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ABSTRACT

Many studies have employed automated procedures in well-log 

in terpretation to aid the identification of form ation boundaries, and 

perform cross-correlation between formations in different boreholes. These 

investigations have demonstrated the use of only one well-log variable, 

usually resistivity or Gamma Ray logs in the process. In conventional well- 

log interpretation, different well-log variables or a group of variables are 

used for different tasks. This project makes use of principal components and 

spectral analysis as the basis for well-log interpretation, including automatic 

formation boundary identification and cross-correlation using the first 

principal component of well-log variables.

By transforming a set of well-log data using principal components 

analysis a single new variable is extracted from the first principal 

component scores which accounts for a significant amount of the variation 

within the original data. A further improvement in the results is obtained 

by passing the data through a moving filter to reduce noise.

r\
Boundary identification is performed by generalized distance (D ) 

method.

Cross-correlation between the filtered principal components of two 

boreholes is then made by matching each formation of one borehole with a 

part of another. Both the stretch factor which accounts for thickening or 

thinning between sequences and the relative vertical displacement of the 

formation are calculated. This requires the calculation of the power spectra,



XV

derived form the fast Fourier transform of the principal component data, 

with high pass filtering using the derivative filter to obtain the appropriate 

resolution.

This new technique was applied on model and real well-log data from 

five boreholes in the Attahaddy field, Libya. Although the Attahaddy field is 

structurally complex, the method was found to be reliable at predicting both 

the geological boundaries of the different formations, and the correlation of 

formations between boreholes.

The distinctive value of this new approach is in its application of the 

first principal component of the original well-log variables. Such application 

has^many advantages over the previous studies.

PCAXCOR is a new computer program written in F77 to perform all 

the necessary computation for boundary identification and well-to-well 

correlation based on principal component analysis. Graphical output of the 

results uses a number of new functions in the S language.
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CHAPTER ONE 

Introduction

An understanding of subsurface geology is gained from boreholes and 

m easurem ents of various param eters by w ell-logging tools. The 

information obtained is used to identify boundaries and to establish 

correlation of strata between different wells. Traditionally boundary 

identification and well-to-well correlation are performed using only one log, 

often a resistivity or gamma ray log and requires a thorough understanding 

of these logs and their properties. In this way, a correlation of these logs is 

conducted by identification of similar waveforms in the two logs and can be 

performed either manually or automatically. For manual correlation, where 

the success of correlation depends on the geologist's ability to recognize 

similar patterns through visual comparison it is impractical to utilise all the 

log data. However, using a computer and data reduction techniques like 

Principal Component Analysis it is possible to make better use of the 

available data.
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1.1 Purpose and scope

This project describes a computer based technique for generating 

cross-sections from well log data. Principal Component Analysis is used to 

reduce the complexity of the multivariate well log data to a single new 

variable combining all the characteristics of the digital data. This new 

variable is then used to automatically identify im portant stratigraphic 

boundaries within each borehole, before correlating pairs of well log data 

using a combination of statistical cross-correlation which measures the 

similarity between two signals as a function of time shift and Spectral 

Analysis.

A computer program called PCAXCOR was developed to perform 

these calculations and tested on various model data sets, before applying it
t

to some real data from the Attahaddy gas field in Libya.

1.2 Previous work

Geologists have repeatedly succumbed to the temptation to use cross

correlation in subsurface geology, and there are many studies of automatic 

segmentation and correlation of well-logs by computer.

Zonation is the process of dividing a sequence into relatively uniform 

segments, each of which is distinctive from adjacent segments. Well logs

Chapter One: Introduction
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may be subdivided into relatively uniform segments that represent zones of 

constant lithology, corresponding to stratigraphic units.

There are basically two contrasting approaches to zonation. The 

simplest procedure is local boundary hunting  which searches for abrupt 

changes in average values, or equivalently, for the steepest gradients in the 

sequences (Davis, 1986). A " split-moving window" for defining boundaries 

between soil zones along transect was developed by Webster (1973). A 

sequence is examined by iteratively moving a short interval along the 

sequence. The moving interval is called a window and is split into two 

parts. A measure called the generalised distance D2 is calculated for the 

difference between the segment within the two halves of the window. 

Webster noted that the performance of the procedure depends upon the 

variability of the original sequence and the length of the moving window.
r

Webster (1980) has published a FORTRAN program that finds the zone 

boundaries by this method.

The main objection to local boundary hunting procedures that they 

are dependent on the size of the window used to identify the boundaries. A 

long window will average across small zones and may miss short intervals, 

however, a short window is more sensitive and will identify small zones 

and may find an inordinate number of boundaries.

Chapter One: In troduction
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Global zonation is a different approach, using procedures that break 

the sequence into a specific number of segments which are as internally 

homogeneous as possible and as distinct as possible from adjacent segments. 

An iterative analysis of variance was first used by Gill (1970). First the 

sequence is divided into two segments, a short initial segment, and the 

remainder of the sequence. The partition between the two segments is 

moved along the sequence to successive positions and at every position the 

sum of squares within the segments and the sum of the squares between the 

segments are calculated. The maximum value of the ratio between the two 

sums divided by the sum of the squares between the segments is considered 

as the location of the first zonal boundary. Next, the two zones are 

themselves partitioned by repeating the process to insert an additional 

boundary which again minimizes the difference ratio. By repeating the 

process, the entire sequence will be divided into the specific number of 

zones. Hawkins and Merriam (1973, 1974) used Gill's iterative procedure, 

but adopted a recursive method and took advantage of Bellman's principle 

of optimality to ensure that the final set of zone boundaries is the best 

possible of all set of partitions that might have been chosen. With the 

nonrecusive procedure, it is always possible that the position selected as the 

best boundary between two zones is no longer the best when another 

boundary is inserted into one of the zones. Webster (1973) collected 27 soil 

properties at 20m intervals. These multiple measurements were compressed 

by Principal Component Analysis to identify boundaries between segments 

such that the variance within segments on either side of boundary was 

minimal. The computational cost of achieving this iterative optimality is 

very high, and the method is not practical for very long log sequences.

Chapter One: In troduction



5

More recently Elek (1988) has used PCA on well-log data for boundary 

identification and correlation, though the latter is not discussed in any 

detail. Later Elek (1990) shows how an estimate of porosity can be made from 

the first principal component of selected variables.

Correlation of subsurface data is the next step required to establish a 

framework into which new data can be fitted and as an aid to understanding 

the stratigraphy of the area of interest.

A time series is a set of values of a function sam pled at equal 

intervals. Well log data be considered as time series data and can therefore 

be analysed using time series techniques though problems arise with the 

variation in thickness and vertical offset of units between different 

boreholes. Cross-correlation was first used by Weiner (1949) to determine 

the displacement of two time series on each other in time domain. Jenkins 

and Watts (1969) have discussed a method for analysing time series in both 

the time and frequency domain.

Based on an existing computer program, Daskam (1964) described an 

integrated computer process and emphasized the need for automation in 

well log analysis. Matuszak (1972) used a normalised cross-correlation 

function to m easure the displacement of similar shaped segments in 

dipmeter and resistivity curves. The purpose of correlating the curves was 

to determine the displacement between them. In his investigation he did

Chapter One: Introduction



6

not address the problem of thickening and thinning and concluded that 

more research was needed to refine existing methods or develop new 

techniques. Haites (1963) described a graphical method based on the fact that 

thickening (and thinning) of a stratigraphic sequence is common and this 

creates a stretched (or compacted) log signal. His approach which he called 

prospective correlation considered this effect by giving different degrees of 

comparison of the depth scale until a correlation was found. No 

mathematical or automatic processes were involved. Neidell (1969) was the 

first one who considered this problem in the automated cross-correlation. 

Neidell proceeded with the correlation after using an interpolated section to 

compensate for the thinning of beds because cross-correlation can detect 

only the shift between time series and can not detect the thinning or 

thickening of the strata. Rudman and Lankeston (1973) attempted to solve 

this problem by comparing the autocorrelation function and the cross

correlation function of iteratively stretched intervals. An improved method 

of normalized cross-correlation function and frequency domain was used by 

Rudman and Henderson (1975). Although both methods were successful, 

iterative stretching and correlation require considerable computing time. If, 

in addition, the geologist is unsure which log is to be stretched, the 

procedure must be performed twice. W ithout relying on the iterative 

operations, Kwon (1977) has successfully used a sophisticated algorithm for 

correlation of well-log data. This procedure indicated the feasibility of 

correlating well log data and our investigation owes much to his 

development. He used cross-correlation of power spectra of the logs to 

identify both the stretching factor and the relative displacement between 

logs in one simplified operation. Computations were performed in the 

frequency domain with the frequency intervals transfered to the logarithmic

Chapter One: Introduction
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scale. Interpolation was required to obtain equally spaced power spectra. 

Given the stretch, the displacement between two curves is computed rapidly 

by cross-correlation method. Although the technique was successful, 

however, it depends upon the input logs. Different logs from the same 

borehole gave different displacements. A difference of 30 feet between the 

program  results and the stratigraphic displacement was considered to be 

excellent, and a difference of 60 feet was considered to be fair.

Chapter One: Introduction
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CHAPTER TWO 

Geological Setting

2.1 Introduction

Libya is situated on the Mediterranean foreland of the African shield. 

The Sirte basin is located in the central part of Libya and occupies an 

onshore area of approximately 492,000 Km^ (Fig. 2.1).

r

This area was largely peneplaned by a lengthy and intense erosional 

phase during the Late Pre-Cambrian. During the Early Cambrian to Middle 

Devonian, the Caledonian Orogeny created several northwest trending 

structural elements. One such element was the Calanshio trough, which 

was later to influence the formation of the Sirte basin (Cain, 1985), ( Fig. 2.2, 

Fig. 2.3). Furthermore, the Sirte basin is a late Mesozoic-Tertiary cratonic rift 

resulting from crustal extensions of the older basement and Paleozoic rocks. 

The tectonic evolution of the Sirte basin controlled the sedimentation and 

provenance of sedimentary material that built the stratigraphic section of 

the area.
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2.2 Petroleum exploration history in the Sirte basin

Exploration has taken place in the Sirte basin for over thirty years. 

From 1956 through to the end of 1977, 3,102 wells had been drilled in the 

search for hydrocarbons, of which 984 are wildcat, 675 are outpost and 1,442 

are development wells. There is estimated to be between 23 to 30 billion 

barrels of oil and 634 billion cubic metres of gas. This is pooled in 121 

reservoirs with 101 fields. Twenty of the major fields are "giant" with 

reserves in excess of one billion barrels (El-talhi, 1990, Parson et al, 1980).

In 1988, the exploratory drilling in Libya was about 70,136 m and 71.7 

rig-months. Most of the activity (93%) took place on the land with 83% 

concentrated in the Sirte basin.

2.3 Area of study

The Attahaddy field is located in the NW part of concession 6 on the 

Zelten Platform of the Sirte basin in central Libya (Fig. 2.3). It covers 

approximately 43,300 acres.

To date sixteen boreholes have been drilled (Appendix A). Two 

boreholes were drilled by Esso Standard-Libya. FF1-6 was drilled in 1964, and 

detected gas from a thin Bahi Formation section, and drilled 92 feet into the 

Gargaf Formation (see Fig. 2.8 for stratigraphy), but this section was not 

tested. The FF2-6 well was drilled 100 feet into the Gargaf Formation in 1967.

Chapter Two: Geological S e ttin g
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It detected gas, but this test was not conclusive. Exploration 

enthusiasm has increased following the establishment of the Sirte Oil 

Company as a national entity in late 1981. A large scale program of modern 

seismic activity was laid out, then in 1985 two deeper exploration holes FF3 

and FF4 located on a structural closure, mapped on the Cambro-Ordovician 

were drilled resulting in the discovery of gas. These wells were then 

evaluated and after several outpost and exploration holes had been drilled, a 

large amount of gas was estimated. The sole reservoir in the Attahaddy field 

is in the (Cambro-Ordovician) Gargaf Formation, which is composed of 

highly fractured, dense, massive quartzitic sandstone and quartzite.

2.4 Structure

Since Early Palaeozoic times Libya has been the site of deposition of 

extensive sheets of continental clastic sediments and several Transgressions 

and regressions by the sea with consequent accumulation of a wide variety 

of marine sedimentary rocks. Five sedimentary basins were formed in Libya 

by several tectonic cycles, these basins, (Ghadamis which is known as 

Hamada, Murzuk, Kufra, Western Desert and Sirte basin) are separated by 

intervening uplifts (Conant & Goudarzi, 1967), (fig 2.1).

During the Early Cambrian to Middle Devonian, the Caledonian 

Orogeny formed several north west trending structural elements. Three 

major axes of uplift are recognised. In the south-west the Tihembika uplift 

occupies the border region between Libya and Algeria. Towards the north

west, the Tripoli-Tebesti uplift and Haruj uplift define a small and narrow
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trough, the Dor-el-Gussa trough. Further to the north-east lies the Calanshio 

uplift. This structural relief of the early Paleozoic Era is the result of regional 

stretch in a NE-SW direction, Klitzsch (1971), (fig. 2.4). This epeirogenic 

movement was accompanied by continental sedimentation during the 

Cambro-Ordovician, a marine transgression marked the onset of the 

Silurian and marine sediments were widely deposited through the Middle 

Devonian.

The next phase was the Hercynian Orogeny, active from the Late 

Devonian to the Early Triassic. These compressional stresses were resolved 

as a series of northeast trending basins and uplifts, Klitzsch (1971), (fig 2.5). 

These uplifts prevented any significant marine transgression by the Permian 

and Early Mesozoic seas, across the Sahara platform. This became a period of

intense erosion and ultimately, only the Cambro-Ordovician elastics were
*

preserved over most of the Tebesti-Sirte uplifts.

During the Triassic, only the northwestern and northeastern corners 

of Libya (Nefusah uplift, Ghadamis Basin and northern Cyrenaica) were 

covered by the sea. Terrigenous elastics, carbonates and evaporites were 

deposited unconformably over the Paleozoic rocks.

During the Jurassic, marine areas did not change very much in the 

north-west, whilst in northern Cyrenaica the sea extended farther to the 

south. Shallow water carbonates and elastics were deposited to the south and 

deeper marine sediments accumulated in the north.

Chapter Two: Geological S e ttin g
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During the Early Cretaceous (Fig.2.6), an erosional phase was 

accompanied by right lateral movement, which effects most of north Africa 

producing a block faulting system. A regression took place in north western 

Libya, where only continental sediments are recorded whilst northern 

Cyrenaica was still covered by a shallow sea.

The beginning of the Late Cretaceous (Cenomanian) was characterised 

by major tensional events, which created the Sirte Basin. Only the major 

horsts in the Sirte Basin and the Cyrenaica platform remained emergent.

Throughout the Late Cretaceous, the sea continued to advance 

southwards. By the end of Maastrichtian only a few scattered horst crests 

remained above the sea as isolated islands (Duronio & Colombi, 1983).

The Tertiary deposits rest conformably on the upper Cretaceous, and 

are composed entirely of marine sediments. Conditions appear to have 

remained stable throughout the Tertiary, even with continued rejuvenation 

of the horst/graben system in the Sirte Basin.

During the late Early Paleocene (Danian), or latest Maastrichtian, the 

last of the extensive transgressions began, until in late Palaeocene time, the 

sea stretched between the basins of north Africa and west Africa, Reyment 

(1966).

Chapter Two: Geological Setting
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2.5 Stratigraphy

The sediment thickness in the Sirte basin is about 2.4 Km, with 

sediments being mainly Cretaceous and Tertiary (Fig 2.7, Fig. 2.8)

Due to differences in local stratigraphic nom enclature used by 

different Oil Companies, the nomenclature used here is based on the 

current Sirte Oil Company's nomenclature.

The stratigraphy of the Attahaddy field (Fig. 2.7, Fig. 2.8) is as
*

following :

2.5.1 Paleozoic

Reconstruction of the Pre-Sirte basin geological history indicates that 

a moderately thick section of Cambrian to Middle Devonian elastics was 

deposited, unconformably, on the African shield. However, this Paleozoic 

section was considerably reduced by subsequent erosion, until only the 

Cambro-Ordovician Gargaf Formation remained over Concession 6 (Klitsch, 

1971).

Gargaf Formation (Cambro-Ordovician)

The Gargaf Formation is composed of very well indurated,
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translucent, milky-white to very light grey, well sorted, fine grained, angular 

to subangular quartzitic sandstone and quartzite. Quartz overgrowths are 

common and have severely reduced the effective porosity of the Gargaf, 

over much of the area. The Gargaf is considered to be a continental deposit, 

and is interpreted as a series of fluvial sequences (Cain, 1985). The Gargaf 

Formation has not been fully penetrated in the A ttahaddy field. It is 

therefore, difficult to comment on it's regional thickness. However, the 

Gargaf is in excess of 2811 feet at well FF3-6, and 470 feet in FF6-6.

While the original porosity of the Gargaf was destroyed through 

diagenetic processes, the Caledonian deformation caused the development 

of high fracture porosity across the crest of these horsts. This phenomenon 

is well developed in the Attahaddy field, and consequently, the Gargaf forms 

an important reservoir in this field.

2.5.2 Mesozoic

The Upper Cretaceous sequence rests unconformably on the Paleozoic 

and is composed of both continental and marine sediments.

Bahi Formation.

The Bahi Formation is composed of moderately well consolidated 

sandstone and conglomerates. The sandstones are translucent to white, very 

poorly sorted, with angular to subangular, very fine to coarse grains. The
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conglomerates are composed of Gargaf Formation derived pebbles and 

cobbles. The Bahi Formation is barren of fossils and consequently its age is 

uncertain (Barr and Weegar, 1972) The upper boundary of the Bahi 

Formation is rather abrupt with the Socna Formation or other Upper 

Cretaceous formations. The lower boundary is unconformable with the 

Paleozoic rocks. In the type area, the Bahi Formation overlies quartzites of 

Cambrian-Ordovician age. The Bahi Formation is considered as alluvial fan 

deposits and is associated with the underlying structural highs of the Gargaf.

The Bahi Formation is distributed over some parts of the Attahaddy 

field, and has an average thickness of 200 feet. In well FF12-6, it reaches a 

maximum of over 325 feet, whilst to the south in well FF2-6 it is only 17 feet 

thick.

Socna Formation (Upper Cretaceous)

The Socna Formation is a grey to brownish-grey, calcareous shale, and 

is typical of a marine environment which took place in the Campanian- 

M aastrichtian times. The Socna shale is considered to be the prime 

hydrocarbons source in the Sirte basin. It achieves a regional thickness of 

approximately 1800 feet in FF14-6, and a thickness of only 55 feet in FF2-6. 

The average thickness of these shales varies from 500 to 1000 feet.
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Zmam Formation (Upper Cretaceous)

The Zmam Formation is composed of micritic limestone, very light 

grey to light brown, soft to medium hard, argillaceous in part, occasionally 

fossiliferous. This is a deep water to basinal deposit of the Maastrichtian to 

the Lower Palaeocene times. It is not normally a reservoir, but since it is 

tight micritic, it makes a good seismic reflector which maps the top 

Cretaceous deposits. The Zmam thickness varies from 680 feet in FF14-6 to 

97 feet in FF3-6. In other parts of the field the thickness ranges from 300 to 

400 feet.

2.5.3 Tertiary

The Tertiary section is predom inantly shale and limestones. 

Sedimentation through the section was controlled by slow  tectonic 

movement and gradual subsidence, thus the depositional environment was 

deep marine that changed laterally to shallow marine in localized areas..

Heira Formation (Paleocene)

The Heira Formation is composed of a regional thick section of shale. 

These shales are dark grey to greenish-grey, occasionally black, calcareous 

and moderately fissile to blocky.

Heira shales are distributed over the study area and reach a thickness
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of 2700 feet in well FF14-6 and minimum thickness of 1690 feet in well FF8- 

8. In general the average thickness of the Heira Formation all over the field 

is 2000 feet.

Ruaga Formation (Paleocene-lower Eocene)

The Ruaga Formation is composed of limestone and cannot be easily 

differentiated from the overlying Domran carbonates. The lower boundary 

is conformable with the Heira shales. Both contacts are conspicuous on the 

electric logs in the type section. In the southern central Sirte basin, the 

Ruaga Formation is predominantly a limestone with very subordinate 

amounts of shale and has been divided according to this distribution by Sirte 

Oil Co. geologists into a number of members. These members are the Megil 

shale, Zelten limestone and Cra carbonates. The Zelten member forms the 

principal reservoir of the Zelten fields south of the A ttahaddy Field, 

however, the Zelten member in Attahaddy Field looses its typical identity as 

shallow water limestone grades into open marine deposits. The Ruaga 

Formation is the product of an open marine shelf environment, and this 

interpretation is supported by the presence of the Zelten member developed, 

at scattered locations, across some parts of Sirte basin (Cain, 1985). The Ruaga 

Formation covers all the Attahaddy field and ranges in thickness between 

160 to 200 feet.

Domran Formation (Lower Eocene)

The Domran Formation consists of limestones, micritic, light grey to
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medium grey-brown and tight and considered to be the product of an open 

m arine shelf to m arginal shelf environment that existed during the 

Tertiary. It reaches a thickness of 1280 feet in FF2-6, and 650 feet in FF7-6. 

The average thickness of the Domran Formation is approximately 900 feet.

Sheghega Formation (Middle Eocene)

The Sheghega Formation is a thick carbonate unit, distributed across

the entire study area. It is composed of limestone, white to light grey,

nummulitic in parts to very nummulitic, chalky in part, soft to moderately

hard , w ith porosity varying from poor to good. The depositional 
*

environment interpreted for the Sheghega Formation is an open marine 

shelf to margin setting. These regional carbonates cover all the study area 

and vary in thickness from 2150 feet to 1800 feet.

Etel Formation (Oligocene-U. Eocene)

The Etel Formation is composed of light grey to greenish-grey, blocky, 

medium hard to hard, calcareous shale. These deep marine shales are 

distributed across the entire study area.

Muailah Formation (Oligocene)

The Muailah Formation consists of thin interbeded carbonates, shale, 

anhydrite and siltstone or very fine grained sandstones. The carbonates are 

grey to brown with subordinate limestone, the shales contain pyrite in

Chapter Two: Geological Se tting



27

places and occasionally include very fine grained calcareous glauconitic 

sandstone. The average thickness of Muailah Formation ranges from 400 - 

500 feet.
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CHAPTER THREE

Theoretical Background

3.1 Introduction

In this chapter the mathematical background to the treatment of well 

log data is discussed. Each well-log is first subjected to a principal component 

analysis to reduce the complexity of the original data to a single new 

variable or principal component that incorporates most of the variation 

present in a number of individual well-log variables. The data are then 

filtered or smoothed to further reduce the noise in the signal, before 

processing to identify geological boundaries. Finally the processed log data 

from pairs of wells are compared to establish the connection between 

geological units, which includes making an allowance for variation in 

thickness and depth of rock units in the different boreholes.

3.1.1 Basic Statistical Calculations

The following are some definitions of statistical terms used in 

performing the Principal Component Analysis (PCA). Before calculating the
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principal component scores, the eigenvalues and the eigenvectors of the 

symmetric correlation or variance-covariance matrix must be calculated.

The way to calculate all these entities is described below.

For a sequence of n values of x:

M ea n  : is defined as the sum of all the observations(x.) divided by the 

number of observations(n). *

Sum o f Squares : is the sum of the squared difference between the variable 

and its mean.

Variance  : is the average squared deviation of all observations from the 

mean.

n

x = £ x , /  n (3.1)
i = 1

n

(3.2)
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s 2= - ^ r   ........................................................... (3.3)n - 1  '

Standard deviation  : is the square root of the variance.

s = s / s *  ............................................................... (3-4)

Covariance : calculating the covariance requires a quantity analogous to the 

sum of squares called the corrected sum o f products:

SP* = Z ( x , .............................(3‘5)
i =1

where x.. is the i-th measurement of variable j, xik is the i-th measurement 

of variable k, x j and x k are the mean of variable j and k respectively, and 

SP-k is the sum of products between variable j and k

then the covariance between variables j and k is

SPcov k = —* n .(3.6)
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Correlation :

The correlation between two variables x and y can be defined as the 

covariance between two variables divided by their standard deviation :

_ CQV *y ...................................................... (3.7)
T * y -  S x S y

Where COV is the covariance between the two variables and sx and Sy are 

the standard deviation of x and y respectively.

The correlation function is used in order to estimate the degree of 

in terrelation  betw een variables in a m anner not influenced by 

measurement units. Because the correlation function is the ratio of the 

covariance of two variables to the product of their standard deviation, this 

function is unitless. It ranges from +1 to -1. A correlation of +1 indicates a 

perfect direct relationship between the variables,, whereas a correlation of -1 

indicates that one variable changes inversely with relation to the other. Zero 

correlation, however, indicates the lack of any sort of relationship at all 

(Davis, 1986).

Eigenvalues and Eigenvectors :

This topic is regarded as the most difficult topic in matrix algebra. The 

difficulty is not in their calculation, which is cumbersome but no more so 

than many mathematical procedures. Rather, difficulties arise in developing
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a "feel" for the meaning of these quantities (Davis, 1986). The relationship 

between a data matrix [A] and the vector of eigenvalues X and matrix of 

eigenvectors [U] is the solution of the equation :

[A ][U] = X[U] ......................................................(3.8)

where [ A ] is the data set matrix,

[U ]  is the eigenvectors,

X is the eigenvalue.

In the simple case where [A] is a 2 x 2 matrix the eigenvectors yield 

the orientation of the ellipse axes and the eigenvalues represent the 

magnitude, or lengths, of the axes. The sum of the eigenvalues of the matrix 

is always equal to the sum of the diagonal elements, or the trace, of the 

original matrix. There will be as many eigenvectors as there are eigenvalues, 

or as many as there are rows and columns in the matrix [A]. Table 3.1 shows 

the variance-covariance matrix, eigenvectors and the percentage of each 

eigenvalue to the total variance.

By solving the simultaneous equations, the eigenvalues and the 

eigenvectors can be calculated. Although this technique is extendible to any 

size matrix, finding the roots of a large polynomial can be an arduous task. 

Usually, eigenvalues are not found by solution of polynomial and quadratic 

equations as root-searching is usually a very poor computational method
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(Press, 1988), but rather by matrix manipulation methods that involve 

refinement of a successive series of approximations to the eigenvalues 

(Davis, 1986). These m ethods are practical because of the great 

computational speed of digital computers.

The optimum strategy for finding eigenvalues and eigenvectors is, 

first, to reduce the matrix to a simple form, only then beginning an iterative 

procedure. For symmetric matrices, the preferred simple form is the 

tridiagonal matrix (Press, 1986) (Table 3.2).

There are two ways to reduce a symmetric matrix to tridiagonal form.
*

The Givens reduction is a modification of the Jacobi method. The Jacobi 

m ethod reduces the matrix to a diagonal form, whereas the Givens 

reduction stops when the matrix is tridiagonal. This allows the procedure to 

be carried out in a finite number of steps, unlike the Jacobi method which 

requires iteration to achieve convergence (Press, 1986).

The Givens method is not generally used because the reduction 

involves taking square roots when the computation is performed. The 

Householder method is more efficient and more stable. It reduces an n x n 

symmetric matrix to tridiagonal form by n-2 orthogonal transformation. 

The Householder reduction method has been used in subroutines TQLI and 

TRED2 for calculating the eigenvalues and the corresponding eigenvectors 

of the variance-covariance or correlation matrix (see Appendix C).
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THE VARIANCE-COVARIANCE MATRIX IS :
1 4 . 9 9 0 0 . 6 6 5 2 . 4 9 5 0 . 8 0 2 4 . 0 7 0 - 7 . 1 4 7 1 . 8 4 0
0 .  665 3 9 . 3 9 7 - 1 . 9 0 7 - 1 . 8 3 1 - 3 . 7 0 5 1 1 . 3 4 5 0 . 5 2 9
2 . 4 9 5 - 1 . 9 0 7 4 . 6 1 5 3 . 8 5 0 6 . 4 7 1 - 4 7 . 2 2 7 - 1 . 5 9 4
0 . 8 0 2 - 1 . 8 3 1 3 . 8 5 0 3 . 9 6 6 6 . 5 1 6 - 4 6 . 9 6 2 - 1 . 9 4 1
4 . 0 7 0 - 3 . 7 0 5 6 . 4 7 1 6 . 5 1 6 1 2 . 6 6 5 - 6 7 . 8 0 1 - 3 . 0 4 3

- 7 . 1 4 7 1 1 . 3 4 5 4 7 . 2 2 7 - 4 6 . 9 6 2 - 6 7 . 8 0 1 7 1 6 . 0 1 0 2 2 . 0 8 4
1 . 8 4 0 0 . 5 2 9 - 1 . 5 9 4 - 1 . 9 4 1 - 3 . 0 4 3 2 2 . 0 8 4 2 . 2 4 3

EIGENVECTORS:
VARIABLE 1 2 3 4 5 6 7

SP - 0 . 0 1 0 6 5 0 . 0 1 8 8 0 - 0 . 9 2 3 5 9 - 0 . 3 0 8 0 2 - 0 . 2 1 5 7 8 0 . 0 0 9 9 2 - 0 . 0 7 0 6 0
GR 0 . 0 1 7 1 6 0 . 9 9 5 3 6 - 0 . 0 1 5 4 9 0 . 0 9 0 4 7 0 . 0 2 2 9 4 0 . 0 0 2 2 6 0 . 0 0 0 6 9
ILS - 0 . 0 6 5 8 5 - 0 . 0 3 2 1 1 - 0 . 1 6 2 1 7 0 . 2 2 5 9 1 0 . 3 5 0 5 1 0 . 8 7 1 1 8 0 . 1 8 8 4 1
ILM - 0 . 0 6 5 4 3 - 0 . 0 3 0 8 0 - 0 . 0 6 1 2 3 0 . 3 1 6 2 8 0 . 1 1 9 5 0 0 . 0 5 4 5 8 - 0 . 9 3 4 7 4
ILD - 0 . 0 9 5 1 2 - 0 . 0 7 7 6 6 - 0 . 3 2 1 2 2 0 . 7 9 2 4 0 0 . 1 2 8 2 2 - 0 . 3 9 0 0 6 0 . 2 9 1 9 9
DT. 0 . 9 9 0 4 4 - 0 . 0 2 8 8 9 - 0 . 0 5 2 1 1 0 . 1 1 7 1 6 0 . 0 1 3 0 2 0 . 0 3 3 1 8 - 0 . 0 2 1 7 2
CALI 0 . 0 3 0 7 7 0 . 0 0 7 2 6 - 0 . 1 0 3 9 3 - 0 . 3 2 2 8 9 0 . 8 9 3 9 6 - 0 . 2 9 1 0 7 - 0 . 0 0 7 5 4

EIGENVALUES

7 2 9 . 7 2 3 6 3  3 9 . 4 9 1 1 3  1 6 . 7 1 1 9 6  6 . 3 2 0 6 0  0 . 8 1 3 1 4  0 . 7 1 6 5 8  0 . 1 1 0 2

PERCENTAGE OF TOTAL VARIANCE CONTRIBUTED BY EACH EIGENVALUE

9 1 . 9 1 7 7 8  4 . 9 7 4 4 0  2 . 1 0 5 0 8  0 . 7 9 6 1 5  0 . 1 0 2 4 2  0 . 0 9 0 2 6  0 . 0 1 3 8 8

Table 3 . 1  showing the variance-covariance matrix, eigenvectors, eigenvalues 
and the percentage of each eigenvalue to the total variance in Well F F 1 3 - 6 .  
Seven variables are used, Spontaneous Potential(SP), Gamma Ray(GR), Shallow 
resistivity(ILS), Medium resistivity(ILM) , Deep resistivity(ILD), Sonic(DT) 
and the caliper log(CALI).
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THE CORRELATION MATRIX IS :

1 . 0 0 0  0 . 0 2 7  0 . 3 0 0  0 . 1 0 4  0 . 2 9 5  - 0 . 0 6 9  0 . 3 1 7
0 . 0 2 7  1 . 0 0 0  - 0 . 1 4 1  - 0 . 1 4 6  - 0 . 1 6 6  0 . 0 6 8  0 . 0 5 6
0 . 3 0 0  - 0 . 1 4 1  1 . 0 0 0  0 . 9 0 0  0 . 8 4 6  - 0 . 8 2 2  - 0 . 4 9 6
0 . 1 0 4  - 0 . 1 4 6  0 . 9 0 0  1 . 0 0 0  0 . 9 1 9  - 0 . 8 8 1  - 0 . 6 5 1
0 . 2 9 5  - 0 . 1 6 6  0 . 8 4 6  0 . 9 1 9  1 . 0 0 0  - 0 . 7 1 2  - 0 . 5 7 1

- 0 . 0 6 9  0 . 0 6 8  - 0 . 8 2 2  - 0 . 8 8 1  - 0 . 7 1 2  1 . 0 0 0  0 . 5 5 1
0 . 3 1 7  0 . 0 5 6  - 0 . 4 9 6  - 0 . 6 5 1  - 0 . 5 7 1  0 . 5 5 1  1 . 0 0 0

DIAGONAL ELEMENTS

0 . 0 4 7  0 . 1 1 1  0 . 9 3 5  0 . 3 5 3  1 . 3 8 8  3 . 1 6 5  1 . 0 0 0

OFF-DIAGONAL ELEMENTS

0 . 0 0 0  0 . 0 4 3  0 . 1 1 8  - 0 . 1 6 6  - 0 . 2 2 7  - 1 . 0 1 1  1 . 1 8 4

TRI-DIAGONAL MATRIX IS :
0 . 0 4 7 0 . 0 4 3 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0
0 . 0 4 3 0 . 1 1 1 0 . 1 1 8 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0
0 . 0 0 0 0 . 1 1 8 0 . 9 3 5 - 0 . 1 6 6 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0
0 . 0 0 0 0 . 0 0 0 - 0 . 1 6 6 0 . 3 5 3 - 0 . 2 2 7 0 . 0 0 0 0 . 0 0 0
0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 - 0 . 2 2 7 1 . 3 8 8 - 1 . 0 1 1 0 . 0 0 0
0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 - 1 . 0 1 1 3 . 1 6 5 1 . 1 8 4
0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 1 . 1 8 4 1 . 0 0 0

Table 3 . 2  Showing the diagonal, off-diagonal and the tri-diagonal elements 
o f  correlation matrix of a data from WEll F F 1 3 - 6
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3.2 Principal Component Analysis

Principal components are nothing more than the eigenvalues and the 

eigenvectors of a variance-covariance or correlation matrix.

If 'm' variables are measured on a collection of objects, then the

variance-covariance [S ] or correlation matrix [R] will be a square matrix

with m rows and m columns. From either [S ] or [R], m eigenvalues and m

eigenvectors can be extracted. Because the variances are located along the

diagonal of the variance-covariance matrix, the total variance is equivalent

to finding the trace of the matrix. The sum of the eigenvalues of the matrix 
>

is equal to the trace of the matrix.

Since these eigenvalues represent the lengths of the principal 

semiaxes, the axes also represent the variance of the data set, and each 

accounts for an amount of the total variance equal to the eigenvalue 

divided by the trace. Usually the first two semiaxes contain most of the 

variance, whereas the remaining axes represent only a small amount of the 

variance.

By making a transformation of the form :

y a = a jXj + a 2x 2+ .......+ a  nx n.......................(3.9)
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where x\,*2  are original data values for each variable and <xl, a2, ...an 

are the elements of the first eigenvector, a new data set is created which will 

have a variance exactly equal to the first eigenvalue. A similar 

transformation:

y 2 = P i x i +  P 2X2 + .......+ pnx n ................... (3.10)

where fi's are the elements of the second eigenvector, will create a data set 

with a variance equal to the second eigenvalue.

Using this transformation, the principal component scores are calculated, by 

projecting the original data set onto their principal axes. This operation in 

matrix form can be represented as:

[X][U] = [P]  (3.11)

where [P] is the n x m matrix of principal component scores, [U] is a square 

matrix of the eigenvectors and [X] is the n x m matrix of the original 

observations. If all variables are expressed in the same or commensurate 

units, the principal components will reflect the relative importance of the 

different variables. Principal component analysis is sensitive to the 

magnitude of the measurements.

Chapter Three: Theoretical Background



39

In well-logging, different units of measurements are expressed for 

different variables. In this case if , for example, the transit time (DT) is 

measured in hundred of microseconds per feet and spontaneous potential 

(SP) is measured in units of tens of millivolts then transit time would have 

exerted considerably more influence than spontaneous potential.

An obvious way around this difficulty is to standardize all variables 

so they have a mean of 0.0 and variance of 1.0, then the elements of the 

variance-covariance matrix will consist of correlation coefficients and the 

principal com ponents will be in dimensionless form. Subroutine 

STAND ARIZE (Appendix C) standardizes the original variables before 

calculating the eigenvalues and the eigenvectors. Standardization tends to 

inflate variables whose variance is small and reduce the influence of 

variables whose variance is large.

