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The object of this thesis is to investigate second order nonlinear optical processes
in proton— exchanged lithium niobate waveguides. In particular it is to investigate
the effects of different waveguide fabrication parameters on the conversion
efficiency for second harmonic generation with the aim of optimizing the

conversion efficiency.

Chapter one gives a brief account of nonlinear optical processes in dielectric
materials and, in particular, reviews the properties of lithium niobate which make
it such an effective crystal for nonlinear processes. Nonlinear processes in bulk
crystals are first explained. This is extended to include the effects of constraining
the light inside a waveguiding structure and to show how this approach leads to
more efficient interactions. Techniques for producing low—loss waveguides in
lithium niobate are then discussed with the emmphasis being on the
proton— exchange process. Finally, the possibility of constructing efficient
minjature, Q- switched, self— frequency doubled lasers in doped lithium niobate is
discussed.

Chapter two explains the Cerenkov phase— matching scheme for second harmonic
generation in proton— exchanged waveguides. A brief review of the published
theoretical studies of Cerenkov SHG is given. This is followed by an outline of a
coupled mode analysis of the problem derived by the author. The results of this
analysis are compared to the published results.

Chapter three is concerned with the investigation of the proton— exchange
fabrication parameters on the efficiency of second harmonic generation in planar
waveguides. The need to choose on optimum depth to maximise the conversion
efficiency is shown, followed by an investigation into the effect of annealing the
waveguide. Low power c.w. second harmonic generation in stripe waveguides is
then investigated and demonstrated wusing both a Nd:YAG laser and a

semiconductor laser.

Chapter four describes experimental work undertaken to compare and contrast the
conversion efficiency for second harmonic generation in waveguides fabricated with
two different acids. It has been claimed that waveguides fabricated with
phosphoric acid have a higher refractive index than those fabricated with benzoic
acid and consequently could give waveguides with a higher conversion efficiency.

These claims are investigated for both congruent and magnesium oxide doped




lithium niobate.

In chapter five the application of grating structures to second order nonlinear
interactions is investigated. Firstly, a novel technique for the production of
first— order pratings on the —c—face of the lithium niobate substrate is described.
Such grating structures should allow efficient second harmonic generation via quasi
phasematching. The determination of the correct period for the grating and the
fabrication of the grating is described. Secondly, the application of grating
structures to the measurement of the second order nonlinear d,, coefficient of
proton— exchanged lithium niobate is described. Using this technique the d,,
coefficient was measured as well as the effect of annealing on the magnitude of

the coefficient.

Finally, in chapter six, a summary, with conclusions, of the thesis is presented.




Acknowledgements

Thesis outline

CHAPTER ONE

NLINEAR INTEGRATED PTI IN _LIT NIOBAT ICAL
WAVEGUIDES

1.1 Introduction 1

1.2 Nonlinear optical frequency conversion in optical waveguides 2

[ R}

1.2.1 Nonlinear Optics: A Brief Review

1.2.2 Second Harmonic Generation: Comparison of Bulk and Guided Wave

Configurations :>
1.2.3 Choice of Nonlinear Material 9
1.2.4 The Crystal structure of Lithium Niobate 10
1.2.5 Nonlinear Properties of Lithium Niobate 11
1.3 Fabrication of Optical Waveguides by Proton— exchange 12

1.4 New Minature laser Sources with Proton— exchanged Doped Lithium Niobate 13

1.5 References 17

CHAPTER TWO

HEOR F__SECOND HARMONI ENERATION (SHG) IN OPTICAL
WAVEGUIDES

2.1 Theory of SHG in Optical Waveguides =3




2.1.1 Conventional Phasematching 23

2.2 Phasematching Techniques 27
221 Birefringence’ . 27
2.2.2 Modal dispersion 23
2.2.3 Grating Structures 28
2.3.1 Theory of Cerenkov SHG in Proton— exchanged Waveguides 28
2.3.2 Main features of Published Results - 32

- 2.3.3 A simplified model of Cerenkov SHG Based on Coupled Mode Theory 32

2.3.4 Derivation of Coupling Coefficient : 34
2.3.5 Calculation of the Conversion Efficiency 35
2.4 Conclusions 41
2.5 References 43

CHAPTER THREE

ECOND HARMONI ENERATION ROTON— EXCHANGED
WAVEGUIDES

3.1.1 Introduction 45
3.1.2 Review of Published Work 45
3.2.1 Experimental SHG of a Nd:YAG Laser 16
3.2.2 Measurement of the Cerenkov Angle in Planar waveguides 17
3.2.3 Conversion efficieny for SHG in Planar Waveguides 413




3.2.4 Conversion Efficiency versus Waveguide Depth 48

3.2.5 Effect of Annealing on the Conversion Efficiency 56
3.3.1 SHG in Stripe Waveguides 62
3.3.2 SHG of c.w. Nd:YAG Laser Radiation 63
3.3.3 SHG of c.w. Semiconductor Laser Radiation 68

3.4 Conclusions

70
3.5 References .
70
CHAPTER FQUR
HG IN PROTON-EXCHANGED _WAVE RICATED _ USIN
ENZQIC A AND PYROPHOSPHORIC A :
4.1Introduction T2
4.2.1 Proton— exchange using Pyrophosphoric acid 72
4.2.2 chemistry of Pyrophosphoric acids 73
4.2.3 Review of Published Work 73
4.3.1 Magnesium Oxide Doped Lithium Niobate 76

4.4.1 A Comparison Between between Pyrophosphoric acid and benzoic acid for

SHG 78
4.4.2 Brief Review of Experimental Method and Normalization Procedure 83
4,43 SHG in Congruent Material 84
4.4.4 SHG in MgO- Doped Material 87

4.5 Conclusions 90




CHAPTER FIVE

TING STR AND THE NONLINE NT

5.1 Introduction

92
5.2.1 Grating Structures for Nonlinear Optics 92
5.2.2 Periodic structures for Quasi Phasematched SHG 93
5.2.3 Methods of Producing a Modulation of the Nonlinear Coefficient 96

5.2.4 Fabrication of Periodic Domains by Electron Beam Bombardment of Lithium

Niobate 102
5.2.5 Fabrication of Grating Structures _ . 107
5.2.5(i) Determination of the Grating Period Required 107
5.2.5(ii) Grating Fabrication Procedure 111
5.2.5(iii) Domain Reversal Procedure 113
5.2.5(iv) Test for Domain Reversal 113
5.2.6 Quasi Phasematched SHG 114

5.3.1 Measurement of the d,, Coefficient of Proton— exchanged Lithium Niobate 114

5.3.2 Measurement of the d,, Coefficient by the Grating Diffraction technique 117

5.3.3 Experimental Determination of d,, 122
5.3.4 Effect of Annealing on d,, 124
5.3.5 Mechanism for the Reduction in Nonlinearity 128

5.4 References 135




CHAPTER SIX

CONCLUSIONS



CHAPTER 1,

INEAR P B PTICAL
WAVE E

1.1 Introduction.

The aim of this chapter is to outline some of the background to nonlinear
interactions in lithium niobate waveguides. Nonlinear interactions in other
materials, such as organic crystals or III- V semiconductors, will be mentioned

only briefly.

The chapter splits naturally into four sections. In the first section, a brief history
of nonlinear optics is presented. The potential of integrated optical waveguide
structures for the efficient exploitation of nonlinear effects will then be discussed.
Standard results from the theory of second harmonic generation will be quoted
throughout the text. No attempt has been made to justify the quoted results as
the derivations are well known and, in chapter two, the theory of second
harmonic generation in proton— exchanged waveguides will be explained in more
detail.

A brief overview of the properties of lithium niobate will then be given in the
second section of the chapter followed, in the third section of the chapter, by an
outline of the proton— exchange process for waveguide fabrication. The properties
of the waveguides which are important for nonlinear applications will be
highlighted. Included in this section will be a short review of previous work on

nonlinear integrated optics in proton— exchanged waveguides.

A short section then reviews some of the new applications for nonlinear effects in
specially—doped  lithium  niobate  substrates. @ These  applications include
diode— pumped solid state lasers which can exploit the nonlinear properties of

lithium niobate and the advantages of integrated optical waveguiding structures.

Finally, to conclude the chapter, a brief, chapter— by— chapter, review of the
contents of this thesis is presented.



1.2 Nonlinear optical frequency conversion in optical
waveguides

1.2.1 Nonlinear optics: A brief review

The branch of optics now commonly referred to as "nonlinear optics” only really
began to develop significantly after the invention of the laser in the early part of
te 1960's. Although nonlinear optical effects were known and had been extensively
researched before the invention of the laser, for example optical pumping, the
unique properties of the laser allowed the exploitation of optical effects which had
previously been unobtainable with even the highest power light sources of the
day. Shortly after the invention of the laser, Franklin and co— workers
demonstrated ultra— violet generation by the frequency doubling of a ruby laser
[1]. This led to an intensive study of nonlinear effects in crystals and the
discovery of many new phenomenon. The high intensity laser sources required to
exploit the nonlinearity of crystals limited the development of practical devices for
commercial use, with the consequence that nonlinear optics remained, on the
whole, in the laboratory. With the emergence of integrated optics in the 1970s,
many nonlinear effects could be observed easily using low power laser sources,
due to the power confinement capability of an optical waveguide which leads to a
high beam intensity even at low powers. Many practical devices have now been

demonstated using semiconductor lasers as the pump source.

When a dielectric medium is subjected to an electric field the electrons in the
medium are polarised. For weak electric fields the induced polarisation is linearly
" proportional to the applied electric field [2]:—

P= ¢,.X1)E (1.1)

where x(‘) is the linear optical susceptibility, related to the refractive index of
the medium by X(') = n? = 1. A linear polarisability is an approximation to
the true constitutive relation which can be written as a Taylor expansion of the
optical field [2]:~

P= ¢, E{) + XJE + XIEE + ........ } (1.2)
where (M) is the n—th order nonlinear susceptibilty. The n—th order

susceptibilities are in general (n+1) order tensors. Table 1 lists some of the

effects which can arise due to the second and third order nonlinear

[y~



susceptibilities. In this project, only effects due to x(z) have been studied and no
further mention will be made of third order effects.

Table 1.

Nonlinear coefft.

x(2)

x(3)

Effects

SHG

frequency mixing

+

wr w2 w3
parametric

amplification
Kerr effect

optical
bistability

Uses

frequency doublers

optical parame
oscillators

optical mixers

tric

optical switches

optical logic
gates etc.

Figure 1.1 illustrates two of the second order effects, namely second harmonic
generation and parametric amplification.
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In general, the n interacting fields may have n different frequencies. A

superposition of sinusiodal electric fields may be written as:—
E(rt) = 5,5i¢.(1/2)[Ef(w).ei(et = k1) 4+ ¢c)] (1.3)

where E; is the complex field amplitude in the direction of the unit vector e;.
The n fields interact through the nonlinear susceptibility of the material (which
may be represented as a tensor of order n+1). The nonlinear polarization can be

expanded similarly:—
Pr,t) = PO)(r,t) + P(2(rt) + ... (1.4)
where:—

P(O)(r,1) = 5.5ie;-(1/2).[P{(D)(c).eilt = K1) + cc]
‘ (1.5)

Each P(D)(r,1) can be related to the electric fields producing it via the
appropriate susceptibility tensor. Each P(D)X(r,u) can be related to the electric
fields producing it via the appropriate susuceptibility tensor. The second order
term is:—

Py 2¥Yr,w,) = ‘o-ijXjk( ?)(wa:w, 162)-Ej(w,).Ep(w,).e™ Kr
(1.6)

K=k, + k, (1.7)
with k; being the wavevector for the i—th wave at frequency cj. It has been

customary to describe the second order susceptibility by writing the polarization
density at the second harmonic in the form:—

Pj3v@ = ‘o‘ijdijk'ij'Ekw (1.8)

The components of the nonlinear susceptibility tensor, x"), defined by equation
6, can be related to the components of the nonlinear d tensor by [2]:—

Xijk = 2'dijk (1.9



The coefficients of the nonlinear d tensor have units mV~ '. The physical basis
of the nonlinear effect is in the asymmetric structure of the crystalline material.
Theories exist that allow a calculation of the nonlinear tensor coefficients. The
most basic of these theories, the anharmonic oscillator model, treats the electrons
as being in an asymmetric potential well. This theory allows a simple calculation
of djjx. A proper derivation of the n—th order nonlinear coefficients involves a
detailed quantum mechanical treatment using density matrix theory. Details of

such theories are outwith the scope of this thesis.

1.2.2 Second harmonic_ generation; Comparison of bulk and guided wave
configurations

Nonlinear interactions, in particular second harmonic generation, have been studied
in great depth using bulk crystals. The conversion efficiency for second harmonic
generation is defined as:—

n = P20/ pPw (1.10)

where P20 PY are the powers of the harmonic and fundamental waves
respectively. In chapter two the theory of second harmonic generation will be
discussed in more detail but, in order to compare bulk optics with integrated
optics, the main results will be outlined in this section.

In bulk nonlinear optics, the electric field of the laser at the fundamental
wavelength will usually be described by a Gaussian distribution. To simplify thé
analysis, consider the case of plane waves. In the limit of low conversion
efficiencies, i.e. the fundamental beam is undepleted, the conversion efficiency can
be shown to be given by [3]:—

P@ sin?(0.5AkL)
- - (1.11)

n = 2 —!Tdeff’ L2.—
where dogr is the effective nonlinear coefficient, L is the interaction length, Ak =
k2@ -~ k¢ js the phase mis—match and all other terms have their usual
meaning.

For the case of second harmonic generation in an integrated optical waveguide,
the electric fields are given by the modal field solutions of Maxwells equations

under the boundary conditions imposed by the waveguide structure. The

(93]



conversion efficiency for second harmonic generation is given by:—
n = C.sinc?(0.54kL).12 (1.12)

where C is given by:—

— w? 2712 pw  Sin2(0.5AGL)
C - 2mdeff .L .P . ( .SABL (1.13)

and I, known as the overlap integral is given by:—
I (m™ ') = [(E,u.(Ey)?.dxdy (1.14a)

E,, and E are the normalised electric field distributions at the harmonic and

fundamental frequencies; that is
f(Ew’zw)zdxdy =1 (1.14p)

The overlap of a fundamental field and a harmonic field is illustrated in figure
1.2, The overlap changes as the field distributions change. Thus the conversion
efficiency is stongly dependent on the waveguide parameters through this overlap
integral. Figure 1.3 illustrates both situations of a guided— guided mode interaction
as in conventional phasematching and also guided— radiation mode interaction as
found in the Cerenkov phasematching scheme. In bulk nonlinear optics, the phase
mis— match can be compensated for by temperature tuning the birefringence of

the crystal [4] or by angle tuning the direction of propagation in the crystal [4].

Integrated optical waveguide structures are very interesting because they allow
alternative solutions to the problem of efficient second harmonic generation. In
crystals where the natural birefringence does not permit phasematching, guided
wave optics allow the use of modal dispersion to arrange for the phase
mis—match to be Ak = 0. As phasematching is essential for an efficient
interaction, integrated optics may allow the use of materials which cannot

otherwise be phasematched, but which are nonetheless nonlinear.

To continue the comparison, consider the case of a phasematched interaction in
both the bulk and guided wave interactions. In this case the essential advantage
of the guided wave arises from the ability of the waveguide to confine the optical
power density over a long interaction length. In bulk crystals, the fundamental

beam must be focussed down to increase the power density. The optimum
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arrangement for this is the so—called confocal focussing arrangement, in which
case Eq. 1.11 must be derived in a more rigorous fashion. For a Gaussian beam
distribution, in the confocal focussing arrangement, the conversion efficiency can

be shown to be given by:—

sin 2(0.5AKL)
LPw —osanT (1.15)

Comparing the confocal beam configuration to that of guided waves, the ratio of

1= 4W eff *-

the guided wave term to the confocal term is given by:—
GW/CF = (L.M2Nggp).12 (1.16)

For values appropriate to lithium niobate waveguides this leads to an improvement
factor of around 200 for the guided wave case. However, the efficiency of the
guided wave case is reduced by a factor known as the overlap integral (see
chapter 2). This "reduction" is actually multiplication by the overlap integral

factor which is less than one [3].

1.2.3 Choice of nonlinear material

For bulk nonlinear optical applications the crystals should (ideally) possess the
following properties [S]:—

(1) non— centrosymmetry for exploitation of X(?) effects,

(2) optical transparency in the wavelength ranges of use, i.e. at both the

fundamental and harmonic (or sum/difference) wavelengths of interest,
(3) birefringence,
(4) resistance to optical damage.

For nonlinear integrated optics the above conditions can, under given conditions,
be relaxed. For example, the requirement for birefringence need no longer hold
as the waveguide dispersion can allow an extra degree of freedom for
phasematching as discussed above. However; an extra constraint is that it must be

possible to fabricate good quality, low loss, waveguides in a reproducible manner.




Ferroelectric lithium niobate has long been known to possess large optical
nonlinearities and, as such, has routinely been used for nonlinear optical
applications. Furthermore, it is possible to fabricate low— loss waveguides by either
titanium— indiffusion, proton—exchange or a combination of both. For these
reasons, lithium niobate was the crystal chosen as the nonlinear material. One
disadvantage of using lithium niobate is that it is photorefractive, i.e. it is
susceptible to optical damage, even at moderate input powers. The waveguide
fabrication technique used throughout the thesis was proton—exchange and it is
known that the photorefractive susceptibility of proton— exchanged lithium niobate

is lower than that of the bulk crystal.

1.2.4 The crystal structure of lithium niobate

Lithium niobate is a man— made compound that does not occur naturally. The
growth of lithium niobate by the Czochralski technique was reported independently
by Ballman [6] and Fedulov [7] in 1964 and since then this technique has become
the standard method for the commercial growth of lithium niobate. It is
ferroelectric, with a three— fold rotational symmetry about the c— axis, making it
a member of the trigonal crystal system. It also has mirror symmetry about three
planes 600 apart rotated about the c—axis and is thus classified as a member of
the 3m point group. Crystals which belong to the trigonal group can be
structurally classified using either a hexagonal or a rhombohedral unit cell. For an
in—depth study of the lithium niobate crystal structure a series of five papers by
Nassau, Abrahams et al [8,9,10,11,12], concerned with the growth, crystal
structure and other material aspects published in 1966 is considered an important
piece of research work. Other general reviews on the properties of lithium
niobate have been published by Rauber [13], by Weis and Gaylord [14] as well as
an INSPEC volume devoted entirely to lithium niobate [14b].

Lithium niobate has been shown to have a large deviation in the stoichiometry
dependent upon the «crystal growth conditions. The dependence of the
stoichiometry upon crystal growth has been well studied by many workers [15,
16]. Many of the physical properties of lithium niobate are dependent on the
crystal stoichiometry and so, also, is the crystal homogeneity. It is now well
understood that the extraordinary refractive index is strongly dependent on the
stoichiometry but that the ordinary index is not dependent. This implies that the
phasematching temperature for second harmonic generation is dependent on the
crystal stoichiometry. By growing crystals in which the initial melt composition is

48.6 mole% Li,O, congruent lithium niobate is grown. The congruent crystals are

10




very homogeneous and consequently the physical properties of lithium niobate are

very close to constant throughout the crystal.

1.2.5 Nonlinear properties of lithium niobate

As was stated in the previous section, lithium niobate is a member of the 3m
point group. General crystallographic symmetry considerations indicate that there
should be four nonlinear coefficients d,,, d,,, d,,, and d,,. Applying the
Kleinmann symmetry rule [4] indicates that d,, = d,. and, consequently, for
lithium niobate, there are only three independent second order nonlinear
coefficients. The components of the second harmonic polarization can be written,

in the reduced matrix notation, as follows:—

P,1 To o o0 o0 d,, —d,,IlI 1

IPy| = |—d,,d,, 0 d;;, 0 0 J|E,?2 |

lPZJ ld,, d,; d,;, 0 0 0 J|Eziy|
12E\E, | (1.17)
12EXE, |
12E,E,

Equation 1.17 allows the nonlinear polarisation fields to be calculated for a given
polarisation of fundamental field. For example consider an electric field poarised
in the x—direction. It can be seen that this field can couple to an electric
polarised field in the z— direction via the dsi1 coefficient and also to a
y— polarised field via dz2. Phasematching then determines which field dominates
at the output face of the crystal (see figure 1.3).

The magnitude of the coefficients (in pmV~ ') are as follows [13]:—
d,, = 344
d;,, = 595

Experimentally, the value of d,, is subject to large errors because it can only be
determined from a difference of large numbers [13]. As d,, is of little interest
for the work of this thesis no value of the magnitude will be quoted. The
magnitudes quoted above are for a fundamental wavelength of 1.06um. However,
as expected, there is little variation in the magnitude of the coefficients over the
visible and near IR spectrum. As was mentioned in 1.2.4 above, the physical
properties of lithium niobate are dependent on the crystal stoichiometry. This

indicates that the nonlinear coefficients may be dependent on the stoichiometry.

11




Miller and Norland [17] have reported that only the d,, coefficient is strongly
dependent on the initial melt composition. This dependence emphasises the need
for congruent crystals for nonlinear applications in which the d,, coefficient is to
be used.

1.3 Fabrication of optical waveguides by proton— exchange

Only proton— exchanged waveguides were used in the work presented in this
thesis. There are several other techniques for waveguide fabrication in lithium
niobate and it is outside the scope of this thesis to discuss these. Several articles
have been published reviewing waveguide fabrication techniques in lithium niobate
[21,22]. A brief overview of the proton— exchange process will be given. For a

review of the alternative techniques the reader is referred to the cited articles.

Proton— exchange using benzoic acid was first demonstrated by Jackel at al [18],
in 1982 and developed from earlier work on ion—exchange involving AgNO , [19]
and TINO, [20] melts. The ion—exchange process resulted in generally
unreproducible high index guides and was initially believed to be due to an
exchange between the lithium ions and the Ag or Tl ions. The index change was
later recognised to be due to an exchange process between hydrogen ions

(protons) from water impurities in the molten salts and the lithium ions [20].

