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Dedication

To Lisa.

I love you.

I can't dance to a cold machine.



"Pull out! Pull out!. . .  You've hit an artery!"

'Even where the milder zone afforded man 

A seeming shelter, yet contagion there,

Blighting his being with unnumbered ills,

Spread like a quenchless fire; nor truth availed 

Till late to arrest its progress, or create 

That peace which first in bloodless victory waved 

Her snowy standard o'er this favoured clime’

Shelley, The Daemon of the World
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Summary

T cells play a major role in acquired immunity to the asexual erythrocytic stages of 

malaria parasites. In different host/parasite combinations there is evidence that human 

CD 4+ lymphocytes or their murine equivalent, Ly-4+, can act as helper cells in the 

production of protective Ab and also mediate cellular protective functions. The details of 

how the effector mechanisms operate in v ivo , however, are not understood clearly. 

There is indirect evidence supporting an important role for Ly-4-bearing lymphocytes 

in the protective immune response to Plasmodium chabaudi chabaudi AS strain, a good 

animal model of P. falciparum infection. Experiments were performed to examine the 

nature of the Ly-4+ response to this parasite both in vivo and in vitro in order to 

characterise the cells responsible for the mediation of protective activity.

Initial studies showed that during the course of a primary infection of P. c. chabaudi AS, 

there was a marked transient lymphocytosis in the peripheral blood, which occurred at a 

time just after peak parasitaemia (d 12-13 p.i.). The adoptive transfer to syngeneic

NIH recipients of either peripheral blood or splenic lymphocytes taken from donors at

this early stage of infection conferred protection against homologous challenge. This was 

manifested in both competent and sublethally irradiated recipients as a reduced level and 

quickened remission of primary parasitaemia, and as a more rapid clearance of pRBC 

from the blood stream, compared to control mice receiving unprimed lymphocytes. 

Although it was possible to transfer immunity with preparations enriched for either T 

or B cells, optimal protection was conferred by an unfractionated population containing

both lymphocyte phenotypes, suggesting that there was a degree of synergistic activity

between parasite-primed T and B cells in the control of malarial infection. This concept 

was supported further by examination of serum Ab titres for recipients of semi- 

immune T, B or T & B spleen cells. In each instance, the level of specific anti-P. c. 

chabaudi AS Ig reached a peak between d 31-33 p.i., at or just prior to recrudescence, 

but the highest titres were recorded for recipients of a mixed splenic population. Since 

serum Ig levels were quite low during the first wave of patent parasitaemia, it suggested 

that resolution of acute infection was achieved largely through Ab-independent 

mechanisms of immunity. This correlated well with a significantly quicker remission of 

primary parasitaemia observed in sublethally irradiated recipients of semi-immune T 

cells, compared to similarly treated mice receiving the same inoculum size of either B 

or T & B cells.
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To dissect further the protective immune response in this model, splenic T lymphocytes 

were taken from P. c. chabaudi AS strain-infected NIH mice on d 16 and d 20 of primary 

infection and after resolution of secondary and tertiary infections, and each of these 

preparations established as cell lines in vitro using a lysed extract of pRBC as the source 

of antigenic stimulation. All four lines were maintained in long term culture and all 

proliferated specifically in response to P. c. chabaudi AS Ag processed and presented by 

syngeneic APC. It was shown that recognition of the APC/Ag complex by T cells was an 

MHC class ll-restricted phenomenon, each cell line requiring APC of compatible H-2 

haplotype for an in vitro proliferative response. By using surface immunofluorescence 

and the complement-mediated cytotoxicity assay, each line was characterised 

phenotypically as Ly-4+, i.e. belonging to the helper/inducer T cell subset.

In v ivo , adoptive transfer of each Ly-4+ line was effective in conferring protective 

immunity to naive and to immunocompromised mice. This was demonstrable, compared 

to controls given naive T and/or B cells, as both a reduced level and shortened duration of 

primary parasitaemia, and as a quicker parasite elimination. Inoculation of the P. c. 

chabaudi AS-reactive lines into non-immune mice challenged with genotypic or 

phenotypic variant pRBC indicated that there was a strain-specific element of the 

immunity transferred. Although mice were able to control infection with heterologous 

parasites, the greatest protection was conferred against challenge with the homologous 

pRBC to which the lines had been raised. For the two Ly-4+ lines taken from reinfected 

mice, the protective activity against P. c. chabaudi AS challenge upon adoptive transfer 

into adult-thymectomised, irradiated and bone marrow-reconstituted mice was 

improved significantly by the cotransfer of additional naive B cells. This suggested that 

these Ly-4-bearing lymphocytes act by Ab-mediated mechanisms in vivo. In contrast, 

the immune response of the two lines collected from primary P. c. chabaudi AS infection 

was similar in the presence or absence of B and/or other non-reactive T cells. It 

appeared that these lines may be B cell-independent in their reactivity in vivo. The 

divergent patterns of behaviour attained in vivo suggested a functional heterogeneity 

between the Ly-4+ lines.

Cloning by limiting dilution was performed for one line of each pair and the monoclonal 

populations shown to have a similar protective activity in vivo as the parent lines. The 

availability of P. c. chabaudi AS-specific Ly-4-bearing lymphocyte clones enabled 

investigation at the clonal level of the cellular properties underlying the varying 

immune responses observed in vivo. Assays were performed in vitro for lymphokine
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secretion and for helper T cell function. The results demonstrated that the Ly-4+ 

lymphocyte response to P. c. chabaudi AS pRBC is heterogeneous, in that distinct 

functions can be performed by different responding T cells. The reactivity in vitro of 

the lines and clones generally supported the concept of two functionally distinct Ly-4+ 

subsets. The populations shown to be B cell-independent in vivo secreted high levels of 

IL-2 and IFN-y upon antigenic stimulation in v itro , whilst the B cell-dependent cells 

produced IL-4 and acted as effective helper cells for Ab production in v itro . This 

suggests that these Ly-4+ lymphocytes fall into the two proposed helper T cell subsets, 

Th 1 and Th2, respectively. The differential synthesis of certain lymphokines appeared 

to correlate with the functional dichotomy between the various lines and clones to 

initiate humoral or cell-mediated immunity. It was noted that it was those lines derived 

at an early stage of primary P. c. chabaudi AS challenge that had the effector repertoire 

of the inflammatory-type TH1 Ly-4+ subset. Moreover, those lines taken after 

resolution of further infections displayed the helper activity for specific Ab production 

characteristic of TH2 cells of the Ly-4+ phenotype. This sequential appearance during 

the course of infection of TH1, then TH2 lymphocytes specific for P. c. chabaudi AS- 

infected RBC supported the hypothesis that for this malaria parasite, early resolution of 

parasitaemia may be Ab-independent but that the mechanism of final clearance coincides 

with the appearance of helper cells and specific Ig.

Using the same P. c. chabaudi AS/NIH mouse system, selective depletion of T cells using 

rat MAbs to murine Ly-2 and Ly-4 determinants revealed that the Ly-4-bearing 

population of lymphocytes is critically required for protection against erythrocytic 

infection. Mice lacking a Ly-4+ cell compartment suffered very high primary 

parasitaemias which they could not reduce below 18% for at least 60 d p.i.. In contrast, 

the removal of Ly-2-bearing lymphocytes from mice challenged with P. c. chabaudi AS 

did not affect parasitaemias significantly and they were able to clear infection with 

similar kinetics as immunocompetent control animals. Mice rendered Ly-4+ cell- 

deficient by adult thymectomy and anti-Ly-4 MAb treatment could have their ability to 

control blood stage infection restored by adoptive transfer, at the time of challenge, of 

the protective cell lines, but not of a similar number of naive splenic T cells. This 

demonstrated unequivocally the crucial role played by P. c. chabaudi AS-specific Ly-4+ 

lymphocytes in the protective immune response to the asexual erythrocytic stages of 

this malaria parasite.



CHAPTER ONE 

INTRODUCTION
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1.1 Historical perspective

Malaria is an ancient human affliction, with references in Egyptian hieroglyphics and in 

the Hindi vedic literature. Although Hippocrates was the first to describe the clinical 

disease, it was not until just over a century ago that the causative agent was discovered. 

Fortunately, discovery of a treatment was not so long delayed; quinine, a specific cure 

for the recognisable syndrome of clinical malaria, as opposed to other fevers, has been 

available for centuries. Quinine is a basic alkaloid isolated from the bark of the tree 

Cinchona legenaria. The cinchona bark was so named due to the spu rious association 

with the malarious wife of the Spanish Viceroy of Peru, the Countess of Chincon, who, in 

1629, was cured of the disease by treatment with powdered bark (Haggis 1941). On 

her return to Spain, knowledge of the beneficial properties of the bark went with her, 

and it was subsequently imported into Europe by Jesuits as Cardinal's powder 

(Gramiccia 1987).

From early times, malaria, or 'ague' (blight) as it was originally called, was associated 

with marshes, the breeding ground for the mosquito vector. This association is reflected 

in the old names, marsh fever or paludism (from the French word for 'marsh'), whereas 

malaria is a relatively recent name, its first use being attributed to Horace Walpole in 

1740. Malaria is a corruption of the Italian 'mal aria’ meaning 'bad air' and reflects a 

traditional view that the agent responsible for the disease wafted in the noxious effluvia 

emanating from these wet regions.

At its zenith, malaria transmission occurred over most of the inhabited world. With 

such a long human association and wide geographical distribution, malaria has affected 

most civilisations and human populations, causing incalculable morbidity and mortality. 

The agricultural and economic development of many nations has been greatly influenced 

by the disease, as has world history as a whole, especially at times of large population 

movements and during warfare (documented for Europe by Bruce-Chwatt & De Zulueta

1980).

Another consequence of the long established and potentially fatal host-parasite 

interaction is the effect malaria has had on the human genome. Several RBC phenotypes 

have been described in which the heterozygous condition appears to confer some 

protection against early death and is balanced against a lethal homozygous phenotype 

(reviewed by Pasvol & Wilson 1982, Weatherall 1987, Nagel & Roth 1989). The 

concept of balanced polymorphism arose from Haldane's consideration of the probable 

impact that malaria has had in maintaining sickle-cell anaemia in Africa (Haldane
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1949). In the Western World, however, the debilitating impact of these common and 

widespread genetic diseases is far more important than malaria itself.

Throughout time, malaria has had a role to play in war, most notably during World War

II. For the U.S. Army campaigning on the Pacific front, there were as many losses to this 

one disease as there were casualties of battle, an event repeated in Vietnam a generation 

later. Such was the crippling effect of malaria on the U.S. war effort that it was to 

determine anti-malarial strategy for almost two decades. After the remarkable initial 

success of the spraying of the residual insecticides dichloro diphenyl trichloroethane 

(DDT) and hexachlorocyclohexane (HCH) and of the newly available safe blood 

schizonticidal drugs in dramatically curbing the transmission of the disease, in 1955 

the WHO initiated a policy of global malaria eradication. Large scale spraying of 

insecticides, the mainstay of the programme, contributed to the subsequent elimination 

of malaria for an estimated 400 million people and eradicated the disease in most 

temperate regions (Nogeur £ ia i 1978). Unfortunately, in the last 15 years there has 

been an alarming resurgence of malaria, with a 2.3-fold increase in prevalence, and it 

now appears that the potential for transmission may be close to its original level 

(Bruce-Chwatt 1979). Today, malaria is still the most important infectious disease in 

the world, remaining endemic in 102 countries, placing over half the world's population 

at risk (Tropical Diseases Report 1989). There are an estimated 110 million malaria 

infections each year (WHO 1990) and one or two million deaths, mostly of infants and 

children (Anonymous 1975, WHO 1990).

The overly optimistic notion that malaria could be eradicated primarily by DDT spraying 

limited enthusiasm for basic biomedical research in malaria during the 1950s and 

1960s. The apparent imminent demise of a once important disease removed the 

necessity for training scientists in malariology. It took 10 more years and the Vietnam 

war to halt this trend. The renaissance of malariological research occurred at a time 

when there was a gradual extension of resistance in mosquitoes to insecticides and in 

parasites to drugs. Attention in the 1970s was paid primarily to detecting and testing 

new chemical formulations for insecticidal or parasiticidal properties. The 

intensification of research demanded ever increasing supplies of plasmodia, particularly 

those that infect man, emphasising the need for reliable in vitro cultivation techniques. 

In 1976, the asexual erythrocytic cycle of Plasmodium falciparum was successfully 

cultured (Trager & Jensen 1976, Haynes e la i  1976), representing a major 

breakthrough in facilitating the study of the parasite under laboratory conditions.
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Various recent technological achievements have revolutionised malaria research. They 

include hybridoma fusions, which have provided powerful reagents in the form of MAbs; 

and new techniques in protein chemistry and recombinant DNA technology. Basic 

research aimed at an improved understanding of the biology and immunology of malaria 

was intensified in the 1980s in the hope that potent malaria vaccines would soon be 

developed. At present, Ags from different stages of the parasites are being identified and 

isolated with the aim of determining immunogenic epitopes for multivalent synthetic 

vaccine development. The Plasmodium genome is being probed, not only in an attempt to 

understand the regulation of parasite macromolecular synthesis, but also with the aim of 

applying recombinant DNA methods in vaccine production.

1.2 The discovery of malaria parasites

The last 150 years has seen an explosion of knowledge about malaria as medical science 

has advanced. The first step towards identifying the aetiological agent of the disease is 

attributed to Meckel, a German pathologist, who, in 1847, described black granules 

(now known to be haemozoin, an insoluble waste product of malarial metabolism) in the 

blood, spleen and liver of cadavers of malaria victims (Harrison 1978). The critical 

finding that not only pigment but also the parasite itself was present in the blood of 

infected individuals was made by Laveran, a doctor in the French Army, when posted to 

Algeria. In 1880, Laveran first described the crescent-shaped bodies now known to be 

the gametocytes of Plasmodium falciparum in the blood of a malarious patient, and this 

finding was subsequently confirmed by Marchiafava & Celli (1883). The next 

development was made by Ross in implicating the female mosquito in malarial 

transmission. Whilst working in India, Ross first described malarial stages in the 

stomach of mosquitoes recently fed on infected blood (1897) and the next year he showed 

mosquito transmission of P. relictum. a malaria parasite of sparrows (Manson 1898). 

The same year, Grassi confirmed this finding for human malaria (reviewed by Garnham 

1966, Harrison 1978). The avian species continued to make a substantial contribution 

to malaria research, including the first demonstration of a cycle of development outside 

the RBC; James & Tate (1937) observed exo-erythrocytic schizogony in P. gallinaceum 

of chickens in the reticulo-endothelial cells of the bone marrow. However, it was not 

until after World War II that a tissue phase was documented for mammalian malaria. In 

1948, Shortt & Garnham described the pre-erythrocytic forms of P. cynomolqi in the 

liver of a rhesus monkey (Shortt & Garnham 1948 a), and similar forms were soon
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found in the livers of human volunteers infected with P. vivax and P. falciparum (Shortt 

& Garnham 1948 b, Shortt M a i 1951). The recurrence of clinical P. vivax malaria a 

considerable time after initial infection led to the postulation of a resting stage of the 

parasite (Shute M a i 1976). Moreover, Krotoski M a i (1980, 1982 a) discovered 

dormant stages (hypnozoites), developed from a subpopulation of sporozoites in the liver 

of rhesus monkeys infected with P. cvnomolgi bastianelli. With this finding of relapse 

parasites, the last intracacy of the life cycle of the malaria parasite may have been 

revealed.

1.3 Classification

Since the first discovery of the causative agents of malaria, more than 100 species of 

Plasmodium have been described in a wide range of vertebrate hosts such as primates, 

rodents, birds and reptiles, each parasite exhibiting a narrowly defined host specificity. 

The vertebrate represents the intermediate host of the parasite, the sexual stages of the 

life cycle taking place in the body of female mosquitoes, of the genus Anopheles and Culex 

for mammalian or avian and reptilian infections, respectively. Four species of 

Plasmodium commonly infect man: P. falciparum. P. vivax. P. malariae and P. ovale. Of 

these, the first is the most important as it is responsible for malignant tertian or 

falciparum malaria, which causes the most fatalities and morbidity. In addition, a 

naturally acquired infection of P. knowlesi has been recorded (Chin M a i 1965) and 

other zoonotic infections are likely to have occurred unnoticed.

Malaria parasites belonging to the genus Plasmodium are classified in the Phylum 

Sporozoa (parasites having a resistant spore, or stage derived from the spore, which 

contains sporozoites), Class Telosporea (sexual reproduction and sporozoites), Subclass 

Coccidia (mature trophozoites small and intracellular), Order Eucoccidia (schizogony, 

asexual and sexual reproduction) and Suborder Haemosporina (two hosts, with asexual 

development in a vertebrate and sexual reproduction completed in a dipterous insect) 

(Honigberg M a i 1964).

1.4 Life cycle

Infection of the mammalian host is initiated by the bite of an infected female anopheline 

mosquito and the inoculation into the bloodstream of motile sporozoites contained in the 

insect’s saliva during the taking of a blood meal. The inoculum size is small, averaging 

15 sporozoites in one study (Rosenberg M a i 1990). The sporozoites remain in the
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peripheral blood for between 15-60 min (Fairley 1947, Sinden & Smith 1982) before 

sequestering to the liver, where they enter hepatocytes, either directly (Shortt 1948, 

Shin £ la i  1982), or indirectly after uptake by phagocytic Kupffer cells (Smith e ia i

1981). Once within the hepatocyte, the parasites develop into exo-erythrocytic 

schizonts (Garnham £ ia i 1966) by asexual multiplication. When mature, each schizont 

and its host cell rupture, discharging around 30,000 haploid merozoites in the case of 

Plasmodium falciparum. Mammalian malaria parasites are thought to undergo only one 

cycle of exo-erythrocytic multiplication, this taking between 5.5 and 15 d for human 

malarias, depending on the species. In P. falciparum and P. malariae infections, tissue 

schizogony follows directly sporozoite invasion. However, for P. vivax and probably fL, 

ovale infections, a proportion of the sporozoites first develop into the latent hypnozoite 

form which is responsible for producing relapses (Krotoski £ ia l  1982 a & b). The 

stimulus for resumption of growth of hypnozoites is unknown but is thought to be 

predetermined (Bray & Garnham 1982).

The released merozoites enter the bloodstream, where they rapidly invade RBC and begin 

an asexual cycle of parasite multiplication. The merozoite attaches to an RBC and 

orientates itself so that the apical complex comes into contact with the RBC membrane, 

probably via a species-specific receptor. For the human malarias P. vivax and fL  

falciparum, these receptors are known to be associated with the Duffy blood group Ags 

(Miller £ i a l  1975 b) and glycophorin (Miller e l  a i  1977, Perkins 1981), 

respectively. After attachment of the merozoite, the RBC membrane thickens and forms 

a junction with the merozoite's plasma membrane (Aikawa e ia i 1978). The parasite 

releases material from its rhoptries and micronemes, causing the RBC membrane to 

invaginate, when the junction moves over the parasite which enters the invagination 

until it lies completely enclosed within the parasitophorous vacuole (Dvorak £ ia i 1975, 

Aikawa £ ia l  1978). During the entry process (reviewed by Mitchell & Bannister 

1988), the surface coat of the merozoite is sloughed off (Bannister £ ia i 1975, Miller 

£ ia i 1975 a). After uptake into the RBC, the parasite develops a vacuole and becomes a 

ring stage, so called because of the signet ring-like morphology upon examination of 

Giemsa's stained bloodsmears. The ring stage feeds on host cell cytoplasm (mostly 

haemoglobin), the vacuole disappears and the parasite enlarges, producing malarious 

pigment, to become an amoeboid trophozoite. Asexual multiplication (schizogony) begins 

with the repeated division of the parasite nucleus within the intact nuclear membrane. 

The parasite then segments to form a schizont containing between 8-32 merozoites,
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depending on the species. In ail cases, as many merozoites are formed as there were 

nuclei, each new merozoite regaining its surface coat (Bannister 1977). After 

vesiculation and swelling of the pRBC membrane, the erythrocytic schizont bursts, 

releasing the merozoites which invade further RBC (Dvorak £ la i 1975). The length of 

the asexual erythrocytic cycle depends on the species of malaria parasite: one cycle takes 

24 hr in R, gjiabaudi chabaudi. 48 hr in P. falciparum. P. vivax and P. ovale, and 72 hr 

in P. malariae. The asexual process is relatively synchronous in the natural host, and 

for some parasite species in laboratory-adapted hosts; in such synchronous infections, 

rupture of infected cells and merozoite release gives rise to the clinical manifestations 

of alternating fever and chills characteristic of malaria (Hawking £ ia i 1968).

