

https://theses.gla.ac.uk/

Theses Digitisation:

https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/

This is a digitised version of the original print thesis.

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study,

without prior permission or charge

This work cannot be reproduced or quoted extensively from without first

obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any

format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author,

title, awarding institution and date of the thesis must be given

Enlighten: Theses

https://theses.gla.ac.uk/

research-enlighten@glasgow.ac.uk

http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk

A Network Model for Adaptive Information
Retrieval

by
Fabio A. Crestani

Department of Computing Science
Faculty of Science

University of Glasgow
Glasgow

being a thesis submitted for the degree of Master of Science

© Fabio A. Crest ani, 1992

March 1992

ProQuest Number: 11011438

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 11011438

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

A cknow ledgem ents

I would like to thank my supervisor, Professor Keith van Rijsbergen, for helping me in the
difficult task of doing research in Information Retrieval. His guidance during the research
and writing up of my thesis were invaluable.

I must also thank Professor Maristella Agosti, of the University of Padova. It is thanks
to her encouragement if I began doing research, and I would not have even started this
thesis without her encouragement and help.

I would also like to thank the members of staff and fellow post-graduate students of the
Department of Computing Science at the University of Glasgow whose helpful suggestions
were a great asset. Thanks, in particular, to Ruben Leon and David Kerr for proof reading.

Finally I would like to thank my mother, father, family and friends for their support
and patience during my career as a student at the University of Glasgow. In particular
I would like to thank the community of Italian students in Glasgow for making my stay
much more enjoyable than I first thought.

A bstract

This thesis presents a network model which can be used to represent Associative Informa
tion Retrieval applications at a conceptual level. The model presents interesting character
istics of adaptability and it has been used to model both traditional and knowledge based
Information Retrieval applications. Moreover, three different processing frameworks which
can be used to implement the conceptual model are presented. They provide three different
ways of using domain knowledge to adapt the user formulated query to the characteristics
of a specific application domain using the domain knowledge stored in a sub-network. The
advantages and drawbacks of these three adaptive retrieval strategies are pointed out and
discussed.

The thesis also reports the results of an experimental investigation into the effective
ness of the adaptive retrieval given by a processing framework based on Neural Networks.
This processing framework makes use of the learning and generalisation capabilities of the
Backpropagation learning procedure for Neural Networks to build up and use application
domain knowledge in the form of a sub-symbolic knowledge representation. The knowledge
is acquired from examples of queries and relevant documents of the collection in use. In the
tests reported in this thesis the Cranfield document collection has been used. Three differ
ent learning strategies are introduced and analysed. Their results in terms of learning and
generalisation of the application domain knowledge are studied from an Information Re
trieval point of view. Their retrieval results are studied and compared with those obtained
by a traditional retrieval approach.

The thesis concludes with a critical analysis of the results obtained in the experimental
investigation and with a critical view of the operational effectiveness of such an approach.

! C ontents
I

i
iI

1 In trodu ction 2
1.1 The classical approach to Information R e tr ie v a l ... 2
1.2 Intelligent I R ... 6

1.2.1 IR and expert s y s te m s ... 7
1.2.2 IR and natural language p rocessing .. 7
1.2.3 IR and knowledge re p re se n ta tio n ... 8

1.3 Knowledge Based I R .. 9
1.4 Application domain knowledge representation in I R .. 10
1.5 New approaches to Knowledge R ep resen ta tio n .. 14
1.6 Associative and Adaptive I R ... 15

2 A conceptual m odel for A ssociative Inform ation R etrieval 18
2.1 The need of a conceptual m o d e l .. 18
2.2 The basic network s t r u c tu r e ... 19
2.3 Conceptual modelling of IR traditional ap p lica tio n s ... 23
2.4 Conceptual modelling of a knowledge based IR a p p lic a tio n 26

2.4.1 The knowledge network s t r u c tu r e ... 27
2.4.2 The processing fram ew o rk .. 31

3 A ssociative Inform ation R etrieval 36
3.1 Associative processing fram eworks... 36
3.2 Spreading A c tiv a tio n .. 36

3.2.1 Pure Spreading A c tiv a tio n ... 37
3.2.2 Constrained Spreading A ctiv atio n .. 41
3.2.3 Spreading Activation with feed b ack ... 43
3.2.4 Spreading activation and I R .. 43

3.3 Artificial Neural N e tw o rk s .. 46
3.3.1 Biological neurons and netw orks... 46
3.3.2 Simulated neurons and netw orks... 47

3.4 Local and distributed rep resen ta tions... 50
3.5 Learning and memory ... 51
3.6 Neural Networks learning p ro c e d u re s ... 53

3.6.1 B ack p ro p ag a tio n .. 56

iii

3.6.2 Boltzmann M achine... 59
3.7 Neural Networks and I R .. 61

4 A dap tive Inform ation R etrieval 70
4.1 Adaptation ... 70

4.1.1 Query a d a p ta tio n .. 74
4.1.2 Document space a d a p ta t io n .. 75

4.2 Use of a NN as an adaptation to o l ... 75

5 A n adaptive stra tegy for IR: experim ental evaluation 77
5.1 The simulation en v iro n m en t... 77

5.1.1 The ASLIB Cranfield Test C o llec tion .. 77
5.1.2 The PlaNet neural network s im u la to r .. 78

5.2 The simulation s y s te m ... 80
5.3 The evaluation c r i t e r ia ... 84
5.4 A Connectionist Knowledge Representation S tru c tu re 87

5.4.1 The NN m o d e l ... 89
5.4.2 The structure of the patterns ... 91
5.4.3 The internal representation .. 92
5.4.4 The learning p a ra m e te rs ... 93

5.5 Subsymbolic learning of domain knowledge and query adaptation 96
5.5.1 Total le a rn in g .. 98
5.5.2 Horizontal le a rn in g ... 105
5.5.3 Vertical learning .. 110

6 C onclusions 115
6.1 Conclusions from the experimental r e s u l t s ... 115
6.2 Operational Adaptive Associative I R ... 117
6.3 Future research w o r k .. 118

A A pp en d ix 119
A .l Cranfield test d a t a .. 119
A.2 Query P rocessor.. 120
A.3 NN s im u la to r .. 122
A.4 M a tc h e r .. 125
A.5 Document processor .. 132

B ibliography 134

1

C hapter 1

Introduction

“Many of the techniques I shall discuss will not have proven
| themselves incontrovertibly superior to all other techniques,

but they have promise and their promise will only be realized
when they are understood.”
[K. van Rijsbergen, 1979]

j 1.1 T h e c la ssica l ap p roach to In form ation R etr iev a l

: The Information Retrieval (IR) part of an information system is the part which is concerned
' with the management of a databank of unformatted data. This is usually called the IR
; application. An IR application is related to the storage, management and retrieval of
weakly structured or unstructured data.

The objects handled by an IR application are usually called “documents”. The term
j document is meant to represent any information bearer such as a book, a report or a
i letter (textual media) or an image or a drawing (visual media). The software tool which
automatically manages these documents is called Information Retrieval System (IRS). The
task of an IRS is to help a user to find, in a collection of documents, those documents which
contain the information the user is looking for, that is providing help in satisfying the user’s
information need.

To give a clue to the size of the task, it must be noticed that usually these collections
of documents contain several thousands or even millions of documents.

Frequently IR is confused with database (usually referred as DB or DBMS, database
i management system) technology. Figure 1.1 summarises some of the major differences
; between IR and DB technology; these characteristics have been identified and described
1 by van Rijsbergen in [1]. The fundamental difference between IR and DB is that IR
systems usually provide only references to or a description of the data they manage, while
a DBMS provides the actual data. This is not just because of limitations imposed by
current technology. Even when full text IR systems will become available, the task of
IR will still be mainly to point at documents. Given this fundamental difference, an IRS
usually manages only descriptions of the informative content of documents (books, reports,

2

Information Retrieval Database
Matching Partial match Exact match
Inference Induction Deduction
Model Probabilistic Deterministic
Classification Polythetic Monothetic
Query Language Natural Artificial
Query Specification Incomplete Complete
Items Wanted Relevant Matching
Error Response Insensitive Sensitive

Figure 1.1: Differences between IR and DB

I etc.). The basic element of these descriptions is called descriptor. A schematic view of IR
: is presented in Figure 1.2.
' Furthermore, this difference has several consequences. First, the users’ queries to an
| IRS are usually more vague. They are usually in the form: “I want documents about ...” ,

while users of a DB want facts, such as: “I want the price of the product abc”. Second,
IR systems retrieve documents in a probabilistic way, while DB retrievals do it mainly in
a deterministic way. This means that an IRS retrieves documents that are likely to be
considered relevant by the user; that is, they are likely to satisfy the user’s information
need. On the other hand, DB facts retrieved in response to a query are always considered
to be a complete and true answer to the query. In IR, it is im portant to remember that
the perceived relevance of a document varies dramatically across users, and even with one
user at different times. This introduces the third consequence, which is related to the
criteria used to evaluate the performance of an IRS. The evaluation of an IRS is more or
less related to its “utility” , that is how helpful the system is to a user. It is easy to see that

I this is not a well specified measure. On the other hand, DBMS are evaluated in accordance
with well specified and standardised performances measures.

One of the most im portant problems of IR is related to the representation of the doc
ument informative content. In [1], p.29-30, van Rijsbergen provides a clear view of the
problem:

There are two conflicting ways of looking at the problem of characterising doc
uments for retrieval. One is to characterise a document through a representa
tion of its contents, regardless of the way in which other documents may be
described. This might be. called representation without discrimination. The
other way is to insist that in characterising a document one is discriminating it
from all, or potentially all, other documents in the collection. This we might call
discrimination without representation (omissis). In practise one seeks some sort
of optimal tradeoff between representation and discrimination (omissis). This
emphasis on representation leads to what one might call a document orienta
tion: that is a total preoccupation with modelling what the document is about
(omissis). The emphasis on discrimination leads to a query orientation.

3

real world
level

representation level

DOCUMENT:
informative
content

evaluation of
the similarity
(matching)

USER:
information need

representation
of the informative
content
(doc. descriptors)

representation
of the information
need: QUERY
(query descriptors)

Figure 1.2: A schematic view of IR

The Associative and Adaptive approach to IR presented in this thesis attem pts to com-
I promise between the goals of representation and discrimination using a permanent structure
: representing documents and keywords and a dynamic spreading of activation generated by
| any one query on the structure generated. Furthermore, the representation structure can
I adapt itself in order to provide better discrimination power using information from the
user and from a control structure on the spreading of activation. In this way, repeated

i use of the system will bring about changes in the representation structure of documents,
; allowing it to adapt itself to the user perception of the documents’ contents and therefore
| to the user’s information need. In this sense, this approach provides a good compromise
I between representation and discrimination. While the initial structure is based entirely on
: characteristics of the documents, the repeated use of the structure changes the structure
itself according to characteristics of the queries submitted to the system.

In the classical approach to IR, a schematic view of which is presented in Figure 1.2,
the problem of the document informative content representation is tackled assigning, in an
automatic way, descriptors to a document. This process is called automatic indexing.

The basic assumption upon which most of the theory of automatic indexing is based,
is tha t the frequency with which a word occurs in a document provides information as to

ihow useful that word will be in characterising the document informative content. In [2]
; Luhn proposed that the ability of words to discriminate the document content follows a
i Gaussian distribution in relation to the rank order of the words used in the document.
This is shown in Figure 1.3. Luhn called this the word’s “resolving power”.

In order to use only words with an high resolving power, words with very high rank
order or words with a very low rank order are cut off. The first set of words is considered
“noise” . Words in this set, such as “and”, “the”, “not”, “for” , are used only for “function”
and they do not convey a “content”. On the other hand, words belonging to the other

4

word
frequency lower cut-offupper cut-off

resolving power

too rare wordstoo common words

rank order of words

j Figure 1.3: Word’s resolving power
j

i) set, even if they convey content, occur too rarely to be used to help discriminating among
?| documents.
| These statistically-based techniques can be enhanced by “conflation” techniques which
attem pt to map individual word tokens to a single morphological form. IR has developed

1 sophisticated techniques for this “stemming” (see for example [3]), which are used in most
I of the operational IR systems. Some experimental systems attem pt to use phrases instead
S of individual words (see [4]), but the automatic identification of phrases in free texts is a
j problematic task.

An im portant result of IR research is that the indexing relation between descriptors
i and documents does not need to be deterministic. It has been recognised that relevance is
not an absolute notion, and can be measured. A large part of the theoretical research in

! IR is devoted to finding an effective way of evaluating this relevance measure.
Most of the present research in IR uses weighted associations between descriptors and

documents. This leads to a theory of probabilistic indexing, and a number of methods have
been proposed for computing appropriate weights. One typical approach is Salton’s term
frequency and inverse document frequency weighting scheme ([5]). This approach is based
on Luhn’s assumption and on the assumption that the discriminating power of a word

' is inversely proportional to the number of documents to which that word is assigned. In
! particular, the inverse document frequency states that the more documents are indexed by
the same term , the less im portant the term becomes as a descriptor to any of them.

A more formal theory of probabilistic retrieval has been proposed by van Rijsbergen
in [1]. In this theory, using the Bayes’ theorem as a fundamental mathematical tool, the
probability of relevance of a document is evaluated from the estimated measure of proba
bility of relevance for every document in the collection (the prior probability of relevance)

5

and from the estimated likelihood of relevance or non-relevance given that document.
Once a suitable representation for documents has been provided an IRS faces the prob

lem of evaluating the similarity between the representation of the documents and the
representation of the user’s query. This is usually achieved by evaluating a similarity coef-

\ ficient which uses the features of documents and query representation to evaluate an overall
degree of similarity between the query and each document in the collection. However it

I is im portant to note that even the most sophisticated evaluation technique is useless if it
uses poor representations. The representation issue is therefore a central point in research
in IR and it is in this direction that this thesis is addressed.

Any good piece of research should take advantage of previous work on the topic. This
thesis follows this line and a brief description of what has already been achieved in IR is
presented in this chapter.

1.2 In te llig en t IR

It has been a long time since Luhn suggested the use of statistical techniques for the
representation of document informative content. There have been many changes in the field

: of IR since that time and there have been surprising developments in computer hardware.
However some fundamental issues remain unsolved. In particular, the representation of text
documents and of the user’s information need remain some of the most problematic aspects
of research in IR. It is true that statistical approaches to the analysis of text and retrieval
of documents have significant advantages in terms of efficiency and performance compared
to other techniques, but it seems recognised, at present, that statistical techniques have
reached the limits of their performances. The dissatisfaction with the current state of

I research in statistical methods is the major factor of the recent upsurge of interest in more
“intelligent” IR among the IR research community.

The area of IR research called Intelligent Information Retrieval (IIR) deals with the
overlap of research in Artificial Intelligence (AI) and IR.

The application of AI results to IR is quite a recent phenomenon. As more and more
information is stored electronically, the need for intelligent methods of accessing this in
formation becomes increasingly critical. The basic belief underlying the research in IIR is
that a truly helpful IRS must, in some sense, “understand” what the user is looking for.
Furthermore, in order to understand this, the system must minimally understand the doc-

ium ent’s informative content and the domain which the documents belong to. In fact, an
obvious reason for the relatively poor performances of the traditional IR technology is that

: the use of words, and lexical items in general, as descriptors gives a poor approximation to
meaning. Even with the addition of a thesaurus or a phrasal lexicon, the approximation

| is not good. It is in this direction that most of the work in IIR has been done.
It is possible to identify three distinctive directions of application of AI research in

1 IR ([6]). In the following sections a brief description of these three application areas is
presented.

6

1.2.1 IR and expert system s

The central theme of this area of research is the development of an expert intermediary
system. This is an expert system which assists the user query formulation, search strategy
selection, and evaluation of retrieved documents. Some examples of systems corresponding
to this general specification are reported in [7].

W ithin this common framework there are, of course, many different approaches that
can be taken, and different research emphasizes different issues. The I 3R system ([8]), for
example, emphasizes the following issues:

• acquisition of a request model by analysis of the query and interaction with the user;

• acquisition of a user model;

• provision of multiple search and browsing strategies;

• control of the use of system facilities during search sessions.

Although there is quite a large amount of literature on the argument, it seems that
the main feature of expert systems that has been used in IR application is the rule based
representation of expert knowledge. The hope is to enrich the traditional document and
query representations with domain knowledge codified in a “knowledge base” and managed

, by the “inference engine” of the expert system. The problem of finding a better represen
tation of the document informative contents and of the user information need has not been
tackled.

Many issues remain open, like the problem of the formalisation and codification of the
expert knowledge, its updating, and the use of appropriate inference rules on it. For a
critical view of the results so far achieved in this area see [9].

1.2 .2 IR and natural language processing

It has been recognised that natural language processing (NLP) is an essential part of the
process of identifying and representing the query and the document informative content.
So far, much of the traditional research in IR has been concentrated on simple language
analysis techniques, such as identifying word stems and phrases. The aim of using more
sophisticated NLP techniques is to produce representations that reflect more accurately

| the meaning of the object represented. This should result in higher performances, but
ithere is no proof of this. However, in order to perform effective NLP it is necessary to
]have a large amount of domain knowledge, even larger than what is usually required for
j expert systems. Thus this approach is affected by some of the problems already seen in
'the application of expert systems to IR. It represents a step forward toward the use of
• complete domain knowledge.

The open issues in this area are many and include the following:

7

• the knowledge required to perform effective NLP is larger than what is usually avail
able by means of a thesaurus or a general dictionary. Most of the current systems
performing NLP make use only of these sources;

• the level of NLP required for effective document retrieval has not been determined
yet. Many attem pts have been made using techniques ranging from simple syntax-
based techniques to complex conceptual analysis;

• NLP requires a large domain knowledge, but NLP can be used to build knowledge
bases. In the long term , the acquisition of knowledge from document texts will be
essential in the dynamic IR environment.

The main problem is that it is not clear yet how much improvement in retrieval effec
tiveness is obtainable by using NLP techniques, but it is intuitively attractive. So far most
of the experimental systems use NLP only as a front end to traditional IR systems, without

j going in depth into the problem of representation. Much research is going on at present,
i especially in the directions of automatic abstracting, automatic indexing using syntax or
semantics, and indexing by word senses.

1.2 .3 IR and know ledge representation
The main issue of this application area is to represent and use the application domain

! knowledge and the informative content of documents and queries. The focus is, therefore,
i on the very problem of representation.

There are two basic approaches to this problem which reflect different views of IR.
s The first approach assumes that very detailed domain knowledge is available and that
: document contents are represented using this knowledge. Examples of IR systems following
this approach are GRANT and RUBRIC. The second approach is based on conventional

; IR systems tha t can be used in more loosely defined domains. It assumes that domain
knowledge is incomplete and must be incrementally acquired through interaction with

I users. The I 3R system is an example of this second approach.
Much research has been carried out in this area and many successful experimental

; systems have been developed, however, there are still many open issues that can be sum-
imarised as follow:

! • the difficulties in the acquisition of domain knowledge from users or document texts
depend to a large extent on the development of effective NLP techniques;

• the level of document content representation appropriate for IR applications has not
been determined yet;

• the level of domain knowledge that is required for effective IR has not been determined
but it has been recognised that this depends on the dimension of the application
domain;

8

• the knowledge representation technique to be used depends largely on the use of this
knowledge in the application. This problem has been studied in many AI application
but not in IR.

Despite these open issues, I believe that within this area the most significant develop
ments and improvements in the performance of IR systems in the short and medium term
will come. This direction of research has been therefore chosen in this thesis.

The rest of this chapter is devoted to a review of the results achieved in knowledge
representation in AI and IR.

1.3 K n o w led g e B a sed IR

' The area of application to IR of knowledge representation techniques borrowed from AI
5 is often called Knowledge Based Information Retrieval (KBIR). Among the three above
! mentioned application areas of AI to IR, this is the one which seems to me the most inter-
) esting. The problem of representation has been recognised as one of the major difficulties
i to the progress of IR. From my point of view it is only with tackling this problem that new
significant developments in IR can be achieved. W ith this same perspective Fox identified
in [10] some of the advantages of a KBIR approach. They are the following :

• improve the effectiveness and the overall efficiency of IR systems;

• allow heterogeneous collections of structured and unstructured texts to be searched
in an optimal fashion;

• ensure that the positive contributions of search intermediaries are made available in
situations where they cannot be present;

• allow integration with expert systems or other types of intelligent systems;

• ensure that the performances and usability of IR systems improve with utilisation,
both in general and for individual users.

However, a review of the research in KBIR shows that these advantages are not easily
achievable. A review of the attem pts in this research area, presented in the following

|section, will show what has been achieved so far.
] The main issues of KBIR are on the representation and use of:
i
1 • the informative content of documents and queries;

j • the application domain knowledge.

9

The first issue is concerned with finding better representations of the very elements of
an IR application. The basic idea is that better representation of documents and queries
can provide a better ground for their comparison and matching.

The second issue is more concerned with the use of domain knowledge as a means
of enriching the traditional document and query representation. The application domain

1 knowledge is used with the purpose of “understanding” the meaning of descriptors in the
j particular application domain. In this way they can be related to each other and the
knowledge achieved by looking at their relations can be used in the matching process to

j provide a better evaluation of the similarity between query and documents.
Since document and query are expressed using natural language, a representation of

i their informative content cannot be achieved without the use of some NLP technique.
: Thus, it is very difficult to use pure knowledge representation technique with the purpose
; of representing the document or the query content. The use of domain knowledge, on the
i other hand, can achieve effective results without making use of NLP techniques.

Because of the fact that the progress in the development of new NLP techniques is
j quite slow, and the NLP techniques available do not seem to be very reliable, an approach
| which makes use of application domain knowledge has been preferred in this thesis.

In every KBIR system some formalism and corresponding notation with which to rep
resent knowledge must be used. Knowledge Representation (KR) has been, during the
last decade, a fundamental part of research in AI, and a variety of different knowledge
representation schemes have been studied. In the following section a brief review of some

‘ of these techniques is presented together with examples of their application in IR.

1.4 A p p lic a tio n d om ain k n ow led ge rep resen ta tio n in
IR

'The purpose of KR in AI is to represent the knowledge required by the application in a
(way which is usable by a computer for rapid manipulation and search. As soon as AI
! discovered how much knowledge was required to perform a reasonable range of intelligent
■applications, investigators experimented with a great many ways of creating and putting
a representation of the real world inside a computer. KR is, therefore, one of the most
m ature areas of AI.

The use of KR in IR is, however, a recent phenomenon. It has its origin in the attem pts
ito use consolidated expert systems technology in IR, but it is going further toward the
juse of more sophisticated representation formalisms. Rather then enumerating various
(representation strategies of the KR area of AI, this section will emphasize the attem pts
ito use KR in IR. The various approaches, exemplified by some experimental systems, will
(be seen in relation to the representation, use, and acquisition of the domain knowledge
!required by a IR application.

In AI it is common to classify the various KR formalisms in the following categories:

• languages for KR: LISP, Prolog;

10

• logic;

• production rules;

• semantic networks;

I • frames.

I From the point of view of modern IR, logic and logic programming languages, like
, Prolog, are considered very difficult instruments to use for the kind of knowledge required

by an IR application. The retrieval process in IR is a non deterministic one, as it has been
explained above. Moreover, it has been recognised that the notion of relevance is more

| related to a probabilistic evaluation than to a yes/no decision. Nevertheless, most of the
j operational IR systems are based on Boolean logic, and Prolog or LISP are used in the
I implementation of the other KR formalisms in many experimental systems.

The KR formalisms which belong to the production rules, semantic networks, and
j frames categories are more interesting than logic and logic programming languages from
j the KBIR point of view. They can also be adapted to handle uncertain knowledge.

The commercial system called RUBRIC ([11]) is based on production rules and uses a
i manually built rule base to assist query construction and searching. Although this system
I is essentially an extension of a Boolean query retrieval system, it has many new features
sover traditional IR systems. A query is expressed using the standard AND and OR Boolean
!functions and using adjacency operators. The innovative part of RUBRIC stands on its
lability to recognise the presence of concepts in the query by means of the application of
!the rule base to the query terms. A degree of uncertainty is associated to the recognised
i concepts and other associated concepts can be taken into consideration according to fixed
j inference rules. The documents related to the activated concepts are retrieved in response
to the query and ranked according to their evaluated level of uncertainty.

A recent improvement in the structure of this system has been achieved using an object
oriented processing framework ([12]).

G R A N T ([13]) organises its knowledge about research proposal and potential funding
jagencies using a semantic network. Research topics and agencies are linked using a wide
ivariety of association links to form a dense network. A query expresses one or more
iresearch topics, or one or more funding agencies. A search is carried out by “constrained
spreading activation” (see Section 3.2) on the network. The constraints, which operate
as inference rules, determine which paths are to be followed through the network. Some
of them are simple, such as stop after having moved over more than three links from
the originally activated nodes, or stop at nodes with a high fan-out. Other constraints
represent more sophisticated heuristic rules called “path endorsements”. These are used
to evaluate different paths on the network. They give preference (positive endorsement)

11

to some paths and they enable avoiding (with a negative endorsement) some misleading
paths. The evaluation mechanism of the paths enable to rank the retrieved nodes.

Developing a system like GRANT involves a significant amount of knowledge engineer
ing to construct the semantic network. This work consists of an in depth analysis of the

i domain in which the system will operate in order to determine the appropriate concepts
i and relationships.

R au’s SCISOR ([14]) is a KBIR experimental system which partially parses and “un-
1 derstands” short stories in the domain of corporate take-overs. It uses an hybrid frame
j and semantic net-based language called KODIAK. The domain knowledge stored is either
j specific (episodic), abstract (generalised episodic) or semantic. In addition to this division,
] another level of organisation is superimposed on the representation. Groups of related
I concepts in specific and abstract memory are linked together. These links are used in the
i retrieval phase to spread the activation through the various levels of the representation.
] Specific priming rules constrain the spread of activation following heuristic rules similar
I to those of the GRANT system. The main characteristic of this system is in the NLP
i component which enable the system to “read” short stories, extract certain prespecified
|features, and answer questions about the information derived. However, the ability of the
; system to extract information from texts is limited to those scenarios that it understands.
I For now, the attem pts to give SCISOR more sophisticated forms of KR have not given
igood results and, at present, the knowledge is still hand coded.

The system called CODER was initially designed to study how to handle composite
(documents ([15]), which are composed of different sections, such as text, header, and
(citations. Later ([16]), it was developed as a testbed for studying various approaches to
jthe application of AI techniques to IR. The architecture is focussed on a common data
(area, called a blackboard, and a controller which performs some maintenance and control
(operations on the blackboard. The blackboard serves as a communication medium for a
(community of expert systems, each of which implements a particular function, and can
even use a different KR structure.

The CODER knowledge representation language has many interesting aspects. In par
ticular, the frame semantics used in CODER is simple and elegant. It is characterised
|([17]) by a high level data abstraction and by a sophisticated treatm ent of inheritance and
^defaults.

TOPIC and ARGON use frames as a representation formalism. Like CODER they
Incorporated concepts form earlier frame systems. The TOPIC system ([18]), though, fo
cusses on document analysis, using semantic parsing to map text onto frame representation
structures, while CODER uses its representation language for both analysis and retrieval.
ARGON ([19]) uses frames to handle classification of objects, and determines matches

12

according to frame subsumption hierarchies.

COREL ([20]) is an experimental IR systems designed to operate in the legal domain,
i It uses a hierarchy of frames which represent concepts of the application domain. COREL
I is a menu-driven system. The user is asked to choose options from a list appearing on
I the screen. These menus constitute a so called “discriminant network” . The menus ask
j questions to fill in slots of the concept frame. This process guides the user through the
(tree toward its leaves until a certain level of specification is reached. Only at that point,
j the system retrieves the documents considered relevant to the user specification. Although
j this system uses a sophisticated KR formalism, it lacks completely of any sort of heuristic
irule and can be considered only as a navigational aid. A sophisticated representation
i formalism is not sufficient to develop an effective KBIR system, a heuristically sound
j processing framework is also necessary.

