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SUMMARY.

1. All three methods of washing action (brush, rotary and jet) 

investigated in this study caused damage to the cuticular surface 

of the egg shell.

2 . The physical trauma to the egg caused by the washing procedure 

resulted in higher levels of protein in the post wash water. Not all 

of the protein was derived from the cuticular surface, some was 

also derived from the contents of broken eggs.

3 . The pre wash water in both the brush and jet action machines 

contained bacteria, highlighting the d ifficu lties associated with 

plant hygiene. The post water from all three washing machines 

contained a diverse population of bacteria, several of which were 

potential food pathogens.

4 . The persistence of the bacterial population in the three 

washing systems, particularly the rotary and je t action machines 

underlined the inadequacies of the sanitiser regime. Eggs 

improperly rinsed displayed sanitiser residue on the shell surface. 

Chlorine from the sanitiser penetrated the thickness of the true 

shell.

5 . In general terms, bacteria translocated across the shell wall of 

washed eggs more readily than the unwashed group. This trend was 

independent of the type of wash action although it did appear to be 

strain related.

6 . As the bird aged, shell quality declined with a concomitant 

increase in bacterial transfer.



7 . Infectious Bronchitis was verified during the course of this 

investigation and observed to have a profound effect on shell 

structure. This structural deterioration correlated with a rapid 

increase in bacterial penetration (56% in the unwashed eggs and 

66% in the washed eggs). During the recovery phase bacterial 

penetration decreased.



INTRODUCTION.



1 EGG FORMATION.

The avian oviduct achieves an average length of 600mm. in 

it’s active state (Gilbert 1979) and is divided into six spatially and 

temporaly d istinct regions in which the form ing egg spends 

different periods of time viz Infundibulum, (0.25-0.5hrs.); Magnum, 

(2-3hrs); Isthmus, (1.25hrs); Tubular Shell Gland and Shell Gland 

Pouch, (18-20hrs) and the Vagina, (0.25hrs).

Each region consists of six different layers viz: glandular 

epithelium; inner connective tissue layer; inner circular muscular 

layer; outer connective tissue layer; outer longitudinal muscular 

layer and a peritoneal covering (Hodges 1974; King 1975). The 

muscular layers lend support and firmness to the oviduct advancing 

the egg by peristalsis (Gilbert 1979) while the secretory cells 

identified as ciliated columnar, non ciliated goblet type and tubular 

glands (Romanoff & Romanoff 1949) are either active in the 

formation or passive in the transfer of all components of the egg 

with the exception of the yolk which is primarily of hepatic origin.

The ovum is released by surges of luteinising hormones and 

when it erupts at the avascular stigma the yolk mass surrounded by 

a pervite lline membrane enters the infundibulum. After the 

deposition of the multilayered albumen and paired fibres in the 

magum and isthmus respectively, the developing egg is ready for 

the process of shell formation.

This thesis sets out in the firs t instance to illustrate
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diversity within the cuticular layer and to correlate diversity with 

inherent defects at the level of the mammillary layer which may be 

implicated in bacterial transfer. In this literature review detailed 

consideration is given to the distal portion of the oviduct, i.e. 

Tubular Shell Gland and Shell Gland Pouch.

Tubular Shell Gland.

The forming egg yolk, albumen and web of membrane fibres are 

at th is point bathed in a supersaturated solution of calcium 

carbonate and on specially chemically modified areas of the 

membrane fibres calcium carbonate seeds to form the basal cap 

region from which the cone layer grows. The membranes act as a 

barrier to lateral crystal growth and subsequent m ineralisation 

results in the formation of the palisade layer.

Shell Gland Pouch.

During the active phase of shell formation this area is bright 

red, the result of vascular engorgement. It has four functions: viz 

addition of plumping flu id; ca lc ifica tion; cutic le and pigment 

formation.

Addition of Plumping Fluid.

Approximately 15 gms of water is added to the albumen mass 

which has the effect of reducing the protein concentration of the 

latter from 20%-11 % (Solomon 1979).

C a lc ifica tio n .

The true shell consists of 95% calcium carbonate and 5% 

organic material. The calcium for this process is derived from the 

diet, with some also being withdrawn from the special reserve
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known as medullary bone which is laid down in the marrow cavities 

of the limb bones at the onset of the reproductive period. The 

breakdown of medullary bone results in a concomitant release of 

phosphate (Simkiss 1967). Solomon (1973) reported fluctuating 

tissue concentrations of acid phosphatase which correlates with 

the distribution of calcium in the active oviduct. Calcium and 

carbonate ions are assembled sandwich style. It has been 

postulated that there is an equilibrium between bound phosphates 

in the blood which do not cross the shell gland wall and free

phosphates. These may substitute for carbonate ions in the calcite

lattice and if present in excess can render the calcite lattice 

unstable. There appear to be two types of calcium reserve if 

dietary intake is insufficient. One is readily mobilised and Tullett 

et al. (1976) suggests that this, with it’s high Ca:P ratio, is

probably used at the beginning of shell formation. The other which 

is not so readily mobilised is used at the end and has a low Ca:P 

ratio. In the case of the domestic fowl increased phosphate levels 

are implicated in the termination of crystallisation.

Cutic le .

The organic cuticle, a protein/carbohydrate complex is the 

final secretory product of the oviduct and is intimately associated 

with the pigment.

Pigment Formation.

The pigment (ooporphyrin) is present in the shell as a 

po lycrysta lline complex which is not only deposited on the

cuticular layer but occurs within the calcite matrix (Tamura & 

Fujii 1967). It has been identified as protoporphyrin (Solomon 

1987).

3



The egg exits via the vagina which serves as a storage site for 

the spermatozoa which can remain there for 12-22 days before 

moving up the oviduct to the infundibulum where fertilisation 

takes place. Epithelial cells in the vagina secrete mucus which 

ensures the rapid expulsion of the egg via the cloaca. This region 

makes no contribution to shell formation.

Pores.

In order to perform it’s function as an embryonic chamber, the 

shell must be sufficently porous to assist gaseous exchange yet 

resist excess water loss and microbial penetration. The aetiology 

of pore formation is still a matter of debate. Tyler & Simkiss 

(1959) propose that fluid transfer keeps the pore sites patent 

while Schmidt (1956) suggests that incomplete fusion of the 

calcium spherites on the mammillary layer results in spaces which 

correspond to the origins of the pores. In a later paper, Wyburn _et̂  

al. (1973) put forward the theory that pore formation correlates 

with the secretory activity of the cells lining the distal oviduct. 

Ultrastructural analyses of the mammillary layer of the developing 

egg, which illustrate that the spatial arrangement of mammillary 

caps are dictated by available nucleation sites, tend to support the 

theory of Wyburn et al. (1973).

According to Tyler (1955) and Simkiss (1968) there are 7,000- 

17,000 pores per shell of which the greatest numbers are at the 

blunt end or the equator (Romanoff & Romanoff 1949) and are in a 

non random distribution tending towards uniform ity away from 

aggregation although not remotely approaching perfect uniformity 

(Tyler 1969). Their diameters are described as ranging from 

15pm-65pm at the mouth to 6jim-23jj.m at the inner aspect of the 

pore (Tyler 1956).

4



C u tic le .

The cutic le  is the outerm ost covering of the eggshell, 

deposited just before oviposition. According to Wedral et al.

(1974) it consists of 85%-87% Protein; 3.5%-4.4% Carbohydrate; 

2.5%-3.5% Fat and 3.5% Ash. In terms of thickness it is variable: 

5|im -10jim  (Nathusius 1894); 3p.m-5jim (Sajner 1955) and 10|im 

(S im kiss 1961). Schm idt (1962) hypothesised tha t th is 

phenomenon reflected the variation in height of the underlying 

calcite columns. It serves a number of functions ranging from 

microbial defence to waterproofing (Williams & Whittemore 1967; 

Board & Halls 1973).

There is no such thing as the perfect egg (Solomon 1991). As 

stated by the former, structural diversity is to be anticipated in 

this dynamic biological system even under the most regulated 

conditions. Variations in husbandry and nutrition all exert an 

effect on egg shell quality and current methods of assessing 

quality, viz deformation and specific gravity are primarily useful 

as guides to variations in shell thickness and quality of internal 

contents. The literature is peppered with evidence to illustrate 

the effect of Housing (Mohumed 1986); Stocking Density (Watt 

1989); Lighting (Roland et al. 1973); Temperature (Sauveur & 

Picard 1985); Humidity (Sauveur & Picard 1985); Age (Izat et al. 

1985: Solomon 1991); Disease (Hanson 1968) and Diet (Gilbert & 

Wood-Gush 1971) on bird performance.

The in terpreta tion of qua lity is h ighly sub jective  and 

variations in shell colour and yolk colour are essentially personal 

perferences. Shell thickness as currently assessed using specific

5



gravity is now recognised as an inadequate measure of quality in 

so far as on its own it gives no indication of the structural 

in tegrity of the product being measured. In recent years 

considerable evidence has been accumulated to illustrate the 

structural diversity within the egg shells of laying hens (Solomon 

1991). Prime amongst these variations are those which occur in 

the mammillary layer and which Bain (1990) has correlated with 

increased/decreased resistance to crack growth. Solomon (1988) 

put forward the hypothesis that certain structural changes in the 

mammillary layer are indicative of external influences. These 

structural variants will be described in detail subsequently.

Many of the defects or variations initiated at the level of the 

mammillary layer reflect earlier changes in the quality of the egg 

white (Solomon 1983), the chemical composition of the paired 

membrane fibres (Watt 1989) and/or changes in the rate of 

mineralisation in the Shell Gland Pouch (Solomon 1991). Such 

variations during the early stages of mineralisation can have a 

knock on effect during the growth of the palisade columns.

Reid (1985) illustrated that shell formation was poisoned by 

the mercurial compound Panogen M. Both the organic and inorganic 

fractions of the shell were affected, i.e. shell structure was 

impaired and the cuticular layer was absent.

Under normal conditions many eggs are oviposited in a 

cuticleless state (Board & Halls 1973). According to Solomon 

(1991) the cuticle is rarely deposited as a thick and even covering 

over the surface of the egg. Indeed Diet, Age, Housing etc. have all 

been shown to influence the extent of this layer. Sparks (1985) 

illustrated the paucity of protection afforded by the cuticle as a

6



barrier immediately succeeding oviposition. He also demonstrated 

the maturation phenomenon of the latter as it dries.

7



2. SALMONELLA.

In recent times in this country most scientific effort has been 

directed towards Salmonella enteritid is phage type 4 as the 

causative agent in Salmonellosis. Whether this particular phage 

type can be cited exclusively on a worldwide basis is a matter of 

debate since there is a lack of standard phage typing (Hellig 1989).

These pathogenic bacteria are present mainly in the intestinal 

tract of animals and birds but are capable of being transferred via 

the food chain to humans. Salm onella food poisoning or 

S a lm one llos is  usually deve lops 12-48 hours a fte r eating 

contaminated food and presents itself as abdominal pain, vomiting, 

diarrhoea and dehydration. The very young, the very old and 

patients already weakened by some other illness are particularly at 

risk. In a few cases the bacterium can spread from the gut to the 

bloodstream (bacteraemia) which may also lead to more serious 

complications such as kidney failure and meningitis. The debility 

may last from a few days or as long as a few weeks but it has been 

reported that half the patients who have had Salmonellosis may 

continue to excrete the bacteria for four to six weeks or longer and 

therefore are still capable of spreading the disease. Bacteraemia 

or “blood poisoning” can be fatal.

Salmonella enteritidis is a gram negative rod measuring 2-4 

Jim in length and 0.5pm in width. It possesses peritrichous 

flagellae, it is actively motile and is known to develop fimbriae.

The hen can become infected with Salmonella either by eating

8



contaminated food, drinking contaminated water or by inhalation. 

Strict health and sanitation programmes are followed to keep the 

flock disease free. The raw materials are sampled several times a 

week and the feed in addition to treatment with a good mould 

inhibitor is heat treated.

Evidence exists that Salmonella enteritid is is an invasive 

organism capable of penetrating the gut wall and infecting the 

hen’s internal organs and it has been suggested that hens with 

infected ovaries can lay intact eggs whose contents are already 

infected with the bacteria and that the emergent strain phage type 

4 (PT 4) may have an affinity for the genital tract. Baker et al. 

(1980) do not agree with this since they found no contamination of 

eggshell or contents (yolk and white) from hens that had been 

innoculated either orally or intravenously via the basalic vein of 

the wing, although they did find organisms in the faeces of orally 

infected hens.

The infected faeces is a source by which the egg itself can 

become infected (Forsythe et al. 1967). The moist recently 

oviposited egg is more susceptible to bacterial penetration (Sparks 

1985). The route of infection can be via exposed patent pores from 

which the cuticular plug has been removed or damaged, if indeed it 

ever existed. Penetration is greatest at the blunt end of the egg 

(Walden et al. 1956; Vadehra et al. 1970). It was originally thought 

that the vulnerability of an egg to infection was associated with 

the presence of a highly porous shell (Walden et al. 1956) and a 

relationship between pore numbers -and bacterial infection was 

suggested by Kraft et al. (1958). This was refuted by Board and 

Halls (1973) who stated that there was no correlation between 

shell porosity and water uptake and therefore by inference
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bacterial infection. Sparks (1985) and Nascimento (1990) both 

agree with this finding. Once the initial barrier has been breached, 

the Salmonellae enter the shell and reach the shell membranes 

which behave like mechanical membranes rather than bacteriocidal 

barriers. Under suitable conditions of temperature and moisture 

the membranes can be breached by the Salmonellae and this can 

lead eventually to extensive bacterial multiplication in the highly 

nutritious yolk (Stokes et al. 1956). According to Lifshitz et al. 

(1964) the most important barrier to bacterial penetration is the 

inner shell membrane, then the shell itself, the least important 

being the outer membrane. Board and Fuller (1974) identified two 

forms of non-specific m icrobial defence systems. Physical 

defence comprising of the shell, shell membranes and the albumen 

sac and Chemical defence comprising of albumen plus possibly the 

shell membranes. Two distinct phases are mentioned in the course 

of infection. The first being confined to the shell membranes and 

is dependent on the storage temperature - a lower temperature 

giving a longer confinement time terminating when the yolk makes1 

contact with the shell membrane. The second phase is when 

bacterial m ultip lication takes place (Board and Ayres 1965). 

Temperature and moisture influence penetration. Simmons et al. 

(1970) state that the greatest penetration is at humidity of 97% 

and temperatures above 15°C and this has been corroborated by 

Moursy and Ahmed (1971) who found that eggs held at room 

tem perature had a higher contam ination than those held at 

refrigeration temperatures. It follows that eggs should be stored 

below 10°C. to avoid the penetration and growth of Salmonella as 

this not only inhibits but eventually leads to their destruction 

(Stokes et al. 1956).
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A higher incidence of bacteria in washed eggs as opposed to 

unwashed was reported by March (1969) - a view which was not 

shared by Williams and Dillard (1973) who stated that washing was 

an important factor in preventing Salmonella. However, if an egg is 

in a fluid at a lower temperature then this fluid is drawn into the 

egg (Haines and Moran 1940) and since the Salmonella organism can 

survive on the egg shell then it can possibly be drawn into the egg. 

Cantor and McFarlane (1948) suggested tha t th is surface 

contamination could be the source of spoilage of egg products. This 

hypothesis was corroborated by Ager et al. (1967) who stated that 

the level of contamination in frozen, unpasturised eggs ranged from 

25%-32% and by Garibaldi et al. (1969) who when examining 

samples from bulk tanks containing broken out eggs found the 

contamination to be 7% in the winter and 54% in the summer.
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3. EGG WASHING.

It has been reported that the current restrictions imposed on 

the egg industry with regard to egg washing are “outdated” (Kuhl 

1989). The author states that if eggs are properly washed on a 

continuous type washer, sanitised and dried then the consumer will 

be presented with a better quality, economically priced clean egg. 