The pRBC membrane is often altered during the later stages of parasite growth, as shown 

by electron microscopy studies (Brown & Hockley 1966). The observation of electron- 

dense plaques beneath the membrane during parasite growth (Aikawa 1971, 1977, 

Wunderlich £ ia l 1982) has been shown in P. knowlesi to correlate with the appearance 

of parasite specific Ags on the pRBC surface (Wunderlich £ ia i  1982). Also, the 

membrane of P. falciparum-infected RBC may develop knob-like protrusions during the 

late trophozoite and schizont stages of the asexual erythrocytic cycle (Trager £ ia l  

1966). These knobs are thought to be implicated in the sequestration of pRBC in the 

capillary beds of vascular tissue which protects these stages from passage through the 

potentially hostile environments of the spleen and liver (Luse & Miller 1971). Loss of 

knobs during in vitro culture of P. falciparum is associated with a loss of antigenicity 

(Langreth & Reese 1979).

Upon RBC reinvasion, rather than undergoing asexual replication, a proportion of 

merozoites differentiate, without cell division, into the sexual stages or gametocytes 

within the host RBC (gametocytogenesis). The stimulus which directs a merozoite into a 

sexual rather than an asexual cycle is not known, but both micro- and macrogametocytes 

can be found in an infection initiated with a single parasite (Carter & Walliker 1975). 

The time for a newly invaded merozoite to mature into a ripe gametocyte is usually 6-12 

hr longer than that for erythrocytic multiplication, P. falciparum (10 d) proving an 

exception. Hawking £ la l (1968) showed that, in synchronous infections of several 

species of Plasmodium, gametocytes matured and had a peak of infectivity for the 

anopheline mosquito during the night. They hypothesised that this represented a 

mechanism whereby their presence in the peripheral circulation coincided with the 

feeding behaviour of the nocturnal mosquitoes, so facilitating transmission. The sexual
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cycle is completed when a female mosquito (of a suitable species) ingests circulating

gametocytes when taking a blood meal from an infected individual. When the mature

gametocytes are taken into the mid gut of the vector, they lose the RBC membranes and 

undergo gametogenesis. Within 10 min, the male microgametocyte divides mitotically 

three times (Sinden 1981) and exflagellates, releasing eight long, thin , flagellated 

microgametes. These swim towards, and ultimately fertilise, the macrogametes, so 

forming diploid zygotes. In each instance, the spherical zygote transforms into a motile 

ookinete which, within 24 hr, crosses the gut wall, usually passing intracellularly 

through the mid gut epithelium, and develops into a haploid oocyst between the gut 

epithelial layer and the basal lamina of the mosquito mid gut wall (Sinden & Strong 

1978). The point at which meiosis takes place is unknown, but it is probably in the

zygote soon after fertilisation (Phillips 1983), the parasites being otherwise haploid

throughout the life cycle. Over the next 10-16 d (depending on external environmental 

conditions), the oocyst divides many times so that when it ruptures up to 10,000 

sporozoites are liberated into the haemocoel (reviewed by Russel £ ia l  1963). The 

motile sporozoites migrate and penetrate into the lumen of the mosquito's salivary 

glands, in so doing becoming infective to the vertebrate host (Vanderberg 1975) and 

remaining viable indefinitely until discharge during one of frequent blood meals. Figure

1.1 illustrates schematically the life cycle of a mammalian malaria parasite.

Although there is no suitable experimental evidence, it seems that P. malariae is able to 

evade complete elimination by the host's protective immunity since its life span in man 

is known to reach decades. The life span of P. vivax is commonly estimated to be 3-4 

years. Since the hypnozoites in vivax malaria are sheltered against immune attack, the 

host’s immune response probably only affects the level of parasitaemia and the clinical 

manifestations of infection and not the survival of the parasite itself. The same can be 

expected to apply to P. ovale malaria. In contrast, P. falciparum infections tend to 

become shorter as the immune response of the host increases. This is not surprising 

since, as the plasmodia are confined to the blood after completing the exo-erythrocytic 

tissue phase, immune factors exert a major impact on the survival of the parasites 

(WHO 1987). It is generally considered that P. falciparum has a longevity of no longer 

than 12 months in the human host, although infections of up to 4 years have been 

reported from Mauritius (Verdrager 1964). Observations of Bekessy £ ia i  (1976) in 

Nigeria have shown that high immunity in areas with intensive malaria transmission 

increases the natural rate of recovery from infection by a factor of 10, and that it
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reduces the period of patent gametocytaemia. Thus, under natural conditions, it is 

impossible to consider the life span of P. falciparum in man separately from immune 

factors.

1.5 The clinical disease

Despite being such a widespread and prevalent infection which causes enormous 

morbidity and mortality, the clinical course of malaria is relatively straightforward. 

Most illness and death is associated with acute infection, though some fatalities result 

from unusual chronic immunologically based sequelae. Plasmodium vivax and P. ovale 

usually cause only temporary morbidity, whilst P. malariae infections result in 

nephrosis and splenomegaly. Host mortality is almost entirely produced by P. 

falciparum. Cerebral malaria is the most important and well recognised manifestation 

of such severe disease (Spitz 1946), which may also involve anaemia, jaundice, 

pulmonary oedema, hypoglycaemia and acute renal failure. Secondary infections, 

especially Gram negative septicaemia, are not uncommon (WHO 1990) and are probably 

the usual cause of 'algid' malaria.

In synchronous infections, most of the pathogenesis (fever and acute symptoms) is 

caused by the multiplication and subsequent release of merozoites from pRBC. After a 

variable incubation period (8-14 d) for P. falciparum, the patient develops headaches, 

general body pains, nausea and gastrointestinal disturbances. None of these clinical 

features are themselves diagnostic of malaria as opposed to acute febrile illnesses. 

However, the presence of parasites in the blood causes fevers which occur with a 

distinctively regular periodicity. P. falciparum has a 48 hr asexual cycle in the 

peripheral circulation and, correspondingly, in many patients a regular tertian fever 

may occur. The bouts of paroxysms characteristic of malaria fever are associated with 

the synchronous bursting of schizont-infected pRBC, which releases much antigenic 

parasite and altered host material into the blood stream. This, in turn, causes the 

secretion of endogenous pyrogens (such as cachectin or TNF) from monocytes into the 

peripheral blood. The feverish period typically lasts less than half a day, and is 

characterised by a high temperature, when the patient feels cold with intense shivering 

and rigors, and a hot phase of marked sweating. During this period, the affected 

individual feels acutely unwell, but between paroxysms the patient may feel quite 

normal (Kitchen 1949). It has recently been suggested that malaria fever may be of 

mutual benefit for parasite and host (Kwiatkowski & Greenwood 1989). This is based on
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the observation that unconstrained plasmodial growth in the acute phase of infection 

would be fatal for both host and parasite, since the transmissible gametocyte forms take 

some time to mature. Therefore, both the infective Plasmodium and its mammalian host 

have growth constraints which do not require immunological pre-exposure; such 

constraints may include fever and the non-specific host defence mechanisms (e.g. 

cachectin/TNF release) with which it is associated. Malarial synchronisation, which 

occurs at febrile temperatures (Kwiatkowski 1989), enables the fever to show classical 

periodicity, and is seen as an escape mechanism if the host response becomes too 

vigorous.

If the parasitaemia is allowed to rise unchecked by natural or acquired resistance or by 

drug treatment, the patient will become severely ill. The severity of the disease is 

usually proportional to the number of pRBC (Field & Niven 1937). The most obvious 

effect on body function is on the blood, since RBC are destroyed directly by the parasite. 

The development of anaemia is due to the phagocytosis of both pRBC and nRBC (Rosenberg 

f i la i  1973, Seed & Kreier 1988), particularly in the liver and spleen, which, in turn, 

leads to enlargement and tenderness of both these organs. If RBC destruction is intense, 

the released intracellular debris may form immune complexes which affect renal 

function and can lead to complete renal failure. Free haemoglobin may be liberated into 

the plasma, which is then excreted, a condition known as haemoglobinuria.

As P. falciparum reaches the late trophozoite stage, it induces changes in the pRBC 

surface membrane, causing it to become more adhesive to the endothelial cells of the deep 

tissue vasculature. When the capillaries become blocked with pRBC, it prevents normal 

blood flow; the resulting haemorrhaging contributes further to blood loss through 

anaemia. The occlusion of blood vessels increases the anoxia already resulting from a 

decreased blood flow (the haematocrits of anaemic individuals may fall below 20%; 

Phillips £ ia i  1986), and is partly responsible for the pathogenicity of P. falciparum. 

In the brain, blockage of capillaries causes cerebral dysfunction, the most severe 

complication of P. falciparum infection in man. Cerebral malaria may progress slowly 

after initial symptoms, or develop rapidly resulting in convulsions, nervous disorders 

and eventually coma. As only a small proportion of examined cadavers of patients 

presenting with cerebral malaria show evidence of high peripheral parasitaemia or 

severe anaemia, there is some dispute over both the pathophysiology and actual aetiology 

of cerebral malaria (reviewed by Phillips & Warrell 1986, Warrell 1987).

Malaria infection has also been implicated in the incidence of tropical splenomegaly
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syndrome (reviewed by Greenwood 1979), Burkitt's lymphoma (Deldorf f i ia l  1964, 

Burkitt 1969), spontaneous abortion (Herd & Jordan 1981) and the incomplete 

response to vaccination shown by malarious children (McGregor & Barr 1962) 

(immunopathology reviewed by Marsh & Greenwood 1986). However, there is as yet no 

evidence that immunosuppression caused by Human Immunodeficiency Virus (HIV) leads 

to major complications or reactivations (Fleming 1990, Lucas 1990). Unfortunately, 

by being a potent cause of anaemia, malaria enhances transmission of HIV to children 

through blood transfusion (Greenburg £ija l 1988).

Over several weeks, an untreated attack which has not proved lethal will cause less 

noticeable symptoms until it becomes clinically inapparent. Symptomatic recurrences 

can occur for several months or years after the acute episode; either as a recrudescence 

from a subpatent, asymptomatic blood stream infection, or as a relapse originating from 

dormant liver hypnozoites (reviewed by Krotoski 1989). This pattern of disease is well 

documented in non-immune adults living in areas with unstable, seasonal or epidemic 

malaria transmission. However, in holoendemic areas with high levels of transmission, 

heightened acquired immunity makes this relationship between parasitaemia and clinical 

disease less clear-cut. In such situations, the main impact of malaria is on young 

children (Edington 1967). In the Gambia, death commonly occurs under the age of five, 

and children experience about one clinical episode per annum till at least seven years of 

age (Greenwood f iia l 1987). In adolescence and adulthood, parasites are still present in 

the blood but these people mostly remain asymptomatic.

1.6 Chemotherapy

None of the available anti-malarial drugs are effective against all stages of the malaria 

parasite found in the vertebrate host, but have a selective action on different phases of 

the Plasmodium life cycle. Tissue schizonticides eliminate developing exo-erythrocytic 

schizonts and some of these are effective against hypnozoites, whilst blood schizonticides 

act on asexual erythrocytic stages. Drugs with gametocytocidal activity destroy the 

sexual forms of the parasite, and sporontocidal treatments prevent sporozoite production 

by inhibiting the development of the oocyst in the mosquito, thereby blocking parasite 

transmission. The choice of anti-malarial drug for use in man will depend on whether it 

is for prophylaxis (i.e. to prevent or suppress clinical malaria; causal prophylactics) 

or for curative purposes (i.e. to treat acute clinical disease and/or to eliminate tissue 

stages). For this latter case, the treatment priorities in severe and uncomplicated cases
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have to be distinguished. In life-threatening infections (usually only P. falciparum^, 

the objective of treatment is to save life; considerations such as prevention of late 

recrudescent patencies or minor toxicity would be irrelevant in this context. In 

uncomplicated malaria, where death is most unlikely, these considerations assume 

greater importance, and may well influence the choice of therapy. Causal prophylactic 

drugs kill early but not late liver stages and prevent the establishment of the parasite in 

the bloodstream. The type of infection will also affect the selection of chemotherapy; E* 

vivax or P. ovale infections require the use of a drug effective against hypnozoites, while 

P. falciparum or P. malariae do not. The addition of gametocytocidal or sporontocidal 

drugs to a standard therapeutic regimen may help to decrease the spread of drug 

resistant plasmodia. No anti-malarials currently available are effective against 

sporozoites.

After its introduction into Europe in the mid 1600s, the cinchona alkaloid quinine 

remained the standard remedy for malaria till well into this century. During the 1930s 

and 1940s, it was largely replaced by chloroquine and other synthetic compounds that 

are more efficacious and less toxic (Geary & Jensen 1983). However, with increasing 

resistance of some malaria parasites to these compounds, quinine, a fast acting blood 

schizonticide, has returned to occupy an extremely important niche in malaria 

chemotherapy. Resistance to quinine, although still rare, is a potentially devastating 

problem.

Chloroquine is the prototype member of the 4-aminoquinoline class (reviewed by 

McChesney & Fitch 1984), which, like quinine, acts by inhibiting parasite DNA and RNA 

synthesis by intercalating with DNA. Introduced in 1945, chloroquine was the mainstay 

of global malaria chemotherapy for nearly two decades. The drug's low expense, low 

toxicity and high efficacy in combination with the use of vector control programs led to 

impressive gains against malaria during the 1950s and 1960s. The development and 

spread of chloroquine resistance greatly eroded this achievement and was partially 

responsible for the return of P. falciparum to cleared areas. Chloroquine is a rapid 

blood schizonticide and can be used as both a preventative and as a curative drug. It 

remains the drug of choice for the treatment of P. malariae infection, and, with 

primaquine, of ovale and vivax malaria. For falciparum malaria, it is still the best drug 

for infections that retain sensitivity to it, in which case, it is curative.

Primaquine is an 8-aminoquinoline, which, in vivo, is broken down to the active agent 

diquinone, an analogue of ubiquinone, which is found in the respiratory chain, and hence
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may disrupt malarial energy metabolism. It affects all mammalian stages of malaria 

parasites. Killing of exo-erythrocytic stages and gametocytes are the most important, 

and these actions provide the clinical rationale for use. Although use of primaquine has 

been restricted since it became commercially available in 1951 due to toxicity to the 

host, it is used to give a radical cure of P. vivax and P. ovale infections, as it destroys 

persistant liver stages.

Proguanil (introduced in 1948), a biguanide, and pyrimethamine (introduced in 

1952), a diaminopyrimidine, share a common mechanism of action, inhibition of the 

dihydrofolate reductase-catalysed conversion of dihydrofolate to tetrahydrofolate, an 

important cofactor in parasite metabolism. For this reason, they are known as anti

folate drugs. They kill the early tissue stages, especially of P. falciparum, and hence are 

used for prophylaxis. Both drugs have a blood schizonticidal action, but often too slow to 

be useful in treating acute malaria attacks.

Sulphonamides and sulphones were initially developed in the 1940s as anti-bacterial 

agents, but have been found to possess useful anti-malarial properties. This is because 

they, or compounds derived from them in vivo, act as analogues of the essential growth 

factor para-amino benzoic acid (PABA), thereby blocking the synthesis of dihydrofolate 

and ultimately of tetrahydrofolate. The most important so-called PABA antagonists are 

dapsone and sulphadoxine, which have proved useful as blood schizonticides in treating 

infections of chloroquine resistant P. falciparum, especially when used in combination 

with pyrimethamine (FansidarR).

The arylaminoalcohol compounds mefloquine and halofantrine were the first new anti- 

malarials to be clinically tested in over 30 years, the former being first marketed in 

1984 (Rinehart £ ia l  1986, Cosgriff £ ia l  1982). They are both potent blood 

schizonticides which are highly effective in the treatment of acute malaria and have 

demonstrated efficacy against multi-drug resistant strains of P. falciparum. Since 

mefloquine has a very similar chemical structure to quinine, resistant strains of JL. 

falciparum are already appearing (Boudreau sla[ 1982, Bygbjerg £ ia l 1983). It may 

be, therefore, that halofantrine, still in clinical development, may take a leading role in 

malaria chemotherapy in the next decade.

Artesiminine (qinghaosu), the active principle of the Chinese medicinal herb Artemisia 

annua, is an emerging anti-malarial which is structurally novel and is thus anticipated 

not to have any cross-resistance with other available drugs. The parent compound, a 

water soluble succinate derivative (artesunate) has proved a dramatically effective
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anti-malarial (China cooperative research group on qinghaosu and its derivatives as 

antimalarials 1980, 1982). Their rapidity of action in the treatment of P. vivax and 

chloroquine resistant strains of P. falciparum (White 1988) makes them attractive 

prospects for the therapy of severe and complicated malaria, but detailed 

pharmcucological and clinical studies are needed before wider use.

1.7 Drug resistance

Malarial drug resistance has been defined as the 'ability of a parasite strain to survive 

and/or multiply despite the administration and absorption of a drug given in a dose equal 

to or higher than those usually recommended but within the limits of tolerance of the 

subject' (WHO 1965). Drug resistance in the field is usually in relation to the asexual 

erythrocytic stage of Plasmodium falciparum. Whereas 30 years ago sensitivity of 

infecting parasites was the norm, the resistance of P. falciparum to drug treatment has 

probably become the most important threat to effective control of malaria today. It has 

largely arisen through a combination of massive anti-malarial drug deployment and a 

failure to combat transmission of the disease.

Chloroquine and other 4-aminoquinoline compounds have been the mainstay in the 

treatment of symptomatic cases of falciparum malaria, and have been particularly 

important in regions where insecticide application inside residences has been 

impractical or ineffective. Unfortunately, the report in 1961 by Moore & Lanier of two 

cases of chloroquine resistant P. falciparum malaria from Colombia heralded what has 

become a rapidly expanding problem in many countries where the disease is endemic. 

The other plasmodia that infect man have remained sensitive to chloroquine and it 

continues to be the drug of choice in the treatment of these infections. Recent case 

reports of chloroquine resistant falciparum malaria from East Africa (Fogh £ la i  1979, 

Weniger £ ia l 1982) forbode a potential major problem on that continent, where most 

strains apparently continue to be sensitive to chloroquine, but resistance to which is 

becoming a problem, even in West Africa (Phillips, R.S., personal communication). It 

is now known that chloroquine resistant strains frequently also develop resistance to the 

closely related amodiquine and to mepacrine (now obselete), and, in some instances, 

become less sensitive to quinine (Peters 1987 a). Multi-drug resistant parasites are 

now widespread. As there is no fully adequate alternative drug to quinine, if resistance 

were to spread, procedures now in their infancy, such as exchange transfusion or 

immunotherapy, may have to be evaluated (Phillips, R.S., personal communication).
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The second string treatment for chloroquine resistant falciparum malaria which is being 

used extensively is a combination of antagonists of parasite folate metabolism, 

sulphadoxine and pyrimethamine, marketed under the name FansidarR. It has been an 

effective chemoprophylactic and therapeutic regimen but already has been identified as 

ineffective in some regions; indeed, in Thailand, FansidarR has lost most of its efficacy 

after 10-15 years of use (Peters 1987 a). This was probably precipitated by its being 

freely available on the black market in the Far East (Hurwitz M a i  1981). 

Nevertheless, there are some areas, notably East Africa, where the drug is effective and 

the simplicity of single dose therapy makes it an attractive alternative to quinine.

When clinical trials for mefloquine took place, it was hoped it would become an 

established anti-malarial effective against multiple resistance infections; initially it 

proved so (Trenholme M a i 1975), but unfortunately, resistance had already been 

reported well before widespread use. In order to 'protect' mefloquine against the 

development of resistance, it has been recommended that it be used in combination with 

other drugs (WHO 1984).

The resistance problem has encouraged research into new compounds, spearheaded by the 

clinical development of halofantrine. In a recent study, Robinson & Peters (1985) 

demonstrated the resistance to halofantrine of the RC line of the murine malaria £* 

berghei. This parasite line has a similar resistance to mefloquine (Peters M M  1977). 

Although it has been proposed that failure of a compound to cure infection with 

berghei RC parasites does not indicate that it will be of no value against chloroquine 

resistant P. falciparum, it does suggest that there is a serious risk that the latter will 

become rapidly resistant to the new compound (Peters M M  1975). Experience to date 

with mefloquine supports this hypothesis (Peters 1987 b). The grim conclusion drawn 

is that a high risk exists that multiple resistant P. falciparum could rapidly become 

resistant to halofantrine also. Since current clinical trials seem to confirm that 

halofantrine may find a place in the therapy of malaria infection, steps should be taken 

to find an appropriate partner compound that would be suitable for deployment with 

halofantrine, so preventing the widescale use of this new anti-malarial on its own.