The technique can be illustrated using data from well FF13-6 in the 

Attahaddy field. Seven variables of electrical well logs are used and the 

scores for the first principal component compared with one of the original 

variables. In Figs 3.1, 3.2 and Table 3.1 the variance-covariance matrix is 

used, m easuring the m agnitudes of the original variables. The first 

component whose eigenvalue is 729.72(91.9%) has the most influence on 

the variance, whereas the last component which has an eigenvalue of 0.11 

(0.01%) has negligible influence. In Figs 3.3, 3.4, 3.5 and Table 3.3 the 

correlation matrix is used. The first component accounts for 57% of the total 

variance. It is clear from Fig 3.5 how the first principal component can
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DT ILD ILS ILM CALI GR SP 

Original variables 

Fig.3.1a Histogram of seven variables in FF13-6

91.91

NO Percentage Variable

□

□

91.91%
4.97%
2.10%
0.79%

0.10%
0.09%
0.01%

DT
ILD
ILS
ILM
CALI
GR
SP

Fig. 3.1b Pie chart showing the percentage of each eigenvalue in Well FF13-6
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Com ponent I

(a)

- 0 . 2
ILS ILM ILD DT CALIGRSP

Original variables

Com ponent II

0
8

6 (b)

4

2

0
- 0 . 2

SP GR ILS ILM ILD DT CALI

Original variables

Component III

SP GR ILS ILM ILD DT CALI 

Original variables

Fig. 3.2 Plot of the Principal Components in Well FF13-6. 
(a) Component I, (b) Component II/c) Component HI.
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THE CORRELATION MATRIX IS
1 . 0 0 0 0 . 0 2 7 0 . 3 0 0 0 . 1 0 4 0 . 2 9 5 - 0 . 0 6 9 0 . 3 1 7
0 . 0 2 7 1 . 0 0 0 - 0 . 1 4 1 - 0 . 1 4 6 - 0 . 1 6 6 0 . 0 6 8 0 . 0 5 6
0 . 3 0 0 - 0 . 1 4 1 1 . 0 0 0 0 . 9 0 0 0 . 8 4 6 - 0 . 8 2 2 - 0 . 4 9 6
0 . 1 0 4 - 0 . 1 4 6 0 . 9 0 0 1 . 0 0 0 0 .  919 - 0 . 8 8 1 - 0 . 6 5 1
0 . 2 9 5 - 0 . 1 6 6 0 . 8 4 6 0 . 9 1 9 1 . 0 0 0 - 0 . 7 1 2 - 0 . 5 7 1

- 0 . 0 6 9 0 . 0 6 8 - 0 . 8 2 2 - 0 . 8 8 1 - 0 . 7 1 2 1 . 0 0 0 0 . 5 5 1
0 . 3 1 7 0 . 0 5 6 - 0 . 4 9 6 - 0 . 6 5 1 - 0 . 5 7 1 0 . 5 5 1 1 . 0 0 0

EGENVECTORS:
\RIABLE 1 2 3 4 5 6 7

SP - 0 . 0 8 1 5 4 - 0 . 8 3 4 3 4 0 . 0 2 1 2 3 0 . 3 2 5 2 1 0 . 4 0 5 2 1 0 . 1 0 5 6 2 0 . 1 2 5 1 4
GR 0 . 0 8 6 5 4 - 0 . 0 4 0 3 3 0 . 9 8 8 7 0 0 . 0 0 3 3 4 - 0 . 1 1 2 8 9 - 0  . 0 2 4 2 1 - 0 . 0 0 2 9 1
ILS - 0 . 4 6 5 0 5 - 0 . 1 6 8 6 1 0 . 0 0 8 7 0 - 0 . 1 7 2 5 4 - 0 . 0 4 1 5 7 - 0  . 8 3 9 6 2 - 0 . 1 3 6 9 6ILM - 0 . 4 9 0 0 5 0 . 0 2 7 7 7 0 . 0 2 1 0 4 - 0 . 0 9 3 6 5 - 0 . 2 6 0 5 5 0 . 1 6 6 2 6 0 . 8 0 8 9 1
ILD - 0 . 4 6 2 0 7 - 0 . 1 3 4 7 3 - 0 . 0 2 4 3 4 0 . 3 2 7 6 6 - 0 . 5 6 6 2 6 0 . 3 2 2 6 2 - 0 . 4 8 5 4 4
DT 0 . 4 4 4 9 3 - 0 . 0 4 2 2 5 - 0 . 1 0 3 4 5 0 . 5 9 8 1 7 - 0 . 4 5 6 8 3 - 0 . 3 8 4 1 4 0 . 2 7 4 7 5CALI 0 . 3 4 3 4 8 - 0 . 5 0 3 1 0 - 0 . 1 0 1 0 1 - 0 . 6 2 4 9 2 - 0 . 4 7 3 3 9 0 . 0 6 3 2 0 - 0 . 0 0 9 8 3

EIGENVALUES:

4 . 0 1 9 9 4  1 . 2 9 4 0 2  0 . 9 8 7 4 9  0 . 3 7 2 0 9  0 . 1 8 9 0 3  0 . 1 1 6 2 3  0 . 0 2 1 1 6

PERCENTAGE OF TOTAL VARIANCE CONTRIBUTED BY EACH EIGENVALUE:

5 7 . 4 2 7 8 4  1 8 . 4 8 6 0 7  1 4 . 1 0 7 0 0  5 . 3 1 5 6 6  2 . 7 0 0 5 3  1 . 6 6 0 4 8  0 . 3 0 2 3

T a b l e  3 . 3  s h o w i n g  t h e  c o r r e l a t i o n  m a t r i x ,  e i g e n v e c t o r s ,  e i g e n v a l u e s  a n d  
t h e  p e r c e n t a g e  o f  e a c h  e i g e n v a l u e  t o  t h e  t o t a l  v a r i a n c e  i n  W e l l  F F 1 3 - 6 .  
S e v e n  v a r i a b l e s  a r e  u s e d ,  S p o n t a n e o u s  P o t e n t i a l ( S P ) , Gamma R a y  (GR) , 
S h a l l o w  r e s i s t i v i t y  ( I L S )  , Me d iu m r e s i s t i v i t y  (ILM) , D e e p  r e s i s t i v i t y  ( I L D ) , 
S o n i c ( D T )  a n d  t h e  c a l i p e r  l o g ( C A L I ) .
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° ILM ILS ILD DT CALI GR SP

Original variables

Fig. 3.3a Histogram of seven variables in FF13-6

57.43

18.49

jsjo Percentage Variable

□ i 57.43% ILM

m 2 18.48% ILS

M 3 14.10% ILD

M 4 5.31% DT

M 5 2.70% CALI

m 6 1.66% GR

n 7 0.30% SP

Fig. 3.3b Pie chart showing the percentage of each eigenvalue in Well FF13-6
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C om p on en t II
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C om p onent III

1 . 0

0 . 8

0 . 6

U 0 . 4
Ch

0 . 2

0 . 0

- 0 . 2
SP GR ILS ILM ILD DT CAU 

Original variables

Fig. 3.4 Plot of Principal Components in Well FF13-6. 
(a) Component I, (b) Component II,(c) Component III.
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'-M
C

*CJo-»
a<u

Q

original variable (GR)

10 2 0  3 0  4 0  5 0  6 0  7 0  8 0

4 0 0 0

5 0 0 0

6 0 0 0

7 0 0 0

8 0 0 0

9 0 0 0

10000

first principal component 

2 5 0  - 1 0 0  0  5 0  1 5 0
“ i i i i i 1----- 1------1

F n

(b) (C)

Limestone Argilaceous Limestone Shale

Fig. 3.5 Illustration showing the transformation of data by Principal component 
Analysis (PCA). (a) original variables of Gamma Ray (GR). (b) is the first principal 
component scores from data in Table 3.3. (c) is the lithology through well FF13-6 in the 
Attahaddy field.
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represent the original data and reduce the noise signal in the data.

The choice betw een using the variance-covariance m atrix or 

correlation matrix is dependent on the nature of the problem. For well log 

data, use of the correlation matrix is preferred as it allows each of the input 

variables equal importance and influence on the resultant principal 

components. With the objective of representing a complex sets of data with 

a single new variable, the first principal component, it is clearly incorrect to 

allow any one variable to have greater or lesser importance, as each of the 

well-log variable measures different characteristics of the lithologies in the 

borehole. It is the aggregate variation of all the variables that is required.

3.3 Smoothing

Field data of most well-logs are characterized by high amplitude low 

frequency components that are a source of difficulty in the identification of 

boundaries and in well to well correlation. One way to overcome this 

problem is to filter the data.

Perhaps the most familiar types of filters used in geology are those 

designed to reduce the variance in a time series. These are arbitrary filters 

whose general action is to smooth a data sequence; the output from the filter 

is a subdued approximation of the input. Most time series data consist of 

two components, a long-term signal or true part, and superimposed random 

noise. By its nature, such noise is a short-term component. As the signal 

tends to be the same from point to point and the noise does not, an average
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of several adjacent points will tend to converge on the value of the signal 

alone.

The simplest smoothing filter is a 'Moving average'. A moving 

interval or a window is split into two parts, a portion from (i-h) on the 

sequence to point i and equivalent portion from point i to point (i+h) on the 

sequence. The window moves to successive positions, at which the average 

of observations within the window is calculated.

i+ h
x (i)= £  x (i)/ n ................................................ (3.12)

i -  h

It is worthwhile noting that the shape of the resultant curve is 

severely dependant on the size of the window. If the length of the window 

is small (Fig. 3.6), the shape of the curve preserves the small edges which is 

useful if one wants to keep the boundaries between small layers. If, 

however, a big layers are of interest, big window size will truncate small 

edges and keep the contact between big layers (Fig. 3.7).

3.4 Boundary identification techniques

The technique used in this study is that of 'local boundary hunting' 

Webster (1973). An abrupt change in the average values in the sequence is 

an identification of a change in the properties of the rock type. This simple
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approach is based on a window with two halves, a segment from point (i+h) 

on the sequence to point i, and another segment from point i to point (i-h). 

The generalized distance D2, which is the ratio formed by dividing the 

squared differences between the average values of the two segments by the 

pooled variance of the sequence in the segments, is calculated between the 

two halves of the window.

(x, — x ,)2
D  =  —  ----------- —

s ’  +  s 22
.(3.13)

where x ir sx2 are the mean and the variance of the segment from xj to xi+h, 

and x 2, S22 are calculated from the segment x* to xj.h.

The results of this method depend on the length of the window; a 

long window will miss small intervals whereas a short window creates an 

irregular, uninterpretable number of boundaries. A sequence of 6500 feet 

through borehole FF13-6 is examined to show the effect of the window size 

on the boundary identification technique (Figs. 3.8, 3.9, 3.10). A plot of D2 

with an inordinate number of boundaries is shown when the window size 

is small (100 feet)(Fig. 3.8). In contrast, using a large window length (250 

feet)(Fig. 3.9) misses some important boundaries. For example the Heira 

Formation at depth 7742 feet has disappeared and the Domran Formation at 

depth 6788 has moved up to a depth 6700 feet. In Figure 3.10 a window of 150 

feet is used. This window length compromises between the long and short 

lengths and the result is more satisfactory. The geological top of the
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Sheghega Formation is at depth 4742 feet and the top of the formation using 

this approach is at depth 4720 feet. Also, the geological top of Domran 

Formation is at a depth of 6788 feet and program result is a depth of 6788 

feet, and geological boundary of Heira Formation is 7742 feet and the 

boundary identification boundary is 7742 feet.

Hunting for boundaries in long sequences using this method requires 

a preliminary knowledge of the separation between geological boundaries. 

From experience, a reasonable window size can be set equal to half the 

average separation between the geological formations.

*

The alternative global zonation technique which is not applicable for 

long series as described in chapter one is not used to identify the boundaries 

in the Attahaddy Field which has long borehole sequences (about 8,000 feet).

3.5 Correlation of well-log sequences

Several techniques of time-series analysis are of importance when 

considering the correlation of data from pairs of wells. These include 

autocorrelation, cross-correlation and Fourier analysis.

- For well-log data the time component is replaced by depth or distance, 

without any loss of the effectiveness of the methods.
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A utocorrela tion: is a measure of the correlation of a time series with itself at 

a later interval of time (depth).

, ( v ) = c o T ( y i / y i t v ) .................................................. (14)

Sy

Where r(v) is correlation at lag or offset v, yjis the time series data, and 

yi+v is the time series data with lag v.

The term cov(yj, yi+v) is known as the autocovariance.

Cross-correlation: The cross-correlation function of two time series x and y 

can be defined as:

cov (x , y ) .......................................... (315)
SxSy

The correlation will be large for some positive value of v if the first 

series x is a close copy of the second series y but lags it in time or space by v, 

i.e the first series is shifted to the right of the second. Likewise, the 

correlation will be large for some negative value of v if the first series leads 

the second, i.e, is shifted to the left of the second series. The relation that 

holds when the two series are interchanged is: rXy(v)=rXy(-v) .

Two types of cross-correlation functions are considered. If the length 

of the two series is the same (Fig. 3.11a). The length of the window to be 

compared is maximum when the time origins of two signals line up with
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zero time shift, and then decreases with each time shift v. In this case the 

cross-correlation function is computed as above by :

N  -  v

£  [ X < n ) - * o ]  [ y < n + v ) ~ y v ]

i v m = y 1  (3-16)
/N" v _ 2  N — v _ 2
/ 2  [ x (n)- x 0] £  [y (n+v, - y v ]

'V  n = 1 n = 1

Where v=0,l,.... ,N-1, y v is the mean of the series y(n) at time or shift v.

If tire two series have different length (Fig. 3.11b) equation (3.16)is modified 

to consider only a fixed window size equal to the length of the short series 

(Rudman, Blakely and Henderson, 1975).

fxy(v) =

L 1z
n = 1

lT

*  ( n )  y  (n  + v ) L 1. x 0 y v

( Z (x2 - L I . x 0)2( Z y 2 - L l . y v)
n = 1 n = 1 ( n + v )

L 1 ...(3.17)

Where:

1 L1 1 L1 
x0= l t S x(„, and y v = —  X  y „  +v,

n = 1 n = 1

and v=0,l,....... ,L2-L1 and , LI is the length of the short series.

In this case, the correlation function is obtained by shifting the short

Chapter Three: Theoretical Background
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series in one direction. Both processes are used in the cross-correlation of 

power spectra to predict a stretch factor and cross-correlation of stretched 

logs to measure a relative displacement between two signals.

3.6 Discrete Fourier Transform (DFT)

The Fourier transform is one of the most powerful tools in signal 

processing and has long proved its effectiveness. Because this project 

employs Fourier transforms and its operational properties, it is instructive 

to review its basic theory.

Analysis process can be either described in the time domain by the 

value of some quantity x as a function of time, e.g x(t), or else in the 

frequency domain, where the process is specified by giving it’s amplitude X 

(generally complex) as a function of frequency w, that is X(w). The two 

functions x(t) and X(w) are two different representation for the same 

function. One goes back and forth between these two representation by 

means of Fourier transform equations:

X(w) = J x(t) e _ iwt dt .(3.18)

x(t) = ~—  \ X(w) e ivvt dt2 71 - oc
.(3.19)
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Where X(w) is the discrete Fourier transform , x(t) is the time series, i is the 

imaginary number ̂ J -  \ , w is the frequency and t is time or depth. If x is a 

function of position (in metres), X will be a function of inverse wavelength 

(cycle per metre), (Press, 1986).

In the time domain, function x(t) may happen to have one or more 

special symmetries. It might be real or imaginary or it might be even, x(t)=x(- 

t), or odd, x(t)=-x(-t). In the frequency domain, these symmetries lead to 

relationship between X(w) and X(-w). For example, if x(t) is real then X(- 

w)=[X(w)]* and if x(t) is imaginary then X(-w)=-[X(w)]* and so forth (Press, 

1988).

In general the function X(w) is a complex quantity and can be expressed in 

terms of its real (XR) and imaginary (Xz) parts as:

X(w) = X R(w )+ iX,(w) .................................(3.20)

or in terms of amplitude and phase as :

X (w) = |X (w )|e,e (w) ........................................ (3.21)

Where |x (w)| is the amplitude of X(w) and is given by

Chapter Three: Theoretical Background
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^ X 2r(w )+  X2j(w ) ....................  .(3.22)

and 0 (w) is the phase spectrum of the Fourier Transform and is given by

0(w )=  t a n " 1 [X(w) / X R(w)] ..................... (3-23)

For automatic (computer) time series analysis and correlation, 

discrete samples of a continuously recorded signal of finite length is 

processed, therefore, it is necessary to adapt the analog type of Fourier 

transform to a discrete sequence.

The Discrete Fourier Transform (DFT) of a sequence of N samples x (n T ) , 0 

< n < N-l is defined as :

X (kw )= Z x(nT )e_iwTnk ............................. (3.24)
n = 0

k=0,l,..... ,N-1

Where T is the sampling interval in time or space domain and the 

frequency increment w is given as 2k /  NT

Chapter Three: Theoretical Background
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The time series may be re-covered exactly from the inverse Discrete Fourier 

Transform

x(nT) = ±  W ( k w )  e iwTnk............................(3*25)

0 < n < N-l

1 /N  is included as a scale factor.

In dealing with the Discrete Fourier Transform, there are a few operational 

properties that are worthwhile mentioning :

(i) Linearity:

If two series x(nT) and y(nT) have periods NT, then the DFT of the sum of the 

two series is equivalent to the sum of the transform of each series:

D FT [x(nT )+  y(nT)] = D FT{x(nT)}+ DFT {y(nT)}

= X (w k)+Y (kw ) ...... (3.26)

The transform of a constant times a function is that same constant 

times the transform of the function :
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DFT{c[x(nT)]} = c X(kw) ........  — ..........(3'27)

where c is a constant

(ii) Shift of time series :

If a periodic series x (n T ) has Fourier coefficient X(kw), then the DFT of 

the shifted displaced x ((n+ m )T ) is expressed as a multiplication of X(kw) and an 

exponential term which contributes to the phase change

N -  1
D FT{x(n+ m )T }=  Z x(nT) e ' iwT(n + m)k

n = 0

N -  1
= Z [x(nT) e _iwTnk] e -iwTmk

n = 0

= X(kw) e -iwTmk .........................(3.28)

(iii) Lengthening of a series

Suppose we have samples x (n T ) , 0 < n < N-l, and we create a longer 

series y (n T ) , 0 < n < rN-1, where r is any integer number and where

y(nT )=  J  x(,ir)' o < n < n- i
L 0 otherwise , .....................................
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The increased length of y(nT) modifies the frequency increment w  to w /r  and 

the form of equation 3.24 modifies as follows:

rN -  1
(3.30)Y(k[w / r ] )=  I  y(nT) e ’ iwTnk /  r

n = 0

Thus, if k  is divisible by r,

Y (k[w / r]) = X ( [k /  r] w) (3.31)

(iv) Cross-correlation in the frequency domain

The cross-correlation of two time series in the time domain involves 

iterative multiplications and summations, however it can be performed by 

simple multiplication of their Fourier transforms. For a long series, this 

process is more economic in use of computer time for correlation.

”N -  1 "I
DFT X x(nT) y(n + v)T = X *(kw )Y (kw )-(3-32)

_n = 0

where the asterisk denotes complex conjugate.
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This shows that multiplying the Fourier transform of one function by 

complex conjugate of the Fourier transform of the other gives the Fourier 

transform of their correlation (correlation theorem).

(v) Power Spectra

The stretch factor between two signals can be predicted by correlation 

of the power spectra of the time series rather than correlating the signals 

themselves. The power spectra of a given series is defined as the square of its 

amplitude spectrum

j

P x(kw) = |X(kw)| = X*(kw)X(kw) ......... (3.33)

From equation (3.32), this relationship is obtained by the correlation of a 

series with itself. Thus the power spectrum of series x (n T ) is also defined as 

the Fourier transform of its autocorrelation function. The unique feature of 

the power spectrum  is the loss of phase information; that is , the 

displacement or offset between two similar sequences has been eliminated 

as a pertinent factor (Kwon, 1978).

3.7 Derivative filtering of data (high-pass filter)

The stretch factor between two series as discussed above can be 

predicted by a cross-correlation of power spectra obtained through the

Chapter Three: Theoretical Background
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discrete Fourier transform. However, samples of finite length of well-logs 

do not adequately represent the long period lithologic variation. 

Consequently, principal component scores which reflect these changes show 

poor resolution for the low frequency components. By taking the 

derivatives of the data, these components are smoothed and filtered to 

attenuate low frequency components and enhance higher frequency 

components (Fig. 3.12).

The effect of the derivative filter on the frequency spectrum can be 

observed by differentiating the inverse Fourier transform formula 

*

x(t) = Jxfwte™* d w ...................................(3.34)

differentiating x(t) gives

x '(t) = fiwX (w)eivvtd w .............................(3.35)2 k J_„

FT[x'(t)] = iwFT [x (0 ]..................................... (3.36)

Taking the time derivative corresponds to high-pass filtering in the 

frequency domain

Chapter Three: Theoretical Background
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3.8 Fast Fourier Transform (FFT)

For a time series that is continuous and sampled at discrete, equally- 

spaced points, the continuous variance (or Power) spectrum may be 

calculated by either of two methods, the older procedure, calculating the 

continuous spectrum involves finding the Fourier transform  of the 

autocorrelation of a time series. Developed by Bartlett (1948), this approach 

achieves the same result as the fast Fourier transform method and is still 

widely used. Flowever, this method is not applicable when the series is 

extremely long. A somewhat newer and more widely used approach 

involves calculating many values of the line spectrum by the fast Fourier 

transform (FFT). The fast Fourier transform (FFT) is a computer algorithm 

(FOURT subroutine, appendix C) first introduced by Colley and Turkey 

(1965) to calculate the discrete Fourier transform faster, as its name implies, 

than any other available algorithm. The Fourier series in the FFT is the 

same as in the DFT, and it requires the Fourier relationship to be expressed 

in complex form

where i is the imaginary number V -  1 And the original time series is

N -  1
(3.37)X(k)= Z x(n) e 2nikn/N

n = 0

(3.38)
k = 0

n = 0,1,..... ,N-1
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Both T (time increment) and w (frequency increment) are omitted because 

they serve as scale factors which become important only when plotting the 

results.

The only differences between (3.37) and (3.38) are (i) changing the sign 

in the exponential, and (ii) dividing (3.38) by N. This means that a routine 

for calculating Fourier transform can also, with slight modification, 

calculate the inverse transform.

*
3.9 Prediction of stretching and displacement with Power Spectra

Consider a time series x(n) of N samples as the short signal and a long

series y(n) of L samples (Fig. 3.13). A part of the long series is called b(n) and is

equivalent to the short series x(n) with stretch factor (S = M /N ) and

displacement D. The long series y(n) can be represented in the sum of two 

series q(n), which represent the lengthened series b(n) and noise series h(n).

The series x(n) with length L is used instead of x(n) for computational 

reasons. The relationship between the two DFT's Q(k)and  B(k) is 

complicated by the additional zeros in b(n). These effectively change the 

phase and modify the frequency scaling. However, phase change problem 

can be avoided by computing the Power Spectra Pg(k) and PQ(k) from DFT’s

Q(k) and B(k) respectively

PQ(k) = P B(k/  S') ........................................... (3.39)

Chapter Three: Theoretical Background
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SHORT SERIES
x(n) 

(LENGTH N)
(LENGTH M)

LONG SERIES

'y(n) 
(LENGTH L)

SIGNAL

q(n)

NOISE

x(n)
LENGTHENED SERIES

Eig- 3.13 Model data used for cross-correlation of a short series x(n) with a 
long series y(n). The longer series y(n) is composed of two signals, signal 
b(n) and noise h(n). Signal q(n) is equivalent to the short series x(n) with 
a stretch factor S(=M/N) and displacement D. Lengthened series 
required for correlation process (modified after Kwon, 1977).

is
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Where S' is a scaling factor = L /M  , L is the length of the long series and M is 

the length of the stretched series.

A similar relationship is derived between px and PX

P x(k) = P x( k /  S " ) ............................................ (3-40)

Where S" is a scaling factor=L/N and N is the length of the short series.

*
From the factor S’, the length of b(n) can be calculated and consequently the 

stretch factor S between two series.

3.10 Logarithmic Scaling of frequencies

The unknown factor D (Displacement in time domain) is ignored 

when computing the power spectra. Another problem is the scaling in the 

frequency domain. The multiplication factor S' and S” in equation (3.39) 

and (3.40) will be converted to additive factors if the power spectra are 

transformed to a logarithmic scale

P Q(log k) = P„(log k -  log S')  6.41)
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P*(log k) = P x(log k -  log S") (3.42)

Logarithmic scaling of frequencies modifies the Power Spectra by a 

frequency delay of log S' or log S" (Kwon, 1977). By cross-correlation 

between Pxd°g W and Pgdog k) the factor S' and S" can be obtained to detect

such lag (delay) values.

Unfortunately, the values of power spectra after transforming to

logarithmic scale are not at evenly spaced intervals. Before cross-correlation 
*

takes place these should be at equal intervals for computer correlation. 

Kwon (1977) used Lagrange's interpolation method and in this investigation 

the same method is applied for interpolation to obtain evenly spaced spectra

The power spectra of the long series y(n) is composed of signal q(n) and 

noise h(n). The Fourier transform of this series is

P x ’(i) and P Y’<i).

Y(k) = Q (k)+  H(k) (3.43)

and the power spectra

P Y(k)=  P Q(k)+ P H(k) (3.44)
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Assuming zero lag when series are aligned and no noise in the signal, 

the cross-correlation function between the two interpolated spectra is 

written in two separate equations as follows :

N -  1

r p 'x  p f Y( -  v) = ^ p ' x (i + v )p ’Q (i)......... (3.45)
i = 1 

N -  1

r p ' s P 'Y(+  v ) h  £ p \  (i)P 'Y(i+  v ) ......... (3.46)
i = 1

*

where v is a positive integer and i is a dummy variable for the interpolated 

spectrum. Correlation coefficient rp ’x p 'Y with negative values of v are 

obtained when P x’(i) is shifted to the left against a stationary series P'y(i)

and long the series is assumed to be stretched (M>N). The maximum 

coefficient can be found i f :

v = j  logS " -  y logS ' = j  log (f^1) = 7 log (7 7 ) ....(3.47)

On the other hand, correlation coefficient rp fx p 'Y with positive 

values of v are obtained when Px'(i) is shifted to the right against a 

stationary signal P 'yd) and the short series is assumed to stretched (N>M).

The maximum coefficient can be found if :
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v = 7 loS ^ .......................................................(3*48)

Using equation 3.39 and 3.40 to transform equation 3.45 to logarithms:

N -  v

r P'x p'Y( - v ) =  X p 's ( i - - f l ogS " ) p ' ( i - f l o g S ' )
i = 1

= Z p'x ( i -  ylogS "+  v )p ’x ( i -  plogS f) —(3.49)
i = 1

where I is the interpolation interval.

Once the shift v is known for the maximum correlation coefficient, the 

stretch factor S, either M /N  or N /M  can be deduced from

S = 10vl  ...............................................................(3.50)
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3.11 Interpolation (stretching) by inverse FFT

By modifying the DFT of the signal which is obtained using the FFT 

algorithm, a simple and accurate stretching of time series can be achieved in 

the frequency domain (Rudman, Blakely and Henderson, 1975). A band 

limited series with N samples (no frequency component above the Nyquist 

frequency) can be stretched to M points, M > N by inserting (M-N) zeros in 

the middle of the DFT values . Because no new frequencies were added 

above the Nyquist, the inverse transform gives the time series of length M. 

For example, consider a time series of 8 points (Fig. 3.14). The heavy line 

indicates the input signal and dashed line is a remainder that the DFT is 

computed assuming that the signal is cyclically repeated in both directions. 

The DFT for this signal is also given by 8 frequency components and shows 

even symmetry about the Nyquist frequency. If we added 8 zeros in the 

middle, the total number of frequency components increase to 16 points. 

Twice as many samples of the original signal will be recovered when the 

signal is transformed back to the time domain. This procedure interpolates 8 

new data points into the original time signal which stretches the original 

series by a factor of 2.

3.12 Determination of Displacement

Given the stretch S between two series, the series can be stretched or 

resampled using the interpolation method. The displacement D between the 

short series and the identical part of the long series will be determined from 

the maximum value of the correlation function computed.

Chapter Three: Theoretical Background
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3.13 Summary

Applying Principal Component Analysis (PCA) and correlation 

technique to well-log data involves the following steps :

1. Calculate the variance-covariance or correlation matrix of the original 

variables.

2. From variance-covariance or correlation matrix compute the eigenvalues 

and the eigenvectors.

3. Calculate principal component scores.

4. Extract and Smooth (optionally) the principal component scores.
*

5. Identify formation boundaries.

6. Take Fourier transform of the principal component scores and compute 

power spectra.

7. Transform frequencies to logarithmic scale.

8. Obtain equally spaced (interpolated) power spectra using Lagrange's 

interpolation method.

9. Cross-correlate between interpolated power spectra.

10. Either, stretch short series and cross-correlate to find the maximum 

correlation coefficient,

OR stretch long series and cross-correlate to find the maximum correlation 

coefficient.

11. Find the largest coefficient and determine the optimum stretch.
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12. Stretch the shorter series and perform cross-correlation to determine the 

relative displacement of the two series.

Chapter Three: Theoretical Background
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CHAPTER FOUR 

Application to Attahaddy Field

4.1 introduction

.. A Fortran program, PCAXCOR, has been written for applying 

principal component analysis, boundary identification and correlation of 

well-log data. The data were obtained from magnetic tapes for different wells 

in the Attahaddy field (Fig. 4.1). Using model data, constructed from one of 

the well-logs, the method is first tested using both the original variables of 

electrical logs and their first principal components. Then complete 

sequences, sampled at 5 feet intervals, from a number of wells are processed.

The first part of the program is applied to calculate the eigenvalues 

and the eigenvectors of the correlation matrix of the original variables. 

These variables are Gamma Ray (GR), Spontaneous potential (SP), Shallow 

resistivity (ILS), Medium resistivity (ILM), Deep resistivity (ILD), Transit 

time (DT) and the Calliper (CALI) (Appendix B). These variables are often 

used in manual Formation boundary identification and well-to-well 

correlation, and hence are chosen for automated boundary identification.
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and cross-correlation. The correlation matrix is used because the variables 

are expressed in different units of measurements and it is necessary to 

calculate the different principal components. Using these components, the 

different boundaries for different Formation in different boreholes are 

identified. Different well-log data (Neutron, density, ..., etc) and the 

variance-covariance matrix can be used if all variables are expressed in the 

same units.

The second part of the program is the determination of the cross

correlation between different formations to examine the effectiveness of 

using the spectral analysis of the first principal components of real data. In 

contrast to the spectral analysis method for correlating well-logs developed 

by Kwon (1977) which applies the spectral analysis to the original data, this 

new approach makes use of the the first principal component of well-log 

data as the basis for correlating different boreholes. An empirical measure of 

successful correlation is determined by comparing the results to the known 

geological correlations in the field.

Two cross-correlation functions are used. The first uses, cross

correlation of power spectra of the first principal component to determine 

the stretch factor (S), which in turn represents the variation in the thickness 

between two formations, and the second uses, cross-correlation of the 

stretched series to determine the relative displacement (D in Fig. 3.13). This 

is preceded by the stretching process using the FFT algorithm. Kwon (1977) 

notes that when applying the stretch method, the derivative filtering (high

Chapter Four: Application to A ttahaddy Field
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pass filtering) is necessary for most real data to obtain appropriate high 

resolution for the cross-correlation of power spectra. In other words, 

derivative data is used to obtain the stretch factor, but the original data 

(principal components) to determine the displacement. He also points out 

that when dealing with well-logs complicated by the presence of high 

frequency signals, it is desirable to apply a smoothing filter, such as a 

moving average, to the data before differentiation in order to obtain more 

reliable correlation of power spectra.

In this study the filtered components (using moving average filter, 

SMOOTH subroutine Appendix C) are used before preceding with the cross

correlation. Difficulties encountered in PCAXCOR are also common in 

other mathematical correlation methods. Therefore several conclusions 

drawn from the study of the real data are also applicable to the other 

methods.

4.2 Analysis of model data

4.2.1 Using original variables

A 300 foot sequence of Gamma Ray log (GR), was digitised from 

borehole FF13-6 in Attahaddy field [ depth 4000-4500 feet ], and correlated 

with a short series of GR log (50 feet) from the same borehole and shifted 

down 50 feet (Fig. 4.2a). The derivatives (high frequency components) of 

these signals are taken to eliminate the noise affect (Fig. 4.2b). Power spectra 

of these logs are then calculated using the fast Fourier transform and the
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components above the Nyquist are ignored (Fig. 4.2c). The length of the 

short series in (Fig. 4.2c) has the same number of points as the long series (i.e 

x in Fig. 3.13). If the spectra are transformed to logarithmic frequencies (Fig. 

4.2d), then the transformation converts the scaling effect of Fig. 4.2c into a 

shift between these spectra. Lagrange's interpolation method then is used to 

obtain equi-spaced spectra (Fig. 4.2e). In general the ratio of thickening to 

thinning is not very large and rarely exceeds a value of 2, therefore, the 

maximum shift is set to. terminate at 30 which is derived from equation 3.50 

with sampling interval of 0.01 (1=0.01). In the case of model data the 

maximum correlation coefficient (1.0) is observed at 0 (no stretching) (Fig. 

4.20. The cross-correlation of stretched series is then performed to obtain the 

displacement between the two logs. Figure 4.2g shows the maximum 

correlation coefficient (1.0) at displacement of 51 feet.

4.2.2 Using Principal Component Scores

A short series (50 feet) of the first principal component obtained from 

the same borehole (FF13) is compared with a long series (300 feet) with 

displacement of 50 feet (Fig. 4.3a). The derivatives of the data of the principal 

component scores are taken (Fig.4.3b) and power spectra are then calculated 

(Fig. 4.3c). This plot shows that there is a similarity in shape between the two 

curves, but a prominent scaling effect of frequencies is observed. The 

frequencies are then transformed to logarithmic scale (Fig. 4.3d) to obtain the 

shift between the two signals. On a logarithmic scale (base 10), the number of 

known components in each logarithmic cycle is different, e.g 10 in the first 

cycle, 90 in the second and 900 in the third. Using the Lagrange interpolation 

method, 100 samples are interpolated with sampling interval 1=0.01. The

Chapter Four: Application to A ttahaddy Field
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first cycle is ignored (Kwon, 1977) because it contains a few data points and it 

is a waste of computer time to interpolate this component. To obtain equi- 

spaced power spectra Lagrang's interpolation is used (Fig. 4.3e). The 

resultant cross-correlation coefficient between the power spectra is shown in 

Fig. 4.3f. The cross-correlation coefficient, like the original data (GR), shows 

a high peak at shift zero which implies that no stretching is involved. A 

maximum cross-correlation coefficient of 1.0 is observed at a lag of 50 feet 

(Fig. 4.3g). Appendix E gives the printed output obtained using the principal 

component scores.

Different thicknesses and different displacements (Fig. 4.4 & Fig.4.5) 

were tried to test the reliability of this technique and all show promising 

results. Figure 4.4 shows a test of the program using a thickness of 120 feet 

for the short series and a thickness of 450 feet for the long series and 

displacement of 50 feet. In Fig. 4.5, the thickness of the thin Formation is 50 

feet and the thickness of the thick Formation is 220 and zero displacement. 

The results (Fig.s 4.5f & 4.5g) show a maximum correlation coefficient of 1.0 

at zero lag and a maximum correlation coefficient of 1.0 at displacement of 2 

feet. (Appendix E)

Although the program results using model data of the original 

variables of Gamma Ray and model data of the first principal component of 

all the original variables in Well FF13 in the Attahaddy field are similar, 

using the first principal component for correlation of well-log data is more 

reliable. For example in Fig. 4.2 using the original variable of Gamma Ray

C h a p t e r  Four: A p p l i c a t i o n  to A t t a h a d d y  Fiel d
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(GR), the derivative data (Fig.4.2b) of both curves are unstable and noisy. 

Furthermore, the interpolated power spectra (Fig.4.2e), from which the 

correlation coefficients are calculated, are unstable too. This instability of the 

original variables is overcome by using the first principal component which 

gives clear, distinct filtered curves (Fig. 4.3b & 4.3e). The reliability and 

stability of the first principal component promise fruitful results.

4.3 Interpretation of real data

4.3.1 Introduction

-■ In the previous section the application of PCAXCOR using the first 

principal components was developed and tested on model data. Empirical 

results of model data showed that the use of principal component analysis is 

highly effective in well-to-well correlation. However, real data are 

complicated by geological variations which do not preserve identical forms 

nor constant thickness from well to well. This is true especially with 

geologically complex long sequences and large distances between boreholes 

such as the Attahaddy field (Fig. 4.6 & Table 4.1). As a result the value of the 

maximum correlation function will be smaller compared to model data. 

This is because mathematical correlation gives an entire average of 

similarity between features of the entire section to be compared. Therefore, 

the computer selection does not always agree with the geologic selection 

which considers some other factors when the correlation is made between 

two logs.

Program PCAXCOR is applied to five boreholes across the Attahaddy 

field (Fig. 4.7, Appendix A) with variation in distances between successive
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boreholes 2 to 10 kilometres. Five formations are used in studying the 

boundary identification and cross-correlation. These are: the Etel, Sheghega, 

Domran, Ruaga and the Hiera formations. The lower part of the sequence 

comprised of the Zmam, Socna, Bahi and Gargaf formations. These are 

characterized by very high resistivity values due to the presence of gas and 

are discarded from the analysis.

4.3.2 Correlation between FF7 and FF13

As the first application of PCAXCOR with real data, two boreholes on

the Northern side of the Attahaddy field (Fig.4.7, Appendix A) are used. The 
*

distance between the two wells is approximately 3 Km. Well FF7 is a gas well 

produces from the Gargaf Formation and well FF13 was suspended as a gas 

well.

The principal components of well FF7 are calculated (Table 1 

Appendix E) and the graphical display of its first principal component is 

shown in Figure 4.8a. The boundaries of the different formations are shown 

in Figure 4.8b and Table 4.2. The length of the sequence used is from depth 

of 4460-10946 feet (sampled at 5 feet interval). The Domran Formation at a 

depth of 6500 feet, the Heira Formation is identified at a depth of 7400 feet, 

and the Zmam Formation is identified at a depth of 9500 feet.

The boundary identification technique is based on the selection of 

formation boundaries where the average changes of the sequence values are

C h a p t e r  Four:  A p p l i c a t i o n  to  A t t a h a d d y  Field
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great. However, in the Attahaddy field some Formation boundaries, for 

example Domran Formation, do not occur at such point, hence some 

difference between the geological boundaries and the computer selection is 

observed.

Table 4.2 The Geological Formation depths and the predicted 

Formation depths of FF7 using the boundary identification 

technique.

Form ation Geological depth Predicted depth

Dom ran 6690 6500

Ruaga 7553 -

Heira 7502 7400

Zm am 9718 9500

Figure 4.9a shows the first principal component for FF13 and its correlation 

matrix, the eigenvalues, eigenvectors and the percentage of each eigenvalue 

are shown in Table 4.2 Appendix E.

The formation boundaries of well FF13 are shown in Figure 4.9b and 

Table 4.3 for the interval between 3500 to 10500 feet (sampled at 5 feet 

interval). The Etel Formation is identified at depth 4050 feet, the Sheghega 

Formation at depth 4762 feet, the Domran Formation at depth 6900 feet, the 

Ruaga Formation at depth 7558 feet, the Hiera Formation at depth 7800, and 

the Zmam Formation is identified at depth 9800 feet.
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Table 4.3 The Geological formation depths and the predicted 

formation depths of FF13 using the boundary identification 

technique. ______________ ________________________

Formation Geological depth Predicted depth

Etel 4114 4050

Sheghega 4762 4762

Domran 6788 6900

Ruaga 7558 7558

Heira 7742 7800
*

Zm am 10028 9800

After identification of formation boundaries for well FF7 and well 

FF13, cross-correlation between the smoothed first principal components 

(Fig. 4.10) of FF7 and that of FF13 is applied. The computer correlation of 

these components is complicated by sudden change of the apparent 

m agnitude of the sequence values and facies variation which make the 

visual correlation difficult. For example, some interbeds of limestone in the 

upper part of the Hiera Formation. Also the variation in lithology from 

highly calcareous shale and highly argillaceous limestone. Because the 

thickness in the correlated sequence varies from one formation to another, 

different window lengths for different formations are used (Fig.4.10).
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4.3.2 (a) Correlation of the Sheghega Formation

The power spectra of the filtered first principal component of the 

Sheghega Formation in FF13 (indicated by number 1 in Fig. 4.10a) are 

correlated with power spectra of filtered first component of well FF7 with 

window length equal approximately double of that of the section in FF13 

(Fig. 4.10b, marked by letter A). The derivative data for the short sequence 

(FF13) and the long sequence (FF7) are calculated (Fig. 4.11b). Figure 4.11c- 

Figure 4.1 le  show the power spectra, the transformation to logarithmic scale 

of power spectra and the interpolated power spectra of both series 

respectively. The cross-correlation function of these spectra is shown in 

Figure 4.11f and Figure 4.12b. This function yields a stretch factor of 1.12 

(compared with geological stretch of 1.01) for the long sequence. The cross

correlation function for the stretched sequence which has a maximum peak 

is shown in Fig.4.11g. The relationship between the two series, the cross

correlation function of power spectra and the cross-correlation function of 

the stretched series is displayed in Figure 4.12. Maximum cross-correlation 

coefficient for a stretch of 1.12 indicated by an arrow in Fig. 4.12b and a 

maximum cross-correlation coefficient for displacement yields a maximum 

peak (0.570) for displacement of 20 feet compared with geological 

displacem ent of 59 feet. This result is reasonable for the Sheghega 

Formation with average thickness of 2000 feet. The small deviation from 

the geologic correlation is explained by the fact that the computer correlates 

the average similarity through the selection assuming that the thickening of 

beds is uniform.
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1 0 0

An attem pt to correlate the Sheghega Formation using the non

filtered principal component of well FF7 and well FF13 (Fig. 4.13) failed both 

in predicting the stretch factor and in obtaining the accurate displacement of 

stretched series. The cross-correlation of power spectra yielded a stretch 

factor of 1.51 (Fig. 4.13f) compared with geological stretch of 1.01 and cross

correlation function of 0.62 at displacement of 265 feet compared with 

geological displacement of 59 feet (Fig. 4.13g). This was not unexpected, as 

the correlation using non-filtered principal component is characterized by 

noise component both in the time (Fig. 4.13a) and the derivative (Fig. 4.13b) 

domains.

j

4.3.2 (b) Correlation of the Domran Formation

Difficulties are encountered in visually correlating the upper part of 

the Domran Formation and in the computer identification of the upper 

boundary of the Domran Formation (Fig. 4.9b). This is because the lower 

part of the Sheghega limestone is similar in the log response to the upper 

part of the Domraan Formation, consequently, the average change in the log 

response occurs in the lower part of the Sheghegan Formation and not at 

the contact between the two formations.