The P R system is designed to act as a search intermediary. It accomplishes its task
iusing domain knowledge to refine query descriptions, initiating the appropriate search
|strategies, assisting the users in evaluating the output, and reformulating queries. In
jits initial version ([6]) the domain knowledge was represented using an AND/OR tree of
j concept frames, while documents were represented by means of single term descriptors. The
j system used the domain knowledge to infer concepts that are related to those mentioned
I in a query. The inference mechanism used a “propagation of certainty” on the concept
jframes in a way similar to the RUBRIC system, but with a more sound probabilistic base.
[The domain knowledge is largely acquired through interactions with the users. When a
juser specifies a query, the system enters a dialog with the user with the aim of identifying
[concepts. In this task I 3R mimics the situation where a human intermediary interviews a
fuser to clarify a query and build up background knowledge. If a user is not prepared to
iprovide any domain knowledge, the system can still retrieve documents using traditional
[statistical strategies. This was one of the first works in KBIR in which attention was paid
jto the acquisition of domain knowledge.

More recently, further research has been done on this system ([21, 8, 22]) and P R has
(become a testbed for investigation on the use of AI techniques in IR. In one of the latest
(versions, by means of a blackboard architecture, similar to the one used in CODER, a
jgroup of independently operating knowledge bases respond to changes on common data to
[the blackboard. In this framework, different representation formalisms can and have been
used inside the same application.

The above exemplification of applications of KR formalisms borrowed from AI to IR is
by no means exhaustive. Many other experimental systems have been developed in the last
decade, but almost all of them make use of the same representation formalisms described
above. However in the KR research area of AI new approaches have been proposed, which

13

= break from the traditional ones. They might enable to overcome some of the difficulties,
from the IR point of view, of the traditional KR formalisms.

1.5 N e w ap p roach es to K n o w led g e R ep resen ta tio n
i

: In most of the books about KR (e.g. [23]) the definition of the word “knowledge” in the
context of KR is related to some form of symbolic representation. As such, a piece of

, knowledge is regarded to as a symbolic model of some aspect of some universe of discourse.
: The emphasis is on the use of a symbolic representation form and all the KR techniques
presented in the previous section belong to this class. However a symbolic representation

jof knowledge may be inadequate for some applications.
In recent times research in I\R has been rediscovering, from a more realistic point of

wiew, what has already been discovered in the 40s and 50s.
This first period of the history of KR is usually referred to as cybernetics and pre-dates

jwhat is typically considered modern AI. One reason why these early works are relevant
is tha t a concern with learning was central. Research took examples from intelligent
)information processing in natural systems, where learning is a central aspect, and used
ithis as evidence that intelligent systems could be constructed. In particular, the research
I on “nerve nets” provided an existence proof that apparently simple computational units
j could be organised in such a way as to “learn” to produce an “intelligent behaviour” . One of
jthe most famous and influential examples of this research is Rosenblatt’s Perceptron ([24]).
jHowever, during this period there was little theoretical understanding of what could be
jconsidered intelligent behaviour and how it could be generated. This results in a great
jexaggeration of the results achievable with these techniques, damaging the credibility of
jwhat was actually achieved. This first phase in the history of KR effectively ended around
jthe early 70s when most of the research in KR became more concerned with abstract
jsymbols and heuristics for manipulating them.

The start of this second phase in the history of KR is often associated with the Dart-
iinouth Conference in 1956 and with other seminal works of the same period. The main
^aspect of this phase, which is still lasting, is that knowledge has to be represented using
some sort of symbolic model. The more sophisticated the model, the better the resulting
representation in terms of its ability to capture the complex aspects of the universe of
discourse. Many formalisms were developed, some examples of those have been presented
in the previous section. Many valuable contributions came from experience with database
-systems. This is why most of these formalisms are mainly directed toward “structured
^knowledge” . There are, however, other forms of knowledge, which cannot be accommo
dated in a structured organisation. IR is the discipline which is most concerned with
managing information and knowledge of a unstructured form. Moreover, very little work
was done during the 60s and 70s on learning issues. The general idea was that the issue
of machine learning would have to wait until the problem of knowledge representation was
betters understood. KR formalisms were therefore developed to satisfy epistemological or
problem solving considerations, but they were completely useless from a machine learning

14

point of view.
W ithin the last decade there has emerged a new distinct approach to KR. This ap

proach can be considered in some aspects as a response to perceived limitations of the
, symbolic representation used by most AI applications. The representation paradigm of
| this new phase in KR history has been called with many different names: “connectionist” ,
j “sub-symbolic” , “parallel distributed” , “associative” , or even “neo-cybernetic” . In general,
j following Belew’s suggestion ([25]), it seems most natural to speak of: the connectionist
] approach, associative representation and sub-symbolic elements. The best known example
jof this approach to KR is in the so called “Artificial Neural Networks” , which will be dis-
I cussed in more detail further on. One of the features of the connectionist work is that it is
j less concerned with replicating psychological behaviours or neuro-physiological data than
jthe cybernetic phase of I\R. However, many ideas of the connectionist approach go back
I to that first age, to the early works of McCullough, Pitts ([26]), and Rosemblatt.

In the symbolic representations paradigm, whose manifesto is [27], the internal structure
jof the abstractions is considered irrelevant and the representation and use of knowledge is
1 obtained by manipulating abstract symbols.

The key concept of the connectionist approach to KR is the assumption that knowl
edge can be represented using low-level units which correspond to a level of representation
underlying the symbolic level. Working on a lower level the issues of learning and of the

luse of knowledge (like, for example, knowledge generalisation) seem to be more related
to the representation of knowledge itself than a separate issue. From this point of view,

'connectionist representations can be viewed more as a complement to symbolic represen
ta tions than as a replacement of them, since the two approaches work on different level of
’modelling abstraction.
 ̂ It has been recently believed that IR could benefit from this new approach to KR. The
associative characteristic of this new representation paradigm seems to be congenial to IR,
and it reminds some early statistical research. The following section will explain why, from
the author’s point of view, this new approach to KR seems preferable to the symbolic one
an the KBIR research area.

1.6 A sso c ia t iv e and A d a p tiv e IR

]An approach which makes use of symbolic knowledge representation structures has many
^drawbacks in its application to IR. Some of the problems previous research has pointed
jout are:

■I

I • it is difficult to determine the level to which the application domain knowledge should
be represented; the larger the domain knowledge to represent the larger the knowledge

j base;

• the knowledge of an application domain, whatever specific it may be, is dynamic,
that is it keeps changing, therefore it must be kept up to date;

15

• a symbolic knowledge representation reflects the application domain knowledge of the
expert (or team of experts) who build it, it does not reflect the users4 understanding
of the application domain;

• a symbolic knowledge representation of an application domain knowledge is some
thing which is attached to the IRS, it is not something which can be seen as an
internal part of it.

The use of a subsymbolic representation of the application domain knowledge applica
tio n may help to solve some of these drawbacks.

In particular, the fact tha t learning is an integral part of the representation problem in
I subsymbolic representations may help to solve the problem that Feigenbaum called “the
bottleneck of knowledge engineering” , that is the problem related to its representation
and keeping up to date. Representing application domain involves a big effort, in which an

jexpert, or a team of experts, on the application domain provides knowledge to a knowledge
jengineer, or to a team of knowledge engineers. Although users4 needs are always kept under
iconsideration, users only seldom take part in the construction of the knowledge base. The
ibringing up to date of the knowledge base is a time and effort consuming job too. The
iknowledge base cannot be kept continually up to date and the bringing up to date process
become a discrete process, where the time interval between bringing up to date could be
long sometimes.

Moreover, the decision of the appropriate level of representation of the application
:domain knowledge is difficult and can jeopardise the effectiveness of its use. A too in
dep th or a too superficial representation of the application domain knowledge could result
in users4 dissatisfaction. Novice users could find it too deep to be usable, while expert
jusers could find it too superficial. Its use by the system in the process of interpreting the
■user information need or the document informative content could be uneffective.

W hat it is needed is a representation of the application domain knowledge which could
iadapt itself to the users4 needs. An adaptive knowledge representation structure would
enable the system to adapt to the user4s knowledge level of the application domain required
by the user. Moreover, an adaptive knowledge representation structure would be dynamic
and able of keeping itself up to date. But, if a knowledge representation structure is able
of keeping itself up to date it is also able to build itself up from scratch.

Subsymbolic representation structures are, often, adaptive. W hether they take as ex-
-ample the human nervous system (artificial neural systems) or the evolutionary system
|(genetic algorithms), they possess adaptive mechanisms and learning is often seen as a sort
pf adaptation to the environment. Thus, subsymbolic knowledge representation structures
[possess, in principle, the ability to help solving some of the problems related to the use
pf symbolic knowledge representation structures in IR. Some of these subsymbolic repre
sentation structure are also based on a associative representation paradigm. In particular,
.Artificial Neural Networks are adaptive systems based, as the name itself says, on a network
representation.

16

The rest of the thesis is structured in this wa.y:

Chapter 2 of this thesis presents a network model which could be used to represent
conceptually an IIR application. The model enables the representation of the application
land the application domain knowledge in a associative way.

Chapter 3 examines two possible processing frameworks which could be used on the
iconceptual structure. In particular, it focusses on the Artificial Neural Networks processing
jframework, which possesses adaptive capabilities.

Chapter 4 examines various ways to perform adaptive IR.

Chapter 5 reports some experiments aimed at investigating the possibility of using
{Artificial Neural Networks as tools for developing an adaptive and associative IR system
jprototype.

J Chapter 6 examines critically the results achieved in the experimentation. It highlights
Jthe operational conclusions of the experimentation and points out some of the future
Idirections of the work.

•of

C hapter 2
ii

A conceptual m odel for A ssociative
Inform ation R etrieval

•3:

I
j

1

r 1
fThis chapter addresses the problem of conceptual modelling of an Associative IR applica
tion and seeks to produce a conceptual schema for representing IR objects and relations
between them.
'i Previous research work by the author ([28, 29]) has already tackled the problem of
conceptual modelling of IR data. A conceptual modelling paradigm necessary for the
characterisation of IR data has been previously proposed, suggesting an approach based on
a object oriented paradigm. The conceptual modelling paradigm has been used to produce
a schema which represents objects and relations between objects in an IR application.
iThis conceptual schema provides the user with a reference framework for the formulation
bf queries, and it is helpful for designing specific applications without reference to their
particular implementation.
J This chapter deals with the conceptual modelling of IR applications using a network
structure as a modelling tool.
i Scholars working in the field of IR have used network structures for various purposes
since the 1960’s. These structures have been employed to support browsing, clustering,
spreading activation search, multiple search strategies, representation of user knowledge

“The design of IR data has not yet been approached and
studied as a complete process and in a structured way, as it
has in the database area. Furthermore, suitable design tools
for the design of IR data have not yet been developed. The
result of this is that the designer of an IR application cannot
call upon any complete and proven designed methodology
or development environment with specification language and
prototyping tools”
[M. Agosti, 1990]

T h e n eed o f a co n cep tu a l m o d el

18

and document or query content ([30, 13, 31]). Models using network structures differ and
are often determined by the requirements of varying and diverse functionalities. So far,
no general IR network model suitable for use as a conceptual modelling tool has been
developed.

Generally speaking the main characteristic of a network representation is that it views
[an object in terms of its relations with other objects. The advantage of a network repre
sentation resides in its expressive power since the meaning of an information object can
[only be fully captured by considering its semantic relationships with other objects. In this
slight the complexity of IR data resides on relationships rather than on the data themselves,
lit is now widely recognised that further progress in the efficiency of IR systems requires a
[breakthrough in our ability to capture the semantics of data.
■ IR research is currently exploring various, and often different, techniques for improv
ing performances of IR systems, though the importance of understanding the meaning of
documents and queries is widely recognised. In this model the meaning of an IR object is
[realized by its relationships with higher level objects representing domain concepts. The
[structure arising from this approach is a network, structured on various layers, which is
used as a conceptual schema of the application and as a designing and prototyping tool.

It should be noted that this work is not concerned with issues of physical storage of
data. The network is seen as a conceptual structure whose actual implementation can use
[various data structures as required for efficient access and storage of the physical data.
Moreover, one should also bear in mind that a network structure is entirely compatible
with other forms of data representation such as vectors or matrices.

The rest of this chapter is structured in this way: Section 2.2 describes the basic
structure of the network; the objects of an IR application are identified and modelled
in terms of their relations. In Section 2.3 the network is used to develop a conceptual
Schema for modelling traditional IR applications. Section 2.4 describes the structure of a
povel IR conceptual model using domain knowledge. The basic network structure outlined
in Section 2.2 is there enhanced to account for domain knowledge, and some processing
frameworks to be used on the new network structure are presented.

2.2 T h e b a sic n etw ork stru ctu re

The basic structure of the network is composed of objects and connections between objects.
 ̂ An object is anything that has its own identity or uniqueness irrespective of whether it
fienotes a physical or a conceptual thing. The notions of object and of an object’s identity
4re those of the object oriented paradigm ([32]). The use of the object oriented conceptual
paradigm for modelling IR objects was introduced in [29] and here it is im portant to
emphasize that an object can exist independently of its own characteristics or properties.
This means that it is possible to establish relationships directly between objects without
my reference whatsoever to the object’s properties.

A connection expresses the existence of a relation between two objects. A connection
;an have an associated weight, which denotes the strength of the connection. Further,

19

a connection has a direction, and different directions within the same connection denote
different relations between the two objects. Thus a connection can have different weights
according to the different directions. Connections can be joined to build a new connection
in order to relate objects not directly connected. The weight associated with this new
connection is a function of the weights of the single component connections.

Using conventional terminology, a network is made of nodes that represent objects, and
of links tha t represent connections.

The main IR objects are:

iqueries: a query is an expression of a user’s information need. A query, however is a very
subjective way of expressing an information need and different users, or the same
user at different points in time, can express the same information need in varying
ways. An information need can be expressed using one or more queries and queries
can be more or less complex, but a complex query can always be expressed in terms
of simple elements. A set of queries that express a user information need forms a
query collection.

query descriptors: a query descriptor is any object used to represent a query using the
query language of the system. A query can be asserted using one or more query
descriptors, and the complexity of a query depends on the number and structure of
query descriptors it uses. Some query languages such as the Boolean query language
require the use of operators to express a query, but others do not. The query de
scriptors form the vocabulary which can be used to formulate a query and to express
an information need, while the system provides the grammar and the syntax of the
query description language. A set of query descriptors is an instance of a query
representation.

docum ents: a document is an}' object carrying information which can potentially satisfy
a user information need. For the purpose of this model there is no distinction between
different types of documents, since a document is any object carrying information,
so for example, a document can be a paper, a tape, or a picture. Usually the real
documents are not part of the system; the system only contains identifiers which point
to particular documents inside a collection. A set of documents form a document
collection.

docum ent descriptors: a document descriptor is every object which is used to describe
the document informative content using the indexing language of the system. Usually
more than one document descriptor is necessary to express the document informa
tive content and the complexity of the informative content determines the number
of document descriptors needed to represent it. Like the query descriptors, the doc
ument descriptors allow only a poor description of the real information content of a
document; they form the vocabulary of the description language (indexing language),
while the syntax and grammar are determined by the system. A document descriptor
is an instance of a document representation.

20

n

query collection

• query

□ query descriptor

query representation

Figure 2.1: Query network.

Queries and document are usually not part of an IR system, they stand outside the
^ystem. Query descriptors and document descriptors are part of an IR system, instead, and
fhey are derived from queries and documents by means of query processing and document
Indexing. Query processing and document indexing can be manually or automatically
performed.
| In the model similar objects are grouped in layers. Links can connect objects on the
lame layer or objects on different layers.

The network consists of two component networks: a query network and a docum ent
jietwork. Figure 2.1 depicts a query network where a link means that either, the query
is expressed using the connected query descriptors, or that a particular query descriptor is
ased by a query. Figure 2.2 depicts a document network where a link means that either a
document is represented by some document descriptors, or that a document descriptor is
ksed to express part of a document informative content.

Due to differences in artificial and natural query languages and in query processing
nethods, the same information need can be expressed using different query representations,
io a query layer can be connected to different query descriptors’ layers, as depicted in Figure
h3. Likewise, due to differences in (natural) languages used in the document collection
>r different document indexing methods the same document collection (represented by
ji document layer) can be expressed using different document representations (different
locument descriptors layers) as is shown in Figure 2.4.

Conversely, the same document representation (document descriptors layer) can be used
io represent the informative content of documents of various document collections (Figure

Links connecting objects on the same layer represent relationships between similar
objects. Examples of this type of relationships are document citations or thesaurus re-
ationships between descriptors. These sort of connections will not be considered at this
tage of the work.

21

document representation document collection

□ document descriptor

H document

Figure 2.2: Document network.

query representation A

query collection

query representation B

Figure 2.3: Multiple query description.

22

1

document representation A

document collection

document representation B

Figure 2.4: Multiple document description.

Hitherto queries and documents have been modelled as two distinct networks. At this
|>oint, however, it becomes necessary to establish a connection between these two networks
|o enable the retrieval of documents in response to a query. Further, the connection between
|he query and document networks is achieved by a m atching process.
| Generally speaking the matching process associates a value S(q , d) to every couple
|uery-document (<7,d). This value expresses a measure of similarity, which can also be
leen as a measure of association, between the query q and the particular document d and
can be computed as a function of every different path s(q,d) through the descriptors layers
connecting the query to that document. This value can either range in a predetermined
nterval or be a binary value. The way the matching is performed and the way the simi-
arity value is computed makes the distinction among different IR techniques. The model
Presented here allows conceptual modelling of traditional, as well as of new IR applications.

2.3 C o n cep tu a l m o d ellin g o f IR tra d itio n a l a p p lica
tio n s

t is possible to use the conceptual network so far presented as a tool for the conceptual
nodelling of IR traditional applications. In IR traditional applications ([1]) queries and
iocuments are matched using the same set of descriptors for representing queries and

23

document collection A

document representation

document collection B

I Figure 2.5: Use of various collections.

l
documents. This overlapping of descriptors allows the use of a single representation for
lueries and documents and, therefore, the model requires a single descriptors layer (Figure

.6). The particular IR traditional technique in use determines the way the similarity value
Is computed.

f In systems using an exact m atch technique, such as Boolean systems, the weights
>n the links and the values associated to paths query-document are binary values (0, 1) or
bgical values (T, F). Therefore the similarity value is calculated as:

S(q,d) = f i(s(q,d)u s(q,d)2ls(q,d)n)

where:
s(q,d){: is a single path from the query q to the document d, and it is true if all the

inks it uses are true;
i = 1,2, ...n\ are all the different paths connecting the query q to the document d;
fi : is a logical function which uses boolean operators.

In the previous formula s(q, d)i can be divided in two parts: s(q, s,) and s(s,-, d). These
re, respectively, the link connecting the query to the descriptor and the link connecting
he descriptor to the document, respectively. It is assumed that s(q,Si) is true if the
escriptor s,- is used by the query; and that s(s{,d) is true if the descriptor S{ is used to

24

query collection representation document collection
| (query and document)

• query

□ descriptor
M document

Figure 2.6: Association of the two networks.|

represent part of the document informative content. The value of s(q , d)i is determined by
the expression:

s(q,d)i = s (q , S i) and s(si,d)

S (q , d) is determined by the logical function // which is the expression of the user’s
|uery. If S(q, d) is true the document is considered relevant, otherwise it is considered not
Relevant. Hence exact match systems do not account for different degrees of relevance,

i An example of conceptual modelling of a Boolean system is depicted in Figure 2.7. In
Ihis example the query q specifies a logical expression involving three descriptors, s i , s2, s3,
hus links connecting the query to this three descriptors become true (T), while links from
he query to all other descriptors are false (these links are not denoted in the figure).

Two of the three above mentioned descriptors are also used to describe the informative
content of the document d. In the example under consideration since the similarity value
:S evaluated to True the document d is considered to be relevant in respect of the query q.
That is:

q = s i and (s2 or s3)
t S(q , d) = T and (T or F)
t S(q,d) = T
,f

In systems using a partial m atch technique, such as systems based on vector space
ir probabilistic models, the weights on links and the values associated to paths query-
locument are real numbers values belonging to a predetermined range. Therefore, the
imilarity value of the pair (g, d) is a real value which can be computed using the algebraic
xpression:

25

I query collection representation document collection
I (query and document)

Figure 2.7: Modelling of a Boolean system.

| S(q , d) = f a(s(q, d)u s(q, d)2,s(q, d)n)
I
1 where:

s(q, d)i: is a single path from the query q to the document d, and it is usually computed
is the product of the weights of the two links, that is: s(q, d)i = s(q, s t) * s(s t-, d). However,
bther functions can be used to compute the path value, like sum, mean, or max.

z = 1,2, ...n: are all the different paths connecting the query q to the document d;
f a: is an algebraic function.

Since similarity values are real numbers it is possible to rank them and thus organise
!he presentation of the relevant documents accordingly.

Figure 2.8 illustrates an example of conceptual modelling of a partial match which
hakes use of a a simple matching function. In this example links connecting the query to
the descriptors, and links connecting the descriptors to the document are weighted (the
Weighting method is not important here). The similarity value is calculated as the sum of
"he products of the weights of the descriptors used by the query. The document is ranked
Vith all other documents according to this similarity value, the relevance of the document

being directly related to its position in the ranked list. That is:

q = s i , s2, s3
, S(q,d) = T,steqWgt *Wdt

' -T

1.4 C o n cep tu a l m o d ellin g o f a k n ow led ge b ased IR
a p p lica tio n

feme considerable effort has been devoted to the improvement in performance of IR sys-
ems, as described in the previous chapter. Recent work (see for example [6] suggests that
ignificant improvements in retrieval performance could be achieved using techniques that

26

Wdl
Wql

Wd2Wq2
Wd.

I query collection representation document collection
| (query and document)

Figure 2.8: Modelling of a partial matching system.

' ^ “understand” the content of documents and queries. Techniques required for this kind of
: retrieval necessitate some degree of knowledge to enable the system to capture both the

% meaning of a document informative content and the user’s information need expressed in
4 the query. In particular there are two kinds of knowledge which any such system should
: have:

:s aser knowledge: this is knowledge related to the characteristics of users and of user
requirements. This type of knowledge is often captured by user models and it is used
to understand queries and interact with the user;

domain knowledge: this type of knowledge is related to the subject which the documents
belong to, that is to say, to the specific application domain. The wider the application
domain the greater the difficulty in getting a complete and precise domain knowledge,
this approach being more suitable to narrow domain applications.

In this thesis the use of a domain knowledge approach is preferred. User knowledge is
issumed to be the subject of an intelligent user interface.

1.4.1 T he know ledge network structure
” Itudies on knowledge representation in AI have developed representation techniques which
1 lave been subsequently used on several IR prototype systems. Some examples of the

epresentation and use of domain knowledge in IR applications have been described in the
previous chapter.

The idea of using networks to represent knowledge comes from an old concept in the
nformation management system area that dates back as early as 1945 with Bush’s MEMEX
ystem ([33]). In his famous article Bush describe this system as working like the human
ciind, that is to say, by associations. Despite the progress made in technology and in
nteractive computer systems since 1945, today’s systems have not yet lived up to Bush’s
ision, and studies on associative memory are still far from accomplishing these ideals.

27

knowledge representation

O concept

Figure 2.9: Knowledge representation structure.

At any rate, declarative network knowledge representations appear as one of the best
ays of representing domain knowledge for IR applications, since such domain knowledge

iJ4ften capture the semantics of objects in terms of relations with other objects.
! Using a network representation, the knowledge of a specific object can be enlarged or
Restricted by looking at its relations with other objects as a function of the knowledge level
fequired (this is sometimes referred to as granularity). Different knowledge levels are in
jirect relation with the two main parameters used to evaluate the performance of an IR
ystem: recall and precision. A deeper knowledge of an object, which comes from a precise
dentification of the object with relation to other objects, can enhance the precision of the
ystem . Otherwise, a wider knowledge of an object, which extends to other objects related
b it, can enhance the recall of the system, that is, it enables the system to identify objects
fhich are different but in some way related to the specific object.
) To add the domain knowledge to the network structure previously introduced, a differ-
fit type of objects is necessary. The main difference between this new object type and the
thers lies in the fact that it carries information about what it has to ”represent” . Descrip
tors, on the other hand, carry information about what they are ’’describing”, while queries
nd documents carry information about the user’s information need or the author’s docu
ment knowledge. Because of this distinctive characteristic these new objects are placed on
1 different layer and are called concepts.

A concept carries information about the conceptual object it represents, and in this
pnse a concept is similar to a frame as used in the AI field. The most important char-
|bteristic of a concept is that the information it contains is enhanced by the relations the
Jmcept has with other concepts. Figure 2.9 shows the knowledge representation struc-
jire in the form of a concept network. A concept is represented by a small circle while
|lationships between concepts are represented using links connecting concepts. Links are
jrectional (the direction is not shown in the figures) and can be labelled to point out the
fpe and/or weighted to show the strength of the relationship.

The concept network can be used to approach the modelling of a KBIR system. In
KBIR system the matching between query descriptors and document descriptors takes

28

- o

query
collection

query
representation

knowledge
representation

document
representation

document
collection

• query

□ descriptor
O concept

H document

Figure 2.10: Use of the concepts layer

place on the concept layer as shown in Figure 2.10, where query descriptors and document
descriptors are connected to the concepts they are describing.

In this approach to the modelling of a KBIR system some im portant assumptions are
nade:

• a descriptor is at a lower level than a concept. Descriptors depend upon the language
or the symbolism used in queries and documents. Concepts are on a higher level which
is independent from the language and the symbolism. If the matching is performed on

, a conceptual level there is no need to use the same language or the same symbolism
for query descriptors and document descriptors;

• a single concept can be expressed using different descriptors and, less often, a single
descriptor can express different concepts, that is to say, if descriptors are terms,
a meaning can be expressed using different terms and a term can have different
meanings;

• the same descriptor expresses the same concept whether it is used to describe queries
or documents, so it is supposed that users and document authors use the same
term with the same meaning. This assumption, however, is less strong than what it
appears, as it will be explained latter on.

• ') According to these assumptions the concept network can be used by the system to
blve the major problem of an IR model: the matching between an information need and a
bcument content which are expressed in different ways. The way the concept network is
ctually implemented depends on the particular knowledge representation model that has
een chosen, but the previous assumptions must be present.

29

knowledge x
representation

document
representation

document
collection

query
representation

query
collection

• query

□ descriptor
O concept knowledge

document representation B

Figure 2.11: Multiple classification system.

The domain knowledge network (or concept network) is an independent part inside
the main network model and the only relationship it has with the query network and the
document network are the links connecting descriptors to concepts. Therefore it can be
considered as a component network of the general conceptual network model.

Since the domain knowledge network is sometimes developed by more than one expert
or the network, and can reflect different classification systems on the same domain, it is
possible to have the situation depicted in Figure 2.11, in which the document network and
the query network are connected via two or more different domain knowledge networks.
Each network reflects a different encoding of the same domain knowledge.

Given the existence of different domain knowledge representations it is possible to
organise them in a new layer which contains, as instances, all the knowledge representations
of the same domain knowledge. This new layer, which in Figure 2.12 is simply called
knowledge, provides the user or the system designer with information about the different
domain knowledge representations. It is possible to think of it as a sort of meta-knowledge,
that is, knowledge about knowledge.