The other three malaria parasites of man are much simpler to treat, or to protect 

against, as they are never life-threatening and drug resistance is not such a problem. 

The only difficulty is that most blood schizonticides, such as chloroquine, have no effect 

on the hypnozoites of P. vivax and P. ovale. Primaquine has to be used to produce radical 

cure but can cause significant haemolysis in people with glucose-6-phosphate
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dehydrogenase (G6PD) deficiency; it is no coincidence that the distribution of malaria 

correlates with that of this genetic defect, probably conferring a protective benefit on 

the heterozygous condition (reviewed by Weatherall 1987).

1.8 Laboratory models for malaria research

Research into human malarias involving the natural host is sanctioned only in the final 

stages of vaccine or drug trials. Although several species of non-human primates are 

partially susceptible to infection with human plasmodia, for practical and ethical 

reasons the use of such models is difficult to justify on a regular basis. For this reason, 

various species of rodent, avian and non-human primate plasmodia are used as

laboratory models, offering the opportunity to study the biology of the parasite at the

cellular and molecular levels in different hosts.

The similarity between human and non-human primate malarias in theory makes the 

latter the preferred models for laboratory use. For the plasmodia of the higher apes 

(chimpanzees, gorillas, orangutans and gibbons), the considerable expense involved in 

obtaining and maintaining these rare hosts precludes their general use for malaria 

research. Of the malaria parasite species that develop in the more readily available 

monkey hosts, Plasmodium knowlesi and P. cvnomoloi have been widely used. The 

natural host for both is the Old World monkey, the common Kra (Macaca fascicularisl. 

found in the jungles of South East Asia. Nearly all laboratory investigations with these 

parasites have employed the rhesus monkey, Macaca mulatta. The New World monkeys 

Aotus trivirgatus and Saimiri sciureus infected with P. brasilianum and P. simium have 

also been used (reviewed by WHO 1987).

Much recent work, mainly by Collins and his colleagues (eg. Collins £ ia l  1983), has 

examined the suitability of models for vaccine studies in monkeys. P. falciparum and E. 

vivax have been adapted to develop in new and more susceptible (sub)species of Aotus 

and Saimiri. Unlike the simian parasites in macaques, which infect their natural hosts 

on a predictable basis, the human malarias require long periods of adaptation if 

predictable results are to be obtained. Certain isolates have become highly virulent 

after several blood passages, and have lost their ability to infect mosquitoes. Infection 

from mosquitoes is rarely obtained by feeding on intact monkeys, successful infections 

following sporozoite inoculation being greatly enhanced by splenectomy (Garnham 

1966). In splenectomised simians, the host is altered immunologically and this makes 

vaccine studies extremely difficult to interpret.
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There has been recent interest in a Plasmodium parasite able to infect the common 

marmoset, Callithrix jacchus: this was first thought to be P. vivax (Mitchell £ ia l  

1988), but is now thought to be P. malariae (Mons & Sinden 1990). This model would 

be a step forward in malarial research as it represents the successful adaptation of a 

human malaria parasite to an intact, commonly available primate. For the most part, 

however, the use of primates in the laboratory is severely restricted.

The difficulties of working with primate malaria parasites and human malarias adapted 

to other primates have meant that numerous species of Plasmodium infective to birds 

and rodents have been used widely to study the biology of plasmodia. In the 1920s, fL  

cathem erium  from the American house sparrow and P. relictum from a variety of 

passerines were found to infect canaries. These two species provided the basis of 

experimental work on avian malarias, including the screening of compounds for anti- 

malarial activity (Richards 1984). However, with the availability of P. gallinaceum 

and P. lophurae as experimental parasites, young chickens and ducks became the hosts of 

choice in the laboratory. The major drawback of these model organisms is their 

uncertain phylogenetic relationship with human plasmodia, which undermines their 

relevance as biochemical or molecular models. Despite certain similarities between £* 

fa lc iparum  and avian plasmodia (Sinden 1978), differences in their life cycles, 

vectors, and in the immune systems of their vertebrate hosts limit the usefulness of 

avian malarias as a model, hence stressing the importance of rodent malarias in 

fundamental studies.

In 1948, Vincke and Lips captured two infected tree rats (Thamnomvs surdasterl in the 

Congo (now Zaire) and succeeded in transmitting P. berghei from them to laboratory 

rats and mice by inoculation of blood. Three years later, P. berghei was transmitted 

successfully through Anopheles mosquitoes (Yoeli & Wall 1951). The availability of JL. 

berghei , and of several other species of rodent malaria isolated subsequently, opened up 

the field of mammalian malaria research and made it possible to carry out work on the 

genetics of (Beale £ ia i 1978), and chemotherapy and host immunity to, the parasite. 

Four species of rodent malarias are now recognised: P. yoelii and P. chabaudi from 

Thamnomys rutilans: P. berghei from T. surdaster: and P. vinckei which infects both 

natural hosts. All except P. berghei contain two or more sub-species. Established 

strains can be maintained for years by syringe passage of infected blood in mice and rats, 

and can be mosquito-transmitted, so that all aspects of the Plasmodium lifecycle can be 

studied. Several species of anopheline mosquito can be used to transmit rodent malaria,
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though the single proven natural vector, Anopheles dureni millecampsi. has not been 

colonised. In most laboratories, A. stephensi is employed exclusively as the mosquito 

vector.

Mouse malaria parasites are very convenient experimentally. In terms of their 

behaviour, they are divided into two groups: P. berghei and P. yoe lii; and P. vinckei and 

P. chabaudi. The similarities within, and distinctions between, the two groups are 

manifest in the structure and behaviour of blood stage parasites, serology, isoenzyme 

types and patterns of cross protection (Carter & Diggs 1977). Within each group, it is 

possible to obtain infections from which most strains of mice recover and are fully 

immune, so that after a second homologous challenge negligible parasitaemias are 

detectable (e.g. P. y. yoelii 17XNL, P. c. chabaudi and P. vinckei petteri). or strains that 

are lethal in naive mice (e.g. P. y. yoelii 17XL or P. v. vinckei ). Immunisation against 

the asexual erythrocytic stages of the latter can be achieved by infection and drug cure

(Cox 1964), by infection with a non lethal parasite in the same group (e.g. P. y. yoelii

17XNL protecting against P. y. voelii 17XL, or P. c. chabaudi protecting against P. v. 

vinckeil. or by immunologically priming with homologous crude lysates (Playfair £ la i 

1977) or purified pRBC Ags (Holder & Freeman 1981). The availability of cross

reacting virulent and avirulent strains of plasmodia affords experimental analysis of 

the mechanisms of immunity. Protective immunity to P. chabaudi adami is thought to be 

Ab independent, whereas recovery from primary P. yoelii infections is Ab dependent 

(Allison & Eugui 1983). Thus, various mouse malarias can be used to illustrate 

different mechanisms of acquired immunity, although care must be taken when 

attempting to extrapolate from these models to human malarias.

1.9 In v itro  culture of malaria parasites

The first asexual erythrocytic stages of Plasmodium to be maintained in continuous

culture in vitro were from P. falciparum (Trager & Jensen 1976, Haynes £ ia i  1976). 

These studies, in particular those of Trager & Jensen, have revolutionised research on 

human malaria, making it possible to study the clinically most important malaria 

parasite. The candle jar method (Jensen & Trager 1977) is now used routinely for in 

vitro cultivation of P. falciparum, although several modifications of this method are 

available. There is no evidence for loss of infectivity after prolonged cultivation jLn 

v itro : indeed, several lines have been used to infect Aotus trivirgatus monkeys after 

more than three years continuous culture in vitro (Trager 1982).
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The asexual stages of P. falciparum appear morphologically normal after continuous in 

vitro growth, although they may change characteristics, e.g. loss of RBC membrane 

knobs (Langreth f i ia i 1979), and all developmental stages are generally seen in culture 

at any one time, since the parasite tends to lose its in vivo synchrony. These 

observations, together with the fact that certain isolates need time to adapt to the 

conditions of in vitro cultivation, suggests that parasite selection may occur in vitro, so 

changing the in vitro-maintained parasites in both phenotype and genotype from the 

original isolate.

Although in vitro culture of asexual bloodforms is now possible for most laboratory 

parasites, it remains problematic (Mons e la i 1988), and only P. berghei (Mons £ ia l

1980) is widely cultured on a routine basis. Virtually all isolates of P. falciparum 

maintained in vitro have proved capable of producing gametocytes under suitable 

conditions, but in highly variable numbers {Sinden 1983). Pure sexual stages of JL. 

berghei can also be produced (Mons & Sinden 1990), but for all other malaria parasites 

cultured in vitro, the production of infective gametocytes is readily achieved for most 

malaria parasites, but the subsequent production of viable ookinetes has proved more 

difficult. Using P.berghei. Weiss & Vanderberg (1977) were the first to obtain such 

transformation, and the technique, improved by Janse £ ia l (1985) and by Sinden £ ia l 

(1985), is now used routinely. However, propagation of P. falciparum ookinetes has 

been more difficult, only Carter f i ia i (1987) reporting any success.

Although the exo-erythrocytic stages of avian malaria parasites have been in continuous 

tissue culture for over 20 years, it is only recently that these stages of mammalian 

malarias have been cultured in vitro successfully. The first demonstration of the 

complete in vitro development of the exo-erythrocytic stages of P. berghei was by 

Hollingdale filaL  (1981) and it is only with this parasite that functional maturation to 

merozoite release has been obtained reproducibly in vitro (Suhrbier £ ia i  (1987). 

Sporozoites from other species of plasmodia readily invade hepatocytes or hepatoma cells 

from a variety of vertebrates, and show complete morphological maturation of exo- 

erythrocytic schizonts, but this is yet to be achieved for P. falciparum.

At present, only for P. berahei can the vertebrate host be totally replaced by culture in 

continuo from sporozoite to infective gametocyte. A significant advance in culture 

techniques would be the culture of the late sporogonic stages from ookinete to sporozoite 

for any Plasmodium species, thereby circumventing the mosquito host and enabling in 

vitro culture of the complete malaria life cycle. Clearly, there is no single Plasmodium
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species, or method of maintenance, that can satisfy all the needs for malaria research, 

and there is no reliable laboratory model of human malaria under endemic conditions. It 

is considered, however, that the fundamental biology of the malaria parasite can be 

studied equally well, and with greater convenience, in rodent models (Mons & Sinden 

1990). This is because they offer the combination of in vivo and in vitro methods of 

maintenance. Results obtained in rodent systems have proved to be of significance in the 

development of vaccination candidates and in the detailed examination of parasite 

antigenic variation, as well as in the areas of immunology, genetics and chemotherapy.

1.10 Host resistance to malaria

The ability of an individual to control a malaria infection takes two forms, innate and 

acquired resistance. Innate resistance, which can be parasite specific, is expressed 

regardless of any previous exposure, and has no immunological specificity. Of the 

protective mechanisms involved, some are genetically controlled whilst others may 

simply be incidental, reflecting changing environmental factors such as food 

availability. Conversely, under certain circumstances, these factors may act to 

exacerbate malaria infections. Acquired resistance requires previous contact with the 

parasite and is immunological in nature. Between these two extremes is non-specific 

resistance, which is itself immunological but necessitates exposure to an organism or 

substance (e.g. Propionibacterium acnes or Con A) which is unrelated to Plasmodium, 

but which nevertheless stimulates suppression of the erythrocytic infection. Non

specific immune and non-immune mechanisms of resistance benefit the host by 

moderating the severity of infection during the vulnerable period between RBC invasion 

and the mounting of an effective acquired immune response.

1.10.1 Innate resistance

In human populations, genetically and phenotypically very diverse, some aspects of 

innate resistance can be observed which play a role in host specificity. In populations 

with a high exposure to malaria, genetic alterations which lessen the severity of disease 

or enable potential hosts to be completely retractile to infection would increase an 

individual's chances of survival and reproduction. Therefore, such beneficial genetic 

traits tend to spread through the population (Haldane 1949). In theory, this could affect 

all stages of the life cycle, but to date only the RBC stages of the parasite have been 

studied. During the phase of asexual multiplication, the parasite requires specific RBC
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receptors for recognition and attachment, RBC deformability for invasion, and a suitable 

internal environment for supplying essential nutrients (reviewed by Pasvol & Wilson 

1982). Several inherited characteristics of RBC lead to resistance at the erythrocytic 

stage, and the existence of such RBC genetic defects at high frequency is believed to 

reflect the positive selective pressure of malaria. In regions where malaria is, or was, 

endemic, widespread genetic RBC abnormalities are thought to occur because the 

heterozygote condition confers protection to malaria, outweighing any debility or lethal 

effects to the individual or population, respectively, of the homozygote. Evidence for 

this hypothesis comes from field studies showing that those persons carrying the 

abnormal gene have a lower incidence of, or are less susceptible to malaria, and from in 

vitro studies (which may or may not mimic the environment in vivoT

(a) Factors affecting the parasite's ability to invade RBC

A significant proportion of African Americans are entirely resistant to Plasmodium 

vivax malaria (Young £ ia i 1958). Many such individuals are negative for the Duffy 

blood group determinants (Welch 1977), a trait which is rare elsewhere. The Duffy 

negative characteristic corresponds to lack of expression of two Mendelian alleles Fya 

and Fyb (Fy(a' b ')). Miller £ ia l  (1975 a & b) first demonstrated that Fy (a' b‘ ) 

RBC are resistant to invasion by P. knowlesi merozoites in vitro. This has not been 

repeated with P. vivax due to the inability to propagate this species in vitro. Resistance 

of Duffy negative individuals to infection when exposed to mosquitoes infected with £* 

vivax was soon established (Miller £ ia i  1976, 1977, Spencer e la i 1978). These 

findings explain the very high frequency of the Duffy negative phenotype in West Africa 

where P. vivax is now absent. As P. vivax is not a lethal parasite, nor is it thought to 

affect greatly reproductive capacity, this fixation has probably arisen through spread of 

a fortuitous mutation rather than selection (Pasvol & Wilson 1982). It is possible that 

in the past it was more virulent, but then absence of Duffy Ag would be more widespread 

if selection were operating.

As individuals lacking the Duffy Ag are refractile to infection, it is thought that it is 

probably the receptor for parasite attachment, as although P. knowlesi attaches in vitro 

to Duffy negative RBC in the normal way, junction formation and parasite invasion do not 

take place (Miller £ la l 1979). As Duffy negative RBC are susceptible to P. falciparum, 

it is probable that the receptors on the human RBC for P. vivax and P. falciparum are 

different.
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Ovalocytosis, a morphological RBC variant due to a cytoskeletal abnormality, is present 

in ~30% of the Melanesian population of Papua New Guinea and other aboriginal 

populations of South East Asia (Amato & Booth 1977). Epidemiological evidence suggests 

that individuals with ovalocytosis have a lower parasitaemia than normal when infected 

with P. falciparum. P. vivax. or P. malariae (Serjeantson £ ia l 1977).

Experimentally, ovalocytes are highly resistant to invasion by both P.falciparum and E* 

knowlesi merozoites in vitro (Kidson f i la i  1981, Hadley a ta i 1985). These parasites 

do not bind to the same receptor, suggesting that resistance may be due to a major 

difference in the cytoskeletal structure of the ovalocyte membrane.

Eliptocytosis is another RBC cytoskeletal defect which has been reported to promote 

resistance to invasion by both P. knowlesi and P. falciparum (Hadley & Miller 1988). 

Decreased invasion by two different plasmodia suggests that this defect alters a later 

stage of invasion than RBC membrane receptor recognition.

The susceptibility of RBC to invasion by malaria parasites is dependent upon their age 

(reviewed by Bray & Garnham 1982). P. berghei. the rodent parasite, has a preference 

for reticulocytes (very young RBC), and thus causes severe infections in immature rats, 

where reticulocytes comprise 20% of the RBC population, but in adult rats, where only 

4% of RBC are reticulocytes, erythrocytic infections are mild. P. vivax and P. ovale are 

predominantly found in either reticulocytes or slightly older normocytes. P. falciparum 

is now thought to have a preference for metabolically young RBC (Phillips 1983). This 

preferred RBC type may explain the low incidence of severe cases of falciparum malaria 

in babies: the rate of erythropoiesis slows dramatically soon after birth for a period of 

several months, thereby restricting parasite multiplication. During extremely severe 

P. falciparum infections in children and adults alike, erythropoiesis may again be 

reduced, thus constraining parasite growth through lack of young RBC.

The reason for the inability of P. falciparum to invade older RBC is unclear, but it may 

be either due to the lack of deformability of older RBC, so preventing parasite entry, or 

it may be that mature RBC are not sufficiently metabolically active to meet the needs of 

the invasion process.

(b) Factors affecting the intraerythrocytic environment

The gene controlling a deficiency of the RBC enzyme glucose-6-phosphate dehydrogenase 

(G6PD) is sex-linked and the geographical distribution of the G6PD deficient mutant 

suggests that it gives some protection in the presence of endemic falciparum malaria
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(Luzzatto 1979). The selection pressure against G6 PD deficiency is not strong because 

in the male heterozygote or the female homozygote, the predisposition to suffer 

haemolytic anaemia occurs rarely, and thus only a marginal advantage with respect to 

malaria may be required to maintain the G6PD deficiency gene.

Epidemiological evidence favours protection of female heterozygotes rather than totally 

deficient individuals (Bienzle £ ia i  1979). To explain this, Eckman & Eaton (1979) 

proposed that, since G6PD-deficient RBC are sensitive to oxidant stress, parasitisation 

makes them susceptible to premature haemolysis, which would probably kill the 

parasite. This argument was based upon the assumption that plasmodia are dependent on 

host cell NADPH as a cofactor in parasite glutathione reduction. As a distinctive G6PD of 

parasite origin has now been identified at low levels in P. falciparum infected RBC 

(Hempelmann & Wilson 1981, Usanga & Luzzatto 1985), the assumption that the 

parasite deprives G6 PD-deficient cells of NADPH and renders them more liable to 

oxidative stress is questionable. Nevertheless, oxidative stress remains a major 

hypothesis for G6PD deficiency-dependent mechanisms of malaria resistance (Nagel & 

Roth 1989).

There is considered to be a link between favism, the eating of fava beans in the 

Mediterranean and Near East, and the G6PD deficiency (Friedman 1979). Isouramil, an 

oxidant isolated from fava beans, was found to be more damaging to parasites in G6PD- 

deficient RBC than to parasites in normal RBC (Golenser £ ia i 1983). This suggests a 

pharmacological approach to malaria therapy, but may not be relevant to the interacting 

evolution of P. falciparum and RBC G6PD deficiency.

Haemoglobin abnormalities prevalent in areas endemic for malaria have also been 

implicated in protection against malaria. Sickle haemoglobin results from a mutation in 

the gene locus controlling the synthesis of the tetra-polypeptide chain of adult 

haemoglobin (HbA). This results in a single amino acid substitution, valine for glutamic 

acid, in each of the two polypeptide chains (reviewed by Motulsky 1964). Individuals 

who are homozygous for HbS (genotype HbSS) have > 80% HbS haemoglobin, the rest 

comprising mainly foetal haemoglobin (HbF). The majority of persons homozygous for 

the sickle gene die during childhood, usually from sickle cell anaemia (due to distortion 

of RBC,' sickling', at quite high oxygen tensions), and thus do not reach sexual maturity. 

In contrast, sickle cell heterozygotes (HbAS), in whom about half the haemoglobin is 

Hbs, and the rest mainly HbA, are unlikely to suffer any obvious disability unless they 

are subjected to low partial pressures of oxygen. When this happens, for example, at
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high altitude, carriers of the sickle cell trait suffer RBC sickling.

Although the sickle cell gene is rarely passed on to the next generation by homozygous 

individuals, in parts of tropical Africa and around the Mediterranean, 1% of the 

population may be HbSS and as much as 40% may be HbAS. It is highly improbable that 

the mutation rate at the locus controlling the polypeptide of the haemoglobin molecule 

could account for the persistant presence of the sickle gene in the human genome. This 

apparent anomaly may be explained by the considerable selection pressure conferring 

resistance to P. falciparum.

