
60_ 605
1 1
ar as
o, a° a°x /5.7/
X = =2 X =2
ar ds
a° a°
=3 =3
| or ] NCER
a°x
!
ar
0
o, d x 0 N o, o_,
x' = =2 ; X' ="x' * °x
== =2 =3 =1
ar
a°x
.9
e ar -
where "x" denotes a vector product. The local coordinate

system varies along the shell element but at a distinct point it
remains fixed through all loading increments, due to the Total
Lagrangian formulation used.

In order to establish relationship between local and global
coordinate systems, a transformation matrix T is defined. Its co-

?

0
and X
=3

3 b4

. 0 0
lumns are unit vectors parallel to vectors X, X

respectively. Hence:
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T - U i £, /5:8/
w | o) [

Green ~ Lagrange tensor.

The general definition for the Green-Lagrange strain tensor

has the form (see /2.7a/):

te = —}-—[tu + S +tu tu ] /5.9/
0 ij 2 04i,j O03j,i O k,i O k,j,

which after substitution leads to:

[ 1T t - t 2 t 2 t 2.
du ( d u (0 u_ ) ( 9 u
t 1 1 2 3
0811 t * 2 t | * t * t
9x _Laxl‘ Lax1J l4‘:lle_
t _ t 2 t 2 t 2.
t du (du (3 7u_ ) (8 u_ )
€ 1 1 2 3
0 22 t * 2 t * t * t
ax2 _\ax2 \ 9 x_ ) Lale_
t t t t t t t t .
du a’u [ du du du du du ou
t _ 1 2 1 1 2 2 3 3
o%12|~ t .t | .t t. .t t. .t t
ax ax adx d x ax d'x dx ax
2 1 * 1 2 1 2 1 2 -
t t t t t t t t -
au du [ du 8 u du du du du
t 1 3 1 1 2 2 3
0813 T .t * t t Tk t X &
dx a'x Lax dx dx Jdx dx Jx
3 1 1 3 1 3 1 3 -
t t . oAt t t t t t
t au du du du 3du o u du du_
€ 2 3 1 1 2 2 3 3
023 t .t * t t YTk t Tk £
X ax ax dx a8x Ix a'x éx dx
- ¢ 3 2 - 2 3 2 3 2 -
/5. 107

The expressions /5.10/ are very complicated and the presemt
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work

sumpt

simplifies them significantly by adopting the Von-Karman as-

ions as follows:

a/ All strains are relatively small so their product can be
neglected,

b/ The deflection normal to mid surface of shell is of order
of thickness,

c/ Both curvatures are small,

d/ The

transverse displacement and thus their derivatives in 2nd

in-plane displacements are much smaller than

order terms can be neglected.

Applying the above assumptions the Green-Lagrange tensor can

be written in the form:

[ ] i t T [ t 2 ]
du (8 u_ )
t 1 1 3
£ ——
0 11 t 2 t
a'x L 9 x_ )
1
t t 2
t du (3 u_ )
€ 2 1 3
0 22 —
t 2 t
a X, \ 2 X, ) /5.11/
t t t t
du du du du
t 1 2 t t
20812 = t YT x * t t = OEL 0§NL
ax dx 4 'x dx
2 1
t t
N a u1 a u3
20813 t "X 0
ax a'x
3 1
t t
2t8 d u2 a u3
0 23 y *— 0
i i a'x a'x j j
L 2 L
t t . .
The vectors 0§L and ogNLrepresents the linear and nonlinear

parts of the Green-Lagrange tensor.
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The derivatives with respect to the global coordinates must
be solved using derivatives with respect to local r, s, t coordi-

nates (see /4.10/). Hence we can write:

a'x a'x a'x
1 2 . 3
ar ’  dr ’ or
atx1 atxz atx3
Jacobian J = 35 ; 35 ; 35 /5.12/
atx atx atx
1 2 3
| at ’ at ’ ot ]

The derivatives of the global coordinates with respect to

isoparametric coordinates is given by:

t
t v3
3 xl t N t N t |t !
T. =0X1;r= z ohk’ [ X1 ] + Ohk,r ——2— V32 [tthk]k
=1 mid-k k=1 t
v3
k
t tv3
8 x1 t N t N t |t !
_as__ =0X1’ s= z ohk, . [ X ] + Ohk, s ——2 V32 [tthk]k
=1 mid k k=1 t
v3
3k
t tV3
9 x1 t N t N 1 |t !
ST oy z h [ p ] + z h —5 |“v3,| [thick]
k=1 mid-k k=1 tv3

/5.13/

Similar expression are applicable also for derivatives of

t
X, and tx3 by replacing index 1 in tx1 by 2 and 3 respectively.
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Using /5.12/ and /5.13/ we can write the displacement gra-

dient matrix:

t t
du ; du_ ;
01,1 0 2,1
t t
du ; du_ _;
01,2” 02,2
t t
du ; du_ ;
01,3 02,3

and by analogy

be calculated:

t t t t
du du ; du ; du
0 3,1 o 1,r 0 2,r 0 3,r
-1 t t t
du =J du ;3[1 ;au
0 3,2 01,s 02,5 03,5
t t t t
du du ,; du_,; du
0 3,3 o 1,t 02t o 3,t

/5.14/

to /5.13/ the derivatives of displacement can

N 1 N
1t t t .
ar “o%,r © z Ohk,r uz] * Z Ohk,r 2 [thICk]k*
u
K

Ev2 H tV1
t v ! to!
-v2_ ; vl
2’ T2 tB,
-v2_; vl k
k
t

N 1 N
1 _t _ t t .
as “ot,s T z Ohk,s uzJ * z Ohk,s 2 [thICk]k*
u

N tul N 1
z h u +z h, —5 [thick] x
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-v2 ; vl

t ! t ta’

-v2_; vl .

Ev2 ; tV1 B k
3 k

/5.15/

The derivatives of tu2 and tu3 are computed in the same
way.

Using /5.12/ through /5.15/, after substitution into /5.11/,
the Green Lagrange strain tensor in the global coordinate system
can be computed.

The governing equations are easier to formulate in the local
coordinate system tgll, tglz and tgla, hence all elements of

/5.14/ are transformed into this system:

t t t t t t

au ; ou’ ; au’ du ; du_ ; du

01,1’ 0 2,1’ 0 3,1’ 01,1° 02,1 0 3,1

t t t T| .t t t

o u’ ; ou’ ; au’ =T {du ; du ; du T
01,2 0 2,2’ 0o 3,2’ 01,2 022 03,2

t t t t t t
au’ ; ou’ ; ou’ du ; du_ ; du

01,3’ 0 2,3’ o 3,3’ 01,3 o023 03,3

/5.16/
cas t t
where the additional symbol "’" refers to the x’l, X’  and

tg;g coordinate system, i.e. both displacements and the reference
coordinate system (for derivatives) are transformed.
The elements of /5.16/ are finally assembled according to

/5.11/ to create the strain tensor in the local coordinate sys-
tem.

Using matrix notation, we can write:

t t t

€= € + € /5.17 /
o= o-L O0-NL

where the linear part is computed by:
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/5.18/
= [ "u; u;; u; a’;tB’]z

u
“k 1

The detailed expression for matrix ;Bm is far too complex
to present it in matrix form and hence tensor notation is used,
(the Einstein summation rule applies, i.e. through repeated

indexes imply summation).

Starting again from the displacement field:

/5.19/

b
=2
o
)
()
[0}
c
o
E]
[\
o+
o)
[
X
o

=
]

t t t t
hk' 0; O0; hk_Z [ thick]k[ v21]k, hk-—-z— [thlck]k [ V11]k
0; h; 0; h —L [thick] [-*v2.1; h —t [thickl! [tvi]
’ k’ ’ k 2 k 2k’ k 2 k 2k
t . t t . t
0 ’ 0 H hk, hk—2 [ tthk]k[ V23]k, hk_Z [thlck]k [ V13]k

Now computing the derivatives with respect to global coor-

dinates 1:
atui t N a t
— = =) [Ri] [ u] /5.20/
9°x ’ k=1 0 x J k J k

139



tem, we obtain the final expression for constructing the matrix
in /5.14/:

du
t ., t -1 r
o%i,17 Ys1 o%e,s Tri Tsivsm Lt tri=
’ i aE
m
/5.22/
N
LRy [f)] s
S M= Mgt ridy  r

where:

El, §2 and Ea corresponds to r, s and t coordinates respectively,

tij is element of T and J;j is element of matrix J_l.

. t .
For the linear part of Green Lagrange tensor 0§L Wwe can wri-
te:

:811 1 o f [ R ] t,
s smag kr
m
t
0%22 5 -1 f [ R ] t )
S smag kr

:)813 s3 s:\ f [R] r1+ tsl s:l : [ R ] r3
8% 5 ¢
m m
2%e -1 3 -1 8
0 23 t J [ R ] + _— [ R ]
i ] i s2 sm atgm r3 s3 sm 5 €m r2 ]
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/5.23/

Now proceeding to the evaluation of the nonlinear part of
the Green - Lagrange tensor ;§NL which is defined by the second
term of /5.11/, we must first express derivatives of tu3 with

respect to coordinates tx1 and tx2 in a form similar to /5.21/.

t _ t t
O z ) [ ogﬁ]k [ uj]k /5.24/

t t t
ol o= Zk_ [ogx] [ uj] /5.25/

Hence we can write:
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Fu]) [, [ied, 4],
30w ] Lad [m] o]
L | U] led, Bl [0,

/5.26/

After derivation of the equations for the Green - Lagrange
strains, we now proceed to similar expressions for their incre-

ments and variation of their increments:

e = Aty _t /5.27/
0 1} 01 o0 1}
t+At . .
where oelj is Green - Lagrange tensor at time t + At,
A;elj is Green - Lagrange tensor at time t and

€ is its increment.
0 1)
Dividing e into linear e and nonlinear 7 parts:
0 1) 0 1ij 0'1j

= e + 7 /5.28/

we can write:

142



] e,

(] [,

-1 [mdone [ ] {Led

RIS

2] (e, [e]

s L | [ el [od] |
| :

where [H ]: [“AtH ]k- [tg ]kis

] [s]

] [=]

o [sed] [t} o]
[+] ]

(2]

g]k

the vector of displace-

ment increments from time t to time t + Ad at point k.

Variations of o€ and 7

oo = Il o[

u

are:

L}
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sor,

sor.

] [ [ o[ 2]}
] [ [ o{[2]}
ab = T Lo T {(sed [ [red s} o[ 2] )

/5.32/

2nd Piola Kirchhoff tensor.