The utility of having different domain knowledge representations is related to the possi
bility for the user (or the system itself) to choose the best domain knowledge representation
or classification schema for the particular domain. Sometimes it is not easy to identify the

30

best application domain knowledge and it is difficult to say which classification schema is
the best, even on a narrow domain. Moreover, some group of users could be familiar with
a particular classification schema while other users of the same application could be famil
iar with another. A user might prefer to use his own classification schema and similarly
a research team might prefer to build its own schema. On the other hand, if a domain
knowledge representation reflects the view of a specific expert, a user could be interested
to retrieve documents using views of different experts.

Another interesting possibility is depicted in Figure 2.13. In this example the same
query acts on two different document collections which use two different classification
schemas (or domain knowledge). In a modern environment in which resources are often
distributed on complex communication networks and can be shared by different users, it
will quickly become possible to interrogate different collections at the same time without
any problem of different classification schemas, domain knowledge or languages.

2.4 .2 T he processing fram ework

A conceptual model is made up of two parts:

1. a data structure;

2. a processing framework.

So far the data structure has been described. An important characteristic of this
structure is its flexibility. The flexibility of the conceptual structure presented, enables the
use of various processing frameworks on it. The processing framework determines the way
the weights on links are set and the way the similarity value is computed.

The description of the processing technique used in this thesis will be presented further
on. In the rest of this section only the flavour of the various techniques will be given.

The processing framework is related to the interpretation of the network structure, that
is to say, it is related to the meaning assigned to links and nodes in the network. In the
following, three different interpretations are presented.

The network can be thought as a:

sem antic network: if links specify semantic relationships between nodes then the net
work in Figure 2.10 can be seen as a semantic network. In a semantic network links
are usually labelled according to their semantic meaning. The semantic meaning of
links connecting queries to query descriptors or documents to document descriptors
comes from their definition in Section 2.2.

The semantic meaning of links connecting descriptors to concepts is more complex
because it involves the idea of the “expression” of a concept using terms. Descriptors,
following the assumptions in Section 2.4.1, are expressions of concepts by means of
different languages or simply by means of different terms. Further, the concept

31

document
representation

document
collection

query
representation

query
collection

• query

□ descriptor

O concept

document

[knowl edge

Figure 2.12: The knowledge layer

32

knowledge
representation A

document
representation A

document
collection A

query
representation

query
collection

• query

□ descriptor
O concept

Hi document

document
representation B

knowledge
representation B

document
collection B

Figure 2.13: Query of different collection.

33

network is a real semantic network as it is often used in AI, because a concept is
connected to other concepts to represent its semantic relationships. If the network
represents a classification schema then the relationships between concepts can be
the usual semantic relationships represented in a thesaurus and links are labelled
according to this. More complex representations result from the expressions in the
concept network of expert knowledge. Some examples of this are in [13, 14, 11].

There are several processing frameworks that can be applied on a semantic network.
One of the most interesting is the constrained spreading activation technique ([13,
34, 35]) in which weights on links, assigned according to their semantic meaning, are
used to spread activation from query to documents. The activation spreads from the
query layer to the document layer using links between different objects. Some rules
determine constraints on the spreading activation, otherwise too many nodes into
the network would be activated (see Chapter 3). The spreading on the knowledge
representation network adds the effect of using knowledge to the activation flow. The
activation values reaching the documents determines the similarity value S(q,d).

It is im portant to highlight how the spreading activation, working on the knowl
edge based network, can spread from the query descriptors to different document
descriptors. These descriptors may express the same concepts indicated by the query
descriptors or express concepts closely related to those pointed out by the user. This
can help to solve both problems related to the matching of different expressions of
the same concepts and problems related to an imprecise expression of concepts.

associative network: if links between nodes specify associations then the network can
be seen as an associative network. Links do not need to be labelled because the focus
is not on the semantic type of the associations. Links only need to have weights
which express the strength of the associations. These weights can be calculated
using different approaches.

An interesting processing framework for an associative network consists in the use
of parallel distributed processing (PDP) models ([36, 37]). The use of PDP models
enables to think to the three layers which are part of the system (query, knowledge
and document representation in Figure 2.10) as a artificial neural network. An “arti
ficial neural network” works as a pattern associator which can learn through training
sessions to associate activation values on query descriptors to activation values on
document descriptors (see Chapter 3). The knowledge representation layer becomes
the hidden layer of the neural network and it actually represents knowledge in a non
explicit way using the strength of its links. In fact, the associations the system learns
in the training sessions are stored in the weights on the links.

In a query session, statistically determined weights could be associated to links con
necting queries to query descriptors and to links connecting document descriptors to
documents; they could be used together with the weights determined by the neural
network to spread activation from queries to documents. Again, the activation values
on documents determine the similarity values S(q,d).

34

The autom atic generalisation feature of some neural network models could provide
good solutions to non trained query-documents associations. A user relevance feed
back can be used to merge query sessions with training sessions so that the neural
network can learn, modifying weights on its links, from every session.

The main advantage of this approach is that it does not required the explicit expres
sion of knowledge in the knowledge representation network because the knowledge
is automatically acquired from a user or expert feedback. Moreover there is no need
to update it because the knowledge updating can be automatically performed using
relevance feedback. However there are many problems related to the implementation
of these ideas as it will be discussed further on.

inference network: this is another interesting processing framework proposed recently
by Turtle and Croft in [31]. In this approach, links are interpreted as logic implica
tions and they have a measure of probability associated on them. Different processing
frameworks can be used on a inference network, such as methods based on Bayesian
probability theory or the Dempster-Shafer theory of evidence. One of the major ad
vantages of this proposal is the strong mathematical and probabilistic background
upon which it is based. This assures the possibility of performing an in depth m ath
ematical analysis of the behaviour of the network. For a more detailed description of
this approach see the cited article.

In the following chapter an analysis of the first two processing frameworks will be
presented. Examples of their use in IR will be also presented together with a comparison
of advantages and disadvantages.

35

C hapter 3

A ssociative Information Retrieval

“In our view, people are smarter than today’s computers be
cause the brain employs a basic computational architecture
that is more suited to deal with a central aspect of the natural
information processing task that people are good at.”
[J.L. McClelland, D.E. Rumelhart, and G.E. Hinton, 1988]

3.1 A sso c ia t iv e p rocessin g fram ew orks

In this chapter two processing frameworks suitable for the use with the conceptual model
of associative IR presented in the previous chapter are explained in more detail. They are:
spreading activation (henceforth SA) and artificial neural networks (simply NN).

The advantages of artificial neural networks over spreading activation in the context of
a processing framework for associative IR will be described further on. They explain the
reasons why artificial NN were preferred in the experimental investigation reported in this
thesis.

3.2 S p rea d in g A ctiv a tio n

Historically speaking the use of SA preceded the use of NN, but it was not the first asso
ciative processing paradigm to be used in IR.

Studies on associative retrieval date as early as the 60s and had their origins in statisti
cal studies of associations among terms and/or documents in a collection. The “associative
linear retrieval model” is one of the earliest models based on the concept of associative re
trieval. This model, in its basic idea ([38]), consists of expanding the original query using
statistically determined term-term, term-document, and document-document associations.
This technique is based on the assumption that there exists linear relations among terms,
among documents, and among documents and terms. Associations between terms can be
represented in a term similarity matrix. Quantitative evaluations of similarity between
terms can be obtained by means of statistical analysis of term co-occurrence in documents.

36

Associations between documents as a quantitative evaluation of their respective similarity
can be obtained by using similarities in the terms assignments to documents or by means
of citations and other bibliographic indicators.

There are many heavy assumptions on this model and more recent studies ([34, 35]) have
lead to the conclusion that effective term expansion methods valid for a variety of different
collections are difficult to generate. IR systems based on this approach have shown a lack
of consistent improvements in the effectiveness. This result can have various motivations.
First, the similarities statistically derived from particular pairs of documents, or pairs
of terms, may be valid only locally in the particular environment from which they are
obtained. Second, most practical methods for computing the linear document associations
are based on the assumption that terms or documents are originally uncorrelated, i.e.,
independent of each other. Such assumption is not accepted in many of the new research
directions in IR.

Recently, these earlier models of associative retrieval has been revised using the so-called
spreading activation model, which is based on supposed mechanisms of human memory
operations. The basic SA model has, however, been subject to various enhancements in
order to make it more suitable to IR and the way it is used in IR is quite different from its
original formulation in the area of psychology (see for example [39]).

In the following three subsections the SA model will be briefly described. Section
3.2.1 will describe the “pure” SA model, which consists in the sole use of the associative
nature of a network representation as a search controlling structure. In Section 3.2.2 some
more search controlling structures will be added in order to give preference to particular
associations. Section 3.2.3 will show how the search controlling structure can be used as
an interactive process using feedback from users. Section 3.2.4 will report of some of the
problems related to the use of SA in IR.

3.2.1 P u re Spreading A ctivation
The SA model in its “pure” form is quite simple. It is made up of a conceptually simple
processing framework on a network structure.

The n e tw o rk s t ru c tu re (which is the same also for the following two sections) consists
of nodes connected with links (Figure 3.1). Nodes model objects or features of objects of
the “reality” to be represented. Links model relationships between nodes and they can be
labelled and/or weighted. The connectivity pattern reflects the relations between objects
and/or features of objects of the “reality” to be represented. This representation structure
is very similar to a Semantic Network and indeed SA has been mainly used as a processing
framework for Semantic Networks. An example of a semantic network is depicted in Figure
3.2. It is easy to note many similarities between Figure 3.1 and Figure 3.2

The p ro cess in g fram ew ork is defined by a sequence of iterations as schematically
described in Figure 3.3. Each iteration is followed by another iteration until the sequence
is halted by the user or by the verification of some termination condition. An iteration

37

Figure 3.1: The network structure of a SA model.

animal
person

fabio
bird cannot

cannot
has has

ostrich

feathers
wings

canary

pigeonhas
color

yellow

Figure 3.2: An example of the use of the network representation structure.

38

consists of:

1. one or more pulses;

2. term ination check.

W hat distinguishes the pure SA model from other more complex SA models is the
sequence of actions which composes the pulse. A pulse is made of three phases:

1. preadjustm ent;

2. spreading;

3. postadjustm ent.

In the preadjustm ent and postadjustement phases, which are optional, some form of
activation decay can be applied to the active nodes. These phases are used to avoid
retention of activation from previous pulses. This enable both the activation level of single
nodes and the overall activation level of the network to be controlled. They implement a
form of loss of interest in nodes that are not continually activated.

The spreading phase consists on a number of passages of activation weaves from one
node to all the nodes connected to it. There are many ways of spreading the activation
over a network (see [34]). In its more simple form and on a single unit level, it first consists
in the computation of the unit’s input using this formula:

I j = 0 { W i j
i

where:

I j is the total input for the node j ;
Oi is the output of unit i connected to node j ;
Wij is a weight associated to the link connecting node i to node j .

The input and the weight are usually real numbers, however their numerical type is
determined by the specific requirements of the application to be modelled. In particular,
they can be binary values (0 or 1), excitatory/inhibitory values (+1 or -1), or real values.
Usually the first two of these options are used for network with labelled links, where the
semantic value of the relation represented by the link determines, in the context of the
application, the value to be associated to the link. The third option is used with weighted
links to indicate the strength of the relation between two nodes.

After a node has computed its input value, its output value must be determined. The
numerical type of the output of a node is also determined by the requirements of the
application. The two most used cases being the binary active/non-active type (0 or 1) or
a real value. In SA models there is usually no distinction between unit’s “activation” or

39

not satisfied

satisfied

start

stop

spreading

post-adjustment

termination
condition

pre-adjustment

Figure 3.3: The pure SA model.

40

unit s output . The activation level of a unit is its output value. This is usually computed
as a function of the input value:

o s = m

The most common function for pure SA models is the threshold function. It is used to
determine if the node j has to be considered active or not. The application of the threshold
function to the above formula in the case of binary value units gives:

q \ 0 I j < k j

J I 1 h > %
where kj is the value for the threshold for the unit j .

The threshold value of the activation function is application dependent and can vary
from node to node. After the node as determined its output value, it fires it to all the
nodes connected to itself, usually sending the same value to each of these.

Pulse after pulse, the activation spreads over the network reaching nodes that are far
from the initially activated ones. After a determined number of pulses has been fired a
termination condition is checked. If the condition is verified than the SA process stops,
otherwise it goes on for another series of pulses. SA is therefore a iterative process ,
consisting of a sequence of pulses and termination checks.

The activation level of the nodes reached at termination time is the result of the SA
process. The interpretation of the level of activation of each node depends on the ap
plication and, in particular, on the characteristics of the object being modelled by that
node.

3.2 .2 C onstrained Spreading A ctivation

The pure SA model, however, presents some serious drawbacks:

• unless controlled carefully by means of preadjustment and postadjustment phases
the activation ends up spreading all over the network;

• there is no full use of the information provided by the labels associated to the links,
tha t is, there is no complete use of the semantics of the relationships;

• it is difficult to use some form of inference in a SA model without using in different
ways links with a different semantic meaning.

These problems can find a solutions by modifying the processing framework so to con
sider the diverse significance of the relations among units. This can be achieved using the
information provided by the labels on the links and by processing links in different ways
according to their semantic meanings. It is possible in this way to implement some form

41

of heuristics, so tha t the activation on the network is spread according to some inference
rules. A common way of implementing a processing framework which spreads the activa
tion according to inference rules, is by means of constraints on the spreading. Here are
some constraints commonly used in SA models:

distance constraint: the spreading of activation ceases when it reaches nodes tha t are
far, in term s of links covered to reach them, from the initially activated ones. This
corresponds to the simple rule that the strength of the relation between two nodes
decreases with their semantic distance. Relations can be classified according to their
distance in term of links. Relations between two nodes directly connected are called
first order relations. Relations between two nodes connected by means of an inter
mediate node are called second order relations, and so on. It is common to consider
only first, second and, at most, third order relation, however this depends on the
context of the application.

fan-out constraint: the spreading of activation ceases at nodes with very high connec
tivity (or fan-out), tha t is at nodes connected to a very large number of other nodes.
The purpose of this constraint is to avoid a too wide spreading of the activation
which could derive from nodes with a very broad semantic meaning and therefore
connected to many nodes.

path constraint: activation spreads using preferential paths, reflecting application de
pendent inference rules. This can be modelled using the weights on links or, if links
are labelled, diverting the activation flow to particular paths while stopping it from
following other non meaningful paths.

activation constraint: using the threshold function at a single node level, it is possible
to control the spreading of the activation on the network. This can be achieved by
changing the threshold value in relation to the total level of activation over the entire
network at any single pulse. Moreover, it is possible to assign different threshold
levels to each unit or set of units in relation to their meaning in the context of
the application. Although the use of activation constraints causes a increase in the
computations, it makes possible to implement various inference rules.

Referring to Figure 3.3 these constraints can be seen as acting during the preadjustm ent
phase (distance, fan-out, and path constraints) or during the postadjustment phase (mainly
activation level constraints). Therefore they can be considered as an enhancement of the
pure SA model.

Another more practical advantage deriving from the use of constrained SA is also that
the activation does not spread over the entire network because some constraints are used
to cease it when it is no more meaningful. This enables a reduction of the computational
effort for a system using SA because only a small portion of the network’s units becomes
active and send activation.

42

3.2.3 Spreading A ctivation w ith feedback

A further enhancement of the pure SA model can be obtained by means of feedback from
an external source. In this case, an external evaluation of the activation level of some units
or of the entire network provides some constraints that would be difficult or impossible to
implement in the form of autom atic rules. This external feedback can be due to another
process or can be provided by the user of the system. The user evaluates the activation
level reached by some nodes and modify it according to his requirements. This may result
in a following spreading of activation over particular user selected paths which differ from
those specified by predetermined path constraints. From this point of view SA adapts itself
to the specific user’s needs.

This model is particularly useful in application where there would be too many inference
rules to be represented in the form of constraints and where it is necessary to provide an
external control by means of a user’s evaluation of the results. The use of feedback from
user can be either be implemented in the preadjustment phase, so that the user directs the
spreading of activation of the pulse, or in the postadjustment phase, enabling the user to
evaluate the result of the spreading and direct the following pulse accordingly ([34]).

3.2.4 Spreading activation and IR

The SA techniques used in IR are based on the existence of maps specifying relations
between terms and/or between documents. Using these relations the SA model can easily
be applied to IR.

Nodes correspond to terms, documents, articles, journals, subject classifications, and
authors. There is no need of homogeneity in the network. A node can represent anything.
Links indicate the association of a node with another node, as, for instance, an author
with a document he/she wrote or a document with a document it cites. An example of a
fragment of a document collection representation is shown in Figure 3.4. Specific link types
include term occurrence, document publication, term assignment by indexing, document
authorship, document assignment to classification, document citation, and so forth. The
set of node types and link types is determined by the data available and by the purpose of
the application. The representation structure is therefore application specific and the same
structure can not be applied to different applications. It is also im portant to note that
relationships could actually be expressed by a pairs of links. Authorship, for instance, can
be represented by both “authored by” and “is author of” links. Both links in such pairs
connect the same two nodes, but their source and destination roles are reversed. Specific
processing rules may inhibit activation in either directions, and use them in different ways,
or associate different weights to different directions.

Given such a representation structure the network activation starts by placing a spec
ified activation level at some starting term or document node. These nodes are usually
identified by the initial query formulation or by documents or terms retrieved by an earlier
search operation, the second option being often used in systems with relevance feedback.
The activation first reaches nodes located the closest to the starting nodes, then it spreads

43

author
term term

thesaurus

authorshipterm

doc
docterm citation

subject indexing

^authorship

author
classification

citation

class authorship

classification

Figure 3.4: An example of document collection network representation.

44

through the network using links. The activation level of a node is computed using one of
the functions specified above in Section 3.2.1. The process ends when some term ination
condition is reached. The activation level of documents at the end of the spreading process
is used to compute the relevance level of each document.

Most of the SA processing frameworks used in IR systems differs from the pure SA
models in several respects:

• the activation level of a node reached by the spreading of activation is determined by
the starting activation level and the type of nodes and links traversed before reaching
it;

• distance constraints are usually imposed by stopping or degrading the activity at
some specified distance from the original node;

• nodes with a large branching ratio (fan-out) may receive special treatm ent in order
to avoid a too large spreading of the activation on the network;

• the activation process follows specified rules, which try to mimic some sort of inference
in the process of associative retrieval.

It has been dem onstrated in [34] that better retrieval results can be obtained by a SA
process which uses some of the above mentioned characteristics.

Much of the effectiveness of the process is, however, crucially dependent on the avail
ability of a representative network. The problem of building a network which effectively
represents the useful relations (in terms of the IR aims) between nodes representing docu
ments and/or terms has always been the critical point of many of the attem pts to use SA
in IR. Most of the times these networks are very difficult to build, to maintain and keep up
to date. Their construction requires a deep understanding application domain knowledge
which only experts in the application domain can provide. Furthermore, their construction
is a very expensive and time consuming process, which is impossible for collections con
sisting of a large number of documents and terms and/or spanning over a large application
domain. Although it can be argue that it is possible to build up quite easily a network
using statistically determined associations between terms ([40]), it must be noted tha t in
this case the network cannot be truly considered a semantic network and it representational
power much depends on the statistical methods used to build it up. Furthermore, the use
of online thesauri to build up the network always requires the existence of a thesaurus cov
ering terms belonging to the application domain, which is not always easy for very specific
application domains.

At last, a complete SA system that makes use of diverse link types and of spreading
rules with distance and fan-out constraints, has never been implemented with ordinary
document collections. Various prototype systems are presented in the IR literature but no
commercial system based on SA models actually exists.

Given these problems, a different approach to the processing of the conceptual model
was preferred in this thesis. The NN approach, which will be presented in the following

45

part of this chapter, seems to possess the potentiality for solving some of the problems the
SA approach has got.

3.3 A r tif ic ia l N eu ra l N etw ork s

Artificial neural networks models or simply neural networks (NN) go by many names such
as connectionist architectures, parallel distributed processing (PDP) models, and neuro-
morphic systems. W hatever the name, they consist of many simple, highly interconnected
processing units which act as a whole to perform computable functions. These assemblies
exhibit properties of associative memory, recognition, search, learning, and computation.

Artificial NN structures are based on our present understanding of biological nervous
systems. The amount and type of biological detail retained in a given model depends on the
purposes of the model. Often the abstracted features are extended beyond what is known in
neurobiology, with diverse goals such as ease of simulation, suggestion of principles to seek
out in biological preparations, and conceptual computational modelling. Many researchers
are not interested in the biological implications, and construct networks purely as problem
solving devices. Once the computational model is divorced from biology, the computing
algorithm might be described as neural only for historical reasons. The back-propagation
procedure (see further bellow) which is most often cited in applications papers has no
known biological correlate.

Conversely our lack of detailed understanding of the working of the brain leads neuro
biologists to use these models as research tools. Some representative objects of simulation
are modelling of brain structures such as the visual cortex, natural language processing and
understanding, optimisation problems, high density routing tables, and memory systems.

3.3.1 B io log ica l neurons and networks
Real NN, such as the human brain, are far more complex than artificial NN. A real NN
consists of many neural cells, or neurons which come in many shapes, sizes, and configu
rations. A representative neuron consists of a cell body or soma, a number of input fibres
or dendrites, and an output axon fibre (Figure 3.5). Cells are connected to each other
through synapses, which are electro-chemical junctions usually occurring between axons
and dendrites. Each neuron can have from 103 to 105 connections with other neurons.
Information through the connections is carried in electrical signals which flow in only one
direction. Electrical activity, say from a dendrite attached to a sensory transducer, flows
down the dendrite and into the cell body. This may cause the cell to generate a burst
of electrical activity which is transm itted outward along its axon. The axon becomes the
input to other cells. The details of these events are very complex and interrelated and are
active areas of research.

Neurobiologists are trying to use artificial NN to study the characteristics of real NN.
However, the research is confused by the fact that neural simulations are performed at
present mostly on serial machines. This is in contrast with the architecture of real NN,

46

Dendrites

Synapses
Dendrites of
adjacent neuron

Axon terminals
Axon

Cell body

Direction of signal propagation

Figure 3.5: Biological neurons

which is sometimes described as “massively parallel” . Even when researchers use hardware
described loosely as parallel, then the implementation may involve pipelining of informa
tion through a single CPU designed for vector multiplications. Alternatively, it is possible
to partition the calculation between independent coarse-grained processors such as trans
puters. However, each transputers carries out the work of many neurons. On the other
hand, all of these implementations use a number of computing units and connections which
is relatively small in comparison with the number of neurons and synapses in a real NN.
Massive parallelism has not yet arrived for artificial NN hardware.

3.3.2 S im ulated neurons and networks

Artificial NN (henceforth only NN) models are specified by:

1. node characteristics;

2. net topology (or net architecture);

3. training and learning rules.

A schematic diagram of a node is seen in Figure 3.6. Each node is connected to a
number of input lines and output lines. Signals in biological neural networks are based on
trains of equal valued spikes at different frequencies. Most simulations use real numbers to
represent these signal frequencies at discrete time steps. Thus the activity level of a unit
is a real number, as are its inputs and outputs. Input lines are attached to a unit through
connections of usually variable strength, which are also represented by real numbers. The
contribution of one input to the unit’s total input is the product of the activity on that
line with the value of the connection strength. The total input to the unit (I) is the sum of
all the individual products. Connections may be positive or negative in sign. The former
adds activity to the total, while the latter subtracts from it. Therefore the total input of
a unit j is evaluated as:

Ij (0{ Wi j)

47

Figure 3.6: Simulated neuron

where O j is the output of the unit i connected to unit j through the connection whose

(strength is expressed by the weight W{j.
The activity value of a node (A) is typically defined to be a non linear function (/) of

the total input. Some commonly used activation functions are shown in Figure 3.7. Each
unit may have associated with it a “bias” , which is the activity value of the unit at rest.
This is similar to the resting potential of biological neurons, though it is often viewed as
an additional input to the simulated neuron. The activity values of the unit j is computed

I as:
Im

j A > = m

| The output of the unit (0) is a function of the activity (g). In many models the output
I value is the activity value itself, that is the output function is just the identity function,

jj Therefore:

| 0 J = g (A J)
I

It is worth repeating that this is a description of a representative simulated neuron,
j There are many NN models. They differ in the form of the input, activity, and output
j function and in the way they compute the bias. Variations such as temporal summation,
•f delayed outputs, multiplicative (rather then additive) synapses, and internal memory of

! recent activity often occur in specialised systems.
The a rc h ite c tu re or connectivity pattern of a network describes its physical (virtual,

if inside a computer simulation) layout. Spatial relations between units may be specified
along with connections between them. Usually, the spatial layout of a network is just a
convenience for the designer, since the topology can often be changed while preserving the
connectivity pattern. The connectivity pattern is therefore the specification of which un it’s
outputs connect to which other units as input. To facilitate this, the units in a network
are often partitioned in groups. These may be seen as functional subnetworks, layers in a

48

linear function step function

Figure 3.7: Common activation functions

sigmoid function

O O

(a) (b) (c)

Figure 3.8: Common network architectures: a) single layer network b) two layer network
c) fully interconnected network

stratified structure, or just as divisions which represent the intentions of the designer. The
layers are usually distinguished by restricted connection specifications, such as allowing
no connections among the units in a group, but full connectivity between groups. The
direction of propagation of the signals among units is usually restricted and formalised.
Some examples of net architecture are depicted in Figure 3.8. It is im portant to notice
the similarities between the NN architectures and the architectures used by SA. Both are
based on a network structure which is the most suitable for Associative IR.

The le a rn in g ru le is concerned with the way the training and learning are performed
on the already defined un it’s and network’s characteristics. The learning rule is usually
what characterises the model the most. The general characteristics of NN learning and the
description of some procedures are presented in Section 3.6.

49

3.4 L oca l and d istr ib u ted rep resen ta tion s

The structure of a network generally reflects the intended interpretations of its layers and
units. The individual set of neurons in a multi-layered network might represent the notions
of input, output, and processing structures. Within the set of neurons, individual units
may have a local or distributed interpretation.

In a local interpretation, which is typical of symbolic representations, units may corre
spond to such high level notions as words, concepts, terms in an equation, or categories.
For example, a set of input units might represent line segment detectors, with connections
to another set of units which represent alphanumeric characters, with connections to an
other set of units which represent words, with connections to another set of units which
represent categories. The term local is used in reference to the idea that these qualities are
localised to specific units. Extracting meaning from this kind of network is relatively sim
ple. The activity level of each unit represents the amount to which the indicated concept
is involved in the current state of the network. A list of all the units’ meanings and their
current activity levels can yield a complete description of a network’s current ’’thought” .
Different patterns of activity across the units represent different ’’thoughts” .

At the other end of the spectrum are distributed interpretations, typical of subsymbolic
representations, in which such localisation of concepts to units is not possible. Rather,
units correspond to so-called micro-features of the environment. A local unit is replaced
by a group of units whose activity levels as a group represent the quality in question. No
single unit can be said to represent any describable entity. This makes the interpretation of
activity patterns more difficult, but makes their interactions more subtle. Many concepts
can be represented and thus interact in a single group of units. This type of representation
also has the advantage of better fault tolerance and noise immunity, in that failure of any
single unit should not greatly disrupt the system as a whole. In contrast, failure of a
local unit which represents a word means that the word can no longer be expressed. It is
im portant to notice that, while local representations define and limit the concepts available
to a system, distributed representations allow flexible interpretations of what concepts are
in existence or are available.

