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SUM M ARY



An estimation of the average value of pharmacokinetic parameters in a 

group of animals provides limited information if there is no good measure of the 

variability of each of the parameters. The traditional approach used in the analysis 

of animal pharmacokinetic data obtained from studies involving the use of small 

laboratory animals (rats or mice) in which each animal supplies only one concen

tration - time point does not provide this, nor can it assess the influence of physi

ology (or pathology) on pharmacokinetics. The consideration of variability within 

the same species during interspecies scaling has been advocated (Vocci & Farber, 

1988). Thus, provision should be made for the estimation of variability inherent 

in an animal population in analysing data obtained by "destructive sampling". The 

NONMEM approach does, however, provide estimates of both average values of 

pharmacokinetic parameters and their statistical distribution within the popula

tion. In this thesis data were generated by simulation (assuming no covariance), 

and analysed using the NONMEM program. The efficiency of this approach is 

the focus of this thesis.

Experimental error, number of samples taken, and the arrangement of 

samples in time are factors which must be taken into account in designing 

experiments for efficient parameter estimation. In addition, appropriate methods 

of data analysis must be used to extract the required information from the data. 

Simulated data sets were used to investigate the effect of various design features 

on the efficiency of parameter estimation using the one observation per animal 

design. In addition, the efficiency with which parameters could be estimated 

given a range of parameter values and variability was investigated.

Several methods were used to determine the efficiency of parameter 

estimation. Prediction error (bias and precision) was useful in assessing the 

efficiency with which individual parameters were estimated. In addition, the 99% 

individual and joint confidence intervals containing the true parameter 95% of the
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time for all parameters were introduced as aids to judging the efficiency of 

estimation of individual and all parameters of a model, considered as a set. 

Confidence interval tables were constructed to reveal the influence of bias and 

standard error on parameter estimation.

Also, the design number, a new statistic which combines the contributions 

of bias and precision in judging the efficiency of parameter estimation, was 

introduced to complement bias and precision, and confidence intervals methods 

of analysis. The design number also allowed the efficiency with which all param

eters of a model were estimated as a set to be judged. The incidence of high pair

wise correlations of parameter estimates was also taken into account in assessing 

the acceptability of estimates and the adequacy of model parameterization.

Assuming IV bolus injection with the monoexponential pharmacokinetic 

model, simulation studies were carried out to investigate the influence of inter

animal variability on the estimation of population pharmacokinetic parameters 

and their variances. The range of variability investigated was similar to that 

expected in real studies, and sampling was done at set times. The efficiency of 

estimation of the structural model parameters (Cl and V) was good, on average, 

irrespective of the variability in Cl and V. However, the estimation of these 

parameters was associated with negative bias which was attributed to the nature 

of the NONMEM program (i.e. estimation error since negative bias was also 

observed in subsequent studies in which a£ was set to 0%). The variance 

parameters were mostly inefficiently estimated in this study and all other studies 

using the one observation per animal design. This was attributable to the lack of 

information in the data set about a£ .

When the effect of the arrangem ent of concentrations in time on 

parameter estimation was studied with the two sample point design, efficient 

parameter estimates were obtained when the first sample was obtained as early as
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possible (5 min.) and the second sample was located at £ 1.4 times the simulated 

H jl min-) of the drug. When three or four sample points were used the exact 

location of the third or fourth sample was not critical to efficient parameter 

estimation.

The efficiency of parameter estimation was investigated given a range of 

parameter values, concentration measurement error, and sampling schedules with 

the two compartment model parameterized as A, a , B, p and assuming IV bolus 

injection with animals sampled at set times. The parameters, considered as a set, 

were efficiently estimated when a  was in the range of 2.0 to 4.0 h” and the A:B 

ratio in the range of 2.5 to 30.0. These results were attributed to the distribution 

of data points between the distribution and elimination phases of the plasma 

concentration - time profile. Concentration measurement error greater than 10% 

yielded variance param eter estim ates with a greater degree of bias and 

imprecision. The inter-animal variability in parameters estimated was a composite 

of inter- and intra-animal variability. Some sampling schedules gave rise to more 

efficient parameter estimates than others. High correlation between some 

parameters led to instability in the estimates, and reparameterization of the model 

in terms of Cl, V j, and &21 t0 more stable estimates.

The need for keeping the number of animals used in any study to a 

minimum, and the necessity for efficient parameter estimation led to the 

investigation of the effect of sample size on parameter estimation. With the 

monoexponential model (assuming IV bolus injection with one observation per 

animal) and sampling at ten time points, it was found that parameters of the 

model were estimated with equal efficiency when 6 to 15 animals were sampled 

per time. Since there was no loss in efficiency when 6 animals are sampled per 

time (i.e., a sample size of 60), the cost involved in such studies could be greatly 

reduced. However, similar results could be obtained with at least 30 animals 

sampled twice with the same traditional sampling strategy. Sampling an animal at
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least twice allows the partitioning of inter- and intra-animal variability, almost 

eliminating bias in the estimation of the variance parameters.

Using the two compartment model, efficient parameter estimates were 

obtained when 15 observations were made at each of 10 time points (i.e., a 

sample size of 150), but there was no loss in efficiency when 10 animals were 

used at each time point. The use of the numbers of animals with the design 

specifications considered in this thesis would strike a good balance between cost 

and good science.

Given the results of the simulation studies, NONMEM was used to 

analyse data with the one observation per animal design for a drug under 

development. NONMEM permitted some explanation of variability in terms of 

sex, but efficient partitioning between inter- and intra-animal variability would 

have required an increase in the number of samples per animal.

Thus, inefficient estimates of inter-animal variability were obtained with 

the one observation per animal design, but sampling an animal at least twice 

significantly improved the efficiency of parameter estimation. The structural 

model parameters, on the other hand, were efficiently estimated. The individual 

and joint confidence intervals for parameter estimates, design number, incidence 

of high pair-wise correlations in addition to bias and precision were useful in 

judging the efficiency of parameter estimation.
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CHAPTER 1

INTRODUCTION
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1.1 SUMMARY

This chapter contains an overview of pharmacokinetics in drug research 

and development in the preclinical setting. The importance of pharmacokinetics 

in toxicity testing and drug safety evaluation is discussed , and the various 

methods used in the estimation of population pharmacokinetic parameters in the 

preclinical animal setting are examined. Variability has been reported to occur, 

even in homogeneous strains of animals, and the need to account for this in the 

estimation of population pharmacokinetic parameters is stressed. The need for the 

appropriate design of pharmacokinetic experiments for the efficient estimation of 

population pharmacokinetic parameters is highlighted.

1.2 INTRODUCTION

Preclinical testing of new xenobiotics in animals to predict their safety and 

efficacy in man is a very large industry. It has reached its present level of activity 

because of the growth in the number of compounds which have to be tested, the 

expansion of testing requirements which has occurred over the past few years, 

and the increase in data required from any one study. The fact that thousands of 

animals are used can only be justified if it ensures that life is made safer for 

humans who are subsequently exposed to these xenobiotics. However, if the 

testing explosion is to be controlled and the effort worthwhile, then urgent 

attention must be given to increase its scientific content.

The main purpose for conducting extensive animal studies is to help in 

predicting what will happen when xenobiotics are given to humans. These studies
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encom pass tox ic ity , efficacy , m etabolism , pharm acokinetics and 

biopharmaceutics, and are done to accumulate information in the preclinical 

phase of drug development.

The 1964 Helsinki Declaration which was revised in 1975 states that 

sufficient well conducted and controlled animal studies should be performed prior 

to undertaking human studies, and that positive data are essential before 

subjecting humans to a drug (or procedure). In accordance with this, international 

regulatory authorities demand a dossier containing considerable amounts of data 

from animals before they will authorise the administration of new xenobiotics to 

man.

Many of the techniques and procedures used in conventional animal 

toxicity testing are empirically based. For example, the proper relationship 

between the duration of toxicity tests and the length of permitted treatment is a 

matter of opinion. Similarly, the selection of dose levels in toxicity tests often 

appears to be arbitrary. On the other hand, there are disquietening voices which 

even question the validity of animal testing to predict safety for man (Rowan & 

Andrutis, 1990).

Given the Helsinki Declaration, however, there is no doubt that new 

xenobiotics cannot be administered to man until sufficient evidence has been 

collected to indicate that there is no obvious risk. For example, understanding the 

pharmacodynamics of a new drug is very important, particularly from the point of 

view of anticipating the effects of overdosage. In the particular case of a new 

opiate analgesic, it would be vital to know whether or not any potential 

respiratory depressant effect could be reversed by an opiate antagonist such as 

naloxone. The development of new medicines and the use of animals in 

preclinical drug evaluation is therefore inextricably linked.



1.3 PHARMACOKINETICS IN DRUG RESEARCH AND 

DEVELOPMENT

Pharmacokinetics is an applied scientific discipline that achieves its 

greatest potential when considered during the early stages of drug development. It 

encompasses the relationships between the physicochemical properties of a drug 

and both its physiological disposition by the organism and its pharmacological 

response (Kaplan & Jack, 1980). The value of pharmacokinetic studies during 

early stages of drug research and development is to enable critical decisions to be 

made as to which form of active compound should be recommended for the time 

- consuming and costly animal toxicology, formulation design, and clinical 

studies.

1.3.1 Structure - Pharmacokinetic Relationship and Drug Design

The search for new drug molecules basically involves two steps: the 

setting up of a working hypothesis and the screening of molecules resulting from 

application of the hypothesis. A working hypothesis may be formulated in 

different ways (Balant, Roseboom, & Gundert-Remy, 1990):

(a) It may be postulated that the systematic synthesis of compounds 

differing progressively in their chemical structure and physicochemical 

properties will eventually lead to the discovery of novel and useful drugs.

(b) One may also start from known drugs and optimise their 

pharmacological properties by relying on receptor - binding studies.

(c) A more basic approach consists in the study of physiological
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mechanisms and structure - activity analysis of specific enzyme activators 

or inhibitors.

Inherent in all of these hypotheses is the application of quantitative structure - 

pharmacokinetics relationships. Many an in vivo quantitative structure - activity 

relationship (QSAR) study of a series of compounds has related the dose required 

to produce a defined response, such as the dose required to produce 50% of 

m axim al response ( E D ^ q ) at some p redeterm ined  tim e, to m olecular 

modification. But these dose - effect relationships encompass not only the 

structure - effect relationship but also that between the dose administered and the 

unbound concentration of compound at the receptor sites which produces the 

pharmacologic response. Thus, pharmacokinetic events (the processes of and 

kinetics of absorption, distribution and elimination) determine the concentration 

of drug at receptor sites. Any movement from an empirical to a more rational 

design of drug molecules intended to be used in vivo, therefore, requires the 

application of pharmacokinetic principles (Tozer, 1981; Rowland, 1983).

The knowledge of pharmacokinetic parameters is essential for the 

calculation of effective doses, dosing intervals, estimation of bioavailability and 

correlation to pharmacodynamic effects. Pharmacokinetic parameters are, 

however, also an extremely valuable tool with which to derive quantitative 

structure - pharmacokinetic relationships. Variation in different pharmacokinetic 

parameters is explained mainly by lipophilicity, ionisation (pKa) and in some 

cases also by steric influences of substituents within various classes of drugs 

(Seydel, 1983). At least five pharmacokinetic consequences can be expected as a 

result of structural changes. These are: rate and order of absorption, volume of 

distribution, rate and type of metabolism, affinity constant for binding to serum 

proteins and other "unspecific" biopolymeric binding sites, and rate and type of 

elimination (clearance) (Seydel, 1983). Many examples of QSAR analysis used to 

describe variation in rate of absorption have been published (Seydel & Schaper,
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1979; Lien, 1981; Schaper, 1982) showing in most cases nonlinear dependence on 

lipophilicity and on pKa.

Protein binding per se generally does influence many pharmacokinetic 

characteristics of a drug. This influence may be a positive or negative one, 

depending on the drug class and upon the pharmacokinetic process under 

investigation. For example the blood compartment (if one considers the body to 

be made of compartments and blood as one of them) is responsible for drug 

transport and distribution. Although serum protein binding increases the capacity 

of the blood compartment, at the same time it decreases the free unbound fraction 

which can diffuse to receptor sites. Protein binding and also partitioning in red 

blood cells can therefore influence the therapeutic dose, volume of distribution, 

rate and type of metabolism, rate and type of excretion (only unbound drug is 

glomerularly filtered), and serum protein binding of other drugs administered 

simultaneously (capacity limitation, competition). Therefore, knowledge about 

quantitative relationships between structure and "non-specific" binding is impor

tant in drug design. It is essential not only for understanding, but also for plan

ning changes in pharmacokinetics. This is because of the restrictive influence of 

protein binding on capillary transport, glomerular filtration and membrane trans

port (Seydel, 1983).

Volume of distribution has been shown to be dependent on lipophilicity, 

degree of ionisation of drug molecules, and the degree of binding to serum and 

tissue constituents in a series of p - blockers (Ritschel, 1980). Elimination rate 

constant and clearance are not only very important pharmacokinetic parameters 

but, as they can be accurately and precisely determined are very valuable for 

QSAR analysis and drug design. The predictive power of such analysis is 

considerable. This has been demonstrated with a series of sulphapyridines (highly 

protein bound drugs) given to rats intravenously (Seydel et al., 1980). A high
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correlation between clearance and protein - binding constant (i.e. BmQV) was
111 CIA

demonstrated.

Another aspect of QSAR analysis in pharmacokinetics is interspecies 

scaling. This would be useful for a better transform ation of results from 

experimental animal species to humans and for appropriate selection of animal 

species for screening. In comparing QSARs for clearance of sulphonamides in 

rats, goats and humans it was found that the regression coefficients from models 

relating elimination rate constant to high performance liquid chromatography 

(HPLC) retention index (a function of the structure of a compound) were surpris

ingly similar, only the intercepts were different, indicating differences in the 

capacity of the clearing organ, but no significant differences in dependence on 

lipophilicity (Seydel et al., 1980). Thus QSAR analysis coupled with well 

designed pharmacokinetic studies can be used for a more rational drug design.

1.3.2 Pharmacokinetics in Toxicity Testing

Over the years a great deal of work has been performed on the kinetics of 

drug absorption, metabolism, and excretion. These studies have led to the 

development of a number of general pharmacokinetic principles and to an 

appreciation of the central role played by kinetic relationships in pharmacological 

responses (Levy, 1964; Levy & Nelson, 1965; Levy, 1966; Wagner, 1968; 

Gibaldi & Perrier, 1975). The application of these principles in the assessment of 

pharmacological activity in animals in the drug development process , and in the 

optimisation of therapy in man is becoming increasingly common. In contrast, 

much less use seems to have been made of pharmacokinetic principles in the 

design and interpretation of toxicological tests (Jollow et al., 1982).

Preclinical animal pharmacokinetic and metabolic studies are essential to 

a better understanding of the subsequent clinical pharmacology and toxicology of
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new drugs. Acute and sub-chronic animal studies are designed to determine the 

safety  of a new drug com pound by charac teris ing  its d isposition  and 

physiological effects, both therapeutic and toxic. Specifically of interest are the 

dose range over which the pharmacologically desired effect occurs, the dose level 

at which toxic effects are induced, the scope of toxic effects from gross physical 

changes (dehydration, lassitude) to biochemical and physiological effects (renal 

dam age, enzym e changes), and the e ffect o f a m ultip le  dose regim en 

(accumulation, enzyme induction). Correct design and interpretation of animal 

toxicity experiments is necessary to ensure that human trials will be safely 

conducted. Determination of pharmacokinetic parameters, such as rates of 

absorption and elimination, bioavailability, maximal blood concentration (Cmax), 

time to Cmax (tmax), area under the concentration - time curve (AUC), renal, 

metabolic and / or total body clearance, provides a quantitative description of a 

drug’s disposition profile and can be used to compare profiles across species. 

Pharmacokinetic data from single exposures can be used to help determine 

appropriate dosing regimens for sub-chronic and chronic studies. Correlating 

observed toxicity with appropriate pharmacokinetic parameters may allow the 

investigator to interpret toxicity test data more accurately and even predict at 

what dose toxicity should occur and help in the understanding of the mechanism 

responsible for the effect (Scheuplein, Shoaf, & Brown, 1990).

The complicated and widely varying pharmacokinetics of a drug (in 

animal) may seriously impinge on the very promising properties of a new 

derivative. If there is a choice between different compounds, selection for further 

development is based on both the pharmacokinetic profile (bioavailability, 

half-life, clearance, volume of distribution), and the metabolic profile. Indeed, the 

role of metabolism in the evaluation of safety of new drugs is of great impor

tance. Understanding the metabolic profile of a new drug in several animal
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species can be of predictive value to the clinical pharmacologist, helping him to 

understand the potential pharmacological effects of a xenobiotic in man. Compar

ative metabolic and kinetic studies in different species may provide an insight 

into mechanisms of toxicity perhaps due to over-exposure within a particular 

species or because of the formation of toxic or reactive products. This provides a 

basis for a species dependent metabolic effect, and its relevance for the human 

situation can then be assessed more readily. Accurate and precise determination 

of pharmacokinetic parameters and better characterisation of drug disposition 

may allow the investigator to design safer human studies. In Phase I studies, 

results from animal studies may be used to adjust the intervals between dose 

levels in dose escalation studies (Collins, 1987). For example, if the ratio between 

pharmacologically active and toxic doses is small or there is an abrupt increase in 

the dose response curve in animals, then the initial dose escalation studies in 

humans should use smaller increases between doses. Tracer pharmacokinetic 

studies in a number of animal species yield information about the tissue distribu

tion of the drug, and this is of predictive value in Phase I clinical studies (Colburn 

& Matthews, 1979; Hammer & Bozler, 1977).

1.3.3 Commonly Used Animals in Preclinical Drug Evaluation

It would be desirable if animals used for toxicity testing were selected so 

that they were sim ilar to humans in both their in trinsic sensitiv ity  and 

pharmacokinetic handling of the test compound. However, more often than not, 

the selection of an animal model is based on considerations of cost, size and 

availability of the animal, housing requirements and lifespan. In the absence of 

pharmacokinetic and metabolism data, animal selection has tended toward the use 

of animal test species that are most sensitive and / or for which there is an
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availability of historical controls (Hill, 1987; Huff et al., 1988).

Only four anim al species are com m only used and accepted for 

pharmacokinetic, metabolic, and long - term toxicological studies, namely mouse, 

rat, dog, and monkey. From a review of the literature it has been observed that rat 

and mouse are the animal species most commonly used in toxicological studies 

with the dog a distant second while the monkey is used least. This is a reverse of 

the order of metabolic similarities of these animals to man (Smith & Caldwell, 

1977). Pharmacokinetics is a tool that can be used to further our understanding of 

the biology of laboratory animals and improve our interpretation of toxicity data.

1.3.4 Role of Metabolic and Pharmacokinetic Studies in Preclinical Drug 

Evaluation

Metabolic and pharmacokinetic studies are essential for gaining an insight 

into the behaviour of a new drug and as an adjunct to preclinical (and clinical) 

safety studies. The main objectives of such studies are (Annex IV ,1983; 

Chasseaud, 1988; Smith, 1988; Tse, 1988):

(a) the assessment of drug and metabolite(s) concentrations and kinetics in 

blood, body fluids and organs;

(b) the gathering of information on the relationship between target organ 

toxicity and blood, or body fluids or organ concentrations;

(c) the assessment of possible enzyme induction and drug accumulation 

upon repeated administration;

(d) the choice, when feasible, of the animal species to be used in 

toxicological studies on the basis of their similarity to man in the handling 

of the drug. This determines, in part, the human relevance of these studies.
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(e) the development of appropriate dosage schemes to be used in Phase I 

clinical studies.

(f) determination of the relationship between the age and sex of the 

animal and the kinetics of the test drug;

(g) support for the pharmacology of the drug;

(h) screening of new dosage forms and formulations.

A major objective of animal metabolic studies - bearing in mind human metabolic 

studies - is the assessment of the validity of the animal model in qualitative, 

quantitative and kinetic terms. Ideally, the qualitative pattern of metabolism of the 

test drug in animal species should resemble that occurring in man so that both 

species are broadly exposed to a similar array of metabolites.

The prediction of species differences in the qualitative pattern of 

metabolism of drugs is far from being an exact science, and the best that can be 

achieved at present is described as a "forecast". Indeed, by taking into account 

chemical structure, metabolic pathways, species patterns and deficiencies it is 

often possible to arrive at a quite reasonable forecast as to what would be 

anticipated in terms of metabolic pattern in humans (Smith, 1988).

Most helpful in this predictive context is the knowledge that has been 

acquired concerning species defects with respect to particular metabolic pathways 

and certain substrates. Also of value is the recognition that, occasionally, species 

may exhibit uncommon reactions, particularly unusual conjugation reactions. 

Their occurrence is relatively unpredictable and arises from a particular 

combination of species and substrates.

Potential confounding factors such as dose and duration of exposure 

which may alter metabolic patterns have to be taken into account in the 

interpretation of animal metabolic studies. Dose size is particularly important as it 

is now known that high dose exposure may saturate detoxification pathways and 

result in an alternative pathway of metabolism or "metabolic switching". This can
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result in the formation of a different array of metabolites, or at least in a change in 

the relative proportions of metabolites compared with that seen in low dose 

exposure conditions (Zangouras et a l , 1981; Sangster et a l , 1983; Sutton et a l , 

1985).

Moreover, the interpretation of long - term toxicity studies is hampered by 

lack of pharmacokinetic data. The need for detailed pharmacokinetic studies to 

aid in the design and interpretation of toxicity tests has been emphasised (Mellet, 

1969; Clark & Smith, 1984; Jollow et a l,  1982). Pharmacokinetic data should 

usually be developed in correlation with acute and sub-chronic testing of a xeno- 

biotic before the initiation of chronic studies. Evidence of possible absorption 

problems, unusual toxic dose relationships, or notable species differences in the 

early toxicity studies suggest that additional pharmacokinetic experiments are 

useful in developing protocols for further short - or long - term toxicity studies 

(Glocklin, 1982). Questions which arise from effects observed from a particular 

xenobiotic during sub-chronic or chronic toxicity studies may warrant additional 

pharm acokinetic  studies and / or re trospective  reassessm ent of 

pharmacokinetic/toxicology correlates. This might, for example, include compre

hensive characterisation of metabolite identity and reactivity (Glocklin, 1982; 

Levy, Galinsky, & Lin, 1982). Hottendorf et al (1976) have pointed out the 

inadequacy of safety extrapolations based upon the daily dose and suggested that 

comparative peak blood levels, AUCs, duration of dosing, clearance, were of 

equal or greater importance. Pharmacokinetic and metabolic data are therefore 

important in virtually every aspect of drug safety evaluation.

Most toxicological studies are conducted according to standard guidelines, 

and no effort is made to optimise experimental protocols on the basis of sound 

pharmacokinetic and metabolic knowledge (Zbinden, 1984). Some pitfalls of 

traditional toxicity testing methods (Rentsch, 1974) are as follows:
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(a) The methods are qualitative and empirical.

(b) Complete absorption is assumed in data interpretation.

(c) Animals are assumed to handle high and low doses of drug similarly.

(d) Dosing conditions are different from those intended to be used 

clinically.

(e) Differences among species are usually ignored.

(f) A test compound is usually abandoned when an unusual toxicity is 

observed, without attempts to understand the fundamental reasons for 

toxicity.

One has to assume complete absorption of a drug in the interpretation of safety 

data when pharm acokinetic  inform ation is not availab le. S im ilarly , 

pharmacokinetic linearity between doses being evaluated must be assumed. 

Unless tested, these assumptions are groundless because the kinetics of 

absorption, distribution, and elimination of large doses of a drug as given in 

toxicity (safety evaluation) studies can be completely different from the kinetics 

of smaller doses for therapeutic purposes. A serious disadvantage of traditional 

toxicity testing is that when an unusual toxicity is observed, further development 

of the compound is generally stopped with no attempts made to understand the 

mechanism of its toxicity. In many cases, the toxicity is simply due to selection of 

a very high dose or the formation of a toxic metabolite that may be specific to the 

test species, with no relation to human beings at all (Batra & Yacobi, 1989). A 

knowledge of the concentrations of the parent compound and metabolites in 

plasma and tissue, allied to the accumulation of the drug on further dosing or the 

rate of elimination after cessation of administration, allows the opportunity to 

rationalise both the species of animal most appropriate for the testing of a 

compound and the extrapolation of any toxicity observed in animals to the likely 

risk for man (Anderson, Hoel, & Kaplan, 1980; Batra & Yacobi, 1989).

Observance of nonlinear pharmacokinetics of absorption, elimination, or
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both is very common in toxicity studies because of the very high doses (relative 

to therapeutic doses) used in such studies. This has become a rule rather than an 

exception (Batra & Yacobi, 1989). Pharmacokinetics incorporated in dose rang

ing studies would help establish a dose range in which linear relationship between 

blood concentration and dosage exists. This relationship would introduce a quan

titative measure in the study relating response to an accurate estimate of the 

amount of drug absorbed rather than the dose administered. The knowledge 

gained could be useful in correlating toxicity with blood concentrations and 

elucidating whether toxicity observed at any point during the short - or long - 

term toxicity studies was drug related.

It is well established that drug metabolising capacity generally diminishes 

with age (Yacobi, Kamath, & Lai, 1982). Whereas age - dependent metabolism is 

unlikely to be of consequence in shorter - term toxicity studies, it may be of 

importance in lifespan studies in rodents, particularly as the dose levels for such 

studies are often chosen on the basis of data obtained from younger animals in 

shorter - term studies. An obvious consequence of such age - dependent 

metabolisms is that the impact of a selected dose alters as the study progresses: 

what was a suitable dose at the start of the study may become less appropriate 

towards its conclusion. Consequently, doses should be selected for lifespan 

studies by making allowances for age - dependent metabolism. Whether this 

actually occurs can be evaluated by determining the kinetics of the test compound 

at appropriate intervals during the course of the study (e.g. at 3 and 6 months, 1 

year and 2 years (Chasseaud, 1988)). During maturation, for instance, the 

developmental profiles of different drug metabolising enzymes are dissimilar 

(Gibson & Skett, 1986), and it is not unreasonable to suppose that there are 

differences in senescence. The amount of the important endogenous protective 

agent, glutathione, in the heart, liver and kidneys of mice has been shown to
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diminish gradually by some 20 - 30% with increasing age (Hazelton & Lang, 

1980). This would be of importance for compounds detoxified by reaction with 

glutathione. Since age - or sex - dependent alterations in drug disposition is 

important in humans (Schmucker, 1985) because of the variable manner in which 

individuals metabolise xenobiotics, these factors must be considered as pharma

cokinetics’ input in the design and interpretation of toxicity studies.

It has been a long recognised fact that the intensity and duration of the 

pharmacological effect of a systemically acting drug are functions not only of its 

in trinsic  activity  but also of its pharm acokinetic characteristics. Thus, 

pharmacokinetic data obtained from the pharmacological test species are often 

useful in the interpretation of drug effects. A typical example is a drug that is 

active following intravenous administration but is considerably less active after 

comparable oral dose. Possession of the appropriate pharmacokinetic data could 

reveal whether the drug is poorly absorbed to yield subtherapeutic circulating 

levels or is subject to presystemic biotransformation to an inactive metabolite. 

Such information would be invaluable in subsequent decisions, for example to 

improve drug absorption by altering the salt form or formulation, to investigate 

the possibility of making prodrugs, or to abandon the oral route of administration.

For many drugs there is a direct correlation between drug concentration at 

site of action and pharmacological effect. For instance, present knowledge 

suggests that the bactericidal action of antibiotics is directly related to drug levels 

at the site of infection, and the bactericidal effect is lost when antibiotic levels fall 

below the minimum inhibitory concentration for the invading micro-organisms. 

Also, the time course of drug - induced hypothermia in cold - room acclimatised 

rats parallel plasma bromocriptine concentrations but not total radioactivity levels 

following an intravenous dose of - labelled bromocriptine (Schran, Tse, & 

Bhuta, 1985).

Knowledge of the effective blood or plasma concentration in animals can
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be used as a guide for later studies in humans as the drug trial progresses into the 

clinical phase. A drug should not be considered as inefficacious unless circulating 

levels approaching the effective concentrations in the pharmacological test 

species are achieved in man (Tse, 1988). Consequently, potentially valuable 

therapeutic agents will not fall into unw arranted disrepute because of 

underdosing.

There is sometimes a more complicated relationship in the time course of 

plasma levels and the pharmacological effect for drugs with an extravascular site 

of pharmacodynamic action. Simultaneous modelling of the pharmacokinetics 

and pharmacodynamics of such drugs is relatively complex, and numerous 

integrated models have been have been introduced (Dahlstrom et al., 1978; 

Colburn, 1981; H olford & Sheiner, 1981). A lthough there is a greater 

accessibility of tissue drug concentration data in small laboratory animals which 

should render them attractive models for testing the applicability of this 

modelling approach, this type of elaborate analysis is usually not attempted 

during the preclinical phase of drug development.

In the process of developing a final drug product, the formulation scientist 

develops one or more formulations that demonstrate desirable disintegration and 

dissolution characteristics in vitro. The in vivo release pattern of the drug based 

on the resulting blood level curves in humans is studied, and the dosage form is 

accepted if an adequate blood level profile is obtained. With some sophisticated 

formulation designs, such as those used in controlled release drug delivery sys

tems, repeated trial and error may be needed before an acceptable product is 

identified. Such a development pattern is not only costly but also time consuming, 

since a typical human bioavailability study requires the coordination of personnel 

from the various units involved in drug research and development (Tse, 1988).

A more direct and simpler approach is to perform in vivo screening tests
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in animals. As a result, formulations with a desirable release pattern in vitro are 

submitted for definitive bioavailability or bioequivalence testing in humans only 

after yielding a favourable blood level profile in an animal model.

A proper model is the key to the successful use of animal data in this 

manner. The beagle dog has proven to be a useful indicator of potential human 

absorption and formulation problems when the animal studies are conducted 

under appropriate conditions for the following reasons (Smyth et al., 1983; Tse, 

1988):

(a) Generally, oral dosage forms intended for man can be administered 

intact to dogs.

(b) It is relatively easy to handle and maintain the beagle dog. Its body 

weight is sufficiently stable over time to allow repeated studies using the 

crossover study design. The normal physiology of a 10 kg beagle dog is 

not affected by the withdrawal of approximately 100 ml of blood weekly 

for 6 weeks.

(c) Although interspecies differences in metabolism (Mellet, 1969), 

protein binding (Vallner, 1977), and drug clearance (Boxenbaum, 1980) 

preclude absolute correlation of dog and human pharmacokinetics, 

similarities in anatomy and physiology (Hamilton, 1957; Anderson, 1970; 

Wilson, 1962) provide a basis for the use of the dog in relative 

bioavailability studies. Formulation - related absorption problems in the 

dog usually also exist in the human (Crouthamel & Bekersky, 1983).

The need to apply the know ledge of pharm acokinetics and

biopharmaceutics in the design and interpretation of toxicological studies cannot 

be overemphasised. The advantages are as follows (Smyth & Hottendorf, 1980; 

Hawkins & Chasseaud, 1985; Bolt & Filser, 1987):

(a) Effect of changing formulations on bioavailability by different routes 

can be established.
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(b) Data on the extent of absorption, achieved plasma concentrations and 

rates of elimination over the range of doses selected for toxicity studies 

become available.

(c) Any likelihood of accumulation of the parent compound and or its 

metabolites is identified prior to commencing chronic toxicity studies.

(d) The relative and / or actual exposure to test compound can be 

determined (i.e. a bioavailability of 1.0 is not assumed).

Proper characterisation of kinetic behaviour is a prerequisite for the selection of 

appropriate dosages in long - term studies, and is also useful for interpretation of 

dose - response relationships, especially when toxicity is mediated by metabolites 

rather than the parent compound. It is therefore appropriate to investigate the 

pharmacokinetic behaviour of xenobiotics over the range of dosages used for 

animal toxicity tests as well as at dosages approximating "in use" exposure for 

humans. Pharmacokinetic data are essential if there is to be better and more 

rational interpretation of information obtained from toxicity studies. In fact, 

without pharmacokinetic data, the actual or relative dose levels to which animals 

are exposed systemically during toxicity studies cannot be determined, and the 

assessment of safety margins based on administered doses alone becomes pure 

guess work. Thus, adequate and proper characterisation of the pharmacokinetics 

of a drug is important for prediction from one animal species to another, and most 

importantly man.

1.4 Parameter Estimation in Preclinical Pharmacokinetic Studies

Small laboratory animals (rats and mice) have been the animals of choice 

for pharm acokinetic and tox ico log ical studies because o f econom ic 

considerations and ease of handling. The collection of samples (blood or tissues)
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from these animals usually involves "destructive" sampling at specified times.

The most commonly used method of analysing pharmacokinetic data 

obtained from small laboratory animals is the Naive Pooled Data (NPD) 

approach. This is best illustrated by example. Suppose that 10 animals are 

sacrificed at each of 10 time points and the concentration measured (i.e. 100 

animals), the data at each time point are averaged to give 10 (averaged) 

concentration - time points. These are then used for the estimation of model 

parameters (Fig. 1.1).

However, the averaging procedure, in general, may mask the most 

appropriate model, and allow a different model to be justified. No estimate of 

intra- or inter-animal variability is possible. Estimates of parameter errors bear no 

relationship to the variability of these parameters within the population of animal 

under test. In fact, variability (physiological, anatomical, and biochemical) within 

the study population can be considerable, and when considered in terms of 

clearance and volume of distribution can be expressed as coefficients of variation 

of the order of 50% (Lindstrom & Birkes, 1984). The NPD approach cannot, 

therefore, be recommended as a reliable method of kinetic data analysis, either for 

modelling or parameter estimation.

There are instances where animal pharmacokinetic data are obtained from 

large animals (such as dogs) by serial sampling in each animal, and these are 

analysed by the Standard Two Stage (STS) method. This method is, in a sense , 

the opposite of the NPD approach. It involves estimating individual animal 

parameters in the first stage with simple nonlinear regression, and combining 

these estimates in the second. Estimates of average parameters are then computed 

as means and their variances.

The STS method provides reasonable estimates of average population 

parameters, but the standard deviation of these parameter estimates will, in 

general, overestimate variability (Sheiner & Beal, 1980a; 1981; Sheiner, 1984).
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Fig. 1.1 An example of concentration - time plot from a typical animal 
pharmacokinetic study in which one observation is taken per animal. The 
parameters of the model are obtained by averaging concentrations at each time 
point and fitting a model to the averaged data (the NPD approach). The 
continuous line is the model fitted line.
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This is because each parameter is estimated from the original drug level - time 

profile, which itself contains some measurement error and possibly model 

misspecification. This error adds variability to the parameter estimates that is not 

of biological origin. Hence random inter - animal variability will be over 

estimated.

Not only are the estimates of variability obtained with the STS method 

biased, but the use of this method is also not possible when the data from study 

animals are too few to permit the calculation of individual animal parameter 

estimates. Because of these reasons, the STS method, like the NPD method, 

cannot be regarded as ideal for population pharmacokinetic parameter estimation

Where data are not analysed by either the NPD or STS approaches, 

parameter estimates are obtained by the use of statistical moments analysis. 

Again, the estimates of AUCs obtained are devoid of estimates of error, and no 

information on variability is provided. Accuracy and precision at this stage of 

drug development is crucial, and these objectives are jeopardised by inefficient 

data analytical techniques.

There is a great need to incorporate in the analysis of data obtained from 

pharmacokinetic studies involving "destructive sampling" the fact that the data 

came from a population with more variability than the traditional experimental 

error. Once this provision is made the data should be analysed with a method 

which takes into account the inherent variability in the population sample. The 

precision of the parameter estimates is then a function of the underlying structural 

model and the sampling strategy (Balant etal,, 1990).

1.4.1 Variability

Comparison of pharmacokinetic data obtained from different animals
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given the same dose of drug will indicate the degree of population variability in 

drug disposition; it may also indicate the source of variability. For example, 

comparison of the total amount of drug excreted unchanged into the urine can 

indicate whether metabolism or excretion is extremely variable. If the total 

amount of drug excreted is very different then this would indicate that the amount 

of drug metabolised was variable. If the total amount of drug excreted unchanged 

was the same but the rate at which it was excreted was different, then this would 

indicate variability in the excretion process. Brodie (1962) pointed out that 

different inbred strains of rats oxidise antipyrine at widely different rates (as 

much as a factor of 3). Vocci and Farber (1988) have advocated the consideration 

of pharmacokinetic differences within the same species in interspecies scaling. If 

population variability  for a drug is high in laboratory anim als, usually 

homogeneous and inbred populations, then even larger variations in response 

would be expected for humans (Scheuplein et al., 1990). A large degree of 

unexplained inter-animal variability may suggest that other factors, as yet 

undetermined, may be affecting the pharmacokinetics of the drug.

Inter - animal variation in pharmacokinetics can be attributed to various 

factors. Some of these involve easily measurable animal characteristics (for 

example, weight, sex, age, protein binding). On the other hand, intra - animal 

pharmacokinetic variability involves the change in response of animal to drug 

treatment with time. Examples include inhibition or induction of metabolic elimi

nation (changes in clearance), variable absorption due to intestinal flora or gut 

wall metabolism, and diurnal variation due to circadian rhythms. It is highly 

pertinent to accurate and precise pharmacokinetic parameter estimation that these 

variabilities be accounted for.

In contrast to the NPD, STS and statistical moments analysis approaches it 

is necessary to use the nonlinear mixed effects regression model approach (Beal
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& Sheiner, 1979 - 1989) in estimating population mean parameters and their varia

bility from data obtained from animal pharmacokinetic studies. This data analysis 

approach is usually carried out with the exportable software program NONMEM 

(Nonlinear Mixed Effects Model, Beal & Sheiner, 1979 - 1989). The statistical 

model used in NONMEM is based on the premise that individual (animal) 

pharmacokinetic parameters of a study (animal) population arise from a distribu

tion which can be described by the population mean and inter-individual (animal) 

variance. Thus, each individual’s (animal’s) pharmacokinetic parameter can be 

expressed as a population mean and a deviation from the population mean, typical 

of that individual (animal). NONMEM is designed to handle relatively sparse 

data, in that it permits the use of unsystematically sampled plasma concentrations 

and few measurements per subject (animal), to determine population parameters 

and their variability. The strength of this approach, therefore, is the fact that a 

data set can be analysed at once to yield average values of pharmacokinetic 

parameters and their variances.

The NONMEM approach has proved itself in the human clinical setting 

(Vozeh et al., 1982; Grasela et al., 1983; Grasela & Sheiner, 1984; Grasela & 

Donn, 1985; Grasela et al., 1986; Thomson & Whiting, 1987; Grevel, Thomas, & 

Whiting, 1989), and there is a need for the application of the NONMEM 

approach in the animal preclinical setting (Rahamani et al, 1988; Balant et al, 

1990).

1.5 Experimental Design for the Estimation of Population Pharmacokinetic 

Parameters

The design of experiments is crucial in the analysis of a system under 

investigation. The design of pharmacokinetic experiments is usually based on
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the immediate objective of the investigation, i.e., model discrimination or 

param eter estim ation. Determ ining the correct structural model among 

alternatives (e.g., single versus multicompartmental) yields valuable insights into 

pharmacokinetic mechanisms, and estimating model parameters is the key to 

quantifying population variability. Pharm acokinetic analysis of data is 

informative only if the data themselves are informative, and that informative data 

could best be assured by appropriately designing the experiments from which the 

data are collected.

Animal pharmacokinetic experiments typically consist of administration 

of a test compound and measurement of the changing drug concentration in timed 

blood samples from either individual animals or groups of animals. It is 

established (Box, 1970; Landaw, 1985) that design decisions in human 

pharmacokinetic experiments can be at several levels:

1. the route of drug administration

2. the dose to be used (e.g., tracer versus large, single versus multiple, IV

bolus versus continuous infusion)

3. sites, metabolites, or "pools" to be sampled

4. the number of samples to be collected

5. the spacing of sampling times

These decisions also apply to animal pharmacokinetic studies. Although "input" 

design can be quite important (Endrenyi, 1981; Mannervik, 1981), the route and 

dose of drug are often determined by the biopharmaceutical properties of the drug 

(Smyth & Hottendorf, 1980). Likewise the number of samples to collect may be 

lim ited to a large extent by the sample size in "destructive" anim al 

pharmacokinetic studies in which one animal supplies only one observation. In 

situations which allow for serial sampling the total amount of blood that can be 

withdrawn is limited. The balance, particularly in small animals, between
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providing realistic pharmacokinetic data and increasing the sample size to 

unmanageable proportions is narrow. Although items 4 and 5 are the most easily 

controlled aspects of animal pharmacokinetic studies examples abound in the 

literature of poor sampling strategy in animal pharmacokinetic studies designed 

for parameter estimation (Zbinden, 1984; Smith, Humphrey, & Charuel, 1990).

The inform ation that can be derived from experim ental data of 

pharmacokinetic studies is determined by three factors (Suverkrup, 1982):

(1) accuracy, specificity and sensitivity of the assay, (2) number of samples taken, 

and (3) arrangement of samples in time.

The observations made in a pharmacokinetic study are subject to two 

types of error - errors due to analysis and errors due to biological variation during 

the course of the experiment. Both will contribute to the error of the parameters 

being estimated. The number of sample points taken and their timing will affect 

the errors in parameter estimation, hence it is important that sufficient samples are 

taken.

As with statistical estimations the larger the sample size, the better are the 

parameter estimates in the sense that the variances will be smaller. However, in 

animal and most pharmacokinetic studies the sample size is usually fixed so that 

the arrangement of samples in time should be given adequate consideration.