The stress state is measured by the 2nd Piola-Kirchhoff ten-
which is the energy conjugate of the Green - Lagrange ten-

Recall that all stresses except the normal stress perpendi-

cular to the shell mid surface are accounted for, this being the

reason why the local coordinate system was introduced. Obviously

this system varies from point to point and strictly should be re-

. . . .t
computed after every iteration, (a new transformation matrix oT

144



is defined). However this is neglected here and the matrix gT is
kept fixed throughout the whole analysis. The resulting inaccura-
cy is acceptable if the Von Karman assumptions are obeyed.

For the solution of the internal forces the 2nd Piola Kirch-

hoff tensor is rearranged to vector form by:

T
[ts]=[“s ; ts .t .t ;ts] /5.33/
O_k 0 11 0 22 0 12 0 13 023k

and for computation of the nonlinear part of the stiffness

matrix, the matrix form:

t ;Sll; (t)s12
[ S] = /5.34/
o t t
k S

021’ 0 22
is used. Note that it is possible to abbreviate the full 3
by 3 element tensor to a 2 by 2 element only because of the Von

Karman simplifying assumptions.

5.3 General governing equation for degenerated element.

After establishing all necessary relationships for strain
and stress tensors we can now proceed to the final governing
equations. They are presented in both continuum and equivalent
discretized forms.

Using the expressions from Chapter Two the displacement in-

crement during one iteration is expressed as follows:

f c e se v+ % osn Cav=
O ijrs Ors O 1} 0 ij 01j
v °y
ety [t se v /5.35/
o0 ij o 1ij
v

After discretization, equation /5.35/ takes the form:
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'k + % ) Au
0oL O NL

(1) _

t+

A

t

B_

t+AtF(1-1)

/5.36/

where ;KL is the linear part of the stiffness matrix,

t

K

0

Au

NL

(1)

is the nonlinear part of the stiffness matrix,

u

(1)
u -

(i-1)
u

in i-th iteration at time t + At,

is the displacement increment

‘”Atﬂ is the vector of current (i.e. at time t + At)
total loading,
to(1-1) :
F is the vector of internal forces.
Table 5.1 shows the correspondence between /5.35/ and
/5.36/:
Analytical form Discretized form
[ c e &e Cav s S
0O ijrs O rs 0 1} 0oL
°y
j ts 5 n Oqv tk Ag(i)
0713 01} 0 NL
°v
t+AtR t+AtB
f t 5 e OdV c+At£(1—1)
071y 0 1]
o]
v
Table 5.1 Analytical and discretized form of equilibrium
equation.

. t .
To derive OKL we can write:
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N T
tK'l_'Z f[tB+tB] C[tB+tB]odV
O L OVOLI OLZkO 0 L1 0]..2k

k=1
/5.37/
whereas for tK , using /5.32/:
O NL
t ) _ [ _
fo ¢Sy oMy, AV = fo s a{ 01_;} = /5.38/

v \4

+

o

N
_'J“z SuTt'xts thu 6uTt tS tTu+
u BX s 8X u+ du gy &Y u

vk=1

sut{ ¢t te b T Lt ts t0TL Oy =
21 oBY 555 8% oBX Y 4

N

- z [Bgr f te tg tgT Oy g]
0O O O
k=1 ov k

Hence:

~ N
t t t t.T O
OK = zkzl[ J‘OV OG oS OG dV]k /5.39/

where the structure of the 2nd Piola-Kirchhoff tensor in
matrix form (i.e. ;S) and vector form (i.e. ;§) is given by

/5.34/ and /5.33/ respectively and matrix ;G consists of vectors

t d tov:
o&% and  gy:

t, _ |t Lt

OG = [ BX &Y ] /5.40/

Note that in /5.37/ and /5.39/ the symbol "M is used
instead of "=" to imply that the above expressions consider con-

tributions from one element node only. Thus summation through the

remaining element nodes is necessary, which is relatively trivial.
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This

For internal forces we can write:
T

N .
's s Car =Y Ja[u]{[ta]{tls]}[“g]%v
0713 0 1J = 0 L1 0 L2 0
o k=1 ov k k k

k
\4

R (AR E R R

Kk
/5.50/
where again appropriate assembly is necessary.

The last term of /5.35/ is the vector of external loading.

is not presented here because it 1is similar to the

2D case, (equations /4.25/).

ceed

Having established all general relationships we can now pro-

to particular element variants.
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5.4 Serendipity, Lagrangian and Heterosis variants of the

degenerate shell element.

The shell element analysis uses eight noded interpolation
for geometry and eight or nine noded interpolation for dis-
placements (see Fig 5.3). The optional mode function h9 comprises
the difference only between the functional values using eight and

nine noded approximations.

_ 1 - _ e e
hl(r,s) = jI-(l r)(1 s)(-r s 1)
hr,s) = = (1 -s)(1 -1
L(rs) = — s r
h3(r,s) = —%-(1 +r)(1 -s)(r -s-1)
_ 1 2
h4(r,s) = -Er(l + r)(1 s7)
hs(r,s) = —}1—(1 +r)(1 +s)(r+s-1)
_ 1 _ .2
hs(r,S) = 7(1 +s)(1 -r%)
h7(r,s) = %%(1 +r)(1 -s)(r -s-1)
h(r,s) = = (1-r)(1 - s /5.51/
gr>s) = — r s .
hg(r,s) = (1 - rz)(l - 52)

The actual values at the center point can be calculated by:

8
a9 = zi—lhi(r=0,s=0) a1+ Aa9

where h1 are values of the interpolation function at
peint (0,0), a1 are corresponding node values, Aa9 is the depar-
ture at the center (i.e. the computed value corresponding to the
degree of freedom at the center) and a9 is the total value at the

center.
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(-1,1) (1,1)
)
8 T 4 Eight noded Serendipity element
1 2 3
(-1,-1) (1,-1)
7 6 5
Heterosis element
8 09 4 (at no. 9 vertical or all dis-
placements constrained)
] 2 3
7 6 5
8 e 4 Nine noded Lagrangian element
] 2 3

Fig.5.3 Node notation for element variants of quadratic element.
Depending on how many nodes and integration points are used
the Serendipity, Lagrange and Heterosis degenerate element va-

riants are distinguished as follows:

Serendipity element.

This element was used in Ahmad’s original work. It comprises
eight nodal points (the center point corresponding to the bubble
function is omitted). Gauss integration scheme is used for in-
plane element integration. Using full integration the element ex-
hibits shear locking for thin and even moderately thick elements.
If reduced integration is employed the problem of locking is sig-
nificantly improved without creating spurious energy modes at the

structural level, however the thin element suffers from two non
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communicable spurious energy modes at element level.

Nine point Lagrangian element.

The nine point Lagrangian element is nowadays considered to
be the most reliable variant of the degenerate element. Applying
a full integration scheme there are no problems with membrane and
shear locking provided it is used for very thin plate and shell
structures. The behavior of moderately thick structures can be
improved by using a reduced integration scheme. However in this

case the element exhibits rank deficiency.

Heterosis element.

The Heterosis element is very similar to the Lagrangian ele-
ment, the only difference being that the central node element
displacements are constrained (sometimes only the displacement
perpendicular to the element mid-surface at this point is cons-
trained). The element behaves particularly well if selective in-
tegration is adopted.

The problem of membrane and shear locking for linear analy-
sis are summarized in the Table 5.2, (data based on ref. [41]).

In the case of nonlinearity, especially material nonlineari-
ty, the situation is much more complicated and depends primarily
on the material state at sampling points. Moreover some discre-
pancies were found between the data in Table 5.2 and data provi-
ded by other sources [42], [55], [58]. For this reason a new ri-
gorous study of this problem was carried out, the results of
which are presented in Sect. 5.7. Unlike the previous studies

element nonlinear effects are also considered.
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Integ. Shear Number of mechanisms

rule locking Bending Membrane Total

Serendipity 8 node element

* * *

h/1<0.02 1 1
S no 0 0 0

Lagrangian 9 node element

F h/1<0.001 0 0 0
no 3+1% 2+1% 5+2%
S no 1* 2+1” 2+2%
Heterosis element
no 2+1” 1" 242"
S no 1% 0 1%

% Noncommunicable

|
]

full integration, S = selective integration

reduced integration

Tab. 5.2 Ahmad’s elements, locking and spurious energy modes

summary, [41].

In previous paragraphs full, reduced and selective integra-
tion scheme has been mentioned. These procedures are demonstrated
in Fig. 5.4.

The full and reduced integration schemes are original Gauss
integrations at three by three and two by two integration points
respectively and selective integration is full integration for
membrane and bending actions whereas shear is integrated by redu-

ced integration only.
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3 * 6* 9 x
+ 2 § + 4
2 * 5-“ 8- Hr r
+ 1 + 3
1 x* 4 * 7 %
Reduced integration scheme: 2 x 2 Gauss rule
r

» 5, * 0,57735
i=1,2,3,4

Full integration scheme: 3 x 3 Gauss rule
r,s= * 0,7746, 0.0
i=1,2, ... ,9

Selective integration scheme:

Bending, membrane -—- 3 x 3 Gauss rule
ri, si= + 00,7746, 0.0
i=1,2, ... ,9
Shear - 2 x 2 Gauss rule
(extrapolated to r.,ss= + 0,57735
3 x 3 sampling points) i=1, 2, 3, 4

Fig. 5.4 Integration schemes and sampling point notation.

The steps during selective integration of shear can
been explained by integration of an arbitrary function f(r,s):
1/ First the value of f at sampling points corresponding to the

two by two integration rule are calculated:

f1 = f(-0.5773,-0.5773)

f2 = f(~0.5773,0.5773) /5.52/
f3 = £(0.5773,-0.5773)

f; = f(0.5773,0.5773)

2/ Using bilinear approximation the values of f at points cor-
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responding to the three by three integration rule are calculated.

There are two possibilities for this:

The first is based on the original area of the approximate

area and the main idea is that the value of function f is calcu-

lated at the

1.0,

S

+1.0):

"corners"

L

of the isoparametric element (i.e.

r=-0.5773
s=-0.5774

r==0.5773
s=0.5774

r=0,5773
s=-0.5774

r=0.5773
s=0.5774

/5.83/

r

cor . .
where f1 are corner values of function f and hl are in-

terpolation functions corresponding to the two by two interpola-

tion and corner i.

The set of equations /5.53/ can be solved for ff°r. Having

these values we can bilinearly approximate function f and compute

the functional value at any point,

points corresponding to the three by three integration rule.

including at the sampling

The second and more elegant solution is a direct approxima-

tion. The interpolation function hi are presented for an square

area of the size two by two units but they can be extended to a

rectangle of any size as shown in Fig. 5.5:
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2 4 v 1 _2r _2s
hff(l 1 ][1 1 ]
.1 r ]
s 1 2r 2s
e b))
1 3 T 'S
1 yo 1 2r _2s
r s
,_ 1 2r 2s
h4—T[1+—l ][1+l ]
r S

Fig. 5.5 Extension of bilinear approximation functions for

arbitrary réctangular.