Computer correlation is attempted (Fig. 4.14). The cross-correlation 

function of power spectra (Fig. 4.14b) yields a peak at +v=+9 which 

corresponds to a stretch of 1.23 compared with 1.19 between FF7 and FF13. 

The positive sign of v indicates that a portion of the long sequence is
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stretched relative to the short sequence (series). This implies that the 

direction of the thickening is from well FF13 towards FF7 which agrees with 

the geological direction. The stretch factor is computed from equation 3.50 :

S=109x0-01 =1.23

which is expected for Domraan Formation which has an average thickness 

of about 700 in the two boreholes. The cross-correlation function of the 

stretched series has a maximum of 0.433. This reduction in the magnitude of 

the cross-correlation function results from the fact that the noise signal h(n) 

(Fig. 3.13) which is not overlapped with the correlative section in the time 

domain, is transfered to an additive spectrum in the frequency domain. 

Although the cross-correlation function is the most valid method to detect 

the desired signal from background noise, the decrease of maximum 

coefficient value is inevitable for such a case.

4.3.2 (c) Correlation of the Ruaga Formation

M athematical correlation (Fig. 4.15) agrees w ith the known 

stratigraphic correlation for the Ruaga Formation. The maximum peak of 

the correlation function of the power spectra yields an optimum stretch 

factor, S=1.0 that is no stretch compared with geological thickening of 1.10 

for long sequence (FF7) (Fig. 4.15b). The maximum correlation function 

(0.760) for displacement of 200 feet (40 units) compared with 223 feet is also 

easily identifiable (Fig. 4.15c).
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4.3.2 (d) Correlation of the Heira Formation

Cross-correlation of power spectra resulted in a correlation function 

which has two peaks, at a lag of -v=-17, that is, a stretch factor S=1.48, and at a 

lag of -v=-28, that is a stretch factor S=1.90 (Fig. 4.16g and Fig. 4.17b). In 

PCAXCOR, the correlation is based on two choices of maximum correlation 

functions of power spectra. Although the computer selection of the second 

peak, S=1.48 at a lag of 17 units at displacement of 586 units (2930 feet)(actual 

displacement times the stretch factor, i.e 1980 x 1.48) does not agree with the 

geological thickening (1.04) for the long sequence (i.e FF7, the correlation of 

the derivative data yields a high value of correlation coefficient (0.748) 

(Fig,4.17c).

By changing the window size (Fig. 4.18), a higher correlation 

coefficient (0.867) and a better stretch factor (S=1.12) are obtained. 

Furthermore, the displacement (275 feet) is very close to the geological 

displacement (240) between FF13 and FF7.

This result demonstrates that the correlation of power spectra is 

dependant on the selection of the optimum window size used for cross

correlation to give the best stretching of strata and the displacement between 

two series from the maximum correlation functions. Although the selection 

of the optimum values from such functions are not always so obvious as 

when model data is used, the choice by PCAXCOR based on the highest two 

peaks generally represent a geologically reasonable stretch value and
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displacement as will be demonstrated in the following sections.

4.3.3 Correlation between FF13 and FF11

These two wells are about 3 Km distant and the sequence to be 

analysed is between depth of 3500 and 10500 feet in each borehole. This 

includes the top of the Etel Shale Formation through to the bottom of the 

Hiera Shale Formation in which a total of 7000 feet is to be interpreted.

The eigenvalues, the eigenvectors and the percentage of the each
*

eigenvalue of the correlation matrix of the original variables (GR, SP, ILM, 

ILS, ILM, DT and CALI) of well FF11 is listed in Table 4 Appendix E and its 

graphical display of the first principal component is shown in Figure 4.19a.

The boundaries of different formations are identified using the 

boundary identification technique and are shown in Figure 4.19b. The 

Sheghega Formation is identified at depth of 4578 feet, the Domran 

Formation at a depth of 6300 feet which was picked at the average change of 

the curve response at the lower part of the Sheghega Formation and not at 

the contact between the two formations (depth 6473 feet). The Ruaga 

Formation is located at depth of 7350 feet. The Hiera Formation is identified 

at depth of 7600 feet, and the Zmam Formation at depth 10000 feet. The 

boundaries of well FF13 were identified in section 4.3.2 (Fig.9b)
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Table 4.4 The Geological formation depths and the predicted 

formation depths of FF11 using the boundary identification technique.

Formation Geological depth Predicted depth

Sheghega 4578 4578

Domran 6473 6300

Ruaga 7446 7350

Heira 7780 7600

Zm am 9790 10000

The first principal component of well FF11 is correlated against that of 

FF13 with variable window size for different formations (Fig. 4.20).

4.3.3 (a) Correlation of the Etel Formation

The Etel Formation in well FF13 (indicated by number 1 in Fig. 4.20a) 

is compared with a section from FF11 (indicated by the letter A in Fig. 4.20b ). 

The derivatives of the data are used in calculating power spectra and for 

final correlation between the stretched sequence (Fig. 4.21). The resultant 

cross-correlation function of power spectra yields a distinct peak for a lag of 

+2 which corresponds to a stretch factor of S=1.05 (compared with geological 

stretch of 1.13)(Fig. 4.22b) for long series (FF11) and agrees with known 

geological thickening from FF13 towards FF11. The cross-correlation 

function of the stretched series yields a maximum peak (0.808)(Fig. 4.22c) for

C h a p t e r  Four:  A p p l i c a t i o n  to A t t a h a d d y  Field



FI
L.

 P
C-

I 
(F

F1
3)

 
FI

L.
 P

C-
I 

(F
F1

1)

—

o —

Tj- _
r ~

0003*

CN —i

o  —

CN _

_
I

0003*

U>

— 1------------------ 1------------------ 1 I---
OOOfr* 0009* 0008* 00001-

JLH33 NI RLdHG

«o
CN ■

to

0 0 0 0 0 0 9 -  0008- 0 0 0 0 1-

00031-

 1
00031-

1333 NT HldHQ

Fi
g. 

4.2
0 

Pl
ot

 s
ho

wi
ng

 
the

 
sm

oo
th

ed
 

pr
in

ci
pa

l 
co

m
po

ne
nt

 o
f 

the
 

co
rr

ela
te

d 
se

qu
en

ce
s 

(F
F1

3 
an

d 
FF

11
). 

(a)
 

sm
oo

th
ed

 
co

m
po

ne
nt

 o
f 

we
ll 

FF
13

. 
(b)

 
sm

oo
th

ed
 

co
m

po
ne

nt
 o

f 
we

ll 
FF

11
. 

A
 

wi
nd

ow
 

(m
ar

ke
d 

1) 
in 

(a)
 

is 
co

rr
ela

te
d 

wi
th

 
a 

wi
nd

ow
 

(m
ar

ke
d 

A)
 

in 
(b

). 
Th

e 
w

in
do

w
 

(m
ar

ke
d 

2) 
in 

(a)
 i

s 
co

m
pa

re
d 

wi
th 

the
 

wi
nd

ow
 

(m
ar

ke
d 

B) 
in 

(b
), 

an
d 

so 
fo

rt
h.



1N
TE

RP
. 

FR
EQ

., 
SH

OR
T 

SE
RI

ES
 

FR
EQ

, 
SI 

10
RT

 
SE

RI
ES

 
D

E
T

T
II

IN
FE

tn
'

113

PC-I, SHORT SEQ. (FF13)
• 1 0  1 2

8 1 1 ’
PC-I, LONG SEQ. (FF11)

• 1 0  1 2  3
DERIVATIVE DATA
-1.4 -0.8 -0.2

DERIVATIVE DATA
-0.2 0.0

(a)

1

82
O

1

o

8

■%:
o2
3

8

(b) 8T

POWER SP POWER SP
0.04 006

POWER SP
0.4 (

POWER SP
0.04 0.08

(c)

o

©

a
1

©

8

O
©

sse
GC

o

O'

o

(d)

o

o

o
toO2
3

oO
3 o

INTERP.POWER SP
0 1 2 3 4 s

INTERP.POWER SP
0.0 0.010 0.025

X-COR (STRETCH) X-COR (DISPL. ■0.2 02 0.6

(e)

o

2LJ

• s & •
8

•20

10
0£

o 0
c<

10

20

30

(f)

E
QtC
Oc.

S

8

(g>

Fig. 4.21 plot of cross-correlation function of the Etel Formation using the derivative data o 
FF13 and FF11. (a) the first principal components of the Etel Formation in well FF13. (b) is t e 
derivative of the data, (c) is the power spectra of the derivative data, (d) is the power 
spectra with logarithmic spaced frequencies, (e) the interpolated power spectra, (f) the cross
correlation function of power spectra, (g) the cross-correlation function of the stretched series.
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displacement D=30 units (150 feet compared with 110 feet). A spurious peak 

for the cross-correlation function of power spectra is obtained when the 

non-filtered principal components are used (Fig. 4.23). The cross-correlation 

function of power spectra yields a sharp peak at a lag -v=-10 (S=1.25) for short 

series (sequence) (Fig. 4.23b), and a maximum peak for displacement D=210 

feet (Fig. 4.23c). Furthermore, an attempt to correlate the original variables 

(Gamma Ray) of well FF13 and FF11 failed (Figs. 4.24, 4.25) producing a very 

high stretch factor (S=1.80) for long sequence and cross-correlation function 

for displacement D=230 units (1150 feet).

The above results emphasize that the use of the smoothed principal 

components has the advantage in more accurately predicting the stretch 

factor over both the non-filtered components and the original variables of 

well-logs. In addition, the correlation functions of power spectra of the 

filtered principal component (Fig. 4.22b ) against that of the non-filtered (Fig. 

4.23b ) and that of the original data (Fig. 4.24b), and the correlation functions 

of the stretched series in Figure 4.22c against that of Figure 4.23c and that of 

Figure 4.24c are more smooth and symmetric.

4.3.3 (b) Correlation of the Sheghega Formation

The computer successfully correlates the Sheghega Formation of well 

FF13 (indicated by number 2 in Fig. 4.20a) with the section indicated by the 

letter B in Figure 4.20b. The high peak of the cross-correlation function of 

power spectra is shown in Figure 4.26f and Figure 4.27b at a lag of -v=-2 

(S=1.05 compared with geological stretch of 1.05) for the long sequence
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(series) (Fig. 4.27b), this implies that the direction of the thickening of the 

strata is towards FF11. The high magnitude (0.799) of the cross-correlation 

function of the stretched series (Fig. 4.26g and Fig. 4.27c) is corresponding to 

computer stretch of 39 units (195 feet) compared with the known geological 

displacement 185 feet.

4.3.3 (c) Correlation of the Domran Formation

Figure 4.28 shows the result of correlating of the Domran Formation 

(window 3 in Fig. 4.20a) in well FF13 with a portion of long series of well 

FF11 (window C in Fig. 4.20b). Like the correlation of the Sheghega 

Formation, the computer selection of the two correlation functions (Fig. 

4.28g and Fig. 4.28f) agrees with the known geological correlation. In Figure 

4.29b the maximum correlation function has a peak for a stretch factor 1.23 

compared with 1.26 at a lag +v=9, and a maximum peak (0.645) at 

displacement of 59 units (295 feet compared with 310 feet) (Fig. 4.29c).

4.3.3 (d) Correlation of the Ruaga Formation

The mathematical correlation of the Ruaga Formation of well FF13 

(number 4 in Fig. 4.20a) against a section of well FF11 (letter D in Fig. 4.20b. is 

displayed in Figure 4.30 and Fig. 4.31. Two comparable peaks of power 

spectra are observed (Fig. 4.30g and Fig. 4.31b). The top peak corresponds to a 

stretch of 1.44 at a lag -v=-16. The computer selection of the second peak at a 

lag -v=-4 (S=1.10) is geologically reasonable compare to geological stretch of 

1.20, and displacement of 125 feet compared with 112 feet. The negative sign

C ha p t e r  Four: A p p l i c a t i o n  to A t t a h a d d y  Field
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of v indicates that the short series (FF13) is a stretched version of the the 

long series (FF11).

4.3.3 (e) Correlation of the Heira Formation

Figure 4.32 shows the cross-correlation between the Heira Formation 

in well FF13 (number 5 in Fig. 4.20a) and a window of length E in Figure 

4.20b. A high magnitude (0.730) of the cross-correlation function is obtained 

(Fig. 4.32f and Fig. 4.33c) when correlating the thick sections of the Heira 

Formation ( about 2200 feet). Although the maximum cross-correlation 

function of the power spectra yields large value of stretch 1.26 compared 

w ith 1.08 for the long series (FF11), the computer selection of both the 

direction of thickening and displacement (Fig. 4.33b and Fig. 4.33c) is 

satisfactory. An improvement in the stretch factor value (1.17) is obtained 

w hen the non-filtered principal components are used in the analysis 

(Fig.4.34), and the maximum function for correlating stretched series (0.417) 

and stretch of 1.10 are obtained when the derivative data is used for 

stretching (Fig. 4.35). However, the direction of the variation in thickness 

was spurious one and does not agree with the known geological thickening 

which is from well FF11 towards FF13.

4.3.4 Correlation between FF11 and FF12

Well F ll  and well FF12 are located on the eastern flank of the 

Attahaddy field (Fig. 4.7). The distance between the two boreholes is about 4 

Km and a sequence of 7000 feet [3500-10500 feet] is used in the analysis’ Well
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FF11 is a gas well producing from the Gargaf Formation and well FF12 lies 

outside the gas-water contact of the eastern part of the Attahaddy field and is 

a dry hole.

The eigenvalues, eigenvectors and the percentage of the eigenvalues 

to the total variance of the correlation matrix of well FF12 are shown in 

Table 4 Appendix E, and its first principal component is displayed (Fig. 

4.36a). The first principal component of well FF11 is shown in Figure 4.19a, 

and its eigenvalues and eigenvectors are shown in Table 3 Appendix E.

Different Formation boundaries of well FF12 are identified using the 

boundary identification technique (Fig. 4.36b, Table 4.5). The Sheghega 

Formation is identified at depth of 4738 feet, the Domran Formation at 

depth of 6750 feet, the Ruaga Formation is at depth of 7450 feet, the Heira 

Formation is identified at a depth of 7850 feet, and the Zmam Formation at 

depth of 10020 feet. The cross-correlation between the two sm oothed 

principal component of well FF11 and FF12 (Fig. 4.37) are then performed.
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Table 4.5 The Geological Formation depths and the predicted 

Formation depths of FF 12 using boundary identification technique.

Form ation Geological depth Predicted depth

Sheghega 4738 4738

Dom ran 6925 6750

Ruaga 7691 7450

Heira 7924 7850

Zm am 10199 10020

4.3.4 (a) Correlation of the Etel Formation

The Etel Formation of well FF12 (indicated by number 1 in Fig. 4.37a) 

is compared with a section from well FF11 with a window indicated by the 

letter A (Fig,4.37b). A maximum of cross-correlation function of power 

spectra is observed at a lag v=0, no stretch compared with 1.10 for the long 

sequence (FF11) (Fig. 4.38g and 4.39b). The computer correlation of the 

stretched sequence, with a correlation maximum of 0.71 giving a 

displacem ent of 75 feet (Fig. 4.38f and 4.39c) agrees with the known 

geological correlation of the Etel Formation between well FF12 and FF11.

4.3.4 (b) Correlation of the Sheghega Formation

Cross-correlation of the Sheghega Formation is made between FF12 

(number 2 in Fig. 4.37a) and a portion of the principal component of well

C h a p t e r  Four:  A p p l i c a t i o n  to A t t a h a d d y  Fiel d
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FF11 with a window length marked by the letter B using the original data for 

stretching (Fig. 4.37b). A successful cross-correlation is observed (Fig. 4.40). 

The maximum value of the cross-correlation function of the power spectra 

at a lag of 10 (Fig. 4.40b), gives a stretch factor of 1.26 compared with 1.16 

which is geologically reasonable. The direction of the thickening of strata is 

from well FF12 towards FF11 which agrees with the known thickening. 

Furthermore, the selection of the maximum peak of the cross-correlation 

function of the stretched series (0.577) (Fig. 4.40c) at displacement of 24 units 

(140 feet) compared with 32 units (160 feet) confirms the reliability of the 

correlation.

>

4.3.4 (c) Correlation of the Domran Formation

The Dom ran Formation in well FF12 (Fig.4.37a, num ber 3) is 

compared with FF11 (Fig.4.37b, symbol C) using both the derivative data and 

the original data (Fig. 4.41 & Fig. 4.43) respectively. In Figure 4.41g and 4.42b, 

a stretch factor of 1.32 is predicted compared with 1.27 is observed for long 

sequence and displacement of 440 feet compared with 452 feet is observed, 

however, the direction of the thickening of the Domran Form ation is 

towards FF11. When the original principal components data are used for 

stretching (Fig. 4.43), the direction of thickening of the two formations 

agrees with the geological thickening but a bigger value of stretch factor 

(1.38) is obtained (Fig. 4.43b).
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4.3.4. (d) Correlation of the Ruaga Formation

The mathematical cross-correlation of the Ruaga Formation in these 

boreholes is extremely accurate in predicting the stretch factor as well as the 

displacement. This correlation is made between the Ruaga Formation in 

well FF12 (Fig. 4.37a, number 4) and a section from well FF11 (Fig. 4.37b, 

letter D). A stretch factor of 1.07 compared w ith 1.02 is obtained from 

correlating the power spectra (Fig. 4.44f and 4.45b). The cross-correlation 

function of the stretched series shows a m axim um  peak of 0.899 at 

displacement of 250 feet (50 units) compared with geological displacement of 

245 feet (Fig. 4.45c).

*

4.3.4. (e) Correlation of the Heira Formation

Figure 4.46 shows the Heira Formation in FF12 (indicated by number 

5 in Fig. 4.37a) when compared with a window length m arked by letter E 

(Fig. 4.37b). The cross-correlation function of power spectra (using the 

principal components for stretching) yields a peak at a lag of -v=-3 which 

gives a stretch factor of 1.07 which agrees with the expected value, 1.07 

(Fig.4.46b). The negative sign indicates that the short series is stretched 

relative to the long series. The maximum in the cross-correlation function 

of the stretched series (0.941) is observed in Fig. 4.46c for displacement of 150 

feet (30 units) compared with geological displacement of 180 feet.
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4.3.5 Correlation between FF12 and FF10

As the last application of PCAXCOR on well-log data, boreholes FF12 

and FF10 (Fig. 4.7) are subjected to the analysis. Well FF12 delineates the 

eastern part of the Attahaddy field, and well FF10 was drilled to delineate 

the southern part of the gas-water contact. The distance between the two 

wells is about 10 Km, and a total of 7000 feet of each borehole is used.

As with the previous wells, the eigenvalues, eigenvectors and the 

percentage of each eigenvalue of well FF10 are calculated (Table 5 Appendix 

E). The first principal component of this borehole is shown in Figure 4.47a. 

The boundaries are then identified (Fig. 4.47b, Table 4.6). The Sheghega 

Formation is picked at depth 4440 feet, the Domran Formation is at depth of 

5750 feet, the Heira Formation at depth 7670 feet, and the Zmam Formation 

is identified at depth 10000 feet.

Table 4.6 The Geological Form ation depths and the predicted 

Formation depths of FF10 using the boundary identification technique.

Form ation Geological depth Predicted depth

Sheghega 4440 4440

Domran 6256 5750

Ruaga 7451 -

Heira 7780 7670

Zm am 10593 10000

C h a p t e r  Four:  A p p l i c a t i o n  to A t t a h a d d y  Field
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Finally the mathematical cross-correlation between the two filtered 

principal components is perform ed w ith different window lengths for 

different formations (Fig. 4.48).

4.3.5 (a) Correlation of the Etel Formation

Cross-correlation of the Etel Formation in well FF10 (Fig. 4.48a, 

number 1) is made against a section of the principal component of well FF12 

(Fig. 4.48b, letter A). The resultant cross-correlation function of the power 

spectra (Fig. 4.49g and Fig. 4.50b) indicates a stretch factor of 1.26 compared 

w ith an expected value of 1.3, for the short sequence. The cross-correlation 

function of the stretched sequence yields an optimum maximum peak of 

0.826 (Fig. 4.49g and 4.50c).

4.3.5 (b) Correlation of the Sheghega Formation

The Sheghega Formation in well FF10 (Fig. 4.48a, num ber 2) is 

compared with that of well FF12 (Fig. 4.48b, letter B). The cross-correlation 

function of the power spectra indicates a stretch of 1.17 compared with 1.20, 

for the long sequence (Fig. 4.51 g and 4.52b), the cross-correlation function of 

the stretched sequence has a maximum peak of 0.707 with a displacement of 

39 feet (Fig.4.52c) compared with geological displacement of 59 feet.

C h a p t e r  Four:  A p p l i c a t i o n  to  A t t a h a d d y  Field
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Fig. 4.49 plot of cross-correlation of the Etel Formation in FF10 and FF12 using the derivative 
data, (a) principal components of FF10 and FF12. (b) is the derivative of the data, (c) the 
power spectra, (d) is logarithmic spaced spectra, (e) is the interpolated spectra, (f) is the 
cross-correlation function of the power spectra, (g) is the cross-correlation function of the 
stretched series.
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Fig. 4.51 Plot of cross-correlation of the Sheghega formation in FF10 and FF12 using the 
derivative data, (a) principal component of FF10 and FF12. (b) is the derivative of the data, 
(c) the power spectra, (d) is logarithmic spaced spectra, (e) is the interpolated spectra, (f) is 
the cross-correlation function of the power spectra, (g) is the cross-correlation function of the 
stretched series.
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4.3.5 (c) Correlation of the Domran Formation

Cross-correlation of the power spectra indicates a thickening of 1.20 

when correlating the Domran Formation in FF10 against FF12 (Fig. 4.48a, 

number 3 against Fig. 4.48b letter C). A maximum of 0.504 (Fig. 4.53g and Fig. 

4.54c) is observed when the correlation of the stretched data is made. A 

stretch factor of 1.20 compared with geological stretch of 1.56 is obtained. The 

computer selection of the displacement is 100 feet compared w ith the 

known displacement of 134 feet. This deviation from the known geological 

correlation of the stretch factor and small deviation of the displacement for 

the Domran Formation (1.20 compared with 1.56) is explained by the fact 

that»the computer selection of stretch factor is based on the heighest two 

peaks in the cross-correlation function of power spectra. In this case both 

peaks (Fig. 4.52g and Fig.4.53c) were spurious. As mentioned in previous 

sections, the value of the cross-correlation function is dependent on the 

average similarity between two signals, however, the Domran Formation in 

FF10 and FF12 shows no similarity between the two curves (Fig. 4.53a) 

perhaps due to the long distance (10 Km) between the two boreholes.

4.3.5 (d) Correlation of the Ruaga Formation

In contrast with the Domran Formation and despite the long distance 

between the correlated wells, the Ruaga Formation in the two boreholes 

preserve an average similarity in shape of the two curves (Fig. 4.55a). The 

Ruaga Formation in well FF10 (Fig. 4.48a, number 4) is compared with a 

window (Fig. 4.48b, D) of the first principal component of well FF12. The 

computer successfully correlated the two formations with excellent accuracy.

C h a p t e r  Four:  A p p l i c a t i o n  to A t t a h a d d y  Field
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Fig. 4.53 Plot of cross-corrclation of the Sheghega Formation in FF10 and FF12 using the 
derivative data, (a) principal component of FF10 and FF12. (b) is the derivative of the data,
(c) the power spectra, (d) is logarithmic spaced spectra, (e) is the interpolated spectra, (f) is 
the cross-correlation function of the power spectra, (g) is the cross-correlation function of the 
stretched series.
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Fig. 4.55 plot of cross-corrclation of the Ruaga Formation in FF10 and FF12. (a) principal 
components of FF10 and FF12. (b) is the derivative of the data, (c) the power spectra, (d) is 
logarithmic spaced spectra, (e) is the interpolated spectra, (f) is the cross-correlation function 
of the power spectra, (g) is the cross-correlation function of the stretched scries.
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Figure 4.55g and Figure 4.56b shows the cross-correlation function of power 

spectra which indicates a thickening of strata from well FF10 towards well 

FF12. The stretch factor -v=-1.41, compared with expected value of 1.43. 

Figure 4.55g and Figure 4.56c show a symmetric peak of the cross-correlation 

function of the stretched series (0.953) and determines the displacement at 

235 feet (compared with geological correlation position of 240 feet).

4.3.5 (e) Correlation of Heira Formation

The Heira Formation in well FF12 (Fig. 4.48a, number 5) is correlated

with the section in FF10 indicated by letter E (Fig. 4.48b). A stretch factor of 
*

1.17 (compared with 1.19) for long series (FF12) is obtained when correlating 

the power spectra (Fig. 4.57f and Fig. 4.58b). The cross-correlation function of 

stretched series yields a maximum (0.739) (Fig. 4.57g and Fig. 4.58c) for a 

displacement of 144 feet compared with 145 feet which agrees with the 

known geological correlation between FF10 and FF12.

4.4 Correlation of lithologies within a Formation

A part of well FF13 consists of intercalations of small beds of shale 

and limestone in the Sheghega Formation at depth of 6200-6500 feet (Fig. 

4.9a and Fig. 4.10a). This rock unit is identified by the electrical logs as a zone 

of high Gamma Ray (GR) and high transit time (DT). The correlation of this 

small unit is made with the Sheghega Formation in FF11. The thickness of 

the small unit in this well is about 375 feet. Figures 4.59 and Fig. 4.61 show 

the computer plot of this rock unit in FF13 and the Sheghega Formation in

C h a p t e r  Four:  A p p l i c a t i o n  to  A t t a h a d d y  Field
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FF11. The derivative data are first used (Fig. 4.59) for stretching. The cross

correlation function of the power spectra (Fig. 4.59d and Fig. 4.60b) shows a 

high correlative peak at a lag -v=-5 (S=1.12 compared with 1.14) for the short 

series (small bed) and a maximum peak of the cross-correlation function of 

the stretched series (0.973) for displacement of 1350 feet (compared with 

geological displacement of 1400 feet) is observed in Figure 4.59e and Figure 

4.60c. More accurate results are obtained by using the filtered principal 

components data (Fig. 4.61). The cross-correlation function of the power 

spectra (Fig. 4.61b) has a high peak at a lag -v=-6 (S=1.15) for the short 

sequence (small bed). The high magnitude of the cross-correlation function 

(0.958) is identified (Fig. 4.61c) at a displacement of 1400 feet (280 units).

The above results demonstrate the accurate determination of both the 

stretch  factor (thickening and thinning) of beds and the relative 

displacement between two rock units when the power spectra of the first 

principal component are used.

4.5 Characterization of different rock type

In principal component analysis, the first principal component of a 

certain set of variables reflects exactly the behaviour of each individual 

variable and represents all these variables by one unique measure. The 

m agnitude of the first principal component scores can also be used to 

characterise different lithologies, (Fig. 4.62b) for example, the Etel Shale 

Formation (4414-4762 feet) is identified from the Gamma Ray (GR) and 

transit time curves as shale, and has a mean of 1.70 and standard deviation

C h a p t e r  Four:  A p p l i c a t i o n  to A t t a h a d d i /  Field
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value of 0.70 on the principal component, whereas, the Sheghega Formation 

is identified as limestone unit by low radioactive material (GR) and low 

transit time (DT), and has a mean of -0.89 and standard deviation of 0.45 on 

the principal component curve. In addition, the first principal component 

differentiates between different facies w ithin the same rock unit, for 

example, within the Hiera Formation. The Formation is highly calcareous at 

the top part (7750-7950 feet) which has a mean on the principal component 

equal to 0.04 and a standard deviation of 0.48, and the middle part of the 

Formation (8550-9250) where the shale becomes less calcareous, the value is 

shifted above the zero line to have a mean of 1.09 and standard deviation of 

0.133. The limestone bed at depth of 7950-8000 feet is identified by a principal 

com ponent mean and standard deviation corresponding to limestone 

values (-0.19 and 0.04 respectively). The value of mean of the principal 

component in the Sheghega Formation is about -0.89 and the value of the 

standard deviation is about 0.45. In the Domran Formation, however, the 

values of the mean and the standard deviation of the principal component 

are shifted below the Sheghega Formation values because the Formation is 

known to be less argillaceous and more hard than the overlying Sheghega 

limestone. Both shale intervals occur in the Sheghega Formation between 

5100-5250 feet and 6200-6500 feet as indicated by Gamma Ray log as highly 

argillaceous limestone caused the values of the principal component scores 

to be shifted towards the shale values (mean of 1.70 and standard deviation 

of 0.70). In general, any value greater than zero mean is interpreted as shale 

and any value below zero mean is considered to be limestone. This is 

common in all the five principal components (Fig.4.62). This accurate 

representation of different rock type and facies type within the same rock 

unit may be useful in identifying rock and facies type from the principal

C h a p t e r  Four: A p p l i c a t i o n  to A t t a h a d d y  Field
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component of the entire sequence. A complete characterization of the 

principal component scores to identifying different rock type is beyond the 

scope of this study.

4.6 Discussion of results of real data

In the previous study by Kwon (1977), the m athem atical cross

correlation of was successful in using the spectral analysis of the original 

data of well-logs. However, this success was limited. The correlation was 

complicated by the presence of noise signals which are different for different 

type of logs. Other problem arose because different type of logs record 

different rock type properties, therefore, each well log is associated with a 

specific set of frequencies. Kwon (1977) overcame these problem s by 

analysing different frequencies for different log types and modified the 

program to use multi-log data for the correlation process to improve the 

reliability of the results over that based on only one type of log. He

concluded that the use of the cross-correlation function is of limited use in *

determining the reliability of computer results using different type of well- 

logs, as for example, his program failed to correlate the N eutron and 

Gamma Ray logs from the same borehole.

The noise problem in program PCAXCOR is controlled by filtering 

the principal component before proceeding with the analysis. In addition, 

the advanced process of using multi-log data developed by Kwon (1977) is 

compensated by the impressive improvement of using the single first 

principal component of all log data. The resultant cross-correlation function

C h a p t e r  Four:  A p p l i c a t i o n  to  A t t a h a d d y  Field
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of power spectra of two principal components representing two formations 

or boreholes is satisfactory in relating the stratigraphic thickening (or 

thinning) between two wells (Fig. 4.63a against Fig. 4.63b & Fig.64). Table 4.7 

shows the evaluation of the program PCAXCOR. A new development in 

well-log interpretation is the correlation of different rock types within the 

rock units using the cross-correlation function of the first principal 

component (Fig. 4.61).

The displacement was determined by stretching (interpolation) the 

series and cross-correlating such stretched series (sequences). In general, the 

computer results of the displacement from these series agree with the 

known geological correlation. There are some occasions where the 

computer selection of both the stretch factor and the displacement differs 

slightly, such difference is due to the fact that computer correlation is based 

on recognising the average similarity between two sequences under 

processing. However, some formations in different boreholes do not always 

exhibit distinctive similarities, and hence some errors are observed when 

correlating such sequences.

The accurate results shown in Figure 4.63 emphasises the value of 

using the principal components as the basis of well-log analysis.

C h a p t e r  Four: A p p l i c a t i o n  to A t t a h a d d y  Field
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Correl.
between Formation Fig. Geol.

Stretch
PCAXCOR

Stretch
Geol.
Displ.

PCAXCOR
Displ.

Diff. in 
Displ. Agreement

FF7-FF13 Sheghega 4.12 1.01 1.12 59 20(0.579) 39 Good

Domran 4.14 1.19 1.23 188 265(0.433) 77 Fair

Ruaga 4.15 1.10 1.0 223 200(0.760) 23 Good

Heira 4.18 105 1.12 240 275(0.867) 35 Good

FF11-FF13 Etel 422 1.13 1.05 110 150(0.80S) 40 Good

Sheghega 4.27 1.05 1.05 185 195(0.799) 10 Excellent

Domran 429 1.23 1.26 295 310(0.645) 15 Excellent

Ruaga 431 1.20 1.10 112 125(0.893) 13 Excellent

Heira 434 1.08 1.17 3S 19(0.417) 19 Excellent

j

FF11-FF12 Etel 439 1.10 1.0 15 75(0.701) 60 Fair

Sheghega 4.40 1.16 1.26 160 140(0.577) 20 Excellent

H M M Domran 4.42 1.27 1.32 452 440(0.678) 12 Excellent

Ruaga 4.45 1.02 1.07 245 250(0.899) 5 Excellent

Heira 4.4b 1.07 1.07 180 150(0.941) 30 V.Good

1
C orrel.
b e tw e e n F orm ation Fig. G eol.

Stretch
PCAXCOR

Stretch
G eol.
D isp l.

P C A X C O R
D isp l.

D iff. in  
D isp l. A g reem en t

FF10-FF12 Etel 4.50 1.30 1.26 49 5(0.826) 44 G o o d

S h eg h eg a 4.52 1.20 1.17 59 39(0 .707) 20 V .G ood

D om ran 4.54 1.56 1.20 134 101(0.50) 34 G ood

R uaga 4.56 1.43 1.41 240 235(0 .953) 5 E xcellent

mm&m 11cira 4.58 1.19 1.17 145 144(0.739) 1 E xcellent

FF11-FF13 S m all b ed 4.60 1.14 1.12 1400 1350(0.973) 50 Good

Sm all b ed 4.61 1.14 1.15 1400 1400(0.958) 0 Excellent

Table 4.7 Comparison of PCAXCOR correlation of real data in the Attahaddy field to the 
geologic selection. Both the stretch factor and the displacement values are compared to the 
known geological stretch (thickening and thinning) and displacement in the study area. Values 
between brackets are the cross-corrclation coefficients for displacements.
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4.7 Summary

The generalized aspects draw n from the study of the principal 

com ponents in boundary identification and cross-correlation can be 

summarized as follows :

1- The eigenvalues, eigenvectors and the principal components of all log 

data are to be determined.

2- The first principal component can be used to identify different rock 

boundaries and for cross-correlation of different formations.

3- Use of smoothed principal component is recommended in order to obtain 

reliable results.

4- Differentiation of principal components is necessary to determ ine a

stretch factor, but a more reliable value of displacement is obtained using

the original principal components.
*

5- General direction and degree of thickening between two boreholes can be 

determined using the cross-correlation of power spectra.

6- The displacem ent (correlation position) is obtained using the cross

correlation of stretched series.

7- An individual rock type can be identified within the rock unit from the 

principal component values by characterizing different lithologies in the 

borehole.

C h a p t e r  Four:  A p p l i c a t i o n  to A t t a h a d d y  Field
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CHAPTER FIVE 

Software

5.1 Introduction

* The program  PC A X C O R  is written in FORTRAN 77 and was 

developed and tested on a Sun3/260 workstation. Data from the Attahaddy 

field which is written in LIS (Log International Standard) format was read 

from magnetic tapes using LIS/A Version 1.19 software (Schlumberger, 

1988) which was provided by Schlumberger Company. The magnetic tapes 

were m ounted on the VAX/VMS system run by Glasgow University 

Computing Services. After reading different magnetic tapes, the data are 

stored in different files, and then transfered to the Sun workstation run by 

the Geology and Applied Geology Department. Each file contains a complete 

set of well-log variables for different boreholes and is used by program 

PCAXCOR (Fig. 5.1).

The main program  PCAXCOR calculates the eigenvalues, the 

eigenvectors and the variance-covariance or correlation matrix of different 

well-log variables. This matrix is then used to calculate the principal
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US/A

VAX/VMS

file n

Sun workstation

file n

PCAXCOR

Fig. 5.1 Diagram illustrates procedures of reading well-log tapes using LIS/A software.

Chapter Five: Software
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component scores from which, after being filtered, boundaries of different 

formations are identified. Cross-correlation is then applied to moving 

average filtered principal components to identify the stretch factor (thinning 

and thickening) of strata, and the displacement between two principal 

components of two different boreholes.

The subroutines in PCAXCOR program are divided into two groups:

The first group of subroutines (Appendix C) perform s the principal

component analysis. This includes standardizing the original variables

(S T A N D A R IZ E  subroutine), calculating the variance-covariance or 
*

correlation matrix (M ULTV7  subroutine), calculating the eigensystem, and 

calculating the principal component scores (TRED2 & TQLI subroutines). 

The last two subroutines are those of Press (1988). Subroutine S M O O T H  

filters the first principal component for later use in the boundary 

identification and cross-correlations. The identification of different 

formation boundaries is performed using subroutine BOUNDARY. Some 

other utility subroutines are written to output the final results with 

appropriate format. These are subroutine EIGENVALUE  which is used to 

calculate the percentage of the eigenvalue to the total variance, and 

subroutine O R G A N IZ E  which compiles the results output from the first 

group of subroutines.

The second group of subroutines (Appendix C) performs the cross

correlation between two principal components of two different boreholes. 

All these subroutines are derived from Kwon (1977) and slightly modified to
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suit the requirements of the this project. The main subroutine (X C O R ) calls 

the rem aining subroutines which perform different tasks, including the 

determ ination  of the derivatives of the principal com ponents, the 

interpolation of the data, the calculation of the Fourier transform s, the 

cross-correlation of power spectra and the stretched series, and scanning for 

the best stretch factor among the cross-correlation coefficients.

The graphical routines are written using the sophisticated and 

interactive S language. This is a very powerful and flexible tool for 

manipulation, analysis and graphical display of data (Farrow, 1991). S also 

provides a simple interface to the Unix system (Sun workstation) from 

which different output files from PCAXCOR are read interactively to the S 

system(Fig. 5.2). A number of routines or functions (Becker et al, 1988) are 

written for different graphical outputs (Appendix D).

5.2 Program structure

5.2.1 Calculations programs

The m ain program  PC A X C O R  (Fig.5.3) utilizes call to all the 

following subroutines :

STAND ARIZE subroutine:

This subroutine is used to standardize the original data matrix (Y), 

which contains well-log variables, to standard form so it will have a mean
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Fig. 5.2 Distribution of files in the Sun workstation and the functions 
(programs) in the S system.
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Fig. 5.3a Flow chart of the main program PCAXCOR.
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of 0.0 and variance of 1.0. Using the data matrix (Y), the subroutine returns 

the standardized form (STANDZ) which contains the standardized well-log 

variables of size a num ber of columns (NCOL) by a num ber of rows 

(NROW). Any size of a matrix can be used.

M ULTV7 subroutine

To calculate the variance-covariance or correlation m atrix of the 

original matrix. It uses the standardized data matrix (STANDZ) which has 

been derived from subroutine STANDARIZE and returns the square 

symmetric matrix of variance-covariance or correlation matrix (C), which 

has as many columns and rows as there are columns in the STANDZ.

TRED2 subroutine

Calculates the tridiagonal matrix of the square m atrix (C). From 

TRED2  come two vectors (D) and (E) which are the diagonal and off- 

diagonal elements of the input matrix (C). It returns the diagonal (D) and 

off-diagonal (E) elements of the tri-diagonal matrix (TRI).

TQLI subroutine

D and E from T RE D 2  are replaced by the eigenvalues and the 

corresponding eigenvectors respectively. It returns an n X n matrix (A) 

which contains the eigenvectors of the square matrix.
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EIGENVALUE subroutine

To calculate the percentage each eigenvalue contributes to the total 

variance. It returns a one-dimensional vector (PERC) which contains the 

percentages.

ORGANIZE subroutine

To organize the final output and write it to a file. It tabulates the 

eigenvalues, eigenvectors and the percentage of each eigenvalue, using the 

m atrix (A) containing the eigenvectors D, one dimensional vector of the 

eigenvalues and PERC is one-dimensional vector containing the percentage 

of each eigenvalue.

