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"So numerous and so powerful are the causes which
serve to give a false bias to the judgement that
we On many occasions see wise men on the wrong
as well as on the right side of questions of the
first magnitude. The circumstance, if duly
attended to, would furnish a lesson of moderation
to those who are ever so much persuaded of their

being in the right on any controversy.”

Alexander Hamilton (The Federalist Papers)



(i)

The work of this thesis concerns the estimation of galaxy
distances using methods which are independent of redshift. Such
observational techniques have traditionally been used in studies of the
velocity field, to test the linearity of the Hubble Law and detect
possible anisotropies in the Hubble flow. A source of considerable
debate in the literature over the past decade has been the impact of
observational selection effects on studies of the Hubble flow. The
presence of a magnitude cutoff in one's galaxy sample will in general
introduce Malmquist bias. This bias arises because, as we sample the
galaxy distribution at greater distances, only intrinsically more
luminous galaxies can still be observed - which leads to a distance
dependence in the mean luminosity of observable galaxies. A failure to
account for this effect would result in one systematically
underestimating the distances to remote galaxies, and Malmqguist bias
has been cited by many authors as responsible for the controversy
over the global value of Hgy and the detection of large-scale streaming

motions.

In the past few years the study of the peculiar velocity field
has taken on - gqguite literally - a whole new dimension. Sophisticated
techniques have been developed to recover in a self-consistent manner
the full 3-dimensional velocity and density fields. One method in
sarticular requires redshift-independent distance estimates to galaxies,
and will clearly yield a more effective recovery if those distance
estimates are made more reliable. It is this task which we set out to

achieve in this thesis, by studying the properties of different methods



(1)

used to infer galaxy distances and examining how each is affected by
Malmquist biasing, Our aim is to identify methods of removing this

bias, and thus determining an 'optimal’ choice of distance estimator.

This work was carried out while the author was a research
student in the Department of Physics and Astronomy, University of
Glasgow, while in possession of a Carnegie research scholarship. 1
would like to thank the Carnegie Trust for their generous support
during this time - both in the provision of a stipend and in the award
of several travel grants which allowed participation in cosmology
conferences, both at home and overseas. I would like to sincerely
thank my supervisor, Dr. J.F.L. Simmons, for a constant supply of
valuable advice and friendly support throughout this time - and for
not objecting too much when I finished his sentences off for him! A
special word of thanks also to Daphne for solving many sudden
logistical crises, while never compromising the punctuality of tea and
coffee, particularly during my ’transitory’ phase over the last few
months. I think it’s safe to remove my name from Rm 412 at last. A
general thank you is extended to everyone in the Department - time
does not permit me (quite literally!) to particularise; I hope that
everyone realises how much I have enjoyed my time working at
Glasgow, and the contribution which you have all made to that
enjoyment. I think it is safe to say that, even in an infinite and open
universe - as appears to be somewhat favoured by current
cbservations - the students and staff of the Glasgow astronomy

department are certainly unique.
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Thank you to all my family and friends for their great
personal support over the past three years: firstly to my Mum and
Dad for making all this possible and, together with my sister, Anne,
providing a source of great encouragement and support - and showing
admirable tolerance of my eccentric working habits and somewhat
nomadic existence. A big thank you also to the rest of my family,
brothers and sisters, nieces and nephews, and friends Iin East
Kilbride, Glasgow and across the globe who have all helped in various
ways to i‘(eep me in touch with the real world; I hope they’ve

succeeded. '

Martin Hendry
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(iv)

In this thesis we study the effects of observational selection
bias on the estimation of galaxy distances in cosmology. Although the
presence of systematic bias in magnitude-limited surveys has long
been recognised there remains disagreement in the literature as to
precisely how best to reduce or eliminate Iits effects from
redshift-independent distance estimates. The aim of this thesis is to
develop a ‘statistically rigorous formulation of the problem of distance
estimation, so as to resolve some of the issues which have clouded
past discussion and allow one to determine strategies for obtaining
optimal distance estimators.

Redshift-independent distance estimates, when combined with
the measured redshift, provide an estimate of a galaxy’s peculiar
velocity. The study of the large-scale peculiar velocity field has been
a very active and contentious subject in recent years, following a
number of independent reports of coherent structure and velocity
flows on very large scales which pose serious problems for popular
theories of structure formation. In chapter (1) we present a brief
overview of our current picture of the local universe and summarise
the basic features of theoretical models for the formation and evolution
of structure. We compare in detail two different analytical techniques
which have been developed to recover the full peculiar velocity and
density fields from redshift surveys: the POTENT method (Bertschinger
and Dekel, 1983) and the ’'IRAS’ method (Strauss et al/, 1990). The
former method requires redshift-independent distance estimates and we
consider the effects of sparse and noisy sampling on the recovered

density and velocity fields, demonstrating the advantages for POTENT
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of removing the effects of selection bias from distance estimates.

Chapter (2) presents a detailed description of distance
indicators currently used in cosmology. We review previous analyses of
distance estimation and biasing problems and discuss the limitations of
the 'Minimum Bias Subset’, an early method proposed to remove them.
We examine the different linear regression techniques used to calibrate
indicators such as the Tully-Fisher relation and address the question
of which method is ’best’. In particular, we consider a scheme,
proposed by Schechter (1980), for obtaining wunbiased distance
estimates provided that one’s sample is subject only to luminosity
selection. This scheme has not been universally endorsed in the
literature and many authors prefer other calibration methods. This
disagreement is one of the main issues which we aim to clarify and
resolve in this thesis.

In chapter (3) we introduce a formulation for defining and
investigating the properties of distance estimators in a statistically
rigorous fashion. We firstly consider the case where distances are
estimated using only measurements of apparent magnitude. Assuming a
Gaussian luminosity function we derive expressions for the conditional
distribution of observable galaxies at a given (though in general
unknown) true distance and use this distribution to define a number
of different distance estimators and compare their distributions, bias
and mean squared error or risk as a function of true distance. This
simple case is used to illustrate useful criteria by which we can
identify which estimator is ’best’. In this chapter we also describe a
procedure for constructing confidence intervals for the true distance
of a galaxy.

In chapter (4) we extend our analysis to the case where
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distance estimates are made from measurements of two or more
observables, accounting for the effects of selection bias. We show that
the different methods of regression used to calibrate these relations
correspond to simple distance estimators which arise naturally from
our rigorous formulation. We also define a 'maximum likelihood’ distance
estimator and, following the method introduced in chapter (3), we
compute the distribution, bias and risk of all of these estimators as a
function of true distance. These results allow us to test the validity of
the ’'Schechter’ scheme and identify  situations where the
corresponding ‘estimator is a poor choice. Finally, we extend our
procedure for constructing confidence intervals to this two-observable
case.

In chapter (5) we consider distance estimators constructed
from a linear combination of three observables - again including the
effects of selection. By computing the distribution, bias and risk of
these estimators we determine, in particular, whether one may still
define wunbiased distance estimates in this case by adapting the
'Schechter’ scheme. Furthermore, we examine quantitatively the extent
to which the addition of a given third observable improves distance
estimates obtained from measurements of only two. We consider the
importance of these results for e.g. the D,-0 relation, for which
potentially useful third observables exist.

In chapter (6) we summarise the main qualtitative results of
this thesis and explore a number of possible avenues for future work;
in particular a study of the consequences of our results for the
analysis of redshift surveys, by reconstruction methods such as

POTENT.



1. NEW METHODS FOR THE ANALYSIS OF REDSHIFT SURVEYS

1.1 Introduction: Setting the Scene

In recent years a startling new picture of how matter is
distributed in the universe has begun to emerge. The high degree of
smoothness of the microwave background radiation - as repeatedly
detected in progressively more accurate experiments - provides
stronger than ever evidence of the isotropy and homogeneity of the
cosmos on the very largest scales. On scales of a few tens of Mpc, on
the other hand, the universe which we survey today appears far from
uniform. Observations indicate a rich and varied degree of structure
on these scales: dense clusters and superclusters of galaxies embedded
in a complex network of intersecting filaments and sheets, enclosing
vast underdense regions, or ’'voids’ which appear to contain almost no
luminous material and may be as much as 100Mpc in diameter. These
observations have transformed our earlier view of a smooth,
homogeneous galaxy distribution and the existence of such large-scale
structure has presented serious difficulties for theories of structure

formation.

A major factor in allowing this dramatic new picture to
emerge has been the introduction to cosmology of powerful new
observational techniques and instrumentation. For example, the
automatic scanning, measurement and cataloguing of photographic
niates has significantly improved exisiting data on the distribution of
galaxies and clusters projected on the sky. A project initiated with

the Cambridge Automatic Plate Measuring Machine has produced the



APM galaxy survey (Maddox et al, 1990) which consists of a catalogue
of over two million galaxies - with measured apparent magnitudes,
diameters and orientations - brighter than a limiting magnitude of
=20.5. This catalogue is more than double the size of the earlier Lick
catalogue (Shane and Wirtanen, 1967) and probes to an effective depth
which is more than twice that of the Lick catalogue. Moreover, the
APM survey is also rendered somewhat ’cleaner’ than its earlier
counterpart by a series of algorithms designed to automatically
distinguish foreground stars from galaxies and to correct for
plate-to-plate variations in sensitivity, sky background and other
contaminating factors. Figure (1.1) shows a projected map of the
distribution of galaxies in the APM survey with apparent magnitudes
between 17 and 20.5. The impression of complex structure - rich
clusters, filaments and voids - is quite clear from a purely visual
inspection, without the need to apply any quantitative statistical

analysis to the catalogue.

Perhaps an even more significant observational advance for
our prospects of understanding cosmic structure, however, has been
the advent of fast quantum electronic detectors which make it possible
to measure the redshifts of large numbers of galaxies - and thus infer

a first estimate of their distance - in a realistic period of time.

In the first systematic survey of galaxy radial velocities by
Hubble (1929) - from the results of which Hubble proposed a linear
velocity distance law and interpreted this as a general expansion of
the universe - the measurement of a single redshift would typically

require an entire night of observing time, using the best photgraphic
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materials available. By contrast, present-day observations using CCDs

can record the redshifts of typical galaxies in less than half an hour.

Of course, this is still a considerable length of time for practical
purposes, and the number of galaxy redshifts measured currently
stands at only a few tens of thousands; a very much smaller total
than the number of objects in the APM survey, for example.
Nevertheless, the efficiency of redshift measurements can be greatly
improved by using multi-channel fibre optics to record simultaneously
the redshifts of many galaxies in the same field; such techniques are
expected to become routine in the near future, and the redshift
database will grow rapidly in size. Indeed, groups Iin Princeton and
Chicago have already begun a 10-year long program to obtain a

redshift survey of 1 million northern sky galaxies.

In fact, the existing redshift database is already sufficient in
number to give a strong impression of how galaxies are distributed in
the line of sight direction, and observations support the existence of
the structure detected in projected surveys. The largest single
redshift survey carried out to date is the Center for Astrophysics
(CfA) Harvard survey which contains around 9000 objects. The ’CfA
Slices’ obtained from this survey and presented in de Lapparent et a/
(1988) have been very influential in promoting the picture of a local
universe rich in structure and provide strong evidence for a
bubble-like galaxy distribution In three dimensions. Figure (1.2) shows
an example of recent work (de Lapparent et al, 1991) extending the

original CfA slices to slightly higher redshift.

As a result of these technological developments, therefore,
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cosmologists find themselves for the first time able to form a picture
of the 3-dimensional distribution of galaxies and, consequently,
redshift surveys have been the subject of a great deal of detailed

research in the past few years.

A strong further motivation for this current interest has
been a desire to better understand the dynamical properties of the
galaxy distribution. Indeed, one source of concern in considering
redshift data has always been that if the measured radial velocities of
galaxies display a significant deviation from their predicted Hubble
velocity due to random or systematic ’'peculiar’ motions then the
distribution of galaxies in redshift space (or, equivalently, velocity
space) may be appreciably distorted from the true spatial distribution.
This would tend to elongate and exaggerate structure along the line of
sight in the CfA slice shown above, and has been termed the ’Finger
of God’ effect. Over the past fifteen years a number of studies (details
of which we will shortly consider) have suggested that such large
'non-Hubble’ velocities are indeed present, indicating that not only is
there coherent structure on scales in excess of 50Mpc, but there is

also coherent velocity streaming on such scales.

Initially such claims were certainly regarded with suspicion,
not least because of the trouble which they spell for theories of
structure formation, and a focus of the controversy was the possibility
that the detected streaming motions could be an artefact of
uncorrected statistical biases in the data. At any rate, it was certainly
acknowledged that - whatever the status of the streaming motions - a

better understanding of the dynamical properties of the galaxy



distribution was crucially important if the mysteries of how the

observed structure formed were to be unravelled.

To this end, therefore, sophisticated new analytical
techniques have recently been developed in order to reconstruct from
redshift data an estimate of both the spatial density distribution and
the galaxy peculiar velocity field. In this chapter we will describe
these methods and discuss some of the assumptions and limitations to

which each is subject.

One of the techniques in particular, the POTENT method
introduced in Bertschinger and Dekel (1989, hereafter BD), requires
galaxy distance estimates which are independent of redshift, and
consequently most of the results of this thesis concerning the optimal

estimation of distances are of particular relevance to POTENT.

1.2 Modelling Large-Scale Structure

Before we consider the analysis of redshift surveys in more
detail, we will briefly sketch the standard mathematical description
with which the evolution of structure is modelled. We present here no
more than a short synopsis of the key features which are relevant to
uriderstanding recent techniques developed to analyse redshift
surveys. The modelling of structure formation and evolution is
discussed in considerable detail in a large number of textbooks, review
articles and papers (for a thorough treatment see, for example,

Zel’dovich (1970), Weinberg (1972), Peebles (1980) and Kolb and Turner



(1990), and references therein). Also of particular relevance are Jones
and van de Weygaert (1990) and Jones (1991), which give a concise
and clear discussion of the topic in the present context of redshift

surveys.

Models for the evolution of cosmic structure are developed
within the framework of the standard Friedmann Robertson Walker
(FRW) model, which is more or less the cornerstone of theoretical
cosmology. In the FRW model the universe is considered as an
expanding perfect fluld which is spatially homogeneous and isotropic.
The matter density in the FRW universe is therefore a constant, ep(t)
say, at each epoch, t. The amount of expansion at any given epoch is
determined by the scale factor, a(t), which Is usually defined as the
measured length of some chosen ’yardstick’ at time, t, divided by its
length measured at the present time, ty. The firmest evidence for the
validity of the FRW model comes from the observed isotropy of the
microwave background, as referred to previously. Temperature
fluctuations in the background radiation over a range of angular
scales from 1’ to 180" are of the order of 1074 or less, and this figure
gives a direct measure of the corresponding fluctuations in the

gravitational potential due to deviations from uniform density.

The basic assumption of most formation scenarios is that the
structure which we observe today initially formed from the growth of
small-amplitude density fluctuations in a FRW universe, under the
mechanism of gravitational instability. The evolutionary behaviour of
structure can therefore be studied by considering a weakly perturbed

FRW solution to the Einstein field equations. The analysis is further



simplified by the fact that, for perturbations of scale length smaller
than the horizon size, a simple Newtonian treatment of the expanding

fluid is an adequate approximation.

The evolution of the density field, o(x,t), peculiar velocity
field, v(x,t), and gravitational potential, ¢(x,t), are determined to first

order by the following equations (assuming zero pressure):-

% 1 -

3t v 3He + ——V.(ev) = 0 (1.1)
v I

3t *t Hv = a ¢ (1.2)
V26 = 4nGal(e - ep) (1.3)

These are respectively the continuity equation, Poisson equation and
Newtonian Euler equation of motion for the expanding fluid expressed
in comoving coordinates (i.e. comoving with the uniform background).
Here H = a/a is the expansion function which measures the expansion
rate of the background model and whose present value we know as

the Hubble constant, Hg.

Fluctuations in the density field are usually measured in
terms of the dimensionless density contrast, %, defined as the
fractional difference between the actual density and the density of the

uniform background model, viz:-

8(x,t) = (e(x,t) - ep(t)) / ep(t) (1.4)

It is also generally assumed that the density fluctuation field was
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initially Gaussian, i.e. completely specified by its power spectrum, and
the form of the power spectrum is given by theoretical considerations
based on, e.g., the assumption of an infiationary phase in the very
early universe and on the adopted nature of cosmological dark matter.
A number of different dark matter candidates have been proposed: e.g.
baryonic and non-baryonic; "hot” or "cold" - each of which carries a
characteristic signature for the timescale and spatial configuration of
structure formation which may be compared with observations. The
cold dark matter (CDM) model in particular has difficulties in
explaining the large-scale coherent structure and velocity flows which

appear to have been observed.

In the linear regime the peculiar velocity field, v, generated
by the density contrast field, §, is proportional to the gravitational

acceleration, g, defined by:-

_ _ Ve
Thus we find:-
_ _ _f@)
v = a9 (1.6)

where  is the density of the background model in units of the
critical density e, for a flat universe. The function f(Q) can be well

approximated by (c.f. Peebles, 1980):-

f(Q) = 0.6 (1.7)

Solving the Poisson equation (1.2), we can express v (this
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time in physical coordinates) in terms of the density contrast, §, viz:-

(x* - x)8(x’,t)d3x’
v = 2 6 a).ept) (1.8)
Ix* - x|3

Conversely we can write down an expression for the density
contrast Iin terms of the peculiar velocity field. In the linear regime

this takes the simple form:-

V.v

S = —H—f(—oj' (1.9)

The evolution of the density and velocity fields in the
non-linear regime can be followed by numerical simulations. A
reasonable approximate solution for quasi-linear perturbations may also
be obtained by applying Zel’dovich’s formalism (Zel’dovich, 1970) to
describe the displacement of particles from the positions which they
would have had in a homogeneous universe (see section 1.4.2 for more

details).

1.3 Detections of Large-Scale Streaming Motions

In a pioneering study, Rubin et a/ (1973, 1976) used a sample
of distant spiral galaxies - with recessional velocities in the range
3500 to 6500kms™1 - as a means of testing the isotropy of the Hubble
Flow. The observed apparent magnitude of each galaxy was used to
estimate its distance, which could then be compared with the inferred
redshift distance to obtain a measure of the galaxy’s peculiar velocity

with respect to the Local Group. The authors detected a systematic
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variation in the apparent magnitude of the sampled galaxies with
position on the sky, which they interpreted as being due to a Local
Group velocity of 450 * 125kms~1 towards / = 163", b = -11", with
respect to the sample of spiral galaxies. This velocity was much larger
than expected; earlier studies (c.f. Sandage and Tammann, 1975a,b) had
generally indicated a basically smooth and qulet Hubble Flow, and,
moreover, later studies using other galaxy samples (Hart and Davies,
1982; de Vaucouleurs and Peters, 1984) failed to confirm the Rubin
result. More recently Collins et al (1986) and Peterson and Baumgart
(1986) have re-evaluated the Rubin data set using a better calibration
of the galaxy distances, and again inferred a large Local Group
velocity, although in a later paper Collins et a/ (1991) have shown that
it is possible to wrongly infer streaming motions as a result of
apparent magnitude selection effects present in the Rubin data set, as
had been suggested by several authors some years before (c.f. Fall

and Jones, 1976; see also chapter (2) for further discussion).

Further evidence for the existence of large peculiar velocities
was found from analysis of the microwave background radiation.
Measurements indicate a dipole anisotropy In the temperature
distribution of the radiation on the sky which is consistent with a
Local Group Motion towards / = 2697, b = 28 with respect to the
background radiation (Lubin et al, 1983; Fixsten et al, 1983). Recent
recults from the COBE satellite report the magnitude of the dipole to
be 550kms~! (Smoot et al, 1991). Significantly the magnitude and
direction of this velocity are different from those Inferred from the
Rubin galaxies. Hence, given that the streaming detected by Rubin is a

real effect, one still requires a more complex model of the velocity
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field to adequately explain the Local Group peculiar velocity inferred
from the CMBR dipole. The inclusion of an “infall” velocity of =
300kms~1 towards the Virgo cluster, for example (Aaronson et al, 1982),
is insufficient to resolve the overall discrepancy. The Local Group
velocity points not towards Virgo but rather in the direction of the
Hydra-Centaurus supercluster (c.f. Tammann and Sandage, 1985; Lilje
et al, 1986; Staveley-Smith and Davles, 1987) and the Virgo "infall"
represents only a partial contribution towards the CMBR dipole. Recent
studies have indicated the existence of a significant enhancement in
the density field in the direction of Centaurus (c.f. da Costa et al,
1986) and suggest the possibility of a bulk motion on the scale of the
entire Local Group and the Virgo cluster towards this region. Perhaps
the most notable of these studies has been the work of Lynden-Bell et
al (1988), which comprises a survey of more than 400 elliptical galaxies
out to a redshift of = 8000kms~1 for which photometric data were also
available. Redshift-independent distance estimates were obtained to the
galaxies via the Dp-o relation (Terlevich et al/, 1981) - an empirical
relationship between the diameter and central velocity dispersion of
ellipticals which is essentially a refinement of the earlier
Faber-Jlackson relation (Faber and Jackson, 1976) between luminosity
and velocity dispersion. The basic principle behind the use of this
relation is to infer an estimate of the intrinsic diameter of a galaxy
from its measured velocity dispersion and then combine this with its
observed angular diameter to infer its distance. Together with the
Tully-Fisher relation (Tully and Fisher, 1977), which derives distances
in an analogous manner from the relationship between the intrinsic
luminosity of spiral galaxies and the width of their 21icm line profiles,

the Dp—o relation represents a powerful tool for obtaining
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redshift-independent distance estimates to galaxies and clusters. The
effects of selection bias on these relations have been a source of
considerable controversy in the literature: it Is a clarification of some
important aspects of this debate which forms the central theme of this
thesis. We will leave further discussion of the statistical issues

involved until chapter (2).

To analyse their data Lynden-Bell et a/ constructed a specific
dynamical model for the velocity field and then by combining their
measured redshifts and Dh—o distances they obtained
maximum-likelihood estimates for the parameters of their model. They
obtained the following results: the peculiar motions of the galaxies
were ’'best-fitted” by a velocity inflow model towards a “Great
Attractor” centred on / = 307, b = 9° in the direction of Centaurus at
a distance of 4300 + 350kms~! in the Hubble Flow - in good agreement
with the observations by da Costa et al. The excess mass of this
concentration was calculated to be of the order of 5 x 1016 solar
masses - comparable to the largest superclusters - in order to
generate the inferred streaming motion of 570 % 60kms~1 at the Local

Group.

The details of the Lynden-Bell et al/ results are dependent on
the parametric form of the model chosen for the velocity flow in the
vicinity of the mass concentration. The model described above gave a
better fit to the data than a earlier, simpler, model of a uniform
streaming motion over and above the cosmological expansion (Dressler
et al, 1987) which was in turn a better fit than unperturbed Hubble

Flow, but clearly a wide variety of different parametric models
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(several "attractors" at discrete locations, for example) are possible. In
order to make much further progress in understanding the "Great
Attractor” region one requires methods which are not tied to specific
parametric models of the density and velocity fields. We will now
discuss two such methods which set out - albeit with rather different
approaches - to reconstruct the full density and peculiar velocity

fields in a self-consistent manner.

1.4 Reconstructing the Density and Velocity Fields

1.4.1 ’IRAS’ Based Studies.

The first of these reconstruction methods has been adopted
in the analysis of two redshift surveys of galaxies in the IRAS
catalogue, and is appropriate when one does not have
redshift-independent distance estimates. The two surveys are of
similar size but are subject to rather different selection criteria:
Strauss et al (1990) have measured redshifts of all non-stellar objects
in the IRAS catalogue with 60um flux greater than 1.9 Jansky. This
gives a survey of over 2500 objects with redshifts less than =
3000kms~1, Efstathiou et a/ (1990) - known as the 'QDOT’ survey -
probe rather deeper, down to a flux Ilimit of 0.6Jy, but sample
randomly only one galaxy in six, yielding a survey of around 2000

galaxies out to a redshift of = 7000kms™1.

The principle of this method is to use the measured redshifts

of the sampled galaxies to give a first indication of thelr distance (i.e.
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assuming a 'quiet’ Hubble flow) and thus obtaln an initial estimate of
the density contrast, ¢®(x,t), from smoothing the inferred 3-d
distribution of IRAS galaxies. The peculiar velocity field is then
calculated by assuming linear perturbation theory, so that equation

(1.8) will hold, viz:-

(x’ - x)8(x",t)d3x’
G.a(t).ep(t) (1.10)
Ix* - x|3

f(Q)
HQ

The inferred peculiar velocities can then be used to correct for the
non-Hubble component in the measured redshift of each galaxy, and
hence to obtain a better distance estimate. One can now repeat this
procedure iteratively; i.e. compute a new estimate of the density field,
use this to redetermine the peculiar velocity field, modify distance

estimates again, and so on.

Recent results from the QDOT survey are reported in Kaiser
et al (1991), in which the recovered density field is presented in the
form of isodensity contours of 8. Examples of these results are shown
in figure (1.3) taken directly from Kaiser et al. The "Great Attractor”
density enhancement in Hydra-Centaurus is clearly detected, and is
the dominant feature at the & = 1.0 level (Kaiser et al use the notation
A instead of & to denote the density contrast). Other notable features
are the Virgo and Fornax clusters, at & = 2.0, and the Perseus-Pisces

superciuster at & = 0.7.

There are several important points about the IRAS analysis.

Firstly, the integral expression of equation (1.10) for the peculiar



17

Virgo Southern

10 Extension

z [Mpc/h) (Mpc/h)

Centaurus

x [Mpc/h)

z {Mpc/h) 0

X (Mpc/h) 25 c X {Mpc/ S0

Figure (1.3)

Isodensity contour maps of the density contrast, A, recovered from
analysis of the IRAS galaxies in the QDOT survey (from Kaiser et al,
1991). Prominent features are identified in the text above.
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velocity should be taken over all space, but in practise is obviously
limited to the volume sampled by the redshift survey. Furthermore,
the sampling of galaxies will be increasingly sparse - and increasingly
subject to systematic errors - close to the edge of the survey volume.
This will serve to undermine the accuracy of the recovered velocity

field.

Another, perhaps more serious, problem arises from the fact
that one does not directly observe the density contrast, $, but only
the distribution of /uminous matter (and, moreover, not the component
of the light distribution due to ellipticals and early-type galaxies
because of the infra-red nature of the IRAS survey). To resolve this
problem one must make some assumption about how light traces mass.
The standard approach - and that adopted in both IRAS surveys - has
been to introduce a constant bias parameter, b, which relates the
observed deviations in the galaxy number density to the underlying

mass density contrast. Thus b is defined by:-

[ )un © b§§— = bs (1.11)

This parameter is used to modify the density contrast in equation
(1.10). Instead of assuming an & priori value for b, It can be
determined self-consistently (or, more precisely, the product b/f(2)
may be determined) as part of the iteration procedure. Latest resuits
obtained from the QDOT survey (Kaiser et al/, 1991) report a value of
b/f(8) = 1.16 = 0.21, in general agreement with earlier results obtained

from analysis of the Local Group Motion (Rowan-Robinson et al/, 1991)
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It would obviously be useful to avoid the assumption of a
constant blas parameter - or at least to have some means of testing
the validity of such an assumption. The POTENT method offers such a

possibility.

1.4.2. The POTENT Method

A basic limitation in recovering the full peculiar velocity field
is the fact that - even with reliable redshift-independent distance
estimates - one can, in general, infer from the measured redshift of a
galaxy only the radial component of each galaxy’s peculiar velocity.
The second reconstruction method which we now consider, labelled
POTENT in BD, offers a neat resolution of this problem by making the
fundamental assumption that the galaxy peculiar velocity field, v, has
zero vorticity and can therefore be expressed as the gradient of a

scalar velocity potential, ¢, i.e.:-

v = -W (1.12)

It follows immediately from this assumption that the potential,
$, at any point, r, will be given in terms of a line integral of v from
the observer to r - and that the value of this integral will be
independent of the path taken to r. In particular, therefore, we can
evaluate ¢ by computing the integral along a radial path to r, thus
requiring knowledge only of the radial component of v. By
differentiating ¢ in the transverse directions we may then recover the

other two components.
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The assumption that the velocity field is irrotational - while
not directly testable using POTENT alone - would appear to be
reasonable. If the growth of density perturbations is indeed due to
gravitational instability then it may be shown (see e.g. Peebles, 1980)
that in the linear regime the only growing mode in the primordial
peculiar velocity field is irrotational, while the rotational component
decays as 1/a(t) as a consequence of angular momentum conservation.
Certainly by the end of the linear regime, therefore, the growing mode
would dominate and the velocity field would be a potential flow, with
the velocity potential proportional to the gravitational potential.
Kelvin’s circulation theorem then ensures that the velocity field would
remain irrotational after density perturbations become non-linear
provided that the fluid trajectories do not cross. Even when such
orbit mixing does occur, BD show that a suitably smoothed velocity
field will remain irrotational to a good approximation well into the

non-linear regime.

The main obstacles to the practical implementation of POTENT
lie not with the validity of the fundamental assumptions, therefore, but
with the limitations of the available data. In order to reconstruct the
complete velocity potential one requires to know the radial component
of the peculiar velocity field at every point; in practice one can
estimate this only at the locations of a sparse sample of galaxies -
and, moreover, the individual distance estimates to each galaxy have

root mean square errors of typically 15 to 20%.