Since the functional values for the two by two sampling
points in the corner of the square with 1r= ly= 2 x 0.5775 are
available the approximation functions h; can be used directly to
calculate the values of the function f at sampling points cor-
responding to the three by three integration rule.

Although the whole procedure was described for an arbitrary
function f it is identical for shear functions. Instead of f we
work with the approximate elements (rows) of the matrix B which
relate "shear" strains and nodal displacements.

For integration in the direction perpendicular to r - s pla-
ne, i.e. is in the t-coordinate, it is also possible to use Gauss
integration. However due to material nonlinearity it is more ad-
vantageous to use a trapezoidal scheme. This concept is called
the Layer model.

The main idea is to divide the element through the thickness
into layers. In every layer the values of strains and stresses
are assumed constant and equal to their value at the center point
of the layer. It has been found that to achieve good accuracy it
is necessary to use about six to ten layers. The layer model has
the additional advantages of enabling layers of reinforcing to be
created and finer integration in areas with higher stress gra-

dient.
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Layrs ; Stresses

Fig. 5.6 The layer model.

5.5 Shear correction factor k.

The method of approximating displacements and the require-
ment of shear compatibility (i.e. between adjacent layers) cause
both Tyrg and Tora to be constant throughout the element depth.
This is contradictory to reality, where the well known parabolic
distribution occurs.

In order to eliminate this inaccuracy, (at least in integral
form), a correction factor k is introduced. For the sake of sim-

plicity, the beam element with a rectangular cross section is

considered (see Figure 5.7).
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<
* %
S o o o oo o o kK

Fig. 5.7 Shear correction factor.

The equilibrium equation for x direction takes the form:

aox at v arxz
X, _ .
3% + 3y + 37 = 0 (if no volume forces are present)

/5.54/

aT

and if we restrict ourselves to the case where ayxy = 0, then we

can write:

z z Q
x x 1 - Xz
o] k=] - o= Tg@
~h/2 “h/2

where G is shear modulus, and Mx and sz are the moment and

shear force in the plane x - z respectively.

For a rectangular cross section, g(z) and I are:

and finally:

_3_ sz
2 bh

T =71 (0) =
max XZ

which is a well known result.
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The energy corresponding to this shear can be expressed:

b h/2 1 b h/2
wshear= J‘O J‘_h/alxxz TXZ dA = _-G— J‘O J‘_h/zyxz sz dA =
2
1 h/2 wz 2 <z b h/2 5
=z b f 7—8(2)| dg =— g(z)” dg =
-h/2 I G ~h/2
2 2
Qb Q
_ Xz 1 s _ 5 Xz
=~ T30 h™ = % Cobh /5.55/

Gl
In the case of constant shear we can write:

Xz

=~ Bh

1
1

2

Q

__XZ
shear,const G bh /5.56/

Comparing /5.55/ and /5.56/ it is apparent that the value of
T should be reduced by factor 5/6, i.e the value of k.
= 5
T=1T =kGy = —Gyv /5.57/
Xz Xz 6 Xz
Although the correction factor was derived for a simple
case, it is nevertheless adequate for plate elements (shells and

plates) also and for both directions (sz’ 'ryz).

5.6 Normal and shear forces, bending moment.

Finally, referring to Fig. 5.8, the stress resultants are
defined by the following expressions, where the notation for

coordinate axes are simplified by:
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Normal forces: /5.58/

N = o dz=—}21—f o dt =%z o At
x -hs2 * a1 " =1 ¢
h/2 1 n
N = o dz =-’2’—j o dt --’2’- o At
Y “ne? -1 7 =1 7
Moments:
h/2 2 1 2 n
M = o~zdz=h—J'c'tdt=—}-1—z a‘it At
x y 4 y 4 i i
-h/2 -1 1=1
h/2 W2 ol 2R
My--f oxzdz=-z—joxtdt=-fz ol t At
-h/2 -1 1=1
h/2 W2 2p
M= ‘th/zrxyz dz =—4--J'_1 Jtat =Tzi_ltxyti At
Shear forces:
h/2 1 n
N=j rdz=h—frdt=£z <t At
Xy -h/2 Xy 2 -1 Xy 2 1=1 Xy
h/2 1 n
_ _h _h
sz.— szdz 72 J‘ szdt _?Z szAt
-h/2 -1 1=1
h/2 1 n
Q=J‘ rdz=h—frdt=£z <! At
vz 2 ¥Z 2 o Y 2 =1 Y2

All forces and moments are calculated for width equal to
unit length.
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Mx

—— e - - -

'R
®

Fig 5.8 Stress resultant sign convention.
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5.7 The analysis of rank deficiency of the Ahmad’s degenera-

ted element for shell analysis.

This section deals with the rank deficiency of the degenera-
ted shell element of Ahmad [54]. A summary of these results have
also been published elsewhere [58]. The correct rank of element
matrices is vital for avoiding a singularity of the analysis.

There is an extensive amount of literature on this topic but
unfortunately these usually deal with linear elastic plate ele-
ments only and specify conditions when the element stiffness mat-
rix can be singular [55]. Other sources [42], [41] provide exact
conditions for the matrix to be singular. However some differen-
ces have occurred between the results found here and these other
sources.

To clarify this problem most of the common formulations of
Ahmad’s shell element have been analyzed. Geometric nonlinearity
as well as the material condition, i.e. elastic, plastic and
cracked state, are considered. The results are summarized in tab-
les which provide, in conjunction with Figures of all element
eigenmodes, a quick and convenient way to understand the behavior
of a particular element formulation. The eigenmodes analysis of
the stiffness matrix was performed by both the Householder tri-
diagonalisation and QL methods [57], which are also able to ana-
lyze singular matrices. The GENSTAT [53], double precision eigen-
modes solver was used. The analysis of sample structures, inclu-
ding element stiffness matrix evaluations, was performed by the
program CONCRETE. Double precision arithmetic was used throug-

hout, (i.e. 64 bits per variable).

Elastic condition.

In this section we assume geometrical nonlinearity only
whilst the material is still in the elastic range, so that no
failure occurred. Element properties are studied using the simple
two element cantilever depicted in Fig. 5.9. Young’s modulus

Eowas 29GPa and Poisson’s ratio v was taken as 0.18. The structu-
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10 layers, each 0.015ml

free end, (the mid-point was not loaded).
Yy
6 12 15
all DOF fixed
x
9.5
5 11 14
X, Z displacement fixed
1 4 10 3
1.0 1.0

0.15
i

k

re was loaded by two forces of 0.1 kN at both end-nodes near the

P
[ 1os0.015

—— T v
— o5

P = 0.0tkN

z

—

the two element structure.

Tab.

f

Fig. 5.9 Rank analysis of the Ahmad’s element, the

each particular element formulation.

geometry of

5.3 presents the maximum displacement pertaining to

Displacement Integration rule

approximation Full Selective Reduced
Lagrangian 1.3164 1.5107 failed
Heterosis 1.3144 1.500 failed
Serendipity 1.2761 1.4096 1.4290
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maximum deformation of the 2-element cantilever in 10—4m.

Tab. 5.3 Rank analysis of Ahmad’s degenerated shell elements,



The above results were compared with the exact deformation,
1.30779 10-%n, calculated for a beam using Kirchhoff’s theory.
The closest result is provided, as anticipated, by the nine node
Lagrangian displacement approximation and full integration gche-
me.

It should be noted that for extremely thin shells, it is so-
metimes recommended, e.g. [42], [56] that the Lagrangian or He-
terosis approximation of displacement in combination with the se-
lective in-plane integration be used. This significantly minimi-
zes shear and membrane locking. However for ordinary thin and me-
dium thick shells, which are the most usual case, there are no
problems with locking and hence a mathematically more exact ap-
proximation and integration should be preferred.

Furthermore the analysis demonstrates the rank deficiency of
the element stiffness matrix in the case of reduced integration
for the nine node displacement approximation, i.e. the Lagrangian
and Heterosis approaches.

In the following, the rank of the stiffness matrix of one
element was examined. The first element of the cantilever was
used. The results are depicted in Fig. 5.10 to 5.18. Note that
W(i) is the energy associated with the i-th eigenmode. Eigenva-
lues less than 0.5 can be treated as zeros, the non-zero value

being caused by small round-off errors.
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The results are summarized in Tab. 5.4.

Displacement Integration rule

approximation Full Selective Reduced

Type of mode B M T B M T B M T

Lagrangian 0 0 0 1 0 1 4 7

Heterosis o|l0]|oO 60j0]oO 3 1 4

Serendipity 0 0 0 0 0 0 1 1 2
Legend: B = bending mode

membrane mode

T total number

Tab. 5.4 Rank analysis of Ahmad’s elements, number of spurious

energy modes of one element.

From Fig. 5.10 to 5.18 it is apparent that the more integra-
tion points, the higher the associated energy with particular
eigenmodes. The most important eigenmodes are those with low in-
herent energy. This is due to the fact that they have the most
significant influence on the stability of the analysis of a
structure. In other words they strongly influence the determinant
of the global stiffness matrix. Furthermore comparing the example
results for the Serendipity element with the Lagrangian approxi-
mation it is apparent that the "bubble" mode associated with the
central ninth point is missing. Clearly, six zero energy modes
are associated with rigid body motions of the element, three dis-
placements in the x, y and z directions and three rotations with
respect to the x,y and z axis. However it should be pointed out
that some of them are fulfilled only in an integral form, see for
example the vertical z displacement of Lagrangian element and re-
duced integration, i.e. mode no. 34. Obviously, using full 3x3

nodes Gaussian integration and full quadratic displacement appro-
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ximation (Lagrangian element) all rigid body motions are exact.

Finally tests were made to determine the previously found
spurious modes are communicable. The two, three and four element
meshes depicted in Tab. 5.5 were analyzed. The material proper-
ties and geometry of the adopted element were the same as those
for the cantilever, the only difference being that now the ele-

ment length in the x direction was only O.5m.

Number of element 2 3 4

Structure layout

Tab. 5.5 Rank analysis of Ahmad’s elements, their layout for

the analysis of communicability of spurious energy modes.

As expected the number of spurious energy modes is the same

for all three meshes and is summarized in Tab. 5.6.