Proton— exchange involves an exchange between lithium ions from the substrate
with  hydrogen ions (protons) from the acid source. Chemically, the

proton— exchange process can be written as:—
LiNbO, + xH ———2> H,Li,_4NbO, + xLi (1.18)

A number of acid sources have been used, the most widely studied being benzoic
acid (C,H,COOH), for several reasons. Firstly, it has a convenient working
range, the melting and boiling points of the acid being =1220C and =2490C
respectively [21]. It is also non—toxic, easy to handle and is relatively
inexpensive. Other acids used have included pyro— and orthophosphoric acid
[22,23], sulphuric acid [24] and oleic acid [25]. The resulting waveguide properties
are essentially independent of the acid used. It has been claimed that waveguides
fabricated using the phosphoric acid have a larger refractive index change than
those made with benzoic acid [22], although recent work has questioned these
claims [26]. Waveguide fabrication using pyrophosphoric acid will be discussed in

more detail in chapter 4.
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The proton—exchange process results in a waveguide with a step—index profile
with an increase in the extraordinary index and a slight decrease in the ordinary

index. At a wavelength of 0.6328um the refractive index changes are given by:—

Ane = 0.12

n

Proton— exchanged waveguides will therefore only support optical modes which
have their electrical field directed along the c—axis, i.e. TE modes for x— cut
lithijum niobate and TM modes for z—cut material. The origin of the refractive
index change is not clearly understood. Rice has hypothesised that it may be
related to a change in the polarizability of the oxygen ions in the crystal lattice
[27] by the inclusion of protons. Loni et al [28] have used infrared spectroscopy
to monitor the isotopic exchange of 'H and 2?H and atomic absorption
spectroscopy to establish the concentration of lithium present in the benzoic acid
after the exchange. From the results of the study they concluded that the uptake
of hydrogen as hydroxyl groups provides charge compensation, while the depletion

of lithium determines the refractive index profile.

The extent of proton— exchange is dependent on the exchange time and the
temperature of the acid. Only partial exchange is necessary for waveguide
formation. For a typical optical waveguide fabricated using benzoic acid, Loni et
al [29] have found that the "x" wvalue lies between the limits 0.4<x<0.5,
although this probably represents a lower limit. Other workers [30] have estimated
x to be closer to 0.7. Complete exchange results in a transformation from the
rhombohedral lithium niobate structure to the cubic hydrogen niobate structure
[31]. Although the exchange is apparently only partial, it has been reported that
a structural transformation takes place within the waveguide region [32]. The
structural transformation has its origins in the stress induced in the crystal by the
replacement of lithium ions by protons. The direction of the stress is along the
c— axis with a reported magnitude of Ac/c = 0.47% [32]. It is this induced stress
which prevents fabrication of proton—exchanged waveguides on the y—face of
lithium niobate [33]. Waveguides can be fabricated on the y—face if prior steps

are taken to reduce the stress, such as titanium— indiffusion or melt dilution.

Several methods have been used to characterise the exact structural changes which

occur during proton— exchange and post— annealing processes. In a comprehensive
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study Canali et al [34] have employed Rutherford backscattering spectrometry,:
nuclear reactions, secondary ion mass spectrometry, scanning electron microscopy
and x—ray diffraction to measure the lattice distortions and atomic composition
profiles of the proton— exchanged regions. From this work it was concluded that
the hydrogen depth profile had a step—like profile, in agreement with the

refractive index profile.

Many problems have been identified with proton— exchanged waveguides. Yi— Yan
has observed index instability [35] and that the waveguides can have a high
propagation loss due to severe in— plane scattering [36]. Other important problems
which have been reported include a DC- extinction effect, reduced electro— optic

and second order nonlinear coefficients [37,38,39,40,41].

Many of these problems can be avoided by annealing the waveguides or by using
dilute melts [42]. A dilute melt is the exchange acid with a small amount of a
lithium containing salt (e.g. lithium benzoate) added as a buffer. The effect of
the buffer is to slow the effective diffusion of protons into the substrate [42].
The percentage that benzoic acid is diluted by the addition of lithium benzoate is
defined by:—

_ {lithium benzoate}
~ {lithium benzoate} + {benzoic acid}

X x 100% (1.19)

where {..} denotes the number of moles of the chemical.

The refractive index difference between proton— exchanged waveguides and the
substrate leads to tight confinement of the radiation within the waveguide
structure. This is advantageous for nonlinear applications or for curved structures
such as bends or ring resonators [43]. The negative change in the ordinary index
means that proton—exchanged waveguides can be used as polarisation selective
elements [44]. An important property of proton— exchanged waveguides is that
they exhibit a significantly reduced photo— refractive effect [45], thus avoiding a

problem encountered with titanium=— indiffused waveguides [46].

The proton—exchange process has been used to fabricate a wide range of
integrated optical devices. Passive structures have included various types of gratings
and lenses [47,48], and polarisers and ring resonators as mentioned above. Active
devices have included electro—optic phase—modulators [32,37] and intensity

modulators [49], acousto— optic devices [50] and interferometric sensors [51].

14




Recently, there has been a great deal of work carried out to investigate the
properties of proton— exchanged waveguides for nonlinear optical devices. Because
the high refractive index difference between the waveguide and the substrate gives
strong confinement, the power density in the waveguide can be very high even
for low power levels. This has the potential to allow efficient frequency doubling
of low power semiconductor lasers. Neveu et al [52] were the first to investigate
frequency  doubling in  proton—exchanged  waveguides. They  achieved
phase— matching by angle tuning the direction of propagation in a planar
waveguide. The observed conversion efficiencies were very low because the
fundamental wave was a low order mode whereas the harmonic wave was a high
order mode resulting in a poor overlap (see chapter 2). Taniuchi and Yamamoto
[53] wused channel waveguides fabricated using pyrophosphoric acid and
demonstrated a conversion efficiency of 1% for 120 mW of power from a GaAs
laser via Cerenkov radiation. Sanford and Connors [54] repeated the experiment
of Taniuchi and found some inconsistencies in their work. The major fault was in
the claimed refractive index change of 0.145. They had only been able to observe
a refractive index change of 0.125 in the pyrophosphoric acid proton— exchanged
waveguides. Arvidsson et al [55] investigated the effect of annealing the
proton— exchanged waveguides on the conversion efficiency in the Cerenkov
scheme. It was found that, in general, the effect of annealing was to reduce the
conversion efficiency, a result confirmed by Keys et al [56]. Both Sanford and
Connors [54] and also Laurell [3] have successfully demonstrated three— wave
mixing via Cerenkov radiation by mixing two wavelengths in a channel waveguide.
The output at the waveguide end—face consists of three light beams produced by
frequency doubling of the two input beams and sum-— frequency generation by the
mixing of both beams. Such a scheme allows the generation of any arbitrary

wavelength where a suitable source is not available for frequency doubling.

Recently, annealed proton— exchanged waveguides have been used in conjunction
with periodically domain reversed lithium niobate substrates to demonstrate very
efficient quasi phase— matched second harmonic generation. Lim et al {57,58] have
used titanium— indiffusion to induce domain reversal. Using a proton— exchanged
channel waveguide they have demonstrated very efficient second harmonic
generation of both Nd:YAG and dye lasers. Webjorn et al [59,60] have used
lithiom out— diffusion to fabricate the domain reversed substrates and have
successfully demonstrated second harmonic generation of both Nd:YAG and

semiconductor lasers.

1.4 New miniature laser sources with proton—exchanged doped lithium niobate
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substrates

The addition of dopants to the melt during Czochralski growth is a common
procedure. Dopants such as iron have been used to enhance the photorefractive
properties of lithium niobate [61]. Such crystals have been widely studied for
applications involving holographic data storage/optical memory elements [62].
Another much used dopant is magnesium oxide, MgO. The addition of magnesium
oxide to the melt produces a substrate with a reduced susceptibility to
photorefractive damage [63]. This is an attractive substrate for use with
titanium— indiffused waveguides which would normally suffer optical damage at
even moderate power levels [46]. The magnesium oxide is generally added at the

concentration level of 4.5% by weight to the melt.

If laser active elements are added to the melt during growth then it is possible to
grow crystals which may be used as the gain medium in a laser cavity. Substrates
with dopants such as neodymium, erbium have been grown successfully. There are

many reasons why such crystals are important, the main ones being that:—

(1) The gain medium is nonlinear, allowing self— frequency doubling of the laser

wavelength.

(2) The substrate is electro— optic, allowing the possibility of Q— switching.

(3) Waveguide fabrication is possible, allowing the fabrication of lasers with very
low threshold powers due to the high power densities which can be achieved in

the waveguide.

(4) Combining all of the above should allow the realisation of a miniature,

diode— pumped self— Q- switched, self— frequency doubled laser source.

A significant amount of work has been carried out to demonstrate lasing action in
doped lithium niobate. In the 1960's bulk lithium niobate lasers were fabricated
using neodymium and erbium doped substrates [64]. The problem of optical
damage prevented any serious work on doped lithium niobate as a laser host.
Recently, with the advances in crystal growth using magnesium oxide as a
co—dopant and by exploiting the superior photorefractive properties of
proton— exchanged waveguides, miniature lithium niobate lasers have been
fabricated. Lallier et al [65] have fabricated highly efficient diode— pumped

neodymium— doped lasers. The pump wavelength was around 820nm, with a lasing
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wavelength of 1.08um. Brinkmann et al [66] have studied erbium— doped
substrates for laser applications. Although erbium doped lithium niobate is well
known, the authors chose to ion—implant erbium into a previously undoped
substrate. After annealing the substrates, a waveguiding region was formed. Using
a laser diode as the pump, fluorescence was observed at 1.55um as expected.

There are two major drawbacks with such a laser source:—

(1) The substrate is photorefractive and,

(2) erbium exhibits excited state absorption at a pump wavelength of 820nm.

In order to solve the problem of optical damage either a magnesium oxide doped
substrate or a proton—exchanged waveguide region could be used. To prevent
excited state absorbtion, pump lasers at about 1.48um or 0.98um must be used
and, at present, semiconductor lasers at these wavelengths are the subject of
intense research. It should be therefore be possible, within the near future, to

realise a diode— pumped erbium— doped lithium niobate laser.

1.5 Summary

This chapter has served as an introduction to the work contained in this thesis. A
brief outline of second order nonlinear optics was presented and the advantages to
be gained by adopting an integrated optics approach were outlined. Following this
brief introduction the choice of nonlinear material, i.e. lithium niobate, was
justified and some of the properties of this crystal reviewed. The
proton— exchange technique for waveguide fabrication was then described. Only
proton— exchanged waveguides were used in the work presented in this thesis.
Finally, a possible future application of all of the above in the form of a

miniature all solid state laser was outlined.
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CHAPTER 2,

THEORY OF SECOND HARMONIC GENERATION (SHG) IN OPTICAL
WAVE E

This chapter outlines the theoretical aspects of second order nonlinear optical
interactions in an optical waveguide. An expression for the conversion efficiency
for SHG in a proton— exchanged optical waveguide is derived based on a simple
theoretical model. As an introduction to nonlinear processes in optical waveguides,
the theoretical description of phasematched second harmonic generation in optical
waveguides is discussed briefly. This is followed by an outline of the theory of
SHG in situations where phase— matching is achieved by Cerenkov radiation, with
particular reference to proton— exchanged waveguides. In this case the theory is
complicated by the inclusion of the radiation field into the equations, which are
therefore more difficult to treat mathematically than ones for guided modes alone.
Although there are now several published theories of SHG by coupling to
Cerenkov radiation in proton— exchanged waveguides, very little had been
published when this work was initiated. The recently published theories of

Cerenkov SHG are reviewed and the main results outlined and compared.

By formulating the problem in the framework of coupled mode theory, a simple
theoretical model has been developed and has been used to predict the conversion
efficiency for SHG as a function of waveguide depth and refractive index. A
derivation of this calculation will be presented in some detail. The results are in
fair agreement with published work based on more rigorous analyses and are also
in agreement with measured experimental results. A suitable waveguide design for
the optimization of the conversion efficiency for SHG is then given.

2.1 _Theory of SHG in optical waveguides.
2.1.1 Conventional phasematching.

For the case of conventional phasematching, where the material birefringence
compensates for the phase— mismatch, [1], the theory of SHG is strongly based
on that for bulk SHG, [2]. The main difference lies in the electric field
distributions of the fundamental and harmonic waves. In bulk SHG, the electric
(and magnetic) field distributions can be represented by plane waves or, more
realistically, Gaussian field distributions [2]. For SHG in an optical waveguide,the
field distributions are determined by the propagating modes of the optical
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waveguide structure. It is assumed in this work that the photon densities are high,

allowing the use of classical electromagnetic fields.

Assuming a loss—less system, Maxwell's equations are:—

VxE= —p atH' (2.1)
VxH= 3D (2.2)
where D = ¢,E + P (2.3)

and 9; denotes the derivative with respect to time.

As was discussed in chapter 1, the polarisation is given by a linear and a
nonlinear term:—

P= P + Py (2.4)

The linear (vector) term, Pj, is identically the term used in linear optics and is
given by (in the scalar notation):—

Pl = e,.X1).E | (2.5)

The nonlinear polarisation term, P.;, is given by an equation relating the induced
polarisation to the incident electric field via a third rank tensor, y{2):—

Pp1 = €,.x{2).EE (2.6)

where x(z) is the second order nonlinear polarisation term. For the purpose of
this thesis, only the second order terms are important. In component form, the
expression for the nonlinear polarisation is given by (in the reduced notation,

13-

fp,1 To o o o0 d,, —-4d,,1ME2 1

IPy| =1=d,, d;, 0 dy, 0 0 JIEg? |

P}l La al’a,,00 o 5ER |
|2E,E, | @.7)
12E,E, |
[2E,E, ]

with the nonlinear polarisation tensor written here for the case of LiNbO, [3]
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(see chapter 1).
Assume a waveguide coordinate system which is oriented with the waveguide

boundaries normal to the x—axis and with the propagation along the z— direction

(Fig. 2.1). Note that these axes are NOT (in general) the crystallographic axes.

waveguide coordinate system

figure 2.1

For the purposes of this derivation, consider a fundamental frequency electric field
with the field direction along the y— axis. Assuming time harmonic electromagnetic
fields, Maxwell's equations can be used to derive the wave equation:—

92E = —p..€,.wE = p,.02Py (2.8)

For the waveguide geometry defined, the nonlinear polarisation term reduces to

(4]

Py = d,,.E,? (2.9)
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where E; is the fundamental requency electric field along the y—axis. For
waveguide SHG (in a non—resonant cavity configuration) it can be assumed that
the conversion efficiency is low enough so that the fundamental beam remains
almost completely undepleted (although the equations can also be solved in the
case of high conversion efficiency). For an interaction length L, Eq. 8 can be
solved in the framework of coupled mode theory to give the expression for the

conversion efficiency [4]:—
n = C.sinc?(Ak.1/2).1 (2.10)
where C is given by:—

C = 2 _!_T.f—deffz L2 P (2.11)

and I, known as the overlap integral is given by:—

I(m™ ) = f(E,).(E)2.dxdy (2.12)

E,, and E, are the electric- field distributions at the second harmonic and
fundamental frequencies respectively, normalised as defined in chapter one (Eq.
1.14b). For waveguide SHG, the electric field distributions at the harmonic and
fundamental frequencies are determined by the waveguide structure. That is, they
are described mathematically by the solutions to Maxwell's equations for the
waveguide structure — the so—called waveguide modes. The B, and B, factors
represent the effective refractive indices of the fundamental and harmonic waves.
'Thc sinc 2(AkL/2) term describes the effect of the phase— mismatch, Ak, When Ak
= 0, the interaction is said to be phasematched. It is important to arrange that
Ak = 0 so that the conversion efficiency can be maximised. In a waveguide
geometry, several techniques can be used to arrange for phasematched SHG.
These techniques will be outlined in a subsequent section.

From inspection of Eq. 10 it can be seen that the harmonic power generated is
proportional to the square of the fundamental guided power in the waveguide and
also to the square of the interaction (waveguide) length. The overlap integral is
an important concept in waveguide nonlinear optics. The overlap integral describes
the spatial overlap of the interacting waveguide modes at the fundamental and
harmonic wavelengths [4]. As the modal field distributions are strongly dependent
on the wavelength of light and the refractive index profile, it is important to

arrange for the maximum spatial overlap of the interacting modes in order to
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optimise the conversion efficiency.

2.2 Phasematching Techniques.

For waveguide SHG there are several techniques by which phasematching can be
arranged. In bulk SHG, only birefringent nonlinear materials normally allow the
phasematching condition to be met. The various techniques of phasematching will
briefly be described.

2.2.1 Birefringence.

In optically birefringent materials the fundamental mode (of a given polarisation
state) can be phasematched to a harmonic wave of orthogonal polarisation [1].
This is achieved by either variation of the fundamental wavelength [5], by
temperature tuning of the birefringence [6], or, for planar slab waveguides, by
angle tuning the direction of propagation of the fundamental beam [7]. For the
case of LiNbO, waveguides, typically only titanium-— indiffused waveguides can be
used for birefringence phasematching, since proton— exchanged waveguides allow
only a single state of polarisation to be. propagated (depending on the crystal
cut), [8]. Fig. 2.2 shows the arrangement for SHG in a titanium-— indiffused
waveguide. Typical phasematching temperatures for titanium-— indiffused waveguides
are in the range —10°C to 80°C [4] depending on the substrate used, e.g.
undoped or MgO—doped, and on the fundamental wavelength.

fundamental
bean
titanium-indiffused
wavequide region

harmonic
2 g beam
W
N
'\
fundamental beam ‘ £
2u

figure 2.2 second harmonic generation 1n a
titanium-indiffused waveguide
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2.2 Modal Dispersion.

In a multimode optical waveguide, phasematching can take place between a low
order waveguide mode at the fundamental wavelength and a higher order
waveguide mode at the harmonic wavelength [9]. This implies that phasematched
SHG can take place without the need for a birefringent substrate. However, in
this case, the overlap integral is typically so small that the conversion efficiency
is generally very low [1]. For titanium— indiffused waveguides, a single mode
waveguide at the fundamental waveguide will generally be multimoded at the
harmonic wavelength. By temperature tuning the birefringence it is often possible
to phasematch separately to each of the individual waveguide modes at the

harmonic wavelength [6].

2.2.3 Crating Structures,

If the wavevector mismatch is given by Ak = k,, — 2k, then the phasematched
condition k, , — 2k, — Ak = 0 may be satisfied by using a grating structure of
wavevector K = Ak. The grating wavevector, K, is defined by K = 2a/A, where
A is the wavelength of the grating structure. Such a grating structure can be
derived from a periodic modulation of the linear refractive index, or by a
periodic modulation of the nonlinear coefficient, or both [9]. It is more efficient
to modulate the nonlinear coefficient, as a modulation of the refractive index
leads to high scattering losses. Grating phasematched SHG is an especially useful
approach for SHG in crystals which cannot be phasematched by normal means
but which are nevertheless highly nonlinear [10].

2.3.1 Theory of Cerenkov SHG in proton— exchanged waveguides.

As noted previously, conventional phasematching via the waveguide birefringence is
impossible in "conventional" proton— exchanged waveguides. This is a consequence
of the proton— exchange process which allows only a single polarisation state to
be guided. By using a buried proton— exchanged waveguide, where both of the
refractive indices are increased, birefringent phasematching may be possible. To
date the author is not aware of any published experimental results for SHG in
buried proton— exchanged waveguides. Phasematching via the Cerenkov effect is
one particulary convenient method of frequency doubling efficiently [11]. As there
are an infinite number of allowed radiation modes for any waveguide structure
[12] the Cerenkov effect can provide phasematching of any fundamental

wavelength. It is therefore particularly suited to phasematching of semiconductor
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lasers operating in the 800nm wavelength range where conventional phasematchimg

is non-— trivial.

The physical basis of the "Cerenkov" effect is as follows. The input optical field
generates a nonlinear polarisation field proportional to the square of the input
field. This nonlinear polarisation field is bound to the fundamental field and as
such must travel at the same phase velocity. If the refractive index of the
substrate region at 2w is greater than the effective refractive index of the
fundamental guided mode (and hence the nonlinear polarisation field), second
harmonic light will be radiated into the substrate (Fig. 2.3).

fundamental beam, Proton-exchanged wavequide

~hh““:j fundamental beanm

harmonic
radiation

propagation length chosen
to prevent reflections

fron the botton face

figure 2.3 second harmonic generation in a
proton-exchanged waveguide by Cerenkov radiation

Formally, the condition for Cerenkov radiation can be derived as follows.
Consider a waveguide with substrate refractive index ng and superstrate refractive
index n.. The guided modes will propagate with an effective index Nggf which
obeys:—

Normal dispersion implies that ng2¢ > ng®. Thus:-

ns"’ < Neff < ng2¢ (2.14)
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but also ng2® < Negf < ng2¢ (2.15)

This is the condition for substrate radiation modes (as opposed to cover radiation

modes).
The phase velocity of the nonlinear polarisation wave is given by:—
Vi1 = 2.0/(k, Negt) (2.16)

and the phase velocity of a free wave at the same wavelength propagating in the
substrate is:—

Vo = 2.6/(K, 0529 (2.17)

It can be seen from Egs. 2.15, 2.16 and 2.17 that Vp > V,, and, under the
conditions of Eq. 2.15, the nonlinear polarisation field is a source of Cerenkov
radiation. Phasematching implies that the component of momentum along the

direction of propagation is conserved, i.e. 28, = £, which gives:—
Negf = ng2@.cosé (2.18)

This phasematching condition (conservation of wavevector along the direction of
propagation) implies that the harmonic wave is radiated uniformly into a cone
whose semi—angle is given by Eq. 2.18. For a wave propagating at an angle 6
to the optic axis in a lithium niobate waveguide, the refractive index of the
substrate which the wave "sees" is given by, [13]:—

20 — .20 20
g™ = (g% c0s0) 2 + (g0 0) 20 %

where ny and n, are the ordinary and extraordinary refractive indices of lithium

(2.19)

niobate. Combining Eqs. 2.18 and 2.19 gives an expression for the angle at which
the radiation is emitted into the substrate (the “Cerenkov" angle):—

0 = tan™ {n,2%.((na2%)2 — N.¢r2)0-5)

As ny, and n are properties of the crystal, the Cerenkov angle can be varied
simply by varying the effective index of the guided mode, i.e. by varying the
waveguide fabrication conditions. Measurement of the Cerenkov angle has been
used to characterise waveguides as an alternative to more traditional methods such

as prism coupling [14] and is an especially powerful technique for stripe
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waveguides. Cerenkov SHG has been observed in many types of waveguide other
than proton— exchanged waveguides, for example in optical fibres [15], ZnS films
on ZnO substrate [16] and in MNA/glass waveguides [17].