Given the radial velocities of a sparse and noisy sample,

therefore, POTENT first smooths and interpolates the data onto a
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spherical grid using a tensor window function to produce a smoothed
radial velocity fleld, v*r(r). The velocity potential at each point is

then calculated from the integral:-

r
®(r) = —Jv*r(r’,e,tb)dr’ (1.13)
0

from which the reconstructed smoothed peculiar velocity field, v, is

then recovered by differentiation, applying (1.12).

In the linear regime v can then be used to infer the density

contrast via the simple relation given by equation (1.9), viz:-

_ v
Hf (Q)

(1.14)

In order to allow an effective recovery of ® into the non-linear regime
POTENT uses the Zel'dovich formalism (Zel’dovich, 1970) which gives a
good approximation to the evolution of mildly non-linear perturbations.
As a result the actual application of POTENT - from inputted redshifts
and distances through to the recovered density field - is rendered

somewhat more complex than the fairly simple scheme outlined thus

far.

The Zel’dovich formalism determines approximately the final
(Eulerian) comoving position, x, at time, t, of a particle moving in the
fluild perturbed by the density contrast, %, by describing the
displacement of x from the initial (Lagrangian) comoving position, q,
which the particle would have had (and stili would have!) in the

absence of any density perturbations. The relationship between x and
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q is assumed to take the form:-

x(q,t) = q + D(t)¥(q) (1.15)

The nature of the approximation lies in the assumption that the
displacement can be written in separable form as the product of a
purely spatial perturbation function, W¥(q), and a purely
time-dependent growth factor, D(t). Beginning from this equation,
similar relations can be determined between the Lagrangian and

Eulerian peculiar velocity and density contrast, subject to the

Zel’dovich approximation, and one c¢an define an Iinverse mapping --- -

(again after smoothing, if necessary, to overcome orbit mixing) relating

the Eulerian values of these flelds to their initial Lagrangian values.

In short, therefore, POTENT assumes that the Lagrangian
peculiar velocity field is irrotational, so that & and v can be recovered
using equation (1.12) and (1.13) expressed in Lagrangian coordinates.
The Zel’dovich approximation is used to move from the observed,
Eulerian, radial velocities to their Lagranglan counterparts and then -
after reconstruction of the velocity and density fields - back to

Eulerian coordinates.

The accuracy of the Zel’dovich approximation has been tested
against the true density contrast in the quasi-linear regime evaluated
numerically for a series of CDM N-body simulations (Dekel et a/, 1990,
hereafter DBF; Dekel, 1991). The rms percentage error in & was found
to be less than 10% over the range -0.8 £ ® £ 4.5, so that the
usefulness of the approximation would seem to be clear. The Zel’dovich

formalism can also be applied to make non-linear corrections to the
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density field estimated by the IRAS method, thus improving the
prediction of the peculiar velocity field by that method (Dekel et al,
1992)

The results obtained by POTENT are striking. Figure (1.4)
shows the recovered density fleld Iin the supergalactic plane
constructed from a sample of 973 objects; 544 ellipticals and 429
spirals (Bertschinger et al, 1990). The dominant recovered feature is
the extended ’'hump’ on the left of this diagram, in the
Hydra-Centaurus region, which broadly confirms the "Great Attractor"
detection of Lynden-Bell et a/ (1988). The peak density contrast in
this region is given by ® = 1.2 * 0.4 with a Gaussian smoothing
window of radius = 1400kms~! - consistent with the QDOT results.
(This result is for € = 1 and scales approximately with a7/4), Both the
Virgo cluster and Local Group are found to be falling toward the
bottom of the Great Attractor potential well with peculiar velocities
exceeding 500kms~1. Several large regions of below average mass
density are also recovered which match known voids Iin the galaxy

distribution.

One of the most encouraging aspects of these results is the
fact that the same broad-based features are recovered as those
derived from the IRAS, and earlier, surveys - but this time without
the need for an a priori assumption about how mass traces light. In
POTENT galaxies are used as tracers of the large-scale velocity field
and not the density field. Consequently, in the long term POTENT
offers a means of directly determining the relationship between the

distribution of luminous ’tracer’ galaxies and the underlying mass
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Figure (1.4

Density contrast recovered by POTENT in the supergalactic plane
from a sample of 973 galaxies (taken from Bertschinger et al, 1990)
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density field, so as to test the validity of a universal linear bias
parameter. Preliminary estimates of b from a comparison of POTENT
results with optical data seem to favour a value of order unity (Dekel,
1991) consistent with the QDOT results, although no firm conclusions

have yet been reached.

Another notable feature of POTENT compared with the IRAS
studies Is the fact that the recovery within a given volume is not so
adversely affected by sparse and noisy sampling outside of that
volume: for POTENT the effects of poor sampling are essentlally local
so that the better the data coverage is within a given region, the
better will be the reconstruction in that region. A good exampie of
this Is the Perseus-Pisces supercluster which, although clearly
Identified in the QDOT results, is practically invisible in the density
recovery presented in DBF. This region |Is very sparsely sampled,
however, in the data set of 973 galaxies used In DBF. Dekel (1991)
reports that the addition of a new sample of spirals covering the
Pisces region results in a reconstructed density contrast of ¢ = 1.0 %
0.4 in that region, although the recovery in the as yet poorly sampled

Perseus region remains dominated by noise.

In DBF great care is taken over the treatment of sampling
errors. The authors recognise that their smoothing procedure can
result in a "sampling gradient bias”, in which the sampled velocity
field from regions of high density pollutes low density regions within
the same smoothing volume and thus artificially enhances the density
in those regions. They set out to minimise this effect by adopting a

system of volume weighting and adjustable smoothing radil which takes
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account of the local density in defining the smoothing window.

The sparseness of the sample, combined with significant
errors on individual distance estimates are still regarded as the major
sources of error, however. Dekel (1991) summarises the status of
errors In the recovered density and velocity fields - as assessed from
Monte-Carlo simulations. The distance errors were modelled as normaily
distributed with standard deviation of order 15%, which is the typical
size of Tully-Fisher and Dn—o errors. In the well sampled regions of
the POTENT data set the rms errors are -less than 250kms~! in- the
recovered velocity field and less than 0.2 in the density contrast; in
more poorly sampled regions these errors exceed 1000kms-! and 1.0
respectively. This clearly Iindicates the penalties of sparse and noisy

sampling.

In providing a brief overview of our current picture of the
local universe it is no accident that we have described in some detail
the POTENT method for reconstructing the density and velocity fields.
POTENT has given a new relevance to determining redshift
independent distance estimates to galaxies; moreover the opportunity
to improve the quality of the early POTENT results provides a strong
motivation for finding ways to improve those distance estimates and
remove or reduce systematic errors. It is precisely such an

improvement which is the goal of this thesis.
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2. DISTANCE INDICATORS AND SELECTION BIAS

2.1 Introduction

In this chapter we will discuss various galaxy distance
indicators which have been used in the literature and examine the
attempts which have been made to understand and remove the
systematic bias Iin these indicators introduced by observational

selection effects.

Methods of measuring the distance to a galaxy which do not
make use of the observed redshift have traditionally been classified
into 2 groups, denoted as primary and secondary. distance indicators.
Primary Indicators are methods which can be calibrated from purely
theoretical considerations or from distance measurements made within
our own galaxy; to calibrate secondary indicators requires first
determining the distances to a representative sample of nearby
galaxies by some other means (e.g. using primary indicators). An
overview of the historical development of different indicators, and the
astrophysical principles on which they are based, is given in, e.g.,
Rowan-Robinson, (1985). Examples of primary indicators are Cepheid
variables (c.f. Martin et al, 1979) and supernovae (c.f. Kirschner and
Kwan, 1974). Secondary indicators include the Tully-Fisher and D,—©
relations introduced in chapter (1), galaxy HII regions (c.f. Sandage
and Tammann, 1974) and various colour-fuminosity relations (c.f. Tully

et al, 1982; Michard, 1979).

The supernovae method has the greatest potential of the
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primary indicators because supernovae are in principle observable to
enormous distances (= 1000Mpc), although in practice there are still
considerable difficulties in the theoretical understanding of their
characteristics (c.f. Rees and Stoneham, 1982). With the exception of
supernovae, however, as the distance scale has expanded in recent
years we have come to rely more and more on secondary indicators as
the ’first line of attack’ in determining galaxy distances; moreover, of
such indicators the Tully-Fisher and Dp-o relations have proved the
most commonly used, as is evidenced by the POTENT data set
discussed In chapter (1). The prevalence of secondary indicators is
unlikely to change in the near future. The observable limit for
Cepheids, for example, is only about 5Mpc from ground based
instruments; hence this primary indicator - despite being probably the
most securely calibrated - cannot be used on larger scales. It is
hoped that the Hubble Space Telescope will push back this limit to
around 20Mpc, but estimates for more distant galaxies will still require
secondary methods. (Cepheid observations with HST should,
nevertheless, susbstantially improve the calibration of secondary

indicators.)

Another useful means by which to discriminate between
different indicators is the number of observable properties of a galaxy
on which each depends. To explain what we mean by this consider, for
example, the Tully-Fisher relation. As we remarked in chapter (1), one
uses this relation to infer an estimate of the absolute magnitude, M, of
a spiral galaxy from its measured 2icm line width, which has been
found to be well-correlated with M. One then combines this estimate

with the measured apparent magnitude, m, to obtain a distance
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estimate by simply inverting the usual magnitude-distance relation,

viz:-

m = M + 5logr + 25 (2.1)

where the distance, r, is measured in Mpc. In fact it is more common
in the literature to determine an estimate of the distance modulus,
m-M, which we can see from equation (2.1) is essentially an estimate of
logr. Moreover, previous discussions of the statistical properties of
distance indicators have also dealt predominantly with estimates of the
distance modulus. In this thesis it will frequently be unnecessary to
discriminate between the two terms and, at such times, we will use
them interchangeably. As we will see in chapters (3) and (4), however,
there are situations when a distinction becomes important, and when
this is the case we will we clearly indicate whether referring to

distances or distance moduli.

Thus, a distance estimate constructed from the Tully-Fisher
relation is a function of two observables; line width and apparent
magnitude. Similarly distances derived from the Dn-C relation are a
function of observed velocity dispersion and apparent angular

diameter.

As an aside one shouid note that in equation (2.1) we assume
no absorption either within our own galaxy or internally, within the
observed galaxy. Such an assumption is often unreasonable so that to
arrive at equation (2.1) one must first make careful corrections to
both m and M. Indicators which are less badly affected by obscuration

have clear advantages; indeed it was precisely to avoid such extinction



corrections that prompted Aaronson et al/ (1980) to propose that the
Tully-Fisher relation should be calibrated using infra-red magnitudes.
Not only does this virtually eliminate extinction from the measurements
for each galaxy, but it also allows greater sky coverage for galaxy
surveys since one can still make useful IR observations at low galactic

latitudes.

Later in this chapter we will return to the Tully-Fisher and
D,— relations and examine the importance of observational selection
effects for their calibration and use, as previously discussed in the
literature. As a preliminary to this, however, it is useful first to
consider the effects of selection bias on indicators which are functions
of only one observable: more specifically, distance estimates obtained
from only the observed apparent magnitude of a galaxy, having

adopted a priori a fiducial value for its absolute magnitude.

Such indicators assume the existence of ’standard candles’ -
i.e. a class of galaxies all of which have identical intrinsic luminosity -
and their use was the approach generally adopted in early studies of
galaxies and the Hubble flow in the 1970s (c.f. Rubin et al, 1976;
Sandage and Tammann, 1975a,b). While the standard candle assumption
is obviously an idealisation, a number of specific galaxy types have
been proposed as good candidates for standard candles because of the
small scatter in their intrinsic luminosity; these include Scl galaxies
(Ssandage and Tammann, 1975b) and first ranked cluster ellipticals
(Sandage and Hardy, 1973). We will comment further on the properties

of these specific galaxy types in due course.
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2.2 Standard Candles and Malmquist Bias

In obtaining distance estimates - from whichever indicator -
the cosmologist would ideally wish to use a volume limited galaxy
sample; i.e. one in which every object within a given volume is
observed. In practice, however, galaxy samples are more generally
magnitude limited; l.e. one observes only those galaxies with apparent
magnitude brighter than some limiting magnitude, m| . It has long been
recognised that any spread in the luminosity of standard candles
would introduce Malmquist bias in a magnitude limited sample. this blas
arises because galaxies of different intrinsic luminosities are sampled
within different volumes: at greater distances only progressively more
luminous galaxies are observable as fainter objects ’fade out’.
Consequently the mean tuminosity of observable galaxies increases with
distance, and a failure to account for this effect results in galaxy
distances being systematically underestimated. Eddington (1914) was
one of the first authors to study the statistical biases which arise
when objects are selected using a distance dependent observable such
as apparent magnitude. Indeed the effect described above bears his
name, the Eddington correction, in some references (c.f. Feast, 1987).
Malmquist (1920) gave a classical discussion of the effect in a stellar

context and the bias is most commonly referred to by his name.

Malmquist showed that if the luminosity distribution of
standard candle galaxies were a gaussian, with mean Mgy and dispersion
o, then the mean absolute magnitude, My, of observable galaxies,
assuming a constant spatial number density, in a magnitude limited

sample is:-
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My = Mg - 1.3802 (2.2)

Many later authors have rederived this result and extended
the analysis of Malmquist in a cosmological context. One analysis of
note is in Teerikorpi (1975), in which the author showed that -
subject to the same assumptions - the mean absolute magnitude of

galaxies in a shell at distance, r, is given by:-

exp (-%(m_ -51ogr-Mg-25/0)2)

= (2.3)

M(r) = My - .
Jen ®(m -51ogr-Mg-25/0)

where ¢ denotes the cumulative normal distribution of mean zero and
unit variance. Figure (2.1) shows a graph of M(r) for various values
of o and assuming Mg = -20. We can see from these graphs that the
Maimquist bias is negligible at very small distances but increases
steadily with increasing r beyond a certain distance. The slope of the
bias curves is similar for each value of o; however, we see that as ©
increases the distance beyond which the bias is non-negligible
becomes progressively smaller. Consequently the bias at any given
distance more severe for larger values of o. For example, for r =
100Mpc and © = 1 the mean magnitude is more than 1.2 magnitudes

brighter than Mg, while the bias is less 0.4 mag when o = 0.3.

2.2.1 The Hubble Diagram and the Minimum Bias Subset

A useful way to illustrate how Malmquist bias arises is via
the Hubble diagram - a plot of log(redshift) versus the apparent

magnitude of a survey of galaxies - which has traditionally been used
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Mean absolute magnitude, M(r), at distance,r, for observable galaxies
in a sample 'cut-off’ by an apparent magnitude 1imit, m_, shown
for different values of o. (Mg = -20).



to estimate Hubble's constant and test for isotropy in the Hubble flow.
In principle the Hubble diagram may also be used to determine the
deceleration parameter, qq, although such attempts have generally

proved unsuccessful (c.f. Kristian et al/, 1978).

Figure (2.2) shows a schematic example of a Hubble diagram
for a sample with a sharp upper magnitude limit. If one assumes that
the Hubble Flow is uniform, then the observed recessional velocity and
apparent magnitude of each galaxy in the sample will be related by

the following equation (neglecting absorption):-

TogV = 0.2m + logHg - 0.2Mg - § (2.4)

In this ideal case, therefore, a galaxy of a given absolute magnitude,
Mx say, will lie on the straight line of gradient 0.2 which intercepts
the logV axis at logV = logHg - 0.2Mx - 5. If the luminosity function of
the galaxies is a gaussian, with mean Mg and dispersion o, then one
would expect that 99% of galaxies would lie between the two bold
diagonal lines in figure (2.1), which correspond to absclute magnitudes
of Mgp-30 and Mg+30 respectively. Observable galaxies sampled at a
given distance (i.e. at a given recessional velocity) would therefore lie
along a horizontal line in the Hubble diagram, between the bold

diagonals and to the left of the apparent magnitude limit, m.

We can easily see from figure (2.2) that at larger recessional velocities
it will not be possible to observe all galaxies with absolute magnitudes
down to Mg+30, as a progressively larger part of the luminosity
function will lie in the ’unobservable’ region. Consequently, the mean

observed magnitude of galaxies in the region denoted ’biased’ will not
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equal the mean, Mg, of the luminosity function, but will decrease

monotonically in this region with increasing distance - the precise

distance dependence being given by equation (2.3).

M=M°-3U M'_‘Mo +3c

log(velocity)

logVer

UNOBRERYABLE

m.=rq,
apparent magnitude

Figure (2.2)

Schematic Hubble diagram for a galaxy sample with a sharp upper
apparent magnitude limit, m_, demonstrating the presence of
Malmquist bias and the existence of an unbiased region - the
’Minimum Bias Subset’.



In a study of the local velocity field using nearby spiral
galaxies, Sandage and Tammann (1975b) illustrate clearly a simple
method for dealing with Malmquist bias, by identifying the region of
the Hubble diagram where it Is not significant and restricting their
sample to only those galaxies lying in this region; thus constructing
what has been termed in the literature as a ’'minimum bias subset’

(MBS) or ’bias free subset’.

We can see from figure (2.2) that there will be a critical
distance r.., (corresponding to the bold horizontal line at logV,,) at
which a galaxy of absolute magnitude Mg+3c would be observed at the
magnitude limit, m_. One would expect to be able to observe 99% of all
galaxies which lie at distances less than rg., and so the shaded
'unbiased’ region of the Hubble diagram will be 99% complete. It
represents the region in which the Maimquist Bias is negligible; i.e.
the 'minimum bias subset’. In practice, even without knowledge of the
mean absolute magnitude or variance, one may still construct an
estimate of the MBS geometrically by drawing lines of gradient 0.2
through each galaxy’s position on the Hubble diagram and finding the
minimum value of logV at which these lines intersect the line of the

magnitude limit, m=m . Expressing this algebraically we have:-

logVepr = min { logV4 + 0.2(m_ - my)} (2.5)

where the minimum is taken over all the galaxies In the sample. Having
thus constructed an MBS one may then reasonably assign the mean
absolute magnitude, Mg, to all the galaxies in the MBS. It then follows
that m;j - Mg will be an unbiased estimate of the distance modulus of

the ith galaxy in the MBS. The approach adopted by Sandage and
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Tammann (1975b) is now to define an estimate of logHg as follows:-

loghg = — L(logVy - 0.2m{) + 0.2y + § (2.6)

from which an estimate of Ho is then obtained in the obvious way. The
summation is over all the galaxies in the MBS. Sandage and Tammann
point out that equation (2.6) defines an unbiased estimate of logHg,
and observe that consequently the corresponding estimate of Hg will,

in fact, be biased - although they regard this bias as a small effect.

2.2.2 The MBS With a Narrow Magnitude Window

It is frequently the case that galaxy samples are selected not
just by an upper but also a /ower magnitude limit. For example, the
data set of Scl galaxies used by Rubin et al/ (1973, 1976) was selected
from the Zwicky catalogues (Zwicky et al, 1961-68) to have apparent
magnitudes between 14 and 15. Recall from chapter (1) that a Local
Group peculiar velocity of 450kms~1 was claimed with respect to this

sample.

The effect of Malmquist bias on a Hubble diagram constructed
with both an upper and lower magnitude limit is somewhat different
from that of an upper limit only: specifically one cannot define a
complete unbiased sample out to some limiting distance since there is a
positive Malmquist bias (i.e. the mean absolute magnitude is fainter
than Mg) at small distances due to the exclusion of over luminous

galaxies. In such a case one can still identify a range of redshifts
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(again assuming ’quiet’ Hubble flow) within which the luminosity
function is best sampled; in this way Rubin et al/ defined an MBS for
their data in the redshift range 3500kms~!1 to 6500kms~1, and inferred
the Local group motion by ’best-fitting’ a dipole to the 96 galaxies in

their sample with redshifts between these limits.

Several authors (c.f. Fall and Jones, 1976; Sandage and
Tammann, 1975b; Collins et al, 1991) have discussed specific problems
which arise when the magnitude selection window is narrow, such as is
the case for the Rubin data. In particular, Collins et a/ have shown
via a Monte-Carlo analysis that a narrow selection window will result
in the mean absolute magnitude of observable galaxies being strongly
dependent on redshift; we can see this qualitatively from the
schematic Hubble diagram shown in figure (2.3), which has a narrow
magnitude selection window between my and my. The shaded region
represents an MBS for the sample in the sense that, within this
velocity range - V4 to Vo as shown - the magnitude window samples
galaxies with absolute magnitudes close to Mg. Note, however, that the
mean absolute magnitude of observable galaxies at logvy s

substantially different from that at logVs.

Consequently if the redshift distribution of the sampled
galaxies were strongly correlated with direction - due to clustering in
one or more regions of the sky, for example - then there would be a
corresponding systematic correlation between the absolute magnitude
and direction of the sampled galaxies. This may lead to an apparent
systematic anisotropy in the inferred peculiar velocity distribution

which would be suggestive of a streaming motion of our galaxy with
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log(velocity)

apparent magnitude

Figure (2.3)

Schematic Hubble diagram for a galaxy samplie with a narrow apparent
magnitude selection window, demonstrating the correlation between
mean absolute magnitude and redshift - even within the MBS.



respect to the sample, but which would be entirely due to the
selection procedure. Thus, there seemed good reason to belleve that
the MBS used by Rubin was not free from selection bias, and hence
the evidence for a Local Group motion was not conclusive. In order to
avoid this problem Collins et al stress the importance of using wide
apparent magnitude selection criteria in obtaining samples, in which
case it is at least possible to define a subset of galaxies which is
complete to some limiting redshift, although the sample will be affected

by Malmquist bias beyond this limit.

Nevertheless a more fundamental drawback In the use of the
MBS will still exist even in this case: the assumption inherent In its
definition of ’quiet’ Hubble flow. Deviations from uniform Hubble Flow
will distort the linear form of the magnitude - logV relationship on the
Hubble diagram and will cause more distant galaxies to be misplaced
into the ’unbiased’ region and vice versa, so that the true unbiased
nature of the MBS will be compromised. Even if one were to accept
that such peculiar motions will be less significant at higher redshifts
as the Hubble Flow becomes more uniform, these more distant galaxies
would be excluded from the MBS because their redshift places them in
the ’'biased’ region of the Hubble diagram. These limitations in the use
of the MBS are of particular concern since it precisely to identify

systematic peculiar motions that the MBS has often been used.

A more promising approach to dealing with the Malmquist bias
of distance estimates derived from magnitudes alone would be to adopt
a corrected fiduclal value for the absolute magnitude: this would at

least attempt to address the variation of mean absolute magnitude with
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distance, as described by equation (2.3), and would allow more distant
galaxies - which would be excluded from the MBS - to be used
effectively. We will explore this approach in chapter (3), as a means of
introducing our statistical formulation for studying the properties of

distance estimators.

2.3 Distances Derived From Two Observables

In the past fifteen years a considerable observational and
theoretical effort has led to the identification of a number of
relationships between different intrinsic physical characteristics of
galaxies which have proved extremely valuable for the determination of
galaxy distances. To provide some background on this work we now
list the most closely studied of these relations, with appropriate

references which describe them in more detail.

2.3.1 Correlations Useful as Distance Indicators

(1) Tully-Fisher Relation

This is a correlation discovered by Tully and Fisher (1977) between
the absolute magnitude of spiral galaxies and the width of their radio
emission line at 2icm due to neutral atomic hydrogen, a quantity
readily observable in external galaxies using large radio telescopes.

The correlation found by Tully and Fisher took the form:-

Mpg = Alog(Wg/sini) + B (2.7)
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where Mpg is the absolute photgraphic magnitude corrected for
inclination and extinction effects, Wg is the 21cm line width expressed
in kms™1, i Is the inclination angle between the normal to the plane of

the galaxy and the line of sight, and A and B are constants.

As we have already remarked, Aaronson et al, (1980) have
examined this correlation using infrared magnitudes measured at 1.6um
and find the same linear form. Several authors (c.f. Roberts, 1978;
Rubin, 1983) have suggested that the slope of the relation derived
from photographic magnitudes is quite sensitive to the spiral galaxy
type. Aaronson et al on the other hand claim that the infra-red form
shows no such dependence, although this has been challenged Iin

Bursteln (1982).

(2) Colour-Luminosity Relation

This correlation was first proposed by Baum (1959), who observed that
more luminous early-type systems appeared redder. A more precise
treatment was carried out by Sandage (1972) which established a
linear relation between absolute V magnitude and U-B colour for

early-type systems in the Virgo and Coma clusters, viz:-

U-B = AV + B (2.8)

where A and B are constants (though, of course different from those
of equation 2.7). Visvanathan and Sandage (1977) extended the analysis

to other colors and found similar linear relationships.



(3) Faber-Jackson Relation

This correlation, first identified in Faber and Jackson (1976), takes the
form of a power law between the luminosity and velocity dispersion,
determined from the doppler broadening of optical line profiles, of
elliptical galaxies which, when expressed in terms of magnitudes is

again linear in form:-

M = Alogc + B (2.9)

where o is the velocity dispersion in kms-1. de Vaucouleurs and Olsen
(1982) have also derived a linear relation between M and o for

lenticular galaxies.

(4) Dh—© Relation
Terlevich et al, (1981) deduced from a sample of 24 ellipticals this

correlation between the apparent angular diameter and the central
velocity dispersion. The form derived was again a power law, as for
Faber-Jackson, but represented a considerable improvement over the
jatter, with a factor of two less scatter. The derived relation may be

written as:-

logD, = Alogc + B - Jlogr (2.10)

where D is the angular diameter, defined precisely and objectively to
the same isophote for galaxies at all distances after applying
absorption and redshift K corrections, and r is the distance of the
galaxy. Note that equation (2.10) essentially expresses a power law
relation between o and the intrinsic physical diameter, d, since we

have Dn = d/r. Recent evidence (c.f. Giuricin et al, 1989) comparing



clusters at different distances indicates that the power law constant of
proportionality, B, Is Iindeed a universal constant to within the limits

testable by current data.

(5) Diameter-Luminosity Relation

Holmberg (1969) determined the correlation between the intrinsic
physical diameter, d, and absolute photographic magnitude, M, of

different classes of galaxies. A linear relation was again found, viz:~

logd = AM + B (2.11)

This relation was refined by later analysis (c.f. Paturel, 1979)
employing careful corrections to those diameters which had been

determined according to different isophotal measurement systems.

(6) HII Regions

Sandage and Tammann (1974) describe a correlation between the
absolute photographic magnitude of late-type spirals and irregulars
and the size of thelr HII regions. they derived the following specific

relation:-

log(Dy,Dg) = AM + B (2.12)

where (Dy,Dc) is the average of the core and halo diameters of the
three brightest HII regions in each galaxy. The procedure adopted by
Sandage and Tammann involved a rather subjective method for
measuring the dlameters on a photographic plate; Kennicutt (1979) has

repeated the analysis using objective isophotal diameters.



2.3.2 Calibration by Linear Regression: Malmquist Bias

Determining the constants, A and B, In each of the above
relations has been the subject of intense study - and considerable
debate - in the literature. The straight line is generally ’best-fitted’
by performing a linear regression on a calibrating sample of galaxies
(e.g. a nearby cluster) whose distances - and hence absolute
maghitudes or diameters - can be determined by some other method. A
key issue in discussions has been the question of which linear

regression is most appropriate for determining A and B.

Consider for example the Tully-Fisher relation of equation
(2.7). In their original presentation of this indicator Tully and Fisher
(1977) derived a best-fit straight line by regressing absolute
magnitudes on line widths, i.e. assuming line width to be error-free.
(In fact Tully and Fisher achieved this fit purely by ’eyeballing’ the
data and adjusting their line to minimise visually the magnitude
residuals; of course this line may be found less subjectively using

formulae given in any elementary statistics textbook.)

This regression line determines the mean absolute magnitude
at a given line width, W, as a linear function of logWg (after

inclination corrections) viz:-

E(MIWg) = Aloghg + B (2.13)

The important issue is that the slope, A, and zero point, B, derived
from other regression lines are different from those determined by

this regression. Consequently the distances inferred by each indicator



depend on one’s choice of regression line.

The question of which regression line is 'best’ is non-trivial,
particularly when one must take account of observational selection
effects. When these are present, in general a Malmquist bias Is
introduced, analogous to the Malmquist bias already discussed for
standard candles, which results In systematic errors in distances
estimated from each indicator. It is important to note that this bias is
distinct from other systematic effects to which the calibration process
may be prone: in particular zero-point errors Introduced when the
distances of the calibrating galaxies are inaccurately determined (c.f.
Tammann, 1987). The existence of Malmquist bias means that even for a
perfect calibrating sample, distances estimated to more remote galaxies
may still be systematically In error if one uses an inappropriate

regression on the calibrators.

Four different regression lines have been considered in the

literature: these are (defined as for the Tully-Fisher relation, with the

obvious corresponding definitions for other indicators):-

(1) Regression of magnitudes on line widths.

(2) Regression of line widths on magnitude; i.e. treating magnitude as

an error-free variable (c.f. Schechter, 1980)

(3) Orthogonal regression, accounting for errors on both observables

(c.f. Giraud, 1987)
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(4) ’'Bisector’ regression; i.e. the line which bisects regression lines (1)

and (2) (c.f. Plerce and Tully, 1988)

As a typical example, figure (2.4) shows the Tully-Fisher
relation illustrated for a combined sample of spirals from the Virgo
and Ursa Major clusters (Tully, 1988). The dashed line denotes the
regression of luminosity on line width, l.e. (1) above, while the steeper
solid line denotes regression (2), line width on Iluminosity. The
orthogonal and bisector regression lines, if drawn, would lie between
these two. Although we can see that the difference in the slope of
these lines is fairly small for these data, which are quite well
correlated with correlation coefficient, ¢ = -0.8, the difference in slope
increases sharply as the intrinsic scatter in the relation Increases.
(Note that ¢ is negative since an increase in luminosity corresponds to

a decrease in absolute magnitude.)