The practice of washing has been in vogue for many years in the 

U.S.A. In that country it has progressed from single immersion 

washing through nozzle wash, to brushes, then brushes with water. 

It is important to note that in the U.S.A. all stages in egg handling 

from the bird to consumer involve “cooling”.

The scientific community is divided in it’s opinion as to the 

value of the process. Haines (1938) found that eggs washed under 

sanitary conditions were more susceptible to penetration of 

bacteria although the eggs did not show an increase in spoilage. 

Fromm (1960) found that washing increased the permeability of the 

shell to bacteria.

A report by the Egg Producers Council and the Council for 

Scientific Research of New South Wales concluded that rotting of 

eggs was almost certainly due to washing (Moats 1978).

G illespie et al. (1950a) reported that the removal of the 

cuticle did not enhance wastage and conversely it’s retention on 

unwashed eggs did not always prevent invasion. However Board

(1975) advised those people responsible for the cleaning of eggs 

for consumption or hatching to isolate cuticleless shells since
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these eggs are highly susceptible to infection by rot producing 

and/or pathogenic micro-organisms (Board and Fuller 1974).

Machines.

The nature of the washing apparatus may contribute to shell 

contam ination (G illespie et al. 1950b) introducing flo ra  not 

commonly associated with the shell surface. Likewise stagnant 

water as opposed to constant flow will encourage bacterial ingress 

given the right temperature conditions (Haines and Moran 1940). 

When detergent is added to the water, cuticular changes occur 

(Simons and Wiertz 1966).

The cuticular plugs in the pores in the hen’s egg are adapted to 

provide water resistance to the shell when it is exposed to 

hydrostatic pressures. In egg washing there must be an 

requirement to ensure that the force generated by the sprays of the 

machine is below the level at which the shell’s resistance would be 

overcome. Water that contained iron increased the rate and extent 

of spoilage (Garibaldi and Bayne 1962). This was verified by Brant 

and Starr (1962) who found higher rates of spoilage when eggs 

were dipped in a bacterial suspension containing ferrous sulphate. 

Board et al. (1968) also observed that there was a lag in 

multiplication of organisms in contact with the shell membrane 

unless ferrous iron was present in the innoculum.

S a n itise rs .

There are conflicting views on the various sanitisers. Their 

effect on the micro flora of the shell is dependent on the type of 

organism present, plus the dilution and temperature at which they 

are used. Moats(1978) stated that eggs washed with some type of 

sanitising chemical in the washwater invariably kept better than

13



eggs washed in water alone, however after eggs have been 

contaminated with bacteria, washing in sanitisers or using post 

washing sanitising rinses will not redress the balance.

At present in this country, egg washing is not mandatory, 

therefore there is no standardisation with respect to the nature of 

the washing machine procedures. Even in the most stable 

environment, shell quality declines with age and if during the 

laying year birds are exposed to “stress” factors then altered shell 

structure will reflect the attendant physiological disturbance. In 

the light of this knowledge it is therefore questionable whether 

one can justify imposing further mechanical stress on this fragile 

product.

This thesis also describes the results of a study designed to 

assess the effects of washing on the cuticular surface of the shell. 

Three commercially available systems were tested and the eggs 

thus treated were then exposed to Salmonella enteritid is to 

ascertain whether washing encouraged bacterial penetration. The 

process of shell formation must be seen as a continuum, thus 

changes in the cuticular surface are frequently associated with 

intra shell deficiencies. The work also discusses the implications 

of the “true” shell as an effective barrier to bacterial ingress.
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MATERIALS AND METHODS.



1. EGGS.

The eggs used in the trials were produced by two strains of 

battery reared brown egg layers designated Strain A and B. Both 

strains were fed on a commercial layers diet. Strain A eggs were 

collected from the birds at the beginning (28 weeks), middle (48 

weeks), peak shell quality, and end (65 weeks) of lay, whereas 

Strain B eggs were collected at 28, 48 and 60 weeks. (The re

scheduling was the result of a policy change at the farm from 

which the eggs were collected).

A total of 450 randomly selected eggs were used; 150 per 

treatment; 50 at each period of lay. Within each group of 50, 25 

were washed. The passage of Salm onella enteritid is  was 

monitored in both washed and control groups.

2. WASHING APPARATUS AND SANITISERS.

2-1 BRUSH ACTION MACHINE.

The eggs (Strain A.) are brought via a conveyor belt direct 

from the housing system to the washing machine. The machine 

itself is enclosed and the water plus 2% sanitiser (TEGO-diocto S) 

is constantly circulating at a temperature of 45°C. As the eggs

pass through the machine on a conveyor belt of rollers they are

cleaned by the lateral movement of plastic brushes. The eggs are 

subsequently blown dried by an air jet before being transported on 

a moving belt to the adjoining room to be graded and packed.

2-2 ROTARY ACTION MACHINE.

The rotary action washer consists of an oscillating base on

which s its  a ga lvan ised  bucket fitte d  w ith a preset

therm ostatica lly controlled (40°C) immersion heater. The bucket
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is filled with water up to the suage ring, the immersion heater 

switched on and when the wash temperature has been reached, 

indicated by the automatic switching off of the control light the 

sanitiser (three level measures of Nusan) is added. The polythene 

coated basket is filled with eggs (Strain B) with the dirtiest 

placed peripherally since, in this position they are subjected to the 

greatest movement. When clean, the eggs plus bucket are removed 

and placed to dry in a good current of air.

2-3 JET ACTION MACHINE.

The principle of action is similar to the brush action machine. 

It is an enclosed system with circulating sanitiser at a controlled 

temperature. The eggs (Strain B) are sprayed with the sanitiser by 

means of spray nozzles as they pass through the machine, then 

blown dried with warm air. Information concerning the nature of 

the sanitiser was not provided.
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3 WATER QUALITY.

3-1 PROTEIN ANALYSIS.

A sample of the water and sanitiser was taken from the 

washing machines before and after the washing process and 

analysed for protein using the Coomassie Brilliant Blue C250 

method (Sedmak & Grossberg 1977). The readings were taken on a 

spectrometer using absorption peaks 620pm and 465pm. The ratio 

of 620:465 was ca lcu la ted  and p lo tted  versus prote in 

concentration.

3-2 BACTERIOLOGICAL ANALYSIS.

A sample of the water and sanitiser was taken from all three 

washing machines before and after the washing process and 

analysed for bacteria. The sample was spun down in a M.S.E. micro 

centaur at low speed for 2 minutes, the supernatant was pipetted 

off and discarded. The pellet was resuspended in a small amount of 

sterile  normal saline, plated out on a 90mm. petri dish of 

IVFConkey’s agar and incubated at 37°C for 24 hours. Resulting 

colony forming units were identified by the API-20 E system.

4 VISUAL EXAMINATION.

4-1 CUTICULAR STAINING.

Edicol Supra Pea Green H described by Board and Halls (1973) 

is no longer commercially available and so a solution of Green S 

(2.8gms/litre) and Tartrazine (7.2gms/litre) was used. The eggs 

were dipped into the solution for 1 minute, washed in distilled 

water, air dried and examined.
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5 SCANNING MICROSCOPY.

5-1 CUTICLE

A piece of shell 1.5cm2 was carefully cut with a circular 

dental drill from the blunt end of the egg. The contents were 

discarded and the inside of the shell rinsed several times with 

d istilled water to remove any albumen adhering to the inner 

membrane. Pieces of shell ca 1.5cm2 were cut from the equatorial 

region of the shell and attached, cuticular side up, to aluminium 

stubs using silver paint. The samples were gold palladium coated 

in a Emscope Sputter Coater and examined using a Philips 501B 

scanning electron microscope at an accelerating voltage of 15kv., 

spot size 1000-200, depending on magnification, and a working 

distance of 13mm.

5-2 MAMMILLARY LAYER.

Pieces of eggshell were prepared as previously described. 

The inner membrane was manually removed before the pieces of 

shell were plasma etched in a Nanotech Plasmaprep 100 (5-2a) to 

remove the outer membrane and so expose the mammillary layer. 

The residue dust was blown away with a Kenair Clean Air Duster 

before the pieces of shell were mounted on aluminium stubs and 

coated as previously described (5-1).
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5-2a PLASMA ETCHING.

Plasma etching is a non destructive technique for removing 

the outer membrane of the shell (Reid 1983). Pieces of shell were 

prepared, as described under (5-1), the inner membranes manually 

removed before the shell was placed membrane side uppermost in 

the chamber of the Nanotech Plasmaprep 100 unit. The pressure in 

the chamber was reduced to approximately 13.3 Pascals and oxygen 

gas was leaked in at 10cc/minute until the pressure stabilised at 

133.3 Pascals. A radio frequency power of 100 ohms was applied 

and balanced by using the RF controls until a situation was reached 

whereby there was a maximum forward power reading for the 

minimum reflected power reading. This effects ionisation of the 

gas to form the reactive plasma. At optimium working conditions, 

a pale lilac colour plasma is visible within the chamber. After four 

hours the organic component of any remaining membrane fibres was 

removed by volatilisation, leaving the crystalline shell completely 

in ta c t.

5-2b ENERGY DISPERSIVE X-RAY ANALYSIS.

Analysis of trace elements within the shell was achieved 

using the E.D.A.X. analyser attached to the scanning electron 

microscope. Spectra were recorded photographically.

5-2c INFRA-RED ANALYSIS.

This technique was used to identify the nature of aberrant 

crystal forms detected during scanning sessions. Small pieces of 

shell were ground up with potassium bromide and then compressed 

into a 7mm. disc. The discs were examined in a Perkin-Elmer 580 

IR Spectrophotometer to determine whether the calcium carbonate 

in the shell was in the form of calcite, aragonite or vaterite.
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6 SALMONELLA enteritidis.

PREPARATION AND IDENTIFICATION.

6-1 THE INNOCULUM

Salm onella en teritid is phage type 4 was isolated from 

infected chickens, freeze dried and a working culture kept in sloppy 

agar at 4°C. The phage type was identified by the National

Collection of Type Cultures (N.C.T.C.). The colonies formed were 

checked morphologically by means of Gram Jensen stain and 

biochemically using the AP1-20 E system to ensure that they were 

the same as those innoculated.

To make the innoculum, a wire loopful of the sloppy agar was 

placed into a bottle containing 25ml. of Nutrient Broth no.2 which 

was then incubated in an Gallenkamp Orbital Shaker at 100

revolutions per minute at 37°C for 24 hours. 1ml. of this was then 

added to 9ml. of 0.8% sterile saline to form a 1 0 '1 dilution of the 

Salmonella enteritidis. From this, serial dilutions were made until 

a final dilution of 10"8 was achieved. This concentration was found 

to be ca. 10 x 10"2 colony forming units (C.F.U.) per ml. This was 

determined by spreading a 90mm. diameter petri plate of brilliant 

green agar, which is specific for Salmonella, with 0.1ml. of

the final dilution, incubating at 37°C for 24 hours and counting the 

colony forming units by means of a Gallenkamp Colony Counter.

6-2 GRAM JENSEN STAIN.

A smear of Salmonella enteritidis was made on a clean glass 

slide, air dried and flame fixed prior to staining with crystal

violet. The stained smear was then mordanted with Gram’s iodine 

before rinsing with acetone and fina lly staining with carbol
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fuchsin. The smear was examined with a light microscope using oil 

im m ersion.

6-3 FLUORESCENT ANTIBODY STAIN.

A smear of Salmonella enteritidis was made on a clean glass 

air dried slide then fixed in acetone. Rabbit antisera was placed on 

top of the smear (30mins) which was washed thoroughly in 

phosphorus buffered saline (P.B.S.) before goat anti rabbit Fite was 

added. (30mins) The slide was washed, mounted in P.B.S. and 

examined under ultraviolet light using a Leitz microscope.

6-4 NEGATIVE STAINING.

Salm onella  en te ritid is  was prepared in the broth as

previously described (6-1). 2ml. of this broth was spun down in a 

M.S.E. micro centaur at low speed for 2 minutes and the supernatant 

discarded The bacteria were gently resuspended in sterile water 

and the above process repeated. The bacteria were negatively

stained in a fume cupboard as follows.

A 200mp mesh copper grid coated with parlodium (see 6-4b) 

was held by means of forceps under an upturned transparent 

polystyrene weighing bottle which had an opening cut in its side. 

This constituted a makeshift fume cupboard which was then placed

in a 90mm petri dish containing a filter paper soaked in 40%

formaldehyde solution to fix the bacteria. By means of a micro 

pipette a drop of bacteria was carefully placed onto the grid and 

left for 2 minutes before the excess fluid was removed by touching 

the edge of the grid with blotting paper. The above process was 

repeated with the negative stain then the grid was immediately 

examined under a Jeol 100 CX2 Transmission Microscope at an 

accelerating voltage of 80 Kv.
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6-4a NEGATIVE STAIN.

Freshly prepared aqueous solution of 2% phosphotungstic acid 

adjusted to pH 7.2 with 10M KOH.

6-4b TO COAT GRID WITH PARLODIUM.

The stock solution is 3% parlodium in amyl acetate. A clean 

slide was coated with 0.6% of the parlodium solution, dried, then 

the film was cut round the edge with a scalpel blade and floated 

onto water. The copper grids were carefully placed dull side down, 

onto the film, a piece of absorbent paper was placed over them, 

then lifted taking the now coated grids with it. Once dried, the 

grids were ready for use.

6-5 TRANSMISSION MICROSCOPY.

Salmonella enteritid is grown in nutrient broth was mixed 

with an equal amount of Karnovsky’s fixative, spun down in a J2-21 

ultra centrifuge using rotar type JA 21, 10K r.p.m. for 15 minutes. 

The supernatant was discarded, the pelle t resuspended in 

Karnovsky’s fixative, respun and the resultant pellet was carefully 

removed, post fixed in 1% osmium tetroxide, dehydrated through a 

graded series of acetones and transferred to propylene oxide before 

being embedded in emix. Once cured, the blocks were trimmed on a 

L.K.B. pyramitome and, using a glass knive, cut at 200°A at speed 2 

on a L.K.B. ultratome 2. The sections were stained with Reynold’s 

Uranyl acetate/Lead citrate and examined in a Jeol 100 CX 2 

Transmission Microscope at an accelerating voltage of 80 Kv.
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7 SALMONELLA enteritidis.

MONITORING MOVEMENT THROUGH THE SHELL

7-1 PREPARATION.

Pieces of shell were cut, stripped of inner membranes, plasma 

etched and the residue dust blown away as previously described (5- 

2a). The shells were individually placed cuticle side up on the 

surface of 0.8% Brilliant Green Agar1 in a 50mm. diameter petri 

dish taking care to eliminate any air trapped beneath the shell. The 

plates plus shells were placed in a 28°C incubator for 15 minutes 

to dry the cuticular surface before adding a ring of Silicone High 

Vacuum Grease2 by mean of an Elastomer syringe with an attached 

tip. 0.01ml. of 1 0 '7 Salmonella broth containing ca 10x10'1 was 

placed on the surface of the shell inside the grease ring and left at 

room tem perature for 20 minutes to allow the bacteria to 

penetrate the shell after which the shells were carefully removed 

from the agar and autoclaved for 30 minutes at 121°C and 15lbs. 

pressure in a Sterilin National Autoclave to kill off any Salmonella 

enteritidis still present on the shell. The plates were incubated at 

3 7°C for 24 hours after which time the number of colony forming 

units that had penetrated the shell and grown on the agar were 

counted. Control plates with bacteria free shells were similarly 

treated.

1 Modified from 1.2% to make the agar soft enough to manipulate the shell but still to be firm 
enough to support forming colonies.

2 This was to contain the Salmonella Broth on the shell and also did not melt in the high
temperature which is subsequently used to kill off the bacteria.
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7-1 a ANALYSIS OF DATA.