Cerenkov SHG can be treated in the theoretical framework of coupled mode
theory. The main problem with this approach occurs when the orthogonality
relations are invoked. The resulting overlap integral is now between a guided
mode at the fundamental wavelength and a radiation mode at the harmonic
wavelength. The difficulty in this approach lies in the normalisation of the
radiation mode, [12]. For waveguides with a step—like refractive index profile it
is possible to normalise the radiation modes but, for waveguides with an arbitrary
refractive index profile, the radiation modes are not easy to compute and even
more difficult to normalise [12]. This makes modelling of Cerenkov SHG in
annealed proton— exchanged waveguides very difficult.

In order to model Cerenkov SHG, several alternative theories have been derived.
Tien et al [16], who were the first to report on Cerenkov SHG, modelled the
effect in terms of antenna theory using expressions derived from waveguide
theory. Their calculation is complicated and the final expressions do not lend

themselves to a simple insight into the problem.

Li et al [18, 19] and Buritskii et al [20] have also treated the problem in terms
of an antenna theory. Li et al have obtained a simple expression relating the
conversion efficiency for SHG in a step—index proton— exchanged waveguide to
the waveguide parameters and have used this expression to model the conversion
efficiency as a function of waveguide depth and waveguide refractive index. The
results which they have obtained are in good agreement with experimental results
and are also consistent with results obtained using other theoretical treatments.
The theory of Buritskii et al is similar to that of Tien and apparently gives
results which are in close agreement with experimental results. The waveguide
modelled in the work of Buritskii et al was a titanium— indiffused waveguide and
to the knowledge of the author no results have been published by then for

proton— exchanged waveguides.

The beam propagation method is a sophisticated computational technique which
has long been used in the analysis of waveguide problems [21]. Using the beam
propagation approach Fujiwara et al [22] have obtained results which agree very
well with the published results of Taniuchi and Yamamoto [11]. This approach

also allows the Cerenkov angles and far—field radiation pattern of the harmonic
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waves to be calculated.

By working in the framework of the effective index method, it is possible to
construct Maxwell's equations in component form and solve the equations in a
self— consistent manner. Sanford et al [23] and Hayata et al [24] have used this
approach to solve the problem of Cerenkov SHG. In both cases, the analyses are,
algebraically, very complicated but the resulting equations model very well the

dependence of SHG conversion efficiency on the waveguide parameters.

2.3.2 Main features of the published results.

Although the conversion efficiency for SHG by Cerenkov radiation has been
calculated using several different mathematical techniques, the results are generally
consistent with each other in terms of the dependence of conversion efficiency on
the waveguide parameters. The main results of these theories will be pointed out,
as any new theory must be in agreement with established results.

In all cases, the waveguide depth for maximum conversion efficiency is close to
the cut—off depth for the lowest order waveguide mode at the fundamental
wavelength, This implies that the shorter the fundamental wavelength, the
shallower the waveguide must be in order to maximise the conversion efficiency.
The shape of the conversion efficiency versus waveguide depth curve is generally
the same in each case. The conversion efficiency starts off low and quickly rises
to a maximum. It then falls off, but increases again to reach a lower secondary
peak before falling off again. An example of such a graph is shown in Fig 2.4.

A simplified model of Cerenkov SHG based on coupled m heo

In order to calculate results from theories such as those based on direct solutions
of Maxwell's equations, antenna theory or the beam propagation method on a
computer, relatively sophisticated mathematical algorithms have to be implemented.
However, by adopting the coupled mode theory approach commonly used in
waveguide problems, a mathematically simple and computationally more
straightforward solution to the problem can be derived. The difficulty in this
approach lies in the modelling of the field of the harmonic radiation mode. As
has been stated, it is very difficult to normalise the modal field expressions for
an arbitrary refractive index profile, so this type of approach can lead to
inaccuracies in the calculation of the conversion efficiency. However, the radiation

modes of a step index waveguide have been calculated [24] and, by using a
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coupled mode theory approach, a prediction of the dependence of conversion
efficiency on waveguide depth can be made. A calculation of the absolute
conversion efficiency is not required from this theory. It is only required that the
theory predicts the shape of the conversion efficiency wversus waveguide depth
curve in order to allow comparison with experimental results. If it can be
assumed that for gentle annealing, i.e. short times, the refractive index profile of
proton— exchanged waveguides does not deviate much from a step index profile,
the effect of annealing the waveguide on the conversion efficiency can also be
modelled. In this case the waveguide refractive index may be reduced, but the
refractive index is still step— like. This will only be valid for small changes in the
refractive index.

Marcuse has used such a coupled mode theory approach to model the
electro— optic coupling between a guided mode and a radiation mode in an
electro— optic cut— off modulator. The coupled mode theory of Cerenkov radiation

closely follows the analysis of Marcuse.

In an electro— optic cut— off modulator, a guided mode of a waveguide is coupled
to an unguided radiation mode via an applied electric field [25]. The application
of the electric field alters the refractive index of the waveguide region via the
electro— optic effect [26]. If the applied field is large enough, the refractive index
of the waveguide region can be reduced to such an extent that it can no longer
support even one guided modes at that wavelength. A radiation mode can
propagate however, and the guided mode is then coupled to one of these modes.
The angle at which the radiation mode is emitted into the substrate region is
given by a phasematching condition analogous to that of Cerenkov radiation. This
similarity in behaviour between the electro— optic cut—off modulator and
Cerenkov SHG allowed the author to construct a model for Cerenkov SHG in a
framework entirely equivalent to that used to model the electro— optic modulator.
The author is grateful to Dr. A.K. Ghatak of the Indian Institute of Technology
for valuable discussions on certain aspects of the model.

In order to calculate the conversion efficiency for SHG, a coupling constant is
calculated for the coupling of the fundamental waveguide mode to the harmonic
radiation mode. This coupling coefficient can then be used to estimate the power

exchénged between the two modes and, hence, the conversion efficiency for SHG.

2.3.4 Derivation of the ling coefficient.
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An outline of the calculation of the coupling coefficient will be given. As the
calculation is rather involved, a detailed derivation will not be given but can be
found in a paper by Marcuse [27] or in a standard textbook on waveguide
analysis [12].

The starting point is in Maxwell's equations (Egs. 2.1, 2.2). The electric and
magnetic fields are expressed in terms of longitudinal and transverse components.
Using these expressions the normal modes of the waveguide can de derived. By
invoking the orthogonality relations and expressing the electric and magnetic fields
as a superposition of guided and radiation modes, an expression for the coupling
coefficient is derived. The expression is complicated but can be simplified, given
the assumption that the anisotropy of the medium is small (a reasonable
approximation for lithium niobate).

The coupling coefficient is given by
K= (m’4.j.P).f:a(EF)'.(e ~ €).E,.dx (2.21)

where o is related to the fundamental frequency, E“ and E, are the electric
field distributions for the harmonic wave and fundamental wave respectively, *
denotes the complex conjugate and P is the power carried by the fundamental
wave. The term (e — €') represents the difference between the dielectric tensor
of the actual waveguide structure (including nonlinear effects) and the ideal
waveguide structure (linear effects only) whose modes are E,. The subscript on
the integral sign indicates the limits of the integration.

2.3.5 Calculation of the conversion efficiency

From Eq. 2.21, the coupling coefficient can be rewritten in terms of the

fundamental and harmonic waveguide modes as:—
K = (/4.j.P).f+ofE, )% (¢ — €).E dx (2.22)

where P is the power per unit width. (Alternatively the electric fields could be
expressed in two dimensions and the integral taken with respect to dx.dy). The
term (e — ¢') can be calculated from the continuity of the electric displacement
vector D, as defined below.

The waveguide structure is defined in Fig. 2.1. The refractive indices of the
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cladding, the waveguide and the substrate are defined as n;, nf and ng

respectively. For the linear waveguide the D vector is given by:—

D= ¢E+ P= ¢ E(l + x1)
This gives for e':—
e = €1+ xM)

For the case of a waveguide with a nonlinearity, D is given,

by:—
D = €,.E +¢,.X").E + ¢,.d,,EE
= ¢, E(1 + (1) + d,,.E)
Similarly, it can be seen that e can be reduced to:—
e= e1 + ) + d,,.E)

Thus, from the continuity of D:—

The coupling coefficient Eq. 2.22 becomes:—

K = (w4.i.P).fsfE )" €5.d5,.(E)2.dx

(2.23)

(2.24)

(to second order),

(2.25)

(2.26)

(2.27)

(2.28)

Assuming d,, is not a function of the co—ordinate x and using normalised field

distributions (P = 1 mW m™ '), Eq. 2.28 becomes:—

K= (wegd,, /4.5).fslE, 0" Ey2.dx

(2.29)

The coupling efficiency is best expressed in terms of the attenuation coefficient o

of the guided mode. Neglecting propagation losses, the attenuation is caused by
power loss from the guided mode E to the radiation mode E,, The power

attenuation is given by the formula:—

2.0l = 2.x.(Bks29). |K| 2
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where B, is the propagation constant of the guided fundamental mode and kg2¢
is the propagation constant for the harmonic wave in the substrate. The total

power attenuated is given by:—
AP/P = 2.a.L (2.31)

where AP is the power transferred to the harmonic mode at 2w and P = P2
Thus:—

P,/Pu? = 2.7.(Bu/ks?9).IK|2L (2.32)
= Ci{/h+ oF 2 Ey?.dx + fo,hEzw-szd" +
Jo— oF 20 Ey?-dx}? . (2.33)

In the above Eq. 2.33 the integral of Eq. 2.29 over the limits 2o has been
reduced to three separate integrals. The three terms  represent the overlap
integral in the superstrate, the waveguide and the substrate regions respectively. It
was assumed in this work that the d,, coefficient is the same in both the
waveguide and substrate regions. Later work, see chapter 5, aimed at measuring
the d,, coefficient has shown this to be an invalid assumption. It will be shown
in chapter § that the d,, coefficient in the proton—exchanged waveguide region
is, for typical processing conditions, significantly lower than the d,, coefficient of
the substrate region. The effect of a reduced d,, in the waveguide region is to
introduce an additional factor, f, into the second of the overlap integrals.
However, since only the relative shape of the conversion efficiency curve is
required, this additional factor has a relatively small effect on the final results.

The electric field distributions must be derived for the particular waveguide
geometry used. For proton— exchanged waveguides in z— cut lithium niobate only
TM modes can be supported. The magnetic field distributions for the fundamental
waveguide mode are given by [28]:—

Hy = H.%.exp[— v.“(x-~h)]; h < x (2.34a)
= Hg%cos[kf®x = ]; 0 < x < h (2.34b)
= HgYexp[y¥x]; h < 0 (2.34c)



and for the harmonic radiation mode, they are given by:—

Hy = Hg2%.exp[— Y 2%(x—h)]; h < x (2.344)
= Hg?@.cos[ks?2¥.(x—h) + ¢.2¢]; 0 < x < h (2.34¢)
= Hg?Y.cos[kg?¥x + ¢2¢]; h < 0 (2.34f)

From the boundary conditions

tan g ¥ = (nfngt) 2,4 Wk (2.35a)
tan g = (nfng®) 2.9k (2.35b)
tan g 29 = (ng2W/ng 20)2,q 20k 20 (2.35¢)
[k/(ng2¥)2]tan g = [Kg/(ng2¢)2).tan(p.— k29.h) (2.35d)

For the purposes of this analysis both the exponential terms describing the
wavevector (¢]fZ) and the time dependence (eJut) of the fields can be dropped
from the analysis.

Using the expression for the TM guided and radiation modes of a waveguide with
a step— like refractive index profile, the electric field component, Ey, of the TM
mode is calculated via Maxwell's equations and substituted into Eq. 2.30. The
conversion efficiency can then be calculated for a step—index waveguide of any

depth and refractive index difference and substrate index.

Using this formalism, the conversion efficiency has been calculated as a function’
of waveguide depth for z— cut proton— exchanged waveguides. Rather than assume
a value for the refractive index difference, the value used in the calculations was
that which has been experimentally measured for such waveguides. Fig. 2.5 shows
a typical graph of conversion efficiency as a function of waveguide depth for the
case of a proton— exchanged waveguide fabricated using neat benzoic acid at a
temperature of 235°C.
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figure 2.5 calculated conversion efficiency (arbitrary

units) versus waveguide depth using egns. 2.33 - 2.35
It can be seen from Fig. 2.5 that the conversion efficiency peaks at a waveguide
depth of 0.48um, close to the cut—off depth of 0.4ym for a proton— exchanged
waveguide with fabrication conditions typically as above. This figure compares well
with the other published result for the conversion efficiency as a function of
waveguide depth (see, for example, Fig 2.4). There is a flat region in the figure
which is not seen in any other published result, where the increase in the
conversion efficiency towards the secondary peak tends to occur directly after the
minimum in conversion efficiency separating the two peaks. However, given the
relative simplicity of the model and the difficulties in calculating the overlap
integral accurately, the results obtained from the analysis provide useful insight.

The theory was then used to calculate the effect on the conversion efficiency as

the refractive index difference between the waveguide and substrate was decreased.
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Although the refractive index profile used was step—like throughout, this is a
good first approximation to the case of annealing a waveguide. Fig. 2.6 shows a
graph of conversion efficiency as a function of the refractive index difference
between the waveguide region and the substrate for various refractive index
differences. It can be seen that the effect of lowering the refractive index

difference is to reduce the conversion efficiency. This result also agrees with

experimental results.
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figure 2.6 variation of conversion efficiency (arbitrary
units) with index difference (all other parameters equal)
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The reduction in conversion efficiency is due to several factors. As the refractive
index decreases so does the overlap integral. The power density (power/mode spot
size) in the waveguide also decreases because of the increase in the mode spot
size of the fundamental guided wave. The decrease in the power density and the
increase in the mode spot size can easily be modelled and are shown in Fig. 2.7.
In order to be more accurate in the modelling of annealed waveguides, it would
be desirable to insert the changes in the refractive index profile as annealing
progressed into the model. This approach would, however, make it very difficult
to calculate the radiation modes, because the step index model would no longer
be applicable. Although the model is crude, it has predicted quite well the
dependence of conversion efficiency on waveguide depth and has shown, within
limits, that the primary effect of annealing is to reduce the conversion efficiency
for SHG. In order to model more accurately the effect of annealing, a more
sophisticated theoretical model would be required, but such work is outside the
scope of this thesis.

2.4 Conclusions.

A model for SHG in proton— exchanged waveguides via the Cerenkov effect has
been presented. The model is based on a coupled mode theory of the interaction
of a guided mode and a radiation mode. Whilst the model is relatively simple, it
allows a prediction of the relationship between the conversion effiency for SHG
and the waveguide depth. Assuming a step—refractive index profile for both the
model waveguide and a proton— exchanged waveguide, the calculated results are
in broad agreement with experimental results, Using this model the effect of
annealing the waveguide has been modelled. It has been found that the effect of
annealing the waveguide is to reduce the conversion efficiency for SHG, a result
expected from experimental results. Although the theory is not rigorous it
nevertheless is in fair agreement with other, more rigorous, theoretical treatments.
By using more rigorous mathematical techniques to calculate the effective index of
the guided mode at the fundamental wavelength and also to calculate the overlap
integral more accurately, it should be possible to extend the theory and to obtain
a better agreement with published results.
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HAPTER 3

EXPERIMENTAL INVESTIGATIONS OF SECOND HARMONIC GENERATION
(SHG) IN PROTON—- EXCHANGED WAVEGUIDES.

3.1.1 Introduction

This chapter deals with the experimental investigation of Cerenkov SHG in
proton— exchanged optical waveguides. Planar waveguides were initially used to
investigate the dependence of second harmonic generation conversion efficiency on
the waveguide fabrication time. The effect of annealing the waveguides was then
investigated. This work was carried out with a Q—switched Nd:YAG laser. Second
harmonic generation was also investigated in stripe waveguides, using both a c.w.
Nd:YAG laser and a semiconductor laser. The results from this experimental work
have been compared with the theoretical results of the previous chapter. In
general, the results for conversion efficiency are in reasonably good agreement

with the theoretical model.

3.1.2 Review of published work

Cerenkov second harmonic generation in proton— exchaged waveguides was first
demonstrated using channel waveguides by Taniuchi and Yamamoto [1]. The
waveguides were fabricated by either immersion or by spin—coating in
pyrophosphoric acid using tantalum as a mask (chapter 4 contains more details of
the fabrication process). With a channel waveguide of dimensions (in mm) of 0.4
x 2.5 x 12 they were able to generate 0.2 mW of harmonic light at 0.42 um
from 20 mW of fundamental power at 0.84 um from a GaAs laser, a conversion
efficiency of 1%. By refining the waveguide design to increase the conversion
efficiency they were able to generate up to 1.05 mW of harmonic power with a
fundamental power of 120 mW [2]. The waveguide dimensions were 0.4 x 2 x 6

mm.

By wusing MgO-—doped lithium niobate and pyrophosphoric acid waveguides
Tohmon et al [3] were able to frequency double a laser operating at 0.78 um to
generate harmonic light in the ultra— violet spectral region. In order to achieve
high efficiency the authors used the laser in a gain—switched mode to take
advantage of the high peak powers available. The fundamental pulses had a
duration of 21.5 ps with a trailing edge. The harmonic pulses had a duration of

19.3 ps with a much reduced trailing edge. Using a waveguide with of dimensions
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0.33 x 1.4 x 18 mm the authors were able to produce 1.35 mW of peak
harmonic power from 600 mW of peak fundamental power, a conversion
efficiency of 0.2%.

Sanford and Connors [4] have investigated both second harmonic generation and
sum— frequency generation in proton—exchanged waveguides fabricated in
MgO—doped lithium niobate. In the second harmonic generation experiments they
used both a Nd:YAG laser (1.064 um) and a semiconductor laser (0.833 pm) and
for the sum— frequency generation they coupled in both the semiconductor laser
and light at 1.3 pm. For a fundamental wavelength of 1.064 ym and power of
0.57 mW they were able to generate 3.1 nW of harmonic power. They found
however that, in disagreement with the work of Taniuchi et al, when wusing
powers greater than 2 mW at 0.833 um optical damage became a problem. Since
Taniuchi et al do not state explicitly that they are using a pulsed source at the
fundamental wavelength then it must be assumed that they are coupling into the
waveguide c.w. powers well above the threshold at which optical damage might be
expected. It would therefore seem unlikely that no optical damage will occur at
these high c.w. powers,

In another experiment Li et al [5] have used a multimode planar
proton— exchanged waveguide to generate harmonic radiation from a Nd:YAG
laser. Interestingly, they used x— cut lithium niobate and fabricated a waveguide of
depth 4.4 um which supported 5 modes. Only four of these modes produced a
harmonic wave, the refractive index of the lowest order mode being greater than
the substrate index, thus not satisfying the conditions for Cerenkov radiation. The
maximum conversion efficiency measured was 0.25% for the fourth order mode.
The Nd:YAG laser was operated in a pulsed mode but details of the pulse power
levels were not given.

2.1 Experimental SHG of a Nd:YAG laser

For the initial second harmonic generation studies, planar waveguides were used
because they were easy to fabricate and input coupling could be achieved by
means of prisms. A Nd:YAG laser was used as the fundamental pump source to

investigate the dependence of SHG on the waveguide fabrication conditions.
There were two important reasons for use of the Nd:YAG laser in a Q- switched

mode. Firstly, the conversion efficiency for second harmonic generation is
proportional to the peak power density of the fundamental wave (see chapter 2),

46




thus increasing the conversion efficiency for second harmonic generation by a
factor given by the ratio of the peak pulse power to the average power of the
fundamental wave. Secondly, lithium niobate is a photo— refractive material and
may suffer optical damage at even moderate average optical power levels [6]. If
optical damage occurs the output beam is reduced in intensity and in extreme
cases can be cut— off completely [6]. The photo— refractive effect is dependent on
the average optical power so that, for Q- switched pulses with a low repetition
rate, the photo—refractive effect is not a problem. By using Q- switched pulses,
high conversion efficiencies can be achieved while the average power is low

enough to prevent optical damage.

In our experiments a Q- switched pulse length of 200 ns was used at a repetition
rate of 1.25 kHz. The increase in the conversion efficiency relative to the c.w.
case should then be:—

Po/ Paye = T/ 7p= 4000 (3.1)

where T is the period of the pulses and p is the pulse— width of the individual
pulses.

In all cases the average power in the waveguide was kept at, or below, 1 mW,
At these power levels no optical damage was observed.

2.2 Measurement of the Cerenkov _angle in planar waveguides

The Cerenkov angle was defined in chapter 2 as the angle at which the harmonic

wave is emitted into the substrate. From Eq. 2.19, the Cerenkov angle is given
by:—

0 = tan" 1{n02w_[(nﬂ2 -— Neffi’)O.S]}
Neff ne <%

3.2)

where the definitions are as given in chapter 2. The ordinary and extra— ordinary
refractive indices of lithium niobate were calculated using the Sellmeier relations
[7]. At a wavelength of 0.532 um, these refractive indices are:—

n, = 2.323

ne = 2.234




Measurements of the refractive indices at wavelengths of 1.064 um, 0.6328 um
and 0.532 um were in close agreement with the calculated values. Substituting
these figures into Eq. 3.2 and rearranging gives an expression for the Cerenkov

angle:—
6 = tan™ ' {(1.04/Ngfp)./(4.99 — Negr?)} (3.3)

The Cerenkov angle was measured by placing a screen at a fixed distance
perpendicular to the polished end face of the waveguide. By simple geometry, the
Cerenkov angle could be deduced. This angle was then substituted into the Snell's
law equation to give the Cerenkov angle in the substrate. The effective index of
the fundamental guided mode was calculated using the prism— coupling technique.