We can illustrate this Malmquist bias - again using the
Tully-Fisher relation as an example - in a manner similar to the
Hubble diagram representation described In section (2.2). This
schematic picture is similar to the treatment given in e.g. Tully, 1988

and Lynden-Bell et a/, 1988).

Figure (2.5a) shows a schematic plot of absolute magnitude
versus log line width (assumed corrected for inclination). The shaded
area indicates the set of possible values of M and Wy, given the
intrinsic scatter of the Tully-Fisher relation. (More precisely, the
shaded area indicates the region within which 99%, say, of galaxies

would be expected to fall - analogous to the diagonal lines which



bounded a 99% confidence region of the Hubble diagram in the

previous section.)
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Figure (2.4)

Example of the Tully-Fisher relation derived for a sample of spirals
from the Virgo and Ursa Major clusters. The dashed line is obtained by
regressing luminosities on line widths; the solid line by regressing
1ine widths aon luminosities. Correlation coefficient for the data,

e =-0.8
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Figure (2.5)
Schematic Tully-Fisher diagrams demonstrating the effects of Malmquist
bias on the calibration of the relation by linear regression. The

diagrams are explained in the text.
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In other words, this reglon represents the range of values of
M and Wp which one could expect to observe in, for example, a
completely sampled nearby cluster as could be used to calibrate the
relation, Thus, the straight line shown in figure (2.5a) Is the
regression line, E(M|Wg), obtained by regressing magnitudes on line
widths which may then be used to estimate the luminosity of a more
distant galaxy by reading off the point of Intersection with the

regression line, as shown.

In figure (2.5b), on the other hand, we introduce an apparent
magnitude limit, m_, and demonstrate its effect on the Tully-Fisher
relation. In this figure the shaded region indicates the range of
observable values of M and Wg for galaxies at some given distance, r,
after accounting for the magnitude limit. (It is convenient to consider
galaxies at the same distance since the apparent magnitude limit then

translates directly to a limiting absolute magnitude, M|_ = m_ -5logr-25.)

At this point it is important to note that we can regard the
shaded region of figure (2.5b) in two different - but entirely
equivalent - ways: either as representing the actual spread in
observed values of M and Wy assumed by an idealised group of
galaxies in, e.g., a cluster at distance, r, or -equivalently as
representing the underlying distribution of values of M and Wg at
distance, r, from which the values taken by each individual galaxy are
drawn. This means that we make no distinction between the effects of
selection bias on groups of galaxies in a cluster and on isolated field
galaxies. This Is contrary to e.g. Lynden-Bell et al/, (1988) or

Teerikorpi (1984, 1987) In which selection effects on field and cluster
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galaxies are treated separately. It seems to us, however, that no such

distinction is necessary.

Now it is clear from figure (2.5b) that for lower values of
logWp one cannot sample M completely since less luminous galaxies are
‘cut-off’ by the magnitude limit. This means that the regression curve,
E(M|Wg), in this second case is no longer given by the straight line of
figure (2.5a) - also shown Iin figure (2.5b) for comparison - but
deviates from this line for small Wo and is described rather by the
dotted curve, as shown. Consequently, if one derives the Tully-Fisher
constants by regressing magnitude on line width in a complete
calibrating sample, and then uses this regression line to estimate the
luminosity of a more remote galaxy from its measured line width, Wq,
then the inferred absolute magnitude will not equal the mean value,
E(M|Wg), at that line width for observable galaxies at the greater
distance. As we can see from the deviation of the dotted curve, the
value of M estimated from the straight line will be greater than the
true mean value; I.e. the luminosity will be systematically
underestimated, leading to a negative Malmquist bias in the inferred

distance of the galaxy.

This same effect will occur when this regression line is used
to calibrate other indicators which involve luminosity. Moreover,
diameter selection effects (i.e. the exclusion of galaxies with angular
diameter less than some limiting value) will affect the D,-o relation in

an analogous fashion.

The Malmquist bias inherent in the use of this regression has
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been recognised by a large number of authors; furthermore, it has
been shown that Malmquist bias will also arise when one calibrates
using the orthogonal or bisector regression lines (c.f. Giraud, 1987;
Bottinelli et al, 1986). Several authors have studied the bias In
quantitative detail: in particular Teerikorpi (1984) has assumed a
bivariate normal for the distribution of M and logWg and has
determined that, In this case, the Malmquist bias, E(M|Wg) - Mg, of the
absolute magnitude at given line width has the same distance
dependence as the blas for standard candles - as given by equation
(2.3). The amplitude of the bias at a given distance is smailer than for
standard candles, however, just as the bias amplitude was reduced for
smaller values of o in figure (2.1). This means that - at least from the
point of view of Malmquist bias - using the Tully-Fisher relation with
this regression is equivalent to using a ’'better’ standard candle; l.e.
one of smaller intrinsic spread in luminosity. Intuitively this would
seem to make sense: we can think of the measured line width of a
galaxy as providing additional information which ’narrows down’ the

range of probable values for its luminosity.

It is the fact that the amplitude of the Malmquist bias
depends on the actual distance of a galaxy, just as was the case for
estimates derived from apparent magnitude alone, which makes its
removal non-trivial. Any exact correction would require the true
galaxy distance to be known - which would render somewhat

redundant any attempts to estimate it!
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2.3.3 Schechter’s Scheme for Defining Bias-Free Distances

An Iimportant contribution to the debate over how best to
calibrate relations of the Tully-Fisher type was provided in Schechter
(1980). This paper was addressed primarily to the Faber-Jackson
relation, although the author recognised its wider ramifications.
Schechter observed that the mean log velocity dispersion, E(logo|M),
at given absolute magnitude, M, is no different in a magnitude limited
sample than in a volume limited sample. Thus, the slope of the line
obtained by regressing logoc on M is unchanged in a sample subject to
maghitude selection; in other words this regression is unaffected by
Malmguist bias. We can see that Schechter’s observations are correct
from figure (2.5b), for the Tully-Fisher case. For observable galaxies
(l.e. M < M) we can still sample the full range of line widths at a
given magnitude, even for magnitudes very close to the limit. Hence
the mean log line width at given magnitude, M £ M|, is precisely equal
to the mean value at the same magnitude in the completely sampled
case of figure (2.5a). This means that we obtain the same regression
line of logWg on M in both cases. Specifically that regression line

takes the form:-

E(TogWgiM) = aM + b (2.14)

where a and b are constants. We can use this equation to estimate M
from the measured line width of a galaxy by determining the value of
M for which the observed log(line width) is equal to its expected value

at that magnitude.

Schechter also pointed out that the immunity of this
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regression line to Malmquist bias holds regardless of the form of the
magnitude selection effects (e.g. a narrow magnitude window or a
'fuzzy’ cut-off limit). The only condition required is that the selection
effects depend on apparent magnitude alone; i.e. that the line widths
are selection-free. Similar remarks obviously apply to other indicators.
Hence for the D,-O relation we require that the observed galaxies are
selected by apparent diameter alone. Lynden-Bell (1991) discusses this
assumption and recognises that it holds true - to a good approximation
- in the data set of ellipticals studied in Dressler et a/, (1987) and
Lynden-Bell et al, (1988). Indeed, Lynden-Bell points out that selection
by diameter alone Is consistent with good observational procedure:
measurements of velocity dispersions require relatively long exposure
times and large telescopes and are, therefore, costly. By contrast,
measurements of galaxy diameters can be made from already existing
photographic surveys. Thus, it is quite common to select galaxies for
observation on the basis of their angular diameter alone while the
velocity dispersion are measured later for the selected objects. Tully

(1988) makes a similar point with respect to the Tully-Fisher relation.

The assumption of a selection-free observable s,
nevertheless, clearly crucial to the unbiasedness of the Schechter
regression line. If there /s selection on line width then this regression
line will exhibit Malmquist bias in precisely the same way as the
regression of M on logWg since the regression curve E(logWglM) for
observable galaxies in an incomplete sample will now deviate from the
straight line obtained for a complete sample. A number of authors (c.f.
Aaronson et al, 1982; Teerikorpi, 1984; Kraan-Korteweg et al, 1986;

Tully, 1988) have re-affirmed the resuits of Schechter and have thus



55

advocated calibration of the Tully-Fisher relation by regressing line

widths on magnitudes so as to obtain bias-free distance estimates.

2.4 Summary and Concluding Remarks

In this chapter we have seen how galaxy distance estimates
will in general be affected by Malmquist blas when one’s galaxy sample
is subject to observational selection effects. We have considered firstly
how this blas affect distances inferred using ‘only the apparent
magnitude of a galaxy, and have reviewed the Minimum Bias Subset
method for dealing with the bias, as proposed in early papers. We
have discussed the limitations of the MBS: the fact that its use with a
narrow magnitude selection window may lead to the detection of
spurious streaming motions, and the more fundamental limitation that
the MBS rejects those galaxies at higher redshifts for which the
assumption of a ’quiet’ Hubble flow - inherent in defining the MBS -

might be considered more reasonable.

We have gone on to consider how Malmquist bias also affects
distance indicators which depend on two observables, such as the
Tully-Fisher relation; in particular how the bias may arise when this
relation Is derived by regressing magnitudes on line widths. By
contrast we have considered the scheme proposed by Schechter (1980),
whereby one prefers to regress line widths on magnitudes thus
obtaining a straight line which Is unaffected by Mamlquist bias,
provided only that the selection effects are confined to the apparent

magnitude alone.
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The adoption of this scheme has not been universally
endorsed and a number of authors (Sandage and Tammann, 1990;
Bottinelli et al/, 1986; Lynden-Bell et al, 1988) continue to favour a
regression of magnitude on line width (or its equivalent for other

indicators).

Of course the fact that the Schechter regression line Is
unbiased does not automatically qualify that line as the ’best’ choice.
In the first instance we must clarify precisely what we mean by ’best’;
l.e. based on what criteria do we make our choice. It seems to us that
this basic question has not been adequately addressed Iin the
literature - a fact which obviously does nothing to help resolve the
disagreements over which method Is truly ’best’. Clearly the absence
of Malmquist bias is a desireable property and if one adopts this as
the only criterion then the Schechter scheme would indeed represent
the best method of calibration. It is, however, straightforward to
envisage a situation where the Schechter regression line is wholly
inappropriate: the case where M and W are completely uncorrelated.
In this pathological case the mean value of logwp at given M is a
constant, independent of M, l.e. E(logWglM) = E(logWp). Consequently,
we obtain no information at all about M from measuring the line width
of a galaxy and so the method of using the Schechter line to infer the
magnitude, and hence the distance, breaks down completely -

notwithstanding the fact that the line is sti/l free from Malmquist bias!

In the next chapter we will introduce a rigorous statistical
formulation, based on the analytical techniques of risk theory (c.f.

Hogg and Craig, 1978; Mood and Graybill, 1974), which will allow us to
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tackle more effectively the question of which method of distance
estimation is truly ’best’. Later in the thesis we will return to the
Schechter scheme so as to verify its validity within our statistical
framework - but more importantly to Identify under what
circumstances the method is a poor choice, as was clearly the case in
the pathological example considered above. In chapter (3), however, we
will first of all restrict ourselves to the simpler case of estimates

which depend only on apparent magnitude.



3. ESTIMATION OF DISTANCE USING APPARENT MAGNITUDE

3.1 Introduction

In the preceding chapters we have seen that the luminosity
selection effects introduced in a magnitude limited sample of galaxies
may lead to systematic errors in the estimation of the distances to
those galaxies. In order to understand more precisely the form of
these systematic effects, and to explore methods of reducing or
eliminating them, we require to formulate the problem of distance
estimation in a statistically rigorous manner. Following the standard
statistical methods of risk theory, we will introduce a technique for
defining  different distance estimators and comparing their
distributions and properties, ‘so as to Iidentify the estimator most

appropriate to a given problem.

We will consider in this chapter the case where distances are
estimated using only measurements of apparent magnitude - the most
readily understood distance indicator. This simple approach will
illustrate clearly the statistical principles involved and provide a
framework for subsequent, more detailed, analysis. In particular, the
extension of our analysis to include other distance indicators - such
as apparent diameter or secondary indicators derived from e.g. the
Tully-Fisher relation - is relatively straightforward. We will consider
such an extension to estimates derived from two and three observables

in the chapters which follow.

The analysis which we adopt here is similar to Simmons and
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Stewart (1985) in their discussion of polarimetric estimators. Hereafter
we shall denote an estimator of a parameter by a caret - e.g. an
estimator of distance, r, will be written #. Furthermore we adopt the
usual statistical convention, wherever possible, of denoting random

variables by bold type characters.

We will derive expressions for the apparent magnitude
distribution of observable galaxies at given (though In general
unknown) true distance, taking into account the effects of iuminosity
selection, and use this distribution to define various estimators of that
distance. Of course in certain astrophysical problems it may be
expedient to estimate not the distance, r, but rather some function of
r such as logr or r-1 (c.f. Feast, 1987). Indeed, we have already seen
in chapter (2) that cosmologists make frequent use of the distance
modulus, which is essentially an estimator of logr. It does not follow
that a good estimator of logr, for example, will necessarily be a good
estimator of r or vice versa, and we will discuss some of the
implications of this in due course. Our analysis may easily be adapted
to the estimation of functions of r, as we will see later, but it is

instructive to consider firstly only estimates of r itself.

3.2 The Observed Distribution of Apparent Magnitude

Let the absolute magnitude, M, and position, r, of a galaxy be
random variables with some intrinsic Joint distribution function. Let
N(M,r)dMdV denote the number of galaxies in volume dV at position r

that have absolute magnitudes in the range M to M+dM. Further, let



n(r) denote the number density of galaxies (of all magnitudes) at
position r. Suppose now that M and r are uncorrelated so that we may
write:-

N(M,r)dvdM = ¢(M)n(r)dvVdM (3.1)

l.e. we assume the existence of a luminosity function (hereafter LF),
Y(M), which describes the magnitude distribution of galaxies,
independent of their position. The LF has frequently been defined as
a number density of galaxies per unit range of absolute magnitude
(c.f. Felten, 1985); clearly such a description cannot be independent of
position since there will be an immediate dichotomy between field and
cluster samples. In equation (3.1), therefore, we prefer to define the
LF as a probability density - a definition which has found increasing
favour in recent years and which is identical to that used in stellar
statistics (c.f. Kirshner et al, 1979; Mihalas and Binney, 1981). By
defining $(M) in this way one need make no assumptions about the
uniformity of n(r). Even with this definition, however, the LF of
galaxies of all Hubble types (usually referred to as the general or
universal LF) will not be independent of position, since the relative
frequencies of the different morphological types depend strongly on
the local density (c.f. Dressler, 1980; Postman and Geller, 1984), It has
also been demonstrated (c.f. Hamilton, 1988; Einasto, 1990) that the
brightest galaxies tend to lie preferentially in groups and clusters,
probably as a result of dynamical evolution. Apart from these galaxies,
however, recent reviews (c.f. Binggelli et al, 1988) report no evidence
that the LF for a specific Hubble type depends on the local density. It
seems, therefore, that the separability of ¥(M) and n(r) assumed in

equation (3.1) is a valid approximation for any single Hubble type.
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Consider now the Joint distribution, e(M,r), of position and
absolute magnitude for observable galaxies in a sample subject to
luminosity selection effects, as described by a selection function,
S(M,r). This function measures the probability that a galaxy of
magnitude M and at position r will be observable. Thus, it follows

that:-

$(M)N(L)S(M, £)dMAV
[] woonco)s, £yaMav

e(M,p) = (3.2)

Note that the selection function, S(M,r), does not determine
the probability that a galaxy would actually be observed; clearly this
would depend on the local number density, n(r), which will in general
be unknown. The definition of S(M,r) which we adopt here will be
independent of n(r) and, moreover, will be independent of direction
provided one may correct for the directional dependence of galactic
absorption. A number of standard observational methods exist for
carrying out these corrections. (c.f. Sandage and Tammann, 1981,

Burstein and Heiles, 1982)
We now consider the conditional distribution, &(Ml|rg), of
absolute magnitude at a given distance, rg, for observable galaxies.

Substituting from equation (3.2), this is given by:-

$(M)S(M,rg)

(MIrg) = (3.3)

| wons,ro)am
Note that this conditional distribution is independent of the
galaxy number density, n(r). In other words, the shape of the

observed magnitude distribution at distance r will not change with the
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density of the local environment. This fact proves very useful in

considering the effects of blas on distance estimation, but It seems to
us that it has not always been fully appreciated in the literature.

Finally, we change variables in equation (3.3) to obtain the
conditional distribution, ¢(m|rg) of apparent magnitude, m, at distance,
o for observable galaxies. Formally, m is a function of the random

variable, M, and so is itself a random variable. m and M are related in

the usual way. viz:-

m = M + Slogrg + 25 (3.4)
where the parameter rp, the true distance of the galaxy, Is measured
in Mpc and we have assumed that the effects of absorption in both
our own galaxy and in the observed galaxy have been removed or

neglected. It follows that &(m|rg) is given by:-

Y(m-5Togrg-25)S(m)

c(mirg) = (3.5)

| w(a-5108r9-25)s (m)cm
To proceed further we must specify the form of the LF, ¥(M),
and the selection function, S(m). In this chapter, we will choose S(m)

to be a Heaviside step function at some magnitude limit, m . i.e.:-

1 if m<m
S(m) = (3.6)
0 if m 2> m_

We will also consider the case where the LF, ¥(M), is normally

distributed with mean Mg and variance o2. our primary reason for
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these choices is mathematical expediency, since the algebraic
expressions for the estimators and their distributions are greatly
simplified. Nevertheless, the Gaussian model seems to be a reasonable
one for certain specific Hubble types. Various studies of first-ranked
cluster E galaxies (c.f. Sandage and Hardy, 1973; Schneider et al, 1983)
have indicated that their LF is near Gaussian with a dispersion of ¢ =
0.3 mag. Sandage et a/ (1985) have modelled the LF of all spirals in
the Virgo cluster by a Gaussian of mean absolute magnitude -18.4 and
dispersion o = 1.5 mag, and the dispersion decreases if one considers
only certain sub-classes of spirals. In particular, the LF of Scl spirals
has been modelled by a Gaussian of dispersion o = 0.7 mag (Sandage

and Tammann, 1975).

Substituting for ¥(M) and S(m) we find that equation (3.5)

reduces to:-

exp (—1/202(l-5109r0-25-M0)2) m<m

C(mlrg) = v/ 2n o ®(m -5logrg-25-Mg/0) (3.7)

0 m 3 m

¢ denotes the cumulative standard normal distribution, of mean zero

and unit variance.

Figure (3.1) shows examples of G(mlrg) for various different
true distances and for typical parameter values of o = 1, Mg = -20 and
m_ = 15. It can be seen that at distances greater than 50 MPc the

observed distribution quickly becomes highly non-Gaussian in shape.
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Probability density function, &(m|rg), for observable galaxies at true
distance ro = 25MPc, 50MPc, 100MPc and 200MPc
(6 =1, Mg = -20, m|_ = 15)



65

We will now use this distribution to define different

estimators of the distance, rg, and investigate their properties.

3.3 Definitions of Distance Estimators

There are a number of estimators which present themselves
as obvious candidates for estimating distance. One may define a set of
simple estimators by solving for rg in equation (3.4), setting m equal
to the observed apparent magnitude, m, and assuming a particular

value for the absolute magnitude, My say, to obtain in general:-

F =10 0.2(m - My - 25) (3.8)

Choosing an appropriate value for My is clearly important in order to
define a good estimator of distance and reduce the biasing effects of
selection. In chapter (6) we will address in some detail the question of
how one might choose the ’best’ value of My for a given sample of
galaxies. For the present, however, we will consider three estimators
of this type which correspond to specific elementary choices of My.

The definitions of these estimators now follow.

3.3.1 ’Naive’ : Py
For this estimator we simply choose My = Mg, the mean absolute
magnitude of the intrinsic LF. Thus, we take no account of the bias

due to selection or the dispersion of the luminosity function and the

estimator is simply given by:-

Py = 10 0.2(m - Mg - 25) (3.9)
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3.3.2 ’Malmquist’ : MMAL

Equation (3.8) may be rewritten as :-

P =109 g (3.80)

where R = 10-0.2(M + 25)

Let <R> be the mean value of R for observable galaxies in a magnitude
limited sample, assuming a uniform spatial distribution, viz (Malmquist,
1920):-

-0.2(Mg - 1.6102 + 25) (3.10)

<R> = 10
We thus define the ’Malmquist’ estimator as fyaL = 10 0-2M <R, which
is equivalent to adopting My = Mg - 1.6102 in equation (3.8). Note that,
as we have seen in chapter (2), the mean absolute magnitude of
observable galaxies in a magnitude limited sample (again assuming a
uniform density) is given by Mg - 1.3802 (Malmquist, 1920). One could
therefore define a second ’Malmqguist’ estimator by setting My equal to
this value. Various authors have considered this point (c.f. Feast,
1987) and conclude that a distance estimator derived from the mean
distance of galaxies is a better choice than one derived from the mean
magnitude. The fact that these estimators are not equivalent is a

consequence of the non-linear relationship between magnitude and

distance.

3.3.3 ’Proximal’ : fp
In this case we adopt M = Mg + koz, where the constant, k, is chosen

so that the percentage blas of Pp tends to zero as the true distance
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tends to zero. The required value of k = 0.23 may be determined from
equation (3.29) as we will see later. This estimator should be most

accurate for nearby galaxies, hence the name ’proximal’.

All of the above estimators might be considered worthy of the
title ’naive’ since the ’proximal’ and ’'Malmquist’ estimators differ from
the former only by a constant correction term. Intuitively it seems
clear that such a simple correction will not be adequate to compietely
remove the effects of selection. Furthermore these estimators make
little or no use in their definitions of the observed magnitude
distribution. We now consider four further estimators, which are

derived directly from the distribution function, &(mlrg).

3.3.4 'Mode’ : f‘M
we define this estimator as the value of rg for which the observed
apparent magnitude is the modal value of &(mlrg) - i.e. the value for

which mgps maximises &(mirg) with respect to m. Hence Py satisfies:-

(3.11)

n
o

_3 C(mirg=ty)

3.3.5 'Median’ : rMED

This estimator is defined as the value of rg for which the observed
apparent mag'nitude is the median of &(mirg). Substituting from

equation (3.7) it follows that FMgp Is the solution of:-

®(mopg—5109tMED—25-Mp/0) - o (3.12)

&(my -510ghyEp~25-Mp/0)



3.3.6 ’Mean’ : Myqg
This Is defined as the value of rg for which the observed apparent

magnitude, mgpg, is equal to  the mean of &(mirg). Thus fMg

satisfles:-

Jm Cimlr=Pygldm = mypg (3.13)

Substituting from equation (3.7) and carrying out the integration we

find that the equation defining My is:-

Mops = Mgt 25 + 5loghyg - dexp (—1/202(mL-5109?"E-25-M0)2)

— (3.14)
v 2m ®(m -510ghyg—25-Mg/0)

3.3.7 "Maximum Likelihood’ : Py
This estimator is defined as the value of rg which maximises the
probability, with respect to rg, of obtaining the observed apparent

magnitude. Therefore Py satisfies:-

n
o

_3 G(m=mgpgirg) (3.15)

arg ro=fuL

Upon substitution for G(mirg) from equation (3.7) we find
that £y satisfies equation (3.14); fML and fFfmg are, therefore,
identical for a Gaussian LF and we will no longer differentiate between
them. Both are also equal to the 'Teerikorpi estimator’ (Teerikorpi,
1975) which is defined by first computing the mean absolute magnitude
of observable galaxies at distance, rp; (c.f. equation 2.3) - a definition

which is clearly equivalent to FMg.



69

We also found that My and Py are identical for a Gaussian LF.
That several of our estimators should be equivalent is not too
surprising since it may easily be shown that, in the absence of
selection effects, the ’naive’, ’mean’, ’'median’, ’mode’ and ’maximum
likelihood’ estimators are all identical for a Gaussian LF (c.f. Graybill,

1961).

At this point we introduce a convenient unit of distance

which we will refer to as the limiting distance, r, defined by:-
Slogr = m_ - Mg - 25 (3.16)

Thus, in these scaled units, a galaxy of absolute magnitude My and at
unit distance would be observed to have the limiting apparent
magnitude, m;. By scaling distances in this way we may investigate
the properties of our estimators without specifying an explicit value of
Mg and m|_. Throughout the remainder of this - and subsequent -
chapters we will, therefore, use the notation x = r/r and % = #/r, to
denote true distances and estimated distances respectively. A typical
value for r|, corresponding to Mg = -20 and m_ = 15, would be 100
Mpc. In these scaled units, and for a Gaussian LF, the conditional

distribution G may be written as:-

exp ( ‘1/202(I - m - 5109X0)2)

I(ml_

v/ 21 o ®(-51ogxqy/0) (3.17)

C(IlXO) =

0 m>m

It is useful to represent the estimators in terms of the
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following implicit equations:-

[ 5logRy
5logRyap - 1.6102
m-m = 5logkp + 0.2302 (3.18)

5logRky - o exp (-1/202(51092"|_)2)
/2n &(-51ogky /0)

The solutions of these equations are shown in figures (3.2)
and (3.3), for c = 0.5 and o = 1 respectively. Thus, in geometrical
terms, the distances inferred by each of the estimators may be
determined from the graphs by drawing a vertical line from the
observed value of m_ - m and finding the points of intersection with
the appropriate estimator curve. In the interests of clarity we have
not plotted the curve of the ’median’ estimator, RMgp. Although not
identically equal to Ry, calculations show that the median estimator
differs from the former by no more than a few percent over the
domain shown. For the purposes of this study, therefore, we will

regard RMgp and XML as equivalent.

It can be seen from figures (3.2) and (3.3) that all of the
estimators have similar asymptotic behaviour for m << mp; their
behaviour close to the limiting magnitude is, however, markedly
divergent. Each of the first three estimators, XN, XMaAL and Rfp, tends
to a finite limit as m tends to m|. Hence there will be an upper limit
to the distances which may be inferred by each of these estimators.
Indeed it follows that any estimator of the type shown in equation

(3.8) will be defined only to some upper limit, rx, given by:-

re = 10 0-2(ML = Mx - 25) (3.19)
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or, In scaled units, to xx given by:-

~-0.2(Mg -
xg = 10 “0-2(Mx = Mo) (3.19a)
Hence if the true distance of an observed galaxy is greater then xx

then, regardless of the galaxy's apparent magnitude, its distance will

be systematically underestimated.

In both figures (3.2) and (3.3) we see that the estimator
curve for XML, on the other hand, does not intercept the vertical axis.
In fact, it follows from equations (3.14) that &y can take arbitrarily
large values and Xy » © as m -» m. Intuitively, therefore, it would
seem that &y should be the more reliable estimator for very distant
galaxies. Before further comment is possible, however, we must first

consider the distribution of each estimator.

3.4 Distributions of Distance Estimators

To derive the probability density function of any estimator X
we note that % Is a function of the random variable, m: i.e. X = R(m).
The distribution function of X may then be written down in terms of
the distribution of m, C(mlxg), and so will also depend on the
parameter, xg, the true distance. Thus the distribution, X(X|xy), of an

estimator, &, for galaxies sampled at true distance, xg is given by:-

X(XIxg) = &(m(R)Ixg) ‘d"/dkl (3.20)

For each estimator X(%|xy) may, therefore, be computed from
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equations (3.17) and (3.18). As an example, figures (3.4) and (3.5) show
graphs of the distribution functions of Xy and XM respectively, for

different true distances and for ¢ = 1.

50 t+ } + : + + : + +
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o
X wsd 1
=
&
-
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LD+ +4
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54 /

1.2 [ 1.6 1.8 20

Figure (3.4)

Probability density function, X(Rylxg), of the estimator Xy at true
distance xg = 0.2, 0.5, 1.0 and 1.5 (6 =1)
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There are a number of different statistical descriptors which
may be used in order to compare these distributions. For example, in
figure (3.6) we plot the modal value, Xmode» Of %y and Xyp as a
function of true distance, xg, and for o = 1. For both estimators we
see that Xpode < Xo» for all xg; i.e. the mode of both distributions is
negatively biased. At large distances the bias becomes particularly
severe for )‘tN since this estimator is defined only for )2N £ 1, so that
we must necessarily have xmode € 1, even for xg >> 1. Similar

behaviour is found for &yaL and Xp.
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Modal value, Xmodes Of %y and Xy as a function of true distance, xgq
(6 =1)
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Another common descriptor is the median value, x g, defined implicitly

by:-

X.5
IX(zlxo) dz = 0.5 (3.21)
0

Clearly x5 will be a function of the true distance, xg. For any xg we
may compute the median percentage bias, PB(xg), of an estimator given

by:-

PB(xg) = -5~ %0 100% (3.22)
X0

It is useful to consider the percentage bias, and not just the
bias, of an estimator since the former provides a measure of the
systematic error which may be directly compared at different true
distances. Figure (3.7) shows the median percentage bias of &y and
&ML, as a function of true distance, xg, and for o = 1. It can be seen
that x5 Is severely biased at large distances for both estimators,

although, unlike the mode, the median bias is positive for Kpp.