SMOOTH subroutine

This subroutine is to smooth the first principal component using a 

moving average filter. It read a vector (PP) which contains the principal 

component scores and outputs the filtered principal component vector 

(SMOOTHD). Filtering is optional.

BO U ND ARY subroutine

This subroutine is to identify the boundaries of different formations 

using the M ahalanbis D2 technique (Davis, 1986). It takes the filtered 

principal components vector (SMOOTHD) and returns its D squared values.
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The maximum peaks of these values represent the positions of formation 

boundaries.

XCOR subroutine

The subroutine XCOR  controls the calculation of the cross-correlation 

betw een two sequences. It utilizes two cross-correlation processes to 

determine the stretch factor and the relative displacement. Cross-correlation 

of power spectra of two sequences identifies the direction and amount of 

stretch between two series. Cross-correlation of the stretched sequences 

identifies the relative displacem ent between these sequences. Outputs 

consist of a list of the input data, coefficients of the cross-correlation of 

power spectra and the optimum stretch and displacement values (Appendix 

E). Other output, for example, derivative data, interpolated power spectra, 

etc are stored in different files for later graphical m anipulation in the S 

system. Subroutine X C O R  and all subroutines it is calling are modified from 

SPECOR program (Kwon, 1977). The following subroutines are called by 

XCOR..

DERIVAT subroutine

To replace the principal components by their first derivatives. This is 

an optional step before calculating the Fourier transforms. D E R I V A T  

subroutine takes the first principal component of the short sequence 

(RLOG1) and the first principal component of the long sequence (RLOG2) 

and calculates their derivatives, RLOG1 and RLOG2 respectively.
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FOURT subroutine

This subroutine calculates the Fourier transforms of the short and 

long sequence. It takes either the original da ta  (filtered principal 

components) or the derivative data form of the data and returned their 

Fourier transform CLOG1 and CLOG2 which are used by subroutine X C O R  

to calculate the power spectra of the two series.

INTPOL3 subroutine

This is to obtain equally spaced power spectra using Lagrange 

interpolation method. It interpolates power spectra of the short series 

(RLOG1) and the power spectra of the long series (RLOG2) and returns their 

interpolated values in Y1P1 and Y1P2 respectively.

CROSS1 subroutine

This is used to cross-correlate between the interpolated power spectra 

to obtain the stretch factor. The interpolated power spectra of the short and 

long sequences Y1P1 and Y1P2 from subroutine IN T PO L3  are used by this 

subroutine. The first call to CROSS1 by subroutine XC O R  is to cross-correlate 

between the interpolated short sequence (Y1P1) and the interpolated long 

sequence (Y1P2), and cross-correlation coefficients are stored in a vector 

XCORL. The second call to C R O SS1  is to cross-correlate between the 

interpolated long sequence (Y1P2) and the interpolated short sequence 

(Y1P1). The resultant cross-correlation coefficients are stored in XCORS.
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Both vectors (XCORL & XCORS) are stored in the vector Y1P1 with a length 

set equals to the maximum expected stretch factor (S=2).

M A X  subroutine

To find the maximum peak in the cross-correlation function of power 

spectra and compute the corresponding stretch factor. It takes the vector 

containing the cross-correlation coefficients (Y1P1) and  returns its 

maximum value (PCMAX1).

*
S CA N subroutine

To find the second peak in the cross-correlation function of power 

spectra and compute the corresponding stretch factor. The vector Y1P1 

which contains the cross-correlation coefficients is input to subroutine 

S C A N  which returns the second maximum value of the cross-correlation 

function of power spectra.

STXCOl subroutine

This is used to stretch and correlate the first peak of the cross

correlation function assuming that the long series is stretched. It makes calls 

to S T R E T C H C R O S S 2 ,  and M A X  subroutines. It passes the short sequence 

(RLOG1) to subroutine STRETCH. RLOG1 after being stretched (CRLOG1) is 

passed to subroutine CROSS2  for cross-correlation with the long sequence 

(RLOG2), and the maximum value of the cross-correlation function is
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determined using subroutine M A X .

STXC02 subroutine

This is used to stretch and correlate the first and the second peak of

the cross-correlation function assuming that the short series is stretched. It

makes calls to STRETCH, CROSS2, and M A X  subroutines. It passes the long

sequence (RLOG2) to subroutine STRETCH . RLOG1 after being stretched

(CRLOG2) is passed to subroutine CROSS2  for cross-correlation with the

short sequence (RLOG1), and the maximum value of the cross-correlation

function is determined using subroutine M AX .
*

STRETCH subroutine

This subroutine is to interpolate a time series data with N  values to a 

series with M values in the frequency domain. It makes a call to F O U R T  

subroutine to invert the Fourier transforms. The short (RLOG1) and the 

long (RLOG2) sequences are used by this subroutine, which returns the 

stretched version of RLOG1 and RLOG2 in vectors CLOG1 and CRLOG2 

respectively.

5.2.2 Graphical functions

The graphical fu n c tio n s (Appendix D) which are written in the S 

language and are used to display the results are:
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xsection :

This is used to generate a cross-section in the Attahaddy field using 

the geological formation tops.

macbound :

This plots the non-filtered first components on one side and the 

boundaries of different formation on the other side of the diagram.

j
smoothplot :

To plot the filtered first principal components of the used well-log 

data along with their window sizes which are used for the cross-correlation 

process.

pws :

This function is to draw the short and long sequences, the derivative 

data, the power spectra, the equi-spaced power spectra, the interpolated 

power spectra, the cross-correlation function of power spectra, and the cross

correlation of the stretched series.
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xcfun

To plot the short and the long sequence along w ith the size of the 

window used in the cross-correlation process, the cross-correlation function 

of power spectra, and the cross-correlation function of the stretched series.

prinplot :

To plot different filtered principal components of the studied wells.
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CHAPTER SIX 

Conclusions

The application of principal component analysis to well-log data was

established for better understanding of subsurface geology. By using 
*

principal component scores formation boundaries can be identified and 

well-to-well correlation performed. Because principal com ponent scores 

contain most of the variance of the original matrix, it is easier to handle 

these scores than to use all the variables of the raw data matrix.

Conventional well-log variables (Spontaneous potential, Gamma 

Ray, etc) are often used for boundary identification as well as cross

correlation between different wells. The first principal component of these 

variables is found to be appropriate for an automatic process to identify 

formation boundaries, and cross-correlation between the chosen boreholes 

in the Attahaddy field. Different well-log variables are expressed in different 

units of measurement. For such a case, the correlation matrix is used for the 

calculation of the principal component scores. This implies that all variables 

are expressed in dimensionless form to reduce the affect of variables whose 

mean is large and inflate variables whose mean is small. This is necessary if
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the units of measurement of different well-log variables are not the same. A 

decrease in the amount of the percentage of the eigenvalues is inevitable for 

this case.

Filtering the principal component using a moving average filter is 

necessary before the identification of formation boundaries is obtained to 

reduce the affect of thin beds. A window size equal to half the expected 

thickness of the formation is found to to suitable to identify formation 

boundaries. Although the formation thickness in the Attahaddy field varies 

from one borehole to another, an average window size of 150 feet gave 

appropriate results in the study area. If small beds are of interest a smaller 

w indow size is appropriate to identify the formation boundaries of these 

beds.

The filtered principal components are again used for well-to-well 

correlation. Filtering these components is found to be necessary before 

proceeding w ith any correlation. Non filtered scores are tested for 

correlation and were not as good as the filtered scores. The cross-correlation 

technique between a number of boreholes in the Attahaddy field is based on 

spectral analysis of the filtered first principal component scores. Two cross

correlation functions are used. The cross-correlation function of power 

spectra which gives the degree and direction of stretch, and the cross

correlation function of the stretched principal com ponents which 

determines the displacement between two formations
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Use of principal component scores in well-to-well correlation is a new 

technique which has many advantages over the previous studies. An 

important advantage of this approach is the elimination of the noise effect. 

This is achieved by using moving average filtered scores in the time domain 

for the cross-correlation function of scores to determine the displacement, 

and the derivative filter in the frequency domain for the cross-correlation 

function of power spectra to determine the stretch factor.

Good agreement from this method was obtained for the geological 

formation boundaries and cross-correlation between boreholes in the study 

area. Although the geological stretch and displacement vary widely in the 

Attahaddy field, both the stretch factor (thinning and thickening of strata), 

and the displacement (correlation position) of the studied wells which were 

obtained using program  PCAXCOR coincide with the known geological 

stretches and displacements (Fig. 4.63 and Table 4.7). Furtherm ore, the 

program can be used to correlate different rock types within the same rock 

unit and can also be used to identify the general lithological character of 

formations in the boreholes.

Another advantage of using the first principal com ponent is an 

increase in the m agnitude of the correlation coefficient in well-to-well 

correlation over the previous studies. In his technique, Kwon (1977) 

obtained an average value of the cross-correlation coefficients of 0.50 which 

was considered to be excellent when the original variables of well-log data 

were used. In this study, the average value of the coefficient is 0.85. This
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implies that a very distinctive linear relationship exists between each pair of 

first principal components used in the correlation processes. The increase in 

the correlation coefficient is the result of using the first principal 

components which reduces the noise problems. Kwon (1977) concluded that 

the reduction in the magnitude of the cross-correlation coefficient was due 

to the presence of uncorrelatable noise signals in the variables to be 

correlated. High noise variable gave spurious stretch factors and, hence, 

wrong displacements. He concluded that care must be taken when dealing 

with high noise components. In the PCAXCOR program, the noise effects 

are controlled by using the filtered first principal com ponents before 

(moving average filter) and after (high-pass filter) the correlation is made 

between two sequences.

In addition, this study demonstrates the advantage of employing the 

filtered first principal components over the non-filtered first principal 

component or the original well-log variables. This approach of using the 

filtered first principal component in boundary identification and well-to- 

well correlation is found to be precise, reliable, and gives accurate results 

related to the geological boundaries and known correlation of the area of 

study. There are a few occasions when the computer selection does not agree 

w ith the m anual geological selection. Such deviations occur because 

PCAXCOR identifies the boundaries at the inflection point between two 

formations by hunting for a boundary at the abrupt change in the average 

values of the sequence. However, some of the formation boundaries in the 

study area do not occur at such a point; for example, the top of the Domran 

Formation. This illustrates one of the fundam ental lim itations of the
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automated identification of rock boundaries.

The deviation of computed correlation from the known geological 

correlation in some cases, is explained by the fact that the mathematical 

correlation by PCAXCOR is m ade assuming that there is an average 

similarity between the sequences to be correlated. However, this is not 

always true in the Attahaddy field, for example the correlation between the 

Domran formations in well FF10 and well FF12. This is another limitation 

of using this method.

*

Nevertheless, this new technique is a useful addition to the current 

m anual methods of boundary identification and well-to-well correlation. 

The new complete framework of software opens a new era in well-log 

interpretation and may be made more reliable by further refinement of this 

m ethod to include autom atic identification of rock types from the first 

principal components.
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APPENDIX A 

Borehole information

The follow ing is some inform ation about the boreholes in  the

A ttahaddy field. This includes the location of the field (Fig. 1), the 
*

longitude and latitude, the elevation to the Kelley bushing (KB), the 

classification of each w e ll... etc.

WELL FF2-6

Location : 3.7 km SE of FF1-6 

Coordinates : 29 33' 28” N  : 19 38' 54” E 

Elevation KB : 297 

Classification: Exploration o u tp o st.

Spudded : 6 Oct. 1967 Completed : 13 Nov. 1967

Completion status : Dry and abandoned .

Total depth : 10,035' Plugged back T.D : to the surface .
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WELL FF3-6

Location : 2.8 km S- SE of FF1-6 

Coordinates : 29 32' 52.9" N : 19 37' 41.4”E 

Elevation KB : 362'

Classification : o u tpost.

Spudded : 24 Apr. 1985 Completed :30 Jul. 1985

Completion status : Gas well 

Total depth : 12,104'

A total of 10 DST's and production test have been run  and 

have showed a flow rate of 20.2 MMCFG/D with bottom hole pressure 

of 2995 p s i .

WELL FF4-6

Location : SP 430 seismic line V6-27-84 

Coordinates : 29 33' 01.059" N : 19 36’ 12.946" E 

Elevation KB : 362 

Classification : ou tpost.

Spudded : 24 Oct. 1985 Completed : 12 Feb. 1986

Completion status : Gas well

A p p en d ix  A: Borehole information
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Total depth : 11,170’

This well was drilled with no major problems encountered 

except lost circulation all the way down from the top of the Gargaf 

Formation to T.D .

A total of 5 DST’s run on the Gargaf Formation showed good reservoir 

characteristics . A 24 hours flow test has been run , 3320 psi on 1/4" 

choke pressure with flow rate of 4.58 MMCFG/D have been recorded .

*

WELL FF5-6

Location : Seismic line V25-84 , SP 230 

Coordinates : 29 34’ 29.039" N  : 19 35' 24.290"E 

Elevation KB : 350'

Classification : o u tp o st.

Spudded : 20 Feb. 1986 Completed : 5 May 1986

Completion Status : Gas w e ll.

Total depth : 11,214' Plugged back T.D : 10,800'

A total of 6 DST's have been run, 3 have failed, fresh water 

was recovered (cl- 8600 ppm) in the last te s t.

A p p en d ix  A: Borehole information
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Maximum surface head pressure 597 p s i , BHT : 322 degree F .

WELL FF6-6

Location : Seismic line 192-84 , sp 280 

Coordinates : 29 30' 26.818" N  : 19 40’ 14.216"E 

Elevation KB : 328'

Classification : exploration-outpost.

Completion status : Gas w e ll.

Total d e p th : 12,065'

One DST has been run . It displayed a bottom hole pressure of 

3392 p s i . Three cores have been c u t .

WELL FF7-6

Location : Seismic line 6V-27-84 , sp 300 

Coordinates : 29 36' 21.310"N : 19 37' 38.574"E 

Elevation KB : 137’

Spudded : 23 Sep. 1986 Completed : 13 Jan. 1987

Classification : o u tpost.

A p p e n d ix  A: Borehole i n f o r m a l  ion
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Completion status : Gas w e ll .

Total depth : 12,594* Plugged back TD : 12,400*

A total of 5 DST's were run, showing a flow rate of 32 

MMCFG/D and surface pressure of 2500 psi has been recorded . Three 

cores were c u t .

WELL FF8-6

Location : Seismic line 6V-27-84 , sp 370 

Coordinates : 29 34’ 33.508**N : 19 36* 57.339”E 

Elevation KB : 287'

Classification : development .

Spudded : 16 Jun. 1986 Completed : 2 Act 1986

Completion status : suspended gas w ell.

Total depth : 12,018’

Seven DST's accomplished, one core was cut. Average flow 

rate 9 M M CFG/D.

A p p e n d ix  A: Borehole information
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WELL FF9-6

Location: Seismic line 6V -32- 84 , sp 371 

Coordinates : 29 30' 54.190"N : 19 41' 51.632"E 

Elevation KB : 283*

Classification : outpost

Spudded : 09 Act. 1986 Completed : 21 Jan. 1987

Completion status : Suspended as non-commercial gas well .

Four DST's have been run, displaying no com m ercial 

hydrocarbons . A 20 hours production test was run, indicating 50 psi 

mean surface pressure on 3/4" choke, flow rate 820 MCFG/D .

WELL FF10-6

Location : Seismic line 6V 218 -E 85 

Coordinates : 29 27' 23.954"N : 19 42' 50.183"E 

Elevation KB : 376'

Classification : Exploration wildcat

Spudded : 23 Jan. 1987 Completed : 15 Apr. 1987

Completion status : Dry and Abandoned .

A p p en d ix  A: Borehole information



Total depth : 12,630' Plugged back T.D : to surface.

Two DST’s were run with no hydrocarbon show. Three cores 

have been cut, indicating that the formation was tight and dense .

WELL FF11-6

Location : Seismic line

Coordinates : 29 34' 05.21'N : 19 39' 05.37"E

Elevation KB : 248'

Classification : outpost

Spudded : 22 Jun. 1987 Completed: 18 Jul. 1987

Completion status : Gas well 

Total depth : 12,753'

A total of 4 cores have been cut, 4 DST’s were ru n  w ith 

average estimated of flow rate of 12-13 MMCFG/D .

WELL FF12-6

Location : Seismic line 6V 206- 85 X , sp 1810

A p p en d ix  A: Borehole information
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Coordinates : 29 33’ 01.495'N : 19 42’ 06.320E 

Elevation KB : 239'

Classification : outpost exploration .

Spudded : 24 Jul. 1987 Com pleted: 03 Jan. 1987

Completion status : dry and abandoned .

Total depth : 12,607'

Four cores were cut and two DST’s were run, did not show 

any reservoir characters .

WELL FF13-6

Location : Seismic line 6V 31 -83 , sp 340 

Coordinates : 29 35' 15.815” N  : 19 39' 26.993’’E 

Elevation KB : 190'

Spudded :15 Act. 1987 Completed : 30 Jan. 1988

Classification: o u tp o st.

Completion status : Suspended as Gas w e ll.

Total depth : 12,524' Pluggd back T.D : 12,225'

A p p e n d ix  A: Borehole information
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A total of five DST's were run and production test was run  to 

confirm that there was no potential reservoir in that block .

WELL FF14-6

Location : Seismic line 6V-29-84 , sp 280 

Coordinates : 29 31’ 28.983"N : 19 37' 13.327"E 

Elevation KB : 375'

Classification: Exploratory.

Spudded: 16 Dec. 1987 Completed : 12 Apr. 1988

Completion status : Dry and abandoned .

Total depth : 13,426' Plugged back T D : 814'

Two DST’s were run showed no hydrocarbon accumulation 

in the block . Three cores have been cut, showing a very tight formation.

WELL FF15-6

Location : Seismic line 6V-216-ext 85 , sp 955 

Coordinates : 29 21' 42.44”N : 19 40' 59.98"E 

Elevation KB : 328'

A p p e n d ix  A: Borehole information
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Classification : o u tpost.

Spudded : 18 Apr. 1988 Completed : 22 Aug. 1988

Completion status : Suspended gas w e ll.

Total depth : 12,638.5' Plugged back T.D : 11,270'

A total of 4 DST's were ru n , followed by a production te s t . 

The estimated flow rate is 8 MMCFG/D .

A p p en d ix  A: Borehole information
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APPENDIX B 

Well logging principles

The important variables used in downhole well-logging, and used in 

in this project are described. There are different terms of well-log tools for 

different companies. The names of the tools used through out this study, for 

example, LDL, CNL, BHC ....etc are the Schlumberger company trade mark.

Spontaneous Potential (SP)

The Spontaneous Potential (SP) curve is a measure of the difference 

between the potential of a movable electrode in the borehole (Fig.la) and 

the fixed potential of a surface electrode. The unit used is the millivolt. 

Spontaneous potential is used to:

1- detect the permeable beds,

2- locate their boundaries and to permit correlation of such beds,

3- determine values of formation water resistivity RW (Fig.2),

4- gives qualitive indication of bed shaliness.
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potential current distribution in and 
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Fig. 2 Symbols used in Log interpretation (Schlumberger).
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Gamma Ray (GR)

The basic Gamma Ray log (GR) is a measure of the radioactivity of the 

formations. Radioactivity arises from the decay of three elements present in 

the rocks, Uranium U, Thorium Th, and Potassium K, which continuously 

emit gamma rays, in the form of short bursts of high- energy radiation. 

These gamma rays are cabable of penetrating a few inches of rocks. A 

fraction of these emitted around the borehole, penetrate the drill m ud, and 

can be detected by a suitable gamma ray sensor. The detector gives a direct 

pulse for each gamma ray detected. The parameter recorded is the number 

of pulses per unit of time by the detector (Schlumberger, 1974). The. units 

used are GAPI. The GR log is used to:

1- detect permeable beds,

2- detection and evaluation of radioactive minerals such as potash or 

uranium  ore,

3- delineates non-radioactive minerals,

4-aid correlation of cased hole,

5- perform well-to-well correlation,

6- evaluate shale content, Vsh.

Sonic Logs (BHC)

The BoreHole Compensated (BHC) sonic tool or as widely used DT, is 

used to detect the travel time in the borehole.

A p p en d ix  B: Well logging principles
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Any solid m edium  will propagate acoustic waves, the aim is to 

measure the time of propagation of a sound wave through the formation, 

over a fixed distance. Basically a transmitter and a receiver are placed some 

distance away on the sonde (Fig.lb). The log readings are scaled not as a 

velocity but rather as a transit time (DT). The units used are microsecond 

per foot. The BHC is used to:

1- determine the formation porosity,

2-perform well-to-well correlation.

*

Resistivity Logs

In conventional resistivity (Schlumberger, 1985), currents are passed 

through the formation via certain electrodes, and voltages are measured (in 

ohms) betw een certain others. These measured voltages provide the 

resistivity determinations. So that there will be a current path  between 

electrodes and formations, the sonde must be run  in holes containing 

electrically conductive mud or water.

There are three types of resistivity curves, shallow, medium and deep 

depending on the spacing between the electrodes (Fig. lc). The units used 

are Ohm and resistivity tools are used to :

1- determine different formation resistivities e.g Rt, Rxo, Rmf. ect (Fig. 2),

2- perform well-to-well correlation,

3- determine hydrocarbon saturation.

A ppend ix  B: Well logging principles
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Formation Density Log (LDL)

A radioactive source, applied to the hole wall in a shielded skid, 

emits medium-energy gamma rays into the formation. These gamma rays 

may be thought of as high velocity particles which collide with the electrons 

in the formation. At each collision a gamma ray loses some, but not all, of 

its energy to the electron, and then continues with diminished energy. This 

type of interaction is known as Compton Scattering. These scattered gamma 

rays on reaching a detector, at a fixed distance from the source (Fig.Id), are 

counted, to give an indication of formation density. The num ber of 

Compton-scattering collision is related directly to the number of electrons in
j

the formation. Consequently, the response of the density tool is determined 

essentially by the electron density (number of electrons per cubic centimetre) 

of the formation. Electron density is related to the true bulk density, pb, in 

gm s/cc, which in turn depends on the density of the rock matrix material, 

the formation porosity and the density of the fluids in the pores.

The LDL tool is used as porosity-logging tool. Other uses of density 

m easurem ent include identification of minerals in evaporite deposits, 

detection of gas, determination of hydrocarbon density, and evaluation of 

shaly sand and complex lithologies.

Neutron log

Neutrons are electrically neutral particles, each having a mass almost 

identical to the mass of an hydrogen atom. High energy (fast) neutrons are 

continuously emitted from a radioactive source which is m ounted in the

Append ix  B: Well logging principles
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sonde. These neutrons collide with nuclei of the formation materials in 

w hat may be thought as elastic "billiard-ball" type collision. The amount of 

energy lost per collision depends on the relative mass of the nucleus which 

the neutron collides.

The greatest energy loss occur when the neutron strikes a nucleus of

particularly equal mass,-i.e, a hydrogen nucleus. Collision w ith heavy

nuclei do not slow the neutron down very much. Thus, the slowing-down

of neutrons depends largely on the amount of hydrogen in the formation.

When the hydrogen concentration of the material surrounding the neutron 
*

source is large, most of the neutrons are slowed down and captured within a 

short distance of the source. On the the hand, if the Hydrogen concentration 

is small, the neutrons travel farther from the source before being captured. 

Accordingly, the counting rate at the detector increases for decreased 

hydrogen concentration and vice versa (Schlumberger, 1974).

Table 1 sum m arizes some of the w ell-logging tools, their 

measurements, and their uses in well-to-well correlation.

A p p en d ix  B: Well logging principles
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APPENDIX C

PROGRAM PCAXCOR

C
C PROGRAM TO PERFORM PRINCIPAL COMPONENT ANALYSIS
C OF WELL-LOG DATA, BOUNDARY IDENTIFICATION AND WELL
C TOWELL CORRELATION.
C
C 1-MULTV7 SUBROUTINE: TO CALCULATE THE CORRELATION 
C , MATRIX OR THE VARIANCE-COVARIANCE MATRIX OF THE
C ORIGINAL MATRIX. THIS SUBROU-
C TINE USES "Y" THE ORIGINAL MATRIX AND OUTPUTS THE
C VAR-COV. OR THE
C CORR. MATRIX "C" WHICH HAS AS MANY ROWS AS
C COLUMNS.

C
C 2 - TRED2 SUBROUTINE:
C TRED2 CALCULATES THE TRIDIAGONAL MATRIX OF TFIE
C SQUARE MATRIX.
C FROM TRED2 COME TWO VECTORS D AND E WHICH ARE THE
C DIA. AND OFF-DIA. ELEMENTS OF "A". D,E ARE MADE
C ARGUMENTS OF TQLI.
C
C 3 - TQLI SUBROUTINE:
C D AND E FROM TRED2 ARE REPLACED BY THE EIGENVALUES
C AND THE CORRESPONDING EIGENVECTORS RESPECTIVELY.
C
C 4- EIGENVALUE SUBROUTINE:
C TO CALCULATE THE PERCENTAGE OF EACH EIGENVALUES
C CONTRIBUTE TO THE TOTAL PERCENTAGE. IT RETURNS ONE-
C DIM. VECTOR "PERC" WHICH CONTAIN THE PERCENTAGES.
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C
C 5 - ORGANIZE SUBROUTINE:
C THIS IS TO ORGANIZE THE FINAL OUTPUT AND WRITE IT TO A
C IT LISTS THE EIGENVECTORS & EIGENVALUES AND THE
C PERCENTAGE OF EACH
C EIGENVALUE TO THE TOTAL VARIANCE."A" TWO-
C DIMENSIONAL ARRAY
C CONTAINS THE EIGENVECTORS & "D" IS ONE-DIMENSIONAL
C VECTOR
C CONTAINS THE CORRESPONDING EIGENVALUES AND "PERC" 
C IS ONE-
C DIMENSIONAL VECTOR CONTAINS
C THE PERCENTAGE OF EACH EIGENVALUE.
C
C 6- SMOOTH SUBROUTINE:
C THIS IS TO FILTER THE DATA USING A MOVING AVERAGE
C FILTER.
C
C BOTH TRED2 & TQLI ARE OBTAINED FROM NUMERICAL
C RECIPES BY:
C WILLIAM H. PRESS AND BRIAN P. FLANNERY.
C SOME MODIFICATIONS ON THESE SUBROUTINES HAVE BEEN
C MADE.
C
C THE MAIN PROGRAM COPIES MATRIX "C" INTO MATRIX "A".
C "A" IS MADE AS
C AN ARGUMENT TO "TRED2" AND 'TQLI" SUBROUTINES.
C
C .........................LIST OF THE INPUTS..........................................................
C
C Y  TWO-DIMENSIONAL ARRAY INPUT INTO MULTV7
C SUBROUTINE.
C  AND CONTAINS THE ORIGINAL MATRIX.................................
C C  TWO-DIMENSIONAL ARRAY INPUT INTO TRED2 & TQLI
C SUBROUTINES.
C  IT CONTAINS THE VAR-COV. MATRIX OR CORRELATION
C MATRIX............................................................................................................

A ppend ix  C: Program PCAXCa ^K
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C A  TWO-DIMENSIONAL ARRAY INPUT INTO TRED2
C
C ORGANIZE SUBROUTINE...
C THIS MATRIX IS COPIED FROM "C’.ON INPUT IT CONTAINS
C THE VAR-COV. MATRIX...........................................................................
C D .......ONE-DIMENSIONAL VECTORS INPUT INTO TQLI &
C EIGENVALUE AND ORGANIZE SUBROUTINES.
C  ON INPUT IT IS DIAGONAL ELEMENTS OF THE TRIDIAG
C MATRIX.
C E ....... ONE-DIMENSIONAL VECTOR INPUT INTO TQLI
C SUBROUTINE.
C  IS SUB-DIAGONAL ELEMENTS OF THE TRIDIAG. MATRIX.
C P.........ONE-DIMENSIONAL VECTOR INPUT INTO SMOOTH
C SUBROUTINE.
C ................IT CONTAINS THE EIGENVECTORS TO BE SMOOTHED.....
C .........................................................................................................................
C
C .......................... LIST OF OUTPUTS...........................................................
C
C C O R  TWO-DIMENSIONAL ARRAY OUTPUTS BY MULTV7
C SUBROUTINE.
C  IT CONTAINS THE CORRELATION OR THE
C VAR.COV.MATRIX......................................................................................
C D .......ONE-DIMENSIONAL VECTOR OUTPUTS BY TRED2
C ORGANIZE
C SUBROUTINE.................................................................................................
C  ON OUTPUT IT RETURNS THE EIGENVALUES AND
C EIGENVALUE PERCENTAGES...............................................................
C E .........ONE-DIMENSIONAL VECTOR OUTPUTS BY TRED2
C SUBROUTINE.
C T R I TWO-DIMENSIONAL ARRAY OUTPUTS BY TQLI
C SUBROUTINE.
C  IT IS THE TRI-DIAGONAL MATRIX............................................. .
C F .........TWO-DIMENSIONAL ARRAY OUTPUTS BY TQLI
C SUBROUTINE.
C  IT CONTAINS THE PRINCIPAL COMPONENT SCORES
C A  TWO-DIMENSIONAL ARRAY OUTPUTS BY TQLI

A ppend ix  C: Program P C A X C O R
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C ORGANIZE
C SUBROUTINE.ON OUTPUT IT CONTAINS THE EIGENVECTORS. .
C PERC ONE-DIMENSIONAL VECTOR OUTPUTS BY ORGANIZE
C EIGENVALUE.
C  IT CONTAINS THE PERCENTAGES OF EACH EIGENVALUE.
C SMOOTHD .. TWO-DIMENSIONAL ARRAY OUTPUTS BY 
C SMOOTH
C SUBROUTINES. IT CONTAINS THE SMOOTHED PRINCIPAL
C COMPONENT SCORES.................................................................................
C BOUNDARY...ONE-VECTOR OUTPUTS BY BOUNDARY
C SUBROUTINE.
C  IT CONTAINS THE BOUNDARY OF DIFFERENT
C FORMATION.
C ............................................................................................................................
c , 
c

PARAMETER(NMAX=8000,NCOL=10,TINY=1.0E-4/NI=4/N=7)
P ARAMETERQNROW=8000)
DIMENSION A(NMAX/NCOL),D(NCOL)/E(NCOL)
DIMENSION TRI(NMAX,NCOL),Y(INROW/NCOL)

C
DIMENSION STANDZ0NROW,NCOL)
CHARACTER*! 0 STANDZFILE,ANSYN

C
DIMENSION PERC(NCOL)

C
C  -----------------------------------------------------------------------------------------------------------------

c
DIMENSION Y(NMAX,NCOL),C(NMAX,NCOL)
CHARACTER*55 PRINC,FILE2,FINALOUT 
CH A RA CTERS MULFILEIN,MULFILOUT,FIRSTSC 
CHARACTER*10 CHAR(10),YN,YN2

C
C BOUNDLYIN FILE CONTAINS THE FIRST PRINCIPAL 
C COMPONENT COPIED. FROM"SMOOTHD".
C SMOOTHD IS THE FILE CONTAINING THE SMOOTHED DATA

A ppendix C: Program P C A X C O R
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C OUTPUTS OF "SMOOTH".
C

REAL SMOOTHD(8000),P(8000,10),PP(8000)
C

DIMENSION DSQUARE(8000)
C
0010 WRITE(6,1000)
1000 FORMAT(//)

WRITE(6,1001)'INPUT NAME OF THE FILE CONTAINING THE
* ORIGINAL VARIABLES'

1001 FORMAT(/,A)
RE AD(5,1002)MULFILEIN

1002 FORMAT(AIO)
WRITE(6,1003/INPUT THE NO. OF COLUMNS OF THE MATRIX’

1003 FORMAT(/,A)
READ(5,1004)NCL

1004 FORMAT(I12)
WRITE(6,1005)'INPUT THE OUTPUT FILE CONTAINS THE VAR-

* COV. OR CORRELATION MATRIX’
1005 FORMAT(/,A)

READ(5,1006)MULFILOUT
1006 FORMAT(AIO)
C

WRITE(6,1007)’ENTER THE FILE THAT WILL CONTAIN THE
* PRINC. COMP. SCORES'

1007 FORMAT!/,A)
READ(5,1008)PRINC

1008 FORMAT(AIO)
WRITE(6,1009)'ENTER THE FINAL OUTPUT FILE CONTAINING

* THE FINAL OUTPUT’
1009 FORMAT!/,A)

READ(5,1010)FINALOUT
1010 FORMAT(AIO)
C

WRITE(6,1011)'INPUT THE FILE THAT WILL CONTAIN THE
* PERCENTAGE'

1011 FORMAT!/,A)

A ppendix C: Program P C A X C O R
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READ(5,1012)FILE2 
1012 FORMAT(AIO)
C

WRITE(6,1126)'ENTER THE FILE WILL CONTAIN STANDARDISE 
* DATA'

1126 FORMAT(/,A)
READ(5/1127)STANDZFILE

1127 FORMAT(IOA)
C

WRITE(6,1016)
1016 FORMAT(/,A)

WRITE(6/1017)'ENTER THE FILE CONTAIN THE PRINCIPAL
* COMPONENT SCORES'

1017 FORMAT(/,A)
, READ(5,1018)FIRSTSC

1018 FORMAT(AIO)
WRrrE(6,1020)'ENTER THE OUTPUT FILE CONTAINS THE

* BOUNDARIES'
1020 FORMAT(/,A)

RE AD(5,1021) BOUNDFILEOUT
1021 FORMAT(AIO)
C

WRITE(6,1019)'ENTER THE BOUNDARY WINDOW'
1019 FORMAT(A)

READ(5,*)IBWIN
C
C FIRST OPEN THE FILE OF THE ORIGINAL MATRIX THAT HAS BEEN 
C USED BY SUBROUTINE "MULTV7.F".NAME THIS MATRIX AS "Y"
C AND USE IT TO CALCULATE THE PRINCIPAL COMPONENT SCORES 
C OF THE ORIGINAL MATRIX BY MULTIPLYING. THIS MATRIX BY 
C THE CORRESPONDING EIGENVECTORS.
C
C MULFILEIN: A FILE CONTAINS THE ORIGINAL MATRIX (ROW 
C DATA)
CM U LFILO U T...................... VARIANCE-COVARIANCE
C MATRIX(MULTV7).
C FILE2 : ....................EIGENVALUES PERCENTAGE(EIGENVAI U E
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C OUTPUT)
C PRINC: .................... PRINCIPAL COMPONENT SCORES (PCAXCOR
C OUTPUT)
C FINALOUT: "  ................ FINAL OUTPUT FILE CONTAINS FINAL
C RESULT.
C SM OOTHOUT..................... SMOOTHED PRINCIPAL COMPONENT
C SCORES.
C BOUBDFILEOUT " " ” BOUNDARY OF DIFFERENT
C FORMATIONS.

OPEN(4/FILE=MULFILEIN,STATUS=,’UNKNOWN")
OPEN(2,FILE=MULFILOUT/STATUS="UNKNOWN,,)
OPEN(10/FILE=PRINC,STATUS="UNKNOWN")
OPEN(12,FILE=FILE2,STATUS="UNKNOWN")
OPEN (13,FILE=FIN ALOUT/STATUS="UNKN OWN") 
OPEN(17/FILE=BOUNDFILEOUT/STATUS=,,UNKNOWN") 
OPEN(18,FILE=FIRSTSC/STATUS="UNKNOWN") 
OPEN(20,FILE=STANDZFILE,STATUS="UNKNOWN")

C
C Y IS THE ORIGINAL MATRIX CONTAINS THE ORIGINAL 
C VARIABLES. C IS THE MATRIX CONTAINS THE VARIANCE- 
C COVARIANCE OR CORRELATION MATRIX.
C
C NOW READ THE ORIGINAL MATRIX Y 
C

H=0
DO 8 KI=1,INROW
READ(4,*/END=555)(Y(KI/JDJI=1/NCL)
II=E+1 

8 CONTINUE 
555 CONTINUE 

NROW=II
C
C IF READING MORE THAN ONCE FROM THE SAME FILE,
C REWIND THE FILE
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C AND CLOSE IT TO BE OPENED AGAIN.
REWIND(4)
CLOSEC4)

C -----------------------------------------------------------------------------------------------------------------------

C WRITE THE VARIANCE-COVARIANCE OR THE CORRELATION 
C MATRIX TO A FILE 
C
C READ THE NAME OF THE VARIABLE FROM THE SCREEN.
C CHAR IS THE NAME OF THE CHARACTERS 
C THIS SECTION IS FOR THE USER TO CHOOSE WHETHER TO 
C STANDARDISE THE ROW DATA OR NOT AND WHICH, THE VAR- 
C COV.
C MATRIX OR CORRELATION MATRIX IS TO BE USED.
C
2111 WRITE(6/1025)'DO YOU WANT TO STANDARDIZE DATA...