Early epidemiological and clinical studies suggested that sickle trait individuals become 

infected with falciparum malaria, but fewer died of the infection as compared with those 

with normal haemoglobin (Allison 1954). The high incidence of the sickle cell trait in 

P. falciparum-endemic areas suggested that a survival advantage was associated with it, 

i.e. relative protection against the malaria parasite (Allison 1957). Where the sickle 

gene is no longer placed under the selective pressure of malaria, as happened to the HbAS 

heterozygotes and their descendants when the carriers were transported from West 

Africa to the United States, its frequency diminishes.

The cellular mechanism, whereby HbS gives protection, is slowly becoming unravelled. 

At 50% oxygen tension, accelerated morphological sickling occurs in sickle trait cells 

containing parasite ring forms compared to non-parasitised sickle trait RBC (Roth £ la l

1978). Hence, the accelerated destruction of pRBC is probably one of the mechanisms 

by which HbS carriers are afforded protection against P. falciparum (Friedman 1979). 

Other mechanisms may also be involved. Under reduced oxygen tensions there is a 

significant retardation of development of parasites invading RBC (Pasvol £ ia i 1978). It 

is thought that sickle trait pRBC that survive despite enhanced sickling during the ring 

stage may be compromised during deep vascular schizogony. During this period in the 

parasite's life cycle, pRBC adhere to endothelial surfaces of venules because of 

trophozoite-induced knob formation on the RBC surface (Luse & Miller 1971, 

Raventos-Suarez e l at 1985). Venules filled with adherent pRBC become partially or 

totally obstructed, leading to hypoxia and low blood pH. Such conditions favour sickling 

and compromise parasite nutrition (Friedman a i a il 979 a). The mechanism of parasite 

death in sickled HbAS and HbSS cells is not fully understood, but it may be due to low 

in tracellu lar K+ (Friedman aiaJL 1979 a), or, alternatively, enhanced HbS 

polymerisation caused by an increase in the RBC internal haemoglobin concentration 

accompanying loss of water during parasite metabolism (Olson & Nagel 1986, Ginsburg
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M a i 1986).

In the developing human foetus, initially all the haemoglobin synthesised is of the foetal 

type, HbF. HbA production starts around mid term of pregnancy, and at birth, when HbF 

production ceases, the proportions of HbA and HbF are 20% and 80% respectively. By 

four months, however, 90% of the haemoglobin is HbA. In the newborn child, there is 

temporary resistance to P. falciparum infection, due in part to passive transfer of anti- 

parasitic Abs across the placenta, but also due to the fact that HbF is less supportive of 

parasite growth. Evidence in support of the latter hypothesis comes from cases of 

thalassaemia, a group of genetic disorders of globin synthesis, in which there is a 

significant retardation in the foetal to adult haemoglobin switch during the first five 

years of life (Beaven £ ia l  1961). Haldane (1949) first proposed that the small, 

under-haemoglobinised cells found in thalassaemia were protective against malaria and 

this has been subsequently supported by several epidemiological studies (summarised by 

Weatherall & Clegg 1981), which indicate a selective advantage for p-thalassaemia 

genes in the Mediterranean region. Children who are homozygous for p-thalassaemia 

rarely survive to adulthood and reproduce. Despite this selection pressure, there is a 

high frequency of various forms of thalassaemia throughout the Mediterranean basin, in 

Africa and in Southeast Asia, all malarious or formerly malarious areas. Indeed, a 

recent study by Flint £ ia i  (1986) showed that the frequency of a-tha lassaem ia  

exhibited an altitude and latitude-dependent distribution that correlated with the 

presence of malaria endemicity throughout Melanesia. Thus, the thalassaemias appear to 

confer some resistance to malaria, and this is responsible for the high frequency of the 

genes carrying them. In turn, the effect of HbF may account for the protection afforded 

those individuals with abnormal globin genes before immune-mediated resistance 

becomes effective.

Development of the malaria culture system allowed study of thalassaemic RBC in vitro. 

Pasvol £ la i  (1977) showed that in p-thalassaemic trait, RBC HbF retards parasite 

growth but not invasion. Friedman (1979) reported normal growth in thalassaemic 

RBC, but the parasites were more susceptible to oxidant stress than were parasites 

growing in normal RBC. Findings such as this have led to several theories concerning 

the manner in which deficient globin production in thalassaemic RBC may retard 

parasite growth; at present, the inhibitory mechanism is not Known (reviewed by Nagel 

& Roth 1989).

Haemoglobin C (HbC) is another p-chain variant and is common in Central West Africa
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(Bodmer & Cavalli-Sforza 1976, Labie f i la i  1984), a finding interpreted as implying 

that the production of HbC confers some protection against malaria. However, field 

studies on infected individuals carrying the HbC gene have failed so far to support this; 

since homozygotes (HbCC) are relatively healthy, less selection pressure would be 

required to maintain the HbC gene frequency, which in some areas is as high as 28%. 

Thus, the deleterious effect of HbC-containing RBC is difficult to demonstrate in vivo. 

This has not been so in vitro, where Friedman £ ia l (1979 b) first described severely 

decreased growth of P. falciparum in HbCC RBC when compared to HbAC and HbAA cells. 

This group showed that the selective pressure to increase HbC gene frequency may 

operate in double heterozygotes for HbS and HbC. Although oxygenated RBC containing 

HbC and HbC from the HbSC double heterozygotic condition are indistinguishable from 

normal RBC as hosts for plasmodia, parasites die rapidly under conditions of low oxygen, 

when HbSC cells behave like HbSS cells (Labie a ia i 1984).

HbC coexists with HbS in nearly all populations in which the HbS gene is common, with 

double heterozygotes sometimes surviving to reproductive age. It appears, therefore, 

that for the HbSC genotype, HbC increases the resistance conferred by HbS. This model 

could explain the expanded frequency of a second advantageous gene in a population in 

which one or more genes already provide resistance to malaria. Almost all populations 

exposed to endemic malaria exhibit more than one RBC defect that provides protection. 

The gene for haemoglobin E (HbE) confers another p-chain mutation and is very frequent 

in South East Asia. Epidemiological studies have long suggested a causal connection 

between the high frequency of this abnormal haemoglobin and malaria (Flatz 1967). 

Nagel e la l (1981) demonstrated a moderate decrease in growth of P. falciparum in RBC 

from homozygotes (HbEE) but normal growth in heterozygous HbAE RBC. It is thought 

that HbE, a somewhat unstable haemoglobin (Frischer & Bowman 1975), may enduce 

oxidative damage to parasites by generating free radicals. More recently, significantly 

higher levels of anti-malarial Abs and lower parasitaemias have been found in carriers 

of HbE as compared to HbAA individuals from the same endemic regions (Vernes q± a! 

1986). This may be due to an increased rate of phagocytosis of HbEE and HbAE RBC by 

human monocytes than for infected normal RBC (Bunyaratvej a la i 1986), but this 

putative mechanism of action has yet to be substantiated.

(c) Predisposition to infection

In at least one rodent model of malaria, P. chabaudi in inbred mice, which is used in this
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study, susceptibility to infection seems to be under genetic control by a single , 

dominant, autosomal, non H-2-linked gene (Stevenson £ la l 1982,1988). Susceptible 

mouse strains, such as A/J, develop a fulminating parasitaemia, with most animals 

dying within 10 d. Resistant hosts, such as C57 BU6 and NIH mice, develop a moderate 

level of peak parasitaemia, eliminate the acute infection in five weeks, and are immune 

to reinfection. The gene product or mechanism involved in conferring this protection 

has not been established, but it is related to the development of splenomegaly, and is 

more effective in the female sex (Stevenson £ ia i 1982). The factors underlying severe 

disease and death due to malaria are poorly understood in man, and host polymorphisms 

related to this, apart from in the RBC, are not recognised. Possible sites where this may 

be expected are the recently reported endothelial ligands, e.g. ICAM-1 (Berendt £ ia l

1989), for the sequestering cytoadherence Ag of the Plasmodium-infected RBC.

The effect of the host's diet, or nutritional state, on malaria infections is not fully 

understood, and little studied. Most of what is known comes from rodent malaria models, 

in which diet changes have been shown to be a variable in the host-parasite system 

(Gilks 1988). If rodents are kept on a diet of milk only, an otherwise severe 

malaria infection is markedly inhibited (Maegraith £ ia i 1952), but this suppression of 

parasitaemia can be abolished by supplementation with PABA (Hawking 1954)(milk is 

deficient in PABA). This has also been shown for P. knowlesi infections in rhesus 

monkeys. These results are consistent with the anti-malarial effects of sulphonamides, 

whose mode of action in organisms unable to utilise exogenous folic acid is competition 

with PABA for the enzyme dihydropteroate synthetase (Peters & Howells 1978). The 

inhibitory effect of a PABA-deficient diet is certainly operative against the asexual 

erythrocytic stages and perhaps the exo-erythrocytic stages as well. To overcome diet- 

related suppression of malaria in experimentally infected mice and rats, where a patent 

infection is desired, some laboratories routinely add PABA to the drinking water.

In humans, the inhibitory effect of an exclusively milk diet provides another plausible 

explanation of why the malaria infection rate in infants under 12 months in malarious 

areas is lower than would be expected (Phillips 1983). The overall nutritional status 

of an infected individual may affect the course and outcome of clinical disease. Refeeding 

malnourished children during famine relief has been shown to result in outbreaks of 

clinical malaria within a few days of individuals starting on the nutritional programme 

-so called 'feeding malaria' (Murray £ ia i 1981).

As it is known that protein-deficient diets can depress P. berghei infections in rats
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(Gilks fila i 1989), there may be a correlation between protein intake and parasitaemia, 

which would in part explain why famine relief in humans is sometimes accompanied by 

outbreaks of malaria.

In areas where malaria is endemic, pregnancy, even in immune women, is accompanied 

by increased parasite prevalence and greater parasite densities (Gray & Anderson 

1979). Similarly, mice immune to P. berahei tend to relapse during pregnancy (Van 

Zon & Eling 1980). Pregnant women (especially primagravida) apparently lose anti- 

malarial immunity, since they contract acute falciparum malaria at rates 4-12 times 

those of their non-pregnant counterparts (Gilles a ia i 1969). Such women can become 

severely anaemic, a complication that can be prevented with anti-malarial therapy. 

Since P. falciparum infected RBC sequester in the placenta, and can induce cellular 

hyperplasia in the intervillous spaces, foetal health may also be compromised. Indeed, 

spontaneous abortion and low birth weight may occur, both characteristic of maternal 

malaria (McGregor & Avery 1974).

1.10.2 Non-specific immunity

Prior administration of agents unrelated to Plasmodium has been shown to confer non

specific protection against malaria. Most of the experiments showing acquisition of 

non-specific immunity have been on murine malarias, and the protection conferred is 

not absolute; in many cases it is manifested as an increased prepatent period of the 

malaria infection, and the survival of animals from an otherwise lethal infection. 

Inoculation with killed Propionibacterium acnes (formerly Corvnebacterium parvum) 

confers a degree of protection against subsequent challenge with P. berghei (Nussenzweig 

1967, Murphy 1981), P. vinckei (Lucia & Nussenzweig 1969, Cottrell a ia i 1977), or 

P. chabaudi (Clark jel ai 1977). Previous exposure to Mycobacterium bovis (BCG) can 

also provide resistance to murine malarias (Clark e la l 1976, Murphy 1981), although 

it can lessen the protection conferred by vaccination with P. berahei killed by formalin 

treatment (Smrkovski 1981).

The agent of rat infectious anaemia also protects rats against P. chabaudi (Thoongsuwan 

a ia l 1978). A range of substances has been shown to affect the course of murine malaria 

infections. These include Con A, lipopolysaccharide, and diethylstilboestrol (Cottrell at 

at 1977), endotoxin (Martin atai 1967), magnesium silicate in calcium phosphate gel 

(Michel e ia l  1982), Coxiella burnetti extract (Clark 1979), and freeze-thawed 

Toxoplasma gondii tachyzoites (Omata alai 1981).
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The mechanism by which an unrelated Ag can confer protection against malaria infection 

may involve the activation of macrophages, either to increase phagocytosis (Nussenzweig 

1967), or to release the macrophage autocrine factor, tumour necrosis factor (Clark 

a i 1981, Taverne a la i  1981, Clark & Hunt 1983, Dockrell & Playfair 1983). This 

latter protective factor has been reported to mediate intraerythrocytic either through 

the release of superoxide ions (Allison & Eugui 1982), or nitric oxide (Green a la l

1990). The mechanisms of intraerythrocytic destruction of malaria parasites are 

discussed in 1.11 .

Some evidence that the growth of P. falciparum in vitro can be retarded by a non-Ab, 

non-dialysible factor has been observed by Jensen a ia l (1983). As pRBC death was 

caused during the resolution or crisis period of an acute, primary malarial infection in 

laboratory models (when parasites appear stunted in their intracellular development), 

this factor was called 'crisis form factor'. This has since been identified in serum 

samples from immune Sudanese adults by Jensen s ia l  (1982,1983), who found a 

stronger association between clinical immunity and in vitro serum inhibition with this 

crisis form factor than with IgG (although some Ig fractions from immune individuals 

could induce crisis form pRBC in vitrol.

1.11 Acquired immunity

The immune response and subsequent resistance to various species of Plasmodium has 

been studied extensively. Acquired immunity is a general feature of the host response to 

malaria, and is more complex than innate immunity. It is largely species-specific and 

has clear strain differences; in addition, it is stage-specific, affecting the sporozoite, 

which stays in the peripheral circulation for a brief time only, the exo-erythrocytic 

stage, the asexual erythrocytic stage (against which immunity is mainly directed), and 

gametocytes (immunity to which would interupt transmission).

Several aspects of the host's immune response to malaria have been observed and their 

relative importance in parasite clearance and subsequent resistance to reinfection 

investigated. Techniques available to dissect the immune response include selective 

depletion of part of the host's immune system; transfer of cells, serum or other factors 

from immune to non-immune hosts; and in vitro studies.

Evidence of acquired immunity to malaria infection in humans starts to appear at the 

beginning of the second week of patent parasitaemia and is manifested as a reduction in 

the reproduction rate and in the number of pRBC in the blood. After a variable period,
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the immunity decreases the parasitaemia to undetectable levels (McGregor 1956). 

There is not a direct correlation between parasitaemia and symptomatology, however, 

and the immune response can occasionally diminish the clinical manifectations of 

infection even in the presence of considerable blood-borne parasite burden. In malaria 

holoendemic areas, acute malaria is fundamentally a disease of children, who suffer 

repeated and severe attacks that become increasingly mild with time until turning into 

frequent but low parasitaemias, with benign or no symptoms in the immune adult 

(Wilson £ la i  1950, McGregor 1960). For a long time, it was believed that acquired 

resistance to malaria was exclusively of the premunition type and that , as such, it 

waned after plasmodia were eliminated from the host. Nevertheless, the presence of 

sterilising immunity has been verified in rodents, where, for example, mice protected 

against lethal P. berghei by either chemotherapy (Cox 1964), or vaccination (Playfair 

1977) are likewise solidly immune. The presence of sterile immunity in humans has 

not been investigated experimentally yet, but epidemiological studies do not indicate that 

it exists.

(a) Host genetic factors and the immune response

It is well known that some genetic traits can influence the innate resistance of certain 

populations to malaria, as exemplified by the genes controlling the expression of 

constituents of human RBC which affect the penetration of merozoites into, or their 

growth in, RBC (see 1.9). However, the role played by the genes controlling the host 

immune response in regulating host susceptibility to malaria infections is as yet ill- 

defined. Limited data link the human lymphocyte antigen (HLA) haplotype to malaria 

endemicity, but this is a poorly researched area. In a study carried out in Sardinia, 

Piazza olal (1972) found that the HLA haplotype AZ-BW17 was more frequent in 

lowland villages exposed to malaria than in highland villages never exposed to malaria. 

In another study in north east Tanzania, the same AZ-B17 (together with the AZ-AW30) 

haplotype was found to be more frequent in individuals with high titres of Abs against £* 

falciparum pRBC (Osoba e ia l 1979). The significance of this possible linkage between 

resistance to malaria and HLA class I Ags is not known.

(b) The immune response to sporozoites

For many years, there was no evidence of acquired immunity to the natural inoculation 

of sporozoites in humans under normal conditions. Viable sporozoites are now known in
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both animals and man to induce a detectable Ab response. Nardin M ai (1979) detected 

rising levels of anti-sporozoite Abs with increasing age in serum samples from Gambian 

communities. They found that > 90% of the adult population had Abs to sporozoites of E* 

falciparum in their blood. Less than half the children had this Ab, indicating that 

repeated exposure to sporozoites over many years is necessary to induce its formation. 

There is also indirect evidence that during natural infection, the anti-sporozoite Ab 

response is suppressed by acute blood stage infection (Orjih & Nussenzweig 1979). 

Attenuated sporozoites have been shown to be strongly immunogenic. The induction of 

immunity by sporozoites inactivated by u.v. light or formalin, or mechanically 

disrupted, was first demonstrated in avian malaria (Mulligan M a i 1941). The most 

successful form of vaccination has involved the use of irradiated sporozoites 

(Vanderberg M a i 1970), and has been investigated extensively in P. berghei malaria, 

which is uniformly lethal in mice. More than 90% of animals were immune to 

unattenuated sporozoite challenge after three or more immunisations with irradiated 

sporozoites (Nussenzweig M a i 1969 a); protection was maintained for almost two 

months and then declined progressively. Vaccination with irradiated sporozoites has 

proved relatively ineffective against simian malaria (Collins & Contacos 1972, Gwadz M 

M  1979), but protection by repeated injection of irradiated sporozoites has been 

observed in human malaria (Rieckmann M a i 1974, Clyde M a i 1975). Immunity was 

species-specific and lasted for about three months after exposure to P. falciparum 

sporozoites and up to six months after P. vivax immunisation.

Protection induced by sporozoite vaccination is strictly stage-specific. Thus, immune, 

vaccinated mice challenged with homologous strain P. berghei pRBC suffer fatal 

infections indistinguishable from those in control animals (Nussenzweig M a i 1969 b). 

In addition, rodents immunised effectively against sporozoites were found by Foley & 

Vanderberg (1977) to remain susceptible to infections with exo-erythrocytic 

schizonts. In this regard, cross reactivity has been reported between some species of 

murine malaria (Nussenzweig M a i 1969 b, 1972 a), but for the primate malarias only 

interstrain specificity has been observed (Chen M a i 1976).

Mice immunised with repeated inoculations of irradiated sporozoites clear challenge 

sporozoites from their blood more quickly (Nussenzweig M a i 1972 b). Similarly, in 

recipients of serum collected from immunised mice, there was an increased rate of 

clearance, and the prepatent period of the challenge infection was prolonged considerably 

(Nussenzweig M a i 1972 b), implying a role for Ab.
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Protective MAbs directed against the surface coat sporozoite Ag of P. berghei have been 

isolated (Yoshida £ ia l 1980) and the Fab fragment shown to be active in protection 

experiments (Potocnjak £ ia i  1980), indicating that the Ab functions by blocking 

sporozoite attachment to the hepatocyte receptor cells (Hollingdale £ la l 1982). MAbs 

recognising analogous cell surface determinants in P. knowlesi infections have been 

isolated and are protective (Cochrane £ la l  1982). Nardin £ ia i  (1982) used MAb 

treatment to reduce the infectivity of P. falciparum sporozoites to splenectomised 

chimpanzees, since when other MAbs have been shown to block transmission of the 

disease (Hollingdale £ ia l 1984, Miller £ ia l 1986).

A correlation between clinical immunity and the levels of anti-sporozoite Ab is often 

observed but is not invariable. Thus, mice may show resistance in the absence of 

detectable Ab during the early stages of immunisation (Spitalny & Nussenzweig 1973) 

or when splenectomised before vaccination (Spitalny 1976). Such findings are 

suggestive of a role for cell-mediated immunity in acquired resistance to sporozoite 

infection. This and other studies by the same workers (Spitalny e ia l 1977) implied a 

role for the thymus in immunity. They found that thymectomised, irradiated bone 

marrow-reconstituted mice or nude (congenically athymic) mice did not develop 

sporozoite neutralising Ab or clinical immunity after inoculation with irradiated 

sporozoites. However, adoptive transfer of thymus cells restored the capacity of 

immunosuppressed animals to synthesise Ab and become immunised; from this it can be 

concluded that T cells have at least a helper function in anti-sporozoite immunity. That 

there may be additional cell-mediated effector mechanisms was suggested by the finding 

that B-cell-suppressed mice became clinically immune after sporozoite vaccination 

(Chen £ ia i 1977), and the adoptive transfer of immunity by T cells if accompanied by 

further boosting (Verhave e ia i 1978). The mechanisms underlying such acquired 

resistance to the sporozoite stages of plasmodia are as yet undefined.