Generally, sampling times can be manipulated to improve the information 

content of the available concentration - time data. The benefits of attempting to 

obtain measurements at certain key time points which will contain the maximum 

pharmacokinetic information about model parameters have been highlighted by a 

number of authors (D’Argenio, 1981; DiStefano, 1981; Endrenyi, 1981; Endrenyi& 

Dingle, 1982; Landaw, 1985; Suvekrup, 1982). Theory suggests that two 

sampling times are needed for the efficient estimation of model parameters, 

clearance and volume of distribution, of the one compartment model (Box & 

Lucas, 1959). Using Monte Carlo simulation, D’Argenio (1981) found that a
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repeating p point design led to a reduction in the parameter estimate variability 

when data were collected at optimal sequential sampling times from a group of 10 

subjects. Using this simulation technique in population pharmacokinetic studies 

involving multiple sampling of subjects, Al-Banna, Kelman, and Whiting (1990) 

examined the impact of two sampling times (an early and a late sampling time) 

and three sampling times (where the first and the last samples were obtained at 

early and late times and the third time varied between the two) on parameter 

estimation. They concluded that variability was better estimated with the three 

point sampling strategy, and the exact location of the middle (third) sampling 

time was not critical. In animal pharmacokinetic studies involving the one 

observation per animal study design the situation is not so clear.

Even when sample size and the arrangement of samples in time are 

adequate, the parameterization of the model of choice may be crucial to efficient 

parameter estimation. Using the two compartment model with oral administration, 

Westlake (1971) pointed out that parameter estimates can be unreliable when the 

constants in the exponential terms (e.g., a  and p) are nearly equal. He also noted 

that even when the parameter estimates are satisfactory for limited prediction 

purposes, they can be quite unreliable. Boxenbaum, Riegelman, and Elashoff 

(1974) noted the instability of regression parameter estimates and related this to 

high correlation between the estimates. In this type of model, reparameterization 

has been suggested to reduce correlation between parameter estimates, leading to 

more stable estimation (Boxenbaum et al., 1974; Metzler, 1981; Laskerzewski, 

Weiner, & Ott, 1982). Reparameterization results in a transformation of the 

parameter space.

The philosophy behind this approach has been stated quite succinctly by 

Box (1980); ’Known facts (data) suggest a tentative model, implicit or explicit, 

which in turn suggests a particular analysis of data / or the need to acquire further
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data; analysis may then suggest a modified model that may require further 

practical illumination and so on.’ This is also the philosophy behind data driven 

linear regression transformations of the target variable (Box and Cox, 1964).

1.6 STUDY OBJECTIVES

The aim of the work described in this thesis is to investigate the efficiency 

with which NONMEM can estimate population pharmacokinetic parameters and 

their variances, using experimental design normally applicable to small laboratory 

animals. The effects of parameter variability, arrangement of samples in time, 

sample size, experimental error, and a range of parameter values are investigated.

1.7 OUTLINE OF THESIS

The chapters that follow have the following features:- 

Chapter 2: methods of data acquisition and analysis;

Chapter 3: influence of inter-animal variability on parameter estimation; 

Chapter 4: effect of sampling designs on parameter estimation;

Chapter 5: efficiency of parameter estimation given a range of parameter 

values of the 2 compartment model with an intravenous bolus 

administration, sample size, concentration measurement error, and 

sampling schedules;

Chapter 6: effect of reparameterization of the model used in Chapter 5 on 

parameter estimation;

Chapter 7: application of NONMEM to the analysis of real data from 

animal pharmacokinetic study;

Chapter 8: effect of sample size, error in concentration measurement,
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sampling an animal twice on the efficiency of estimation of 

population pharmacokinetic estimates; and 

Chapter 9: general discussion and conclusion.

With the exceptions of Chapters 5 to 7, all other experimental chapters deal with 

the one compartment model with intravenous bolus dose administration. All, but 

one, of the experimental chapters (Chapter 7) deal with simulated data sets.
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CHAPTER 2

METHODS

34



2.1 SUMMARY

Pharmacokinetic principles, methods of estimation of pharmacokinetic 

parameters, population pharmacokinetic methods and data analysis methods used 

in this thesis are discussed in this chapter. The efficiency of parameter estimation 

is examined in terms of accuracy and precision (mean and SD of percent 

prediction error) and design number (a new statistic introduced). While the 

percent prediction error can be used to judge the efficiency with which an 

individual parameter is estimated, it cannot be used to determine the efficiency 

with which all parameters are estimated when different designs within a study are 

compared. The design number, on the other hand, not only measures the 

efficiency with which individual parameters are estimated but may measure that 

for all model parameters estimated as a set.

Since NONMEM, which is used throughout the course of this thesis, 

produces standard error estimates, individual and joint confidence intervals for 

parameter estimates were computed as measures of efficiency of parameter 

estimation. Also, incidence of pair-wise correlations were computed as an aid to 

judging the adequacy of the parameterization of a model.

2.2 INTRODUCTION

2.2.1 Parmacokinetics

Pharmacokinetics is concerned with the study and characterisation of the 

time course of drug absorption, distribution, metabolism and excretion, and the 

relationship of these processes to the intensity and time course of therapeutic and 

adverse effects of drugs. It involves the application of mathematical and
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biochemical techniques in a physiological context (Gibaldi & Levy, 1976). In the 

preclinical setting the appropriate pharmacokinetic characterisation of a new 

xenobiotic is indispensable in the drug development process.

The pharmacokinetic behaviour of a drug is readily summarised with 

parameters which relate concentration to dose and time, and the two most useful 

parameters are clearance (Cl) and volume of distribution. Cl is defined as the 

volume of blood , plasma or serum (containing drug) which is cleared of drug per 

unit of time. In this thesis it is measured in units of m illilitres per minute 

(ml/min).

The volume of distribution (V) of a drug corresponds generally to an 

apparent space, which may be defined as the volume it would occupy at a 

concentration equal to that at the site of measurement, often peripheral plasma 

(Gillete, 1973). In this thesis it is measured in millilitres (ml). Knowledge of 

volume enables calculation of the concentration of drug immediately after an 

intravenous bolus dose.

The elimination rate constant (Ke) is the fractional rate of removal of drug 

and is defined as the ratio of Cl to V (Eq. (2.1)).

Ke = Cl/V (2.1)

1 1It is measured in units of either per minute or hour (min"A or h"A).

2.2.2 Compartment Models

Generally, a compartment has no physiological or anatomical counterpart. 

Occasionally it does, such as circulating plasma, extravascular fluid space and
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total body water space. A compartment may also correspond to a perfusion 

volume of tissue (Bischoff et al., 1971). It can be defined as an ideal volume in 

which each molecule or particle of a substance (drug) has equal probability of 

leaving (Segre, 1986). Implied in this definition is the fact that the concentration 

of the material present in a compartment is uniform and that the rate of mixing 

within the compartment is rapid compared with transfer into or out of it (Segre, 

1986). This definition emphasises the statement of Wagner (1971), that a 

compartmentalised system is an approximation of a biological system, being an 

"average" rather than an exact state.

Many biological systems can be modelled as a collection of homogeneous 

compartments, with material moving according to specified rate laws. In 

pharmacokinetics, an attempt is made to quantify the kinetics of absorption, 

distribution, metabolism and excretion of a drug. Quantification calls for a 

mathematical model, and "compartment models" have been extensively used in 

pharmaceutical and clinical pharmacology research. By modelling the body as a 

set of separate compartments and measuring the amount of drug in one or more of 

these over time, the parameters governing the movement of drug in the system 

can be estimated. The concentration of drug is assumed to be the same throughout 

all compartments at equilibrium, and the rates of transfer of drug between 

compartments are assumed to obey first order kinetics. The mathematical 

formulation of compartment models is a set of differential equations with

constant coefficients.

The one compartment model is the simplest model which depicts the body 

as a single, kinetically homogeneous unit from which drug elimination is first 

order. This is a particularly useful model for the pharmacokinetic analysis of 

drugs that distribute relatively rapidly throughout the body. The schematic 

representation of this model is shown in Fig. 2.1.
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Fig. 2.1 A diagrammatic representation of one compartment model assuming 
instantaneous IV input with first order elimination
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Assuming instantaneous input (IV bolus injection) the mathematical 

description of drug disposition with this model is given by the following 

differential equation:

dA/dt = -KeA (2.2)

where A is the amount of drug in the body at time t after injection. Ke is the 

apparent first - order elimination rate constant for the drug. Eq. (2.2) can be 

solved by Laplace transformation (Gibaldi & Perrier, 1975) to give Eq. (2.3).

A = Ao.exp(-Ke.t) (2.3)

Assuming that the relative binding of a drug to components of tissues and fluids 

is essentially  independent of drug concentration, then the ratio  of drug 

concentrations in various tissues and fluids is constant. Thus, there will exist a 

constant relationship between drug concentration in (for example) plasma, C, and 

the amount of drug in the body:

A = VC (2.4)

Thus, Eq. (2.3) can be expressed as

C = Co.exp(-Ke.t) (2.5)

where Co is the drug concentration in plasma immediately after injection, and C 

is the drug concentration in the plasma at time t.

The two compartment model (Metzler, 1971) for drug kinetics is depicted
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in Fig. 2.2. Com partm ent one is called the "central com partm ent" and 

incorporates circulating plasma from which the drug distributes into a second 

compartment which is sometimes referred to as the "tissue" or peripheral 

compartment. For a drug exhibiting two compartment kinetics the concentration - 

time profile shows an initial rapid decline in concentration which represents both 

distribution and elimination followed by a second slower decline.

Assuming all exchanges between compartments are first order processes, 

the mathematical description of this model is given by the following set of 

differential equations:

dAj/dt = "(k^2 kio)Af + ^21^2  (2*6)

dA2/dt = ■ ^21^2 (2*7)

where and A2 are the amounts of drug in compartments 1 and 2, respectively. 

The rate constants k^Q, k^*  and k2 i represent the rate of elimination from the 

central compartment, the rate of transfer from the central compartment to the 

peripheral compartment, and the rate of transfer from the peripheral to central 

compartment, respectively. These equations can also be solved by Laplace 

transformation to give:

C = [Dose/Vi(a - p)][(cx - k21)EA + (k21 - p)EB] (2.8)

where EA= exp(-at), EB = exp(-pt)

and a, p = l/2{k12 + k2j + k10 + [(k12 + k21 + k10)2 - 4k2 ik 1Q]1/2} 

a  and p are hybrid rate constants describing distribution and elimination, and V j 

is the volume of the central compartment.
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Fig. 2.2 A diagrammatic representation of the two compartment open model 
assuming instantaneous IV input with first order transfer and elimination 
processes.
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2.2.3 Nonlinear Regression

Nonlinear regression methods are used in the analysis of data generated 

during the course of a pharmacokinetic study to estimate the parameters of the 

model. There is no unique solution for the model parameters. Initial parameter 

estimates are progressively altered until the best set of parameters is obtained 

corresponding to the minimisation of the sum of squared deviations between the 

observed and model predicted values.

For example, at each time tj, i = 1, N, the expected drug concentration C  ̂

will be given by an equation

where 0  represents the structural model pharmacokinetic parameters (e.g., Cl and 

V) for the individual (or animal). The observed concentration, q  may be 

represented by

where the e j is a small random error. The distribution of the e j has zero mean 

and variance <?.

The probability density function of observing q  at tj is given by the

C*i = f(0, tp (2.9)

(2 .10)

normal distribution with a mean of C  ̂and variance, v-,

i.e. p(Cp = ( l^ f lv p  exp. -(q -C*p2 /2vj (2.11)
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The joint probability density function (pdf) that all of the observations (C) occur, 

is given by p(C), where

p(C) = p(C1).p(C2) p(Cn) (2.12)

and each p(Cp is as given above. Eq. (2.12) represents the probability function 

for obtaining the values of C, given the values of the parameters 0.

The probability function can also be used to define the "likelihood" (L*) 

function for the parameters, 0 , given the observations of C, so that

L '(0) a  p(C) or L '(0) = k.p(C) = k.L(0)

where k is a constant, but L(0) is not a probability density function. L(0) can be 

used to obtain the most likely estimates (MLE) or estimators of 0 . These will be 

the set of parameter values which maximises L(0). Thus, by substituting for 

p(C), the problem reduces to maximising the product

L(0) = [(l//2I1vj)exp -(Cj - C*1)^/2v1] [(l//'2nv2)exp -(C2 - C*2)2/2v2]...

 (2.13)

The logarithm of both sides gives

ln(L(©» = -{(Cj - C*j)2/2vj + l/21n(2nvj)) - ((C2-C*2)2/2v2 + l/21n(2nv2))

....(2.14)

Thus maximising ln(L(0)) is equivalent to maximising L (0), or minimising 

-ln(L(0)), i.e.

-ln(L(0)) = I ( q  - C*i)2/2vj + l/21n(2IIv;) (2.15)
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where -ln(L(0)) is called the negative log likelihood. Multiplying Eq. 2.15 by 2, 

and also removing the 211 term reduces to minimising Eq. 2.15 to obtain the MLE 

of the parameters.

i.e. Objective function = E(C| - C*p^/vj + ln(vp (2.16)

This objective function is called the Extended Least Squares (ELS) objective 

function.

The interest in the ELS regression method is due to the fact that the 

variance or weighting scheme can be included as part of the model for the data, 

and the parameters of the variance model may be estimated simultaneously. 

Consequently, a variance model or weighting scheme need not be chosen 

explicitly before the data are fitted. However, the form of the model used to 

describe the variance must be selected.

The most frequently used variance model is

where the value of <p is estimated along with other model parameters. Eq. (2.17) 

gives the general variance model in which various weighting schemes can be 

incorporated. When (p = 0, Eq. (2.17) yields the constant variance model and the 

objective function in Eq. (2,16) reduces to the Ordinary Least Squares (OLS) 

objective function which is given by

The assumption of a constant variance may be unjustifiable in cases in which 

concentration is measured over a large range of values (e.g. 0.01 to 100 {Xg/ml).

V: a  C*:<P (2.17)

OLSq b j  = KC; - c y (2.18)
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As the variance of each point is rarely known, there are several weighting 

schemes which are commonly used. Examples of these occur in the radioactive 

decay and dilution processes. In the former, a  Vj a  C and in the latter Wj a
if; OVj a  C . Thus, cp = 1 and 2 for the respective processes (i.e. W ja C  j or C j , 

respectively) and the objective function in Eq. (2.16) reduces to the Weighted 

Least Squares (WLS) objective function. Thus,

WLS0BJ = SWi (Cr C*i)2 (2.19)

The contribution of each point to the WLSq ^ j  is weighted by a function which 

reflects the certainty of the observation. More weight is placed on the data points 

about which there is the greatest confidence and vice versa.

2.3 POPULATION PHARMACOKINETICS

All drugs exh ib it pharm acokinetic variab ility . Population  

pharmacokinetics describes this variability in terms of fixed and random effects. 

"The fixed effects are the population average values of pharmacokinetic 

parameters which may in turn be a function of various patient characteristics such 

as: (a) age, weight, height and sex; (b) underlying pathology such as renal or 

hepatic impairment; and (c) other influences on drug disposition such as 

concomitant drug therapy, smoking habits and alcohol intake. The random effects 

quantify the amount of pharmacokinetic variability which is not explained by the 

fixed effects, i.e., inter- and intrasubject variability" (Whiting, Kelman, & Grevel, 

1986). In animals fixed effects are similarly a function of those characteristics 

listed for humans.
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Thus inter-animal random effect parameters measure the magnitude of the 

random individual animal variability in relation to the fixed effects. Intra-animal 

variation includes measurement errors involved in quantifying drug concentration 

or response and random changes in an animal’s parameter values over time. It 

also includes model misspecification errors which arise because all mathematical 

calculations of parameter values are simplifications of reality.

2.3.1 Population Methods

There are two standard approaches to estim ating  population  

pharmacokinetic parameters : the NPD and the STS approaches (Sheiner & Beal, 

1980a). These approaches have been traditionally used in the estimation of 

population pharmacokinetic parameters from animal data. The NPD approach 

tends to ignore individual animal pharmacokinetic differences. The usual 

approach when an animal (e.g., rat or mouse) can be measured only once is to 

sample more than one animal at each of several time points and to treat the 

sample means as a time series of measurements from a "typical" animal. This 

procedure only gives estimates of population parameter means and ignores inter

animal variability in the parameters.

When animals are sampled serially all data are pooled at each time point 

to yield an arithmetic mean plasma concentration curve (Eq. 2.20) of all 

individual animal curves and a pharmacokinetic model fitted to the mean data as 

if it came from a "super" animal.

jl(C(t)} = l /n IC i(t) (2.20)

Thus the NPD approach has several drawbacks:

(1) It totally ignores individual animal pharmacokinetic characteristics

46



and, by doing so, obscures important information on how xenobiotic 

substances are handled.

(2) The average concentration curve derived by the NPD approach, does 

not necessarily follow the individual model function. A wrong model may 

be obtained (Martin et al, 1984). Undefined statistical uncertainties and 

large "unknown" animal variations might smooth the average response 

curve in an unpredictable manner.

The STS method is, in a sense, the exact opposite of the NPD method. At 

first it regards each animal as completely distinct from all others and estimates 

each animal’s pharmacokinetic parameters from its data alone. In the second 

stage, the individual animal pharmacokinetic parameter estimates are often 

pooled to obtain population parameter estimates. If Cl, for instance, is to be 

related to physiology, linear regression is used. This, however, has only been 

used in human studies although it could be applied to animal studies. For inter

animal random effect parameters, the standard deviations of the individual animal 

parameters about the regression line ( or the mean value) are used. When the 

residual error random effect parameter is estimated (which is rare) the square root 

of the sum of the pooled, squared residuals of the initial, nonlinear fits divided by 

the (pooled) residual degrees of freedom is usually used (Sheiner & Beal, 1980a).

When standard errors of the fixed effect parameter estimates are obtained 

with the STS approach they are usually taken to be the standard deviations of 

each animal’s parameter estimates divided by the square root of the number of 

sampled animals. The standard errors of the inter-animal random effect parameter 

estimates are not computed.

The manner in which the random inter-animal effect parameters is 

estimated is a fundamental problem associated with the STS approach. They tend 

to be upward biased because each parameter is estimated from the original drug
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concentration - time data with some error, and this error adds variability to the 

parameter estimates that is not of biological origin (Sheiner, 1984; Martin et al., 

1984). Accurate variance estimates can be achieved only through well designed 

and performed pharmacokinetic studies. In addition, this method cannot be used 

when data from some animals are too few to permit individual animal parameter 

estimates.

The statistical problems of pharmacokinetic data analysis are now being 

appreciated more often than formerly and alternative population - based methods 

of estimating population pharmacokinetic parameters have been elaborated. These 

methods focus on central tendency in response across a study population and the 

variability in response between individual members of the population studied. 

This difference in point of view requires a dramatically different approach to 

modelling and parameter estimation. A variety of approaches have been proposed 

(Steimer et al., 1984), but the nonlinear mixed effects model has been studied in 

detail, and it is applied throughout the course of this thesis. Traditional 

compartmental pharm acokinetic models invariably assume that error or 

unexplained deviation from expected response is simply added to the predicted 

response. Such an error structure can be satisfactorily dealt with using simple 

least squares nonlinear regression. Population based methods assume a more 

complex error structure and are generally expressed as mixed effect models, 

indicating that complex interactions and effects are responsible for an observed 

response (Beal & Sheiner, 1984).

Expression of a population model in a form that lends itself to extended 

least squares analysis allows explicit estimation of components of variance as 

well as estim ation of central tendencies. At the heart of population  

pharmacokinetic analysis is the explicit estimation of inter- and intra-individual 

(inter- and intra-animal) variability and the exploration of factors that account for 

this variability (Sheiner, Rosenberg, & Marathe, 1977; 1980a & b; 1981; 1983;
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Beal & Sheiner, 1982,1984).

2.3.2 Population Data Analysis Using NONMEM

The formal expression of a population based model for parameter 

estimation is accomplished through application of the basic principles of analysis 

of variance. The similarities between traditional analysis of variance (ANOVA) 

or, more accurately, analysis of covariance (ANCOVA) and nonlinear mixed 

effects modelling underscores the importance of variance in population modelling 

(Colburn & Olson, 1988).

In common with simple nonlinear regression models (OLS and WLS), 

mixed effects nonlinear regression models estimate a central tendency for 

parameters that predict average response. The principal difference between 

simple nonlinear regression and mixed effects nonlinear regression is the level of 

complexity allowed in the subsequent expression of variability. Simple nonlinear 

regression allows a single component of random error about the predicted 

response. This error is added to the predicted response to account for deviations 

from prediction and may or may not arise from a distribution of a constant 

variance. A more complex expression of variance models based on principles 

firmly established for traditional ANOVA is accomplished with mixed effects 

nonlinear regression (Beal & Sheiner, 1982).

Nonlinear mixed effects regression recognises two sources of deviation 

from a predicted response. Assuming that the central tendency in a population 

model represents the response of an average animal, any particular animal 

response will be different for the simple reason that the particular animal is not 

average. This is the source of inter-animal variability. The second source of 

variability (residual error) arises from deviations from predicted response after
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accounting for inter-animal variability. The residual error is the same as that 

estimated in simple nonlinear regression. This analysis approach allows a 

generally correlated error structure, with varying error magnitude as a function of 

observable data (e.g., sex, weight, time of sample after dose, etc) and the fixed 

effect parameters.

Fewer samples are needed from each animal because the individual 

animal is no longer of central interest; this procedure should lend itself to the 

sparse data obtained with the one observation per animal study design. 

Observations are pooled to characterise a central tendency for the population 

rather than the individual animal. The characterisation of inter-animal variability 

preserves the fact that individual animal response is different from the population 

mean response. Each animal’s contribution to the characterisation of this variance 

is adequately  defined with few er sam ples than are required  for the 

characterisation of each animal’s parameters.

The NONMEM program (Beal & Sheiner, 1979 - 1989) uses the ELS 

method to estimate population pharmacokinetic parameters and is designed to 

handle relatively sparse data from a large number of subjects. This feature makes 

it applicable in the analysis of data collected during animal pharmacokinetic 

studies in which as few as one observation is obtained  per anim al. It 

simultaneously analyses data from all animals in a study, provides estimates of 

average population parameters and partitions all sources of error into that arising 

from inter-animal variability and that arising from residual error. When 

analysing experimental data the ability to state a general parametric model for the 

error structure frees the analyst from the task of specifying weights for the data 

analysis. NONMEM provides estimates of standard errors for all parameters 

estimated and these can be used to construct confidence intervals for true 

parameter values, thereby allowing hypothesis tests for these. Under the
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assumption of normality for the distributions of the random variables, NONMEM 

provides yet another possibly preferable method of testing hypotheses, the 

likelihood ratio test (Rao, 1965) which is used in comparing models.

Three input files are required to run NONMEM. These are: (1) the data 

file which contains the concentration - time data, (2) the "PRED" file, a 

FORTRAN subroutine which defines the structural and variance models, and (3) 

the control file which details information on the organisation of data in the data 

file, initial estimates of parameters with upper and lower limits, and instruction 

for presentation of results, tables and graphs. The PRED files used in this thesis 

are shown in Appendix I.

The param eters of the structural model, ( 0 ^ )  for any animal are 

represented by the population mean, (0^), plus the deviation from the mean 

which is relevant to the particular animal t^-  (where represents inter-animal 

variability), i.e.

e ki = ® k+1^d <2*21)

values are often assumed to be normally distributed with zero mean and 

variance o?^. The inter-animal variability expressed in this form is additive to the 

population mean, and < \ approximates the inter-animal standard deviation for 

associated parameters. Alternatively, the inter-animal variability can be assumed 

to be proportional to the value of 0^, i.e.

ln(0jQ)= lnC©^) (2*22)

The statistical model given in Eq. (2.21) is used throughout this thesis.

The residual error quantifies deviations of the plasma concentration 

measured in each animal, Cj, from the overall predicted concentration, C*j. The
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predicted concentration is a function of structural model parameters

c * = f(0ki»D’ t) (2.23)

and Cj = fCe^, D, t) + 6 j = C*j + e j (2.24)

The error is assumed to be normally distributed with zero mean and variance <?. 

This corresponds to a "constant or additive error" model. The "proportional error" 

(error proportional to concentration), a realistic assumption in pharmacokinetics, 

is an alternative model which can be obtained by assuming a log normal 

distribution of concentration, i.e.

ln(Cj) = In D,t) + e j (2.25)

Fig. 2.3 is an example of the PRED (for a drug which is administered by 

intravenous (IV) bolus dose injection and exhibits one compartment kinetics) 

used in the 1985 version of NONMEM (Beal & Sheiner, 1979 - 1989). It requires 

the provision of both the structural (pharmacokinetic) model (F) and the 

derivatives of the function with respect to each i^(G array) by the user. The 

statistical nature of the inter-animal variability is defined by the G functions. The 

"H" function defines the statistical nature of the concentration error model. 

Appendix I contains examples of other PRED’s and control files used in 

NONMEM analysis during the course of this thesis.

2.3.3 Model Comparison

NONMEM models are compared on the basis of the objective function
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SUBROUTINE PRED(ICALL,NEWIND,THETA,D ATRECJNDXS ,F,G,H)
C
C
C 1 COMP IV, 1ST DOSE, CL, V 
C 
C 
C

DIMENSION THETA(2),DATREC(3),H(1),G(2),INDXS(1)
DOUBLE PRECISION THETA,F,G,H,T,DOSE,CL,V,EKT,XKE,EXPWCH 
CL=THETA(1)
V=THETA(2)
x k e =cl / v
T=DATREC(2)
DOSE=3000.
EKT=EXPWCH(-XKE*T)
F=DOSE*EKT/V
G(1)=-T*F/V
G(2)=(F/V)*(XKE*T-1)

C H(1)=F 
RETURN 
END
DOUBLE PRECISION FUNCTION EXPWCH(XX)
DOUBLE PRECISION XX 
IF(XX.LE.-50.) XX=-50.
IF(XX.GE.50.) XX=50.
EXPWCH=DEXP(XX)
RETURN
END

Fig. 2.3 The PRED subroutine used for parameter estimation with the one 
compartment model (IV bolus injection). Note that when more than one 
observation is obtained per animal "H" is included in the subroutine.
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(twice negative log likelihood function). Hierarchical models can be compared 

using a chi- squared test with degrees of freedom equal to difference in the 

number of parameters (Sheiner, Rosenberg, & Marathe, 1977). Non-hierarchical 

models (where all models have the same number of parameters, see chapter 7) are 

compared by an examination of the objective function, the variances associated 

with each parameter, and the weighted residuals plot.

2.4 SIMULATION

Monte Carlo sim ulation is a num erical technique for conducting 

experiments with certain types of mathematical models describing the behaviour 

of the system  under study (N aylor, B urdick, & Sasser, 1966). In a 

pharmacokinetic simulation study, it is assumed that both the form of the 

deterministic and the stochastic components (structural model parameters and 

error structures, respectively) of the pharmacokinetic model are known, and the 

sampling strategy specified.

Thus, simulation was carried out as described by Bard (1974). For studies 

involving the use of the one compartment model with IV bolus injection 

(Chapters 3, 4, and 8) population parameters of a drug having the characteristics 

of avicin, a cytotoxic agent (McGovern et al., 1988) were used for the simulation. 

The parameter values were Cl = 1.3 ml/min.; V = 162.5 ml, C q , G y, and oe were 

set to give coefficients of variation of 15%.

The half-life ( ty 2) °f simulated drug (using Cl and V) was 84 min., 

and ten sampling times were specified between 5 and 240 min. (i.e. 5 , 15, 30, 60, 

90, 120, 150, 180, 210, and 240 min.). The first two time points were fixed in all 

cases while the other time points were sampled uniformly from a range of 15
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min. about the stated times. This was considered to mimic a real study, and in 

parameter estimation with NONMEM the exact times were used. One observation 

was made on each animal. Variations of this sampling design are specified in 

chapters 4 and 8.

Individual Cl values (C lj’s) were obtained by sampling from the 

population distribution (Cl, c?q ) using a random number generator. Vj’s were 

similarly generated. Using the appropriate sampling time (tj) sampled from the 

uniform distribution (tj ± 7.5 min.), apart from the first two points, the expected 

concentration C j was computed. A random error, proportional to C j was then 

added to C j to give the final observation. This was repeated for each animal 

comprising a data set.

For each study design, 30 such sets of data were generated and analysed 

assuming zero covariance between any two parameters. A similar procedure was 

used to simulate data for the two compartment open model with IV bolus injec

tion using the parameters and variances specified in Chapters 5 and 6.

Simulation was carried out using the ICL main frame (ICL 3980). Appen

dix II contains the simulation programs used in this thesis. The data thus simulat

ed were analysed with the NONMEM program.

2.5 DATA ANALYSIS

2.5.1 Prediction Error

Given that the "true" parameter values were known, the efficiency with
$

which each model parameter is estimated could be judged. Let 0  represent the 

"true" value of the parameter 0 . Intuitively an estimate is "better" the closer it is 

to the "true" value.
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This notion was formalised by defining the error (bias) of an estimate 0  as
*

0 - 0  .In  order to express the accuracy and precision for all parameters on the 

same scale, percentage errors were computed. For each run and for each parame

ter, the difference between the "true" value and the "estimated" value was ex

pressed as a percentage of the "true" value (i.e., percent prediction error, %PE). 

Thus,

%PE = (0j - & * / & * )  * 100 (2.26)

The mean of %PE for each of 30 replicates of data was used as a measure of the 

accuracy with which each parameter was estimated.

An estimate of the precision with which each parameter was estimated 

was obtained from the standard deviation of %PE, denoted SD of %PE. Bias and 

precision are illustrated in Fig. 2.4. The first estimate (I) of the parameter 0  is 

unbiased and precise, the second estimate (II) is unbiased and imprecise, the third 

estimate (III) is positively biased but precise, and the fourth estimate (IV) is posi

tively biased and imprecise. In deciding on the acceptability of precision of 

estimates, an SD of %PE of 25% was used as the cut off. Statistical significance 

of nonzero %PE’s was tested using the two - tailed t test.

In some studies reported in the course of this thesis some data sets gave 

rise to totally implausible estimates. Since these would be rejected from further 

analysis, criteria had to be adopted with which to judge acceptability. Thus, any 

parameter estimate which was smaller than l/100th of the "true" value or larger 

than 10 times the "true" value was rejected. Also, if the estimated standard error 

of a parameter was greater than 10 times the "true" value, the result was rejected. 

This is similar to the criteria used by White et al (1991) in a simulation study with 

a drug exhibiting one compartment open model kinetics. These criteria were 

applied in Chapters 3, 5, and 8.
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Fig. 2.4 Bias and precision expressed as %PE (mean ± standard deviation, 
respectively) for a parameter, 0 . The first estimate (I) of © is unbiased and 
precise, the second estimate (II) is unbiased and imprecise, the third estimate (IQ) 
is positively biased but precise, and the fourth estimate (IV) is positively biased 
and imprecise.
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2.5.2 Confidence Intervals

The reliability of estimates is important in parameter estimation. The usual 

way to approach this statistical problem is through the construction of a "confi

dence interval" for the parameter estimate. Briefly a 95% confidence interval is a 

region in the parameter space that is so constructed that in repeated trials the true 

parameter will lie in the confidence region (interval) in 95% of the cases.

The standard errors (SE) of parameter estimates (0^) produced by 

NONMEM can be used for the construction of confidence intervals (Sheiner & 

Beal, 1980a). The approximate 95% confidence interval is given by ± 

1.96(SE) for 0 . Efficient parameter estimation requires low standard errors for 

parameters. From preliminary experiments it was found that for any given 

amount of data, the variance parameters were estimated with considerably less 

precision than were the structural model parameters. Thus, a cut off rule was 

established as an aid to determining the impact of SE on confidence interval 

coverage for a parameter estimate, hence the efficiency with which such a 

parameter was estimated. For efficient estimation of Cl and V the "coefficient of 

variation" (i.e. S E (0 j)/0^) associated with any estim ate of any of these 

parameters for any given run had to be < 20% while that for the variance 

parameters had to be <50%. Confidence intervals were calculated to determine 

the runs in a simulated data set which covered the "true" values. In addition, the 

99% univariate confidence interval was used as suggested by Sheiner & Beal 

(1987) as a reasonable approximation for confidence interval estimates to contain 

95% of the estimates produced using the ELS estimation procedure.

Bias in estimates production, and standard error of estimates are some of 

the factors that affect confidence interval coverage. Thus, there are three sections 

in confidence interval tables presented throughout the course of this thesis (e.g., 

Table 2.1). Section I, indicated by the ratio "success /  total", shows confidence
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intervals coverage for parameter estimates when the cut off rule is not applied. 

Section II, denoted by the ratio "success - excluded /  total - excluded", shows 

interval estimates when the cut off rule is applied to both the numerator and 

denominator during confidence interval coverage computation. The estimates not 

used for the construction of these confidence intervals are herein referred to as 

"catastrophic" estimates. Thus, this section gives an indication of how good the 

coverage is if catastrophic estimates were deleted from the results. The last 

section of the table (Section III) shows the coverage when the catastrophic 

estimates are included in the denominator but discounted in the numerator for the 

computation of confidence interval coverage. With Section in  the acceptability of 

an estimate can be judged in combination with the accuracy with which such an 

estimate is produced. From Fig. 2.5, for instance, the estimate of oq  obtained 

with sampling time specification at 240 min. in a study in which the effect of the 

arrangement of sampling times on parameter estimation was studied, is almost 

unbiased. However, an examination of the confidence interval coverage (Table 

2.1, Section III) which was computed from the results of the experiment present

ed in Fig. 2.5 shows that 70 NONMEM runs yielded catastrophic estimates of this 

parameter. Thus, Section III is helpful in determining the reliability of an esti

mate.

Parameters of a model are not estimated individually, and consideration 

should be given to this in results interpretation. Thus, the "joint confidence 

interval" for all parameter estimates was computed as an aid to the interpretation 

of the efficiency with which all parameters were estimated. The approximate 99% 

joint confidence interval for all parameter estimates was computed from the 

number of runs containing true parameter values for all parameters of the model. 

99% individual and joint confidence intervals coverage for parameter estimates is 

used throughout the course of this thesis.
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Fig. 2.5 Bias and precision expressed as %PE (mean ± standard deviation, 
respectively) for Cjnj. The horizontal axis represents the different sampling times 
for the two sampling times design. The first sampling time was fixed at 5 min. 
while the second time was varied. Each vertical bar expresses the bias and 
precision of the population parameter estimate for each design. Significant (p < 
0.05) biases are indicated by asterisks.
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The chi - squared test (p < 0.01) was used to determine whether the indi

vidual or joint confidence intervals coverage for parameter estimates was signifi

cantly different from the expected values (e.g., 0.95 and 0.81 (4 parameters only), 

for individual and joint confidence intervals coverage, respectively, for the 

parameters of the one compartment model with IV bolus injection).

2.5.3 Design Number

Most pharmacokinetic studies are carried out to obtain estimates of 

parameters which define an assumed pharmacokinetic model. Parameter estima

tion procedures (such as NONMEM which is used throughout the course of this 

thesis) produce sets of interrelated estimates. However, in the interpretation of the 

results, relationships between parameters are usually ignored. Thus, in the com

parison of study designs used in parameter estimation, there is a need for an 

examination of the efficiency with which all model parameters are estimated 

singly and jointly from a design.

In Section 2.5.1 of this chapter the usual approach to judging accuracy 

and precision was presented. However, this method of analysis allows the 

investigator to judge the efficiency of estimation of only one parameter at a time. 

In the previous section the joint confidence interval was introduced as an aid to 

judging the efficiency with which all population pharmacokinetic parameters 

were estimated. Sometimes it may be difficult to choose the best sampling design, 

for instance, from a series of designs for the estimation of a parameter of interest. 

In addition, it was pointed out in the previous section that the reliability of a 

parameter estimate had to be judged with its SE taken into account. The %PE 

approach ignores the fact that NONMEM produces parameter estimates with

SE’s.
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To this end, a new statistic was proposed with which the efficiency of 

parameter estimation from a study design could be measured. In it the elements of 

accuracy and precision in parameter estimation are combined. The statistic, a 

"design number", <J>j for each parameter was defined:

<t>j = ( ( 0 r  © i*)/^*}2 * SEC©;)/©;* (2.27)

has two desirable properties which are useful for determining the most
jjj{

efficient parameter estimate. It should be recalled that 0^ - 0 j measures the bias 

in the estimation of a parameter. SE, of course measures precision. The two terms 

on the right hand side of Eq. (2.27) are normalised to allow the comparison of 

different estimates of a parameter from different designs within a study.

Since accuracy is improved as 0 j approaches 0^ , the first term on the 

right hand side of Eq. (2.27) will approach 0 as this happens. This term is squared 

so that all computed values of d>j remain positive. As the parameter estimate 

becomes more precise, SE(0p becomes smaller. As the two right hand terms in 

Eq. (2.27) tend towards 0, approaches 0 indicating greater efficiency with 

which the parameter is estimated. If a reasonably symmetrical distribution for 0 j 

is assumed, then the distribution of d>j is skewed right. 95% confidence intervals 

can be calculated for different designs within a study.

From Eq. (2.27), d>̂  defines a design number for each parameter viewed 

independently. As earlier discussed, model parameters are estimated as a set, and 

an investigator may be interested in choosing a study design which produces the 

most efficient parameter estimates. This can be done by combining all design 

numbers to give the "overall design number". Thus,

<D = £{[(©; - ©i*)/©i*]2 * SECQj)/©;*) / n (2.28)
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where n is the number of estimated parameters. The power and efficiency of 

and 0  are outside the scope of this thesis.

A preliminary study was carried out in order to apply <J>̂ (<b) in determin

ing the efficiency with which parameters were estimated with different sampling 

schedules using the two sampling times design.

Parameters of the drug, avicin (Section 2.4) were used to simulate data 

with the first sampling time fixed at 5 min. and the second sampling time speci

fied at either 90, 150, 210, or 240 min. With the one observation per animal study 

design a sample size of 48 was used for each sampling strategy. 180 replicates of 

data were generated for each of the sampling schedules. Table 2.2 is a summary 

of the 95% confidence intervals for and d> for the different sampling schedules 

of this two sampling times design. It can be seen that Oj values for the variance 

parameters had more influence in O computed.

To give equal weighting to all parameters, d>- was rescaled as follows:

Oir = {(©i - 0i*)/0i*)2 * SE(0j)/0j* / Max [{(©i - ©i*)/©;*}2 * SECQj)/©^]

(2.29)

Therefore, the overall design number was computed as follows:

<J>r = l/n 2 ((0 i - 0 i*)/0i*)2 *SE(0i)/0 i* /M ax [{ (0 i - 0 i*)/0i*)2 *

SE(0j)/0j*] (2.30)

Oir, <I>r calculated using Eq. (2.29) and (2.30) were then used to compare the 

efficiency of parameter estimation from the different sampling schedules.
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Table 2.3 summarises the 95% confidence intervals for <J>̂ . and Or obtained with 

the different sampling schedules for comparison with Table 2.2. The rescaling 

resulted in changes in Oj and d>, therefore, giving equal weighting to all 

parameters. The Kruskal Wallis test (p < 0.05) with multiple comparisons was 

used to compare the efficiency with which parameters were estimated with the 

different sampling schedules. Thus, the most efficient parameter estimate(s) is 

obtained with the study design yielding the lowest average rank of (<E>r).

The results of the multiple comparisons in this example are summarised in 

Fig. 2.6. The design numbers for the sampling times are ranked in increasing 

order from left to right, and this format is used in the presentation of results 

obtained using (Or) throughout the course of this thesis. The design yielding 

the least efficient parameter estimate has the highest rank order. Where two 

sampling times in the Fig.2.6, for instance, are connected with a line it indicates 

that there was no significant difference in the efficiency with which a parameter 

was estimated with the designs considered. When two sampling times are not 

connected with each other by a line, it indicates that there was a significant 

difference in the efficiencies with which the parameters considered were 

estimated using the different sampling designs.

Thus, from Fig.2.6a Cl was most efficiently estimated with the specifica

tion of the second sampling time at 150 min., but this was not significantly 

different from the estimate obtained with the second sampling time specified at 

210 min. However, the efficiency of Cl estimation with this two sampling times 

schedule was significantly better than the efficiency with which it was estimated 

when the second sample was at 90 or 240 min. The results obtained with the 

second sample at 90 min. yielded the most inefficient estimate of Cl. Although V 

was most efficiently estimated with the second sample at 90 min. (Fig.2.6b), this 

was not significantly better than results obtained with the other sampling
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(a) Estimation of Cl 

150 210 240 90 Sampling Times (min)

(b) Estimation of V

90 210 240 150 Sampling Times (min)

(c) Estimation of Gq  

240 210 150 90 Sampling Times (min)

(d) Estimation of Oy 

90 210 240 150 Sampling Times (min)

(e) Overall Design Efficiency 

210 150 240 90 Sampling Times (min)

Fig. 2.6 aSummary of significant differences in the efficiency with which 
parameters were estimated using the two sampling times design, 
a - Rank order of design numbers increasing from left to right.
* - Efficiency measured with design number.
The connecting of sampling times with a line indicates a lack of significant 
difference between the designs.
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schedules.

Cq  was "best estimated" with the second sample at 240 min. (Fig.2.6c), 

but this was not significantly better than when the second sample was at 210 min. 

These two sampling schedules produced more efficient estimates of this 

parameter than the design with the second sample at 90 min.

As with V, the efficiency with which Oy was estimated was similar for all 

the study designs although the design with the lowest average rank of <D̂ . was the 

one with the second sampling time specified at 90 min. (Fig.2.6d).

Fig.2.6e gives the overall efficiency with which param eters were 

estimated. The parameters were estimated with a similar efficiency when the 

second sample was at 150, 210, or 240 min. More efficient parameter estimates 

were obtained with these sampling schedules than with the design having the 

second sample at 90min. Specifying the second sample at 210 min. yielded the 

most efficient parameter estimates. 0^r and <E>r were applied in the analysis of 

data in Chapters 4,5, 6, and 8 of this thesis.