Many issues in network and problem representation in general are complex and poorly
understood. Most traditional artificial intelligence research has focussed on local repre
sentation of symbols and meaning, probably influenced by the local nature of traditional
computer architectures. Connectionist systems appear to alleviate this constraint to some
degree, but much more work is required before any claims of superiority of one over the
others could be made. A major problem with distributed representations is the difficulty in
assigning meaningful activity patterns to concepts and hence to sets of units. Unless this
is done carefully, systems which attem pt to be distributed in nature can become nothing
more than jumbled and complex versions of local instantiations.

Along with the information contained in the definition of units, there is information in
the connections between them. This information is the most important characteristic in
some applications. The presence of a unit (or group of units) defined as a concept means
that the concept is available to the system. Similarly, a connection between two units

50

or groups of units implies that the two concepts may be related and thus influence each
other. In the case of a more distributed representation, the connectivity pattern within
the network can restrict and shape the activity patterns which are likely to occur. While
this is also applicable to local systems, in the case of distributed representations it deeply
affects the way concepts are realized.

A network connectivity pattern generally defines potential connections among units, but
not the specific strengths. It is these strengths which embody a given system’s knowledge
under its framework. Connection strengths may either be part of a system’s definition, or
may be learned by the system through experience. The former scheme is usually restricted
to local representations, where the correlations among predefined-defined conceptual units
are known. The most interesting set of networks learns these correlations through experi
ence, and this is what learning procedures are for.

3.5 L earn in g and m em ory

A widely held theory concerning the neurological basis of memory is that of long term
potentiation (LTP), or Hebbian learning.

The concept of Hebbian learning, which first appeared in [41], specifically refers to the
statement:

’’When an axon of cell A is near enough to excite a cell B and repeatedly or
persistently takes part in firing it, some growth process or metabolic change
takes place in one or both cells such that A’s efficiency, as one of the cells firing
B, is increased” .

This was initially offered as an explanation of how information arriving in the brain
could be kept during processing. Connections which quickly adapt to an activity pattern
could store tha t pattern as long as necessary. Such structures form the basis for learning
in cognitive systems. Hebb suggested, with no physiological evidence, that a change in
the area of contact of synaptic knobs was responsible. Sufficient evidence now exists such
that this is the predominant paradigm today. It is supposed that this increases in synaptic
connection strength is related to the firing frequencies of the two cells involved.

In a simulated network, the product of the activity values of two units often determines
the changes in their connection strength. This is generally what is referred to as Hebbian
learning in connectionist systems (see further below). Variations commonly arise when the
values used in the product are not the cell activity values themselves, but are functions of
them. This is often done to include error correcting procedures. Neighbouring cells and
even more global interactions may also play a role in the formulation of the learning rule.

The notion of memory in traditional computer systems differs greatly from its concep
tion in human cognition.

“Traditional computer systems” refers to serial Von Neumann architectures with sep
arate processing and memory systems. Information is stored in discrete locations within
some storage medium. Access to that information can only be made through its address ,

51

Figure 3.9: Auto-associative memory

or known physical location. When the content of the information is known but not its
location, a search must be performed. In this case, the content must be known exactly,
or else some pattern matching function must be used. Human memories, in contrast, are
accessed only by content, with no regard to physical location. Stored information (events,
names, faces) are recalled by thinking about something related, or associated with that
memory. Additionally, the information used as the key need only to be partially complete
or correct. Incorrectly spelled names or partial views of objects usually do not impede the
acts of recognition or recall. The inability of traditional computer systems to perform such
operations is undoubtedly a major obstacle in many areas of research. These most natural
and prominent cognitive operations are difficult for these systems to emulate.

Two types of associative memory, auto- and hetero-associative, are often discussed.
Auto-associative memory generally refers to the ability of a system to recognise and
correctly recall information from partial or corrupted versions used as input. Hetero-
associative memory systems ’couple’ different information. If two items are stored as a
pair, the presentation of one recalls the other.

Connectionist systems are well suited to perform associative memory operations. W ith
a simple learning rule, a group of completely interconnected units (every unit connects to
every unit) can perform auto-associative memory (see Figure 3.9). A pattern of activity
is set up in the network (through dedicated input lines), and the synapses between the
active cells are increased in strength. When a subset of that pattern is presented to the
group, sufficient activity can spread through the strong connections to enable the missing
units to fire, reinstating the original pattern. The information needed to recall a pattern
is distributed throughout the connections in the system. Missing or inaccurate connection
strength values do not greatly affect performance, as they represent only a small amount of
the overall informational content. Many of these distributed representations can be stored
simultaneously in the same set of connections. The fidelity of this kind of storage can
depend on pattern independence, network size and structure, and learning specifications.
Interference between stored patterns can be seen as a hindrance or as a benefit, depending
on the aims of a particular model. Bad interference overwrites memories, while good
interference allows generalisation.

Systems with two or more layers of units can perform hetero-associative memory (see

52

Figure 3.10: Hetero-associative memory

Figure 3.10). Patterns are presented to each group, and the connections adjust to enable
the mapping from one pattern to the other. A previously learned pattern is presented to
one of the groups, and activity flows to the other layer, recreating the second pattern there.
Flow of activity may or may not be restricted to one direction.

The mechanism which distinguishes learning from recall in biological memory, if one
exists, is not known. However, almost all simulations have distinct operations for them,
and their use is under system level control.

3.6 N eu ra l N etw ork s learn ing p roced u res

Generally speaking a learning procedure or a learning algorithm for an artificial NN is
defined as method for changing the weights of the connections between nodes during the
training phase in order to improve the recall performance of the network. W ith regard to
the word “algorithm” it has to be noted that a learning algorithm for an artificial NN is
not assumed to supply, after a finite time period, the desired result. The word procedure
seems therefore more appropriate to name them, and in the following this will be used.

In a more mathematical way, learning is defined as any change in the matrix IT, which
represents the weights of all the connections in the network. So:

learning = - r - / 0
at

where:

W is the weight matrix, so that an element W{j is the weight associated with the
connection between node Ui and uy,

t is the tim e variable.

53

A learning procedure is said to be a static one if the NN has to settle into some kind of
equilibrium state before the weight changes are carried out (e.g. a state where the units’
activation values do not change any longer). On the other hand, a learning procedure is
said to be dynamic if weight changes are allowed even before the NN reaches an equilibrium
state.

The core of each learning procedure is its adaptation rule which specifies the amount
of d W , tha t is the amount of change a weight W{j has to perform. Examples of adaptation
rules are the error correction rule, the reinforcement rule, and the Hebbian rule.

An error correcting rule (sometimes called a delta rule) is defined as the adaptation of
the connection weights in proportion to the difference between the desired and computed
values of each un it’s output. So:

Awij = aoiSj

where:

a is the learning rate;
Oi is the computed output of unit up,
6 j is the error signal of unit U j , and it is defined as:

fij = (dj — Oj)
with:

dji desired output value of unit uy
Oj : computed output of unit U j .

The learning rate, also called synaptic plasticity coefficient, determines the magnitude
of weight changes and hence is crucial to learning performances. Usually the value of the
learning rate is between zero and one.

The problem of finding the appropriate learning rate is quite difficult. In fact a small
learning rate implies small changes of the weights and the net could be too stable when
greater weight changes should be necessary. On the other hand, a larger learning rate
could make the NN too plastic even when small changes are necessary. Some approaches
to learning rate setting are in [36].

The reinforcement rule is similar to the error correcting rule in that weights receive a
reinforcement for properly performed actions and a weakening otherwise. The difference
between the two rules lies in the way the performance of the network is computed. Error
correcting learning procedures the evaluation of an error value for each unit in the output
layer of the network, while in reinforcement learning procedures it is sufficient to have only
one value (a scalar error value) to describe the output layer’s performance.

54

A general reinforcement learning equation is:

A W{j = cxeijSj

where:

a is the learning rate (which is subject to the same considerations previously discussed);
eij is the canonical eligibility of the weight on the connection from unit u,- to unit

Uj, which is dependent on a previously selected probability distribution which is used
to determine whether the computed output equals the desired output value (see further
below);

Sj is the error signal of unit Uj, and it is defined as:

si = (r - Oj)

with:

r: scalar error value of the network’s output layer;
$ j i reinforcement threshold for unit U j .

A problem intensively discussed within the framework of reinforcement learning is the
“credit assignment problem” related with the correct assignment of credit or blame to each
of the actions of each of the system components that contributed to the reinforcement
received.

The Hebbian rule, named after Donald Hebb is the adjustment of the connection weight
according to the correlation of the values of the two units it connects. There are many
forms of the Hebbian learning rule, the simplest mathematical form is the “simple Hebbian
correlation” , which is defined by the following equation:

A Wij = OiOj

where1 :

0 { is the output of the unit ut-;
Oj is the output of the unit U j .

Other more complex forms of Hebbian learning rules can be found in [42].

A desirable feature of all learning rules is that they are local. This is very useful in

1 Sometimes there is a kind of learning rate in the equation so that: Awij = TjOiOj where rj is an
adaptation rate constant.

55

reducing the learning complexity. In fact a local learning rule has the characteristic of
finding information about the weights and the input/activation/output of units locally.
This means tha t information about how weights are to be changed can be found in the
neighbourhood of the weights themselves. This request for local behaviour is expressed in
the phrase: “global net order from local rules” .

All learning procedures can be classified into three categories:

• supervised learning;

• reinforcement learning;

• unsupervised learning.

The classification criterion is based on the environmental learning feedback. So a su
pervised learning procedure is a process which incorporates an “external teacher”. This
means tha t the environment (i.e. the teacher) specifies the desired output of each output
layer’s unit.

A reinforcement learning procedure, on the other hand, uses an environmental learning
feedback in the form of a scalar signal which indicates whether or not the actual and the
desired output patterns coincide. This process, in analogy with supervised learning is said
to incorporate an “external critic” .

In the case of an unsupervised learning procedure, the network does not receive any
environmental learning feedback. This procedure is also referred to as self-organisation
because the process relies upon only local information and internal control to achieve the
learning and capture regularities in the stream of input patterns.

For the purposes of this thesis, learning procedures belonging to the supervised learning
category have been chosen. The main reason for this is that in applications such as the IR
ones it is very easy to identify the “teacher”. In any IR application the results obtained
by the system are immediately and inevitably judged by the user who, on the other hand,
is the only one who can judge of the relevance of the results obtained. The presence of
such a valuable teacher has directed the research, most of the time, toward the use of
supervised learning procedures or, less frequently, toward the use of reinforcement learning
procedures. Moreover, only very recently there as been some attem pts to use unsupervised
learning in IR and the results obtained do not seem to encourage the research in this
direction. The use of unsupervised learning procedures seemed no dissimilar from the use
of a sophisticated clustering technique.

In the following two Sections the most commonly used supervised learning procedures
are described.

3.6.1 B ackpropagation
The Backpropagation (BP) learning procedure was developed by several research groups
at the same tim e in the 1970s and 1980s.

56

The classical structure of a net using the BP learning procedure is a three-layers
perceptron-like network with feedforward connections (Figure 3.11). The intention with
this network is to map an input pattern (a pattern is a set of activities in a layer) to a
corresponding output pattern. During the learning phase the teacher will assign an in
put pattern and provide the exact desired target output pattern. The difference between
the target and the actual network output pattern guides the adjustment of the network
weights. In a practical situation there will be fluctuations in the input patterns which
all correspond to the same output pattern. For example, assume a network has to learn
to detect a picture of an apple. The network receives binary inputs from the pixels of a
digitised picture. There are apples in an infinite number of shapes, colours, and sizes, but
for any apple we want the network to output 1 when an apple is presented to the input
and 0 when not. After learning many various pictures of apples, the network will recognise
apples not initially learned. The network will be able to generalise, or extract a rule, on
how an apple looks, based on the similarity of the pictures presented during the learning
phase.

Rosemblatt discovered in 1962 a supervised learning rule for adjusting the weights in a
one-layer perceptron [24], called the perceptron learning rule. The learning rule has been
proven to converge in a finite number of steps, providing the problem at hand can be solved
with a single-layer perceptron. A learning rule for multi-layer Perceptrons was invented
several times, but was forgotten only to be rediscovered around 1985 with great fame by
Rumelhart, Hinton, and Williams [36]. Known as Backpropagation, the delta rule, the
LMS-rule, or the Widrow-Hoff rule, it successfully solves some of the major problems the
one-layer perceptron had. The major distinction with perceptron is the adding of hidden
layers of units.

BP learning involves two phases for each pattern to be learned. First, there is a “for
ward pass” , where an external input pattern is passed through the net from the input units
toward the output units, leading to an external output pattern. This phase is also called
“recall phase” and it is common to every NN. The output pattern produced is compared
with the desired external output pattern and an error signal for each output unit is pro
duced. Second, in the phase called “backward pass”, the error signals of the output units
are passed backward - “backpropagated” - toward the input units, and an error signal for
each hidden and input unit is evaluated. The weight changes are proportional to the error
signals. The modifications take place before a successive presentation of the same pattern
in an iterative process until a general error measure of the performances of the network
reaches a desired value.

More formally, given an input-output pattern p, the weight changes are determined
according to the following rule:

A Wij = ac%8j

where:

a is the learning rate;

57

Figure 3.11: BP classical network topology

o\ is the computed output of unit m for the pattern p;
6Pj is the error signal of unit Uj, and it is defined as:

f f = I K - ° j) f ^ U{ is an output unit
3 1 (i k Slwk3) f otherwise

with:

/ ' : the derivative of the activation function;
dji desired output value of unit uj for the pattern p;
ovf . computed output of unit Uj for the pattern p.

It can be shown that the BP learning procedure minimises the sum-squared error func
tion:

E r r o r = | E p

where:

E> = £,-(dJ - o] f

which is computed over all output units of each pattern to be learned. This is done by
changing the weights proportionally to 8 E p/6w i j ‘, hence BP is the least mean square proce
dure which implements an approximate gradient descent in the E r r o r function. In weight
space the error function defines a surface on which the learning phase seeks the deepest
point. This procedure follows the gradient of the error function “downhill” to the global
minimum of the error function by adjusting the weights. This is done by feeding an error
signal backwards through the network along the connections. From the error signal each

58

unit calculates the changes in the converging weights. Hence the name Backpropagation.
Gradient descent is one of the simplest optimisation procedures, but not a very good one.
Many numerical procedures invented in the 60s and 70s perform better. Genetic algorithms
have also been applied to neural network learning. The weights “evolve” towards optimum
values, but genetic algorithms are generally very slow.

Ideally, no a priori knowledge of the problem has to be encoded in the solution, but in
practise one has to design the network topology to suit the problem at hand. In particular
choose the number of hidden units for a two-layer network, as well as adjusting several
parameters.

There are many variations and extensions of the elementary version of BP learning. A
good coverage of the subject is in [36]. For an algorithmic description of the BP learning

! procedure see [42].
Backpropagation can be used in networks with any number of hidden layers, and has

i been used to solve many practical problems with great success. Applications include pro-
j nouncing English text, playing backgammon, sonar target recognition, car navigation, and
I recognising hand-written ZIP codes.

j 3.6.2 B oltzm an n M achine
| A Boltzmann Machine (BM) is a generalisation of a Hopfield net in which the units update
j their states according to a stochastic decision rule. In order to understand the BM learning
j procedure, the essential characteristics of Hopfield nets have to be described.

jj Hopfield took “a step back from biology” in 1982, when he introduce a network of
j McCulloch-Pitts neurons with symmetric weights. A Hopfield net (HN) is, in fact, a NN
| whose weight m atrix is symmetrical with zero diagonal elements. The synaptic strength
| is therefore reciprocally equal between any two neurons. This is clearly not biologically
| plausible. All the units are fully interconnected, and they are all both input and output
| units. Each unit is binary but with activities —1 and 1 for mathematical convenience. The
| activation function is a threshold function.
! The architecture is that of a content-addressable memory, also known as auto-associative
j memory. Several patterns of activity (for example a digitalised picture) can be stored by
j changing the weights similarly to Hebb’s rule [41]. When provided with a part of one of
I the stored patterns the network completes the rest of the pattern. Likewise, the network

removes the noise from a stored pattern having noise superimposed.
I However, the units are updated asynchronously, which is much more like the continuous
j updates present in biological systems. Stored pattern are recalled by picking units at
| random and assigning output values as before. When no changes in activity occurs the

activities of the units are the recalled, stored pattern. HN converges to a stable state if the
units whose activation values have to be calculated are chosen randomly, asynchronously,

2It is supposed that a net state is represented by a vector whose elements are the states of the net s
units.

59

and one at a time, though the process is very slow for large networks simulated on a digital
computer.

The main characteristic of HN is the introduction of the quantity E called the Energy
function. It can be shown that HN performs optimisation of the Energy function by
converging to its minimum. The minimisation is achieved by changing the units’ states,
not the weights.

The HN has been several implementations of the algorithm in analog electronics and
optics. The model has been extended to units with continuous activity. The analysis has
gained benefit from parallels in statistical mechanics.

A BM uses the same network topology and weight matrix characteristic of HN, but a
different activation function and incorporates the technique called “simulated annealing” .

In a BM the activation function is a stochastic one and it allows the computation of
the probability pi for the unit Ui to be active (or to have value 1) regardless to its previous
state. The probability is computed as follows:

P ' = l + e - ' i / T

where:

Ip. total input of the unit up
T : param eter called “temperature”.

The param eter T acts like the temperature in the process of simulated annealing. A
simulated annealing is an algorithmic simulation of the physical process called annealing,
which consists of a heating-up phase followed by a cooling-down phase.

In the heating-up phase a solid is heated up to a maximum temperature, a value
at which all the particles of the solid randomly arrange themselves. In the cooling-down
phase the tem perature is lowered, and if the cooling is done slowly enough, the solid reaches
thermal equilibrium for each temperature value.

The param eter T can also be considered a measure of the noise influencing the decision
whether or not a un it’s state will be changed. The behaviour of the BM and the way the
thermal equilibrium is achieved is influenced by this parameter. At a low temperature (T
near to 0) the approach to thermal equilibrium is slow since the net responds, changing
the units’ states even by small energy differences, but low energy states are much more
probable than high energy states. On the contrary, at a high temperature (T near to 1)
the approach to thermal equilibrium is rapid since the net responds only to large energy
differences, but low energy states are not more probable than high energy states. The
fastest way to approach the desired low energy equilibrium is generally to start at a high
temperature and to gradually reduce the temperature, like in the annealing process.

According to this, the BM learning procedure is performed in two phases, a clamping
phase” and a “running phase” .

In the clamping phase the pattern is presented to the input and output units, the state

60

of these units is kept unchanged during the rest of this phase. The net runs and it is
annealed until it reaches thermal equilibrium at low temperature. At equilibrium it runs
for a fixed amount of time in order to measure, for each connection, the fraction of time the
units connected remain both active. This is used to measure the probability pfj (averaged
over all cases) the units U{ and i t j are simultaneously active at thermal equilibrium when
the input and the output vectors are both clamped. During the running phase the net runs
as in the clamping phase, except that the output units are not clamped. The probability
p~- is determined in the same way as in the clamping phase.

The two probabilities are used to determine the weight changes using the following rule:

AWij = a(ptj - p~j)

where a is the learning rate.
These two probabilities can be interpreted as follows: (a) in the clamping phase p j

measures the performance of the network which is subject to environment and network
structure, while (b) in the running phase only the net structure influences the performance
of the net, measured by p~-.

Usually BM has input, hidden, and output units, but in an arbitrary topology and
has therefore no layered structure. It can perform the same tasks as Backpropagation, but
proves to operate much slower. Applications include speech analysis, phoneme recognition,
graph search and optimisation, hand writing digit recognition.

3.7 N e u r a l N etw ork s and IR

The application of NN models to IR is quite a recent phenomenon. Indeed, very few
papers have appeared on this subject as yet, and many of them are just reports of work in
progress. So far, there is no operational IRS based on the connectionist model, and only
recently prototypes have been proposed which approach “real world”-like applications.
Besides, many research papers claim to be about application of NN to IR, while they are
application of spreading activation techniques (an example is [40]).

In this Section, some of the research is summarised, showing the innovative aspects and
the drawbacks of each approach.

M. C. Mozer ([43]) was one of the first researcher to start working on the application
to IR of the first studies about NN. Some of his ideas are still research ground for many
researchers. He identified the difficulties of traditional IR systems in:

• the users’ difficulty in specifying the information they are seeking, possibly because
the document descriptors have different semantics than they realize, or because they
fail to include relevant descriptors in the query, or because they include irrelevant
descriptors;

61

doc 12 doc 13 doc 15

Figure 3.12: Mozer’s Inductive IR model

• the indexing of the IRS is often inconsistent and incomplete.

Under these assumptions he considered the retrieval process as an “inductive process”.
He used what was known from the first experiments of PDP models, to develop a prototype
system which, in its simplicity, resulted in being quite effective.

The dynamic of this model was based on McClelland and Rumelhart’s interactive ac
tivation model of word perception ([36]. The structure of the model is depicted in Figure
3.12. In the model each document or descriptor is represented by a unit. The activation
level of a unit indicates the system’s belief in the relevance of the document. Excitatory
and inhibitory links permit the flow of activation from document to document and from
document to descriptors. As it can be noticed, an asymmetric aspect of the model is that
each document is connected with inhibitory links (with a constant weight) to all other
documents, whereas descriptors do not have mutually inhibitory connections. This com
petitive aspect among documents helps to keep their activation level under control during
the retrieval phase, and helps to control the level of associativity among documents.

A query can be specified as a set of positive or negative descriptors, the positive de
scriptors being those which should be associated with the retrieved documents and the
negative descriptors those that should not. The activation level of the specified descrip
tors is clamped to the maximum/minimum level allowed. The activation then flows from
one layer to the other and between units of the document layer. Each unit computes the
weighted sum of its incoming activations, but each unit looses a fixed percentage of its acti
vation during each time step. This results in a exponential decay over time. The activation
is allowed to flow from one layer to the other and vice versa until the system stabilises,
that is, until the net increase in activation to each unit (i.e. the total of excitatory inputs)
equals the net decrease (i.e. the total of inhibitory inputs and decay). The documents are
then displayed in order of their activation level. It is interesting to notice that a query
can be formulated also as the activation of a set of documents (query by example). This
enable the identification of similar documents, where the similarity is measured in terms
of common descriptors.

At an abstract level of description, the model operates as follows. The user activates
a set of descriptors. These descriptors activate a set of documents, which activate a set of

62

new descriptors, which in turn will activate a set of new documents as well as reinforce the
activation of the alieady active ones, and so on. This flow allows descriptors in a query to
indirectly suggest other descriptors that may be useful in the documents search, and allow
active documents to indirectly suggest other documents.

The evaluation of the prototype on a small set of documents and descriptors gave
good and sometimes surprising results, often retrieving documents with no descriptors in
common with the query yet clearly relevant. However, the model has some important draw
backs. First, weights on links are only +1 or -1 and they do not reflect the importance
of the descriptor in the representation of the document’s informative content. Second,
weights are static, and there is no learning procedure which modifies these weights. There
fore, the system performs in the same way over the time. Lastly, there are no links among
descriptors which could represent semantic relationships among them. The relationships
between descriptors are induced from their relationships with documents, therefore the
model requires that the documents should be indexed by a highly correlated set of de
scriptors. W ithout such an indexing scheme, the model would not be able to perform the
desired induction and it would perform, as the author pointed out, exactly like a vector
space model ([4]).

A few years later, J. Bein and P. Smolensky ([44]), understanding the importance and
the potentiality of Mozer’s research, rigourously tried to test whether Mozer’s model of
Inductive IR was useful for real world document collection. The main issues they addressed
were:

• feasibility: do the properties of the model work with real size collections of docu
ments?

• efficiency: can the model be efficiently (in terms of space and time) implemented?

• utility: is the model useful for real users in terms of improving recall and precision?

It must be recognised that these issues belong to different domains. Feasibility belongs
to the domain of connectionist research, while efficiency is more an engineering problem.
What is primarily related to IR is the utility of the model. Therefore, although they used a
document collection of reasonable size, they could not produce recall and precision figures
to be compared to standard IRS because they did not use a test document collection. This
limits considerably the conclusions they reached, especially in terms of the utility of the
model.

Nevertheless, the results achieved in this research gave analytical and empirical evidence
to support the claim that this model is feasible and efficient enough to be implemented for
real world applications. In particular, the issue of feasibility, in terms of the associative
characteristics of the model, was investigated in depth. The empirical results showed a
good value of induced association among descriptors that are not part of the user spec
ified query and among documents which are not directly associated with the descriptors

63

from the user queiy. These conclusions were obtained using a very interesting approach,
which consists in the evaluation of ^relative” recall and precision. These measures were
evaluated compaiing altered queries with the original unaltered ones. Queries were altered
in two ways: randomly deleting descriptors (abridged queries), or replacing descriptors
with morphological variants (displaced queries). Experiments of this kind were very useful
in determining the sensitivity of the induction to incorrect or incomplete queries. They
showed that small queries (i.e. with a small number of descriptors involved) are more
sensitive to deletions, while large queries are more sensitive to displacement.

W ith the CRUCS (Conceptual Retrieval Using Connectionist Style) system R. J. Brach-
man and D. L. McGuinness ([45]) opened a new direction in the research. They tried to
combine knowledge representation research, IR, and NN, in what can be considered as an
attem pt to use the connectionist approach to support similarity-based reasoning in a frame
representation.

The starting point of their work was the consideration that there exists a too deep
connection between standard KR and formal logic. This results in deductive mechanisms
too rigid to be useful in IR. A more flexible form of inference is needed, and they thought
of finding it in a connectionist view of inference. Given a document described with one
set of terms, the kind of inference they were looking for is the one which should enable
determination of other ways to describe the document that are entailed by the original set
of terms. While standard KR seems to rigid for such a task, a stochastic approach, like
the one used by NN, could fulfill the task.

The structure of the CRUCS model is based on a frame knowledge representation
system. A frame represents a concept or a superconcept. Frames and connections among
them form a taxonomy, which is roughly hierarchical. In the experiments performed by the
authors this representation structure is used to represent concepts and documents in the
domain of programming languages. Concepts can have attached to them instances which
are the documents the system should be able to retrieve. An example of this KR structure
is depicted in Figure 3.13. From this structure, which is still a symbolic representation, a
new structure is built in order to use a NN model. This is implemented using ^KLONE,
a simple frame system built on top of a BM. In this new structure a unit represents a
micro-feature of a concept, that is, the smallest element (or property) that can distinguish
a concept from all the others. In complete agreement with the connectionist approach to
KR, a concept is now represented by a pattern of micro-feature. An instance of a concept
is, instead, represented by a single unit connected to all its micro-features. The retrieval
process is obtained by means of the annealing process of the BM, clamping, and keeping
clamped, the micro-features (properties) of the desired document.

Experiments showed that the tuning of the weights on the connections creates several
problems. The most significant negative observation is, in fact, that all the experiments
were performed using a KB of a very small size. As the application approaches real world
size, the size of KB increases greatly and correct answers depend more and more on precise
tuning. Furthermore, the tuning becomes more difficult as the size of the KB increases

64

S o f t w a r e

has_implementation_language

spec

Rule-Based
prog_languagespec

spec spec

Procedure-Oriented
prog_languageOb ject-Orient ei

prog_language inst

inst inst
has_implementation_languagehas_implementatL6n

language /
FRANZLISP OPS5

LOOPS INTERLISP-D

□ rule concept

^ rule instance f concept instance

Figure 3.13: A CRUCS taxonomy

65

brain neuron parallel informat memory associat

w i : ;0W81

WINTONANDERSONMOZER

Figure 3.14: AIR’s structure

because of the complex relationships among features. Attempts to use the BM learning
procedure gave not very exciting results.

However, CRUCS represents an interesting approach to using both local and distributed
KR models, combining the advantages of “explicity” of standard KR models, with the
stochastically based inference of NN. It demonstrates that these two approaches are not
mutually exclusive.