The mean bacterial penetration values were calculated for 

both washed and unwashed (controls) eggs associated with each 

machine according to the point of lay. These data were tested by 

using analysis of variance (Anova) to determine if

a) There was a difference in bacterial penetration between 

unwashed and the washed eggs.

b) If the incidence of bacterial penetration varied according 

to the age of the flock irrespective of whether the eggs 

were washed or unwashed.

c) If this was dependent on the type of washer used.

7-2 SCANNING MICROSCOPY.

In order to establish if a re lationship exists between 

bacterial movement and shell ultrastructure 50 pieces of shell 

from the controls, 25 Strain A, 25 Strain B from (7-1) were further 

tested as follows. The area of shell inside the grease ring was cut 

out by means of a dental drill then plasma etched to remove any 

agar adhering to the mammillary side. The sample was then 

affixed, cuticular side up, to an aluminium stub, by means of silver 

paint on the corners of the shell, coated and examined as described 

previously (5-1). Following cuticular assessment, (see result 4-1) 

the shell was detached from the stubs and mounted mammillary 

layer uppermost. Analyses of structural variations therein were 

made according to methods developed by Bain (1990) and Solomon 

(1991).

24



7 -2  a ANALYSIS OF DATA

The incidence of structural variation within these shells was 

noted then expressed in the terms of the mean score for each 

structural variant. Likewise the degree of cuticular coverage was 

expressed in terms of mean score according to point of lay. These 

data were subsequently analysed using appropriate statistical 

tests. (T tests and Regression Analysis) to determine if

a) If different structural variations were influenced by age.

b) If there was a structural variation between Strain A and 

Strain B.

Also if bacterial penetration was related to

c) Structural variation.
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RESULTS.



As stated in the introduction, this thesis set out in part to 

consider whether egg washing causes shell damage and so aids the 

translocation of bacteria. The work has also served to underline 

the diversity of structure which exists within the the egg shell at 

all levels and since these structural variants are crucial to the 

process of transfer they are presented in the first instance as a 

baseline.

1 . CUTICULAR DIVERSITY.

Figurel illustrates a normal cuticle and so with reference to 

this image, the following micrographs are presented to illustrate 

the structural diversity which existed within this layer.

1-1 ACCRETIONS.

These are defined as heavy calcareous deposits on the surface 

of the egg which give it a pimpled appearance. In many instances, 

these deposits penetrate the entire depth of the shell (Figures 2, 

3). At ultrastructural level accretions can adopt a variety of 

forms, one of which is illustrated in figure 4. At the level of the 

mammillary layer, type B bodies (2-5) dominate and the shell is 

distinctly eroded (Figure 5).

1-2 TOE HOLE.

Toe hole damage disrupts the underlying layers, thus 

rendering the egg contents vulnerable to bacterial challenge 

(Figures 6, 7). It can be distinguished from pinholes of oviducal 

origin by the accumulation of shell debris within the hole.

1-3 CALCIUM SPLASHING.

Figures 8-11 show the cuticle with different degrees of extra 

calcium deposits thereon.
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1-4 CUTICLELESS EGG.

Figures 12-15 illustrates the diversity of structure within 

the palisade layer.

1-5 MEMBRANOUS STRUCTURES.

These membranous-like structures were found lying on the 

surface of the cuticle (Figure 16) which appears to be completely 

disrupted (Figure 17).

27



Figure 1. Normal cuticle. Note fissured appearance x 720
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Figure 2. Large accretions on pole of eggshell.

Figure 3. Concavity beneath an accretion on the mammillary side of 
the shell.
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Figure 4. Accretion on cuticular surface x 360
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Figure 5. Mammillary layer directly below the accretion. Note the hollow 
appearance and the large numbers of Type B bodies (B) x 180
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Figure 6. Toe hole damage.
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Figure 7. Toe hole damage. The hole is filled with cuticular debris x 90
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Figure 8. Calcium splash (arrow) x 360

Figure 9. Calcium deposits covering the fissured cuticle x 1,440
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Figure 10. Calcium deposits x 720

Figure 11. At higher magnification the diverse crystalline forms of calcium 
deposits are more distinctive x 2,800
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Figure 12. Cuticleless egg. The porous palisade columns are exposed 
x 720

Figure 13. Cuticleless egg. A pore site is filled with inorganic material 
x 2,800
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Figure 14. Cuticleless egg. The elongated forms have the 
dimensions of bacteria x 5,600

Figure 15. Cuticleless egg. At high magnification the layered 
appearance of the elongated forms confirms their 
inorganic composition. Note the presence of aragonite 
clusters (A) x 2,800
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Figure 16. Membranous mass on cuticular surface x 2,800

Figure 17. Membranous mass on cuticular surface. These fibres which
are similar in size to the fibres of the soft shell membranes may 
reflect the transfer of debris from the isthmus subsequent to the 
process of mineralisation x 1,440
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2 MAMMILLARY VARIATION.

Thirteen mammillary variations have been described by Reid 

(1985); Watt (1985); Bain (1990); Nascimento (1990) and Solomon 

(1991). These are as follows Mammillary Density, Confluence, 

Caps, Early Fusion, Late Fusion, Mammillary Organisation, Type B 

bodies, Pitting, Aragonites, Type A ’s, Cubics, Cuffing and Changed 

Membrane.

The following micrographs as in those of the cuticular 

exam ination are all taken from the eggs studied in these 

experiments. Only those structural variations judged to threaten 

shell quality are discussed and illustrated.

Figure 18 shows a normal mammillary layer. Note the strong 

attachment of the outer membrane fibres to the basal cap which 

gives a good foundation for the build up of the palisade layer. 

Figure 19 shows the mammillary layer with the outer and the inner 

membranes attached.

2-1 MAMMILLARY NUMBERS.

Inter and intra shell variations in numbers of mammillae per 

unit area are the norm (Figures 20, 21).

2-2 MAMMILLARY ORGANISATION.

Figure 22 demonstrates mammillary alignment, and figure 23 

illustrates a crack line following the path of alignment.

2-3 CAPS,
Figures 24-26 are examples of poor contact between the 

membrane fibres and the initial calcium carbonate crystals.
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2-4 EARLY AND LATE FUSION.

Figures 27, 28 show early and late fusion of the palisade 

columns.

2-5 TYPE B BODIES.

Figure 29. These rounded bodies invariably grow from the 

side of adjacent cone layers. They do not contribute to the 

formation of the palisade layer and have been implicated as a 

causative factor in shell thinning.

2-6 PITTING.

Figures 30-32 illustrate depression and erosion. Pitting is 

variously catagorised according to the depth of the fault.

2-7 ARAGONITE.

Figures 33-37 dem onstrate the d iffe rent m orphological 

forms of aragonite found in the eggs examined. Figure 38 shows 

aragonite on the basal cap.

2-8 TYPE A’s.

Figure 39 This mammillary body has no membrane fibre 

attachment area although it does support a cone area and palisade 

column.

2-9 CUBIC.

Figure 40 illustrates several cubic crystals along with 

aragonite in the inter-mammillary spaces.
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2-10 CUFFING.

Figures 41, 42 demonstrate the extra calcium cuff which, 

because it fills in the inter mammillary space, enhances the 

strength of the shell.

2-11 CHANGED MEMBRANE.

Figures 43, 44 show the remaining sulphur rich strands 

which can persist even after plasma etching.

2 - 1 2  COMBINATION OF FAULTS.

Figures 45-49 dem onstrate tha t s truc tu ra l varia tions 

frequently occur in combination.

3 TRANSVERSE SECTIONS.

Figures 50-56 illustrate transverse sections through the 

eggshell.
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Figure 18. Outer membranes firmly attached to basal caps (arrow) x 1,440

Figure 19. Inner surface of inner shell membrane (I) and outer shell 
membrane fibres (O) x 1,440
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Figure 20. Low mammillary count. (44 per unit area of magnification) 
x 360

Figure 21. High mammillary count. (> 94 per unit area of magnification) 
x 360
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Figure 22. Mammillary alignment (arrow) x 180

Figure 23. Crackline following the path of alignment (arrow) x 180
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Figure 24. Poor cap. The cap area displays poor attachment with the
membrane fibres, (now removed by plasma etching) x 2,800

Figure 25. Poor caps. The cap areas are flattened and confluent. Note the 
absence of fibre tracts x 720
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Figure 26. Fragmented mammillary cap x 1,440
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Figure 27. Early fusion (arrow) x 720

Figure 28. Late fusion. Note the clefts between adjacent palisade 
columns x 720
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Figure 29. Rounded Type B bodies (arrow) x 720

Figure 30. This depression in the mammillary layer, with its parallel 
configeration reflects the similar arrangement of the 
membrane fibres x 1440
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Figure 31. Erosion. The mammillary layer is eroded and filled with 
various crystal forms x 720

Figure 32. Erosion. This area of minimal contact with the membrane 
fibres represents a point of weakness x 1,440
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Figures 33 - 38 illustrate the diverse forms of aragonite.

Figure 33. Aragonite x 2,800

Figure 34. Aragonite x 1,440
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Figure 35. Aragonite. These leaf shaped forms have been observed
on the surface of the eggshell of the green turtle where their 
presence is also abnormal x 2,800

Figure 36. Aragonite. The corn sheaf arrangement is the typical crystal 
form of the “normal” eggshell of the green turtle x 2,800
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Figure 37. Aragonite x 1,440

Figure 38. Aragonite on the mammillary cap x 2,800
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Figure 39. Type A (A) displaying no point of attachment with the 
membrane fibres x 1,440

Figure 40. Cubic calcite crystals together with aragonite x 2,800
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Figure 41. Cuffing (arrow) encourages early fusion of the mammillary 
columns x 720

Figure 42. Cuffing. High magnification serves to illustrate the grouting 
effect of the cuffing phenomenon x 1,440
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Figure 43. Sulphur rich membrane fibres x 720

Figure 44. A whorl arrangement of changed membrane fibres x 1,440
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Figure 45. Aragonite (A) and cubic calcite (C) x 1,440

Figure 46. Aragonite (A), late fusion (L F) and type A (arrow) x 2,800
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Figure 47. Aragonite (A) and type A body (arrow) x 1,440

Figure 48. Type A (arrow), cubic calcite (C) and aragonite (A) x 1,440
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Figure 49. Aragonite (A) and cubic calcite (C) x 2,800
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Figure 50. Transverse section through the eggshell. Mammillary layer (M), 
palisade layer (P), vertical crystalline layer (V), and cuticle (C) 
x 360

Figure 51. The vertical crystalline layer (V) x 2,800
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Figure 52. Transverse section through a patent pore (P) x 360
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Figure 53. Discontinuity between the true shell and the shell membranes 
x 720

Figure 54. Aberrant crystal forms at the cuticular surface (arrow) x 360
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Figure 55. Structural diversity at the cuticular surface x360

Figure 56. High magnification illustrates the pitted molten appearance 
of this outer layer x 1,440
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4 BRUSH ACTION MACHINE.

4 -1  CUTICLE DAMAGE- VISUAL.

An even green colouring is evidence of the presence of a 

sim ilarly disposed cuticular layer. The cuticle deteriorates with 

age (Figure 57). Figure 58 shows the unwashed eggs at end of lay 

and as expected the cuticle ranges from sparse to absent. Figures 

59, 60 demonstrates the effect of washing on eggs at the end of 

lay. 5 of the eggs display visible bristle damage where the cuticle 

has been abraded.

4-1 a CUTICLE DAMAGE - SCANNING MICROSCOPY.

Given that the cuticular layer is frequently patchy in its 

distribution and that the washed eggs were only examined after the 

washing procedure, due care has to be taken to ensure that the 

damage observed is the result of the latter and not merely evidence 

of the vagaries of this part of egg formation.

When the cuticle is absent, because of a defect in oviducal 

function, it rarely affects the organisation of the underlying layers 

and so with the exception of machine 1, where the damage clearly 

correlates with bristle action, the gouges and associated debris on 

the eggs washed by rotary or je t action have been interpreted as 

originating from the process of washing.
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Using the scoring system below, graph 1 shows that the 

cuticle has been damaged by all three washing actions.

CUTICLE SCORE
GOOD 

GOOD - 

POOR

2

3

CimCLELESS 4

At the beginning of lay 22 of the 25 eggs displayed evidence of 

brush damage ranging from broad parallel gouges and deep 

intersecting striations to narrower striations on the surface layer. 

This observation was reported to the company concerned and it was 

interesting to note that at the middle of lay only 13 out of the 25 

exhibited structural damage while at the end of lay this number 

had fallen to 5 out of 25. Figure 61 illustrates cage damage. These 

depressions in the cuticle are possibly the result of wire contact 

and Figures 62-72 demonstrate the range of cuticular damage 

resulting from the washing procedure.

4 -2  SANITISER.

The cuticular layer of one of the eggs displayed a mesh like 

deposit (Figure 73). X-ray analysis identified the latter as 

phosphorus. The mammillary layer of an unwashed and washed 

shell was analysed and as Figure 74 reveals there was more 

chlorine and phosphorus present in the washed shell.
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4 -3  BACTERIOLOGICAL ANALYSIS.

Pseudomonas spp. which rarely causes disease was the only 

organism found in the culture (Table 1).

4 -4  PROTEIN ANALYSIS.

The results presented in Table 2 indicate that at the three 

periods of lay the protein concentration in the wash water 

increased succeeding the washing procedure. It is deduced that the 

prewash protein originates partially from the sanitiser and also 

from debris adhering to the unit. The elevated levels after washing 

not only reflect abraded cuticu lar material but also albumen 

protein from leaking eggs and faecal material.

4 -5  INFRA-RED ANALYSIS.

Graph 2 illustrates the presence of both calcite and aragonite 

in the sample. Calcite peaks (C) at 879 and 715. Aragonite peaks 

(A) at 1100 and 675.
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Figure 57. Eggs stained with edicol supra green demonstrate the
deterioration of the cuticle during the laying period. From 
right to left is beginning, middle and end of lay.
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Figure 58. Eggs stained with edicol supra green - Brush wash controls - 
End of lay. Variation in staining intensity reflects variation in 
degree of cuticular coverage.
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Figure 59. Eggs stained with edicol supra green - Brush wash - End of lay.
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Figure 60. Egg stained with edicol supra green - Brush
wash - End of lay. The egg is scored by brush action.
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Figure 61. Wire mark x 720

Figure 62. Brush mark - Broad deep gouge - Beginning of lay x 180
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Figure 63. Brush mark - Herring bone striations - Beginning of lay x 90

Figure 64. Brush mark - Beginning of lay x 90
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Figure 65. Brush wash - Exposed palisade layer - Beginning of lay 
x 1,440

Figure 66. Brush wash - Unplugged patent pore - Beginning of lay x 720
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Figure 67. Brush wash - Deep striations - Middle of lay x 180

Figure 68. Brush wash - Exposed palisade layer and remains of cuticle 
- Middle of lay x 720
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Figure 69. Brush wash - Exposed palisade layer and disrupted cuticle 
- Middle of lay x 720

figure 70. Brush wash - Exposed patent pore - Middle of lay x 720
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Figure 71. Brush wash - Exposed palisade layer - End of lay x 1,440

Figure 72. Brush wash - Exposed palisade layer - End of lay
Note evidence of brush damage. Striations (arrow) x 1,440
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Figure 73. Phosphorus rich mesh like deposit on cuticle of brush washed 
egg x 2,800
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Figure 74. X - ray analysis of unwashed / washed mammillary surface.
The green dots relate to the unwashed sample and the yellow 
to the washed. Chlorine and phosphorus peaks indicate that 
the levels are higher in the washed sample.
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TABLE I. BACTERIOLOGICAL ANALYSIS.

BRUSH WASH BEFORE WASHING AFTER WASHING

BEGINNING PSEUDOMONAS spp. PSEUDOMONAS spp.