A series of proton—exchanged waveguides was fabricated in 1% dilute melt
benzoic acid at an acid temperature of 235°C, with fabrication times in the range
1—4 hrs. Fig. 3.1 shows the relationship between the measured (6meay and
calculated (6.,)c) Cerenkov angles. As can be seen, the calculated and measured
Cerenkov angles are in close agreement. Figs. 3.2 and 3.3 illustrate SHG in a
planar waveguide and a typical Cerenkov far— field radiation pattern respectively.

2.3 nversion efficiency for SHG in planar waveguid

The aim of this section of the work was to investigate the effect of the
waveguide fabrication conditions on the conversion efficiency for SHG. By
fabricating waveguides with a range of depths, the dependence -of conversion
efficiency on waveguide depth could be investigated experimentally, The effect of
annealing was Investigated and compared to the unannealed case.

3.2.4 Conversion efficiency versus waveguide depth

It is difficult to estimate the depth of a the guiding region of a single mode
planar waveguide of unknown refractive index profile. An accurate estimate of
waveguide depth can usually only be achieved for a waveguide which supports
four or more modes. This allows the waveguide depth to be estimated using an
IWKB fit, which is appropriate for a general refractive index profile (see, for
example, [8]). When a single mode step index waveguide is used, the waveguide
depth can be estimated by measuring the effective index of the guided mode and
substituting this value, together with the substrate refractive index and the

refractive index of the waveguide into the dispersion relation for the waveguide.
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The refractive index of the waveguide layer has to be known accurately in order
to achieve a reasonably accurate estimate. A second method is to carry out
multi— wavelength measurements of the effective index of a single mode waveguide
and solve the dispersion relation in a self—consistent manner to estimate the

waveguide depth.

A third, but less accurate, method of estimating the waveguide depth is to use
the waveguide fabrication time and the diffusion coefficient for proton— exchange.
The diffusion coefficient can be measured accurately (to at least two decimal
places) and is derived from a knowledge of the waveguide depth calculated from
an TWKB fit to the measured effective indices of the guided modes. From a
knowledge of the diffusion coefficient and the waveguide fabrication time the
waveguide depth, d, can be estimated using the formula:—

d? = 4.D(T).t (3.4)

where D(T) is the diffusion coefficient for an acid temperature of T K and t is
the exchange time in hours. This is a standard result from the theory of diffusion
and still applies in the case of a limited source with an Arrhenius— type
behaviour [9].

In the present work the waveguide depths were estimated by the diffusion
constant method. A series of nine waveguides was fabricated in neat melt benzoic
acid at 235°C for exchange times between 8 min and 70 min. These waveguides
were single— moded at XA=1.064 pm. Using the same acid melt conditions, a
second series of waveguides was made for longer exchange times (up to 6 hours).
The latter waveguides were multi- moded (>4 modes) at A=0.6328 um. The
effective indices of the guided modes at X\=0.6328 pm were measured and, by
substituting these indices into an IWKB analysis, the depth of the waveguide was
estimated. By plotting out a graph of depth squared (d?) versus exchange time
(t), a wvalue for the diffusion constant for proton— exchange under the above
conditions was estimated. This value of diffusion coefficient was then used to
estimate the depths of the first set of waveguides, knowing the exchange time
used for the waveguide fabrication. The depths estimated by this method were in
agreement with the depths estimated by measuring the effective index of the
guided modes and substituting this value of effective index into the waveguide

dispersion relation to find the waveguide depth.

Using the Nd:YAG laser in the Q- switched mode with the same parameters (T,

(8]
r




rp) as above (see Eq. 3.1), the conversion efficiency for second harmonic
generation was measured for each of the waveguides in the series. The interaction
length in each case was 3mm. This interaction length was chosen so that there
could be no reflections from the bottom face of the substrate (see Fig. 3.4). The
fundamental power was measured using a calibrated germanium detector and the
‘harmonic. power was measured using a calibrated silicon detector (with an
appropriate filter to remove any stray fundamental power). The output powers
were measured at the polished exit face of the waveguide. It was assumed that
the power (fundamental or harmonic) in the waveguide was the same as that
measured at the exit face (after Accounting for Fresnel losses), equivalent to
assuming that the waveguide propagation losses are negligible. For the interaction
lengths used in this work, this is a valid assumption since the losses will be of
the order of 0.3 dB, based on estimated propagation losses of 1 dB/cm. Fig. 3.5

shows the experimental arrangement used to measure the conversion efficiency.

Q-suitched

Nd:YAG laser _..D
AR

PE waveguide

detectors
Experimental arrangement for -
SHG in planar waveguides
c.v. |
Nd:YAG laser g % =) e% q -]
collimator stripe detectors
waveguide :
Experimental arrangement for -

SHG in stripe waveguides

figure 3.5
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In all the waveguides investigated, the fundamental beam waist in the waveguide
was different in each case. In this work the beam waist was defined by the
full~ width half maximum intensity of the zeroth order waveguide mode of the
fundamental wave. The differences in waveguide depths, beam waist and input
coupling efficiency meant that the fundamental power density was not the same in
each waveguide. In order to allow a valid comparison of conversion efficiency for
each waveguide, it was necessary to calculate the conversion efficiency for the
case of an equivalent fundamental power in each waveguide. This was equivalent

to normalizing the measured conversion efficiency to a fixed input power.

The normalization procedure adopted throughout this work was as follows. The
measured conversion efficiency was calculated as:—

n = <P2> | <Pu> (3.5)

where <P> denotes the mean value of the power at w or 2w For waveguide
second harmonic generation, 1 W of fundamental power is an unrealistically high
power on which to base the normalization of the conversion efficiency. Instead,
the measured conversion efficiencies were normalized to 1 mW of fundamental
power (typical of the average fundamental power levels used in the experiments).
A figure of 1 mW for the fundamental power was also used in the theoretical
calculations. As was mentioned above, the measured fundamental beam waist was
different for each waveguide, a typical value of the fundamental beam waist,
measured by scanning the near field of the output beam with a pinhole, being in
the range 0.5 mm to 3.8 mm. For comparison, all the measured conversion
efficiencies were normalised to a beam waist of 1 mm. This allowed a
comparison to be made between the measured conversion efficiency for each
waveguide and the shape of the theoretical curve for conversion efficiency. At
this stage only a qualitative comparison could be made. Without more exact
estimates of the waveguide depths a quantitative comparison cannot be made. A
final normalization was carried out by taking the maximum value of the
normalized conversion efficiencies and equating it to wunity. The remaining

normalized conversion efficiences were then scaled with respect to unity.

Fig. 3.6 shows a graph of normalized conversion efficiency, as defined above,
versus the waveguide depth. Comparing Fig. 3.6 with Fig. 2.5 of chapter 2, it
can be seen that there is a reasonable agreement between the theoretical
conversion efficiency curve and the experimental curve. In proton— exchanged

waveguides the refractive index is only quasi—steplike and this will introduce an
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Using the waveguide depths estimated from the "measured" diffusion coefficient,
the conversion efficiency "peaks" at a waveguide depth of approximately 0.7 um
with a value of 1% mW~ '. The measured average fundamental power was 0.38
mW and the measured average harmonic power was 4 uW. The corresponding
peak powers were 1.54 W and 1 mW respectively. The actual, i.e.
un— normalized, fundamental power densities in the waveguide were 31 Wcm™ 2
(average) and 0.12 MWcm™ 2 (peak) for a measured fundamental beam waist of

1.6 mm.

3.2.5 Effect of annealing on the conversion_ efficiency

Suhara et al [10] have shown that the d,, nonlinear coefficient is reduced by a
factor of approximately 2 in proton— exchanged lithium niobate. It has also been
shown by the author [11] (see also chapter §) that annealing of
proton— exchanged regions leads to a partial restoration of the d,, coefficient in
the waveguide region. The initial reduction is not unexpected. The nonlinear and
electro— optic  coefficients of lithium niobate are closely related material
parameters. It has been shown by Minakata et al [12], Loni et al [13] and more
recently by McMeekin and De La Rue [14], that the proton— exchange process
leads to a reduction in the electro— optic coefficients. The reduction in the d,,
coefficient and the electro— optic coefficients will be discussed in more detail in
chapter S.

Loni et al [13] have shown that low loss waveguides with a substantially restored
electro— optic coefficient can be fabricated by annealing for 20mins at 275°C
followed by 15mins at 375°C. The annealing took place in an atmosphere of
flowing wet oxygen. On the assumption that the nonlinear coefficient might
behave in a similar fashion to the electro— optic coefficient, the above fabrication
procedure was adopted by the author in order to investigate the effect of
annealing on the nonlinear conversion efficiency. The same waveguides as used
previously were used throughout the following work. The first annealing stage was
carried out in two 10min stages. After each annealing stage the conversion
efficiency and the fundamental beam waist were re— measured for each waveguide.
Fig. 3.7 shows the normalized conversion efficiency as a function of waveguide
depth for the first two (10 min.) annealing stages. In this case the normalization
is still with respect to the maximum value of conversion efficiency obtained using
the un—annealed waveguides (i.e. the same waveguide as in the previous section).
The waveguide depths were assumed to be unchanged after the annealing stage.
As the annealing is for only a short period, this should be a valid approximation.
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After the third annealing stage the conversion efficiency in each case had fallen

by an order of magnitude, and these results are not plotted in the figure.
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On inspection of Figs. 3.6 and 3.7, it can be seen that the general trend is
towards a reduction in the conversion efficiency after annealing the waveguides,
although in some cases there is a slight increase. For example, after annealing
for 20min, in one case the conversion efficiency increased to the same level as

the highest value measured before annealing.

In order to understand the effect of annealing on the conversion efficiency it is
important to consider the annealing process in detail. There are several
inter— related parameters which determine the effect of annealing on the
conversion efficiency. From the theoretical model, annealing leads to a reduction
in the conversion efficiency. However, the model did not take account of any
change in the depth of the waveguide or changes in the intrinsic nonlinearity of
the waveguide region.

Annealing the waveguides may produce the following changes;

(1) An increase in the waveguide depth and a reduction in the refractive index of

the proton— exchanged region.

(2) A change in the magnitude of the overlap integral between the fundamental

and harmonic waves.
(3) An increase in the d,, nonlinear coefficient of the waveguide region.
(4) A reduction in the propagation losses.

An increase in the waveguide depth could lead to either an increase or a
decrease in the conversion efficiency. Whether the conversion efficiency is
increased or decreased depends on the initial waveguide depth. If, for example
the waveguide depth were initially less than 0.7 um (i.e. below the peak in figure.
8 of chapter 2) then increasing the depth would be expected to lead to an
increase in the conversion efficiency. When the depth had risen above 0.7 um
the conversion efficiency would begin to be reduced. All of this assumes that
there is no change in the effective index of the guided mode on annealing and
that there is no change in the nonlinear d,, coefficient of the waveguide region.

However, the effective index is expected to be reduced on annealing and, from

theory, this would lead to a change in the phase— matching condition, which will
manifest itself as a change in the Cerenkov angle.
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Figure 3.8 illustrates the measured change in the Cerenkov angle as a function of

annealing time for various annealing temperatures.

Cerenkov angle vs anneal time
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Clearly, the combined effects of increasing the waveguide depth and a lowering of
the effective index make it difficult to predict the effect of annealing on the
conversion efficiency. In order to model properly the effects of annealing, the
exact refractive index profiles, the waveguide depth and the profile of the
nonlinearity distribution would be required. A lowering of the waveguide refractive
index (and hence effective index) also leads to a reduction in the power density
of the guided mode. This will also give a reduction in the conversion efficiency
via Eq. 2.33. |

It was seen in chapter 2 that, on the assumption that the waveguide depth
remained constant, the refractive index profile remained a step function and that
there was no reduction in d,, due to proton—exchange, the effect of reducing
the refractive index of the waveguide region (equivalent to reducing the effective
index for a waveguide of a given depth) was to reduce the overlap integral. The

reduction in the overlap integral reduces the conversion efficiency via Eq. 2.33.

The partial restoration of the d,, nonlinear coefficient by annealing could have
either & positive or a negative effect on the conversion efficiency. This is because
the overlap integral has two contributions, one from the substrate region and the
other from the waveguide region. These contributions can be written as:—

1= a',,./(waveguide) + d,, f(substrate) (3.10)

where d'y, and d,, are the waveguide and substrate nonlinearities respectively

and f(.....) is the overlap integral in the appropriate region, as defined in
chapter 2.

The overlap integral for a given region can be either positive or negative,
depending on the electric field distributions in the waveguide and substrate
regions. Consider the case where the overlap integral is positive in the substrate
but negative in the waveguide. On annealing the waveguide, d',, will be partially
restored [11]. Assume to a first approximation that the overlap integrals are
unchanged on annealing. Under these conditions the combined overlap integral of
Eq. 3.10 will be reduced, thus reducing the conversion efficiency. If, on the
other hand, the contributions to the overlap integral are both positive then

annealing will increase the overlap integral of Eq. 3.10, thus increasing the
conversion efficiency.

The effect of reduced propagation losses is to increase the conversion efficiency
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[15]). For the waveguides used, the propagation losses are small and, given the
mild annealing conditions, are not expected to be reduced significantly by the
annealing process. Therefore no significant increase in the conversion efficiencies

is expected. .

These arguments present no single, clear, explanation of the effect of annealing
on the conversion efficiency. However, the important points can be summarised as
follows;

(1) Annealing reduces the waveguide refractive index, which in turn leads to a

reduction in the conversion efficiency via the overlap integral.

(2) Annealing leads to a reduction in the power density, which in turn will
reduce the conversion efficiency.

(3) The restoration of the nonlinearity in the waveguide region can lead to either

an increase or a decrease in the conversion efficiency.

3.3.1 SHG in stripe waveguides

The use of stripe, or channel, waveguide structures for SHG offers the potential
of obtaining conversion efficiencies which are much higher than those measured
for planar waveguides because of the higher power densities which can readily be
realized in stripe waveguides. As a consequence of the increased power density
within the waveguide, efficient SHG of even moderate power levels of light from
c.w. semiconductor laser diodes becomes possible. With stripe waveguides, there
exists the possibility of generating light of a chosen wavelength by the process of
three— wave mixing. Using two lasers of different frequencies (the pump and
signal), an idler wave is produced at either the difference or sum frequency. In
proton— exchanged waveguides, three— wave mixing is automatically phase— matched
for Cerenkov generation. This has been experimentally demonstrated by Sanford et
al [4] in proton— exchanged waveguides. Three— wave mixing has also been carried
out in titanium=— indiffused waveguides by Laurell et al [16].

Experimental work has been carried out by the author to investigate SHG of both
c.w. Nd:YAG laser and c.w. semiconductor diode laser radiation in stripe
waveguides. As for the case of planar waveguides, the guided fundamental wave
in a stripe waveguide can produce second harmonic generation by Cerenkov

radiation.




3.3.2 SHG of c.w. Nd:YAG laser radiation

The waveguides used were fabricated in neat melt benzoic acid at 235°C for a
range of exchange times between 10 min and 70 min. The waveguide stripe
widths were between 3 um and 7 um in 1 pm steps. The waveguides were
defined by standard photolithographical techniques with aluminium as the masking
layer. Typically, the waveguides were 5 mm long. Input coupling was achieved via
end— fire coupling with x40 microscope objectives. The fundamental and harmonic
powers were measured using calibrated germanium and silicon detectors and the

power measurements were again taken at the exit face of the waveguide.

For the Nd:YAG laser, coupling losses were high due to mode— mismatch and
care was taken to optimize the input coupling efficiency and so minimise these
losses. The total loss was estimated to be 6 dB, approximately 3.5 dB being due
to lens and waveguide end— face reflection losses, and approximately 2.5 dB being
due to waveguide propagation losses and input coupling modal mismatch. The
total throughput fundamental (c.w.) power levels measured were typically only 1
to 2 mW, with the corresponding harmonic power levels up to a maximum of
0.7 uW. Fig. 3.9 shows the normalised conversion efficiency as a function of the
square root of the exchange time for waveguide fabrication in a series of 7 um
wide stripes. In this case the normalization need only be carried out with respect
to the fundamental power as the stripe widths are equal in each case. As
expected there is a specific depth at which the maximum in the conversion
efficiency occurs. For these particular conditions, the maximum conversion
efficiency measured was 2.4% mW~ ' for a fundamental power of 1.6 mW in
the waveguide, with a corresponding harmonic power of 65 nW. Assuming that
the diffusion coefficient for the proton— exchange process is essentially the same
for fabrication of both the 7 um stripes and for planar waveguides, the waveguide
depth was estimated as 0.7 um. The power density in the waveguide was then
estimated as 0.03 MWcm™ 2 , which is comparable to the peak power density of

the Q-switched pulses used for the planar waveguide experiments (c.f. section
3.2.4).
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The conversion efficiency for second harmonic generation is expected to be
proportional to the power density in the waveguide. For waveguides of similar
depth, this implies that the conversion efficiency is inversely proportional to the
stripe width. This dependence was investigated by measuring the conversion
efficiency as a function of stripe width for waveguides with nominally the same
depth. The waveguide widths were 4, 5, 6, and 7 um. Caré was taken to
~optimise the input coupling in each case. Fig. 3.10 shows the normalised
conversion efficiency as a function of stripe width. It can be seen that the

relationship is inverse as expected.
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In all of the work on stripe waveguides, despite the relatively high power
densities within the waveguide, no photorefractive damage was observed. Fig. 3.11
shows a typical far—field radiation patterns of Cerenkov second harmonic

generation of a Nd:YAG laser in a stripe waveguide.



In all of the work on stripe waveguides, despite the relatively high power
densities within the waveguide, no photorefractive damage was observed. Fig. 3.11
shows a typical far—field radiation patterns of Cerenkov second harmonic

generation of a Nd:YAG laser in a stripe waveguide.

figure 3o0il



Computer-enhanced images of the far-field SHG radiation
pattern from a proton-exchanged stripe waveguide. This
shows the crescent shape of the radiation pattern and 1is
an enhancement of figure 3.11.



H f ¢.w. semiconductor laser radiation

SHG of semiconductor laser radiation was also investigated. The waveguides in
this study were fabricated in neat melt benzoic acid at 200°C for exchange times
between 75 min and 140 min. The output light from the semiconductor laser was
collimated with a x40 microscope objective. Using a x50 microscope objective lens
the light was coupled into waveguides with stripe widths between 2 ym and 20
pum. Again the guides were typically S mm long. The total loss was around 10dB
with approximately 3.5 dB due to reflection losses at the waveguide end face
and lens throughput losses, and approximately 6 dB mode— mismatch and
propagation losses. The higher mode— mismatch losses in this case are due to the
elliptical radiation pattern from the laser diode.

The semiconductor laser used was a Sharp LTO01S model capable of a maximum
output power of 40 mW. This laser operated on a single longitudinal mode at a
wavelength of 838 nm. The high losses kept the total throughput power to 1 to 3
mW at the waveguide output. For an exchange time of 75 min a maximum
conversion efficiency of 2.78% mW~ ' was measured with the 20 um stripe,
based on the output power levels. This corresponded to 200 uW of fundamental
power with 0.875 uW of harmonic power being generated. It should be noted
that these waveguides were transversely multi— moded at this wavelength. The
measured harmonic power is the sum of the harmonic power over all of the
waveguide modes. Figs. 3.12 and 3.13 illustrate the Cerenkov ring pattern
generated by a semiconductor diode laser in a stripe waveguide. The multiple
"rings" are due to the multi~ mode nature of the waveguide. Consequently the
phase— matching angle will be slightly different for each waveguide mode. The
second set of rings are due to reflections of the harmonic radiation from the
polished bottom face of the substrate.

The high conversion efficiencies measured indicate the potential for a practical
semiconductor pumped frequency doubled light source. By reducing the coupling
losses and mode— mismatch losses higher conversion efficiencies could be obtained.
The mode— mismatch losses may be reduced by reshaping the semiconductor laser
beam (from elliptical to circular) using, for example, an anamorphic prism pair.
Another way of increasing the conversion efficiency would be to coat the
waveguide end faces with dielectric mirrors to form a resonant cavity at the
fundamental wavelength. This would confine the fundamental radiation within the
cavity and enhance the conversion efficiency. Sohler et al [15] have estimated that

a resonant cavity could increase the conversion efficiency by an order of
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magnitude. The beam quality of the harmonic radiation could be a problem for
many practical device applications, and it would be necessary to reshape the
beam. A possible solution to this problem could be the fabrication of a

holographic lens on the rear face of the substrate to reshape the beam.

igure 3012

figure 3«13

6| -



magnitude. The beam quality of the harmonic radiation could be a problem for
many practical device applications, and it would be necessary to reshape the
beam. A possible solution to this problem could be the fabrication of a

holographic lens on the rear face of the substrate to reshape the beam.
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3.4 Conclusions

Proton— exchanged waveguides have been used to produce efficiently
frequency— doubled radiation from a Nd:YAG laser and a semiconductor laser. For
the case of planar waveguides there is good qualitative agreement between the
measured and theoretically calculated conversion efficiency dependences on
waveguide parameters. Conversion efficiencies of 1% mW— ' have been obtained
using planar waveguides with a Q-—switched Nd:YAG laser fundamental, and up

to 2.8% mW~ ' with a c.w. semiconductor fundamental source.