(c) The immune response to exo-erythrocytic stages

Until recently, there was little known about any protective immune response to the exo- 

erythrocytic stages of malaria and it was held that only after exo-erythrocytic schizont 

rupture and merozoite release that this stage of the parasite provokes a cellular 

response. Phagocytic infiltration of P. cynomolgi infected livers and engulfment of large 

numbers of merozoites was observed to support this view (Shortt & Garnham 1948 a, 

Garnham & Bray 1956, Lupascu e la i 1967). However, evidence in support of some
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clinical immunity was reported by Beaudoin £ ia i  (1975). Rats treated with 

chloroquine to suppress blood stage parasites and simultaneously administered viable E* 

berghei sporozoites showed fewer exo-erythrocytic forms on challenge than did control 

animals. Whether this phenomenon of interference occurs in man is unclear, as people 

living in holoendemic areas and receiving chemotherapy directed against asexual 

erythrocytic stage parasites are exposed to repeated liver stage infections, yet remain 

susceptible to malaria when prophylaxis is suspended (Cohen & Lambert 1982, 

Hollingdale 1985).

That exo-erythrocytic malaria parasites could be killed by non-specific immune 

mediators was demonstrated by Jahiel £ ta l (1968 a & b). As it became clear that such 

mediators were released from lymphocytes following antigenic stimulation, the issue of 

lymphokine-mediated immunity to this stage of the malaria life cycle was readdressed. 

Recombinant IFN was shown to inhibit the in vitro growth of liver stage parasites of JL. 

berghe i. P. cynomolgi and P. vivax (Ferreira £ ia i  1986, Maheshwari £ ia i  1986), 

relatively small quantities of IFN-y being required. Schofield £ ia l  (1987 a) showed 

the lymphokine to be acting hormonally, by binding to specific hepatocyte receptors and 

inducing intracellular death. To test the hypothesis that IFN-y secretion was required 

for exo-erythrocytic immunity, immunised mice and rats were injected with a 

neutralising MAb to rodent IFN-y after challenge with live sporozoites. This treatment 

abrogated immunity, as determined by growth of liver stages, leading to the production 

of parasitaemia (Schofield £ iaL  1987 b). Moreover, immunity was abolished by 

depleting immunised mice of their Ly-2+ cells (Schofield £ ia i  1987 b, Weiss £ ia i

1988). It is considered that upon parasite challenge, the Ly-2+ T cell subset releases 

IFN-y which then inhibits the malarial exo-erythrocytic development. Ly-4+ T cells 

cannot be the source of IFN-y as their depletion does not affect host immunity to this 

stage of the parasite. These findings do not, however, exclude the possibility that Ly-2+ 

T cells are also directly cytotoxic for liver stage parasites (reviewed by Schofield

1989).

Recently, the results of immunising mice with irradiated sporozoites of P. berghei and 

P. yoelii have revealed that the host control of protective immunity to the resultant 

liver stage parasites is different in the two rodent malarias, and suggest the presence of 

another, Ly-2+-independent, mechanism in cellular immunity to the exo-erythrocytic 

stages of malaria (Weiss 1990). Initially, it appeared that all mice inoculated with 

sporozoites required Ly-2+ T cells for protection, as depletion of the Ly-2+ T cell
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subset by injection of anti-Ly-2 MAbs eliminated protective immunity to P. berghei 

(Schofield £ ia l 1987 b) and P. voelii (Weiss £ ia i 1988). Now there is evidence that 

there is genetic control of immunity, and , depending on the mouse strain, Ly-2+ T cells 

may or may not be critical effectors, and a second, undefined, immune effector arm may 

protect infected animals (Weiss £ la i 1989). This was discovered when mice of BALB/c, 

B10.BR and B10.Q strains were simultaneously immunised with P. voelii sporozoites 

and depleted of Ly-2+ T cells, whereupon the BALB/c mice died but the B10.BR and 

B10.Q mice remained protected. This implied the activation of an effector mechanism 

independent of Ly-2+ cells which is sufficient to confer protection to P. yoelii in certain 

strains of mice.

Similar evidence that this newly discovered cellular effector arm is limited to certain 

different mouse strains has now been seen in P. berghei (Weiss 1990). It appears that 

every pairing of mouse strain and Plasmodium species generates its own pattern of 

protective immune responses, dependent on the mouse genetic background. Although 

there is a degree of Ir gene control, congenic strains of mice may show high or low 

degrees of protection, depending on the make-up of background genes. Such variety 

should be expected in the acquired immunity to human malarias, and may complicate the 

development of universally applicable vaccines.

(d) The immune response to asexual erythrocytic stages

The immune response of mammalian hosts to the asexual erythrocytic forms of 

Plasmodium and consequently the course of blood stage infection depends both on the 

species of parasite involved and on the host species. In some host-parasite 

combinations, e.g. P. knowlesi in the rhesus monkey, there is no effective immune 

response and the disease is rapidly fatal. In other experimental models, such as JL 

berghei in the rat, a sterilising immunity is induced, characterised by a transient 

parasitaemia followed by parasite elimination and long lasting resistance to further 

challenge. In most natural infections, including human malaria, the immune response is 

characterised by the acquisition of partial immunity which controls but does not 

eliminate the infection, which persists at low density over long periods. Much 

information is available on different aspects of the host immune response to asexual 

erythrocytic stages of malaria. However, the roles that each plays in the resolution of, 

and subsequent protection from, reinfection are debatable. Only some immune responses 

may be protective, whilst others may help the parasite to evade a protective immune
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response (Anders 1986), or may give rise to immunopathological reactions, harmful to 

the host (Grau £ ia l 1987). Due to the complexity of the host response, the relative 

importance of various immune mechanisms very probably varies widely between 

different host-parasite models, and at different times during the course of infection. 

Acquired immunity to blood stage malaria is predominantly species- and stage-specific. 

Clinical immunity of humans to malaria shows species specificity and to some extent 

strain specificity (Jeffrey 1966). The immune response to the asexual erythrocytic 

forms is specific to that stage and does not prevent exo-erythrocytic development of 

malaria parasites in primates, but suppresses the subsequent phase of erythrocytic 

multiplication (Garnham 1970, Richards £ ia i  1977). This stage and species 

specificity implies that acquired immunity to the asexual blood parasites is mediated 

predominantly by mechanisms involving specific effector processes.

(i) The role of the humoral response

The asexual erythrocytic stages of malaria can stimulate a strong Ab response. Malarial 

infection produces markedly increased levels of serum Ig (Cohen £ ia l  1961), and 

although the production of specific Abs appears to contribute to the clearance of at least 

some species of Plasmodium from their hosts (e.g. Freeman e ia i 1980), most of the Ig 

synthesised (up to 95%) has no apparent reactivity with plasmodial Ags (Targett & 

Voller 1965, Abele e ia l 1965, Cohen & Butcher 1969). The Ags recognised by this 

non-specific Ig may include Ags of lymphocytes and RBC, complement, rheumatoid 

factor, and nuclear components (Deans & Cohen 1983). The frequent presence of 

autoantibodies is related to the immunopathology of malaria infection (1.12). In 

general, the correlation between total anti-malarial Abs and protective immunity 

and/or clinical status is poor, indicating that many of the Abs formed have no protective 

effect (Brown 1969). There is, however, conclusive evidence that specific Abs play a 

major role in controlling the asexual erythrocytic development of plasmodia (Cohen

1979). Specific anti-malarial Ab titres rise with repeated P. falciparum blood stage 

infection and correlate to some degree with the clinical immune status of the host 

(McGregor & Williams 1978). More specific evidence comes from passive transfer 

experiments.

The passive transfer of protection with immune sera has been demonstrated, firstly by 

Coggeshall & Kumm (1937), who transferred protection in serum collected from Aotus 

monkeys which had been infected with P. knowlesi and then drug-cured. Subsequently, 

protective activity in serum has been demonstrated in the human system (Cohen e ia l
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1961, Cohen & McGregor 1963), with protective activity largely being confined to the 

IgG-rich fraction, although anti-malarial Abs are also found in IgM and IgA classes. 

Immune IgG mediated protection has also been shown in various animal models (Diggs & 

Osier 1969, Diggs £ ia i 1972 a, Phillips & Jones 1972, Green & Kreier 1978, Reese & 

Motyl 1979). Both the decrease in parasitaemia following passive Ig transfer, and the 

observation that protective Abs did not destroy intracellular parasites indicated that 

merozoites and mature schizonts are likely to be the targets of the protective IgG 

response (Cohen & McGregor 1963). Treatment of serum with rabbit anti-rat IgG 

removes the protective activity of rat hyperimmune serum (Diggs & Osier 1969). 

Considerable variation is seen in passive transfer experiments, especially in rodent 

malarias, and appears to be related to the timing of the collection of serum from donor 

animals and to the dose of immune serum given to recipient challenge animals. Total 

protection against homologous parasite challenge has been reported in recipients of 

hyperimmune serum (Jayawardena £ ia i 1975 a, Golenser £ ia i 1975), but it is more 

usual to observe the protective activity of immune serum as a delay in the onset of a 

patent parasitaemia of recipients (Briggs £ ia i  1968, Diggs & Osier 1969, Brown & 

Phillips 1974, Jayawardena e la i 1978). In some host-parasite systems, recipients of 

immune serum are able to clear an otherwise lethal infection (Diggs & Osier 1969, 

Brown & Phillips 1974), whilst in others passive transfer enhanced the later stage of 

parasitaemia (Jerusalem e la i 1971, Jayawardena a ia l 1978), probably by depressing 

the protective immune response of the immunocompetent recipient animals at the start 

of infection. Using P. berahei. several studies have shown that prior incubation of 

hyperimmune serum with the parasite only protects challenged rats if a small volume of 

serum is inoculated with the parasites simultaneously (Brown & Phillips 1974, 

Hamburger & Kreier 1975, Diggs & Osier 1975, Golenser £ ia i 1975). Washing of 

pRBC after serum incubation may reduce the parasite-specific Abs to subcritical levels, 

or the Ab may be effective only against limited stages of the parasite. Indeed, 

subinoculations from hyperimmune serum recipients infected with 103 P. berahei pRBC 

have revealed that such serum is effective against only one stage of the asexual 

erythrocytic cycle (Golenser a ia i  1975). Quinn & Wyler (1979 a) reported that in 

large challenges of immune serum recipients, P. berghei developed normally until the 

late trophozoite stage when it sequestered. However, after RBC invasion, the number of 

early ring stages was reduced compared to that seen in recipients of normal serum.

The passive transfer of serum collected from host animals at different times during or
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after infection has shown that the protective activity of serum is highest at the time of 

parasite elimination (Phillips & Jones 1972, Murphy 1979), and that protective 

activity diminishes rapidly after parasite clearance (Hamburger & Kreier 1976, 

Murphy 1979).

A role for B lymphocytes has been shown in some host-parasite models, e.g. P. yoelii in 

mice, where recovery from primary infection is Ab-dependent. Congenitally B cell- 

deficient mice have higher parasitaemias and more prolonged infections than do normal 

controls (Jayawardena M a i 1979), and in some instances, fail to control infection 

resulting in fatality (Hunter M a i 1979 a). Similarly, normal mice selectively depleted 

of B cell function by treatment with goat anti-mouse ji-chain Ig die from a usually self- 

limiting infection with a non-lethal strain of P. yoelii (Weinbaum M a i 1976 b, Roberts 

M a i 1977). After drug cure and rechallenge, B cell-deficient mice can survive, but 

suffer from a chronic low level parasitaemia (Roberts & Weidanz 1979).

The role of specific Abs in immunity to malaria has also been indicated by B cell transfer 

experiments in which B cell enriched populations of immune spleen cells have been 

shown to be effective in adoptively transferring protection. This has been observed for 

P. chabaudi and P. berghei infections of mice (McDonald & Phillips 1978, Ferraroni & 

Speer 1982), and for P. berghei infected rats (Gravely & Kreier 1976).

Ultrastructural studies indicate that the later stages of P. knowlesi (Brown & Hockley 

1966) and P. falciparum (Langreth & Reese 1979) disrupt the host RBC membrane. 

Thus, late trophozoites, schizonts, and possibly also merozoites prior to RBC rupture, 

may be available to the host immune system for Ab recognition and attachment (Diggs & 

Osier 1975). Although several possible roles for anti-malarial Abs in the clearance of 

plasmodia have been investigated, the precise mechanism by which Abs confer protection 

has not been clearly established.

The in vitro growth of P. knowlesi (Cohen & Butcher 1970) and P. falciparum (Reese & 

Motyl1979) in the presence of immune serum or its extracted Ig is slowed or blocked at 

the time of schizogony, thereby preventing invasion of new RBC by merozoites which 

would otherwise be released from infected cells (Phillips Mai 1972, Miller Mai 1975 

a, Mitchell Mai 1976, Cohen Mai 1977). In simian and human malaria, more recent 

work has shown that MAbs directed against specific merozoite and schizont-derived Ags 

inhibit the in vitro growth of the parasite in culture (Epstein Mai 1981, Perrin Mai 

1981, Deans Mai 1982, Miller Mai 1984, Saul Mai 1984, 1985, Banyal & Inselburg 

1985, Schmidt-Ullrich Mai 1986, Udomsangpetch Mai 1986). All of these in vitro
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studies suggest, but do not prove (Fandeur M a i 1984) that Abs have a protective role in 

immunity to malaria. Inhibition of merozoite invasion generally occurs by agglutinating 

merozoites (Butcher & Cohen 1970) before (Cohen M a i 1969) or after (Butcher & 

Cohen 1972, Miller M a i 1975 a) release from the ruptured cell. This inhibition is 

species-specific, complement independent, and mediated by IgM and IgG and its (Fab')2 

fragment, but not by monovalent Fab (Cohen & Butcher 1970). Due to this latter 

property and also the ineffectiveness of these Abs against the intracellular stage of the 

parasite, they have been likened to viral neutralising Igs (Cohen & Butcher 1970). The 

site of binding of such invasion-blocking Abs is thought to be one or more merozoite 

surface determinants (Epstein M a i 1981, Deans M a i 1982). However, as the activity 

of anti-P. berghei hyperimmune serum is not adsorbed out by nRBC, it has been 

concluded that inhibitory Ab activity is not directed against the parasite receptor on the 

pRBC (Golenser M a i 1975). In this study, free P. knowlesi merozoites were observed 

invading RBC in the usual manner in the presence of immune serum inhibiting growth of 

the parasite.

In vitro agglutination of P. knowlesi merozoites has been shown to correlate well with 

specific sterilising immunity induced by merozoite vaccination (Butcher M a i 1978), 

but not always with functional immunity (Miller M a i 1977). That anti-merozoite Abs 

can control blood stage malaria has been confirmed by passive transfer studies using 

MAbs raised against P. yoelii (Freeman M a i 1980). Ascitic fluids from mice bearing 

two different hybridomas secreting MAbs reacting with a single merozoite component, 

both protected mice from a lethal P. voelii infection, although they did not prevent the 

initial rise in parasitaemia. In contrast to its protective activity during primary 

infection, the presence of Ab capable of inhibiting growth in vitro in the serum of a £* 

knowlesi infected monkey does not always correlate with immunity to reinfection (Cohen 

1977, Chulay M a i 1981).

Apart from the agglutinating activity of inhibitory Ab, other serum Abs offer protection 

against asexual erythrocytic malaria parasites. Opsonising Abs, which promote the 

phagocytosis of pRBC, have also been detected in vitro (Zuckerman 1945, Khusmith M a i

1982). Using P. berghei. Hunter M a i (1979 b) showed that the opsonic activity in 

immune rat serum is mainly associated with the IgG fraction, and only weakly with the 

IgM fraction. Opsonins against P. knowlesi are variant specific (Brown M a i 1970 a). 

Opsonisation may be important in vivo in clearing parasites early in infection, but 

later, in P. berghei infections at least, phagocytosis is inhibited by serum factors,

38



possibly circulating immune complexes (Shear £ la i  1979, Brown & Kreier 1982). 

Quinn & Wyler (1979 a) found that the protection afforded by passively transferring 

hyperimmune anti-P. berghei serum was not opsonin-associated, and suggested that 

serum Ab inhibitory to merozoite invasion confers the protection observed in passive 

transfers. This may be linked to the fact that opsonins promote the destruction not of 

merozoites, but of the more mature asexual blood stages, the late trophozoites and 

schizonts, and that the early growth of the intraerythrocytic parasites seems to proceed 

normally in the presence of these Abs.

Cytophilic Abs have been detected in hyperimmune rat serum raised against P. berghei 

(Chow & Kreier 1972). On passive transfer, the fraction of hyperimmune serum 

containing cytophilic Ab has no discernible effect, but did have a strongly synergistic 

effect when combined with the opsonising Ab fraction (Green & Kreier 1978). This is 

little surprising since both types of Ab induce specific phagocytosis of Ab-coated pRBC 

in vitro by macrophages, monocytes and polymorphonuclear leukocytes (Chow & Kreier 

1972, Tosta & Wedderburn 1980, Hunter £ ia l 1979 b, Shear £ la l 1979, Celada £ ia l 

1982,1983, Khusmith £ ia i 1982). Khusmith & Druilhe (1983) have also observed 

cytophilic Abs in sera from P. falciparum immune individuals. In an in vitro test, IgG 

was bound to peripheral blood monocytes, which were then able to attach P. falciparum 

schizonts and merozoites, but to phagocytose only merozoites (Khusmith £ la l 1982). 

The level of phagocytosis observed correlated with the immune status of the patients 

whose sera were tested.

Studies on Ab-dependent cellular cytotoxicity (ADCC) have implicated K cells, 

monocytes and polymorphonuclear leucocytes in destruction of Ab-coated pRBC or 

parasites. For example, Brown & Smalley (1980) demonstrated ADCC against J E L . 

falciparum infected RBC (reviewed by Deans & Cohen 1983). The part played in 

protective immunity in vivo of ADCC or opsonisation (Ab-dependent phagocytosis) has 

not been established. From conflicting reports on the importance of opsonisation in vivo 

with murine and primate malarias (Deans & Cohen 1983), it would appear that the 

effector mechanisms that operate in naturally acquired anti-malarial immunity may 

vary in different host-parasite combinations.

Serological tests such as complement fixation, precipitation, agglutination and IFAT 

(reviewed by Fife 1972) have been used to detect specific anti-malarial Abs. These 

tests have been used as tools in immunodiagnosis for sero-epidemiological studies to 

examine the effect of control measures on the immune status of human populations
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(Brbgger f iia l 1978) and to study the kinetics of Ab synthesis during experimental 

malaria infections. Serological cross reactions between species of Plasmodium revealed 

by such tests (Voller f i la i  1966, Cox & Turner 1970) cannot always be correlated with 

cross immunity in vivo (Voller f i ia l  1966), as much of the specific Ab produced during 

infection may have non-protective function. During malaria infections, serological 

examination has revealed that Ab levels are raised initially and remain elevated for an 

extended period before diminishing. This has been observed in experimental rodent 

malaria infections using I FAT (Cox f i i a l  1969, Cox & Turner 1970), indirect 

haemagglutination (Weinbaum f i ia l  1978), gel double diffusion (Zuckerman f i ia l  

1969), and radial immmunodiffusion (Hunter f i ia l  1979 a). Ab titres have also been 

measured in human volunteers infected with malaria, when a similar pattern of Ab 

production was observed using IFAT (Kuvin f i ia l 1962, Tobie & Coatney 1964, Collins 

e la I  1971).

A survey of a human population living in a P. falciparum endemic area, using double 

diffusion in gel, was undertaken by McGregor & Wilson (1971). Anti-malarial 

precipitins were present in the serum of virtually all newborn children, yet their 

prevalence had fallen rapidly after the first three months of life (presumably indicating 

a decay in passively acquired maternal Ab). In the second year of life, precipitin levels 

rose rapidly and by the 5-6 year age band, 95% of children had demonstrable 

precipitins in their serum.

(ii) The role of complement

In both experimental P. falciparum and P. vivax infections (Dulaney f i ia l  1948, Neva £i 

a l 1974) and naturally occurring P. falciparum infections in man (Greenwood & 

Brueton 1974, Srichaikul f i ia l  1975), depressed complement levels are observed. 