In most estimation problems it is generally the moments,
however - and in particular the expected value and variance - of an
estimator which are most frequently used to describe its properties.
To be consistent with our previous notation we will denote the
expected value of an estimator, R, at true distance, xg, by E(R|x). It

follows that E(X|xg) is given by:-

ERIxg) = [ & X(RIxp)dk (3.23)

We thus define the mean bias, B(%,xg), of an estimator, &, at true
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distance, xq, by:-

B(R,xg) = E(RIxg) - X0 (3.24)
i.e.
B(R,%0) = [ (% - xg) X(RIxg)ak (3.24a)

Although the bias of the median and mode are recoghised as possibie’
indicators of the ’goodness’ of an estimator, it is the mean bias as
defined in equation (3.24) which is most often considered in the
statistics literature. Henceforth we will adopt this latter definition of

bias.

We also define here the mean square error (hereafter MSE),

€(%,xg), of an estimator as follows:-

€®R,xg) = [ (% - x0)2 X(RIxg)dKk (3.25)
Compare this with the definition of variance, viz:-
VR,xg) = [ (% - E(XIx0))Z X(RIxg)dR (3.26)

For an unbiased estimator MSE and variance are equivalent; when one

is considering biased estimators MSE is the more relevant quantity.

The bracketed quantity (X - xg)2 In equation (3.25) is an
example of what is referred to in risk theory as the loss or penalty
function (c.f. Hogg and Craig, 1978). This is defined as a non-negative

number, L(R,xy), which measures the 'loss’ involved in adopting as the



true distance the value taken by the estimator, X, when that true
distance is actually equal to xg. Another natural choice for the loss
function is L(R,x9) = IR - xgl, i.e. the absolute difference between %
and xg. For any general loss function, L(X,x), we may define the risk

function R(R,xg) by:-

——-a s

RS o .

r... . -
R(R,xg) = IL(x,xo) X(R|xq)d& (3.27)

l.e. the risk function is just the expected value of the loss function,
and may be used as a criterion for determining whether X is a good
estimator of distance. Furthermore, an estimator for which the risk
function is a minimum might be considered in some sense to be ’best’.
The most appropriate loss function to use wlill ultimately depend on
the context of the problem. For example, if large estimation errors
were considered especially problematic then L(%,xg) = (X - x0)2 would

be more suitable than L(&,xg) = 1% - xgl.

The loss function L(%xg) = (% - xg)2 appears very frequently
in the statistics literature and Is often assumed when not stated
explicitly. In the interests of keeping our terminology as simple as
possible we will follow this convention and, for the most part, will
adopt the term risk to refer exclusively to the risk function computed
with  L(%,xg) = (R - xg)2, as in equation (3.25). Thus, unless we
specifically make a distinction, we will use the term risk, R(X,xg),

synonymously with the MSE, €(%,xq)

The computation of bias and risk is straightforward for Ry,

Xp and RMaAL: Indeed, one may readily establish an expression for the
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nth moment of an estimator, %, of the form:-

& =10 (3.28)
for any constant, A viz:-
E(XNIxg) = xoN ®(-510gxg-4nc2/0) exp(kno?(A - ¥kn))
(3.29)

®(-51ogxy/0)

where k = 0.2/n10 = 0.46

It follows from equation (3.29) that E(RIxg) »+ X9 as xg = O, if & = k.
This is the condition which defines the ’proximal’ estimator, %p, for

which A = 0.23.

Figures (3.8) to (3.11) show graphs of the percentage bias
and risk of Xy, ®MaL and Rp calculated as a function of true distance,

and for ¢ = 0.5 and o = 1.

Note that both the bias and risk of each estimator are highly
sensitive to the true distance, xg - which is unknown. All of the
estimators are negatively biased at large xg; this is directly due to
the effects of luminosity selection and would result in the familiar
systematic underestimation of distance. For example, if the true
distance were equal to 1.5 then the expected values of Ry}, XN, RMAL

and %p would be 1.05, 0.68, 1.35 and 0.6 respectively (o = 1).
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On the other hand, the positive percentage bias of the ’naive’
estimator at small xg is not due to selection but rather to the
non-linear relationship between distance and magnitude. This positive
bias as xg tends to zero disappears if we consider estimates not of
distance, but of /og distance (i.e. the distance modulus). Thus, a
'naive’ estimator of logxg, defined in the obvious way, is unbiased as
Xxo » O; see section (4.5.1). This will no longer hold, however, if there

is luminosity selection at small xq (c.f. section 4.5.1).

We can see, nonetheless, that the percentage bias of Xp does
tend to zero as xg tends to zero, as expected, and remains essentially
zero for all xg < 0.2 (¢ = 1) or for all xg < 0.4 (9 = 0.5). Note also,
however, that Rp has the worst percentage bias and risk at large

distances.

The calculations of bias and risk for the maximum likelihood
estimator introduce a significant problem. The integral expression for
the expected value of XM, as given in equation (3.23), does not
converge for any value of xg. E(XqIXg) Is, therefore, infinite for all
true distances, so that this estimator necessarily has infinite
percentage bias and risk. Thus, although Ry is well-defined for all m
< my, the form of its distribution function close to the magnitude limit
renders bias and risk meaningless as a method of comparison with
other estimators. This is not an uncommon problem in statistics where
many distributions, such as the Cauchy distribution for example, have
theoretical moments which are all infinite (c.f. Hoel, 1962). Indeed,
Cauchy-type distributions are often used in astrophysical modelling of

e.g. the profiles of emission lines in stellar atmospheres (c.f. Rybicki
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and Lightman, 1979).

It is possible to modify the definition of the maximum
likelihood estimator so that its moments are defined and take on finite
values. There are several ways to achieve this; for example, one can

define a new estimator, XM ¥, with finite bias and risk as follows:-

(3.30)

i"*- {Rm_ for &y < «
o=

« for Rm_)«

Thus whenever m;_ - m is less than some prescribed value, € say, the
distance inferred by *ML* is simply put equal to some fixed constant,
«, which is the distance inferred by the unmodified maximum likelihood

estimator when mi_ - m is equal to €.

The value of « chosen will determine how closely to the
magnitude limit observations are allowed to be taken before the
modified form of the estimator is used. One would therefore expect the
bias and risk of Ry * to be dependent on « Figures (3.12) and (3.13)
show the percentage bias and risk of R * for different values of «
and for o = 1. It is clear from these figures that the choice of « will
greatly affect the range of true distances for which the percentage
bias and risk of this estimator are small. In particular, we can see
that the percentage risk takes its minimum value at xg = « but
increases sharply at smaller distances. Similarly, the percentage bias
is small only within a narrow range of distances around x5 = 0.8x It
would seem, therefore, that at least some order of magnitude
knowledge of the true distance is very important before an

appropriate choice of « can be made, since a poor choice may result in
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a large systematic error.
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Figure (3.12)

Percentage bias as a function of true distance, xg, of the maximum
likelihood estimator, f(ML*, modified by an upper limit, «, shown for
values of « = 1.0, 1.5, 2.0 and 4.0 (c=1)



89

Percentage Risk of *HL*

0.0 0.2 0.4 0.6 0.8 .0 1.2 1.4 1.6 1.8 20

Figure (3.13)

Percentage risk as a function of true distance, xg, of the maximum
likelihood estimator, 2m_*, modified by an upper limit, «, shown for

values of « = 1.0, 1.5, 2.0 and 4.0 (o =1)



Another method of modifying XML, and indeed any estimator,
is to reject galaxies whose magnitudes lie close to m_ (within am of
mg, say). The conditional distribution, C(mixg), would then be
redefined as non-zero only on the interval (-, m_ - am), with the
appropriate renormalisation. This will, of course, change the expected
value of each estimator, and in the case of Ry will yield a finite
result. Figures (3.14) to (3.17) compare the percentage bias and risk
of all estimators for different values of o, after rejecting observations

closer than 0.5 magnitudes to mj.

A number of points are clear from these graphs. Note that
the choice of estimator with least percentage bias or risk is strongly
dependent on the unknown true distance. Generally speaking, the bias
and risk of Xp are least at small distances but greatest at large
distances, while the opposite is true for XmaL. Furthermore, at any
glven distance the least-biased estimator may not have the smallest
risk. For example, at xg = 0.7 the bias of &y is smallest but XN has
the least percentage risk. Another interesting feature is the fact that
the minimum bias and minimum risk of any estimator do not, in
general, occur at the same distance. Moreover, the range of distances
for which each estimator has small bias and risk depends on the value
of 0, and also indirectly on m_ and Mg since these define the unit of

distance.

Clearly, therefore, it is not easy to identify which of these
estimators is the most appropriate to use, since this will depend very
much on the true distance of the observed galaxy. One might select

the 'best’ estimator by assuming the true distance to lie within a
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Figure (3.14)

Percentage bias of XML, XN, XMaL and Rp as a function of true
distance, xg, after rejecting observations within 0.5 mag of m_
(o = 0.5)
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Percentage Risk

Figure (3.15)

Percentage risk of RMp, XN» XMaL and Xp as a function of true

distance, xq, after rejecting observations within 0.5 mag of m_
(o = 0.5)
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Percentage Bias

Figure (3.16)

Percentage bias of ML, XN+ XMAL and Xp as a function of true

distance, xq, after rejecting observations within 0.5 mag of my
(6 =1)
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Figure (3.17)

Percentage risk of XML, XN» XMAL and Xp as a function of true

distance, xg, after rejecting observations within 0.5 mag of m_
(0 =1)
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particular range. For example, If we assume that xg < 1.2 then RyMaL
appears to be the best choice of estimator. If, however, the true
distance were considerably less than unity, then using RyMapL would

result in a large systematic error.

3.5 Confidence Intervals for Distance Estimates

If we are to use our estimators in a practical setting, for
the analysis of real data, then it is important that we are able to
assign some error to the estimates which we obtain. Thus far we have
considered only point estimators, for which the risk provides some
indication of their precision. One could, therefore, use the risk to
assign a distance error to an observation were it not for the fact that
the risk is a function of the true distance, and so is not known
precisely. One possible solution to this probiem is to assign an error
by computing the risk at the estimated distance. However, this may
lead to spurious results if the risk changes rapidly with true
distance, as Is frequently the case with the estimators which we have

studied.

A more rigorous approach is to directly obtain an interval
estimate for the true distance. We will now describe a procedure for
constructing a (1-x)100% confidence interval for the distance. The
formal definition of such an interval states that the probability of the
interval containing the true distance, xg, is precisely (1-x) no matter

what that true distance is.
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Consider a random variable, z, whose distribution, X, is a
function only of the unknown parameter, Xg. Clearly any of the point
estimators which we have studied are suitable choices for z. One
simple way in which a confidence interval can be constructed (c.f.
Mood and Graybill, 1974; Simmons and Stewart, 1985) is to find zy and

z, for each xgp such that:-

Z4
| x(z1x0)dz
0

|
b

(3.31)

and

z2
f X(zlxg)dz
0

(1-x) + X (3.32)

where » € [0,x) but is otherwise arbitrary.

We assume that both z4 and zp are monotonic functions of xg;
an example of this is shown in figure (3.18), where we plot zy and 2z,

as functions of xq.

For any value of Z = zx, we may draw a line parallel to the
xg axis and find xp = zp"1(zx) and xy = z9~1(zx), the xg coordinates of
the points of intersection with the curves z; and z4 respectively, as
shown in figure (3.18). Now, whatever the true distance, xg, may be it

follows from the construction of zy and zp that

Pr( z9(xg) < z < za(xg) ) = (1) (3.33)
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However, z1(xg) < z < za(xg) if and only if xa(z) < Xg < x9(z), for any
possible value of the random variable, z. Thus, the interval (xp,x{) will

form a (1-x)100% confidence interval for the distance xgq.

Figure (3.18)

Example of typical upper and lower confidence interval curves, z4(xg)

and zy(xg), as a function of true distance, xg
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As an illustration we now demonstrate how thesé ideas may
be applied using as our random variable the ’nalve’ estimator, XN, the
distribution of which depends only on the true distance, Xg, for a
given o. Figure (3.19) shows graphs of zy(xg) and zo(xg) at the 68%
(10), 95% (20) and 99% (30) level, for 0 = 1. The value of A used In
each case was *x, so that the two tails of the distribution were of
equal area. For any estimate, Xy = xx, of distance, one may read off a
confidence interval for the distance from the points of intersection of
the appropriate curves with the line Xy = xx. For example, suppose
that the apparent magnitude of a galaxy is measured to be 13.6, and
that the limiting magnitude Is 15. From figure (1a) Ay = 0.5, so that a
68% confidence interval for the true distance is given by figure (10)

to be [0.3, 0.9].

It is easily seen from figure (3.19) that for observations close
to the limiting magnitude the confidence intervals will quickly become
extremely large. Furthermore, the estimated distance will not lie within
the confidence interval for xg; this is consistent with the large

negative bias of the point estimator, &y, at large distances.

Clearly, however, the confidence intervals constructed using
Xy are in no way unique. Any of the estimators defined in this
chapter (or, indeed, any suitable random variable, whether a distance
estimator or not!) could have been used in place of Ry, according to
the prescription which we have described. In the next chapter we will
see further examples of confidence intervals constructed from more

reliable distance estimators.
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Figure (3.19)

Confidence interval curves for the true distance, xg, at the 68% (10),
95% (20) and 99% (30) levels, computed from the distribution function

of the estimator %y (0 = 1)
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3.6 Summary and Conclusions

In this chapter we have presented a statistically rigorous
method for defining point and interval estimators of distance, and for
studying their distributions and properties. We have illustrated the
application of this method to a simple case: where distances are
estimated using only measurements of apparent magnitude, and for a
Gaussian LF and Heaviside selection function. Our analysis may easily
be adapted to derive estimates of other functions of distance, or to
incorporate a different LF or selection function - e.g. a Schechter LF
(c.f. Schechter, 1976) or a sigmold-type selection function (c.f.

Teerikorpi, 1975).

We have compared the distributions of a number of different
estimators and, in particular, have calculated the percentage bias and
risk of each estimator as a function of true distance. Our results
demonstrate that the problem of choosing an ’optimal’ distance
estimator has no straightforward solution. The fundamental difficulty is
that the properties of an estimator will, in general, depend on the
true distance, which is unknown. The estimator which we select as
'best’ - by whichever criterion we choose to adopt (e.g. minimum bias,
minimum risk or any other appropriate statistical measure) - may be a
poor choice if the true distance of the observed galaxy does not lie

within a preferred range.

Using precisely the same statistical methods as we have
introduced in this chapter, we will now extend our analysis to the

estimation of distance from two observables.
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4. ESTIMATION OF DISTANCE USING TWO OBSERVABLES

4.1 Introduction

The aim of this chapter is to extend the analysis introduced
in chapter (3) to the case where one defines distance estimators which
are functions of two observables: e.g. by combining with the apparent
magnitude measurements of another observable quantity such as the
apparent diameter or 2icm line width of a galaxy. Following closely the
statistical formulation presented in the preceding chapter we will
derive expressions for the distribution of two observables at a given
true distance, taking Into account luminosity selection effects, and use
this distribution to define and investigate a number of estimators of

that distance.

Intuitively there would seem good reason to suppose that
these estimators might be more reliable than those considered in
chapter (3) since one is utilising more information about the galaxies
which one is observing. We have seen in chapter (2), however, that
opinion is divided over precisely how best to combine measurements of
several observables. Recall in particular that there has been some
disagreement over the choice of linear regression most appropriate for
deriving distances from e.g. the Tully-Fisher or Dnp-o relations (c.f.
Tully, 1988; Dressler et al, 1987). We will show that the different
methods of regression used in the literature each correspond to
distance estimators which arise naturally from our rigorous
formulation. Thus, by computing the distribution, bias and risk of

these - and other - estimators we will be able to assess critically the
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relative merits of each and clarify the question of how best to

estimate distances from measurements of several observables.

4.2 The Observed Distribution of m and P

Let the absolute magnitude, M, and position, r, of a galaxy be
random variables. Introduce a third random variable, P, which denotes
some intrinsic physical characteristic of the galaxy such that the
measured value of P provides information on the value of M; i.e. M and
P are correlated. This notation is used by Teerikorpi (1984). Suppose,
however, that neither M nor P is correlated with r so that we may
introduce ¥(M,P), the intrinsic joint distribution of M and P, which is
independent of position. Let N(M,P,r)dMdPdV denote the actual number
of galaxies in volume dV at position r with absolute magnitudes in the
range M to M+dM and P values in the range P to P+dP. Clearly we may

write:-

N(M,P,r)dMdPdV = ¥(M,P)n(r)dMdPdV (4.1)

where n(r) is the number density of galaxies at position r.

Consider now the joint distribution, o(M,P,r), of M, P and r
for observable galaxies in a sample subject to selection effects - as
described by a selection function, S(M,P,r), defined in a similar manner
to the function, S(M,r), of chapter (3). Note that S(M,P,r) is
independent of direction; i.e. we may write S(M,P,r) = S(MP,|rl).

Substituting from equation (4.1), it follows that o(M,P,r) is given by:-
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¥(M,P)n(r)S(M,P, Irl)
p(")P,L) < (4’2)
”J ¥(M,P)n(C)S(M,P, | £l )dMdPdV

It now follows from equation (4.2) that the conditional
distribution, &(M,P|rg), of absolute magnitude, M, and P at a given

distance, rg, for observable galaxies is given by:-

W(M!P)S(",Piro)
E(M,Plrg) = (4.3)
[] vou,prsm,p,rg)amap

Note that, as for the magnitude-only case, this distribution is

independent of the local density, n(r).

Finally, we change variables in equation (4.3) to apparent
magnitude, m, and P. In general one may be unable to measure P
directly: for example, if P were equal to the absolute diameter of the
galaxy then one would observe instead the apparent angular diameter
- so that both P and M would require a change of variable in order to
express equation (4.3) in terms of measurable quantities. We will
generalise to this case later; for the moment, however, suppose that P
is measurable directly - as would be the case with, for example, the
2icm line width. Thus, the conditional distribution, &(m,P|rg), of m and

P at true distance, rg, is given by:-

¥(m-5logrg-25,P)S(m,P)
¥(m,Plrg) = (4.4)
IJ ¥(m-51ogrg-25,P)S(m,P)dmdP

We will assume that ¥(M,P) has a bivariate normal

distribution, following e.g. Teerikorpi (1984), viz:-
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¥(M,P) = (2moyopv(1-02))~1 exp[-Q(M,P)/2(1-02)] (4.5)

where the quadratic form, Q(M,P), in the variables M and P is given
by:-

Q(M,P) = (M-Mg)2/0y2 + (P-P)2/cp2 - 20(M-Mg)(P-Pq)/oyOp.

Here Mg and Py are respectively the mean values of M and P, oy2 and
op2 are the variances of M and P, and ¢ is the correlation coefficlent

for M and P, which lies in the range [-1,1].

We will consider here the case where the selection function
depends only on the apparent magnitude; i.e. there is no selection on
P and one may sample P completely at any apparent magnitude. This is
the key assumption in the ’bias-free’ recipe of Schechter (1980) and
later authors, and also leads to an aigebraically simpler analysis.
Furthermore we will firstly assume that the magnitude selection effects
are described by a Heaviside function at some magnitude limit, m , as

in equation (3.6). Thus, we may write:-

1 if m < mp
S(m,P) = _ (4.6)
otherwise

Substituting for ¥ and S, it may easily be seen that equation

(4.4) reduces to:-

exp[-Q(m-51ogrg-25,P)/2(1-¢2)] m<m
¢(m,P|rg) = /2n1(1-p2)oyop ¥(m_ -510grg-25-Mg/0Op) (4.7)

0 otherwise
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Where Q is as defined for equation (4.5).

Note that, because 'there is no selection on P, the argument
of the cumulative normal distribution, ®, in equation (4.7) is the same
as for the magnitude-only case in equation (3.7); i.e. the normalisation

of the conditional distribution, G, is the same for both cases.

We can further simplify equation (4.7) by re-expressing the
distribution using the scaled distance unit, ry, introduced in chapter
(3). Upon substitution from equation (3.16) we find that the conditional

distribution of observable galaxies at scaled true distance, xg, may be

written as:-
exp[-Q(m,P)/2(1-p2)] m < m
¢(m,Pixg) = v2n(1-e2)oyop ®(~510gxg/Oy) (4.7)
0 otherwise

where Q Is now given by:-

Q(m,P) = (m-m_-5logxg)2/oy2 + (P-Pg)2/0p2 - 2o(m-m -510gxq) (P-Pg)/oNop

Note that If we integrate out equation (4.7) over P, to determine the
marginal distribution of m at a given true distance, xp, we obtain
precisely the conditional distribution &(m|xg) of equation (3.17), as

derived for the magnitude-only case.

Figures (4.1) to (4.4) show plots of the joint conditional

distribution, &(m,Pixg), for different values of the scaled true
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distance, xg. The magnitude limit shown is m_ = 15 and the value of ¢
is taken to be -0.8; this is a typical value of the correlation
coefficient measured for e.g. the Tully-Fisher relation (c.f. Tully, 1988
and figure 2.4 of section 2.3). The surfaces are shown in isometric
projection and have been normalised to the same peak height by the

graphics routine. The P axis scale is in units of op.

Note that in figure (4.1), for xg = 0.25, the joint conditional
distribution is still to a good approximation bivariate normal, since
there is no appreciable Malmquist Bias at this distance. It is clear
from the other figures, however, that at larger true distances the
effects of selection cause considerable distortion to the shape of
&(m,Plxg) - although it should be noted that this distortion occurs
only in the m dimension, and the conditional distribution of P at any
given value of m (which corresponds pictorially to a vertical section
through the surface parallel to the P axis) is still a normal
distribution - even at large true distances - as may be easily verified

analytically.
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Figure (4.2

of observable galaxies at

&(m,Pixg),

Probability density function,

-0.8, m|_ = 15)

1, 0=

1, op =

(scaled) true distance xg = 0.5 (opm
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4.3 Definitions of Distance Estimators

In this section we will introduce a number of different
estimators of distance - or, more precisely, estimators of /og distance,
H, although clearly from any estimator of u, f1 say, one may immediately

define an an equivalent distance estimator, P, viz:-

(4.8)

The distinction between f# and 2 becomes non trivial only when one
considers the distribution of the estimators: in particular, an unbiased
estimator of log distance will not, in general, correspond in an
unbiased estimator of distance. The resulting bias is usually regarded
as a small effect, however, (c.f. Sandage and Tammann, 1975) and - as
we have already commented - almost all previous discussions in the
literature have defined distances to galaxies and discussed the bias of
estimators In terms of log distance. We will, therefore, adopt this
convention, although remaining aware of the potential source of

systematic error which it introduces.

It is convenient to describe log distances using the same
scaled distance units which we introduced in chapter (3). Consider a
galaxy at true distance, r MPc - i.e. at true distance, X, in scaled
units, where x = r/r_. Let w denote the true log distance of the

galaxy in scaled units. Then it follows that:-

w = logx = u - logry (4.9)
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Similarly, we introduce the notation @ = g - logr_ to indicate an

estimator of the log distance in scaled units.

4.3.1 ’General Linear Estimator’ : Qg
We may define an estimator of w simply by taking a linear combination
of the observables m and P. Thus we introduce a set of estimators of

the form:-

OgL = A(m -m ) +BP +C (4.10)

where A, B and C are constants. This is a natural choice for an
estimator of w if one assumes a linear regression relationship between
M and P (e.g. if one assumes that E(M|P) = aP + b, for constants a
and b). More specifically, suppose one derives (via linear regression
or otherwise) the straight line relation M - Mg = A(P - Pg), where Mg
and Py are as defined above and the slope, 4, is a constant. We have
seen in chapter (2) the standard procedure used to infer distances
from such a relation (i.e. estimate M from the observed value of P and
then combine with the observed apparent magnitude); it follows from
equations (3.8) and (4.8) that this procedure is equivalent to defining

an estimator of w given by:-

0 = 0.2(m - my) - 0.2A(P - Pp) (4.11)

which fits the general form of equation (4.10).

Recall from chapter (2) the four types of linear regression
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which have appeared in the literature in connection with the
calibration of Tully-Fisher type relations: these are (in the notation of
this chapter) regression of M on P; regression of P on M; ’orthogonal’
regression and ’bisector’ regression (see section 2.3 for more detalils).
By substituting in equation (4.11) the appropriate value of A, the slope
of the regression line, we may thus write down the estimator which
corresponds to «calibration by each particular type of linear
regression. Feigelson et a/ (1990) provide algebraic expressions for A
determined for the four regression lines listed above, as well as a
fifth - the 'reduced major axis’ regression, known more commonly to
astronomers as Stromberg’s “"impartial” line (Stromberg, 1940; Kermack
and Haldane, 1950). Using the results of Feigelson et a/ we define in
table (4.1) five general linear estimators, corresponding to the five
different regression lines. The first of the these, derived from a
regression of M on P, we will denote as the 'Tully-Fisher’ estimator,
OTE, since this regression was used (albeit purely on the basis of an
’eyeball’ fit) to calibrate the Tully-Fisher relation in the original paper
which introduced the method (Tully and Fisher, 1977). The second
estimator, which is derived from the P on M regression, we will denote
as the ’'Schechter’ estimator, Qg, since a regression of P on M is the
central idea of the ’bias-free’ recipe first proposed by Schechter

(1980).

Several points are clear from table (4.1). Note that if p = #1
(i.e. no scatter in the relation) then & = #Oy/0p for each regression
line, so that all five estimators are identically equal in this case. As
the correlation between the variables decreases the values of & for the

five regression lines will diverge and the estimators will, in general,
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infer different distances from the same observed values of m and P.

One is then, of course, faced with a choice of which estimator to use.

Type of
Estimator Regression Value of A
Q'": Mon P oM °
%p
g Pon M ™
OP e
1
Op Bisector o | Mo [ % o2+ L4 o ]5
1 - 2 Ou ©p on2 2 op?
1
Qp orthogonal | 5o l on? - op2 + [(ou? - op?)2 + w2022 }
Reduced +Oy
Oy Major Axis oo
(Impartial) P
Table (4.1

General linear estimators of log distance, w, corresponding

to calibration of the M - P relation by different regression lines.
Each estimator is of the form @ = 0.2(m - m ) - 0.2a(P - Pg), where &
is the slope of the appropriate regression line.
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One might perhaps reject immediately the ’impartial’ estimator if there
is appreciable scatter in the relation, since the slope of the ’impartial’
regression line is not sensitive to the value of o. Indeed, for this
reason Feigelson et al (1989) warn against use of the ’impartial’
regression line to calibrate linear relationships. To assess rigorously
the relative merits of the other estimators we must compute their
distribution - as was the case for the simple distance estimators of
chapter (3). Before we do this, however, it is instructive to look at
the estimators "in action” by considering some specific numerical

examples.

Figures (4.5) to (4.7) show graphs of the distances inferred
from our different general linear estimators for the particular case of
the Tully-Fisher relation. We plot the estimated distance as a function
of observed 21cm line width, for different values of the correlation
coefficient, . The distances were calculated from the estimated log
distance, @, in the obvious way - after first converting from scaled
distance units by assuming the values of Mg = -20 and m_ = 15,
(These give the convenient scaled distance unit of 100 MPc.) The mean
log(line width), Py, was taken to be 2.5 and the dispersions oy and op
to be 1.0 and 0.1 respectively. The observed value of m substituted
into equation (4.11) was taken to be 15 in all cases; i.e. the galaxy was
assumed to be observed at the magnitude limit. In fact, the choice of
value of m is not important for comparative purposes since it follows
from equation (4.11) that any change in m would simply rescale each

of the distance estimates by the same constant.
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Estimated Distance (Mpc)
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Figure (4.5)

Distances inferred from different general linear estimators of w, as a
function of observed log(line width), P, and for ¢ = -0.9
(Mp = -20, m=m_= 15, oy = 1, Oop = 0.1, Pg = 2.5)
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Estimated Distance (Mpc)
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Figure (4.6)

Distances inferred from different general linear estimators of w, as a
function of observed log{(line width), P, and for ¢ = -0.8
(MO = -20, m=m_= 15, oy = 1, Op = 0.1, Pg = 2.5)
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function of observed log(line width), P, and for ¢ = -0.7
(MO = -20, m = m_ =15, oy =1, op = 0.1, Pp = 2.5)
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A number of properties of the estimators can be seen from
these graphs. Firstly, note that when the observed log(line width) lies
close to the mean value, Po = 2.5, there is little difference in the
distance inferred by each of the estimators. At other observed line
widths, on the other hand, there is considerable spread in the
distance estimates - particularly when P > Pg. (Note, however, that the
estimates given by the ‘’orthogonal’ estimator, @Qg, are almost
indistinguishable from those of the ’'Schechter’ estimator, Qg. This Is
not the case in general but in our present example is a consequence
of the fact that the dispersion of P is very much smaller than that of

M. In fact it may easily be shown that as op/oy =+ 0, Og » Qg.)

Suppose, for example, that the observed log(line width) were
equal to 2.7 (i.e. Py +20p). From figure (4.5) we see that, for ¢ = -0.9,
this would give the following distance estimates (converting back to
MPc): 228MPc (fyfp); 278MPc (fg); 278MPc (fg); 249MPc (fg) and 251MPc
(7). This spread increases further as the scatter in the M-P relation
increases. If o = -0.7, for example, then we obtain the following
distance estimates from figure (4.7): 190MPc (fyg); 373MPc (fg); 370MPc
(fo); 237MPc (fg) and 251MPc (fy). Note that in both cases the largest
estimate is obtained from fg and the smallest from fyg, as one would

expect from the slopes of the various regression lines.