It has been found that annealing the waveguides leads to a reduction in the
conversion efficiency in most cases but can, in some cases, give rise to an
increase in the conversion efficiency., The effects of annealing on the wvarious
waveguide parameters which may lead to a change in conversion efficiency have
been discussed. On the debit side it should be pointed out that, although efficient
second harmonic generation is possible, the beam shape of the harmonic radiation
at the output was found to be unsuitable for many applications. :
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CHAPTER 4

SHG IN _PROTON—EXCHANGED _WAVEGUIDES FABRICATED _USING
BENZOIC AND PYROPHOSPHORIC ACIDS: A COMPARISON,

4.1 Introduction

The aim of the work presented in this chapter was to compare the conversion
efficiencies for second harmonic generation in proton—exchanged waveguides
fabricated using both benzoic acid and pyrophosphoric acid. It has been reported
[1] that proton— exchanged waveguides fabricated with "phosphoric" acid exhibit a
higher refractive index (An = 0.145 @ 0.6328 um) than those fabricated with
benzoic acid (An = 0.126 @ 0.6328 um). If this is the case then a higher
conversion efficiency for harmonic generation might be expected because of the
tighter mode confinement and, therefore, increased power density within the
waveguide. The results presented in this chapter show, that, whilst the refractive
index increase is slightly larger for phosphoric acid waveguides, the difference
found by the author is not as large at that claimed in [1] and that the efficiency
of second harmonic generation in phosphoric acid waveguides is only slightly

larger.

Also reported is a comparison between second harmonic generation in
MgO~-doped lithium niobate, in which the photorefractive sensitivity can be up to
one hundred times less than undoped lithium niobate [2]. Although optical damage
effects are also reduced by using proton— exchanged waveguides, optical damage
may become an important consideration if the conversion efficiencies are increased
by alternative phase— matching techniques (such as quasi— phasematching) which
lead to high power harmonic generation. The results of a study into second
harmonic generation using proton— exchanged MgO- lithium niobate waveguides are
presented. Both benzoic and pyrophosphoric acids were used to fabricate the

waveguides.

4.2.1 Proton— exchange using Pyrophosphoric acid

Although benzoic acid is now routinely used as the protonic source for waveguide
fabrication, other acids such as oleic acid [3] and sulphuric acid [4,5] have been
used. In all cases, the resulting waveguide properties are reported to be similar to
those of benzoic acid waveguides. However, as mentioned above, it has been

reported [1, 6—8] that waveguides fabricated using phosphoric acids exhibit a
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larger refractive index increase and much lower propagation losses than
waveguides fabricated using benzoic acid. Before making a brief review of the
published work on phosphoric acid waveguides some background on the chemistry

of phosphoric acids is presented.

4.2.2 Chemistry of Phosphoric acids

It is well known that there are a number of forms of phosphoric acid, the most
common of which are orthophosphoric acid, H,PO,, and pyrophosphoric acid,
H,P,0,. Both of these acids have been used to fabricate optical waveguides.
Orthophosphoric acid can be prepared by reacting pyrophosphoric acid with water
according to the reaction:—

H,P,0, + Hy0 ——-> 2H,PO,

Pyrophosphoric acid (as used in this work) is a colourless crystalline solid at room
temperature which melts at 54.3°C. In this work only pyrophosphoric acid was
used as the protonic source. As pyrophosphoric acid is a solid at room
temperature, it was first necessary to liquefy it. This was easily achieved by
gently heating an appropriate amount of solid above 55°C and allowing it to cool
down. As it cools it remains a clear, highly viscous liquid. Because the acid is
deliquescent, the acid used for proton— exchange is almost certainly a mixture of
phosphoric acid species, the major constituent possibly being pyrophosphoric acid.
From a practical device point of view what is of crucial importance is that
fabrication of the waveguides is reproducible. That is, if one starts with nominally
pyrophosphoric acid to fabricate waveguides and is given certain conditions, other
waveguides fabricated under the same conditions using (nominally) the same acid

material should have the same properties.

4.2.3 Review of published work

As stated in the introduction, Yamamoto and Taniuchi [1] were the first to report
the fabrication of proton—exchanged waveguides using phosphoric acids. Using
orthophosphoric acid at temperatures between 150°C and 280°C and for diffusion
times between 5 min. and 6 hours, waveguides were fabricated on 2z—cut
substrates, but not on x— or y—cut substrates. Using prism coupling, they
estimated that the effective diffusion coefficient was 0.33 um %hr, and therefore
similar to that of benzoic acid. However, the temperature at which this value is

measured was not given. As stated previously, the measured refractive index step



was quoted as 0.145 @ 0.6328 um. Using stripe waveguides and a cut— back
technique, they measured the propagation loss to be as low as 0.9 dB/cm.

A second technique pioneered by Yamamoto and Taniuchi was that of
spin— coating [6]. In this process the pyrophosphoric acid is first melted and a
small amount coated onto the surface of the substrate using a spinner. No further
details of the coating process are given. The substrates were then heated in an
oven at 230°C. The resulting waveguides exhibited properties very similar to those

fabricated by immersion in orthophosphoric acid.

The surface— coating technique was also used by Goto and Yip [7]. Waveguides
were fabricated in a wvertical furnace at a temperature of 200°C and had a
refractive index increase of 0.131 @ 0.6328 um and an estimated propagation loss
of 0.25 dB/cm. The diffusion coefficient was estimated to be 0.113 pm 2/hr, which
is greater than their measured value for benzoic acid (0.081 pm 2/hr).

In another study, Pun et al [8] fabricated waveguides by immersion in
pyrophosphoric acid. They used acid temperatures between 190°C and 250°C and
exchange times between 15 min and 22.5 hrs. The refractive index step was
found to be 0.145 and the waveguide losses were said to be less than 1 dB/cm.
Although they quote no figures, they claim that the diffusion coefficient is greater
than that for benzoic acid. This conclusion presumably holds for each temperature
at which the waveguide fabriaction was carried out. It was also stated that
waveguides could not be fabricated on either x— or y-—cut substrates, in

agreement with Yamamoto [1].

In a paper primarily dealing with second harmonic generation in
proton— exchanged waveguides, Sanford and Connors [9] have measured the
refractive index difference of pyrophosphoric acid waveguides as being 0.132. The
stripe waveguides of this work were fabricated in z—cut MgO doped lithium
niobate. The diffusion coefficient was measured as 0.19 um %/hr. However, when
planar waveguides were fabricated, the diffusion coefficient was measured as 0.33
pm2/hr, in agreement with [1]. The discrepancy in these two values is attributed
to over— etching of the tantalum mask somehow having an effect on the lithium
niobate surface. The agreement of the diffusion coefficients measured by
Yamamoto et al and Sanford et al is confusing. Yamamoto and Taniuchi [1]
quote their results for proton— exchange in congruent lithium niobate, whereas the
work of Sanford and Connors used MgO—doped lithium niobate. The fact that

Sanford and Connors measure the same diffusion coefficient is strange because it

74



is well known that the diffusion constant for proton— exchange into MgQO— doped
substrates is much less than that for proton— exchange into congruent lithium
niobate [10,11] (see fig. 4.2).

In a comprehensive study involving optical characterisation, infra—red and atomic
absorbtion spectroscopy, Foad et al [12] could observe no significant differences in
the properties of waveguides fabricated using either ortho— or pyrophosphoric
acids. Two sets (of seven samples) of waveguides were fabricated at 210°C using
othophosphoric acid and pyrophosphoric acid. Waveguides fabricated with
orthophosphoric acid showed a maximum refractive index change of 0.132 whilst
waveguides fabricated using pyrophosphoric acid showed a 0.134 index step. The
diffusion coefficients were the same for both acids (0.23 um2/hr), and were
almost equivalent to the diffusion coefficient of benzoic acid at the same
temperature (0.25 pm?/hr). Based on the results of this work the authors
postulated that, for proton— exchange, it is the temperature and the exchange
time of the reaction which are the parameters of prime importance, not the
acidity of the medium. Confirming this, the work also reported the fabrication of

waveguides on x— cut substrates for short exchange times (up to 1.5 hr).

Loni et al [13] have carried out a comparative study of waveguides fabricated by
surface coating and immersion. The surface coating was carried out by two
methods. In the first, approximately 0.1 ml of pyrophosphoric acid was coated
onto the surface using a syringe whilst in the second, the pyrophosphoric acid
was deposited onto the substrate and then spun at 460 rpm for 40 s to leave a
thin coating of acid on the surface. After spin coating, the surface coatings were
visibly non— uniform, an effect attributed to surface tension. Waveguides were also
formed by immersion used orthophosphoric acid at a temperature of 2109C as the
protonic source. In all three cases the resulting waveguides had step index profiles
with an index increase of around 0.134. After fabrication some of the waveguides
supported only 3 or 4 modes. A step—index fit to the data calculated a refractive
index differences of 0.134 whilst an inverse WKB fit could give a calculated
maximum refractive index difference of up to 0.165. It is possible that the high
refractive index difference found by some researchers is an artefact of the curve

fitting routine to the measured effective indices if too few modes are involved.

The estimated diffusion coefficients for the surface coating techniques were lower
than the diffusion coefficients when using benzoic acid immersion. However, the
diffusion coefficients for immersion were practically the same for orthophosphoric

and benzoic acids as expected. Table 4.1 lists all the measured diffusion

75



coefficients. The waveguide losses for phosphoric acid were estimated to be 2—3

dB/cm, i.e. similar to those found when using benzoic acid.

Table 4.1

Diffusion coefficients for various phosphoric acid proton— exchange processes

Fabrication Acid Measured Benzoic acid
technigue temperature coefficient (um 2/hr) coefficient (um2/hr) *
Surface

coating 2200C 0.22 0.39
Spin

coating 2350°C 0.54 0.74
Immersion 210°C 0.23 0.25

* . . . . .
By immersion in benzoic acid.

It is obvious that there is wide disagreement in the published data regarding
proton— exchange using phosphoric acids. It does seem generally agreed that
orthophosphoric and pyrophosphoric acids are essentially equivalent in terms of
the properties of the resulting waveguides. It also seems agreed that, under the
same experimental conditions for the immersion process, the diffusion coefficients
of phosphoric and benzoic acids are essentially equal. What is not agreed on is
the refractive index increase. For the purposes of the work reported in the rest
of this chapter, it has been assumed that the refractive index step is 0.134, as
measured by Foad et al [12] and Loni et al [13].

One comparison which has not been made is the possibility of fabricating
proton— exchanged waveguides by spin— or surface— coating using benzoic acid.
No experiments were carried out by the author to investigate the possibility of
fabricating waveguides by such a technique, and, to the author's knowledge there

have been no papers published to date describing such a process.

4.3.1 Magnesium Oxide doped_lithium niobate

It was reported by Zhong et al [2] that lithium niobate doped with greater than
4.6% atomic weight of magnesium oxide added to the melt had the ability to
withstand optical intensities of about 100 times as great as congruent lithium
niobate, a figure which has subsequently been confirmed by other researchers [14].

Consequently, MgO—doped lithium niobate is now available commercially.



The material is made by adding a given amount of MgO to the melt during
crystal growth. The resulting material has refractive indices which are different
from congruent material, the indices being:—

ng, = 2.2897

2.1940

Ne

c.f. for congruent lithium niobate

n, = 2.323

ne 2.234

Proton—exchange using MgO—doped substrates has been reported by several
authors. Both Jackel [10] and Digonnet et al [11] have independently
characterized proton— exchanged waveguides in x— and y—cut lithium niobate
doped with 5% MgO. Loni et al [15] have characterized z—cut lithium niobate
doped with 4.5% MgO. The resulting waveguides have similar refractive index
profiles and index increases to waveguides fabricated in undoped material.
However, the diffusion coefficients, pre— exponential factors and activation energies
are very different in the two cases. Waveguides fabricated in MgO— doped lithium
niobate have a higher activation energy and consequently lower diffusion
coefficients [15]. An infra—red absorption spectroscopy study [15] of
proton— exchange in both MgO—doped and congruent lithium niobate has
indicated that the OH environment in the two materials may be different.
However, it appears that there is little difference (in terms of the refractive index
profiles) between waveguides formed by proton—exchange in either MgO-—doped

or congruent lithium niobate.

The higher power handling capability of MgO— lithium niobate is interesting from
a nonlinear optics viewpoint. It means that it may be possible to realise much
higher efficiencies for second harmonic generation because the optical damage
threshold has been increased. The differences in the refractive indices of the two
substrates imply that the phasematching conditions will also be different. For
conventional birefringence phasematching, the phasematching temperature is below
00°C [16]. For MgO- lithium niobate the phasematching temperature is much

closer to room temperature [17]. For Cerenkov second harmonic generation the
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differences in the refractive indices are not so significant. The main difference is
a change in the Cerenkov angle and there is also a slight difference in the shape
of the efficiency versus waveguide depth and in the position of the maximum

conversion efficiency (see 4.4.1).

441 A comparison between pyrophosphoric and benzoic acid waveguides for
second harmonic generation

In this section, experimental work to measure the second harmonic generation
efficiency on planar proton— exchanged waveguides will be described. Four sets of

waveguides were fabricated:—

(1) congruent lithium niobate, benzoic acid,

(2) congruent lithium niobate, pyrophosphoric acid,
(3) MgO- lithium niobate, benzoic acid,

(4) MgO- lithium niobate, pyrophosphoric acid.

The pyrophosphoric acid waveguides were fabricated by immersion. In all cases,
as in the work of the previous chapter, the waveguides were fabricated at an acid
temperature of 235°C. Before any of the above waveguides were fabricated a
check was made to see if the diffusion coefficients for benzoic and
pyrophosphoric acids were indeed equal. Although the temperature of the acid for
this work was 210°C, it can be seen from Fig. 4.1 that the coefficients for the
two acids are equal (to within the limits of experimental error). It can also be
seen that the diffusion coefficient for proton— exchange into MgO- lithium niobate

is less than that for congruent lithium niobate (Fig. 4.2).

Using the theory developed in chapter 2, the efficiency for second harmonic
generation was calculated for each of the four cases. In general, the results were

in agreement with chapter two and the following conclusions could be drawn:—

(1) Waveguides made in pyrophosphoric acid, with a slightly higher waveguide
refractive index, give more efficient harmonic generation. From the model, at the
optimum waveguide depth, a relative increase of around 18% over benzoic acid
waveguides may be expected, see Fig. 4.3. The dependence of conversion

efficiency on waveguide depth is generally the same as for benzoic acid
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(2) Second harmonic generation in MgO-— lithium niobate is no more efficient
than in congruent material and, in some cases may be lower. This can be seen
from Fig. 4.5 which is plotted for the case of a pyrophosphoric acid waveguide
in MgO-—lithium niobate. On inspection of Fig. 4.5 and comparing it with Fig.
4.3 it can be seen that the main peak is shifted slightly to smaller waveguide
depths and that the peak conversion efficiency is only slightly higher for

MgO- lithium niobate, but the differences are not likely to be significant in any
practical device.
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For this calculation it was assumed that the nonlinear coefficients of
MgO-— lithium niobate are the same as those of congruent material and the
refractive index difference is still the same. To the knowledge of the author,
there have been no definitive measurements of the nonlinear d,, coefficient of
MgO— lithium niobate, although there is some evidence to suggest that the
nonlinear d,, coefficient may be lower than that of congruent lithium niobate
[18]. However, this was based on a measurement of non— congruent MgO— lithium

niobate.

4.4.2 Brief review of experimental method and normalization procedure

Before discussing the comparison of second harmonic generation in benzoic and
phosphoric acid waveguides the experimental method will quickly be reviewed and

details of the normalisation procedure re— iterated.

Second harmonic generation was carried out with a Q- switched Nd:YAG laser as
the fundamental source. The wavelength was 1.064 pm and the Q- switched
pulses were 200 ns long with a repetition rate of 1.25 kHz. The experimental

arrangement is shown in Fig. 4.6.

Q-switched Nd:YAG laser filter
prism
planar
collimating wauegu1de
optics
large area
detector

figure 4.6 experimental set up for measurement of the

conversion efficiency
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The normalised conversion efficiency was defined as the conversion efficiency
which would be achieved with a fundamental power (in the waveguide) of 1 mW
with a beam waist of 1 mm. That is, the measured fundamental powers are
scaled to a level of 1 mW and the measured fundamental beam waists are scaled

to a width of 1 mm.

4.4.3 Second harmonic generation in congruent material

Two sets of waveguides were fabricated for this experiment, one set for each of
the two acids. The exchange times for the reaction were the same for each of
the acids and, in both cases, the acid temperature used was 2350C. Using the
same experimental arrangement as described in the previous chapter (and
re—iterated in 4.4.2), the conversion efficiency for harmonic generation was
measured for each waveguide. Again, the beam waists were measured and the
normalised conversion efficiencies calculated. Figs. 4.7 and 4.8 show the
dependence of conversion efficiency with waveguide depth (plotted as the effective
index of the guided fundamental mode) for the benzoic acid and pyrophosphoric
acid waveguides respectively. It can be seen from these figures that the two
curves are very similar (as expected from the theoretical curves). The maximum
normalised conversion efficiencies for harmonic generation for both acids are listed
in table 4.2. It can be seen that for the pyrophosphoric acid waveguide the
normalised conversion efficiency is 16% greater than that of benzoic acid, which
is remarkably close to the 18% predicted from the simple theory of chapter 2.

The results are also in general agreement with those of the previous chapter.

Table 4.2
Acid conversion
used substrate efficiency (normalised) (%/mW.mm)
Benzoic congruent 4.3
Pyro' congruent 5.1

84




vs eff. index

eff.

conv.

x
(1))
g o)
C
o
Y
Y
S (i}]
| |
? | i -
: M i (4]
| | |
f o
! <4
4]
n < m (Y] -t o
(') 448 °“AUODD

figure 1.7 experimental plot of conversion efficiency for
waveguides fabricated using benzoic acid with a congruent
substrate



vs eff. index

eff.

conv.

USRI SIVP [N

o n

<

()

figure 4.8 experimental plot of conversion efficiency for

waveguides fabricated using pyrophosphoric acid with a

congruent substrate

™
"3449

86

N

*AUOD

2.24

2.22

2.16

2.14

2.18
eff.

(.)

index




44.4 nd _harmoni neration_in MgO~—lithium niobate

As in the previous section, two sets of waveguides were fabricated in
MgO- lithium niobate. The conversion efficiencies were measured and normalised
and are plotted in Figs. 4.9 and 4.10. It can be seen that the curves are again
very similar. The value of the maximum normalised conversion efficieny for the
benzoic acid in this case was around 2.5 times that of the phosphoric acid
waveguide. The reason for this is not clear, but may have been due to a
systematic error when the measurements were taken on that particular series of
waveguides. Inspection of the experimental results indicated that the measured
fundamental powers were higher than those of the other sets of waveguides. This
may indicate poor coupling into the waveguide due to contamination of the prism.
The fundamental power levels were consistent for each waveguide in the set. For
the benzoic acid waveguides the maximum normalised conversion efficiency was

comparable to the value measured in 4.4.3 for the congruent material.
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4.5 Conclusions

Second harmonic generation in waveguides fabricated using pyrophosphoric acid as
the protonic source has been studied. In general, the conversion efficiency is
slightly higher than that measured in waveguides fabricated using benzoic acid.
The theory presented in chapter 2 predicted an increase of 18% (with respect to
benzoic acid waveguides). Experimentally, an increase of 16% was measured.
MgO- lithium niobate substrates have also been wused. It was found that the
conversion efficiencies were comparable to those obtained using congruent material
as expected from the model. For all of the waveguides, the dependence of the
conversion efficiency on waveguide depth was, at least qualitatively, in agreement
with the predictions of the model.

The results of proton—exchange using pyrophosphoric acid indicate that the
diffusion coefficients are very nearly equal to those of benzoic acid as expected.
However, in disagreement with Yamamoto and Taniuchi and Pun et al, the
increase in the refractive index was found to be 0.134 at A\ = 0.6328 um, and
not 0.145 as quoted by these authors.

4.6 References

[1). K. Yamamoto and T. Taniuchi, "New proton—exchange technique for
LiNbO , waveguide fabrication", Technical digest O.F.C. 1987, paper ThU2.

[2). G. Zhong, J. Jian and Wu Zhong—Kang, 11th International Quantum
Electronics Conference, IEEE Cat. No. CH 1561—0, p. 631, 1980.

[3]. T. Maciak, "LiNbO, optical waveguides obtained by proton—exchange in
oleic acid”, Int. Jnl. Optoelectronics, 5(3), pp.227— 234, 1990.

[4]. G. A. Bogert and D. T. Moser, "Sulfuric acid proton—exchanged channel
waveguides fabricated in LiNbO ,”, IEEE Photonics Technology Letters, 2(9),
pp.632— 633, 1990.

[S§]. J. T. Cargo, A.J. Filo, M.C. Hughes, V.C. Kannan, F.A. Stevie, J.A.
Taylor and R.J. Holmes, "Characterization of sulfuric acid proton—exchanged
LiNbO ,", Jnl. Appl. Phys., 67(2), pp.627— 633, 1990.

[6). T. Taniuchi and K. Yamamoto, '"Second harmonic generation using
proton—exchanged LiNbO, waveguide', Optoelectronics =  Devices and
Technologies, 2(1), pp.53— 58, 1987.

[7]. N. Goto and G. L. Yip, "Characterization of proton—exchange and annealed
LiNbO , waveguides with pyrophosphoric acid'", Applied Optics, 28(1), pp.60— 65,
1989.

[8]. E.Y.B. Pun, T.C. Kong, P.S. Chung and H.P. Chan, "Index increase of

proton—exchanged waveguides in LINbO , using pyrophosphoric acid”, Electronics
Letters, 26(2), pp.81— 82, 1990.

90



[9]. N. A. Sanford and J. M. Connors, "Optimisation of the Cerenkov second
harmonic generation in proton—exchanged MgO—LiNbO ,”, Jnl. Appl. Phys,,
65(4), pp.1429—1437, 1989.

(10]. J. L. Jackel, "Proton—exchange in MgO—doped LiNbO,"”, IEE Electronics
Letters, 21, pp.509— 510, 1985.

[11]. M. Digonnet, M. Fejer and R.L. Byer, "Characterization of
proton—exchanged waveguides in MgO:LiNbO ,", Optics Letters, 10, pp.235—237,
198s.

{12]. M. A. Foad, "Proton—exchanged LiNbO, optical waveguides made from
phosphoric acids: detailed studies and comparisons with guides made with benzoic
acid”, Integrated Optics and Optoelectronics, SPIE Proceedings 1177, paper 05,
1989.