* * [Y/N]’
READ(5,*)YN
IF(YN.EQ."Y".OR.YN.EQ."y")THEN

C
CALL STANDARIZE(Y,NROW,NCL,STANDZ)
DO 1111 J=l,NROW
WRITE(20,'(7F11.3)')(STANDZ(J,I),I=1 ,NCL)

1111 CONTINUE 
C

WRITE (6,1025)'STANDARDISE DATA AND CORRELATION
* MATRIX USED '

C
C

WRITE(2,*)'THE CORRELATION MATRIX IS 
WRITE(13,*)THE CORRELATION MATRIX IS

C
CALL MULTV7(STANDZ,C,NROW,NCL)

C
WRITE(6,1515)'STARTING CALCULATE CORRELATION MATRIX' 

1515 FORMAT(/,A)
DO 3333 J=1,NCL
WRITE(2,'(1X,7F10.3)')(C(I,J),I=1,NCL)
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WRITE(13,I(6X,7F10.3),)(C(I,J),I=1/NCL)
WRITE(6,1025)’ ENTER NAME OF CHARACTER =====> ',J 
READ(5,FMT=666) CHAR(J)

1025 FORMAT( /  A,12)
C

KB=J 
3333 CONTINUE 
C
C COPY MATRIX "C" INTO "A"
C "C" IS THE MATRIX CONTAINS THE CORRELATION MATRIX 
C

DO 12 J=1,NCL 
DO 111=1,NCL 
A(J,I)=C(J,I)

11 CONTINUE
12 ' CONTINUE 
C

ELSE
5555 WRITE(6,5151)'NON-STANDARISED DATA AND VARIANCE-

* COVARIANCE MATRIX '
5151 FORMAT(/,A)
C

WRITE(2/)' THE VARIANCE-COVARIANCE MATRIX IS 
WRITE(13,*)' THE VARIANCE-COVARIANCE MATRIX IS 
WRITE(6,5252)'STARTING CALCULATE VARIANCE-

* COVARIANCE’
5252 FORMAT(/,A)
C

CALL MULTV7(Y,C,NROW,NCL)
C

DO 66661=1,NCL
WRITE(2,'(lx,7F10.3)')(C(I,J),J=l,NCL)
WRITE(13,'(6x,7F10.3),)(C(I,J),J=l,NCL)
WRITE (6,1027)' ENTER NAME OF CHARACTER =====> ’,1 
READ(5,FMT=666) CHAR(I)

1027 FORMAT(/A,I2)
C
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KB=I
C
6666 CONTINUE 
C
C COPY MATRIX "C" INTO "A"
C "C" IS THE MATRIX CONTAINS THE VAR-COV. MATRIX 
C

DO 24 J=1,NCL 
DO 23 I=1,NCL 
A(J,I)=C(J,I)

23 CONTINUE
24 CONTINUE
C COPY MATRIX "Y" INTO "STANDZ" FOR LATER CALCULATION 
C OF THE SCORES.

- DO 2020 J=l,NROW 
DO 2021 I=1,NCL 
ST ANDZ( J,I) =Y (J,I)

2021 CONTINUE 
2020 CONTINUE 

ENDIF 
2211 FORMAT(A12)
2221 FORMAT(I4)
666 FORMAT(5A)
1029 FORMAT(A)
C

CALL TRED2(A,NMAX/NCL,D/E)
C
C TEST FORTHE EIGENVALUE............................................................................
C

WRITE(2 /( / lx,A)')'DIAGONAL ELEMENTS’ 
WRITE(2,'(lx,7fll.3)')(D(I)/I=l,ncl) 
WRITE(2/'( / lx /A)')'OFF-DIAGONAL ELEMENTS’ 
WRITE(2/'(lx,7fll.3)')(E(I),I=l/ncl)

C CHECK TRANSFORMATION MATRIX .
DO 6 J=1,NCL 
DO 5 K=1,NC1 
TRI(J,K)=0.0
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DO 4 L=1,NCL 
DO 3 M=1,NC1
TRI(J,K)=TRI( J,K) +A(L,J)*C (L,M)*A(M,K)

3 CONTINUE
4 CONTINUE
5 CONTINUE
6 CONTINUE
C HOW DOES IT LOOK...

WRITE(2/,( / lx /A),),TRI-DIAGONAL MATRIX LOOKS'
DO 7 I=1,NCL
WRITE(2/'(1X/7F11.3),)(TRI(I/J),J=1,NCL)

7 CONTINUE
CALL TQU(D/E,NMAXNCL/A^I).

C WRITE THE EIGENVALUES FOR THE REAL SYMMETRIC
C , MATRIX.
C
C MATRIX "STANDZ" BELOW IS THE STANDARDIZED ROW DATA 
C WHEN THE ORIGINAL DATA WAS STANDARDIZED AND ALSO 
C ’’STANDZ" IS THE ORIGINAL ROW DATA WHEN 
C STANDARDIZATION HAS NOT TAKE PLACE.(i.e "STANDZ"HAS 
C BEEN COPIED FROM ORIGINAL DATA MATRIX "Y”).
C

WRITE(2/'(/lx,A)')'EIGENVALUES FOR REAL SYMMETRIC 
* MATRIX'

DO 161=1,NCL 
DO 14 J=l,NROW 
P(J,I)=0.0 
DO 13 K=1,NCL
P(J,I) = P (J,I)+ST ANDZ( J,K) *A (K,I)

13 CONTINUE
14 CONTINUE 
C

WRITE(2/'( / lX /A,I3,A,F12.3)’)’EIGENVALUE’/i ;= ’/D(I)
WRITE(2,’(/lX,A)')'EIGENVECTORS'

C
C WRITE THE EIGENVALUES TO A FILE 
C
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C TEST FOR THE EIGENVALUE..........................................................................
C

DO 15 J=1,NCL
IF(ABS(A(J,I)).LT.TINY)THEN 
WRITE(2/'(15X,F12.6,A12)')A(J,I),'DIV. BY ZERO’ 

c WRITE (2,' (1 X,2F12.6, A12)') A (J,I)
ELSE

c WRITE(2/’(1X/2F12.6/E14.6),)A(J/I),F(J/K),F(J/K)/A(J/I)
WRITE(2/'(15X,F12.6/),)A(J,I)
ENDIF

15 CONTINUE
16 CONTINUE 
C
C WRITE ALL THE PRINCIPAL COMPONENT SCORES TO A FILE AND 
C CAST THEM IN A MATRIX(THE LAST COLUMN IS THE FIRST 
C PRIC. COMP.)
C

DO 2010 J=l,NROW 
WRITE(10/I(7F10.4)')(P(J,I)/I=1/NCL)

2010 CONTINUE 
C
C NOW WRITE EIGENVALUES PERCENTAGE OF THE TOTAL 
C VARIANCE TO A RLE 
C

CALL EIGENVALUE(D,PERC,NCL)
C

WRITE(13,'(/IX, A,3X,10(12,6X),//) ') 'VARIABLE',(1,1=1,NCL)
C
C CHAR: IS THE NAME OF THE VARIABLES TO BE READ FROM THE 
C SCREEN.

DO 32 I=1,NCL 
WRITE(12,,(1X,F6.2)')PERC(I)
WRITE(13;(3X,A3,1X,7F10.5)’)CHAR(I),(A(I,J),J=NCL,1,-1)

32 CONTINUE
CALL ORGANIZED,PERC,NCL)

C
CLOSE(IO)
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OPENUO, FILE=PRINC)
C
C CALL SUBROUTINE "SMOOTH" TO SMOOTH THE PRINCIPAL 
C COMPONENT SCORES.
C
C KB REFEERENT TO WHICH COMPONENT TO BE USED(IN THIS 
C CASE THE LAST IS USED).
C
C ASK FOR WHICH COMPONENT TO BE USED :
C

PRINT 2001
2001 FORMAT(/ /,'*** WHICH COMPONENTS TO BE USED 1,2 OR 

* LAST COMP[3].***',//)
READ(5,*)COMP

C /
C TO USE THE FIRST COMPONENT 
C

IF(COMP.EQ.l)THEN 
DO 2110 I=l,NROW 
READ(10/)(P(I/J),J=1,NCL)
PP(I)=P(I,KB)
WRITE(18,*)PP(I)

2110 CONTINUE 
ENDIF

C ■’ "  TT)
C TO USE THE SECOND COMPONENT 
C

IF(COMP.EQ.2)THEN 
DO 2112 I=l,NROW 
READ(10/)(P(I,J),J=1,NCL)
PP(I)=P(I,KB-1)
WRITE(18,*)PP(I)

2112 CONTINUE 
C

ENDIF
C CHECK THE LAST COMPONENT(THE SMALLEST) 

IF(COMP.EQ.3)THEN
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DO 1112 I=l,NROW 
READ(10/)(P(I,J),J=1/NCL)
PP (I)=P(I,KB-KB+1)
WRITEdS^PPCI)

1112 CONTINUE
ENDIF

C
C THIS SECTION IS TO DECIDE TO USE A FILTER TO SMOOTH THE 
C ONE OF THE PRINCIPAL COMPONENT OR TO USE IT DIRECTLY 
C WITHOUT SMOOTHING.
C
1114 PRINT 1113
1113 FORMAT(//,'****** DO YOU WANT TO FILTER THE DATA

* ****** [Y/N]’, / / )
, READ(5,*)YN2

C
C THIS SECTION PROMPTS FOR THE DATA FOR "SMOOTH"
C SUBROUTINE.
C

IF(YN2.EQ."Y".OR.YN2.EQ."y")THEN
C

WRHE(6,1013)’USING SUBROUTINE TO FILTER THE OUTPUT
* DATA ====>'

1013 FORMAT(/,A)
WRrrE(6,l 014)'ENTER OUTPUT FILE FOR THE SMOOTHED

* DATA.'
1014 FORMAT(/,A)

READ(5/1015)SMOOTHOUT
1015 FORMAT(AIO)

WRITE (6,1121)' ENTER THE LENGTH OF THE WINDOW OF THE
* FILTER.’

1121 FORMAT(/,A)
READ(5,*)LEN

C
OPEN(15/FILE=SMOOTHOUT,STATUS="UNKNOWN")

C
CALL SMOOTH(PP,SMOOTHD,NROW,LEN)
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C
DO 220 M=l,NROW 
WRITE(15/(F12.6)')SMOOTHD(M)

220 CONTINUE 
C
C THIS "ENDIF" IS RELATED TO YN2 TO FILTER OR NOT THE DATA.
C

CLOSE(15)
OPEN (15,FILE=SMOOTHOUT)
DO 2122 I=l,NROW 
READ(15,*)SMOOTHD(I)

2122 CONTINUE 
C
C IF YOU DO NOT WANT TO FILTER THE DATA THEN:
C THE VECTOR "SMOOTHD" IS THE NON-FILTERED PRINCIPAL 
C COMP. SCORES OF THE CHOSEN COMPONENT.
C

ELSEIF(YN2.EQ."N".OR.YN2.EQ."n")THEN 
PRINT 5222

5222 FORMAT(/ //NON-FILTERED PRINCIPAL COMPONENT WILL BE 
* USED’, / / )

C
C COPY VECTOR "PP" INTO "SMOOTHD".
C

REWIND(UNIT=18)
C

DO 2223 I=l,NROW 
SMOOTHD(I) =PP(I)

2223 CONTINUE 
ENDIF

C CALL THE BOUNDARY SUBROUTINE TO IDENTIFY THE 
C BOUNDARIES.
C

CALL BOUNDARY(SMOOTHD,IBWIN,NROW,DSQUARE)
C

DO 1045 I=l,NROW 
WRITE(17,*)DSQU ARE(I)
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1045 CONTINUE 
C
C IF TO BE CONTINUED TO WORK ON OTHER SET OF DATA 
C

WRITER,*)' DO YOU WANT TO CONTINUE [ Y /N  ]’ 
READ*,ANSYN
IF(ANSYN.EQ.'Y’.OR.ANSYN.EQ.y)GO TO 0010
IFCANSYN.NE.’Y’.OR.ANSYN.NE.’yOTHEN
CONTINUE
ENDIF

C
C
C CALL THE CORRELATION SUBROUTINE TO CORRELATE BETWEEN 
C THE TWO LOGS.
C ,

CALL XCOR(NROW)

STOP
END

.SUBROUTINES.

C ......................................................................................................................
C
C SUBROUTINE STAND ARIZE
C
C THIS SUBROUTINE IS TO STANDARDIZE THE DATA(i.e THE DATA 
C WILL HAVE A MEAN OF ZERO [0] AND VARIANCE OF ONE [1]
C USING THE EQUATION:
C
C
C XIJ=(XIJ-ME AN (J)) /  V AR(J)
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C
C STANDARDIZE SUBROUTINE CALCULATES THE STANDARDIZED 
C DATA FROM THE ORIGINAL VARIABLESC MATRIX "Y") AND 
C RETURN THE OUTPUT DATA(STANDARZIED) IN MATRIX 
C "STANDZ" WHICH WILL BE FED TO THE MAIN PROGRAM TO 
C CALCULATE THE CORRELATION MATRIX, EIGENVALUES,
C EIGENVECTORS AND THE PRINCIPAL COMPONENT SCORES. NOTE 
C THAT THESE SCORES ARE CALCULATED FROM THE 
C STANDARDIZED DATA RATHER THAN THE ROW DATA.
C

SUBROUTINE STAND ARIZE (Y,NROW,NCL, STANDZ) 
PARAMETER(ICL=10,MAXN=8000)

C Y=THE ORIGINAL DATA MATRIX WHICH CONTAINS THE 
C ORIGINAL WELL-LOG
C , VARIABLES OF DIMENSION NROW BY NCL.
C STANDZ=STANDARDIZED DATA MATRIX OF DIMENSION 
C NROW BY NCL.
C MAXN=DIMENSION PARAMATER FOR THE NUMBER OF ROWS 
C OF THE MATRIX
C ICL=DIMENSION VECTOR SET BIGGER THAN THE EXPECTED
C NUMBER OF
C COLUMNS. BOTH MAXN AND ICL CAN BE ADJUSTED TO ANY 
C NUMBER.

DIMENSIONSTANDZ(MAXN,ICL),DMEAN(MAXN),VAR(MAXN), 
* STD(MAXN)

DIMENSION OS(MAXN,ICL),SUM(ICL),Y(MAXN,ICL)
C
C Y IS THE ROW DATA MATRIX.
C STANDZ IS THE STANDARDIZED DATA MATRIX.
C

DO 25 M=1,NCL 
SUM(M)=0.0 
DO 15 J=l,NROW 
SUM(M)=SUM(M)+Y (J,M)

15 CONTINUE
DMEAN(M)=SUM(M)/FLOAT(NROW)

25 CONTINUE
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DO 199 M=1,NCL 
SUMM=0.0 
DO 99 1=1,NROW 
OS(I,M)=Y (I,M)-DMEAN(M)
SOS=OS(I,M)**2 
SUMM=SUMM+SOS 

99 CONTINUE
VAR(M)=SUMM/FLOAT(NROW-1.0)
STD(M)=SQRT(VAR(M))

199 CONTINUE 
299 FORMAT(F9.5)
C

DO 18 M=1,NCL
DO 19 1=1,NROW
ST ANDZ(I,M) =OS(I,M) /  STD(M)

19 CONTINUE 
18 CONTINUE - 
C

RETURN
END

C
C SUBROUTINE TRED2
C
C SUBROUTINE TRED2 TO CALCULATE THE TRI-DIAGONAL MATRIX 
C OF VAR.-COV. MATRIX OR THE CORRELATION MATRIX.
C

SUBROUTINE TRED2(A,NMAX,NCL,D,E)
C
C A=SQUARE MATRIX OF THE VARIANCE-COVERAINCE OR
C CORRELATION MATRIX.
C NMAX=PARAMETER TO SET THE DIMENSION OF THE NUMBER
C OF ROWS OF DATA.
C NCL=THE NUMBER OF COLOUMNS OF THE DATA MATRIX.

PARAMETER(NCOL=l 0)
DIMENSION A(NMAX,NCOL),D(NCOL),E(NCOL)
N=NCL

C NCOL= A DIMENSIONAL VECTOR SET BIGGER THAN THE

A ppend ix  C: Program P C A X C O R



2 3 9

C EXPECTED NUMBER
C OF COLUMNS. NCL IS THE NUMBER OF COLUMNS OF THE 
C MATRIX.

IF (N .GT. 1)THEN
DO 18 I=N,2,-1
L=I-1
H=0.0
SCALE=0.0

IF(L .GT. UTHEN
DO 11 K=1,L

SCALE=SC ALE+ABS(A(I,K))
11 CONTINUE

IF(SCALE .EQ. 0.0)THEN 
E(I)=A(I,L)

ELSE
DO 12 K=1,L

A(I,K)=A(I,K) /  SCALE 
H=H+A(I,K)**2

12 CONTINUE 
F=A(I,L)
G=+SIGN(SQRT(H),F)
E(I)=SCALE*G
H=H-F*G
A(I,L)=F-G
F=0.0
DO 15 J=1,L

C OMIT THE FOLLOWING IF FINDING ONLY EIGENVALUES 
A(J,I)=A(I,J)/H 
G=0.0
DO 13 K=1,J 
G=G+A(J,K)*A(I,K)

13 CONTINUE 
IF(L.GT.J)THEN

DO 14 K=J+1,L 
G=G+A(K,J)*A(I,K)

14 CONTINUE
ENDIF
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E0)=G/H
F=F+E(J)*A(I,J)

15 CONTINUE 
HH=F/(H+H)

DO 17 J=1,L 
F=A(I,J)

G=E(J)-HH*F
E(p=G

DO 16 K=1 J  
A(J,K)=A(J,K)-F*E(K)-G*A(I,K)

16 CONTINUE
17 CONTINUE 

ENDIF
ELSE

E(I)=A(I,L)
ENDIF

D(I)=H
18 CONTINUE

ENDIF
C OMIT THE FOLLOWING IF FINDING ONLY EIGENVALUES. 
C

D(1)=0.0
C BEGIN ACCUMULATION OF TRANSFORMATION MATRIX. 

E(1)=0.0 
DO 231=1,N 

C DELETE LINE FROM HERE 
L=I-1
IF (D(I) .NE. 0.0)THEN
DO 21 J=1,L
G=0.0
DO 19 K=1,L 
G=G+A(I,K)*A(K,J)

19 CONTINUE
DO 20 K=1,L 

A(K,J)=A(K,J)-G*A(K,I)
20 CONTINUE
21 CONTINUE
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ENDIF
C TO HERE WHEN FINDING ONLY EIGENVALUES.....................................
C

D(I)=A(I,I)
C ALSO DELETE LINES FROM HERE.
C
C RESET ROW AND COLUMNS OF 'A* TO IDENTIFY FOR NEXT 
C ITERATION.

A(I,I)=1.0 
IF(L .GE. 1)THEN 
DO 22 J=1,L

A(I,J)=0.0
A(J,I)=0.0

22 CONTINUE 
- ENDIF

C
C TO HERE IF FINDING ONLY EIGENVALUES.
C
23 CONTINUE 

RETURN 
END

C
C
C SUBROUTINE TQLI
C
C SUBROUTINE TQLI TO CALCULATE THE EIGENVALUE AND THE 
C EIGENVECTORS.
C
C THIS SUBROUTINE IS TO CALCULATE EIGENVALUES AND THE 
C EIGENVECTORS "D" AND "A" RESPECTIVELY FROM THE TRI-DIAG. 
C MATRIX "TRT.
C

SUBROUTINE TQLI(D,E,NMAX,NCL,A/N)

C
C N IS THE DIAGONAL ELEMENTS OF C.
C
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DIMENSION D(N),E(N),A(NMAX,N)
IF(N.GT.1)THEN 
DO 111=2,N 
E(I-1)=E(I)

11 CONTINUE 
ENDIF 
E(N)=0.0 
DO 15 L=1,N 
ITER=0.0

1 DO 12 M= L,N-1 
C
C LOOK FOR A SINGLE SMALL SUBDIAGONAL ELEMENTS TO SPLIT 
C THE MATRIX.

DD=ABS(D(M))+ABS(D(M+1))
- IF(ABS(E(M))+DD.EQ.DD)GOTO 2

12 CONTINUE 
M=N

2 IF(M.NE.L)THEN 
IF(ITER.EQ.70)PAUSE' TOO MANY ITERATION'
ITER=ITER+1
G=(D(L+1)-D(L))/(2.0*E(L))
R=SQRT(G**2+1.0)
G=D(M)+D(L)+E(L)/(G+SIGN(R,G))

C THIS WAS dm-ks 
S=1.0 
C=1.0 
P=0.0
DO 14 I=M-1,L,-1 
F=S*E(I)
B=C*E(I)
IF(ABS(F).GE.ABS(G))THEN
C=G/F
R=SQRT(C**2+1.0)
E(I+1)=F*R
S=1.0/R
C=C*S
ELSE
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S=F/G
R=SQRT(S**2+1.0)
E(I+1)=G*R
C=1.0/R
S=S*C
ENDIF
G=D(I+1)-P
R=(D(I)-G)*S+2.0*C*B
P=S*R
D(I+1)=G+P
G=C*R-B

C
C OMIT LINES FROM HERE 
C

* DO 13 K=1,N 
F=A(K,I+1)
A(K,I+1)=S*A(K,I)+C*F
A(K,I)=C*A(K,I)-S*F

13 CONTINUE 
C
C TO HERE IN FINDING ONLY EIGENVALUES 
C
14 CONTINUE 

D(L)=D(L)-P 
E(L)=G 
E(M)=0.0 
GOTO 1 
ENDIF

15 CONTINUE 
RETURN 
END

C
C SUBROUTINE EIGENVALUE
C
C TO CALCULATE THE PERCENTAGE OF THE EIGENVALUE. 
C

SUBROUTINE EIGENVALUE(D,PERC,NCL)
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C
C D=EIGENVALUE.
C PERC=PERCENTAGE OF EACH EIGENVALUE.
C NCL=NUMBER OF COLOUMNS OF THE INPUT MATRIX.
C

PARAMETER(NCOL=l 0)
DIMENSION D (NCOL),SUM(NCOL),PERC(NCOL)

C NCOL=A DIMENSIONA VECTOR SET BIGGER THAN THE
C EXPECTED NUMBER OF
C COLUMNS OF THE MATRIX. THIS CAN BE ADJUSTED TO ANY
C NUMBER.

DO 20 I=1,NC1 
SUM(I)=0.
DO 10 J=1,NCL 

, SUM(I)=SUM(I)+D(J)
10 CONTINUE
20 CONTINUE

DO 30 J=1,NCL 
PERC(J)=(D(J)/SUM(J))*100 

30 CONTINUE
RETURN 
END

C
C
C SUBROUTINE ORGANIZE
C
C TO ORGANIZE THE FINAL OUTPUT OF THE PRINCIPAL 
C COMPONENT SECTION.
C
C

SUBROUTINE ORGANIZE(D,PERC,NCL)
DIMENSION D (NCOL),PERC (NCOL)

C
C D=EIGENVALUE.
C PERC=PERCENTAGE OF EACH EIGENVALUE.
C NCL=NUMBER OF COLOUMNS OF THE INPUT MATRTX.
C NCOL=A DIMENSIONAL VECTOR BIGGER THAN TI11 liXPECTED
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C NUMBER OF COLUMNS OF THE MATRIX. THIS IS ADJUSTABLE 
C VECTOR.
C PERC=OUTPUT FILE WILL CONTAIN THE EIGENVALUES AND 
C THE PERCENTAGE
C EACH EIGENVALUE TO THE TOTAL VARIANCE.

WRITECIS/C/ 1X,A)')'EIGENVALUES' 
WRITE(13/,( / /7(F10.3/lX))')(D(I),I=NCL/l /-l) 
WRTTE(13/,( / / lX /A),),PERCENTAGE OF TOTAL VARIANCE 

* CONTRIBUTED BY EACH EIGENVALUE’ 
WRITE(13;(//7(F10.3/1X)),)(PERC(I)/I=NCL/1/-1)
RETURN
END

C , MULTV7.F SUBROUTINE
C
C CALCULATES TFIE VARIANCE-COVARIANCE OR CORRELATION 
C MATRIX.
C
C

SUBROUTINE MULT V7(STANDZ,C,NROW,NCL)
PARAMETER (ICL=10,MAXN=8000)

C
C STANDZ=DATA MATRIX WHICH CONTAINS THE 
C STADARDISED DATA.
C C=DATA MATRIX WHICH WILL CONTAIN THE SQUARE 
C MATRIX.
C MAXN=A DIMENSIONAL VECTOR BIGGER THAN THE
C NUMBER OF ROWS. THIS
C CAN BE ADJUSTED TO A NUMBER TO SUIT ANY
C REQUIREMENT.
C ICI= A DIMENSIONAL VECTOR BIGGER THAN THE NUMBER OF 
C COLUMNS AND
C CAN BE ADJUSTED.

DIMENSIONDMEAN(MAXN),VAR(MAXN),STD(MAXN)/SOS(ICL, 
* OS(ICL),SUMSP(MAXN,ICL)

DIMENSIONSP(ICL/ICL/MAXN)/SUMM(ICL),SUM(ICL)/
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* STANDZ(MAXN,ICL),C(MAXN,ICL)
C
C STANDZ IS THE STANDARDIZED DATA MATRIX
C C IS THE MATRIX CONTAINS THE VARIANCE-COVARIANCE
C OR CORRELATION MATRIX.
C

DO 25 M=1,NCL 
SUM(M)=0.0 
do 15 j=l,NROW
SUM(M)=SUM(M)+STANDZ(j,M)

15 CONTINUE 'p&rS' ■ 313 ;
DME AN(M)=SUM(M)/NROW 

25 CONTINUE
DO 199 M=1,NCL 
SUMM(M)=0.0 
DO 99 I=l,NROW 
OS(M)=STANDZ(I,M)-DMEAN(M)
SOS(M)=OS(M)**2
SUMM(M)=SUMM(M)+SOS(M)
VAR(M)=SUMM(M)/(NROW-l.O)
STD (M)=SQRT (V AR(M))

99 CONTINUE
199 CONTINUE 

DO 2001=1,NCL 
DO 100 K=1,NCL 
SUMSP(i,k)=0.0 
DO 150 L=l,NROW
SP(I,K,L)=(STANDZ(L,I)-DMEAN(I))*(STANDZ(L,K)-DMEAN(K))
SUMSP(I,K)=SUMSP(I,K)+SP(I,K,L)

150 CONTINUE
100 CONTINUE
200 CONTINUE 
C

DO 181=1,NCL 
DO 17 J=1,NCL

C "C" IS A TWO DIMENSIONAL ARRAY CONTAINS THE VARIANCE- 
C COVARIANCE MATRIX.OR CORRELATION MATRIX.
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C
C(I,J)=SUMSP(I,J)/(NROW-l.O)

C
17 CONTINUE
18 CONTINUE 

RETURN 
END

C
C SUBROUTINE SMOOTH
C
C THIS IS SMOOTHING SUBROUTINE TO SMOOTH THE PRINCIPAL 
C COMPONENT SCORES.
C
C ALL DIMENSIONAL ARRAYS CAN BE ADJUSTED TO ANY SIZE. 

SUBROUTINE SMOOTH(PP,SMOOTHD,NROW,LEN)
REAL SMOOTHD(8000),PP(8000)
INTEGER T 

C PP=DATA VECTOR TO BE SMOOTHED
C SMOTHD=A VECTOR WHICH WILL CONTAIN THE OUTPUT 
C SMOOTHED DATA.
C LEN IS SIZE OF THE WINDOW (NO OF SAMPLES)
C PP IS A VECTOR CONTAINING THE DATA TO BE SMOOTHED.
C SMOOTHD IS A VECTOR CONTAINING THE OUTPUT SMOOTHED 
C DATA.
C NROW IS THE NUMBER OF DATA SMAPLES TO BE SMOOTHED.
C

M=(LEN-l)/2
DO 434 J= 1+(LEN-1) /  2,NROW(LEN-1) /  2 
SUM = 0.0 
DO 433 T=-M,M 
SUM = SUM + PP(J+T)

433 CONTINUE 
SMOOTHD (J) = SUM 
SMOOTHD(J)=SMOOTHD(J)/LEN

434 CONTINUE 
C

RETURN
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END
C
C
C SUBROUTINE BOUNDARY
C
C SUBROUTINE BOUNDARY TO IDENTIFY THE FORMATION 
C BOUNDARIES.
C THIS TECHNIQUE IS BASED ON:
C
C DSQUARE=(ME AN1-ME AN2) /  (VAR1 + VAR2)
C
C
c

SUBROUTINE BOUNDARY (SMOOTHD,IB WIN,NROW,DSQUARE)
C
C ALL DIMENSIONAL ARRAYS CAB BE ADJUSTED TO ANY SIZE.
C

DIMENSION SMOOTHD(8000),RMEAN(8000),DSQUARE(8000) 
DIMENSION SMEAN1 (8000),OS1 (8000),RVAR(8000),SMEAN2(8000), 

* VAR1 (8000),VAR2(8000),OS2(8000)
C
C SMOOTHD=DATA VECTOR FROM WHCIH BOUNDARIES WILL BE 
C IDENTIFIED.
C DSQURE=A VECTOR WILL CONTAIN THE OUTPUT BOUNDARIES.
C A ’MOVING WINDOW' IS USED HERE
C SMOOTHED IS A VECTOR OF DATA SEQUNCE TO BE ANALYSED.
C IBWIN IS THE SIZE OF THE WINDOW TO BE USED.
C DSQUARE IS A VECTOR WHICH WILL CONTAIN THE OUTPUT D 
C SQUARED VALUES (BOUNDARIES OF FORMATIONS)
C

M=(IBWIN/2)
DO 30 J=M+l,NROW-M
SUM1=0.0
SUM2=0.0
DO 40 K=J-M,J-1
SUM1 =SUM1 +SMOOTHD (K)
SUM2=SUM2+SMOOTHD(K+M-l)

A ppendix C: Program P C A X C O R



2 4 9

40 CONTINUE
SMEAN1(J)=SUM1/M
SMEAN2(J)=SUM2/M

C
RME AN (J)=(SME AN 1 (J)-SME AN2(J))**2

C
SUMOS1=0.0 
SUMOS2=0.0 
DO 50 K=J-M J-l
OS1 (K)=(SMOOTHD(K)-SMEANl(J))**2 
OS2(K)=(SMOOTHD(K+M-l)-SMEAN2(J))**2 
SUMOS1 =SUMOSl +OS1 (K)
SUMOS2=SUMOS2+OS2(K)

50 CONTINUE
VAR1 (p=SUMOSl /  (M -l)
VAR2(J)=SUMOS2/(M-l)

C
RV AR( J) = V AR1 (J)+VAR2(J)

C
DSQUARE(J)=(RMEAN(J)/RVAR(J))**2 

30 CONTINUE 
RETURN 
END

C
C
C SUBROUTINE XCOR
C
C THIS SUBROUTINE IS TO PERFORM THE CROSS-CORRELATION 
C BETWEEN TWO SEQUENCES (SERIES) OR LOGS.
C
C PROCESSES TO DETERMINE THE STRETCH FACTOR AND 
C RELATIVE DISPLACEMENT BETWEEN TWO SEQUENCES SERIES) OF 
C WELL-LOGS. CROSS-CORRELATION (WITH VARIABLE WINDOW 
C SIZE) OF THE POWER SPECTRA OF TWO SERIES 
C IDENTIFIES THE DIRECTION AND AMOUNT OF STRETCH 
C BETWEEN TWO SERIES. THE PROCESS INVOLVES THE 
C COMPUTATIONS OF POWER SPECTRA IN THE
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C FREQUENCY DOMAIN WITH THE FREQUENCY INTERVALS 
C TRASFORMED TO A LOGARITHMIC SCALE. LAGRANGE'S 
C METHOD OF INTERPOLATION OBTAINS
C EQUALLY SPACED POWER SPECTRA FOR CORRELATION. USING 
C TOP TWO PEAK VALUES OF THE CROSS-CORRELATION FUNCTION 
C OF POWER SPECTRA, SERIES ARE THEN STRETCHED BY THE FFT 
C (FAST FOURIER TRANSFORM) INTERPOLATION METHOD. THE 
C LARGEST COEFFICIENT OBTAINED FROM CROSS-CORRELATION 
C (WITH FIXED WINDOW SIZE) OF EACH SET OF SUCH STRETCHED 
C SERIES DETERMINES THE OPTIMUM DISPLACEMENT AND 
C STRETCH.
C OUTPUTS CONSIST OF A SCREEN LIST OF THE INPUT DATA,
C COEFFICIENTS OF THE CROSS-CORRELATION FUNCTION OF 
C POWER SPECTRA AND THE OPTIMUM STRETCH AND 
C DISPLACEMENT VALUES.
C J
C NROW=NUMBER OF DATA SETS TO BE CORRELATED.
C LS = NUMBER OF DATA POINTS OF THE SHORT SERIES.
C LL = NUMBER OF DATA POINTS OF THE LONG SERIES.
C IDER = 1 DERIVATIVE IS WANTED TO COMPUTE POWER SPECTRA 
C = 0  DERIVATIVE IS NOT WANTED.
C IORG = 1 PRINCIPAL COMPONENTS ARE WANTED FOR 
C STRETCHING AND FOLLOWING CORRELATION.
C = 0  DERIVATIVE DATA IS WANTED FOR STRETCHING AND 
C FOLLOWING CORRELATION.
C SMAX = MAXIMUM ANTICIPATED STRETCH VALUE. TYPICAL 
C VALUE = 2.0
C FMTOP1 = DEPTH OF THE SHORT SERIES.
C FMTOP2 = DEPTH OF THE LONG SERIES.
C
C THIS SUBROUTINE AND THE SUBROUTINES THAT IS CALLING 
C ARE WRITTEN BY BYUNG-DOO KWON, GEOLOGY DEPARTMENT,
C INDIANA UNIVERSITY,
C BLOOMINGTON, INDIANA (USA).
C
C ALL DIMENSIONAL ARRAYS CAN BE ADJUSTED TO ANY SIZE.
C

A ppend ix  C: Program P C A X C O R



251

SUBROUTINE XCOR(NROW)
C

DIMENSION RLOG1(12800),RLOG2(12800),YIP1(12800), YIP2(12800) 
DIMENSION CLOG1(12800),CLOG2(12800),WORK(12600) 
DIMENSION XCORL(12100),XCORS(12100),TITLE(10)
COMPLEX CLOGl,CLOG2 
DATA LONG /5H  LONG/
DATA SHORT /5HSHORT/

C
CHARACTER*! OFILEIN1,FILEIN2,DERIVT/PWSPEC/XCORR/

* TRANFRQ,PARAFILE, ORIGFILE,INTSPEC,CRSTRETCH
C
C READ THE NUMBER OF DATA SETS TO BE CORRELATED 
C
C -

WRITE(6,*)'ENTER THE INPUT FILE of THE SHORT LOG' 
READ*,FILEIN1
WRITE(6,*)'ENTER THE INPUT FILE of THE LONG LOG'
READ*,FILE IN2
WRITE(6,*)'ENTER THE INPUT FILE OF THE PARAMETERS' 
READ*,PARAFILE
WRITE(6,*)'ENTER THE OUTPUT FILE NO: 1 [ ORIGINAL DATA ]' 
READ*,ORIGFILE
WRHE(6,*)'ENTER OUTPUT FILE NO:2 [ DERIVATIVE DATA ]' 
READ*,DERIVT
WRITE(6,*)’ENTER OUTPUT HLE NO:3 [ POWER SPECTRA DATA

* ] ’

READ*,PWSPEC
WRHE(6,*)'ENTER OUTPUT FILE NO:4 INTERPOLATED POWER

* SPECTRA DATA]'
READ*,INTSPEC
WRTrE(6,*)'ENTER OUTPUT FILE NO:5 [ NORMALIZED CROSS-

* CORRELATION DATA]'
READ*,XCORR
WRITE(6,‘)'ENTER OUTPUT HLE NO:6 [ FOR TRANSFORMED

* FREQUENCY ]’
READ*,TRANFRQ
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C
C

OPEN(l,FILE=FILEINl)
OPEN(2/FILE=ORIGEILE)
OPEN (3/FTLE=DERIVT)
OPEN (4,FILE=PWSPEC)
OPEN(7,FILE=XCORR)
OPEN(8,FILE=TRANFRQ)
OPEN (9,FILE=FILEIN2)
OPEN(l 0,FILE=PARAFILE)
OPEN(l 1 ,FILE=INTSPEC)

C
C READ PARAMETERS AND INPUT DATA (TWO SHORT AND TWO 
C LONG LOGS)
C - 
C

READ(10,*)NSET 
DO 290 IJ=1,NSET 

C INmALIZE ALL ARRAYS TO ZERO
C SET THE MAXIMUM DATA LENGTH TO 12800 (MAXIMUM DEPTH
C OF THE BOREHOLE).
C

DO 101=1,12800
RLOG1(I)=0.0
RLOG2(I)=0.0
YTP1(I)=0.0
YIP2(I)=0.0
WORK(I)=0.0
WORK(I+12800)=0.0
CLOG1(I)=CMPLX(0.0,0.0)
CLOG2(I)=CMPLX(0.0,0.0)

10 CONTINUE
DO 201=1,12800 
XCORL(I)=0.0 

20 XCORS(I)=0.0 
C
C READ AND WRITE PARAMETERS AND INPUT DATA
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C
READ(10,298) (TITLE(I),I=1,8)
READ(10,298) ITITLE
READ(10,*)IDER,IORG,SMAX,FMTOP1,FMTOP2

C
C
C READ THE INFORMATION ABOUT THE DEPTH AND THICKNESS 
C FROM DATAFILE.
C [ MFTOP1 ] IS THE TOP OF FORMATION TO BE CORRELATED, AND 
C [THtCKl ] IS IT'S THICKNESS. [FMTOP2 ] IS THE TOP OF THE 
C FORMATION TO BE CORRELATED WITH [ LONG SERIES], AND [
C THICK2 ] IS IT'S THICKNESS.
C

READ(10,*)THICK1,THICK2
C -
C THE ACTUAL DEPTH OF THE FORMATION [ FROM PCA ] IS 
C EQUAL TO THE REAL DEPTH ON LOG MINUS THE DEPTH THAT 
C THE WELL DATAFILE STARTES FROM. THIS DEPTH CORRECTION 
C IS NECESSARY IN ORDER TO GET AN ACCURATE DEPTH FROM 
C THE PRINCIPAL COMPONENT SCORES.
C

WRITE(6 /)'ENTER LENGTH OF FORMATION 1'
READ*,LS
WRITE(6,*)'ENTER LENGTH OF FORMATION 2'
READ*,LL

C
C
C TO READ THE DESIRED FORMATION TO BE CORRELATED THEN 
C ADD THE THICKNESS OF THE FORMATION TO THE ACTUAL 
C DEPTH 
C

READ(1,302) (RLOG1 (I),I=1,LS)
C

REWIND 1
C

I2=FMTOPl 
DO 111 I=1,THICK1
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RLOGl(I)=RLOGl (12)
12= 12+1

111 CONTINUE 
LS=THICK1

C
READ(9,302) (RLOG2(I),I=l,LL)

C
REWIND 9

C
I3=FMTOP2
DO 112 I=1,THICK2
RLOG2(I)=RLOG2(I3)
13=13+1

112 CONTINUE 
LL=THICK2*

c
C KEEP THE ORIGINAL DATA IN A FILE FOR PLOT 
C

WRirE(2,'(F10.3)') (RLOGl(I),I=l,LS)
WRITE(2,'(F10.3)') (RLOG2(I),I=l,LL)
WRrrE(6,299) fnTLE(I),I=l,8)
WRITE(6,300) ITITLE
WRITE(6,303) LS,LL<IDER,IORG,SMAX,FMTOPl,FMTOP2 
WRITE(6,304)
DO 30 I=1,LS 

30 WRITE(6,305) I/RLOGl(I),RLOG2(I)
LS1=LS+1 
DO 40 I=LS1,LL 

40 WRITE(6,306) LRLOG2(I)
C
C CHECK WHETHER DERIVATIVE IS WANTED 
C

IF(IDER.EQ.O) GO TO 80 
CALL DERIVAT (RLOGl,LS)
RLOG1(LS+1)=0.0
CALL DERTVAT (RLOG2,LL)

C
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WRITE(6,307)
DO 50 I=1,LS 

50 WRITE(6,305) I,RLOGl(I),RLOG2(I)
LS1=LS+1 
DO 60 I=LS1,LL 

60 WRITE(6,306) I,RLOG2(I)
C
C
C KEEP THE DERIVATIVE DATA FOR PLOT :
C

WRITE(3/'(F10.3)') (RLOG1 (I),I=1,LL)
WRITEOAFIO.S)’) (RLOG2(I),I=l,LL)

80 CONTINUE 
C
C CONSTRUCT COMPLEX SERIES AND DO FOURIER TRANSFORM
c

IX) 901=1,LL
CLOG1 a)=CMPLX(RLOGl (D,0.0)
CLOG2(I)=CMPLX(RLOG2(I),0.0)

90 CONTINUE
CALL FOURT (CLOGl,LL,l,-1,1,WORK)
CALL FOURT (CLOG2,LL,1,-1,1,WORK)

C
C COMPUTE POWER SPECTRA (THE SECOND HALF ABOVE NYQUIST 
C FREQUENCY IS IGNORED)
C

NYQ=LL/2+l 
DO 1001=2,NYQ
RLOG1 (I-l)=(REAL(CLOGl (I))**2+

* AIMAG (CLOG 1 (I))**2) /  FLOAT(LL) 
RLOG2(I-l)=(REAL(CLOG2(I))**2+

* AIMAG(CLOG2(I))**2)/FLOAT(LL)
100 CONTINUE

NN=NYQ-1
WRITE(6,308)
DO 110 1=1,NN

110 WRITE(6,309) I,CLOGl(I+l),RLOGl(I),CLOG2(I+l),RLOG2(I)
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IF (PRALL.EQ.O.O) GO TO 120 
120 CONTINUE 
C
C KEEP THE POWER SPECTRA IN A FILE FOR PLOT 
C

WRITE(4,'(F10.3)') (RLOGl(I),I=l,NN)
WRITE(4,'(FI0.3)') (RLOG2(I),I=l,NN)

C
C TRANSFORM THE FREQUENCIES INTO A LOGARITHMIC SCALE 
C

DO 130 1=1,NN  
130 W ORK(I)=ALOG10 (FLOAT (I))

WRITE(8,'(F10.3)t) (WORK(I),I=l,NN)
C
C OBTAIN EQUALLY SPACED POWER SPECTRA USING LAGRANGE'S 
C INTERPOLATION METHOD 
C

JLAST=NN-2
DELT=0.01
CALL INTPOL3 (WORK,RLOG1,RLOG2/YIP1/YIP2/10/JLAST/

* NLAST,DELT)
C
C KEEP INTERPOLATED SPECTRA IN A FILE FOR PLOT 
C

WRITE(11,'(F10.3)') (YIP1 (I),I=1,NLAST)
WRITE(li;(F10.3)') (YTP2(I),I=1 ,NLAST)