2.5.3 Correlation Analysis

Model parameters are not estimated independently but as an interrelated 

set giving rise to the generation of a correlation matrix for parameters. The 

interpretation of this should be considered in the overall interpretation of the 

results of a study. In the course of this thesis, the incidence of "high" correlation 

between parameter estimates is used to examine the reliability of parameter 

estimates. Two parameters are judged to be highly correlated if the pair-wise 

correlation coefficient is > 0.75. otherwise, it is termed low. Thus, the study 

reported in Section 5.3 yielded 0% incidence of high pair-wise correlations for 

the different parameter combinations (Table 2.4). When the incidence of high
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pair-wise correlations between most parameters is high it is an indication of a 

"poor" fit of the model to the data since the data in the studies reported in this 

thesis were generated with the assumption that all model parameters were inde

pendent.
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CHAPTER 3

INFLUENCE OF INTER-ANIMAL VARIABILITY ON THE 

ESTIMATION OF POPULATION PHARMACOKINETIC PARAMETERS
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3.1 SUMMARY

Simulation studies were carried out to investigate the influence of inter

animal variability on the estimation of population fixed and random effects 

parameters. Data were simulated according to a monoexponential model with the 

one observation per animal study design and a range of inter-animal variability in 

Cl and V.

The efficiency with which the fixed effect parameters were estimated was 

good, on average, irrespective of the inter-animal variability in Cl and V. The 

estimates of the random effect parameters were sometimes imprecise and often 

inaccurate.

3.2 INTRODUCTION

Variability in pharmacokinetic parameters among homogeneous strains of 

small laboratory animals has been claimed to be between 30 and 50% in some 

cases (Lindstrom & Birkes, 1984; McArthur, 1988). There is need to investigate 

the effect of this wide range of variability on the estimation of population 

pharmacokinetic parameters in a setting where each animal supplies only one 

concentration time point as is often the case in preclinical studies involving the 

use of small laboratory animals. The goal of this simulation - based study was to 

evaluate the influence of inter-animal variability on the estimation of population 

pharmacokinetic parameters using the one observation per animal study design. 

Specifically, the accuracy and precision with which these parameters were 

estimated, the "normality" of their sampling distributions, single and joint 

confidence intervals coverage of parameters estimates, and the incidence of high 

correlation between pairs of parameter estimates were examined.
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3.3 METHODS

Parallel simulations were performed for two different studies. In the first 

study, three observations were obtained from 3 different animals at each time 

point. In the second study, 5 observations were obtained from 5 animals at each 

time point. In both studies only one observation was taken per animal. An 

intravenous bolus dose and sampling design previously described in Chapter 2 

(Section 2.4) was used in these studies. Cl and V for the jth animal were sampled 

as previously described in Chapter 2 (Section 2.4), and the respective variances 

were selected to yield coefficients of variation of 15, 30, 45, and 60%. There 

were 4 * 4  com binations of variab ility  in Cl and V (Table 3.1). These 

combinations of variability were chosen to cover the range of inter-animal varia

bility likely to be encountered in real life (Lindstrom & Birkes, 1984; McArthur 

1988). A 15% error was added to concentration measurements as previously 

described (Chapter 2, Section 4.1). 30 data sets were generated for each combina

tion of C£i and Oy for each study. Thus, 480 data sets were generated for each 

study, and 960 data sets in all.

The chi - squared test (p < 0.05) was used to determine the normality of 

the distribution of the estimates obtained for the fixed and random effects 

parameters. When the assumption of normality was rejected further testing 

showed that the distributions were significantly positively skewed (p < 0.05), but 

tests of kurtosis were not appropriate since the test is only valid on sample sizes 

of greater than 50.
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3.4 RESULTS

3.4.1 Acceptable NONMEM Runs

Using the outlier criteria stipulated in Chapter 2 (Section 2.5.1) the 

number of times over 30 replications in each simulation that NONMEM produced 

acceptable estimates and corresponding standard errors was determined. All Cl 

and V estimates were acceptable (Chapter 2, Section 2.5.1). Estimates of and 

G y  were acceptable (90 to 100%) in most of the combinations of inter-animal 

variability except for the 45% * 60% and 60% * 60% combinations of Gq[ and Oy 

where the acceptable estimates dropped to 86.7% (Table 3.3). Runs with 

unacceptable estimates were deleted, and the results presented are based on runs 

with acceptable estimates.

3.4.2 Bias and Precision

Three dimensional plots are used to summarise the relationships between 

the various com binations of O q  and G y  and the mean %PE w hile two 

dimensional plots are used to show both bias and precision for various values of 

at a specified value of G y. Thus, in the presentation that follows the bias and 

precision in parameter estimation are considered for each level of O y and at 

various levels of c^j for each study. With three observations per time point, and 

setting Oy at 15% while was varied between 15 and 60%, all estimates of Cl 

were negatively biased. The most biased estimate was obtained when C q  was 

specified at 60% while the least biased estimate was obtained with specified
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Fig. 3.1 Bias and precision expressed as %PE (mean ± standard deviation, 
respectively) for estimated parameters. The horizontal axis represents the 
different values of with a specified value of Oy (15%). Each vertical bar 
expresses the bias and precision of the population parameter estimate. 3 
observations were made at each time point, and only one observation was made 
on each animal. Significant (p < 0.05) biases are indicated by asterisks.
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at 15%. The bias ranged from -0.5% (c ^  (oy )  = 15%) to -18.7% (c ^  = 60%, G y  

= 15%) (Fig. 3.1a). All estimates of Cl were precise for all combinations of 

and G y  (Fig. 3.1a). The SD of %PE ranged from 4.2% ( c q ,  G y  =  15%) to 9.6% 

(c^j and G y  = 60 and 15%, respectively).

The bias in Cl estimates obtained when 5 observations were made at each 

time point ranged from -1.2% (Cq, G y  = 15%) to -13.9% (c^j = 60%, G y  = 15%) 

(Fig. 3.2a), and all the estimates were more precise than those obtained when 

three observations were made per time point. The SD of %PE ranged from 2.7% 

(eft (Oy) = 15%) to 8.9% (cfcj = 60%, Oy = 15%).

When Oy was 15% and G q  varied between 15 and 60% relatively 

unbiased and precise estim ates of V were obtained (Fig. 3.1b) when 3 

observations were made per time point. The %PE ranged from -0.2 ± 5.4% (c ^  

(cfy) = 15%) to 1.4 ± 9.0% (C£i = 60%, O y = 15%). Similar results were obtained 

when 5 observations were made per time point. All estimates of V were relatively 

unbiased and precise (Fig. 3.2b). The SD of %PE ranged from 5.2% (Cq (O y) = 

15%) to 6.6% (C£i = 60%, O y = 15%).

Varying c^j from 15 to 60% and fixing O y at 15% yielded estimates of 

C£i at the different combinations of variability which were positively biased with 

3 observations made per time point. As with Cl estimates there was a trend in the 

degree of bias associated with c^j estimates. While Cl estimates showed a trend 

of bias from O q and Oy combination of 15% * 15% yielding the least biased 

estimate to the 60% * 15% combination yielding the most biased estimate (Fig. 

3.1a), the reverse was the case for estimates of (Fig. 3.1c). The 15% * 15% 

combination of inter-animal variability yielded the most biased and least precise 

estimate of while the 60% * 15% combination yielded the least biased and 

most precise estimate of this parameter (Fig. 3.1c). The %PE ranged from 2.44 ± 

16.4% for the 60% * 15% combination to 24.4 ± 39.2% for the 15% * 15% 

combination. A similar trend was observed in the bias associated with the
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estimation of q ^  when 5 observations were made per time point. The least biased 

estimate was observed with q-^ and Oy set at 60 and 15%, respectively, and the 

most biased was obtained with q ^  and O y fixed at 15% (Fig. 3.2c). There was no 

clear cut pattern in the precision of the estimates (Fig. 3.2c). The SD of %PE 

ranged from 16.0% (q ^  = 60%, O y = 15%) to 28.9% (q ^  = 30%, O y = 15%).

Estimates of O y obtained by varying q^j from 15 to 60% while setting O y 

at 15% were relatively stable across the different values of when 3 obser

vations were made per time point. All the estimates were significantly positively 

biased and imprecise (Fig. 3.Id). Also, when 5 observations were made per time 

point all O y estimates were significantly positively biased and imprecise (Fig. 

3.2d).

When O y was set at 30% and q-^ varied from 15 to 60% estimates of Cl 

which were biased with a positive to negative trend were obtained; positive at 

15% and negative at q ^  of 60% when 3 observations were made per time point. 

The most biased estimate of Cl was obtained when q ^  was specified at 60% (Fig. 

3.3a). All Cl estimates were precise (Fig. 3.3a). The SD of %PE ranged from 

4.9% (q^jj = 15%, O y = 30%) to 10.9% (q ^  = 60%, O y = 30%). Similarly, the 

most biased estimate of Cl was obtained in the 5 observations per time point 

study with q ^  and O y specified at 60 and 30%, respectively (Fig. 3.4a). The bias 

ranged from 1.7% (q ^  = 15%, O y = 30%) to -12.7% (q^j = 60%, O y = 30%). 

These estimates were precise with the SD of %PE ranging from 4.0% (C q = 

15%, O y = 30%) to 10.0% (q:i = 45%, 60%; O y = 30%).

All estimates of V were significantly negatively biased, relatively stable, 

but precise at all levels of q ^  when Oy was 30% and 3 observations were made 

at each time point (Fig. 3.3b). The least precise estimate was obtained when q ^  

and O y were 60 and 30%, respectively. In addition, similar results were obtained 

for V estimates when 5 observations were made at each time point.
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expresses the bias and precision of the population parameter estimate. 3 
observations were made at each time point, and only one observation was made 
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All estimates of this parameter were significantly negatively biased and precise 

(Fig. 3.3b). Setting q ^  and O y at 15 and 30%, respectively, produced the least 

biased estimate of V while the 60% * 30% combination produced the least precise 

estimate of this parameter.

All c^j estimates were positively biased irrespective of the value of C q 

used in combination with G y of 30% when 3 observations were made per time 

point. When and O y were fixed at 15 and 30%, respectively, estimate was 

significantly biased and imprecise (%PE = 23.2 ± 53.0%; Fig. 3.3c). The least 

biased estimate (%PE = 2.7 ± 22.1%) was obtained with and G y set at 60 and 

30%, respectively. At the latter combination of inter-animal variability the 

estimate was acceptably precise (Chapter 2, Section 5.1). All other estimates of 

°C1 were im precise (Fig. 3.3c). Sim ilar, results were obtained when 5 

observations were made per time point. A 15% (o^j) * 30% (O y ) combination 

yielded the most biased estimate and 60% (O q) * 30% (O y ) combination 

produced the least biased estimate (Fig. 3.4c). Only the 60% * 30% inter-animal 

variability combination produced an acceptably precise estimate (SD of %PE = 

25.2%; Fig. 3.4c) since the SD of %PE is only 0.2% greater then 25%.

Significantly positively biased and imprecise estimates of O y were 

obtained at all levels of when Gy was 30% and 3 observations were made per 

time point (Fig. 3.3d). The mean of %PE ranged from 15.8% (q ^  = 15%, G y = 

30%) to 25.6% (<£j = 60%, G y = 30%) while the SD of %PE ranged from 32.1%

(C£l = 15%, O y = 30%) to 46.4% = 45%, O y = 30%). Taking 5 observations

per time point yielded similarly biased and imprecise estimates of O y (Fig. 3.4d).

When G y was 45% and was in the range of 15 to 60% the estimates 

of Cl obtained in the 3 observations per time point study were biased but precise.

The estimates were significantly positively biased when was set at 15%, 

almost unbiased at 30%, and significantly negatively biased at 45 and 60% (Fig. 

3.5a). The most biased estimate was obtained with the 60% * 45% combination of q-jj
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and Oy. The SD of %PE ranged from 8.5% to 15.0%. For the 5 observations per 

time point study there was a trend in the bias from positive to the negative 

direction as q^j was varied from 15 to 60%. The most biased estimate was 

obtained when q^j and O y were specified at 60 and 45%, respectively (Fig. 3.6a). 

The SD of %PE ranged from 4.5% (q ^  = 15%, Oy = 45%) to 10.6% (q ^  = 60%, 

O y =  45%).

V estimates obtained when 3 observations were made at each time point 

were significantly negatively biased at all levels of with Oy fixed at 45% 

(Fig. 3.5b). The estimates were precise for each of the combinations of inter

animal variability with the SD of %PE ranging from 13.3 to 17.4% (Fig. 3.5b). 

When 5 observations were made per time point V estimates were significantly 

negatively biased and precise (Fig. 3.6b). The least biased estimate was obtained 

with the 15% (q-*j) * 45% (O y) combination.

With O y set at 45% the estimates of q-ij were positively biased when 3 

observations were made at each time point. The most biased estimate was 

obtained when q ^  was specified at 15% and the least biased estimate when q ^  

was fixed at 60% (Fig. 3.5c). All estimates of this parameter were imprecise (Fig. 

3.5c). At this 45% level of O y all estimates of O y were significantly positively 

biased and imprecise (Fig. 3.5d). In addition, the estimates of O q when 5 

observations were made per time point were imprecise and significantly positive

ly biased (Fig. 3.6c). The estimates of O y obtained for this 5 observations per 

time point study at the different levels of G q with O y  fixed at 45% were 

significantly positively biased and imprecise (Fig. 3.6d).

When O y was 60% and c^j varied, estimates of Cl were positively biased 

when q^j was set at either 15 or 30% and negatively biased when q-^ was set at 

either 45 or 60% with 3 observations made at each time point. The most biased 

and least precise estimate of this parameter was obtained with q ^  fixed at 60% 

(Fig. 3. 7a). All estimates of Cl were precise with SD of %PE ranging from
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6.0% (q ^  = 15%, Oy = 60%) to 17.1% (q ^  (Oy) = 60%; Fig. 3.7a). All estimates 

of V were significantly biased and precise at these specified values of and Oy 

(Fig. 3.7b). The SD of %PE ranged from 13.0 to 21.3%. The most biased and 

least precise estimate of this parameter was obtained when q ^  and O y were set 

at 60%.

Making 5 observations at each time point when Oy was 60% and C q 

varied between 15 and 60% yielded some estimates of Cl which were positively 

biased but precise (Fig. 3.8a). The %PE ranged from -2.4 ± 14.1% (c q , O y = 

60%) to 9.6 ± 5.9% (q^j = 15%, cy = 60%). Most of the estimates of V obtained 

with the various settings of Oq when cy  was fixed at 60% were significantly 

negatively biased (Fig. 3.8b). The mean of %PE ranged from -3.3% (Cq  = 15%, 

cy  = 60%) to -13.6% (C£i (cy) = 60%). All the estimates were acceptably precise 

with the SD of %PE ranging from 13.1 to 22.1%.

Most of the Oq[ estimates obtained when 3 observations were made at 

each time point with <y at 60% and C q  varied between 15 and 60% were 

significantly positively biased with poor precision (Fig. 3.7c). Similar findings 

were obtained when 5 observations were made per time point (Fig. 3.8c). The 

estim ates of Oy at these com binations of inter-anim al variab ility  were 

significantly positively biased and imprecise (Fig. 3.8d) when 5 observations 

were made per time point, but only positively biased and imprecise when 3 

observations were made at each time point (Fig. 3.7d).

Overall, as the values of Cq  and cy  were increased the bias in the 

estimation of Cl increased in both studies (Fig. 3.9a (3 observations per time 

point); Fig. 3.10a (5 observations per time point)). However, the bias in the 

estimates of V were relatively stable irrespective of the study considered (Fig. 

3.9b (3 observations per time point); Fig. 3.10b (5 observations per time point)). 

In contrast to the results obtained with the estimation of Cl, the bias in the
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Fig. 3.10b Bias (expressed as mean %PE) in V estimation: three dimensional plot
of the influence of varying and G y  on the estimation of V. 5 observations
were made per time point.
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Fig. 3.10c Bias (expressed as mean %PE) in the estimation o ^ :  three
dimensional plot of the effect of varying and (5y on the estimation of c^j. 5
observations were made per time point.
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Fig. 3.10d Three dimensional plot of bias (expressed as mean %PE) in G y
estimation as affected by varying and G y . 5 observations were made per time
point.

98



Ta
ble

 
3.4

 
D

ist
rib

ut
io

n 
of 

Es
tim

at
es

: 
3 

O
bs

er
va

tio
ns

 P
er 

Ti
m

e-
Po

in
t

P

|
*  1 ^ 9 9

jg j oo wo in oo
oo | d o d o *

> cn cs o
d o d o

00 00 Ov 
oo no co cn
d o d o

oo cn oo cn  
c s  oo cN vq
t-H r-*

- - d o

ON —  t }- CN 
r f  cN r-_  (N
—  c n  o  —

Q I £ Z Z Z  £ Z Z Z

W 9 9 9 9

3s ! m d  —  m  o  ! o  r*. — 
$  j 9 cS6 c>

I
I

Q I

i
• cn w~> no cn
! oo  (N On
i 0  0  — 0■ i i i i

*1) IJ3 i .
c n  j o o o o

O 00 (■" 
cn cn

^  NO nS 00
d d t> 9 *

S vo rx.4 oo — 
O O N O

Z
z z z z

— CO lO oo
in  — m  in  
O O O OI I I I

co q  «n Tt
o o o o

S £ 3 S
9SW9 9 S

ON o  CO o  N (S (S -
9  — 0 0  

Z z Z Z

3 3 2 2
o  - 1 o  oi i

NO — O  W">t— co cs r-- 
0  0 0 * 0

9 9 9 0

in  oo m  m  
co Tt ^  m
d o d o

z z z z

On — ©  — CO co N O 
O O O Oi i i

in c o ^ N  
Tf t^ 2 V°d d ° o

Q
1
i z z z z11111

z z z z Z Z Z Z z z z z
a

K
ur

t

-0.
70

-0.
95

-0.
18

-0.
30 in ^ to o O i 

oo in co ^
9 9 0 9 -0.

55
-1.

04 0.1
4

-0.
14

-0.
99

-0.
94

-0.
34

-0.
13

= 
N

or
m

al
 

N 
= N

on
no

i

□ >  °  JB<z> 0.3
4

0.2
5

0.1
1

0.5
8

0.3
7

0.6
5

0.5
8

0.2
0

0.6
3

0.4
2

0.4
6

-0.
47

-0.
10 0.0
9

-0.
22 0.4
7 z z

Q
i
z z z z Z Z Z Z Z Z Z Z Z Z Z Z

> !  m i n i n i n  O O O O
15 j ^—1 « T—i »—i CO CO CO CO

m  in  in  inTf Tf Tj-

P i  2 8 9 S in o  n  o  m Q m Q  in Q in O
c o «  —  co ^  — CO Tf ^

9 9



Ta
ble

 
3.5

 
D

ist
rib

ut
io

n 
of 

Es
tim

at
es

: 
5 

O
bs

er
va

tio
ns

 P
er 

Ti
m

e-
Po

in
t

9

C/3

>4

JSC/3

*
J3
00

0 1CO

0.
71

-0
.7

3
-0

.8
1

-0
.5

8 vO cn-iinrH r-J pH Q\
© © cn cn

in cn cn Os <—| os in
CN r-H r—< O 1.

87
4.

66
-0

.0
1

1.
02

wo vo oo cn cn in
O O O O

VO O On in t"- 00 00
5̂ nN rH rH 1.

66
1.

12
1.

59
1.

00

1.
36

1.
99

0.
83 1.
22

£ ! z ; i § i l l * N
N

N
N

N N
N

*-h OO OO OO © VO 00 
O O o

rH rH in C'** rH On
rH in OO p

cn r- vo osr-- rH cn 0
0  00 0  0

f" 00 © m 
Tj- rH m Tf 
0 ^ 0 0

£  cs t*-V3 VO r-1 cn
9 0 H 0

NO 00 OS CNm vo in 
O H ri O

m 00 Os in rH cn t^oo
O CN 9  O

in rH in Ttt"- rH in
9 0 0 0

N N N
N

N N N
N

N
N

N 'Z 'Z 'Z K

^  On rf cn
p  t"'. 0  
o o o o

no h  cn’TrHf^H
O O O O1 1 1 -0

.7
3

1.
09

0.
19

-0
.2

0

-0
.6

4
-0

.5
9

0.
36

-0
.5

0

1-4 m cs in ^  m vo
0*0 0  0

so r-M »OM ^
O O O O

in rH vo vo
rn cn in cn
o - l d d

Os m © t"* H (V) h  H
© o © o1

Z Z Z Z £ § :z ;:z ; Z Z Z Z

0.
84

0.
61

-0
.0

2
-0

.7
2 00 in CN CN 0  CN in VO 

O in cn 0
VO rf 00 cnI/"} C" CN rH
O in 9  rH

in rn cn cnrH Tf CN
© 9 9 9

o in o i'C  t"- in rt «n
0 0 0 0 0.

59 1.
60

1.
51

0.
27

0.
20

2.
09

0.
43

-0
.0

9

0.
86

0.
44

0.
56

0.
13

N N
N

N
N

N Z Z Z Z

in m m mfH rH H O O O O  cn co cn cn m in in in Tt Tt Tt S  S  S  S

m © in Q rH cn r t « m O in Q 
t-h cn vo in 0  in p  rHCnrf® m © m ©rH cn Tj- VO

1 0 0

D 
= 

Di
str

ib
ut

io
n 

N 
= 

N
or

m
al

 
Sk

ew
. 

= 
Sk

ew
ne

ss
 

NN
 

= 
N

on
no

rm
al

 
Ku

rt.
 = 

K
ur

to
si

s



estimation of decreased as the values of and O y were increased (Fig. 3.9c 

(3 observations per time point); Fig. 3.10c (5 observations per time point)). As 

with the estimation of V, Oy were relatively stable and positively biased (Fig. 

3.9d (3 observations per time point); Fig. 3.10d (5 observations per time point)).

3.4.3 Distribution of Estimates

The validity of the confidence interval coverage of parameter estimates is based 

on the assumption that parameter estimates follow a normal distribution. This 

assumption was validated for each of the estimates using the chi - squared test (p 

< 0.05). Accordingly, estimates of Cl and V for the 3 observations per time point 

study were normally distributed (Tables 3.4). 18.8 and 6.3% estimates of Cl and 

V, respectively, for the 5 observations per time point study were not normally 

distributed . Also, 12.5% (3 observations per time point) and 25.0% (5 

observations per time point) of estimates were not normally distributed. 37.5 

and 43.8% of Oy estimates obtained in the 3 and 5 observations per time point 

studies, respectively, were not normally distributed. These estimates were 

significantly positively skewed (Tables 3.4 & 3.5).

3.4.4 Individual and Joint Confidence Intervals Coverage for Parameter Estimates

Individual and joint coverage for 99% interval estimates containing the 

true parameter value 95% of the time for all parameters are presented in Tables 

3.6 to 3.9 for the 3 observations per time point study and Tables 3.10 to 3.13 for 

the 5 observations per time point study. The coverage for Cl and V was good for 

all combinations of Gq \ and Oy irrespective of the manner in which the coverage 

was computed and the study considered (Tables 3.6 - 3.9 & 3.10 -13). For these 

two parameters the biases in the estimates were generally low (< 19%) and the
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"coefficient of variation” was generally less than 20%.

When catastrophic estimates were either included or excluded in the 

computation of coverage for all data sets good coverage was obtained for and 

O y (Tables 3.6 - 3.9 & 3.10 - 3.13, Section I & II). However, when catastrophic 

estimates were excluded from the numerator during the computation of coverage 

for all data sets, a reasonable coverage was obtained for C q, but significantly 

reduced coverage (less than the expected value of 0.95) was obtained for O y 

when Oqi was varied between 15 and 45% and Gy set at 60% for the 5 

observations per time point study (Table 3.13, Section III). This also occurred 

when either O q  was 60% and O y , 45% or O q (O y )  was 60% for the 3 

observations per time point study (Tables 3.8 & 3.9, Section IE).

The influence of bias in the estimation of confidence interval coverage 

was not marked for either or O y. Standard errors appeared to be the primary 

determinants of interval coverage for these parameters. As the values of the 

combinations of and O y became larger the coverage for these parameters was 

reduced irrespective of the sample size (Tables 3.6 - 3.9 & 3.10 - 3.13, Section 

IE).

When catastrophic estimates were considered in the numerator in 

computing coverage for all data sets the joint coverage was reduced as the values 

for Cqy * combinations became larger (Tables 3.6 - 3.9 & 3.10 - 3.13, Section 

III). The setting of O y at 45 and 60% for the 3 observations per time point study 

and O y at 60% for the 5 observations per time point study led to the production of 

joint confidence intervals coverage for all parameter estimates which were 

significantly lower than the expected value of 0.81.

3.4.5 Incidence of High Correlation between Parameter Estimates

The incidence of high correlation between parameter estimates was
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relatively low when O y was 15% and Cq  varied between 15 and 60% for either 

study. The incidence of high correlation ranged from 0 to 20% when 3 

observations were made per time point (Table 3.14), with the upper limit of this 

range being for the correlation between Oy and V. On the contrary, incidence of 

high correlation when 5 observations were made per time point ranged from 0 to 

10% (Table 3.15). The highest incidence occurred with the correlation between 

Oy and V.

When was varied between 15 and 60% and O y was specified at 30% 

the incidence of high correlation ranged from 0 to 26.7% for the 3 observations 

per time point study (Table 3.16), and 0 to 16.7% for the 5 observations per time 

point study (Table 3.17).

With O y  at 45%, varying C q resulted in incidence of high correlation 

ranging from 0 to 27.6% when 3 observations were made per time point (Table

3.18), and 0 to 22.2% when 5 observations were made per time point (Table

3.19). In both cases the upper limit of the ranges was for the correlation between 

O y and V.

When 3 observations were made per time point with O y at 60% and Cq  

varied between 15 and 60% the highest incidence (34.5%) of high correlation was 

obtained with the O y versus V pair (Table 3.20). Similarly, the highest incidence 

(46.7%) of high correlation was obtained for this pair when 5 observations were 

made at each time point (Table 3.21).
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3.5 Discussion

The ranges of inter-animal variability used in these studies were based on 

their occurrence in preclinical situations (Lindstrom & Birkes, 1984; McArthur; 

1988). Most Cl estimates were negatively biased irrespective of the values of 

and O y  used to generate the data. This may be either due to estimation error or the 

nature of the NONMEM program because the fixed effect parameters enter the 

regression model nonlinearly and the random effect parameters linearly. This 

negative bias has been noted in the simulation studies reported in the literature 

which involved the use of a monoexponential pharmacokinetic model with 

multiple sampling (Sheiner & Beal, 1983; Al-Banna, Kelman & Whiting, 1990; 

White et al., 1991) with no explanation. There was a tendency for the bias in Cl 

to increase as the value of o ^  was increased, irrespective of the values of O y. 

The relatively larger negative bias at higher values of compared with those 

obtained at smaller values of q ^  for any given value of O y  was indicative of the 

fact that Cl was underestimated as q ^  was increased. This underestimation of Cl 

was coupled with the estimation of with either positive, minimally positive, 

or negligible bias in some cases. It is possible that the estimation error associated 

with Cl was partitioned to q ^ ,  hence the negative bias in Cl estimation and the 

positive bias associated with estimation. This may also be a consequence of 

the one observation per animal study design since this opposite trend in biases 

associated with the fixed and random effects parameters has not been reported 

with multiple sampling involving different combinations of variability using the 

monoexponential pharmacokinetic model (White et al., 1991). Although most 

estimates of were minimally biased, they were mostly imprecise. This was 

possibly a consequence of the number of animals used in each study. Estimates of 

variability associated with structural model parameters are considerably less 

precise, given a fixed number of experimental units, than are estimates of their
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means (Chapter 2, Section 5.3; Sheiner & Beal, 1981: Grasela etal., 1986).

The negatively biased estimates of V were counterbalanced with 

positively biased estim ates of O y . Most of the runs deleted were due to 

NONMEM yielding spurious estimates of Oy and the associated standard error. 

The reasons for NONMEM producing negatively biased estimates of V and 

positively biased estimates of O y are probably the same as those advanced for the 

estimation of Cl and o^j. It is pertinent to note that residual error was not 

estim ated since there was no inform ation in the data sets about error in 

concentration measurements. Thus, NONMEM was estimating composite inter

animal variability with error in concentration measurements incorporated since it 

had no information on o£ .

Confidence interval estimates are a function of three factors: bias, 

standard error estimates, and the distribution of parameter estimates. Good 

confidence interval coverage was obtained for Cl and V because of the small 

biases and high precision associated with the estimation of these parameters. 

There were no catastrophic estimates with these parameters even though the cut 

off criterion for the "coefficient of variation" was 20% as opposed to 50% for the 

for the variance parameters. For the variance parameters, the interplay of the three 

factors produced confidence intervals which, on average, were not different from 

the expected value of 0.95 when the cut off rule was not applied. With O y, for 

example, although there were large biases present with large standard errors, the 

nonnormality of some of the distributions brought in the confidence coverage 

back to the expected value of 0.95. A small increase is to be expected for a 

variable with a right-skew distribution. The import of large standard errors in the 

production of good confidence interval coverage could be observed when the 

exclusion criterion for NONMEM runs with large "coefficient of variation" was 

applied. The coverage was reduced when compared with the coverage obtained
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with confidence intervals computed without the application of the exclusion 

criterion. Some of these confidence intervals were significantly different from the 

expected value of 0.95 (Tables 3.8 - 3.9 & 3.13, Section III). The standard error 

factor was also the major determinant in the joint coverage for all parameter 

estimates. However, it is difficult to anticipate what the results of the interplay 

between these three factors will be in any given data set.

The generally low incidence of high correlation between parameter 

estimates was an indication of the adequacy of the parameterization of the model. 

The relatively high correlation between G y  and V at some combinations of Cq 

and G y  possibly contributed to the poor estimates of G y  obtained.

In using NONMEM to analyse data in a realistic preclinical animal 

pharmacokinetic setting simulated in these studies no attempt was made to 

optimise conditions in regard to either experimental design. These results suggest 

that when magnitudes of inter-animal variability are in the range specified in 

these data sets, NONMEM produces estimates of fixed effect parameters which 

were relatively accurate and precise given the one observation per animal design. 

It often produced relatively accurate but imprecise estimates of c^p and mostly 

inaccurate and imprecise estimates of G y. It is worthy to note that when biases in 

CqY and Oy- were large, they were positive and would require a more conservative 

approach to data interpretation. In addition, the usual confidence intervals 

computed may give an erroneous impression of the precision with which the 

random effect parameters were estimated because of the large standard errors 

associated with these parameters.
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CHAPTER 4

EFFICIENT PARAMETER ESTIMATION: COMPARISON OF SAMPLING

DESIGNS WITHIN A STUDY
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4.1 SUMMARY

Simulation studies were carried out to evaluate the influence of sampling 

design on the efficiency of population pharmacokinetic parameter estimation 

when only one observation was obtained per animal. A finite number of 

observations and number of animals, as is always the case in practice, was used in 

the generation of data sets using the one compartment model with IV bolus 

administration.

The effect of arrangement of observations in time on the efficiency of 

parameter estimation was investigated using three different designs: the two 

sample point design, three sample point design, and four sample point design. 

The efficiency of parameter estimation obtained with the different sampling 

schedules within each design was compared to determine the "best" strategy.

The exact location of the third or fourth sample was not critical to the 

overall efficiency with which model parameters were estimated using either the 

three or four sample designs. However, in studies using the two sample design, 

the location of the second sampling time at approximately 1.4 times the 

elimination half-life of the drug or greater resulted in efficient estimation of 

population pharmacokinetic parameters.

4.2 INTRODUCTION

An optimal sampling strategy for monoexponential pharmacokinetic 

model with instantaneous IV input would require taking the first sample as early 

as possible after the dose (tmin) and the other (tend) as late as possible (Edrenyi, 

1981). The maximal feasible response is associated with tmin while the minimal
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feasible response is associated with ten(j.

In this chapter, simulated data sets were used to investigate the effect of 

arrangement of observations (drug concentrations) in time on parameter 

estimation. Data were generated assuming one compartment open model kinetics 

and IV bolus administration. Different sampling designs within a study were 

compared to identify the "best" sampling design for efficient param eter 

estimation involving the use of one observation per animal.

4.3 SAMPLING DESIGN

In this study, the optimal sampling strategy was applied in an ad hoc 

manner, and the drug was assumed to be administered by IV bolus injection. 15% 

error was added in the concentration measurements (see Chapter 2, Section 2.4). 

Sampling time ranged from as early as possible after the beginning of the 

experiment ( t j ,^  = 5 min.) to some value (ten(j = 240 min.), the latest time that 

could be contemplated in actual experiment, taking into consideration the 

"average" t j ^  drug* 48 observations corresponding to 48 animals were 

used in each design.

4.4 The Two Sample Point Design

In a series of experiments the first sampling time was fixed at 5 min. 

while the second was allowed to vary at 30 min. intervals from 90 to 240 min. 

after dose. The second sampling time was sampled uniformly within a range of
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Fig. 4.1 Bias and precision expressed as %PE (mean ± standard deviation, 
respectively) for estimated parameters. The horizontal axis represents the 
different samples for the two sample point design. Each vertical bar expresses the 
bias and precision of the population parameter estimate for each design. 
Significant (p < 0.05) biases are indicated by asterisks.
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15 minutes centred on the stated time. This was considered to mimic a real study, 

and in the analysis the exact times were used. The six sampling schedules for this 

design specification are shown in Table 4.1.

4.4.1 Results

4.4. la  Bias and Precision

All designs yielded estimates of Cl which were precise. The SD of %PE 

ranged from 3.3% (180 min.) to 5.9% (90 min.). The bias ranged from 

approximately 0.0% (90 min.) to -2.3% (240 min.). Some of the sampling designs 

yielded estimates of Cl which were negatively biased (Fig. 4.1a).

All V estimates were relatively stable, negatively biased, but precise (Fig. 

4.1b). The least biased estimate was obtained with the sampling design in which 

the second sample time was at 90 min. (mean of %PE = -1.2%) and the most 

biased estimate with the second sample at 180 min. (mean of %PE = -3.1%). The 

SD of %PE ranged from 3.5 to 4.4%.

C£i estimates were highly positively biased when the second sample was 

at early times. As the second time point was specified at late times the bias was 

reduced, and tended to level off at 210 min. giving an almost unbiased estimate 

(Fig. 4.1c). However, the biases associated with most O q estimates were 

significant. The bias in the estimation of c^j ranged from -2.3% (210 min.) to 

56.4% (90 min.) although the precision was acceptable with the different designs. 

On the contrary, all estimates of Oy were significantly positively biased, 

relatively stable, and acceptably precise (Fig. 4. Id).
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(a) Estimation of Cl

180 150 210 240 120 90 Sampling Times (min)

(b) Estimation of V

90 150 180 240 210 120 Sampling Times (min)

(c) Estimation o f< ti

240 210 180 150 120 90 Sampling Times (min)

(d) Estimation of Cy 

240 210 180 90 150 120 Sampling Times (min)

(e) Overall Design Efficiency 

150 240 180 210 120 90 Sampling Times (min)

£
Fig. 4.2 aSummary of significant differences in the efficiency with which 
parameters were estimated using the two sample point design, 
a - Rank order of design numbers increasing from left to right 
* .  Efficiency measured with design number.
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4.4.1b Design Number

The design with the second sample at 180 min. produced the most 

efficient estimate of Cl (Fig. 4.2a). However, the efficiency with which Cl was 

estimated with this design was not significantly better than those with the second 

sample at 120, 150, 210, or 240 min. Also, the efficiency with which Cl was 

estimated with these designs was significantly better than that obtained when the 

second sample was at 90 min. The latter design produced the least efficient 

estimate of Cl.

V was estimated to a similar degree of efficiency with all sampling 

schedules although the design with the lowest rank order (on average) of d>̂ . was 

the one with the second sample at 90 min. (Fig. 4.2b).

C£j was most efficiently estimated when the second sample was at 240 

min. (Fig. 4.2c). The efficiency with which this parameter was estimated with this 

design was not significantly better than that obtained when the second sample 

was at either 150, 180, or 210 min. These designs yielded significantly better 

estimates of than designs having the second time point at either 90 or 120 

min. The least efficient estimate of was obtained with the second sample at 90 

min.

Oy was poorly estimated with all sampling designs (Fig. 4.2d), and all 

produced similar results.

Overall, the most efficient estimates of fixed and random effects 

parameters were obtained with the specification of the second sample at 150 min. 

(Fig. 4.2e). The efficiency of parameter estimation with this design was not 

significantly better than when the parameters were estimated with designs having 

the second sample at 120, 180, 210, or 240 min. These designs ( except when the 

second sample was at 120 min.) produced param eter estim ates w ith a 

significantly better efficiency than the design with second time point at 90 min.
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The least efficient estimates of model parameters and their variances were 

obtained with the second sample at 90 min.

Thus, Cl was best estimated with the second sample at 180 min. although 

this was not significantly better than estimates of this parameter obtained when 

the second sample was at 120, 150, 210, and 240 min., respectively. On the other 

hand, V was best estimated when the second sample was at 90 min., and this was 

not significantly better than the results obtained with the other designs, was 

best estimated with the second sample at 240 min. although not significantly 

better than when the second sample was at 150, 180, or 210 min. Oy was poorly 

estimated at all specifications of the second time point.

The design with the second sample at 150 min. yielded the most efficient 

estimates of all parameters of the model, but this was not significantly better than 

when the second time point was at 120,180, 210, or 240 min.

4.4.1c Individual and Joint Confidence Intervals for Parameter Estimates

Individual and joint confidence intervals for parameter estimates are 

summarised in Table 4.2. All designs produced good coverage for individual and 

joint confidence intervals for parameter estimates whether or not NONMEM runs 

with catastrophic estimates were included. The coverage for individual and joint 

parameter estimates were not significantly different from the expected values of 

0.95 and 0.81, respectively. When NONMEM runs with catastrophic estimates 

were discounted in the numerator during confidence interval coverage 

computation a slightly reduced coverage, though not significantly different from 

the expected value, was obtained for and joint parameter estimates when the 

second sampling time was specified at 240 min. (Table 4.2, Section El).
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4.4. Id Incidence of High Correlation between Parameter Estimates

Generally, 0% incidence of high correlation between parameter estimates 

was produced, except the design with the second sample at 90 min., this having 

an incidence of 3.3% for the correlation between Oy and V (Table 4.3).

4.4.2 Discussion

The accuracy and precision with which fixed effect parameters were 

estimated were good with the bias in Cl and V not exceeding 3%, and the SD of 

%PE not exceeding 6%. However, most of the estimates of these parameters were 

negatively biased. This bias may be due to estimation error as discussed in 

Chapter 3. The best estimates of Cl and V in terms of bias and precision were 

obtained when the second sample was at 180 and 90 min., respectively.

The tendency for improvement in accuracy and precision in the estimation 

of C£j as the second sampling time was specified at late times (150 to 240 min.) 

was due to the fact that information about this parameter was best obtained when 

the second sample was approximately two to three times the t y 2  ° f  the drug. 

Thus, an efficient estimate of C q could be obtained at either 180, 210, or 240 

min.

Oy- was inefficiently estimated with all designs. Thus, all estimates of this 

parameter were biased but acceptably precise to the same extent. The positive 

bias associated with the estimation of Oy with all designs and Gq  for some 

designs, could have been due to the lack of information in the data sets about 

concentration measurement error, since NONMEM was estimating composite 

inter-animal variability and concentration measurement error.

A comparison of d>jr ’s obtained from the different sampling designs

134



showed that Cl was best estimated when the second sample was at 180 min. 

although this was not significantly better than when the second sample was at 

120, 150, 210, or 240 min., respectively. Thus, specifying the second sampling 

time between 1.4 and 3 times the t j /2 ° f  the drug would produce efficient 

estimates of this parameter since information on drug elimination is contained in 

the late phase of the plasma concentration - time profile. This also explains why 

Gqy was better estimated at the late sampling times.

V was efficiently estimated when the second sample was at 90 min. 

However, this was not significantly different from the results obtained with the 

other designs. The lack of difference was due to the associated bias and precision 

with which this parameter was estimated with the different designs.

As with the estimation of V, all designs produced estimates of Oy which 

were not different from one another. The reasons for this are as previously stated 

forV.

The design which yielded the most efficient estimates of all parameters 

was that with the second sample at 150 min. However, this was not significantly 

different from those obtained with the second time point at 120, 180, 210, or 240 

min. The design with the second time point at 90 min. was significantly worse 

than others, except the one with the second time point at 120 min., due to the bias 

associated with the estimation of Oq.

Bias and precision are some of the factors which determine the properties 

of interval estimates. The interplay of these factors produce confidence intervals 

for fixed effect parameter estimates which had coverage near the expected value 

of 0.95. The good coverage for the random effect parameters was essentially due 

to the good precision associated with these estimates. Also, the good coverage 

obtained for the joint confidence intervals coverage was due to all designs 

producing precise parameter estimates. The reduced coverage, though not
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significant, obtained when the second sample was at 240 min., was due to 12 

NONMEM runs producing estimates of with "coefficient of variation"

> 50%. Moreover, the good coverage obtained for individual and joint confidence 

intervals for parameter estimates was associated with negligible incidence of high 

correlation.

Given the design specifications considered here, the "best" design for the 

efficient estimation of parameters was the one with the second sample at 150 min. 

However, this sampling time could be either 180, 210, or 240 min. to obtain 

parameters estimated with similar efficiency.

4.5 The Three Sample Point Design

The impact of introducing a third sample on parameter estimation was 

investigated. In this design t ^  and tend were fixed at 5 min. and 240 (± 7.5)

min., respectively, and the third sampling time was at 30, 60,90,.... . or 210 (all ±

7.5) min. after dose, yielding the 7 schedules shown in Table 4.1.

4.5.1 Results

4.5.1a Bias and Precision

The estimates of Cl were mostly negatively biased with the mean of %PE 

ranging from -0.3% to -3.1% (30 min.). These estimates were precise with the SD 

of %PE ranging from 3.0% (150 min.) to 4.0% (60 min.) (Fig. 4.3a).