Displacement Integration rule
approximation Full Selective Reduced
Type of mode B M T B M T B M T
Lagrangian 0 0 0 1 0 1 4 3 7
Heterosis 0|00 cjJ0}|oO0 3|10|3
Serendipity 0 0 0 0 0 0 0 0 0
Legend: B = bending mode
= membrane mode
T = total number

Tab. 5.6 Rank analysis of Ahmad’s element, number of spurious

energy modes of meshes of two or more elements.
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Comparing Tab. 5.4 with Tab. 5.6 it is obvious that both
spurious energy modes of Serendipity element and reduced integra-
tion as well as the membrane spurious mode, the so called hour-
glass mode of the Heterosis element and reduced integration, are
non communicable and can be ignored for practical analysis, where

many elements are used.
The influence of material nonlinearity.

The following part of this section is concerned with the in-
fluence of material nonlinearity on the rank of Ahmad’s shell
element stiffness matrix. Obviously any "releasing" of the mate-
rial’s internal bounds, which simulates either cracks or plastic
flow, degrades the rigidity of the element and consequently also
the stability of the solution of the problem’s set of governing
equations. However the question is to what extent this can hap-
pen. Based on the author’s experiences with analysis of ordinary
reinforced concrete shells which are usually very thin, the limi-
ting factor of the bearing capacity of this type of structures is
dependent upon material failure, and the best results were obtai-
ned with the Lagrangian approximation and full integration of the
element. This type of element formulation will now be discussed.

The structure comprising two elements depicted in Fig. 5.9
was used again. However instead of loading by concentrated forces
a longitudinal displacement at the free edge (opposite to the
clamped end) was applied. Compression hardening was modeled by
the Madrid parabola, (defined by (3.66), (3.67) in Chapter 3).

The additional material constants used were:

Compression strength f; = 32MPa

Tension strength ftu= 3.0MPa

Maximum uniaxial strain beyond which full crushing is expected
em’c= 0.006

Tension stiffening factor for stress normal to the crack a2=0.5

Shear retention factor for shear modulus Bz = 0.25
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The strain in the crack corresponding to zero normal strain in

the crack e = 0.002
The strain in the crack corresponding to zero shear modulus in
the crack B e = 0.004
1 cr
Plasticity.

The structure was loaded by a longitudinal displacement at
the free-end edge until plasticity occurred and the solution di-
verged. This took place at an average strain e of approximately
~0.0021. At this state the modal analysis of the stiffness matrix
was carried out. The results are shown in Fig. 5.19. The least
non-zero mode was 686kPa, which is approximately 28% of its ori-
ginal value (for the elastic condition). The same drop in the
least non-zero eigenmode was found to be 26.5kPa for selective
integration.

One can see that in spite of a substantial decrease of energy
pertaining to bending and longitudinal membrane eigenmodes the
rank of matrix remained correct. On the other hand the element
rigid body modes are not simple movements or rotations with res-
pect to particular coordinate axis.

Nevertheless it can be concluded that numerical collapse of
the solution is caused by the independence of internal forces on
displacements in the fully plastic state and not by a stiffness
matrix singularity. When selective integration is used, in addi-
tion to one spurious mode pertinent to this formulation, the
first non-zero eigenmode might become so small that numerical
problems may arise. The eigenmode energies near failure for that

element formulation are summarized in Tab. 5.7.
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No. Energy No. Energy No. Energy
1 |51197192.0000 | 16 | 1311029.7500 | 31 3749.0940
2 |28691792.0000 || 17 | 1176385.3750 | 32 3082.9612
3 |21580850.0000 | 18 969992.3750 | 33 2703.8564
4 |112146729.0000 | 19 825307.6250 | 34 2422.1797
5 110944694.0000 || 20 689302.8750 | 35 2037.1451
6 { 5364164.5000 | 21 343558.1250 || 36 1410.8766
7 | 5017893.5000 | 22 151468.1563 || 37 630.5328
8 | 4449131.5000 | 23 82119.0625 | 38 265.3866
9 | 4427108.0000 | 24 68460.1328 | 39 0.1875
10 | 3968827.5000 | 25 34204.8633 || 40 -0.0040
11 | 3955486.7500 | 26 21930.3730 || 41 -0.0156
12 | 3009769.0000 | 27 20257.8301 42 -0.0255
13 | 2025495.6250 | 28 9795.6201 | 43 -0.0833
14 | 1468745.5000 | 29 9222.1240 || 44 -0.2347
15 | 1344603.1250 | 30 8172.1479 || 45 -0.2800

Table 5.7 Rank analysis of the Ahmad’s element, the eigenmodes of
the Lagrangian approximation, selective integration - plastic

condition in the longitudinal direction.
Cracks.

In order to study influence of cracks on the rank of the
stiffness matrix, the same structure was used again. As with the
plastic case, the structure was loaded by a longitudinal displa-
cement at the free edge up to failure. This occurred for an ave-
rage strain, e = 0.0012. At this point the shear modulus G had
reduced to 17% of its original value. For the calculation of the
stiffness matrix Young’s modulus perpendicular to the cracking is
assumed to be, (see also material model b/ in Chapter 3, (3.36)},
(3.37)):

1 - zero, if the crack is in the process of opening, and,

2 - equal to the residual secant value, if the crack is in the
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process of closing (i.e. the current strain 1is below the
maximum value reached during previous iterations at that
particular integration point). The residual Young’s modulus
is given by the line defined by the points [0; atE] and

[e , 0], i.e. for € =z ¢ . the value of Young’s modulus is
m

»t m,
equal to zero. The full tension stiffening model is

considered only for calculation of internal forces.

Fig. 5.20 presents the results of a modal analysis cor-
responding to the failure state. It should be noted that most of
the integration points were in the process of closing when the
stiffness matrix was calculated and Young’s modulus used across
the crack was about 3GPa. For the remaining points (about 10%)
zero Young’s modulus was used.

One can see that this time the least non-zero mode was only
166kPa and thus numerical stability of the solution has deterio-
rated more significantly than was the case for the plastic mate-
rial. Using selective integration the situation is even worse.
The eigenmode energies near failure for that element formulation
are summarized in Tab. 5.8. In this case a plausible reason for
the numerical failure of the solution seems to be the singularity
which appears in the stiffness matrix, therefore a priori rank

deficient element formulations seem to be less suitable.
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Fig. 5.20 Rank analysis of the Ahmad’s element, the eigenmodes of
the Lagrangian approximation, full integration - fully cracked

material in the longitudinal direction.
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No. Energy No. Energy No. Energy
1 |57526536.0000 16 629158.1875 | 31 1762.8800
2 |20083550.0000 | 17 269158.3750 || 32 1632.5271
3 {11726142.0000 | 18 266928.6250 | 33 1135.1084
4 | 9764140.0000 || 19 198896.0000 | 34 816.4446
5 | 5803756.5000 || 20 187466.2188 || 35 495.8130
6 | 4188461.2500 | 21 90720.9063 | 36 337.5460
7 | 3676849.5000 || 22 89170.3438 || 37 164.7204
8 | 2850331.0000 || 23 25611.5215 || 38 28.1272
9 | 2750403.0000 | 24 18042.3672 || 39 0.1456
10 | 1780067.7500 | 25 16290.3555 | 40 0.0364
11 1152568.3750 || 26 15856.6973 || 41 0.0236
12 1101694.3750 27 7409.3589 42 0.0121
13 958359.8750 || 28 5096.4927 | 43 0.0072
14 892333.6875 || 29 4931.7388 || 44 -0.0027
15 845440.3750 | 30 3294.0686 | 45 -0.1149

Table 5.8 Rank analysis of the Ahmad’s element, the eigenmodes of
the Lagrangian approximation, selective integration - fully

cracked material in the longitudinal direction.

It can be concluded that some earlier published data on this
topic do not agree with the present results even for the elastic
material condition. Furthermore it was found that in spite of the
fact that neither plastic nor cracked material conditions didn’t
change the rank of the stiffness matrix, (due to the small resi-
dual shear considered), numerical problems could arise as a con-
sequence of very small least non-zero eigenvalues. The cracks in
the material are more difficult to treat numerically than plasti-
city. Despite other recommendations pertaining to the elastic re-
gime [56], for nonelastic material conditions the element formu-
lation with correct rank is highly preferable. It should be also
noted that the same material conditions is assumed within the

whole area of the integration point. Hence, more integration
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points result in a more gradual failure. From that point of view
it may be justified to integrate at more sampling points than re-
quired for exact integration under elastic material conditions.
Note that the simplest case was assumed, that is the same ty-
pe of failure occurred at all integration points. However it is
reasonable to presume the element behavior in a more general case

would be similar.
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6. NUMERICAL METHOD FOR SOLUTION OF NONLINEAR EQUATIONS.

The finite element formulation and discretization procedures
result in a set of equations which characterize the response of
the structure due to loading. The dimension of the problem is ge-
nerally equal to the number of structural degrees of freedom. For
real structures this can be very large.

In linear analysis the set of equations is obviously linear
and can be solved directly using, for instance, Gauss elimination
procedures, the Cholesky method or some iterative method such as
Gauss-Siedel, Jordan methods etc. These procedures are quite well
known and their usage causes no serious problems.

If the structural behavior is nonlinear the solution is much
more difficult. A direct or "closed" solution for practical exam-
ples is impossible and we have to use some iterative procedure.
This brings problems with, for example, convergence, numerical
stability, uniqueness etc. Therefore we must pay careful atten-
tion to this phase of the analysis.

In general it is not possible to suddenly load a structure
with its full loading and instead we must apply step-by-step in-
cremental loading. For each load level the response of the struc-
ture is computed. This corresponds to the simplifications (the
linearization of deformation increment) made during the approxi-
mation of the virtual work increment. It is apparent, however,
that the time cost of nonlinear analysis is very high and hence
it is crucially important to establish the minimum number of in-
crements which are required to preserve convergence.

The main objective of this chapter is to review some well
established methods for the solution of a set of nonlinear
equations resulting from nonlinear structural analysis and to
present an improved solution scheme. The numerical results
pertaining to the particular algorithms are discussed in Chapter
8.
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6.1 Newton-Raphson method.

Using the concept of incremental step by step analysis we

obtain the following set of nonlinear equations:

K (p) 0p = g - £(p) /6.1/

where g is the vector of total applied joint loads ,
f(p) is the vector of internal joint forces,
Ap is the deformation increment due to loading increment,
p are the deformations of structure prior to load incre-
ment,
K(p) is the stiffness matrix, relating loading increments

to deformation increments.

The R.H.S. of /6.1/ represents out-of-balance forces during
a load increment, i.e. the total load level after applying the
loading increment minus 1internal forces Dbefore additional
loading. Generally, the stiffness matrix is deformation
dependent, i.e. a function of p, but this is usually neglected
within a load increment in order to preserve linearity. In this
case the stiffness matrix is calculated based on the value of p
pertaining to the level prior the load increment.