C
WRITE(6,310)
DO 140 I=1,NLAST 

140 WRITE(6,305) I,YIP1(I),YIP2(I)
C
C CROSS-CORRELATE INTERPOLATED POWER SPECTRA TO OBTAIN 
C STRETCH VALUES.
C

L AGM AX=ALOG10(SMAX) /  DELT+1.5
CALL CROSS1 (YIPLYIP^XCORL^LAS^LAGMAX)
CALL CROSS1 (YIP2,YIP1 ,XCORS,NLAST,LAGMAX)
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WRITE(6,313)
DO 160 I=1,LAGMAX
Kl=-I+1
K2=I-1

160 WRITE(6,312) Kl,XCORL(I),K2,XCORS(I)
WRITE(6/311)
LAGTOT=2*LAGMAX-l 
DO 170 I=1,LAGMAX 
WORK(I)=FLOAT(-LAGMAX+I)

170 YIP1 (I)=XCORL(LAGMAX-I+l)
DO 180 I=2,LAGMAX 
WORK(LAGMAX+I-l)=FLOAT(I-l)

180 VlPl(LAGMAX+I-l)=XCORS(I)
C
C KEEP THE CROSS-CORRELATION FUNCTION OF POWER SPECTRA *
C IN A FILE FOR PLOT.
C

WRrrE(7/(F10.3)’) (WORK(I),1=1 ,LAGTOT)
W RrrE(7;(Fio.3)’) (y i p k i ),i = i ,l a g t o t )

c
C FIND THE MAXIMUM PEAK IN THE CORRELATION FUNCTION OF 
C POWER SPECTRA AND COMPUTE CORRESPONDING STRETCH 
C FACTOR.
C

CALL MAX (YIP 1,1 ,L AGTOT,Il ,PCMAX1)
XLAGl=WORK(Il)
DELI =ABS(XLAG1)*DELT 
ST1=10.**DEL1

C
C FIND SECOND PEAK IN THE CORRELATION FUNCTION OF POWER 
C SPECTRA AND COMPUTE CORRESPONDING STRETCH FACTOR 
C

CALL SCAN (YIPl,Il,LAGTOT)
CALL MAX (YIP 1,1 ,LAGTOT,I2,PCMAX2)
XLAG2=WORK(I2)
DEL2=ABS(XLAG2)*DELT
ST2=10.**DEL2
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C
C FROM TWO PEAK VALUES, FIND THE OPTIMUM DISPLACEMENT 
C AND STRETCH 
C

IF(XLAGl.GTO.O) GO TO 190
C
C STRETCHING AND CORRELATING THE FIRST PEAK ASSUMES THE 
C LONG SERIES (SEQUENCE) IS STRETCHED 
C

WRITE (6,315) ST1 
CALL STXCOl

* (RLOGl,RLOG2,CLOGl,WORK,YIPl,LS,LL,STl,MLl,IDl,
* CMAX1 ,IDER,IORG)

.IF (XLAG2.GT.0.0) GO TO 210 
GO TO 200

*

C
C STRETCHING AND CORRELATING THE FIRST PEAK ASSUMES THE 
C SHORT SERIES (SEQUENCE) IS STRETCHED.
C
190 WRITE(6,314) ST1

CALL STXC02 (RLOGl,RLOG2,CLOGl,WORK/YIPl,LS,LL,STl/MLl,
* IDl,CMAXl,IDER,IORG)

IF(XLAG2.GT.0.0) GO TO 210
C
C STRETCHING AND CORRELATING THE SECOND PEAK ASSUMES THE 
LONG SERIES (SEQUENCE) IS STRETCHED.
C
200 WRITE(6,317) ST2

CALL STXCOl (RLOGl,RLOG2,CLOG2,WORK,YIP2,LS,LL,ST2,
* ML2,ID2,CMAX2,IDER,IORG)

GO TO 220
C
C STRETCHING AND CORRELATING THE SECOND PEAK ASSUMES 
C THE SHORT SERIES (SEQUENCE) IS STRETCHED.
C
210 WRITE (6,316) ST2

CALLSTXC02 (RLOG1 ,RLOG2,CLOG2,WORK, >TP2,LS,LL,ST2,ML2f
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* ID2,CMAX2,IDER,IORG)
C
C COMPARE THE COEFICIENTS OBTAINED FROM CORRELATIONS 
C TWO SETS OF STRETCHED SERIES.
C
220 IF(CMAX1 .LT.CMAX2) GO TO 230 

CMAX=CMAX1 
ST=ST1 
ML=ML1 
ID=ID1

C
WRITE(6,*)
WRITE(6/)’CROSS<:ORRELATTON FUNCTION OF STRETCHED

* SERIES’
READ*,CRSTRETCH 
OPEN(l 2,FILE=CRSTRETCH)

C
WRITE(12/,(F10.3),) (YIPldU^M L)
IF(XLAGl.GT.O.O) GO TO 240 
GO TO 260 

230 CMAX=CMAX2 
ST=ST2 
ML=ML2 
ID=ID2
WRITE(12,,(F10.3)’) (YIP2(I),I=1/ML)

240 IF(XLAG2.GT.0.0) GO TO 250 
GO TO 260

C
C THE FINAL RESULT SUGGESTS THAT THE SHORT SERIES IS 
C STRETCHED.
C PLOT THE CORRELATION RESULT.
C
250 ID=FLO AT (ID) /  ST+0.5

WRITE(6,318) ST,CMAX,ID 
IDEND=FLOAT(ID)+(FLOAT(LS)/ST)

C
GO TO 280
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C THE FINAL RESULT SUGGESTS THAT THE LONG SERIES IS 
C STRETCHED.
C
260 WRITE (6,319) ST,CMAX,ID

IDEND=FLOAT(ID)+(FLOAT(LS)*ST)
C
280 CONTINUE

REWIND 2
REWIND 3

290 CONTINUE
C
C FORMATS
C
298 * FORMAT® A10)
299 FORMAT(1H1,8A10,//)
300 FORMAT(3X,Al 0)
302 FORMAT(Fl 0.3)
303 FORMAT(3X,'LS=',I5,3X,'LL=',I5,3X,'IDER=',I2,3X,TORG=',I2,

* 3X,'SMAX=',F5.1,/,3X,'DEPTH OF SHORT SERIES =',
* F6.i; FEET',/3X,'DEPTH OF LONG SERIES =',F6.1/ F E E T , / / )

304 FORMAT(l HO,1 OX/INPUT DATA',//,10X,'SHORT SERIES LONG
* SERIES',/)

305 FORMAT (I5,2F10.3)
306 FORMAT(I5,10X,F10.3)
307 FORMAT(//,8X,’DERIVATIVED DATA',//,10X,'SHORT SERIES

st- LONG SERIES’,/)
308 FORMAT!/ /,30X,'FOURIER TRANSFORM',/ /,15X,'SERIES

* l',35X,'SERIES 2',//,10X,'REAL',3X,'IMAGINARY',2X,'POWER
St- SPECTRUM’,7X,'REAL',3X,IMAGINARY',2X,'POWER
st- SPECTRUM’,/)

309 FORMAT®,3F10.3,10X,3F10.3)
310 FORMAT!//,10X,'INTERPOLATED POWER SPECTRUM ! START

* FROM 10TH OF ORIGINAL )' ,/ / ,10X/SHORT SERIES LONG
Sf- SERIES')

311 FORMAT!///' STRETCH FACTOR FOUND FROM CORREI A HON
St- OF POWER SPECTRA')
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312 FORMAT(10X,I5,F15.3,22X,I5,F15.3)
313 FORMAT!//,20X/NORMALIZEDCORRELAHON COEFFICIENTS’, / ,

* 10X,'( ASSUME LONG SERIES IS STRETCHED )',10X,
* ’( ASSUME SHORT SERIES IS STRETCHED )’,//,8 X ,’LAG
* NUMBER’, 5X,’VALUE OF COEFFICIENT’,7X,'LAG NUMBER'^X,
* ’VALUE OF COEFFICIENT’,/)

314 FORMAT!/// FIRST CHOICE - SHORT SERIES I STRETCHED’,F6.2,
* ’TIMES’)

315 FORMAT!/// FIRST CHOICE - LONG SERIES IS STRETCHED’,F6.2,
* ’ TIMES')

316 FORMAT!// SECOND CHOICE - SHORT SERIES IS
* STRETCHED',F6.2,’ TIMES')

317 FORMAT!// SECOND CHOICE - LONG SERIES IS
* STRETCHED',F6.2,’ TIMES')

318. FO R M AT!//// FINAL RESULT SUGGESTS THAT SHORT SERIES
* IS STRETCHED’, F5.2/ TIMES',/// MAXIMUM CORRELAHON
* IS',F5.3,' AT A LAG OF',15)

319 FO R M AT!//// FINAL RESULT SUGGEST THAT LONG SERIES IS
* STRETCHED’,F5.2,' TIMES',/// MAXIMUM CORRELAHON
* IS’,F5.3/ AT A LAG OF,13)

RETURN
END

C
C SUBROUTINE MEAN
C
C TO CALCULATE THE MEAN 
C

SUBROUTINE MEAN (A,N)
C

DIMENSION A(l)
TOT=0.0 
DO 101=1, N  

10 TOT=TOT+A(I)
AME AN=TOT /  FLO AT(N)
DO 201=1, N  

20 A(I)=A(I)-AMEAN 
RETURN
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END
C
C
C SUBROUTINE MAX
C
C TO FIND THE MAXIMUM CORRELATION COEFFICIENT OF IHE 
C CROSS-CORRELATION.
C
C
C

SUBROUTINE MAX (A/M/N /ID,AMAX)
C
C FIND THE MAXIMUM (AMAX) AND ITS POSITION (ID)
C

, DIMENSION A(l)
AMAX=0.0 

DO 1 I=M,N
IF(A(I).GT.AMAX) GO TO 2 
GO TO 1 

2 AMAX=A(I)
ID=I

1 CONTINUE 
RETURN 
END

C
C SUBROUTINE DERIVAT
C
C TO REPLACE THE DATA BY THEIR FIRST DERIVATIVES.
C
C

SUBROUTINE DERIVAT (A,N)
C

DIMENSION A(l)
N=N-1 
DO 101=1,N 

10 A(I)=A(I+1)-A(I)
RETURN
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END
C
C SUBROUTINE INTPOL3
C

SUBROUTINE INTPOL3 (X,RLOGl,RLOG2/YIPl,YIP2JSTART/
* JLAST,NLAST,DELT)

C
C INTEPOLATE EQUALLY SPACED SAMPLES USING LAGRANGE* 
C 3RD DEGREE POLYNOMAL.
C
C
C

DIMENSION X(l)/RLOG(l)/RLOG2(l)/YTP(l),YIP2(l),
NSEQ=1 

, DO 1 J=JSTART,JLAST
2 TXIP=FLO AT (N SEQ-1 )*DELT+1 

IF(X(J).LE.TXIP.AND.X(J+1).GE.TXIP) GOTO 3 
GOTO 1

3 A1=X(J-1)-X(J)
A2=X(J-1 )-X(J+l)
A3=X(J-l)-X(J+2)
A4=-A1
A5=X(J)-X(J+1)
A6=X(J)-X(J+2)
A7=-A2
A8=-A5
A9=X(J+1 )-X(J+2)
A10=-A3
All=-A6
A12=-A9
C l=1.0/ (A1*A2*A3)
C2=1.0/(A4*A55tA6)
C3=1.0/(A7’frA8*A9)
C4=1.0/(A10*A1UA12)
B1=TXIP-X(J-1)
B2=TXIP-X(J)
B3=TXDP-X(J+1)
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B4=TXIP-X(J+2)
P1=B2*B3*B4
P2=B1*B3*B4
P3=B1*B2*B4
P4=B1*B2*B3
YIP1 (NSEQ)=(C1 *P1 *RLOGl (J-l ))+(C2*P2*RLOGl(J))+

* (C3*P3*RLOGl(J+l))+(C4*P4*RLOGl(J+2)) 
YIP2(NSEQ)=(Cl*Pl*RLOG2(J-l))+(C2*P2*RLOG2(J))+

* (C3*P3*RLOG2(J+l))+(C4*P4*RLOG2(J+2))
IF (YIP1 (NSEQ).LT.O.) YIP1(NSEQ)=0.0
IF (YIP2(NSEQ).LT.O.) YEP2(NSEQ)=0.0 
NSEQ=NSEQ+1 
GO TO 2 

1 CONTINUE 
, NLAST=NSEQ-1 

RETURN 
END

C
C SUBROUTINE CROSS1
C
C NORMALIZED CROSS-CORRELATION WITH A VARIABLE 
C WINDOW SIZE.
C
C

SUBROUTINE CROSS1 (A,B,C,L,ML)
C

DIMENSION A(1),B(I)/C(1)
ATOT=0.0
BTOT=0.0
ASQ=0.0
BSQ=0.0
DO 1 I=1,L
ATOT=ATOT+A(I)
BTOT=BTOT+B(I)
ASQ=ASQ+A(I)**2 

1 BSQ=BSQ+B(I)**2 
DO 2 J=1,ML
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AB=0.0 
N=L-J+1 
DO 3 K=1,N 

3 AB=AB+(A(K+J-1)*B(K))
CNUM=AB-(ATOT*BTOT/FLOAT(N)) 
CDEN=SQRT((ASQ-(ATOT**2/FLOAT(N)))*

* (BSQ-(BTOT**2/FLOAT(N))))
IF(CDEN.EQ.O.O) CDEN=100000000.
C(J)=CNUM/CDEN
ATOT=ATOT-A(J)
BTOT=BTOT-B(L-J+l)
ASQ=ASQ-A(J)**2 
BSQ=BSQ-B(L-J+1)**2 

2 CONTINUE
, RETURN 

END
C
C
C SUBROUTINE CROSS2
C
C NORMALIZED CROSS-CORRELATION WITH A FIXED WINDOW 
C SIZE.
c 
c

SUBROUTINE CROSS2 (A^QLLI^M L)
C
C

DIMENSION A(1),B(1),C(1)
ATOT=0.0
BTOT=0.0
ASQ=0.0
BSQ=0.0
DO 11=1,LI
ATOT=ATOT+A(I)
BTOT=BTOT+B(I)
ASQ=ASQ+A(I)**2 

1 BSQ=BSQ+B(I)**2
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ML=L2-L1+1 
DO 2 J=1,ML 
AB=0.0 
DO 3 K=1,L1 

3 AB=AB+(A(K)*B(K+J-1))
CNUM=AB-(ATOT*BTOT/FLOAT(Ll))
CDEN=SQRT((ASQ-(ATOT‘*2/FLOAT(Ll)))*

* (BSQ-(BTOT**2/FLOAT(Ll))))
IF(CDEN.EQ.0.0) CDEN=100000000.
C(J)=CNUM/CDEN
BTOT=BTOT-B(J)+B(Ll+J)
BSQ=BSQ-B(J)**2+B(L1+J)*»2

2 CONTINUE 
RETURN 
END

A

c 
c
C SUBROUTINE SCAN
C
C SCAN CORRELATION COEFFICIENTS TO DETERMINE SECOND BEST 
C STRETCH FACTOR.
C
C

SUBROUTINE SCAN (A,ID,LAGMAX)
C
c

DIMENSION A(l)
ID1=ID+1
LMAX=LAGMAX-1
IF (ID1.GE.LAGMAX) GO TO 3
DO 1 I=ID1,LMAX
IF ((A(I+1)-A(I)).LT.0.0) GO TO 2
GO TO 4
2A(I)=-1.0
IF(I.EQ.LMAX) A(LAGMAX)=-1.0 

1 CONTINUE
3 A(ID1)=-1.0
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4 LAST=ID-2
IF (LAST.LT.l) GO TO 7 
DO 5 J=1,LAST 
K=ID-J
IF((A(K-1)-A(K)).LT.0.0) GO TO 6 
GO TO 8

6 A(K)=-1.0
IF (K.EQ.2) A(l)=-1.0

5 CONTINUE
7 A(ID-1)=-1.0
8 A(ID)=0.0 

RETURN 
END

C
C

*

C SUBROUTINE STXCOl
C
C STRETCH THE SHORT SERIES BY FFT INTERPOLATION METHOD 
C AND CROSS-CORRELATE WITH THE LONG SERIES 
C FIND THE MAXIMUM CORRELATION COEFFICIENT 
C 
C

SUBROUTINE STXCOl
* (RLOG1 ,RLOG2,CLOGl ,W ORK,XCOR,LS,LL,ST/MLl,
* ID1 ,CM AX1 ,IDER,IORG)

C
DIMENSION RLOG 1(1 ),RLOG2(l ),CLOG 1 (1),WORK(l ),XCOR(l) 
COMPLEX CLOG1 
REWIND 2 
REWIND 3

C
C UNITS 2 CONTIANS THE ORIGINAL DATA
C UNIT 3 CONTAINS THE DERIVATIVE DATA
C

READ(2,302) (RLOGl(I),I=l,LS)
READ(2,302) (RLOG2(I),I=l,LL)
IF (IDER.EQ.O.OR.IORG.NE.O.) GO TO 1
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READ(3,302) (RLOG 1(1),1=1,LS)
READ(3,302) (RLOG2(I),I=l,LL)

1 M=FLOAT(LS)*ST+0.5
CALL STRETCH (RLOGl,CLOGl,WORK,LS,M)
CALL CROSS2 (RLOG 1 ,RLOG2/XCOR,M,LL/MLl)
CALL MAX (XCOR, 1 ,ML1 ,ID 1 ,CMAX1)

302 FORMAT(F10.3)
RETURN
END

C
C
C SUBROUTINE STXC02
C
C STRETCH THE LONG SERIES BY FFT INTERPOLATION METHOD 
C AND CROSS-CORRELATE WITH THE SHORT SERIES 
C FIND THE MAXIMUM CORRELATION COEFFICIENT.
C
C

SUBROUTINE STXC02 
* (RLOGl,RLOG2,CLOG2,WORK/XCOR/LS,LL,ST,ML2/
541 ID2,CMAX2,IDER,IORG)

C
C

DIMENSION RLOG1 (l),RLOG2(l),CLOG2(l),WORK(l),XCOR(l) 
COMPLEX CLOG2 
REWIND 2 
REWIND 3

C
C UNIT 2 CONTAINS THE ORIGINAL DATA 
C UNIT 3 CONTAINS THE DERIVATIVE DATA.
C

READ(2,302) (RLOG1 (I),I=1,LS)
READ(2,302) (RLOG2(I),I=l,LL)
IF (IDER.EQ.O.OR.IORG.NE.O.) GO TO 1

C
READ(3,302) (RLOG 1(1),1=1,LS)
READ(3,302) (RLOG2(I),I=l,LL)
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1 M=FLOAT(LL)*ST+0.5
CALL STRETCH (RLOG2,CLOG2/WORK/LL,M)
CALL CROSS2 (RLOGl,RLOG2,XCOR/LS,M,ML2)
CALL MAX (XCOR,l/ML2,ID2,CMAX2)

302 FORM AT(F10.3)
RETURN
END

C
C
C SUBROUTINE STRETCH
C
C INTERPOLATE TIME SERIES DATA WITH N  VALUES TO A SERIES 
C WITH M VALUES IN THE FREQUENCY DOMAIN.
C
c

j SUBROUTINE STRETCH (RA,A,WORK,N,M)
C
c

DIMENSION WORK(l)/RA(l)/A(l)
COMPLEX A 
DO 51=1 ,N 

5 A(I)=CMPLX(RA(I)/0.0)
CALL FOURT (A,N,l,-l,l,WORK)
IF(N.EQ.M) GO TO 50

C
C SEARCH FOR THE NYQUIST 
C

K=FLOAT(N)/2.+1.5
MN=M-N
KZ=K+MN-1

C
C TRANSFER THE CONJUGATE PARTS 
C

DO 10 I=K,N 
10 A(M-I+K)=A(N-I+K)
C
C CHECK IF INPUT DATA TOTAL IS EVEN OR ODD
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C
IF((N/ 2*2).EQ.N) GO TO 20 
GO TO 30

C
C DIVIDE THE AMPLITUDE OF NYQUIST FREQUENCY BY 2 
C FOR THE CASE OF EVEN N.
C
20 A(K)=a(k)/2

A(K+MN)=a(k)/2
K=K+1
IF(M.EQ.(N+1)) GO TO 50 

30 CONTINUE 
C
C ADD (M-N)ZEROS FOR ODD CASE ,(M-N-1) FOR EVEN CASE 
C .

DO 40 I=K,KZ 
40 A(I)=0.0
C
C INVERSE F.T.
C
50 CALL FOURT (A,M,l,l,l,WORK)
C
C NORMALIZATION - DIVIDE BY INPUT SIGNAL LENGTH (N)
C

DO 601=1 ,M 
A (I)=A (I) /  FLOAT (N)
RA(I)=REAL(A(I))

60 CONTINUE 
RETURN 
END

C
C
C SUBROUTINE FOURT
C
C
C THE COOLEY-TUKEY FAST FOURIER TRANSFORM IN FORTRAN IV 
C TRANSFORM(K1 ,K2,...)=SUM(DATA(J1J2,...)*EXP(ISIGN*2*PI*SQR(-

A ppend ix  C: Program P C A X C O R



271

C 1)*((J1-1)*(K1-1)/NN(1)+(J2-1)*(K2-1)/NN(2)+...))), SUMMED FOR ALL 
C Jl, K1 BETWEEN 1 AND NN(1), J2, K2 BETWEEN 1 AND NN(2), ETC.
C THERE IS NO LIMIT TO THE NUMBER OF SUBSCRIPTS. DATA IS A 
C MULTIDIMENSIONAL COMPLEX ARRAY WHOSE REAL AND 
C IMAGINARY PARTS ARE ADJACENT IN STORAGE, SUCH AS 
C FORTRAN IV PLACES THEM IF ALL IMAGINARY PARTS ARE ZERO 
C (DATA ARE DISGUISED REAL), SET IFORM TO ZERO TO CUT THE 
C RUNNING TIME BY UP TO FORTY PERCENT. OTHERWISE, IFORM = 
C +1. THE LENGTHS OF ALL DIMENSIONS ARE STORED IN ARRAY 
C NN, OF LENGTH NDIM. THEY MAY BE ANY POSITIVE INTEGERS,
C THO THE PROGRAM RUNS FASTER ON COMPOSITE INTEGERS,
C AND ESPECIALLY FAST ON NUMBERS RICH IN FACTORS OF TWO 
C ISIGN IS +1 OR -1. IF A -1 TRANSFORM IS FOLLOWED BY A +1 ONE 
C (OR A +1 BY A -1) THE ORIGINAL DATA REAPPEAR, MULTIPLIED BY 
C HTOT (=NN(1)* NN(2)*...).
C TRANSFORM VALUES ARE ALWAYS COMPLEX, AND ARE 
C RETURNED IN ARRAY DATA, REPLACING THE INPUT. IN 
C ADDITION, IF ALL DIMENSIONS ARE NOT POWERS OF TWO,
C ARRAY WORK MUST BE SUPPLIED, COMPLEX OF LENGTH EQUAL 
C TO THE LARGEST NON 2**K DIMENSION. OTHERWISE, REPLACE 
C WORK BY ZERO IN THE CALLING SEQUENCE.
C NORMAL FORTRAN DATA ORDERING IS EXPECTED, FIRST 
C SUBSCRIPT VARYING FASTEST. ALL SUBSCRIPTS BEGIN AT ONE.
C RUNNING TIME IS MUCH SHORTER THAN THE NAIVE NTOT**2,
C BEING GIVEN BY THE FOLLOWING FORMULA. DECOMPOSE NTOT 
C INTO 2**K2 * 3**K3 * 5**K5 * .... LET SUM2 = 2*K2, SUMF = 3*K3 +
C 5*K5 + .. AND NF = K3 + K5 + .... THE TIME TAKEN BY A MULTI- 
C NTOT*(Tl +T2*SUM2+T3*SUMF+T4*NF). ON THE CDC (FLOATING 
C POINT ADD TIME OF SIX MICROSECONDS), T -  3000 
C +NTOT*(500+43*SUM2+68*SUMF+320*NF) MICROSECONDS ON 
C COMPLEX DATA. IN ADDITION, TILE ACCURACY IS GREATLY 
C IMPROVED, AS THE RMS RELATIVE ERROR IS BOUNDED BY 3*2**(- 
C B)*SUM(FACTOR(J)**l .5), WHERE B IS THE NUMBER OF BITS IN 
C THE FLOATING POINT FRACTION AND FACTOR(J) ARE THE PRIME 
C FACTORS OF NTOTC PROGRAM BY NORMAN BRENNER FROM 
C THE BASIC PROGRAM BY CHARLES RADER. RALPH ALTER 
C SUGGESTED THE IDEA FOR THE DIGIT REVERSAL. MIT LINCOLN
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C LABORATORY, AUGUST 1967. THIS IS THE FASTEST AND MOST 
C VERSATILE VERSION OF THE FFT KNOWN TO THE AUTHOR 
C SHORTER PROGRAMS FOUR1 AND FOUR2 RESTRICT DIMENSION 
C LENGTHS TO POWERS OF TWO. SEE- IEEE AUDIO TRANSACTIONS 
C (JUNE 1967), SPECIAL ISSUE ON FFT.
C THE DISCRETE FOURIER TRANSFORM PLACES THREE 
C RESTRICTIONS UPON THE DATA
C 1. THE NUMBER OF INPUT DATA AND THE NUMBER OF 
C TRANSFORM VALUES MUST BE THE SAME.
C 2. BOTH THE INPUT DATA AND THE TRANSFORM VALUES MUST 
C REPRESENT EQUISPACED POINTS IN THEIR RESPECTIVE DOMAINS 
C FREQUENCY. CALLING THESE SPACINGS DELTAT AND DELTAF, IT 
C MUST BE TRUE THAT DELTAF=2*PI/(NN(I)*DELTAT). OF COURSE 
C, DELTAT NEED NOT BE THE SAME FOR EVERY DIMENSION.
C 3.,CONCEPTUALLY AT LEAST, THE INPUT DATA AND THE 
C TRANSFORM OUTPUT REPRESENT SINGLE CYCLES OF PERIODIC 
C FUNCTIONS.
C

SUBROUTINE FOURT(DATA,NN,NDIM,ISIGN,IFORM/WORK)
C

DIMENSION DATA(l),NN(l),IFACT(32),WORK(l)
TWOPI=6.283185307
IF(NDIM-1)920,1,1

1 NTOT=2
DO 2 IDIM=1,NDIM 
IF(NN(IDIM))920,920,2

2 NTOT=NTOT*NN (IDIM)
C
C MAIN LOOP FOR EACH DIMENSION 
C

NP1=2
DO 910 IDIM=1,NDIM 
N=NN(IDIM)
NP2=NP1*N
IF(N-1)920,900,5

C
C FACTOR N

A ppend ix  C: Program P C A X C O R



273

C t
5 M=N

NTWO=NPl
IF=1
IDIV=2

10 IQUOT=M/IDIV 
IREM=M-IDIV*IQUOT 
IF(IQUOT-IDIV)50,11,11

11 IFdREM)20,12,20
12 NT W O =NT W O +NT W O 

M=IQUOT
GO TO 10 

20 IDIV=3
30 IQUOT=M/IDIV

, IREM=M-IDIV*IQUOT 
IF(IQUOT-IDIV)60,31,31

31 IF(IREM)40,32,40
32 IFACT(IF)=IDIV 

IF=IF+1 
M=IQUOT
GO TO 30 

40 IDIV=IDIV+2 
GO TO 30

50 IF(IREM)60,51,60
51 NT W O =NT W O+NT W O 

GO TO 70
60 IFACT(IF)=M 
C
C SEPARATE FOUR CASES :
C 1. COMPLEX TRANSFORM OR REAL TRANSFORM FOR THE 4TH, 
C 5TH,ETC.
C DIMENSIONS:
C 2. REAL TRANSFORM FOR THE 2ND OR 3RD DIMENSION 
C METHOD TRANSFORM HALF THE DATA, SUPPLYING THE BY 
C CONJUGATE SYMMETRY.
C 3. REAL TRANSFORM FOR THE 1ST DIMENSION, N ODD.
C METHOD TRANSFORM HALF THE DATA AT EACH STAGE,
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C CSUPPLYING THE OTHER HALF BY CONJUGATE SYMMETRY. 
C 4. REAL TRANSFORM FOR THE 1ST DIMENSION, N  EVEN.
C METHOD TRANSFORM A COMPLEX ARRAY OF LENGTH N /2  
C WHOSE REAL PARTS ARE THE EVEN NUMBERED REAL
C VALUES AND WHOSE IMAGINARY PARTS ARE THE ODD
C NUMBERED REAL VALUES. SEPARATE AND SUPPLY THE
C SECOND HALF BY CONJUGATE SYMMETRY.
C
70 NON2=NPl*(NP2/NTWO)

ICASE=1
IF(IDIM-4)71,90,90

71 IF(IFORM)72,72,90
72 ICASE=2

IF (IDIM-1 >73,73,90
73 , ICASE=3

IF(NTWO-NP1)90,90,74
74 ICASE=4 

NTWO=NTWO/2 
N = N /2  
NP2=NP2/2 
NTOT=NTOT/2 
1=3
DO 80 J=2,NTOT 
DATA(J)=DATA(I)

80 1=1+2
90 I1RNG=NP1

IF(ICASE-2)100,95,100 
95 IlRNG=NP0*(l+NPREV/2)
C
C SHUFFLE ON THE FACTORS OF TWO IN N. AS THE SHUFFLING 
C CAN BE DONE BY SIMPLE INTERCHANGE, NO WORKING ARRAY 
C IS NEEDED.
C
100 IF(NTWO-NP1)600,600,110
110 NP2HF=NP2/2

1=1
DO 150 I2=l,NP2,NON2
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IF(J-I2)120,130,130 
120 IlMAX=I2+NON2-2 

DO 125II =12,11MAX,2 
DO 125 I3=Il,NTOT,NP2 
J3=J+I3-I2 
TEMPR=DATA(I3)
TEMPI=DATA(I3+1)
DATA(I3)=DATA(J3)
DATA(I3+1)=DATA(J3+1)
DATA(J3)=TEMPR 

125 DATA(J3+1)=TEMPI
130 M=NP2HF
140 IF(J-M)150,150,145
145 J=J-M

, M=M/2
IF(M-NON2)150,140,140 

150 J=J+M
C
C MAIN LOOP FOR FACTORS OF TWO. PERFORM FOURIER
C TRANSFORMS OF LENGTH FOUR, WITH ONE OF LENGTH TWO
C IF NEEDED. THE TWIDDLE FACTOR
C W=EXP(ISIGN*2*PI*SQRT(-1 )*M/ (4*MMAX)).'CHECK FOR
C W=ISIGN*SQRT (-1)
C AND REPEAT FOR W=ISIGN*SQRT(-l)»CONJUGATE(W).
C

NON2T=NON2+NON2 
IPAR=NTWO/NPl 

310 IF(IPAR-2)350,330,320
320 IPAR=IPAR/4

GO TO 310 
330 DO 34011=1,I1RNG,2

DO 340 J3=Il,NON2,NPl 
DO 340 K1 =J3,NTOT,NON2T 
K2=Kl+NON2 
TEMPR=DATA(K2)
TEMPI=D ATA(K2+1)
DATA(K2)=DATA(K1)-TEMPR
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D AT A(K2+1)=D AT A(K1 +1 )-TEMPI 
DATA(K1)=DATA(K1)+TEMPR 

340 D AT A(K1+1 )=D ATA(K1 +1 )+TEMPI 
350 MMAX=NON2 
360 IF(MMAX-NP2HF)370,600,600 
370 LM AX=M AXO (N ON 2T,MM AX /  2) 

IF(MMAX-NON2)405,380,380 
380 THETA=-TWOPI*FLOAT(NON2) /  FLOAT (4*MM AX) 

IF(ISIGN)400,390,390 
390 THETA=-THETA 
400 WR=COS (THET A)

WI=SIN (THETA)
WSTPR=-2.*WI*WI 
WSTPI=2.*WR*WI 

405 , DO 570 L=NON2,LMAX,NON2T 
M=L
IF(MMAX-NON2)420,420,410 

410 W2R=WR*WR-WI*WI 
W2I=2.*WR*WI 
W3R=W2R*WR-W2I*WI 
W3I=W2R*WI+W2I*WR 

420 DO 530 I1=1,I1RNG,2
DO 530 J3=Il,NON2,NPl 
KMEM=J3+IP AR*M 
IF(MMAX-NON2)430,430,440 

430 KMIN=J3 
440 KDIF=IPAR*MMAX 
450 KSTEP=4*KDIF

DO 520 Kl=KMIN,NTOT,KSTEP
K2=K1+KDIF
K3=K2+KDIF
K4=K3+KDIF
IF(MM AX-N ON2)460,460,480 

460 U1R=DATA(K1)+DATA(K2)
U1I=DATA(K1+1 )+D ATA(K2+1)
U2R=DATA(K3)+DATA(K4)
U2I=DATA(K3+1)+DATA(K4+1)
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U3R=DATA(K1)-DATA(K2) 
U3I=DATA(K1+1)-DATA(BC2+1) 
IF(ISIGN)470,475,475 

470 U4R=DATA(K3+1)-DATA(K4+1)
U4I=DATA(K4)-DATA(K3)
GO TO 510 

475 U4R=DATA(K4+1)-DATA(K3+1)
U4I=D AT A(K3)-DAT A(K4)
GO TO 510

480 T2R=W2R*DATA(K2)-W2I*DATA(K2+1) 
T2I=W2R*DATA(K2+1 )+W2I*DATA(K2) 
T3R=WR*DATA(K3)-WI*DATA(K3+1) 
T3I=WR*DATA(K3+1)+WI*DATA(K3) 
T4R=W3R*DATA(K4)-W3I*DATA(K4+1) 
T4I=W3R*DATA(K4+1)+W3I*DATA(K4)

*

U1R=DATA(K1)+T2R 
U1 I=DAT A(K1+1 )+T2I 
U2R=T3R+T4R 
U2I=T3I+T4I 
U3R=DATA(K1)-T2R 
U3I=DATA(K1+1)-T2I 
IF(ISIGN)490/500/500 

490 U4R=T3I-T4I 
U4I=T4R-T3R 
GO TO 510 

500 U4R=T4I-T3I 
U4I=T3R-T4R 

510 D ATA(K1 )=U1 R+U2R 
DATA(K1+1)=U1I+U2I 
DATA(K2)=U3R+U4R 
DATA(K2+1 )=U3I+U4I 
DATA(K3)=U1 R-U2R 
DATA(K3+1)=U1I-U2I 
DATA(K4)=U3R-U4R 

520 DATA(K4+1)=U3I-U4I 
KM IN=4*(KMIN-J3)+J3 
KDIF=KSTEP
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IF(KDIF-NP2)450,530,530 
530 CONTINUE 

M=MMAX-M 
IF(ISIGN)540,550,550 

540 TEMPR=WR 
WR=-WI 
WI=~TEMPR 
GO TO 560 

550 TEMPR=WR 
WR=WI 
WI=TEMPR 

560 IF(M-LMAX)565/565,410
565 TEMPR=WR

WR=WR*W STPR-WI*W STPI+WR 
570 WI=WI*WSTPR+TEMPR*WSTPI+WI 

\  IPAR=3-IPAR
MMAX=MMAX+MMAX 
GO TO 360

C
C MAIN LOOP FOR FACTORS NOT EQUAL TO TWO. APPLY THE 
C TWIDDLE FACTOR
C W=EXP(ISIGN*2*PFSQRT(-1 )*02-l)*(J1-J2) /  (NP2*IFP1)), THEN
C PERFORM A FOURIER TRANSFORM OF LENGTH IFACTOF),
C MAKING USE OF CONJUGATE SYMMETRIES.
C
600 IF(NTWO-NP2)605,700,700
605 IFPl=NON2 

IF=1
NPlHF=NPl/2

610 IFP2=IFP1 /IFACT(IF)
J1RNG=NP2 
IF(ICASE-3)612,611,612

611 JlRNG=(NP2+IFPl)/2 
J2STP=NP2/IFACT(IF)
JlRG2=(J2STP+IFP2)/2

612 J2MIN=1+IFP2 
IF(IFP1-NP2)615,640,640
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615 DO 635 J2=J2MIN,IFP1,IFP2
THET A=-TW OPI*FLO AT (J2-1) /FLOAT (NP2) 
IF(ISIGN)625/620,620 

620 THETA=-THETA 
625 SINTH=SIN(THETA/2.)

WSTPR=-2.*SINTH*SINTH 
WSTPI=SIN (THETA)
WR=WSTPR+1.
WI=WSTPI
J1MIN=J2+IFP1
DO 635 J1=J1MIN,J1RNG,IFP1
IlMAX=Jl+IlRNG-2
DO 630 I1=J1,I1MAX,2
DO 630 13=11,NTOT,NP2
J3MAX=I3+IFP2-NP1
DO 630 J3=I3,J3MAX,NP1
TEMPR=DATA(J3)
DATA(J3)=DATA(J3)*WR-DATA(J3+1)*WI 

630 DATA(J3+1)=TEMPR*WI+DATA(J3+1)*WR 
TEMPR=WR
WR=WR*WSTPR-WI*WSTPI+WR 

635 WI=TEMPR*WSTPI+WI*WSTPR+WI 
640 THETA=-TWOPI/FLOAT(IFACT(IF)) 

IF(ISIGN)650,645,645 
645 THETA=-THETA 
650 SINTH=SIN (THETA/2.)

WSTPR=-2.*SINTH*SINTH 
WSTPI=SIN (THETA)
KSTEP=2*N /  IF ACT (IF) 
KRANG=KSTEP*(IFACT(IF) /  2)+l 
DO 698 I1=1,I1RNG,2 
DO 698 13=11,NTOT,NP2 
DO 690 KMIN=1,KRANG,KSTEP 
J1MAX=I3+J1 RNG-IFP1 
DO 680 J1=I3,J1MAX,IFP1 
J3MAX=J1+IFP2-NP1 
DO 680 J3=J1,J3MAX,NP1
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J2MAX=J3+IFP1-IFP2
K=KMIN+(J3-J1+(J1-I3)/IFACT(IF))/NP1HF 
IF(KMIN-1)655,655,665 

655 SUMR=0.
SUMI=0.
DO 660 J2=J3,J2MAX,IFP2 
SUMR=SUMR+D AT A (J 2)

660 SUMI=SUMI+D ATA(J2+1) 
WORK(K)=SUMR 
WORK(K+l )=SUMI 
GO TO 680 

665 KCONJ=K+2*(N-KMIN+1)
J2=J2MAX
SUMR=DATA(J2)

- SUMI=DATA(J2+1)
OLDSR=0.
OLDSI=0.
J2=J2-IFP2 

670 TEMPR=SUMR 
TEMPI=SUMI
SUMR=TWOWR*SUMR-OLDSR+DATA(J2) 
SUMI=TWOWR*SUMI-OLDSI+DATA(J2+l) 
OLDSR=TEMPR 
OLDSI=TEMPI 
J2=J2-IFP2 
IF(J2-J3)675/675/670 

675 TEMPR=WR*SUMR-OLDSR+DATA(J2) 
TEMPI=WI*SUMI 
WORK(K)=TEMPR-TEMPI 
WORK(KCONJ)=TEMPR+TEMPI 
TEMPR=WR*SUMI-OLDSI+DATA(J2+l) 
TEMPI=WI*SUMR 
WORK(K+l )=TEMPR+TEMPI 
W ORK (KCONJ+1)=TEMPR-TEMPI 

680 CONTINUE
IF(KMIN-1)685,685,686 

685 WR=WSTPR+1.
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WI=WSTPI 
GO TO 690 

686 TEMPR=WR
WR=WR*WSTPR-WI*WSTPI+WR
WI=TEMPR*WSTPI+WI*WSTPR+WI

690 TW OW R=W R+W R 
IF(ICASE-3)692,691,692

691 IF(IFP1-NP2)695,692,692
692 K=1 

I2MAX=I3+NP2-NP1 
DO 693 I2=I3,I2MAX,NP1 
DATA(I2)=WORK(K)
DATA(I2+l)=WORK(K+l)

693 K=K+2
. GO TO 698

C
C COMPLETE A REAL TRANSFORM IN THE 1ST DIMENSION, N
C ODD, BY CONJUGATE SYMMETRIES AT EACH STAGE.
C
695 J 3M AX=I3+IFP2-NP1 

DO 697 J3=I3,J3MAX,NP1 
J2M AX=J 3+NP2-J 2STP 
DO 697 J2=J3,J2MAX,J2STP 
J1M AX=J2+J1RG2-IFP2 
J1CNJ=J3+J2MAX+J2STP-J2 
DO 697 J1 =J2,J1MAX,IFP2 
K=1+J1-I3
DATA(Jl)=WORK(K)
DATA(Jl+l)=WORK(K+l)
IF(J1-J2)697,697,696

696 DATA(JlCNJ)=WORK(K)
DAT A( J1CN J +1)=-WORK(K+1)

697 J1CNJ=J1CNJ-IFP2
698 CONTINUE 

IF=IF+1 
IFP1-IFP2
IF(IFP1-NP1)700,700,610
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C
C COMPLETE A REAL TRANSFORM IN THE 1ST DIMENSION, N
C EVEN, BY CONJUGATE SYMMETRIES.
C
700 GO TO (900,800,900,701),ICASE
701 NHALF=N 

N =N +N
THETA=-TWOPI/FLOAT(N)
IF(ISIGN)703,702,702

702 THETA=-THET A
703 SINTH=SIN (THETA /  2.)

WSTPR=-2.*SINTH*SINTH 
WSTPI=SIN (THETA)
WR=WSTPR+1.