R. K. Belew ([25, 46]) investigated in depth the use of various connectionist techniques
in an IRS called AIR.

As with most connectionist systems, AIR uses a weighted graph as its basic represen
tation (Figure 3.14). The system’s structure is made of three layers. Nodes on the first
layer represent descriptors, where virtually each word in the document’s title can be con
sidered a descriptor. Nodes in the middle layer represent documents (in the Figure they
are expressed with abbreviations). Two links (one in each direction) are created between
a document and each of its descriptors. Weights are assigned to these links according to
an inverse frequency weighting scheme. Similarly, two links connect a document to each
of its authors, which are represented on the third layer. The sum of the weights on all
links going out from a node is forced to be a constant. This weighting scheme is recognised
to be simplistic, especially in the use of descriptors taken only from the document’s title.
However, this is only an initial weighting. Weights will be permanently modified from the
first user session, by means of relevance feedback.

An initial query is composed by specifying some of the three type of features represented
in the network. The query causes the activation of the nodes corresponding to the features
named in the query. This activity is allowed to propagate throughout the network and the

66

system s response is the set of nodes that become active over a certain threshold during
this propagation. Query subsequent to the first are performed using relevance feedback
from the user. The user is requested to evaluate the relevance of the documents which
are displayed in order of their current activation. The system constructs a new query
directly from this feedback. Moreover, this relevance feedback acts as a training signal
to modify the document representation by changing the weights on the links. Although
Belew uses a learning rule derived from the Hebbian one, he gives to it the interpretation
as a conditional probability. A weight wab is consider the conditional probability that the
node B is relevant given that the node A is relevant. This probability is then extended
inductively to include direct, transitive paths that AIR uses extensively for its retrieval.
This method enables the system to construct a representation of the collection based on the
combination of two completely different sources of evidence: the word frequency statistics
of the initial indexing, and the opinions of its users.

As in most of the systems in this Section, it is possible to formulate a query by giving
some example of relevant documents. In this case, an interesting aspect of this system is
the ability to directly point out to the user new authors related to the subject indicated
in the query. Belew’s work is one of the most complete on this subject. Some of the ideas
of this thesis have originated from studying Belew’s work.

K. L. Kwok's work ([37, 47]) was an attem pt to use the NN paradigm to reformulate the
probabilistic model of IR ([1]) with single terms as document components. The main idea
was to take into account what was already accomplished by IR researchers and integrate
that with the new NN paradigm.

The model proposed by Kwok is represented in Figure 3.15. It is a three layer NN, with
bi-directional and asymmetric connections, where no connections are allowed between units
on the same layer. The structure is, therefore, very similar to a three layer BP network.
Units on the layer Q, which represent queries, may receive an external input and are
connected to the units in the layer T, which represent index terms. Layer T is considered
a hidden layer. Units of the layer T are connected to units on the layer D, which represent
documents.

The innovative aspect of Kwok’s model is in the way the initial weights are evaluated. It
uses a modification of probabilistic indexing to evaluate the initial strength of the connec
tions. W ithout entering into the details of the actual formulas, it should be noted that the
strength of the connections represents a sort of inference, determined using classical prob
abilistic IR measure, like the inverse document frequency. According to this, a weight on a
connection is considered, depending on its direction, either as the probability of presence
of that index term given a particular query (wka) or document (wki), or as the evidence
that if the index term k is used it will be dealing with the contents of that particular query
(“Wo,k) or document (tu,-*).

Another original aspect of Kwok’s model is in the way the retrieval is performed. In fact,
the retrieval can be performed as a feed-forward of feed-backward spreading of activation.
In the first case the activation flows from the query to the documents, which are then

67

w (ak)
t (k) w (ik)w (ka

w (ki)

Q :set of queries T:set of terms D:set of documents

Figure 3.15: Kwok’s model

ranked accordingly. In the second case, the activation spreads from the documents, whose
activity values are clamped to the maximum value, to the query through the index term s’
layer. Each document is then evaluated for relevance to the query based on whether the
activity received at the query node exceeds a certain predetermined threshold value. This
activity can also be used to rank the documents according to their relevance to the query.
Experiments showed that combining these two methods together, it is possible to obtain
performance measures better than the traditional probabilistic IRS.

The learning procedure used in this model may be seen as a type of Hebbian correlation
learning and is of the same nature of the one used by Belew.

Although this can be considered a good attempt to combine old and new paradigms in
IR, the complexity of the computations necessary for the spreading of activation and for
the learning process makes this approach impracticable for real size collections.

Other attem pts to combine sounded classical IR techniques with NN can be found in
the work of G. S. Jung and V. V. Raghavan ([48]). They attempted to marry the vector
space model with learning paradigms of the connectionist model.

The main contribution of their work concerns the construction of a thesaurus-like knowl
edge representation structure, referred as “pseudo-thesaurus”. The domain knowledge con
tained in a pseudo-thesaurus is in numeric, rather then symbolic form and it is represented
in a network structure similar to a single layer NN, where (again) terms are represented
by nodes and relationships between terms are represented by links. Therefore relation
ships between terms are represented in the pseudo-thesaurus as real numbers (as weights
on links), and they are determined by means of a learning procedure which makes use of
relevance feedback from past users. The information provided by the relevance feedback

68

is in the foim of tiaining pairs, that is pairs of queries and document descriptions. The
learning procedure is such that the pseudo-thesaurus can incrementally update itself in an
adaptive way by means of continuous relevance feedback from users. Once the learning
of the weights in the pseudo-thesaurus has taken place, the information contained in it
is used in conjunction with the vector space model to perform the ranking and retrieval
of documents in response to a query. There is a straightforward mapping between the
learning procedure they use and the perceptron learning procedure.

This system is very interesting and is theoretically sounded being based on the vector
space model. The major drawback of the model is in its assumption that the relationships
between terms in the pseudo-thesaurus are symmetric. This is not always true. Indeed, in
most cases (e.g. generalisation - specialisation relationship) the strength of the connection
between a pair of terms is different according to the direction under consideration.

Recently, P. Hingston and R. Wilkinson ([49]) continued in the refinement of Mozer’s
ideas. The architecture of their model is, in fact, almost the same as the one proposed
initially by Mozer. The major contribution of their work is in the proposal of incorporating
relevance feedback from users and in the use of a test document collection, giving figures
that could be compared with those produced by standard IRS.

The basic idea from which they started is the same as Mozer’s: two terms which appear
to be common to a number of documents are likely to be related to the same subject.
They improved, on the same line followed by Bein and Smolensky, the way weights are
evaluated, using the vector space model as a theoretical foundation. However, they went
further, incorporating relevance feedback from users. When the system produces an initial
ranking of documents in response to the initial query, document are examined by the user,
who gives a rating. This rating is transformed into an activation level that is clamped,
so that it may not change in subsequent calculations. The system is then allowed to run
again. The rating influences the activation of terms connected to the documents considered
relevant by the user, giving them a. higher activation. The major problem they had was
related to the tuning of the weights, which resulted to be too query-dependent.

The above exemplification of applications of the connectionist approach to IR can be
considered almost exhaustive. Although many other attempts are under way, they are
quite similar to those described above. The approach proposed in this thesis tries to move
a little step further from what has already been achieved, showing that, though many
problems still exist, the way is quite promising. The next chapter will illustrate the details
of the proposal.

69

C hapter 4

A daptive Inform ation Retrieval

“A program should not be a cast in stone, immutable and
impossible to affect. It should, if it is to be a good model of
a person, be changed by what it reads”
[R. Schank, 1981]

4.1 A d a p ta tio n

The experiments presented in the following chapter can be better interpreted if they follow a
simulation model. In the present section the simulation model which is at the foundations
of these experiments will be presented. A comparison with traditional IR explains the
major points of this model.

The model tha t will be used during the simulation is based on some assumptions. It is
assumed that:

• there is a document space in which the entire collection is represented;

• there is some form of document representation formalism, that is a document is
represented in some wa}' using a certain formalism;

• the formalism used is powerful enough to enable the evaluation of some similarity
measure between documents.

The query and document representation formalism used in the experiments is that of
the vector space model ([4]). This formalism assumes that a document is represented in
terms of some features called descriptors (usually index terms). A document, therefore,
is represented in terms of a set of descriptors, having this representation in the form of
a vector. Each element in the vector represents a descriptor and it is assumed that the
same set of descriptors is used to represent all the documents in the collection. The
descriptors are represented in the vector in a binary form (using 0 or 1). The presence
of the descriptor in the description of a document is represented by a 1 in the respective
position in the vector, otherwise 0 is used. Using this formalism, the entire collection is

TO

t2 • • tk
d\ 1 0 . . 1
d2 0 1 . . 1
d$ 1 1 . . 0

dn 1 0 °
!

Figure 4.1: Vector representation of a documents’ space

Figure 4.2: A simplified representation of the documents’ space

represented in the form of a matrix in which a row represents a document and a column
represents a descriptor (see Figure 4.1).

Once a formalism has been chosen, the collection can be represented in a abstract
way as in Figure 4.2, where each dot represents a distinct document. This representation
oversimplifies the document space, which should have as many dimensions as the number
of descriptors. However, a two dimensional representation is sufficient for the purpose of
this section, which is to give a simple but clear idea of what the experiments are about.

Using this simple model, it is possible to compare the traditional IR approach with the
an adaptive one.

The t r a d it io n a l ap p ro ach to IR assumes that:

1. The query and the documents have the same structure, and they are represented
using the same formalism. This means that the user has to express in the query a
set of descriptors that are considered of interest and that can be useful for finding
relevant documents. In other words, the user expresses his information need by
specifying some features of the documents he is looking for.

2. The user, using the formalism provided, has the possibility to express his information
need in almost a perfect way.

3. The relevance of a document to the user information need is evaluated as similarity
between the document and the query using the formalism provided.

71

Figure 4.3: Query/documents similarity in the documents’ space

Given these three assumptions, a traditional IRS can be thought to work in the following
way.

A query is formulated by the user. The query, which has got the same structure of a
document, is “dropped” into the document space. Inside the document space the query
represents the very document the user is looking for. It is, now, just another element
in the document space, and there is no distinction between the query and anyone of the
documents. The task of the IRS is to provide the user with a set of documents ranked
according to their similarity with the element representing the query: the query represen
tative. This is achieved by evaluating some sort of distance between document and the
query representative, using the document space metric (see Figure 4.3).

It is possible to depict this retrieval process with a simple metaphor. We can think
at the user in terms of a fisherman who wants to catch a particular kind of fish (relevant
documents) in a lake (a document collection). The fisherman throws his line (formulates
a query) where he thinks the fishes could be, in terms of a certain position in the lake
and a certain depth. If he knows exactly where the fishes are, we may expect the hook to
drop exactly over them which will swallow it (that is the query would retrieve exactly that
document) and the fisherman will have his desired prey. However, this is quite difficult
even to imagine and only very expert fishermen could even think of doing that. Usually
we are expecting the line to fall close to the fishes but, as the lake is quite large and well
populated, it can fall close to other kind of fishes too. It is sensible to assume that the
closest fish will swallow the bait first. If the fisherman keeps throwing the line in the same
position he will get all the fishes close to that particular position ordered according to their
closeness to it, tha t is, out of the metaphor, the documents will be ranked in order of their
similarity measure, or distance to the query.

The traditional IR approach presents some problems:

1. The user must express his information need using a language determined by the

representation foimalism of documents in the document space. The query languages
based on this formalism are usually not very user-friendly, and they use a restricted
vocabulaiy compared with a human or pseudo-human language.

2. Sometimes the user is not able to express his information need in an effective way.
This is a quite sensible concept considering that the user must express his ideas using
a language which is quite poor in terms of representation power.

3. The relevance of a document to the user information need is evaluated using some
measure of similarity between the document representation and the query. The query
representation describes the user information need at the moment in which it is
formulated, but during the query session the user information need can be subject
to modification according to the information the user receives from the system. On
the other hand, the document representation describes the document informative
content at the moment in which the indexing of the documents was performed. It is
recognised that the meaning of words (and descriptors are words) changes with time.
Therefore, the document space is not a static space, but a space where documents are
likely to move their respective positions, and so changing their relative distance to
other documents. The evaluation of the similarity between a query which expresses
the dynamically changing information need and documents represented in a static
(and often obsolete) space is not to be considered an optimal situation.

In terms of the previous metaphor, this means that the fisherman should be: a master in
the art of fishing, and should know perfectly the lake and the position of his prey. Moreover,
the fishes in the lake should occupy a static position, that is, they should not absolutely
move their position in the lake. In terms of the above metaphor, the assumptions upon
which the traditional IR is based really seems too strong.

An a d a p tiv e ap p ro ach can remove or, at least, modify some of the previous assump
tions (see Figure 4.4).

In particular:

• The query does not need to have the same structure and be expressed using the same
formalism of the documents. A transformation T will adapt the original query or
the documents in a way that they can be compared each other and their similarity
evaluated. This will enable the user to express his information need in a way which
is more similar to his usual way of expressing his ideas.

• The user is not assumed to express his information need in a perfect way. The
transformation T, using domain knowledge, will modify the oiiginal specification of
the query, directing the query accordingly.

• It is possible to use an adaptive evaluation of the similarity between query rep
resentative and documents representations using information about their effective
relevance provided by the user with a feedback process. The document position in
the document space will, therefore, be modified according to user’s judgements.

73

" X

Figure 4.4: New query/documents evaluation of similarity

This modification of the assumptions of the traditional approach to IR makes the
example of the fisherman to appear more real. The fisherman uses some knowledge of the
lake, acquired from experts or personal experience, to choose where to throw his line and
he can modify the position of the line according to the catches he is getting and to his
knowledge of the movements of the fishes in the lake.

In other words, the transformation T uses some domain knowledge to modify the orig
inal specification of the query and/or of the documents.

Two questions about T obviously arise now:

1. how does T work?

2. how is the domain knowledge used by T acquired?

There are various adaptive strategies and therefore various ways to make T working.
Furthermore, there are various ways to acquire the necessary domain knowledge. In the
following some hints about two different adaptation strategies are reported.

4.1.1 Q uery adaptation
This is the strategy used by this thesis. This thesis tries to answer the above questions
taking the query as the focus point. The transformation of the query works like an expert
intermediary who, after having received information about what the user is looking for,
gives help in terms of: “if this is what you are looking for, than this is the best way to
look for it” . A modification of the query is the easiest adaptive strategy because it involves
the modification of only a single element, the user’s query, and not the entire collection of
document representations.

Regarding the procedure of query adaptation and the two questions arisen in the pre
vious section, an answer to the first question is conceptually explained in Chapter 2. The

74

conceptual model presented theie explains how an original query can be modified taking
into account knowledge represented in the form of a network. In Chapter 3 two different
processing frameworks for that model have been presented. The NN processing framework
has been chosen and Chapter 5 try to provide an answer to the second question, that is how
to acquire the necessary knowledge. Some experiments of domain knowledge acquisition,
using the NN processing framework are reported.

4.1.2 D ocu m en t space adaptation

Another different adaptive strategy concerns the modification of the way the document are
represented by the indexing process. A document space adaptation strategy involves the
use of domain knowledge in order to adapt the document representations to the modifi
cation in the application domain knowledge. Furthermore, the domain knowledge should
be used to adapt the representations of the document contents produced by the indexing
process to make them more similar to a more or less natural language formulated query.

4.2 U se o f a N N as an ad ap tation to o l

In this thesis the transformation T uses domain knowledge to modify the user’s query to
make it more suitable to the particular document collection and to the particular document
representation technique used. The model presented in Chapter 2 explains how the domain
knowledge can be used by a system based on an associative paradigm. But, this domain

i knowledge must be acquired somewhere and represented in some way.
The approach followed by this research is to use a sub-symbolic knowledge represen-

: tation which enables the domain knowledge to be acquired from examples provided by
! domain experts.

The motivation for the choice of a sub-symbolic representation structure has already
: been explained in Chapter 3. The generalisation capabilities of such representation tech-
| niques are very appealing and they have not been completely explored yet. The basic idea
I is to learn the correct answer (in term of a set of relevant documents) of some training
i queries and use what has been learned to handle new queries. Figure 4.5 provides an ex-
| emplification of the basic concepts of learning by examples. A person, namely a tourist,
| has to learn to ask for something in a foreign language studying some example phrases in
| both languages. The tourist has to generalise the structure of the phrases in order to be
| able of asking for something which does not appear in the examples he has been taught.
! This activity is quite simple for humans and it is performed very often in our daily life,
[but it is extremely difficult for a computer.

In Chapter 3 it has been reported that the approach to knowledge lepresentation called
“artificial neural networks” seems to possess some abilities to perform this kind of gener-

ialisation.

75

May I have a cup of tea?

May I have a pen?

May I have that paper?

May I have some money?

May I have

Figure 4.5: Learning by examples and generalisation

76

Chapter 5

An adaptive strategy for IR:
experim ental evaluation

“The original Aslib-Cranfield investigation ...d id not, as
some had anticipated, demonstrate that one system was “bet
ter” than another, either generally, or in any given situation.
. . . It stimulated a considerable amount of discussion which
has helped to clarify the problems of Information retrieval,
and created an interest in the methodology of evaluation.”
[C. Claverdon, J. Mills, and M. Keen, 1966]

5.1 T h e s im u la tio n en v iron m en t

The experiments in this chapter try to analyse the possibilities of the use of the learning
and generalisation capabilities of NN in the IR environment. In order to perform this
experimental analysis, two tools, at least, are necessary:

1. a document collection with relevance judgements;

2. a neural network or a neural network simulator.

In the following two subsections the two tools used in the experiments are presented.

5.1.1 T h e A SL IB Cranfield Test C ollection
The document collection chosen for the investigation is the ASLIB Cranfield test collec
tion. This collection was built up with considerable effort in the first years of the 60s as
the testbed for the ASLIB-Cranfield research project. This project studied the “factors
determining the performance of indexing systems” and produced two collections of doc
uments about aeronautics. They were comprehensive of documents and relative requests
and relevance judgements developed in order to perform various retrieval experiments. The

two main collections have different sizes. The biggest is made up of 1400 documents with
279 requests and relevance judgements. The second one, which is the most used among
the various subsets obtained from the main collection, is made of 200 documents with
42 requests and lelevance judgements. These collections were subsequently used in many
other project, like, for example, the Salton s SMART project [50]. For a full description of
the methods used in the building of the collection and the details of the project, see [51].

Because of operative limits of the simulation environment, which are mainly due to
the use of a conventional computer, only the 200 document collection has been used in
the investigation. It is of course understood that this limits the generality of the results
obtained. However, the main purpose of this investigation is to demonstrate the feasibility
of the proposed approach. There are still many open issues in the NN area, and the problem
of scaling the results is one of the major ones. The availability of faster computers and of
special purpose hardware will enable the investigation of the extension of the results so far
achieved. Never the less, it is worth noticing that the dimension of the data set used in
the following experiments is larger than those used in most of the other applications of NN
techniques to IR, to the present author’s knowledge. The fact that the results achieved,
as it will be reported further below, confirm some of the previous conclusions obtained
on smaller data sets by other researchers, makes the possibility of scaling up some of the
conclusions more credible.

For more technical details about the 200 document collection see the cited book. The
Appendix reports the table with the relevance assessments used in the experiments.

5.1.2 T h e P la N et neural network simulator
For the investigations reported in this thesis a NN simulator running on a fast conventional
computer has been used. The choice to use a simulator on a conventional computer, instead
of using a proper NN on a parallel computer was dictated by the need to prove the real
possibilities of the proposed approach on theoretical basis before attempting its practical
use. The practical implementation of a system, which makes use of these ideas on more
complex hardware, would have required a longer time and the availability of more powerful
tools. Given the various problems found by other studies on application of NN to IR, as
reported in Chapter 3, this thesis concentrates on the soundness of the approach more than
on its practical present use in an IRS.

Following this decision, a survey on the various NN simulators available in the academic
environment was conducted, and a departmental report was produced to describe and
compare the characteristics of the various tools ([52]. Among these, the PlaNet System
was chosen.

The PlaNet System, was first developed by Yoshiro Miyata at the University of Colorado
at Boulder (USA) in the 1989, and at first it was called SunNet. The version used in this
thesis is the 5.6 (December 1990), where the name was changed to PlaNet ([53]). PlaNet
is a tool for constructing, running and examining NN. The most significant characteristic
of PlaNet is tha t it allows one to deal with NN at a fairly high level of conceptualisation,
and yet provides the flexibility to construct networks of almost arbitrary structure and

size, and to m n the netwoik in many different ways. The network is defined by specifying
layers of units and connection between layers. The network can be programmed by means
of “procedures tha t specify the way it should be activated, the activation evaluated, the
connections modified, and other important features. The procedures are written using
a network specification language, fairly similar to the C programming language, which
is general enough to allow many different types of networks to be constructed. Another
important characteristic of PlaNet is that it allows the analysis of the NN through a
graphic display of various network states, such as activation patterns, weight matrices, or
by plotting the learning curve (that is a graph depicting the errors or other networks states
as function of learning cycles) in a graph. It is also possible to modify, in an interactive
way, parameters affecting the nature of the NN or changing the user interface of the system.

Although some other NN simulators available were even more flexible, like the Ro
chester Connectionist Simulator, or like Sfinx, PlaNet was chosen because of its particular
suitability to the BP learning algorithm, which was chosen as the main algorithm for the
present investigation. In fact, especially in its previous versions, PlaNet was developed with
particular attention to that learning algorithm, and the PlaNet package includes high-level
routines for NN based on the BP learning algorithm.

In the experiments reported in this chapter a slightly different version of the BP learning
algorithm has been used. This is the one actually used by PlaNet. It uses the following
formulas:

A W i j (t) = tjOp i S p j + a A w i j (t - 1)

where:

the indexes t and t — 1 refer to the time variable;
rj is the learning rate as already described in Section 3.6.1;
a is the momentum;
opi is the computed output of unit U{ for the pattern p;
Spj is the error signal of unit u j , and it is defined as:

/ ': the derivative of the activation function, in this case, using a logistic activation
function the derivative is: opj(1 — opj)

dpji desired output value of unit Uj for the pattern p,
Opj: computed output of unit Uj for the pattern p.

The major modification to the procedure reported in Section 3.6.1 regards the adding of

(dpj - Opj)}' if U{ is an output unit
(EkdpkWkj)/ ' otherwise

with:

79

Simulation System

Query Processor

Neural Network Simulator

PlaNet

Matcher

Document Processor

Figure 5.1: Schematic view of the simulation system

the momentum , tha t is a parameter which expresses how much the previous modification
of the weights influences the present modification. With the present investigation being
mainly experimental, it was decided to keep this new parameter, instead of going back
to the original BP procedure, because it introduces another useful variable on which to
experiment.

The Appendix reports the source codes of the NN definition and of the learning proce
dures used in the experiments.

5.2 T h e s im u la tio n system
A simple simulation system (henceforth simply called SS) was developed to operate in the
simulation environment described in Section 5 . 1 . This cannot b e c o n s . d e r e d a proper I R

system and not even a prototype of an IR system. It is just a set of programs that operate
together, though requiring some external intervention, allowmg the processmg o f a query
and the retrieval and ranking of relevant documents from the test collection,
view of the structure of the simulation system is desciibe m igui

The simulation system is composed of the following mo u es.

Q uery P ro c e s so r ■ a C program which transforms a query expressed using terms into a
viuery j-ro ce sso r . a v, piugi nrPSence of the term in the query and 0

vector of Os and Is, where 1 indicates th p

80

its absence. The dimension of the vector must enable the representation of all the
possible queries a user might formulate.

Neural N etw ork Sim ulator : a BP model working on the top of the NN simulator
described in Section 5.1.2. Although in this thesis a simulator has been used, in a
operational implementation of this system a real NN could be used, or, otherwise, a
NN simulator working on a parallel machine. As the dimensions of the application
grow, the necessity of using a real NN or a parallel implementation of the simulator
become more and more pressing.

Matcher : a C program. It evaluates the similarity between two binary vectors using
Dice’s coefficient (see Section 5.3) and produces a value (in a range between 0 and
1) indicating that similarity. This value is attached to the document identification
number. After all the documents are processed they are ranked according to their
similarity with the query and displayed to the user.

Docum ent P rocessor : another C program. This works in a way analogous to that of
the Query Processor. Its task is to transform documents which are usually repre
sented using terms into a binary vector representation. This is done once for all the
experiments, transforming the entire collection into a large matrix.

Each and every experiment which will be reported further below is composed of two
phases: a training phase and a retrieval phase.

Before using the SS for retrieval purposes, it must be trained. The structure of the
system during the train ing phase is depicted in Figure 5.2. During the training phase
there is no use of the Matcher. On one side, the Query Processor gets the query in the
form of of a set of terms. It transforms the query into a binary vector whose dimension is
that of the input layer of the Neural Network Simulator. The SS simulator is fed according
to various teaching strategies (see Section 5.5) using queries and sets of documents that
are known to be relevant to those queries. The input and the output layer of the BP
model used by the NN simulator are kept unchanged to represent a query and one or more
relevant documents. Then, one of the training algorithms presented in Chapter 3 is used
with the purpose of altering the values of the weights on the links connecting nodes in
the NN structure. The learning is monitored by the NN simulator control structure and
when some predetermined conditions are met the learning phase is halted. Two matrices
are produced, representing the application domain knowledge acquired, they are stored for
their further use in the retrieval phase.

During a retrieval phase the modules interact with each othei in the following way
(see Figure 5.3). After the query processor has transformed the query into a binary repre
sentation, the NN is activated. The activation spreads from the input layer to the output
layer using the weight matrices produced during the tiaining phase. The vector repre
senting the query is therefore modified or, better, adapted according to the application

81

Query

Simulation System

Query Processor

Neural Network Simulator

PlaNet

Matcher

Document Processor

Knowledge
Representation
matrices

Relevant
documents

Figure 5.2: Schematic view of the simulation system during the training phase

82

Query

Simulation System

Query Processor

Neural Network Simulator

PlaNet

Matcher

Knowledge
Representation
matrices

Ranked list
of relevant
documents

Document Processor

Documents

Figure 5.3: Schematic view of the simulation system during the retrieval phase

domain knowledge and a new query representation vector is produced on the NN simula
tor’s output layer. On the other side, the entire collection of documents is transformed
into a large representation matrix by the Document Processor. This big matrix is then fed,
together with the result of the query adaptation into the Matcher. The task of the Matcher
is to produce a ranked list of document identification numbers. The ranking reflects the
evaluated relevance of the documents to the query.

This thesis is not concerned with the efficiency of the Query and Document Processor,
or of the representation structure they use, or with the efficiency of the Matcher. Only the
characteristics of the NN model used by the NN Simulator and the performances of the
query adaptations will be analysed in the following Sections. The ability of the NN mode
to store and use application domain knowledge is the mam object of the experimenta

analysis.

83

5.3 T h e ev a lu a tio n criteria

Much effort and research has gone into studying the problem of evaluation in IR. However,
most of the people active in this field still feel that the problem is far from solved. Here
the problem is to evaluate a new approach to HR, and therefore it is only partially possible
to use already developed evaluation techniques.

Never the less, in the present investigation, using the approach followed by van Rijs-
bergen in [1], at least these two questions must find an answer:

• what to evaluate?

• how to evaluate?

The answer to the first question is related to the main purpose of this investigation.
The aim of this research is to show the possibility of learning and use of domain knowl
edge for an HR application by means of a connectionist approach. The object is to obtain
a subsymbolic knowledge representation of an IR application domain knowledge which
should be used by an hypothetical operational IRS to adapt an original user formulated
query interpreting the user information need in the light of particular characteristics of the
application domain. The purpose of this investigation is, therefore, not particularly con
cerned with the demonstration that an IIRS using a subsymbolic knowledge representation
structure, acquired through connectionist learning, can perform better than a traditional
IRS or IIRS, but to give support to the idea that this could be possible. In fact, before
attempting to prove the superiority of a subsymbolic approach to the knowledge repre
sentation of an IR application domain knowledge, much more effort and research should
be put in experimentation. This thesis together with other related works points to some
directions for this research.