It is clear from figures (4.5) to (4.7), therefore, that as the
observed line width increases beyond the mean value, Pg, the
discrepancy between the different estimators will increase and the
choice of which is most appropriate becomes non-trivial. We can ook

at this another way: although we have assumed that there is no
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selection In P (i.e. that any line width is observable) we know that
because of magnitude selection we can expect the more distant galaxies
which we observe to be intrinsically more luminous. It then follows
from the correlation between M and P that the expected line width of
more distant observed galaxies will be large. We can express this idea
more rigorously by determining the expected log(line width), E(Plxg),
at given (scaled) true distance, Xop» . This is easily obtained by

integrating equation (4.7) and is given by:-

E(PIxg) = Pg - op e exp[-1/20,2(510gxg)2]

—— (4.12)
v2n ®(-5logxqg/oy)

The form of the right hand side is familiar from equation (3.14), which
glves the mean observed apparent magnitude at true distance, xg, in
the magnitude-only case. Substitution of the parameter values used in
the above examples confirms that E(P|xqg) increases with true distance,
Xo- We can, therefore, expect the discrepancy between the distance
estimators to become more pronounced as the true distance of an
observed galaxy increases, so that the choice of which estimator is

'best’ becomes particularly important for more distant objects.

It should be mentioned in passing that one might consider
using equation (4.12) as a means of defining an estimator of distance:
i.e. one defines the distance estimate to be equal to the value of xj
for which the observed log(line width), Pgopg, is equal to the mean
value at that distance, E(P{xqg). This is precisely the same idea as
used to define the 'mean’ estimator of chapter (3). The problem here is
that one observes both m and P, so that the value of xg which

satisfles E(PIxg) = Pgpg Will in general be different from the value
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which satisfies E(mIxg) = mgpg; i.e. one cannot glve a consistent
definition of the estimator. A similar problem arises if one tries to
define a ’'mode’ or ’'median’ estimator using two or more observables.
One may still define a ’'maximum likelihood’ estimator, on the other

hand, as we will now show.

4.3.2 'Maximum Likelihood Estimator’: Qy
This estimator is defined as the value of Wy which maximises the
probability, with respect to wy, of obtaining the observed values of m

and P. Therefore Qy_ satisfies:-

(4.13)

1]
o

2 G(m=mgpg,P=Popsixg)
o Wo=OM

where wg = logxq.

It should be stressed that, because of selection, the ’maximum
likelihood’ estimator will not, in general, be expressible as a linear
function of m and P. Indeed, substituting from equation (4.7) we find

that Oy satisifes:-

m-m_ - eoy(P-Pg) = 50y - (1-p2)oyexpl-1/20p2 (50 )2]
p /21 &(-50 /oy)

(4.14)

which clearly shows the non-linearity of Gy . Moreover, it is not even
possible to express Oy in closed form as an explicit function of m
and P; the value of the estimator must be determined implicitly from
the above equation. Comparing with equation (4.11) it is clear that

when p = 1, Qy_ is identically equal to each of the general linear
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estimators, as the second term on the right hand side vanishes. Since
this term is always negative for ¢ # #1, it follows that Qy_ > @Opf, for

all observed values of m and P.

Figure (4.8) compares distances inferred from Qv with those
from Qg and Qup, for the particular case of the Tully-Fisher relation
using the same parameter values as figure (4.6). Note that distance
estimates obtained from OML are greater than those from the general
linear estimators - as was the case in chapter (3). One might therefore
suspect that OML would be more reliable for very distant galaxies; we
will investigate this further by studying the distribution of each of

the above estimators.
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Figure (4.8)

Distances inferred from Gy , Oy and Qg as a function of observed
log(1line width), P, and for ¢ = -0.8

(Mg = =20, m=m_ = 15, oy = 1, 0p = 0.1, Py = 2.5)
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4.4 Estimator Distributions

We may derive the probability density function of any of the
above estimators by a very similar method to that of section (3.4).
First observe that each @ is a function of the random variables m
and P; i.e. @ = Q(m,P). Now define a transformation, T, which maps
(m,P) to (Q,P). The joint distribution of @ and P may then be written
down in terms of the observed distribution of m and P at true
distance, xp - as given by equation (4.7) - and will therefore depend
on the true log distance, wg. viz:-

n(Q,Plwg) = ¢(m(Q,P),Plxq)

a(m,P) (4.15)

3(Q,P)

The jacobian of the transformation is defined in the usual way and
may be computed from equation (4.11) for the ’general linear’
estimators or from equation (4.14) for the ’maximum |likelihood’

estimator.

Finally, the distribution of @ is obtained by integrating

equation (4.15) over P. Thus we have:-

0(0lwg) = j n(©,Plwy)dP (4.16)

For the ’maximum likelihood’ estimator this integral must be
carried out numerically, but it is possible to determine the distribution
of QgL = A(m - m) + BP + C analytically, expressed in terms of the
constants A, B and C and the parameters of the bivariate distribution

of M and P. After some rather messy algebraic manipulation we obtain
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the following:-

a(0g lwg) = exp[-}#(T-v2/46)] S[¢¥%(Qg -C)/B+v/2¢]
J2mAoyop /@(1-02) (-5ug/oy)

(4.17)

T, V and & appear here simply as a shorthand to make
equation (4.17) more compact. The expressions which they stand for

are:-

1 gt 20B 1
b = + y —
1 '92 A20M2 AOMOP OP2

-2 [ B(QgL-C-5Awg)  BePy + o(QgL-C-5Awy)  Pg ]
v = + + —
1-02 A2oy2 AoyOp op?
1 [ (OgL-C-5Awg)2  2pPo(@gL-C-5Awg)  Pg
T = + + —
1-02 AZoy2 AoyOp op?

Figures (4.9) to (4.11) show examples of the distribution
functions of Og, Org and Oy respectively, at different true

distances.

A number of basic properties of the estimators are illustrated
by these graphs. Firstly, we can see that when xg = 0.5 (or 50MPc,
taking our usual conversion from scaled units) each estimator is to a
good approximation normally distributed, with modal value coincident
with the true log distance, wy (indicated by the dotted line) so that
there is no significant bias in the expected value of any of the
estimators at this distance. This must be the case since, If there is no
magnitude selection at this distance, then the joint distribution of m

and P for observable galaxies will be bivariate normal, and hence any
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linear combination of m and P will also be normally distributed.
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Figure (4.9)

Probability density function, Q(@pglwg), of the ’Tully-Fisher’

1.0 and 2.0
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estimator at true distance, X0
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From figure (4.9), however, we can see that at larger true
distances this is no longer the case for @yg: although the distribution
of @pf remains close to normal for large xg, it is no longer
symmetrical about Wy but is displaced progressively leftwards of Wy
The ’Tully-Fisher’ estimator is , therefore, negatively biased at large
true distances and its use will result in the systematic underestimation

of galaxy distances.

Consider, on the other hand, the ’Schechter’ estimator: it is
apparent from figure (4.10) that the distribution of Qg does not
change in shape as the true distance increases. In fact, upon
substitution of the appropriate values of A, B and C in equation (4.17),
we may show that the distribution of 03 reduces precisely to a normal
distribution, with mean value wg anq variance given by
0.04042(1-p2)/02, at all true distances. This is entirely consistent with
the fact that measurements of P are free from selection effects, and
confirms that the ’Schechter’ recipe will indeed give unbiased

estimates of the true log distance, wg, for all wq.

Finally we can see from figure (4.11) that the distribution of
the 'maximum likelihood’ estimator is also basically gaussian in form at
various true distances; moreover the modal value of @y appears to be
approximately coincident with Wy, so that this estimator does not
display significant bias, even at xg = 2.0. Furthermore, on closer
comparison with figure (4.10) it may be noted that the spread in the
distribution of Qg is at least as large as that of OuL at the same
distance - and Indeed is somewhat larger for xg = 0.5 and xg = 1.0;

i.e. the variance (or, equivalently for unbiased estimators, the risk) of



130

oML Is less than or equal to the variance of Os. If we recall the
definition of risk from equation (3.26), this means that the expected
root mean square error on a distance estimate obtained from any
single observation will be smaller for @y, than for dg. It may also be
seen from figure (4.9) that, at each true distance shown, the variance
of @yf is smaller than that of both @y and Qg - although the latter
estimators may in general have smaller risk since it follows from the
definitions of risk and variance that the risk of a biased estimator is

always strictly greater than its variance.

The examples of estimator distributions considered above give
some indication of the relative merits of these estimators; in particular
the unbiasedness of the ’Schechter’ estimator is clearly a desirable
property, and when one wishes to estimate distances from a large
number of observations 03 would seem to be the most appropriate
choice. However, these graphs also demonstrate that the dual role of
both bias and risk in determining a ’best’ estimator cannot be
overlooked. In particular the risk of Qg is found to be given by
0.04042(1-02)/02, which may be very large if M and P are poorly
correlated. If, for example, ¢ were as low as -0.5 then the risk would
be equal to 0.12, which corresponds to a root mean square percentage
distance error of 35%. Thus, although Og would still be unbiased in
this case - so that one would not expect a large number of estimates
of wy to display a systematic error - the expected distance errors on
a small number of observations would be considerably larger than

those found by using Oy or Oyg.

In the following section we will compute the bias and risk of
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each estimator as a function of true distance, in order to provide a

more quantitative assessment of which estimator is 'best’.

4.5 Bias and Risk of Estimators

The equations introduced in chapter (3) to define the bias
and risk of a distance estimator, &, have obvious counterparts for an
estimator of log distance. Thus we may define the blas, B(Q,y), and

risk, R(®Qug), of an estimator, O, at true log distance, wg, viz:-

B(O,wg) j @ - wy) 2(Olug)dd (4.18)

H

RO,w) = [ (@ - wp)20@lug)dd (4.19)

The computation of the bias and risk of the ’maximum
likelihood’ estimator must be carried out numerically; an analytical

treatment is possible, however, for the ’general linear’ estimators.

4.5.1 Bias and Risk of Qg

The derivation of expressions for the bias and risk of the
'general linear’ estimator is relatively straightforward but algebraically
tedious. Using equation (4.17) one can, of course, substitute for the
distribution, (dg_lwg), in the above equations and then integrate
directly. The analysis is made somewhat more tractable, however, by

re-expressing Qg and (0gp lwg) in terms of functions of m and P,
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using equation (4.10), (4.15) and (4.16). The expressions for both the
bias and risk are then reduced to a linear combination of integrals

over m and P, each of the form:-

Luy = || = m)H B com,Pixg)dmdp (4.20)

where the exponents u and V lie between zero and two. In this

notation the bias, B(Qgy,wg), is therefore given by:-

B(QcL,wo) = A.I1,0 + B.Io’1 + C - Wy (4.21)

The expression for the risk is somewhat lengthier. This approach is
similar to the use of moment generating functions for calculating the
bias and variance, which may often result in a simpler analysis of

statistical problems (c.f. Hoel, 1962).

Upon performing the necessary integrations and after some

further regrouping of the terms we find the following expressions for

the bias and risk:

B(Ogp,wp) = (5A-1)wg - (AOy+eBop) exp[-%(5wg/0y)2] + BPy + C

J/2n ®(-5wg/oy)
(4.22)

wg2(5A-1)2 + (Aoy+eBop)2 QL1.5,%(5wy/0y)2]
2 ¢(-5wp/oy)

R(Ggy,wp)

2(Aoy+eBop) (Wy(5A-1) + BPg+C) exp[-¥(5wy/oy)2]

/21 &(-5wy/0)

2wo(5A-1) (BPg+C) + (BPg+C)2 + B20p2(1-p2)

+

(4.23)
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Here Q(a,x) denotes the incomplete gamma function, defined as

follows (c.f. Abramowitz and Stegun, 1968):-

Q(a,x) = ‘F%ZT I ta-1,-tqt (4.24)

We can see that each of these expressions involves highly
non-linear functions of the true log distance, Wwo, so that in general
the bias and risk of Qg will be strongly dependent on the true
distance. The precise behaviour will clearly depend on the values of A,
B and C, however, and may be considerably simplified by suitable
choice of these constants. In particular, recall equation (4.11) which
defines the general linear estimator corresponding to a regression line
of slope, 4; for this special case we found that A = 0.2, B = -0.2A and
C = 0.28Pp. Upon substitution of these values-into equations (4.22) and
(4.23) we see that most of the terms vanish, regardiess of the value of
4, and the bias and risk are both independent of Pg. In fact, for all
of the general linear estimators considered in section (4.3) we may

re-express the bias and risk in the simpler form:-

B(OgL,Wwg) = - 0.2(oy-4p0p) expl-H(5wy/oy)2] (4.25)
/21 &(-5uwg/0y)
R(Qgp,wg) = 0.04(cy-400p)2QL1.5,%(5wy/0y) 2]

+ 0.04420p2(1-p2)

2 o(-5wg/op)

(4.26)

It is now clear from equation (4.25) that by choosing A to
equal oy/eop, the bias of Qg vanishes for all values of wy since the

constant term on the numerator is identically zero. This is precisely
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the value of A which defines the ’'Schechter’ estimator and confirms
that the ’Schechter’ scheme will give bias-free estimates of log
distance, wg, for all values of wy. Similarly the non-linear term In the
expression for the risk vanishes from equation (4.26), leaving only the
constant term which is equal to 0.040M2(1-92)/92, as was previously
established in section (4.4). The risk of Qg is, therefore, constant and
independent of the true log distance, which means that the percentage

risk of distances estimated using Qg will be constant.

At this point we should note that the values of A, B and C
which define Qg (and thus make Qg unbiased) are unique: the
'Schechter’ estimator is, therefore, the only estimator of this form
which Is unbiased for all true log distances. Certainly the ’general
linear’ estimators corresponding to the other regression lines will all,
in general, be biased. Figures (4.12) and (4.13) show the bias and risk
of the first four ’general linear’ estimators of Table (4.1) - we have
omitted the ’impartial’ estimator, @, which we have already seen in
insensitive to the value of p - together with a fifth, which we denote

as the ’naive’ estimator, Qy, defined by:-

Oy = 0.2(m - m) (4.27)

Thus, ON is a function only of apparent magnitude and is, in fact, the
estimator of log distance corresponding directly to the ’naive’
estimator of distance, Ry, defined in equation (3.18). We can compute
the bias and risk of @y simply by putting A=0.2, B=0 and C=0 in

equations (4.22) and (4.23).
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(oy = 1, op = 0.1, p = -0.8)



Risk

630 4 + + + + 4 t
el / }
/
a24 g — / 1l
O e /
o204 1
og e /
a2+ 00 o eeeeeeeee / 4
%
_____ /
204 Y / +
o1et / ]
/ i
0164+ / iR
/
| SLE 3 / +
a2 / 1
/
o104 / +
008 / 5
/
0.064 e 1
/e
oond— /e -
~ 2
~ - e aeee==="TT
‘&-: ceccemw= '_:.'.:.s--ﬁ""'-": ........ T
000 ¢ 3 : — 4 + +
o 1.0 1.5 20 25 50 s A0
XO

Figure (4.13)

Risk of different ’general linear’ estimators of distance

modulys as a function of true distance, xg

(oy = 1, op = 0.1, ¢ = -0.8)

136



137

Note that all of the estimators are unbiased when the true
distance is very small - including, QN> as was remarked in section
(3.4). Note also that the bias of the ’orthogonal’ estimator, Qq, Is
negligible even at large true distances, and indeed both the bias and
risk of Qg are almost indistiguishable from those of the ’Schechter’
estimator, Qg; this follows from the fact that the dispersion of P is
very much smaller than that of M, as we remarked previously in
section (4.3.1) in the context of the actual values inferred by these

two estimators.

Observe that, for xg » 2.3, g has the smallest risk of all of
these estimators - and is, of course, unbiased. It seems clear, then,
that at very large true distances Qg is the ’best’ of the ’general
linear’ estimators which we have considered. The picture is not quite
so simple at smaller true distances, however; we see that, although
Orf is the most biased of the four estimators which are functions of m
and P, it has the smallest risk for xg € 1.2 and consequently might be
regarded as the most suitable estimator in this true distance range -
particularly if one observes only a small number of galaxies. Against
this, of course, one must balance the fact that both the bias and risk
of @y increase sharply for xg > 1.2; if one wrongly assumes that the
true distance is less than 1.2 when it is, in fact, considerably greater
than unity then the use of @y would result in a large systematic
error. Nevertheless, it is at least evident that both the bias and risk
of @y are considerably worse than those of @yg, demonstrating the
advantage which may be gained by making use of other observable
quantities besides apparent magnitude to estimate distances. The

precise behaviour of the bias and risk of all of these estimators will
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depend on the value of the correlation coefficient, but the general

trends shown by figures (4.12) and (4.13) change little for different

values of o.

4.5.2 Bias and Risk of oML

Calculation of the integral expressions for the blas and risk
of the 'maximum likelihood’ estimator cannot be performed analytically,
but may easily be carried out using standard numerical packages.
Figures (4.14) and (4.15) show the bias and risk of Qy, as a function
of the true distance, xg, and for oy = 1, op = 0.1 and ¢ = -0.8. Also

shown, as a comparison, are the bias and risk of O@g and Oyf.

We can see from these graphs that the bias of @y, although
non-zero, is very small - even at large true distances. (It is also
interesting to note that the bias of @y is, in fact, positive.)
Furthermore, the risk of Qy is less than that of Qg, for all xg < 4.
Similar results are found for other values of ¢, although the bias of
@M does become increasingly significant for |e| < 0.4. On the basis of
these criteria, therefore, there would seem to be little to choose
between @y and Qg as the ’best’ estimator of log distance. Again, the
final choice may come down to the number of observed galaxies. If one
wishes to estimate the distance of only a few galaxies then the slightly
smaller risk of @y is a desirable property. If, on the other hand, one
has a large sample of galaxies then the removal of a systematic bias -
however small - in the distance estimates would be better achieved by

the use of @g. This would certainly be an important advantage in
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obtaining distance estimates for analysis of the velocity field - either
by sophisticated techniques such as POTENT, or indeed via simpler,
classical, methods such as the Hubble diagram. We will comment further

on these points in chapter (6).
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Bias of @y, Op and Og as a function of true distance, xg
(oy = 1, op = 0.1, p = -0.8)
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4.5.3 Bias of Distance Estimators

At the beginning of section (4.3) we drew attention to the
fact that the distance estimator, ® - defined according to equation
(4.8) from an unbiased estimator, @, of log distance - will not, in
general, be unbiased. Although the resulting bias of R has usually
been regarded as very small, it is worthwhile verifying this. Suppose
we define Rg, a ’'general linear’ estimator of distance corresponding

to OgL, as follows:-

Rgy = 10A("ML) + BP+ € (4.28)

By a similar analysis to that of the previous section, we can determine
the distribution of this estimator, and hence its bias and risk, as
function of true distance, Xg,» and for general constants A, B and C.
This again involves some rather tedious algebra, however, and in the
case of the ’Schechter’ estimator, Qg, there is a much simpler route to
the same result. We know that the distribution of Qg is normal with
mean value wg and variance equal to 0.040M2(1-92)/92. Using this fact,
it is straightforward to derive an expression for the expected value of

the equivalent estimator of distance, 23, viz:-

E(Xleo) = E(10°s|X0) = XoeXDEO.OZKZCMZ(1'92)/92:] (4.29)

where k = [In10 = 2.3. The bias of kg is then given by:-

B(Rg,Xg) = xg(expl0.02x20y2(1-02)/02] - 1) (4.30)

Thus, the unbiased 'Schechter’ estimator of log distance will

derive estimates of distance which are positively biased at all true
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distances. The effect is fairly small: substituting oy = 1 and ¢ = -0.8
in equation (4.29), we find that the percentage bias of Xg is less than
6%. The bias increases sharply, however, if there is poorer correlation

between M and P.

There would, therefore, seem to be reasonable justification
for studying estimators of log distance in order to establish ’best’
estimators of distance; the distance bias which is introduced is not too
large and the algebra is often simpler. Nevertheless, it follows from
equatibn (4.29) that simply by dividing the value of %g by the
constant factor exp[0.02K2cM2(1-92)/92], we can define distance
estimates which are completely unbiased at all true distances. (Of
course, if the correlation between M and P is high then this constant

is very close to unity and the bias correction is not important.)

4.6 Confidence Intervals

We have already seen in section (4.4) that the estimators
discussed so far in this chapter all have a distribution which is a
function only of the true log distance, wg; each may, therefore, be
used to construct confidence intervals for that log distance following

the method developed in section (3.5).

Specifically, in order to determine a (1-x)100% confidence
interval for Wp, using an estimator @ with distribution 2(Qlwg), we

require to find wy and wp such that:-
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“4
[ a@lug)a0
0

"
>

(4.31)

and

W2
[ a©lug)e
0

(1-x) + X (4.32)

where X € [0,x)

By plotting wy and wy; as a function of true log distance, Wy, a
confidence interval for wg may then be found by the simple graphical
procedure described in section (3.5). As an illustration of this, figure
(4.16) shows graphs of wy(wg) and wy(Wg) for ’equal tail’ (i.e. with X =
¥%x) 68% confidence intervals, computed from the distributions of Qy,

Og and Oy; and assuming oy = 1, op = 0.1 and ¢ = -0.8.

We can see from figure (4.16) that the 68% confidence interval
curves for Qg are, in fact, parallel lines. The same result is found for
any other confidence interval constructed from Qg; this is because the
distribution of Qg is normal with constant risk at all true distances.
Consequently, the width of confidence intervals constructed using Qg
will be independent of the ’observed’ value of the estimator (i.e. the
value of Qg determined from the observed values of m and P). This is
not the case with @y and Gy : we can see from figure (4.16) that
when the observed value of these estimators is small, both give
confidence intervals which are marginally narrower than those
obtained from @g, but the intervals become slightly wider as the value

of the estimators increases. This is not a large effect, however,
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Figure (4.16)

"Equal Tail’ (i.e. with X = ¥x) 68% confidence interval curves for
the true distance modulus, W, computed from the distribution
functions of Oyf, Og and Oy (oy = 1, op = 0.1, e = -0.8)
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and there is basically little difference in the width of the intervals
constructed from each of the three estimators. The other immediately
noticeable feature of figure (4.16) is the changing slope of the
confidence curves for @qg, and their divergence from those of the
other two estimators at large values of @Qrg. Consequently, one might
suspect that the confidence intervals constructed from Qg will tend
to be shifted towards larger values of wy compared with those
constructed from the other estimators. This is not necessarily the
case, however: for given observed values of m and P, Qg tends to
take smaller values than Qg, because of the negative bias of @y at
large distances, and this will shift the @y confidence interval to the
left, and closer to the interval constructed from @g at the same
observed values of m and P.

To fix these ideas consider a specific numerical example, for
the particular case of the Tully-Fisher relation, as was met previously
in section (4.3.1). Let the mean log(line width), Pg = 2.5, the mean
absolute magnitude, Mg = -20 and the limiting magnitude, m; = 15.
Suppose that we observe a galaxy with a log(line width) of 2.6 and an
apparent magnitude of 13.9. It then follows from equations (4.11) and
(4.14) that @yf, Og and Oy are approximately equal to -0.06, 0.03 and
0.0 respectively. We then obtain the following 68% confidence intervals
for wg from figure (4.16): [-0.16,0.12] (Oyg); [-0.12,0.18] (Qg) and
[-0.15,0.14] (OqL). We see, then, that each of the estimators gives a
fairly similar confidence interval for wg. If we take the narrowest
Interval, that obtained from @y, and translate the upper and lower
limits into distances we find a 68% confidence interval of approximately

TOMPc < rg < 130MPc for the true distance, rq.
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It is useful to compare the confidence intervals which we
have determined from these estimators with those obtained from the
'naive’ estimator, Qy, of log distance, introduced in section (4.6), which
is a function only of the observed apparent magnitude. Figure (4.17)
shows the upper and lower confidence curves constructed from the
distributions of @y and @yg. (For clarity we have omitted the Qg and
OMp curves). If we consider again the same numerical example as
above, we saw that the values of mgpg = 13.9 and Pgpg = 2.6 led to a
68% confidence interval for wy of [-0.16,0.12] from Q@yf. If, on the other
hand, we use only the measured apparent magnitude of the galaxy to
estimate its distance (so that @y takes the value -0.22) then we see
from figure (4.17) that the 68% confidence interval for wy constructed
from @y is [-0.39,0.15). This is almost twice as large as the interval
obtained from @yg. Translating both confidence intervals into distance

ranges we find the following: from Qy, 40MPc < ro < 140MPc as

opposed to 70MPc < rg < 130MPc from Qyg.

The narrower confidence interval obtained from @¢g as
compared with @y is consistent with the lower bias and risk of this
estimator, and may be regarded as a consequence of having more
complete information about the true distance. In other words, by
observing the line width of a galaxy we obtain useful information
about its absolute magnitude, which allows the likely true distance to
be 'narrowed down' more effectively than may be done purely on the
basis' of the observed apparent magnitude. The precise amount by
which the width of the confidence interval is reduced depends on the
value of p; as the scatter in the M-P relation increases, the width of

the interval found from @y increases. Indeed, in the limiting case
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Figure (4.17)

"Equal Tail’ (i.e. with X = %x) 68% confidence interval curves for
the true log distance, wy, computed from the distribution
functions of @pf, @y (oy = 1, op = 0.1, ¢ = -0.8)
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where M and P are uncorrelated, Qg must give precisely the same

confidence intervals as Qy, since as ¢ » 0, Oy » Oy

The value of the correlation coefficient will also affect the
width of confidence intervals constructed from the other estimators.
We can easily see this for Qg in the above example: since Qg is
normally distributed with variance 0.04042(1-92)/p2 at all true
distances, it follows immediately that the width of the 68% confidence
interval found from this estimator in figure (4.16) is simply twice the
dispersion of @g, l.e. 0.404v(1-02)/|el; the same e-dependence is found
for confidence intervals of other percentage levels. Thus we see that
the Intervals found from Qg can be very narrow if M and P are
sufficiently well correlated, but that if |p| is small then the intervals
will become very large; wider, indeed, than those obtalned from Qyf.
This Is again consistent with a comparison of the risk of these two

estimators.

Provided that the intrinsic variables, M and P, are suitably
correlated, therefore, these results would seem to provide a further
indication that the combination of a second observable with apparent
magnitude allows one to estimate the true distance of a galaxy

significantly more reliably than by using apparent magnitude alone.
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4.7 Extension to More General Cases

In concluding this chapter we now consider the fact that the
precise form of the expressions obtained in section (4.5) for the bias
and risk of Qg - or indeed any estimator - will certainly depend on
the particular assumptions which we have made. For example, we have
assumed that P is measurable directly and that the joint distribution
of M and P is a bivariate normal, independent of position; we have
described the selection effects by a Heaviside step function of m, as
given by equation (4.6), so that measurements of P are assumed to be
selection-free: it is important to determine the extent to which the
properties of these estimators are dependent on any, or all, of the
above assumptions. We will therefore now examine some specific
examples of ways in which our treatment may be extended to consider

-

more general cases.

4.7.1 P Not Directly Measurable

Suppose that the distance independent quantity, P, is not
measurable directly but rather that one may observe some other
quantity, p, which is related to P via the true distance, rg -
analogous to absolute and apparent magnitude. (We will refer to M and
P as /intrinsic random variables, and to m and p as extrinsic random
variables.) Consider, for example, the apparent angular diameter and
absolute physical diameter of a galaxy, the latter of which we have
seen is well correlated with the intrinsic luminosity for a number of

different morphological types (c.f. Holmberg, 1969; Paturel, 1979),
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Suppose further, for the sake of argument, that measurements of the
angular diameter are selection-free. If we identify P with the log of
absolute diameter and p with the log of apparent angular diameter

then neglecting, or correcting for, cosmological effects we have:-

P = p+ logrg = p+ wy+ logr (4.33)

This fits the more general relation:-

P = op+ A+ (4.34)

where «,B8 and ¥ are constants. If we again assume a bivariate normal
for the intrinsic distribution of M and P and adopt the selection
function of equation (4.6), so that we assume the measurements of p to
be selection-free, we can determine the joint distribution of the
extrinsic variables, m and p, for observable "galaxies and use this to
compute the distribution, bias and risk of the estimator, Qg,, defined

by:-

Ogt = A(mm.) +Bp+C (4.35)

We obtain the following expressions for the bias and risk respectively

of OGL:_

B(Qgy,wg) = (5A-BB/o-1)wg - (ACy+eOpBBR/x) exp[-¥(5wp/oy)?]

-/-é? 4’(‘5(4’0/0”)

+ B(Pg—»)/x + C (4.36)
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R(OgL,Wo) = wo2(5A-BB/a-1)2 + (Acy+eopBA/x)2 QL1.5,%(5wy/0y)2]
2 ®(-5wg/oy)

- 2(Aoy+eopBB/x) (Wg (5A-BR/x-1) + B(Pg-¥)/a+C)expl-%(5wy/0y)2]

/2n ®(-5wg/0n)

+ 2uwo(5A-BB/x-1)(B(Pg=7)/o+C} + (B(Pg-¥)/x+C)2 + (B/x)20p2(1-p2)

(4.37)

For the apparent diameter case, given by equation (4.33), the
constants of the p-P relation take the values « = {1, B = 1 and ¥ =
logr, which simplifies the expressions for the bias and risk a little.
Upon substitution we see that in order to define an unbiased estimator
we require to solve the following equations for the constants A, B and

C:-

56A-B-1=0
Aoy + Beop = 0 (4.38)
B(Pg - logr ) + C =0
We find the following solution:-
edp
A = _—
Oy + 500p
B = —j——— (4.39)
OM + 59°p
le]
¢ = ——— (Pg - logr)
oM t 590p

Thus, the estimator defined by:-
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OgL* = (oy + 500p)~1(eop(m-m_ ) - oyp + oy(Pp-Togr,))  (4.40)

is unbiased at all true distances. Moreover, we can see from equation
(4.37) that the risk of this estimator is given by B20p2(1-¢2), which is
constant, independent of the true distance and is identically equal to

the risk of the ’Schechter’ estimator.