MIDDLE PSEUDOMONAS spp. PSEUDOMONAS spp.

END PSEUDOMONAS spp. PSEUDOMONAS spp.

TABLE 2. PROTEIN ANALYSIS.

BRUSH WASH BEFORE WASHING 
Protein (pg./ml.)

AFTER WASHING 
Protein (jig./ml.)

BEGINNING 172 349

MIDDLE 82 148

END 65 153
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5 . ROTARY ACTION MACHINE.

5-1  CUTICLE DAMAGE - VISUAL

The eggs used in the Rotary and Jet wash machines were both 

from Strain B. Figure 75 illustrates the unwashed controls for 

both machines. At the beginning of lay the cuticle was fairly

evenly distributed. As evidenced by the decrease in staining 

reaction, the rotary wash removed much of the cuticular layer

(Figure 76).

5-1 a CUTICLE DAMAGE - SCANNING MICROSCOPY.

The cuticular damage following rotary washing although less 

dramatic than the brush action was nevertheless as damaging, with 

the eggs positioned around the periphery of the bucket being 

subjected to the greatest gravitational force (Figures 77-82). The 

images obtained were consistent with a rubbing movement.

5 -2  SANITISER.

Three structurally different crystal deposits were found on 

the cuticular surface:- cubic, rounded and rod shaped. Figures 83- 

85 illustrate the cubic and round deposits lying on the surface of

undamaged and damaged cuticular layers. Figures 86, 87 show

them lying within the “open” palisade layer of a cuticleless egg. 

The rod shaped deposits shown in figures 88, 89 look like budding 

bacteria (unconfirmed), nevertheless it should be noted that it was 

in the post-wash sample from this machine that rod shaped 

bacteria were cultured. Edax analysis proved that the cubic and 

rounded shaped crystals from the sanitiser were rich in phosphorus 

and chlorine (Figure 90).
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5 -3  BACTERIOLOGICAL ANALYSIS.

The prewash samples were all clear of micro-organisms but 

the cultured post wash samples from the three periods of lay had 

Bacillus spp., Staphylococcus aureus, Aeromonas hydrophilia, and 

Gram -ve rods which were neither identified as Yersinia spp. nor as 

Salmonella spp. in the middle of lay wash, but as Yersinia spp. at 

the end of lay (Table 3). These are all potential food poisoning 

organisms.

5 -4  PROTEIN ANALYSIS.

The protein concentration at all three points of lay showed an 

increase in the postwashed sample (Table 4).
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Figure 75. Eggs stained with edicol supra green - Rotary and jet 
controls - Beginning of lay.
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Figure 76. Eggs stained with edicol supra green - Rotary washed eggs 
- Beginning of lay.

83



Figure 77. Rotary wash - Disrupted cuticle - Beginning of lay x 1,440

Fiaure 78. Rotary wash - Exposed palisade layer - Beginning of lay 
x 1,440
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Figure 79. Rotary wash - Disrupted cuticle - Beginning of lay x 1,440

Figure 80. Rotary wash - Exposed patent pore - Beginning of lay x 1,440
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Figure 81. Rotary wash - Disrupted cuticle - Middle of lay. The ridges
(arrow) may reflect pressure of the egg against the edge of the 
bucket x 720

Figure 82. Rotary wash - Exposed palisade layer and cubic calcite 
- End of lay x 1440
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Figure 83. Rotary wash - Deposits on undamaged cuticle - End of lay 
x 1,440
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Figure 84. Rotary wash - Cubic and rounded phosphorus rich deposits 
on the cuticle - End of lay x 5,600
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Figure 85. Rotary wash - Deposits on disrupted cuticle and palisade layer 
x 1440
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Figure 86. Deposits on cuticleless egg - End of lay x 1,440

Figure 87. Deposits within the palisade layer of the cuticleless egg - End 
of lay x 5,600
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Figure 88. Rotary wash - Rod shaped deposits on the cuticular surface 
- End of lay x 5,600

Figure 89. Rotary wash - Rod shaped deposits on the palisade layer 
where the cuticle has been disrupted - End of lay x 5,600
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Figure 90. X - ray analysis of the deposits on the cuticle after rotary wash
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TABLE 3. BACTERIOLOGICAL ANALYSIS.

ROTARY WASH BEFORE WASHING AFTER WASHING

BEGINNING NONE BACILLUS spp.

MIDDLE NONE GRAM -VE RODS*

BSD NONE STAPHYLOCOCCUS
aureus
AEROMONAS
hydrophila
YERSINIA

TABLE 4. PROTEIN ANALYSIS.

ROTARY WASH BEFORE WASHING 
Protein (|ig./ml.)

AFTER WASHING 
Protein (|ig./ml.)

BEGINNING 41 54

MIDDLE 17 26

END 15 30

* NEITHER SALMONELLA NOR YERSINIA
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6 . JET ACTION MACHINE.

6-1  CUTICLE DAMAGE - VISUAL

Figure 91 shows the cuticle intact after this washing action. 

4 out of the 25 eggs from the end of lay still had adherent faeces 

and blood after washing (Figure 92).

6 -1 a CUTICLE DAMAGE - SCANNING MICROSCOPY.

Jet action washing did cause some damage to the cuticle as 

illustrated in Figure 93. Figure 94 demonstrates droplets of 

albumen, fragments of feed and a hair sitting on the cuticle.

6 -2  SANITISER.

No deposits were found with this sanitiser.

6 -3  BACTERIOLOGICAL ANALYSIS.

Only the prewash sample from the beginning of lay was clear. 

All subsequent samples had micro-organisms present which were 

iden tified  as A cine tobacte r Iwoffii, Aerom onas hydroph ilia , 

Chrom obacteria spp., 3-haemolytic Streptococcus, B-haemolytic 

Streptococcus, E. coli B-haemolytic and E. coli non haemolytic 

(Table 5). These are relatively harmless with the exception of 

Aerom onas hydrophilia  which is a potentia l food poisoning 

organism.

6 -4  PROTEIN ANALYSIS.

The protein concentration in the postwash sample was 

greater than the prewash sample from the middle and end of lay but 

neither of the samples from the beginning of lay contained protein 

(Table 6).
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Figure 91. Eggs stained with edicol supra green - Jet washed eggs 
- Beginning of lay.
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Figure 92. Jet washed eggs - End of lay. Four out of twenty five washed 
eggs had faecal deposits or blood spots attached after 
washing.
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Figure 93. Jet wash - Disrupted cuticle. This micrograph is typical of the 
damage to the cuticle at all three periods of lay x 1,440

Figure 94. Debris on cuticle. This micrograph displays a variety of debris.
Droplets of albumen (A), fragments of feed (F) and Hair (H) 
x 1,440
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TABLE 5. BACTERIOLOGICAL ANALYSIS.

JET WASH BEFORE WASHING AFTER WASHING

BEGINNING NONE ACINETOBACTER 
I w o f f  i i

AEROMONAS AEROMONAS
hydrophila hydroph ilia
CHROMOBACTERIA CHROMOBACTERIA

MIDDLE spp. spp.
3 -haem o ly tic 3 -ha e m o ly tic
STREPTOCOCCUS STREPTOCOCCUS
3 -ha em o ly tic 3 -h a e m o ly tic
STREPTOCOCCUS STREPTOCOCCUS

E. COLI E. COLI
BSD 3-haem o ly tic 3 -ha e m o ly tic

E. COLI E. COLI
non haemolytic
ACINETOBACTERIA
spp.

non haemolytic

TABLE 6. PROTEIN ANALYSIS.

JET WASH BEFORE WASHING 
Protein ( pg./ml.)

AFTER WASHING 
Protein ( pg./ml.)

BEGINNING NONE NONE

MIDDLE 6 10

END 25 50

97



7 . SALMONELLA enteritidis.

Figures- 95-98 illustra te  the m orphology of Salm onella  

enteritidis Phage type 4 at light and ultrastructural level.

8 . TRANSFER OF SALMONELLA enteritidis ACROSS THE 

SHELL.

8-1  The transfe r of Salm onella en te ritid is  appears to be 

encouraged by certain washing actions (Graph 3).

8-2 TABLE 7. (Appendix 1).

The eggs washed by the brush action showed a significant 

difference in microbial transfer at the end of lay. It is worth 

noting that of the 25 unwashed eggs challenged at the beginning of 

lay only 1 allowed bacterial transfer (100%) while of the 25 

washed eggs challenged 10 permitted bacterial transfer ranging 

from10%-72%. Rotary and jet systems did not appear to influence 

bacterial transfer at any point of the laying year. The level of 

microbial transfer (unwashed and washed) ranged between 2%-40%.

8-3 TABLES 8. 9. (Appendices 2. 3).

Only the eggs washed in the brush action machine and their 

controls, i.e. Strain A eggs showed a significant difference in 

bacterial penetration with respect to age.

T
8-4 TABLES 10. 11 .(Appendices 4. 5).

Bacterial penetration was at its highest in the control group 

of the brush wash system at mid lay and peaked in the washed eggs 

from the same system at the middle o f lay  a lso .
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8 -5  TABLES 12. 13.

Shell structure varies with bird age irrespective of strain, 

although genetically linked differences exist.

8 -6  TABLE 14.

Strain differences were obvious at the beginning and end of 

lay. Strain A d isplayed a s ta tis tica lly  s ign ifican t increase 

(P<0.05) in the incidence of cap imperfections, fewer type B bodies 

and more of the phenomenon described as cuffing (P<0.01). At the 

end of lay Strain B eggs displayed less confluence (P<0.001) and 

less changed membrane.

8-7 The Regression Analysis carried out to investigate if there 

was a corre lation between the structura l varia tion and the 

microbial penetration at all three periods of lay was inconclusive.
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Figure 95. Salmonella enteritidis (Gram -ve rods) stained with Gram 
Jensen stain x 1,000

Figure 96. Salmonella enteritidis as a fluorescent antibody x 1,000
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Figure 97. Transmission electron micrograph of Salmonella enteritidis, 
negatively stained x 51,000

Figure 98. Transmission electron micrograph of Salmonella enteritidis 
x 51,000
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GRAPH 3. MICROBIAL PENETRATION AT THE DIFFERENT
PERIODS OF LAY.
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TABLE 7.

COMPARISON OF MICROBIAL TRANSFER OF UNWASHED AND WASHED EGGS AT 
DIFFERENT PERIODS OF LAY.

BEGINNING MID DLE EN D
UNW. W. UNW. w. UNW. w.

%  PEN. %PEN. %  PEN. %  PEN. %  PEN. %  PEN.
BRUSH 4.00 10.56 56.12 66.44 20.76 27.68 * *

ROTARY 18.40 18.76 22.92 21 .48 20.64 19.16
JET 18.40 20.80 22.92 21 .32 20.64 19.56

* * *  _ Very highly significant at a 0.1% level (p < 0.001) 
* *  = highly significant at a 1% level (p < 0.01)
* = Significant at a 5% level (p < 0.05)

TABLE 8,

COMPARISON OF MICROBIAL TRANSFER OF UNWASHED EGGS AT DIFFERENT 
PERIODS OF LAY.

BEGINNING MIDDLE END B/E

%PENETRATION %PENETRATION %PENETRATION
BRUSH 4.00±20.00 56.1 2±1 7.93 * * * 20.76±7.51 * * * * *

ROTARY 1 8.40±9.42 22 .92± 9 .30 20.64±4.77

JET 1 8.40±9.42 22.92±9.30 20.64±4.77

* * *  _  y e r y  highly significant at a 0.1% level (p < 0.001) 
* *  = highly significant at a 1% level (p < 0.01)
* = Significant at a 5% level (p < 0.05)

TABLE 9.

COMPARISON OF MICROBIAL TRANSFER OF WASHED EGGS AT DIFFERENT 
PERIODS OF LAY.

BEGINNING MIDDLE END B/E

%PENETRATION %PENETRATION %PENETRATION
BRUSH 1 0.56±1 9.29 6 6 . 4 4 ± 2 2 . 7 7 * * * 2 7 . 6 8 ± 6 . 5 2 * * * * *

ROTARY 1 8.76±8.89 21 .48±4.08 19.1 6±5.47

JET 20.80±7.51 21 .32±6.00 1 9.56±4.66

* * *  _ Yery highly significant at a 0.1% level (p < 0.001) 
* *  = highly significant at a 1% level (p < 0.01)
* = Significant at a 5% level (p < 0.05)
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TABLE 10.

CORRELATION OF MICROBIAL TRANSFER OF THE UNWASHED EGGS OF THE 
BRUSH. ROTARY AND JET ACTION MACHINES AT THE DIFFERENT PERIODS OF 
LAY.

BRUSH ROTARY JET B / J B / R / J
% PEN. % PEN. % PEN.

BEGINNING 4.00±20.00 18.40±9.42 ** 1 8.40±9.42 * * * *

MIDDLE 56.1 2±1 7.93 2 2 . 9 2 ± 9 . 3 0 * * * 22.92±9.30 * * * * * *

END 20.76±7.51 20.64±4.77 20.64±4.77

* * *  _  y e r y  highly significant at a 0.1% level (p < 0.001) 
* *  = highly significant at a 1% level (p < 0.01)
* = Significant at a 5% level (p < 0.05)

TABLE 11.

CORRELATION OF MICROBIAL TRANSFER OF THE WASHED EGGS FROM THE BRUSH. 
ROTARY AND JET ACTION MACHINES AT THE DIFFERENT PERIODS OF LAY.

BRUSH ROTARY JET B/J B / R / J
% PEN. % P E N. % PEN.

BEGINNING 1 0.56±1 9.29 1 8.76±8.89 20.80±7.51 * *

MIDDLE 66.44±22.77 21 . 4 8 ± 9 . 3 0 “ * 2 1 .32±6.00 * * * * * *

END 27.68±6.52 1 9.1 6 ± 5 . 4 7 * * * 1 9.56±4.66 * * * * * *

* * *  = Very highly significant at a 0.1% level (p < 0.001) 
* *  = highly significant at a 1% level (p < 0.01)
* = Significant at a 5% level (p < 0.05)
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TABLE 12

AGE ASSOCIATED VARIATIONS IN THE MAMMILLARY LAYER & CUTICLE

STRAIN A.

VA RIATIO N STRAIN A I
BEGINNING MIDDLE END B/E

CONFLUENCE 5.52±0.87 4.76±1.05 ** 5 .24± 1 .16

CAPS 1.08±0.40 2.24±1.27 2 .36± 1 .85 * * *

EARLY FUSION 2.1 2±0.60 2.08±0.40 2.56+0.92 * *

LATE FUSION 3 .40±1 .22 3.1 2±0.60 3.84±1.37 *

MAM. ORG. 2.08±0.40 2.1 6±0.55 2.1 2±0.60

TYPE B’s 1 .64±0.49 2 .00±1 .22 2.88±1.74 * * * *

PITTIN G 1.48±1.66 1.48±1.33 3.40±2.83 ** * *

ARAGONITE 1.1 2±0.33 1.36±0.86 1 .72±1 .31 *

TYPE A s 1.28±0.46 1.1 6±0.37 1 .20±0.41

CUBICS 1.40±0.50 1.40±0.50 1 .28±0.46

CUFFING 4.48±0.51 4.64±0.86 4.88±0.33 * *

CH. MEM. 3.1 6±1 .37 5.20±4.72 * 2.24±1.85 ** *

CUTICLE 1 .36±0.70 1.64±0.91 1.76±0.83

TOTAL SCORE 28.76±2.99 31 .76±4.41 * * 33.72±6.78 * *

*** = Very highly significant at a 0.1% level (p < 0.001) 
** = highly significant at a 1% level (p < 0.01)
* = Significant at a 5% level (p < 0.05)
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TABLE 13-

AGE ASSOCIATED VARIATIONS IN THE MAMMILLARY LAYER & CUTICLE 

STRAIN B.