For the above mentioned reasons, with the purpose of this investigation far from being
that of proposing an operational system, the objects of evaluation were chosen accordingly.
Among the various main measurable quantities proposed, as early as 1966, by Claverdon in
[51], the time lag, the presentation, and the effort, have been completely ignored, because
they are related to an operational implementation of the system. The main features which
were considered for evaluation were:

1. ability of the system to acquire domain knowledge;

2. ability of the system to use domain knowledge in the retrieval phase;

3. retrieval performance of the system when compared with an operational IRS.

The ability of the system to acquire application domain knowledge is fundamental
to the performing of the experimentation, therefore this has been tested first. However,
it would be useless to acquire domain knowledge without having the ability to use
later. In particular, the knowledge acquired should be used to deal wit new queries,

84

documents: relevant not relevant
retrieved A f) B - iA O B B
not retrieved A n B -'A n -*b -iB

A -A

Figure 5.4: Determination of precision and recall values

generalising the information acquired during the training phase and applying it as a mean
of query adaptation. Furthermore, the retrieval performance of such a system must be
comparable to tha t obtained by operational systems. Such a new system would be useless
if its performance were much worse than those obtained by an operational IRS.

The question of how to evaluate requires more technical answers. How is it possible to
determine if some knowledge about the application domain has been acquired by the NN?
How is it possible to determine if a subsymbolic knowledge representation has captured
some features of the application domain through the examples it has been taught? The
approach to evaluation used in this thesis is a simple one.

First the learning results are evaluated. This is done using an approach which is classical
in NN research. It consists of the evaluation of the “mean error” between the the training
(target) results and the obtained results, as it has already been explained in Section 3.6.1.

Then the generalisation results, in terms of recall and precision of the prototype, are
determined. They have been evaluated at different stages of learning and with different sets
of training examples. If some learning has taken place, and if the knowledge representation
structure can generalise what it has acquired, then an improvement of the performance
obtained in the retrieval of new queries has to be expected. This improvement in the
performance has to be related to the number of learning cycles and/or the dimension of
the training set.

Finally, in order to evaluate the retrieval results of the system, a comparison with the
performance of a classical keyword matching retrieval has been performed. This enables
the evaluation of the query adaptation strategy versus the use of the original query. The
results of this comparison are presented using recall and precision tables.

The two well known measures of effectiveness: recall and precision, have been used to
evaluate to which extent the knowledge acquired is used in the retrieval phase either in
absolute terms or comparing the SS with an operational one. In oidei to have clear the
meaning of the recall and precision measures, their definition, as described in [1], is here
reported. It is helpful to refer to Figure 5.4, from which recall and precision can easily be
derived. They are defined as:

\ A f \ B \
Precision = —

100

Precison

80 4-

60 4-

40 4-

20

I 1------ 1------ 1------1------- 1— I----1-------1------ 1------- ►
0 20 40 60 80 100

Recall

Figure 5.5: Precision vs recall graph

where:
| A fl B | is the number of relevant and retrieved documents;
| B | is the number of retrieved documents;
| A | is the number of relevant documents.

For each request subm itted to the system, these values have to be evaluated and given
as percentage values. However they depend on the cut-off point (the co-ordination level) in
the ranked list of documents retrieved in response to the query. Therefore, a better way of
displaying these measures is through a precision-recall graph. An example of such a graph
is depicted in Figure 5.5, where precision values are reported corresponding to standard
recall values.

To measure the overall performance of the system on a set of queries, it is necessary
to combine in some way the set of graphs, one for every query, in order to produce an
average graph. This has been done using the “macro-evaluation” approach, which consists
in averaging over all queries the individual precision values corresponding to the standard
recall values. All the graphs reported in this thesis are obtained in this way. For a more
in depth explanation of evaluation techniques see [1].

Every evaluation technique is based on the ranking of the documents retrieved by
the system in response to a query. The ranking is supposed to reflect the relevance of
the documents by evaluating their similarity with the query. There are several simi ari y

86

functions that can be used in the matching phase to produce a ranked list of documents In
the experiments reported in this thesis, Dice’s coefficient has been used. It evaluates the
similarity between a document D and a query Q both represented by a set of descriptors.
Dice’s coefficient is defined as:

M 2 \ D f) Q \
\ D \ + \ Q

where:
| D Pi Q | is the number of descriptors the document and query representations have in

common;
I D |, | Q | are the numbers of descriptors in the document and query representation; it

is used as a normalisation factor.

The evaluation of the adaptive associative approach is, therefore, obtained in this way:
after the query has been modified and adapted according to the application domain knowl
edge stored in the NN, the similarity between the query and each document is evaluated
and a ranked list of documents is produced. By evaluating precision and recall with differ
ent NN structures and with different values of learning parameters, it is possible to derive
some considerations about the amount of knowledge acquired and about the ability of the
NN to generalise this knowledge. It is also possible to compare the traditional IR approach
with this adaptive and associative approach by means of a comparison of the two ranked
lists in terms of recall and precision.

5.4 A C o n n e c tio n is t K now ledge R epresentation S truc
tu re

A preliminary investigation was devoted to the determination of the best structure for the
subsymbolic knowledge representation. The mathematical and complexity theory underly
ing the determination of the optimal NN topology has been only partially used and more
empirical considerations are at the basis of the chosen structure.

Several experiments have been conducted investigating the optimal architecture of the
NN model to fit in the SS. Of course there are various different criteria for optimal. Given
the hardware restrictions, there may be quite a complicated cost function for the architec
ture, being necessary to consider elements like: learning time, generalisation capabilities,
number of units and so on. In particular, from an IR point of view, the choice of the
architecture was influenced mainly by the following elements.

1. number of query descriptors used for the representation of the test queries,

87

2. number of document descriptors used for the representation of the documents;

3. number of hidden layers and hidden units necessary to enable generalisation to take
place;

4. processing time, especially during the retrieval phase.

In particulai, the processing time is an element which is in a trade off relation with the
other three elements. The larger the number of query descriptors, document descriptors,
or hidden units, the longer will be the processing time required during the spreading
of activation in the retrieval phase and during the training phase. The processing time
necessary for the training phase, though, is not so crucial, it being possible to run the
process when the system is not used. Since the main purpose of this investigation is
to demonstrate the feasibility of the approach, all the experiments are performed on a
conventional sequential computer (a SUN Sparc 1 with the UNIX operating system) and
using a NN simulator. This results in a very slow training and in a relatively slow retrieval.
However, this im portant factor has not been underestimated. The time a user has to wait
before having a. response to his query is a measure of the efficiency of an IRS which
is too often forgotten in experimental studies. Even if this thesis does not deal with
efficiency problems, it should be remembered that if this time becomes considerably long
the effectiveness of the system itself, in term of its ability to satisfy a user need, drops
considerably. In the present feasibility research this element was not forgotten, but only
put temporarily aside.

Regarding the optimal setting of the first three elements, the approach proposed in [54]
has been used. It consists of constructing or modifying the NN architecture proceeding
incrementally. Given that the main required feature was the generalisation ability, the
optimal architecture is the one which can perform the best (or an acceptable level) of the
generalisation with the minimum amount of units. So, starting with a large number of
units, more and more units are taken away until the generalisation performance drops to
an unacceptable level.

Hence, in order to determine the best network architecture for the associative knowl
edge representation structure some experiments were performed. These were devoted to
choosing among the many alternative structures and the many different settings of the
main parameters. In particular:

1. A first choice had to be taken regarding the NN model to use. Chapter 3 reported a
brief overview on some of the many NN models. Given the particular requirements of
IR applications, two models were considered suitable to the object of this research,
the Backpropagation (BP) model and the Boltzmann Machine (BM) model. The
following subsection 5.4.1 gives the motivations regarding the choice of BP as the
more suitable model.

2. A second choice concerns the structure of the patterns the NN has to learn. The
structure of the patterns determines the structure of the input and output layers, as

well as the number, characteristics and meaning of input and output units. Most of
these issues have already been discussed in Chapter 2, where the conceptual model
underlying the experiments has been presented. A more quantitative approach has
been used in the experiments reported in 5.4.2.

3. The structuie of the internal representation of the patterns is another important
choice. The appropriate numbers of hidden layers and hidden units have to be cho
sen. The internal structure of the patterns is strictly related to the learning and
generalisation capabilities of the network, therefore particular care had been taken
in the experiments reported in 5.4.3.

4. Finally, after all the previous choices have been taken, there are still several other
parameters, mainly learning parameters, to be set in order to improve the speed and
capability of the learning. The setting of these parameters is a complex technical
issue, more related to the mathematical theory of NN than to IR. Some experimental
results devoted to the optimal determination of these parameters for the chosen
architecture are reported in 5.4.4.

5.4.1 T h e N N m odel

In Chapter 3 some NN models were presented. As has already been explained, a NN model
is made of at least three components: a network structure, a set of propagation rules, and
a learning rule.

The network structure, or network topology, refers to the spatial arrangement of the
units in relation to each other. The topology is usually network like and therefore it is
possible to define it in terms of a connectivity matrix. Moreover, it is common to group
sets of units according to their functions in the propagation and learning rules. The
connectivity usually reflects this grouping, for example allowing connections only between
units belonging to different sets and not between units of the same set.

The set o f propagation rules refers to the use of particular input, activation, and output
functions for the propagation of the activity of the unit. It refers, also, to the particular
way of evaluating and applying the bias.

The learning rule is the main locus of a NN model. It distinguishes NN models from
simple SA models. Moreover, a learning rule is what mainly distinguishes one NN model
from another. Some learning rules have been described in Chapter 3.

It must be stressed that some NN models are particularly good for specific applications
and not so good for others. In [42] a classification of NN models according to their ap
plications has been attem pted by Simpson. Therefore, it has been considered useless to
attempt to use odd models for very specific applications like the IR ones. Only NN models
previously applied to areas which share some similarity with IR were considered. Under
the applications: “database retrieval” , “knowledge processing , language processing , an
text processing” Simpson cites the following models:

• Discrete autocorrelator associative memory;

• Backpropagation (BP);

• Binary adaptive resonance theory;

• Boltzmann Machine (BM);

• Brain-State-in-a-Box;

• Fuzzy Associative Memory;

• Fuzzy Cognitive Map;

t Perceptrons.

A complete description of these models can be found in [54, 42, 55]. Since even a brief
description of these models could cover several pages of this thesis, only BP and BM have
been described in Chapter 3. They have been chosen among the others for the following
reasons:

1. NN simulators have only been implemented for some of the above models. Although
it could be possible to write software to simulate all of these models, most of the
available NN simulators deal only with BP, BM, and Perceptrons. The reason for
this stands on the fact that they are more widely used than others, being more
theoretically sound and more general purpose. In this thesis the choice of using a
NN simulator instead of developing ad hoc software was taken for time and efficiency
reasons. It was considered useless to develop another NN simulator with the sole
purpose of experimenting its usability in IR. The application of NN to IR is such a
new topic tha t much can still be done using already developed NN tools and theories.

2. There are various levels of complexity among these models. Some are relatively
simple, like Perceptrons or Discrete autocorrelator associative memory, while some
others are more complex. The complexity, ol course, affects the efficiency of the
simulator and the effectiveness of the retrieval process. Furthermore, some of these
models are more theoretically sound than others. Being that the purpose of this
experimental investigation was to analyse the feasibility of the application of NN to
IR, it was considered inappropriate to use models whose theories are not consolidated
yet.

3. Some previous research work investigated the use of associative memory and Percep
trons in IR. In order to avoid a useless duplication of work, it was decided to use
mainly BP, whose potentialities in IR have not been investigated yet. BP has been
successfully applied to many areas and is among the most consolidated NN models.
The likelihood of obtaining good results from the application of BP to IR seems to
be higher than with other NN models.

90

4. BP fits into the structure of the conceptual model presented in Chapter 2. The
distinction among three or more sets of elements in the knowledge representation
structure, which has a parallel in the distinction among input, hidden, and output
layers, is an im portant feature of the conceptual model, which BP (and not BM)
allows one to preserve.

Therefore, for the reasons listed above it was decided to use the BP model. The topology
used is the classic three layers feedforward NN with the query descriptors on the first layer
(input layer) and the document descriptors on the third layer (the output layer). Between
these two layers there are one or more hidden layers with a certain number of hidden units.

5.4.2 T he stru ctu re o f the patterns

The first task of the experimentation was to set a suitable representation structure of the
patterns to be learned.

The input of the pattern had to represent every possible user query. Therefore it has
to be possible to use, at least, all terms and combinations of terms used by the queries in
test collection. After some analyses on the collection were performed, the number of terms
used by the documents and by the test queries was determined. The number of single
terms used to represent the document informative contents was 1142. These were all the
single terms used in the abstracts of the 200 documents, excluding terms appearing in a
stoplist. The num ber of single terms used to represent the user information needs in the
42 queries was only 195. That is in the 42 queries only 195 terms out of the 1142 were
used.

Being tha t this was the first attempt to use such a structure in IR, it was decided to
organise the experimentation in a way that every possible structure of the model could be
experimented. In the following, two different structures used for representing documents
and queries are reported. These structures will be referred to using the labels (see Figure
5.6). They are:

51 : the number of query descriptors used in the input layer is equal to the number of
single query descriptors used in representing the test queries (i.e. 195); while the
number of document descriptors in the output layer is equal to the number of single
document descriptors used in the entire 200 document collection (i.e. 1142). This
structure can only be used during the training phase, because it does not enable the
formulation of new queries.

52 : the number of query descriptors in the input layer is equal to the number of single
document descriptors used in the 200 document collection (i.e. 1142); while the
number of document descriptors in the output layer is the same (i.e. 1142).

Both these two structures enable the representation of the test queries. The second
? structure, S2, however is more general than SI and its has some advantages over it.

91

label n. input units n. output units
SI 195 1142
S2 1142 1142

Figure 5.6. Number of input and output units used in the experimentation

In particulai, it enables the spreading of activation during the training phase to input
units never used by any user in the query formulation. This is certainly a positive feature,
but the numbei of units and links that this adds to the structure makes its practical use
very difficult (see Figure 5.7). The structure SI, on the other hand, operates a reduction
of the terms the user can actually use in the query formulation from those used in the
indexing of the documents. This reduction could seem unreasonable because it may seem
to limit the possibility of the user to express his information need. This problem could be
solved by designing a training phase covering the entire domain knowledge so that, even
using a number of terms inferior to the one used in the indexing, it is possible to be sure
to have covered the entire possible spectrum of user queries. This can also be seen as an
attempt to use two different representation languages on the same structure. On the input
side of the NN structure a controlled language is used. Only terms chosen by experts as
particularly representative are used. On the output side of the NN a free language is used.
This allows more freedom in the indexing processing of documents, and the use of free terms
from abstracts to be used in the indexing. The NN, during the training phase will identify
associations between the controlled language and the free language. There are no problems
related to the manual specification of these associations. The NN will detect them from
examples of working associations used in test queries whose relevance assessment is known.
The association of controlled terms to free terms is a dynamic process, being constantly
updated by means of relevance feedback from users. The meaning of these associations is
therefore neither static nor determined only by few experts, but is a process of dynamic
evolution determined initially by experts and driven by a users’ consensous usage of the
associations.

5.4.3 T h e in ternal representation
Another very im portant characteristic of the NN model regards it internal representation
of the patterns. This aspect is of extreme importance to the generalisation capabilities of
the NN. It has been demonstrated that it is necessary for the NN to develop an internal
representation of the patterns in order to possess the ability of generalising what it has
learned. An internal structure enables the NN to store its internal repiesentation of the
patterns. In this internal representation a sort of synthesis of the patterns takes place.
The better the synthesis, the better the generalisation capability of the NN.

The NN model used in the following experiments is the BP. The internal structure of
, this model is determined by the number of hidden layers and hidden units the NN structure
1 possesses and their connectivity pattern. In order to determine the best internal structure

to be used, several experiments were conducted using different internal structures.

92

label hidden layers hidden units connections (with S i)
HI 0 0 222,690
H2 1 100 22,269,000
II3 1 200 44,538,000
H4 1 300 66,807,000
H5 2 100+100 2,226,900,000

Figure 5.7: Number of hidden layers and hidden units used in the experimentation

HI : no use of hidden layers or hidden units.

H2 : one hidden layer with 100 hidden units.

H3 : one hidden layer with 200 hidden units.

H4 : one hidden layer with 300 hidden units.

H5 : two hidden layers, each one with 100 hidden units.

It has been demonstrated for BP that taking two structures with the same learning
capabilities, the one with the smallest number of hidden layers and hidden units performs
better generalisations. On the other hand, taking two structures with the same generali
sation capabilities, the one with the largest number of hidden units is capable of storing
more patterns. The best internal structure is therefore the one which is capable of storing
the largest number of patterns and at the same time capable of good generalisations.

A point which should not be underestimated is that a large number of hidden layers and
units in a BP model makes the number of connections extremely large with the necessity of
extremely long training and retrieval phases. Figure 5.7 reports the number of connections
for each of the experimented structures. The time necessary to complete a training or
retrieval phase depends on too many factors to be evaluated objectively. Moreover, the
use of faster machines, like parallel machines, more suitable to the kind of computations
necessary in NNs, could shorten considerably this time. In the following experiments the
time spent in the training phase spans from 1 to 8 hours, while the time required for the
retrieval phase spans from 8 seconds to 1 minute.

5.4.4 T he learn ing param eters
There are several param eters which influence the learning behaviour of a NN based on the
BP model. The main two are:

• the learning rate, here indicated with 17, and the momentum, indicated with a (see
Section 5.1.2);

• number of learning cycles.

93

label a V
PI 0.7 0.4
P2 0.9 0.2
P3 1.0 0.1

Figure 5.8. Values of the learning parameters used in the experimentation

The roles of the learning rate and of the momentum have already been explained in
Chapter 3. The approach used here for the setting of their values is as follows. A first
analysis was conducted in order to identify the range inside which the optimal values should
be found. The fact th a t there exists a trade-off between learning rate and momentum makes
it necessary to consider different combinations of these parameters. This first analysis
identified the following three combinations (see also Figure 5.8):

P i : Tj equal to 0.4 and a to 0.7: to stress the importance of the learning rate over the
momentum.

P2 : T] and a at their default values for the NN simulator PlaNet: rj equal to 0.2 and a
to 0.9.

P3 \7] equal to 1.0 and a to 0.1: to stress the importance of the momentum over the
learning rate.

As it can be noticed the combinations are centred on the default values of the simulator
used. The default values are those that have been proved to be considerably better for
most cases.

The number o f learning cycles is a parameter which does not influence qualitative the
learning but only quantitatively. The more learning cycles the NN is subject to, the more
it learns. Although this is always true, it must be noticed that the learning is very fast
for the first few learning cycles and it gets quite slow as the number of learning cycles gets
higher. This is an implicit characteristic of the BP learning algorithm. BP is an error
correcting algorithm, tha t is based on the correction of errors between the effective output
of the NN and its target output. The correction to the weights the algorithm determines
is large when the error is large and small when the error is small. The learning is therefore
fast when the NN produces large errors, like at the beginning of a training phase, and
slow when it produces very small errors, like after a large number of training cycles. The
following three numbers of learning cj^cles were used in the training phase (see also Figure
5.9).

CT • 300 learning cycles.

^2 : 600 learning cycles

94

label learning cycles
Cl 300
C2 600
C3 900

Figure 5.9: Number of learning cycles used in the experimentation

C3 : 900 learning cycles

These numbers were chosen after having performed an analysis of the minimum and
maximum num ber of learning cycles necessary for the particular characteristics of the
patterns to be learned.

95

5.5 S u b sy m b o lic learn ing o f dom ain know ledge and
q u ery a d a p ta tio n

The following two sections report on the methodology used and the results obtained from
some expeiiments legarding learning and using application domain knowledge for an IR,
application. The knowledge used is expressed in the form of application dependent associ
ations among queiy descriptors and document descriptors and it relates to the conceptual
model presented in Chapter 2.

The purpose of the following experiments is to prove that the SS is able to learn and use
domain knowledge by learning associations between query descriptors and document de
scriptors from examples used during a training phase. The SS is based upon the conceptual
structure presented in Chapter 2 and uses a NN processing framework based on the BP
learning algorithm. The word “learning”, in the context of the SS, is related to the ability
of the NN to store and recall the associations among query and document descriptors used
in the training phase. Moreover, these experiments will investigate the ability of the NN
part of the SS to make use of the knowledge acquired. The use of the knowledge makes
use of the ability of the SS to generalise what it has learned and use this information to
adapt a new query to the characteristic of the specific application domain. In particular,
the NN associates a set of document descriptors to the new query by recognising previous
queries using the same query descriptors and by recalling already learned associations with
document descriptors. This process can be seen as an adaptation of the original query to
the application domain. Assuming that the set of training examples was properly set, the
SS should have already been trained with some query similar to the new one. Therefore, it
should be able to find an appropriate set of document descriptors which adapts the original
query specification to the application domain in order to identify the proper set of relevant
documents.

This process shares many similarities with the process used by the human memory to
generate new information by recalling and processing information previously acquired from
experience. When, for example, the human mind is in a problem solving context it tries
to find and recall in the memory information about already solved problems analogous to
the problem under examination. Then, the solution to the present problem is found by
modifying good previous solutions to problems sharing important characteristics with the
present one. This process is called “associative” memory and the way it can be implemented
on computers has already been discussed in Section 3.5. The problem and its solution are
then stored and they can be used later to solve new problems. This stoiing of infoimation
can be considered as a form of acquisition by “experience .

In the following experiments the “experience” is provided by the lelevance assessments,
which are part of the Cranfield test collection. The experience is provided by a set of
exemplifying queries and relative sets of relevant documents. For the SS they are just
examples of problems and their relative solutions. They can also be seen as solutions to
previously arisen problems. Furthermore, these solutions can be considered as goo ones,
being found by experts, so they have a very high value. What the SS does is, t ere ore, o

96

use expert provided experience tor solving retrieval problems posed by less expert users
Then, if the user can be considered an expert and if the solution SS provided is considered
a good solution by the user, it can be incorporated into the SS’s “experience”, as another
example of an “exemplary” solution, and it can be used later.

The typical form of the following experiments consists of training the system using a
subset of the examples provided by the relevance assessment. The knowledge acquired by
means of the training phase, is used to adapt the original user query formulation of the
problem to take into account the experience acquired by solving similar problems in the
training phase. So, after the training has been performed and its effectiveness evaluated,
the SS is tested to see if it is able to generalise the associations learned and to respond
correctly for the remaining part of the examples. The SS, being asked to solve problems
which are part of the remaining set of examples, must find a solution very similar to the
one provided by domain experts. This can be seen as a form of objective evaluation. The
solutions provided by the SS are compared to the solutions provided by domain experts. In
other words, the effectiveness of the responses of the SS is evaluated against the maximum
level of effectiveness tha t any system could possibly obtain with the test collection used.
After this has been done, the effectiveness of the SS is tested against the effectiveness of
another system, which is based on the classical evaluation of similarity between the original
user formulated query and the documents. This in order to assure that the solutions
provided by the SS are not only in tune with those provided by application domain experts
but also better than those provided by methods which make no use of application domain
knowledge. Methods not applying domain knowledge are considered as using only the
original user query formulation. Dice’s coefficient (see Section 5.3) is used in both cases
to evaluate the similarity between query (original or adapted) and documents. Recall
and precision tables are produced for the two systems. In this way the query adaptation
response is tested against the response obtained for the original query and both solutions
to the IR problem are compared with the known right solution.

The following three sections report the methodology and evaluations of three different
forms of learning, resulting from three different ways of teaching the SS using the examples
provided by the relevance assessment. Unusual names are used here to indicate them.
They have their origin in a wa}̂ of considering knowledge which belongs to the Italian
Renaissance.

During the Renaissance there were essentially two ways of considering knowledge. The
most common way of seeing knowledge among scientists such as Leonardo Da Vinci, or
Michelangelo, was to see it as a unique corpus, whose branches were deeply interconnected
each other. It was not possible to study engineering without studying art or studying t̂ e
anatomy of the human body without studying the laws of the physics which apply to it.
The vision of the work of the scientist was one of someone building a palace, the taller the
better, whose problem was first to build a good base for it, over which to deve op t e res
the building. The scientist had to learn everything and there were no distinctions be ween
branches of science. In analogy of this, the first and second kinds of learning use y

97

the following experiments are called Total Learning (TL) and Horizontal Learning (HL),
which mean exactly the same concept. This is because the application domain knowledge
is learned by training the SS using examples which relate to all sorts of IR problems the
SS should solve. The learning is done on all the single illustrative problems at the same
time.

Some time later, another vision of knowledge and science arose. This was conceived
from the consideration tha t it is impossible to learn and know about every aspect of
every branch of science. This idea found his way especially among British philosophers
and “empirical” scientists. Scientists became more keen to deepen their knowledge on a
specific subject than enlarge their knowledge on many different subjects. They did not
bother about other subjects unless there were some relations to their investigations. This
vision of science and of the acquisition of knowledge is still en vogue at present and it is
going further with scientists becoming more and more specialised on subjects that tend
to become narrower and narrower. Using the previous analogy of building a palace, this
kind of learning can be considered as Vertical Learning (VL), because they tend to build
going straight on a vertical dimension, without bothering to build a large base. In the
experiments reported under the VL Section, solutions are learned for a problem at a time
without concern to solutions to other problems.

5.5.1 T otal learn ing

The purpose of this set of experiments was to investigate the ability of the system to learn
application domain knowledge from a set of training examples of the form:

(# n (* / n ^ 2) 1 { (H i ^ 3) 1 ^ k) i { Q h d \) ? (^ 5 ^ 2) 1 (# / ? ^ 3) 5 • • • (< / / , d m) ?

where (</i,d*) is a single training example made of a query and a document which is
known, from the relevance assessment, to be relevant to that query. The set of training
examples is made of all the documents known to be relevant to a set of queries (see Figure
5.10).

Various experim ents were conducted training the SS over a set of training examples
corresponding to bo th a single query, and alternatively to more queries at the same time.
Each training exam ple is considered by the NN module of the SS as a pattern to be learned.
Different ways of presenting the patterns (or presentation strategies) were used, such as
submitting the train ing examples to the NN in a fixed order, or submitting them in a
random order.

This set of experiments and all the experiments relative to the following subsections
were performed and evaluated according to the methodology presented in Section 5.3.

Learning resu lts

Several experim ents were conducted to determine the ability of the SS to lear ,
sociations between query descriptors and document descriptors escri e m

98

Simulation

System

Figure 5.10: Training phase for Total Learning

ref. experiments mean error
1 SI H2 PI Cl 0.007501
2 SI H2 P2 Cl 0.007123
3 SI H2 P3 Cl 0.007273
4 SI H3 P2 Cl 0.007421
5 SI H4 P2 Cl 0.007934
6 SI H2 P2 C2 0.007103
7 SI H2 P2 C3 0.007073

8 SI HI P2 Cl 0.009003
9 S2 HI P2 Cl 0.008841

10 S2 H5 P2 Cl 0.008392

Figure 5.11: Learning results for Total Learning with one query

" t : : s r s r t » .-r

query whose set of relevant documents was consi documents and they gradually
results were good for queries with a small s compjete aCcor-
got worse as the size of the set of relevant documen s lnciea • patterns) to be learned
dance with the NN theory. The larger the set o asS^Ĉ ° ^ eTence between the training
the bigger the error. The mean error is a ^ easu^ ° be seen as the difference between
set and the retrieved set. In the present con ex rnments the SS should associate
two sets of documents. The first set is compose o ̂gecon(j se ̂0f documents
with the query and it is considered the target o t e earn submitted. This is the
is the one the SS actually gives as a response when a

99

real response of the SS. The higher the error, the bigger the difference between these two
sets, and theiefoie the difference between the desired and real response of the SS. With the
target being determ ined by the relevance assessments, this evaluation can be considered
rather “objective” , because it evaluates the SS versus the best results it could possibly give.
Therefore it gives a measure which is independent from the user. This same interpretation
applies to all the experiments related to the learning performance of the SS.