The set of equations /6.1/ is nonlinear because of the

nonlinearity of the internal forces:

f(kp) # k f(p), where k is an arbitrary constant

K(p) # K(p + Ap) 76.2/

and hence the necessity of a nonlinear solution scheme.

The set of equations represent the mathematical description

of structural behavior during one step of the solution. Rewriting
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equations /6.1/ for the i-th iteration within a distinct loading

increment we obtain:
K (Qi_l) Agi =q - £(21-1) /6.3/

All the quantities for the i-1 iteration have already been
calculated during previous solution steps and solved for B, at

load level g, which corresponds to loading at this step:
=p, .+ 4p /6.4/

As pointed out earlier, equation /6.3/ is nonlinear and the-
refore it is necessary to iterate until some convergence crite-
rion is satisfied. There are many possibilities for defining the

convergence criterion. Two of the most widely used are given by:

Agl A91:< &2
= <
B, B
/6.5/
and

T
(g - 2(91_1)) (g - Q(Ql_l)) L2

T
g g
respectively.

The first one checks the norm of deformation changes during
the last iteration whereas the second one checks the norm of the
out-of-balance forces. In both cases the acceptable error £ and
€’ are defined in relative terms in order to avoid dependence on
units, dimensions of structure etc. Usually the value of € and ¢’
are of order of 0.01.

The above solution can also be understood from the following

abbreviate point of view: The main equations can be re-written
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as:
f(p) = a /6.67

where f(p) is the vector of internal nodal forces that correspond
to deformation p and g is the vector of applied loads. Then using
Taylor’s theorem equations /6.6/ can be written for the j-th

equation by (using only constant and linear terms):

afj(91-1)

fJ(g) = fj(21-1) +-—5§I————— bp, *+ ... q, /6.7/

where j ranges from 1 to n, k is the summation index, i is the
iteration number, i.e. i=1,2,...

Comparing /6.7/ and /6.3/ it 1is obvious that both expres-
sions are identical, the notation only being different.

The concept of the incremental loading strategy is depicted

in Fig. 6.1.

bz P Leformaticr
0 1

N

Fig. 6.1 Newton-Raphson method.
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6.2 Modified Newton-Raphson method.

The most time consuming part of solution /6.3/ is
recomputing the stiffness matrix K(de) for each iteration. In
many cases this is not necessary and we can use matrix K(QO) from
the first iteration of the step. This is the basic idea of the
so-called Modified Newton-Raphson method. It produces very
significant time saving, but on the other hand, it also causes
worse convergence of the solution procedure.

Therefore this solution scheme is suitable for structures
and loading far enough from some local extreme, bifurcation point
etc., where there are difficulties to deal with. An additional
simplification is the so-called Initial stiffness method in which
the matrix K is computed only for the first loading step and ite-
ration, and thereafter is kept constant for all following solu-
tion steps.

The simplification adopted in the Modified Newton-Raphson

method can be mathematically expressed by:
K(Ex-1) = K(go) /6.8/

The modified Newton-Raphson method is shown in Fig. 6.2.
Comparing Fig. 6.1 and 6.2 it is apparent that the Modified New-
ton-Raphson method converges more slowly than the original New-
ton-Raphson method. On the other hand one iteration costs less
time because it is necessary to assemble and eliminate the stif-
fness matrix only once. In practice a careful balance of the two
methods is usually adopted in order to produce the best perfor-
mance for a particular case. Usually we start a solution with the
Modified Newton-Raphson method and later, 1i.e. near extreme

points, switch to the original procedure to avoid divergence.
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Po B P, Psp, DeTormaotio:

Fig. 6.2 Modified Newton-Raphson method.

6.3 Quasi-Newton method.

The Quasi-Newton method is very similar to the above methods
and can be understood as a compromise between time cost and con-
vergence performance. The basic idea is to modify the stiffness
matrix K(de) for every iteration based not on the mechanical
nature of the problem, but on the convergence behavior in pre-
vious iterations. For most cases the solution converges much bet-
ter compared to the Modified Newton-Raphson method and at the sa-
me time the recomputation and redecomposition of K pertaining to
the original Newton-Raphson method is avoided. The crucial impor-

tance is the way K is modified.
Equation /6.3/ can be re-written by:

D Ap, =g - f(p, ) /6.9/
i i i-1
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where the matrix Di is based on the equation behavior at two
successive points R, . and R

D (e, -

t-1 ) = ﬁ(gl) - 2(21_1) + Ar /6.10/

i-1
Then for R >R i(gi) = £(91-1) and Ar = 0.
/6.11/

Suitable candidates for matrix D must satisfy equations
/6.10/ and /6.11/ and in addition their evaluation based on Dbd,
(displacement increment) and Agl = i(gl) - i(npq)

ABi = Ei— Ei-l

="K (out-of-balance forces) must be easy.

The simplest way to modify matrix Di__1 to Di is given by

the first order change:

D =D + LI /6.12/

where u is arbitrary vector to be chosen, and gT Agi # 0.

There are many choices for u and two of the most widely used

are summarized as follows:

....... Broyden method (B),

I
"

>

o

..... Davidson method (D)

[+
n
>
=
I
S
>
o

/6.13/
Substituting /6.13/ into /6.12/ it is possible to modify the
matrix D for every iteration, which actually serves as a replace-

ment of the original stiffness matrix K(gbd) in /6.3/.

The most used second order modification of the matrix D are:

(vhere E is the identity matrix):
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Davidson-Fletcher-Powel method (DFP):

Af, Bp 8p, Aff
Di = E - T Di—l E - T
Af] Ap, Ap, Af,
Af, Af:
s /6.14/
Ap  Af

or Broyden-~Fletcher-Goldfard-Shanno method (BFGS):

Af  AfT D Af AfT DT

=i =i i-1 i i i-1
i i-1 T T

bp; Af, bp;

Di_ o

1 1

Unfortunately there is one essential drawback common to all
Quasi-Newton procedures and it is the fact that they destroy the
sparse character of the stiffness matrix. In practice we work
with very large systems of equations and hence the sparse charac-
ter of matrix K has a crucial importance. In addition, the stif-
fness matrix is symmetric and this property is also employed.
Using this method, the above advantages are lost. Only Davidson
and BFGS methods preserve symmetry, but the penalty is a worse
convergence performance.

Therefore instead of /6.9/ we usually rewrite the problem in

the form:

Ap =D ! [g - g(gi_l)] /6.15/

and matrix Di is inverted only once, i.e. for the first
iteration. Then during the following solution one of the previous

modifications of matrix D are applied directly on D;l , i.e. we

compute directly Agi without any decomposition of D.

190



In the case of the second order modifications it is neces-
sary to change /6.15/ appropriately1 . The sparse character of
structural matrices is lost in any case and it is worthwhile to

note that the inversion of D is also very laborious.

Advantages are gained by using the first order modification

. . . -1 . .
in which case the matrix Di can be written in form:

i
-1 -1, z Bk /6.16/

The expressions for the scalar Bk and vector v can be set
by comparing /6.16/ with the inverted expressions for /6.13/
through /6.15/.

Hence using /6.16/ it is not necessary to invert matrix Do’

because we can write directly:

_ 1 T _
Ap = 4p + zk—OBk vy [g. g(gi_l)] /6.18/

and AE1 is computed directly by Gauss elimination similar

Note:

1To invert the matrix from /6.14/ and /6.15/ the following formu-

lae are used:

X=A u
z=A"y
T -1 7!
B = a[l + av’ A g] /6.17/
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to the Modified Newton Raphson method using matrix K(go).
Unfortunately this method of solution can be used only in
the case of the first order modifications of D. Its use is rela-
tively simple because it involves storing only a couple of vec-
tors v (in slow memory) and evaluating their scalar product. For
k =z 4 it is usually better to assemble a new matrix K and to

start the Quasi-Newton method from the beginning again, i.e.:

Do = K(QO) /6.19/

Quasi-Newton methods represent a significant improvement
over the Modified Newton-Raphson method in terms of convergence
performance and time cost but is worse than the full Newton Raph-
son scheme in terms of convergence, but not in time. Good expe-
rience has been obtained especially with the BFGS modification
and it can be said that for many years it was the only procedure
suitable for the solution of more difficult large problems. In
these cases the Modified Newton-Raphson method diverged and the
original Newton-Raphson method was unacceptable because of solu-
tion time cost. In recent times, the importance of this method
has diminished because of the discovery of Arc-length methods,
which are more reliable and robust and at the same time not as
expensive. Nevertheless some authors combine the Arc-length and
Quasi-Newton methods into one solution scheme and claim very good
results in the case of the first order modifications in the form
/6.16/.

More information about Quasi-Newton methods can be found in

numerous references, e.g. [24].
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6.4 Arc-length method.

Next to the Modified Newton-Raphson method, the most widely
used method is beginning to be the Arc-length method. This method
was first employed about fifteen years ago to solve geometrically
nonlinear structures. Because of its excellent performance, it is
now quite well established for geometric nonlinearity and for ma-
terial nonlinearity as well. Many workers have been interested in
using and improving Arc-length procedures. The work of Riks [28]
and Crisfield [25], [26], [27], [29] are important, but there is
still much to do.

The main reason for the popularity of this method is its
robustness and computational efficiency which assures good
results even in cases where traditional Newton-Raphson methods
fail. Using an Arc-length method stability problems such as snap
back and snap through phenomena can be studied as well as
materially nonlinear problems with unsmooth or discontinuous
stress-strain diagrams. This is possible due to the changing load
conditions during iterations within an increment.

The main idea of this method is well explained by its name,
arc-length. The primary task 1is to observe complete load-
displacement relationship and not to apply a constant loading in-
crement which is defined throughout the load step as in the New-
ton-Raphson method. Hence this method fixes not only the loading
but also the displacement conditions at the end of a step. There
are many ways of fixing these, but one of the most common is to
establish the length of the loading vector and displacement chan-
ges within the step. Hence the name of the procedure, because all
admissible solutions of one loading increment must lay on an arc.

From the mathematical point of view it means that we must
introduce an additional degree of freedom associated with the
loading level (i.e. a problem has n displacement degrees of
freedom and one for loading) and in addition a constraint for the
new unknown variable must be introduced. The new degree of free-

dom is usually named A. The are many possibilities for defining
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constraints on A and some of these are briefly reviewed in the

following.