VA RIATIO N STRAIN B
BEGINNING MIDDLE END B/E

CONFLUENCE 5.04±1 .02 4 .72±1 .40 3 .88± 1 .54 * *

CAPS 1.60±1.22 2 .04±1 .51 2 .20±1 .50

EARLY FUSION 2.00±0.00 2.1 6±1 .55 2.28±0.79

LATE FUSION 3.00±0.00 3.24±0.83 3 .40± 1 .22

MAM. ORG. 2.08±0.40 2.1 6±0.55 2.00±0.00

TYPE B’s 1.32±0.48 2 .08±1 .98 2.72±2.05 * *

PITTIN G 1.00±0.00 1.64±1.50 * 3.88±2.32 * * *

ARAGONITE 1 .08±0.28 1.56±1.12 * 1 .60±1.1 2 *

TYPE A’s 1 .04±0.20 1.1 6±0.37 1.1 6±0.37

CUBICS 1 .60±0.87 1.44±0.51 1 .48±0.87

CUFFING 4.84±0.37 4.84±0.37 4.84±0.37

CH.MEM. 3 .52±1 .1 2 3.84±0.94 1.36±0.99 * * * * * *

CUTICLE 1.56±0.82 1.48±0.65 1.48±0.51

TOTAL SCORE 28.08±2.1 0 30.88±5.63 * 30.80±5.52 *

*** = Very highly significant at a 0.1% level (p < 0.001) 
** = highly significant at a 1% level (p < 0.01)
* = Significant at a 5% level (p < 0.05)
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DISCUSSION.



An industry which is responsible for the throughput of 

500,000 cases of table eggs per week cannot afford itself the 

luxury of a critical evaluation of individual product quality and so 

blanket measures are applied, which in the case of the egg are 

unable to take account of the diversity of structure which exists 

there in .

Quality is essentially subjective, with cleanliness, size and 

colour all reflected in the final price, the fact that none of these 

param eters gives a true indication of shell qua lity  or the 

nutritional value of the egg’s contents is seemingly irrelevant.

It is natural, considering its provenance that the egg will 

come into contact with faecal material. In the battery system, 

cage design minimises this situation and in general terms, the eggs 

from such systems are relatively clean. Public antipathy towards 

this system of intensive rearing has in recent years, in this 

country, seen a move towards alternative systems of housing in 

which birds have greater freedom of movement. Leaving aside the 

reported increases in feather pecking and leg disorders, these 

systems also increase the incidence of floor egg laying and so a 

greater likelihood of faecal contact. Dirty eggs do not achieve a 

price prem ium and it is hypothesised tha t under these 

circumstances egg washing or cleaning will be practised.

The egg washing debate has been aired for many years. In 

1919, Jenkins and Pennington concluded that egg spoilage during 

storage was the result of moisture on the shells subsequent to 

washing. In a later paper Jenkins et al. (1920) demonstrated 

increased spoilage under experimental conditions using either 

water or dilute sulphuric acid. Grzimek (1936) reported that both 

dry cleaned and untreated dirty eggs survived storage better than
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their washed counterparts. Haines (1938) developed the argument 

to suggest that washing assisted bacterial penetration particularly 

when the cuticle was damaged. At oviposition the egg emerges 

from a warm, humid environment into an atmosphere appreciably 

cooler. As the egg dries, the cuticle, that theoretical first line of 

defence, dries and shrinks and it has been hypothesised that the 

process can drag bacteria into the shell either via patent pore sites 

or through the fissures created in the shell by the drying process 

(Simons and Wiertz 1970).

The eggshell rarely conforms to its textbook image as 

illustrated by Solomon (1991) and underlined in this thesis. 

C u ticu la r d ivers ity  is the norm and the seem ing ly tough 

impenetrable barrier is easily abraded during the washing action.

With reference to the brush action machine, this part of the 

whole exercise was most edifying in so far as the serious damage 

first reported to the company concerned was subsequently reduced 

by altering brush pressure. It must be noted however, that the 

damage was invisible to the naked eye and the process would have 

progressed unchecked without the interim report.

None of the machines tested left the cuticular layer intact, 

although the degree of damage did vary, with the jet action wash 

emerging at the top of the league table in terms of minimal 

physical damage to the product. Sanitiser induced cuticu lar 

damage has been reported (Simons and Wiertz 1966). The authors 

observed changes in the appearance of the cuticle which had been 

subjected to Nusan. This particular sanitiser was used in the 

rotary action machine and so the observed changes must also be 

interpretated with due recognition to its presence. In the leaflet 

supplied with the machine, the recommended concentration of
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sanitiser is three level measures per load but the packing station 

had reduced this level to one measure per load. The supplier also 

recommended changing the wash water when it was “dirty” .

This subjective appraisal of hygiene levels gives cause for 

concern and it is perhaps significant to note that the post wash 

water from this machine harboured several potentialy dangerous 

micro-organisms. Whether the packing station was cognisant of 

the effect of Nusan on the cuticle and so was taking avoiding 

reaction by reducing the concentration of sanitiser is unknown, but 

their flaunting of the rules only served to increase the danger of 

contamination to eggs being damaged by the pressure of packing. 

The manufacturers of this machine also recommend no after 

“ rinse” and the end result, as illustrated, was the precipitation of 

salts from the wash water on to the outer surface of the shell.

Rotary cleaners have received criticism  from a variety of 

sources, yet they are still in use, reflecting the theory voiced by 

some sectors of the industry that if an egg can be rendered clean 

then the method by which it is effected is immaterial so long as it 

is cheap. The observation that in many instances the wash water 

contained a bacterial suspension prior to the washing procedure 

draws attention to the inherent problems associated with the 

maintenance of a high standard of cleanliness in the plant. 

Bacteria are brought into the wash water via adherent faecal 

material and other soiling agents and their response to the 

temperature and pH of the wash water is not uniform, thus Laird et_ 

al. (1990) observed that Listeria monocytogenes survives the 

normal pH and temperature of washing machines (pH 10.5, 

temperature 45CC) while Salmonella spp. requires pH>10 to prevent 

its survival (Holley and Proulx 1986). According to Southam et al. 

(1987) a lka line conditions perm it the surviva l of Yers in ia
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e n te ro co litica .

According to W illiams and Dillard (1973) the partia l or 

complete removal of the cuticular layer by washing permits rapid 

penetration of the remaining true shell by bacteria such as 

Salmonella, with moisture facilitating the process (Tung et al. 

1979). These results corroborate the earlier findings of Grzimek 

(1936) and Lorenz and Starr (1952) who reported the more 

protective nature of a “dry” shell. En route from the cloaca, the 

shell is moist and at this point it is most vulnerable to bacterial 

penetration from faecal material (Sparks 1985). As the cuticle

matures, it in theory assumes a more protective function. In the 

present trials, irrespective of the type of wash action cuticular 

damage was sustained with a trend to increased bacteria l 

penetration after washing. That, this was not due solely to 

cuticular damage will be discussed subsequently.

The egg, with its nutritious yolk mass intended for embryo

developm ent, is designed to w ithstand a certain degree of 

mechanical trauma and to minimise bacterial transfer. Thus, in 

addition to the cuticular layer, the shell, in its own right provides 

a physical barrier to ingress. The structural integrity of the shell 

is variable and diet, age and strain have all been shown to influence 

its formation (Solomon 1991). The paired shell membranes which 

surround the yolk and albumen and support the growth of the shell, 

also afford some protection with the inner membrane providing the 

more effective barrier to the translocation of bacteria (Vadehra 

and Baker 1972). According to Lifshitz et al. (1964) the inner

membrane is even more effective than the shell as an impediment 

to bacterial movement. Nevertheless when large innocula are used 

membrane resistance is quickly breached (Board et al. 1968)

underlining the temporary nature of their protective function.
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W hether bacteria physically penetrate the membranes via the 

interstices between the intersecting fibres or digest their way in 

through enzyme action is a matter of debate (Hartung and 

Stadelman 1963).

Egg white affords resistance to bacterial action through its

complement of lysozyme and conalbumen and its high pH. Lysozyme 

inactivates bacteria by attacking the cell wall and conalbumen 

binds certain ions such as iron which are essential for bacterial 

multiplication. The latter process is facilitated by the rising pH 

values of albumen during storage. If bacteria reach the yolk mass 

then they will multiply unchecked. The yolk is held within the

albumen by means of the chalazae (Solomon 1991). These twisted 

strands which originate from the albumen as it rotates distally,

keep the germ cell central. During storage, the table egg should be 

held with the air cell uppermost, so as to maintain the yolk in its 

central position. If this condition is not met then with the gradual 

deteriora tion of albumen through water loss, the yolk w ill 

juxtapose to the membranes and so provide easier access to

potentially harmful organisms.

Given that each or all of the barriers can be breached and that 

the outerm ost cuticu lar layer is a questionable firs t line of 

defence, does the structural organisation of the shell afford any 

protection? It is recognised that shell quality declines with bird 

age (Solomon 1985; Watt 1985; Bain 1990; Nascimento 1990). Add 

to the age effect, environmental effects such as heat (Izat et al. 

1985), lighting (Leeson et al. - unpublished results) and stress 

(Watt 1989) then structural variation would appear to be the 

“norm” . The amount of shell deposited increases linearly with the 

time spent by the egg in the pouch region and evidence has been 

presented to suggest that eggs laid in the afternoon are better than
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those laid in the morning, the theory being that during the hours of 

daylight more calcium is consumed (Roland et al. 1973; Choi et al. 

1981). According to Hurwitz (1978) shell quality is a reflection of 

the interval between individual oviposition times, the time of 

ov ipos ition , the rate of shell deposition  and the u terine 

environm ent.

This statement has since been developed by the work of Reid 

(1985), Watt (1989), Bain (1990), Nascimento (1990) and Solomon 

(1991). In their respective analyses of eggshells from a variety of 

strains and under different systems of husbandry, the authors have 

identified a number of structural variants, some indicative of 

oviducal malfunction in regions anterior to the pouch and others 

providing conclusive evidence of a change in the rate of 

m ineralisation* and hence in the form of calcium  carbonate 

deposited. The present results confirm these findings with the 

respect to the decline in shell quality and structure with bird age.

During the execution of this study, the eggs produced by 

Strain A birds declined in quality at 48 weeks of age to such an 

extent that the author queried “stress” effects. The company 

concerned subsequently verified that Infectious Bronchitis (I.B.) 

had been diagnosed. According to Garside (1967) in the laying bird, 

egg production falls 10-14 days after challenge and both internal 

and external quality decline. Within a four week period an 

improvement is observed in shell strength, although the texture and 

the shape of the egg are still inferior and the albumen is still 

watery. The latter is a classic response to I.B. (Spackman 1985). 

The recovery phase is difficult to time with intervals of from 4-10 

weeks being reported in the literature (Jordan 1990; Cook 1968). 

According to the former author, after a disease challenge of this 

type, the expected potential production is never attained.

113



The morphological condition of the oviduct is crucial to 

normal shell formation as highlighted by the work of Crinion et al. 

(1971) and Watt (1989). The former experimentally infected one 

day chicks with I.B. and observed permanent lesions in the oviduct. 

Watt (1989) subjected laying birds, individually housed, to a one 

hour period of four birds per cage and this transient alteration in 

stocking density was sufficent to cause egg retention and for 

th irty  days thereafter structural changes w ithin the eggshell 

incompatible with its function as a mechically sound package. 

Analysis of oviducal tissue from these experimental birds revealed 

cell breakdown in the surface epithelia l lining of the distal 

oviduct. The membrane deposits observed on the surface of certain 

eggs in figures 16 and 17 may be corroborative evidence of 

oviducal damage in response to I.B. It is hypothesised that clumped 

membrane fibres from the isthmus have either moved distally 

during the later stages of shell form ation and so become 

incorporated in the forming shell or antiperista lsis during this 

later phase has forced the egg caudally. Irrespectively of its 

aetio logy, the incorporation of this fibrous material into the 

framework of the shell is disruptive.

It is not possible from the evidence provided by the company 

to say when the birds were first challenged. Eggs from young birds 

characteristica lly contain a variety of crystal form s including 

Type B bodies (Solomon 1991). Their presence in the Strain A eggs 

at the beginning of lay was not therefore questioned at that point 

in the analysis. These structures are however also a feature of the 

eggs of stressed birds (Watt 1989) and so it is feasible that their 

inclusion was indicative of an initial response to the stress of the 

disease. There is no doubt that the observed breakdown in shell 

structure observed in both control and experimental e g g s  midlay
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eased bacterial penetration with the attendant cuticular damage 

only serving to exacerbate the situation.

The eggs from Strain B flock also displayed age related 

structura l changes, although the re-tim ing of the sam pling 

programme because of the closure of the site, meant that the 

dramatic reduction in quality at 72 weeks of age could not be taken 

into account. At the m id d le  of lay the eggs contained a number 

of inherent undesirable defects in the form of p itting and

aragonite. The former, often caused by the accumulation of

oviducal debris on the shell membrane prior to ca lc ifica tion

inhibits normal shell growth and the space created by its presence 

represents an area in which stress can accumulate (Bain 1990). 

These points of weakness are also thinner than adjacent areas. The 

aragonite modification of calcium carbonate is more commonly 

associated with the eggs of reptiles. Under stress, birds display 

the capacity to form aragonite within the shell, primarily at the 

mammillary surface i.e. during the early phase of shell formation. 

They do however retain the capacity to deposit this form at any 

phase of shell growth as illustrated in figure 15. Aragonite, which 

is less stable than calcite is indicative of a rapid phase of crystal 

growth and one can say no more at this point other than its

presence suggests a tem porary im balance in the oviducal 

environment.

By end of lay these structural im perfections had increased, 

although as illustrated in the results section, at any point in the 

laying year, irrespective of strain, the range of structural variants 

described by Bain (1990) and Solomon (1991) were present to a 

greater or lesser extent.

Nascimento (1990) corre lated the presence of specific
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structural traits with bacterial ingress. The present investigation 

provides some evidence to support his findings in terms of trends 

although the whole interpretation has been complicated by the I.B. 

challenge and the re-scheduling of the collection programme with 

respect to Strain B.

This investigation has focussed on the transfer of Salmonella 

enteritidis across the shell wall, but it is only one of the many 

strains which are of potential risk to the egg contents. According 

to Board (1969) an egg may contain between 9,500 - 3,100,000 

organisms per shell with this number escalating to 289, 000,000 

micro-organisms on the surface of extremely soiled hatching eggs. 

As previously stated, the principle sources of micro-organisms on 

the outside of shells are faecal material plus dust and dirt from 

the surrounding environment. While washing and sanitising will 

reduce the microbial load, the process does not render the egg 

immune from subsequent attack. The shell must function as a 

barrier until it parts company from its contents and so its 

integrity is crucial at every stage.

This thesis has served to highlight a number of issues which 

should now be developed. The first of these concerns the structural 

organisation of the product being subjected to yet another handling 

process. Given that so many external factors can have a 

detrimental influence on quality, in addition to genetic effects, 

then if spoilage of the egg contents occurs subsequent to washing 

the latter process cannot be held solely responsible if structural 

integrity is suspect. Washing undoubtedly causes damage to the 

cuticular surface, and occasionally results in egg cracking and 

therefore leakage of contents into the wash water. The process by 

its very nature removes the bacterial load, and if the plant is well 

maintained and the manufacturers recommendations followed there
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should be no cross contamination.

In the development of machinery to carry out the washing it 

is relatively easy to stipulate the exclusion of “double corners” to 

minimise bacterial build up, to ensure that re-circulated water is 

passed through filters to remove organic material, to insist on the 

use of clean rinse water and to design a machine with the ability to 

discharge detergents and sanitisers at the prescribed rates and 

hold them at the correct temperature, but the machinery will be 

operated by a human being and irrespective of the number of fail 

safe devices incorporated there will always exist the possibility 

of human error. Given the fa llib ility of the individual and the 

vagaries of egg formation, the process of washing will always be 

open to question.