As In the case where P Is measurable directly, the values of
A, B and C which make Og * unbiased are unique, so that there is
only one general linear estimator which is unbiased and of constant
risk. By suitable combination of A, B and C, however, it is possible to
construct estimators which - although biased - have a smaller risk
than OGL* within a particular range of true distances. One may also
define a ’'maximum likelihood’ estimator from the joint distribution of
the extrinsic variables m and p; this estimator is found to have a very
small bias and a somewhat smaller risk than Qg * over a large range
of true distances. (This bias is, of course, dependent on o, however,
and becomes large if the correlation between M and P is poor.) Thus,
the behaviour of the estimators which one may define in the case
where P is not directly measurable shows no qualitative differences

from the results of our earlier analysis.

4.7.2 Arbitrary Selection Function, S(m)

One of the most important points made in Schechter (1980) is
the fact that If one has a sample of galaxies for which the
measurements of P are selection-free, then one may obtain unbiased

estimates of log distance regardless of how the apparent magnitudes of
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the sample are selected. In other words, provided the selection
function, S, depends only on the apparent magnitude, m, then the
‘Schechter’ estimator, g, will be unbiased at all true distances
irrespective of the form of S(m). It is instructive to confirm this

result by computing the bilas and risk of Qg for a more general

selection function,

It is certainly the case that the Heaviside function which we
have thus far assumed will not always be a reasonable approximation
to the selection function. For example, the cut-off at faint magnitudes
may not be sharp, but instead ’'smeared out’ close to m . A more
appropriate form for S(m) would then be a sigmoid-type function
which changes smoothly from 0 to 1 across the magnitude limit (c.f.
Teerikorpi, 1975). Rather than consider a specific alternative selection
function such as this, however, we will -assume that S(m) is a
completely arbitrary function of the apparent magnitude. Thus, the
joint distribution, &(m,Plxgp), of m and P for observable galaxies at
true distance, xp (assuming for simplicity that P is directly

measurable) takes the form:-

exp[-Q(m,P)/2(1-02)] S(m)
C(m,Plxg) = (4.41)
/2n(1-e2)oyop L(xg)

where Q is given by:-

Q(m,P) = (m-m -5logxg)2/oy2 + (P-Pg)2/0p2 - 20(m-m_-510gxq)(P-Pg)/onop

and the normalisation factor, L(xg), ensures that SS&(m,P|xg)dmdP = 1,

Of course, L(xg) will, in general, be different from the normalisation,
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®(-5logxg/om), of equation (4.7).

If we now calculate the bias and risk of QgL we obtain the

following expressions:-

B(Qgp,wo) = (5A-1)wg - (Aoy+eBop)G(xg;1) + BPg + C (4.42)
/21 E(xq)
R(QgL,Wg) = wo2(5A-1)2 + (Aoy+eBop)2G(xg;2)
/21 E(xg)
- 2(Aoy+eBop) (Wg(5A-1) + BPg+C)G(xg;1)
J2n f(Xo)
+ 2wy(5A-1)(BP+C) + (BPg+C)2 + B20p2(1-p2)
' (4.43)
where the function G(xg;n) is defined as:-
G(xg;n) = J tNexp(-#t2)S(oyt+m +510gxg)dt (4.44)

Comparing the above equations with equations (4.22) and
(4.23) we note that they differ from the latter pair only in the
presence of the functions G(xqg;n) and E(xg); the terms involving the
constants A, B and C are unchanged. (Of course when S(m) is given
by a Heaviside function both G(xg;n) and L(xg) reduce to their earlier
counterparts.) It follows immediately, therefore, that the ’Schechter’
estimator is unbiased and has constant risk at all true distances,

regardless of the form of the magnitude selection effects.

The properties of any other estimator, however, will depend



1565

on the precise behaviour of S(m). Suppose, for example, that the
selection function takes the form of a magnitude window of width S,

viz:-

1 m - s <{m< m_
S(m) = (4.45)
0 otherwise

(i.e. bright galaxies are rejected from the sample in addition to the
denial of very faint galaxies.) Assuming this selection function, G(xg:1)

is then found to be given by:-

G(xg;1) = exp[-%((S+5wg)/oy)2] - expL-H#(5wg/oy)2] (4.46)

and the normalisation factor, I(xg) Is given by:-

E(xg) = ®(-5wg/oy) - ®(-(8+5wg)/oy) (4.47)

Substituting into equation (4.40) we find that the bias of the

"Tully-Fisher’ estimator, Qyg, is therefore given by:-

B(OyF,wp) = 0.204(1-02)(exp[-#((8+5wy) /o) 2] - expl-¥(5wy/op)2])

2T (®(-5ug/0y) - S(~(S+5ug)/Oy))

(4.48)

Figure (4.18) shows the bias of @y as a function of true
distance, xqg, for a magnitude selection 'window’ of width & = 5 mag. We
can see from this graph that @yg has a significant positive bias for
small xg. If we use equation (4.48) to examine the limiting behaviour of
B(OyfF,wp), we find that the bias of Orf does not tend to zero as the
true distance tends to zero, as was the case with only a faint
magnitude limit; a similar increase is found in the risk at small xg.

This is simply a consequence of the fact that the mean absolute
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magnitude of observable galaxies is no longer equal to Mg at small
true distances, but is in fact fainter than Mg (resulting in the
systematic over-estimation of distances) because the selection effects

remove brighter galaxies from the sample at small true distances.

Sy}
8.40 4 4
- |
)
3
o o4 4
e 4
&aﬂ- ir
aist 4
o104 +
nos4 +
0.00
2054 i
w04 4
284 i
—4 —d 4 4 3 ] 4 -4 } N 4 - 4 4
T L] . ¥ v kS L4 L] L L] R R ] L) ¥
68 02 04 06 08 1O L2 L4 Lé LE 28 22 24 26 28 30
Xo

Figure (4.18)

Bias of the 'Tully Fisher’ estimator as a function of true
distance, xp, assuming a magnitude selection function given by a

'window’ of width, & = 5 mag. (6 = 1, op = 0.1, ¢ = -0.8)
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A particular problem introduced by a narrow magnitude
selection function is the fact that there will be only a narrow range of
distances within which the bias of the 'Tully-Fisher’ estimator is close
to zero, whereas we can see from figure (4.13) that with only a faint
magnitude limit the bias of Qyg Is very small for all Xg € 0.7; the same
problem afflicts to an even greater extent the ’naive’ estimator Qy,
defined in equation (4.27). As we have seen in section (2.2) this effect
places severe limitations on the usefulness of the Minimum blas Subset

for removing selection bias.

4.7.3. Estimators Derived from the D,-o Relation

The analysis which we have presented thus far has
concerned the estimation of distance from the' combination of apparent
maghitude with a second observable. It is straightforward to adapt
this analysis to deal with the case of the D,-o relation, where one
estimates distances by combining the central velocity dispersion of a
galaxy with its measured apparent angular diameter. To this end,
therefore, suppose that the log of absolute diameter and the log of
velocity dispersion of a galaxy are random variables - denoted by D
and P respectively - whose intrinsic joint distribution is a bivariate
normal. (We use P instead of o to denote the log of velocity dispersion
so as to avoid confusion with the dispersions of the bivariate normal
distribution, op and op, which characterise the intrinsic scatter in the
Dh-o relation.) Denote by d the log of apparent angular diameter

which is related to D, after cosmological corrections (c.f. Burstein and

Heiles, 1982) by:-
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d=D- (4.49)

where ug is the true log distance. Suppose now that we observe a
sample of galaxies and measure d and P for each object. Suppose,
further, that the measurements of diameter are subject to selection
effects described by a selection function, S(d), but that the velocity
dispersion measurements are selection-free; this is approximately the
case for the selection effects of the Lynden-Bell et al/, (1988) data set

(c.f. section 2.3.3).

We can then derive the joint distribution of d and P,
6(d,Plug), at given true log distance, 4y, taking iInto account the
sample selection effects; this joint distribution may be used to define
estimators of uy. Consider for example the ’general linear’ estimator,

L, defined by:- .

Dg = Ad + BP + C (4.50)

To derive expressions for the bias and risk of Ag we merely require
to follow an essentially equivalent analysis to that of section (4.7.2),
with the apparent diameter now replacing apparent magnitude as the

observable which is subject to selection effects. We obtain the

following results:-

B(ligy,Hg) = -(A+1)ug + (Aopt+eBop)G(Hg;1) + ADg +BPg + C

/21 £(kg) (4.51)



159

R(BgL,Hp) = Hg2(A+1)2 + (Aop+eBop)2 G(kg;2)
/21 L(ug)

+ 2(Aop+eBop) (ADG+BPO+C - Hy(A+1))G(yg;51)

v2m T(ug)

+ (ADG+BP(+C)2 -2ug(A+1) (ADG+BPg+C) + B20p2(1-p2)

(4.52)

where G(ug;n) is defined as:-

G(Hg;n) = Jt"exp(—%tz)S(thwo-uo)dt (4.53)

and I(LUg) normalises &(d,Plug).

Note the similarity between these expressions and those of
equations (4.42) and (4.43): note in particular that it is possible to
define an unbiased estimator of Ly by choosing the constants A = -1,
B = op/ecp and C = Dg - Pgop/eop. i.e. the estimator, Ag *, defined

by:-
%L‘ = OD/POPP - d + Do - POUD/POP (4.54)

is an unbiased estimator of the true log distance, Ly, for all values of
Hy. This is precisely the same estimator as the ’'Schechter’ estimator,
Bg, which one may construct from the D,-O relation; i.e. the estimator
which corresponds to calibration of the Dn-o relation by a regression
of velocity dispersions on apparent diameters. The risk of Rg is found
to be constant, independent of the true distance, and equal to
op2(1-2)/02, which again corresponds exactly to our previous result
for Qg. Moreover, we can see from equations (4.49) and (4.50) that the

constants which define Ag as unblased are unique: estimators
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constructed from any other regression line - or indeed any other
arbitrary values of A, B and C - will certainly be blased. Thus,
provided that the selection effects may be adequately described by a
function only of the apparent diameter, we see that the ’Schechter’
scheme for identifying unbiased distances applies equally well to the

Dn—© relation.

4.8 Summary and Concluding Remarks

In this chapter we have Iinvestigated the properties of
distance estimators which are functions of two observables, as is the
case for distances derived from e.g. the Tully-Fisher or Dpj—©
relations. Assuming that the intrinsic scatter in each relation is
described by a bivariate normal distribution, we have derived
expressions for the bias and risk of a ’general linear’ estimator (i.e. a
linear combination of the two observables) of log distance. We have
shown that, provided the measurements of one of the observables are
free from selection effects, then it possible to define a ’general linear’
estimator which is unbiased at all true distances. This unbiased
estimator corresponds exactly to the scheme proposed by Schechter
(1980), whereby one calibrates the Tully-Fisher or Dp-© relation by
minimising the residuals on the selection-free variable (in the case of

Tully-Fisher, for example, one regresses line widths on magnitudes).

Moreover, we have shown that the risk of this ’Schechter’
estimator, Qg, is a constant independent of the true distance, so that

the percentage risk of distance estimates obtained from @g will be
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constant. Similarly, confidence intervals for the true log distance
constructed using @g, following the method introduced in section (3.5),
will be of constant width. We have also shown that even if both
observables are extrinsic varaiables (as is the case for e.g. apparent
magnitude and apparent angular diameter) then one may still define an
estimator which has zero bias and constant risk at all true distances -

again dependent only on one of the observables being selection-free.

In each of the cases which we have considered the
'Schechter’ estimator is given uniquely in terms of the parameters of
the relevant intrinsic joint distribution: e.g. Qg for the Tully-Fisher
relation is defined in terms of o, oy and op. It Is, therefore, very
important to use accurate values for these parameters; clearly a
failure to do so will result in a biased estimator, and the bias and
risk may quickly become non-negligible due io the non-linear form of
the expressions which we have obtained. One possible source of error
in the estimates of ¢, oy and op is the use of a poor calibrating
sample; e.g. one that carries a significant zero-point error, or is
incomplete in M or P, or contaminated by foreground galaxies which
are not correctly identified. Problems of this kind which arise in the
use of Tully-Fisher type relations have been discussed in some detail

by several authors (c.f. Teerikorpi, 1989; Tammann, 1987).

Even If these distribution parameters are well-determined, the
properties of the ’'Schechter’ estimator will still depend crucially on
the assumption that one observable is free from selection; if this is
not the case then it will no longer be possible to define an unbiased

estimator at all true distances. Nevertheless, for any given selection
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function, one may still compute the bias and risk of a ’general linear’
estimator at any true distance - although this may no longer be
possible analytically. One strategy for identifying a ’best’ estimator
would then be to find the coefficients A, B and C which minimise the
bias or risk (or some chosen combination of both) over a relevant
range of true distances. We will comment further on the application of

this strategy in chapter (6).
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5. ESTIMATION OF DISTANCE USING THREE OBSERVABLES

5.1 Introduction

In this chapter, as a natural extension of the results of
chapters (3) and (4), we will consider the properties of distance
estimators which are a function of the measured apparent magnitude
and of two other observable quantities. We will derive expressions for
the joint distribution of three observables at a given true distance,
taking into account sample selection effects, and use this distribution
to compute the bias and risk of a 'general linear’ estimator of the true
log distance. We will then show that, in this extended case, It is again
possible to derive unbiased distance estimators analogous to the
’Schechter’ estimators of the preceding chapter. Moreover we will
demonstrate that, as one might expect, it is possible to construct
unbiased estimators which have smaller risk than their counterparts in

chapter (4).

5.2 The Observed Distribution of m, P and D

Our analysis will follow precisely the same formulation as
section (4.2), differing only in the inclusion of an additional
observable. Lét the absolute magnitude, M, and position, r, of a galaxy
be random variables. Further, suppose that P and D are random
variables which denote intrinsic physical characteristics of the galaxy
such that M, P and D are correlated. (An example of three such

variables - which is suggested by our choice of notation, following
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that of the previous chapter - is the absolute magnitude, absolute
diameter and velocity dispersion.) Suppose, however, that each of M, P
and D is uncorrelated with r so that we may introduce ¥(M,P,D), the
intrinsic joint distribution of M, P and D, which is independent of
position. Consider now the joint distribution, o(M,P,D,r), of M, P, D and
r for observable galaxies in a sample subject to selection effects - as
described by a selection function, S(M,P,D,|Ir|), defined in the' same

way as before. It follows that o(M,P,D,r) is given by:-

¥(M,P,D)n(r)S(M,P,D, |£l)

o(M,P,D,r) = (5.1)

[]]] wo.p,00n(x)5(M,P,D, 111 YaaPdDaV
where n(r) is the number density of galaxies (of all values of M, P
and D) at position r. Using this equation we find that the conditional

distribution, €(M,P,Dlrg), of the intrinsic variables, M, P and D at a

given distance, rg, for observable galaxies is given by:-

¥(M,P,D)S(M,P,D,rg)
S(M,P,DIrg) = (5.2)
“J ¥(M,P,D)S(M,P, ro)dMdPdD

Note that, as before, this distribution is independent of the local

density, n(r).

We can re-express equation (5.2) in terms of extrinsic random
variables to allow for the fact that P or D may not be measurable
directly, as we have already noted in the case of e.g. the absolute
diameter of a galaxy. Hence, in addition to the apparent magnitude, m,
we introduce the extrinsic random variables p and d, related to P and

D as follows (c.f. equation 4.34):-
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v
'

P + Bywg + ¥y
(5.3)

D sz + Bzwo + 72

where o, B; and ¥; are constants and wy is the true log distance in
scaled units. (If either P or D is directly measurable then we will
simply have the special case of «q =1, B =0, » = 0.) Thus, by
changing variables in equation (5.2) to m, p and d, we may determine
the joint distribution of the extrinsic variables for observable galaxies
at true log distance, wgy, given an arbitrary selection function,
S(m,p,d), and for an arbitrary joint distribution, ¥(M,P,D), of the
intrinsic variables (provided only that such a distribution exists!). In
the present treatment, however, we will consider only two specific

cases.

5.3 Case 1: Selection Only on Apparent Magnitude

Suppose, firstly, that the selection function, S, is a function
only of the apparent magnitude. i.e. S = S(m). Thus we assume that
the measurements of p and d are free from selection effects. Suppose,
further, that the intrinsic joint distribution ¥(M,P,D) is given by a

trivariate normal distribution. Hence ¥ takes the form:-

¥(M,P,D) = (2m)~3/2|v|~1/2 exp[-1A] (5.4)

where @ is a quadratic form in M, P and D which also involves the
elements of the covariance matrix, ¥, of the intrinsic variables. In the
trivariate case the covariance matrix may be completely specified by

six parameters: the dispersions of M, P and D - denoted oy, op and op
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respectively - and the three correlation coefficients, denoted eyp, eMD

and epp, which measure the correlation between each pair of the

variables. In this notation, V is given by:-

oM2  OMOpoMP OMCDEMD
V. = | owopewp 92 opopepp (5.5)
OMOpPMD OpopPpp  Op?

The precise form of the trivariate normal may be written
down as a special case of the general multivariate normal distribution,
which is studied in detail in many standard textbooks on statistics and
probability (c.f. Graybill, 1961; Kendall and Stuart, 1963). For any
trivariate distribution function, however, the following relation will

always hold:-

i.e. we may always express ¥ as the product of the marginal
distribution, ¥4(M), of M multiplied by the conditional distribution,
¥>(P,D|M), of the other two variables at a given value of M. Given the
form which we have assumed for the selection effects, it is useful to
write ¥ as a product in this way, since we can make use of the result
that when ¥ is multivariate normal, then so too will be ¥y and ¥,. A
proof of this property may be found in Graybill (1961), which also
derives expressions for the means and covariance matrices of the two
distributions, ¥1 and ¥,. Applying the results of Graybill, we find that

¥ may be written as:-
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expl-1/20y2(M-Mp)2]  exp[-+24]
¥(M,P,D) = . (5.7)
(2m)¥oy am V4%

where @ is a quadratic form in M, P and D, and V¥, is the covariance

matrix of the conditional distribution, ¥>(P,D|M), given by:-

op2(1-ewp2)  Opop(epp-eupemp)
V.' - (5 . 8 )

op9p(Ppp-OMpeMD) op2(1-epp?)

The main advantage of splitting the trivariate distribution in this way
is that the quadratic form, ®, may now be compactly expressed in
terms of the equations for the regression lines of P on M and D on M,
which of course we have already seen in the preceding chapter play a
crucial role in the definition of an unbiased ’Schechter’ estimator. @

takes the following form:-

@ = |Vq|~1. (op?(1-eMp2)Ep2 - 20pop(epp-empemp)EpEp
+ 0P2(1—PMP2)EDZ) (5.9)

and Ep and Ep are shorthand for the following:-

E =P -FR ~0,9/0M- M) (5.10)
ED =D - DO - pMDOD/CM(M - Mo) (5.11)

i.e. Ep = 0 and Ep = O define the P on M’ and 'D on M’ regression

lines respectively.

If we now substitute in @ for P and D in terms of the

extrinsic variables, p and d, as given by equations (5.3), and also for
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the absolute magnitude, M, in terms of m using equation (3.12), then
we obtain the following expression for the joint distribution,
6(m,p,d|wg), of the extrinsic variables for observable galaxies at true

log distance, wg:-

expl-1/2042 (m-m| -5w5)2 - 1/2Q¢(m,p,d)] S(m)
G(m,p,dlwg) = (5.12)
oqxp(2m)Hoy 2m|V4 % £(wgy)

where L(ug) normalises G at each true log distance, wy, and «; and «
are introduced by the transformation from (P,D) to (p,d), as in

equation (5.3).

5.3.1 Bias and Risk of Qg

We define a ’general linear’ estimator of wg as follows:-

QGL = A(m - ml_) + Byp + Bod + C (5.13)

where A, By, Bo and C are constants and the observables p and d are
related to the intrinsic variables P and D via equations (5.3). Following
the same approach as for the bivariate case, we can use the
distribution of equation (5.12) to determine the bias and risk of Qg

for arbitrary constants A, By, Bo and C. We obtain the following:-

B(Qg,wp) = (5A-B4Bq/xq1-BaRa/op=1)wg
(Aoy+B10MpOp/x1+B2oMpOp/ %) G(Xg:1)
+
/2n L(xg)
+  By(Pp-71)/xq + Ba(Dg=72)/0p + C (5.14)
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R(Qg,wg) = wy2(5A-ByBy/xq-ByBy/xp-1)2
(Aoy*B 1oMpOp/a1+BoPMpOD/%2) 2 G(xg;2)
+
/2n Z(Xo)

+ 2(A°M+B19MP°P/“1+329MD°D/“2){ wo(5A-B1By/xq-BoBy/xo=1)
G(xg:1)

+ By(Pg-71)/xq+ Ba(Dg-r2)/xy + C —
v2m E(xq)

+ 2“0(5A‘B1B1/“1‘3232/“2“1)(B1(P0-71)/“1+BQ(DO-72)/G2+C)

+ (By(Pg-Y1)/xq + By(Dg-Yp)/xp + C)2

+ (By/xq)20p2(1-eqp2) + (By/op)20p2(1-eyp2)

+ 2(By/xy) (By/x5)0pop(epp-OmpOMD) (5.15)

where G(xg;n) is as defined In equation (4.44)

We can see immediately that these expressions, although
somewhat lengthier in form, are very similar to those obtained for the
bivariate case. In particular the functions G(xg;n) and I(xg) - which
determine the dependence of the bias and risk on the true distance -
appear identically in both cases: the additional contribution of B,d to
the estimate of wg changes only the coefficients of the
distance-dependent terms. It follows immediately, therefore, that if we
use only the measured values of m and p to estimate wpy (i.e. setting
B, equal to zero) then the above expressions reduce exactly to those

of the bivariate case - as one would expect.

This correspondence with our earlier results certainly
indicates that, by suitable choice of the constants A, By, B, and C,

one can define an estimator which is unbiased at all true distances;
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the trivial choice of Bo = 0 would reduce the problem simply to that of
defining A, By and C for the appropriate bivariate ’Schechter’
estimator. Intuitively, however, one would hope that by making use of
an additional observable, one would be able to improve upon the
'Schechter’ estimators of chapter (4): in other words to find unbiased

estimators with lower risk than Qg

We can see from equation (5.14) that the constants which

define an unbiased estimator must satisfy the following three

equations:-
B84 BBy
RN
Biompop  B20MD%D .
Aoy + + = 0 (5.16)

x4 2
B1(Pg - 71) B2(Dg - 72)
—_— + J

x4 L 9)

Furthermore, provided these equations hold then it follows
that all but the final three terms of equation (5.15) will also vanish -
i.e the risk of Qg will be independent of the true distance and given

by:-

R(QgL,wg) = (By/xq)20p2(1-pyp2) + (By/xp)20p2(1-pyp?)
+ 2(Bq/xq)(Ba/xp)0pSp(Ppp—OMpeMD) (5.17)

If we consider again equations (5.16) the potential value of
utilising a third observable becomes apparent: to obtain an unbiased

estimator we now must satisfy three equations in the four unknowns
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A, By, B2 and C. The unbiased solution for OgL is, therefore, no longer
unique; in particular we may solve for the values of A, By, Bo and C
which give an unbiased estimator and at the same time which minimise

the risk of Qgp, as given by equation (5.15).

The method of Lagrange multipliers is amenable to finding
such a solution. We will not present here a treatment of the general
equations (5.14) and (5.15), but rather we will consider the specific
example where the intrinsic variables P and D are both directly
measurable (i.e. p = P and d =D, so that &4 = 1, B = 0 and »j = 0).

Thus, we find that we now require to minimise the risk, R, given by:-

R = By20p2(1-eyp?) + By20p2(1-ewp?) + 2B1B0pop(Ppp-eMpPMpD)

(5.18)
subject to the constraint equations:-
Aoy + BiOpewp + BOpemp = 0
5A - 1 = 0 (5.19)

BiPg + BoDg + c = 0
This is equivalent to minimising the unconstrained expression, R¥,

given by:-

R¥ = R + X(0.20y4 + ByOpeMp + BoSpeymp) (5.20)

where X is a Lagrange multiplier. Note that A = 0.2 follows immediately
from the second constraint equation. Moreover, we nheed not include
the third of the constraint equations since this has no bearing on the

minimisation of the risk and can always be satisfied for any values of
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By and Bp by taking C = -B4Pq - BoDo.

Taking partial derivatives of equation (5.20) with respect to
B1, B2 and X we obtain three equations which, when set equal to zero,
define the values of By and B, for the unbiased minimum-risk

estimator. These are:-

2819p2(1-ep?) + 2B,0;0p(Ppp-EupeMp) + MOpeyp = O
2B20p%(1-eup?) + 2B49p0p(epp-Gupemp) + Apewp = O
0.204 + ByOpoMp + BoOpeyp = O (5.21)

Solving these equations we find that the unbiased minimum

risk trivariate estimator, Or, Is therefore defined by the following

constants:-
A = 0.2
. -0. 20y (emp - eMpPPD)
1= .
op (emp2 - 2eMpeMDPPD *+ PMD?)
(5.22)
-0.20y (emp - ©MpPPPD)
By = .
op (emp? - 2eMpoMpPPD + OMD?)
0.20y (oplemp - empepp)Po + Spleup - eMpepp)Dp)
cC =

opop(emp? - 20MpPMDPPD + PMp?)

This solution is only defined if emMp2 - 20MpPMpPPPD *+ ©MD2 # O. It can

be shown, however, that this expression will always be strictly

positive provided eyp # 0 or emp * 0, and epp » #1.
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There are a number of interesting features about this
solution. Firstly, note that the expressions for By and B, are identical
in form and differ only in the labels of the correlation coefficients and
dispersions; this must be the case since both P and D were treated
equivalently in deriving the minimum risk solution. It follows that if
oMp = émMp and Op = op then By = By = -0.204/20pemp, independent of
the value of ppp; this is precisely half the value of the coefficient of

P in the ’Schechter’ estimator, Qg.

In general, the values of the correlation coefficients and
dispersions will determine the relative size of By and By, and hence
the relative contribution of P and D respectively to @y. Note that op
and op appear on the denominator of By and Bjp; this means that if the
intrinsic dispersion of P or D is large, then that observable will make
a proportionately smaller contribution to the distance estimate. Note
also that if we have eyp = fpp = 0O, then the solution reduces
precisely to 05. This is exactly as one would expect: if we measure a
third observable which is uncorrelated with both M and P, then the
minimum risk unbiased estimator formed from all three observables will
be no better than the ’Schechter’ estimator defined from m and P

alone.

It is instructive to examine how the values of By and B,
change as a function of the correlation coefficients upon the addition
of a third observable. We can assume that third observable to be D,
without loss of generality, and from equations (5.22) calculate By and
B, as a function of eyp and epp, for a fixed value of pyp. A useful

measure of the relative contribution of By and By is then given by the
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ratio By/B4. From equations (5.22) we have:-

Sp(eMp - empepp)
By/By = (5.23)

Sp(emp - OMpepp)

Consider now some numerical examples. Suppose that op = op,
and that eyp = -0.8. Figure (5.1) shows an isometric surface plot of
the ratio, B,/B4, as a function of eyp and epp. (The shaded regions of
the emp-Ppp Plane are disallowed owing to the fact that the covariance

matrix, ¥, of the trivariate distribution must be positive definite.)

It follows from equation (5.23) that the intersection of this
surface with the ppp-emp plane is the straight line gyp = empepp; i.e.
for all points on this line - including, of course, the point (emp.fpp)
= (0,0) - we find that B, is equal to zero. Hence @ again reduces
precisely to @g and D makes no contribution to the distance estimate.
This means, in other words, that using the measured value of D would
not improve upon the ’'Schechter’ distance estimate obtained from m
and P alone. We will refer to this line as the ’'Schechter’ line, for
obvious reasons, and we will explore in more detail some interesting -
and potentially very important - consequences of its existence a little

later.

We can see from figure (5.1) that as eyp increases in
modulus then so also does the value of By/By. In other words as the
correlation between magnitude and the third observable, D, increases

then so does the relative contribution of BoD to the distance estimate.

Suppose, for example, that ppp were equal to 0.5. We then
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Figure (5.1

Ratio, B,/By, of the coefficients, By and By, of the observables
P and D respectively in the unbiased minimum-risk solution as a
function of the correlation coeeficients eyp and epp and assuming
emMp = -0.8 and op = Op,
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find that when eyp = -0.5, Bp/By = 0.18, so that the coeeficient of P
makes the dominant contribution to @y. By contrast, when eyp = -0.7
then By/By increases to 0.67. Moreover, it follows from our earlier
remarks that when eyp = -0.8 = eyp, then By = Bp; i.e. the
coefficients make an equal contribution to Q. Indeed, we find that if
eMp s greater in modulus than eyp then in general [B,/B41 > 1.
Similar trends in the behaviour of [|B>/By| as a function of pyp are

observed for other values of pyp and epp.