To derive the Arc-length method we rewrite the .set of
equations /6.1/ in form of /6.20/, where A defines the new

loading factor:

K (p) Ap = Ag - £(p) /6.20/

Now re-writting /6.20/ in a form suitable for iterative

solution then:
K (p) Agl = Ag - i(an) =Aqg - £ /6.21/

P. =p +Ap =p .+ 7 3 /6.22/

A=A + A /6.23/

The notation is explained in Fig. 6.3. The matrix K can be
recomputed for every iteration (similar to original Newton-
Raphson method) or it can be fixed within one step for all itera-
tions (Modified Newton Raphson method) or it can be replaced by
matrix D as in the Quasi-Newton methods. The vector g does not
mean in this case the total loading at the end of the step but
only a reference loading "type". The actual loading level is a
multiple of this.

The scalar n_, is an additional artificial variable which
is used to accelerate solutions in cases of well behaved
load-deformation relationships or to damp it near bifurcation and

extreme points.
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Fig. 6.3 The Arc-length method notation and convergence

performance.
Additional notation is defined as follows:
Out-of-balance forces in i-th iteration:
g(pi) =g= ii- Ai_q = ii- (Ai_1+ Ahl_l)g /6.24/

R.H.S vector in i-th iteration:

RHSi = Aig_ -f = Ahi_lg - /6.25/
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Using /6.22/ through /6.25/ into /6.21/ the deformation

increment §i X can be calculated from:

K& _ =RHS =M _d-g /6.26/

Hence:

It remains only to set the additional constraint for Akl_l
and L and the whole algorithm is defined. Thus compared to the
Newton-Raphson methods in which we solve n dimensional nonlinear
problem, we now need to solve a (n + 2) dimensional problem, whe-
re the first n unknowns correspond to deformations and the last
two to A?\i_l and 7.

If we set m_, = 1 then we deal with an (n + 1) dimensional
problem. Else an additional constraint must be introduced, usual-
ly by the Line search method. This is discussed later. Also §1-1’
<_3T and §-1-1 are of order (n + 1), and the (n + 1)-th coordinate,
which corresponds to the loading dimension A, is set to zero.

Now letwintroduce two new vectors 31_1 and 1—)1-1 as shown in

Fig. 6.4. There are defined by:

't'1-1= A21-1+ B (l!-l—és t art) 76.27/
and

n_=mn §1_1+ B A&l_l /6.28/
where:
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B is scalar that relates dimensions of A and deformation space,

is a (n + 1) dimensional vector with its first n

A
._1_

coordinates set to zero (deformation space) and its

(n + 1)-th coordinate equal to Ai—l’
A tart is a (n + 1) dimensional vector with its first n
—star

coordinates set to zero (deformation space) and its

(n+1)-th coordinate set to A , 1.e. the load level

start

prior to the current loading increment was applied,

Agll is a deformation vector (The 1-st through n-th

coordinates are nonzero, (n + 1)-th coordinate equals zero)

The entities gﬁ_l and n _, are understandable from Figure

6.4:

BA

Fig. 6.4 The vectors 31, n and scalar B.
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It is then obvious that

t=%t +n /6.29/

Also the residual R11 is defined by:

R =t _n /6.30/
i-1 i-1 —i-1

Equations /6.26/ through /6.30/ lead to the final expression
. T _ T - .
for the unknown Akl_l {noting that A21-1 Aéi_l— R, _, * 51_1 0):

Ri 1- AE’: 1 :l 1
AAH= 'T - 2' /6.31/
n AEl-l §T + B (Ai-l_xstart)

To obtain Ahbl using /6.31/, the main problem is how to

compute the residual Ri . Some of these are now briefly listed.

6.4.1 Vector n lies in the plane normal fto ,Ll (Normal

update plane method):

In this particular case Rp4= Lz‘l n_= 0 and thus /6.30/
leads to :
Ag:-1:; 1
A, = = — / 6.32/
n ABl-l §'l‘ +B (Ai-l—hstart)
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P

Fig. 6.5 Normal update plane for solution Ali—f

The main advantage of this method is its simplicity. The
Normal update plane is relatively reliable, but it can fail if
the A-p diagram suddenly changes its slope or turns back or down
(snap back and snap through). Nevertheless if these special con-
ditions are treated by this method then a very significant reduc-

tion in step length is unavoidable.

6.4.2 Consistently linearized method:

The residual R1-1 is defined in this case by

T
l

)
i
e
o]
]

t | |n .| cosa=
1-1 1-1

= -y Uyl - s /6.33/
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The step length s and angle « are depicted in Fig. 6.6. The

norm of the vector |Lb4| is calculated using /6.27/ :

= T 2 _
- AEi—l AE}—1+ B (&!_1 astart) /6.34/

current

step length

Fig. 6.6 Consistently linearized method for AAi_f

Substituting /6.33/ and /6.34/ in /6.3/ we obtain the final
expression for AA1-1' It should be noted that the scalar s is set
'a priori’ and governs the actual step length. Of course, the
proper choice of this parameter is essential for the solution and
therefore it will be discussed later in more detail.

This method is especially suitable for solutions which
embrace A-p diagrams with sudden breaks and discontinuities.

Thus it is employed especially for materially nonlinear problems.
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6.4.3 Explicit orthogonal method.

The basic constraint for AA  in this case is that |Lb4| =
|£1 = 5 = is some distinct ’'a priori’ set step length. Similar

to the previous method we also have to evaluate the residual Ril

Ri—1= L1-1 '1'1'1—1= Ili-ll I_i-ll

= -lt,_ Iz, /6.35/

Based on the similar triangles, the following can be

derived:

r | It |
1-1 i-1
L, I -s (L]

1L,

|£1-1| = '—1131"_ (|L;_1| - s)

/6.36/

After some tedious manipulation of /6.35/ and /6.36/ we

obtain:
—sz(|L’ - s)
R = !
B4
where /76.37/
t’ =t +n

The entities L; and g;_l pertain to the solution using the
Normal update plane method. Without any additional derivation let

us present the expression for |t;|:
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=t 17+ 8" M + /6.38/

The vector |t’
1-1

substituting the above equations into /6.31/ we obtain the final

| is calculated wusing /6.34/. By

expression for AA

From the above derivation it is clear that in practice we at

first employ the method 6.4.1 to solve for L; and g;_l and

thereafter we correct the Axhd in order to satisfy the

constraint It |= [t | = s.
= =1-1

BA

I E4-

) | S =step length

P

Fig. 6.7 Explicit orthogonal method for AAi_l.

This method is wusually utilized to analyze geometrically
nonlinear structures, particularly stability problems. Its main
feature is robustness and compared with the "classical" Crisfield
cylinder method [29] it avoids the problem of the choice of the
proper AAi_l root (the condition Li = 21-1)’ It is reached by ap-
plying geometrically similar triangles (see Fig. 6.7) rather than
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direct evaluation of the step length Ll(which leads to quadratic
equations).
As regards convergence, the method is comparable to. method

6.4.1, but has the advantage that it preserves the step length.
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6.4.4 The Crisfield method.

The Crisfield method is derived directly from the constraint
of constant step length |Li|= £1-1I = s. The residual R _  is
not used in this case and we substitute equations /6.21/ through
/6.29/ straight into the above constraint. It 1leads to the
following equation for A?\i X

a 822 +a M +a =0 /6.39/
1 1 2 i-1 3

where for the case of an arbitrary iteration:

2
a=mn s 8 +li
1 -T =T 7

A
T =T 2 "1-1 "start
a° Z[Agiq S *md S+ B N )

_ = =T
a=242% 9 *n38 9%,

and for the first iteration:

2 2 T
a=8 +m 5 3,

2 T = 2
a= 2B (A1-1 hsc rt) 2§T §1—1 n

2 2 2 <T = 2
a= B (A1-1 Astart) 88

The use of different equations to solve for A?ti in the first
iteration and in all additional ones is justified by the
improvement of numerical stability. For the first iteration we
simply employ the basic constraint for this method, i.e. |_t_1[ =
s. For all additional iterations, it is much more numerically
stable to constrain AX by Li - _t_i_ll = 0 rather than |;1| = s,
which is in fact the identical equation.

Equation /6.39/ has generally two roots A?\l_l and hence we

must decide which of them to use. Obviously two values of AA,
1
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are accompanied by two vectors n_, (see eq. 6.28 and 6.29). The

situation is shown in Figure 6.8 :

Fig. 6.8 The choice of the proper AA1—1 root.

Several recommendations are available on how to choose the
suitable AAl_l root. These are generally based on the path of
previous deformations. Some of these were checked in this work
and the most reliable was found to be when AAi_l was chosen so
that cos® is positive (for O, see Fig. 6.8). In other words the
requirement is that the angle between Ll and 21—1 is acute or
that their scalar product is positive.

Unfortunately it can sometimes happen that the above condi-
tion is satisfied either for both roots or neither.

In the former case, the better choice is usually the root

which is most close to the linear solution, i.e.

- == /6.40/
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In the latter case it is recommended that the root closest
to the acute angle constraint is chosen. It should be noted,
however that this case is very rare and usually signals that
there is something wrong (solution out of the convergence, nume-
rical difficulties, violation of some general mechanical princi-
ple etc.). In this situation, the reliable remedy is usually to

decrease the step length.

The step length s.

The proper step length is of essential importance for good
execution performance. It directly influences the convergence
radius on the one hand and the number of required steps on the
other. Hence if s is too big, the solution diverges, if it is too
small the computational cost is excessive because the diagram A-p
is traced in unnecessary detail. Hence much care must be paid in
setting a value for s.

The 1literature provides numerous ways for estimating s.
These are usually based on previous convergence performance and
on the value of Bergan’s stiffness parameter [18]. Unfortunately
none of these are 100 per cent reliable and thus it is better to
entrust more to the professional judgment of the analyst using
the Arc-length method.

Based on the author’s experience it is a good idea to set s
so that the analysis of the structure exhibits some A-p diagram
difficulties after approximately 3 - 4 solution steps. This
approach to the problem is of course also not totally satisfacto-
ry but may be better than the blind following of some unsuitable
formulae.

During execution it is also important to know at what
particular part of a A-p diagram the solution is and to change s
accordingly.

In practice the following sequence is usually recommended:

1/ Set loading vector g and thus define the type of loading.
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2/ Compute Ao so that after 3 - 4 load increments Aog the "dan-
gerous" part of A-g diagram can be expected. The step length is

then given by:

s=2A & & /6.41/

where the expression /6.41/ is derived from /6.26/ for |§6[ = 0,
i.e. it is assumed that at the beginning of step the structure is
in equilibrium.

The step length can be fixed for all steps or preferably it
can be adjusted for every new step with respect to the previous
convergence performance. Some of the possibilities are as fol-

lows:

a/ s = 171 s
1 n 1-1
4
n_,
b/ s = s /6.42/
1 n i-1
c/ s = n s
1 Vn 1-1
1-1

where:

s and s _, are new and last step length s,

n _, is number of iteration required to reach convergence
in last step, corresponding to s

i-1
n is desired number of iterations per step, usually 5 to 6.