V estimates were precise and mostly negatively biased (Fig. 4.3b). The
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(a) Estimation of Cl

150 120 180 60 90 210 30 Sampling Times (min)

(b) Estimation of V

60 30 150 180 90 120 210 Sampling Times (min)

(c) Estimation of

180 210 150 30 120 60 . 90 Sampling Times (min)

(d) Estimation of Oy 

120 180 210 150 90 30 60 Sampling Times (min)

(e) Overall Design Efficiency 

60 30 150 180 90 120 210 Sampling Times (min)

Fig. 4.4 aSummary of significant differences in the efficiency with which 
parameters were estimated using the three sample point design, 
a - Rank order of design numbers increasing from left to right 
* - Efficiency measured with design number.
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least biased estimate occurred with the third sample at 60 min. (mean of %PE = 

0.3%) and the most biased estimate with the third sample at 120 min. (mean of 

%PE = -2.7%). The most precise estimate was obtained with the third sample at 

60 min. (SD of %PE = 3.5%) while the least precise was at 210 min. (SD of %PE 

= 6.4%).

Except for the specification of the third sample at 30 or 60 min. there was 

a general trend for the bias in the estimation of to decrease as the third sample 

was shifted towards 240 min. (Fig. 4.3c). Estimates of G q were acceptably 

precise when the third sample was at > 120 min., while the most imprecise 

estimate was obtained with the third sample at 60 min. (SD of %PE = 49.4%). 

The best estimate of this parameter was obtained with the third sample at 180 

min. followed by sampling at 210 min.

As with the two sample design, Oy estimates were significantly positively 

biased and imprecise (Fig. 4.3d). Specification of the third sample at 30 min. 

yielded acceptably precise estimates Oy. The least biased estimate was obtained at 

120 min. (mean of %PE = 33.8%) and the most biased estimate was obtained at 

60 min. (mean of %PE = 67.2%).

4.5.1b Design Number

There was no significant difference when the efficiency with which Cl 

was estimated was compared for all sampling designs. This not withstanding, the 

design with the lowest rank order (on average) of d>ir was that with the third

sample at 150 min. (Fig. 4.4a).

V was most efficiently estimated with the third sample at 60 min. (Fig. 

4.4b), but this was not significantly better than when this sample was at 30, 90, 

150, and 180 min. However, it was significantly better than the efficiency with
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which estimates of V were produced with the third sample at 210 min.

The most efficient estimate of was obtained with the third sample at 

180 min. (Fig. 4.4c). This, however, was not significantly better than when the 

third sample was at 30, 60, 120, 150, or 210 min., but was significantly better 

than results obtained with this sample at 90 min. Setting the third sampling time 

at 90 min. yielded the least efficient estimates of Oqj. However, when the 

efficiency with which q^j was estimated with this design was compared with that 

obtained at either 60 or 120 min., there were no significant differences.

Cty was estimated with similar efficiency at 30, 90, 120,150,180, and 210 

min. (Fig. 4.4d). The design with the lowest rank order (on average) of was 

that with the third sample at 120 min. The efficiency of O y estimation at this time 

was significantly better than when the third sample was at 60 min.

Overall, the parameters were estimated with similar efficiency at all 

values of the third sample (Fig. 4.4e). There was no significant difference when 

the d>r ’s of all sampling designs were compared.

Consequently, Cl was efficiently estimated with all designs. However, the 

design with the third sample at 150 min. resulted in the lowest rank order of 

(i.e., least biased and most precise). Although V was efficiently estimated with 

the third sample at 30, 60, 90, 120, 150, or 180 min., the most efficient design 

was obtained when the third sample was at 60 min. Oq was most efficiently 

estimated with the third sample at 180 min. The efficiency of the estimation of 

this parameter with this design was not significantly better than the results 

obtained with other designs, except the one with the third sample at 90 min. O y 

was badly estimated with all designs. Overall, the exact location of the third 

sample was not critical for the efficient estimation of the parameters.
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4.5.1c Individual and Joint Confidence Intervals for Parameter Estimates

When NONMEM runs with catastrophic estimates were included in the 

computation of confidence intervals, good coverage was obtained for all designs 

(Table 4.4, Section I). When catastrophic estimates were excluded in the 

numerator and denominator during the computation of confidence intervals 

coverage (see Chapter 2, Section 2.5.2) no significant effect was observed on the 

coverage (Table 4.4, Section II). However, when catastrophic estimates were 

discounted in the numerator during the computation of confidence intervals , the 

coverage for was reduced for the design with the third sample at 60 min. and 

significantly so with this sample at 30 min. (Table 4.4, Section III). Equally 

reduced coverage was observed for the joint confidence intervals for parameter 

estimates with these two designs compared to other designs. The coverage for Cq  

and joint confidence intervals obtained for the design in which the third sample 

was at 30 min. was significantly different from the expected values of 0.95 and 

0.81, respectively. All other designs yielded estimates with individual and joint 

confidence intervals coverage not significantly different from the expected value 

of 0.95 and 0.81, respectively.

4.5. Id Incidence of High Correlation between Parameter Estimates

The pair-wise correlations between V and Cl, and Cl, and Oy and V 

for some designs yielded incidence of high correlation greater than 0% (Table

4.5). The incidence of high correlation between V and Cl was 3.3% for the design 

with the third sample at 210 min., but 0% for other designs. The incidence of high 

correlation for c w i t h  Cl, and C q with V was 6.7% and 3.3% for the designs 

with the third sample at 90 and 210 min., respectively, but 0% for other designs. 

In the correlation between Oy and V, the designs with the third sample at 30, 120,
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or 210 min. produced an incidence of high correlation of 0%, while 6.7% was 

obtained with designs which had the third sample at 60 and 90 min. An incidence 

of 16.7% and 3.3% was obtained for designs with the third sample at 150 and 180 

min., respectively.

4.5.2 Discussion

The estimation of Cl and V was associated with low bias and high 

precision for all designs. More precise estimates of Cl and V were obtained with 

the third sample at late and early times, respectively, where more information was 

available for the estimation of these parameters. The negative bias associated with 

the estimation of these parameters might be due to estimation error.

Although the estimates of obtained with the third sample at 30 and 60 

min., respectively, were relatively unbiased, these estimates were associated with 

large "coefficient of variation". The improvement in precision when the third 

sample was obtained late was due to the increased amount of information (data 

points) available for C£j (Cl) estimation. The most precise estimate of G y  was 

obtained with the design having the third sample at 30 min. This was due to 

having more data points in the early times. The positive biases associated with the 

estimation of and Gy were due to the lack of information in the data sets on 

cy as earlier discussed for the two sample design.

The efficiency of Cl estimation was similar for all designs, although the 

lowest rank order (on average) of <I>-r was obtained with the third sample at 150 

min. The design with the highest rank order of <J>ir was the one with the third 

sample at 30 min. However, the exact location of the third sample was not critical 

to the estimation of Cl.
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On the contrary, the location of the third sample at early times (30 to 60 

min.) led to a more efficient estimation of V, with the most efficient estimate 

obtained when the third sample was at 60 min., about two-thirds the drug ty 2 (or 

as early as possible).

Gqi was most efficiently estimated with the third sample at 180 min., 

although the location of this sample at any time greater than 1.4 times the t y 2 °f 

the drug led to efficient estimation of this parameter. The best estimate of O y, 

obtained with the third time at 120 min., was associated with the least bias. The 

poor estimates of O y obtained with all designs could be a characteristic of the one 

observation per animal design.

The similar efficiency of estimation of all parameters with all the three 

sample designs indicated that the exact location of the third sample was not 

critical (Fig. 4.4e). The results obtained with the design number approach were in 

good agreement with those obtained using the bias and precision analysis.

The reduced confidence interval coverage obtained for the estimation of 

Oy with the design with the third sample at 30 min. was due to the associated 

bias. On the other hand, the significantly reduced coverage obtained for Cq  

estimates with designs having the third sample at 30 or 60 min., when NONMEM 

runs with catastrophic estimates were discounted in the numerator during 

confidence intervals computation (to reveal the influence of standard error on 

confidence intervals coverage), indicated that the estimates obtained for this 

parameter were not very reliable. However, the good coverage obtained for 

irrespective of the manner in which the confidence intervals were computed using 

the other designs indicated that those estimates were reliable. Apart from the 

design with the third sample at 30 min., the joint confidence intervals coverage 

for parameter estimates was good. The low incidence of high correlation between 

parameters was an indication of the adequacy of the parameterization of the 

model.
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With the designs considered here, the exact location of the third sample 

was not critical to the efficiency with which the set of population pharmacokinetic 

parameters could be estimated.

4.6 The Four Sample Point Design

In this situation, t j ^  and ten(j were fixed as in the previous case at 5 min. 

and 240 min., respectively. The second time point was fixed at 30 (± 7.5) min. 

and the fourth time point was varied between 60 and 210 (all ± 7.5) min. in steps 

of 30 min. (Table 4.1). The aim was to determine the efficiency with which fixed 

and random effects parameters could be estimated with this strategy.

4.6.1 Results

4.6.1a Bias and Precision

The estimate of Cl was least biased and most precise when the fourth 

sample was at 210 min. (Fig. 4.5a). All estimates of Cl were negatively biased 

ranging from approximately -0.2% to 3.1%, with the SD of %PE from 2.9% (210 

min.) to 4.2% (60 min.).

On the contrary, the least biased and most precise estimate of V was 

obtained with the design in which the fourth sample was at 60 min. (Fig. 4.5b). 

All estimates of this parameter were also negatively biased with the mean of %PE 

ranging from -0.2% (60 min.) to 2.0% (120 min.) The SD of %PE ranged from 

3.5% (60 min.) to 5.2% (180 min.).
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respectively) for estimated parameters. The horizontal axis represents the 
different samples for the four sample point design. Each vertical bar expresses the 
bias and precision of the population parameter estimate for each design. 
Significant (p < 0.05) biases are indicated by asterisks.
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(a) Estimation of Cl

210 180 90 150 120 60 Sampling Times (min)

(b) Estimation of V

60 150 210 120 90 180 Sampling Times (min)

(c) Estimation of

180 210 150 120 60 90 Sampling Times (min)

(d) Estimation of Oy 

180 120 150 210 90 60 Sampling Times (min)

(e) Overall Design Efficiency 

210 150 180 90 60 120 Sampling Times (min)

£
Fig. 4.6 aSummary of significant differences in the efficiency with which 
parameters were estimated using the four sample point design, 
a - Rank order of design numbers increasing from left to right 
* - Efficiency measured with design number.
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The estimates of were almost unbiased when the fourth sample was at 

60 and 210 min. (Fig. 4.5c). As was the case with the two and three sample 

designs, there was a general trend of decrease in bias in the estimation of Cq  as 

the fourth sample occurred at later times. The estimates of Cq  were imprecise, 

except for the design with the fourth sample at 180 min. The most imprecise 

estimate was obtained when the fourth sample was at 60 min.

The estimation of Oy was associated with a significant positive bias for all 

designs (Fig. 4.5d). The only acceptably precise estimate was obtained with the 

third sample at 210 min.

4.6.1b Design Number

The most efficient estimate of Cl was obtained with the fourth sample at 

210 min. Cl was significantly better estimated with this design than the other 

designs. The least efficient estimate of Cl was obtained when the fourth sample 

was at 60 min. (Fig. 4.6a).

Although the design with the lowest average rank order of <I>̂r for the 

estimation of V was that with the fourth sample specified at 60 min., there was no 

significant difference when the d ^ ’s for all designs were compared (Fig. 3.6b).

G£i was most efficiently estimated with the fourth sample at 180 min. 

However, this was not significantly better than when this sample was at 60, 120, 

150, and 210 min. (Fig. 4.6c). The design with the fourth sample at 90 min. 

produced the least efficient estimate of c^p and this was significantly worse than 

the results obtained with designs having the fourth sample at 180 min and 210 

min., but not significantly worse than when this sample was at 60, 120 or 150 

min.

Oy was estimated with similar efficiency by all designs (Fig. 4.6d). The 

design with the lowest rank order of d>^ (on average) was the one with the fourth
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sample at 180 min.

Similarly, there was no difference in the overall efficiency with which the 

population pharmacokinetic parameters were estimated (Fig. 4.6e).

Thus, Cl was most efficiently estimated when the fourth sample was at 

210 min. V was efficiently estimated with all designs since there was no 

significant difference in the efficiency with which it was estimated when the 

O ^ ’s were compared. However, the most efficient (least biased and most precise) 

estimate of this parameter was obtained with the fourth sample at 60 min. On the 

other hand, was most efficiently estimated when the fourth sample was at 180 

min. The efficiency with which this parameter was estimated with this design was 

not significantly better than that with which it was estimated when the fourth 

sample was at 60,120,150, and 210 min., respectively. The efficiency of Oy 

estimation obtained with the different designs was indistinguishable.

Equally, there was no significant difference in the overall efficiency with 

which all the parameters were estimated. Again, the results obtained using bias 

and precision were in agreement with those obtained using O ^’s.

4.6.1c Individual and Joint Confidence Intervals Coverage for Parameter

Estimates

The coverage for individual and joint confidence intervals for parameter 

estimates was good for all designs when the influence of bias alone was 

considered (Table 4.6, Section I &II). When the runs with catastrophic estimates 

were discounted in the numerator to examine the influence of standard errors on 

confidence intervals coverage (Table 4.6, Section III) the design with the fourth 

sample at 60 min. was found to yield estimates of c^j with a confidence interval
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coverage significantly less than the expected value of 0.95. This design yielded 

23 runs with catastrophic estimates of c ^ .  On the other hand, the design with the 

fourth sample at 210 min. also produced estimates with reduced coverage, but 

this was not significantly different from the expected value of 0.95. In this case 

11 NONMEM runs had catastrophic estimates of this parameter. Apart from the 

design with the fourth sample at 60 min. the other designs produced estimates of 

parameters whose joint coverage was not significantly different from the expected 

value of 0.81.

4.6. Id Incidence of High Pair-Wise Correlations

The incidence of high correlation between Gy and V did not exceed 10% 

for any of the study designs (Table 4.7). With the exception of the correlation of 

G y  and V all designs produced parameter estimates which were not highly 

correlated with one another.

4.6.2 Discussion

The production of the least biased and most precise estimates of Cl and V 

with the designs having the fourth sample at 210 and 60 min., respectively, was 

due to the fact that more information was contained in the data sets for the 

estimation of these parameters at late and early samples, respectively. The 

negative biases associated with the estimation of these fixed effect parameters 

were due to estimation error as earlier discussed.

Also, the production of efficient estimates of with late samples (180 

min. (%PE = -3.6 ± 27.4%), and 210 min. (%PE = 11.3 ± 25.1%)) was due to the
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same cause. The estimate of obtained with the fourth sample at 60 min., 

although almost unbiased, was associated with very poor precision (%PE = 2.5 ± 

46.2%).

Using the design number approach, Cl was found to be most efficiently 

estimated when the fourth sample was at 210 min. The reason for this was 

previously stated when the result was discussed for bias and precision. The lack 

of difference in the estimation of V was due to the estimates being similarly 

biased and precise. No design produced estimates of V with "coefficient of 

variation" > 20% (Table 4.6).

Cq Y was more efficiently estimated with the fourth sample at > 1.4 times 

11/2 of the drug, since this provided more information on this parameter. The 

efficiency of estim ation with the fourth sample at 60 min., although not 

significantly different from the results with the fourth sample at 120, 150, 180, 

and 210 min., was not acceptable. This was due to this design having 23 runs 

with the "coefficients of variation" > 50%. The similar poor efficiency with 

which all designs estimated Oy could have been a consequence of the one 

observation per animal study design.

The exact location of the fourth sample was not critical in the overall 

estimation of parameters. The specification of two samples at not greater than one 

third the elimination ty 2  °f the drug (Table 4.1) and the fourth sample close to or 

greater than the ty 2  the drug, with the last sample at 240 min., might have 

contributed to this observation.

The influence of bias on confidence interval coverage was negligible. All 

designs produced good coverage for individual and joint parameter estimates 

when NONMEM runs with catastrophic estimates were included in the numerator 

during confidence intervals computation. The predominant factor governing 

confidence intervals coverage in the studies considered here, was standard errors.
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Excluding NONMEM runs with estimates which had "coefficients of variation"

> 50% in the numerator during confidence intervals computation led to reduced 

coverage for for most designs, and Oy for two designs.The reduction in the

coverage for was significant only for the design in which the fourth sample

was at 60 min. With this design also, estimates of the joint confidence intervals 

coverage for parameter estimates was significantly different from the expected 

value because of the significantly reduced coverage for estimates. Setting the 

fourth sample at 210 min. was also associated with reduced coverage when 

NONMEM runs with catastrophic estimates were discounted in the numerator for 

confidence intervals computation. However, this was not significantly different 

from the expected value.

In addition, the estimation of parameters with this design was associated 

with low incidence of high correlation between parameter estimates. This might 

have contributed to the lack of significant difference in the overall efficiency with 

which model parameters were estimated.

Thus, the overall efficiency of parameter estimation obtained with all the 

four sample designs was similar. Although the exact location of this sample was 

not critical, the specification of the fourth sample at > 2.5 times the elimination 

ty 2  of the drug would result in more efficient parameter estimation.

1 5 5



CHAPTER 5

THE TWO COMPARTMENT POPULATION PHARMACOKINETIC 

MODEL: PARAMETER ESTIMATION WITH ONE 

OBSERVATION PER ANIMAL

1 5 6



5.1 SUMMARY

A simulation study was carried out using the two compartment model 

with IV bolus injection of a test drug. The efficiency with which model parame

ters and their variances were estimated was investigated given a set of parameter 

values, concentration measurement error with different sample sizes and sampling 

schedules. Data were simulated using one observation per animal.

Efficient parameter estimation was obtained when 15 observations were 

made per time point. Concentration measurement error greater than 10% yielded 

variance parameter estimates with greater degree of bias and imprecision. The 

inter-animal variability in parameters estimated was a composite of inter- and 

intra-animal variability.

When a  was in the range of 2.0 and 4.0 h"* and the A:B ratio between 2.5 

and 40.0 efficient estimates of parameters were obtained. Some sampling 

schedules gave more efficient estimates of some parameters than others. High 

correlation between some parameters led to instability in the estimates.

5.2 INTRODUCTION

Equation (5.1) is the general equation for the disposition of a drug exhibit

ing two compartment open model kinetics and administered by IV bolus injec

tion.

C = A.exp(-a.t) + B.exp(-p.t) (5.1)

where A and B are regression coefficients; a  and p are hybrid rate constants of 

distribution and elimination, respectively. Using the model expressed in Eq. (5.1)
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the efficiency with which model parameters and their variances could be 

estimated was investigated given a set of parameter values, concentration 

measurement error with different sample sizes and sampling schedules.

5.3 METHODS

5.3.1 SAMPLING DESIGN

The individual values of A and B were randomly selected from normal 

distributions with means of 10000.0 and 500.0 IU/ml, respectively. The values of 

a  and p, were similarly selected from distributions with means of 2.0 and 0.2 h"*, 

respectively. The respective variances were chosen to yield a coefficient of 

variation of 15% for all parameters. A 15% error was added in concentration 

measurements as previously described (see Chapter 2, Section 2.4), except in (b) 

below.

An intravenous bolus dose of 200,000 IU was specified and data were 

sampled at ten time points, viz. 0.083, 0.25,0.50, 0.75, 1.0, 1.5, 2.0, 3.0, 4.0, and

6.0 h. The first point was fixed while the others were sampled from a uniform 

range of 0.25 h centred on the stated time. The simulation was carried out as 

previously described in Chapter 2 (Section 2.4) with 30 replicates of data for each 

simulation run.

(a) The effect of varying the number of observations at each time (i.e., 

number of animals used per time point) on the efficiency with which parameters 

were estimated was investigated using either 6, 10, or 15 observations per time 

point, yielding sample sizes of 60,100, and 150, respectively.
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(b) The influence of error in concentration measurements on parameter esti

mation was investigated by specifying ae to be 0, 1, 5, 10, and 15%. A sample 

size of 150 was used in this study. The values A, a , B, and p were as previously 

stated.

(c) The efficiency with which model parameters were estimated with a  in the 

range of 1.5 to 8.0 h' 1 (i.e. 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 6.0, and 8.0 h '1) was 

investigated. As with (b) a sample size of 150 was used in this study.

(d) The efficiency with which the parameters were estimated was investigated 

given a range of A:B ratios: 1.0, 2.5, 5.0, 7.5, 10.0, 20.0, 30.0, and 40.0. The A:B 

ratios were obtained by keeping B at a constant mean value of 500.0 IU/ml while 

the mean value of A was varied.

(e) From (a) and (b) above (a  = 2.0 h"*, p = 0.2 h"*, and A:B ratio = 20.0 ) it 

was observed that the change over from the a  to the p phase occurred after 2.0 h. 

Taking this demarcation of the a  and p phases into consideration, the influence of 

varying sampling times in either the a  or p phase of the plasma concentration 

time curve was examined in two separate studies:-

Study I:

12 sampling times were specified in the a  phase. In this case the first time 

was fixed while the others were varied within a range of 0.033 h on the selected 

time (Table 5.1). The number was then reduced to 7, 5, and 3 (Table 5.1) with the 

total number of sampling times being 15,10, 8, and 6, respectively. Consequent

ly, the sample sizes were 150,150,152, and 150, respectively.
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Study II:

The number of sampling times in the p phase was increased from 3 to 6, 

and to 8 (Table 5.1), with a resultant total number of sampling times of 10, 13, 

and 15, respectively (i.e., 7 times in the a  phase). The corresponding sample sizes 

were 150, 143, and 150, respectively. In each study, sample sizes were kept as 

close as possible to 150 to allow comparison of the results, oc and the A:B ratio 

were set at 2.0 h’* and 20.0, respectively.

5.4 RESULTS

NONMEM runs with estimates of parameters and /  or their standard errors 

which did not satisfy the outlier criteria outlined in Chapter 2 (Section 2.5.1) were 

deleted. The results presented were based on runs with acceptable estimates.

5.4.1 Effect of Sample Size

The 60, 100, and 150 sample sizes had 27, 27, and 29 successful 

NONMEM runs, respectively. Most estimates of Gp were infinitesimal and 

removing this parameter from the model did not alter the results. Model parame

ters were associated with minimal bias for the various sample sizes (Fig. 5.1 (a - 

d)). Although the biases in the estimates of A and a  were significant for the 

sample size of 150, these were less than 5% (Fig. 5.1 (a & b)). The estimates of p 

were unbiased irrespective of the sample size (Fig. 5.Id). The estimates of A and 

a  obtained with the different sample sizes were precise (SD of %PE < 9%), while 

the estimates of B (Fig.5.1c) and p (Fig. 5.Id) obtained with the 60 and 100 

sample sizes were imprecise. Only the estimates of these parameters obtained 

with the 150 sample size were precise (SD of %PE < 13%). The estimates of cr ,̂

161



%PE
10

5

0 .

-5.

*10.

10-

5 .

0 .

-5-

•10.

50 
40 
30 
20 
10 
0 

-10 
-20 
-30 
-40 , 
-50.

5 0 . 
4 0 . 
3 0 . 
2 0 . 
1 0 . 
0 . 

- 1 0 . 
-2 0 . 
-3 0 . 
-40 . 
-50-

(a) A

(b)a

(c) B

{

(d)P

i

i— 
60 
6

—I— 
100 
10

150 Sample size 
15 Animals/time

Fig. 5.1 (a - d) Bias and precision expressed as %PE (mean ± standard deviation, 
respectively) for estimated parameters. The horizontal axis represents the number 
of animals used for observations at each time point. Each vertical bar expresses 
the bias and precision of the population parameter estimate. Significant (p < 0.05) 
biases indicated by asterisks.
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a 
*

(a) Estimation of A

150 100 60 Sample size

(b) Estimation of a

150 60 100 Sample size

(c) Estimation of B

150 60 100 Sample size

(d) Estimation of p

150 60 100 Sample size

(e) Estimation of

150 100 60 Sample size

%
Fig. 5.2(a - e) aSummary of significant differences in the efficiency with which 
parameters were estimated: effect of varying sample size.

- Rank order of design numbers increasing from left to right.
Efficiency measured with design number
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(f) Estimation of 

150 100 60 Sample size

(g) Estimation of 

150 100 60 Sample size

(h) Overall Design Efficiency 

150 100 60 Sample size

Fig. 5.2(f - h) aSummary of significant differences in the efficiency with which 
parameters were estimated: effect of varying sample size.

- Rank order of design numbers increasing from left to right.
Efficiency measured with design number
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an<̂  °B were significantly positively biased (Fig. 5.1(e - g)). These estimates 

were associated with poor precision for the 60 and 100 sample sizes. Using the 

150 sample size, acceptably precise estimates were obtained for and aa  while 

an imprecise estimate was obtained for cfg.

The were compared using the Kruskal Wallis test with multiple 

comparisons. The estimate of A produced with a sample size of 150 was signifi

cantly better than estimates produced with the sample size of 60 but not 100 (Fig. 

5.2a). The most efficient estimate of A was obtained using a sample size of 150 

while the least efficient estimate was obtained with a sample size of 60. Also, the 

most efficient estimate of a  was obtained with the sample size of 150 while the 

least efficient estimate was obtained with a sample size of 100 (Fig. 5.2b). 

However, the efficiency with which a  was estimated using the 100 sample size 

was not worse than that with the sample size of 60.

The best estimate of B was obtained using the 150 sample size. This was 

significantly better than the results obtained with the other two sample sizes 

which were not significantly different to each other (Fig. 5.2c). p was most effi

ciently estimated when the sample size was 150. This was significantly better 

than when the sample size was 100. Although the least efficient estimate of p was 

obtained with the latter sample size it was similar to that obtained with the 60 

sample size.

(Fig. 5.2e) and oa  (Fig. 5.2f) were most efficiently estimated with the 

150 sample size, and these were significantly better than when the sample size 

was 60. The estimates obtained with a sample size of 100 had efficiencies similar 

to the other sample sizes, was estimated with similar efficiency using the three 

sample sizes (Fig. 5.2g).

Overall, parameters were most efficiently estimated when the 150 sample 

size was used. As expected, the sample size of 60 yielded the least efficient 

estimates of parameters when considered as a set. The results obtained with the
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Table 5.2 Effect of Sample Size on Individual and Joint Confidence Intervals Coverage 

for Parameter Estimates

Section I

Success

Total

Sample Parameter

Size A a  B P °A ^  %  Joint

60 27/27 27/27 27/27 27/27 25/27 27/27 27/27 25/27

100 27/27 27/27 27/27 27/27 26/27 27/27 27/27 26/27

150 29/29 29/29 29/29 29/29 25/29 29/29 29/29 25/29

Section II

(Success - Excluded)

(Total - Excluded)

60 27/27 27/27 27/27 26/26 20/22 9/9 1/1 0/0

100 27/27 27/27 26/26 23/23 26/27 16/16 1/1 0/0

150 29/29 29/29 29/29 29/29 25/29 28/28 0/0 0/0

Section HI 

(Success - Excluded) 

Total

60 27/27 27/27 27/27 26/27 20/27
lie

9/27 1/27* 0/27’

100 27/27 27/27 26/27 23/27 26/27 16/27 1/27* 0/27'

150 29/29 29/29 29/29 29/29 25/29 28/29 0/29* 0/29'

________ _______ —........---------------- -- ----

* - p < 0.01
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sample size of 150 were significantly better than the results obtained with either 

100 or 60 sample sizes.

When catastrophic estimates were included in the computation of individ

ual and joint confidence intervals coverage for all parameters, good coverage was 

obtained (Table 5.2, Section I). However, when the catastrophic estimates were 

excluded in the computation of coverage, good coverage was obtained for A, a, 

B, p, and for all the sample sizes studied. Although good coverage was ob

tained for with 150 observations, the coverage obtained with 100 observations

was reduced but not significantly lower than the expected value of 0.95, and poor 

coverage was obtained with 60 observations (Table 5.2, Section II & III). When 

the catastrophic estimates were excluded, very poor coverage was obtained for 

irrespective of the sample size (Table 5.2, Section III). Similar results were ob

tained for the joint coverage of all parameter estimates.

The incidence of high correlation was 100% for the correlation between P 

and B, but there was generally low incidence (< 30%) of high correlation between 

other parameter estimates (Table 5.3).

Overall, the use of 150 observations (15 animals per sampling time) 

yielded parameter estimates which were acceptably precise and least biased as 

expected.

5.4.2 Varying the Error in Concentration Measurements

With Ge  specified at 0, 1, 5, 10, and 15% there were 29, 28, 28, 29, and 

29, respectively, successful NONMEM runs. As in the previous section Gp was 

removed from the model. Although the estimates of A and a  were significantly 

negatively biased for all values of oe , the magnitude of the bias was very small. 

The mean %PE ranged from -1.3 to -4.0% (Fig. 5.3( a & b). These estimates were
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Fig. 5.3(a - d) Bias and precision expressed as %PE (mean ± standard deviation, 
respectively) for estimated parameters. The horizontal axis represents the 
different values of used in the study. Each vertical bar expresses the bias and 
precision of the population parameter estimate. Significant (p < 0.05) biases 
indicated by asterisks.
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Overall Design Efficiency 

0.0 1.0 5.0 10.0 15.0 q .  (%)

Fig. 5.4 aSummaiy of significant differences in the efficiency with which all 
parameters were estimated: effect of error in concentration measurements.

- Rank order of design numbers increasing from left to right.
Efficiency measured with design number.
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Tabic 5.4 Effect of Error in Concentration Measurements on Individual and 

Confidence Intervals Coverage for Parameter Estimates

Section I 
Success_ 
Total

<*= Parameter

(%) A a B P °A <tx % Joint

0.0 29/29 29/29 29/29 29/29 27/29 29/29 29/29 27/29

1.0 28/28 28/28 28/28 28/28 27/28 28/28 28/28 27/28

5.0 28/28 28/28 28/28 28/28 28/28 28/28 28/28 28/28

10.0 29/29 29/29 29/29 29/29 29/29 29/29 29/29 29/29

15.0 29/29 29/29 29/29 29/29 25/29 29/29 29/29 25/29

Section II
ISuccess_- Excluded), 
(Total - Excluded) .ls2

0.0 29/29 29/29 29/29 29/29 27/29 29/29 5/5 5/5

1.0 28/28 28/28 28/28 28/28 27/28 28/28 2/2 2/2

5.0 28/28 28/28 28/28 28/28 28/28 27/27 1/1 0/0

10.0 29/29 29/29 29/29 29/29 29/29 28/29 1/1 0/0

15.0 29/29 29/29 29/29 29/29 25/29 28/29 0/0 0/0

Section in 
(Success - Excluded) 

Total

0.0 29/29 29/29 29/29 29/29 27/29 27/29 5129* 5/29*

1.0 28/28 28/28 28/28 28/28 27/28 28/28 2/28* 2/28*

5.0 28/28 28/28 28/28 28/28 28/28 27/28 1/28* 0/28*

10.0 29/29 29/29 29/29 29/29 29/29 28/29 1/28* 0/28*

15.0 29/29 29/29 29/29 29/29 25/29 28/29 0/29* 0/29*

*-p<0.01

1 7 3



very precise (SD of %PE < 4.5%). All estimates of B were precise but positively 

biased (Fig. 5.3c). |3 estimation was associated with minimal bias and relatively 

good precision (Fig. 5.3d). The highest degree of bias was obtained for aA, c^, 

and Cfc when oe was specified at 15% (Fig. 5.3(e - g)).

Parameter estimation was least efficient when ae was set at 15% (Fig. 

5.4) since Or was significantly higher than when ce was specified at 0, 1, 5, or 

10%. As expected the best parameter estimates were obtained with ce set as 0%, 

but the results obtained were not significantly better than the results obtained with 

ce specified at 1,5 , and 10%.

Good individual and joint confidence intervals coverage was obtained for 

all levels of a€ used in this study (Table 5.4, Section I). However, discounting 

estimates, with "coefficient of variation" greater than 50% in the numerator for 

the computation of confidence intervals coverage, gave poor coverage for Oq and 

joint parameter estimates (Table 5.4, Section IE).

Thus, as the error in concentration measurements increased the efficiency 

with which parameters were estimated decreased as expected.

5.4.3 Varying the Distribution Rate Constant

The distribution rate constant (a) was varied between 1.5 and 8.0 h"1 (i.e. 

1.5 , 2 .0 , 2 .5, 3.0, 3.5, 4 .0 , 6.0, and 8.0 h"1) and the number of successful 

NONMEM runs were 27, 29, 29, 29, 30, 30, 29, and 28, respectively. As in the 

previous studies Ojj was removed from the model. The results show that A and oc 

were associated with good precision and negative bias, irrespective of the value 

of a  (Fig. 5.5 (a & b)). Except when a  was 1.5 h '1, B and p were unbiased and 

precise (Fig. 5.5 (c & d)). All estimates of cA, % , and Cfc were significantly posi

tively biased (Fig. 5.5 (e - g)). Poor precision was obtained in the estimation of
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(a) Estimation of A

1.5 2.0 2.5 3.0 3.5 4.0 6.0 8.0 a  (If1)

(b) Estimation of a

3.5 2.5 4.0 2.0 3.0 1.5 6.0 8.0 a  (h '1)

(c) Estimation of B

6.0 8.0 3.5 4.0 3.0 2.0 2.5 1.5 a  (If1)

(d) Estimation of p

8.0 6.0 3.5 4.0 3.0 2.0 2.5 1.5 a (h _1)

Fig. 5.6(a-d) aSummary of significant differences in the efficiency with which 
parameters were estimated: effect of different a  values 
a - Average rank of design number increasing from left to right.
* Efficiency measured with design number
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(e) Estimation of cr^

2.0 2.5 4.0 1.5 8.0 3.5 3.0 6.0 a  (If1)

(f) Estimation of

4.0 8.0 6.0 3.0 2.5 2.0 1.5 3.5 a ( h _1)

(g) Estimation °f <k

8.0 6.0 4.0 3.5 3.0 2.5 2.0 1.5 a ( h _1)

(h) Overall Design Efficiency

2.0 2.5 4.0 3.5 3.0 6.0 8.0 1.5 a (h _1)

Fig. 5.6(e - h) aSummary of significant differences in the efficiency with which 
parameters were estimated: effect of different a  values 

- Average rank of design number increasing from left to right.
Efficiency measured with design number
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(SD of %PE ranged from 26.8 to 32.2%) when a  was varied between 3.5 and

8.0 h The estimates of oa  were generally precise while those of Cg were 

mostly imprecise, the most imprecise estimate being when a  was 1.5 h"^.

Using the the best estimate of A was obtained with a  of 1.5 h“* 

(Fig. 5.6a). However, this was not significantly better than the efficiency with 

which A was estimated for a  between 2.0 and 4.0 h"1. The efficiency with which 

A was estimated with a  of 1.5 and 2.0 h“* was significantly better than when a  

was 6.0 or 8.0 h"*. The least efficient estimate of A was obtained when a  was 8.0 

h’ l. a  was estimated with similar efficiency over the range investigated (Fig. 

5.6b).

B was most efficiently estimated when a  was 6.0 h'*, but this was not 

significantly better than the results obtained when a  was 3.5, 4.0, and 8.0 h"^ 

(Fig. 5.6c). However, the B estimates obtained with a  of 6.0 and 8.0 h-* were 

significantly better than those obtained when a  varied between 1.5 and 3.0 h“*. 

Also, p was most efficiently estimated when a  was 8.0 IT* (Fig. 5.6d). The 

efficiency of p estimation when a  equalled 8.0 h'* was not significantly better 

than that when a  varied between 3.0 and 6.0 h~*. However, p estimates obtained 

when a  was 6.0 and 8.0 h“* were significantly better than those obtained when a  

varied between 1.5 and 2.0 h'*.

aA (Fig. 5.6e) and ca  (Fig. 5.6f) were estimated with similar efficiency 

for all values of a. However, the lowest rank order (on average) of d>ir’s was 

obtained when a  was 2.0 h-1 for aA and a  equalled 4.0 h"1 for aa . On the other 

hand, Gq was best estimated when a  was 8.0 IT1 and the worst estimate was 

obtained when a  was 1.5 h' 1 (Fig. 5.6g). The efficiency of cg estimation with a  

of 8.0 h"1 was not significantly better than that when a  varied between 2.5 and

6.0 h"1, but was significantly better than that obtained with a  of 1.5 and 2.0 h"1.

Overall, the parameters were best estimated when a  was 2.0 h-1
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Table 5.5 Effect of Different Values of a  on Individual and Joint Confidence Intervals 

Coverage for Parameter Estimates

Section I

Success
Total

a  1 (h’1) A a B
Parameter

P oA % % Joint

1.5 27/27 27/27 27/27 27/27 21/27 27/27 27/27 21/27

2.0 29/29 29/29 29/29 29/29 25/29 29/29 29/29 25/29

2.5 29/29 29/29 29/29 29/29 27/29 29/29 29/29 27/29

3.0 29/29 29/29 29/29 29/29 28/29 29/29 29/29 28/29

3.5 30/30 30/30 30/30 30/30 29/30 30/30 30/30 29/30

4.0 30/30 30/30 30/30 30/30 28/30 30/30 30/30 28/30

6.0 29/29 29/29 29/29 29/29 21/29 29/29 29/29 21/29

8.0 28/28 28/28 28/28 28/28 28/28 28/28 28/28 28/28

Section II

_[Success_- Excluded). 
(Total - Excluded)

1.5 27/27 27/27 27/27 25/25 21/27 21/21 0/0 0/0

2.0 29/29 29/29 29/29 29/29 25/29 28/28 0/0 0/0

2.5 29/29 29/29 29/29 29/29 27/29 25/25 5/5 4/4

3.0 29/29 29/29 29/29 29/29 28/29 27/27 15/15 13/13

3.5 30/30 30/30 30/30 30/30 28/29 23/23 26/26 20/23

4.0 30/30 30/30 30/30 30/30 27/29 23/23 27/27 19/19

6.0 29/29 29/29 29/29 29/29 21/21 21/21 29/29 16/16

8.0 28/28 28/28 28/28 28/28 13/13 19/19 28/28 8/8

1 8 0



Table 5.5 Effect of Different Values of a  on Individual and Joint Confidence Intervals 

Coverage for Parameter Estimates

Section III 

(Success - Excluded) 

Total

a

(h '1) A a B

Parameter 

P aA <*x % Joint

1.5 27/27 27/27 27/27 25/27 21/27 21/27 0/27* 0/27*

2.0 29/29 29/29 29/29 29/29 25/29 28/29 0/29* 0/29*

2.5 29/29 29/29 29/29 29/29 27/29 25/29 5/29* 4/29*

3.0 29/29 29/29 29/29 29/29 28/29 27/29 15/29 13/29

3.5 30/30 30/30 30/30 30/30 28/30 23/30 26/30 20/30

4.0 30/30 30/30 30/30 30/30 27/30 23/30 27/30 19/30

6.0 29/29 29/29 29/29 29/29 21/29 21/29 29/29 16/30

8.0 28/28 28/28 28/28 28/28 13/28 19/28 28/28 8/28*

* - p < 0.01

1 8 1



£
d

o

00

o
vd

o

in
cn

o
cn

m

<N

o

cs

in

Lo
w

92
.9

0001

0001

©
©

0*001

0*001

0001

0001

©
8

0001

0001
H

ig
h f-H ©

©
©
©

0*001

©
©

©
©

©
©

©
©

©
©

©
©

©
©

L
ow 37

.9

0*001

0*001

©
©

©
8i—l

©
8

0001

0*001

0001

0*001

0*001
H

ig
h VZ9

©
©

©
©

0*001

©
©

©
©

©
©

©
©

©
©

©
©

©
©

Lo
w ©

©00 96
.7 ©

8
©
©

©
8

©
8

©
8

©
8

©
8  »—« 96

.7

96
.7

H
ig

h

20
.0 cn

co
©
©

©

8
©
©

©
©

©
©

©
©

©
©

cn
cn

cn
cn

Lo
w 83
.3

0001 96
.7 ©

©

9*96

©

8
©

8

0*001

0*001 93
.3 ©

8

H
ig

h

16
.7 ©

©
rn
cn

©
8 cn

©
©

©
©

©
©

©
© d

©
©

Lo
w

82
.8

0*001

0001

©
©

0001

0*001

©

8
©
8

0*001 89
.7

93
.1

H
ig

h

17
.2 ©

©
©
©

0001

©
©

©
©

©
©

©
©

©
© 10

.3 O nvd

Lo
w

93
.1

86
.2

0*001

©
©

9*96

9*96 96
.6

96
.6

0*001 82
.8

86
.2

H
ig

h

O n

VD 13
.8 ©

©
©

8 cn cn cn cn
©
© 17

.2

13
.8

I
’§ )s
%
3
«s
* § >3

cn
O n

On
VO

o
o

d
00

no
vd
ON

o
o

oo tt o
cn cn d

©
o o

o

in 
2  §

in cn
f-H  O n  oo in

o
o

o
o

o
o

o  ©
8 81-H 1—(

© ©
© ©

©  ©

8 8
©  ©  
©  ©

cn
O n

O n

vd

00
r ^ '
r "

( N

oics

>
m

d cq
m w 
> > 

CO. CO.

N O

N O
O n

Ti
en

VO
O n
C S

©
©

O n

< 8 f f l C O . 8 03 C G u

C/3
>

C/3
>

C ?

C/3
>

cP

CA
>

i ?

CA
>

t ?

CA
> -

Co
' Ocd

O
u

jCbJD

O
oc
’■S

o

.s

in
p -

©
V

I

in
t "

©

A
*&
S
cd

1 8 2



(Fig. 5.6h). However, the parameters were estimated with similar efficiency 

when a  was varied between 2.0 and 4.0 h"^. The efficiency of parameters 

estimation with a  of 2.0 h"^ was significantly better than the efficiency of 

parameters estimation when a  was either 1.5 h' 1 or between 6.0 and 8.0 h '1.