[13]. A. Loni, R.'W. Keys, RM. De La Rue, M.A. Foad and J.M. Winfield,
"Optical characterization of z—cut proton—exchanged LiNbO, waveguides
fabricated using orthophosphoric and pyrophosphoric acid waveguides”, IEE
Proceedings 136, Part J, No. 6, pp.297— 300, 1989.

[14]. D. A. Bryan, R.R. Rice, R. Gerson, H.E. Tomaschike, K.L. Sweeney and
L.E. Halliburton, '"Magnesium—doped LiNbO, for higher optical power
applications”, Opt. Eng., 24(1), pp.138—143, 1985.

[15]). A. Loni, R'W. Keys and RM. De La Rue, "Characterisation of waveguides
formed by proton—exchange in MgO—doped and Nd:MgO-—doped LiNbO, A
comparison with congruent material", Jnl. Applied Physics, 67(9), pp.3964— 3967,
1990.

[16]). G. Arvidsson and F. Laurell, "Nonlinear optical wavelength conversion in
Ti:LiNbO , waveguides", Thin Solid Films, 136, pp.29— 36, 1986.

[17). F. Laurell and G. Arvidsson, "Frequency doubling in Ti:MgO:LiNbO ,
channel waveguides", Jnl. Optical Society of America, 5(2), pp.292—299, 1988.

[18]. R.C. Sckardt, H. Masuda, Y.X. Fan and R.L. Byer, "Absolute and relative
nonlinear optical coefficients of KDP, KD*P, BaB,0,, LiO,, MgO:LiNbO,
and KTP measured by phasematched SHG", IEEE jnl. Quant. Elec., 26(5),
pp-922- 933, 1990.

91



CHAPTER §

RATIN TR AR
5.1 Introduction.

This chapter describes the work which was carried out to investigate two of the
properties of the nonlinear coefficient d,, and how these properties may be
affected by device fabrication. Firstly, by a suitable technique, it has been found
that the sign of the d,, coefficient can be reversed periodically, opening up the
possibility of very efficient second harmonic generation. The experimental
techniques for producing such periodic gratings, developed by the author in
conjunction with co— workers at the University of Sussex, are discussed in some
detail.

The waveguide fabrication technique used exclusively throughout this project was
proton— exchange. It was known from earlier studies that the proton— exchange
process leads to a reduction in the electro— optic coefficients, but that subsequent
annealing of the waveguide could lead to a substantial or complete restoration of
the effect [1,2]. As the electro— optic and nonlinear effects are related material
parameters, it was apparent that proton— exchange might also reduce the intrinsic
nonlinearity of the lithium niobate crystal. Using a grating diffraction technique,
developed both theoretically and experimentally by Suhara et al [3], the magnitude
of the nonlinear coefficient d,, has been measured. The effects of annealing on
- the magnitude of the nonlinearity have also been measured.

Both of these topics are discussed in this chapter. As the subjects can be treated
separately, the chapter naturally splits into two sections. The first half of the
chapter describes the fabrication and characterisation of the domain reversed
gratings, whilst the second half of the chapter will discuss the measurement of

the nonlinear coefficient of lithium niobate.

.2.1 Grating structures for nonlinear optics.
The technique whereby phase— matching is achieved via a grating structure is
called quasi phase— matching (QPM) [4]. There are at least two situations where

grating structures are important for nonlinear optical applications;

(1) Some materials, for example II-VI and III-V compounds, possess large
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second order nonlinearity but lack birefringence. This precludes the use of
conventional phase— matching for second harmonic generation. Materials such as
ZnS and ZnSe (II-VI) and GaAs (III-V) have second order -coefficients
comparable to those of lithium niobate but cannot be phase— matched

conventionally.

(2) In many materials some of the nonlinear coefficients are not phase— matchable
conventionally. For example, the largest nonlinear coefficient of lithium niobate,
d,,, is not phase— matchable conventionally. This is because the d,, coefficient
will only couple together a fundamental and a harmonic wave of similar
polarisations. Since the phasematching condition requires that the refractive indices
at the fundamental and harmonic wavelengths be equal, this requires that the
dispersion of the material be zero. This is not the case for lithium niobate so
that phasematching via d,, cannot be achieved (in the wavelength range of
interest to the work of this thesis). For the lithfum mniobate system this is
unfortunate because d,, is about 6 times larger than d,, and, therefore, the use
of d,, would lead to a 36— fold increase in the conversion efficiency for second

harmonic generation (everything else being equal).

.2.2 Periodic_structures for quasi phase— matched second harmonic generation.

The potential of periodic structures for quasi phase— matched second barmonic
generation was probably first described by Bloembergen and Severs [4] in 1970.
They proposed growing a periodic lattice of GaAs and GaP with a suitable choice
of lattice parameters and predicted that nonlinear optical interactions, including
second harmonic generation, could be phase— matched.

Periodic structures for nonlinear optical interaction in lithium njobate can be
realised in two ways. The first, and most efficient, way is to modulate the
nonlinear coefficient periodically [S]. The second is to modulate the linear
refractive index profile periodically [5]. The conversion efficiency which can be
achieved via a periodic modulation of the linear refractive index profile is lower
than that which can be achieved via a modulation of the nonlinear coefficient. A
modulation of the refractive index profile also creates a grating coupler effect in
the waveguide region and therefore potentially increases the optical propagation
losses. For these two reasons most of the work on periodic structures has
concentrated on a modulation of the nonlinear effect and the work of this thesis
was concerned with developing a technique for this purpose, so no further

mention will be made of the refractive index modulation approach.
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All things being equal (overlap integral etc.), phase— matching by modulation of
the nonlinear coefficient is not as efficient for second harmonic generation as
conventional phase— matching. This can be shown as follows. Let us assume that
second harmonic generation at a fundamental wavelength X\ 1is achieved by
periodic modulation of the nonlinear coefficient and not by conventional
. phase— matching (i.e. temperature tuning of the birefringence). In this case the
nonlinear coefficient must be considered as some periodic function of z, where z

is the propagation direction, Fig. 5.1.

region

lithium niobate substrate

) Hnnan .
AR

figure 5.1 modulation of the nonlinear coefficient caused
by periodic domain reversal

In the ideal case, the periodic function would be a sine wave where there would
be no reduction in the nonlinear coefficient; however in practice it is more

realistic to produce a square wave modulation i.e.:—

d(z) = d for 0 < d < A/ 2 and
d(z) = —d for A/2 < d< A (5.1)

where A is "wavelength" of the grating structure. A square wave modulation of

the nonlinear coefficient can be expressed in terms of a Fourier series as:—

dxy.2) = 54 dg(x.y).exp(~ jmK) (52

where K = 2x/A is the spatial frequency of the grating and m is known as the

grating order, m = 0,1,2,... etc. The Fourier series expansion implies that the
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nonlinear coefficient can be regarded as a summation over an infinite number of

spatial harmonics of the "nonlinear coefficient”, each with a spatial frequency mK

For a phase—mismatch of Ak, only the Fourier component of the grating
modulation with spatial frequency m.K = Ak will be phasematched for second
harmonic generation. Since only one Fourier component is involved in the
interaction, the nonlinear coefficient is effectively reduced (relative to the bulk
nonlinear coefficient) by a factor which depends on which order of the Fourier
component is phasematched. For the square wave modulation described above the
bulk nonlinear coefficient d is reduced by the factor 2/(mx) [6], i.e. the effective

nonlinear coefficient is:—

degf = 2.d/(mx) (5.3)

Since only one spatial component of the nonlinear coefficient is phasematched,
the conversion efficiency for second harmonic generation will be reduced. This
can be shown as follows. Let the conversion efficiency for conventionally

phasematched second harmonic generation be given by:—

n = C.d? (5.4

where C contains all other parameters such as overlap integral, refractive indices
etc. (see chapter 2). For the case of quasi phase— matching the conversion
efficiency is given by:—

n = C.4.d%/(m.x)? (5.5)

The best possible case is realised by using a first order grating (m = 1) and Egq.

3 becomes:—
n= C4.d?x2 (5.6)

Comparing Eqs. 4 and 6 it can be seen that the conversion efficiency is reduced
by a factor of 4/x2 for quasi phase— matching.

It has been shown that conventional phase— matching is more efficient than quasi
phase— matching. So why is quasi— phase— matching important? As was stated in
the introduction, the importance of the quasi phase— matching technique is that it

makes possible the use of nonlinear coefficients which are not conventionally
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phase— matchable. For lithium niobate, the d,, coefficient is larger than the
conventionally used d,, coefficient but is not phase— matchable. The relative

magnitude of d,, to d,, isi—
d,,/d,, = 34/59 = 5.7 (5.7)
where the magnitude of the nonlinear coefficients is given in units of pm/V. The

potential increase in the conversion efficiency which may be derived by exploiting

the d coefficient is thus:—

33
(4/x2)(d,, / d,,)2 = 13.7 (5.8)

The periodicity, A, of the grating required for phasematching can be found by
defining a quantity known as the "coherence length" [5]. The coherence length,
lo, is defined as the propagation length over which the fundamental and harmonic
waves become = radians out of phase. If the phase— mismatch, Ak, is defined
by:—

& = k,, — 2.k, (5.9

then the "coherence length", L, is given by:—

lo = »/ & (5.10)
Phasematching implies:—

mK+ A = 0 (5.11)

i.e., from Eqgs. 10 and 11, we find:—

A= 2ml (5.12)

For bulk lithium niobate the coherence length is 6 um for a fundamental
wavelength of 1.06 pum.

.2.3. Methods for producing a modulation of the nonlinear fficien

Quasi phase— matched second harmonic generation via a periodic modulation of

the d,, coefficient of lithium niobate has been reported by several research
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groups [7—13]. In a later section of this chapter the origin of the intrinsic
nonlinearity of the lithium niobate crystal will be discussed in some detail. It is
well known that the nonlinearity 1is related to the spontaneous dielectric
polarisation vector associated with the permanent electric dipole moment of the
ferroelectric lithium niobate crystal. In order to achieve a reversal of the
nonlinear effect it is necessary to reverse the direction of the spontaneous
polarisation vector of the lithium niobate crystal. In chapter 1, it was stated that
the spontaneous polarisation vector of the lithium niobate crystal is aligned either
during or after the growth process. The crystal is then regarded as being single
domain. If by some means the domain structure of the crystal could be reversed
periodically, this would provide a suitable technique for the reversal of the
nonlinearity. In terms of the crystal structure, domain reversal is equivalent to

reversing the stacking order of the crystal sites. This reversal is illustrated in Fig.
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In bulk crystals, periodically domain— reversed crystals have been grown by
inducing periodic temperature fluctuations during Czochralski growth [14]. The
periodic fluctuations were further enhanced by introducing 1% of yttrium into the
melt during the growth process, with the result that the crystal had a dopant
profile which varied sinusoidally along the growth axis. The periodic domain
structure correlates with the periodic dopant profile. The mechanism for domain
revers-al would thus appear to be the periodic dopant concentration gradient. The
concentration gradient sets up an electric field within the crystal (and consequently
a polarisation field) which is (periodically) opposed to the direction of the
spontaneous polarisation field of the crystal. In order to achieve a consistent
domain structure throughout the crystal, very careful control of the rotation and
pulling rates was necessary. Using crystals grown by this technique, Feng et al
[14—16] have shown an order of magnitude improvement in the conversion
efficiency for second harmonic generation over that achieved with conventional

phase— matching.

A similar technique has been devised by Feist and Koidl [17] to produce bulk
crystals with periodic domains. By passing a modulated current through the growth
interface during Czochralski growth, the authors realised a periodically domain
reversed crystal. Again the crystal melt contained a dopant (in this case
chromium) and, in agreement with the work of Feng et al [14—16], the
ferroelectric domains were found to be spatially correlated with the periodic
doping striations. Due to the practical difficuties of the experiment it was not
possible to realise a first order periodic grating using this technique. However, by
plotting the grating order with the measured enhancement factor for harmonic
generation, the authors were able to estimate that a first order grating would lead
to an enhancement factor of 15 over conventionally phase— matched second

harmonic generation, in close agreement with theory (see Egq. 9).

As was stated in the first chapter, lithium niobate has traditionally been grown by
the Czochralski technique. Recently however, a relatively new crystal growth
technique has been applied successfully to the growth of lithium niobate. This
process, known as the laser heated float—zone (or pedestal) technique was
pioneered by Feigelson [18] and Fejer [19]. Using such a technique Magel et al
[20] have produced first order domain— reversed periodic structures in lithium
niobate and successfully demonstrated second harmonic generation [21]. Luh et al
[22] have applied the technique successfully to grow lithium niobate fibres with
periodic domain structures. These fibres have also been used to produce second

harmonic generation [23]. This technique for growing crystals is very controllable
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and highly flexible and to date crystals have been grown with domain reversals
every 1 um. As well as the short domain periods which can be achieved, the

domains are highly regular, which is essential for efficient harmonic generation.

The techniques described in the three preceding paragraphs allow the growth of
bulk crystals with quasi phase— matching properties. For waveguide applications it
would be ideal to produce periodic domain reversed crystal regions localised to
the substrate surface. By localising the regions of domain reversal, it would
become possible to realise integrated optic substrates which are capable of a
number of different functions, one of which is second harmonic generation. A
simple example of such a multi—function device would be a self-frequency
doubled rare—earth doped lithium niobate laser incorporating electro— optic
switching devices for control of the laser output (Q-switching etc) [24]. A second
advantage of localising the domain reversed regions is that it allows optimisation
of the overlap between the profile of the nonlinear coefficient and the optical
modes. This is an important consideration when designing a waveguide to

maximise the conversion efficiency.

In order to produce periodic domain reversed gratings in a waveguide geometry,
two techniques have been used. It is well known that indiffusion of titanium into
the + c~face of lithium niobate at temperatures near the Curie point of the bulk
crystal can lead to domain inversion [25—26]. The actual mechanism which causes
the domain reversal is not known but the most probable cause is, again, a dopant
concentration gradient (in the case of titanium) [27—29]. Because of the dopant
concentration gradient there exists a gradient of the Curie temperature and,
hence, a gradient of the spontaneous polarisation vector. Assuming that the
equivalent electric field is anti— parallel to the titanium concentration gradient it is
then paralle]l to the spontaneous polarisation on the —c—face and antiparallel to
it on the <+ c—face. This is consistent with the observation that domain reversal
by titanium indiffusion has only been observed on the +c¢—face of lithium
niobate [29]. During domain reversal, as the temperature of the crystal approaches
the Curie point, the magnitude of the spontaneous polarisation field is reduced.
At some temperature the field associated with the concentration gradient will
exceed the spontaneous polarisation field and domain reversal will occur. On the
—c—face the field associated with the concentration gradient is always in the
same direction as the spontaneous polarisatibn field and so domain reversal cannot
occur. As well as the concentration gradient, other effects may contribute to
domain reversal. These effects are mainly related to the temperature at which the

fabrication process takes place [30]. It has been shown [30] that out— diffusion of
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lithium oxide (Li,O) can lead to domain reversal.

Both of these techniques have recently been applied to produce periodic domain
reversed grating structures for quasi phase— matching [7—13]. Lim et al have
fabricated gratings by the indiffusion of a periodic titanium grating to produce a
periodic modulation of the d,, coefficient on the +c—face of lithium niobate [7].
A planar waveguide was then fabricated by proton— exchange. With this stucture
they achieved quasi phase— matched second harmonic generation of fundamental
c.w. Nd:YAG laser radiation at A = 1.06um. The conversion efficiency realised
using this structure was 5% /(W/cm?2). Since this first demonstration, improved
design and fabrication techniques have allowed efficient quasi phase— matched
second harmonic generation of blue radiation with a (normalised (by them) to a
fundamental power of 1 W and a beam spot size of 1 cm?) conversion efficiency
of 37%/(Wicm?2) [7-10].

Webjorn et al [11—13] have developed a technique whereby they could control
spatially the out— diffusion of lithium (for brevity, "lithium® refers to the Li,O
species). To do this, they deposit a layer of silicon dioxide on the +c—face of
the crystal, and form a periodic mask in the silicon dioxide. The substrate is
heated to 1100°C in a furnace and then allowed to cool. Lithium out— diffusion
is apparently suppressed under the silicon dioxide masked regions. The domains
formed by this fabrication procedure have been shown to be triangular in shape
[11]. Since the nonlinear coefficient has a triangular distribution function, it must
now be included as a factor within the overlap integral calculations [13]. (Recall
the case of the overlap integral calculations in chapter 2 where the nonlinear
coefficient was regarded as constant along the propagation direction and could be
taken outside the integration. For a square wave the nonlinear coefficient is still
constant but is reversed in sign every coherence length). By suitable choice of
fabrication parameters, the conversion efficiency for quasi phase— matched second
harmonic generation can be optimised but is always reduced with respect to the
square wave case [13]. Using a laser diode operating at a wavelength of 833nm
as the fundamental, Laurell et al. have achieved conversion efficiencies of 0.4%

/W/cm?2 with such structures.

There are several drawbacks to both of these techniques for producing periodic
domain reversed gratings. These are:—

(1) The resulting domains may not be rectangular in shape, i.e. with a

modulation function which can be represented as a "square® wave (see Fig. 5.1).
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For the case of the lithium out— diffused case, it has already been stated that the
domains are triangular in shape. The consequence of non—rectangular domains is
a lower available conversion efficiency through a reduced ovelap between the

nonlinear coefficient and the optical fields [13].

(2) Both the in— diffusion of titanium and the out— diffusion of lithium lead to a
periodic modulation of the refractive index profile along the propagation direction.
This modulation of the refractive index profile may increase the propagation
losses due to modal mis— match, with a consequent reduction in the conversion

efficiency (see chapter 2).

(3) It is well known that regions of titanium in— diffused lithium niobate are
susceptible to optical damage [31]. This susceptibility to damage may place an
upper limit on, essentially, the harmonic power which can be generated, thus
limiting the conversion efficiency. The use of a proton—exchanged waveguide
region will lower the susceptibility to optical damage. However, high conversion
efficiencies for second harmonic generation have been demonstrated using this
technique [7—10], with no signs of optical damage.

(4) Domain reversal can only be achieved on the <+ c¢—face of the lithium
niobate, but for waveguide applications it is, traditionally, the —c—face which is
the preferred crystal face [28]. If the domain reversal is due to the concentration
gradient, the use of the —c—face is precluded.

(5) In—diffusion/out— diffusion processes necessarily take place at elevated
temperatures close to the Curie temperature. At these temperatures there exists a
danger of exceeding the local Curie point of the crystal in regions outside that
where domain—reversal is to be produced intentionally, thus causing the crystal to

become multi— domain.

The ideal domain reversed grating should have rectangular shaped domains with a
uniform refractive index profile along the propagation direction. The fabrication
process should also cause no increased susceptibility to optical damage, should
produce domain reversal on the —c—face and should take place at low

temperatures (c.f. Curie temperature).
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5.2.4 Fabrication of periodic domains by electron beam bombardment of lithium

niobate

An alternative technique for achieving domain reversal in bulk lithium niobate was
demonstrated by Haycock and Townsend [32], for which they have offered the
following explanation. The technique involves generating a temporary, or
transient, vacancy in the oxygen triangle, thereby opening a pathway for lithium
ion motion. If an electric field is then applied along the c—axis, as in
conventional poling, the fixed site occupancy of the lithium ions with respect to
the oxygen triangle will be removed and the lithium ions will move to form an
unpoled intermediate state followed by an ordered, i.e. poled, structure in the
opposite direction.

The key step in the process is to generate the transient vacancy in the oxygen
plane. Figure 5.3 explains diagrammatically what is meant by the phrase
"transient vacancy in the oxygen plane®. Townsend and Haycock considered that
if the oxygen ions were excited by ionising radiation then a possible relaxation
route would be the formation of a metastable oxygen molecular ion. In this
configuration, the physical size of an oxygen molecule is comparable with the size
of a separate oxygen ion and hence a vacancy in the oxygen triangle may
appear. The ionic radius of an oxygen ion is typically 0.135 nm, and in
molecular oxygen the separation of the nuclei is 0.121 nm. To reverse the
direction of the spontaneous polarization the lithium ions need only be moved
approximately 0.05 nm to cross the oxygen plane and thus the metastable
molecular oxygen state need only exist for a few picoseconds [32]. Figure 5.4 is a
diagrammatic representation of the domain reversal process. The process can be
carried out using energetic electrons as the source of ionising radiation. In order
to re—pole the crystal, an electric field was applied along the crystal c¢— axis.
The electron beam was normal to the —c—face of the crystal and covered the
entire surface area of the —c—face. For a crystal of thickness 1 mm, an electron’
beam energy of 1.8 MeV was sufficient to traverse the whole of the sample.
Domain reversal was demonstated at temperatures as low as 600°C, using electric

fields of the order of 10 Vem™ ', with electron currents in the range 1—3 pA.
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figure 5.3 Illustration of the mechanism for the
formation of a transient wvacancy in the oxygen triangle.
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figure 5.4 schematic of apparatus for performing electron
beam domain reversal

This technique has significant potential advantages for domain reversal in lithium

. niobate for nonlinear device applications:—

(1) At temperatures close to the Curie point, any fluctuations in the local
temperature distribution may cause domain reversal to take place. These randomly
formed domains are equivalent to fluctuations in the domain periodicity and lead
to a non—uniform grating. For domain reversal at lower temperatures, the
formation of random domains is less likely, so that it may be possible to produce

highly regular domain— reversed gratings. Also, at these lower temperatures,
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out— diffusion of lithium, which would cause (unwanted) domain reversal, should

be less significant (although out— diffusion of oxygen may be a problem).

(2) There is no need for the in— diffusion of any tranmsition metal species, thus
reducing the risk of increasing the optical damage susceptibility of the lithium

niobate substrate.

(3) The domain reversal can be localised by photolithographically defining an
appropriate area in a suitable metallic masking layer. By defining a periodic
- grating in a suitable masking layer, a periodic, domain—reversed region may be
produced.