Consider now the risk, R3, of @y. Substituting the optimal
values given by equations (5.22) into equation (5.18) we find that Rg

reduces to the following expression:-

(1-epp?)
Ry = 0.040y2 - 1 (5.24)

(eup? - 20MpeMDEPD + OMD?)

Since the risk of any estimator is, by definition, positive, the above
equation makes sense only if PMpz - 20MpPMDPPD t PMDZ <1 - ppD2;
however, this is precisely the inequality which we obtain as the
condition for the covariance matrix, ¥, of the trivariate distribution to
be positive definite (c.f. Graybill, 1961). It follows, therefore, that the
above expression for the risk is well-defined for all physically

meaningful values of the correlation coefficients. Note that Rz does not

depend explicitly on op or Jp.

We can compare R3 with the risk, Ry, of Qg, viz:-



177

1
Ry = 0.040y2 — -1 (5.25)
omp

The difference between Ry and R3 may be written as:-

(epp - eMp/owp)?
Ry = Rg = 0.040y2 (5.26)

eMp? - 20MpOMDPPD + OMp2

which is always greater than or equal to zero. In other words this
confirms that the risk of the optimal trivariate estimator is always less
than or equal to the risk of the ’Schechter’ estimator formed from m

and P alone.

The precise factor by which the addition of a third
observable, D, reduces the ’Schechter’ risk. will depend on the values
of the correlation coefficlents. We have already noted, for example,
that when D is uncorrelated with both m and P then @y offers no
improvement over Qg. As a further illustration, figure (5.2) shows an
isometric surface plot of the ratio, R3/Rp, as a function of pyp and
epp: and again assuming that pyp = -0.8. Note that the locus of points
for which R3/Ro = 1, when projected down onto the epp-emp plane,
gives the ’Schechter’ line eyp = empfpp, in agreement with our

previous result.

In figure (5.2) the shaded region of the epp-emp plane marks
the exterior of the region, €, within which the correlation coefficients
are constrained to lie in order that the covariance matrix, V, be
positive definite. As we referred to previously, the condition which

defines this region reduces to the following inequality:-



178

GXXRE
BSOS
OO
NS
L
SAOBBEERD
geeﬂa&a*@pqu3
OO

O
ML

Q)

os

AT ,quudw
BRI
B
S
B8
B~
BN
&&&¢:ppw&ﬂ
e

Figqure (5.2
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>
!

= (epp,eMp) =€ &

N
[}

=1 - (ewp? + eup? + epp?) + 20ypoupepp > O (5.27)

The boundary, 3€, of this region is defined by § = 0.

We can see from figure (5.2) that as x » 3C, then the ratio,
R3/Rp, falls off sharply to zero; i.e. the risk of @y tends to zero as we
approach the boundary curve. Now, of course, such a zero-risk
estimator could never be defined in pracice since, for physically
meaningful values of the correlation coefficients, & must be strictly
positive. Nevertheless the fact that R3 » 0 as we approach 3 means
that if we can identify a third observable, D, which is correlated with
M and P such that ® is very close to zero, (so that x will, therefore,
lie close to 3C) then the risk of @r may be considerably smaller than

that of Qg.

We can develop this idea more quantitatively - and, in
particular, clarify precisely what we mean by ’close’ and ’considerably
smaller’ in the above remarks. Figures (5.3) to (5.6) show contour
plots of the ratio, R3/Rp, as a function of eyp and epp and for
different, fixed, values of emp. The contours of R3/Rp, are, in fact,
nested ellipses in the epp-PMp Plane: the zero-level contour is the
boundary curve, 3C, and the major axis of this ellipse lies along the
straight line eqp = -epp- At higher values of R3/R; the contour
ellipses become increasingly eccentric and are progressively rotated
anti-clockwise. The 1.0 contour (i.e. when Rz = Rp) is the degenerate
ellipse given by the ’Schechter’ line emp = eMpPpp- TO keep the plots

as uncluttered as possible we show only four contours: at the 0.0, 0.1,
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©MD

ATLr
-1.0 L0 0.6 -0 4 02 60

Figure (5.3)

Contour plot of R3/R, as a function of the correlation
coefficients pyp and epp, and for eyp = -0.5
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Contour plot of R3/Rp as a function of the correlation

coefficients pyp and epp, and for eyp = -0.7
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Contour plot of R3/Rp as a function of the correlation
coefficients eyp and epp, and for eyp = -0.8
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Contour plot of R3/Ry as a function of the correlation
coefficients oyp and epp, and for eyp = -0.9
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A number of qualitative features are clear when we compare
the four contour maps. Firstly we see that as lemp| Increases then so
does the eccentricity of each contour, and in particular the area of
the region, €, enclosed by the 0.0 contour decreases. In other words,
the higher the correlation between M and P then the more stringent is
the restriction on the allowable values of eMp and eppp. Consequently,
as |lempl increases, the contours become more densely packed: in
particular the area exterior to the 0.1 and 0.5 contours becomes
smaller (clearly the same is true for any other contour level). This
means that as |pypl increases there will be a progressively smaller
area of the epp-emp pPlane for which the risk of @p will be
significantly smaller than that of Qg. Another way of expressing this is
to note that the higher the correlation between M and P (and hence
the smaller the risk of Qg) then the more difficult it becomes to
identify another observable, D, for which @ will represent a

significant improvement over Qg.

Clearly we can use these contour maps to provide a direct
measure of the extent to which the use of a given third observable
will reduce the risk of @y. If we find, for example, that D is correlated
with M and P such that x = (epp.fmp) lies outside of the 0.1 contour
for the appropriate value of pvp, then we can immediately conclude

that the risk of QT formed using D is at least a factor of ten smaller

than that of Qg.

We can now consider some specific numerical examples and at
the same time highlight a very interesting - and somewhat surprising

- feature of the contour maps: that increasing the correlation between
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the intrinsic variables does not always lead to a greater reduction in

the risk of @p. A simple way to lllustrate this is as follows.

Suppose that, for a given value of pyp, we also fix the value
of eMp = emMp*, say. We can then determine the dependence of R3 on
the remaining correlation coefficient, epp, simply by drawing a
horizontal straight line through emp* on the appropriate contour map
and observing where this line crosses each contour. (Similarly for any
fixed value of ppp = epp* we can examine the dependence of Rz on

emp by drawing a vertical line through epp*.)

Suppose, therefore, that pyp = -0.8, the value which we have
frequently taken as appropriate for considering e.g. the Tully-Fisher
relation. Figure (5.7) again shows a contour map of R3/Ro for this
value of pyp. Consider now a third observable, D, such that pyp =
-0.6; this is the bold line shown in figure (5.7). We see that this line
crosses the 0.0 contour at epp = 0.0 and epp = 0.95, i.e. ppp is
constrained to lie between these two values. It is the lower point of
intersection which is most interesting: from it we see that the risk of
O1 tends to zero as the correlation bewteen P and D tends to zero.
Furthermore, when epp is close to zero then an increase in epp will,

in fact, increase Ra.

More specifically, observe that the line pyp = -0.6 crosses
the 0.1 contour at epp = 0.06, so that an increase of epp to this value
or higher would increase Rz to at least 10% of the ’Schechter’ risk.
Similarly if ppp increases to 0.3 then R3 = MRp, and if epp = 0.75, so

that (epp.eMp) !ies on the ’Schechter’ line, then Rz = Ry,
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Figure (5.7)

Contour plot of R3/R, as a function of the correlation
coefficients eyp and epp, and for pyp = -0.8, displaying
the dependence of R3 on epp, for fixed values of oyp.
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Only for epp » 0.75 in this case will a further increase in
épp now result In a reduction of R3. In fact, we see that Rz now falls
off rapidly with Increasing epp and tends to zero as epp tends to

0.95.

Similar behaviour is observed at other fixed values of pyp.
Suppose, for example, that pyp were also equal to -0.8, which is a
resonable value for the observed correlation between absolute
magnitude and absolute diameter (c.f. Holmberg, 1979 and section 2.5);
this case is shown as the dashed line in figure (5.7). We now find that
epp |Is constrained to lie in the range (0.3,1.0). Furthermore, we see
that R » Ry as epp + 1, from which it follows that Rz increases
monotonically with ppp. Hence, in this case, using a third observable
which is less well correlated with P woulcj always result in a lower

trivariate risk.

This second illustration is an example of the special case

where pyp = eMp, for which we can easily show that R3 simplifies to:-

1+ epp
Ry = 0.04oy2| ————— - 1 (5.28)

2eMp?
It is clear from this expression that in the limit as epp - 1,
Rz = Rp, while for smaller values of epp, Rz will be considerably

smaller than Ry, and will in fact tend to zero as epp » 20Mmp2 - 1.
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To summarise, then, we have found that upon the addition of
a third observable, D, the risk of @y thus formed will always be less
than or equal to that of Qg, as one would expect. However, the extent
to which D reduces the risk depends strongly on the three correlation
coefficients. If these take values such that the expression € given in
equation (5.27) is very small then Rz will be significantly smaller than
Ro. If, on the other hand, the correlation coefficients satisfy the
relation emp = empPpp (which, for a given value of eyp, we refer to
as the ’Schechter’line in the epp-eMp plane) then we find that R3 = Ry
and, in fact @y and 03 are identical in this case. Thus, if the
correlation coefficients lie on or near to the 'Schechter’ line then the
measurement of D adds little or nothing to the ’Schechter’ estimator
formed from m and P alone. Furthermore, it will frequently be the case
that another observable, D¥* say, which Is lgss well correlated with P -
so that (epp*,emp*) lies further from the ’Schechter’ line - would
result in a considerably larger reduction in the risk of @y. Hence if
such an observable could be identified then its use would clearly be

preferable to that of D.

Another way of understanding the existence of the
'Schechter’ line is by considering ¥(M|P,D), the conditional distribution
of M given the values of P and D for observable galaxies. This
distribution is closely related to that of @y since, in essence, we use
the measured values of P and D to infer an estimate of M and then

combine this with the observed apparent magnitude to obtain a

distance estimate.

Upon determining this distribution for arbitrary values of
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the correlation coefficients, and then substituting the equation of the
'Schechter’ line eyp = ompepp we find that ¥(M|P,D) Is identically
equal to ¥(M|P), the conditional distribution of M given only P. Hence,
for this unique combintaion of the correlation coefficients ¥(M|P,D) is
independent of the value of D. This confirms that D will provide no
more information about M - and hence the true distance - than is
given by P alone, and it follows that the risk of @y will equal the risk

of Qg in this case.

It is also worth noting that when %, as given by equation
(5.27), tends to zero then so too does the variance of M in the
conditional distribution ¥(M|P,D). In this limit, in other words, M is
determined exactly by the measured values of P and D; this is simply

another way of saying that the risk of @ tends to zero as € » 0.

5.4 Case 2: Selection on m and d

We will now briefly consider a second case where the
selection function is a function of both m and d, i.e. S = S(m,d), but
where measurements of P are free from selection effects. This case is
appropriate for considering an extension of the Dn-0 relation to also
take account of the observed apparent magnitude of a galaxy. We can,
therefore, identify d, D and P as in section (4.5.3); i.e. log of apparent
diameter, log of absolute diameter and log of central velocity
dispersion respectively. In section (4.5.3) we saw that when
measurements of the velocity dispersion were selection-free, it was

possible to define a ’'Schechter’ estimator of log distance which is
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unbiased and of constant risk at all true distances. The current
treatment extends this analysis to the case where the galaxy sample
may be magnitude-selected as well as diameter-selected, and we will

determine if an unbiased estimator may still be defined in this case.

Suppose that the intrinsic joint distribution, ¥(M,P,D), is
again a trivariate normal. In the same way as for Case 1, we will write

¥ as the product of two distributions, viz:-

Y(M,P,D) = ¥{(M,D)¥>(P|M,D) (5.29)

i.e. the marginal distribution of M and P multiplied by the conditional
distribution of P given M and D. Both ¥; and ¥, are normally
distributed: ¥y is the standard bivariate normal in M and D, the form
of which is given by equation (4.5), while the distribution of ¥, is

univariate normal with mean Pg(M,D) and variance, Mpz, viz:-

U, (PIM,D) = —— exp(-1/280p2(P - Pg)2) (5.30)
/2TTMP :

Px and the constant, A, are found to be (see Graybill, 1961):-

Sp (eMp-EMDEPD) Sp(epp-eMpOMD)
Py = Py + (M - Mp) + (D - Dp)
oy(1 - PMDZ) op(1 - 9M02)

(5.31)

or, writing this more compactly by introducing constants «y and «p:-
Py = Py + Ky(M - Mg) + xp(D - Do) (5.31a)

and
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1 - (ewp? + oyp? + epp?) + 20MpOMPEPD
A = (5.32)

1 - eyp?

Note that the numerator of the right hand side of this equation is
precisely $ of equation (5.27). Hence it again follows, from the positive

definiteness of V¥, that A > 0.

Substituting ¥{ and ¥, into equation (5.12) and changing
variables from (M,D) to (m,d) using equations (3.4) and (4.47), we can
derive the joint distribution, ¢(m,P,d|4y), of the extrinsic variables m,

P and d for observable galaxies at true log distance, Hy. We obtain:-

¥y (m-5ug-25,d-Lg)S(m,d) exp(—1/2A0p2(P - Pg)?)
G(m,P,dlLg) = — (5.33)
',2"MP :(uo)

where L(Ug) normalises & at each true log distance, Ly, and Px is now

re-expressed in terms of m and d.

5.4.1. Bias and Risk of lig_

We define a ’general linear’ estimator of iy as follows (c.f.

equation 4.48):-

g = Ad + B4P + Bom + C (5.34)

for constants A, B4, B and C. Using the distribution of equation

(5.31), we can determine an expression for the bias, B(Agy,4y), of AgL

for arbitrary values of the constants, viz:-
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B(hgL,Hg) = (5Bp - A - 1)ug
+ (Byky + B2)Gy(kg) + (A + Byxp)Ga(yp)
+ By(Pg - KyMg - KkpDg) + 25By + C (5.35)

where Gy(Kg) and Go(Lg) are defined as follows (c.f equation 4.44):-

G1(p) =[] M wy(M,0)S(M+51G+25,Drug)cMaD (5.36)

Galg) =[] D wy(M,0)5(M51g+25, Dritg)aMdD (5.37)

Note that if there is no selection in m or in d then Gy(ig) or
Go(Hg) respectively will be identically zero for all uy. Assuming for the
moment that this is not the case, then it follows from equation (5.35)
that in order to define an unbiased ’general linear’ estimator, Ay, at
all 1y we now require to satisfy four equations in the unknowns A, By,

B2 and C viz:-

58y -A-1 = 0
B1KM + 32 = 0

(5.38)
A+ B«,Ko = 0
B1(P0 - KuMg - KDDO) +25B + C = O

After some manipulation we find that there exists the

following, unique, solution which defines f;:-
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om (epp - empemp)

A = -
(om(epp - empemp) - Sop(ewp - empepp))
: op (1 - eup?)
1 -
op(om(epp - EMpeMp) - 50p(emp ~ EMpePD)}
(5.39)
5. op (emp - eMDPPD)
= -
(om(epp - empeMD) ~ 59p(PMp - OMpePD))
C = -25Bp - B1(P0 -~ KyMg - KDDO)

There are several interesting features about this solution.
Note firstly that if M is uncorrelated with both P and D then we
obtain for Ay precisely the 'Schechter’ estimator, g, of section (4.7.3),

viz:-

By = op/eppopP - d + Do - PgOp/Eppop (5.40)

This not surprising since in this case any selection of apparent
maghitudes has no bearing on the joint distribution of d and P for
observable galaxies; hence, we would expect the results of section

(4.7.3) still to apply.

If, on the other hand, M is correlated with D and P then Ay
will, in general, be different from the ’Schechter’ estimator. Moreover,
by will now be biased at all true distances. Again, this should not be
too surprising since magnitude selection would now affect the joint
distribution of d and P for observable galaxies so that the form of

this distribution used In section (4.7.3) to derive expressions for the

bias and risk of lig will no longer be valid.
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It is also important to note that the solution of equations
(5.39) will generally demand that Bo, the coefficient of m, is non-zero.
In other words, this means that when a sample is subject to both
magnitude and diameter selection one cannot in general define an
unbiased distance estimate using only the measured values of d and P
(nor indeed using only m and P or m and d!); only by using the
measured values of all three observables can one define an unbiased

estimator, .

There are two interesting exceptions to this, however, which
arise in a similar manner to the ’Schechter’ line discussed for case

(1). Firstly, if the correlation coefficients satisfy the equation:-

OMP = OMDPPD _ (5.41)
then it follows from equations (5.39) that By, the coefficient of m, is
equal to zero and A again reduces precisely to fAg, the ’Schechter’

estimator formed from d and P.

Secondly, if the correlation coefficients satisfy:-

epp = OMPOMD (5.42)

then we find that A, the coefficient of d, is zero. Iy now reduces to:-

Iy = 0.2(m - oy/eypop(P - Pg) - Mg - 25) (5.43)

On comparison with equation (4.11) we see that in this case By is
essentially equal to the bivariate ’Schechter’ estimator, Qg, formed

from m and P. The above expression differs from Qg only by a
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constant, which is entirely due to the fact that we have defined f in

units of MPc and not the scaled distance units used for Og.

Thus we have shown that if the correlation coefficients
satisfy either of equations (5.41) and (5.42) - which we can think of
as defining two ’Schechter’ lines in the pmp-€pp Plane, in a manner
similar to case (1) - then we can still define an unbiased estimator
using only two observables: d and P or m and P respectively.
Otherwise A can only be defined for all Hg by combining the

measured values of m, P and d.

We now calculate the risk, R(fyy,kg), of Ay at true log

distance, uUy. We obtain the following expression:-

R(ly,up) = B42a0p2 (5.44)
where the constant, 4, is defined In equation (5.32). Thus, the risk of
the unbiased trivariate estimator is again a constant, R3, independent

of the true distance, just as we found for the ’Schechter’ estimators

of the previous chapter and the unbiased estimators of case (1).

Substituting for By from equations (5.39) we find that Rj3 is

given by:-

on20p2(1 - eyp2)(1 - (ewp? + eup? + epp?) + 20pPMpPPpD)

(oy(epp - PMpPMD) -~ 59p(eMp - eMpPpp)) 2

R3
(5.45)

Note that R3 is a function of both oy and op, i.e. the dispersions of

both observables which are subject to selection effects. Contrast this
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with the risk of the optimal trivariate estimator of case (1) - for
which we considered selection only on apparent magnitudes.
Correspondingly, we see from equation (5.23) that R3 depends only on

OM.

Note also the appearance of the expression for & on the
numerator of the above equation, from which it follows that
Rz » 0 as & » 0. In practical terms, therefore, we see that - as for
case (1) - if the intrinsic variables are suitably correlated so that $ is
very small, then the risk of fiy may also be small. (Note, however, the
question of precisely how small 8 must be in order to obtain a given
value of Rz will, of course, also depend on the size of the denominator
in the above expression; if this too is very small then R3 may still be

large.)

Clearly, then, we can use equation (5.45) to compare the risk
of the unbiased estimator formed from different sets of observables -
so as to identify those which give the lowest risk, and hence the most

reliable distance estimates.

Finally, it is worth noting that we can regard case (1)
essentially as a corollary of case (2). Suppose, for example, that
measurements of d are free from selection. It then follows that Gy(iy),
as defined in equation (5.37), is identically zero for all Hg. This would
effectively remove the third of the constraint equations (5.38) and,
hence, we would now require to satisfy only three equations in the
four unknowns, A, By, By and C, in order to identify an unbiased

estimator. This is, of course, precisely the situation dealt with in case
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(1). Similar remarks apply when there is no magnitude selection.

5.5 Summary of Conclusions

We now summarise the main results of this chapter and make
some further comments on their significance. We have considered the
set of ’general linear’ estimators of log distance; i.e. estimators formed
by taking a linear combination of three mutually correlated
observables - denoted m, p and d - corresponding to the intrinsic
variables M, P and D whose intrinsic joint distribution we assume to
be trivariate normal. We have compared the properties of these
estimators with those of the previous chapter - formed from a linear
combination of only two observables (m and p, say), one of which we
assumed to be free from selection effects so that one could define a
'Schechter’ estimator which is unbiased and of constant risk at all
true distances. In particular, we have considered whether by adding a
third observable, d, to our analysis it is still possible to define

’Schechter’-type estimators of log distance.

In all cases we find that the answer is yes! Two important
points emerge, however. If the third observable, d, is subject to
selection effects, then the unbiased estimator can, in general, only be
defined by using all three observables, m, p and d. Moreover, this
means that the 'Schechter’ estimator defined in terms of m and p alone
will no longer be unbiased, since the selection on d affects the joint

distribution of m and p. Two exceptions to this, however, are the

'Schechter’ lines emp = €ppPMp and €pp = empeMmp: if the correlation
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coefficients satisfy either of these equations then one can still define
an unbiased estimator using only d and P or m and P respectively,
and in each case the general unbiased trivariate estimator reduces

exactly to the appropriate bivariate 'Schechter’ estimator.

If, on the other hand, d is free from selection effects then
one can still define an unbiased estimator using oniy m and p alone.
In other words the ’Schechter’ result of chapter (4) will still be valid
in this case. By wusing all three observables, however, we have
sufficient freedom to define an unbiased trivariate estimator, @y, of
minimum risk - and we have shown that the risk, R3, of this optimal
estimator is always less than or equal to the risk, Rp, of the
’Schechter’ estimator formed from m and p alone. There exists another
’Schechter’ line eyp = eppemp for this case, however: if the
correlation coefficients satisfy this equation then @y reduces precisely
to dg, so that using the measured value of d does not improve the

’Schechter’ estimate of log distance.

These results will clearly have an important bearing on the
use of, e.g., the D~ relation. Assuming a trivariate normal for the
joint intrinsic distribution of absolute magnitude, absolute diameter
and velocity dispersion, then it certainly follows that the ’Schechter’
estimator defined from the D,—o relation (i.e. using only the measured
apparent diameter and velocity dispersion of a galaxy - as discussed
in section 4.7.3) will still be unbiased provided that one’s sample of
galaxies Is complete in apparent magnitude. Of course in this case it
would also follow that by using the observed apparent magnitude in

addition to the diameter and velocity dispersion, one could define an
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optimal unbiased estimator of /ower risk than the bivariate 'Schechter’
estimator; indeed the risk of the trivariate estimator may be
considerably smaller for suitably correlated observables, and we have

demonstrated how one may easily determine when this is the case.

In short, then, utilising the measurements of a third
observable can certainly offer a means of significantly reducing the
risk of unbiased estimators, and thus obtaining more reliable distance
estimates. When such an observable is available, therefore, its use

would seem to be strongly advised.

It seems clear that one may extend this analysis further to
consider distance estimates obtained from four or more observables,
with results very much analogous to those which we have obtained in

this chapter. We will not attempt such an extension here.
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6. CONCLUSIONS AND FUTURE WORK

6.1 Qualitative Overview of Main Results

In this thesis we have developed a statistical framework
within which to assess rigorously the properties of different distance
estimators by computing their distribution, bias and risk as a function
of true distance, after accounting for luminosity selection effects. We
have applied this formulation firstly to a number of different
estimators which are a function only of apparent magnitude, assuming
a gaussian luminosity function and a Heaviside selection function. This
simple case illustrates a fundamental problem in removing or reducing
selection effects: the question of which estimator is ’best’ has, in
general, no clear cut answer since both the bias and risk are
complicated non-linear functions of the true distance of a galaxy -
which is, of course, unknown! The best estimator (in the usual
statistical sense of minimum bias or minimum risk or some combination
of both) if the galaxy is very remote may be a poor choice if the

galaxy is, in fact, nearby.

We have next analysed the properties of distance estimators
derived from combining measurements of two observables. These
results are relevant to understanding the effects of bias on, e.g., the
Tully-Fisher and Dp-o relations. We have shown that the different
linear regressions used in the literature to calibrate such relations
each correspond to estimators of log distance defined as different
linear combinations of the two observables. Modelling the joint

distribution of the intrinsic variables by a bivariate normal, we have
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determined the distribution, bias and risk of a linear estimator for
general coefficients - into which expressions the values corresponding
to each regression line may be substituted - and also of a maximum
likelihood estimator of log distance. We find that the estimators have
widely different properties. In particular, if there is no selection in
(for the Tully-Fisher case) line widths then the estimator
corresponding to a regression of line widths on magnitudes s
unbiased and has constant risk for all true distances; this confirms
the unbiasedness of this regression line, as claimed by Schechter
(1980). The ’'Tully-Fisher’ estimator which corresponds to a regression
of magnitudes on line widths, on the other hand, is Iincreasingly
biased at large distances, but has a smaller risk than the ’Schechter’
estimator for true distances less than, typically, several hundred Mpc,
although the risk of the ’Tully-Fisher’ estimator increases sharply at
greater true distances. The ’Schechter’ risk will, in fact, be very
large if the magnitude and line width are poorly correlated and
becomes infinite for ¢ = 0. This is consistent with the pathological
example which we considered in section (2.4), for which we saw that
when line width and magnitude are uncorrelated, the measured line
width yields no information about the magnitude of a galaxy, so that
the ’Schechter’ regression line cannot be used to infer the galaxy
distance. The maximum likelihood estimator is found to have very small
(though non-zero) bias and smaller risk than the ’Schechter’ estimator

over a larger range of true distances, although again this result

depends on e.

These results indicate that some care must be taken before

choosing the most appropriate estimator: for example, although the
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'Schechter’ estimator has the desirable property of unbiasedness for
any value of p, its large risk for e small means that for any single
observation there will be a higher probability of a large systematic
error than with e.g. the ’maximum likelihood’ estimator, so that the
latter may be more appropriate for a small sample of galaxies. Provided
the observables are fairly well correlated, however, (typically |el >
0.6) we recommend the use of the ’Schechter’ estimator, whenever It
may be defined. Our strongest reason for this is the fact that,
regardless of the form of the I|uminosity selection effects, the
’Schechter’ estimator is normally distributed, with mean equal to logxg
and constant variance, at all true distances, xg. The ’Schechter’
estimator is unique in this regard: for no other linear combination of
the observables, nor indeed for the maximum likelihood estimator, is
the shape of the estimator distribution preserved at all true distances.
Not only does the zero bias and constant risk follow immediately from
this but consequently, as we have shown, confidence intervais
constructed from the ’Schechter’ estimator are of constant width.
Moreover, because the ’'Schechter’ estimator is normally distributed, it
follows that the joint distribution of the distance estimates obtained
for a number of galaxies at different distances wili be a multivariate
normal. This allows the statistical properties of a large sampie of

galaxies to be derived very easily.

we have also considered estimators formed from a linear
combination of three observables, which may or may not be
distance-dependent, and have addressed the question of whether
unbiased ’'Schechter’ estimators may still be defined in this case.

Modelling the joint distribution of the intrinsic variables by a
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trivariate normal distribution we have determined the bias and risk of
a ’'general linear’ estimator as a function of true distance for two
separate cases; in the first instance where two of the three
observables are free from selection effects and secondly where only
one of the observables is selection-free. We have found that in both
cases the definition of an unbiased estimator is indeed still possible.
Two important points emerge, however: firstly, in the former case of
two selection-free observables the unbiased estimator is no longer
unique. We have, therefore, obtained expressions for the unbiased
estimator of minimum risk. We have found that, as one might expect,
the risk of this optimal trivariate estimator is always less than or
equal to that of the ’Schechter’ estimator formed from only two
observables; it is Interesting to note, however, that there are
situations, for particular values of the correlation coefficients, when
the addition of a third observable does not improve the bivariate
’Schechter’ estimate of log distance. For the latter case of only one
selection-free observable, we have found that an unbiased estimator
can in general only be defined by using all three observables;
estimators formed from combinations of only one or two will be biased.
There are again exceptions to this, however, for particular values of
the correlation coefficients where the trivariate estimator again

reduces precisely to the unbiased bivariate ’Schechter’ estimator.

6.2 Applications of Multivariate Estimators

The main conclusion which we reach from our analysis of

trivariate distance estimators is that, where additional observables are
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avallable for indicators such as the Tully-Fisher or D,-c relations,
then there use in defining unbiased distance estimators would seem to
be well-advised. A number of potentially useful observables exist for
such relations. As we have already remarked in chapter (5), one can
use the apparent magnitude in addition to the angular diameter and
velocity dispersion of ellipticals to extend the D,-o relation to three
observables. (Indeed, we should remark that if our galaxy sample is
diameter limited and magnitude Ilimited then the inclusion of
magnitudes will, in general, be essential In order to define an
unbiased estimator.) Dressler et al/ (1987) also consider a line strength
indicator, first introduced in Terlevich et a/ (1981), which shows a
weak but signifcant correlation with D,. Clearly this observable could
also be included in deriving our unbiased estimator; it would be
interesting in the future to attempt this extension to four observables
and apply the results to a comparison with the distance estimates
obtained by previous authors. Similarly for spiral galaxies we could
consider the combination of, e.g., apparent diameter and/or colour with
apparent magnitude and line width to explore an extension of the
Tully-Fisher indicator; we have seen in chapter (2) that correlations

with luminosity have been measured for both of these observables.