Fogel f ilia l (1966) found that the reduction of complement levels in P. knowlesi. P. 

berghei and P. gallinaceum infections was associated with schizont rupture, and Cooper 

& Fogel (1966) suggested that this may be due to the fixing of complement by 

circulating Ab as it comes into contact with free merozoites.

In experimental P. vivax infections in man, a decrease in the levels of complement was 

observed during relapse. It was correlated directly with the degree of parasitaemia and 

the presence of complement fixing Ab, with the lowest detectable complement titres 

within a few hours of schizont rupture and with peak fever (Neva f i ia l  1974). Glew f il 

ai (1975) showed that in P. coatnevi infections of rhesus monkeys, reduced complement 

levels were limited to C1, 2 , & 4, whilst depletion of C3-9 by treatment of monkeys
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with cobra venom factor did not alter either the degree or course of parasitaemia 

(Atkinson £ ia l  1975). In addition, cobra venom treatment of rats had no discernible 

effect on the course of P. berghei infection (Diggs £ ia i  1972 b), nor did infection of 

mice congenitally deficient in C5 (Williams £ ia i 1975).

The weight of evidence outlined indicates that complement has a negligible role in the 

immune response to malaria and may not contribute to any extent to parasite clearance. 

The depletion of early complement components shortly after schizont rupture is thought 

to be due to complement fixation by Ag-Ab complexes (Greenwood & Brueton 1974) and 

may contribute immunopathologically to the vascular damage observed in P. falciparum 

infections (Greenwood & Brueton 1974, Srichaikul £ ia i 1975).

(iii) The role of the cell-mediated response

Although most investigations agree that both cellular and humoral factors are involved 

in the slow development of immunity to malaria, the role of cell-mediated responses is 

incompletely understood and has been explored mainly in murine malarias. There has 

been an accumulating weight of evidence, however, that suggests that anti-malarial 

immunity is mediated by additional mechanisms which can act together with, or 

independently of protective Abs.

The presence of a functional thymus plays a major part in tha development of immunity 

to malaria. Nude mice (nu/nu) which are congenitally athymic (and therefore deprived 

of mature T lymphocytes) are unable to clear an infection with a strain of P. voelii from 

which intact mice recover (Clark & Allison 1974, Weinbaum £ ia i 1976 b, Roberts a t 

ai 1977). The parasitaemia in nude mice escalated to 76-80%, when all animals died. 

Moreover, it was shown that after termination of acute disease by prolonged clindamycin 

treatment, parasitaemia recrudesced in nude mice to give an ultimately fatal infection; 

however, recrudescence was not observed in nude mice which had been grafted with 

thymic tissue or received a passive transfer of hyperimmune serum (Roberts £ la i  

1977). This consistent aggravation of non-lethal malaria infection by deprivation of T 

cells was also demonstrated with P. chabaudi. where nude mice on a CBA background 

developed lethal infections (Eugui & Allison 1980, Cavacini £ la l 1986).

In most studies, malaria infections of thymectomised hosts have resulted in higher, more 

persistent parasitaemias, with increased host mortality and anaemia in comparison to 

sham thymectomised controls. The first observations showing the importance of T 

lymphocytes in recovery from malaria infections were made by Brown £ la i (1968 a). 

Rats inoculated with P. berghei when 13 weeks of age recovered from infection, but in
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neonatally thymectomised rats, there was a higher and more prolonged parasitaemia and 

an appreciable mortality; these observations were independently confirmed by 

Stechschulte (1969). Similar results have been attained in P. berghei infections of 

thymectomised mice (Cottrell f i ia l 1978) and hamsters (Chapman & Hanson 1971); 

yoelii infections of thymectomised, lethally irradiated and B cell-reconstituted mice 

(Jayawardena f i ia l  1977), and P. chabaudi chabaudi and P. c. adami infections of 

thymectomised mice (McDonald & Phillips 1978, Cavacini f i ia l  1986). Resolution of 

acute infection in recipient adult-thymectomised mice following adoptive transfer of 

immune spleen cells was dose-dependent (Cavacini f i ia l 1986). P. chabaudi infection 

was chronic but not lethal in thymus-depleted mice. A conflicting finding was reported 

by Wright (1968) who showed that neonatal thymectomy of golden hamsters increased 

their survival time of infection with P. berghei. This model system is unusual, 

however, in that normal golden hamsters succumb to P. berghei infection when the 

parasitaemia is still very low, and post mortem revealed cerebral haemorrhages. In 

contrast, thymectomised animals died when the parasitaemia was much higher, and 

showed no cerebral sequelae. Prolonged survival in fulminating infections was also 

observed in hamsters depleted of T cells by treatment with anti-thymocyte serum (ATS) 

(Wright f i ia l 1971) and adult thymectomised and anti-lymphocyte serum (ALS) treated 

mice (Sheagren & Monaco 1969). Thus, these early observations implicated T cells in 

the occurrence of cerebral malaria, now attributed to the toxicity of a key mediator of 

inflammation, TNF (Clark 1987).

T cell depletion of potential host animals has also been achieved through treatment with 

ATS. Spira f i ia l (1970) showed that ATS treatment of rats prior to P. berghei infection 

suppressed both natural and age resistance to the parasite, whilst ATS administration 

after clearance of infection failed to enhance rat susceptibility to reinfection. In 

contrast, Brown & Phillips (1971) found that rats chronically infected with P. berghei 

had a marked recrudescence upon ATS treatment. T cell deprivation has been shown by 

Eling (1979) to have a maximal effect when brought about six hr after challenge of E l 

berghei infected, drug cured mice, who implied from this that T cells play an important 

role in resistance to malaria early in primary challenges. ALS treatment of infected 

mice has given similar suppression of immunity as that shown for ATS, i.e. increased 

mortality (Bruce-Chwatt f i ia l  1972) or lengthened duration of patent infection and 

heightened parasitaemia (Barker & Powers 1971, Bruce-Chwatt f i i a l  1972), 

especially recrudescences (McDonald & Sherman 1980).
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The role of T cells in the immune response to malaria has been studied by evaluating 

differences in the T cell response to lethal and non-lethal infection. Jayawardena f i ia l 

(1975 b) reported massive T cell mitosis and proliferation in spleens of mice infected 

with a non-lethal strain of P. yoelii. but not in lethal P. berohei infections. In addition, 

the in vitro response of splenic T cells to malaria Ag was considerably reduced early in 

lethal P. yoelii strain infections. Again, this indicates that T cell activation may occur 

early in the course of infection in the natural host. Further evidence for a role of T cells 

in immunity to blood stages of murine malaria parasites came from observations of 

Finerty & Krehl (1976) that infection with the lethal 17XL strain of P. voelii could be 

converted into a non-lethal infection by pretreatment with cyclophosphamide. This 

drug, administered 2 d before infection, increased delayed-type hypersensitivity to 

parasite Ags (presumably from the elimination of suppressor cells), but Abs against 

asexual erythrocytic stages were not detectable during the recovery period.

It has long been recognised that immunisation of rhesus monkeys against P. knowlesi 

requires complete Freund's adjuvant (Freund f i ia l  1945, 1948, Targett & Fulton 

1965, Brown 1971, Butcher f i ia l  1978), which elicits cell-mediated immunity, and 

resistance to challenge is not well correlated with the presence of Abs inhibiting 

parasite reinvasion and replication in vitro (Langhorne f i ia l  1979).

Adoptive transfer experiments using rodent models have indicated that animals receiving 

T cell-enriched spleen preparations are protected against subsequent challenge (e.g. 

McDonald & Phillips 1978). However, reconstitutions with cell preparations deficient 

of the T and/or B cell complement suggest that although some immunity to the asexual 

erythrocytic stages of malaria can be transferred to irradiated recipient mice by 

immune T cells alone, better protection is obtained when both T and B cells are 

transferred (Brown f i ia l  1976, Gravely & Kreier 1976, McDonald & Phillips 1978, 

Jayawardena fiial 1979, 1982, Brinkmann fiial 1985, Fahey & Spitalny 1986), which 

is thought to be due to a synergistic effect (Jayawardena fiial 1982). Such experiments 

have established the helper role for T cells in the synthesis of anti-malarial Ab (Brown 

& Phillips 1971, Brown fiial 1976 a & b). This was confirmed by Jayawardena fiial 
(1977), who found that intact mice produce high levels of specific anti-plasmodial Abs 

and a marked proliferative response in germinal centres; in T cell-deprived animals, 

however, lgG-| synthesis is negligible, lgG2 and IgM levels considerably reduced and the 

cortical cellular response severely impaired. The normal pattern of functional 

immunity was restored by reconstitution with syngeneic thymus cells.
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Additional support for the role of T cell-mediated mechanisms in malaria has come from 

adoptive transfer studies in athymic nude mice. Recipients of immune T cells resolved 

their infections more rapidly and demonstrated lower peak parasitaemias than 

recipients of non-immune T cells. Protection was best achieved with the helper/inducer 

T cell subsets expressing the Ly-4+ phenotype (McDonald & Phillips 1980, Cavacini ol 
a i 1986, Vinetz e la i  1990), or with in v itro -propagated IL-2-dependent and £_, 

chabaudi adami-specific T cell lines or clones of the Ly-4+ phenotypes (Brake a la l  

1986, 1988). Moreover, recent studies have shown that depletion of the Ly-4+ T cell 

subset in vivo through treatment with MAbs renders mice incapable of clearing the acute 

phase of infection (Suss a la i 1988, Kumar a ia l 1989, Langhorne a ia i 1990).

Chickens rendered agammaglobulinaemic by combined immunological and chemical 

bursectomy (Rank & Weidanz 1976, Robert & Weidanz 1979, Grun & Weidanz 1981) 

displayed an Ab-independent immunity which was also T cell-dependent. Similarly, 

studies of the murine malaria P. c. adami demonstrated that B cell-deficient mice 

resolved acute primary infection with the same kinetics as normal mice and were 

immune to subsequent challenge with homologous parasites (Grun & Weidanz 1981,

1983).

Expression in this parasite system of Ab-independent immunity was suppressed by 

treatment with ATS and could not be achieved by transfer of hyperimmune serum (Grun 

£ ia l 1985). In addition, it was claimed that to confer protection required the presence 

of an architecturally intact spleen. This is in contrast to all other published adoptive 

transfer experiments where reconstitution of immunosuppressed mice with dispersed 

immune spleen cells gave effective protection. In all such studies, patent parasitaemias 

developed in all recipient animals, inferring that the grafted cells did not limit parasite 

growth directly, suppression of infection being achieved by activation of other effector 

mechanisms.

B cell-deficient mice are usually susceptible to infection with P. yoelii (Weinbaum £ la i 

1976 b), but when immunised by live infection and drug cure, can control infection 

(Roberts & Weidanz 1979). CBA/N mice, which are defective in producing high affinity 

Abs as well as those of the lgG3 isotype, could still clear a P. yoelii challenge, and these 

mice were subsequently immune to reinfection (Jayawardena M a i 1979). The 

mechanism for resisting a secondary challenge with the homologous parasite is 

considered to reside primarily in the primed T cell rather than the B cell compartment 

of the immune animal. In contrast to the observations with P. voelii. B cell-deprived
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mice recover from primary infections with P. c. adami and are immune to reinfection, 

so that Ab-independent mechanisms of immunity appear to be of major importance with 

this parasite (Grun & Weidanz 1981). A reconciliation of these apparently 

contradictory findings would be that cell-mediated immunity plays a significant role in 

protecting the host against acute infection caused by certain plasmodia but is essential 

for premunition, immunity to reinfection malaria, regardless of parasite aetiology. 

These results underline the importance of effective priming of the T cell compartment 

for the development of immunity against malaria blood stage parasites (Jayawardena 

1981). They also indicate that the mechanisms by which T cells mediate clearance and 

provide protection are not identical in different rodent models. In general, however, the 

consensus of adoptive transfer studies is that the T cells which confer protection against 

the asexual stages of rodent malaria parasites are of the helper/inducer phenotype, i.e. 

Ly-4+ (Jayawardena M ai 1982, Brinkmann M a i 1985, Brake M a i 1986, 1988, 

Cavacini M ai 1986) and thus may provide help for Ab production (Weinbaum M ai 

1976 b, Jayawardena M ai 1977, Roberts M ai 1977, McDonald & Phillips 1978, 

Playfair 1982). It has recently been suggested that the Ly-4+ cells that act as helper 

cells for Ab production belong exclusively to the recently proposed TH2 subset 

(Langhorne M a i 1989 b). These cells are not prevalent soon after challenge, but their 

increased presence later in infection correlates well with detection of an anti- 

plasmodial humoral response.

Ab may therefore be necessary for the host to survive acute infection and to clear the 

blood of parasites during chronic infection. However, cells of the helper/inducer T cell 

phenotype also include the subsets mediating Ab-independent cell-mediated immunity. 

Attempts to demonstrate involvement of the cytotoxic phenotype (Ly-2+) in immunity 

against blood stage malaria parasites, unlike the anti-sporozoite immune response, have 

been unsuccessful (e.g. Jayawardena M ai 1982, Suss M a i 1988). This is not 

surprising in view of the fact that Ly-2+ cells can only recognise Ag in association with 

class I Ags of the MHC (HLA-A, -B, -C in man; H-2-K, -D, in mice), Ags which are 

absent from mature human RBC or are present only at low concentration (reticulocytes, 

mouse RBC) (Jayawardena M ai 1983). In the P. c. chabaudi-mouse system, H-2 

restriction operates in T cell recognition of plasmodial Ags (Chemtai Mai 1984 a & b), 

but presumably occurs in vivo when malarial Ags released from pRBC are taken up by 

presenting macrophages. Tc cells may yet be shown to play a part in immunity to 

asexual erythrocytic stages, but cytotoxicity would most likely be directed against target
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cells not appreciably MHC restricted. This is possibly because immature RBC, which do 

express MHC Ags, are preferentially infected by some plasmodial species. However, 

even where T cell cytotoxicity has a role to play in normal immune function, one of the 

pathological consequences of patent parasitaemia is the depression of specific immune 

responses to non-malarial Ags, e.g. cytotoxic T cell responses against , for instance, 

viruses (Nickell f i ia l  1987). Additional evidence against a role of cytotoxic T cells in 

blood stage malaria is the observation that the adoptive transfer of immune T cells failed 

to delay the patency of challenge infection (e.g. McDonald & Phillips 1978, Cavacini f i ia l 

1986). If the cells were directly cytotoxic for intraerythrocytic parasites, the 

inoculum size should have been reduced at the time of infection and the prepatent period 

extended. Thus, Ab-independent, T cell-mediated immunity to the plasmodial blood 

stages proceeds by a different mechanism(s). Available evidence indicates that the 

release of soluble mediators such as immune IFN-y from Ag-stimulated T cells may be of 

importance, resulting in activation of macrophages with enhanced parasiticidal activity,

(iv) The role of the reticulo-endothelial system

Phagocytosis is a prominant feature of malaria. Early investigations noted free 

merozoites, pRBC, nRBC, malaria pigment and RBC debris in the macrophages of the 

spleen, liver, and bone marrow of malarious hosts (Taliaferro & Mulligan 1937, Brown 

1969). The malarious host responds to circulating pRBC by a sharp increase in blood 

monocytes and the accumulation of macrophages in the spleen and liver (Jayawardena fii 

a l 1977, Lee f i ia l  1986). Peripheral blood monocytes and macrophages from these 

organs marked changes in surface phenotype and secretory activity (Playfair f i ia l  

1979, Shear f i ia l 1979, Lee f i ia l 1986). Macrophages may contribute to the control of 

malaria infections by phagocytosis and/or release of extracellular mediators. For a long 

time it was believed that phagocytosis of infected cells or free parasites was the 

principal mechanism by which immunity was effected (Taliaferro 1929). Increased 

phagocytic activity has been reported during malaria infection. For instance, an 

increased carbon clearance rate was observed during P. vinckei and P. chabaudi 

infections in mice (Lucia & Nussenzweig 1969) and at the beginning of P. berghei 

infection in rats (Cantrell & Elko 1966, Cantrell f i i a l  1970, Kitchen & Di Luzio 

1971). Hyperphagocytosis of several other particles has been observed during malaria 

infections; these include 51 Cr-labelled sheep RBC in P. berghei infections of mice 

(Loose & Di Luzio 1976) and 125l-labelled microaggregated human serum albumin in 

human malaria (Sheagren f i ia l 1970).
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Macrophages of mice with P. berghei infections showed enhanced phagocytic activity 

towards pRBC and nRBC in culture (Shear a ia i  1979) and in millipore chambers 

implanted in the peritoneal cavity (Criswell a ia i 1971). The former study revealed 

that splenic macrophages from P. berghei infected mice ingest pRBC more efficiently 

than do those from normal mice in vitro, the ingestion apparently being mediated by 

disease-associated Igs which bind to the surface of pRBC (Lustig a ia i 1977).

Activated macrophages may also mediate pRBC destruction by the release of factors 

which can kill the intracellular parasite (Clark e la i  1981, Allison & Eugui 1982). 

The mechanisms by which macrophage secretion products destroy blood stage parasites 

are discussed in 1.11(a) (v, vi, & vii). The recruitment of macrophages and monocytes 

and their activation are mediated by lymphokines such as IFN-7 , macrophage 

chemotactic factor and IL-2, and possibly IL-3, secreted by T cells, which are 

themselves activated by plasmodial mitogens as well as specific malarial Ags (Wyler & 

Gallin 1977, Allison & Eugui 1983, Ockenhouse & Shear 1983).

In human malaria infections, both pRBC and nRBC have been observed within splenic 

macrophages in vivo (Pongponratn £ ia i 1987). pRBC (Cranston a i a ll 984), and to a 

lesser extent, nRBC (Gupta a la l 1982) from infected animals have been shown to be 

less deformable than nRBC from normal controls. Phagocytosis may be enhanced through 

increased trapping of these Theologically altered RBC, as has been shown in P. berghei 

(Wyler a ia i  1981) and P. voelii (Smith a ia l  1982) infections of rodents and more 

recently in patients with acute falciparum malaria (Looareesuwan £ ia i 1987). Splenic 

filtration is increased by splenomegaly. Both enhanced phagocytosis and splenomegaly 

have been found to be thymus-dependent responses to malaria in mice (Roberts & 

Weidanz 1978). This is little surprising in light of the role of soluble factors secreted 

by T cells in macrophage activation.

The part played by immune phagocytosis in the clearance of P. falciparum is 

controversial. In vitro, immune serum has been shown to facilitate the phagocytosis of 

merozoites by normal macrophages, but not of pRBC (Khusmith & Druilhe 1983), and 

increased clearance of pRBC cannot be demonstrated in normal animals given 

hyperimmune serum (Quinn & Wyler 1979 a & b). These studies, using either resting 

peripheral blood monocytes or uninfected animals, are difficult to interpret, since 

immune clearance depends not only on opsonisation of RBC but also the state of activation 

of the monocyte/macrophage population. In Thai patients with falciparum malaria, 

Ward e la i  (1984) measured Fc receptor expression in v itro , and showed that the
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activity of monocytes from cases of uncomplicated malaria was significantly increased 

compared to healthy controls. In contrast, the activity of monocytes from cerebral 

malaria sufferers was within normal limits. Also in acute P. falciparum infections, it 

has been reported recently that the clearance in vivo of IgG-coated RBC was accelerated 

in some but not all patients (Ho & Webster 1990 a). There was a significant positive 

correlation between the half-time for clearance of sensitised RBC from the circulation 

and the level of parasitaemia. The apparently normal rate of parasite clearance seen in 

patients with high parasitaemias suggests a failure to augment splenic Fc receptor 

function and consequent phagocytic activity in the face of a considerable antigenic 

challenge. Together, the in vivo and in vitro evidence indicates that immune clearance 

through phagocytosis is important in reducing parasitaemia to subpatency, thereby 

controlling the acute phase of infection. The failure of immune clearance in some 

instances may be related to the development of severe clinical illness, including cerebral 

manifestations.

(v) The role of cytokines

T cell-dependent manifestations of immunity in malaria include splenomegaly, 

lymphotoxin production, macrophage activation and circulatory monocyte production and 

activation (Jayawardena 1981). While evidence is indirect, it is thought that soluble 

macromolecules (cytokines) such as the interleukins, derived from lymphocytes and 

other cells, are instrumental both in the T cell-dependent regulation of the immune 

response and its effector phase. Most of these processes probably reflect the function of 

lymphokines secreted by activated T cells responding to malarial Ags.