The first three results reported in Figure 5.11 display different errors corresponding to
the use of the same NN topology and number of learning cycles but with different values of
the two main learning parameters o; and 77. A s can be seen the combination of parameters
known as P 2 (see Section 5.4.4) appears to be the best. Moreover, it shows a better stability
in the learning compared with the other combinations. This can give better assurances
that the learning would not be trapped in a local minimum of the error function whatever
the pattern to be learned. P2 has therefore been chosen for all the other experiments.

A comparison of the figures obtained for the experiments 2, 4, 5 and 10 shows, ceteris
paribus, the effect on the learning of changing the number of hidden units and/or hidden
layers. Although the number of hidden units has important implications on the generalisa
tion capability of the NN, the learning performance was considered of higher importance.
Generalisation needs to be based a good learning in the training phase. In fact, it must
be considered tha t in an operational environment the training phase has to be performed
with a number of patterns which is very low compared with the number of real patterns a
system has to deal with in the retrieval phase. Therefore, it is important for the system to
have a good learning of the patterns used in the training phase, because it is on them that
the successive generalisations are based. The possibility of several other successive phases
of training, especially using relevance feedback from the users, could make this situation
better, after a while. However, when the system is first used, it bases its generalisations
only on the learning achieved during the training phase. This must therefore be considered
of primarily importance. For this reason, the NN internal representation structure H2 was
chosen. Another reason for the choice of H2 is related to the computational work necessary
during the training phase. Figure 5.7 shows the number of connections relative to the var
ious NN structures. They represent weights whose value has to be evaluated and modified
several times during the training phase, and that are used to determine the activation of
the document descriptors in the retrieval phase. A large number of connections means a
large number of evaluations to be performed at each learning cycle and therefore a longer
time for both the training and retrieval phases. The structure H2 is the minimum struc
ture, regarding the number of connections necessary to have some sort of generalisation of
the training examples.

Another interesting comparison, again ceteris paribus, concerns the number o earning
cycles to be performed during the training of a single pattern. Figuies of experiments ,
6, and 7 of Figure 5.11 and 1,2 and 3 of Figure 5.13 show that the improvement gained by
Performing more learning cycles is not worth the time and computational resources use
in obtaining it. S o m e tim e s th e re was no gain in learning by performing a aigernum ero
training cycles. Figure 5.12 shows an example of the learning grap . us grap

1 0 0

2000 100 .
e r ro r as a function of epoch

F igu re 5.12: E xam ple o f a learning graph

Figure 5.12: Example of a learning graph

1 0 1

ref. experiments mean error
1 SI H2 P 2 Cl 0.009102
2 SI H2 P2 C2 0.009079
3 SI H2 P2 C3 0.009136
4 SI H3 P 2 C l 0.009006

Figure 5.13: Learning results for Total Learning with 25 queries together

! value of the error function as the number of learning cycles increases. As it can be noted,
the learning is very fast at the beginning, then it gets very difficult to improve the error.
The option C l, tha t is using 300 learning cycles, was therefore chosen as the best option
for the generalisation and retrieval experiments.

The last interesting set of experiments concerns the possibility of using a NN structure
with no internal representation but making use of all the terms used in the document
representation. There are two major problems related to this structure. First, its ability
to generalise is considerably lower than that achieved by a NN structure with internal
representation of the patterns. This was largely demonstrated in the NN literature (see for

I example [54]). Second, the error determined for this structure is usually higher than those
determined for structure making use of internal representation. This can be explained by
the fact that using an internal representation it is possible to model any arbitrary shape
in the pattern space. The classification problem posed by complex IR applications, like
the one under investigation, requires features which only a multi-layered NN structure,
like H2, H3, H4 and H5 can provide. It has also been demonstrated (the Kolmogorow
theorem) that there is no need of having more than three layers for being theoretically
able to separate classes of arbitrarily complex shapes. Therefore, the enormous amount of
computation introduced by the use of H5 is useless. This gives further motivation to the
choice of the NN structure determined by Si and H2.

Figure 5.13 reports exemplifying mean errors determined while performing some exper-
| iments relative to learning the associations of a set of 25 queries randomly chosen among

the 42 making part of the relevance assessments. These 25 queries provides 114 training
association patterns.

In this case the number of single patterns to learn is quite large and the results are, of
course, worse than in the case of a single query learning. Moreover, as it has been explained
above, the improvement in the error obtained by performing more learning cycles is not
enough to justify the computational efforts involved. The same can be said about the
improvement gained by adding more hidden units. Moreover, it has been dem onstrated
that the generalisation capabilities of a NN based on the three layers feedforward structure
generally improve using a smaller number of hidden units.

The experiments of the following two sections are devoted to investigating the gen
eralisation and the retrieval capabilities of the SS. The model identified by the labels
SIH2P2C1 has been used.

1 0 2

100 no training
10% training
20% training
30% training

80

60

40

20

80 10020 40 600

Recall

Figure 5.14: Precision/recall graphs and generalisation for Total Learning

Generalisation results

This set of experiments aimed at investigating the capabilities of the SS to perform gener
alisation by induction on trained associations between query terms and document terms.

The SS is supposed to have been trained trained using a set of the queries whose rele
vance assessments was known. The ability of NNs to perform generalisation by induction,
as explained in Section 3.5, should enable the SS to generalise the associations it was
trained on. This generalisation should enable the SS to deal with a new query. The new
query is supposed to share some similarities with queries the SS has already been trained
on. This is quite a sensible hypothesis if the SS has received proper training and the
application domain is quite narrow. Recognising the similarities between the training set
and the new query is the first step. The second is the use of the recognised similarities.
Recognising similarities between the queries belonging to the training set and the new
query is equivalent to recognising associations between the query terms used in the new
query and document terms on the basis of those learned in the training phase.W ith this,
the SS associates an appropriate set of document descriptors with the new query. This is
equivalent to a modification or adaptation to the application domain of the original user
formulated query. The two steps are performed by the NN structure of the SS in a way
which does not allow distinction between them, in the same way as there is no distinction
between recall and processing of information in the human brain.

The principle at the base of the query adaptation is tha t similar queries should have
similar sets of relevant documents. Of course, the larger the training set the easier for the
SS to find a query similar to the new one among those used in the training set. However,

103

as has been seen in the previous set of experiments, the larger the set of training examples
used in the training phase the higher the error and therefore the lower the performance of
the learning. It is therefore interesting to see how the generalisation varies with different
numbers of queries used in the training phase. The results obtained for various dimensions
of the training set are reported in Figure 5.14. They refer to precision and recall values
reported for the entire set of queries after the SS was trained for only a portion of them.

As can be noticed from the graph, the precision and recall values are higher when the
SS receives a larger training. This demonstrates that the generalisation capabilities of the
NN perform better when there is more ground on which to base the generalisation. The NN
acts as a features detector, detecting and encoding in the numeric values associated with
the connections among nodes the associations between query descriptors and document
descriptors present in the training examples. The generalisation is then performed on the
basis of the features the NN was able to detect. The larger the set of training examples the
better the generalisation. No tests were performed on this, but it seems reasonable to think
that the precision and recall figures obtained for the case of absence of training are just
those tha t it would be possible to obtain if document descriptors were chosen randomly.

Retrieval resu lts

After the ability of the SS to perform the kind of generalisation required for dealing with
new queries was tested, the performance of the SS was compared to tha t achieved by a
conventional operational IRS. The performance of the SS was evaluated at different stages
of training. A subset of 10 queries was chosen randomly among those not used in the
training phase and used to evaluate the precision and recall of the two systems. The results
are depicted in Figure 5.15. There are three recall/precision graphs reported in tha t figure
are. The first is obtained from a conventional IRS based on the use of Dice’s coefficient
of similarity between the original query and the documents in the entire collection. The
second and third are obtained by evaluating the same similarity measure between the set
of document descriptors obtained for the SS in response to the submission of the query.
They are queries tha t have been adapted to the application domain knowledge acquired by
the SS during the training phase. Two different stages of TL are displayed. A comparison
between the three curves enables an indicative performance comparison between the two
systems.

The graph shows that at reasonable levels of training such as, approximatively 10% (4
queries used) and 20% (8 queries used) the SS still performs very poorly when compared
to an operational IRS. The retrieval performance when measured in terms of recall and
precision of the SS is not an acceptable level. The approach needs to be modified.

The most probable explanation for these results is in the structure of the training
examples. The training examples represent patterns to be learned. These patterns are
designed so tha t the input part, that is the set of query descriptors associated with the
query, is constant for the entire set of patterns belonging to the same query. In this case

104

100

80

60

Precison

40

20

0

Figure 5.15: Comparison of precision/recall graphs for Total Learning

the NN has to learn to associate different outputs with the same input. This is not an
ideal situation for a pattern matcher. The association of different outputs to the same
input generates noise in the encoding of patterns. This makes it quite difficult for the
NN to detect similarities among the patterns and it makes very difficult to perform a
generalisation of these similarities among associations.

5.5.2 H orizon ta l learning
The purpose of this set of experim ents was to see if it was possible for the SS to learn
application dom ain knowledge, to be used in the query adaptation process, from a set of
training exam ples of the form:

(<7ncj)

where (<fr, cj) is a single training example m ade of a query and the cluster representative
of the set of docum ents known to be relevant to th a t query.

The motivation for performing such an experimentation came from an analysis of the
results obtained in the TL (see Section 5.5.1). As it has already been explained, the use of
different training examples where the input is constant while the output varies sometimes
quite considerably, causes the NN to be subject to too much noise to be able to generalise
what it has learned. A possible way of avoiding this problem could be in using some kind
°f synthesis of the characteristics of the set of documents relevant to a query. This is

conventional IRS
10% training
20% training

80 10020 40 60

Recall

105

Figure 5.16: Training phase for Horizontal Learning

equivalent to using a single document representation for each query in the training phase,
thus having a single different output for each input of the patterns. However, this unique
document representation should characterise all the relevant documents for a query. The
most common way of obtaining such a representation is by clustering the set of documents
in order to produce a cluster representative.

A cluster representative is simply an object which summarises and represents the objects
in the cluster. There are many different procedures for obtaining a cluster representative
but not all of them are useful in IR. A survey of some of the procedures used in IR is
reported in [1]. The procedure used here is referred to as “centroid evaluation” . However,
being tha t the documents were represented using a binary form, a variant of this procedure
was used. This consists in determining a vector d = (c\,d2, ...dn whose dimension is the
same of tha t of the documents. A generic j element of this vector is determined as follows:

i if z r= i 4 j > 1
0 otherwise

where d\ ■ is the j th element of the binary representation of the /th document relevant
to the query i. The intuition is that terms occurring more than once in the cluster should
be taken into consideration as representative of the cluster.

Consequently, the following experiments were performed using patterns which were
different to one another. The experiments were performed using a single query or more
queries together and using different presentation strategies, such as subm itting the training
pairs to the NN in a fixed order, or submitting them in a random order. No relevant
difference was detected regarding the order of presentation of the training pairs. The
random presentation order was therefore arbitrarily chosen.

Learning resu lts

Several experim ents were conducted in order to investigate the ability of the SS to learn
the associations between query descriptors and the docum ent representative descriptors.
This set of experim ents was conducted using more than one query at once, increm enting
sequentially the train ing set. The case of using a single query is trivial, being sim ilar to

Simulation

System

106

ref. experiments mean error
1 SI H2 P 2 Cl 0.008503
2 SI H2 P 2 C2 0.008394
3 SI H2 P 2 C3 0.008345
4 SI H2 PI Cl 0.008409
5 S2 H2 P3 Cl 0.009001

Figure 5.17: Learning results for Horizontal Learning

the case of the training of a single query with a single relevant document, though its effects
on generalisation and retrieval may be very different.

Figure 5.17 refers to the mean errors reported while learning the association of a set of
queries. In order to make the results comparable, 25 queries, corresponding to 25 patterns,
were used. They are exactly those used in the TL, where they were chosen randomly
among the original set of 42 queries. Several other different sets were tested.

The results summarised in Figure 5.17 show that the learning performance have in
creased compared to those obtained for TL. The examples 1,2, and 3 refer to the same
model used in TL with different numbers of learning cycles. The best result appears for
C3. This however does not seem to justify the time required for the training. The results
obtained with C l number of learning cycles appear to be good enough. It must also be
considered tha t the time required to train the SS is now considerably lower, due to the fact
the number of patterns used in the training is 25 instead of 114. The tim e required for the
training is now, in this case, only around 22% of the time previously necessary.

The results were again gradually getting worse as the size of the set of queries used in the
training increased. This is again in complete accordance with the NN theory. The larger
the set of associations to be learned the larger the recall error. However, in this case the
situation was better than in TL. The adding of a new query to the set of training examples
adds only one pattern , while in TL it adds as many patterns as documents relevant to tha t
query. In HL the increase of the error is linear to the increase of the number of queries
used in the training, while in TL it increases more than linearly.

It is also interesting to note that the results of example number 4, which uses a different
combination of learning parameters, are better than those obtained in example number 1.
It seems tha t with this pattern structure the combination P 2 gives more effective learning
than the combination P I, which appeared more successful with the pattern structure used
in.TL.

Generalisation results

This set of experiments aimed at investigating the capabilities of the SS to perform gen
eralisation by induction on associations between query terms and document terms which
Were used in the training phase. The principle at the base of this investigation has already
been explained in Section 5.5.1. The only difference here is tha t the SS is using “second

107

100 n no training
10% training
20% training
30% training

80

40

20

—►
1008020 40 600

Recall

Figure 5.18: Precision/recall graphs and generalisation for Horizontal Learning

hand” information, in the sense that it does not use directly the terms used in the rep
resentation of the relevant documents, but terms used by the representative of the entire
set of relevant documents. This implies a loss of information, but the number of training
examples decreases enormously, easing the computational problems of the NN learning.

Results obtained evaluating the entire set of queries for various dimensions of the tra in
ing set are reported in Figure 5.18.

As it has been noticed before, the SS performs better in terms of generalisation when
it can base its generalisations on a higher number of training examples. The generalisa
tion performance of the SS appear considerably improved. Comparing the generalisation
performance of HL with those of the TL, the SS shows now higher values of recall and
precision for any one of the different levels of training. This demonstrates tha t the simpler
the patterns used to train the NN, the easier it is for the NN to encode them and detect
similarities among them. Although the actual number of different patterns was reduced,
the fact tha t the patterns are simpler and clearer facilitate not only their encoding but
also the feature detection the NN has to perform to be able to generalise the learned
associations to new queries.

Retrieval re su lts

Here the performance of the SS is compared to that of a conventional operational IRS.
The results are depicted in Figure 5.19. Three recall/precision curves reported in tha t
figure. The first is obtained with a conventional IRS based on the use of Dice’s coefficient

108

I

Precison

100 n
conventional IRS
10% training
20% training

80

60

40

20

80 10020 40 600
Recall

Figure 5.19: Comparison of precision/recall graphs for Horizontal Learning

of similarity between the original query and the documents in the entire collection. The
second and third are obtained by evaluating the same similarity measure between the
adapted query and the documents. The query adaptation process is based on training
performed with 10% and 20% of the queries whose sets of relevant documents were known.
A comparison between the curves enables a performance comparison between the two
systems. The results are based on the precision and recall measures obtained from querying
the SS with 10 queries randomly chosen among those not used in the training.

The graph shows that there is an improvement in the retrieval performance of the SS
due to the new type of training. However, the performance of the SS is still lower than tha t
achieved by a classical IRS based on the evaluation of the similarity between the original
query and the document representations. It is easy to predict tha t the performance of
the SS would still improve with further training, although performed experiments show
that the improvement tends to decrease. Further, it is not reasonable to assume one will
perform a lot of training, covering large sections of the application domain knowledge. In
a hypothetical operational IRS based on this approach, training comparable in scale to the
one performed in these experiments would involve thousands of queries, which should be
produced by experts, and which should be carefully designed in order to cover as completely
and uniformly as possible the application domain.

109

5.5.3 V ertical learning

The purpose of this set of experiments was to see if it was possible for the SS to learn
application domain knowledge from being shown a set of training examples of the form:

(&, d\), (qi, <f2), (qi, dl3) , ...(q{, d\)

where is a training example made of a query representation and a document
representation. The document is known, from the relevance assessment, to be relevant
to that query. The set is made of only a subset (/ documents) of all the documents (k
documents, with k > I) known to be relevant to that particular query (see Figure 5.20).
Different dimensions of the learning subset were used. Experiments are identified as the
ratio of the cardinality of the learning set over the entire set of documents known to be
relevant. The param eter k is determined as follows:

card(learning exam ple)
car direlevance a ssessm en t)

The values of k is therefore in the interval [0 ,1]. For a value of k equal to 0 there is
no training, while for k equal to 1 there is complete training. Three illustrative values of
k were used: 1/3, 1/2, and 2/3.

There are various differences between VL and TL. The main one is tha t VL concerns a
single query and uses information about some documents known to be relevant to finding
other relevant documents. In this way it is similar to classical relevance feedback. In TL,
on the other hand, the information the SS receives is complete but it is about more subjects
at the same time. Moreover, a bigger difference exists between the two different retrieval
tasks tha t have to be accomplished in TL and VL. In TL the SS has to use application
domain knowledge to adapt the original query formulation to the application. In particular
it has to generalise the information about queries and their relative relevant documents
acquired during the training phase to find the proper query adaptation of the original user
formulated query. This new query will enable the retrieval of documents which appear to
be relevant to the query according to the application domain knowledge the SS possesses.
The SS uses this heuristic rule: “if these sets of documents were relevant to these queries,
than this set of document must be relevant to this query” . On the other hand, in VL the
SS has to use information about the kind of documents that are considered relevant to a
query in order to find other documents which on the basis of this information appear to be
relevant too. Therefore, it has to adapt the query in order to add the information provided
by the fact tha t it is known that some specific documents are relevant to it. The heuristic
rule the SS has to answer in this case is: “if these documents are relevant to this query, then
these other documents must be relevant too”. These two tasks are not m utually exclusive,
but they can be thought to work together at different stages of a query session. The SS
could first point the user to a set of documents which, according to its knowledge of the

1 1 0

d 1!

Simulation
----------►

System

d \

Figure 5.20: Training phase for Vertical Learning

ref experiments k mean error
1 SI H2 P2 Cl 1/3 0.007601
2 SI H2 P 2 Cl 1/2 0.007806
3 SI H2 P 2 Cl 2/3 0.007879
4 SI H2 P2 C2 1/3 0.007587
5 SI H2 P 2 C3 1/3 0.007529

Figure 5.21: Learning results for Vertical Learning

application domain, appears to be relevant. Then, using relevance feedback from the user
on the previous set of documents, the SS could point out other relevant documents which
did not appear in the previous set. In this case the general application domain knowledge
will be first used to locate a set of document considered relevant, while a more specific
knowledge related to the specific query and acquired through interaction with the user will
be used later to identify more precisely the relevant documents.

The following experiments were performed using a single query, and with different
presentation strategies, such as submitting the training couples to the NN in a fixed order
or subm itting them in a random order. The best results were obtained with the random
order. The results reported here refer to this particular presentation strategy.

Learning resu lts

In order to investigate the ability of the SS to learn the associations between query de
scriptors and the document descriptors, experiments were conducted using only one query
at once, incrementing sequentially the size of the training set. The training set of patterns
is composed of only one query, that is only one input pattern, and a set of documents, tha t
is a set of output patterns.

Figure 5.21 refers to the mean errors reported while learning the association of a set
of documents to a single query. The data reported referred to the worst case of learning

111

reported, which was obtained with a query whose set of relevant document was quite large.
They refer to three cases of VL depending on 3 different values of the param eter k.

Again, the results were gradually getting worse as the size of the set of relevant docu
ments, or the value of k were increasing. However, it is easy to note the big increase in the
learning performance. This is due partially to the relatively small set of patterns involved
in the learning and also to the the very specific application domain context in which the
training is performed. The fact that all the documents used in the learning are relevant to
the unique query used in training makes the set of document descriptors involved in the
training quite small. This makes it easier for the NN to associate different output patterns
with the same input pattern.

It is interesting to note that the increase in the error is quite considerable passing from
indicating as relevant one third of the known relevant documents to one half. The number
of patterns involved gets larger. The increase in the error obtained by passing from one
half to two thirds is smaller because the number of patterns used is already large enough
to cause a considerable error to occur.

I G eneralisation resu lts

The focus of these experiments is to test the ability of the SS to generalise the information
obtained in the very specialised training session and, after that, retrieve documents sharing

I similarities, in terms of their representation, with the documents used in the training set.
j The principle at the basis of query adaptation is that documents which are relevant
| to the same query must have some similarities among them. The SS should detect these
| similarities and use this information to retrieve other documents which are similar to those
I indicated as relevant. This is done by means of an adaptation of the query which should
| take into account the similarities among relevant documents detected in the training phase,
j If some term s appear to be quite common among the set of relevant documents, they will
I be added to the original query and used to rank with a higher position in the retrieved
| list of documents those which share these terms with the documents used in the training
I phase. Of course, the larger the training set of documents the easier for the SS to detect
I similarities among them. However, as has been seen in the previous sections, the larger
I the set of patterns to be learned the higher the error and therefore the lower the learning
| results. It is therefore interesting to see how generalisation varies with different numbers
| of documents in the training set.

I Figure 5.22 reports the results obtained for various dimensions of the param eter k , tha t
I is with different dimensions of the set of documents used in the training session. As can be
I noticed, the generalisations get better when the SS possesses larger amounts of information

on which to base them. It is important to note that it is not necessary to provide the SS
with such a large amount of relevance information all at once. It is possible to provide

I this information gradually in an interactive process. The user could point to a small set of
I relevant documents and let the SS reorder the relevance evaluation of the entire collection

112

Precison

100
no training
one third training
half training
two thirds training80

40 ■-

20

80 10020 40 600
Recall

Figure 5.22: Precision/recall graphs and generalisation for Vertical Learning

according to this information, by means of a training session. Then, the user could look
again through the documents and identify some other relevant documents which will be
used, together with those provided before, for another training session. In this way the
generalisation performance of the SS will improve and the SS will identify new relevant
documents more and more precisely.

R etrieval resu lts

In this section the performance of the SS is compared to that of a conventional IRS. The
results are depicted in Figure 5.23. Three recall/precision curves are reported in tha t
figure. The first is obtained with a conventional IRS based on the use of Dice’s coefficient
of similarity between the original query and the documents in the entire collection. The
second and third are obtained by the evaluating the same similarity measure between the
adapted query and the documents. A comparison between the curves enable a performance
comparison between the two systems. Again the results refer to a test performed using 10
queries chosen among those not used during the training phase.

The graph can be interpreted as a comparison between results obtained using a conven
tional system without relevance feedback and those obtained using various dimension of
relevance feedback on a system employing a subsymbolic knowledge representation struc
ture to store the user relevance feedback. It is interesting to note that the results obtained
by VL are always better in term of precision than those obtained by the traditional IRS.
Moreover, the precision obtained by the two thirds training is better that the one obtained

113

100 conventional IRS
two thirds training
half training

80

40 ■-

20

—►
1008020 40 600

Recall

Figure 5.23: Comparison of precision/recall graphs for Vertical Learning

by the half training for low values of recall, while the situation is the opposite for high
levels of recall. A possible explanation for this can be that very specific training, obtained
by the use of a large number of relevant documents does not favour high recall but high
precision and vice versa. The behaviour of the SS is therefore optimal because when the
information to be used is small it favours a larger recall, while when the information gets
more specific the SS favours precision.

114

Chapter 6
!

' Conclusions
I

I 6.1 C o n c lu sio n s from th e ex p er im en ta l r e su lts

 ̂ The experimental results reported in the previous chapter can be summarised in the fol
lowing three points:

| • query adaptation resulting from TL gave disappointing results;

• query adaptation resulting from HL gave results which, with a bit more tuning of the
I learning process, can be considered comparable to those given by using the original
| query in the similarity evaluation process;

I • the query adaptation resulting from the VL gave good results, better than those given
I by using the original query, but are they good enough to justify the efforts involved?

I However, these results show some interesting facts which ought to be pointed out.

j Query adaptation produced after a TL training session does not give good results.
The NN is not able to learn and generalise the characteristics of the application domain

I knowledge. The amount of information submitted to the system seems to be too much
| and in the end the system shows a form of “confusion” , which could be compare to the
I one a student could show after a disorganised session of study. Someone has to filter and
I prearrange what the student is supposed to learn so that the learning can be more effective.
| After all, this is what lectures, tutorials or introductory books are for.

I Query adaptation produced b}̂ the system after having been trained in the way de-
I scribed as HL gives results which are similar to those provided by the use of the original
| query in the evaluation of the similarity between query and documents. However, the
| adapted query is most of the time quite different from its original formulation. The fact
I that the original query and the adapted one give the same level of performance in term of
I recall and precision is quite interesting. The two sets of documents resulting from the use
I of the two different formulations of the same information need, the original query and the

115

adapted one, are sometimes quite different. The adapted query is often able to retrieve
relevant documents which the original query is not able to identify. In fact, the adapta
tion process enables the determination of useful descriptors which are not specified in the
original query, but that are considered by the system to be useful for the determ ination of
the set of the document relevant to the information need.

Practically speaking, the system acts in this way: it uses the domain knowledge stored
in the NN to adapt the query to what it already knows producing a new query, which can
be quite different from the original one, to be used in the matching phase. W hat happens
is that the system gives too much importance to the domain knowledge stored in the NN,
modifying the query accordingly and doing so it looses some of the information contained
in the original query. Some descriptors specified in the original formulation of the query
are, in fact, not used by the adapted version.

| There are three possible ways to make use of this lost information,
j The first is to tune the adaptation process so that it combines in a better way the
I information provided by the domain knowledge base with that provided by the user in the
 ̂ original formulation of the query. This involves a study of user typology. It is necessary, in
j fact, to determine which of the two formulations of the query (the original or the adapted)
I is to be trusted the most. This can be done only by knowing the user and the level of the
i user’s knowledge of the application domain.
j A simpler way would be to use an hybrid approach and combine the results of the
j retrieval process of both the adaptive retrieval process and the traditional one. The user
I could express the level of confidence in his query formulation and the system could rank
I the documents in order of their evaluated relevance merging the results of the two retrieved
I lists accordingly. If the user is very confident in his representation of his information need.
I into the query then the results of the traditional retrieval would become more im portant,
1 because it does not modify the query at all. Moreover, if the retrieval results do satisfy the
I user, the query and the set of relevant documents obtained can be stored and considered
 ̂ for use in some training session. On the other hand if the user is not so confident in

the expression of his information need, the adapted query, expression of the system ’s
! perception of the user information need, would become more im portant. In both cases all
I the information contained in the original query formulation will not be lost. This can be
j seen as an application of the “principle of multiple evidence” , which was first used by Croft
I et al. in [21]. Both the results of the retrieval using the original and the adapted query
I provide evidence of the relevance of documents. The main problem lies in the combination
1 of this multiple evidence which can be tackled in the above described way.

Another simple way would involve the evaluation of the similarity between the new
query and those the system has been trained with. However this would involve keeping
record of all the queries used in the training phase and this may not be easy as the life of
the system gets longer and it is subject to more and more training.