Thus, A was efficiently estimated when a  was in the range of 1.5 and 4.0 

h"^, with the most efficient estimate obtained when a  was 1.5 h"^. a  was estimat

ed with similar efficiency with the range of a  considered in this study. B and P 

were best estimated with a  in the range of 3.5 and 8.0 h"1 although the most 

efficient estimates of these parameters were obtained with a  of 6.0 and 8.0 h"*, 

respectively. While and were estimated with similar efficiency irrespective 

of the value of a, og was more efficiently estimated when a  was within the range 

of 2.5 to 8.0 h’l. The best estimate of Cg was obtained when a  was 8.0 h"^. All 

parameters were more efficiently estimated when a  was between 2.0 and 4.0 h"^, 

but the most efficient parameter estimates were obtained when a  was 2.0 h“ .̂

In addition, the estimation of all parameters was associated with good 

individual and joint parameters confidence intervals coverage when catastrophic 

estimates were included (Table 5.5, Section I). However, when runs with "coeffi

cients of variation" > 50% were excluded, poor coverage was obtained for eg 

when a  was between 1.5 and 2.5 h"^ (Table 5.5, Sections II & III). The joint 

confidence intervals coverage obtained was significantly lower than the expected 

value of 0.70 for a  between 1.5 and 2.5 h '1, and for a  of 8.0 h' 1 (Table 5.5, 

Section III).

The incidence of high correlation obtained for the correlation between B 

and a , p and a, and p and B when a  was 1.5 h' 1 was high. For all values of a  

high incidence of high pair-wise correlations was obtained between p and B, and 

for a  and A when a  was 6.0 h"* (Table 5.6).

183



%PE
20 (a) A

10

0

- 10 ,

-20 .

40.
30.
2 0 .

10 .

0 .
-10 .

- 2 0 .

-30.
-40.

40
30
20
10
0

-10
-20
-30
-40

40
30
20
10
0

-1 0 .

-2 0 .

-30.
-40.

H - h

<b)a

«»*
O*

(c) B

M -

<»*

( d ) P

t
— i---------------- 1------------ 1--------------- 1------------- 1-------------- 1--------------1

2.5 5 7.5 10 20 30 40 A:B ratio

Fig. 5.7(a - d) Bias and precision expressed as %PE (mean ± standard deviation, 
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5.4.4 Varying A:B Ratio

When the ratio of A:B was varied between 1.0 and 40.0 (i.e. 1.0, 2.5, 5.0,

7.5,10.0, 30.0, and 40.0) and a  was 2.0 h'*, the number of successful NONMEM 

runs were 27, 29, 30, 30, 29, 29, 29, and 27. As in the previous experiments, op 

was excluded in the model and Fig. 5.7 shows the results as the A:B ratio varied.

All the estimates of A were minimally biased but relatively precise (Fig. 

5.7a). The most biased and least precise estimate was obtained for the A:B ratio 

of 1.0. Most estimates of a  were negatively biased. Apart from the estimate of 

this parameter obtained when the A:B ratio was 1.0 (SD of %PE = 26.2%) all 

other estimates were precise (Fig. 5.7b). All estimates of B and P were acceptably 

precise (Fig. 5.7 (c & d)). The estimates of B were significantly positively biased 

when the A:B ratio was 30.0 or 40.0. Also, greater bias was associated with 

estimates of p when the A:B ratio was 30.0 or 40.0. All estimates of c^, Oĵ , and 

were significantly positively biased (Fig. 5.7 (e - g)). With the exceptions of 

estimates of obtained for A:B ratios of 1.0 and 2.5, other estimates of this 

parameter were acceptably precise. The estimates of ca  were acceptably precise 

for A:B ratios of 20.0, 30.0, and 40.0, but all Cg estimates were imprecise. The 

greater the A:B ratio the greater the precision in the estimation of and Ga .

A was efficiently estimated when the A:B ratio was 30.0 (Fig. 5.8a), but 

this was not significantly better than that obtained with A:B ratio of 40 and be

tween 2.5 and 20. However, this parameter was estimated with a significantly 

better efficiency with A:B ratio in the range of 2.5 and 40.0 than with A:B ratio 

of 1.0.

As with A, the most efficient estimate of a  was obtained when the A:B 

ratio was 30.0, and the least efficient estimate when the A:B ratio was 1.0 (Fig. 

5.8b). Estimates of a  obtained with A:B ratio of 30.0 were significantly better 

than that with A:B ratio of 1.0, 2.5, 7.5, or 10.0. a  was equally efficiently
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(a) Estimation of A
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(b) Estimation of a
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(d) Estimation of p
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Fig. 5.8(a - d) aSummary of significant differences in the efficiency with which 
parameters were estimated: effect of different A:B ratios 

- Rank order of design numbers increasing from left to right.
Efficiency measured with design number
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(e) Estimation of
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(h) Overall Design Efficiency
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Fig. 5.8(e - h) aSummary of significant differences in the efficiency with which 
parameters were estimated: effect of different A:B ratios.

- Rank order of design numbers increasing from left to right.
Efficiency measured with design number
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estimated with A:B ratios of 5.0, 20.0, 30.0, and 40.0, or 5.0, 7.5,10.0, and 20.0, 

or between 2.5 and 10.0.

Unlike A and ot, B was most efficiently estimated when the A:B ratio was

1.0 (Fig. 5.8c) and this was significantly better than when the A:B ratio was 30.0 

or 40.0. The least efficient estimate of this parameter was obtained when the A:B 

ratio was 40.0.

P was best estimated when the A:B ratio was 2.5, and this was significant

ly better than the estimates obtained when the ratio was 40.0 (Fig. 5.8d) which 

resulted in the least efficient estimate of this parameter.

aA and were best estimated when the A:B ratio was 20.0 (Fig. 5.8e) 

and 40.0 (Fig. 5.8f), respectively. These estimates were significantly better than 

when the A:B ratio was between 1.0 and 5.0. The least efficient estimates were 

obtained when the A:B ratio was 1.0. On the contrary, Cg was best estimated 

when the A:B ratio was 1.0 (Fig. 5.8g) and this was significantly better than when 

the A:B ratio was 30.0 and 40.0. The least efficient estimate of this parameter was 

obtained when the A:B ratio was 30.0.

All parameters were estimated with similar efficiency when the A:B ratio 

was in the range of 2.5 and 40.0 (Fig. 5.8h) and these were significantly better 

than when the A:B ratio was 1.0. The least efficient estimates of parameters 

overall were obtained when the A:B ratio was 1.0.

Consequently, A was efficiently estimated when the A:B ratio was in the 

range of 2.5 and 40.0, with the most efficient estimate when the A:B ratio was

30.0. Similarly, a  was most efficiently estimated when the A:B ratio was 30.0. 

However, the efficiency of a  estimation with this A:B ratio was similar to those 

obtained with A:B ratios of 5.0, 20.0, and 40.0. B was well estimated with A:B 

ratio in the range of 1.0 and 20.0. The most efficient estimate of this parameter 

was obtained when the A:B ratio was 1.0. p was efficiently estimated when the 

A:B ratio was between 1.0 and 30.0 with the most efficient estimate being when
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Table 5.7 Effect of Different A:B Ratios on Individual and Joint Confidence Intervals

Coverage for Parameter Estimates

Section I

Success
Total

A:B Parameter

Ratio A a B P aA <*x % Joint

1.0 27/27 27/27 27/27 27/27 27/27 27/27 27/27 27/27

2.5 29/29 29/29 29/29 29/29 29/29 29/29 29/29 29/29

5.0 30/30 30/30 30/30 30/30 30/30 30/30 30/30 30/30

7.5 30/30 30/30 30/30 30/30 30/30 30/30 30/30 30/30

10.0 29/29 29/29 29/29 29/29 26/29 29/29 29/29 26/29

20.0 29/29 29/29 29/29 29/29 25/29 29/29 29/29 25/29

30.0 29/29 29/29 29/29 29/29 20/29 29/29 29/29 20/29

40.0 27/27 27/27 27/27 27/27 22/27 27/27 27/27 27/27

Section n

(Success - Excluded) 
(Totals Excluded)

1.0 26/26 24/24 26/26 26/26 11/11 6/6 14/14 0/0

2.5 29/29 29/29 29/29 29/29 24/24 1/1 26/26 0/0

5.0 30/30 30/30 30/30 30/30 30/30 10/10 14/14 3/3

7.5 30/30 30/30 30/30 30/30 29/29 17/17 16/16 8/8

10.0 29/29 29/29 29/29 29/29 26/29 19/19 7/7 4/4

20.0 29/29 29/29 29/29 29/29 25/29 28/28 0/0 0/0

30.0 29/29 29/29 28/28 29/29 20/29 28/28 1/1 1/1

40.0 27/27 27/27 27/27 26/26 22/27 26/26 1/1 1/1

1 9 0



Table 5.7 Effect of Different A:B Ratios on Individual and Joint Confidence Intervals

Coverage for Parameter Estimates

Section in 

(Success - Excluded) 

Total

A:B Parameter

Ratio A a B P aA % % Joint

1.0 26/27 24/27 26/27 26/27 11/27* 6/27* 14/27 0/27*

2.5 29/29 29/29 29/29 29/29 24/29 1/29* 26/29 0/29*

5.0 30/30 30/30 30/30 30/30 30/30 10/30* 14/30* 3/30*

7.5 30/30 30/30 30/30 30/30 29/30 17/30 16/30 8/30*

10.0 29/29 29/29 29/29 29/29 26/29 19/29 7/29*
ik

4/29

20.0 29/29 29/29 29/29 29/29 25/29 28/29 0/29* 0/29*

30.0 29/29 29/29 28/29 29/29 20/29 28/29 1/29* 1/29*

40.0 27/27 27/27 27/27 26/27 22/27 26/27 1/27* 1/27*

* - p < 0.01
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A:B ratio equalled 2.5. cr^ and were well estimated when the A:B ratio was in 

the range of 7.5 and 40.0. The best estimates of and aa  were obtained when 

the A:B ratio was 20.0 and 40.0, respectively. On the other hand, eg was well 

estimated when the A:B ratio was between 1.0 and 10.0, with the best estimate 

obtained when the A:B ratio was 1.0. The parameters when considered as a set 

were well estimated when the A:B ratio was between 2.5 and 40.0, with the best 

estimate obtained when the A:B ratio was 20.0.

Good individual and joint confidence intervals coverage was obtained 

with all A:B ratios when catastrophic runs were included (Table 5.7, Section I). 

When catastrophic runs were excluded to reveal the influence of standard errors 

on confidence intervals, poor coverage was obtained for of aa  when the A:B ratio 

was between 1.0 and 5.0. However, good coverage was obtained for eg at A:B 

ratios of 1.5, and 2.5. The confidence interval coverage for eg when the A:B ratio 

equalled 5.0 was significantly lower than the expected value of 0.95. On the other 

hand, good coverage was obtained for the estimation of c»a  when the A:B ratio 

was in the range of 7.5 and 40.0. The reverse was true for the coverage of in 

this range of A:B ratios. All values of the A:B ratio produced joint confidence 

intervals coverage which were significantly lower than the expected value of 0.70 

(Table 5.7, Section IE).

A high incidence of high correlation was obtained between B and a  with 

A:B ratios of 2.5, 5.0, 7.5, and 10.0, and for p and a  with an A:B ratio of 1.0. 

100% incidence of high correlation was obtained for p and B for all A:B ratios 

(Table 5.8). A lower incidence of high correlation between parameters was ob

tained when the A:B ratio was either 20.0 or 40.0.
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Fig. 5.9(a - d) Bias and precision expressed as %PE (mean ± standard deviation, 
respectively) for estimated parameters. The horizontal axis represents the 
different number of sampling times in the a  phase of the plasma concentration - 
time curve and the total number of sampling times. Each vertical bar expresses 
the bias and precision of the population parameter estimate. Significant (p < 0.05) 
biases indicated by asterisks.
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the bias and precision of the population parameter estimate. Significant (p < 0.05) 
biases indicated by asterisks.
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Efficiency measured with design number
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5.4.5 Varying the Number of Samples in the a  Phase

Setting 3, 5, 7, and 12 sampling times in the a  phase of the plasma con

centration - time curve, the number of successful NONMEM runs were 28, 28, 

29, and 25, respectively. As in the previous studies op was removed from the 

model. A and a  were associated with negative bias and good precision irrespec

tive of the number of sampling times in the a  phase. The bias in A ranged from 

-0.2% (3 sampling times in the a  phase) to -2.3% (5 times in the a  phase) while 

the bias in a  ranged from -2.6% (3 times in the a  phase) to 4.0% (5 times in the a  

phase) (Fig. 5.9 (a & b)). Biased (mean %PE < 15%) but precise estimates of B 

and p were obtained with all schedules (Fig. 5.9 (c & d)). All estimates of 

and aa  were significantly positively biased but precise (Fig. 5.9(e & f)). 

estimates were acceptably precise. oa  estimates were precise for most of the 

schedules, except in the case where 3 time points were in the a  phase (SD of 

%PE = 25.9%). Cjj was associated with a significant positive bias when 3, 5, and 

7 sampling times were specified in the a  phase and all estimates were imprecise 

(Fig. 5.9 g).

A was estimated with equal efficiency for all sampling schedules, 

although the schedule with 7 time points in the a  phase had the lowest rank order 

(on average) of ^ ’s (Fig. 5.10a). a  was most efficiently estimated with 5 time 

points in the a  phase, but this was not significantly better than when 3 and 7 

sampling times were in the a  phase. However, it was significantly better than the 

design with 12 time points in specified in the a  phase (Fig. 5.10b).

B was best estimated with 7 time points in the a  phase (Fig. 5.10c) and 

this was significantly better than when 12 sampling times were in the a  phase. p 

was best estimated with 5 time points in the a  phase of the plasma concentration - 

time curve (Fig. 5.10d), and this was significantly better than when 12 time points
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were in the a  phase. The least efficient estimates of B and p were obtained with 

the latter sampling schedule.

was best estimated with 7 time points in the a  phase (Fig. 5.10e) and 

the estimates of this parameter with this design were significantly better than 

when 3 or 12 times were set in the a  phase. aa  and Gg were estimated with 

similar efficiency using the different designs (Fig. 5.10 f & g). However, the 

schedules with the lowest rank order (on average) of were the ones with 12 

and 3 sampling times in the a  phase for aa  and eg, respectively.

Overall, all parameters were best estimated with the sampling schedule in 

which 7 sampling times were specified in the a  phase (Fig. 5.1 Oh), but designs 

with 3 and 5 time points in the a  phase yielded similar results. The designs with 7 

and 5 times in the a  phase were significantly better than that with 12 time points.

All designs produced good individual parameters and joint confidence 

intervals coverage (Table 5.9, Section I). Also, examination of the impact of 

standard errors on confidence intervals coverage showed that all designs yielded 

coverage for Gq and joint coverage for parameter estimates which were signifi

cantly lower than the expected values of 0.95 and 0.70, respectively (Table 5.9, 

Section HI).

In addition, the incidence of high correlation between B and a  when 3 

(39.3%) and 12 (25.0%) time points were in the a  phase was higher than the 

incidence for 5 (0%) and 7 (13.8%) sampling times in the a  phase (Table 5.10). 

Also, the design with 12 time points in the a  phase had an incidence of high 

correlation between a  and A of 32.1%. As in all the other studies previously 

described for this pharmacokinetic model, a high incidence (100%) of high corre

la tion  betw een P and B was observed for all schedules.
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Table 5.9 Effect of Varying the Number of Sampling Times in the ot Phase on Individual

and Joint Confidence Intervals Coverage for Parameter Estimates

Section I

.Success,
Total

Number ofSampling Parameter
Times

a  phase Total

3 6

A

28/28

a

28/28

B

28/28

P
28/28

aA

23/28

<*x

28/28
%

28/28

Joint

23/28

5 8 28/28 28/28 28/28 28/28 26/28 28/28 28/28 26/28

7 10 29/29 29/29 29/29 29/29 25/29 29/29 29/29 25/29

12 15 25/25 25/25 25/25 25/25 20/25 25/25 25/25 20/25

3 6 28/28 28/28

Section II 
(Success - jixcluded). 
(Total ^Excluded)

28/28 28/28 23/28 27/27 9/9 8/9

5 8 28/28 28/28 28/28 28/28 26/28 24/24 8/8 6/6

7 10 29/29 29/29 29/29 29/29 25/29 28/28 0/0 0/0

12 15 25/25 25/25 25/25 24/25 20/25 18/18 1/1 1/1

3 6 28/28 28/28

Section IE 
(Success^ Excluded) 

Total

28/28 28/28 23/28 27/28 9/28* 8/28*

5 8 28/28 28/28 28/28 28/28 26/28 24/28 8/28* 6/28*

7 10 29/29 29/29 29/29 29/29 25/29 28/29 0/29* 0/29*

12 15 25/25 25/25 25/25 24/25 20/25 18/25 1/25* 1/25*

*-p<0.01

2 0 0
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■
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15
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Fig. 5.11 (a - d) Bias and precision expressed as %PE (mean ± standard deviation, 
respectively) for estimated parameters. The horizontal axis represents the 
different number of sampling times in the p phase of the plasma concentration - 
time curve and the total number of sampling times. Each vertical bar expresses 
the bias and precision of the population parameter estimate. Significant (p < 0.05) 
biases indicated by asterisks.
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time curve and the total number of sampling times. Each vertical bar expresses 
the bias and precision of the population parameter estimate. Significant (p < 0.05) 
biases indicated by asterisks.
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(a) Estimation of A

8 No. of sampling times in

P phase

(b) Estimation of a

3 No. of sampling times in 

P phase

(c) Estimation of B

6 No. of sampling times in 

P phase

(d) Estimation of P

3 No. of sampling times in 

P phase

Fig. 5.12(a - d) aSummary of significant differences in the efficiency with which 
parameters were estimated: effect of varying sampling times in the p phase.

- Rank order of design numbers increasing from left to right 
Efficiency measured with design number
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(e) Estimation of cr̂

3 6 8 No. of sampling times in

P phase

(f) Estimation of

8 6 3 No. of sampling times in 

P phase

(g) Estimation of

8 6 3 No. of sampling times in 

P phase

(h) Estimation of Cp

8 6 3 

(i) Overall Design Efficiency

No. of sampling times in 

P phase

8 6 3 No. of sampling times in 

P phase

Fig. 5.12(e - i) aSummary of significant differences in the efficiency with which 
parameters were estimated: effect of varying sampling times in the p phase, 
a - Rank order of design numbers increasing from left to right 
* Efficiency measured with design number
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5.4.6 Varying the Number of Sampling Times in the P Phase

The schedules with 3, 6, and 8 sampling times in the p phase had 29, 28, 

and 25 successful NONMEM runs, respectively, when the sampling times in the p 

phase were varied. The estimates of A and a  were mostly significantly negatively 

biased but precise with the SD of %PE ranging from 3.8 to 5.8% (Fig. 5.11 (a & 

b)). B and p, on the other hand, were minimally biased and relatively precise (SD 

of %PE = 5.7 to 15.1%) (Fig. 5.11 (c & d)). oA and aa  estimates were signi

ficantly positively biased, but acceptably precise (Fig. 5.11 (e & f)). eg was esti

mated with a significant positive bias and poor precision (Fig. 5.11g). op was 

negatively biased and imprecise (Fig. 5.1 lh). The design with 3 time points in the 

p phase yielded the most biased estimate (mean %PE = 25.3%) and this was 

significant

No sampling schedule was significantly better than any other for the effi

ciency with which A and a  was estimated (Fig. 5.12 (a & b)). However, the 

lowest rank orders (on average) of O ^’s were obtained with schedules having 6 

and 8 time points in the p phase for A and a, respectively.

B (Fig. 5.12b) and p (Fig. 5.12c) were most efficiently estimated with 8 

sampling times in the P phase. These estimates were significantly better than 

those obtained with other sampling schedules.

aA, (fc, and Og were estimated with similar efficiency with all designs 

(Fig. 5.12 (e - g)). While the best estimate of crA was obtained with 3 time points 

in the P phase, the best estimates of oa  and eg were obtained with 8 sampling 

times in the P phase. The most efficient estimate of op was obtained with 8 time 

points in the p phase (Fig. 5.12h), but this was only significantly better than when 

3 sampling times were in the p phase.

Overall, all sampling schedules did not differ in the efficiency in which
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Table 5.11 Effect of Varying the Number of Sampling Times in the p Phase on Individual 

and Joint Confidence Intervals Coverage for Parameter Estimates

Section I

Success.
Total

Number ofSampling Parameter

Times

P phase Total

A a B P aA *
Joint

3 10 29/29 29/29 29/29 29/29 25/29 29/29 29/29 29/29 25/29

6 13 28/28 28/28 28/28 28/28 28/28 28/28 28/28 28/28 28/28

8 15 25/25 25/25 25/25 25/25 24/25 25/25 25/25 24/25 24/25

Section II

(Success - Excluded) 
(Total - Excluded!

3 10 29/29 29/29 29/29 29/29 25/29 28/28 0/0 0/0 0/0

6 13 28/28 28/28 28/28 28/28 26/26 23/23 11/11 5/5 8/8

8 15 25/25 25/25 25/25 25/25 23/24 19/19 9/9 11/11 6/6

Section HI

(Success_- Excluded) 
Total

3 10 29/29 29/29 29/29 29/29 25/29 28/29 0/29 0/29 0/29

6 13 28/28 28/28 28/28 28/28 26/28 23/28 11/28* 5/28* 0/28*

8 15 25/25 25/25 25/25 25/25 23/25 19/25
£

9/25 11/25* 0/25*

* - p < 0.01

2 0 7
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parameters were estimated (Fig. 5.12i). The schedule with 8 time points in the (3 

phase yielded estimates with the lowest rank order of d>r ’s, and the design with 3 

sampling times in the P phase yielded estimates with the highest rank order of 

Or*s, on average.

Consequently, all sampling schedules produced similarly efficient esti

mates of A and a , and B and p were most efficiently estimated when 8 time 

points were in the p phase. While cr^, aa , and Cg were estimated with similar 

efficiency with the three sampling schedules studied, op was better estimated with 

6 or preferably 8 time points in the p phase. All designs produced parameter 

estimates with similar efficiency and not much could be gained by increasing the 

duration of sampling.

As with the other studies previously described, all sampling designs yield

ed good confidence intervals coverage for individual and joint parameter esti

mates when NONMEM runs with catastrophic estimates were included (Table 

5.11, Section I). When runs with catastrophic estimates were excluded to reveal 

the impact of standard errors on confidence intervals coverage, poor coverage 

was obtained for c^, op, and joint parameter estimates (Table 5.11, Section III). 

However, the coverage for op was slightly better when 8 time points were in the p 

phase compared to the designs with 6 and 3 sampling times in this phase of the 

concentration time curve (Table 5.11, Section HI).

The schedule with 8 sampling times in the p phase had 80.8%incidence of 

high correlation between a  and A, while incidences of 6.9% and 7.1% were 

obtained for the correlation between these parameters when 3 and 6 time points, 

respectively, were in the p phase (Table 5.12). Although the incidence of high 

correlation between P and a  was 13.8% (3 sampling times in the P phase) and 

3.6% (6 sampling times in the p phase) it was 0% when 8 time points were in the 

P phase. In addition, 100% incidence of high correlation between p and B was
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observed for all sampling schedules. Incidence of correlation of less than 11% 

was obtained for the correlation between p and a , Og and B for the designs 

having 3 and 6 sampling times in the p phase, but not the design with 8 time 

points in the P phase. The latter yielded 0% incidence for these pair-wise 

correlations. Also an incidence of 3.6% was obtained for the correlation between 

and A when 6 sampling times were specified in the p phase.

5.5 DISCUSSION

In the investigation of the effect of sample size on parameter estimation, 

the parameter values (A = 10000.0 IU/ml, a  = 2.0 h"*, B = 500 IU/ml, and p = 

0.2 h"l) and sampling strategy were chosen to mimic a real study which is report

ed in detail in Chapter 7. With this sampling strategy, 70% of the data points were 

in the a  phase. This yielded precise estimates of A and a , irrespective of the 

sample size, as would be expected with the partitioning. The effect of the 

partitioning was observed in the estimation of B and p. Only the use of a sample 

size of 150 (15 animals per time point) gave estimates of these parameters which 

were precise. With this sample size, 45 data points were located in the p phase of 

the concentration - time curve compared with 30 and 18 for the 100 and 60 

sample sizes, respectively. The accuracy with which these parameters were 

estimated was not affected by sample size. Increase in the sample size led to an 

increase in the precision with which the variance parameters were estimated, as 

expected. In addition, the positive bias in the estimation of the variance param

eters was probably a feature of the one observation per animal study design.

The estimation of the variance parameters (especially Og) was associated 

with large standard errors which led to poor individual and joint confidence 

intervals coverage when the runs with catastrophic estimates were excluded. The
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contribution of bias to this poor coverage was negligible since good coverage was 

obtained when the runs with catastrophic estimates were included. Given the 

pharmacokinetic model and design specifications considered, the appropriate 

sample size necessary for efficient estimation of population pharmacokinetic 

parameters is 150 (i.e. 15 observations per time point) or more. This was 

associated with a lower incidence of high correlation between parameters. 

Although parameters were better estimated with 150 observations than 100 

observations (i.e. 10 animals at each time point), the loss in estimation efficiency 

with the latter sample size was not very dramatic as seen in the individual and 

joint confidence intervals coverage when catastrophic runs were excluded (Table 

5.2, Section El). Model parameters were least efficiently estimated with a sample 

size of 60 and with this sample size, more parameters were highly correlated with 

each other (Table 5.4).

NONMEM estimation of A, a , B, and (3 was often associated with nega

tive bias. This could be due to either the study design, or a feature of the program 

(i.e. estimation error since negative bias in the estimation of these parameters was 

also observed when oG was specified as 0%). Error in concentration measure

ments had negligible influence on the estimation of model parameters. However, 

it did have an influence on the estimation of the variance parameters. When cG 

was greater than 10%, large biases were associated with the variance parameters. 

These were due to there being no information to allow the estimation of gg . Thus, 

the inter-animal variability estimated was a composite of inter- and intra- animal 

variability. Setting aG equal to 15% yielded the least efficient estimates of 

parameters. This specification of error in concentration measurements is the 

upper limit of error in concentration measurements generally acceptable in prac

tice, and the need to minimise error in concentration measurements, especially 

with the one observation per animal study design cannot be over emphasised.
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The negative bias associated with A and a  observed in the study in which 

the efficiency of parameter estimation with a range of a  values was determined, 

is a feature of the NONMEM program as previously discussed. The almost un

biased estimate of these parameters obtained when a  was 1.5 h"* was due to the 

fact that the slope of the a  phase of the concentration - time curve was less steep, 

hence more data points were located in the a  phase. Steeper slopes of the a  phase 

of the concentration - time curve, a consequence of higher a  values, yielded 

mostly efficient (unbiased and precise) estimates of B and p because more data 

points were partitioned into the P phase of the concentration - time curve (Fig. 

5.13). Similar conclusions were arrived at using the design numbers.

Thus, A was more efficiently estimated when a  was in the range of 1.5 

and 4.0 h"*, with the most efficient estimate obtained when a  was 1.5 h"*. Al

though a  was estimated with similar efficiency irrespective of the value of a  

used, the best estimate was obtained when a  was 3.5 IT*. B and P were well 

estimated when a  was in the range of 3.5 and 8.0 h'*. Although the efficiency of 

cr^ and estimation was similar for a  values, the best estimates were obtained 

for and aa  when a  was 2.0 h“* and 4.0 h '*, respectively, Gg was better 

estimated when a  was in the range of 2.5 and 8.0 h'*. The relatively inefficient 

estimation of the variance parameters was due to the fact that there was no 

information in the data set on cre .

With the range of A:B ratios considered and a  of 2.0 h“*, efficient estima

tion of A and a  was obtained with the higher A:B ratios. The greater the A:B 

ratio the more precise were the estimates of these parameters. Given that the slope 

of the a  phase of the concentration time curve remained constant irrespective of 

the A:B ratio , more data points were partitioned into the a  phase of the 

concentration time curve with higher A:B ratios (Fig. 5.14). Thus, A and a  were 

most efficiently estimated when the A:B ratio was 30.0. However, A was
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estimated with similar efficiency irrespective of the value of the A:B ratio, a , on 

the other hand, was better estimated when the A:B ratio was between 20.0 and

40.0.

B and p, however, were better estimated when the A:B ratio was low. B 

was best estimated when the A:B ratio was between 1.0 and 20.0 while p was 

best estimated when the A:B ratio was between 1.0 and 30.0. The most efficient 

estimates of these parameters were obtained when the A:B ratio was 1.0 and 2.5, 

respectively.

Good estimates of and ca  were obtained when the A:B ratio was in the 

range of 7.5 and 40.0 for the same reason advanced for the estimation of A and a.

was well estimated when the A:B ratio was in the range of 1.0 and 20.0, and 

the best estimate when the A:B ratio was lowest (1.0). Interpreting the results 

using bias and precision, and the design number approach led to the same conclu

sions. All parameters were well estimated when the A:B ratio was in the range of

2.5 to 40.0 with the best estimates obtained when the A:B ratio was 20.0. It is 

worthy of note that fewer pair-wise high correlations were obtained when the A:B 

ratio was 20.0.

The poor confidence interval coverage observed for Og when the A:B 

ratios were high was due to large standard errors. There was no contribution of 

bias to this observation as seen in Table 5.11 (Section I & II). Similarly, the poor 

coverage observed for joint confidence intervals was due to large standard errors.

Although all schedules with the different specifications of sampling times 

in the a  phase produced estimates of A and a  that were negatively biased, some 

of which were significant, the mean %PE did not exceed 4%. All schedules 

produced precise estimates of A and a  with the SD of %PE ranging from 4.0 to 

5.9%. The difference in the efficiency with which these parameters were 

estimated lay in the contribution of the "standard error term" in the calculation of 

the design number. Thus, A was most efficiently estimated with 7 time points in
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the a  phase, while the design with 3 sampling times in the a  phase produced the 

least efficient estimate. As in the case of bias and precision where the %PE 

values were very close for all schedules, there were no significant differences 

when the design numbers for the different sampling schedules were compared. 

That the sampling schedule with 5 time points in the a  phase gave the most effi

cient estimate of a , while the sampling schedule with 12 time points in the a  

phase gave the most inefficient estimate, was also due to the effect of the "stand

ard error term". The design with 7 sampling times in the a  phase produced the 

least biased and most precise estimate of B, while the one with 5 time points 

produced the least biased estimate of p. The difference in the precision with 

which B and P were estimated with 5 and 7 time points in the a  phase was only 

1%. Thus, the most efficient estimates of B and P obtained with 7 and 5 sampling 

times in the a  phase, respectively, were due to the influence of bias. Although all 

designs produced estimates of B and p that were precise and not significantly 

biased, the efficiency with which these parameters were estimated with the 

schedule having 12 time points in the a  phase was significantly poorer than the 

rest. This was probably due to the fewer number of data points in the p phase 

which resulted in an estimate with a large standard error.

The positively biased estimates of variance parameters was a consequence 

of the one observation per animal study design. The least efficient estimates of 

and were obtained when 3 time points were in the a  phase. This design was 

associated with estimates which were the least precise and the most biased. On 

the other hand, the most efficient estimates of and oa  were obtained when 7 

and 12 time points, respectively, were in the a  phase. These schedules produced 

parameter estimates which were the most precise and least biased. Also, the 

"standard error term" in d>̂ . for these parameters generated with these designs 

was the lowest when compared with the other designs, was least efficiently
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estimated when 12 sampling times were in the a  phase, and this design produced 

the most imprecise estimate. Although this sampling schedule produced the least 

biased estimate of Ojg, the inefficiency was due to the imprecision of the estimate 

of this parameter. The efficient estimation of op with 3 time points in the a  phase 

was due to the location of a greater number of data points in the p phase. Overall, 

model parameters and their variances were most efficiently estimated when 7 

time points were in the a  phase.

The schedule with 12 time points in the a  phase produced the least effi

cient parameter estimates. This could be attributed to the greatest incidence of 

high correlation between parameters (Table 5.10). This inefficiency in parameter 

estimation was also associated with large "coefficient of variation". However, 

large "coefficient of variation" was responsible for poor confidence interval 

coverage for Og and joint parameter estimates for all sampling designs when 

catastrophic runs were excluded in the calculation of confidence intervals.

In the study in which the effect of altering the number of time points in 

the P phase on parameter estimation was investigated, the bias and precision 

obtained in the estimation of A and a  were similar for all sampling schedules; 

hence the lack of significant difference in the efficiency with which these parame

ters were estimated. All schedules produced negatively biased estimates of these 

parameters. The design with 8 time points in the p phase produced the most 

precise estimates of B and p. Thus, the production of the most efficient estimates 

of B and p with this sampling strategy was due to the estimates being the most 

precise. The lack of significant differences in the efficiency with which c^, aa , 

and Cq were estimated by the different designs was due to estimates being biased 

and precise to a similar extent. On the other hand, the estimate of op was the least 

biased and imprecise when 8 time points were in the P phase. The bias produced 

in the estimation of this parameter with this schedule was less than one third of 

that when 3 sampling times were in the p phase. Thus, the most efficient estimate

217



of op was obtained when 8 time points were in the P phase.

Although the sampling schedule with 8 time points in the p phase gave the 

most efficient parameter estimates when the overall design efficiency was consid

ered, this was not significantly better than the other schedules. This may have 

been due to the pair-wise correlations between parameter estimates. Whereas the 

incidence of high correlation between a  and A was 6.9% for the design with 3 

sampling times in the p phase, and 7.1% for the design with 6 time points in the p 

phase, it was 80.8% when 8 time points were in the p phase. Alternatively, the 

incidence of high correlation between B and a , p and a, and A, and a, 

and B, Cjg and p was less than 14% for the design with 6 sampling times in the P 

phase. A similar incidence was obtained for the sampling design with 3 sampling 

times in the p phase, but the incidence of high correlation for vs. A, and Cp vs. 

P was zero. Except for the correlation of p and B, in which the incidence of high 

correlation was 100% for all sampling designs, the incidence of high correlation 

for other parameter pairs not previously discussed for the design with 8 time 

points in the p phase was zero. The instability in the estimates due to the pair

wise correlations was reflected in the poor coverage observed with the joint 

confidence intervals for parameter estimates.

In all studies described, a high incidence (100%) of high correlation 

occurred between p and B. There were some occasions of high incidence of high 

correlation between a  and A, B and a, and a  and P . These must have contribut

ed to inefficient parameter estimation in some study designs. This was reflected 

in wide confidence intervals such that, when estimates with "coefficient of varia

tion" greater than 50% were excluded in the computation of confidence intervals, 

poor coverage was obtained for eg and joint parameter estimates. The large 

"coefficients of variation" could be inherent to the model or to the relative magni

tudes of the parameters used. A high correlation reduces the desirability of obtain-
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ing parameter estimates (Boxenbaum et al., 1974) and requires a reparameteriza

tion of the model.

t

2 1 9



CHAPTER 6

REPARAMETERIZATION OF THE TWO COMPARTMENT MODEL

2 2 0



6.1 SUMMARY

A simulation study was carried out using the one observation per animal 

design to examine the impact of reparameterization of the two compartment 

model (IV bolus dose injection) on the efficiency with which model parameters 

were estimated. The parameters of the model were Cl, V^, and k2 j instead 

of A, a , B, and p. The efficiency of parameter estimation was determined by 

examining accuracy and precision, design number, single and joint confidence 

intervals for parameter estimates, and the correlation between parameter esti

mates. Reparameterization led to the generation of more stable parameter esti

mates, and relatively lower incidence of high correlation between parameters.

6.2 INTRODUCTION

The results of the studies reported in Chapter 5 showed that the estimation 

of parameters of the two compartment model described by Eq. (6.1) below can be 

problematic.

C(t) = A.exp(-a.t) + B.exp(-p.t) (6.1)

(Model I)

The instability in the estimation of some of the parameters was reflected in wide 

confidence intervals, and high correlation between parameter estimates. Conse

quently, the model in Eq. (6.1) (Model I) was reparameterized in terms of Cl, V^,
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kj2» and k2j the following structural form:

C*j = [D j/V ^ a  - p)][a - k21)exp(-atj) + (k21 - P)exp(-Pij)] (6.2)

(Model II)

where a, P = l/2{kj2 + k2  ̂+ kjQ ± [(k12 +k2j +kjo)2 ■ ^ 2 1 k 1 0 ^ ^ ^ ’ k 10
♦

= Clj/Viy  C j is the true drug concentration in the jth anim al, Dj, V ^, Clj are 

the dose, volume of the central compartment and clearance in the jth animal, 

respectively, and tj the corresponding sampling time. However, in the simulation 

a  and p were parameterized in terms of the microscopic rate constants k^2 and

k21-

The goal of this simulation study was to evaluate the impact of reparame

terization of the two compartment open model with intravenous bolus dose 

administration on the estimation of population pharmacokinetic parameters using 

the one observation per animal design. Specifically, the efficiency with which 

these parameters were estimated was determined by examining the accuracy and 

precision, design number, single and joint confidence intervals for parameter 

estimates, and the incidence of high correlation between parameter estimates .

6.3 METHODS

6.3.1 SAMPLING DESIGN AND ANALYSIS

Using the following values of a: 2.0,4.0, 6.0, and 8.0 h"*; p, A and B 

values of 0.2 If*, 10000.0 and 500.0 IU/ml, respectively, used in Chapter 5, 

values of Cl, Vj, k j2 and k2j were computed and used in the simulation
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Table 6.1 Starting Values for Simulation on Reparameterization: Different a  Values

Parameter

a Cl V1 k 12 k21
(h-1) a/h) (1) (h'1) (h’1)

2.0 0.025 0.020 0.50 0.30

4.0 0.040 0.020 0.30 0.40

6.0 0.050 0.020 3.00 0.50

8.0 0.055 0.020 5.00 0.60

Table 6.2 Starting Values for Simulation on Reparameterization: Different A:B Ratios

Parameter

A:B Cl Vl k 12 k21

m 0) (h '1) (h"1)

1.0 0.070 0.200 0.75 1.00

10.0 0.040 0.035 0.70 0.35

20.0 0.025 0.020 0.50 0.30

30.0 0.020 0.012 0.40 0.25

40.0 0.016 0.010 0.30 0.20
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(Table 6.1). The respective variances were selected to yield a coefficient of 

variation of 15% for all parameters. A 15% error was added in concentration 

measurements as previously described (see Chapter 2, Section 2.4).

An intravenous bolus dose of 200,000 IU was used, and animals were 

sampled over ten time points with 15 observations being made at each time point 

giving a sample size of 150. The sampling times used were 0.083, 0.25, 0.50, 

0.75, 1.0, 1.5, 2.0, 3.0, 4.0, and 6.0 h. As in Chapter 5 the first time point was 

fixed while others were sampled from a uniform range of 0.25 h. The simulation 

was carried out as previously described in Chapter 2 (Section 4) and 30 replicate

data sets were generated for each experiment.
1 1 

a  was then kept constant at 2.0 h-A and with p unchanged at 0.2 h , the

efficiency of parameter estimation with a range of A:B ratios was investigated.

The A:B ratios used were 1.0,10.0, 20.0, 30.0, and 40.0 (Table 6.2).

The chi-squared test was used to compare joint confidence intervals

coverage for parameter estimates obtained using the reparameterized model

(Model II) with those obtained with Model I in Chapter 5.

6.4 RESULTS

6.4.1 REPARAMETERIZATION WITH VARIATION IN a

6.4.1a Bias and Precision

In the results presented below < \i2 and c j^ l ar© n°t included since the 

estimates of these parameters were infinitesimal and their removal did not alter 

the NONMEM objective function or other parameters estimated. Fig. 6.1a shows
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(a) Estimation of Cl

6.0 2.0 4.0 8.0 a(h'x)

(b) Estimation of V j

2.0 4.0 6.0 8.0 a f l f 1)

(c) Estimation of k ̂

6.0 4.0 2.0 8.0 a o r 1)

(d) Estimation of k2\

6.0 4.0 8.0 2.0 a(h_1)

Fig. 6.2(a - d) aSummary of significant differences in the efficiency with which 
parameters were estimated on reparameterization: effect of different values of a. 

- Rank order of design numbers increasing from left to right.
Efficiency measured with design number
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(e) Estimation of

4.0 2.0 6.0 8.0 a(h‘x)

(f) Estimation of Oyj

2.0 4.0 6.0 8.0 a f t '1)

(g) Overall Design Efficiency

4.0 6.0 2.0 8.0 o(h"X)

Fig. 6.2(e - g) aSummary of significant differences in the efficiency with which 
parameters were estimated on reparameterization: effect of different values of a. 
a - Rank order of design numbers increasing from left to right, 
b - All significantly different each other 
* Efficiency measured with design number
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that the estimates of Cl produced were very precise. The bias in the estimation of 

this parameter ranged from 0.19% (6.0 h"*) to 15.08% (8.0 h"*), with the most 

biased estimate obtained when a  was 8.0 h" *. The estimates of were unbiased 

and precise when a  was in the range of 2.0 and 6.0 h-*. When a  was as 8.0 h"*, 

the estimate of V j was biased and imprecise (Fig. 6.1b). The estimates of k ^  

were precise and not significantly biased (Fig. 6.1c). k.21 estimates were precise 

except when a  was 8.0 h"* (Fig. 6.Id). In addition, the biases in the estimation 

C q  and Oyj were significant. The greater the value of a, the greater the bias (Fig. 

6.1(e & f)). Imprecise estimates of were only obtained when a  was 8.0 h“*. 

Except when a  was 2.0 h" *, all estimates of Oyj were imprecise.

6.4.1b Design Number

With reparameterization, efficient estimates of Cl were obtained when a  

was in the range of 2.0 and 6.0 h"* (Fig. 6.2a) and these were significantly better 

than when a  was 8.0 If*. The most efficient estimate of Cl was obtained when a  

was 6.0 If* while the least efficient estimate was when a  was 8.0 If*.

Vj was efficiently estimated when a  was in the range of 2.0 and 4.0 h" * 

with the best estimate obtained when a  was 2.0 h“* (Fig. 6.2b). Estimates ob

tained when a  was 2.0 h'* were significantly better than those when a  was in the 

range of 6.0 to 8.0 If*.

k j2 was niore efficiently estimated when a  was between 2.0 and 6.0 h '*, 

and results obtained when a  was in this range was significantly better than those 

obtained when a  was 8.0 If* (Fig. 6.2c). The most efficient estimates of this 

parameter were obtained when a  was 6.0 h"*.