Direct support for lymphokine production to malarial Ags has been provided by Wyler & 

Gallin (1977), who identified and partially characterised a mononuclear cell 

chemotactic factor in spleen cell extracts from malarious mice or monkeys but not from 

uninfected controls. Since spleen extracts of P. berghei infected nude mice lacked 

significant activity, it was concluded that the chemotactic activity was secreted by, or 

dependent upon, T cells and their precursors. Lelchuk £ la i  (1984) showed that the 

ability of spleen cells from mice infected with P. yoelii or P. berghei to produce IL-2 

when stimulated with Con A varied according to the time following infection. There was 

an increase in the capacity to release IL-2 early in both infections, a finding also shown 

for P. c. chabaudi infection (Langhorne e la l 1989 a & b). Langhorne (1989) attributed 

IL-2 secretion to the TH1 subset of Ly-4+ cells which predominate during the clearance 

of the primary parasitaemia to subpatent levels. Splenic lymphocytes derived from E*
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yoelii infected mice produced large volumes of IL-2 when stimulated with Con A at the 

time of remission of parasitaemia, but preceding the disappearance of parasites from the 

blood. Spleen cells harvested from malarious mice later in infection when they failed to 

secrete IL-2 had the capacity to respond to IL-2, suggesting that the lesion may be at the 

level of IL-2 synthesis. More recently, Lelchuk & Playfair (1985) showed raised 

levels of serum IL-2 inhibitor in euthymic but not in athymic mice infected with 

malaria. This factor, which was first described by Hardt f i ia l  (1981), acts both to 

inhibit IL-2 production and to block IL-2-dependent T cell proliferation and effector 

functions.

A family of cytokines increasingly being considered of importance in acquired immunity 

to the asexual erythrocytic stages of malaria are the interferons (Eugui & Allison 1982, 

Allison & Eugui 1983). Administration of exogenous IFN inducers or IFN-containing 

serum was found by Jahiel f i ia l  (1968 b, 1970) to delay the progress of P. berghei 

infection in mice. Furthermore, mice treated with sheep anti-mouse IFN globulins, 

thereby neutralising host IFN production, suffered accelerated P. berghei infections with 

increased parasitaemias (Sauvager & Fauconnier 1978). These authors concluded that 

IFN-a or IFN-p conferred resistance early in P. berghei infections, although death 

normally ensued, even in the presence of IFN at the start of acute infection, soon after 

challenge, when IFN was detectable in the sera of malarious mice (Sauvager f i ia l 1979), 

and presumably this can be extrapolated to all malaria infections. Sera from £* 

falciparum infected children were found to have comparatively high titres of antiviral 

activity, which correlated directly with the degree of parasitaemia. The characteristics 

of the soluble antiviral factor indicated IFN-a to be predominating (Ojo-Amaize f i ia l

1981). IFN-a could also be induced in vitro by free extracellular P. falciparum 

merozoites in a subpopulation of human peripheral blood lymphocytes, thought to be 

natural killer cells (Ronnblom f i ia l  1983).

IFN-y produced by Ag or mitogen activated T cells is an important regulatory 

lymphokine, and represents a useful indicator of cellular immunity. Lymphocytes from 

seropositive donors have been shown to produce IFN-y in response to many viral Ags, 

e.g. vaccinia virus (Chang f i ia l  1984) and Epstein-Barr virus (Andersson f i ia l  1984). 

In malaria, the presence of IFN in the sera of infected humans and mice has been 

reported several times (Eugui & Allison 1982, Rhodes-Feuillette f i ia l  1985). It was 

then shown that T cells from malarious patients and from immune individuals living in 

endemic areas were able to secrete IFN-y and IL-2 upon stimulation with homologous Ag
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(Troye-Blomberg f i ia l  1985, 1987). This production of IFN-y by primed T cells in  

vitro in response to P. falciparum asexual erythrocytic stages has been confirmed 

independently (Sinigaglia & Pink 1985, Riley f i ia l 1988 a).

More recently, the highest levels of IFN-y were found to be secreted by Ag-stimulated T 

cells from donors who were clinically immune to P. falciparum. IFN-y production in 

vitro could be induced by both crude and defined Pf155-enriched Ag preparations 

(Troye-Blomberg f i ia l  1987). There was no obvious correlation between T cell 

proliferation (as measured by [3 H]-thymidine incorporation) and IFN-y production, 

indicating that these two phenomena, which both reflect T cell activation, may be 

partially independent processes taking place in different subpopulations of cells. 

Alternatively, it may reflect the natural course of differentiation of T cells, where 

mature memory T cells still secrete IFN-y in response to specific malarial antigenic 

stimulation at a time when a proliferative response is no longer possible (Riley E.M., 

personal communication). Thus, it may be prudent to measure both DNA synthesis and 

IFN-y titres when monitoring CMI of P. falciparum exposed individuals.

In contrast to its toxicity on the exo-erythrocytic stage of malaria parasites, IFN-y has 

by itself no effect on the erythrocytic stages of plasmodia (Ferreira f i i a l  1986). 

However, it has been hypothesised that IFN-y is capable of activating macrophages with 

enhanced microbicidal activity. Moreover, it is thought that the production of IFN-y is 

the primary role of CD4+ (Ly-4+) T cells in cell-mediated resistance to 

microorganisms (Murray 1988). Current opinion suggests that IFN-y (and IL-2) 

secretion is a unique property amongst T cells of the CD4+ TH1 subset (Mosmann & 

Coffman 1987), and this generalisation has been confirmed for the specific case of 

malaria infection by Langhorne f i ia l (1989 b), using the P. c. chabaudi-mouse model. 

Experimental evidence from in vitro and in vivo studies implicates IFN-y in acquired 

immunity to blood stage malaria. Ockenhouse & Shear (1984) demonstrated that 

macrophages recovered from normal mice could be activated in vitro to destroy 

intraerythrocytic P. voelii by oxygen-dependent mechanisms after incubation in IFN- 

containing S/N obtained from Ag-stimulated spleen cells from P. yoelii immune mice. In 

further studies, these investigators showed that the addition of anti-IFN-y Ab to crude 

lymphokine S/N blocked macrophage-mediated parasite destruction, and demonstrated 

that recombinant IFN-y activated human macrophages to induce the appearance of crisis 

forms of P. falciparum in cultures of human pRBC (Ockenhouse f i ia l 1984).

Inflammatory mediators such as TNF can be induced in macrophages activated by IFN-y
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(Mosmann & Coffman 1987) in response to malarial parasite stimulation (Bate f i ia l  

1988). Both reactive oxygen intermediates and TNF may contribute to protective 

immune mechanisms, but the latter is also linked to the pathology of cerebral malaria. 

In v ivo , it has been demonstrated that treatment of mice with exogenous IFN-y has a 

protective effect during blood stage malaria. Clark f i ia l  (1987) treated mice infected 

with P. c. adami daily for 7 d with recombinant IFN-y and observed a dose-dependent 

delay in the onset of parasitaemia, and, when treatment was extended for 17 d, a 

significantly lower peak parasitaemia. Similarly, Shear f i ia l  (1989) observed that 

daily treatment with an identical dose of recombinant IFN-y resulted in lower 

parasitaemia and increased survival after infection with the lethal 17X strain of fL  

yoelii. Moreover, IFN-y was thought to confer protection in rodent systems by acting in 

synergy with other lymphokines (Clark f i ia l 1987). These studies to define the role of 

IFN-y in anti-malarial immunity have been performed either in vitro or by using 

infected animals treated with exogenous IFN-y. Recently, however, the in vivo 

importance of IFN-y has been evaluated. In P. c. chabaudi AS-infected mice, the peak of 

endogenous IFN-y production occurred just before peak parasitaemia, and correlated 

directly with a relatively high frequency of IFN-y secreting T cells in the spleen (Slade 

& Langhorne 1989, Stevenson f i la i  1990). It is notable that the timing of peak IFN-y 

levels is during the first patent parasitaemia when Ab-independent mechanisms are 

considered the major effector arm of acquired resistance to malaria infection. In vivo 

depletion of IFN-y through injection of MAbs against this lymphokine exacerbated 

infection (Slade & Langhorne 1989, Stevenson f i la i  1990). Furthermore, in mice 

depleted of Ly-4+ T cells, and thus unable to produce IFN-y, treatment impaired but did 

not abbrogate completely host resistance to P.c. chabaudi AS infection (Meding f i la i in 

press).

This suggests that IFN-y has a pivotal role in host immunity to malaria, but that factors 

in addition to this pluripotent lymphokine may be important in parasite clearance. 

Meding f i la i  (in press) have also discovered that mouse strains both susceptible and 

resistant to P. c. chabaudi AS produce IFN-y, suggesting that host susceptibility to 

malaria is not due to an intrinsic defect in IFN-y synthesis. From other recent data, it 

seems that cerebral malaria in mice is associated with IFN-y-induced TNF production 

(Grau f i ia l  1987), suggesting that there may be a fine balance between the levels of 

serum IFN-y and TNF, and protective immunity or pathological consequences. Thus, the 

levels of IFN-y and TNF, which may vary from one strain of mouse to another, may
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determine susceptibility or resistance to malarial infection (Langhorne. J., personal 

communication).

Riley f i ia l  (1989 a) have recently examined the role of CD8+ T cells in determining the 

in vitro cellular immune response to P. falciparum Ags in malaria-immune adults. 

Removal of CD8+ cells from the peripheral blood enhanced both the T cell proliferative 

and the IFN-y response to malaria Ags in a group of normally low-responding immune 

individuals.

Although the in vivo significance of these findings is not clear, not only does this study 

confirm that it is the CD4+ T cell compartment that is responsible for IFN-y secretion, 

but also supports strongly the concept that Ag-specific CD8+ T cells (putative T 

suppressor cells) are involved in the suppressive regulation of CMI to malaria (Troye- 

Blomberg a ia i 1983 a).

In addition to IFN-y, another component present in the non-lg fraction of certain 

malarious sera is TNF (Beutler & Cerami 1987), which is assuming increasing interest 

as a mediator of cellular immunity against asexual blood stage parasites in malaria. 

Before its chemical nature and origin had been revealed, it was suggested by Clark f i ia l 

(1976) that a circulating parasiticidal factor was responsible for the intraerythrocytic 

death of parasites (so-called 'crisis forms'), and that this chemical was probably

produced by activated macrophages and released during infection. It was later

established that this crisis form factor was indeed able to retard intraerythrocytic 

parasite development and generate typical crisis form pRBC in vitro (Jensen f i ia l  

1982, 1983, 1984). This, it transpired, may not actually be TNF (Jensen f i i a l

1987), although it has not been proven unequivocally. The direct parasiticidal effect of 

TNF is controversial, as the toxicity of recombinant TNF-a towards pRBC has yet to be 

demonstrated in vitro. However, TNF was recently shown to be present in very high 

amounts in human serum taken from malaria-infected individuals (Scuderi f i i f i l  1986). 

Furthermore, TNF-containing serum (TNS) and partially purified TNF are known to kill 

murine (Taverne f i la i  1981) and human (Haidaris f i la i 1983, Wozencraft f i la i  1984, 

Carlin f i la i  1985) blood stage parasites in vitro. There is good evidence that serum- 

extracted TNF inhibits the in vivo growth of the murine parasites P. vinckei (Clark f i la i

1981) and P. yoelii (Taverne f i la i  1982).

More recently, the administration of recombinant TNF-a in vivo has been shown to

reduce the parasitaemia in mice infected with P. chabaudi (Clark f i la i 1987) and both 

lethal and non-lethal strains of P. yoelii (Taverne f i la i  1987). In the latter study, a
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synergy between TNF and other factors in parasite killing was demonstrated; pRBC 

incubated with recombinant TNF showed no loss of viability, but repeated injections of 

TNF into mice challenged with a lethal strain of P. yoelii reduced parasitaemia and 

significantly prolonged survival. These observations suggest that TNS contains a 

parasiticidal factor(s) in addition to TNF, and that TNF is capable of activating immune 

effector mechanisms in vivo. That TNF is actually a macrophage-derived monokine was 

first demonstrated by Clark f i la i (1981). The mechanism by which TNF or TNS exert 

their deleterious effects on pRBC remains to be elucidated, but as TNF is known to be 

toxic to the host animal, whether or not it exerts a beneficial effect or is pathogenic may 

depend on the sensitivity of the individual to TNF and the level of the factor present in 

the serum.

(vi) The role of reactive oxygen intermediates

The consensus of opinion at present suggests that the major pathway of Ab-independent 

acquired immunity in plasmodial infection involves the release from Ag-activated CD4+ 

T cells of lymphokines such as IFN-y, which then stimulate cells of the mononuclear 

phagocytic cell system to exert anti-parasitic effects. Although this may be direct, by 

itself phagocytosis does not usually lead directly to parasite death. More often, 

macrophages mediate through the release of free oxygen radicals, which in turn may give 

rise to the formation of various stable parasiticidal components (Allison & Eugui1983, 

Clark 1987). That phagocytosis is not the principal mechanism by which CMI is 

effected was shown by the fact that recovery from non-lethal P. berghei and P. chabaudi 

infections does not correlate with increased phagocytosis (Lucia & Nussenzweig 1969, 

Cantrell f i la i  1970), but is coincidental with the presence of degenerate parasites 

within intact pRBC.

A major contribution to the understanding of how cell-mediated effector mechanisms 

cause pRBC destruction was derived from experiments in which agents known to generate 

free oxygen radicals, including alloxan (Clark & Hunt 1983) and t-butyl hydroperoxide 

(Wood & Clark 1982, Clark f i la i  1983) suppressed parasitaemia when injected into 

malaria infected mice. Examination of blood smears revealed degenerate forms of 

intracellular parasites and suggested that these chemical generators of reactive oxygen 

species, including hydrogen peroxide (H20 2), superoxide anions (0 2-) and hydroxyl 

radicals (OH-), may be mimicking one mechanism of CMI towards blood stage malaria. 

Indeed, reactive oxygen intermediates have been shown to be toxic to asexual stages of a 

variety of different Plasmodium species, both in vitro and in vivo (Dockrell & Playfair
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1983). It is thought that during infection macrophages recruited to the spleen and 

liver, as well as myeloid cells in the blood, become highly activated through 

lymphokines (predominantly IFN-y) produced by T cells specifically responding to 

malarial Ags. These activated macrophages act as non-specific effector cells by 

releasing reactive oxygen species during a respiratory burst (Ockenhouse f i ia l 1984). 

Since oxygen radicals are extremely short-lived molecules, they may exert their 

activity locally in the liver and spleen, through lipid peroxidation leading to the 

generation of toxic aldehydes (Allison & Eugui 1983, Clark f i ia l  1987). The chemicals 

may then circulate in the blood and effect parasite (and tissue) injury at distant sites. 

The oxidative burst capacity of splenic adherent cells, of which macrophages form a 

large proportion, has been shown to vary during the course of murine malaria (Dockrell 

f i ia l  1986), and in the case of P. chabaudi infection, was maximal just as the animals 

began to recover; the amount and degree of respiratory activity appeared to correlate 

with the outcome of infection. During P. voelii infection, enhanced oxidative capacity 

was observed throughout infection in both splenic and liver macrophages. In contrast, 

for mice challenged with P. berghei. the oxidative capacity decreased during infection, 

suggesting that the inability to generate reactive oxygen species may be associated with 

lethality of the parasite for the particular host. While the role of toxic oxygen 

metabolites is firmly established in vivo in rodent models of malaria, there are as yet no 

comparable human studies.

(vii) The role of toxic nitrogen oxides

Additional factors released by macrophages or other cells may play a part in immunity to 

asexual erythrocytic malarial infection, as evidenced by the parasiticidal component of 

TNS (Carlin f i la i  1985). In addition, it has been reported that in cases of chronic 

granulomatous disease, in which oxidative metabolism is impaired, IFN-y-activated 

macrophages were able to inhibit partially the growth of (Ockenhouse f i la i  1984), and 

polymorphonuclear leukocytes kill (Kharazmi f i la i  1984), erythrocytic P. falciparum 

in vitro. These independent findings suggest the existence of an oxygen-independent 

parasiticidal mechanism. This has recently been elucidated, and involves the cytokine- 

induced synthesis of toxic nitrogen oxide (NO) from L-arginine by macrophages, 

hepatocytes and perhaps even endothelial cells. NO inhibits iron sulphur-dependent 

enzymes involved in cellular respiration and energy production.

For the obligate intracellular protozoan parasite of macrophages, Leishmania major, 

synthesis of L-arginine-derived nitrite (N02-)» the oxidative end product of NO,
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directly correlates with killing of leishmania amastigotes (Green f i ia l  1990 a). In this 

instance, the rate of N02- production is a quantitative index for macrophage activation. 

It has been shown that competitive inhibition of NO synthesis by monomethylarginine 

inhibits both parasite killing and N02- production (Granger f i la i 1990). Now the same 

oxygen-independent mechanism of parasite killing has been found to be active against 

malaria schizonts and exo-erythrocytic stages of P. berghei (Green f i ia l 1990 b).

In the case of leishmaniasis, it is known that the parasite itself participates in the 

regulation of this toxic effector mechanism by inducing TNF-a secretion by 

macrophages. This macrophage autocrine factor acts in combination with IFN-y to 

induce nitrogen oxidation of L-arginine (Draper fiial 1988, Ding fiial 1988). Indeed, 

NO synthesis by IFN-y-treated macrophages can be blocked by anti-TNF-a MAbs (Green 

fiial 1990 b). At present, the activation signal involved in endogenous generation of NO 

is unknown. This mediation of TNF in intracellular destruction is of interest in malaria 

infections, since it has very recently been shown that pRBC induce the secretion of TNF, 

and furthermore, that the exoantigens that are liberated also induce TNF in vitro (Bate 

filai 1988, Taverne filai 1989, Taverne filai 1990), and in vivo (Taverne filai 1989, 

Bate filai 1989). As it is now considered, at least for Leishmania major infections, that 

H20 2 and other oxygen metabolites are not only not implicated in parasite clearance, but 

have been shown to exacerbate infection both in vitro and in vivo (Liew F.Y., personal 

communication), it may be that opinion will change as to the nature of the principal 

effector molecules secreted by lymphokine-activated cells involved in the elimination of 

blood stage malaria parasites.

(vlii) The role of the spleen

It has long been recognised that the spleen plays a major role in resistance to malaria 

parasites. In general, splenectomy worsens infection; normally non-lethal challenges 

may become lethal and latent infections may relapse (Taliaferro 1929; reviewed by 

Wyler filai 1979 a). However, the findings are not totally consistent. In the rat, 

splenectomy prevented recovery from P. berghei infection (Quinn & Wyler 1980), even 

after vaccination ( Stiffel filai 1972). Splenectomised or congenitally asplenic mice 

succumbed to P. voelii or P. chabaudi challenge (Oster filai 1980), but in another study 

(Dockrell filai 1980), splenectomy did not prevent recovery from non-lethal P. voelii 

infection, or the protective effect of a vaccine against the lethal strain of P. yoelii 

provided vaccination preceeded the operation. This paradoxical situation may be 

reconciled by the finding of Wyler filai (1979 a) that the spleen plays a beneficial role
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for the host early in infection, but it may later have a deleterious effect by promoting 

chronicity of infection with some plasmodia. Also, the effect of splenectomy on the 

course of a subsequent malaria infection is dependent on the species of host (Zuckerman 

& Yoeli 1954, Langhorne f i ia l  1979) and in the case of P. berghei. the age of the rat 

(Zuckerman & Yoeli 1954). Although splenectomy removes a large population of 

effector cells (Brown f i ia l  1976 a), this quantitative loss is probably not as important 

as losing vascular access to the normal splenic architecture and filtering ability. In 

support of this, Oster f i la i  (1988) showed that mice reconstituted with spleen cell 

suspensions after splenectomy experienced similar infections to the splenectomised 

controls, using several rodent malarias.

For P. berohei. splenectomy prior to infection has an ultimately adverse effect. 

Although in splenectomised adolescent rats, peak parasitaemia was lower than in similar 

intact controls, if the splenectomised animals were unable to reduce the first wave of 

parasitaemia to subpatency, there was a higher rate of mortality (Zuckerman & Yoeli 

1954, Cantrell & Moss 1963, Cantrell & Elko 1966). Weiss & Hess (1978) 

demonstrated that in both rats and gerbils, vascular disconnection of the spleen from the 

liver reduced immunity to P. berohei almost as much as splenectomy, and, in another 

report, subtotal hepatectomy in rats had a similar effect to splenectomy (Cantrell & 

Moss 1963).