117



BIBLIOGRAPHY.



AGER, E.A., NELSON, K.E., GALTON, M.M. & BORING, J.R. 
(1967). Two Out-Breaks of Egg-Borne Salmonellosis and 
Implications for their Prevention. J. Amer. Med. Ass. 199: 3 7 2 - 
378

BAIN, M.M. (1990). Eggshell Strength: A Mechanical / 
Ultrastructural Evaluation. Ph.D. Thesis, University of Glasgow.

BAKER, R.C., GOFF, J.R & MULIX, (1980).Samonella Recovery 
following Oral and Intravenous Innoculation of Laying Hens. Poultry Science, 
59: 1067-1072

BOARD, R.G. (1969). The Microbiology of the Hen’s Egg.
Advances in Applied Microbiology, 11: 245-281

BOARD, R.G. (1975). The Microstructure of the Cuticleless Shell 
of the Eggs of the Domestic Hen. British Poultry Science, 1 6: 89- 
91

BOARD, R.G. & AYRES, J.C. (1965). Influence of Temperature 
on Bacterial Infection of the Hen’s Egg. Applied Microbiology, 1 3: 
3 5 8 -3 6 4

BOARD, R.G. & FULLER, R. (1974). Non-Specific Antim icrobial 
Defences of the Avian Egg, Embryo and Neonate. Biological review, 
4 9: 15-49

BOARD, R.G. & HALLS, N.A. (1973). The Cuticle: A Barrier to 
Liquid and Particle Penetration of the Shell of the Hen’s Egg.
British Poultry Science, 1 4: 69-97

BOARD, R.G., HENDEN, L.P. & BOARD, R.G. (1968). The
Influence of Iron on the Course of Bacterial Infection of the Hen’s 
Egg. British Poultry Science, 9: 211-215

BRANT, A.W. & STARR, P.B. (1962). Some Physical Factors 
related to Egg Spoilage. Poultry Science, 41: 1468 -1473

CANTOR, A. & MCFARLANE, V.H. (1948). Salmonella Organisms 
on and in Chicken Eggs. Poultry Science, 27: 350

118



CHOI, J.H., MILES, R.D., ARAFA, A.S. & HARMS, R.H. (1981).
The Influence of Oviposition Time on Egg Weight, Shell Quality and 
Blood Phosphorus. Poultry Science, 60: 8 2 4 -8 2 8

COOK, J.K.A. (1968). Duration of Experimental Infectious 
Bronchitis in Chickens. Research in Veterinary Science, 9: 5 0 6 -  
514

CRINION, R.A.P., BALL, R.A. & HOFSTAD, M.S. (1971).
Abnormalities in Laying Chickens following Exposure to Infectious 
Bronchitis at One Day Old. Avian Diseases, 15: 4 2 - 4 8

FORSYTHE, R.H., ROSS, W.J. & AYRES, J.C. (1967). Salm onella 
Recovery Following Gastro-lntestinal and Ovarian Innoculation in 
the Domestic Fowl. Poultry Science, 4 6: 849-855

FROMM, D. (1960). Permeability of the Egg Shell Influenced by 
Washing, Ambient Temperature Changes and Environmental 
Temperature and Humidity. Poultry Science, 3 9 : 1 4 9 0 - 1 4 9 5

GARIBALDI, J.A. & BAYNE, H.G. (1962). The Effect of Iron on 
the Pseudomonas Spoilage on Farm Washed Eggs. Poultry Science, 
4 1 : 8 50 -85 3 .

GARIBALDI, J.A., LINEWEAVER, H. & IJICHI, K. (1969).
Number of Salmonellae in Commercially Broken Eggs before 
Pasteurization. Poultry Science 48: 1096-1 101

GARSIDE, J.S. (1967). Avian Infectious Bronchitis. Veterinary 
Record, 8 0 , Clinical supplement No. 7

GILBERT, A.B. (1979). In “Form and Function in Birds.” Vo l.1 : 
237-345 (A.S. King & J. McLelland, Eds.) Academic Press, London & 
New York.

GILBERT, A.B. & WOOD-GUSH, D.G.M. (1971). In “Physiology of 
the Domestic Fowl” 1372-1374

119



GILLESPIE, J.M., SCOTT, W.J. & VICKERY, J.R. (1950a).
Studies in the Preservation of Shell Eggs. 11) The Incidence of 
Bacterial Rotting in Unwashed Eggs and in Eggs Washed by Hand. 
Australian Journal of Applied Science, 1: 215-223

GILLESPIE, J.M., SCOTT, W.J. & VICKERY, J.R. (1950b).
Studies in the Preservation of Shell Eggs. 111) The Storage of 
Machine Washed Eggs. Australian Journal of Applied Science, 1: 
3 1 3 -3 2 9

GRZIMEK, B. (1936). Versuch mit der Mechanis Chen. Reinigung 
von Schmuzeiern. Tietarztliche Rundschau, 42: 4 0 7 -4 0 8

HAINES, R.B. (1938). Observations on the Bacterial Flora of the 
Hen’s Egg with a Description of the New Species of Proteus and 
Pseudomonas Causing Rots in Eggs. Journal of Hygiene, 3 8: 338- 
355

HAINES, R.B. & MORAN, T. (1940). Porosity of and Bacterial 
Invasion Through the Shell of the Hen’s Egg. Journal of Hygiene, 4 0: 
453-461

HANSON, B.S. (1968). Disease and Egg Quality. In “Egg Quality - 
A Study of the Hen’s Egg”. (T.C. Carter, ed.) British Egg Marketing 
Board Symposium No.4

HARTUNG, T.E. & STADELMAN, W.J. (1963). Pseudomonas 
fluorescens Penetration of Egg Shell Membranes as Influenced by 
Shell Porosity, Age of the Egg and Degree of Bacterial Challenge. 
Poultry Science, 42: 147-150

HELLIG, H. (1989). Salmonella enteritidis in the U.K. Poultry 
International, Oct., 1989: 72-76

HODGES, R.D. (1974). “The Histology of the Fowl” Academic 
Press, London and New York.

HOLLEY, R.A. & PROULX, M. (1986). Use of Egg Washwater pH to 
Prevent Survival of Salmonella at Moderate Temperatures. Poultry 
Science, 65: 922 -928

120



HURWITZ, S. (1978). Calcium Metabolism in Birds. Chemical 
Zoology, Volume X, Aves, 273-306

HURWITZ, S. (1985). Effect of Nutrition on Egg Quality. In “Egg 
Quality - Current Problems and Recent Advances” R.G. Wells & C.G. 
Belyavin. Poultry Science Symposium, 20: 2 3 5 -2 5 4

IZAT, A.L., GARDNER, F A. & MELLOR, D.B. (1985). Effects of 
Age of the Bird and Seasons of the Year. 1. Shell Quality. Poultry 
Science, 6 4: 1960-1966

JENKINS, M.K. & PENNINGTON, M.E. (1919). Com m ercial 
Preservation of Eggs by Cold Storage. U.S.D.A. Bull. No. 7 7 5

JENKINS, M.K., HEPBURN, J.S., SWAN, C. & SHERWOOD C.M. 
(1920). Effect of Cold Storage on Shell Eggs. Ice Refrigeration, 
5 8 : 1 4 0 -  147

JORDAN, F.T.W. (1990). Infectious Bronchitis in “ Pou l t r y  
Diseases” 3r d Edition Bailliere Tindall: 1 59-1 65

KING, A.S. (1975). In Sisson and Grossman’s “The Anatomy of 
the Domestic Animals” (R.Getty ed.) Vol 2: 1919-1964 Saunders, 
Philadelphia

KRAFT, A.A., MCNALLY, E.G. & BRANT, A.W. (1958). Shel l  
Quality and Bacterial Infection of Shell Eggs. Poultry Science 3 7: 
6 38 -6 43

KUHL, H. (1989). E.E.C. Restrictions on Egg Washing are Outdated 
and Economically Damaging Poultry International, Jan., 1989: 
20-22

LAIRD, J.M., BARTLETT, F.M. & MCKELLAR, R.C. (1990).
Survival of Listeria monocytogenes in Egg Washwater.
International Journal of Food Microbiology, 1 2 : 1 1 5 - 1 2 2

LIFSHITZ, A., BAKER, R.C. & NAYLOR, H.B. (1964). The
Relative Importance of Chicken Exterior Structures in Resisting 
Bacterial Penetration. Journal of Food Science, 2 9: 94-99

121



LORENZ, F.W. & STARR, P.B. (1952). Spoilage of Washed Eggs. 
1. Effect of Sprayed Versus Static Water Under Different Washing 
Temperatures. Poultry Science, 31, 2 0 4 -2 1 4

MARCH, B.E. (1969). Bacterial Infection of Washed and Unwashed 
Eggs with Respect to Salmonellae. Applied Microbiology, 1 7: 98- 
101

MOATS, W.A. (1978). Egg Washing - A Review. Journal of Food 
Protection, 4 1: 919-925

MOHUMED, A.S.A.S. (1986). The Effect of Housing on Eggshell 
Structure and Quality at the End of the Laying Year. M.Sc. Thesis 
University of Glasgow.

MOURSY, A.W. & AHMED, A.A. (1971). Penetration Rate of 
Salmonella Organisms Through Intact Shells of Hen’s Eggs. 
Veterinary Medical Journal, 1 9: 89-95

NASCIMENTO, V.P. (1990). The Ease of Translocation of 
Salmonella enteritidis Through the Eggshell Wall: An 
Ultrastructure Study. M.Sc. University of Glasgow.

NATHUSIUS, W. VON. (1894). Uber Farben der Vogel-Cier. Zool. 
Anz., 1 7: 440-452

REID, J. (1983). The Use of the Plasma Chemistry Unit as an Aid 
to the Scanning Microscope Study of the Avian Eggshell Structure. 
British Poultry Science, 2 4: 233-235

REID, J. (1985). The Effect of Diet on Certain Aspects of the 
Eggshell of the Domestic Fowl (Gallus domesticus). Ph.D. Thesis, 
University of Glasgow.

ROLAND, D.A. Snr., SLOAN, D.R., & HARMS, R.H. (1973).
Calcium Metabolism in the Laying Hen. 6. Shell Quality in Relation 
to Oviposition. Poultry Science, 5 2: 506-510

ROMANOFF, A.L. & ROMANOFF, A.J. (1949). “The Avian Egg.” 
Chapman & Hall, London.

122



SAJNER, J. (1955). Uber de Mikroskopischen Veranderungen der 
Eischale der Vogel im Laufe Inkubationszeit. Acta Anat (Basel), 
2 5 : 141-159

SAUVEUR, B. & PICARD, M. (1985). Environmental Effects on 
Egg Quality. In “Egg Quality - Current Problems and Recent 
Advances” R.G. Wells & C.G. Belyavin. Poultry Science Symposium, 
2 0 : 2 1 9 - 2 3 4

SCHMIDT, W.J. (1956). Beitrage zur Mikroskopischen Kenntnis 
der Farbstoffe in der Kalkschale des Vogeleies. Z. Zellforsch. 
Mikrosk. Anat 44: 413 -42 6

SCHMIDT, W.J. (1962). Leigt der Eischalenkalk der Vogel als 
Submikroskopische Kristallite vor ? Z. Zellforsch. Mikrosk. Anat 
57: 84 8 -8 8 0

SEDMAK, J.J. & GROSSBERG, S.E. (1977). A Rapid, Sensitive, 
and Versatile Assay for Protein Using Coomassie Brilliant Blue G 
250. Analytical Biochemistry, 79: 544 -552

SIMKISS, K. (1961). Calcium Metabolism and Avian
Reproduction. Biological Rev., 3 6: 321-367

SIMKISS, K. (1967). Calcium Metabolism in Laying Birds. In
Calcium in Reproductive Physiology. Reinhold Publishing Company, 
New York.

SIMKISS, K. (1968). The Structure and Formation of the Shell
Membranes in “Egg Quality - A Study of the Hen’s Egg” (T.C.Carter 
ed.) British Egg Marketing Board Symposium, 4: 3-25 Oliver & 
Boyd, Edinburgh

SIMMONS, E.R., AYRES, J.C. & KRAFT, A.A. (1970). Effect of 
Moisture and Temperature on Ability of Salmonella to Infect Shell 
Eggs. Poultry Science, 4 9: 761-768

SIMONS, P.C.M. & WIERTZ, G. (1966). The Ultrastructure of the 
Surface of the Cuticle of the Hen’s Egg in Relation to Egg Cleaning. 
Poultry Science, 4 5: 1153-1162

123



SIMONS, P.C.M. & WIERTZ, G. (1970). Notes on the Structure of 
Shell and Membranes of the Hen’s Egg: A Study with the Scanning 
Electron Microscope. Ann. Biol. Anim. Bioch. Biophys., 10: 31

SOLOMON. S.E. (1973). Studies of the Reproductive Tract of the 
Domestic Fowl Gallus domesticus. Ph.D. Thesis. University of 
Glasgow

SOLOMON, S.E. (1979). The Location of Beta-N-Acetyl- 
Glucoaminidase in the Oviduct of the Domestic Fowl. British 
Poultry Science 2 0: 139-142

SOLOMON, S.E. (1983). The Oviduct. In “Physiology and 
Biochemistry of the Domestic Fowl” (B.M. Freeman ed.) Vol. 4: 
379-419 Academic Press, London and New York

SOLOMON, S.E. (1985). Structural Evaluation of Eggshell Quality. 
The Eggs Authority - Technical Bulletin No.1 8: 1-8

SOLOMON, S.E. (1987). Egg Shell Pigmentation. In “Egg Quality 
- Current Problems and Recent Advances”. (R.G. Wells & C.G.
Belavin, eds.) Poultry Science Symposium No.2 0: 147-157 
Butterworths, London.

SOLOMON, S.E. (1988). The Value of Eggshell Structure as a 
Measure of Eggshell Quality. World’s Poultry Congress Proceedings 
XV111 Japan: 262 -265

SOLOMON, S.E. (1991). Egg and Eggshell Quality. Wolfe 
Publishing Ltd. 149 pp

SOUTHAM, G., PEARSON, J. & HOLLEY, R.A. (1987). Survival
and Growth of Yersinia enterocolitica in Egg Wash Water. Journal 
of Food Protection, 50: 1 03-1  07

SPACKMAN, D. (1985). The Effect of Disease on Egg Quality. In 
“Egg Quality - Current Problems and Recent Advances” R.G, Wells & 
C.G. Belyavin. Poultry Science Symposium, 20: 2 5 5 -2 8 2

124



SPARKS, N.H.C. (1985). The Hen’s Eggshell: A Resistance 
Network Ph.D. Thesis, University of Bath

STOKES, J.L., OSBORNE, W.W. & BAYNE, H.G. (1956).
Penetration and Growth of Salmonella in Shell Eggs. Food 
Research, 2 1: 510-518

TAMURA, T. & FUJII, S. (1967). Com parative  Observations on 
the Distribution of Fluorescent Pigments (Porphyrins) in the Egg 
Coverings of Chickens and Quail. Journal of the Faculty of Fish and 
Animal Husbandry. Hiroshima University, 7: 35-41

TULLETT, S.G., BOARD, R.G., LOVE, G., PERROTT, H.R. & 
SCOTT, V.D. (1976). Vaterite Deposition During Eggshell 
Formation in the Cormorant, Gannet and Shag, and in “Shell-less” 
Eggs of the Domestic Fowl. Acta zool. (Stockh.) 57: 7 9 - 8 7

TUNG, M.A., GARLAND, M.R. & GILL, P.K. (1979). A Scanning 
Electron Microscope Study of Bacterial Invasion in Hen’s Egg Shell. 
Canadian Institute of Food Science and Technology, 12: 1 6 -22

TYLER, C. (1955). Studies on Eggshells. VI: The Distribution of 
Pores in Eggshells. Journal of the Science of Food and Agriculture, 
6: 170 -176

TYLER, C. (1956). Studies on Eggshells. VII: Some Aspects of 
Structure as Shown by Plastics Models. Journal of theScience of 
Food and Agriculture, 7: 483-493

TYLER, C. (1969). The Distribution of Pores in the Eggshells of 
the Domestic Fowl. A Further Study. British Poultry Science 1 0 : 
3 57 -38 0

TYLER, C. AND SIMKISS, K. (1959). Studies on Eggshells. X1.- 
Some Abnormalities. Journal of Scientif ic  Food and Agriculture, 
July, 1959: 362-366

VADEHRA, D.V., BAKER, R.C. & NAYLOR, H.B. (1970).
Infection Routes of Bacteria into Chicken Eggs. Journal of Food 
Science, 3 5: 61-62

125



VADEHRA, D.V. & BAKER, R.C. (1972). Bacterial Penetration of 
Eggs. New York’s Food and Life Sciences, 5: 9 - 1 1

WALDEN, C.C., ALLEN, I.V.F., & TRUSSELL, P.C. (1956). The
Role of the Eggshell and Shell Membranes in Restraining the Entry 
of Microorganisms. Poultry Science, 3 5 : 1  1 90-1 1 96

WATT, J.M. (1985). An Ultrastructura l Evaluation of Eggshell 
Quality in the Domestic Fowl. M.Sc. Thesis, University of Glasgow.