More efficient estimates of k2 j were obtained when a  was in the range of

4.0 to 6.0 If* than when it was 2.0 h'*(Fig. 6.2d). The most efficient estimates
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were when a  was 6.0 h"*, and these were significantly better than when a  was 

either 2.0 or 8.0 h"*.

Estimates of obtained when a  was either 2.0 or 4.0 h“* were signifi

cantly better than when a  was in the range of 6.0 to 8.0 h‘* (Fig. 6.2e). The best 

estimate Cjr-.j was obtained when a  was 4.0 IT* and the least efficient estimate 

when a  was 8.0 h-*. Oyj was best estimated when a  was 2.0 h“* (Fig. 6.2f) and 

this was significantly better than when a  was in the range of 4.0 to 8.0 h'*. The 

least efficient estimate of Oy^was obtained when a  was 8.0 h"*.

When the efficiency of estimation of all parameters was considered, effi

cient estimates were obtained with a  in the range of 2.0 to 6.0 h“* (Fig. 6.2g). 

These estimates were significantly better than when a  was 8.0 h“*. The most 

efficient estimates were when a  was 4.0 h'* and the least efficient when a  was

8.0 If*. It should be noted that efficient estimates were obtained for parameters of 

Model I (see Chapter 5, Section 5.3.3) when a  was 2.0 h"  ̂ and not greater than

4.0 h"1.

Thus, Cl was best estimated when a  was in the range of 2.0 to 6.0 h"*, 

and Vj when a  was between 2.0 to 4.0 h“*. The most efficient estimates of Cl 

and V j were obtained when a  was 6.0 and 2.0 h"*, respectively, and k 2 i 

were well estimated when a  was in the range of 2.0 to 6.0 h'^, and 4.0 to 6.0 h~ ,̂ 

respectively. These micro transfer rate constants were best estimated when a  was

6.0 h"*. and Oyj were most efficiently estimated when a  was 4.0 and 2.0 h"*, 

respectively. However, c w a s  estimated with a similar efficiency when a  was 

either 4.0 or 2.0 h‘*. Considered as a set, all parameters were estimated with 

similar efficiency when a  was in the range of 2.0 and 6.0 h'* although the most 

efficient estimates were obtained when a  was 4.0 h"*.
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Table 6.3 Effect of Reparameterization on Individual and Joint Confidence Intervals

Coverage for Parameter Estimates: Variation in a

Section I

Success
Total

a  Parameter
ci V l k12 k21 <fcl (tyl Joint

2.0 30/30 30/30 30/30 30/30 30/30 30/30 30/30

4.0 30/30 30/30 30/30 30/30 30/30 30/30 30/30

6.0 30/30 30/30 30/30 30/30 30/30 30/30 30/30

8.0 30/30 30/30 30/30 30/30 30/30 30/30 30/30

Section II

Success - Excluded 
Total - Excluded

a  Parameter
a Vl k 12 k21 <fcl °V1 Joint

2.0 30/30 30/30 30/30 30/30 29/29 30/30 29/29

4.0 30/30 30/30 30/30 30/30 30/30 30/30 30/30

6.0 30/30 30/30 30/30 30/30 28/28 30/30 28/28

8.0 30/30 30/30 30/30 30/30 16/16 30/30 16/16

Section in

Success
Total

^Excluded

a
a Vl k 12

Parameter 
k21 <£1 <Vl Joint

2.0 30/30 30/30 30/30 30/30 29/30 30/30 29/30

4.0 30/30 30/30 30/30 30/30 30/30 30/30 30/30

6.0 30/30 30/30 30/30 30/30 28/30 30/30 28/30

8.0 30/30 30/30 30/30 30/30 16/30 30/30 16/30
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Table 6.4 Comparison of Joint Confidence Intervals Obtained with Models I and II: 

Effect of Different a  Values

Success - Excluded

Total

a  (If1) Model I Model H

2.0 0/29 29/30 p <  0.001

4.0 19/30 30/30 p <  0.001

6.0 16/30 28/30 p <  0.001

8.0 8/28 16/30 p < 0.05
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6.4.1c Individual and Joint Confidence Interval Estimates

After reparameterization, good confidence intervals coverage was ob

tained for individual and joint parameter estimates with or without excluding 

NONMEM runs with "coefficient of variation" > 50% for a  of 2.0, 4.0, and 6.0 

h"^ (Table 6.3, Section I - HI). Unlike the 96% coverage (on average) for and 

joint parameter estimates obtained with a  in the range of 2.0 to 6.0 h"*, a value of 

53% was obtained when a  was 8.0 h"* (Table 6.3, Section III). However, this 

was not significantly different from the expected values of 0.95 and 0.74, respec

tively.

6.4. Id Comparison of Joint Confidence Intervals Coverage for Parameter

Estimates Obtained with Models I and II

Table 6.4 gives the joint confidence intervals coverage for parameter 

estimates obtained using the two models. Reparameterization led to a significant 

improvement in the joint confidence intervals coverage for parameter estimates 

irrespective of the a  values.

6.4. le Correlation between Parameter Estimates

A notable incidence of high correlation of 40.0%, 66.7%, and 30.0% was 

obtained for the correlation between k.21 and Cl with a  equal to 2.0, 4.0 and 6.0 

h 'l ,  respectively. A 23.3% and 53.3% incidence of high correlation was obtained 

for the correlation between k.2\ and » and and V^, respectively, when a  

was 8.0 h’1 (Table 6.5).
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Fig. 6.3(a - d) Bias and precision in expressed as %PE (mean ± standard 
deviation, respectively) for (a) Cl, (b) V i, (c) kjo* and (d) k ^ i. The horizontal 
axis represents the different values of A:B ratios. Each vertical bar expresses the 
bias and precision of the population parameter estimate.
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(a) Estimation of Cl

30.0 20.0 10.0 40.0 1.0 A:B ratio

(b) Estimation of V j

20.0 30.0 10.0 40.0 1.0 A:B ratio

(c) Estimation of

10.0 20.0 30.0 40.0 1.0 A:B ratio

(d) Estimation of k2 j

10.0 20.0 30.0 40.0 1.0 A:B ratio

Fig. 6.4(a - d)a Summary of significant differences in the efficiency with which 
parameters were estimated on reparameterization: effect of varying A:B ratio.

- Rank order of design numbers increasing from left to right.
Efficiency measured with design number
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(e) Estimation of

30.0 40.0 20.0 10.0 1.0 A:B ratio

(f) Estimation of Oy-j

1.0 10.0 20.0 30.0 40.0 A:B ratio

(g) Overall Design Efficiency

10.0 20.0 30.0 40.0 1.0 A:B ratio

Fig. 6.4(e - g)a Summary of significant differences in the efficiency with which 
parameters were estimated on reparameterization: effect of varying A:B ratio.

- Rank order of design numbers increasing from left to right 
Efficiency measured with design number
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6.4.2 REPARAMETERIZATION WITH VARIATION IN A:B RATIO

6.4.2a Bias and Precision

The estimation of Cl was associated with a significant negative bias irre

spective of the A:B ratio (Fig. 6.3a). However, the least biased estimate was 

obtained when the A:B ratio was 20.0 ( mean %PE = 1.7%), and the most biased 

estimate when the A:B ratio was 1.0 (mean of %PE = 17.4%). The estimates of 

V j were mostly unbiased (Fig. 6.3b) and all estimates of Cl and V j were accept

ably precise, k j j  and estimates were biased and mostly imprecise, but the 

estimates obtained when the A:B ratio was 10 or 20 were precise (Fig. 6.3(c & 

d)). Fig. 6.3(e & f) shows the estimates of and Oy^ to be significantly biased. 

Gy j was associated with acceptable precision, while c^.j was acceptably precise 

for most A:B ratios, except when the A:B ratio was 1.0. In this case the estimate 

of C£i was greatly biased and imprecise (Fig. 6.3f).

6.4.2b Design Number

Cl was efficiently estimated when the A:B ratio was between 10.0 and

40.0, and these were significantly better than when the A:B ratio was 1.0 (Fig. 

6.4a). The most efficient estimate of Cl was obtained when the A:B ratio was

30.0,

The most efficient estimate of Vj was obtained when the A:B ratio was

20.0, and this was significantly better than estimates for other A:B ratios (Fig. 

6.4b).

Good estimates of and k2 j were obtained when the A:B ratio was in 

the range of 10.0 to 30.0, with the most efficient estimate when the A:B ratio was
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10.0. These estimates were significantly better than those obtained when the A:B 

ratio was either 1.0 or 40.0. (Fig. 6.4 (c & d)).

When the A:B ratio was in the range of 20.0 to 40.0, better estimates of 

were obtained than when the A:B ratio was in the range of 1.0 and 10.0 (Fig. 

6.4e). The best estimates of were when the A:B ratio was 30.0. Estimates 

obtained when the A:B ratio was between 30.0 and 40.0 were significantly better 

than estimates obtained when the A:B ratio was in the range of 1.0 to 10.0.

Significantly better estimates of cy^ were obtained when the A:B ratio 

was in the range of 1.0 to 20.0 than when the ratio was 30.0 to 40.0 (Fig. 6.4f)

Parameters were well estimated when the A:B ratio was in the range of

10.0 to 30.0, but the estimates when the A:B ratio was between 10.0 and 20.0 

were significantly better than those for the A:B ratio of 1.0 or 40.0. The most 

efficient parameter estimates were obtained when the A:B ratio was 10.0. It 

should be recalled that the best parameter estimates using Model I (Chapter 5) 

were obtained when the A:B ratio was 20.0, but this result was not significantly 

better than when the A:B ratio was 2.5, 5.0, 7.5,10.0, 30.0, and 40.0.

Thus, Q  was efficiently estimated when the A:B ratio was in the range of

10.0 to 40.0, with the most efficient obtained when the A:B ratio was 30.0. Vj 

was most efficiently estimated when the A:B ratio was 20.0. Efficient estimates 

of k j2 and k2 \ were obtained when the A:B ratio was in the range of 10.0 to

30.0, with the most efficient estimates of these parameters when the A:B ratio 

was 10.0. C£i was most efficiently estimated when the A:B ratio was 30.0 al

though these estimates were not significantly better than the estimates obtained 

when the A:B ratio was either 20.0 or 40.0. On the other hand, cy  ̂  was better 

estimated when the A:B ratio was in the range of 1.0 to 20.0 than 30.0 to 40.0, 

with the best when the A:B ratio was 1.0. All parameters were well estimated 

when the A:B ratio was between 10.0 and 30.0 although the lowest rank order of 

d>r (on average) was obtained when the A:B ra tio  was 10.0.
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Table 6.6 Effect of Reparameterization on Individual and Joint Confidence Intervals

Coverage for Parameter Estimates: Variation in A:B Ratio

A:B
ci Vl k12

Section I 
Success,
Total
Parameter
k21 <fcl °V1 Joint

1.0 30/30 30/30 30/30 30/30 30/30 30/30 30/30

10.0 30/30 30/30 30/30 30/30 30/30 30/30 30/30

20.0 30/30 30/30 30/30 30/30 30/30 30/30 30/30

30.0 30/30 30/30 30/30 30/30 30/30 30/30 30/30

40.0 30/30 30/30 30/30 30/30 30/30 30/30 30/30

A:B
Cl Vl k12

Section II 
Success. - Excluded 
Total - Excluded 
Parameter
k21 <fcl °V1 Joint

1.0 30/30 30/30 22(22 20/20 27/27 30/30 20/20

10.0 30/30 30/30 30/30 30/30 30/30 30/30 30/30

20.0 30/30 30/30 30/30 30/30 29/29 30/30 29/29

30.0 29/29 30/30 30/30 30/30 30/30 30/30 29/29

40.0 30/30 30/30 30/30 21/21 29/29 30/30 20/20

A:B
a V1 k12

Section HI 
Success ^E_xcluded, 
Total 
Parameter

k21 <fcl °V1 Joint

1.0 30/30 30/30 22/30 20/30 27/30 30/30 20/30

10.0 30/30 30/30 30/30 30/30 30/30 30/30 30/30

20.0 30/30 30/30 30/30 30/30 29/30 30/30 29/30

30.0 29/30 30/30 30/30 30/30 30/30 30/30 29/30

40.0 30/30 30/30 30/30 21/30 29/30 30/30 20/30

2 4 1



Table 6.7 Comparison of Joint Confidence Intervals Obtained with Models I and D: 

Effect of Different A:B Ratios

Success - Excluded 

Total

A:B Ratio Model I Model H

1.0 0/27 20/30 p < 0.001

10.0 4/29 30/30 p <  0.001

20.0 0/29 29/30 p < 0.001

30.0 1/29 29/30 p < 0.001

40.0 1/27 20/30 p <  0.001

_______________
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6.4.2c Confidence Intervals for Individual and Joint Parameter Estimates

With reparameterization, good coverage was obtained for individual and 

joint confidence intervals for parameter estimates (Table 6.6, Section I). When 

runs with "coefficient of variation" greater than 50% were excluded, the 

coverage for k j2 and k2 \ was reduced when the A:B ratio was 1.0 and 40.0, 

respectively. With these A:B ratios, the joint coverage for parameter estimates 

was similarly reduced (Table 6.6, Section (II & III)). However, the coverage 

obtained with these A:B ratios was not significantly lower than the expected 

values of 0.95 and 0.74 for individual and joint parameter estimates, respectively.

6.4.2d Comparison of Joint Confidence Intervals Coverage for Parameter

Estimates Obtained with Models I and II

Reparameterization led to a statistically significant improvement in the 

joint coverage of parameter estimates irrespective of the value of the A:B ratio 

(Table 6.7). 62 to 93% improvement in coverage was observed as Model I was 

reparameterized to give Model n.

6.4.2e Correlation between Parameter Estimates

Incidence of high correlation was highest (93.3%) for k.21 and Cl when 

the A:B ratio was 1.0, and was 90.0% when the A:B ratio was 40.0. Comparative

ly lower values were obtained when the A:B ratio was 10.0 (56.7%), 20.0 

(40.0%), and 30.0 (33.3%). In addition, incidence of high correlation of 46.7%,
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83.3%, and 23.3% for the pair-wise correlations of and Cl, and and 

GqY and V j, respectively, were obtained when the A:B ratio was 1.0 (Table 6.8).
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6.5 DISCUSSION

The highly precise nature with which Cl was estimated when a  ^ 4.0 h“* 

was due to the greater number of data points available in the elimination phase of 

the concentration - time curve. The greater the value of a, the steeper the slope of 

the distribution phase of the curve resulting in a fewer number of data points in 

this phase of the disposition curve (Fig. 6.5). However, the best estimate of Cl 

was obtained when a  was 6.0 h-* and not 8 h“* because of the bias with which 

this parameter was estimated when a  was 8.0 h"*. V j was estimated with least 

bias and greatest precision when a  was 2.0 h“* because more data points were 

located in the distribution phase of the plasma concentration - time curve, 

and k2 i were most efficiently estimated when a  was 6.0 h"*. The biases associat

ed with the estimates of the variance parameters were due to the fact that the data 

contained no information on aG. When a  was 4.0 h"* the best estimate of was 

obtained. This estimate was associated with the highest precision. Oyj was most 

efficiently estimated when a  was 2.0 h"* for the same reason as V^. As a whole, 

the best parameter estimates were obtained when a  was in the range of 2.0 to 6.0 

h"l with the most efficient estimates obtained when a  was 4.0 h"^. This was 

probably a consequence of the even distribution of data points between the distri

bution and elimination phases of the concentration - time curve.

The inefficiency with which parameters were estimated when a  was

8.0 h’* could be attributed to the correlation between parameter estimates since 

there were more cases of high correlation between parameters with this value of a, 

and this was reflected in the confidence intervals coverage. There were 14 

NONMEM runs with catastrophic estimates of C£j which led to a reduced joint 

confidence intervals coverage for all parameter estimates, and this was signifi

cantly different from all others.
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However, when the joint confidence intervals coverages obtained after 

reparameterization (Model II) were compared with those obtained with Model I, 

significant improvements were obtained for all a  values. The incidence of high 

pair-wise correlations on reparameterization did not exceed 67% compared with 

100% obtained with Model I (Chapter 5, Section 5.4.3) for the same a  values. 

Thus, reparameterization led to a reduced incidence of high pair-wise correlations 

and stability in the estimates as reflected in the significant improvement in joint 

confidence intervals coverage for all parameter estimates. This improvement was 

associated with "coefficients of variation" < 50% for most parameter estimates.

When the A:B ratio was 20.0 or 30.0, efficient estimates of Cl were ob

tained. The best estimate of Cl was when the A:B ratio was 30.0, due to the 

estimates being the least biased. The estimates obtained when the A:B ratio was

20.0 or 30.0 were equally precise. The most efficient (and most precise) estimate 

of V j was obtained when the A:B ratio was 20.0. The most efficient (least biased 

and most precise) estimates of the micro transfer rate constants were obtained 

when the A:B ratio was 10.0. The significant biases associated with the variance 

parameters were due to the lack of information about oG in the data sets. The best 

estimates of parameters as a whole, were obtained when the A:B ratio was 10.0, 

although these were not significantly better than when the A:B ratio was 20.0 or 

30.0. Inefficient parameter estimates were obtained when the A:B ratio was 1.0, 

and 40.0 with the most inefficient estimates obtained when the A:B ratio was 1.0.

The inefficiency of parameter estimation associated with the A:B ratios of

1.0 or 40.0 was associated with high pair-wise correlations. When the A:B ratio 

was 1.0, an incidence of high correlation of 93.3% and 83.3% was obtained for 

k2 i and Cl, k ^  and k j j ,  respectively. Also, parameter estimation when the A:B 

ratio was 40.0 was associated with a 90.0% incidence of high correlation between 

k2i and Cl. With these A:B ratios there were 10 NONMEM runs each with catas
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trophic estimates unlike the one NONMEM run each with catastrophic estimates 

obtained when the A:B ratio was 20.0 or 30.0, and none when the A:B ratio was 

10.0.

However, reparameterization with these A:B ratios led to significant 

improvements in joint confidence intervals for parameter estimates when com

pared with results obtained with similar A:B ratios using Model I (Table 6.5). 

This improved coverage was due to the generation of parameter estimates with 

"coefficients of variation" mostly < 50%. Unlike the results obtained with Model 

I (Chapter 5) in which a 100% incidence of high correlation was obtained B and p 

irrespective of the A:B ratio, no such incidence was obtained with Model II. 

Thus, Model I reparameterized into Model II, resulted in a lower incidence of 

high pair-wise correlation between parameter estimates and more efficient estima

tion.

Given that parameters were efficiently estimated when a  was in the range 

of 2.0 and 6.0 h’* and the A:B ratio was 20.0, and when the A:B ratio was be

tween 10.0 to 30.0 when a  was 2.0 h"*, it is reasonable to suggest that parameters 

would be efficiently estimated when the A:B ratio was in the range of 10.0 to

30.0 and a  between 2.0 to 6.0 h"*.
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CHAPTER 7

PRECLINICAL PHARMACOKINETICS: AN APPLICATION OF 

THE POPULATION APPROACH

250



7.1 SUMMARY

Serum concentrations of a drug under development were obtained from an 

animal pharmacokinetic study using the one sample per animal design and 

analysed using the population data analysis program, NONMEM. A two com

partment open model with IV administration was used as the basis of the analysis. 

Although sex and weight were not determinants of clearance (Cl), sex helped to 

explain the variability in the volume of the central compartment (V j). The aver

age values of Cl and V j were: Cl(ml/min) = 0.40, Vj(ml/g)maje = 0.11, and 

Vj(ml/g)£emaje = V jmaie * 0.80. The variability in Cl and were 23.5 and 

23.2%, respectively.

7.2 INTRODUCTION

An estimation of the average value of pharmacokinetic parameters in a 

group of animals provides limited information if there is no good measure of the 

variability of each of the parameters. The traditional naive pooled data (NPD) 

approach used in the analysis of animal pharmacokinetic data does not provide 

this, nor can it assess the influence of physiology ( or pathology) on pharmacoki

netics.The nonlinear mixed effects model (NONMEM) approach (Sheiner & 

Beal, 1979 - 1989) does, however, provide estimates of both the average values 

of pharmacokinetic parameters and their statistical distribution within a popula

tion. Given the results of the simulation study described in Chapter 6, NONMEM 

was used to analyse data obtained during a preclinical pharmacokinetic study.
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Data were supplied by Ares Serono (Italy): serum concentrations of a drug under 

development were measured in rats after single intravenous bolus injections.

7.3 METHODS

7.3.1 Animals

60 serum concentrations were obtained from 60 rats. Demographic data 

included weight and sex: the distribution of weight according to sex is shown in 

Fig. 7.1 (a &b). Weight ranged from 139.0 to 192.0 g. The weight of female rats 

ranged from 139.0 to 171.0 g. and that of male rats, from 172.0 to 192.0 g.

7.3.2 Pharmacostatistical Models

A visual inspection of the data indicated that the disposition of the drug 

could, on average, be described by a two compartment open model (Fig. 7.2). 

The chi-squared test (p < 0.005) was used to examine the difference between the 

log likelihood values obtained from fitting the full (2 compartment) or reduced (1 

compartment) models (Sheiner et al., 1977). The model had the following 

structural form given in Eq. (7.1):

C*j = [Dj/Vy (a  - p)][a - k21)exp(-atj) + (k21 - p)exp(-ptj)] (7.1) 

where a, p = l/2{k^2 + k2  ̂ + k^Q ± [(kj2 +k2j '  4^21^10^^*

, Clj are

the dose, volume of the central compartment and clearance in the jth animal, 

respectively, and tj the corresponding sampling time. In the analysis a  and P were
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parameterized in terms of the microscopic rate constants k ^  and ^ 21. A  bolus 

dose of 1.0M IU/kg was administered to each animal. The statistical model (see 

Chapter 2, Section 2.3.2) accounted for combined inter- and intra-animal 

variability.

7.3.3 Data Analysis

The data were analysed using the NPD approach and with NONMEM. For 

the NPD approach, the WLS estimation procedure (weight proportional to C ) 

was used to estimate the mean pharmacokinetic parameters from the average 

concentration - time data.

Using NONMEM, the influence of dem ographic factors (fixed 

effects(FE)) was tested by relating them to the pharmacokinetic parameters (P) 

using linear models of the type:

where P is the expected value of pharmacokinetic parameter (e.g., Cl or VI) in 

any animal, FE is an identifiable animal factor (e.g., weight), and 0  is a regres

sion coefficient. When quantifying the influence of a discontinuous variable such 

as sex, the model was of the type:

P = 0(FE) (7.2)

P = 0(FE) if male

P = O(FE). 0 § ex if female

(7.3a)

(7.3b)

where 0 § ex effectively allows different slopes for males and females.
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Table 7.1 List of Models Tested and Log Likelihood Differences

Model No. C.f. OBJ LLD df P

(i) Clearance Models

©nurH 774.04

2. Cl = 0 j  * Wt 1 774.04 0 NA NA

3. Cl = ©! * 0  Sex 1 772.60 1.44 1 NS

4. Cl = 0 j  * Wt * 0  Sex 1 772.60 1.44 1 NS

(ii) Volume Models

5. Vj = © j 774.04

6. Vj = 0 2 * Wt 5 765.88 0 NA NA

7. Vj = 0 2 * 0 Sex 5 762.84 11.20 1 <0.005

8. Vj = 0 2 * Wt * ©gex 5 762.66 11.38 1 <0.005

c.f. - compared with model number 

OBJ - Objective function 

LLD - Log Likelihood Difference 

df - degree of freedom 

NA - Not Appropriate 

NS - Not Significant

©SeX = 1.0 if male and is estimated for females
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In the analysis, models that related weight and / or sex to Cl and Vj were 

tested (Table 7.1). These models were embedded in the two compartment phar

macokinetic model. NONMEM estimated the values of 0  (equations (7.2) and 

(7.3)) and /  or other kinetic parameters ( if these were not specified as functions 

of demographic factors) simultaneously. Thus, the influence of these fixed effects 

was evaluated.

Theoretically, a data set could be analysed an infinite number of times 

with different regression models. Therefore, criteria were necessary to identify a 

useful analysis. One criterion was the value of the objective function which is 

normally calculated for each NONMEM run and is equal to -2 log likelihood. A 

difference in the objective function (log likelihood difference, LLD) between two 

NONMEM runs involving the use of two regression models (one of which was a 

restriction of the other; e.g., (a) a model which incorporated either Cl and V^ as a 

function of sex, and (b) a model which incorporated Cl or V j without any 

explanatory factor) of more than 8 indicated a significant improvement (p < 

0.005, assuming chi - square distribution) when the restricted model had one 

regression parameter less than the full model (Sheiner et al., 1977). Other criteria 

were: (1) a minimum correlation between parameters; (b) small standard errors of 

parameter estimates; (c) weighted residuals which were randomly scattered 

around zero when plotted against predicted concentration; and (d) decrease in the 

estimate of the inter-animal variances (see Chapter 2, Section 2.3.3). For non- 

hierarchical models, where all models had the same number of parameters, model 

comparison was based on the objective function, and other criteria enumerated 

above. An LLD greater than zero indicated an improvement and the one with the 

smaller OBJ described the data better. A summary of the models tested is 

presented in Table 7.1.

Estimates were obtained for (1) population means for Cl, V^, k^*  ^21 

and / or regression coefficients (0  in equations (4) and (5)), (2) the variance
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terms, (3) standard error of estimates, and (4) correlation matrix of the estimates.

7.4 RESULTS

An initial examination of NONMEM runs showed that the two compart

ment model was superior to the one compartment model. The population pharma

cokinetic parameter values obtained with the NPD approach were similar to the 

population parameter values obtained with NONMEM when no covariates were 

modelled (Table 7.2). However, with NONMEM, estimates of inter-animal 

variability in Cl and V ̂  were obtained in addition to the average population 

parameters.

Modelling V ̂  without regard to animal size with an additive model for 

variability, the effects of modelling basic drug clearance with demographic 

factors were examined. The first regression model (Model 1, Table 7.1) simply 

defined Cl in ml/min. without an effect of animal size. To this was added an 

influence of weight (g) as in Model 2 (Table 7.1). Model 2 did not give any 

improvement in the estimation of Cl as seen from the objective function (Table 

7.1). Thus, weight was not incorporated into the basic model for Cl.

Also, the inclusion of either sex (Model 3, Table 7.1), or sex and weight 

(Model 4, Table 7.1) in various regression models for clearance did not improve 

the value of the objective function (Table 7.1).

Using the basic Cl model, an additive model for variability, V j for the 

drug was initially modelled without regard to animal size (Model 5, Table 7.1), 

where ©2 equalled the volume of the central compartment in ml. To this was then 

added the influence of weight (g) (Model 6, Table 7.1). This was a significant 

improvement over V^ without regard to animal weight (Table 7.1).
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Table 7.2 Parameter Estimates (S.E)

NPD Approach 

Structural Model Parameters

a Vl ki2 k21
(ml/min) (ml) (miii'1) (min‘l)

0.42 16.68 0.01 0.006

(0.15) (5.20) (0.003) (0.005)

NONMEM Approach

0.41 15.80 0.01 0.005

(0.10) (3.30) (0.003) (0.004)

NONMEM Variance Estimates 

Cl (ml/min)2 Vj(ml)2 

0.54 21.70

(0.60) (16.6)
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Table 7.3 Parameter Estimates (S.E.)

(i) Structural Model Parameters

Male Female

Q  (ml/min) V { (ml/g) Cl (ml/min) V j (ml/g)

0.40 0.11 0.40 0.11*0.80

(0.03) (0.01) (0.03) (0.08)

k j2 (min"*) k2 i(min"l)

0.01 0.005

(0.002) (0.002)

(ii) Variance Estimates

Q  (mVmin)2 V j (ml/g)^

0.40 0.20

(0.22) (0.56)
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Fig. 7.3a Scatterplot of weighted residuals (upper axis) versus animal weight in 
grams (left axis) with volume of central compartment modelled as Model 5 
(without regard to animal size).
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Fig. 7.3b Scatterplot of weighted residuals (upper axis) versus animal weight in 
grams (left axis) with volume of central compartment modelled as Model 6 
(based on animal weight).
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A method of assessing the "goodness of fit" is to the examine the 

scatterplots of weighted residuals generated by NONMEM. Predicted concen

trations more closely equal observed concentrations as accuracy improves and the 

weighted residuals approach zero. Fig. 7.3a is the scatterplot of weighted 

residuals vs. animal weight, with volume modelled as Model 5 (Table 7.1), i.e. 

not including to animal weight. The pattern of the weighted residuals when 

volume was modelled with regard to weight (Model 6 (Table 7.1), Fig. 7.3b) was 

not different from that with Model 5 although the former model yielded a lower 

objective function.

Including either sex (Model 7, Table 7.1), or weight and sex (Model 8 , 

Table 7.1) as factors to explain the variability  in V^ led to a significant 

improvement in the objective function (p < 0.005) with a small reduction in 

variability (from 29.4% for the simple model (Model 5, Table 7.1) to 23.2% for 

the full model (Model 8, Table 7.1). The variability in Cl was 23.5%. The final 

model which best described the data is that specified in Model 8, with ex

pressed as a function of weight and sex.

The variances for and could not be estimated: removal of these 

variance terms from the model resulted in no change in the objective function or 

parameter estimates. Table 7.3 gives a summary of the parameter estimates.

7.5 DISCUSSION

The similarity in the estimates of model parameters obtained using the 

NPD and NONMEM approaches was not surprising since the NONMEM 

approach, like the NPD approach, is focussed on the estimation of average 

(population) pharmacokinetic parameters. However, NONMEM gave additional 

information about the distribution of these population parameters by providing
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estimates of variability.

Estimates of V^ were improved by considering the demographic factors. 

Thus, weight and sex contributed significantly to the explanation of variability in 

volume of the central compartment. It should be noted, however, that all female 

rats weighed less than their male counterparts (Fig. 7.1). When estimating V j for 

this drug, animal sex alone appears to allow some reasonable estimation.

In practice the development of most drugs is abandoned when large 

variability is observed in the population pharmacokinetics of the drug, without 

any effort to explain the variability . With the NONMEM program , the 

relationship between physiology and pharmacokinetics has been determined as an 

aid to explain the inter-animal variability observed in Cl and V j. The introduction 

of weight and sex in V ̂  led to a reduction of the inter-animal variability in this 

parameter by approximately 6%. Other factors, as yet undetermined, may be 

affecting the pharmacokinetics of this drug. Vocci and Farber (1988) advocated 

the consideration of pharmacokinetic differences within species in interspecies 

scaling. With the inter-animal variability observed in a homogeneous population 

of rats, larger variations in response may be expected to occur in humans. The 

possibility of gender related drug response should be anticipated in man.

In conclusion, the NONMEM program has been used to obtain estimates 

of population pharmacokinetic parameters and their distributions for a drug under 

development in a group of rats. This analysis has taken into account the fact that 

samples came from a population with more variability than could be explained by 

simple experimental error. NONMEM has permitted some explanation of this 

variability in terms of sex, efficient partitioning between inter- and intra-animal 

variability would require an increase in the number of samples per animal.
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CHAPTER 8

PARAMETER ESTIMATION IN PHARMACOKINETIC STUDIES 

INVOLVING THE USE OF SMALL LABORATORY ANIMALS

2 6 5



8.1 SUMMARY

A simulation study was carried out to determine the impact of various 

design factors on the efficiency with which population pharmacokinetic 

parameters could be estimated in an animal pharmacokinetic study. A drug which 

exhibits monoexponential disposition characteristics when administered by an 

intravenous bolus injection was used for the study. The factors investigated were: 

(1) number of animals sampled at specified time points with one observation 

taken per animal, (2) error in observed concentration measurements, and (3) 

doubling the number of observations per animal with varying number of animals. 

Increasing the error in the concentration measurement led to a significant 

worsening of the efficiency with which variability was estimated. The one point 

per animal design yielded biased and imprecise estimates of inter-animal 

variability. The limitation of this design is discussed and the importance of 

sampling an animal at least twice for unbiased and precise parameter estimation is 

highlighted.

8.2 INTRODUCTION

In earlier chapters (Chapters 3 & 4) the effect of inter-animal variability 

and sampling designs on parameter estimation with the one compartment model 

were exam ined. In Chapters 5 to 7 param eter estim ation with the two 

compartment open model was examined. In this chapter the one compartment 

open model with IV bolus administration is reconsidered.

The results of simulation studies carried out to determine the impact of a
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num ber of design features on the effic iency  w ith w hich population  

pharmacokinetic parameters could be estimated in pharmacokinetic study 

involving the use of small laboratory animals are presented. The effects of the 

following design features: (a) number of animals sampled at specified time points 

with one observation taken per animal, (b) changing the error in observed 

concentration measurements, and (c) varying the total number of samples (i.e. 

doubling the number of samples per animal with or without halving the number 

of animals) on the estimation of population pharmacokinetic parameters were 

investigated.

8.3 METHODS

8.3.1 Sampling Design

The sampling design described in Chapter 2 (Section 2.4) was used in 

these studies. Briefly, there were ten sampling times (i.e. 5, 15, 30, 60, 90, 120, 

150, 180, 210, 240 minutes). The first two times were fixed , but the other points 

were sampled uniformly from a range of 15 minutes centred on the stated time.

In the simulation, the parameter values were as given in Chapter 2 

(Section 2.4). and Oy were sequentially set to give coefficients of variation of 

15%, 30%, 45%, and 60%, and cy was set to 15% (except in section (b) below).
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8.3.1a Varying the Number of Animals per Time Point

Each of j animals supplied one observation, and a different number of 

animals was used at each time point for different experiments. This design is 

denoted as the j * 1 design. Let the total number of animals used in each 

experiment be denoted by N ^, and the total number of observations, Ng. In the 

first set of experiments the effect of increasing the number of animals per time 

point (i.e increasing total sample size, Ng) on the efficiency with which 

parameters were estimated was investigated. There were nine sample sizes (20, 

30, 40, 50, 60, 70, 80,100, and 150) which involved the use of 2, 3, 4, 5, 6, 7, 8, 

10 and 15 animals, respectively, at each time point, and this yielded nine j * 1 

study designs.

8.3.1b Varying the Error in Concentration Measurements

The influence of specified  in tra - anim al variab ility  (or error in 

concentration measurement) on parameter estimation was studied for three cases: 

ae = 0, 15 and 30% with three j * 1 designs of Ng and = 30, 50, and 70. 

Inter- animal variability was set to 30%, i.e. ĉ «j = 30%; (fy = 30%.

8.3.1c Keeping the Total Number of Observations Constant and Halving the

Total Number of Animals

The effect of keeping Ng constant while halving N ^  on parameter 

estimation was investigated by sampling each animal twice. The sampling 

regimen for this series of simulations involved dividing the ten sampling times 

into two independent blocks: the first five times (t j to t^), and the later five times
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Table 8.1 NONMEM Runs With Acceptable Estimates

Number of 

Animals Per 

Time -Point 15

Inter-Animal Variability(%) 

30 45 60

2 29 26 27 23

3 29 30 28 29

4 29 30 27 27

5 30 30 27 27

6 30 30 29 28

7 30 29 29 29

8 30 30 29 30

10 30 30 29 30

15 30 30 29 30
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(t^ to tjo>. Thus, each animal was sampled at, for example, the first times in each 

block (i.e. t j  and t^) or the second times in each block, etc. The study design in 

which each animal was sampled twice is denoted as j * 2. 15, 25, and 35 animals 

were used yielding three j * 2 designs with corresponding Ng of 30, 50, and 70, 

respectively. This allowed comparison with the j * 1 designs.

8.3. Id Doubling the Total Number of Observations without Changing the Total 

Number of Animals

The effect of keeping N ^  constant while doubling Ng was investigated 

using N ^ = 30, 50, and 70 animals. Each animal supplied two observations with 

resultant corresponding sample sizes of 60, 100, and 140 observations, 

respectively. Sampling was as described in the previous section.

8.4 RESULTS

8.4.1 Effect of Increasing the Number of Animals per Time Point

The outlier criteria outlined in Chapter 2 (Section 2.5.1) were applied to 

the data sets obtained. Table 8.1 is a summary of successful NONMEM runs used 

in the results presented below.

8.4.1a Bias and Precision

Fig. 8.1 (a - d) summarises the results when Gq  and Oy were 15%. As 

number of animals per time point increased, the precision of the estimates
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Fig. 8.1 Bias and precision expressed as %PE (mean ± standard deviation, 
respectively) for parameters. The horizontal axis represents the number of 
animals used at each time point. Each vertical expresses the bias and precision of 
the population parameter estimate. Only one observation was made on each 
animal. The inter-animal variability was set at 15%, and the error in concentration 
measurements was set at 15%. Significant (p < 0.05) biases are indicated by 
asterisks.
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Table 8.2 Mean of %PE (SD) and Nonzero Significance of the Parameters Estimates

from Simulated Data Sets for Different Study Designs (j * 1 Designs) at A

CV of 30% in Inter-Animal Variability

Number of 

Animals Per 

Time Point Cl

Parameter 

V e f t °V

2
sk

-6.70 -2.65 15.86* 21.6

(9.37) (11.69) (44.22) (51.8)

3 -1.10 -6.16* 13.77 23.99*

(7.57) (8.80) (41.27) (42.88)

4 -0.09
3k

-7.73
%

17.76 17.17*

(6.57) (8.36) (42.90) (46.41)

5 -1.91
3k

-5.05 20.66* 27.47*

(6.95) (7.95) (44.55) (39.96)

6 -2.65*
3k-4.51 14.14* 27.04*

(3.49) (8.06) (26.65) (33.21)

7 -2.87*
3k-4.51 14.44* 24.20*

(5.28) (7.32) (22.17) (27.93)

8
j|c

-3.22 -4.41* 15.52* 22.78*

(4.64) (7.63) (19.08) (27.73)

10
9|c

-1.98 -5.54* 16.38* 22.78*

(3.41) (5.40) (17.18) (24.59)

15 -3.77*
3k

-5.42 19.17* 31.20*

(3.45) (4.66) (17.30) (22.18)

*p < 0.05
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Table 8.3 Mean of %PE (SD) and Nonzero Significance of the Parameters Estimates

from Simulated Data Sets for Different Study Designs (j * 1 Designs) at A CV

of 45% in Inter-Animal Variability

Number of 

Animals Per 

Time Point Cl

Parameter

V °V

2 -6.55 -6.84 12.60 21.1

(16.74) (21.99) (63.60) (83.5)

3
jfc

-5.07 -10.13* 9.55 32.00*

(10.88) (17.41) (51.32) (60.30)

4 -2.04 -14.25* 15.81 23.0

(7.89) (13.88) (44.78) (65.10)

5 -4.16* -12.06* 15.09* 34.20*

(6.99) (11.19) (36.11) (59.90)

6
a|e

-6.65 -7.51* 23.98* 15.69*

(10.56) (10.51) (22.54) (34.00)

7
3k

-5.74 -6.84* 25.75* 17.31*

(7.00) (9.10) (27.59) (31.07)

8 -7.46*
3k

-5.51 22.07* 23.27*

(7.84) (9.89) (22.44) (35.60)

10 -7.64* -5.90* 24.94* $18.21

(5.27) (8.70) (21.62) (24.53)

15
3k

-6.71 -7.66* 26.71* 13.64*

(5.69) (7.77) (21.79) (21.41)

*p < 0.05
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Table 8.4 Mean of %PE (SD) and Nonzero Significance of the Parameters Estimates

from Simulated Data Sets for Different Study Designs (j * 1 Designs)

at A CV of 60% in Inter-Animal Variability

Number of 

Animals Per 

Time Point Cl

Parameter

V °V

2 -12.72* -3.74 22.00* 17.7

(26.15) (24.91) (50.08) (92.3)

3 -3.16
$

-13.81 29.90* 6.91

(17.13) (21.29) (69.0) (46.77)

4 0.13 -12.99* 15.59 18.14*

(11.93) (19.01) (46.07) (39.74)

5 -2.44 -13.58 23.60* 34.30*

(14.14) (22.12) (44.83) (66.20)

6 -5.22*
$

-11.17 26.53* 1.98

(11.07) (10.68) (42.84) (27.41)

7
j|e

-7.56
%

-8.11 22.43* 13.22

(10.00) (10.01) (28.75) (40.97)

8 -9.01*
$

-6.58 19.77* 18.18*

(9.18) (8.17) (23.82) (37.75)

10
ale

-8.62
Hi

-6.07 29.79* 14.48*

(7.68) (10.99) (20.07) (36.72)

15
]|c

-11.47 -7.61* 34.95* 9.05*

(6.02) (7.51) (22.59) (21.33)

*p < 0.05

2 7 4



(indicated by the reduction in the error bars) also increased. However, the 

estimates of Cl and V were negatively biased, irrespective of the number animals 

used. It was also of some interest to consider the magnitude of the SD of %PE for 

the various parameters, j * 1 designs yielded relatively precise estimates for the 

fixed effect parameters. Estimates of Gq  were acceptably precise when the 

number of animals at each time point was 5 or greater, but the estimates of CFy 

were acceptably precise only when the number of animals used at each time was 

10 or greater. The estim ates of inter-anim al variability  were, however, 

consistently positively biased and were relatively unaffected by increasing the 

number of animals.

When C q  and G y  were set at 30% the estimates of the fixed effect 

parameters were negatively biased, but precise (Table 8.2). As with the 15% 

inter-animal variability study, all estimates of and Gy were positively biased 

and mostly imprecise. Estimates of with acceptable precision were obtained 

when the number of animals used at each time point was 7 or greater while Gy 

estimates were acceptably precise when 10 animals or more were used at each 

time. As expected, the precision with which parameters were estimated increased 

as the number of animals per time point increased (i.e. precision increased with 

increased N<g).

With Gqy and e9ua  ̂to 45%, negatively biased, but precise estimates 

were obtained for Cl and V (Table 8.3). The estimates of and Gy were 

positively biased and mostly imprecise as in the previous cases. Acceptably 

precise estimates of all parameters were obtained when >10 animals were used at 

each time point.