It is apparent that expressions a/ and b/ tend to keep fixed
loading increments. For poor convergence and many iterations, the
AA factor decreases and hence to eliminate this, it is necessary

to increase the initial step length. This causes a larger initial
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AXA, but because of the above, it decreases during iterations and
at the end of iterating, a good value of AA is obtained.

The strategy for the last expression ¢/ has quite the oppo-
site character. If there are difficulties with convergence, i.e.
the value of n_, is increasing, the step length is decreased.
Hence it maintains a nearly constant deformation increment rather
than load increments as in a/ and b/. Based on practical expe-
rience the last expression seems to be the best one (apart from
some special cases). Decreasing s improves convergence and it
seems quite reasonable that in the case of problems with conver-
gence one should try to improve it by decreasing s. On the other
hand it should be noted that expression a/ and b/ can sometimes

help in passing some extreme points etc.

It remains to add that the result of using 6.4.3 and 6.4.4
constraints for AA provides identical solutions. The Crisfield
method is slightly more robust but costs more time and one has to

deal with the difficulties of choosing the proper AA root.
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6.5 Line search method

This method can be used either quite independently (i.e. in
conjunction with some Newton-Raphson method) or simultaneously
with the above Arc-length method. In this case the parameter A is
constant during all Line search iterations.

The objective of this method is to calculate the parameter 7
that was used in previous expressions and which previously was
assumed for the sake of simplicity to be equal to one.

The primary reason for introducing a new parameter in the
equations is to accelerate or to damp the speed of analysis of
the load-displacement relationship. The secondary reason is that
it can be used as a very advantageous criterion to trace the
convergence properties of analyzed steps.

The basic idea used to derive the 1 value is minimization of
the work done by out-of-balance forces on the displacement incre-
ment. This work can be used as a criterion to evaluate convergen-
ce qualities. If it is small, then the solution converges well,
if the work is nearly the same as it was before the current ite-
ration or even larger, it signals that something is wrong and we
can execute the appropriate actions to improve convergence.

Let us assume that we have already solved two points B, and
Eo + n’é, and thus we have also calculated out-of-balance forces
g(go) and g(go + m’3) at these points. The aim of this method is
to set the parameter 7 so that the work being done by out-of-
balance forces at point p = B, + m8 is minimal.

For the work of out-of-balance forces we can write the

following expression:

¢(p) = @(Qo) + IE g(g)T dp = minimum /6.43/

0

The given constraint for n leads to:
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3% (p) ] [ T ] dp T 8p
—_— = + —_ d —_— = —= _ =0
0 +3g [ 2@’ de oy - BB 5

/6.44/

Now let us linearly interpolate the out-of-balance forces g

between points B, and B, + 7’3

g(go +7n’'8) - g(go)

+ 3 = + 3 + S - =

gp,+ 13) = g(p,) 5, * 73 - 5] |p,* m8 - p|
&lp, + n’8) - g(p,)
= glp)) + > n
/6.45/

In addition:
p=p +mnd
and
jEL_= 3 /6.46/
an -

Substituting /6.46/ in /6.45/ and /6.44/ the final form for

the calculation of parameter m can be derived:

&(p)" 3
n_= /6.47/

g(p))’s - glp, + 18)" 3

Hence, using the Line search method the algorithm of the
solution is as follows:

- Use any of the preceding methods to calculate displacement
increment ) (i.e. the total displacement of the structure changes
from B, to go+ m’38). In this phase, parameter 7’ can be set from

the last Line search iteration or simply set equal one.
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- For both points calculate out-of-balance forces, i.e.
g(p,) and glp + n’3).

- Using formula /6.47/ calculate new 7 parameter.

- Due to our simplification (linear regression of out-of-
balance forces g) equation /6.44/ may not be satisfied accurately
and it might be necessary to repeat the above steps. Hence /6.44/
is checked and if the desired convergence is reached a new
displacement of the structure B, + m 8 can be calculated.

- If not, the whole procedure must be repeated. For the two
initial poihts the current solution, i.e. point B, + mnd and
either point p, or p ¥ n’8, (usually QO) are used. According to
this choice it is necessary to modify /6.47/ (which is written
for point po).

The exact satisfaction of /6.44/ is very difficult and the-
refore a suitable criterion must be derived to cut off Line
search iterations. If the method is used separately, then the
work of the out-of-balance forces can be related to the work due
to the external loading. If the method is used in conjunction

with the Arc-length method, it is recommended that the Line-

late, + 3)]
g(p,)

there is approximately a 40% decrease in the work being done by

search iterating is finished if < 0.6 - 0.8, i.e.

the out-of-balance forces during the current iteration. There-
after execution control is returned to the Arc-length solution
scheme.

Practical experience suggests that the value of parameter 7
should be limited within a given range. Good results have been

achieved using:

ne<o.1; 10.> /6.48/

Sometimes difficulties are experienced with convergence of
the Line search and thus it is useful to support this possibility
in the solution algorithm so that the Line search is executed
only for one iteration or is used only to evaluate the overall

convergence rate.
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6.6 Parameter .

As already mentioned, the parameter 8 scales the deformation
space p to the loading dimension A. The sense of the parameter g
can be demonstrated on the Crisfield constraint for AA.

If B = 0, the solution for AA is searched for on the area of
a cylindrical shape of radius s (the step length) and the axis
normal to the p (deformation) space. The solution is the point of
intersection of this area and the line, defined by the energy
gradients of structure and by the applied load at point B,

If B = 1, the shape of the cylindrical area is changed to an
ellipsoid (or in special cases to a sphere).

Based on the author’s experience for the case when f = 0 the
A - p diagram is analyzed more coarsely than if B8 is large. This
is quite apparent if one realizes that for B = 0 the size of
changes in the loading space is neglected and thus the user defi-
ned step length s is fully available for changes in deformation
space.

If the parameter B 1is too big, the "weight factor" of
changes in loading space is so high that they can’t be achieved.
Thus the Arc-length method degenerates to the Newton-Raphson
method.

A suitable choice of B and its changes during the execution
are now discussed. Unlike the case of the Arc-length method, the-
re is a lack of available information for dealing with the B pa-
rameter. Thewyeare some recommendations usually based on the value
of Bergan’'s stiffness parameter, but these are applicable only
for very simple systems (e.g. structures created by elastic
springs etc.). All the following suggestions are based on the
author’s practical experience in solving numerous test problems.
Therefore in the algorithm presented in the next section, there
is also the possibility of adjusting the B parameter manually.

Best results were observed if the size of deformation space
was approximately the same as the size of the loading dimension.

Hence the parameter B is estimated by:
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B=8_ = - /6.49/

ref

i.e. B is based on the assumptions that at the first loading
step the norm of the displacement increments and "A change" (i.e.
ARO) are identical.

During the subsequent steps the parameter B is adjusted as

follows:
B = Bref AX /6.50/
|A91_1| i-1

where |Agb4|and Ahbd are changes in deformations and load-
ing due to the previous loading increment respectively. This en-
sures approximately the same scale for the subsequent load incre-

ments.
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6.7 The new solution algorithm.

The new algorithm, which will be now presented, combines all
the methods already discussed to create a solution scheme which
facilitates all of their particular advantages. In comparison
with other similar sets of solution schemes the present algorithm
incorporates the influence of the loading space dimension (A co-
ordinate) and new suggestions for the best adjustment of B fac-
tor.

These were developed in Fortran 77 program codes for the ca-
ses of the frontal solution technique and for band solution tech-
nique with variable sky line. A more detailed description of all
codes will be given later, here the theoretical background and
the flow chart will be presented. Practical demonstrations and
Benchmark tests are also discussed later.

The main idea of the scheme is to combine different methods
to provide a solution procedure which on run-time basis chooses
automatically the most effective solution strategy. The decision
is based on the convergence behavior from previous steps. It also
optimizes the step length, 8 scale factor and m parameter.

It is apparent that no recommendation for adjusting of
the execution parameters, which are usually based on empirical
formulae, are applicable for every case. Hence great care was gi-
ven in programming this method to enable user adjustments during
the execution. The simplest example is the setting of maximum
number of iterations per loading step. If it is seen that the
convergence criterion is nearly satisfied but the maximum number
of iterations is already reached, then it is better to increase
the threshold for the number of iterations and let execution suc-
cessfully finish (and for example slightly decrease the step
length for the next loading steps) than to terminate the whole
solution and repeat everything once again. Many run-time changes

are therefore incorporated in both solvers frontal and band stra-

tegy.
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It should be also noted that unlike the original Newton-
Raphson methods, a problem of n + 2 dimensions is solved. Some
authors suggest incorporating the additional two equations di-
rectly in the stiffness matrix (e.g. Riks) but in the present
work the n deformation degrees of freedom are solved first and
thereafter one equation for A parameter and one equation for 7
parameter are solved separately. This technique is employed e.g.
by Crisfield etc.

It is known that the former approach gives better results.
However this is counterbalanced by a slightly more complicated
flow chart of the solution and the fact that it causes violation
of symmetry of the problem (which is much more serious).

The best way to understand the developed solution scheme is
to follow the flow chart in Fig. 6.9:

The following notation is used:

T
€ = S
_ T
c, o, 4
AT
d1—A91—1§T
d = &
2 Si-1 o7
d =3 &
3 Si-1 —i-1
_ T 3
d, = &p, 94
_ T
ds =a §1-1
T -
d, = £ %4
d = f7
7 F1-1 -T
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T
dg = 2p, , fp, _,
e = fT s
1 =1 =i
T
e -
2 =i T

The above constants are used to calculate the new A and 7
parameters. The detailed expressions to compute A, m and AQi__1
were given in the previous sections.

The present method provides much better convergence than the
Newton-Raphson family of procedures, and is also better than the
solution schemes based on a single Arc-length because it is pos-
sible to employ the most suitable form of constraint for AA.

Also, matrix K can be calculated and its triangulation
performed for the first step and iteration only (i.e. the Initial
stiffness method), at the beginning of every load increment (i.e.
the Modified Newton-Raphson method) or at every iteration (i.e.
the original Newton-Raphson method). In addition it is also
possible to recompute K every second iteration and in the case of

structural unloading (i.e. at the point of probable difficulties).
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Fig. 6.9 Solution flow chart (part 1)
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Fig. 6.9 Solution flow chart (part 2).
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6.8 Final remarks on nonlinear solution schemes.

Finally it is necessary to discuss one of the most difficult
problems which 1is unfortunately common to all nonlinear
procedures, i.e. uniqueness of results and the guarantee that the
least energy solution has been found.