WATT, J.M. (1989). The Effect of Stress on the Reproductive 
Tract of the Domestic Fowl. Ph.D. Thesis, University of Glasgow.

WEDRAL, E.M., VADEHRA, D.V. & BAKER, R.C. (1974).
Chemical Composition of the Cuticle and the Inner'Membranes from 
the Eggs of Gallus gallus. Comparative Biochemistry and 
Physiology, 4 7 B: 631-640

WILLIAMS, J.E. & WHITTEMORE, A.D. (1967). A Method of 
Studying Microbial Penetration through the Outer Structures of the 
Avian Egg. Avian Diseases, 1 1: 467-490

WILLIAMS, J.E. & DILLARD, L.H. (1973). The Effect of External 
Shell Treatments on Salmonella Penetration of Chicken Eggs.
Poultry Science, 5 2: 1084-1089

WYBURN, G.M., JOHNSTON, H.S., DRAPER, M.H. & DAVIDSON, 
M.F. (1973). The Ultrastructure of the Shell Forming Region of the 
Oviduct of Gallus domesticus. Quarterly  Journal of Experimental 
Physiology, 5 8: 143-151

126



APPENDIX.



APPENDIX 1a. ( BRUSH MACHINE! ANOVA TEST 1.

% MICROBIAL PENETRATION BETWFFN UNWASHED AND WASHED EGGS 
AT DIFFERENT PERIODS OF LAY.

One Way ANOVA 2 Groups

Analysis of Variance Table

Source DF: Sum Squares: Mean Square: F -tes t:
Between groups 1 5 3 7 .9 2 5 3 7 .9 2 1 .3 9 3

Wihin groups 48 1 8 5 3 2 .1 6 3 8 6 .0 8 7 .10 < p < .25

Total 49 1 9 0 7 0 .0 8

Model II estimate of between component variance = 6 .0 73

Group:___________________ Count:____________________Mean:

B /B /U N 25 4

B /B /W 25 1 0 .56

One Way ANOVA 2 Groups

Analysis of Variance Table

Source DF: Sum Squares: Mean Square: : -tes t:
Between groups 1 1 3 3 1 .2 8 1 3 3 1 .2 8 3 .171

Wihin groups 48 2 0 1 5 2 .8 4 1 9 .8 5 .05 < p < .10

Total 49 2 1 4 8 4 .0 8

Model II estimate of between component variance = 3 6 .4 5 7

Count: Mean:

B /M /U N 25 5 6 .1 2

B /M /W 25 6 6 .4 4
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One Way ANOVA 2 Groups

Analysis of Variance Table

Source__________ DR______________Sum Squares: Mean Square: F -tes t:
Between groups 1 5 9 8 .5 8 5 9 8 .5 8 1 2 .1 7 5

Wihin groups 48 2 3 6 0 4 9 .1 6 7 .0001 < p < .005

Total 49 2 9 5 8 .5 8

Model II estimate of between component variance = 2 1 .9 7 7

Count: Mean:

B /E /UN 25 2 0 .7 6

B /E /W 25 2 7 .6 8
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APPENDIX 1b. ( ROTARY ACTIONS

% MICROBIAL PENETRATION BETWEEN UNWASHED AND WASHED EGGS 
AT THE DIFFERENT PERODS OF LAY.

One Way ANOVA 2 Groups

Analysis of Variance Table

Source DF: Sum Squares: Mean Square: = -tes t:
Between groups 1 1.62 1 .62 .01 9

Wihin groups 48 4 1 5 8 .5 6 8 6 .6 3 7 p > .25
Total 49 4 1 6 0 .1 8

Model II estimate of between component variance = -3 .4 0 1

Group:___________________ Count:____________________Mean:

R /B /U N 25 18 .4

R /B /W 25 18 .76

One Way ANOVA 2 Groups

Analysis of Variance Table

Source DF: Sum Squares: Mean Square: =-tes t:
Between groups 1 2 5 .9 2 2 5 .9 2 .51

Wihin groups 48 2 4 4 0 .0 8 5 0 .8 3 5 p > .25

Total 49 2 4 6 6

Model II estimate of between component variance = - .9 9 7

Count: Mean:

R /M /W 25 2 1 .4 8

R /M /U N 25 2 2 .9 2
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One Way ANOVA 2 Groups

Analysis of Variance Table

Source DF:______________Sum Squares: Mean Square: F -tes t:
Between groups 1 2 7 .3 8 2 7 .3 8 1 .0 3 9

Wihin groups 48 12 6 5 .1 2 2 6 .3 5 7 p > .25

Total 49 1 2 9 2 .5

Model II estimate of between component variance = .041

Group:___________________ Count:____________________Mean:

R /E /UN 25 2 0 .6 4

R /E /W 25 19 .16
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APPENDIX 1c. I JET ACTIOm

% MICROBIAL PENETRATION BETWEEN UNWASHED AND WASHED
EGGS AT THE DIFFERENT PERODS OF I AY.

One Way ANOVA 2 Groups

Analysis of Variance Table

Source DF: Sum Squares: Vlean Square: F -test:
Between groups 1 72 72 1 .1 7 7

Wihin groups 48 2 9 3 6 6 1 .1 6 7 p > .25

Total 49 3 0 0 8

Model II estimate of between component variance = .433

Group:___________________ Count:____________________Mean:

J /B /W 25 20 .8

J /B /U N 25 18 .4

One Way ANOVA 2 Groups

Analysis of Variance Table

Source DF: Sum Squares: Mean Square: = -tes t:
Between groups 1 3 2 32 .52 9

Wihin groups 48 2 9 0 3 .2 8 6 0 .4 8 5 p > .25

Total 49 2 9 3 5 .2 8

Model II estimate of between component variance = -1 .1 3 9

Group: Count:____________________Mean:

J /M /W 25 2 1 .3 2

J /M /U N 25 2 2 .9 2
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One Way ANOVA 2 Groups

Analysis of Variance Table

Source DF:______________ Sum Squares: Mean Square: F -tes t:
Between groups 1 14 .58 14 .58 .6 5 7

Wihin groups 48 1 0 6 5 .9 2 2 2 .2 0 7 p > .25

Total 49 1 0 8 0 .5

Model II estimate of between component variance = - .3 0 5

Group:___________________ Count:____________________Mean:

J /E /W 25 1 9 .56

J /E /U N 25 2 0 .6 4
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APPENDIX 2a. ( BRUSH MACHINE! ANOVA TEST 2.

% MICROBIAL PENETRATION OF UNWASHED EGGS AT THE DIFFERENT 
PERIODS OF LAY.

One Way ANOVA 2 Groups

Analysis of Variance Table

Source DF: Sum Squares: Mean Square: =-tes t:
Between groups 1 3 3 9 5 6 .1 8 3 3 9 5 6 .1 8 9 4 .1 4 5

Wihin groups 48 1 7 3 1 2 .6 4 3 6 0 .6 8 p < .0001

Total 49 5 1 2 6 8 .8 2

Model II estimate of between component variance = 1 3 4 3 .8 2

Group:___________________ Count:____________________Mean:

B /B /U N 25 4

B /M /U N 25 5 6 .1 2

One Way ANOVA 2 Groups

Analysis of Variance Table

Source DF: Sum Squares: Mean Square: = -tes t:
Between groups 1 3 5 1 1 .2 2 3 5 1 1 .2 2 1 5 .4 0 8

Wihin groups 48 1 0 9 3 8 .5 6 2 2 7 .8 8 7 .0001 < p < .005

Total 49 1 4 4 4 9 .7 8

Model II estimate of between component variance = 13 1 .3 3 3

Count: Mean:

B /B /U N 2 5 4

B/E /UN 25 2 0 .7 6
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One Way ANOVA 2 Groups

Analysis of Variance Table

Source__________ DR______________ Sum Squares: Mean Square: F -tes t:
Between groups 1 1 5 6 2 9 .1 2 1 5 6 2 9 .1 2 8 2 .8 8 4

Wihin groups 48 9 0 5 1 .2 1 8 8 .5 6 7 p < .0001

Total 49 2 4 6 8 0 .3 2

Model II estimate of between component variance = 6 1 7 .6 2 2

Count: Mean:

B /M /U N 25 5 6 .1 2

B /E /UN 25 2 0 .7 6
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APPENDIX 2b. ( ROTARY MACHINE)

% MICROBIAL PENETRATION OF UNWASHED EGGS AT DIFFERENT 
PERIODS OF LAY.

One Way ANOVA 2 Groups

Analysis of Variance Table

Source DF: Sum Squares: Mean Square: =-tes t:
Between groups 1 2 5 5 .3 8 2 5 5 .3 8 2 .8 8 7

Wihin groups 4 8 4 2 4 5 .8 4 8 8 .4 5 5 .05 < p < .10

Total 4 9 4 5 0 1 .2 2

Model II estimate of between component variance = 6 .6 7 7

Group:___________________ Count:____________________Mean:

R /B /U N 25 18 .4

R /M /U N 25 2 2 .9 2

One Way ANOVA 2 Groups

Analysis of Variance Table

Source DF: Sum Squares: Mean Square: =-tes t:
Between groups 1 6 2 .7 2 6 2 .7 2 1 .0 9 4

Wihin groups 48 2 7 5 1 .7 6 5 7 .3 2 8 p > .25

Total 49 2 8 1 4 .4 8

Model II estimate of between component variance = .216

Group:___________________ Count:____________________Mean:

R /B /U N 25 18 .4

R /E /UN 25 2 0 .6 4
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One Way ANOVA 2 Groups

Analysis of Variance Table

Source DF: Sum Squares: Vlean Square: =-tes t:
Between groups 1 6 4 .9 8 64 .98 1 .2 0 6

Wihin groups 48 2 5 8 5 .6 5 3 .8 6 7 p > .25

Total 49 2 6 5 0 .5 8

Model II estimate of between component variance = .44 5

Group:___________________ Count: Mean:

R /M /U N 25 2 2 .9 2

R /E /UN 25 2 0 .6 4
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APPENDIX 2c. ( JET MACHINE!

% MICROBIAL PENETRATION OF UNWASHED EGGS AT DIFFERENT 
PERIODS OF LAY.

One Way ANOVA 2 Groups

Analysis of Variance Table

Source DF: Sum Squares: Mean Square: = -test:
Between groups 1 2 5 5 .3 8 2 5 5 .3 8 2 .8 8 7

Wihin groups 48 4 2 4 5 .8 4 8 8 .4 5 5 .05 < p < .10

Total 49 4 5 0 1 .2 2

Model II estimate of between component variance = 6 .6 7 7

Group:___________________ Count:____________________Mean:

J /B /U N 25 18 .4

J /M /U N 25 2 2 .9 2

One Way ANOVA 2 Groups

Analysis of Variance Table

Source DF: Sum Squares: Mean Square: F-test:
Between groups 1 6 2 .7 2 6 2 .7 2 1 .0 9 4

Wihin groups 48 2 7 5 1 .7 6 5 7 .3 2 8 p > .25

Total 49 2 8 1 4 .4 8

Model II estimate of between component variance = .216

Count: Mean:

J /B /U N 25 18 .4

J /E /U N 25 2 0 .6 4

137



One Way ANOVA 2 Groups

Analysis of Variance Table

Source__________ DR______________ Sum Squares: Mean Square: F -tes t:
Between groups 1 6 4 .9 8 6 4 .98 1 .2 0 6

Wihin groups 48 2 5 8 5 .6 5 3 .8 6 7 p > .25

Total 4 9 2 6 5 0 .5 8

Model II estimate of between component variance = .445

Count: Mean:

J /M /U N 25 2 2 .9 2

J /E /U N 25 2 0 .6 4
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APPENDIX 3a. ( BRUSH MACHINE! ANOVA TEST 3.

% MICROBIAL PENETRATION OF WASHED EGGS AT DIFFERENT PERIODS 
OF LAY.

One Way ANOVA 2 Groups

Analysis of Variance Table

Source DF: Sum Squares: Mean Square: --te s t:
Between groups 1 3 9 0 3 2 .1 8 3 9 0 3 2 .1 8 8 7 .6 6 2

Wihin groups 48 2 1 3 7 2 .3 2 4 4 5 .2 5 7 p < .0001

Total 49 6 0 4 0 4 .5

Model II estimate of between component variance = 1 5 4 3 .4 7 7

Group:___________________ Count:____________________Mean:

B /B /W 25 1 0 .56

B /M /W 25 6 6 .4 4

One Way ANOVA 2 Groups

Analysis of Variance Table

Source DF: Sum Squares: Mean Square: = -tes t:
Between groups 1 3 6 6 3 .6 8 3 6 6 3 .6 8 1 7 .6 6 8

Wihin groups 48 9 9 5 3 .6 2 0 7 .3 6 7 .0001 < p < .005

Total 49 1 3 6 1 7 .2 8

Model II estimate of between component variance = 13 8 .2 5 3

Group:___________________ Count:____________________Mean:

B /B /W 25 10 .56

B /E /W 25 2 7 .6 8
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One Way ANOVA 2 Groups

Analysis of Variance Table

Source__________ DR______________ Sum Squares: Mean Square: F -tes t:
Between groups 1 1 8 7 7 9 .2 2 1 8 7 7 9 .2 2 66 .961
Wihin groups 48 1 3 4 6 1 .6 2 8 0 .4 5 p < .0001

Total 49 3 2 2 4 0 .8 2

Model II estimate of between component variance = 739 .951

Group:___________________ Count: Mean:

B /M /W 25 6 6 .4 4

B /E /W 25 2 7 .6 8
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APPENDIX 3b. ( ROTARY MACHINE!

% MICROBIAL PENETRATION OF WASHED EGGS AT DIFFERENT PERIODS 
OF LAY.

One Way ANOVA 2 Groups

Analysis of Variance Table

Source DF: Sum Squares: Vlean Square: F -test:
Between groups 1 9 2 .4 8 9 2 .4 8 1 .8 8 7

Wihin groups 4 8 2 3 5 2 .8 4 9 .0 1 7 .10 < p < .25

Total 4 9 2 4 4 5 .2 8

Model II estimate of between component variance = 1 .7 39

Group:___________________ Count:____________________Mean:

R /M /W 25 2 1 .4 8

R /B /W 25 1 8 .76

One Way ANOVA 2 Groups

Analysis of Variance Table

Source DF: Sum Squares: Mean Square: : -tes t:
Between groups 1 2 2 .0 3 6

Wihin groups 48 2 6 7 1 .9 2 5 5 .6 6 5 p > .25

Total 49 2 6 7 3 .9 2

Model II estimate of between component variance = -2 .1 4 7

Count:____________________Mean:

R /E /W 25 19 .16

R /B /W 25 18 .76
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One Way ANOVA 2 Groups

Analysis of Variance Table

Source DF: Sum Squares: Mean Square: F -tes t:
Between groups 1 6 7 .28 6 7 .28 2 .8 8 4

Wihin groups 4 8 1 1 1 9 .6 23 .3 2 5 .05 < p < .10

Total 4 9 1 1 8 6 .8 8

Model II estimate of between component variance = 1 .7 58

Group: Count:____________________Mean:

R /M /W 25 2 1 .4 8

R /E /W 25 1 9 .16
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APPENDIX 3c. ( JET MACHINE!