When Oq  and G y  were set to 60%, the estimates of Cl and V were 

negatively biased, but mostly precise (Table 8.4) as in the previous cases 

considered. Imprecise estimates of Cl were obtained with the 2 observations per 

time point design. Again, the estimates of and G y  were positively biased and
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Fig. 8.2a Bias (expressed as mean of %PE) in the estimation of Cl: three
dimensional plot of the influence of varying the number of animals sampled at
each time point and inter-animal variability on Cl estimation.
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Fig. 8.2b Bias (expressed as mean of %PE) in the estimation of V: three
dimensional plot of die influence of varying the number of animals sampled at
each time point and inter-animal variability on V estimation.
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Fig. 8.2c Bias (expressed as mean of %PE) in the estimation of Oq : three
dimensional plot of the influence of varying the number of animals sampled at
each time point and inter-animal variability on c^j estimation.
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Fig. 8 .2d Bias (expressed as mean of %PE) in the estimation of G y : three
dimensional plot of the influence of varying the number of animals sampled at
each time point and inter-animal variability on Gy estimation.
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mostly imprecise. Acceptably precise estimates of all parameters were obtained 

only when 15 animals were used at each time point.

These results are summarised in Fig. 8.2(a - d). The estimates of Cl 

obtained for each value of inter-animal variability were relatively stable. The 

mean of %PE ranged from -1.2 to -0.9% for Cq  and G y  equal to 15%, -6.7 to 

-0.1% for C£j and G y  set to 30%, -7.5 to -2.0% for G q  and G y  equal to 45%, and 

-12.7 to 0.1% for C£j and G y  set to 60% (Fig. 8.2a). Similarly the estimates of V 

were relatively stable with mean of %PE ranging from -1.6 to 0.2%, -14.3 to 

-5.5%, -7.7 to -2.7%, and -13.8 to -3.7% for inter-animal variabilities of 15, 30, 

45, and 60 %, respectively (Fig. 8.2b). Also, estimates were relatively stable 

with the difference between the most and least biased estimates for each level of 

variability not exceeding 12% (Fig. 8.2c). G y  estimates were less stable with the 

difference between the most and least biased estimates ranging from 8% for an 

inter-animal variability of 60% to 25% for an inter-animal variability of 15% 

(Fig. 8.2d). There was a tendency for the bias in the estimation of the fixed effect 

parameters to increase with the increase in the inter-animal variability as would 

be expected.

8.4. lb Design Number

When Gq[ and G y  were set to 15%, Cl was efficiently estimated when the 

number of animals used per time were between 3 and 15. However, Cl estimates 

obtained when the number of animals per time point were between 4 and 15 were 

significantly better than the estimates obtained when 2 animals were used per 

time point (Fig. 8.3a). As expected, the most efficient estimates were obtained 

when 15 animals were used per time point. V was significantly better estimated 

when 4 to 15 animals were used than 2 animals per time point (Fig. 8.3b). Again, 

the most efficient estimates were obtained with 15 animals per time point, and the

280



(a) Estimation Cl
15 10 8 6 7  4 5  3 2 Animals per

time point

(b) Estimation of V
15 10 8 7  5 6 4 3 2  Animals per

time point

(c) Estimation of CHi
7 15 6 8 3 10 5 4 2  Animals per

time point

(d) Estimation of Oy
4 10 8 3 6 7  15 5 2 Animals per

time point

(e) Overall Design Efficiency 
15 10 8 7  6 5 4 3 2  Animals per

time point

Fig. 8.3 aSummary of significant differences in the efficiency with which 
parameters were estimated by varying the number of animals sampled at each 
time point with inter-animal variability set at 15%. 
a - Rank order of design numbers increasing from left to right.
* - Efficiency measured with design number.
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(a) Estimation Cl
10 7 6 15 5 8 4 3 2  Animals per

time point

(b) Estimation of V
15 10 7 8 5  6 3 4 2  Animals per

time point

(c) Estimation of q-n 
8 7 6 10 15 3 5 4 2  Animals per

time point

(d) Estimation of Oy 
4 7  10 8 15 3 5 6 2  Animals per

time point

(e) Overall Design Efficiency 
15 10 7 8 6 5 4 3 2  Animals per

time point

Fig. 8.4 aSummary of significant differences in the efficiency with which 
parameters were estimated by varying the number of animals sampled at each 
time point with inter-animal variability set at 30%. 
a - Rank order of design numbers increasing from left to right 
* - Efficiency measured with design number.
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least efficient estimates with 2 animals.

At the 15% level of inter-animal variability, c^j (Fig. 8.3c) and O y  (Fig. 

8.3d) were inefficiently estimated with all j * 1 designs.

Overall, parameters were well estimated when the number of animals used 

at each time point was between 6 and 15 animals per time point (Fig. 8.3e). The 

use of between 5 to 8 animals per time yielded parameter estimates with similar 

efficiency. Parameter estimates obtained with 10 and 15 animals per time point 

were significantly better than those with 2 to 5 animals per time point. The best 

estimates of parameters was obtained with the 15 animals per time point design.

When C£j and Oy were set to 30%, Cl was more efficiently estimated with 

4 to 15 animals used at each time point than 2 animals (Fig. 8.4a). V was well 

efficiently estimated using either 3, or 5 to 15 animals per time (Fig. 8.4b). V 

estimates with 3 animals per time were only marginally better than those with 4 

animals. The difference lay in the bias term of d>-r  the estimates with 4 animals 

per time being more biased than those with 3 animals per time (Table 8.2). 

However, the results obtained using between 2 to 8 animals per time point were 

similar. Designs with 10 to 15 animals per time point yielded significantly better 

V estimates than those obtained with the design using 2 animals per time point. 

As with the 15% level of inter-animal variability, and Oy were poorly 

estimated with all designs (Fig. 8.4c & d). All parameters were well estimated 

when 6 to 15 animals were used per time point, and the estimates with 10 and 15 

animals per time point were significantly better than those with 2 to 5 animals per 

time (Fig. 8.4e). As expected, the least efficient estimates were obtained with the 

2 animals per time point design.

Cl was efficiently estimated with the use of 3 to 15 animals per time point 

when the inter-animal variability was 45% (Fig. 8.5a). V was well estimated with 

designs having 6 to 15 animals per time (Fig. 8.5b). Estimates obtained with 

designs having 8 to 15 animals per time point were significantly better than those
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(a) Estimation Cl
5 15 7 4 10 8 6 3 2  Animals per

time point

(b) Estimation of V
10 15 8 7  6 5 4 3 2  Animals per

time point

(c) Estimation of
8 10 15 6 7  3 5 4 2  Animals per

time point

(d) Estimation of Oy
15 7 4 10 6 8 5 2 3 Animals per

time point

(e) Overall Design Efficiency 
15 10 8 7  6 5 4 3 2  Animals per

time point

Fig. 8.5 aSummary of significant differences in the efficiency with which 
parameters were estimated by varying the number of animals sampled at each 
time point with inter-animal variability set at 45%. 
a - Rank order of design numbers increasing from left to right.
* - Efficiency measured with design number.
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(a) Estimation Cl

8 10 4 6 7  5 15 3 2 Animals per

time point

(b) Estimation of V
8 15 10 7 6 4  5 2 3 Animals per

time point

(c) Estimation of c^i 
6 8 7  5 10 15 4 2 3  Animals per

time point

(d) Estimation of
15 8 10 7 6 4 5  2 3  Animals per

time point

(e) Overall Design Efficiency 
15 8 10 7 6 5 4 3 2  Animals per

time point

Fig. 8.6 aSummary of significant differences in the efficiency with which 
parameters were estimated by varying the number of animals sampled at each 
time point with inter-animal variability set at 60%. 
a - Rank order of design numbers increasing from left to right.
* - Efficiency measured with design number.
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obtained with 2 to 5 animals per time point. C q  and Oy estimates were poorly 

estimated with all designs (Fig. 8.5c & d). Overall, parameters were better 

estimated with the use of 6 to 15 animals per time point (Fig. 8.5e). Estimates of 

similar efficiency were obtained with designs having 5 to 10 animals per time 

point. The most efficient estimates were obtained with the use of 15 animals at 

each time point. These estimates were significantly better than the estimates 

obtained with 2 to 5 animals per time point. Since the use of 6 to 15 animals at 

each time point produced parameter estimates with similar efficiency the use of 6 

animals per time in this type of study does not result in any significant loss in 

efficiency.

With and Oy equal to 60%, Cl was estimated with an equal efficiency 

with all the j * 1 designs (Fig. 8.6a). The designs with 6 to 15 animals per time 

point yielded more efficient estimates of V (Fig. 8.6b) than when 2 observations 

were used per time point. As with the previous results, and G y  were 

inefficiently estimated with all designs (Fig. 8.6 c & d). When considered as a set, 

all parameters were most efficiently estimated with 6 to 15 animals used at each 

time point (Fig 8.6e). Estimates obtained with 8 to 15 animals per time point were 

significantly better than those using 2 to 4 animals. Again, the use of 6 animals 

per time yielded equally efficient parameter estimates as 15.

8.4.1c Individual and Joint Confidence Intervals for Parameter Estimates

At the 15% level of inter-animal variability, good coverage was obtained 

for individual and joint parameter estimates when NONMEM runs with 

catastrophic estimates were included (Table 8.5, Section I). However, reduced 

coverage for joint parameter estimates was obtained with the use of 15 animals at 

each time point due to the bias associated with the estimation of the variance 

parameters. The influence of standard errors on confidence intervals coverage
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was only significant when 2 animals were used at each time point (Table 8.5, 

Section III).

Similarly, significantly reduced coverage for joint confidence intervals 

was obtained with the 2 observation per time point study design when the inter

animal variability was set at 30% (Table 8.6, Section III). However, the joint 

coverage for parameter estimates was reduced (though not significantly lower 

than the expected value of 0.81) for designs with 3 to 5 animals per time point. 

When runs with catastrophic estimates were excluded in both the numerator and 

denominator during confidence intervals calculation, relatively good coverage 

was obtained for all study designs (Table 8.6, Section II), and the influence of 

bias was minimal (Table 8.6, Section I).

When the inter-animal variability was 45%, good coverage was obtained 

for individual and joint parameter estimates when catastrophic runs were included 

in the computation of confidence intervals coverage (Table 8.7, Section I). 

However, the coverage for the variance parameters and the joint coverage for 

parameter estimates were reduced when catastrophic runs were excluded in the 

numerator during the calculation of confidence intervals (Table 8.7, Section III). 

The reduced coverage obtained for and Oy using the 2 animals per time point 

design was significantly lower than the expected value of 0.95. Designs in which 

2 to 5 animals were used at each time point had joint coverage lower than the 

expected value of 0.81, due mostly to large standard errors.

Setting the inter-animal variability at 60% led to estimates whose 

confidence intervals coverage was good when NONMEM runs with "coefficient 

of variation" > 50% were included in the computation of the coverage (Table 8.8, 

Section I). However, reduced coverage was obtained for the variance parameters 

and the joint confidence intervals for parameter estimates when these NONMEM 

runs were excluded in the numerator during confidence intervals calculation 

(Table 8.8, Section IE). The coverage obtained for c^j (2 animals per time point)
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and G y  (2 and 3 animals per time point) and the joint confidence intervals for 

parameter estimates (2 to 5 animals per time point designs) was significantly 

lower than the expected value of 0.95 and 0.81, respectively (Table 8.8, Section 

ID).

Thus, as the inter-animal variability was increased, the coverage of 

interval estimates for the variance parameters and joint parameter estimates was 

reduced. At all levels of inter-animal variability, the joint coverage for parameter 

estimates was significantly lower than the expected value when 2 animals were 

used at each time point. On the other hand, significantly reduced coverage was 

only obtained for the joint confidence intervals at 45 and 60% level of inter

animal variability with study designs having 3 to 5 animals per time point.

8.4. Id Incidence of High Pair-Wise Correlations

Greater than 0% incidence of high pair-wise correlation occurred between 

G y  and V, G y  and for most of the designs when the inter-animal variability 

was 15% (Table 8.9). The greatest incidence of 24.1% was obtained for the 

correlation between G y  and V with the 2 animals per time point design, and the 

incidence of high correlation between and Cl, and and V was 3.5 and 

10.3%, respectively, for the same design.

At the 30% level of inter-anim al variability the incidence of high 

correlation between G y  and V ranged from 3.3 (15 animals per time point) to 

21.4% (2 animals per time point) (Table 8.10). The incidence (> 0%) for the 

correlation between and V ranged from 3.3 (7 animals per time point) to 14.3 

(2 animals per time point). Also, the 2 animals per time point design yielded the 

highest incidence of correlation between V and Cl (3.6%), vs. Cl (3.6%), and 

Oy with (15.4%) (Table 8.10).
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When the inter-animal variability was 45%, the highest incidence of high 

pair-wise correlations was obtained when 2 observations were made at each time 

point (Table 8.11). A greater incidence of high correlation was obtained for the 

correlation between Oy and V for most study designs.

Similarly, a greater incidence of high pair-wise correlation was obtained 

for the correlation between Oy and V irrespective of the study design when the 

inter-animal variability was set at 60% (Table 8.12). More parameters were 

highly correlated with each other using the 2 animals per time point design than 

other designs.

Irrespective of the study design and the inter-animal variability, a greater 

incidence of high pair-wise correlation was obtained for Oy and V than any other 

parameter pair.

8.4.2 Effect of Varying the Error in Concentration Measurements

When 3 animals were used at each time point, there were 28, 29, and 27 

successful NONMEM runs with cG of 0, 15, and 30%, respectively. 30, 30, and 

28 successful runs were obtained for ce of 0, 15, and 30%, respectively when 5 

animals were measured at each time point, and with the 7 animals per time point 

design, 30, 29, and 28 successful NONMEM runs were obtained for ae of 0, 15, 

and 30%, respectively. The accuracy and precision of the fixed effect parameters 

were relatively unaffected by varying the error in concentration measurements. 

When cy was 15%, the estimates of inter-animal variability were less precise, as 

expected, and biased, and this trend was maintained for ae of 30%. Moreover, 

the estimates were significantly positively biased (Fig. 8.7 (a - d)). The bias in the 

estimation of inter-animal variability was unaffected by N§.

297



%PE
2 0 .

10.

(a) Cl

0 --

-10.
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2 0. (b)V
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5 7 Animals/lime-i____ i

15 30 % <*■

Fig. 8.7(a & b) Bias and precision expressed as %PE (mean ± standard deviation, 
respectively) for parameters. The horizontal panels show data obtained using 
= 0,15, and 30%. Only one observation was made on each animal. Each vertical 
expresses the bias and precision of the population parameter estimate. The inter- 
animal variability used was 30% (see methods). Significant (p < 0.05) biases are 
indicated by asterisks.
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Fig. 8.7(c & d) Bias and precision expressed as %PE (mean ± standard deviation, 
respectively) for parameters. The horizontal panels show data obtained using au 
= 0,15, and 30%. Only one observation was made on each animal. Each vertical 
expresses the bias and precision of the population parameter estimate. The inter- 
animal variability used was 30% (see methods). Significant (p < 0.05) biases are 
indicated by asterisks.
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%PE
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Na ■ 30 
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Fig. 8.8(a - c) Bias and precision expressed as %PE (mean ± standard deviation, 
respectively) for parameters. The horizontal panels in each figure show results 
from different study designs. The first panel for each figure shows results with j *
1 designs which is used as a reference for comparing results obtained with the j *
2 designs (second panel, see methods). The j * 2 designs yielded total number of 
data points per data set equivalent to that obtained with the j * 1 designs but with 
the total number of animals halved. represents the total number of animals 
used for each study design and Nc, the sample size for each study design. o€ was 
set at 15%. Significant (p < 0.05) biases are indicated by asterisks.
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Fig. 8.8(d - f) Bias and precision expressed as %PE (mean ± standard deviation, 
respectively) for parameters. The horizontal panels in each figure show results 
from different study designs. The first panel for each figure shows results with j *
1 designs which is used as a reference for comparing results obtained with the j *
2 designs (second panel, see methods). The j * 2 designs yielded total number of 
data points per data set equivalent to that obtained with the j * 1 designs but with 
the total number of animals halved. represents the total number of animals 
used for each study design and No, the sample size for each study design. oe  was 
set at 15%. Significant (p < 0.05) biases are indicated by asterisks.

301



8.4.3 Effect of Keeping Ng Constant while Halving NA 

8.4.3a Bias and Precision

Ng was kept constant while the NA was reduced by a factor of 2 so that 

each animal supplied two concentration - time points (i.e., j * 2 designs) and NA 

equalled 15, 25, and 35, preserving the total number of data points (Ng). There 

were 14, 18, and 24 successful NONMEM runs for NA of 15, 25, and 35, 

respectively, compared to 29, 30, and 30 for the corresponding j * 1 designs. 

Most of the excluded NONMEM runs had spurious estimates of oe . The results 

for the j * 2 designs are shown in Fig. 8.8 (a - f) with the j * 1 designs included 

for reference. The estimation of the fixed effect parameters were relatively 

unaffected (Fig. 8.8a & b). The bias in the estimation of Oq  and Oy was 

significantly reduced (Fig. 8.8(d - f)) irrespective of Ng, but the precision of the 

estimates remained relatively unchanged. The relatively poorer precision for Gy 

obtained with NA of 35 (Ng = 70) as compared to 25 (Ng = 50) was due to the 

some estimates being at the ceiling of the cut off point for outliers. The bias in the 

estimation of ranged from -2.9% (NA = 35) to -13.7% (NA = 15), and the SD 

of %PE from 19.5% (Na  = 15) to 35.9% (NA = 35).

8.4.3b Incidence of High Pair-wise Correlations

A 100% incidence of high correlation was observed between ae and Cl 

irrespective of NA (Table 8.13). In addition, 13.3, 21.1, and 5.2% incidence of 

high correlation between and Oy was obtained for NA of 15, 25, and 35, 

respectively, while 40, 47.4, and 9.1% incidence was obtained with NA equal to 

15, 25, and 35, respectively, for the correlation between a6 and Oy. Parameter 

estimates were more highly correlated with each other when NA was 15 than 25 

or 35.
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j * 2

%PE

10, N a * 30 
N o -3 0 (a) N A ■= 30 

No « 60
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-5. J
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lO N a = 70
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i ..J
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Fig. 8.9(a - c) Bias and precision expressed as %PE (mean ± standard deviation, 
respectively). The horizontal panels in each figure show results from different 
study designs. The first panel for each figure shows results with j * 1 designs 
which is used as a reference for comparing results obtained with the j * 2 designs 
(second panel, see methods). The j * 2 designs yielded total number of data points 
per data set twice that obtained with the j * 1 designs but with the total number of 
animals unchanged. N* represents the total number of animals used for each 
study design and Nc, the sample size for each design. a€ was set at 15%. 
Significant (p < 0.05) Diases are indicated by asterisks.
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Fig. 8.9(d - f) Bias and precision expressed as %PE (mean ± standard deviation, 
respectively). The horizontal panels in each figure show results from different 
study designs. The first panel for each figure shows results with j * 1 designs 
which is used as a reference for comparing results obtained with the j * 2 designs 
(second panel, see methods). The j * 2 designs yielded total number of data points 
per data set twice that obtained with the j * 1 designs but with the total number of 
animals unchanged. N* represents the total number of animals used for each 
study design and Nc, the sample size for each design. ae was set at 15%. 
Significant (p < 0.05)1)iases are indicated by asterisks.
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8.4.4 Doubling N§ without Changing NA

8.4.4a Bias and Precision

Again, each animal supplied 2 concentration - time points but NA 

equalled 30, 50, and 70 to keep the number of animals constant to allow 

comparison with the j * 1 designs. 16, 23, and 28 successful NONMEM runs 

were obtained with NA of 30, 50, and 70, respectively, compared to 30 (NA = 

30), 30 (NA = 50) and 30 (NA = 70) for j * 1 designs. The results presented 

herein are based on the successful runs. As in the previous study the accuracy 

with which the fixed effect parameters were estimated was relatively unaffected, 

but the precision was improved as expected (Fig. 8.9(a - c). The bias in the 

estimates of C£j and G y  was almost completely eliminated and the precision 

greatly improved (Fig. 8.9(d - f)). However, acceptably precise estimates of 

and G y  were only obtained with NA = 50 and 70 (i.e. Ng = 100 and 140, 

respectively).

In all the j * 2 designs the estimates of Ge were minimally biased, but 

acceptably precise. The mean of %PE ranged from -0.2% (NA = 70) to 6.0% (NA 

= 50), and the SD of %PE from 17.7% (NA = 70) to 24.6% (NA = 50). Spurious 

values of were responsible for the exclusion of most NONMEM runs.

8.4.4b Incidence of High Pair-wise Correlations

100% incidence of high correlation was obtained for the pair-wise 

correlation of a€ and Cl irrespective of NA (Table 8.13). Except for the 

correlation between cy and Gy in which the incidence of high correlation ranged 

from 6.3% (NA = 30) to 14.3% (NA = 70), and the correlation between Gy and V
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where the incidence was 6.3% for equal to 30, the incidence of all other pair

wise correlations was less than 5.0%.

8.5 DISCUSSION

The fixed effect parameters were well estimated irrespective of the inter

animal variability for most j * 1 designs. Inefficient estimates of Cl were obtained 

at the 60% level of inter-animal variability with the 2 animals per time point 

design. The accuracy of these estimates was relatively unaffected by increasing 

the number of animals sampled at each time. All inter-animal variability estimates 

were positively biased, and this highlights the difficulty when there is no 

inform ation on one of the components of variability  (in this case, aG ), 

emphasising the limitation of the one point per animal design. Estimates of 

variability associated with structural model parameters are considerably less 

precise, given a fixed number of experimental units, than are estimates of their 

means (Chapter 2, Section 2.5.3; Sheiner & Beal, 1981; Grasela et al., 1986). 

Some significant biases, associated with parameter estimates obtained with 

designs having a greater number of animals compared to the ones with fewer 

animals at each time point, were due to sample sizes being large enough to detect 

bias.

Since estimates were considered acceptably precise when the SD of %PE 

< 25%, the minimum number of animals required for reasonable estimation of 

population pharmacokinetic parameters with the one observation per animal 

design was 10 per time point if the inter-animal variability was between 15 and
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45%, and 15 when the inter-animal variability was 60%.

However, when the results were analysed using the design number 

approach in which the combined contributions of bias and precision are taken into 

account in determining the efficiency of parameter estimation, all parameters 

were estimated with similar efficiency when 6 to 15 animals were used per time 

point for all settings of and O y. Using this sampling strategy and the j * 1 

design, studies could be performed with at least 6 animals per time with no loss in 

the efficiency with which population parameters are estimated. This would result 

in savings in terms of the number of animals used and the time spent on such 

studies.

When the inter-animal variability was between 15 and 30%, Cl and V 

were efficiently estimated when 4 to 15 animals were used at each time point. 

Thus, as few as 4 animals per time could be used for the estimation of the fixed 

effect parameters with these settings of inter-animal variability, and O y were 

inefficiently estimated with all j * 1 designs due to a lack of information about 

ae .

When the inter-anim al variability was 45% and the estim ation of 

individual parameters were considered, Cl was well estimated using 3 to 15 

animals per time point while V was efficiently estimated with designs having 6 to 

15 animals per time point. As with previous levels of inter-animal variability 

considered, C£i and O y were inefficiently estimated.

With C£j (Oy) being 60%, the efficiency of Cl estimation was similar for 

all designs since the contributions of the bias and standard error terms in d>jr 

counter balanced each other, such that a comparison of the designs revealed 

nonsignificant differences. However, V was better estimated with designs in 

which 6 to 15 animals were used per time point. Thus, efficient estimation of Y 

would require more animals at each time point than Cl when the inter-animal 

variability is greater than 30%. Again, Cq  and O y were inefficiently estimated
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irrespective of the j * 1 design. The inefficiency with which the variance 

parameters were estimated was due to lack of information in the data sets on a€ 

as previously discussed.

Thus, the use of 6 to 15 animals at each time point in the estimation of 

population pharmacokinetic parameters would result in the production of 

reasonable estimates when the inter-animal variability is between 15 and 60%. 

Inefficient estimates were obtained with the 2 animals per time point design for 

all levels of inter-animal variability due to poor precision as seen, in the 

confidence intervals coverage for the variance parameters and joint parameter 

estimates when catastrophic runs were excluded. Poor precision was also 

responsible for significantly reduced coverage for joint confidence intervals when 

3 to 5 animals were measured at each time point with inter-animal variability set 

at 30 to 60%. The contribution of bias to the poor coverage (hence inefficient 

estimates) was minimal. However, bias was the major contributing factor to the 

reduced coverage obtained for G y  and joint confidence intervals for parameter 

estimates when 15 animals were used at each time point with the inter-animal 

variability set at 15%. Poorer estimation of the variance parameters could be due 

to higher incidence of pair-wise correlation involving these parameters.

When Ge was varied to examine its effect on the estimation of Gq  ̂and 

G y , the magnitude of the bias in Cq and G y  increased with the magnitude of a£ , 

as expected, indicating that a substantial fraction of this bias was due to an error, 

i.e., the intra-animal error, which could not be partitioned. This finding confirms 

earlier observation by Graves et al. (1989). Using Monte Carlo simulation 

techniques, these authors generated data sets with error in concentration 

measurements without introducing inter-subject variability, and concluded that 

error in concentration measurements contributes significantly to large standard 

deviations associated with structural model parameters which could be interpreted
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as inter-individual variability in a real study situation.

Most NONMEM fixed effect parameter estimates derived from all studies 

with the j * 1 design showed a consistent significant negative bias. This was due 

to estimation error as negative biases in the estimation of these parameters were 

obtained even when a€ was set at 0%.

A trade - off between sample size and total number of animals (i.e., 

doubling the total number of observations (sampling an animal twice) while 

reducing the total number of animals sampled by half, produced a dramatic 

improvement in the estimation of inter-animal variability with a considerable 

reduction in bias. Accuracy was stable over the different population samples. The 

second sample practically eliminated bias and facilitated the partitioning of inter

animal variability and residual error, by introducing information about oe . 

However, the estimates of c€ were unstable probably because of the correlation 

of ce with Cl and Oy. The correlation between ae and Oy was worse for N ^  

equal to 15 and 25.

Keeping N ^  constant as in the j * 1 designs while doubling N§ (j * 2 

designs) resulted in a significant improvement in the precision with which inter

animal variability was estimated. This had no effect on the accuracy and precision 

of fixed effect parameters. The estimates of ae were more stable with significant 

high correlations occurring only between ce and Cl.

Doubling of the number of observations per animal results in savings in 

terms of the number of animals that are needed in this type of study. The j * 2 

design with N ^ equal to 30 animals yielded acceptably precise estimates of inter

animal variability with no loss of efficiency. The use of this minimal number of 

animals with the j * 2 design and sampling strategy considered here would result 

in savings not only in animal number, but also in time and labour cost without 

sacrificing efficiency of parameter estimation.

The estimation of a set of population pharmacokinetic parameters
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provides limited information if there is no measure of the variability of each of 

the parameter estimates. Given the design specifications considered here, 

accuracy and precision in the estimation of inter-animal variability is significantly 

improved when the data set is enhanced by taking 2 observations per animal. In 

recent years, experimental methods have become available which permit serial 

blood sampling in small laboratory animals (Migdalof, 1976) . These sampling 

methods combined with modem approaches to population data analysis should 

lead to much more informative pharmacokinetic studies in small animals.

3 1 1



CHAPTER 9

GENERAL DISCUSSION AND CONCLUSION
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In pharmacokinetics, the rationale behind study design is the accurate and 

precise estimation of pharmacokinetic parameters. However, the overall objective 

of such studies is not only to learn about the average disposition of the drug in the 

study population, but also the interindividual variability. Indeed, the purpose of 

most animal pharmacokinetic studies is to estimate population parameters as a 

key step to quantifying individual animal response and population variability.

The traditional approaches (NPD and STS) to estimating population 

pharmacokinetic parameters in laboratory animals have been discussed in 

Chapters 1 and 2, and their limitations highlighted. The NPD approach provides 

no estimate of population variability, while the STS approach provides estimates 

of variability that are positively biased and requires a full concentration - time 

profile for each animal. On the other hand, NONMEM provides estimates of 

population param eters, their variances, and estim ated standard errors of 

parameters (Sheiner & Beal, 1981; 1983). The efficiency of this approach is the 

focus of this thesis.

In studies involving the use of inbred strains of small laboratory animals 

(e.g., rats or mice), in which each concentration - time point usually represents 

one animal, the NPD approach is the most common method of analysis (Loscher 

& Esenwein, 1978; Roberts & Renwick, 1989; Pritchard, Holmes, & Kirschman, 

1976). No estimate can be made of variability, although this may be up to 50% 

for some parameters (Lindstrom & Birkes, 1984; McArthur, 1988). Variability in 

the rate of oxidative metabolism of antipyrine by different inbred strains of rats 

has been reported, and Vocci and Farber (1988) advocated the consideration of 

variability within the same species in interspecies scaling. Thus, provision should 

be made for the estimation of variability inherent in the population sample in 

analysing data obtained by "destructive sampling". The NONMEM program was 

used in analysing data generated in the course of this thesis, and the majority of 

the data were simulated with the one observation per animal design.
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Pharmacokinetic data analysis is informative only if the data themselves 

are informative, and this can best be assured by appropriate experimental design. 

In designing experiments for efficient parameter estimation the following factors 

are taken into account: experimental error, number of samples taken, and the 

spacing of samples (Suverkrup, 1982).

In this thesis simulated data sets were used to investigate the effect of the 

various design features on the efficiency of parameter estimation using the one 

observation per animal design. Several methods were used to determine the 

efficiency of parameter estimation. The 99% individual and joint confidence 

intervals containing the true parameter 95% of the time for all parameters were 

introduced as aids to judging the efficiency with which individual and all 

parameters as a whole were estimated. The confidence intervals tables were 

constructed to reveal the influence of bias and standard error on parameter 

estimation.

In addition, the design number, a new statistic which combines the 

contributions of bias and precision in judging the efficiency of parameter 

estimation, was introduced to complement bias and precision, and the confidence 

intervals methods of analysis. The design number also allowed the efficiency with 

which all parameters of a model were estimated as a set to be judged. The 

incidence of high pair-wise correlations of parameter estimates was also taken 

into account in assessing the acceptability of estimates and the adequacy of model 

parameterization. Data were simulated using population parameters of a drug 

having the characteristics of avicin, a cytotoxic drug (McGovern et al., 1988), 

and assuming no covariance.

Using the one observation per animal design and assuming IV bolus 

injection with the monoexponential pharmacokinetic model, simulated data sets 

of different sample sizes (30 and 50) were employed to determine the influence of
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inter-animal variability on parameter estimation (Chapter 3). The range of 

variability investigated was similar to that expected in real studies, and the 

traditional sampling strategy involving sampling animals at fixed times was used. 

Ten sampling times were specified between 5 and 240 min. using a simulated 

half-life (84 min.) of the drug (i.e., Cl and V of 1.3 ml/min. and 162.5 ml, 

respectively). It was observed that the fixed effect parameters (i.e., Cl and V) 

were precisely estimated at all combinations of inter-animal variability studied, 

but bias increased with increase in variability. These estimates were mostly 

negatively biased, and this was coupled with the overestimation of the variance 

parameters. The negative bias associated with the estimation of the fixed effect 

parameters was attributed to the nature of the NONMEM program (i.e. estimation 

error since negative bias was also observed in subsequent studies when oe was 

set at 0%). The overestimation of the variance parameters was attributed to the 

one observation per animal design since there was no information in the data set 

about ae .

The estimates of the fixed effect parameters were normally distributed 

while some of the variance parameters were nonnormal with right skewed 

distributions at large values of c^j and Oy (e.g., 60% * 60% combination). This 

right skewness was responsible for the good coverage of and Oy when the 

influence of standard errors was not considered. When the influence of standard 

errors was considered, poor coverage was obtained at high variability irrespective 

of sample size.

In studying the effect on parameter estimation of the spacing of sampling 

times with a fixed sample size (Chapter 4) using the two sample point design 

(one compartment model with IV bolus injection), efficient parameter estimation 

was obtained when the second sample was located at > 1.4 times the ty 2  ° f  the 

drug with the first sample obtained as early as possible (5 min.). When three or 

four samples were used, the exact location of the third or fourth sample was not
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critical to efficient parameter estimation. The fixed effect parameters were 

efficiently estimated with all designs. Irrespective of the design considered (i.e., 

two, three, or four sample points design), C q was efficiently estimated when the 

second, third, or fourth sample were located at > l-4 tj/2  ° f  the drug, Gy was 

poorly estimated with all sampling designs and this was attributable to lack of 

information about Ge in the simulated data sets. Metzler (1987) showed that 

NONMEM yielded poor estimates of volume, and although he did not estimate 

the variance parameters in his study, the poor estimates of Gy found in this work 

may be a feature of the NONMEM program.

Using the two compartment model (assuming IV bolus injection and 

sampling animals at set times), the efficiency of parameter estimation was 

examined over a range of parameter values with the model parameterized in terms 

of A, a , B, and p (Chapter 5). A and a  were efficiently estimated when a  was 

between 1.5 and 4.0 h"*, while B and p were efficiently estimated when a  was in 

the range 6.0 to 8.0 h"*. A and a, B and p were efficiently estimated at the higher 

(i.e. 20 to 40.0) and lower (i.e. 1.0 to 20.0) A:B ratios, respectively. The variance 

parameters were inefficiently estimated due to lack of information about ae . The 

parameters, considered as a set, were efficiently estimated when a  was in the 

range of 2.0 to 4.0 h"*, and the A:B ratio in the range 2.5 to 30.0. These results 

were attributed to the distribution of the data points between the distribution and 

elimination phases of the plasma concentration - time curve.

Also, A and a  were efficiently estimated when 3 to 12 and 3 to 7 times, 

respectively, were in the a  phase. However, a  was estimated with similar 

efficiency with designs having 3, 7, and 12 times in the a  phase. Inefficient 

estimates of B, and P were obtained when 12 times were in the a  phase because 

there were fewer samples in the p phase. Overall, designs with 5 to 7 times in the 

a  phase yielded efficient parameter estimates. However, the variance parameters
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were poorly estimated as a consequence of the one observation per animal design. 

The design with 12 times in the a  phase had greater incidences of high pair-wise 

correlations than other designs and, overall, yielded the least efficient estimates of 

parameters.

When the number of sampling times in the P phase was increased and the 

duration of sampling extended without altering the total number of samples, 

parameters were estimated with equal efficiency when the overall performance of 

the different sampling schedules (3, 6, and 8 times in the p phase) was examined. 

There was no loss in efficiency when the duration of sampling was reduced from 

10 h (8 times in P phase) to 6 h (3 times in the p phase). The schedule with 8 

times in the p phase was only significantly better than others in the estimation B 

and p.

However, most parameter estimates of the A, a , B, and P parameterization 

of the two compartment model were unstable due to greater incidences of high 

pair-wise correlations. Reparameterization of the model (Chapter 6) in terms of 

Cl, V, k j2» and ̂ 21 rcsulted in more stable parameter estimates.

Observations made in a pharmacokinetic study are subject to two types of 

variability - biological variation (considered earlier) and errors in the analysis of 

samples. The influence of the latter on parameter estimation was also studied. 

Using both the one and two compartment open models with IV bolus injection, it 

was observed how the error in concentration measurements was added to the 

estimated inter-animal variability due to lack of knowledge about intra-animal 

variability. Thus, large inter-animal variability estimated in real studies involving 

the one observation per animal design could be misleading since it is actually a 

composite of inter- and intra-animal variability. Minimising experimental error is 

critical to efficient parameter estimation.

The 1986 Act on the protection of animals stipulates that use of animals 

for experimentation must be kept to the barest minimum, and, where possible,
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alternatives should be found. In the preclinical pharmacokinetic setting, the use of 

animals for accurate and precise estimation of population pharmacokinetic 

parameters is inescapable. However, a balance must be struck between minimal 

use of animals and efficient parameter estimation since the parameters so 

determined are used for extrapolation from one species to another, and more 

importantly man. Thus, the effect of sample size on parameter estimation was 

investigated with both one and two compartment open models. It was found that 

with the design specifications considered, the parameters of the one compartment 

model were estimated with equal efficiency when 6 to 15 animals were sampled 

destructively at each of ten time points (Chapter 8). Since there was no loss in 

efficiency when 6 animals are sampled per time (i.e., a sample size of 60), the 

costs involved in such studies could be greatly reduced. However, with serial 

micro-sampling of small laboratory animals, similar results could be obtained 

with at least 30 animals sampled twice with the same traditional sampling 

strategy. Sampling an animal at least twice allows the partitioning of inter- and 

intra-animal variability, almost eliminating bias in the estimation of the variance 

parameters. Using the two compartment model, 15 animals were required at each 

of ten time points for efficient parameter estimation. However, the loss in 

estimation efficiency with 10 animals sampled at each time point for ten time 

points was not dramatic with this model. The use of these numbers of animals 

with the design specifications considered in this thesis would strike a good 

balance between cost and good science.

In all studies reported in this thesis, most estimates of fixed effect 

parameters were associated with negative bias. This was due to estimation error 

since negative bias in these parameters was also observed in studies in which ae 

was set to 0%.

The design number was applied throughout the course of the thesis with
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the assumption that it was efficient although the determination of the power and 

efficiency of this statistic was outside the scope of this thesis. The rescaling of 

design numbers could, perhaps, be better done using the median, and this needs to 

be explored further.

The results of the simulation studies led to the application of NONMEM 

in the analysis of data obtained with the one observation per animal design for a 

drug under development (Chapter 7). The NONMEM analysis took into account 

that the samples came from a population with more variability than could be 

explained with experimental error. Parameter estimation without estimates of 

variability is of little value. NONMEM permitted the explanation of inter-animal 

variability in V j in terms of sex: efficient partitioning between inter- and intra

animal variability would have required an increase in the number of samples per 

animal.