Another interesting application of our analysis of trivariate
estimators would be to the calibration of the period-luminosity-colour
relation which is well-established for Cepheid variables (c.f. Sandage,

1958). This relation takes the form:-

logp = aMy + b(B-V) + ¢ (6.1)

where P is the period, My is the absolute photographic magnitude, B-v



205

denotes the B-V colour and a, b and ¢ are constants.

Clearly equation (6.1) is equivalent to a trivariate linear
estimator of log distance which is a function of P, B-V and apparent
magnitude, m. It would be particularly interesting to apply our
analysis to this distance indicator since, as we have remarked, it is
probably the most securely calibrated - from both theoretical
considerations and detailed observations in our galaxy and the Large
Magellanic Cloud - so that zero-point errors are less significant
(Martin et al/, 1979). As the Hubble Telescope expands by a factor of
four or five the limiting distance to which Cepheid observations will
be possible, it will certainly become more important to ensure that the
distances inferred are not adversely affected by selection bias. We
would hope to study the question of obtaining optimal distance

estimates from the Cepheid relation in future work.

6.3 Other Methods for Reducing Bias and Risk

One important area for future study is to consider those
situations where the Schechter scheme cannot be successfully applied;
i.e. when one does not have available one or more observables the
measurements of which are free from selection effects. As we have
commented previously, this would be the case if, for example, galaxies
are selected for the Tully-Fisher relation by line width as well as by
magnitude. A more straightforward example, however, is simply that of
estimators which depend on apparent magnitude alone - of the type

studied in chapter (3). In that chapter we saw that it was possible, in



general, to define such an estimator which Is unblased for all true
distances. Nevertheless, we have seen that our statistical formulation
allows us, for any given selection function, to compute and bias and
risk of any estimator as a function of true distance. This suggests a

possible scheme for reducing the blas and risk.

Suppose we have some estimator, R, of the true distance, Xg,
of a galaxy and suppose that we have computed the blas, B(R,xy), of R

for any xg. We note that B(%,xg) may be given as:-

E(Rlxo)=x0 + B(g,Xo) (6.2)

(c.f. equation 3.24)

We can now define a new estimator, %4, given by:-

%y = % - B(R,xg=R) (6.3)

i.e. from each value of our first estimator, &, we subtract the bias of &
not at the true (but unknown) distance, xgp, but at the estimated

distance, &; In other words we assume this first estimate to be equal

to the actual distance of the galaxy.

We can now compute the bilas and risk of R4y as a function of
xg and one would hope that this bias would be less than that of X.
Moreover, this process may be repeated iteratively, defining next % =

%y - B(Ry,xp=R4) and so on, although in general there is no guarantee

that the iteration will converge.

In Appendix (1) we decribe this iteration scheme in a little
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more detail and demonstrate its application to the naive estimator, On
of log distance (clearly X above can also be a function of distance) as
defined by equation (4.27). The results are very interesting: we find
that the iteration procedure does indeed significantly reduce the bias
and risk of Qy at large true distances; this Is, however, achieved only
at the expense of a severe increase in both the bias and risk of the
iterated estimators for large xg. This means, therefore, that the range
of true distances in which the iteration scheme is most effective is

strongly dependent on the number of iterations which we perform.

The failure of our scheme to converge to an unbiased
estimator for all true distances would seem to us to be due largely to
the severe non-linear nature of the distribution of Qy at large true
distances, caused by the magnitude selection effects. It would be
instructive, therefore, to investigate whether the scheme is more
successful when the selection effects are less severe. (Indeed we
already have a partial answer to this question in that we see in
appendix (1) that the convergence is more extensive for smaller values
of oy, as one would expect.) Since it is straightforward to extend the
scheme to deal with estimators which are functions of several
observables, it would be interesting to apply it to the general linear
estimators studied in chapters (4) and (5), but in the case where no
observable is selection-free so that unbiased Schechter estimators
cannot be defined. One would hope, for example, that the addition of a
second (albeit incompletely sampled) observable, P, would reduce the
non-linearity sufficiently to make the iteration scheme converge to an
unbiased estimator over a wider range of true distances. As a first

step we have already applied the scheme to the ’Tully-Fisher’
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estimator, @yf, in the case where P is selection-free. It is encouraging
to find that Qyg does indeed appear to converge to the Schechter
estimator, Qg (which, of course, is unbiased for all Xg in this case.) A
useful future exercise, then, would be to determine how robust this
convergence is to selection on P; l.e. how completely sampled must P
be In order that one may still obtain an approximately unbiased

estimator after several iterations.

We can envisage another simple strategy by which to reduce
the bias and risk of an estimator within a given range of true
distances. Again this is most easily Iillustrated using apparent
magnitude-based estimators. Suppose we define the following ’general

linear’ estimator of logxg, analogous to those of chapters (4) and (5):-

QgL = 0.2(m-m) +C (6.4)

In other words Qg is just the naive estimator, @y, plus some constant
correction, C. This is equivalent to the general linear distance
estimator defined in equation (3.8) from which the ’'Malmquist’ and

'Proximal’ estimators were derived.

For any given luminosity and selection function we can
derive expressions for the bias and risk of Qg as a function of true
log distance, and for an arbitrary value of C. We may then ask the
question what value of C should be chosen Iin order that Qg be a

reliable estimator within some desired range of true distances.

Our idea Is to choose the value of C which minimises the bias

or risk, or some appropriate combination of both, over that true
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distance range. Suppose, for example, we adopt minimum risk as our
criterion and determine the optimal value of C for the distance

Interval (xq,x2). If we define:-

X2
F(C) = I R(%L,Uo)dXO (6.5)
X4
Then our optimal value of C satisfles 3F/3C = 0.

Consider the familiar case of a gaussian luminosity function
and a Heaviside selection function at magnitude limit, m_. For this case

we find that C is given by:-

X2
1 0. 20yexp(-%(5wy/oN)2)
* Xowx dxg (6.6)
™ ®(-5wg/oy)
X4

Figures (6.1) and (6.2) show the bias and risk of Qg with
values of C determined from this equation chosen to minimise the risk
within the true distance Iintervals (1.0,1.5), (1.5,2.0) and (2.0,2.5)

respectively, and for oy = 1.0.

We can see from figure (6.1) that the bias of each Qg passes
through zero at approximately the midpoint of the appropriate interval.
The slope of the bias curves does not change with different C,
however, as must be the case since the estimators differ only by a
constant. This results in each estimator being positively biased at
small true distances: the more remote the interval in which Qg is

optimised, then the more positively biased is Qg for small xq.
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Moreover, another consequence of the constant slope is that there is a
non-negligible positive and negative blas at each end of the chosen
distance interval. Clearly if we take progressively wider intervals in
which to optimise the estimator then this effect will be steédlly
magnified, although the blas will still change sign close to the
midpoint of the interval. Compare this with our iteration scheme which
tends to flatten the slope of the bias curves and thus ylelds a large

range of true distances for which the bias is close to zero.

The results for the risk are In some respects more
encouraging - which Is perhaps not surprising since it was with
respect to risk that we optimised Qg;. We see that in each of the
three cases the risk is significantly reduced over the full range of
the relevant distace interval - although again this is at the expense of
a prohibitive increase outside of that interval, just as was found with

our iteration scheme.

It would be interesting to explore this optimisation method in
more detail to study, for example, how wide the optimisation range may
be In order to achieve a significant risk reduction over the whole
interval. Furthermore it would also be very instructive to apply this
technique to multi-observable estimators. As for the iteration scheme,
one could reasonably expect that the reduction of bias and risk would
be more effective In this case, particularly since one would then be

able to optimise with respect to more than one constant coefficient of

the estimator.

One should remark that provided one is confident that an
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observed galaxy does lie within, or close to, the optimised distance
range then it is clear from figure (6.2) that @g_ would indeed be a
good choice of distance estimator, since its increased risk outside this
range would then be largely irrelevant. Expressing this more
precisely, our point Is that in defining an optimal distance estimator
one should ideally take account of the true relative number density of
galaxies as a function of distance In order that the estimator be most

effective at distance where galaxies are most likely to be observed.

Suppose that n(xg) denotes the relative number density of
galaxies at true distance, xg. (Note that we can still define n(xq) for
an anisotropic galaxy distribution by simply averaging over all
directions - or over some solid angle of interest - at each true
distance.) Incorporating n(xg) as a weighting factor in equation (6.5),

viz:-

X2
F¥(c) = Jn(xo)R(%L,wo)dxo (6.7)
X1
we can define a modified optimal value of C by solving 3F*/3C = 0.

Now of course the basic problem which we face with this is
the same difficulty as we have faced in earlier chapters: the fact that
the true galaxy distance distribution, n(xg), is unknown. It seems to
us, however, that it may be possible to overcome this problem by
applying the following scheme. Suppose one adopts some initial choice
(prior distribution) for n(xg) - e.g. one might consider as a neutral
choice the case of n(xg) = constant. With this distribution one

determines from equation (6.7) an optimal distance estimator which one
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can then use to Infer the distances of a sample of a galaxies. These
distance estimates can next be used to form a new and improved
estimate of n(xg), which may then be plugged Into equation (6.7) to

obtain a new optimal distance estimator, and so on.

This scheme Is closely based on techniques used in Bayesian
analysis (c.f. Mood and Graybill, 1974) and indeed is very much In
spirit of not only our previous iteration scheme but also the IRAS
reconstruction algorithm discussed in chapter (1). Although its
convergence properties are not obvious, it seems to us that this
scheme could offer a very useful means of improving distance
estimators in a manner which is, in some sense, consistent with the
true galaxy distribution - we mean by this that if the scheme
converges then the estimator thus constructed would be ’'best’

precisely when n(xg) is equal to the true galaxy distribution.

It would again be particularly interesting to study this
procedure applied to estimators derived from two or more observables.
Moreover, the introduction of additional observables might allow one to
define iteratively optimal estimators which are consistent not only with
the galaxy number density distribution, but also with the luminosity
function or selection function. If this were possible then it would
provide an important method for verifying our assumed analytic form
for these functions - and, more fundamentally, for testing the validity
of assuming a universal luminosity function, independent of position,
for galaxies of the same morphological type. These ideas are still
rather speculative at this stage, but in our opinion certainly deserve

further detailed study.
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6.4 Applications to Velocity Field Analysis

The results which we have obtained concerning the removal of
Malmquist bias by the definition, where possible, of Schechter distance
estimators will be of considerable value In studying the properties of
the velocity and density field ~ either via simple, classical, treatments
such as the Hubble diagram, or by sophisticated reconstruction
techniques such as POTENT. The POTENT error analysis presented in
DBF models log distance errors which are normally distributed with
constant variance, 02 - precisely as we have shown to be the case for
the 'Schechter’ estimators. Using a mixture of analytic and Monte-Carlo
methods, the authors find that the bias and variance of their
estimated radial peculiar velocity - interpolated and smoothed after
accounting for distance measurement errors and sampling biases - is,
to first order, proportional to o2 (See DBF, equations A24 and A25). It
follows, therefore, that methods which reduce the risk of our distance
estimators would improve the estimate of the smoothed peculiar

velocity field which is used by POTENT.

1t would be useful, nevertheless, to extend this analysis to
consider a general distance estimator, 2 say, of arbitrary distribution,
and determine the precise relationship between the distribution of I as
a function of true distance and the distribution of errors in the
density and velocity fields finally recovered by POTENT. In principle
one could adopt an approach very similar to our analysis of distance

estimators: in other words set out to derive the distribution, bias and
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risk of the POTENT estimates of the recovered velocity and density
fields as a function of position, given their true values. Such a
general treatment seems rather ambitious, however; a more reasonable
first line of attack might be to consider a specific velocity field model
- expanded in terms of spherical harmonics, for example - and
determine how the distribution, blas and risk of our distance estimator
affect the distribution, bias and risk of estimates of Hy and multipole

components of the velocity field obtained from such a model.

Even for this case it seems likely (although not certain!) that
little progress would be possible analytically; however the project
would certainly be amenable to Monte-Carlo studies. We have already
considered one special case - the estimation of Hubble’s constant from
'quiet’ Hubblie flow - for which an analytic treatment is possible. We
will now briefly outline this analysis to demonstrate the basic

principles of the method.

6.4.1 Optimal Estimation Of Hg

Consider the estimation of Hg from a given sample of galaxies.
Let the position, r, of the sample galaxies be a random variable and

let n(r) denote the probability density function of the true distance, r,

of a galaxy, where r = |rl.

Suppose that I Is our chosen estimator of log distance, as
constructed from some given set of observables (e.g. apparent

magnitude, diameter etc) and let M(lilrg) denote the distribution of k at
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a glven true distance, rg, as may be determined by the methods

described in detail in the previous chapters.

Suppose nhow that we measure the redshift - and hence the
radial recessional velocity, vj - of each galaxy in the sample and then
combine these measurements with the estimated log distance, £, to

obtain an estimator, H, of Hy defined as follows:-

H = 10 (6.8)

where T is given by:-

lTogvy - By (6.9)
1

n~Ms

et
i

and n is the number of galaxies in the sample. Note that this estimator
is of the same form as the standard estimate of Hgp which one would
obtain from, e.g., the MBS identified from the Hubble diagram of a
sample (c.f. Sandage and Tammann, 1975b; see also equation 2.6)

although the estimator, I, in the above case is arbitrary.

Thus we see that our estimate of Hp will depend on the
measured redshifts of the sampled galaxies and also on the properties
of our chosen (log) distance estimator. To proceed further we now

introduce a number of simplifying assumptions.

suppose, firstly, the case of ’quiet’ Hubble Flow; i.e. where

the radial velocity of the ith galaxy Is simply proportional to its true
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distance, viz:-

V§ = Hpry (6.10)

In this case we may now write equation (6.9) as:-

-k
1

TogHg + My - By (6.11)
1

Hm™Mm>s

writing 4 = logry. Substituting into equation (6.8), therefore, we find

that we can write H as follows:-

—;— L uy - Iy
H = Hp.10 (6.12)
Writing H in this way is of no immediate practical value, since on the
right hand side both Hg and the true log distance of each galaxy are,
of course, unknown. The advantage of introducing Hy as a parameter

become clear, however, when we consider the bias and risk of H.

We can see from equation (6.12) that H is a function of the
random variables M,....,An and HMy,....,Hn - or, equivalently, Ay,....,0q
and ry,....,rp. Hence, we can determine the expected value of H, given
the true value Hg, by integrating equation (6.12) over the sampling

distribution, F, of the I§ and the rj. Thus we obtain:-

E(HIHg) = Hg.| 10 dF (6.13)

where dF is given by:-
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dF = F(ly,....0G, 1,000, Mp)dly. . .dlpdry. . .dry (6.14)

Similarly, the kth moment of H, E(HK|Hg), Is given by:-

K
e Bl
E(HK|Hg) = Hok.j 10 " dF (6.15)

It is now a straightforward matter to calculate the bias,
B(H,Hg), and risk, R(H,Hp), of H from its first and second moments

using the standard definitions:-

B(H,Hq)

E(HIHg) - Hp (6.16)

and

R(H,Hg) E(H2|Hg) - 2HQE(HIHg) + Hg2 (6.17)

wWe now make the further assumption that the galaxies are
sampled independently; more specifically that the random vector (4,r})
is independently and identically distributed for each galaxy in the
sample. This would not seem unreasonable if the galaxies are sampled
at well-separated positions on the sky, given that recent measurements
of two point angular correlation function for galaxies indicate an
amplitude of less than 0.01 on angular scales in excess of 10* {Maddox
et al, 1990). This simplifies the sampling distribution, F, considerably,
viz:-

n

o= | ] fy,rp (6.18)

i=1
where it is also useful to write the bivariate distribution function, f,

as follows:-
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f(h,r) = MAIrN(r) (6.19)

Finally, we approximate the integrand of equation (6.15) by expanding

and truncating after terms of second order. Thus we obtain:-

k
L ouy- By Ak 1 A2k2
10 n 1 1 = 14+ n £u1 - tl«| + ) -—n; li ’j(‘q - ni)(uj - nj)

(6.20)

where X = In(10) = 2.3

Substituting equations (6.20) and (6.18) into equation (6.15), and using
the Independence of the M4 and r}, we obtain the following simple

expression for the kth moment of Hq:-

E(HK|Hy) = Hok.{ 1+ 3k j(u- M| r)n(r)drdh
212
5-2%- j(u ~ W2M( r)n(r)drdh ] (6.21)

Moreover we can simplify this expression further by observing that

both integrands may be expressed in terms of the bias and risk of A

at true log distance M, viz:-

E(HK|Hg) = Hok.[ 1 - Xk IB(ﬁ,u)n(r)dr

22
%E— JR(h,u)n(r)dr ] (6.22)

The bias and risk of H can now be found by substituting this

expression into equations (6.16) and (6.17).
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Several important points emerge from the form of equation
(6.22). Firstly observe that the integral over the risk of A is
multiplied by a factor of 1/n, but the term involving the integral over
bias has no dependence on n. This means that the contribution of the
risk of f to the bias and risk of our estimate of Hy can be effectively
reduced simply by taking a larger sample of galaxies; this will not be
the case, however, for the bias of 4 which will make the same

contribution to the bias and risk of H regardless of the sample size.

This analysis provides a clear reason for favouring the
Schechter distance estimator in this context. The reasons for this are

threefold:-

Firstly the bias term in equation (6.22) will vanish leaving
only the integral over the risk, which can be made progressively less
significant by taking a larger sample of galaxies. Hence, even if the
risk of our ’Schechter’ estimator is significantly larger than that of
some other, biased, estimator such as, e.g., the 'Tully-Fisher’ estimator
at small true distances (see section 4.5.1), we can reduce the size of
the ’Schechter’ risk term in equation (6.22) by observing a larger
sample so that, for sufficiently large n, this term can always be made

smaller than the bias term for the ’Tully-Fisher’ estimator.

Secondly, in the absence of distance bias the bias of Hp will
be proportional to 1/n, so that for any given sample this residual bias
can be further reduced by applying resampling techniques such as

the bootstrap or jackknife (c.f. Efron, 1982) which are amenable to
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bias problems with this approximate n-dependence. This would again

not be possible in the case of a biased estimator.

Thirdly, the fact that the risk of the 'Schechter’ estimator is
constant means that the bias and risk of H will not depend on the
true distance distribution of the sampled galaxies; for example whether
the sampled galaxies are drawn from the field or from clusters.
Environment effects on the determination of Hubble’s constant have
been regarded as important In the literature (c.f. Tammann, 1987;
Giraud, 1987) and indeed for an estimator whose bias and risk are a
function of true distance then we see from equation (6.22) that the
bias and risk of H will Indeed depend on n(r); we have demonstrated
here, however, that the properties of the ’Schechter’ estimators allow

us to circumvent this problem.

6.5 Final Remarks

The aim of this thesis has been to compare quantitatively and
rigorously the properties of different distance estimators, so as to
provide an objective means of identifying a ’'best’ estimator. If we
were to pick out one single conclusion which we have reached through
this analysis, it would be the fact that the question of which estimator
is 'best’ has no straightforward answer. We have seen that there are
many factors to be considered in making this choice, including the
number of galaxies sampled, the number and type of available
observables, and the nature of the correlation between those

observables. The situation is somewhat more clear-cut when it is
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possible to define ’'Schechter’ estimators, since we have established
their zero bias and constant risk at all true distances. Based on these
properties we would strongly advocate the use of ’'Schechter’
estimators - and, moreover, the Inclusion of additional correlated
observables when these are avallable - for the analysis of redshift
surveys; we have noted, nevertheless, that when the observables are
poorly correlated then the ’Schechter’ estimators, although still

unbiased, will have a larger risk than other, biased, estimators.

Ultimately the choice of ’best’ estimator must also take
account of the context in which distances are being used. The
cosmologist Is less interested in obtaining optimal galaxy distances
than in obtaining optimal estimates of the cosmological parameters
derived from those distance estimates, and it does not follow
immediately that the former will lead directly to the latter. The simple
example outlined above, of estimating Hg from ’quiet’ Hubble flow,
illustrates this point: we have shown that the an unbiased ’Schechter’
estimator Is to be preferred to a biased estimator of lower risk - even

though the latter could be regarded as more ’accurate’.

In this concluding chapter we have indicated how one may -
at least in principle - tackle this problem rigorously by using the
same techniques of risk theory which we have presented here to
determine the distribution of estimators of cosmological parameters as
a function of their true values and of the distributions of the
observables from which they are derived. Such a formulation would
offer a more complete and rigorous determination of the optimal

strategies for estimating cosmological parameters, and would be a
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logical extension of the analysis presented in this thesis.
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APPENDIX (1): ITERATIVE REDUCTION OF BIAS AND RISK

Al.1 Introduction

We have seen in chapters (4) and (5) that the definition of
unbiased ’Schechter’-type estimators of log distance, w,, depends on
one being able to sample completely at least one observable; If this
condition is not met - as for example In the case of the distance
estimators studied in chapter (3) - then one cannot in general define
an unbiased estimator of w; for all wy. In such a case it would be
useful to identify methods of reducing the bias and risk of distance
estimators so as to at least partially remove the effects of selection. In
this appendix we will outline one such method: a simple iterative
scheme designed to reduce progressively the bias of a given estimator.
we will apply this scheme to the ’'naive’ estimator, Qy, as defined In
equation (4.27), and assuming the selection function, S(m), and galaxy
luminosity function, ¥(M), used in chapter (3). Thus, we will show that
one may substantially reduce the bias of Qy at large true distances.
Although the application of the iteration algorithm is made somewhat
easier in this simple case, its formulation for estimators which are
functions of two or more observables, and for other functions S and ¥,

nonetheless follows immediately.

A1.2 Definition of the Iteration Algorithm

The algorithm which form the basis of the iteration scheme

can be stated quite simply.
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STEP 1: Define an initial estimator, @ say, of log distance; in our case
we consider @ = Qy = 0.2(m - m), which is thus a function only of

the apparent magnitude.

STEP 2: Calculate the bias, B(@4,wy), of @4 as a function of wg.

STEP 3: Define a new estimator, @y, as follows. Subtract from @4(m) the
bias of @4 not at the true (but unknown) log distance, wy, but at the
estimated log distance as given by Q4. In other words, assume that
this initial estimate for wg is , in fact, the true log distance and thus
correct the blas in @4 at that distance. Performing this correction for

all values of m, we construct:-

Or(m) = Oy(m) - B(Qg,wy=0q(m)) (A.1)

with the obvious generalisation to the case where @4 is a function of

two or more observables.

Clearly we can now repeat steps 2 and 3 iteratively: i.e. we
can compute the blas, B(@y,wg), of Qo as a function of wy and thence

define another estimator, Qg, viz:-

O3(m) = Op(m) - B(Gp,wp=0p(m)) (A.2)

and so forth for @4, Qg etc.

One would hope that each iteration would produce an
estimator progressively less biased than its predecessor. In practice
the effectiveness of the algorithm will depend on a number of factors

- the severity of the selection effects, the form of the intrinsic
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luminosity function and the ’goodness’ of one’s initial estimator, @ -
and, in general, there is no guarantee that the scheme will always

converge to glve an unbiased estimator.

To demonstrate this point, it Is instructive to consider first
the scheme applied in a much simpler setting. Let w be a random
variable normally distributed with mean, wg, and unit variance. Now
suppose we measure the value of w and use this to estimate wy. Of
course, it follows immediately from the normality of w that it is an
unbiased estimate of wgy; l.e. in our standard notation, the estimator

Q4(w) = w is unbiased for all wq.

Suppose, however, that we adopt ¥4 = Ayw as our estimate of

wo, where Ay is a constant. Clearly the bias of @ is now given by:-

B(O4,wg) = (Ag - 1wy (A.3)

Now of coursesince Ay is independent of wy this bias can be removed
immediately simply by rescaling. Suppose, instead, we apply our

iteration scheme to @4. Thus, we define:-

0(W) = AW - (A-1)Aq0 = Ajw (A.4)

where Ay = A{(2-Aq). Generalising to the ith iteration, we obtain:-

Qj41(W) = Ajpqw (A.8)

and

8(0'“,1,(4)0) = (A1+1 - 1)“0 (A.6)
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where Aj.q = Aj(2 - A)).

It Is easy to show, by induction or otherwise, that the
sequence (A;} converges to the limit 1 if 0 < Ay < 2 but diverges if
Ay lies outside this range. In other words our iteration scheme will
converge to an unbiased estimator for all wy provided that Ay is
chosen to lie between 0 and 2. Of course this also means that the
scheme will fail if our initial estimator is inadequate (i.e. if Ay > 2).
Thus, even in this simple example - in which we have assumed that no
selection effects are present - convergence is not guaranteed. We can
expect that the non-linear effects introduced by selection will impose
further restrictions on the convergence of the scheme. With these
notes of caution in mind consider now the iterated estimators which we

obtain from Q.

A1.3 Application to ’Naive’ Estimator

It is easy to calculate analytically the bias of Qy - indeed we
have already done this for figure (4.12) - and thence the form of
@o(m). Subsequent iterations cannot be treated analytically but are
amenable to numerical calculation. Figures (A.1) and (A.2) show the
estimator curves obtained for @4 = Oy and for the first four iterated

estimators (9 to Wg) as a function of m - m and for oy = 0.5 and 1.0

respectively.

The first feature which is clear from both figures is that the

estimators appear to differ only close to the limiting magnitude; at
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brighter magnitudes the iteration scheme does not appreciably change
the linear form of @4. Close to mi, however, each subsequent iteration
gives a progressively greater estimate of the distance. Note that the
increase in the estimator values is greater for oy = 1; this is not
surprising since the negative bias of @y at large true distances
increases with oy, resulting in a greater positive correction to @
when oy = 1.0. In particular, the maximum distance (i.e. when m = m)
which can be inferred by each estimator increases with the order of
the iteration. Thus, while the maximum distance which can be inferred
by @4 Is 1.0 - so that if the true distance of a galaxy is greater than
unity then, no matter what its apparent magnitude, its distance will be
systematically underestimated by @y - in the case of Q4, for example,
this maximum estimable distance is pushed up to 1.8, for oy = 0.5, and
to 3.4, for oy = 1.0. From this behaviour close to m(, therefore, one
would expect the iterated estimators to be progressively less biased at

larger true distances.

Figures (A.3) to (A.6) show the bias, B(@,wg), and risk,
R(®j,wg), of & = O to & as a function of true distance, for oy = 0.5

and 1.0 respectively.

These figures show that the bias and risk of @ is indeed
progressively reduced at large true distances by successive iterations.
Significantly, however, both the bias and risk are not reduced at all
true distances. Consider B(@pwg) for oy = 1.0, for example. We can see
from figure (7.4) that @ has a small positive bias in the range of true
distances xg = 0.1 to xg = 0.6, and moreover the bias of @y is greater

in modulus than that of @ for part of this range. This positive ’hump’
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in the bias curve becomes more pronounced for higher iterations so
that, although the bias at large true distances is further reduced, the
bias is progressively /increased at smaller true distances. If we
continue iterating beyond Qg we find that this effect does not
disappear ; we conclude, therefore, that - as a result of the
non-linear form of the blas of @ - the iteration scheme does not

converge for all true distances.

A similar ’hump’ is seen in the risk curves, so that again the
effect of successive iterations is, in fact, to. increase the risk at small
true distances. Indeed the effect on the risk is more severe, in that it
is increased over a larger range of true distances. For example, we
find that for oy = 1.0 the risk of @y is greater than that of @ for ali
true distances in the range xg = 0.0 to xg = 0.9. This means that,
while a first application of the iteration scheme does reduce the bias
of @7 at almost all true distances, there is a substantial range within

which this is only achieved at the expense of an increase in the risk.

This trend continues, and indeed worsens, as we proceed to
higher iterations: we can see that the risk curves tend to flatten out,
but at a considerably higher value than the risk of @ for small xq.
Thus, for example, we find that the risk of @ is more than 50%
greater than that of @4 for most of the range 0.1  xg € 3.5 (o =
1.0). The same qualitative effects are evident for oy = 0.5, although
less severe, and the precise range in which the bias and risk are

increased after each iteration is also dependent on oy.

The fact that the bias is not reduced at all distances and the
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damaging ’trade-off’ between reduction of bias and increase of the
risk both cause the choice of which of the iterated estimators is ’best’
to be rendered difficult. Indeed, we are faced with the classic problem
that the ’best’ choice depends not only on value of oy - which one
can at least assume is known - but also on the distribution of true
distances - which will most certainly be unknown! If the galaxies in
the sample are very distant (xg » 2.0, say) then @4 or @ would be a
good choice. On the other hand, if a number of the galaxies are much
nearer (xg £ 1.0) then using Qg would give very poor distance
estimates for these galaxies, resulting not only in a greater bias than
arises from using the original estimator, @, but also incurring as

much as a threefold increase in the risk.

Similar results are obtained if we take as our initial choice
one of the other estimators studied in chapter (3) (or more precisely
the estimator of /log distance corresponding to one of the distance
estimators studied in that chapter.) Moreover, it is easy to show that
if our initial estimator differs from Qy only by a constant - as Is the
case If we use the ’Malmquist’ or 'Proximal’ distance estimator - than
after the first iteration all subsequent estimators (@3, @4, etc) are

identically equal to found obtained if we start the scheme with Q.

In summary, therefore, the iteration scheme clearly does offer
a means of reducing the bias and risk of distance estimators at very
large true distances, but its use is limited by the fact that after only
a few iterations this is achieved only at the cost of a significant
increase in the risk at smaller true distances. Hence, if one’§ sample

contains a number of relatively nearby galaxies (typically at xg € 1.0)
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then performing more than one or two iterations will, in fact, be

counter productive and will result in poorer distance estimates.
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