Points (1) and (2) also mean that there should be much less modulation of the
refractive index than is found for the case of titanium-— indiffused or lithium oxide
out— diffused domain—reversal. For quasi phase—matched second harmonic
generation applications, there are two further important aspects to this process.

These are:—

(1) that it allows domain reversal to take place on the —c—face of the substrate,

usually the preferred face for waveguide fabrication, and that,

(2) by suitable choice of electron energy, the depth of penetration of electrons
into the substrate material can be controlled. This potentially allows the depth of
the domain reversed regions to be defined and controlled. The depth of domain

reversal can then be chosen to optimise the conversion efficiency [13].

Using the electron bombardment technique, this author (and co— workers) has
demonstrated that periodic domain— reversed gratings can be fabricated on the
—c—face of a lithium niobate wafer [33]. The gratings were realised by
photolithographically defining a metallic grating mask on the —c—face of the
substrate, The domain reversal was carried out by Dr. B. Luff and Professor P.
Townsend at the University of Sussex using a similar technique to that of
Haycock and Townsend. The electron energies were suitably reduced so that the
electrons would penetrate only a short distance into the substrate.

The interaction of an electron beam with a solid is a complex interaction. Before

ultimately losing all its energy or escaping from the material, the electron may
undergo hundreds or thousands of scattering events, which may be either elastic

or inelastic processes. However, the many ways in which a given electron could

104



complete the sequence of interactions precludes the construction of a detailed
analytical model. In order to model the passage of an electron subject to these
random scattering processes, a mathematical technique known as the Monte— Carlo
method can be used. Monte— Carlo techniques use random numbers as a means
of predicting the magnitude of various events and as a way of selecting between

the various scattering events.

The Bethe relation describes the rate of energy loss of an electron as it passes
through a solid. It relates the rate at which an electron loses energy via the
various scattering events to the density, atomic number, the mass number and the

ionisation potential of the element. The relation is written formally as [34]:—

OE (keV/em) = —78500.(p.Z/A.E).log(1.166.E/J) (13)

where E is the initial energy of the electron, d4E represents the derivative of
energy of the electron with respect to penetration distance s, p is the density of
the element, Z and A are the atomic and mass numbers repectively and J is the
ionisation potential given by:—

J (keV) = {9.76.Z + (58.5 / Z°-19)}.10” 3 (14)

A Monte— Carlo simulation of the Bethe relation [34] was used to calculate the
electron penetration depth as a function of electron energy. In the model it was
assumed that the electrons undergo only elastic scattering events and that the
electrons lose energy continuously at a rate determined by the Bethe relation.
The author is indebted to Dr G. Sinclair, Dept. of Physics and Astronomy,
University of Glasgow, for providing the program and for invaluable advice on
the validity of the program.

The Bethe relation is strictly only valid for electron ranges calculated in
elementary condensed materials. In the model, the penetration depth is dependent
on the atomic number and mass number of the element and also on the
ionisation potential of the element (which is itself related to the atomic number).
To calculate the electron range in lithium niobate, the compound was treated as
a single element, in which the atomic number, the mass number and the
ionisation potential were approximated by calculating a weighted average for each
using the appropriate values for the atomic numbers and mass numbers for
lithium, niobium and oxygen respectively. The weighted average for the atomic

number is used to calculate the weighted average ionisation potential via Eq. 14.
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Figure 5.5 shows a graph of penetration depth as a function of incident electron
energy. The calculation does not take the temperature of the substrate into
account and it would be expected that, at the temperatures to be used for
domain reversal, the electron energies required will be greater than those

indicated by the analysis, due to increased scattering.
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Also shown in Fig. 5.5 is the penetration depth of electrons into gold. Gold was

chosen as the masking layer for three reasons;

(1) It is compatible with standard photolithographical techniques.

(2) It is an efficient absorber of electrons and so only a thin layer is required.
For the grating dimensions to be used in the experiment, as thin as possible an
absorbing layer is an essential requirement as it allows the height to width ratio

of the metallic grating to be minimized, simplifying the photolithography.

(3) It is an electrical conductor and therefore facilitates application of the poling
field to the crystal.

5.2.5 Fabrication of grating structures.

This section is split into four sub— sections, each of which deals with a different

part of the grating fabrication process.

.2.5.(i) Determination of the gratin eriod required.

Before any fabrication details could be decided on, it was necessary to establish
the grating period required to provide first order quasi phase— matching at a
fundamental wavelength of A = 1.06 um. The grating period is dependent on the
depth of the proton— exchanged waveguide used because of the dependence of the
effective refractive index on the depth of the waveguide region. In chapter three
it was shown that the conversion efficiency for second harmonic generation via
Cerenkov radiation was a maximum at a waveguide depth of around 0.75 um. As
a first approximation it was assumed that the conversion efficiency in the quasi
phase— matched case will be optimised for the same waveguide depth (or a depth
close to this value). From Eq. 3, the required grating period is:—

e = »/ & (5.15)
where Ak = 2.k,.(N,, — N (5.16)
ie.:=

le = x/ {2k, (N, — Ny} (5.17)
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In Eq. 12, k, is the wavevector of the fundamental wavelength in free space and
N,, and N, are the refractive indices of the guided modes at frequencies 2w and

w respectively.

The required grating period was determined by fabricating a series of neat melt
proton— exchanged waveguides with depths covering a range around the predicted

required depth i.e.:—
0.65 ¢ d ¢ 0.85 um (5.18)
(here d is the waveguide depth, not the nonlinear coefficient).

For each waveguide, the prism coupling technique was used to measure the
effective index of the zeroth order waveguide mode at the fundamental wavelength
of N\ = 1.06 ym and at the harmonic wavelength of 0.53 wum. The harmonic
wavelength was in fact generated by frequency doubling the fundamental beam in
a proton— exchanged waveguide. Figure 5.6 shows an experimental graph of the
effective index of both the fundamental and harmonic wavelengths as a function

of waveguide fabrication time (in minutes).

A waveguide depth of 0.75 ym was found to correspond to a fabrication time of
22 minutes for a (benzoic) acid temperature of 235°C. From the graph, the
index difference between the fundamental and harmonic waves is 0.154. The
corresponding grating period, calculated from Eq. 17 is 3.44 um. It can also be
seen from the graph that, within the range of fabrication times investigated, the
grating period is approximately constant for each waveguide depth (see Fig. 5.7).
Having established the period of the grating, it was decided that the depth of the
domain reversed region should be approximately 1 um. This depth was chosen to
be greater than the waveguide depth, but not so deep that too thick a layer of
gold was required for the mask. From Fig. 5.5, the thickness of gold required
was 0.4 um. |
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5.2.5.(ii) Grating fabrication procedure.

The grating fabrication procedure is outlined in this section. A more detailed

step— by—step recipe is given in the appendix at the end of the chapter.

A dark— field (positive) mask was prepared with a period of 3.4 um, with a total
of 295 periods and with a transverse width of 1 mm. The substrates used in the
experiment were polished on the —c—face but not on the +c—face. There was
no specific reason for using an unpolished + c—face, but the surface roughness
appeared to promote good adhesion between the substrate and the metal. A thin
layer (50 nm) of "chromel”, (90:10 nichrome:chromium), was first evaporated
onto the +c—face of the lithium niobate. This layer was used to act as an
adhesion "buffer” between the gold and the lithium niobate. The adhesion of gold
to lithium niobate iIs poor, but it does adhere to a thin layer of chromel. The
evaporation of the chromel was followed by the evaporation of 200 nm of gold.
These metal layers were to provide electrical contact to the rear face. On the
—c—face a thin layer of chromel was again evaporated, followed by the 400 nm
of gold required to prevent the electrons penetrating the lithium niobate. The
grating was then defined in photoresist and etched. This was carried out by wet
chemical etching in a saturated solution of potassium iodide in iodine solution,
diluted 1:1 with RO water to slow the etching process down and make the
process more controllable. The chromel layer performed a second function since,
after the gold was etched to produce the grating, the chromel buffer layer served
to provide electrical contact to the —c—face. The resulting grating structure is
shown schematically in Fig. 5.8.
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5.2.5,(jii), Domain reversal procedure.

An outline of the domain reversal process has already been given. For the
samples used to fabricate domain reversed gratings the fabrication conditions were
as follows. The nominal temperature of the substrate was 580°C. A poling field
of 10 Vcm™ ' was used, with an electron beam energy of 10 keV and beam spot
size of 9 mm?2. The electron beam current used was 8 pA for a period of 1

hour, and a total dose of approximately 10'7 electrons was used.

5.2.5.(iv). Test for domain reversal.

The gold and chromel layers were first removed from the substrate by wet
chemical etching (see appendix for details of the etchants). At temperatures of
around 580°C in vacuo, the lithium niobate was partially reduced and therefore,
after removal of the metal layers, the sample was annealed in air for 5 hours at
650°C to replace the lost oxygen. The domain reversed regions of lithium niobate
could then be revealed by etching in a 1:2 mixture of hydrofluoric and nitric
acids. This etchant attacks the — c—face, whilst the -+ c~face remains unetched.
Domain—reversed regions were therefore shown up because of the differences in
the etch rates. This is the most common test for domain reversal [35], although
other tests based on the pyroelectric effect or the piezoelectric effect [36] have
also been used. Given the dimensions of the grating structures involved in this
work, the last two techniques are not easy to implement as a check for domain

reversal.

The acid temperature used for the etching was in the 30—40°C temperature
range. It was found that in this temperature range the etch rate was well
controlled, resulting in etch times of 5—10 minutes. Figure 5.9 shows a graph of
the measured etch rate versus acid temperature. At high temperatures, etching of
the substrate was rapid, resulting in an over— etching of the substrate. Also, from
a safety aspect, it was preferable to carry out the etching at lower temperatures.
Figure 5.10 shows a scanning electron micrograph of part of the grating structure
after etching, with the domain reversed—regions clearly visible. Generally similar

features were observed optically.

A number of samples were produced over a period of several weeks to check the
reproducibility of the process. Although the photolithography involved is tedious
and time consuming, if care is taken the process is highly repeatable. After the
photolithography stages a yield of around 40— 50% was obtained of samples which
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were suitable for domain reversal. After the conditions had been established for
the domain reversal process, each fabrication was apparently successful. A total of

6 samples was Dreoared.

figure 5.10

5.2.6 Quasi phase—matched second harmonic generation.

Of the six samples that were prepared, three were used for etching, rendering
them wuseless for second harmonic generation. The final three did not arrive in
the laboratory wuntil after the author had left. This was unfortunate because,
although a successful process for domain reversal has been established, it has not
been possible to confirm that the samples could be wused to produce second

harmonc generation in the quasi phase—matched mode.

5.3.1. Measurement of the d30 coefficient of proton—exchanged lithium niobate.

As was stated in the introduction to this chapter and also in chapter one, the

electro—optic coefficients of proton—exchanged lithium niobate are, in some cases,



were suitable for domain reversal. After the conditions had been established for
the domain reversal process, each fabrication was apparently successful. A total of

6 samples was prepared.
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5.2.6 Quasi phase— matched second harmonic generation.

Of the six samples that were prepared, three were used for etching, rendering
them wuseless for second harmonic generation. The final three did not arrive in
the laboratory until after the author had left. This was unfortunate because,
although a successful process for domain reversal has been established, it has not
been possible to confirm that the samples could be used to produce second

harmonc generation in the quasi phase— matched mode.
.3.1. Measurement of the d coefficient of proton— exchanged lithium niobate.

As was stated in the introduction to this chapter and also in chapter one, the

electro— optic coefficients of proton— exchanged lithium niobate are, in some cases,

114



reduced significantly with respect to those of bulk Ilithium niobate. The
electro— optic and nonlinear coefficients are closely related material parameters
through the second order susceptibility tensor (for the arguments presented in the
following discussion the nonlinear coefficient is taken to mean the relevant dijk
tensor component of lithium niobate). This observed reduction in the
electro— optic coefficient indicates that the nonlinear coefficient may also be

reduced by the proton— exchange process.

A knowledge of the magnitude of the nonlinear coefficients of the
proton— exchanged lithium niobate is therefore necessary for at least two reasons

from a device point of view:—

(1) If the nonlinearity of the waveguide region is reduced by proton— exchange
then the conversion efficiency for second harmonic generation will be different
from that which might be expected (assuming no degradation of the nonlinear
effect). If the second harmonic generation is phasematched either by the material
birefringence or by a grating structure then the conversion efficiency will be
reduced by the decrease in the nonlinearity. If the second harmonic generation is
phasematched via Cerenkov radiation then the conversion efficiency will be
increased by the decrease in the nonlinearity. For conventional phasematching the
reduction can be understood by referring to Eq. 4. If the nonlinear coefficient of
the “ideal” waveguide region (with no degradation of the intrinsic nonlinearity) is
denoted by d and of the actual waveguide (with a degradation of intrinsic
nonlinearity) is denoted by d*, with d > d* then the conversion efficiencies are
given by:—

n = Cd? > C.(d*)?

For the case of Cerenkov second harmonic generation, a recent publication by Li
et al [37] bas shown that the conversion efficiency for second harmonic
generation is proportional to the difference between the nonlinear coefficients of
the waveguide and substrate regions. For certain combinations of waveguide
parameters, reducing the nonlinearity of the waveguide region increases the
difference between the nonlinearities of the waveguide and substrate regions, thus
potentially increasing the conversion efficiency. (For a more detailed discussion of

this see chapters two and three).

(2) If the nonlinearity of the proton— exchanged layer is reduced then it may

provide an alternative way of fabricating a periodic modulation of the nonlinear
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coefficient for quasi phase— matched second harmonic generation. For example it
could be envisaged that, superimposed onto a titanium-— indiffused waveguide for
example, a periodic proton— exchanged grating could be fabricated. A fundamental
wave propagating along the titanium- indiffused waveguide would then experience

a periodic modulation of the nonlinear coefficient (see Fig. 5.1).

From the above discussion, it should be clear that a measurement technique to
determine the nonlinear coefficient of proton— exchanged lithium niobate is
desirable. There are many experimental techniques for the measurement of the
nonlinear coefficients of a crystal [38]. Among these techniques, the most
commonly used and most well developed are phase— matched second harmonic
generation [39], the wedge technique [40], Maker fringes [41], and optical
parametric fluorescence [42]. All of the techniques require a bulk sample of the
material for the measurement. Unfortunately, proton— exchanged lithium niobate,
in the form of HyLi,— 4NbO,, has apparently not been produced in bulk single
crystal form. Phase— matched second harmonic generation and optical parametric
fluorescence techniques could, in principle, be used in a waveguide geometry. In
order to evaluate the nonlinear coefficient, a knowledge of the electric fields of
the waveguide modes is required. Consequently, the difficulty of evaluating the
absolute optical intensity profile in the optical waveguide precludes their use in
this way. In a recently published paper [3] Suhara, Tazaki and Nishihara have
demonstated a technique whereby non— phase~ matched second harmonic
generation in a grating structure can be used to measure the d,, coefficient of
proton— exchanged lithium niobate. Using this technique they have estimated that
the d,, coefficient is reduced to 0.45 of that of bulk lithium niobate.

In the second half of this chapter, the theory and experimental technique
developed by Suhara et al [3] will be outlined. The nonlinearity is measured by
non— phase— matched second harmonic generation in a wedged— shaped substrate
with a proton— exchanged grating region. Using the grating technique, this author
has repeated the experiment of Suhara, and has further extended the experiment
by measuring the effect of annealing on the nonlinearity. It was confirmed that
the proton—exchange process does reduce the nonlinearity of the lithium niobate.
Furthermore, the experimental results were in close agreement with those of
Suhara et al [3]. It was also found that annealing the proton— exchanged layer
tended to restore the nonlinearity of the proton— exchanged region, a result not

unexpected from previous work on electro— optic coefficients.

Following a description of the work and analysis of the results, a section will be
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devoted to a discussion- of the possible mechanism for the reduction of the

nonlinearity of the lithium niobate substrate after proton— exchange.

5.3.2 Measurement of d_ . by the grating diffraction technique.

In this section the theory of the measurement will be outlined, followed by a
description of the experimental technique. Only an outline and the final results of
the theory will be given, followed by some results generated by a computer
calculation using the theory of Suhara et al [3]. No details of the theory will be
given because, firstly, it is not original work by this author, and secondly,
although an attempt was made to derive the results, the author could not reach
the same final results as published by Suhara et al [3]. The published equations
of Suhara et al were taken as correct, and the inconsistency with this author's
own derivation attributed to his lack of insight into solving the Maxwells equations
with the relevant boundary conditions. The justification for accepﬂng the theory
of Suhara et al is the agreement between the theoretical model and the
experimental results. Further confidence was engendered by the agreement of the

computer— generated results obtained by the author with those of Suhara et al.

Consider non— collinear second harmonic generation in a thin slab of lithium
niobate of thickness T (see Fig. 5.11).
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figure 5.11 SHG in a thin slab (top) and in a wedze
shaped (bottom) substrate
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The fundamental beam is polarised along the c—axis of the crystal. The intensity
of the second harmonic, with the same polarisation as the fundamental, is given

by:—
1= C2 Ipz. sin2(«xT/1.) (5.19)

where C is a constant proportional to d,,, Ip is the fundamental intensity, and
lo is the coherence length. For the case of second harmonic generation in a
wedged shape sample, the harmonic intensity is averaged over the thickness T,

and is given by:—
1= Cz2 Ip2 /2 (5.20)

The intensity of the second harmonic wave generated in a wedge with a thin
proton— exchanged surface layer (of thickness t), as in Fig. 5.12a, can be
calculated by connecting the wave equation solutions at the proton— exchanged
layer/substrate interface, and averaging the intensity over T. The result can be

written as:—

_ 1,2 | . , dn . (ednpg)l 2
I, = C2 1 + "1 + j.2. X, dnpg).
a —a+ j ﬂnPExsm(% PE)-¢ 2 ,

1,2 | dnp N i(ednpE)| 2
= C2 {1+ ALl 3.2.3311;NE.x.sm(¢tdan).e F)} |

(5.21)
where

o = 2.x.U\

én = npg® = n N
dopN = pIN® — pLN?¢
dnpg = mpg® — npg?®

with n the extraordinary refractive index , and A and « the wavelength and
frequency of the fundamental beam.

Fig. 5.12b shows second barmonic generation in a wedge with a thin
proton— exchanged grating layer (of thickness t and period A). The pump beam is
diffracted into many orders by the periodic index modulation in the grating layer

and, simultaneously, second harmonic waves of many diffraction orders are
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generated by the periodic modulation of the d coefficient.

a&

Ip

input beam

-:::::£1{>SH beam, 1

MNP TR

proton-exchanged
region

4st order fundamental

//1 2nd order SHG

"#’,;a 1 st order SHG,Ib

Ip

_‘D [ 8 order beanms
\ﬂ 1 st order SHG,I

\\\\;;\Eﬁ 1st order fundamental

2nd order SHG

input beam

/

proton-exchanged
grating

figure 5.12 SHG in a wedge shaped substrate with planar
PE=region (top) and grating PE region (bottom)



The nonlinear coupling of the zeroth and first order fundamental frequency beams
in the substrate generates a second harmonic beam which propagates at an angle
exactly matching that of the first— order, second harmonic, beam yielded by the
grating. Thus the second harmonic beam detected at this angle is a superposition
of second harmonic diffraction in the grating and noncollinear two— beam pump
second harmonic generation in the substrate. When the grating is thin, i.e. in the
Raman— Nath diffraction regime (Q=2x)\t/nA?2 << 1), the second harmonic

intensity can be calculated by :—
(1) deriving expressions for the pump and second harmonic wave amplitudes
through a thin extended layer of lithium niobate, of thickness t, and deriving

similar expressions for the proton— exchanged layer,

(2) expressing the fundamental and second harmonic waves at the grating/substrate

interface in a Fourier series consisting of spatial harmonics

(3) using the first order second harmonic diffraction amplitude as the initial value
to integrate the wave equation for the noncollinear second harmonic generation in
the substrate and

(4) averaging the second harmonic intensity over the thickness T.

The result can be written as:—

sin(a 2
Ip = cz.lpz.—:)-.{qu) -z} - '117.!,11} (5.22)
where:—
Zx) = x.%—gl;gsin(qdnpg).e je(dnpg—1.56n)
— sin(pydng )€ jr(0.58n+dnj )
and
z, = 2.sin(¢t.0.56n).|1—’.2.a.sin(pt.0.56n).exp ~ jp(0.58m) | |

In Eqs. 5.21 and 5.22 above, a is the ratio of the proton exchanged stripe width
to grating period.

It is the parameter x which is important and is defined as:—

x = d,,PELN / d,,LN (5.23)

—
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Ib/Ia vs X

i.e. the ratio of the d,, coefficients of the proton— exchanged lithium niobate
and the bulk lithium niobate. The x value can be determined by comparing the
measured ratio of Iy/I,, with the calculated x dependence of Iy/I,. It should be
noted that Iy/I, does not depend on the pump intensity, so that the
measurements should give reliable results even when using a pulsed fundamental
beam with a nonuniform (Gaussian) profile. Egs. 5.21 and 5.22, based on the
equations of Subara et al [3], were solved numeriaclly on a computer. Fig. 5.13

illustrates a typical calculated relationship between x and the ratio Iy/1,.
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figure 5.13 theoretical plot to determine the reduction
in d33 from the measured harmonic radiation intensities
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The value of the parameters a and t for this curve were 0.5 and 2.0 um
respectively. The shape of the curve and the magnitude of the ratio of intensities
(plotted on the y—axis as Iy/I;) are very similar to those of the published curve
of Suhara et al [3]. Based on this close agreement, the published results of
Suhara et al [3] were taken as correct. A series of experiments was then carried
out to measure x for both an unannealed waveguide and a waveguide annealed

under specific annealing conditions.