It is unfortunate that in very complicated situations there
is no guarantee that the least energy path has been found and
what is worse there is no theoretical check or proof to evaluate
the quality of computed results. On the other hand it must be
noted that for the vast majority of problems we really do find
what we are looking for. The main difficulties occur especially
in materially nonlinear structures with strong discontinuities in
the material stress-strain diagram and in the case of
geometrically nonlinear structures near bifurcation points (or
even multiple bifurcation points).

In both cases we usually have problems with convergence. One
possibility is to obtain some information about the state of the
observed structure by computing the eigenvectors and eigenmodes,
or even to study the class of all possible virtual displacements
at the point (usually using Taylor series with base functions
equal to eigenmodes). This is the main idea of the perturbation
method. But again it is emphasized that it is only information,
not proof.

An additional problem is to find the real failure point of
the structure and not the failure point of the numerical
solution, as is often the case. Here, usually, it is better to
forget about mathematical aspects and to focus attention more on
the mechanics of the problen.

All nonlinear computations are in most cases only "extra-
polation" of linear solutions. However what is applicable for a
linear solution need not be applicable for a nonlinear solution.
It is always a good idea not to rely 100 per cent on the computed
results, but to use in principle a different method to check the

results.
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7. ANALYSIS OF STRUCTURES SUBJECT TO SHORT-TERM LOADING.

This chapter presents a series of short-term loading analy-
ses using the proposed theoretical methods and the developed
software. Advantages and shortcomings of particular solution
techniques are discussed at the end of the examples and where ap-
propriate recommendations towards their use are given.

It is difficult to categorize the analyses because one struc-
ture is often used to investigate more than one aspect of the mo-
deling and solution procedures. However analyses are presented
with a statement at the beginning as to what is being examined in
that example, and why the analysis was carried out. A short sum-

mary of the analyses and the aspects examined follows:

Anal. Structure Problems: Program:
7.1 2 trusses, elastic NS, GN PI-1
7.2 Ramm’s shell, elastic NS, GN, FE-2 PI-2
7.3 Ramm’s shell, R/C NS, CE-2, GN PI-2
7.4 Slabs A, B, R/C NS, FE-2 PI-2
7.5 Slab C, R/C GN, CE-2, NS PI-2
7.6 Shell [67}, R/C FE-2, GN, CE-2 PI-2
where:

CE-1 = Constitutive equations for 2D analysis,
CE-2 = Constitutive equations for shell analysis,
FE-1 = Finite element for 2D analysis,

FE-2 = Finite element for shell analysis,

GN = Effect of geometrical nonlinearity,
NS = New algorithm to solve nonlinear structural governing
equations,
PI-1 = 2D program
PI-2 = Shell program

It should be emphasized that the present work deals with so
many aspects of an analysis, e.g. geometric nonlinearity, nonli-

near material law comprising several parameters, different tech-
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niques for solving nonlinear equations etc. that only a few of
them could be addressed here.

Last but not the least this chapter demonstrates that the
developed software works satisfactorily and thus one of the tasks
of this work, namely to create PC computer based environment for
general nonlinear analyses of 2D and shell R/C structures was

satisfactorily accomplished.

7.1 Simple two truss element structure.

A. Aim of the analysis:

-comparison of various Arc-length techniques to solve struc-
tural nonlinear governing equations,

-to prove that the present solution algorithm is able to deal
with "snap-back" phenomenon,

~-to show the importance of geometrical nonlinearity,

-to test the newly developed nonlinear equation solver with

sky-line data housekeeping.

B. Description of analyses and results:

A simple structure was chosen for this analysis so that the
calculated load-displacement relationship could also be checked
manually. The other advantage of this structure being used is
that during the solution the stiffness matrix is at first positi-
ve definite, then nearly singular, thereafter negative definite
and finally positive definite again. Hence the algorithm is tes-
ted for very difficult structural conditions. The symmetry of the
structure helps to trace numerical accuracy and stability of the
solution.

The analyzed structure is depicted in Figure 7.1. It is an
assemblage of two truss elements (no bending or torsion are ac-
counted for) with two degrees of freedom. However, due to sym-
metry, only the vertical displacement is nonzero. The horizontal
displacement shows only numerical stability near extreme points

of structure.
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Fig. 7.1 Structure and loading condition to test nonlinear sol-

ver.

A linear elastic constitutive model was assumed. The analy-
sis was formulated in the Total Lagrangian coordinates. The
structure was loaded vertically at the top by the local force P =
0.08A.

The Arc-length methods have been combined with the Modified
Newton-Raphson method. If a Line search was incorporated, the
solution always <converged to the <closest extreme point
irrespective of whether we started from a point lying before or
behind this extreme. Hence the Line search method 1is more
suitable for finding the extreme points rather than tracing the
whole working diagram of the structure. The results of analyses,
i.e. the relationship between load and vertical displacement for
various modifications of solution scheme (procedure parameters),

is depicted in Fig. 7.2 and Tab. 7.1.
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CRISFIELD METHOD, B modified, step length constant

A
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2.0

b
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CRISFIELD METHOD, 8 = 0.707, step length const.
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Fig. 7.2 Load vs. displacement relationship of the truss

structure to test the nonlinear solver (cont.).
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7.1 Results of truss analysis testing the nonlinear solver.

Tab.
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The results can be summarized as follows:

1/ The algorithm is capable of analyzing structures with negative
definite stiffness matrix and can be used to trace "snap through”

phenomenon.

2/ There is no significant difference between the results provi-
ded by particular Arc-length constraints. The exception might be
in zones which are especially difficult to handle, e.g. near

structural failure and bifurcation points.

3/ Near extremes and on the descending part of force-displacement
diagram no problems were experienced with stability and conver-
gence of the solution algorithm. No special increase in the num-

ber of iteration was necessary.

4/ The horizontal displacement at the top of the structure was
always nearly zero even in cases when convergence had not yet
been reached. This proves the high numerical stability of the

adopted double precision arithmetic.

5/ 1t is notcintention of this analysis to test an influence of
the B factor on convergence properties of the solution procedure.
This is investigated in analysis 7.2. Here B 1is considered in
order to check if the program works correctly.

When 8 = 0 (i.e. the load dimension is ignored in calculations of
the step length) convergence was reached within two iterations.
The first iteration always calculated the displacement according
to the current tangent stiffness matrix and in the second itera-
tion the current deformation, (i.e. the deformation after the
first iteration), remained unchanged and only the load level,
(i.e. A), was adjusted to satisfy the structural nonlinear beha-
vior. This is in agreement with theory and shows that no inac-
curacy was introduced due to the horizontal degree of freedom.

If the B # O more iterations are necessary.
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6/ A comparison with the standard Newton-Raphson method was im-
possible because this method diverged beyond the first extreme of

the load-displacement curve.

7.2 Ramm’s shell.

A. Aim of the analysis:

-to check that the present solution algorithm is able to deal
with "snap-back" and "snap through" phenomena in the case
of a more complicated structure,

-to show the importance of geometrical nonlinearity,

-to tests the new nonlinear equation solver with a frontal
data housekeeping strategy,

-comparison of Arc-length techniques with and without
parameter 3,

~to study various mesh sizes and their influence on the re-

sults.

B. Description of analyses and results:

In this analysis Ramm’s cylindrical shell [69] has been exa-
mined. This structure was chosen because its behavior has also
been studied by other authors, e.g. Ramm, Riks [70], Sabir and
Lock [71] etc. and therefore the results can be compared with in-
dependent sources.

The geometry and material properties of the structure are
depicted in Fig. 7.3. A quarter of the shell was modeled by 4
shell elements using 9-noded Lagrangian biquadratic approximation
of displacement integrated at 9 integration points, (i.e. full
integration). Geometrical nonlinearity was accounted for whereas
a linear elastic isotropic material was assumed. The shell was

loaded at its mid-point by concentrated force.
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points ¢, 1i.
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The Crisfield variant of the Arc-length method combined with
full Newton-Raphson method was employed to solve the problem be-
cause we believe it to be the most robust solution scheme. Line
search was not activated. Three analyses has been carried out. In
the first one B parameter was zero during the whole analysis and
the structure was loaded in very small loading increments. In the
second solution B parameter was again zero but much larger load-
ing increments were applied. The third variant was the same as
the second one except B was variable, adjusted at the beginning
of every load increment by the proposed algorithm (see Chapter
6). Resulting displacements at central point ¢ and at mid-point i
of the free shell edge are compared with other authors in Fig.
7.3. The norm of displacements changes due to iteration over the
norm of total displacement is less then 0.001.

The following observation can be deduced from the results:

- No special problems with convergence were experienced in any of
the analyses. The first analysis converged within 2-3 iterations
per loading increment whilst the other analyses needed about 3-5
iterations per per loading increment to meet the convergence cri-
terion. Loading increments used in the particular analysis are
depicted in Fig. 7.3.

-The solution procedure managed to deal with snap back as well as
snap through phenomena.

-There is little difference between these results and those of
the other authors, (Ramm used the same geometry of structural
discretization but with bicubic elements).

-For the loading part of the force-displacement diagrams load in-
crement size had little influence on the results, however in the
unstable phase, i.e. for negative force P, some differences ap-
peared. These are probably due to the fact that a fully incremen-
tal solution scheme is adopted in which the starting point for
every iteration is the final result from the previous iteration.
Some other authors always prefer to start from the converged

structural conditions, i.e. from the end of the last step. In
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other words a secant approach must be used within the load incre-
ment. However this is contradictory to the hypoelastic constitu-
tive equations used and involves the necessity of much finer
loading increments.

-1f parameter B was non-zero, points on the load-deformation re-
lationship were spread more evenly than for B = 0. Hence the va-

riable B # 0 option is preferable.

In order to study the importance of geometrical nonlinearity
and mesh size dependence 6 additional analyses were carried out.
A quarter of the structure modeled by 4, 9 and by 16 elements
were compared. One set of solutions did not account for geometric
nonlinearity whilst the other did. Deflections at points ¢ and i,
(Fig. 7.3), are presented in Fig. 7.4 and 7.5. Throughout these

analyses B = 0 was assumed.

230



DEF_ECTION AT POINT c

FORCE (KN)

1.2

—— MESH 2+2 EL., NLIN.
— MESH 3+3 EL., NLIN.
——~ MESH 4+4 EL., NLIN.
— MESH 2+2 EL., LIN.
—<- MESH 3«3 EL., LIN.
—9— MESH 4+4 EL., LIN

-0.4 :
0 5 10 15 20 25 30
DISPLACEMENT (MM)

Fig. 7.4 Deflection at point c of Ramm’s shell; different meshes,

with and without geometrical nonlinearity.
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