, WI=WSTPI 
IMIN=3
JMIN=2*NH ALF-1 
GO TO 725 

710 J=JMIN
DO 720 I=IMIN,NTOT,NP2
SUMR=(DATA(I)+DATA(J))/2.
SUMI=(DATA(I+l)+DATA(J+l))/2.
DIFR=(DATA(I)-DATA(J)) /2.
DIFI=(DATA(I+l)-DATA(J+l))/2.
TEMPR=WR*SUMI+WI*DIFR 
TEMPI=WI*SUMI-WR*DIFR 
DATA(I)=SUMR+TEMPR 
DATA(I+1)=DIFI+TEMPI 
DATA(J)=SUMR-TEMPR 
DATA(J+1)=-DIFI+TEMPI 

720 J=J+NP2
IMIN=IMIN+2
JMIN=JMIN-2
TEMPR=WR
WR=WR*WSTPR-WI*WSTPI+WR 
WI=TEMPR*WSTPI+WI*WSTPR+WI 

725 IF(IMIN-JMIN)710,730,740
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730 IF(ISIGN)731,740,740
731 DO 735 I=IMIN,NTOT,NP2 
735 DATA(I+1)=-DATA(I+1)
740 NP2=NP2+NP2

NTOT=NTOT+NTOT 
J=NTOT+l 
IMAX=NTOT/2+l 

745 IMIN=IMAX-2*NHALF 
I=IMIN 
GO TO 755 

750 DATA(J)=DATA(I)
DATA(J+1)=-DATA(I+1)

755 1=1+2
J=J-2

, IF(I-IMAX)750,760,760 
760 DATA(J)=DATA(IMIN)-DATA(IMIN+1)

DATA(J+1)=0.
IF(I-J)770,780,780 

765 DATA(J)=DATA(I)
D ATA(J+1 )=D ATA(I+1)

770 1=1-2
J=J-2
IF(I-IMIN)775,775,765 

775 DATA(J)=DATA(IMIN)+DATA(IMIN+1)
DATA(J+1)=0.
IMAX=IMIN 
GO TO 745 

780 DATA(1)=DATA(1)+DATA(2)
DATA(2)=0.
GO TO 900

C
C COMPLETE A REAL TRANSFORM FOR THE 2ND OR 3RD 
C DIMENSION BY CONJUGATE SYMMETRIES.
C
800 IF(I1RNG-NP1)805,900,900
805 DO 860 I3=l,NTOT,NP2 

I2MAX=I3+NP2-NP1
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DO 860 12=13,12MAX,NP1 
IMIN=I2+I1RNG 
IM AX=I2+NP 1-2 
JMAX=2*I3+NP1-IMIN 
IF (12-13)820,820,810 

810 JMAX=JMAX+NP2 
820 IF(IDIM-2)850,850,830
830 J=JMAX+NP0

DO 840 I=IMIN,IMAX,2
DATA(I)=DATA(J)
DATA(I+1)=-DATA(J+1)

840 J=J-2
850 J=JMAX

DO 860 I=IMIN,IMAX,NP0 
, DATA(I)=DATA(J) 

DATA(I+1)=-DATA(J+1)
860 J=J-NP0 
C
C END OF LOOP ON EACH DIMENSION 
C
900 NP0=NP1 

NP1=NP2 
910 NPREV=N 
920 RETURN 

END
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APPENDIX D 

Plotting Functions

Introduction
a

The capabilities of the S system can be expanded by the user, by 

writing functions in the S language as follows.

<- is the assignment operation in S.

line.plot<- function(file/label=,,Example of line.plot")

{

data<-scan(file)

plot(data,type=T)

title(main=label)

}

This example reads a vector of data from a Unix file and draws the 

plot with lines connecting each of the data points. The function may be used 

by issuing the command:
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line.plot("test.data")

or

line.plot("well.FF10","Gamma Ray well FF10")

The following are some functions which are w ritten  in the S 

language to plot the results of program PCAXCOR.

xsection

#Pldt a cross-section given absolute formation depths.

xsection<-function(a = "xsec.in", d = "numoffms", e = 8)

#a=datafile containing the information about the boreholes used in the 

#analysis.

#d=number of the formations of the sequence.

#e=number of columns of the datafile matrix.

#read the data from the datafile, into a matrix called data:

data <- matrix(scan(a, skip = 1), ncol = e, byrow = T)

#structure of matrix is as follows: first two columns are Longitude & 

#Latitude, respectively. 3rd column is data for the first formation, 4th 

#column, is second formation....etc. Last column is the height of the well

h e a d  above sea level (KB).

# So the number of formation is equal to length of one row minus three:
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nof <- len(data[l, ]) - 3 

#And number of wells is equal to the length of a column: 

now <- len(data[, 1])

pal <- data[, 1] # This just sets up a vector of the correct lengths.

pal[l] <-0 # Set the first value to zero

#using Pythagorus theory to calculate positions a long the line of each of the 

#wells:

'  for(i in 2:now) {

xdist <- data[i, 1] - data[i -1,1]

ydist <- data[i, 2] - data[i -1,2] 

x <- (xdist) * (xdist) 

y <- (ydist) * (ydist)

#re-assign each value in the pal vector, (position is cumulative) 

pal[i] <- pal[i - 1] + sqrt(x + y)

)

par(mar = c(9,4.1,4.1,4.1)) 

par(adj = .5)

plot(pal, -data[, d + 2], type = "b", xlim = c(0,5500), ylim = c(
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-14000, 500), xlab = " HORIZONTAL DISTANCE NOT TO SCALE*', 

ylab=

"DEPTH IN FEET", lty = 1, axes = F)

box()

axis(2)

for(i in 3:(d + 1))

lines(pal, -data[, i], lty = 1, col = 1)

* for(i in l:now) 

segments(pal[i], -data[i, 3], pal[i], -data[i, d + 2], lty = 2) 

text(5450, -4300, "Etel Fm", cex = .8) 

text(5450, -5200, "Sheghega Fm", cex = .8) 

text(5450, -6800, "Domran Fm", cex = .8) 

text(5450, -7500, "Ruaga Fm", cex = .8) 

text(5450, -9000, "Heira Fm", cex = .8) 

text(5450, -10200, "Zmam Fm", cex = .8) 

text(5450, -11300, "Socna Fm", cex = .8) 

text(5450, -11750, "Bahi Fm", cex = .8) 

text(5450, -12750, "Gargaf Fm", cex = .8)

A ppend ix  D: P lotting Function



2 8 9

#Plot the names of the wells :

text(13,300, "FF2 ", cex = .8) 

text(414,300, "FF5 ", cex = .8) 

text(1045,300, "FF6 ”, cex = .8) 

text(1705,300, "FF7", cex = .8) 

text(1906,300, ”FF8", cex = .8) 

text(2551,300, "FF9", cex = .8) 

text(2881,300, "FF10", cex = .8) 

text(3656,300, "FFll", cex = .8) 

text(3957,300, "FF12", cex = .8) 

text(4330,300, "FF13", cex = .8) 

text(4760,300, "FF14", cex = .8) 

text(5148,300, "FF15”, cex = .8)

)

xsectioncor function

#Plot the result of the cross-correlation tops of the program PCAXCOR and 

#draw  a cross-section between the studied boreholes.

xsectioncor<-function(a = xseccor, d = numoffms, e = 8)
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#a=datafile containing the information about the boreholes used in the 

#analysis.

#d=number of the formations of the sequence.

#e=number of columns of the datafile matrix.

{

#read the data from the datafile, into a matrix called data:

data <- matrix(scan(a, skip = 1), ncol = e, byrow = T)

#striicture of m atrix is as follows: first two columns are Longitude& 

#Latitude respectively. 3rd coulmn is data for the first formation, 4th 

#column, is second formation....etc. Last column is the height of the well

h e a d  above sea level (KB).

# So the number of formation is equal to length of one row minus three: 

nof <- len(data[l, ]) - 3 

#And number of wells is equal to the length of a column: 

now <- len(data[, 1])

pal <- data[, 1] # This just sets up a vector of the correct lengths.

pal[l] <-0 # Set the first value to zero

#using Pythagorus theory to calculate positions a long the line of each of the 

#wells:

for(i in 2:now) {
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xdist <- data[i, 1] - data[i - 1, 1] 

ydist <- data[i, 2] - data[i - 1, 2] 

x <- (xdist) * (xdist) 

y <- (ydist) * (ydist)

#re-assign each value in the T.pal vector, (position is cumulative) 

pal[i] <- pal[i - 1] + sqrt(x + y) 

par(mar = c(9,4.1,4.1,4.1)) 

par(adj = .5)

plot(pal, -data[, d + 2], type = "b", xlim = c(0,1400), ylim = c(

-10300, 700), xlab = " DISTANCE IN KM", ylab = "DEPTH IN 

FEET",lty = 1, axes = F)

post <- c(seq(0,1400,200))

axis(l, at = post, labels = F)

txt <- c("0", "2", "4", "6", "8", "10", "12", "14")

mtext(txt, at = post, side = 1, line = 1)

axis(2)

box()

for(i in 3:(d + 1))
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lines(pal, -data[, i], lty = 1, col = 1) 

for(i in l:now)

segments(pal[i], -data[i, 3], pal[i], -data[i, d + 2], lty = 2) 

text(1300, -4435, "Etel Fm", cex = .8) 

text(1300, -5825, "Sheghega Fm", cex = .8) 

text(1300, -7076, "Domran Fm", cex = .8) 

text(1300, -7762, "Ruaga Fm", cex = .8)
j

text(1300, -8900, "Heira Fm", cex = .8) 

text(3, 550, "FF7", cex = .8) 

text(215, 550, "FF13", cex = .8) 

text(325, 550, "FF11", cex = .8) 

text(644, 550, "FF12", cex = .8) 

text(1244, 550, "FF10", cex = .8)

}

pws

#Plot the original first principal component, their derivatives, power 

#spectra, the logarithmic scaled power spectra, the interpolated power 

#spectra, the cross-correlation function for stretch and the cross-correlation 

#function for displacement.
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pws<-function(a = "cl", b = ,,c2M/ d = e = ,,c4,,/ f = "cS", g = ”06”, h 

= "c 7")

#a=datafile containing the first principal component of the formation to be 

#correlated and the first principal component of the sequence to be 

#correlated with.

#b=derivative data of the first formation and the long sequence.

#d=the power spectra of the data.

#e=logarithmic scaled power spectra of the data.
*

#f=the interpolated power spectra.

#g=the cross-correlation function of power spectra for stretch.

#h=the cross-correlation function for displacement.

{

a <- readf(a, 1) 

print(length(a)) 

ln l <- len(a) 

b <- readf(b, 1) 

d <- readf(d, 1) 

e <- readf(e, 1)
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f <- readf(f, 1) 

g <- readf(g, 1) 

h <- readf(h, 1)

par(mar = c(5,4.1,4.1,4.1,4.1))

par(mfrow = c(3,4))

#Plot the original data (non-filtered or filtered principal components or 

#original well-log data)

' printC'ENTER THICKNESS OF FORMATION 1”, quote = F)

d l <- read(length = 1, print = F)

printC'ENTER THICKNESS OF FORMATION 2", quote = F) 

d2 <- read(length = 1, print = F) 

dd2 <- (d2 + d2)/2 +1

printC'ENTER DEPTH OF FORMATION 1”) 

dfl <- read(length = 1, print = F) 

printC’ENTER DEPTH OF FORMATION 2") 

dfl <- read(length = 1, print = F) 

d d l <- d l * 2 

dd l <- d d l/2  + 1
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plot(a[l:ddl], -dfl:(-dfl - dl), type = "1", xlab = ylab =

"DEPTH IN FEET", axes = F, ylim = c(-dfl - dd2, -dfl)) 

title(main = "PC-I, SHORT SEQ. (FF13)")

axis(2, col = 1)

axis(3, col = 1)

plot(a[dl:lnl], -df2:(-df2 - d2), type = "1", xlab = "", ylab = "DEPTH IN 

FEET", axes = F)

' title(main = "PC-I, LONG SEQ. (FF11)") 

axis(2, col = 1) 

axis(3, col = 1)

#Plot the derivative data. 

d3 <- len(b) 

d3 < -d3/2

plot(b[1 :d3], -1 :-d3, type = "1", xlab = "", ylab = "SHORT SERIES",axes = 

F)

title(main = "DERIVATIVE DATA") 

axis(2, col = 1) 

axis(3, col = 1) 

dd3 <- d3 * 2
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ddd3 <- dd3/2  + 1

plot(b[d3:dd3], -l:-ddd3, type = "1", xlab = "", ylab = "LONG 

SERIES",axes = F)

title(main = "DERIVATIVE DATA")

axis(2, col = 1)

axis(3, col = 1)

#Plot power spectra.
*

d4 <- len(d) 

d4 <- d4/2

plot(d[l:d4], -l:-d4, type = "1", xlab = "", ylab = "FREQ., SHORT 

SERIES",

axes = F)

title(main = "POWER SP") 

axis(2, col = 1) 

axis(3, col = 1) 

d d 4 < -d 4 * 2  

ddd4 <- dd4/2  +1

plot(d[d4:dd4], -l:-ddd4, type = "1", xlab = ylab = "FREQ., LONG
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SERIES", axes = F) 

title(main = "POWER SP") 

axis(2, col = 1) 

axis(3, col = 1)

#Plot logarithmic frequencies, 

d7 <- len(d) 

d7 <- d7/2  

xx <- min(g[l:d7]) 

yy <- max(g[l:d7]) 

yyl <- yy + (yy/5)

plot(d[l:d7], -g[l:d 7], type = "1", xlab = "", ylab = "LOGIO FREQ., SHORT 

SERIES", axes = F, ylim = c(-yyl, -xx)) 

title(main = "POWER SP") 

axis(2, col = 1) 

axis(3, col = 1) 

dd7 <- d7 * 2 

ddd7 <- dd7/2 +1 

xx <- min(g[l:d7])
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yy <- max(g[l:d7]) 

yyl <- yy + (yy/5)

plot(d[ddd7:dd7], -g[l:d7], type = T ,  xlab = ,,,,/ ylab = "LOGIO FREQ., 

LONG SERIES", axes = F, ylim = c(-yyl, -xx))

title(main = "POWER SP")

axis(2, col = 1)

axis(3, col = 1)

#plot the interpolated frequencies.

d5 <- len(e)

d5 <- d5/2

plot(e[l:d5], -l:-d5, type = "1", xlab = ylab =

"INTERP. FREQ., SHORT SERIES", axes = F)

title(main = "INTERP.POWER SP")

axis(2, col = 1)

axis(3, col = 1)

dd5 <- d5 * 2

ddd5 <- dd5/2  +1

plot(e[d5:dd5], -l:-ddd5, type = "1", xlab = "", ylab = "INTERP. FREQ.,
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LONG SERIES", axes = F) 

title(main = "INTERP.POWER SP") 

axis(2, col = 1) 

axis(3, col = 1)

#Plot cross-correlation function for stretch. 

d6 <- len(f) 

d6 <- d6/2 

dd6 <- d6 * 2 

ddd6 <- dd6/2 +1

plot(f[ddd6:dd6], f[l:d6], type = "1", xlab = ylab =

"LAG FOR STRETCH", axes = F)

post <- c(seq(-30,30,10))

axis(2, at = post, labels = F)

txt <- c("-30", "-20", "-10", "0", "10", "20", "30")

mtext(txt, at = post * -1, side = 2, line = 2)

title(main = "X-COR (STRETCH)")

axis(3, col = 1)

#Plot cross-correlation function for displacement.
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d8 <- len(h)

plot(h[l:d8], -l:-d8, type = ’1”, xlab = ylab = " LAG FOR 

DISPLACEMENT", axes = F) 

title(main = "X-COR (DISPL.)") 

axis(2, col = 1) 

axis(3, col = 1)

}
*

pw sl

#Plot the  orig inal principal com ponent, the derivative  data, the 

in te rp o la ted  power spectra, the cross-correlation function for stretch, and 

#the cross-correlation function of the displacement.

#

pwsl<-function(a = "cl", b = "c2", d = "c3", e = "c4", f = "c5", g = "c6", h 

= "c7")

#

#a=datafile containing the first principal component of the formation to be 

#correlated and the first principal component of the sequence to be 

#correlated with.

#b=derivative data of the first formation and the long sequence.
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#d=the power spectra of the data.

#e=logarithmic scaled power spectra of the data.

#f=the interpolated power spectra.

#g=the cross-correlation function of power spectra for stretch. 

#h=the cross-correlation function for displacement.

#

{
*

a <- readf(a, 1) 

ln l <- len(a) 

print(length(a)) 

b <- readf(b, 1) 

d <- readf(d, 1) 

e <- readf(e, 1) 

f <- readf(f, 1) 

g <- readf(g, 1) 

h  <- readf(h, 1) 

par(mfrow = c(2,4))
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#Plot the original data (non-filtered or filtered principal components or the 

#original well-log variables).

printC'ENTER THICKNESS OF FORMATION 1", quote = F)

d l <- read(length = 1, print = F)

printC'ENTER THICKNESS OF FORMATION 2", quote = F) 

d2 <- read(length = 1, print = F) 

dd2 <- (d2 + d2)/2 + 1 

- printC'ENTER DEPTH OF FORMATION 1") 

d fl <- read(length = 1, print = F) 

printC'ENTER DEPTH OF FORMATION 2") 

df2 <- read(length = 1, print = F) 

d d l <- d l * 2 

d d l <- d d l/2  +1

plot(a[l:ddl], -dfl:(-dfl - dl), type = "1", xlab = "", ylab =

"DEPTH IN FEET", axes = F, ylim = c(-dfl - dd2, -dfl)) 

title(main = "PC-I, SHORT SEQ. (FF13)")

axis(2, col = 1)

axis(3, col = 1)

plot(a[dl:lnl], -df2:(-df2 - d2), type = "1", xlab = ylab = "DEPTH IN
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FEET", axes = F)

title(main = "PC-I, LONG SEQ. (FF13)") 

axis(2, col = 1) 

axis(3, col = 1)

# Plot the derivative data. 

d3 <- len(b) 

d3 <- d3/2

*
plot(b[l:d3], -l:-d3, type = "1", xlab = ylab = "SHORT 

SERIES",axes =F)

title(main = "DERIVATIVE DATA")

axis(2, col = 1)

axis(3, col = 1)

d d 3 < -d 3 * 2

ddd3 <- dd3/2 +1

plot(b[d3:dd3], -l:-ddd3, type = "1", xlab = "", ylab = "LONG 

SERIES",axes =F)

title(main = "DERIVATIVE DATA")

axis(2, col = 1) 

axis(3, col = 1)
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#Plot the interpolated frequencies. 

d5 <- len(e) 

d5 <- d5/2

plot(e[l:d5], -l:-d5, type = ”1", xlab = ylab = "INTERP. FREQ., 

SHORT SERIES", axes = F)

title(main = "INTERP.POWER SP")

axis(2, col = 1)

, axis(3, col = 1)

dd5 <- d5 * 2

ddd5 <- dd5/2  + 1

plot(e[d5:dd5], -l:-ddd5, type = "1", xlab = "", ylab = "INTERP. FREQ., 

LONG SERIES", axes = F) 

title(main = "INTERP.POWER SP") 

axis(2, col = 1) 

axis(3, col = 1)

#Plot the cross-correlation function for stretch. 

d6 <- len(f) 

d6 <- d6/2
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dd6 <- d6* 2 

ddd6 <- dd6/2  +1

plot(f[ddd6:dd6], f[l:d6], type = "1", xlab = HM, ylab = "LAG FOR 

STRETCH", axes = F)

post <- c(seq(-30,30,10))

axis(2, at = post, labels = F)

txt <- c("-30", "-20", "-10", "0", "10", "20", "30")

J mtext(txt, at = post * -1, side = 2, line = 2)

title(main = "X-COR (STRETCH)")

axis(3, col = 1)

# Plot the cross-correlation function for displacement.

d8 <- len(h)

plot(h[l:d8], -l:-d8, type = "1", xlab = "", ylab = " LAG FOR 

DISPLACEMENT", axes = F)

title(main = "X-COR (DISPL.)")

axis(2, col = 1)

axis(3, col = 1)

)
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xcfun

#A function to plot the original variables or principal components (filtered 

#or non- filtered), and the two cross-correlation function (for stretch & for 

#displacement).

xcfun<-function(a = "118", b = "pp8", d  = "c5", e = "c7")

#

#a=datafile containing the first principal component of borehole sequence.

#b=datafile containing the first principal component of another borehole 

#sequence.

#d=datafile containing the cross-correlation for stretch.

#e=datafile containing the cross-correlation for displacement.

#

{

a <- readf(a, 1) 

b <- readf(b, 1) 

d <- readf(d, 1) 

e <- readf(e, 1) 

par(mar = c(5,4.1,4.1,4.1)) 

par (fig = c(0, .36,0,1))
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plot(a, -dep, type = "1”, xlab = ylab = "DEPTH IN FEET", axes 

ylim=

c(-12000, -2000), xlim = c(-4,4)) 

title(main = "PC-I, SHORT SEQ. (FF13)") 

axis(2) 

axis(3)

printC'ENTER X-AXIS FOR WINDOW")

xax <- read(length = 1, print = F)

printC'ENTER Y-AXIS [TOP] FOR WINDOW")

ytp <- read(length = 1, print = F)

printC'ENTER Y-AXIS [BOTTOM] FOR WINDOW")

ybt <- read(length = 1, print = F)

text(xax, ytp, "-")

segments(xax, ytp, xax, ybt)

text(xax, y b t,"-")

par(fig = c(.35, .7,0,1))

plot(b, -dep, type = "1", xlab = "", ylab = "DEPTH IN FEET", axes 

=F,ylim = c(-12000, -2000), xlim = c(-4,4))

title(main = "PC-I, LONG SEQ. (FF11)")
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axis(2)

axis(3)

printC’ENTER X-AXIS FOR WINDOW”)

xax <- read(length = 1, print = F)

printC'ENTER Y-AXIS [TOP] FOR WINDOW")

ytp <- read(length = 1, print = F)

printC’ENTER Y-AXIS [BOTTOM] FOR WINDOW”)
A

ybt <- read(length = 1, print = F) 

text(xax, y tp ,"-") 

segments(xax, ytp, xax, ybt) 

text(xax, y b t,"-")

# Plot cross-correlation function for displacement 

par(fig = c(.68,1,0, .6)) 

d8 <- len(e) 

xx <- min(l:d8) 

yy <- max(l:d8) 

yyl <- yy + (yy/2)
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plot(e[l:d8], -l:-d8, type = T ,  xlab = "", ylab = " LAG FOR DISPL.",axes 

= F,ylim = c(-yyl, -xx))

title(main = "X-COR (DISPL.)")

axis(2)

axis(3)

printC'enter X-axis of X-COR function for displacement", quote =F) 

xax <- read(length = 1, print = F)

' print("enter Y-axis of X-COR function for displacement", quote=F) 

yax <- read(length = 1, print = F) 

text(xax, yax, "<-")

# Plot cross-correlation function for displacement. 

par(fig = c(.68,1, .5,1))

plot(d[ddd6:dd6], d[l:d6], type = "1", xlab = "", ylab = "LAG FOR 

STRETCH", axes = F) 

title(main = "X-COR (STRETCH)") 

axis(3) 

par(xpd = F) 

post <- c(seq(-30,30,10))
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axis(2, at = post, labels = F)

txt <- c("-30", "-20", "-10", "0", "10", "20", "SO")

mtext(txt, at = post * -1, side = 2, line = 2)

printC'enter X-axis of X-COR function for stretch", quote = F)

xax <- read(length = 1, print = F)

printC'enter Y-axis of X-COR function for stretch", quote = F) 

yax <- read(length = 1, print = F)
*

text(xax, yax, "<-")

}

macbound

#Plot on one side the first principal components, and on the other side the 

#boundaries of different formations.

macbound<-function(a = "116", b = "ffl3.30", d = "dep.30", e = 

"formfile")

#

#a=datafile containing the non-filtered first principal component of a 

certain #borehole.

2
#b=datafile containing D values (boundaries of the related borehole.
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#d=datafile containing the depth of the sequence.

#e=datafile containing formation tops.

#

{

a <- readf(a, 1) 

b < -readf(b, 1) 

d <- readf(d, 1)
*

par(fig = c(0, .6,0,1))

plot(a, -dep, type = "1", xlab = "(a)", ylab = "DEPTH IN FEET", axes= F, 

ylim = c(-12000, -2000))

axis(2, col = 1)

axis(3, col = 1)

title(main = "NON-FIL. PC-I (WELL FF13)") 

par(fig = c(.55,1,0,1))

plot(b, -dep.30, type = "1", ylab = "DEPTH IN FEET", xlab = "(b)",axes = 

F, ylim = c(-12000, -2000))

axis(2, col = 1)

axis(3, col = 1)

title(main = "D SQUARE")
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fdep <- readf(e, 2)

text(fdep[l, 1], fdep[l, 2], "<-----Etel Fm", cex = .8)

text(fdep[2,1], fdep[2, 2], "<---- Sheghega Fm", cex = .8)

text(fdep[3,1], fdep[3,2], "<---- Domran Fm", cex = .8)

text(fdep[4,1], fdep[4,2], "<-----Ruaga Fm", cex = .8)

text(fdep[5,1], fdep[5,2], "<-----Heira Fm", cex = .8)

text(fdep[6,1], fdep[6,2], "<---- Zmam Fm", cex = .8)

}

smoothplot

#Plot the filtered first principal components of two different wells and 

#different windows used in the cross-correlation process.

smoothplot<-function(a = "118", b = "pp8")

#

#a=datafile of the first principal component of a borehole.

#b=datafile of the first principal component of another borehole.

#

{
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a <- readf(a, 1) 

b <- readf(b, 1) 

par(mar = c(5,4.1,4.1,4.1)) 

par(mfrow = c(l, 2))

plot(a, -dep, type = ”1", xlab = "(A)", ylab = "DEPTH IN FEET", axes= F, 

ylim = c(-12000, -2000), xlim = c(-4,3))

title(main = "FIL. PC-I (FF13)")

' axis(2, col = 1)

axis(3, col = 1)

#This routine read the text input files which contain:

#column 1 the upper range of y-axis of the window.

#column 2 the lower limit of y-axis of the window.

#column 3 the x-axis of the window.

#file "textfile" contains the data to plot windows on the first plot, 

dat <- readf("textfilel", 3) 

text(dat[l, 3], dat[l, 1],"-")

segments(dat[l, 3], (dat[l, 1] -1), dat[l, 3], (dat[l, 2] -1), lty = 1) 

text(dat[l, 3], dat[l, 2],"-")
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devl <- (dat[l, 2] + dat[l, l])/2  

text(dat[l, 3] + .2, devl, "1") 

text(dat[2,3], dat[2,1],

segments(dat[2,3], dat[2,1], dat[2,3], dat[2,2], Ity = 1)

text(dat[2,3], dat[2,2],

dev2 <- (dat[2,2] + dat[2, l]) /2

text(dat[2,3] + .2, dev2, "2")

text(dat[3,3], dat[3,1],

segments(dat[3,3], dat[3,1], dat[3,3], dat[3,2], lty = 1)

text(dat[3,3], dat[3,2],

dev3 <- (dat[3,2] + dat[3, l])/2

text(dat[3,3] + .2, dev3, "3")

text(dat[4,3], dat[4,1],

segments(dat[4,3], dat[4,1], dat[4,3], dat[4,2])

text(dat[4,3], dat[4,2],

dev4 <- (dat[4,2] + dat[4, l])/2

text(dat[4, 3] + .2, dev4, "4")

text(dat[5,3], dat[5,1],
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segments(dat[5,3], dat[5,1], dat[5,3], dat[5,2]) 

text(dat[5,3], dat[5,2], 

dev5 <- (dat[5,2] + dat[5, l])/2  

text(dat[5, 3] + .2, dev5, "5")

plot(b, -dep, type = T , xlab = "(B)", ylab = "DEPTH IN FEET’, axes= F, 

ylim = c(-12000, -2000), xlim = c(-4,4))

axis(2, col = 1)

* axis(3, col = 1)

title(main = "FIL. PC-I (FF11)")

#file "textfile2" contains data to plot windows on the second plot

dat <- readf("textfile2", 3)

text(dat[l, 3], dat[l, 1],"-")

segments(dat[l, 3], dat[l, 1], dat[l, 3], dat[l, 2], lty = 1)

text(dat[l, 3], dat[l, 2],"-")

devl <- (dat[l, 2] + dat[l, l])/2

text(dat[l, 3] + .2, devl, "A")

text(dat[2,3], dat[2,1],"-")

segments(dat[2,3], dat[2,1], dat[2,3], dat[2,2], lty = 1)
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text(dat[2,3], dat[2,2], 

dev2 <- (dat[2,2] + dat[2, l])/2  

text(dat[2, 3] + .2, dev2, "B") 

text(dat[3,3], dat[3,1],

segments(dat[3,3], dat[3,1], dat[3,3], dat[3,2], lty = 1)

text(dat[3,3], dat[3,2],

dev3 <- (dat[3,2] + dat[3, l])/2

text(dat[3,3] + .2, dev3, "C")

text(dat[4,3], dat[4,1],

segments(dat[4,3], dat[4,1], dat[4,3], dat[4,2], lty = 1)

text(dat[4,3], dat[4,2],

dev4 <- (dat[4,2] + dat[4, l])/2

text(dat[4, 3] + .2, dev4, "D")

text(dat[5,3], dat[5,1],

segments(dat[5,3], dat[5,1], dat[5,3], dat[5,2]) 

text(dat[5,3], dat[5,2], 

dev5 <- (dat[5,2] + dat[5, l])/2  

text(dat[5, 3] + .2, dev5, "E")
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}

readf

#To read different input files to the S system from the Sun workstation, 

readf<-function(a = m l, b = 3)

#

#a=datafile containing any matrix to be read to the S system from a Unix 

#file.

#b=number of the columns of that matrix.

#

{

file <- matrix(scan(a), ncol = b, byrow = T)

#

}

post

#Set up the graphic mode for the Laser printer. 

post<-function(b = 9.5, d = 6, e = 8, f = 3)
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#

#b=the width of the plot.

#d=the lengthof the plot.

#e=point size to be used.

#f=the font type.

{

• #
postscript(hor = T, width = b, height = d, pointsize = e, font = f)

}
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A p p e n d i x  E

CROSS-CORRELATION USING PRINCIPAL COMPONENTS OF MODEL DATA IN F F 1 3 - 6  

IS
LS= 50 LL= 300 IDER= 1 IORG= 1 SMAX= 2 . 0
DEPTH OF SHORT SERIES = 5 0 . 0  FEET
DEPTH OF LONG SERIES = 1 . 0  FEET

INPUT DATA 

SHORT SERIES LONG SERIES

1 - 0 . 1 5 8 0 . 0 0 0
2 - 0 . 2 4 0 - 1 . 1 2 5
3 - 0 . 4 4 4 - 0 . 1 9 4
4 - 0 . 4 0 4 0 . 0 6 2
5 - 0 . 1 8 7 0 . 1 3 1
50 - 0 . 4 3 4 0 . 1 7 2

294
295
296
297
298
29 9

0 . 2 4 6
0 . 1 8 8
0 . 0 3 0
0 . 0 5 8
0 . 0 5 9
0 . 0 1 0

FOURIER TRANSFORM 

SERIES 1 SERIES 2

REAL IMAGINARY POWER SPECTRUM REAL IMAGINARY POWER SPECTRUM

1 - 1 0 9 . 8 0 3 2 3 . 3 2 9 4 2 . 1 4 3
2 - 5 . 4 1 7 3 1 . 5 1 0 3 . 4 1 9
3 - 4 . 8 8 5 1 4 . 1 5 9 0 . 7 5 0
4 2 . 9 6 0 4 1 . 2 0 9 5 . 7 0 9
5 3 7 . 9 0 2 - 6 3 . 7 2 8 1 8 . 3 8 8
6 - 3 . 4 1 2 - 8 . 0 9 5 0 . 25 8
7 4 . 2 5 5 4 9 . 1 6 6 8 . 1 4 5
8 2 4 . 8 5 5 - 6 . 6 7 0 2 . 2 1 5
9 - 1 7 . 9 8 6 - 0 . 3 5 4 1 . 0 8 2

10 2 4 . 0 6 8 9 . 2 2 1 2 .2 22
11 6 . 7 7 2 2 9 . 0 4 6 2 . 975
12 6 . 5 1 3 1 9 . 1 0 0 1 . 3 6 2
13 - 1 4 . 0 4 5 4 . 8 6 1 0 . 7 3 9
14 7 . 0 0 6 5 . 4 9 9 0 . 265
15 - 1 2 . 2 3 2 - 0 . 2 2 0 0 .50 1
16 - 4 . 0 9 5 1 0 . 6 5 1 0 . 4 3 6
17 2 7 . 9 7 4 3 7 . 1 2 2 7 . 2 2 6
18 1 5 . 7 6 0 0 . 3 3 2 0 . 8 3 1
19 - 1 5 . 8 7 8 2 5 . 8 0 3 3 . 0 7 0
20 - 1 2 . 9 4 1 3.  660 0 . 605
21 - 6 . 8 7 6 3 . 1 1 7 0 . 1 9 1
22 - 7 . 6 0 3 1 6 . 1 3 5 1 . 0 6 4
23 1 0 . 8 9 3 3 . 2 7 8 0 . 4 3 3
24 - 1 . 8 0 7 2 . 1 8 8 0 . 0 2 7
25 6 . 3 5 2 3.  906 0 .1 86
26 - 1 5 . 9 5 8 9 . 2 9 3 1 . 1 4 1
27 - 1  .2 11 4 . 139 0 . 0 6 2
28 - 2 . 4 7 0 8 .72 2 0 .2 75
29 - 1 . 9 6 6 7 .41 0 0 .1 97
30 5 .  645 3 . 8 3 1 0 . 1 5 6
31 - 6 . 2 5 0 - 8 . 3 7 5 0 . 3 6 5
32 - 4 . 2 0 4 1 1 . 2 8 2 0 .4 85
33 1 .297 0 .2 21 0 . 0 0 6
34 - 6 . 9 1 5 8 .7 37 0 . 4 1 5
35 6 . 451 9 . 679 0 . 4 5 3

1 . 9 6 3 - 2 . 2 4 5 0 . 0 3 0
1 . 4 2 8 - 0 . 6 8 7 0 . 0 0 8
1 . 5 2 2 - 1 . 6 2 4 0 . 0 1 7

- 2 . 1 9 7 - 1 . 5 4 0 0 . 0 2 4
6 . 6 2 9 3 . 4 1 1 0 . 1 8 6
1 . 0 9 5 0 . 0 7 0 0 . 0 0 4

- 6 . 1 7 1 1 . 3 0 0 0 . 1 3 3
2 . 9 7 0 4 . 8 7 9 0 . 1 0 9
2 . 5 1 8 - 4 . 1 6 0 0 . 0 7 9

- 1 . 8 3 3 3 . 2 5 1 0 . 0 4 7
- 7 . 9 8 6 0 . 0 8 6 0 . 2 1 3
- 6 . 5 9 3 2 . 3 8 2 0 . 1 6 4
- 1 . 1 3 6 - 1 . 0 1 1 0 . 0 0 8
- 0 . 4 1 6 4 . 614 0 . 0 7 2

2 .7 5 7 - 2  . 479 0 . 0 4 6
- 2 . 4 4 2 - 1 . 7 8 2 0 . 0 3 1

- 1 5 . 7 8 1 8 . 3 6 0 1 . 0 6 7
- 2 . 7 6 0 9 . 1 2 1 0 . 3 0 4
- 8  . 4 8 6 - 2  . 7 5 5 0 . 2 6 6

2 . 9 0 3 - 0 . 2 1 3 0 . 0 2 8
4 . 43 0 - 0  . 2 0 2 0 . 0 6 6

- 2 . 0 0 6 - 4 . 8 2 1 0 . 0 9 1
- 0 . 8 6 0 3 .  981 0 . 0 5 5
- 0 . 9 2 5 - 0 . 4 3 3 0 . 0 0 3
- 2  .7 47 5 . 641 0 . 1 3 2
- 0  . 4 8 6 - 5 . 7 4 1 0 . I l l

1 . 694 1 . 3 5 5 0 . 0 1 6
- 0 . 9 6 2 - 2 . 3 2 0 0 . 0 2 1
- 2  . 472 - 2  . 829 0 . 0 4 7
- 3 . 8 3 3 3 . 5 4 0 0 . 0 9 1

5 .  946 1 . 2 6 1 0 . 1 2 4
- 4 . 4 4 0 - 0 . 4 5 6 0 . 0 6 7

3 . 5 1 5 4 . 3 8 1 0 . 1 0 6
0 . 436 - 5 . 5 3 0 0 . 1 0 3

- 5 . 3 0 4 1 .1 13 0 . 0 9 8



36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
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4 . 4 2 8  
- 3 . 4 9 4  
- 5 . 1 4 6  