2.3.3 Experimental determination of d__.

The proton— exchanged layers were fabricated in neat melt benzoic acid at an
acid temperature of 2359C. For an exchange time of 1 hour, the depth of the
proton— exchanged layer should be on the order of 2 um. One sample was
masked by photolithographically defining an aluminium film with a grating of
period 24 um. The other sample was exchanged without masking to produce a
uniform proton— exchanged layer. The two samples were coated with aluminium
on the rear face to prevent the creation of a second proton— exchanged layer on
that face. Both samples were polished into a wedge with a 2° angle. The
waveguide depth and refractive index were estimated before and after each
annealing stage in a reference planar waveguide fabricated under identical
conditions. Using an IWKB analysis [43], the initial waveguide depth was
measured to be 1.95 um, close to the estimated depth of 2 ym. By illuminating
the grating with a He—Ne laser (A=0.6328 um) and measuring the relative
intensities of the diffraction orders, the ratio of the width of the
proton—exchanged layer to the grating periodicity (stripe—to— period ratio) was
estimated. The ratio was estimated to be 0.51 for the unannealed grating. This
value was expected from the photolithographic definition of the aluminium mask
and was also anticipated from early work on lithographic definition of
proton— exchanged structures where lateral diffusion of proton— exchanged stripes

was small [44].

The output of a Q-—switched Nd:YAG laser was used as the fundamental beam
(>=1.06 pm). The Q- switched pulses of 200 ns duration with a repetition rate
of 1 kHz were used. Although the beam was collimated, there was no need for
any form of spatial filtering because, as has been discussed, the measurement is
independent of the intensity of the fundamental beam. The experimental set up is
shown in Fig. 5.14. For an (estimated) initial proton— exchanged layer depth of
1.95 pm, it was found that there was no second harmonic wave for the zeroth

diffraction order. This was not completely unexpected because, for an initial



proton— exchange depth of 1.95 um, there is .almost x phase difference between
the optical path lengths of the second harmonic wave generated in adjacent

proton—exchanged and bulk regions of the grating structure. This can be

. . detection
Q-switched Nd:YAG laser e system
e
collimating
optics sample

diffracted light
at fundamental
and harmonic
wavelengths

figure 5.14 experimental arrangement used in the
measurement of d33

justified by the following argument. Denote the phase of the harmonic wave in
the proton— exchanged region by ¢, and in the lithium niobate region by ¢,.
The optical path difference, &, between the harmonic waves after propagating a
distance equal to the depth, d, of the proton—exchanged region is then:—

5 = (d/N.(npg — nIN) (5.249)

(d/3).(2.37 — 2.25) = 0.45 = 0.5

Thus there is almost a x phase difference between the harmonic waves generated
in adjacent proton—exchanged and lithium niobate regions. As the grating was
annealed, this phase difference was reduced and the intensity of the zeroth order

harmonic beam increased.
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For the initial, unannealed, proton— exchanged layer, the value of x was found to
be 0.45 (20.05). This value agrees with that measured by Suhara et al. and
indicates a substantial reduction in the nonlinear coefficient of the

proton— exchanged layer relative to the bulk value.

2.3.4 Effect of annealing on d_,

After the first set of measurements, both the planar proton— exchanged samples
and the proton— exchanged grating sample were annealed at 275°C for 10 min,
followed by annealing at 350°C for successive periods of 5 min, 5 min, and 10
min. Any further annealing was expected to give a significantly graded— index
profile which is not desirable for second harmonic generation applications (see
chapter 3) and therefore no further annealing was carried out. After each
annealing stage the waveguide depth and refractive index change were measured
in the plane sample and the grating stripe— to— period ratio was re— measured in
the wedged sample. Over the annealing period of 30 min, the waveguide depth
increased from 1.95 um to 3.06 wm and the estimated refractive index changed
by less than 1%. The waveguide depths and refractive index were estimated by
an inverse WKB fit to the measured effective refractive indices of the guided
modes at A = 0.6328 ym. From the measurements of the relative intensities of
the diffraction pattern of the He— Ne laser light, the measured grating
stripe— to— period ratio appeared to remain constant over the annealing period. It
might have been expected that, due to lateral diffusion of the proton— exchanged
region, the stripe—to— period ratio would increase with progressive annealing.
Assuming that the effective diffusion coefficient for annealing is equal in both the
lateral and depth directions (valid as a first approximation), then annealing should
increase the proton— exchanged stripe width from 12.0 to 14.6. For a pure phase
grating, this may not be enough to have a measurable impact on the diffraction
pattern envelope (at least with this experimental arrangement) and consequently

the measured stripe— to— period width would appear to remain constant.

After each annealing stage the new values for waveguide depth and refractive
index were substituted into the analysis and a new curve for I/l calculated. As
an example, Fig. 5.15 shows the curve for Iy/I, after annealing for a total of 15
min. As the annealing progressed it was found that the nonlinearity of the
proton— exchanged layer increased. Figure 5.16 shows the increase in the
measured value of d,, as a function of annealing time. The estimated value of x

increases from an initial value of 0.45 (:0.05) to a value of 0.65 ($0.02) after 30
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figure 5.15 experimental plot of the harmonic radiation
intensities for the determination of dj3



d33 (pe) vs time

25

20

15
time  (min)

10

N n
o n n < <

(") (ad)Eep

.65

figure 5.16 plot of measured reduction in d33 as a
function of annealing time
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min of annealing. If the effective diffusion coefficients in the lateral and vertical
directions are assumed to be equal, and the stripe width increases to 14.6 um
after the final annealing stage, the final value for x would be 0.67. This is close
to the estimated value of 0.65. Figure 5.17 shows a curve of the magnitude of
the d,, coefficient of proton—exchanged lithium niobate as a function of

annealing time, assuming a value of 34.4 pm/V for the d,, coefficient of bulk
lithium niobate.
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5.3.5 Mechanism for the reduction_in nonlinearity.

Before a possible mechanism for the reduction in the nonlinearity of lithium
niobate due to proton— exchange can be discussed, the origin of the nonlinearity
of lithium niobate crystals must be established. There are several theoretical
models which calculate the magnitude of the nonlinearity of ecrystals such as
lithium niobate. Only one model will be discussed, namely the model of Jeggo
and Boyd, [45]. This model decribes the nonlinearity in terms of the
polarisabilities of the Nb — O bonds within the unit cell of the crystal.

In the model of Jeggo and Boyd, (“the model"), the macroscopic nonlinearity of
the crystal is related to the microscopic nonlinear polarisability of the chemical
bonds within the unit cell. For lithium niobate there are two independent tensor
coefficients of the polarisability — £,, and f. where:—

B” = ﬁuu and ﬁ& = ‘%Dﬂ = ‘%wz

It has been shown [46] that 8, » B. (by a factor of about 30) and so F. can
be neglected.

If a bond i has direction cosines (l;, m;, n;) then the second harmonic

coefficients are given by:—

d,,, = V 1In.}; 2.6 (5.25a)
dy,, = V_ LIn;26 (5.25Y)
d,,, = V 1.Im36 (5.25¢)

where the sum is taken over all the bonds in the unit cell of volume V.

In the lithium niobate unit cell there are twelve "covalent® Nb — O bonds, six
of length 0.211 nm and six of length 0.189 nm. The lithium atoms are bound
"ionically” to the oxygen atoms. Consequently, the electrons in the Li — O bond
are only weakly polarizable. A wvalid assumption therefore is that the polarizability
of the crystal is due solely to the twelve Nb — O bonds. Ascribing polarizabilities
B, and B8, to the 0.189 nm and 0.211 nm bonds repectively, the three nonlinear
coefficients can then be written [45] as:—

dyy, = dg, VT (1.104.8, — 1.106.8,) (5.26a)

d,, = V~1(0.643.8, — 1.796.8,) (5.26b)

d333
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dy,, = dy; = V7 1(0.396.8, — 0.195.8,) (5.26¢)

It can be seen that in lithium niobate the magnitude of the d,, coefficient is
dependent on the geometry of the unit cell which in turn determines the unit cell
volume and the length of the Nb — O bond. In a more detailed derivation of
the bond polarizability (see, for example [38] for a detailed model of nonlinear
polarizabilities) it is found that the coefficients 8, and £, are strongly dependent
on the Nb — O bond length.

The origin of the reduction in the d,, coefficient can be related to the change

33
in the structure of the unit cell as the proton exchange process proceeds. As was
discussed in chapter 1, the proton— exchange process can be described by the

equation:—

H + LiNbO, ——=> Li,— yH,NbO, (5.27)

As the reaction proceeds and the value of x increases, the strain in the crystal
increases, changing the unit cell from a rhombohedral—like unit cell structure to
a more tetragonal unit cell structure [1]. Microscopically, the structural changes
bhave the following effects:—

(1) The induced strain Ac/c = 0.45% [1] increases the volume of the unit cell,
which in turn leads to a reduction in the nonlinear coefficients through Eqgs.
26(a—c).

" (2) Changes in the unit cell shape will lead to changes in the bond angles and
therefore in the direction cosines l;, m;, n;. The changes will also lead to a
change in the nonlinearity, a change which could be either positive or negative.
The direction of the change can only be derived from a detailed calculation of
the direction cosines, a calculation which would require a detailed knowledge of
the structure of Li,_ yH,NbO ..

In order to evaluate fully the reasons for a change in the nonlinear coefficients
of proton—exchanged lithium niobate a more detailed knowledge of the crystal
structure of the material is required. To the author's knowledge, the crystal
structure of proton— exchanged lithium niobate is still unknown and no theoretical
calculations of the type detailed above have been carried out to calculate the
nonlinear coefficients of proton— exchanged lithium niobate. This structure must

first be determined before the reasons for a reduction in the nonlinear and
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electro— optic coefficients can be fully quantified and understood.
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ndix.

This appendix presents, in detail, the steps involved in the fabrication of the
grating structures.

(1) Cleaning.

The substrates were cleaned by scrubbing with a sponge in soapy water followed
by successive ultrasonic baths in trichloroethylene, methanol, acetone and finally
water.

(2) Photolithography (rear face).

A metal electrical contact was required on the rear face. The sequence of steps
was =

Spin on Shipley 1400— 31 photoresist for 30 seconds at 4000rpm.
Bake for 30 minutes.

Expose and develop resist using the rectangular mask. (This mask was just smaller
in size than the substrate. This was to ensure electrical isolation of the side
walls).

Rinse in RO water and dry completely.

Evaporate 50nm of chromel followed by 200nm of gold.

Lift— off in acetone.

Spin on 1400— 31 on rear face to protect the gold metal.

(3) Photolithography (front face).

Ensure that the —c—face of the wafer is spotlessly clean.

Evaporate 50 nm of chromel followed by 400 nm (or more) of gold.

Spin on Shipley 1400— 17 photoresist for 30 seconds at 4000rpm.

Ensure that the mask is clean by soaking for 5 minutes in an etch consisting of
1:7 hydrogen peroxide to sulphuric acid (each time the mask was used it was
re— cleaned in the etch to remove any residual photoresist).

Expose the grating for 2.25 minutes.

Develop for 60 seconds.

Etch gold in 1:1 saturated potassium iodide in iodine solution and RO water for
30~ 60 seconds.

Remove the remaining resist and dry the sample completely.
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The nichrome etch was a mixture of hydrochloric acid and RO water in the ratio
4:1.

134



HAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Summary and conclusions

This thesis has reported a theoretical and experimental study of second order nonlinear
effects in optical -waveguides farmed by proton— exchange in lithium niobate. Chapter one
served as a general introduction to nonlinear optics with special attention to second order
nonlinear effects in both bulk and waveguide materials. It also reviewed the crystal
structure of lithium niobate with respect to second order nonlinear effects and also
introduced the proton—exchange process for the fabrication of optical waveguides in

lithium niobate.

In chapter two a more detailed explanation of second order nonlinear effects in optical
waveguides was presented, including second harmonic generation via the Cerenkov effect.
The bulk of the chapter was devoted to outlining a model derived for the case of second
harmonic generation via Cerenkov radiation in proton— exchanged waveguides. The difficulty
in modelling the radiation modes of the harmonic light was dealt with by using a theory
developed previously for electro— optic coupling to radiation modes, used in d3evices such
as cut— off modulators. Although the theory is simplistic, it nevertheless allows a qualitative
understanding of the problem and models fairly well the shape of the conversion

efficiency/waveguide depth curve.

Chapter three was devoted to reporting the experimental work carried out to measure and
characterise the Cerenkov second harmonic generation process in proton— exchanged
waveguides.It was found that the optimum depth of waveguide fpr maximising the
conversion efficiency of second harmonic generation in planar waveguides was of the order
of 0.7 um. Using a Q- switched Nd:yag laser a maximum conversion efficiency of 1
%W— 1 was measured. It was found that there were two peaks in the conversion
efficiency /waveguide depth curve (at least to the maximum waveguide depth used in the
work), in agreement to the predicted behaviour. After annealing the waveguides, known to
restore the electro— optic effect in proton— exchanged waveguides (and also shown in a
susequent chapter of the thesis to restore the nonlinear coefficient), led, in most cases, to
a reduction in the conversion efficiency. It was argued that this reduction was probably a
result of changing the overlap integrals and the increase in the nonlinear coefficient. The
reduction in the conversion efficiency post— annealing was predicted by the simple model
of chapter two. Second harmonic generation was also carried out in stripe waveguides with
both a c.w. Nd:yag laser and a c.w. high output power semiconductor laser. The increase

in the power densitywithin the waveguides allowed conversion efficiencies as high as 2.4
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%W-— 1 for the Nd:yag laser and 2.8%W— 1 for the semiconductor laser.

It has been reported by several independent research groups that proton— exchanged
waveguides fabricated using phosphoric acids exhibit a higher refractive index difference
and have lower propagation losses than waveguides formed using benzoic acid. Waveguides
formedwith phosphoric acid could potentially give a higher conversion efficiency for second
harmonic generation. A series of waveguides was fabricated using both benzoic acid and
pyrophosphoric acids. It was found that the diffusion coefficients were the same for both
acids, in contradictionto some reports, and that the refractive index change was only
slightly higher in pyrophosphoric waveguides. The difference between the two refractive
increases was not found to be as high as in other reports. Using the model developed in
chapter two, it was calculated that the pyrophosphoric acid waveguides would produce
more efficient second harmonic generation but only by a factor of 20% or so. This was
confirmed experimentally using planar waveguides fabricated using each acid. Also reported
in this chapter was experimental work carried out to investigate second harmonic
generation in MgO—doped lithium niobate crystals. These crystals have a reduced
susceptibility to optical damage with respect to undoped lithium niobate . The crystals can
therefore be used with higher optical powers without causing optical damage to the crystal.
This potentially would allow higher conversion efficiences to be attained. The crystals are
especially useful in  applications involving second harmonic  generation  with
titanium— indiffused waveguides where optical damage can be a significant hindreance to
high conversion efficiences. The inherently superior optical damage performance of
proton— echanged waveguides means that optical damage was not found to be a problem.
However, second harmonic generation in MgO- lithium niobate was investigated, again
using benzoic acid and pyrophosphoric acid. It was found , in agreement with other
authors, that the diffusuion coefficient was lower for the doped material and again the
diffusion coefficient was the same for both acids, consistent with the observed diffusion
constants in the undoped substrates. The measured conversion efficiences were similar to
those obtained with the undoped substrates and it was concluded that there is no
significant advantage to be gained by using the doped material under the experimental

conditions used in the work.

Grating structures have a significant role to play in nonlinear optics. They can be used to
provide the "extra" wavevector to allow phasematching in otherwise non— phasematchable
crystals, One increasingly important application for nonlinear integrated optics in lithium
niobate is the use of grating structures for quasiphasematching, i.e. phasematched second
harmonic generation using the nonlinear dss coefficient. Several techniques are known
whereby a periodic modulation of the nonlinear ds3s coefficient can be derived.
Unfortunately they either require specialised crystal growth or can only be realised on the

+ c—face of the lithium niobate crystal which is not the preferred crystal orientation. A
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technique was therefore developed whereby, for the first time, a local periodic modulation
of the nonlinear d3s coefficient could be produced on the —c—face of the crystal. The
technique involved photolithographically defining a grating structure on a gold masking
layer deposited onto the —c—face. The crystal was then heated up to a temperature of
580°C. The sample was then irradiated with a total dose of 10'7 electrons at an energy
of 20 keV for a period of one hour with a poling field of 10 Vem™ ' used to produce
domain reversed gratings of the correct period for quasi— phasematched second harmonic
generation of Nd:YAG laser radiation in a planar proton— exchanged waveguide. A second
use was made of the properties of a grating structure to measure the magnitude of the
nonlinear dss coefficient. The nonlinear coefficient was measured by comparing the
diffraction pattern of the harmonic radiation generated in a wedge shaped substrate with a
planar waveguide region to that produced from a similar wedge with a periodic
proton— exchanged region. It was found that, in agreement with published results, the
nonlinear dss coefficient was reduced to a value of 0.45 times that of the bulk value by
proton— exchange. Extending this work to investigate the effect of annealing it was found
that the magnitude of the nonlinear daa coefficient increased with increasing annealing

time.

As was suggested in the thesis outline one application for Cerenkov frequency doubled
semiconductor lasers is in the field of optical storage. In my opinion the resulting beam
quality of such a device makes there use prohibitive. It would seem far more realistic
however that guided wave frequency doubled devices are very good candidates for such a
practical application. The excellent beam quality from such devices (which can be focussed
down to a diffraction limited spot) mean that they should find widespraed use in optical

data storage systems at least until the practical demonstration of a blue laser.

6.2 Suggestions for future work

There are several aspects of the thesis which warrant further investigation. Firstly, a more
rigorous theory should be developed by solving directly the wave equation under the given
boundary and with more explicit expressions for the radiation modes. Such a theory would
aid the waveguide fabrication and design to maximise the conversion efficiency with the
available fundamental power. In order to improve the conversion efficiency for second
harmonic generation the possibility of fabricating a resonant cavity at the fundamental
wavelength could be investigated. This would involve depositing high reflectivity mirrors for
the fundamental wavelength on the polished crystal end faces to confine the light in the
stripe waveguide. Sohler et al have estimated that such an approach could increase the

efficiency by 4— to 10— fold.

The domain reversal process should be further refined and optimised. The lithography
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stages are tedious to perform and a new approach may produce better and more
reproducible results. Such an approach might include laser beam writing of grating
structures. It is important that domain reversed gratings are used in quasi— phasematching
experiments. This would be an important test of the feasibilty of this appraoch for the

production of domain reversed regions.

Although it was shown that the nonlinear dass coefficient is reduced by the
proton— exchange process further work should be undertaken to investigate the effect of
processing conditions on the magnitude of the reduction. Also an investigation into the
correlation (if any) between the increase in the nonlinear coefficient, a change in overlap
integral and a change in the conversion efficiency as a function of annealing time and
temperature. Such- an in—depth study would give a greater scope for optimizing the
waveguide parameters to maximise the conversion efficiency for second harmonic

generation.

Several of the above ideas could be gathered together in a single experiment to
demonstrate the feasibility of a self—frequency doubled laser. By doping the lithium
niobate with either neodymium or erbium an efficient laser crystal can be realised. The
lithijum niobate waveguide laser crystal is an idealmedium for the realization of a miniature
laser source. By fabricating a waveguide structure the laser threshold is reduced. Dichroic
mirrors could be coated onto the end faces to provide suuficient feedback, whilst an
electro—~ optic modulator would allow Q- switching/frequency control. With a domain
reversed region inclyded on the substrate an all—integrated green laser could be fabricated

with excellent spatial and temporal characteristics suitable for many applications.

138



[1]. "Influence of annealing on the conversion efficiency for SHG by Cerenkov
radiation in proton—exchanged LiNbO , waveguides", G. Arvidsson, F. Laurell, B.
Jaskorzynska, A. Loni, R. W. Keys and R.M. De La Rue, Paper ThA3, Procs.
Topical Meeting Nonlinear Guided Wave Phenomenon: Physics and Applications,
Houston, Texas, 1989, O.S.A.

[2]. "Characterization of proton—exchanged waveguides for second harmonic
generation using Q-—switched Nd:YAG laser pulses', R.W. Keys, A. Loni and
R.M. De La Rue, Procs. IEE Colloquium Applications of Ultra— short Pulses for
Optoelectronics, May 1989.

[3]. *""Cerenkov second harmonic generation in proton—exchanged waveguides",
R.W. Keys, A. Loni and RM. De La Rue, Poster paper, 9—th National
Quantum Electronics Conference, Oxford, 18— 22 September 1989.

[4]. "Proton—exchanged lithium niobate optical waveguides made from phosphoric
acids: detailed studies and comparisons with guides made with benzoic acid”,
M.A. Foad, A. Loni, R.W. Keys, J.M. Winfield, RM. De La Rue, Presented at
Integrated Optics and Optoelectronics, SPIE Procs. 1177, Paper 05, 1989.

[S]. "Cerenkov second harmonic generation in proton—exchanged lithium niobate
waveguides”, R.'W. Keys, A. Loni and R.M. De La Rue, Jnl. of Modern Optics,
37(4), pp.545— 553, 1990.

[6]). "Optical characterisation of Z-—cut proton—exchanged LiNbO , waveguides
fabricated using orthophosphoric and pyrophosphoric acid”, A. Loni, R.W. Keys,
R.M. De La Rue, M.A. Foad and J.M. Winfield, IEE Procs. Vol. 136, Pt. J,
Pp.297— 300, 1989. | |

[7). "Fabrication of domain reversed gratings for SHG in LiNbO, by electron
beam bombardment”, R.W. Keys, A. Loni, RM. De La Rue, C.N. Ironside, J.M.

Marsh, B.J. Luff and P.D. Townsend, Electronic Letts., 26(3), pp.188—190,
1990.

[8]. "Measurement of the increase in the SHG coefficient of proton—exchanged
LINbO , after annealing using a grating diffraction technique”, R.W. Keys, A.
Loni, R.M. De La Rue, ibid., 26(10), pp.624— 626, 1990.

139



[9]. "Characterization of waveguides formed by proton—exchange in MgO—doped
and Nd:MgO-—doped LiNbO,: A comparison with congruent material”, A. Loni,
R.W. Keys and RM, De La Rue, Jnl. Appl. Phys., 67(9), pp.3964— 3967, 1990.

GLASGOW
UNIVERSITY
LIBRARY

140 -