Thus, the influence of various design features on the efficiency of 

parameter estimation using the one observation per animal design has been 

investigated. Inefficient estimates of inter-animal variability are obtained with 

this design, but sampling an animal at least twice significantly improved the 

efficiency of parameter estimation. The fixed effect parameters, on the other 

hand, were efficiently estimated. The design number, individual and joint 

confidence intervals for parameter estimates, incidence of high pair-wise 

correlations in addition to bias and precision were found useful in judging the 

efficiency with which parameters were estimated individually or as a set.
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APPENDIX IA

PRED Subroutine for the 2 Compartment Model

SUBROUTINE PRED(ICALL,NEWIND,THETA,DATREC,INDXS,F,G,H)
C
C
C 2 COMP IV, 1ST DOSE, A, AL, B, BE 
C 
C 
C

DIMENSION THETA(4),DATREC(3),H(1),G(4),INDXS(1)
DOUBLE PRECISION THETA,F,G>H,T,EKT,XKE,EXPWCH,
+ A, AL,B,BE,E ALT ,EBET 
T=DATREC(2)
A=THETA(1)
AL=THETA(2)
B=THETA(3)
BE=THETA(4)
EALT=EXPWCH(-AL*T)
EBET=EXPWCH(-BE*T)
F=(A*EALT)+(B*EBET)
G(1)=EALT 
G(2)=-A*T*EALT 
G(3)=EBET 

C G(4)=-B*T*EBET 
C H(1)=F 

RETURN 
END
DOUBLE PRECISION FUNCTION EXPWCH(XX)
DOUBLE PRECISION XX 
IF(XX.LE.-50.) XX=-50.
IF(XX.GE.50.) XX=50.
EXPW CH=DEXP(XX)
RETURN
END

Note that G(4) was included in the subroutine when the effect of the number of 
sampling times in the p phase on parameter estimation was investigated.
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APPENDIX IB

PRED Subroutine for the Reparameterized 2 Compartment Model

SUBROUTINE PRED(IC ALL,NEWIND,THETA,D ATRECJNDXS ,F,G,H)
C
C 2COMP, IV, CL, VI, K12, K21 
C

DIMENSION THETA(4),D ATREC(3),INDXS (1 ),G(4),H( 1)
DOUBLE PRECISION THETA,G,H,F,CL,V1,K12,K21,
+DOSE,T,T21 ,Q,C 1 ,R,BE, AL,P,PP,C2,C3,C4,C5,C6, 
+C7,C8,A,B,DBE2,DBE1,DBE3,DBE4,DP1,DP2,DP3,DP4,
+DAL1,DAL2 JDAL3 J)AL4,DA 1 ,DA2,DA3,DA4,DB 1JDB2 JDB3,
+DB4,EA,EB,EALT,EBET,AT,BT
CL=THETA(1)
V1=THETA(2)
K12=THETA(3)
K21=THETA(4)
T=DATREC(2)
DOSE=200000.
T21=CIW1 
Q=K12+K21+T21 
C1=T21*K21 
R=DSQRT(Q*Q-4.*C 1)
BE=0.5*(Q-R)
AL=C1/BE
P=1./(CL*K21-V1*BE**2)
PP=P*P
C2=(K21 -BE)*BE
C3=2.0*V1*BE
C4=AL/BE
C5=(Cl-K21*BE)*DOSE
C6=K21 *P*DOSE
C7=C2*DOSE
C8=(K21-2*BE)*P*DOSE
A=DOSE*(Cl-BE*K21)*P
B=DOSE*C2*P
DBE2=0.5*(1.0-(Q-2.*K21)/R)/V1 
DBE1 =-T21 *DBE2 
DBE3=-BE/R 
DBE4=DBE3-0.5*T21/R 
DP1=PP*(BE**2-C3*DBE1)
DP2=PP*(C3*DBE2-K21)
DP3=PP*C3*DBE3
DP4=PP*(C3*DBE4-CL)
DAL1=-C1*BE/V1-C1*DBE1 
DAL2=AL/CL-C4*DBE2 
DAL3=-C4*DBE3 
D AL4=AL/K21 -C4*DBE4
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DA 1 =C5 *DP 1 -C1 *P*DOSE/V 1 - C6*DBE 1
DA2=C5*DP2+C6/V1-C6*DBE2
DA3=C5*DP3-C6*DBE3
D A4=C5 *DP4-C6*DBE4+P* (T21 -BE)*DOSE
DB1 =C7 *DP 1 +C8*DBE 1
DB2=C7*DP2+C8*DBE2
DB3=C7*DP3+C8*DBE3
DB4=C7*DP4+C8*DBE4+DOSE*P*BE
EA=AL*T
EB=BE*T
IF(EA.GE.50.) EA=50.
IF(EB.GE.50.) EB=50.
IF(EA.LE.-50.) EA=-50.
IF(EB.LE.-50.) EB=-50.
E ALT=EXP(-E A)
EBET=EXP(-EB)
AT=A*T
BT=B*T
F=A*EALT+B*EBET
G(1)=EALT*(DA1-AT*DAL1)+EBET*(DB1-BT*DBE1) 
G(2)=EALT*(DA2-AT*DAL2)+EBET*(DB2-BT*DBE2) 

C G(3)=EALT*(DA3-AT*DAL3)+EBET*(DB3-BT*DBE3) 
C G(4)=EALT*(DA4-AT*DAL4)+EBET*(DB4-BT*DBE4) 
C H(1)=F 

RETURN 
END
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APPENDIX IC

2 Compartment Model: PRED Subroutine for Modelling the 

Influence of Weight on Vj

SUBROUTINE PRED(ICALL,NE WIND,THETA,DATREC,INDXS,F,GJH)
C
C 2COMP. IV, CL,V1,K12,K21 
C

DIMENSION THETA(4),DATREC(4),INDXS(1),G(4),H(1)
DOUBLE PRECISION THETA,G,H,F,CL,V1,K12,K21,WT,
+DOSE,T,T21,Q,Cl,R,BE,AL,P,PP,C2,C3,C4,C5,C6,
+C7,C8ABJ)BE2J)BE1,DBE3DBE4,DP1J)P2,DP3J)P4,
+DAL1 ,DAL2 JDAL3 J)  AL4,D A 1 ,D A2,D A3,DA4,DB1JDB2 JDB3,
+DB4,EA,EBEALTEBET,AT,BT
CL=THETA(1)
K12=THETA(3)
K21=THETA(4)
T=DATREC(2)
WT=DATREC(4)
DOSE=WT*1000.
V1 =WT*THETA(2)
T21=CL/V1
Q=K12+K21+T21
C1=T21*K21
R=DSQRT(Q*Q-4.*C1)
BE=0.5*(Q-R)
AL=C1/BE
P= 1 ./(CL*K21 -V1 *BE**2)
PP=P*P
C2=(K21 -BE)*BE
C3=2.0*V1*BE
C4=AL/BE
C5=(Cl-K21*BE)*DOSE 
C6=K21 *P*DOSE 
C7=C2*DOSE 
C8=(K21-2.*BE)*P*DOSE 
A=DOSE*(C 1 -BE*K21) *P 
B=DOSE*C2*P
DBE2=0.5*(1.0-(Q-2.*K21)/R)/V1 
DBE1 =-T21 *DBE2 
DBE3=-BE/R 
DBE4=DBE3-0.5 *T21/R 
DP 1 =PP*(BE**2-C3*DBE 1)
DP2=PP* (C3 *DBE2-K21)
DP3=PP*C3*DBE3
DP4=PP*(C3*DBE4-CL)
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DAL 1 =-Cl *BE/V 1 -C1 *DBE 1
DAL2=AL/CL-C4*DBE2
DAL3=-C4*DBE3
DAL4=AL/K21-C4*DBE4
DA 1 =C5 *DP 1 -C1 *P*DOSE/V 1 -C6*DBE 1
DA2=C5*DP2+C6/V1-C6*DBE2
DA3=C5*DP3-C6*DBE3
D A4=C5 *DP4-C6*DBE4+P* (T21 -BE) *DOSE
DB1 =C7 *DP 1+C8 *DBE 1
DB2=C7*DP2+C8*DBE2
DB3=C7*DP3+C8*DBE3
DB4=C7 *DP4+C8 *DBE4+DOSE*P*BE
EA=AL*T

IF(EA.GE.50.) EA=50.
DF(EB.GE.50.) EB=50.
IF(EA.LE.-50.) EA=-50.
IF(EB.LE.-50.) EB=-50.
EALT=EXP(-EA)
EBET=EXP(-EB)
AT=A*T
BT=B*T
F=A*E ALT+B *EBET
G( 1 )=EALT* (DA 1 - AT*D AL1) +EBET* (DB 1 -BT*DBE 1) 
G(2)=EALT*(DA2-AT*DAL2)+EBET*(DB2-BT*DBE2) 

C G(3)=EALT*(DA3-AT*DAL3)+EBET*(DB3-BT*DBE3) 
C G(4)=EALT*(DA4-AT*DAL4)+EBET*(DB4-BT*DBE4) 
C H(1)=F 

RETURN 
END
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APPENDIX ID

2 Compartment Model: PRED Subroutine for Modelling the Influence 

of Sex and Weight on

SUBROUTINE PRED(IC ALL,NEWIND,THETA,D ATREC,INDXS ,F,G,H)
C
C 2COMP. IV, CL,V1,K12,K21 
C

DIMENSION THETA(5),DATREC(5),INDXS(1),G(2),H(1)
DOUBLE PRECISION THETA,GJI,F,CL,V1,K12,K21,WT, 
+DOSE,T,T21,Q,Cl,R,BE,AL,P,PP,C2,C3,C4,C5,C6,
+C7,C8,A,B»DBE2 JDBE1 ,DBE3,DBE4,DP1 JDP2,DP3,DP4,
+D AL1J )  AL2 JD AL3 ,D AL4,D A1J) A2JD A3 ,D A4JDB1JDB2 JDB 3,
+DB4,EA,EBJEALT3BET,AT,BT,SEX
CL=THETA(1)
V1=THETA(2)
K12=THETA(3)
K21=THETA(4)
T=DATREC(2)
WT=DATREC(4)
SEX=DATREC(5)
DOSE=WT*1000.
V1 =WT*THET A(2)
IF(SEX.GT. 1.0) V1 = V1 *THETA(5)
T21=CL/V1
Q=K12+K21+T21
C1=T21*K21
R=DSQRT(Q*Q-4.*C1)
BE=0.5*(Q-R)
AL=C1/BE
P=1./(CL*K21-V1*BE**2)
PP=P*P
C2=(K21-BE)*BE
C3=2.0*V1*BE
C4=AL/BE
C5=(Cl-K21*BE)*DOSE 
C6=K21 *P*DOSE 
C7=C2*DOSE 
C8=(K21-2.*BE)*P*DOSE 
A=DOSE*(Cl-BE*K21)*P
TJ— T V ^ Q P * P 9 * P
DBE2=0.5*(1.0-(Q-2.*K21)/R)/V1 
DBE1 =-T21 *DBE2 
DBE3=-BE/R 
DBE4=DBE3-0.5*T21/R 
DP1=PP*(BE**2-C3*DBE1)
DP2=PP*(C3*DBE2-K21)
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DP3=PP*C3*DBE3
DP4=PP*(C3*DBE4-CL)
DAL1=-C1*BE/V1-C1*DBE1
DAL2=AL/CL-C4*DBE2
DAL3=-C4*DBE3
D AL4=AL/K21 -C4*DBE4
DA 1 =C5 *DP 1 -C1 *P*DOSE/V 1 -C6*DBE 1
D A2=C5 *DP2+C6/V 1 -C6*DBE2
D A3=C5 *DP3-C6*DBE3
D A4=C5 *DP4-C6*DBE4+P* (T21 -BE) *DOSE
DB 1 =C7*DP1 +C8*DBE 1
DB2=C7*DP2+C8*DBE2
DB3=C7*DP3+C8*DBE3
DB4=C7*DP4+C8*DBE4+DOSE*P*BE
EA=AL*T
EB=BE*T
IF(EA.GE.50.) EA=50.
IF(EB.GE.50.) EB=50.
IF(EA.LE.-50.) EA=-50.
IF(EB.LE.-50.) EB=-50.
EALT=EXP(-EA)
EBET=EXP(-EB)
AT=A*T
BT=B*T
F=A*EALT+B*EBET
G( 1 )=EALT*(D A1 - AT*D AL1 )+EBET* (DB 1 -BT*DBE 1) 
G(2)=EALT*(DA2-AT*DAL2)+EBET*(DB2-BT*DBE2) 

C G(3)=EALT*(DA3-AT*DAL3)+EBET*(DB3-BT*DBE3) 
C G(4)=EALT*(DA4-AT*DAL4)+EBET*(DB4-BT*DBE4) 
C H(1)=F 

RETURN 
END
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APPENDIX IIA

Simulation Program Used to Investigate the Effect of Sample 
Size and Inter-animal Variability on Parameter Estimation with 
the 1 Compartment Model

C 1 S T  TWO TIMES F I X E D ,  REST RANDOMLY W IT HI N 3 0  MINS
C SAMPLING AT SET TIMES
C

PROGRAM DATA2
C
C CHAN 2 0  -  I N I T I A L  STAR TING  VALUES
C CHAN 3 0  -  NONMEM DATA F I L E
C CHAN 4 0  -  M IN IT A B  DATA F I L E
C

INTEGER RAN,GEN,BASE
COMMON / M I R N G / R A N ( 1 0 ) , G E N ( 1 0 ) , NW RD,B ASE ,M MOD ,F BA SE ,F MOD  
D IM EN SI O N T ( 2 0 )

C
C CLBAR = POPN CL VBAR = POPN VD
C SDCL = POPN SD CL SDV =  POPN SD VD
C SDC =  PROP ERROR I N  CONC DOSE =  DOSE
C NT =  NO OF TIMES NR =  NO OF R A T S / T I M E
C NSTART =  RANDOM SEEDS
C

R E A D ( 2 0 , * )  NSTART
R M A X = 2 . 0 * * 1 5 - 1 . 0
MAXINT=RMAX
CALL R A N S E T ( M A X I N T ,N S T A R T )
R E A D ( 2 0 , * )  C L B A R , S D C L , V B A R , S D V , S D C , D O S E , N T , N R  
R E A D ( 2 0 , * )  ( T ( I ) , 1 = 1 , NT)
DO 5 0 0  1 = 1 , NT 
DO 1 0 0  J = 1 , NR 

5 CALL NGAUSS ( C L , R N , C L B A R , S D C L )
I F  ( C L . L E . 0 . 0 )  GOTO 5  

1 0  CALL NGAUSS (V ,  RN,  VBAR,  SDV)
I F  ( V . L E . 0 . 0 )  GOTO 1 0
K E = C L / V
D V = D O S E / V
CALL URAND ( T l )
I F ( I . E Q . 1 . O R . I . E Q . 2 )  GO TO 3 0  
R E = 1 5  
R M = - 7 . 5  
GO TO 3 5  

3 0  R E = 0  
RM=0

3 5  T l =  T 1 * R E  + T ( I ) + RM 
EKET=EXPWCH( - K E  * T 1 )
C 1=DV*EK ET
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SDC1=SDC*C1
CALL NGAUSS ( C C , R N , C l , S D C 1 )
C1= CC
I F ( C l . L T . 0 . 1 . O R . C l . G T . 5 0 . 0 )  GO TO 5  
NN= ( ( 1 - 1 ) *NR) + J  
R I = F L O A T  (NN)
W R I T E ( 3 0 , 2 0 )  R I , T l , C l  
W R I T E ( 4 0 , 2 5 )  R I , C L , V , T l , C l  

1 0 0  CONTINUE  
5 0 0  CONTINUE  

2 0  FORMAT ( 3 F 8 . 2 )
2 5  FORMAT ( 5 F 8 . 2 )

STOP
END
FUNCTION EXPWCH(XX)
I F ( X X . L E . - 5 0 . )  X X = - 5 0 .
I F  ( X X . G E . 5 0 . )  X X = 5 0 .
EXPWCH=EXP(XX)
RETURN
END
SUBROUTINE R A N S E T ( M A X I N T , N S T R T )
COMMON / M I R N G / N R A N ( 1 0 ) , N G E N ( 1 0 ) , NW RD ,NBAS E,M MOD, FNBAS E,F MOD
M A X I = M A X I N T /4
I B = 0
N B A S E = 1

9 9  I F ( N B A S E . G T . M A X I ) G O  TO 1 0 0  
NBA SE= NBA SE * 4 
I B = I B + 1  
GO TO 9 9

1 0 0  N B A S E = 2 * * I B  
FNBA SE= NBA SE  
N W R D = 4 7 / I B + 1  
N R E M = 4 7 - I B * ( N W R D - 1 )
MMOD= 2  * *NREM 
FMOD=MMOD
DO 1 0 1  N = l , 1 0  
N R A N ( N ) = 0

1 0 1  N G E N ( N ) = 0  
N G E N ( 1 ) = 5
DO 2 0 0  1 = 1 , 1 4
NCARRY=0
DO 1 9 0  N = 1 , NWRD
N G E N ( N ) = N G E N ( N ) * 5 + N C A R R Y
NCARRY=0
IF(NGEN(N).LT.NBASE)GO TO 1 9 0  
N CARRY=NGEN(N)/NBASE 
NGEN(N)=NGEN(N)-NBASE *NCARRY 

1 9 0  CONTINUE 
2 0 0  CONTINUE

N S TART=N S TRT
I F ( N S T A R T . L E . 0 ) N S T A R T = 2 0 0 1  
N S T A R T = 2 * ( N S T A R T / 2 ) + 1  
DO 3 0 0  N = 1 , NWRD 
NTE MP= NST AR T/ NBA SE  
N R A N ( N ) = N S  TART-NTEMP * NBASE
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3 0 0  NSTART=NTEMP  
RETURN 
END
SUBROUTINE URAND(FRAN)
COMMON / M I R N G / N R A N ( 1 0 ) , N G E N ( 1 0 ) , NWRD, N B A S E , MMOD, F N B A S E , FMOD 
D IM E N SI O N  N S U M ( I O )
DO 3 0  I S = 1 , NWRD 

3 0  N S U M ( I S ) = 0
DO 1 I G = 1 , NWRD 
N 2 = N W R D -I G + 1  
DO 1 I R = 1 , N 2  
I S = I R + I G - 1
NPROD=NRAN(IR)*NGEN(IG)
NHPROD=NPROD/NBASE - 
LPROD=NPROD-NHPROD * NBASE  
N S U M ( I S ) = N S U M ( I S ) +LPROD
I F ( I S . L T . N W R D ) N S U M ( I S + 1 ) = N S U M ( I S + 1 ) +NHPROD 

1 CONTINUE  
N2 =NW RD-1  
DO 5 I S = 1 , N2  
N CARRY=N S U M ( I S ) / N B A S E  
N S U M ( I S ) = N S U M ( I S ) - N C A R R Y  * NBASE  
N S U M ( I S + 1 ) = N S U M ( I S + 1 ) + N C A R R Y  

5 CONTINUE
NSUM(NWRD)=NSUM(NWRD)-MMOD*(NSUM(NWRD)/MMOD)
DO 2 0  I S = 1 , NWRD 

2 0  N R A N ( I S ) = N S U M ( I S )
FRAN =N S UM ( 1 )
DO 1 0  I S = 2 , NWRD 

1 0  F R A N = F R A N / F N B A S E + N S U M ( I S )
FRAN=FRAN/FMOD
RETURN
END
SUBROUTINE N G A U S S ( X , R N , A M , S D )
COMMON / M I R N G / N R A N ( 1 0 ) , N G E N ( 1 0 ) , NWRD,NBAS E,M MOD, FNBAS E,F MOD  
I F ( S D . N E . 0 . 0 ) GO TO 3 0  
X=AM 
RETURN 

3 0  S U M = 0 . 0
DO 2 0  1 = 1 , 1 0 0  
CALL URAND(R)

2 0  SUM=SUM+R
R N = ( S U M - 5 0 . ) / S Q R T ( 2 5 . / 3 . )
X=RN*SD+AM
RETURN
END
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Simulation Program for Investigating the Effect of Arrangement 
of Concentrations in Time

ONLY TIME 1 I S  F I X E D  

PROGRAM DATA1

CHAN 2 0  -  I N I T I A L  START ING VALUES  
CHAN 3 0  -  NONMEM DATA F I L E  
CHAN 4 0  -  M I N IT A B  DATA F I L E

INTEGER RAN,GEN,BASE
COMMON / M I R N G / R A N ( 1 0 ) , G E N ( 1 0 ) , NWRD ,B ASE ,M MOD ,FBA SE ,FM OD  
D IM EN SI O N T ( 2 0 )

CLBAR =  POPN CL VBAR =  POPN VD
SDCL =  POPN SD CL SDV =  POPN SD VD
SDC = PROP ERROR I N  CONC DOSE =  DOSE 
NT =  NO OF TIMES NR = NO OF R A T S / T I M E
NSTART =  RANDOM SEEDS

R E A D ( 2 0 , * )  NSTART
R M A X = 2 . 0 * * 1 5 - 1 . 0
MAXINT=RMAX
CALL RANSET(MAXINT,NSTART)
R E A D ( 2 0 , * )  C L B A R , S D C L , V B A R , S D V , S D C , D O S E , N T , NR  
R E A D ( 2 0 , * )  ( T ( I ) , 1 = 1 , NT)
DO 5 0 0  1 = 1 , NT 
DO 1 0 0  J = 1 , NR 

5  CALL NGAUSS ( C L , R N , C L B A R , S D C L )
I F  ( C L . L E . 0 . 0 )  GOTO 5  

1 0  CALL NGAUSS (V ,  RN,  VBAR,  SDV)
I F  ( V . L E . 0 . 0 )  GOTO 1 0
K E = C L / V
DV=DOSE/V
CALL URAND (Tl)
I F  ( I . E Q . 1 )  GO TO 3 0  
R E = 1 5  
R M = - 7 . 5  
GO TO 3 5  

3 0  R E = 0  
RM=0

3 5  T l =  T 1 * R E  + T ( I )  + RM 
E K E T = E X P W C H (- K E * T 1 )
C1=D V*EK ET
S D C 1 = S D C * C 1
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CALL NGAUSS ( C C , R N , C l , S D C 1 )
C1=C C
I F ( C l . L T . 0 . 1 . O R . C l . G T . 5 0 . 0 )  GOTO 5  
NN= ( ( 1 - 1 ) *NR) +J 
R I = F L O A T  (NN)
W R I T E ( 3 0 , 2 0 )  R I , T l , C l  
W R I T E ( 4 0 , 2 5 )  R I , C L , V , T l , C l  

1 0 0  CONTINUE  
5 0 0  CONTINUE  

2 0  FORMAT ( 3 F 8 . 2 )
2 5  FORMAT ( 5 F 8 . 2 )

STOP
END
FUNCTION EXPWCH(XX)
I F ( X X . L E . - 5 0 . )  X X = - 5 0 .
I F ( X X . G E . 5 0 . )  X X = 5 0 .
EXPWCH=EXP(XX)
RETURN
END
SUBROUTINE RANSET(MAXINT,NSTRT)
COMMON / M I R N G / N R A N ( 1 0 ) , N G E N ( 1 0 ) , NWRD,NBASE, MMOD,FN BAS E,F MOD
M A X I = M A X I N T /4
I B = 0
N B A S E = 1

9 9  I F  ( N B A S E . G T . M A X I ) G O  TO 1 0 0  
NBASE=NBASE  * 4 
I B = I B + 1  
GO TO 9 9

1 0 0  N B A S E = 2 * * I B  
FNB AS E= NB ASE  
N W R D = 4 7 / I B + 1  
N R E M = 4 7 - I B * ( N W R D - 1 )
MMOD= 2  * *NREM 
FMOD=MMOD
DO 1 0 1  N = l , 1 0  
N R A N ( N ) = 0

1 0 1  N G E N ( N ) = 0  
N G E N ( 1 ) = 5
DO 2 0 0  1 = 1 , 1 4
NCARRY= 0
DO 1 9 0  N = 1 , NWRD
N G E N ( N ) = N G E N ( N ) * 5 + N C A R R Y
NCARRY=0
I F ( N G E N ( N ) . L T . N B A S E ) G O  TO 1 9 0  
N C A R R Y = N G E N ( N ) / N B A S E  
N G E N ( N ) = N G E N ( N ) - N B A S E  *NCARRY 

1 9 0  CONTINUE  
2 0 0  CONTINUE

NSTART=NSTRT
I F ( N S T A R T . L E . 0 ) N S T A R T = 2 0 0 1  
N S T A R T = 2 * ( N S T A R T / 2 ) + 1  
DO 3 0 0  N = 1 , NWRD 
NTE MP=N ST ART/ NB ASE  
N R A N ( N ) = N  S TART-NTEMP *NBASE  

3 0 0  NSTART=NTEMP
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RETURN
END
SUBROUTINE URAND(FRAN)
COMMON / M I R N G / N R A N ( 1 0 ) , N G E N ( 1 0 ) , NWRD, N B A S E , MMOD, F N B A S E , FMOD 
DIM E N SI O N  N S U M ( 1 0 )
DO 3 0  I S = 1 , NWRD 

3 0  N S U M ( I S ) = 0
DO 1 I G = 1 , NWRD 
N 2 = N W R D - I G + 1  
DO 1 I R = 1 , N 2  
I S = I R + I G - 1
N P R O D = N R A N ( I R ) * N G E N ( I G )
NHPROD=NPROD/NBASE  
LPROD=NPROD-NHPROD*NBASE  
N S U M ( I S ) = N S U M ( I S ) + L P R O D
I F ( I S . L T . N W R D ) N S U M ( I S + 1 ) = N S U M ( I S + 1 ) + N H P R O D  

1 CONTINUE  
N 2 =NW RD-1  
DO 5 I S = 1 , N 2  
NCARRY=NSUM ( I S )  / N B A S E  
NSUM ( I S )  =NSUM ( I S )  -NCARRY*NBAS E  
N S U M ( I S + 1 ) = N S U M ( I S + 1 ) + N C A R R Y  

5  CONTINUE
NSUM(NWRD)=NSUM(NWRD)-MMOD*(NSUM(NWRD)/MMOD)
DO 2 0  I S = 1 , NWRD 

2 0  N R A N ( I S ) = N S U M ( I S )
FR AN=NSU M( 1 )
DO 1 0  I S = 2 , NWRD 

1 0  F R A N = F R A N / F N B A S E + N S U M ( I S )
FRAN=FRAN/FMOD
RETURN
END
SUBROUTINE N G A U S S ( X , R N , A M , S D )
COMMON / M I R N G / N R A N ( 1 0 ) , N G E N ( 1 0 ) , NWRD, N B A S E , MMOD, F N B A S E , FMOD 
I F ( S D . N E . 0 . 0 ) GO TO 3 0  
X=AM 
RETURN 

3 0  S U M = 0 . 0
DO 2 0  1 = 1 , 1 0 0  
CALL URAND(R)

2 0  SUM=SUM+R
R N = ( S U M - 5 0 . ) / S Q R T ( 2 5 . / 3 . )
X=RN*SD+AM
RETURN
END
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Simulation Pro9ram Used to Investigate the Effect of Sampling 
An Animal Twice on Parameter Estimation

THIS ASSUMES 10 TIMES
1ST TWO FIXED, REST RANDOMLY WITHIN 30MINS
THE VALUE PREVIOUSLY THE NO OF ANIMALS/TIME 
IS NOW THE NO OF ANIMALS/BLOCK 
EACH BLOCK HAS CONC TAKEN AT A DIFFERENT 
PAIR OF TIMES
I.E. 1 & 6, 2 & 7, 3 & 8, 4 & 9, 5 & 10

PROGRAM DATA3
CHAN 20 - INITIAL STARTING VALUES 
CHAN 30 - NONMEM DATA FILE 
CHAN 40 - MINITAB DATA FILE
INTEGER RAN,GEN,BASE
COMMON /MIRNG/RAN(10),GEN(10),NWRD,BASE,MMOD,FBASE,FMOD 
DIMENSION T (20)
CLBAR = POPN CL VBAR = POPN VD
SDCL = POPN SD CL SDV = POPN SD VD
SDC = PROP ERROR IN CONC DOSE = DOSE 
NT = NO OF TIMES NR = NO OF RATS/TIME
NSTART = RANDOM SEEDS
READ(20,*) NSTART 
RMAX=2.0**15-1.0 
MAXINT=RMAX
CALL RANSET(MAXINT,NSTART)
READ(20,*) CLBAR,SDCL,VBAR,SDV,SDC,DOSE,NT,NR 
READ(20,*) (T(I),1=1,NT)
NBL=NT/2 
DO 500 1=1,NBL 
DO 100 J=1,NR 

5 CALL NGAUSS (CL,RN,CLBAR,SDCL)
IF (CL.LE.0.0) GOTO 5 

10 CALL NGAUSS (V,RN,VBAR,SDV)
IF (V.LE.0.0) GOTO 10
KE=CL/V
DV=DOSE/V
CALL URAND (Tl)
IF(I .E Q .1.OR.I .EQ .2) GO TO 30
RE=15
RM=-7.5
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GO TO 35 
30 RE=0 

RM=0
35 Tl= T1*RE + T(I) + RM 

EKET=EXPWCH(-KE*T1)
C1=DV*EKET
SDC1=SDC*C1
CALL NGAUSS (CC,RN,Cl,SDC1)
C1=CC
IF (Cl.LT.0.1.OR.Cl.GT.50.0) GO TO 5 
11=1+5
CALL URAND (T2)
IF (II.EQ.1.OR.II.EQ.2) GO TO 300 
RE=15 
RM=-7.5 
GO TO 305 

300 RE=0 
RM=0

305 T2= T2*RE + T(II) + RM 
EKET=EXPWCH(-KE*T2)
C2=DV*EKET
SDC2=SDC*C2
CALL NGAUSS (CC,RN,C2,SDC2)
C2=CC
IF(C2.LT.0.1.OR.C2.GT.50.0) GO TO 5 
NN=((1-1)*NBL)+J 
RI=FLOAT (NN)
WRITE(30,20) RI,Tl,Cl,RI,T2,C2 
WRITE(40,25) RI,CL,V,Tl,Cl,T2,C2 

100 CONTINUE 
500 CONTINUE 
20 FORMAT (3F8.2,/,3F8.2)
25 FORMAT (7F8.2)

STOP
END
FUNCTION EXPWCH(XX)
IF (XX.LE.-50.) XX=-50.
IF(XX.GE.50.) XX=50.
EXPWCH=EXP(XX)
RETURN
END
SUBROUTINE RANSET(MAXINT,NSTRT)
COMMON /MIRNG/NRAN(10),NGEN(10),NWRD,NBASE,MMOD,FNBASE,FMOD
MAXI=MAXINT/4
IB=0
NBASE=1

99 IF(NBASE.GT.MAXI)GO TO 100 
NBASE=NBASE * 4 
IB=IB+1 
GO TO 99 

100 NBASE=2**IB 
FNBASE=NBASE 
NWRD=47/IB+1 
NREM=47-IB*(NWRD-1)
MMOD=2 * *NREM
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FMOD=MMOD 
DO 101 N=1,10 
NRAN(N)=0 

101 NGEN(N)=0 
NGEN(1)=5 
DO 200 1=1,14 
NCARRY=0 
DO 190 N=1,NWRD 
NGEN (N)=NGEN(N)*5+NCARRY 
NCARRY=0
IF (NGEN (N) .LT.NBASE)GO TO 190 
NCARRY=NGEN(N)/NBASE 
NGEN(N)=NGEN(N)-NBASE*NCARRY 

190 CONTINUE 
200 CONTINUE

NSTART=NSTRT
IF(NSTART.LE.0)NSTART=2001 
NSTART=2*(NSTART/2)+1 
DO 300 N=1,NWRD 
NTEMP =N S TART/NBASE 
NRAN(N)=NSTART-NTEMP*NBASE 

300 NSTART=NTEMP 
RETURN 
END
SUBROUTINE URAND(FRAN)
COMMON /MIRNG/NRAN(10),NGEN(10)/NWRD,NBASE,MMOD,FNBASE/FMOD 
DIMENSION NSUM(10)
DO 30 IS=1,NWRD 

30 NSUM(IS)=0
DO 1 IG=1,NWRD 
N2=NWRD-IG+1 
DO 1 IR=1,N2 
IS=IR+IG-1
NPROD=NRAN(IR)*NGEN(IG)
NHPROD=NPROD/NBASE 
LPROD=NPROD-NHPROD*NBASE 
NSUM(IS)=NSUM(IS)+LPROD
IF(IS.LT.NWRD)NSUM(IS+1)=NSUM(IS+1)+NHPROD 

1 CONTINUE 
N2=NWRD-1 
DO 5 IS=1,N2 
NCARRY=NSUM (IS) /NBASE 
NSUM (IS) =NSUM (IS) -NCARRY*NBASE 
NSUM(IS+1)=NSUM(IS+1)+NCARRY 

5 CONTINUE
NSUM(NWRD)=NSUM(NWRD)-MMOD*(NSUM(NWRD)/MMOD)
DO 20 IS=1,NWRD 

20 NRAN(IS)=NSUM(IS)
FRAN=NSUM(1)
DO 10 IS=2,NWRD 

10 FRAN=FRAN/FNBASE+NSUM(IS)
FRAN=FRAN/FMOD
RETURN
END
SUBROUTINE NGAUSS(X,RN,AM,SD)
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COMMON /MIRNG/NRAN(10),NGEN(10),NWRD,NBASE,MMOD,FNBASE,FMOD 
IF(SD.NE.0.0)GO TO 30 
X=AM 
RETURN 

30 SUM=0.0
DO 20 1=1,100 
CALL URAND(R)

20 SUM=SUM+R
RN=(SUM-50.)/SQRT(25./3.)
X=RN*SD+AM
RETURN
END
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Simulation Program for the 2 Compartment Model

C SAMPLING AT SET TIMES
C

PROGRAM DATA4
C
C CHAN 20 - INITIAL STARTING VALUES
C CHAN 30 - NONMEM DATA FILE
C CHAN 40 - MINITAB DATA FILE
C

INTEGER RAN,GEN,BASE
COMMON /MIRNG/RAN(10),GEN(10),NWRD,BASE,MMOD,FBASE,FMOD 
DIMENSION T (20)

C
C ABAR=POPN A BBAR=POPN B ALBAR=POPN AL
C SDA=POPN SD A SDB=POPN SD B SDAL=POPN SD AL
C BEBAR=POPN BE SDBE=POPN SD BE
C SDC = PROP ERROR IN CONC DOSE = DOSE
C NT = NO OF TIMES NR = NO OF RATS/TIME
C NSTART = RANDOM SEEDS
C

READ(20,*) NSTART 
RMAX=2,0**15-1.0 
MAXINT=RMAX
CALL RANSET(MAXINT,NSTART)
READ(20,*) ABAR,SDA,ALBAR,SDAL,BBAR,SDB,BEBAR,SDBE,SDC, 

+DOSE,NT,NR 
READ(20,*) (T(I),1=1,NT)
DO 500 1=1,NT 
DO 100 J=1,NR 

5 CALL NGAUSS (A,RN,ABAR,SDA)
IF (A.LE.0.0) GO TO 5 

10 CALL NGAUSS (AL,RN,ALBAR,SDAL)
IF (AL.LE.0.0) GO TO 10 

15 CALL NGAUSS (B,RN,BBAR,SDB)
IF (B.LE.0.0) GO TO 15 

30 CALL NGAUSS(BE,RN,BEBAR,SDBE)
IF (BE.LE.0.0) GO TO 30 
CALL URAND(Tl)
IF(I .E Q .1.OR.I .EQ .2) GO TO 35 
RE=0.25 
RM=-0.125 
GO TO 40 

35 RE=0 
RM=0

40 Tl= T1*RE + T(I) + RM 
EALT=EXPWCH(-AL*T1)
EBET=EXPWCH(-BE * T1)
C1=A*EALT+B*EBET
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SDC1=SDC*C1
CALL NGAUSS (CC,RN,Cl,SDC1)
C1=CC
IF(Cl.LT.10.0.OR.Cl.GT.20000.0) GO TO 5 
NN= ((I—1)*NR) +J 
RI=FLOAT (NN)
WRITE(30,20) RI,Tl,Cl 
WRITE(40,25) RI,A,AL,B,BE,Tl,Cl 

100 CONTINUE 
500 CONTINUE 
20 FORMAT (3F10.2)
25 FORMAT (7F10.2)

STOP
END
FUNCTION EXPWCH(XX)
IF(XX.LE.-50.) XX=-50.
IF(XX.GE.50.) XX=50.
EXPWCH=EXP(XX)
RETURN
END
SUBROUTINE RANSET(MAXINT,NSTRT)
COMMON /MIRNG/NRAN(10),NGEN(10),NWRD,NBASE,MMOD,FNBASE,FMOD
MAXI=MAXINT/4
IB=0
NBASE=1

99 IF(NBASE.GT.MAXI)GO TO 100 
NBAS E=NBAS E * 4 
IB=IB+1 
GO TO 99

100 NBASE=2**IB 
FNBASE=NBASE 
NWRD=47/IB+1 
NREM=47-IB*(NWRD-1)
MMOD=2 * *NREM 
FMOD=MMOD
DO 101 N=l,10 
NRAN(N)=0

101 NGEN(N)=0 
NGEN(1)=5
DO 200 1=1,14
NCARRY=0
DO 190 N=1,NWRD
NGEN(N)=NGEN(N)*5+NCARRY
NCARRY=0
IF(NGEN(N).LT.NBASE)GO TO 190 •
NCARRY=NGEN(N)/NBASE 
NGEN(N)=NGEN(N)-NBASE*NCARRY 

190 CONTINUE 
200 CONTINUE

NSTART=NSTRT
IF(NSTART.LE.0)NSTART=2001
NSTART=2*(NSTART/2)+1
DO 300 N=1,NWRD
NTEMP=NSTART/NBASE
NRAN(N)=NSTART-NTEMP*NBASE
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300 NSTART=NTEMP 
RETURN 
END
SUBROUTINE URAND(FRAN)
COMMON /MIRNG/NRAN(10),NGEN(10),NWRD,NBASE,MMOD,FNBASE,FMOD 
DIMENSION NSUM(10)
DO 30 IS=1/NWRD 

30 NSUM(IS)=0
DO 1 IG=1,NWRD 
N2=NWRD-IG+1 
DO 1 IR=1,N2 
IS=IR+IG-1
NPROD=NRAN(IR)*NGEN(IG)
NHPROD=NPROD/NBASE 
LPROD=NPROD-NHPROD*NBASE 
NSUM(IS)=NSUM(IS)+LPROD
IF(IS.LT.NWRD)NSUM(IS+1)=NSUM(IS+1)+NHPROD 

1 CONTINUE 
N2=NWRD-1 
DO 5 IS=1,N2 
NCARRY=NSUM(IS)/NBASE 
NSUM(IS)=NSUM(IS)-NCARRY*NBASE 
NSUM(IS+1)=NSUM(IS+1)+NCARRY 

5 CONTINUE
NSUM(NWRD)=NSUM(NWRD)-MMOD*(NSUM(NWRD)/MMOD)
DO 20 IS=1,NWRD 

20 NRAN(IS)=NSUM(IS)
FRAN=NSUM(1)
DO 10 IS=2,NWRD 

10 FRAN=FRAN/FNBASE+NSUM(IS)
FRAN=FRAN/FMOD
RETURN
END
SUBROUTINE NGAUSS(X,RN,AM,SD)
COMMON /MIRNG/NRAN(10),NGEN(10),NWRD,NBASE,MMOD,FNBASE,FMOD 
IF(SD.NE.0.0)GO TO 30 
X=AM 
RETURN 

30 SUM=0.0
DO 20 1=1,100 
CALL URAND(R)

20 SUM=SUM+R
RN=(SUM-50.)/SQRT(25./3.)
X=RN*SD+AM
RETURN
END
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Simulation Program for the Reparameterized 2 Compartment Model

C SAMPLING AT SET TIMES
C

PROGRAM DATA9
C
C CHAN 20 - INITIAL STARTING VALUES
C CHAN 30 - NONMEM DATA FILE
C CHAN 40 - MINITAB DATA FILE
C

INTEGER RAN,GEN,BASE
COMMON /MIRNG/RAN(10),GEN(10),NWRD,BASE,MMOD,FBASE,FMOD
DIMENSION T (20)

C
C CLBAR=POPN CL VlBAR=POPN VI P12BAR=POPN P12
C SDCL=POPN SD CL SDV1=P0PN SD VI SDP12=POPN SD P12
C P21BAR=POPN P21 SDP21=POPN SD P21
C SDC = PROP ERROR IN CONC DOSE = DOSE
C NT = NO OF TIMES NR = NO OF RATS/TIME
C NSTART = RANDOM SEEDS
C

READ(20,*) NSTART
RMAX=2.0**15-1.0
MAXINT=RMAX
CALL RANSET(MAXINT,NSTART)
READ(20,*) CLBAR,SDCL,V1BAR,SDV1,P12BAR,SDP12,P21BAR,SDP21, 

+SDC,DOSE,NT,NR 
READ(20,*) (T (I),1=1,NT)
DO 500 1=1,NT 
DO 100 J=1,NR 

5 CALL NGAUSS (CL,RN,CLBAR,SDCL)
IF (CL.LE.0.0) GO TO 5 

10 CALL NGAUSS (VI,RN,V1BAR,SDV1)
IF (V1.LE.0.0) GO TO 10 

15 CALL NGAUSS (P12,RN,P12BAR,SDP12)
IF (P12.LE.0.0) GO TO 15 

30 CALL NGAUSS(P21,RN,P21BAR,SDP21)
IF (P21.LE.0.0) GO TO 30 
CALL URAND(Tl)
IF(I .E Q .1.OR.I .E Q .2) GO TO 35 
RE=0.25 
RM=-0.125 
GO TO 40 

35 RE=0 
RM=0

40 Tl= T1*RE + T(I) + RM 
P=P12+P21+CL/V1 
Q=SQRT(P**2-4.*P21*CL/V1)
A=(DOSE/VI)*(0.5*(P/Q+l)-P21/Q)
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B=(DOSE/VI)*(P21/Q-0.5*(P/Q-1.0) )
EALT=EXPWCH(-0.5*(P+Q)*T1)
EBET=EXPWCH(-0.5*(P-Q)*T1)
F=A*EALT+B*EBET
C1=A*EALT+B*EBET
SDC1=SDC*C1
CALL NGAUSS (CC,RN,Cl,SDC1)
C1=CC
IF (Cl.LT.10.0.OR.Cl.GT.20000.0) GO TO 5 
NN= ( (I — 1)*NR) +J 
RI=FLOAT (NN)
WRITE(30,20) RI,Tl/Cl 
WRITE(40,25) RI,CL,VI,P12,P21,Tl,Cl 

100 CONTINUE 
500 CONTINUE 
20 FORMAT (3F10.2)
25 FORMAT (7F10.2)

STOP
END
FUNCTION EXPWCH(XX)
IF(XX.LE.-50.) XX=-50.
IF(XX.GE.50.) XX=50.
EXPWCH=EXP(XX)
RETURN
END
SUBROUTINE RANSET(MAXINT,NSTRT)
COMMON /MIRNG/NRAN(10),NGEN(10),NWRD,NBASE,MMOD,FNBASE,FMOD
MAXI=MAXINT/4
IB=0
NBASE=1

99 IF(NBASE.GT.MAXI)GO TO 100 
NBASE=NBASE * 4 
IB=IB+1 
GO TO 99

100 NBASE=2**IB 
FNBASE=NBASE 
NWRD=47/IB+1 
NREM=47-IB*(NWRD-1)
MMOD=2 * *NREM 
FMOD=MMOD
DO 101 N=1,10 
NRAN(N)=0

101 NGEN(N)=0 
NGEN(1)=5
DO 200 1=1,14
NCARRY=0
DO 190 N=1,NWRD
NGEN(N)=NGEN(N)*5+NCARRY
NCARRY=0
IF(NGEN(N).LT.NBASE)GO TO 190 
NCARRY=NGEN(N)/NBASE 
NGEN(N)=NGEN(N)-NBASE*NCARRY 

190 CONTINUE 
200 CONTINUE

N S TART=N S TRT
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IF(NSTART.LE.0)NSTART=2001 
NSTART=2*(NSTART/2)+1 
DO 300 N=1,NWRD 
NTEMP=NS TART/NBASE 
NRAN(N)=NS TART-NTEMP *NBASE 

300 NSTART=NTEMP 
RETURN 
END
SUBROUTINE URAND(FRAN)
COMMON /MIRNG/NRAN(10),NGEN(10)/NWRD/NBASE,MMOD,FNBASE,FMOD 
DIMENSION NSUM(10)
DO 30 IS=1,NWRD 

30 NSUM(IS)=0
DO 1 IG=1,NWRD 
N2=NWRD-IG+1 
DO 1 IR=1,N2 
IS=IR+IG-1
NPROD=NRAN(IR)*NGEN(IG)
NHPROD=NPROD/NBASE 
LPROD=NPROD-NHPROD*NBASE 
NSUM(IS)=NSUM(IS)+LPROD
IF(IS.LT.NWRD)NSUM(IS+1)=NSUM(IS+1)+NHPROD 

1 CONTINUE 
N2=NWRD-1 
DO 5 IS=1/N2 
NCARRY=NSUM(IS)/NBASE 
NSUM(IS)=NSUM(IS)-NCARRY*NBASE 
NSUM(IS+1)=NSUM(IS+1)+NCARRY 

5 CONTINUE
NSUM(NWRD)=NSUM(NWRD)-MMOD*(NSUM(NWRD)/MMOD)
DO 20 IS=1,NWRD 

20 NRAN(IS)=NSUM(IS)
FRAN=NSUM(1)
DO 10 IS=2,NWRD 

10 FRAN=FRAN/FNBASE+NSUM(IS)
FRAN=FRAN/FMOD
RETURN
END
SUBROUTINE NGAUSS ( X , RN,AM,SD)
COMMON /MIRNG/NRAN(10)/NGEN(10),NWRD,NBASEtMMODtFNBASE,FMOD 
IF(SD.N E .0.0)GO TO 30 
X=AM 
RETURN 

30 SUM=0.0
DO 20 1=1/100 
CALL URAND(R)

20 SUM=SUM+R
RN=(SUM-50.)/SQRT(25./3.)
X=RN*SD+AM
RETURN
END
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