The results produced by the adaptation process after a VL training session has been
performed show that it is easier to learn about a very narrow topic when there is no other
knowledge which can interfere with learning. The advantage of such a lesult is tha t it is

116

, possible to distinguish two different kind of query:

1. a generic query, in which the user expresses his mm well 4 e&©d ikiformation .need;

2. a very specific query in which the user is able to poSiat oral some docum ent .he ’knows
; to be relevant.

■ In the first case the query adaptation resulting from HL or a combination of Traditional
I and adaptive retrieval can be used. The result provided by th a t rrctrievai should he good
j enough to enable the user to point out some relevant ‘documents among those retrieved,
f In this case he will be able to produce a more specific query as in the second case,
j In the second case the user, either in a process of relevance feedback or in a formulation
I of the query by giving example of relevant documents (known as '“query by ••example”)., can

provide a more specific formulation of his information need. In this case the system can
| use this information to retrieve other relevant documents without taking into account its
J knowledge of the entire application domain, but focussing only on that particular topic.
I The two situations are typical of an interactive query session and they can be combined
I together as is done in many systems using relevance feedback devices.
II Again the result of a good query session, that is a query specification and a set of
| relevant documents, can be stored and used in some training sessions. This process should
\ keep improving the performance of the system’s response to the first, kind ext' query, flow-
(ever, this has not been proved yet and some other experimental investigations should be

devoted to the analysis of the improvement of the domain knowledge base.

6.2 O p era tio n a l A d a p tiv e A sso c ia tiv e I R

There are many issues related to the operational use of the proposed approach f.o IR.. M ost
of these issues need further investigation.

In particular, the first issue is related to the analysis of the advantages In terms of
retrieval effectiveness of this approach compared with its costs in term s of allocation space
and computation time. These problems have not been tackled in this thesis, but i t seems
necessary to investigate them before attempting the operational use of the ideas presented
here. This is, of course, a software and data engineering problem which is far beyond th e
intended purposes of this MSc. thesis.

Moreover, many theoretical considerations should be Investigated regarding th e .'mini
mum number of training examples to be used in the training phase to enable th e system
to have an acceptable starting level of generalisation capabilities. The problem is quite
difficult to solve in the case of IR applications where the number of possible queries, and
therefore of possible patterns, is very large compared to those it would be possible to use
during the training phase. A possible solution is to use a hybrid process of query adap
tation. At the beginning of the life of an operational IRS based on th is approach th e
process of query adaptation could be used in a softer way. The modification made by the
query adaptation process could be made minimal. The system could use the original query

formulation with practically no modifications. Then, using relevance feedback from the
users as a means of training the system, the process of query adaptation could become
more effective and take a more substantial part in the retrieval process. However, these
considerations do not change the fact that it is always possible to use VL as a useful device
for the relevance feedback process.

6.3 F u tu re research work

A direction of further research which seems very interesting is concerned with the use of
different representation elements in the query representation language and in the document
representation language. It would be very interesting, for example, to see if it would be
possible to train the SS to associate descriptors (or, more generically, words) in different
languages. This could be very useful for querying a document base whose documents are
indexed using a language A with queries expressed using language B. A and B could be two
different natural or artificial languages like, for example, English and German, or Italian
and Chinese and so on. In the training process of association between descriptors used
in a query and descriptors used in its relative relevant documents there is no symbolic
use of the semantics of the descriptors. Only information regarding their co-occurrence
with other descriptors is used and stored in a sub-symbolic form by the NN. There is no
reason why it should not be possible to use in the training phases queries represented using
descriptors from the vocabulary of a language A (let say for example Italian), and relevant
documents represented using descriptors from the vocabulary of another language B (let
say for example English). It would be very interesting to see if the experimental results
obtained here are still valid. If so, there would be many possible applications of such a
result, enabling the interrogation of various document bases with the same query at the
same tim e, regardless of the language used for the document indexing. No more language
barriers would exist in the querying of different document bases around the world.

However, the most important next step is certainly the testing of the scaling up of
the generalisation performance to larger sized collections. This is a very im portant point,
which it is necessary to assess before exploiting the results described in this thesis to other
more challenging directions.

118

A ppendix A

A ppendix

A .l C ran fie ld te s t d ata

This section reports some information about the Cranfield test document collection that
were used in the experimentation.

teach-tab

The following is a table reporting the queries used in the experimentation and the docu
ments which are evaluated to be relevant to them. These data were extracted from the
Cranfield 1200 documents collections provided by Prof. Karen Spark-Jones, from Cam
bridge University, using information reported in [51].

TEACHING DATA FOR NN LEARNING:

Query Relevant document
number: numbers:

1 1 21 22
2 104 105 106 107
3 4 30 31 32 33
4 8 13 58 59 60
5 8 13 58 59 60
6 34 35 36
7 41 42 72 89 94
8 39 40 41 42
9 62 115
10 66 67 68 69
11 16 44 45 91

119

12 46 47 48 49 50 51
13 20 109 110 111 112 113
14 73
15 79 80 81 82 83 84 85 86 87
16 67 79 80 81 82 83 84 101 192
17 89 90 92 93 94
18 95 96 154 198
19 121 122 123 124
20 11 43
21 128 129
22 126 127 129 130
23 142 147
24 141 142 143 144 145 146 147
25 157 158
26 71 157 158 159 160
27 28 29 56 71 159 160
28 161 162 163 164 165 166 167
29 168 169
30 140 170 171 172 174 175
31 2 3 9 18 19 114 196 197
32 5 6 7 26
33 12 24
34 10 126 127 128 129
35 34 35 36 38 100
36 34 35 36 37
37 66 67 68 69
38 49 50 52 53 54 55 177
39 17 134 135 153 156
40 189 190
41 119 191 192 193 194
42 57 181 183 184 185 186 187 188

A .2 Q u ery P ro cesso r
In this section the parts which compose the Query Processor module of the simulation
system are described.

repr-q.c
The following is the listing of the C program which composes the Query Processor module
of the Simulation System.

192

120

/* represent at; ion building program for queries

rows are queries and columns are terms

the fact that an "a" is positioned on a certain line-column states
that in the queries identified with the number of that line uses the
terms identified by the number of the column to represent
its informative content */

#include<stdio.h>
#include<stdlib.h>

|#define MAXTERMS (195+1)
|#define MAXQS (42+1)
1#define IDENT ;a J
: #define NOTHING , 0 ‘

main(argc, argv)
int argc;
char *argv[];

{
FILE *f;
char rep[MAXQS] [MAXTERMS];

; int docnum, ternum, i, j;

if (argc != 2)
{

printf("Usage: repr <file-name>\n");
exit(-1);

}

if ((f = fopen(argv[l] , "r")) == NULL)
{

printf ("File */,s not f ound\n" , argv[l]);
exit(-1) ;

>

while (f scanf (f, ’7.d" , &docnum) != EOF)

fscanf(f, "#/od", &ternum);

/* because the index 0 is never used */
/* same reason as above */
/* presence of term */
/* absence of term */

121

while (ternum ! = 0)
{

rep[docnum][ternum] = IDENT;
f scanf (f, "*/»d" , fcternum);

>
}

fclose(f);

for (i = 1; i < MAXQS; i++)
{

for (j = 1; j < MAXTERMS; j++)
if (rep[i][j] == IDENT)
putchar(IDENT);

else
putchar(NOTHING);

printf("\n");
}

}

A .3 N N sim u la tor

In this section the parts which compose the Neural Network simulator module of the
simulation system are described.

ir

The following is the listing of the source code which composes the Neural Network Simulator
module of the Simulation System. The language used is the PlaN et’s specification language.

#!/bin/csh -f
source /users/staff/fabio/NN/PlaNet/RunNet
set NIN = 195
set NHID = 100
set NOUT = 1142
set NET = n.31ayer
set PAT = p-odd
set WTS = save
network Nin=$NIN Nout=:$N0UT Nhid=$NHID $NET
pattern $PAT
whatis alpha eta

122

names layer
nset print 50
date
cycle 300
date
savefile ww-ir-300-5
save
savefile close
date
cycle 300
savefile ww-ir-600-5
save
savefile close
cycle 300
savefile ww-ir-900-5
save
date
savefile close
quit
netclear

n.3layer
This is the source code describing the internal structure of the three layers feed forward
neural network and of the BP learning procedure adopted.

n.31ayer: generic definition of a 3 layer back-prop network.
define Nin, Nhid, and Nout as desired.

define ErrMsg \n\tread\swith\s;network\sNin=<no-of-input>\sNhid=<no-of-hidden>\s
Nout=<no-of-output>\sn.Slayer'\n

IFNDEF Nin; printf ErrMsg; exit; ENDIF
IFNDEF Nhid; printf ErrMsg; exit; END IF
IFNDEF Nout; printf ErrMsg; exit; ENDIF

DEFINITIONS OF LAYERS

layer Input Nin
layer Hidden Nhid
layer Output Nout

123

DEFINITIONS OF INPUT/TARGET BUFFERS

target Nout
input Nin

DEFINITIONS OF CONNECTIONS

connect InputHidden Input to Hidden
connect HiddenOutput Hidden to Output

PROCEDURE FOR ACTIVATING NETWORK FORWARD

procedure activate
input
forward
activation
forward
activation
target

end

Input
InputHidden
Hidden
HiddenOutput
Output
Output

PROCEDURE FOR TRAINING NETWORK

procedure learn
call
backward
delta
learn
learn
learnbias
learnbias

end

activate
HiddenOutput
Hidden
InputHidden
HiddenOutput
Output
Hidden

do-ou t
This is a C-shell script used to produce and store in files the output patterns for different

input patterns.

#!/bin/csh -f

124

foreach pat (pat 16 pat17 pat 18 pat19 pat20 pat21 pat22 pat23 pat24 pat25)
pattern $pat
present 0
print Output > out-300-$pat

end

A .4 M a tch er

In this section the parts which compose the Matcher module of the simulation system are
described.

patterns.c

This C program builds the input and output patterns to be used in the learning and in
the retrieval phase. It takes the document and query representation matrices and, given
a series of pairs conposed of a query number and a document number, it builds up the
training example and stores it in a file.

/* building patterns program

the program takes the data from doc-rep-matrix e q-rep-matrix and builds
the patterns according to the query and documents specification given
interactively */

#include<stdio,h>
#include<stdlib.h>

#define MAXT.Q 195
#define MAXT.D 1142
#define MAXQS 42
#define MAXDOCS 200

main(argc, argv)
int argc;
char *argv[];

{
FILE *f, *g, *p;

125

char repq[MAXQS] [MAXT.Q] , repd [MAXDOCS] [MAXT.D] ;
int docnum, qnum, i, j;

if (argc ! = 3)
{

printf("Usage: patterns <doc-rep file-name> <q-rep file-name>\n");
exit(-1);

}

if ((f = fopen(argv[l] , "r")) == NULL)
{

printf ("File */,s not f ound\n" , argv[l]);
exit(-1) ;

>

if ((g = fopen(argv[2] , "r")) == NULL)
{

printf("File %s not found\n", argv[2]);
exit(-1) ;

}

for (i = 0; i < MAXDOCS; i++) /* read the docs representation matrix * /
{

for (j = 0 ; j < MAXT.D; j++)
repd[i][j] = getc(f);

getc(f);
>

for (i = 0; i < MAXQS; i++) /* read the queries representation matrix */
{

for (j = 0 ; j < MAXT.Q; j++)
repq[i] [j] = getc(g);

getc(g);
}

fclose(f);
fclose(g);

p = fopen("pat-new", "w");

printf("\v");
printf("Program for setting patterns:\n") ;

126

printf(The file <pat-new> will be created\n\n");

printf("Insert the query number (0 to end):\t");
scanf ("#/,d" , &qnum) ;
while (qnum != 0)

{
for (i = 0; i < MAXT.Q; i++)

putc(repq[qnum - 1] [i], p);
putc(’ >, p);
printf("Insert the document number:\t");
scanf ("'/0d" , fcdocnum);
for (i = 0; i < MAXT_D; i++)

putc(repd[docnum - 1] [i], p);
p u t c O W , p) ;
printf ("Insert the query number (0 to end):\t");
scanf("%d" , &qnum);

}
fclose(p) ;

}

ir.c

This C program evaluates the similarity between a query, or the adapted query produced
by the NN simulator, and the documents of the entire document collection which are
represented in a matrix. The output is a list of all the documents whose similarity value
is over a certain threshold. The list can then be sorted to have the documents ranked
according to their similarity to the query and, therefore, to thei expected relevance.

/sjcsjcjIcifcsjcsJcsfcjjcjIcsfcjjcjfcjjcjt:***********

retrieval program

* /

#include<stdio.h>
#include<stdlib.h>

#define N_D0 C 200
#define D_TERMS 1142
#define THRESHOLD 0.35 /* usually 0.35 */
#define D THRES 0.3 /* threshold value for showing documents (0 . 3) * /

127

#define N_RESP 10

main(argc, argv)
int argc;
char *argv[] ;

/* number of documents to be shown at the end */

/* the argument is the output file of a pattern */

{

char doc_rep [N_D0C] [D_TERMS] ; /* representation of all docs */
char response [D_TERMS]; /* response of the NN at the sel. query */
float doc_resp_sim[N_DOC]; /* vector of similarities response-docs*/
float output [D_TERMS] ; /* from PlaNet's file nn-ww */

printf("\n\n");
printf("EVALUATION PROGRAM FOR ADAPTIVE INFORMATION RETRIEVAL\n");
printf("Dice’s Coefficient of similarity\n") ;
printf("\n\n");
printf ("Evaluation of output file: ‘/.sXnXn", argv[l]);

load_documents_representation(doc_rep);
load_output(argv[l] , output);
threshold(output, response);

dice_coefficient(response, doc_rep, doc_resp_sim);
show_doc(doc_resp_sim);

}

/j|C3(ĈeSjĈCj)C3|ĈĈC5jC5f:5|(̂:̂C5(C5|(5(ĉC5)e3)«5)C5i<>|t5tt5tcH{:<c:t:5(<3(c5tc5(<!tt!J£3(<5(t5ic5tc3)<Jt:5t:5tCJtc3)i:3lCH(JleJlC3lc3lc5(C5lc5le3(!5lc5le5le5̂5lesle/
/****** read in document representations ********************/
/ * /

load_documents_representation(doc_rep)
char doc_rep[N_D0C][D.TERMS] ; /* return the doc.rep matrix */

{
FILE *f;
int i, j ;

128

if C (f — f open("data/doc-rep-matrix", "r")) == NULL)
{

printf ("Document representation matrix not found\n");
exit(-1);

>

/* notice that doc 1 will have index 0 */

for (i = 0; i < N_D0C; i++) [
{ Ifor (j = 0 ; j < D.TERMS; j++) I

doc.rep[i] [j] = getc(f);
getc(f) ;

}
fclose(f) ;
return;

}

/* reading the Output of the NN *************************/
/ * 3|e sfe 3|e a(e a|c * ********** * * * * *** * * *** * ** * *********************** /

load_output(arg, output)
char arg[15];
float output[D_TERMS] ;

{
FILE *f;
int i, j ;

if ((f = fopen(arg, "r")) == NULL)
{

printf("Output vector not found\n");
exit(-1);

}

for (i — 0; i < D_TERMS; i++)
fscanf (f, "4/f", &output [i]);

fclose(f);
return;

129

}

/***I
/* apply threshold on the response *************************/
/ * /

threshold(output, resp)
float output[D.TERMS] ;
char resp[D.TERMS]; I

{
int i;

for (i = 0; i < D_TERMS; i++)
if (output [i] < THRESHOLD)

resp [i] = ;0 1;
else

resp[i] = ;aJ; /* to allow a better comparison with doc.rep */
return;

}

/ * /

/* evaluation of the similarity between response and each document */
/* Dice coefficient */
/ * /

dice_coefficient(resp, doc_rep, d_r_sim)
char resp [D_TERMS] , doc_rep [N_D0C] [D_TERMS] ;
float d_r_sim[N_D0C] ;

{
int i, j ;
float cont, cont_d, cont_q;

cont_q = 0;
for (i = 0; i < D_TERMS; i++)

if (resp[i] == 'aO
cont_q++;

for (i - 0; i < N_D0C; i++)
{

cont = 0;

130

cont_d = 0;
for (j = 0; j < D_TERMS; j++)

{
if (doc_rep[i] [j] == && resp[j] == 'a')

cont++;
if (doc_rep[i] [j] == 'a')

cont_d++;
>

d_r_sim[i] = 2.0 * cont/(cont_d + cont.q);

return;
}

/ * * * * * * * * *****************************/
/* show the documents in order of their evaluated relevance *****/
/ * /

show_doc(d_r_sim)
float d_r_sim[N_D0C] ;

{
int i, j, cont, temp;
float ord_resp[N_D0C][2] , max;

/* show the relevant documents */

printf("\v");
printf ("The document the system found to be relevant to your query are:\n");
printf ("Document number\t\tRelevance assessment\n");

for (i = 0; i < N_D0C; i++)
if (d_r_sim[i] > D_THRES)

printf ('7„d\t\t\t °/.f\n", i, d_r_sim[i]);

return;
}

131

evaluation

The following is the shell script used to produce evaluation files.

#! /bin/csh

date > eval35.2on3

foreach file (outs/out*)
ir2-35 $file | sort -r » eval35.2on3

end

A .5 D o c u m e n t processor

In this section the parts which compose the Document processor module of the simulation
system are described.

repr-d.c

The following is the C program used to produce a matrix representation of the entire
document collection. The formalism used is the vector space one.

/* representation building program for 200 document collection:

rows are documents and columns are terms

the fact that an "a" is positioned on a certain line-column states
that in the document identified with the number of that line the
terms identified by the number of the column is used to represent
the informative content */

#include<stdio .h>
#include<stdlib.h>

#define MAXTERMS (1142+1)
#define MAXDOCS (200+1)
#define IDENT ;a ;
#define NOTHING 'O'

/* because the index 0 is never used */
/* same reason as above */
/* presence of term */
/* absence of term */

main(argc, argv)
int argc;
char *argv[] ;

132

{
FILE *f;
char rep[MAXDOCS][MAXTERMS] ;
int docnum, ternum, i, j;

if (argc != 2)
{

printf("Usage: repr <file-name>\n");
exit(- 1);

}

if ((f = fopen(argv[l] , "r")) == NULL)
{

printf ("File (/.s not found\n", argv[l]);
exit(- 1);

}

while (fscanf(f, '"/,d", &docnum) != EOF)
{

fscanf(f, "®/0d", &ternum);
while (ternum != 0)

{
rep[docnum][ternum] = IDENT;
fscanf(f, "*/,d", &ternum);

}
}

fclose(f);

for (i = 1; i < MAXDOCS; i++)
{

for (j = 1; j < MAXTERMS; j++)
if (rep[i][j] == IDENT)
putchar(IDENT);

else
putchar(NOTHING);

printf("\n");
}

133

Bibliography

[1] C.J. van Rijsbergen. Information Retrieval. Second edition, Butterworths, London,
1979.

[2] H.P. Luhn. A statistical approach to mechanized encoding and searching of library
Information. IB M Journal of Research and Development, 1:309:317, 1957.

[3] M.F. Porter. An algorithm for suffix stripping. Program, 14(3): 130—137, 1980.

[4] G. Salton and M.J. McGill. Introduction to modern Information Retrieval. McGraw-
Hill, New York, 1983.

[5] G. Salton. Automatic Text Processing. Addison-Wesley, 1989.

[6] W.B. Croft. Approaches to Intelligent Information Retrieval. Information Processing
& Management, 23(4):249:254, 1987.

[7] R.H. Thompson. The design and implementation of an intelligent interface for Infor
mation Retrieval. Technical report, Computer and Information Science Department,
University of Massachusetts, 1989.

[8] W.B. Croft and R.H. Thompson. I 3R: a new approach to the design of document Re
trieval systems. Journal of the American Society for Information Science, 38(6):389-
404, 1987.

[9] H.M. Brooks. Expert systems and Intelligent Information Retrieval. Information
Processing & Management, 23(4):367-382, 1987.

[10] E.A. Fox. European Summer School in Information Retrieval. Presentation, Bres-
sanone. Italy, July 1990.

[11] R.M. Tong, L.A. Appelbaum, V.N. Askman, and J.F. Cunningham. Conceptual In
formation Retrieval using RUBRIC. In Proceedings of ACM SIG IR , New Orleans,
Luisiana, June 1987.

[12] R.M. Tong, L.A. Appelbaum, and V.N. Askman. A knowledge representation for con
ceptual Information Retrieval. International Journal of Intelligent Systems, 4(3).259—
284, 1989.

134

[13

[14

[15

[16

[17

[18

[19

[20

[21

[22

[23

[24

[25

P.R. Cohen and R. Kjeldsen. Information Retrieval by constrained spreading acti
vation on Sematic Networks. Information Processing & Management 23(4)*255-268
1987.

L.F. Rau. Knowledge organization and access in a conceptual information system.
Information Processing & Management, 23(4):269-283, 1987.

E.A. Fox. A design for intelligent Retrieval: the CODER system. In Proceeding of
the Second Conference on Computer Interfaces and Intermediaries for Information
Retrieval, Boston, Massachusetts, USA, 1986.

E.A. Fox. Development of the CODER system: a testbed for artificial intelligence
methods in Information Retrieval. Information Processing & Management, 23(4):341—
366, 1987.

M.T. Weaver, R.K. France, Q.F. Chen, and E.A. Fox. Using a frame based language
for Information Retrieval. International Journal of Intelligent Systems, 4(3):223-258,
1989.

U. Hahn. Making understanders out of parsers: semantically driven parsing as a key
concept for realistic text understanding. International Journal of Intelligent Systems,
4(3):345-394, 1989.

P.F. Patel-Schneider, R.J. Brachman, and I4.J. Levesque. Argon: knowledge rep-
resenation meets Information Retrieval. In Proceedings of The First Conference on
Artificial Intelligence Applications, Boston, CO, USA, 1984. IEEE.

M.K. Di Benigno, G.R. Cross, and C.G. de Bessonet. Corel, a conceptual retrieval
system. In Proceedings of ACM SIG IR , Pisa, Italy, September 1986.

W.B. Croft, T.J. Lucia, and P.R. Cohen. Retrieving documents by plausible inference:
a preliminary study. In Proceedings of ACM SIGIR., Grenoble, France, June 1988.

W.B. Croft, T .J. Lucia, J. Crigean, and P. Willet. Retrieving documents by plausible
inference: an experimental study. Information Processing & Management, 25(6) :599-
614, 1989.

R.A. Frost. Introduction to Knowledge Based Systems. Collins, 1987.

F. Rosemblatt. Principles of Neurodynamics. Spartan Books, New York, 1962.

R.K. Belew. Adaptive Information Retrieval: machine learning in associative net
works. Phd thesis, University of Michigan, USA, 1986.

[26] W.S. Mac Cullough and W.H. Pitts. A logical calculus of ideas immanent in nervous
activity. Bulletin of Mathematical Biophysics, 5:115—133, 1943.

135

[27] A. Newell. The knowledge level. A I Magazine, pages 1-20, 1981.

[28] M. Agosti, F. Ciestani, and G. Gradenigo. Towards data modelling in Information
Retrieval. Journal of Information Science, 25(6):307-319, 1989.

[29] M .Agosti, F. Crestani, G. Gradenigo, and P. Mattiello. An approach to conceptual
modelling of ir auxiliary data. In Proceedings of IEEE International Conference on
Computer and Comunications, Scottsdale, Arizona, USA, 1990.

[30] W.B. Croft and T.J. Parenty. A comparison of a network structure and a database
system used for document retrieval. Information Systems, 10(4):377—390, 1985.

[31] H. Turtle and W.B. Croft. Inference networks for document Retrieval. In Proceedings
of AC M SIG IR , Brussels, Belgium, September 1990.

[32] M.E.S. Loomis, A.V. Shah, and J.E. Rumbaugh. An object modelling technique for
conceptual design. In Proceedings of the European Conference on Object-Oriented
Programming, pages 325-335, Paris, 1987. AFCET.

[33] V. Bush. As we may think. Atlantic Monthly, 176(1): 101-108, 1945.

[34] S.E. Preece. A spreading activation model for Information Retrieval. Phd thesis,
University of Illinois, Urbana-Champaign, USA, 1981.

[35] G. Salton and C. Buckley. On the use of spreading activation methods in automatic
Information Retrieval. In Proceedings of ACM SIG IR , Grenoble, France, June 1988.

[36] D.E. Rumelhart, J.L. McClelland, and PDP Research Group. Parallel Distribut Pro
cessing: exploration in the microstructure of cognition. MIT Press, Cambridge, 1986.

[37] K.L. Kwok. A Neural Network for probabilistic Information Retrieval. In Proceedings
of AC M SIGIR, Cambridge, MA, USA, June 1989.

[38] G. Salton. Automatic information organization and retrieval. Me Graw Hill, New
York, 1968.

[39] D.E. Rumelhart and D.A. Norman. Representation in memory. Technical report,
Department of Psychology and Institute of Cognitive Science, UCSD La Jolla, USA,
1983.

[40] H. Kimoto and T. Iwadera. Construction of a dynamic thesaurus and its use for
Associative Information Retrieval. In Proceedings of ACM SIGIR, Brussels, Belgium,
September 1990.

[41] D. Hebb. Organization of behavior. John Wiley & Son, New York, 1949.

[42] P.K. Simpson. Artificial Neural Systems: foundations, paradigms, applications and
implementation. Pergamon Press, New York, 1990.

136

[43] M.C. Mozei. Inductive Information Retrieval using parallel distributed computation.
Technical report, Institute for Cognitive Science, University of California, San Diego,
June 1984.

[44] J. Bein and P. Smolensky. Application of the interactive activation model to docu
ment retrieval. Technical report, Dept, of Computer Science, University of Colorado,
Boulder, 1988.

[45] R .J. Brachman and D.L. McGuinness. Knowledge representation, connectionism, and
conceptual Retrieval. In Proceedings of ACM SIGIR , Grenoble, France, June 1988.

[46] R.K. Belew. Adaptive Information Retrieval: using a connectionist representation to
retrieve and learn about documents. In Proceedings of ACM SIG IR , Cambridge, USA,
June 1989.

[47] K.L. Kwok. Application of Neural Network to Information Retrieval. In Proceedings
of the International Joint Conference on Neural Networks, Washington D.C., USA,
January 1990.

[48] G.S. Jung and V.V. Raghavan. Connectionist learning in costructing thesaurus-like
knowledge structure. AAAI Spring Symposium on Text-Based Intelligent Systems,
Working Notes, March 1990.

[49] P. Hingston and R. Wilkinson. Document retrieval using a Neural Network. Technical
report, Dept, of Computer Science, Royal Melbourne Institute of Technology, 1990.

[50] G. Salton. The SM A RT Retrieval System. Experiments in automatic document pro
cessing. Prentice-Hall, New Jersey, 1971.

[51] C. Claverdon, J. Mills, and M. Keen. ASLIB Cranfield Research Project: factors
determining the performance of indexing systems. ASLIB, 1966.

[52] F. Crestani and 0 . Olsen. Introduction to Neural Network simulation. Technical
report, Department of Computing Science, University of Glasgow, UK, December
1991.

[53] Y. Miyata. A user’s guide to PlaNet version 5.6: a tool for constructing, running and
looking into a PDP network. Computer Science Department,, University of Colorado,
Boulder, USA, December 1990.

[54] J. Hertz, A. Krogh, and R. Palmer. Introduction to the theory of Neural Computation.
Addison-Wesley, New York, 1991.

[55] R. Beale and T. Jackson. Neural Computing: an introduction. Adam Higler, Bristol,
UK, 1990.

137