% MICROBIAL PENETRATION OF WASHED EGGS AT DIFFERENT PERIODS 
OF LAY.

One Way ANOVA 2 Groups

Analysis of Variance Table

Source DF: Sum Squares: Mean Square: - - te s t:
Between groups 1 3 .3 8 3 .3 8 .10 2

Wihin groups 48 1 5 9 3 .4 4 3 3 .1 9 7 p > .25
Total 49 15 9 6 .8 2

Model II estimate of between component variance = -1 .1 9 3

Group:___________________ Count:____________________Mean:

J /B /W 25 20 .8

J /M /W 25 2 1 .3 2

One Way ANOVA 2 Groups

Analysis of Variance Table

Source DF: Sum Squares: Mean Square: =-tes t:
Between groups 1 19 .22 19 .22 .73 8

Wihin groups 4 8 12 5 0 .1 6 2 6 .0 4 5 p > .25

Total 49 12 6 9 .3 8

Model II estimate of between component variance = - .2 7 3

Count: Mean:

J /B /W 25 20 .8

J /E /W 25 19 .56
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One Way ANOVA 2 Groups

Analysis of Variance Table

Source__________ DR______________ Sum Squares: Mean Square: F -tes t:
Between groups 1 3 8 .7 2 3 8 .7 2 1 .3 4 3

Wihin groups 4 8 1 3 8 3 .6 2 8 .8 2 5 p > .25

Total 49 1 4 2 2 .3 2

Model II estimate of between component variance = .39 6

Group:___________________ Count:____________________Mean:

J /M /W 25 2 1 .3 2

J /E /W 25 1 9 .56
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APPENDIX 4a. ANOVA TEST 4.

COMPARISON OF MICROBIAL PENETRATION OF THE UNWASHED EGGS OF
THE BRUSH. ROTARY AND JET ACTION MACHINES AT THE BEGINNING OF
LAY,

One W ay ANOVA 3 Groups

Analysis of Variance Table

Source DF: Sum Squares: Mean Square: F-test:
Between groups 2 3456 1728 8.879
Wihin groups 72 14012 194.611 .0001 < p < .005
Total 74 17468

Model II estimate of between component variance = 61.336

Group: Count: Mean:

B/B/UN 25 4

R/B/UN 25 18.4

J /B /U N 25 18.4

One W ay ANOVA 2 Groups

Analysis of Variance Table

Source DF: Sum Squares: Mean Square: F-test:

Between groups 1 2592 2592 10.538

Wihin groups 48 11806 245 .958 .0001 < p < .005

Total 49 14398

Model II estimate of between component variance = 93.842

Count: Mean:

B/B/UN 25 4

R/B/UN 25 18.4
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One Way ANOVA 2 Groups

Analysis of Variance Table

Source__________ DR_____________ Sum Squares: Mean Square: F-test:
Between groups 1 2592 2592 10.538
Wihin groups 48 1 1806 245 .958 .0001 < p < .005
Total 49 14398

Model II estimate of between component variance = 93.842

Group:__________________ Count:__________________ Mean:

B/B/UN 25 4

J /B /U N 25 18.4

One W ay ANOVA 2 Groups

Analysis of Variance Table

Source DF: Sum Squares: Mean Square: F-test:

Between groups 1 0 0 0

Wihin groups 48 4412 91.917 p > .25

Total 49 4412

Model II estimate of between component variance = -3 .6 7 7

Group:__________________Count:__________________ Mean:

R/B/UN 25 18.4

J /B /U N 25 18.4
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APPENDIX 4b.

COMPARISON OF MICROBIAL PENETRATION OF THE UNWASHED EGGS
OF THE BRUSH. ROTARY AND JET ACTION MACHINES AT THE MIDDLE
OF LAY.

One Way ANOVA 3 Groups

Analysis of Variance Table

Source DF: Sum Squares: Vlean Square: - - te s t:
Between groups 2 1 8 3 7 0 .6 6 7 9 1 8 5 .3 3 3 5 6 .0 8 3

Wihin groups 72 11 7 9 2 .3 2 16 3 .7 8 2 p < .0001

Total 7 4 3 0 1 6 2 .9 8 7

Model II estimate of between component variance = 3 6 0 .8 6 2

Group:___________________ Count: Mean:

B /M /U N 25 5 6 .1 2

R /M /U N 25 2 2 .9 2

J /M /U N 25 2 2 .9 2

One Way ANOVA 2 Groups

Analysis of Variance Table

Source DF: Sum Squares: Mean Square: --te s t:
Between groups 1 13 7 7 8 13 77 8 6 7 .8 1 3

Wihin groups 48 9 7 5 2 .4 8 2 0 3 .1 7 7 p < .0001

Total 49 2 3 5 3 0 .4 8

Model II estimate of between component variance = 5 4 2 .9 9 3

Group:___________________ Count:____________________Mean:

B /M /U N 25 5 6 .1 2

R /M /U N 25 2 2 .92
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One Way ANOVA 2 Groups

Analysis of Variance Table

Source DF:______________ Sum Squares: Mean Square: F -tes t:
Between groups 1 1 3 7 7 8 13 7 7 8 6 7 .8 1 3

Wihin groups 4 8 9 7 5 2 .4 8 2 0 3 .1 7 7 p < .0001

Total 4 9 2 3 5 3 0 .4 8

Model II estimate of between component variance = 5 4 2 .9 9 3

Group:___________________ Count:____________________Mean:

B /M /U N 25 5 6 .1 2

J /M /U N 25 2 2 .9 2

One Way ANOVA 2 Groups

Analysis of Variance Table

Source DF: Sum Squares: Mean Square: - -te s t:
Between groups 1 0 0 0

Wihin groups 48 4 0 7 9 .6 8 8 4 .9 9 3 p > .25

Total 49 4 0 7 9 .6 8

Model II estimate of between component variance = -3 .4

Count: Mean:

R /M /U N 25 2 2 .9 2

J /M /U N 25 2 2 .9 2
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APPENDIX 4c.

COMPARISON OF MICROBIAL PENETRATION OF THE UNWASHED EGGS
OF THE BRUSH. ROTARY AND JET ACTION MACHINES AT THE END OF
LAY.

One Way ANOVA 3 Groups

Analysis of Variance Table

Source DF: Sum Squares: Vlean Square: = -tes t:
Between groups 2 .24 .12 .0 0 4

Wihin groups 72 2 4 3 0 .0 8 33 .751 p > .25

Total 7 4 2 4 3 0 .3 2

Model II estimate of between component variance = -1 .3 4 5

Group: Count: Mean:

B /E /U N 25 2 0 .7 6

R /E /UN 25 2 0 .6 4

J /E /U N 25 2 0 .6 4

One Way ANOVA 2 Groups

Analysis of Variance Table

Source DF: Sum Squares: Mean Square: =-tes t:
Between groups 1 .18 .18 .00 5

Wihin groups 48 1 8 8 4 .3 2 3 9 .2 5 7 p > .25

Total 49 1 8 8 4 .5

Model II estimate of between component variance = -1 .5 6 3

Group:___________________ Count:____________________Mean:

B /E /UN 25 2 0 .7 6

R/E /UN 25 2 0 .6 4
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One Way ANOVA 2 Groups

Analysis of Variance Table

Source__________ DR______________ Sum Squares: Mean Square: F -tes t:
Between groups 1 .18 .18 .0 0 5

Wihin groups 48 1 8 8 4 .3 2 3 9 .2 5 7 p > .25

Total 4 9 1 8 8 4 .5

Model II estimate of between component variance = -1 .5 6 3

Group:___________________ Count:____________________Mean:

B /E /U N 25 2 0 .7 6

J /E /U N 25 2 0 .6 4

One Way ANOVA 2 Groups

Analysis of Variance Table

Source DF: Sum Squares: Mean Square: =-tes t:
Between groups 1 0 0 0

Wihin groups 48 1 0 9 1 .5 2 2 2 .7 4 p > .25

Total 49 1 0 9 1 .5 2

Model II estimate of between component variance = - .91

Count: Mean:

R /E /UN 25 2 0 .6 4

J /E /U N 25 2 0 .6 4
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APPENDIX 5a. ANOVA TEST 5.

COMPARISON OF MICROBIAL PENETRATION OF THE WASHED EGGS OF
THE BRUSH. ROTARY AND JET ACTION MACHINES AT THE BEGINNING
OF LAY.

One Way ANOVA 3 Groups

Analysis of Variance Table

Source DF: Sum Squares: Mean Square: F -test:
Between groups 2 1 4 6 8 .8 2 7 7 3 4 .4 1 3 4 .5 5 3

Wihin groups 72 1 1 6 1 4 .7 2 16 1 .3 1 6 .01 < p < .025

Total 7 4 1 3 0 8 3 .5 4 7

Model II estimate of between component variance = 2 2 .9 2 4

Group:___________________ Count:___________________ Mean:

B /B /W 25 1 0 .5 6

J /B /W 25 2 0 .8

R /B /W 25 1 8 .7 6

One Way ANOVA 2 Groups

Analysis of Variance Table

Source DF: Sum Squares: Mean Square: F -test:

Between groups 1 8 4 0 .5 8 4 0 .5 3 .7 0 6

Wihin groups 48 1 0 8 8 4 .7 2 2 2 6 .7 6 5 .05 < p < .10

Total 49 1 1 7 2 5 .2 2

Model II estimate of between component variance = 2 4 .5 4 9

Count: Mean:

B /B /W 25 1 0 .56

R /B /W 25 1 8 .7 6
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One Way ANOVA 2 Groups

Analysis of Variance Table

Source__________ DR______________ Sum Squares: Mean Square: F -tes t:
Between groups 1 13 1 0 .7 2 1 3 1 0 .7 2 6.511

Wihin groups 4 8 9 6 6 2 .1 6 2 0 1 .2 9 5 .01 < p < .025

Total 4 9 1 0 9 7 2 .8 8

Model II estimate of between component variance = 4 4 .3 7 7

Group: Count: Mean:

B /B /W 25 1 0 .5 6

J /B /W 25 2 0 .8

One Way ANOVA 2 Groups

Analysis of Variance Table

Source DF: Sum Squares: Vlean Square: F-test:
Between groups 1 5 2 .0 2 5 2 .0 2 .931

Wihin groups 4 8 2 6 8 2 .5 6 5 5 .8 8 7 p > .25

Total 4 9 2 7 3 4 .5 8

Model II estimate of between component variance = - .1 5 5

Group:___________________ Count:___________________ Mean:

J /B /W 25 2 0 .8

R /B /W 25 1 8 .76
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APPENDIX 5b.

COMPARISON OF MICROBIAL PENETRATION OF THE WASHED EGGS OF
THE BRUSH. ROTARY AND JET ACTION MACHINES AT THE MIDDLE OF
LAY.

One Way ANOVA 3 Groups

Analysis of Variance Table

Source DF: Sum Squares: Mean Square: F -test:
Between groups 2 3 3 8 1 0 .3 4 7 1 6 9 0 5 .1 7 3 8 8 .8 2

Wihin groups 72 1 3 7 0 3 .8 4 190.331 p < .0001

Total 7 4 4 7 5 1 4 .1 8 7

Model II estimate of between component variance = 6 6 8 .5 9 4

Group:___________________ Count:____________________Mean:

B /M /W 25 6 6 .4 4

R /M /W 25 2 1 .4 8

J /M /W 25 2 1 .3 2

One Way ANOVA 2 Groups

Analysis of Variance Table

Source DF: Sum Squares: Mean Square: =-tes t:
Between groups 1 2 5 2 6 7 .5 2 2 5 2 6 7 .5 2 9 4 .4 5 5

Wihin groups 48 1 2 8 4 0 .4 2 6 7 .5 0 8 p < .0001

Total 49 3 8 1 0 7 .9 2

Model II estimate of between component variance = 1000

Group:___________________ Count:____________________Mean:

B /M /W 25 6 6 .4 4

R /M /W 25 2 1 .4 8

153



One Way ANOVA 2 Groups

Analysis of Variance Table

Source DF:______________ Sum Squares: Mean Square: F -test:
Between groups 1 2 5 4 4 7 .6 8 2 5 4 4 7 .6 8 9 1 .8 1 6

Wihin groups 4 8 1 3 3 0 3 .6 2 7 7 .1 5 8 p < .0001

Total 4 9 3 8 7 5 1 .2 8

Model II estimate of between component variance = 1006 .821

Group:___________________ Count:____________________Mean:

B /M /W 25 6 6 .4 4

J /M /W 25 2 1 .3 2

One Way ANOVA 2 Groups

Analysis of Variance Table

Source DF: Sum Squares: Mean Square: F-test:
Between groups 1 .32 .32 .01 2

Wihin groups 48 12 6 3 .6 8 2 6 .3 2 7 p > .25

Total 49 1 264

Model II estimate of between component variance = -1 .0 4

Count: Mean:

R /M /W 25 2 1 .4 8

J /M /W 25 2 1 .3 2
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APPENDIX 5c.

COMPARISON OF MICROBIAL PENETRATION OF THE WASHED EGGS OF
THE BRUSH. ROTARY AND JET ACTION MACHINES AT THE END OF LAY.

One Way ANOVA 3 Groups

Analysis of Variance Table

Source DF: Sum Squares: Mean Square: = -test:
Between groups 2 1 1 5 5 .7 0 7 5 7 7 .8 5 3 1 8 .4 0 2

Wihin groups 72 2 2 6 0 .9 6 3 1 .4 0 2 p < .0001

Total 7 4 3 4 1 6 .6 6 7

Model II estimate of between component variance = 2 1 .8 5 8

Group: Count: Mean:

B /E /W 25 2 7 .6 8

R /E /W 25 19 .16

J /E /W 25 19 .56

One Way ANOVA 2 Groups

Analysis of Variance Table

Source DF: Sum Squares: Mean Square: = -test:
Between groups 1 90 7 .3 8 9 0 7 .3 8 2 5 .0 2

Wihin groups 48 17 40 .8 3 6 .2 6 7 p < .0001

Total 49 2 6 4 8 .1 8

Model II estimate of between component variance = 3 4 .8 4 5

Count: Mean:

B /E /W 25 2 7 .6 8

R /E /W 25 19 .16
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One Way ANOVA 2 Groups

Analysis of Variance Table

Source__________ DF]______________ Sum Squares: Mean Square: F -tes t:
Between groups 1 8 2 4 .1 8 8 2 4 .1 8 2 5 .6 6 2

Wihin groups 48 15 41 .6 3 2 .1 1 7 p < .0001

Total 49 2 3 6 5 .7 8

Model II estimate of between component variance = 3 1 .6 8 3

Count: Mean:

B /E /W 25 2 7 .6 8

J /E /W 25 19 .56

One Way ANOVA 2 Groups

Analysis of Variance Table

Source DF: Sum Squares: Mean Square: =-tes t:

Between groups 1 2 2 .0 7 7

Wihin groups 48 12 3 9 .5 2 2 5 .8 2 3 p > .25

Total 49 12 4 1 .5 2

Model II estimate of between component variance = - .9 5 3

Group: Count: Mean:

R /E /W 25 19 .16

J /E /W 25 19 .56