2 . 5 4 3  
- 2 . 0 2 9  
- 0 . 7 1 0  

2 . 7 5 3  
- 1 . 9 8 3  
- 2 . 0 9 2  

1 . 6 1 6  
- 1 . 1 7 1  

2 . 2 3 0  
- 4 . 1 6 9  
- 2 . 5 7 1  
- 0  . 2 2 3  
- 3 . 1 1 1  

0 . 4 4 4  
- 0 . 0 6 7  
- 1 . 2 9 7  
- 2 . 1 1 4  
- 2 . 6 3 7  
- 1 . 2 8 0  

0 . 1 7 8  
0 . 4 3 4  

- 1.011 
- 2 . 4 3 4  
- 2 . 5 4 8  
- 2 . 0 8 4  

0 . 0 4 0  
0 . 5 7 4  

- 0 . 6 8 3  
- 2 . 0 4 6  
- 2 . 6 7 8  
- 1 . 7 4 7  
- 0 . 4 2 9  

0 . 3 1 0  
2 . 1 8 0  

- 2 . 1 4 7  
- 1 . 4 9 0  
- 1 . 7 7 3  
- 0 . 6 3 5  
- 0 . 9 8 1

0 . 3 9 0  
- 1 . 5 0 3  
- 2 . 1 2 8  
- 1 . 4 7 7

1 .  617 
1 . 5 6 9
0 . 3 1 6

- 1 . 6 4 9  
- 1 . 7 2 8  
- 1 . 9 4 9  

1 . 3 2 1  
2 . 1 6 8
1 . 2 1 6  

- 1 . 4 8 3  
- 1 . 4 2 2  
- 1 . 2 0 8  
- 0 . 5 0 8  
- 2 . 9 4 0  
- 1 . 7 9 2  
- 2  . 6 9 4  
- 2 . 6 8 2  
- 2 . 6 8 2  

0 . 2 4 5  
0 . 0 9 2  

- 1 . 5 1 3  
- 2  . 7 7 1  
- 2 . 8 7 4  
- 2 . 5 2 8  
- 0 . 9 2 4  
- 0 . 6 0 3  
- 0 . 5 8 4  
- 1 . 8 7 1  
- 2 . 4 6 3

- 1 . 7 2 1
- 0 . 7 7 7

6 . 4 1 8
1 . 3 9 5  
3 . 2 0 5  
0 . 6 8 3

- 2 . 5 5 8  
- 0 . 1 9 9  

6 . 7 3 9  
0 . 1 2 0  
3 . 0 0 3  

- 0 . 5 4 1  
0 . 3 0 2  
2 . 2 2 0  
2 . 3 1 7  
4 . 0 4 4  
5 . 7 9 5  
0 . 7 3 7  
1 . 3 4 7  
0 . 0 5 2  
2 . 0 3 5  
3 . 6 6 6  
2 . 6 8 3  
1 . 0 8 5  
0 . 1 1 2  
0 . 7 4 8  
1 . 8 9 6
3 . 2 6 9  
3 . 0 4 3  
1 . 0 3 1  
0 . 5 0 6  

- 1 . 0 0 1  
2 . 7 1 5  
2 . 2 5 9  
4 . 1 2 5  
3 . 0 4 6  

- 1 . 2 5 6  
- 0  . 2 7 8

1 . 3 7 0  
2 . 0 2 4  
1 . 1 7 7
2 . 8 8 0  
1 . 4 3 3  
0 . 7 5 6  
2 . 3 5 4  
1 . 7 5 1  
3 . 1 6 7  
1 . 2 5 5  

- 0 . 7 3 0  
- 0 . 0 1 4  

1 . 1 7 4
2 . 4 4 5  
1 . 8 7 1  

- 1 . 9 2 5  
- 2 . 3 3 7  
- 2 . 1 7 2  

0 . 5 8 9  
1 . 3 8 2  
0 . 5 5 1  

- 0 . 8 1 1
0 . 6 3 0
1 . 2 1 7  
2 . 0 0 6  
1 . 8 6 6
1.  654 

- 1 . 1 5 8  
-2  . 1 1 9  
-0  . 7 4 6

0 . 5 4 5
1 . 1 4 2
2 . 0 5 4
1 . 3 9 6  

- 0 . 3 4 5  
- 0 . 2 5 3

0 . 118

0 . 0 7 5  
0 . 0 4 3  
0 . 2 2 6  
0 . 0 2 8  
0 . 0 4 8  
0 . 0 0 3  
0 . 047 
0 . 0 1 3  
0 . 1 6 7  
0 . 0 0 9  
0 . 0 3 5  
0 . 0 1 8  
0 . 0 5 8  
0 . 0 3 9  
0 . 018 
0 . 0 8 7  
0 . 1 1 3  
0 . 0 0 2  
0 . 0 1 2  
0 . 0 1 5  
0 .0 3 7  
0 . 0 5 0  
0 . 0 2 4  
0 . 0 0 5  
0 . 0 0 3  
0 . 0 2 2  
0 . 0 3 4  
0 . 0 5 0  
0 . 0 3 1  
0 . 0 0 5  
0 . 0 0 2  
0 . 0 1 7  
0 . 0 4 9  
0 . 0 2 7  
0 . 0 5 8  
0 . 0 3 1  
0 . 0 2 1  
0 . 0 1 6  
0 . 0 1 4  
0 . 0 2 4  
0 . 0 0 6  
0 . 0 3 1  
0 . 0 0 7  
0 . 0 0 9  
0 . 0 3 4  
0 . 0 1 8  
0 . 0 4 2  
0 . 0 1 3  
0 . 0 0 2  
0 . 0 0 9  
0 . 0 1 5  
0 . 0 3 3  
0 . 0 1 8  
0 . 0 2 8  
0 . 0 2 3  
0 . 0 2 3  
0 . 008 
0 . 0 1 1  
0 . 002  
0 . 0 3 1  
0 . 012  
0 . 0 2 9  
0 . 0 3 8  
0 . 0 3 6  
0 .0 0 9  
0 .0 0 5  
0 . 0 2 3  
0 . 0 2 8  
0 . 0 2 9  
0 . 0 2 6  
0 . 0 1 7  
0 . 0 0 8  
0 . 0 0 2  
0 . 0 1 2  
0 . 0 2 0

0 . 5 7 6
1 . 1 0 7  

- 2 . 8 0 4  
- 0 . 3 5 6  
- 0 . 0 4 6

0 . 1 3 6  
- 0 . 2 3 7  
- 0  . 8 2 2  
- 5 . 4 1 6  
- 0  . 5 0 3  
- 1 . 6 8 5  
- 1 . 5 3 9  
- 0 . 5 6 6  
- 2 . 6 7 4  
- 1 .  976 

0 . 2 2 1  
- 2 . 4 6 0  

1 . 1 8 8  
- 0 . 3 8 0  

0 . 7 3 4  
0 . 3 8 8  

- 0 . 3 2 0  
0 . 0 7 8  
0 . 0 7 4  
0 . 1 2 4  

- 0 . 0 4 6  
0 . 2 7 8  
0 . 6 3 1  

- 0 . 0 2 5  
0 . 2 0 2  

- 0 . 4 7 1  
1 . 1 4 6  

- 0 . 7 2 7  
1 . 4 7 3  
0 . 1 8 8  
0 . 1 8 9  
0 . 7 5 3  
2 . 1 7 9  

- 0 . 2 6 2  
0 . 3 6 7  
0 . 7 4 3  

- 1 . 1 7 1  
- 2 . 3 8 8  

0 . 0 6 4  
0 . 7 3 5
3 . 1 0 7  

- 0 . 3 9 0
0 . 6 9 2  
1 . 6 9 4  
1 . 4 0 4  
0 . 3 6 1  
0 . 977 

- 1 . 3 9 5
0 . 4 2 9  

- 0 . 3 1 3
0 . 8 8 9  

- 2 . 2 6 9  
- 2 . 1 5 4  
- 0 . 1 2 7

3 . 4 4 5  
- 0 . 6 4 3  
- 0 . 5 4 5  
- 0 . 2 2 9  

2 . 0 9 9  
- 0 . 7 1 7

0 . 9 2 2  
1 . 3 6 1  

- 0 . 1 3 9  
- 0 . 6 8 3  

1 . 2 3 6
1 . 1 9 7  
2 . 2 3 5  
1 . 8 2 9  
1 . 2 6 6  
0 . 953

2 . 9 2 7  
- 1 . 1 9 2  
- 3 . 2 2 7  

3 . 6 7 2  
- 1 . 5 8 9  
- 0 . 6 5 8  

3 . 7 7 7  
0 . 8 6 4  

- 0 . 8 0 5  
4 . 6 2 6  
0 . 0 8 8  
4 . I l l  

- 0  . 416 
2 . 1 1 0  
5 . 3 3 5
1 . 1 9 8  
1 . 2 9 1
1 .  979
0 . 6 7 7  
2 . 1 9 3
1 .  659
1 . 3 7 1  
1 . 5 7 1  
1 . 5 3 0
1 . 2 6 9  
1 . 3 1 0  
1 . 8 3 3  
0 . 8 5 1  
1 . 0 9 4  
1 . 4 7 6  
0 . 8 9 3
2 . 8 8 1  
1 . 1 9 2  
2 . 7 0 0  
0 . 4 0 8

- 0 . 3 7 2  
4 . 4 1 2  

- 0 . 0 2 7  
0 . 4 9 8  
0 . 1 2 5
1 . 4 1 9  

- 1 . 5 5 1  
1 . 6 9 1  
2 . 1 5 5  
1 . 1 7 9  
2 . 0 6 3  
1 . 0 9 7  
0 . 5 2 6  
0 . 5 7 6  

- 1 . 1 1 7  
- 0 . 8 4 5  
- 2 . 1 2 5  

0 . 3 0 3  
3 . 8 6 1
2 . 640 
1 . 0 7 7

- 0 . 3 9 5  
0 . 050 
3 . 0 8 1
0 . 2 6 9  

- 0  . 7 8 0  
- 1 . 0 5 1  
- 0 . 5 8 2  
- 0 . 3 2 1

0 . 5 6 1  
2 . 2 6 2  
1 . 8 2 2  
0 . 8 1 3  
2 . 0 6 8
3 . 2 7 3
1 .  964 
0 . 1 9 3  
0 . 6 6 5

- 0  . 2 9 9  
0 . 8 1 3
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111 - 2 . 1 0 5 1 . 7 4 5 0 . 0 2 5 0 . 5 5 9 0 . 1 8 8 0 . 0 0 1
112 - 0 . 8 1 8 1 . 5 6 4 0 . 0 1 0 0 . 8 1 8 1 . 0 8 8 0 . 0 0 6
113 0 . 0 1 7 0 . 6 3 2 0 . 0 0 1 0 . 9 5 3 1 . 0 9 8 0 . 0 0 7
114 - 0 . 4 1 3 - 0 . 5 2 4 0 . 0 0 1 1 . 1 3 0 0 . 9 0 6 0 . 0 0 7
115 - 1 . 6 8 5 - 0 . 7 0 6 0 . 011 1 . 2 0 3 0 . 5 6 6 0 . 0 0 6
116 - 2 . 5 5 0 0 . 2 1 0 0 . 022 1 . 1 9 4 0 . 4 3 0 0 . 0 0 5
117 - 2 . 0 1 3 1 . 3 8 5 0 . 0 2 0 0 . 8 3 6 0 . 5 2 8 0 . 0 0 3
118 - 1 . 0 2 4 1 .  684 0 . 0 1 3 1 . 2 2 3 0 . 3 9 0 0 . 0 0 6
119 0 . 0 0 0 0 . 8 3 8 0 . 0 0 2 0 . 9 9 1 0 . 3 9 5 0 . 004
120 - 0 . 2 5 9 - 0 . 3 9 4 0 . 0 0 1 1 . 0 0 0 0 . 4 0 7 0 . 0 0 4
121 - 1 . 4 3 7 - 0 . 7 7 8 0 . 0 0 9 1 . 0 7 5 0 . 3 4 7 0 . 0 0 4
122 - 2 . 4 1 7 0 . 0 2 3 0 . 0 2 0 1 . 2 6 4 0 . 2 0 6 0 . 0 0 5
123 - 2 . 0 4 2 1 . 1 8 9 0 . 0 1 9 1 . 0 3 8 0 . 1 5 4 0 . 0 0 4
124 - 0 . 7 3 1 1 . 2 2 2 0 . 0 0 7 0 .859 0 . 7 3 1 0 . 0 0 4
125 0 . 1 6 5 0 . 2 9 3 0 . 0 0 0 0 . 855 0 . 8 3 4 0 . 0 0 5
126 - 0 . 4 4 5 - 0 . 8 5 5 0 . 0 0 3 1 . 4 3 5 0 . 4 5 6 0 . 0 0 8
127 - 1 . 8 0 9 - 0 . 8 6 9 0 . 0 1 3 1 . 5 2 5 - 0 . 4 9 7 0 . 0 0 9
128 - 2 . 6 2 2 - 0 . 2 0 9 0 . 0 2 3 1 . 1 4 6 - 0 . 2 9 4 0 . 0 0 5
129 - 2 . 2 4 4 0 . 8 9 7 0 . 0 2 0 0 . 5 7 0 - 0  . 0 1 7 0 . 0 0 1
130 - 1 . 4 6 7 1 . 5 0 7 0 . 0 1 5 0 .930 - 0 . 3 1 3 0 . 0 0 3
131 - 0 . 4 6 3  ' 0 .  679 0 . 0 0 2 0 .742 0 . 1 5 7 0 . 0 0 2
132 - 1 . 0 3 8 - 0 . 0 8 6 0 . 0 0 4 1 . 4 4 6 - 0 . 5 1 3 0 . 0 0 8
133 - 1 . 3 8 8 - 0 . 6 5 5 0 . 0 0 8 0 . 2 1 4 0 . 1 6 5 0 . 0 0 0
134 - 2 . 7 4 2 - 0 . 2 8 0 0 . 0 2 5 1 . 3 2 5 0 . 7 9 2 0 . 0 0 8
135 - 2 . 4 0 7 0 . 7 0 5 0 . 0 2 1 1 . 2 0 3 1 . 2 6 5 0 . 0 1 0
136 - 0 . 6 0 2 2 . 1 3 3 0 . 0 1 6 - 0 . 2 6 6 - 0 . 4 0 5 0 . 0 0 1
137 - 0 . 0 5 7 0 . 9 3 3 0 . 0 0 3 0 . 9 3 1 0 . 3 7 8 0 . 0 0 3
138 0 . 7 5 5 0 . 7 0 4 0 . 0 0 4 - 0 . 9 0 4 - 1 . 4 9 3 0 . 0 1 0
139 - 0 . 7 9 1 - 1 . 5 4 0 0 . 0 1 0 0 . 4 9 7 1 . 4 9 0 0 . 0 0 8
140 - 3 . 0 5 6 0 . 0 6 8 0 . 0 3 1 2 . 6 8 8 - 0 . 9 3 2 0 . 0 2 7
141 - 2 . 1 6 6 0 . 0 2 6 0 . 0 1 6 0 . 9 9 1 1 . 5 6 4 0 . 0 1 1
142 - 0 . 9 0 8 0 . 9 4 6 0 . 0 0 6 0 . 2 5 2 1 . 0 3 1 0 . 0 0 4
143 ' - 0 . 7 8 6 1 . 4 3 0 0 . 0 0 9 1 . 8 4 7 - 0 . 9 5 1 0 . 0 1 4
144 0 . 5 3 5 0 . 2 6 9 0 . 0 0 1 - 0 . 5 0 4 - 0 . 5 4 9 0 . 0 0 2
145 - 1 . 1 3 8 - 1 . 0 5 9 0 . 0 0 8 1 . 3 6 1 0 . 8 4 1 0 . 0 0 9
146 - 1 . 9 8 9 - 0 . 3 2 0 0 . 0 1 4 1 . 3 9 8 0 . 1 8 3 0 . 0 0 7
147 - 2 . 0 5 4 0 . 0 5 3 0 . 0 1 4 1 . 6 0 5 1 . 2 7 0 0 . 0 1 4
148 - 0 . 5 1 9 0 . 5 4 2 0 . 0 0 2 0 . 2 8 7 1 . 1 6 2 0 . 0 0 5
149 0 . 4 7 6 0 . 6 9 1 0 . 0 0 2 0 . 0 2 6 - 0 . 2 9 8 0 . 0 0 0

NORMALIZED CORRELATION COEFFICIENTS 
(ASSUME LONG SERIES IS STRETCHED) (ASSUME SHORT SERIES IS STRETCHED)

LAG NUMBER VALUE OF COEFFICIENT LAG NUMBER VALUE OF COEFFICIENT
0 0 . 9 0 0 0 0 . 9 0 0

- 1 0 . 7 6 0 1 0 . 8 1 7
- 2 0 . 5 0 7 2 0 . 5 8 6
- 3 0 . 3 2 7 3 0 . 3 7 8
- 4 0 . 2 9 0 4 0 . 2 7 2
- 5 0 . 3 0 1 5 0 . 2 1 4
- 6 0 . 2 5 3 6 0 . 1 4 4
- 7 0 . 1 4 8 7 0 . 0 6 1
- 8 0 . 0 5 7 8 0 . 0 0 3
- 9 0 . 0 1 9 9 - 0 . 0 1 0

- 1 0 0 . 0 2 1 10 0 . 0 1 8
- 1 1 0 . 0 3 5 11 0 . 0 6 3
- 1 2 0 . 0 4 7 12 0 . 0 9 6
- 1 3 0 . 0 5 5 13 0 . 1 0 5
- 1 4 0 . 0 6 0 14 0 . 1 0 9
- 1 5 0 . 0 7 6 15 0 . 1 4 3
- 1 6 0 . 1 1 6 16 0 . 2 2 8
- 1 7 0 . 1 7 8 17 0 . 3 3 3
- 1 8 0 . 2 2 8 18 0 . 4 0 9
- 1 9 0 . 2 2 6 19 0 . 443
- 2 0 0 . 1 7 5 20 0 . 4 4 3
- 2 1 0 . 1 1 5 21 0 . 4 2 8
- 2 2 0 . 0 7 6 22 0 . 3 9 9
- 2 3 0 . 0 6 4 23 0 . 3 8 1
- 2 4 0 . 0 9 3 24 0 . 4 2 8
- 2 5 0 .1 5 4 25 0 . 5 3 0
- 2 6 0 . 1 7 9 26 0 . 5 6 9
- 2 7 0 . 1 6 0 27 0 . 5 1 0
- 2 8 0 .1 3 4 28 0 .4 8 2
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- 2 9  0 . 1 7 1  29 0 . 5 2 0
- 3 0  0 . 2 6 2  30 0 . 5 4 4

STRETCH FACTOR FOUND FROM CORRELATION OF POWER SPECTRA

FIRST CHOICE -  LONG SERIES IS  STRETCHED 1 . 0 0  TIMES 

SECOND CHOICE -  SHORT SERIES I S  STRETCHED 1 . 8 2  TIMES

FINAL RESULT SUGGEST THAT LONG SERIES IS  STRETCHED 1 . 0 0  

TIMES MAXIMUM CORRELATION IS  1 . 0 0  AT A LAG OF 51

Appendix E
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THE CORRELATION MATRIX IS  : 

1 . 0 0 0  0 . 6 0 8 0 . 0 1 1 0 . 0 3 3 0 . 0 1 7 0 . 2 9 0 - 0  . 4 0 9
0 . 6 0 8 1 . 0 0 0 - 0 . 0 2 3 - 0 . 0 4 1 - 0 . 0 5 3 0 . 6 9 7 - 0 . 2 1 0
0 . 0 1 1 - 0 . 0 2 3 1 . 0 0 0 0 . 7 1 5 0 . 6 3 9 - 0 . 1 4 0 - 0 . 1 0 2
0 . 0 3 3 - 0 . 0 4 1 0 . 7 1 5 1 . 0 0 0 0 . 8 1 6 - 0 . 1 0 4 - 0 . 0 3 8
0 . 0 1 7 - 0 . 0 5 3 0 . 6 3 9 0 . 8 1 6 1 . 0 0 0 - 0 . 1 1 3 - 0  . 0 7 3
0 . 2 9 0 0 . 6 9 7 - 0 . 1 4 0 - 0 . 1 0 4 - 0 . 1 1 3 1 . 0 0 0 0 . 2 5 1

- 0 . 4 0 9 - 0 . 2 1 0 - 0  .102 - 0 . 0 3 8 - 0 . 0 7 3 0 . 2 5 1 1 . 0 0 0

EIGENVECTORS :

VARIABLE 1 2 3 4 5 6 7

SP 0 . 0 6 8 3 2 0 . 5 5 6 6 9 0 . 2 8 5 8 1 0 . 6 4 5 8 2 - 0 . 3 9 4 6 2 0 . 0 9 7 3 7 - 0 . 1 4 6 5 0
GR 0 . 1 6 5 6 7 0 . 6 1 7 6 8 - 0  . 1 1 1 8 5 - 0 . 2 7 1 1 9 0 . 0 8 3 3 8 - 0 . 1 4 3 0 9 0 . 6 9 1 0 5
ILS - 0 . 5 2 9 1 9 0 . 1 2 9 4 1 - 0  . 0 6 4 1 6 - 0 . 4 7 1 9 1 - 0 . 6 5 0 9 0 0 . 2 2 1 6 6 - 0 . 0 5 9 9 5
ILM - 0 . 5 6 7 9 1 0 . 1 4 2 8 3 - 0 . 1 4 4 5 5 0 . 1 6 9 7 5 0 . 1 3 4 3 4 - 0 . 7 5 8 0 1 - 0 . 1 2 1 4 5
ILD - 0 . 5 5 4 0 1 0 . 1 3 1 9 8 - 0 . 1 1 3 6 7 0 . 2 4 4 2 8 0 . 4 9 4 0 1 0 . 5 7 9 4 1 0 . 1 5 2 6 8
DT 0 . 2 3 0 3 2 0 . 4 3 7 1 8 - 0 . 5 4 0 5 5 - 0 . 2 0 0 8 5 0 . 1 8 9 1 7 0 . 0 9 9 8 9 - 0 . 6 1 4 4 4
CALI 0 . 0 7 3 1 6 - 0 . 2 5 0 7 4 - 0  . 7 5 8 7 4 0 . 3 9 7 3 0 - 0 . 3 4 0 2 7 0 . 0 2 5 4 7 0 . 2 8 6 0 3

EIGENVALUES . :

2 . 5 1 7  2 . 1 0 1  1 . 275 0 . 4 1 0 0 . 3 6 5 0 . 1 7 1 0 . 1 6 2

PERCENTAGE OF TOTAL VARIANCE; CONTRIBUTED BY EACH EIGENVALUE

3 5 .9 5 3 %  30 .014% 1 8 . 217% 5.862% 5.207% 2.4 3 7 % 2 .3 0 9 %

T a b l e  1 The  c o r r e l a t i o n  m a t r i x ,  t h e  e i g e n v e c t o r s ,  t h e  e i g e n v a l u e s  a n d  t h e
p e r c e n t a g e  o f  e a c h  e i g e n v a l u e  t o  t h e  t o t a l  v a r i a n c e  o f  t h e  o r i g i n a l  
d a t a  o f  w e l l  F F 7 .

Appendix E
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THE CORRELATION ]MATRIX IS  :

1 . 0 0 0 0 . 4 8 2 - 0 . 0 3 0 - 0 . 0 2 5 0 . 1 6 2 0 . 1 8 1 0 . 2 3 6
0 . 4 8 2 1 . 0 0 0 - 0 . 0 0 7 - 0 . 0 0 4 - 0 . 2 3 1 0 . 6 3 9 0 . 5 8 2

- 0 . 0 3 0 - 0 . 0 0 7 1 . 0 0 0 0 . 9 9 1 0 . 2 9 8 - 0 . 0 8 8 - 0 . 0 5 5
- 0 . 0 2 5 - 0 . 0 0 4 0 . 9 9 1 1 . 0 0 0 0 . 3 1 6 - 0 . 0 8 4 - 0 . 0 5 1

0 . 1 6 2 - 0 . 2 3 1 0 . 2 9 8 0 . 3 1 6 1 . 0 0 0 - 0 . 4 0 3 - 0 . 2 9 2
0 . 1 8 1 0 . 6 3 9 - 0 . 0 8 8 - 0 . 0 8 4 - 0 . 4 0 3 1 . 0 0 0 0 . 5 5 8
0 . 2 3 6 0 . 5 8 2 - 0 . 0 5 5 - 0 . 0 5 1 - 0 . 2 9 2 0 . 5 5 8 1 . 0 0 0

EIGENVECTORS :

VARIABLE 1 2 3 4 5 6 7

SP 0 . 2 3 3 3 1 - 0 . 2 3 6 9 6 0 . 7 2 3 4 0 - 0 . 3 8 7 6 0 - 0  . 2 7 8 2 7 0 . 3 7 2 0 7 0 . 0 0 2 0 6
GR 0 . 4 7 1 2 5 - 0 . 3 2 0 8 9 0 . 1 3 5 6 8 - 0 . 1 3 7 9 6 0 . 1 7 0 2 5 - 0 . 7 8 0 0 8 0 . 0 0 0 2 8
ILS - 0 . 2 8 6 7 7 - 0 . 5 9 6 2 1 - 0 . 2 1 2 6 8 - 0 . 1 1 5 4 8 - 0 . 0 7 9 3 6 0 . 0 3 7 8 7 - 0 . 7 0 4 2 7
ILM - 0 . 2 8 6 8 9 - 0 . 5 9 9 8 4 - 0 . 2 0 0 7 3 - 0 . 0 9 3 1 2 - 0 . 0 6 0 4 1 0 . 0 4 2 0 6 0 . 7 0 9 5 8
ILD - 0 . 3 5 2 0 2 - 0 . 1 8 0 1 4 0 . 5 5 9 0 9 0 . 5 8 1 5 4 0 . 4 3 5 9 6 - 0 . 0 4 9 0 2 - 0 . 0 2 0 1 2
DT 0 . 4 8 2 5 0 - 0 . 1 9 7 8 7 - 0 . 2 2 1 0 3 - 0 . 0 1 6 6 7 0 . 6 6 7 4 6 0 . 4 8 3 0 5 - 0 . 0 0 8 7 1
CALI 0 . 4 4 9 6 9 - 0 . 2 3 2 3 8 - 0 . 1 0 6 3 9 0 . 6 8 5 7 6 - 0  . 4 9 8 0 7 0 . 1 1 8 7 7 - 0 . 0 0 4 1 8

EIGENVALUES :

2 . 6 2 8  2 . 0 2 0  1 . 141 0 . 5 0 4 0 . 4 2 6 0 . 2 7 2 0 . 0 0 9

PERCENTAGE OF TOTAL VARIANCE; CONTRIBUTED BY EACH EIGENVALUE

3 7 .5 4 3 %  28 .857% 16 . 302% 7 .201% 6.086% 3 .8 8 3 % 0.128%

T a b l e  2 The  c o r r e l a t i o n  m a t r i x ,  t h e  e i g e n v e c t o r s ,  t h e  e i g e n v a l u e s  a n d  t h e
p e r c e n t a g e  o f  e a c h  e i g e n v a l u e  t o  t h e  t o t a l  v a r i a n c e  o f  t h e  o r i g i n a l  
d a t a  i n  w e l l  F F 1 3 .

| Appendix  £ |
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THE CORRELATION MATRIX IS  : 

1 . 0 0 0  0 . 6 1 3 - 0 . 2 1 7 - 0 . 0 2 7 - 0 . 0 2 9 0 . 7 5 4 0 . 7 8 9
0 . 6 1 3 1 . 0 0 0 - 0 . 2 1 7 0 . 0 0 3 - 0 . 0 4 1 0 . 5 9 3 0 .2 70

- 0 . 2 1 7 - 0 . 2 1 7 1 . 0 0 0 0 . 1 2 5 0 . 4 9 1 - 0  . 4 1 1 - 0 . 2 0 0
- 0 . 0 2 7 0 . 0 0 3 0 . 1 2 5 1 . 0 0 0 - 0  .009 - 0 . 1 1 2 - 0  .0 4 6
- 0 . 0 2 9 - 0 . 0 4 1 0 . 4 9 1 - 0 . 0 0 9 1 . 0 0 0 - 0 . 1 8 2 - 0  . 0 7 6

0 . 7 5 4 0 . 5 9 3 - 0 . 4 1 1 - 0 . 1 1 2 - 0 . 1 8 2 1 . 0 0 0 0 .7 37
0 . 7 8 9 0 . 2 7 0 - 0 . 2 0 0 - 0 . 0 4 6 - 0 . 0 7 6 0 . 7 3 7 1 . 0 0 0

EIGENVECTORS : 

VARIABLE 1 2 3 4 5 6 7

SP 0 . 5 0 9 0 1 - 0 . 2 4 5 4 1 0 . 0 3 0 6 5 0 . 0 7 2 2 8 - 0 . 0 8 0 9 7 - 0 . 5 9 8 8 4 - 0 . 5 5 6 2 0
GR 0 . 3 8 9 0 5 - 0 . 1 4 3 0 9 0 . 1 1 5 0 9 - 0 . 7 8 3 3 7 - 0 . 1 9 4 8 4 - 0 . 0 4 5 8 8 0 . 4 0 1 4 8
ILS - 0 . 2 7 7 4 7 - 0 . 6 1 0 0 5 0 . 0 0 7 8 6 0 . 1 0 9 4 1 - 0 . 7 0 8 9 9 0 . 1 8 0 1 2 - 0 . 0 6 0 8 2
ILM - 0 . 0 6 0 4 0 - 0 . 1 3 9 0 8 0 . 9 6 6 2 9 0 . 0 7 8 3 3 0 . 1 8 2 6 4 0 . 0 5 8 3 5 - 0 . 0 1 9 9 0
ILD - 0 . 1 4 1 9 5 - 0 . 7 0 3 0 2 - 0 . 2 2 3 5 9 - 0 . 1 2 8 9 2 0 . 6 4 6 0 2 0 . 0 3 7 0 2 0 . 0 1 7 3 0
DT 0 . 5 2 5 9 9 - 0 . 0 2 5 3 3 - 0 . 0 3 5 4 6 0 . 0 2 6 6 0 0 . 0 4 5 9 5 0 . 7 7 3 9 3 - 0 . 3 4 5 9 1
CALI 0 . 4 6 0 5 4 - 0 . 1 8 1 4 4 - 0 . 0 2 8 0 4 0 . 5 8 7 9 5 - 0 . 0 0 2 4 8 - 0 . 0 5 5 7 0 0 . 6 3 6 7 2

EIGENVALUES :

3 . 0 9 2 1 . 3 8 0  1 . 0 0 8  0.744-  0 . 4 6 2  0 . 2 1 5 0 . 0 9 9

PERCENTAGE
4 4. 170%

OF TOTAL VARIANCE CONTRIBUTED BY EACH EIGENVALUE
1 9. 7 0 7 %  14 .40 2%  10.626% 6.600% 3 .0 78% 1.417%

T a b l e  3 T h e  c o r r e l a t i o n  m a t r i x ,  t h e  e i g e n v e c t o r s ,  t h e  e i g e n v a l u e s  a n d  t h e
p e r c e n t a g e  o f  e a c h  e i g e n v a l u e  t o  t h e  t o t a l  v a r i a n c e  o f  t h e  o r i g i n a l  
d a t a  i n  F F 1 1 .

| A ppendix  E
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THE CORRELATION MATRIX IS : 
1 . 0 0 0  0 . 7 6 0 - 0 . 0 4 4 0 . 0 3 5 0.000 0 . 4 2 4 0 . 1 8 1
0 . 7 6 0 1.000 - 0 . 2 5 0 - 0 . 0 4 5 - 0 . 0 2 6 0 . 6 5 5 0 . 2 9 1

- 0 . 0 4 4 - 0 . 2 5 0 1.000 0 . 1 0 2 0 . 0 1 7 - 0 . 5 2 5 - 0 . 2 8 1
0 . 0 3 5 - 0 . 0 4 5 0 . 1 0 2 1.000 0 . 0 4 5 - 0 . 0 7 3 - 0 . 0 6 8
0 . 0 0 0 - 0 . 0 2 6 0 . 0 1 7 0 . 0 4 5 1.000 - 0  . 0 4 4 - 0 . 0 2 5
0 . 424 0 . 655 - 0 . 5 2 5 - 0  . 0 7 3 - 0 . 0 4 4 1.000 0 . 6 9 6
0 . 1 8 1 0 . 2 9 1 - 0 . 2 8 1 - 0 . 0 6 8 - 0 . 0 2 5 0 . 6 9 6 1.000

EIGENVECTORS :
VARIABLE 1 2 3 4 5 6 7

SP 0 . 4 0 6 7 7 0 . 5 6 9 4 3 - 0 . 1 4 3 2 9 0 . 1 5 3 6 6 - 0  . 0 4 1 9 0 - 0 . 6 3 6 0 5 - 0 . 2 4 4 6 1
GR 0 . 5 0 4 8 3 0 . 3 5 8 0 6 - 0 . 1 1 6 9 2 0 . 1 3 6 1 7 - 0 . 1 4 3 7 3 0 . 4 9 4 8 3 0 . 5 6 4 9 8
ILS - 0 . 3 2 1 0 3 0 . 4 7 8 3 0 - 0 . 1 7 3 1 7 0 . 0 9 3 1 7 0 . 7 2 1 8 7 0 . 2 9 3 9 2 - 0 . 1 4 8 3 5
ILM - 0 . 0 6 3 6 5 0 . 4 0 1 6 2 0 . 3 8 4 6 8 - 0 . 8 2 1 2 6 - 0 . 1 0 2 6 8 0 . 0 2 9 9 6 0 . 0 2 7 5 3
ILD - 0 . 0 3 2 3 9 0 . 1 3 8 8 1 0 . 8 6 8 1 4 0. .47388 0 . 0 3 0 3 0 0 . 0 2 2 6 8 - 0 . 0 0 5 7 5
DT 0 . 5 5 4 3 1 - 0 . 1 7 1 5 9 0 . 0 8 6 9 6 - 0 . 1 0 4 7 3 0 . 0 8 6 0 0 0 . 4 1 3 0 5 - 0 . 6 8 3 2 0
CALI 0 . 4 0 5 3 0 - 0 . 3 2 9 7 9 0 . 1 6 3 1 2 - 0 . 1 9 7 9 1 0 . 6 6 1 5 4 - 0 . 3 0 3 5 8 0 . 3 6 2 5 0

EIGENVALUES
2 . 7 3 2  1 . 2 3 2  1 .011 0 . 9 3 8 0 . 7 1 9 0 . 2 3 8 0 . 1 2 9

PERCENTAGE OF TOTAL VARIANCE CONTRIBUTED BY EACH EIGENVALUE

3 9 .0 3 3 %  17 .60 7%  14 .443%  13.400% 10 .2 68 %  3 .4 0 4 * 1.845%

T a b l e  4 T h e  c o r r e l a t i o n  m a t r i x ,  t h e  e i g e n v e c t o r s ,  t h e  e i g e n v a l u e s  a n d  t h e
p e r c e n t a g e  o f  e a c h  e i g e n v a l u e  t o  t h e  t o t a l  v a r i a n c e  o f  t h e  o r g i n a l  
d a t a  i n  w e l l  F F 1 2 .

| A ppendix  E
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THE CORRELATION MATRIX I S  : 

1 . 0 0 0  0 . 0 3 2 0 . 0 0 1 0 . 0 1 3 0 . 0 1 4 - 0 . 2 9 1 - 0 . 2 9 2
0 . 0 3 2 1 . 0 0 0 - 0 . 1 5 8 - 0 . 0 1 2 - 0 . 0 1 0 0 . 7 7 5 0 . 5 8 4
0 . 0 0 1 - 0 . 1 5 8 1 . 0 0 0 0 . 0 3 2 0 . 0 3 1 - 0 . 3 3 5 - 0 . 1 9 9
0 . 0 1 3 - 0 . 0 1 2 0 . 0 3 2 1 . 0 0 0 1 . 0 0 0 - 0 . 0 6 2 - 0 . 0 3 7
0 . 0 1 4 - 0 . 0 1 0 0 . 0 3 1 1 . 0 0 0 1 . 0 0 0 - 0 . 0 6 0 - 0 . 0 3 5

- 0 . 2 9 1 0 . 7 7 5 - 0 . 3 3 5 - 0 . 0 6 2 - 0 . 0 6 0 1 . 0 0 0 0 . 6 8 8
- 0 . 2 9 2 0 . 5 8 4 - 0 . 1 9 9 - 0 . 0 3 7 - 0 . 0 3 5 0 . 6 8 8 1 . 0 0 0

EIGENVECTORS :

VARIABLE 1 2 3 4 5 6 7

SP - 0 . 1 9 8 4 1 0 . 0 3 3 2 1 0 . 8 7 0 2 6 0 . 2 7 5 6 0 - 0 . 2 5 0 4 2 - 0 . 2 5 2 0 1 0 . 0 0 0 8 1
GR 0 . 5 0 7 1 8 - 0 . 1 1 6 6 9 0 . 2 8 4 1 1 0 . 3 7 6 3 6 0 . 3 7 5 7 3 0 . 6 0 4 6 6 0 . 0 0 0 5 5
ILS - 0 . 2 4 7 8 3 0 . 0 2 4 9 7 - 0 . 3 7 8 7 6 0 .8 7 6 5 3 0 . 0 1 0 5 7 - 0 . 1 6 1 4 8 - 0 . 0 0 0 4 9
ILM - 0 . 1 2 6 7 9 - 0 . 6 9 5 1 8 - 0 . 0 0 1 6 9 - 0 . 0 1 9 1 2 - 0 . 0 0 1 3 0 - 0 . 0 1 4 9 5 0 . 7 0 7 1 4
ILD - 0 . 1 2 5 4 2 - 0 . 6 9 5 5 1 - 0 . 0 0 0 3 5 - 0 . 0 1 8 9 7 - 0 . 0 0 1 9 7 - 0 . 0 1 5 1 9 - 0  . 7 0 7 0 7
DT 0 . 5 8 1 9 2 - 0 . 0 9 1 2 4 0 . 0 0 8 7 7 0 . 0 3 1 3 5 0 . 3 3 2 3 7 - 0 . 7 3 5 8 8 0 . 0 0 0 5 6
CALI 0 . 5 2 1 1 0 - 0 . 0 9 6 5 6 - 0 . 1 3 5 6 0 0 . 1 1 1 2 8 - 0 . 8 2 7 9 7 0 . 0 5 3 2 1 0 . 0 0 0 7 9

EIGENVALUES :

2 . 5 6 0  1 . 9 8 3  1 . 052 0 . 8 9 4 0 . 3 7 3 0 . 1 3 8 0 . 0 0 0

PERCENTAGE OF TOTAL VARIANCE, CONTRIBUTED BY EACH EIGENVALUE

36 .5 67%  28 .333% 1 5 . 034% 12 .773% 5. 327 % 1. 967 % 0.000%

T a b l e  5 The  c o r r e l a t i o n  m a t r i x ,  t h e  e i g e n v e c t o r s ,  t h e  e i g e n v a l u e s  a n d  t h e
p e r c e n t a g e  o f  e a c h  e i g e n v a l u e  t o  t h e  t o t a l  v a r i a n c e  o f  t h e  o r i g i n a l  
d a t a  i n  w e l l  F F 1 0 .

A ppendix  f ]
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APPENDIX F

FI-Abbreviations

BHC* BoreHole Compensated log

CALI* calliper log

CNL* Compensated Neutron Log

DFT Discrete Fourier Transform

dj* hole diameter

DST drill stem test

DT* transit time

FFT Fast Fourier Transform

GAPI Gamma American Petroleum Institute

GR Gamma Ray log

ILD* deep resistivity log
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ILM* medium resistivity log

ILS* shallow resistivity log

KB Kelley Pushing

LDL* Lateral Density Log

LIS* Log International Standard

LIS/A* Log International Standard Access

MM£FG/D million cubic feet of gas per day

PCA Principal Component Analysis

Rjnc mud cake resistivity

Rmf mud filtrate resistivity

Rs formation resistivity

Rt true resistivity

Rw formation water resistivity

SP Spontaneous Potential log

Sw water saturation

Sxo flushed zone resistivity

T.D total depth

Appendix F: Abbreviations
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F2-Svmbols Description

A original well-log varaibles matrix

c constant

COV covariance

D displacement

i imaginary number

X eigenvalues*

P principal component scores

R correlation matrix

rXy correlation of between two variables

variance-covariance matrix 

standard deviation

s2 variance

SP corrected sum of products

SS sum of squares

t time

U eigenvectors

Appendix F: Abbreviations



frequency

mean

* Schlumberger mark
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