Rhesus monkeys vaccinated against P. knowlesi remained immune after splenectomy but 

only briefly (Butcher f i la i  1978), whilst immunity to P. knowlesi in marmosets was 

not affected by splenectomy (Langhorne f i la i  1979). With P. inui-infected rhesus 

monkeys, splenectomy before challenge increased mortality, but after infection 

facilitated self-cure within a year (intact monkeys had persistent infections for 1-13 

years) (Wyler & Gallin 1977, Wyler f i la i  1977).

It was proposed by Barker & Powers (1971) that the generally deleterious effect of 

splenectomy on rodent malaria is attributable to a reduction of Ab response. However, 

the passive transfer of immune serum confers less protection to splenectomised rats 

than to intact rats, when infected with P. berghei (Brown & Phillips 1974), suggesting 

the spleen is important for the phagocytosis of malaria parasites. This latter finding 

correlates with the pioneering work of Taliaferro & Cannon (1936) who observed an 

increased number of differentiated macrophages phagocytosing parasites in spleen 

sections taken from P. brasilianum-infected Panamanian monkeys. It was also reported 

for the first time that during a primary infection, the spleen becomes massively
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enlarged, splenomegaly, a hallmark of malaria. More recently, it has been shown that 

the total number of splenic macrophages increases dramatically during P. berghei 

(Wyler & Gallin 1977) and P. voelii (Lelchuk f i l a i  1979) infections of mice. 

Moreover, culture of the non-adherent spleen cell fraction from P. yoelii infected mice 

revealed a population of late adhering cells which resembled macrophages in morphology 

(Lelchuk f i la i  1979). These investigators concluded that malaria infection may 

stimulate the production of macrophage-monocyte precursors, whose development is 

regulated by the presence of mature macrophages.

Why the spleen is so often vital in malaria infection has only recently become clear with 

several claims for a physical role in trapping pRBC, enabling localised parasite 

elimination (Conrad & Dennis 1968, Schnitzer f i l a i  1972, Wyler f i l a i  1981). 

Observations suggest that the spleen efficiently filters out pRBC as soon as they can be 

recognised as foreign. Rat RBC parasitised by P. berghei are more rapidly removed from 

the circulation into the spleen than are nRBC (Quinn & Wyler 1979 b, Wyler f i la i

1981). A unique structural feature of the spleen not found in other lymphoid organs, 

the red pulp, is considered to be the site where filtration occurs (Weiss 1979). Within 

the red pulp, the intermediate circulation is such that arterioles open into cords that are 

connected with sinuses. The macrophage is the dominant leucocyte in the cords; 

monocytes entering the cords across arteriolar terminations appear to be selectively 

held in the interstices, or filtration beds, of the reticular meshwork (Weiss 1983 a & 

b) The migration of monocytes from the peripheral circulation to the spleen in vivo 

may be linked to the elaboration of a mononuclear chemotactic factor in vitro (Wyler & 

Gallin 1977). Thus, immigrant mononuclear cells with high capacity for a respiratory 

burst are concentrated in the post-arteriolar region, and pRBC entering through 

arterioles must pass through this site in close apposition to these effector cells, and can 

then be eliminated by direct phagocytosis by macrophages, or by the cytotoxic effects of 

monokines and other macrophage-derived factors. Phagocytosis of P. knowlesi-infected 

RBC by cordal macrophages has been observed in rhesus monkeys (Schnitzer f i la i  

1972).

There also exists a second filter system of the red pulp; blood leaving the cord enters the 

lumen of the vascular sinus by passing between endothelial cells (Weiss 1979). This

constitutes a slit-like space, and RBC passing through it must be pliant. If RBC

deformability is reduced, as is the case for pRBC (Miller f i ia l 1971 b), their passage is

delayed and a pool of pRBC forms within an environment rich in effector cells. This
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regional concentration of pRBC was first reported for P. brasiiianum infection 

(Taliaferro & Cannon 1936).

During malaria infection, the changes in the spleen depend upon its singular capacities to 

trap circulating blood cells differentially in its filtration beds, where, for monocytes, 

they are stored for variable periods and proliferate (Weiss 1983 a & b) or, for pRBC, 

are modified or destroyed (Weiss 1978). Perhaps the most striking instance of splenic 

control of malaria is the phenomenon of crisis, the spontaneous and rapid disappearance 

of pRBC from the blood (Taliaferro & Cannon 1936, Taliaferro & Mulligan 1937, 

Taliaferro & Taliaferro 1944, Quinn & Wyler 1979 b, 1980, Wyler f i i a l  1979 a, 

1981, Wyler 1983 a). Crisis fails to occur in the absence of the spleen. The 

disappearance of circulating pRBC in crisis is due to their sequestration on the filtration 

beds of red pulp and their destruction by macrophages held there (Taliaferro & Cannon 

1936, Taliaferro & Mulligan 1937).

As has been inferred from various challenges of splenectomised mice and rats already 

detailed, the capacity of the spleen to clear the blood varies considerably during the 

course of blood stage malaria. It has been shown that, after a brief initial phase of active 

normal clearance, splenic clearance capacity falls to subnormal levels until crisis, 

when active clearance is restored (Quinn & Wyler 1979 b, Wyler f i l a i  1981). 

Furthermore, during malaria there is a change in blood flow through the spleen, with a 

switch from open arrangements (by which blood flows through the locules of the 

filtration beds) during the time of normal or heightened clearance, to closed 

arrangements (by which blood is shunted from the locules) during depressed clearance 

(Quinn & Wyler 1979 b, Wyler f i la i  1981).

In microscopic studies of lethal and non-lethal P. yoelii infections, a striking activation 

of reticular cells early in the disease was discovered, and this was at such a rate and 

magnitude as to provide an increasingly competent blood-spleen barrier (Weiss f i la i  

1986, Weiss 1989, 1990). This barrier appears to exclude pRBC from filtration beds, 

thereby protecting the proliferating and differentiating populations of erythroblasts 

(and lymphocytes, plasma cells and monocyte-macrophages) held there against 

infection. The position of this barrier, separating the powerful filtering capacities of 

the spleen from parasites carried in the blood, permits the development of a rising 

parasitaemia and anaemia (McGhee 1960, Zuckerman 1960). Crisis is associated with 

the relaxation of this barrier and with two important, complementary consequences: 

allowing pRBC into the filtration beds of the spleen where they are destroyed; and
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releasing the reticulocyte stores produced in the spleen by erythropoiesis into the 

circulation (Weiss f i la i  1986). Blood flow characteristics, filtration capacities of the 

spleen and control of malaria appear intrinsically related, and depend upon the 

formation of the reticular cell blood-spleen barrier. Into such close apposition does this 

barrier bring host effector cells and parasite, it has been speculated that the very 

structure of the spleen may have been driven evolutionarily by malaria (Weiss 1990). 

(ix) The role of the liver

Sporozoite invasion and subsequent exo-erythrocytic schizogony within hepatocytes 

leads to the eventual destruction of the host cell. However, under normal circumstances, 

relatively few sporozoites are inoculated following a mosquito bite, and as the proportion 

of mosquitoes that are infected is often below 1%, sporozoite-induced injury of the liver 

is likely to be minimal (Hollingdale 1985). This is in contrast to the hepatomegaly 

commonly seen in malarial infections of mammals during the patent erythrocytic 

parasitaemia (Singer 1954, Russell f i la i  1963), when the liver becomes extremely 

friable and dark in colour. During P. berghei infection in rats, Kupffer cell 

hypertrophy occurs. There is also a progressive infiltration of the interlobular areas of 

the liver, initially with leucocytes and hypertrophying lymphocytes, but later 

increasingly with erythropoietic blast cells (Singer 1954, reviewed by Aikawa f i la i  

1980).

Although of secondary importance to the spleen during malaria infection, the liver 

functions as a repository for the reticulo-endothelial system, with active phagocytosis 

of pigment and pRBC taking place within it. In splenectomised animals, the liver takes 

over most of the extra burden of phagocytosis (Taliaferro & Cannon 1936). In 

berghei infections in mice, the liver had a greater macrophage activity than the spleen 

(Singer 1954), whilst in rats challenged with the same parasite (Cantrell & Moss 

1963), partial host hepatectomy resulted in a striking enhancement of parasitaemia 

early in infection.

(e) The immune response to gametocytes and gametes

Until relatively recently, research into acquired immunity to the sexual stages of 

malaria, the gametocytes and gametes, had been a neglected subject, presumably because 

these stages are not themselves pathogenic to the human host. However, since the 

gametocyte is the stage of the malaria life cycle which tranfers the parasite from the 

vertebrate host to the mosquito vector, stage-specific immunity against this form, or
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against gametes, would tend to reduce the infectivity of the parasite to the mosquito. This 

would thus suppress transmission and therefore, indirectly, protect the secondary host, 

notably humans, against malaria. For this reason, such immunity has commonly been 

referred to as transmission blocking immunity (reviewed by Carter f ila i 1988, Targett

1988).

After uptake by the mosquito in a blood meal, under the influence of changes in 

temperature (Sinden & Smalley 1976) and pH (Carter & Nijhout 1977), including a 

potent mosquito factor(s) (Nijhout 1979) present in the mosquito midgut, both male 

and female gametocytes become extracellular. The gametes soon formed are then open to 

attack from any element of the vertebrate host's immune response also present in the 

blood meal (Sinden & Smalley 1976).

Both cellular and Ab-mediated mechanisms of transmission-blocking immunity have 

been proposed. In the case of Ab-mediated resistance, serum from animals recently 

immunised with malaria gametocytes (Gwadz 1976) or gametes (Gwadz & Green 1978) 

has been shown to suppress gametocyte infectivity when presented to mosquitoes in a 

membrane feeding apparatus, but the gametocytes themselves were not directly impaired 

by the effects of immunisation (as shown by their reinfectivity when fed to mosquitoes 

together with normal serum). Furthermore, when gametogenesisand fertilisation were 

induced in vitro before mixing the parasites with serum from gamete-immunised 

animals, the immune serum had little effect on the infectivity of parasites to mosquitoes 

(Grotendorst fiial 1984). In these instances, the transmission-blocking immunity was 

mediated by Abs acting against the parasites only after they had entered the mosquito 

midgut but before fertilisation was completed, i.e. anti-gamete, fertilisation-blocking 

Abs, as determined by agglutination (Gwadz 1976, Carter f i la i  1979 b, Mendis & 

Targett 1982) or by immunofluorescence with live gametes (Munesinghe fiial 1986).

In addition to their purely Ab-dependent action in preventing fertilisation (by an 

unknown mechanism), anti-gamete surface Abs can destroy gametes and also newly 

fertilised zygotes in complement-mediated reactions in the midgut of the mosquito 

(Kaushal f i la i  1983, Rener f i la i  1983, Mendis f i la i  1987, Graves f i la i  1988). 

Moreover, certain anti-gamete Ags require complement to be effective (Mendis fiial  

1987, Graves f ila i 1988).

Induction of Abs can be achieved by immunisation with ookinetes, a sexual stage 

exclusive to the mosquito. These Abs prevent the development of the fertilised zygote in 

the mosquito (Grotendorst f i la i  1984) in a complement-independent manner, the
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mechanism of which is not known. In P. berghei. the Abs appear to impair the survival 

and morphological transformation of zygotes into ookinetes (Winger f i i a l  1988). 

Ookinetes of P. falciparum, however, formed in normal numbers and morphology, but 

the number of resulting oocysts was very low, suggesting that the Abs prevented the 

ookinete from crossing the mosquito midgut (Vermeulen f i ia l 1985).

A form of transmission-blocking immunity which reduced the dose and infectivity of 

gametocytes circulating in the blood stream was reported for the rodent malaria parasite 

P. yoelii n igeriensis (Harte f i la i  1985 a, b & c). This immunity was induced by 

vaccination of mice with microgametes and persisted for 12 months afterwards, although 

serum Ab to gametocytes was not detectable by immunofluorescence after six months. 

Adoptive transfer of immune T cells to naive recipients resulted in a near total (95%) 

reduction in transmission to mosquitoes following subsequent infection of grafted mice. 

This effect was best achieved with Ly-4+ cells and was manifested as a marked decrease 

in gametocyte numbers without affecting the course of asexual stage parasitaemia. While 

serum taken from immune donors was minimally effective alone, transfer of both serum 

and T cells gave the most protection, suggesting a synergistic effect between the cell- 

mediated and humoral immune compartments in suppressing gametocyte infectivity to 

mosquitoes. A human T cell reponse specific to gametes of P. falciparum has also been 

demonstrated in vitro (Good f i ia l 1987 a). With both T cells taken from naive donors 

and those previously infected with malaria, Ag-specific proliferation and IFN-y 

secretion were readily stimulated by gametes, but not asexual blood stage parasites of JL 

falciparum.

The earliest experiments demonstrating transmission-blocking immunity were 

performed following immunisation with whole parasites of various sexual stages and in 

different degrees of purification from other stages, mostly asexual pRBC. Thus, 

fertilisation- blocking Abs have been induced by vaccination with whole parasitised 

blood, containing gametocytes (Huff f i ia l 1958, Gwadz 1976), and with preparations of 

extracellular male (Gwadz & Green 1978, Carter f i ia l 1979 b, Mendis & Targett 1982, 

Grotendorst f i la i  1984, Munesinghe f i ia l  1986) and female (Carter & Chen 1976, 

Carter a ia l  1979 a, Mendis & Targett 1979, Kaushik f i ia l  1982) gametes. These 

studies showed that the sexual stages are very immunogenic and demonstrated functional 

independence of sexual stage immunity from that against asexual erythrocytic parasites. 

Observations have recently been made on induction of immunity to sexual stages in 

human malaria infections. In Sri Lanka, transmission-blocking Abs are readily induced
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by P. vivax infection and can readily be detected in about half of non-immune individuals 

recovering from a primary infection (Mendis f i ia l  1987). In a study of malaria 

transmission in Papua New Guinea where individuals were exposed to multiple 

reinfection with both P. falciparum and P. vivax. about one third of sera collected 

contained detectable amounts of Ab to gamete surface Ags (Graves f i ia l  1988). These 

findings indicate that Ab-mediated anti-gamete immunity is quite easily induced in man 

during malaria infection and that it appears to be potent in reducing infectivity of the 

parasites to mosquitoes in membrane feeding experiments. This degree of suppression 

could be expected to have a significant impact on malaria transmission amongst human 

populations. Frequent re-exposure to infection is required to maintain Ab levels 

(Mendis f iia l 1987), however, and long term anamnestic responses are poor (Ranawaka 

f i ia l  1988). This suggests that there may be some defect in induction of memory T cell 

responses, although it is possible that antigenic polymorphism may prevent T or B cell 

responses being boosted by a different parasite strain.

Ab responses to gamete surface Ags are much more frequently detected in non-immune, 

convalescent malaria patients from non-endemic areas than in residents of malaria 

endemic areas (Mendis f i i f i l  1987, Ong f i ia l  1990). Only a minority of malaria- 

immune adults possess significant levels of Abs to gametocyte surface Ags (Quakyi f i ia l 

1989, Riley f i ia l  1990). This may result either from down regulation of Ab responses 

in individuals chronically exposed to malaria or from adaptive responses by the parasite 

such that gametocyte Ags are not recognised by persons carrying those HLA Ags which are 

common in endemic communities. The reasons for this non-responsiveness are not 

clear, and their elucidation will require longditudinal and age cross-sectional studies of 

malaria endemic populations.

1.12 Immunopathology

(a) Non-specific cell activation

As in other protozoan diseases, such as African (Kobayakawa f i la i  1979) and South 

American trypanosomiasis (Ortiz-Ortiz f i i a l  1980) and visceral leishmaniasis 

(Galvao-Castro 1984), polyclonal B lymphocyte activation occurs in malaria leading to 

a hyperproduction of IgG, of which, in an immune adult, as little as 5% is specifically 

directed against P. falciparum Ags (Cohen & Butcher 1969). This increase in non

specific Ig synthesis was first reported by McGregor f i la i  (1956), and it is now well 

established that early in the acute phase of the disease, asexual erythrocytic parasites

62



induce a polyclonal activation of B cells in humans (Greenwood & Vick 1975) and mice 

(Rosenberg 1978). This hypergammaglobulinaemia has been shown to be T cell- 

dependent in P. yoelii and P. berghei mouse models (Freeman & Parish 1978, Rosenberg 

1978, Weinbaum fiial 1978, Finley fiial 1982). In contrast to infected naive mice, 

challenged athymic nude mice did not show hyperproduction of Abs against sheep RBC, 

different haptens and auto-Ags (Finley fiial 1982, Rosenberg 1978).

Non-specific IgG has been shown to comprise a wide range of auto-Abs detected in sera 

from individuals with acute P. falciparum malaria, although autoimmunity is rare. Ags 

recognised include those of heart, thyroid and gastric parietal cells (Shaper fiial 
1968), lymphocytes (Wells fiial 1980), and RBC (Rosenberg fiial 1973, Ronai fiial 
1981, Zouali fiial 1982, Wahlgren fiial 1983). High titres of Abs to rheumatoid 

factors (Shaper fiial 1968, Greenwood fiial 1971 a), nuclear components (Greenwood 

fiial 1970, Adu fiial 1982), single strand DNA (Ribeiro fiial 1984), mitochondria 

(Boonpucknavig & Ekapanyakul 1984), intermediate filaments (Mortazavi-Milani fiial
1984) and smooth muscle (Phanuphak fiial 1983) have also been found to be associated 

with malaria infections. In a longitudinal study, the incidence of auto-Abs peaked two to 

four weeks after patient discharge, even though in several cases the blood was 

aparasitaemic (Phanuphak fiial 1983). The presence of such auto-Abs has been 

postulated to be related to the ability of plasmodia to induce polyclonal B cell activation. 

Indeed, normal human peripheral blood mononuclear cells were shown to synthesise Abs 

to nuclear components, intermediate filaments and rheumatoid factors when stimulated 

in vitro with P. falciparum culture S/N (Kataaha fiial 1984). These results confirm 

the earlier findings of activation induced by pRBC lysate S/N in mice infected with 

yoelii and P. berghei (Freeman & Parish 1978).

Hypergammaglobulinaemia was initially thought to be due to a direct mitogenic effect of 

malarial Ags on B cells (Greenwood 1974) but has since been shown to be a T cell- 

mediated event (Weidanz 1982), probably through the production of B cell-activating 

lymphokines (Ballet fiial 1987, Kabilan fiial 1987). Moreover, plasmodial Ags can 

activate T cells from normal donors who have never been exposed to malaria (Wyler & 

Oppenheim 1974, Wyler fiial 1979 b). These findings have recently been confirmed at 

the clonal level (Chizzolini & Perrin 1986). T cell activation is also indicated by high 

levels of soluble IL-2 receptors (Ho fiial 1988) and IFN-y (Rhodes-Feuillette fiial
1985) in the sera of some patients with acute falciparum malaria.
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(b) Immunosuppression

Although humans naturally infected in non-endemic regions and animals experimentally 

infected with malaria parasites may experience an immune hyporesponsiveness towards 

a wide range of Ags, quite often in residents of areas where falciparum malaria is 

endemic, an Ag-specific unresponsiveness is observed at the time of disease 

manifestation, regardless of severity (Ho e la i  1986, Riley a ia i  1988 b). This is 

detectable both as a failure of lymphocyte proliferation in response to asexual blood 

stage malarial Ags in vitro (e.g. Ballet a la l  1981, Brasseur a la i  1983, Troye- 

Blomberg a ia l 1983 a), and as an apparent cessation of anti-malarial Ab production in 

vivo (Webster a ia l  1987,1988 b) and appears to be stage-specific (Webster a la l  

1988 a). This immunosuppression can last a long time after the clearance of parasites 

from the circulation and may partially explain the difficulty with which natural 

protective immunity to falciparum malaria develops in endemic areas.

Overall, immunosuppression is probably not that important in the near commensal state 

of chronic, asymtomatic, often subpatent parasitism reached by clinically immune 

adults. It may be important, however, in younger age groups and may also have 

important implications for the efficacy of potential malaria vaccines in populations 

having a high exposure to infection.

Malarious children have been shown to be deficient in their ability to mount primary 

immune responses to certain, but not all non-plasmodial Ags. Similarly, the immune 

response against several T-dependent and T-independent Ags has been reduced in mice 

infected with P. berghei. P. voelii or P. chabaudi (reviewed by Wyler 1979, Weidanz

1982). Immunosuppression may account for the apparent increased frequency and 

greater severity of intercurrent microbial infections among children with malaria, as 

shown by a diminished Ab response to tetanus toxoid (McGregor & Barr 1962), the O Ag 

of Salmonella typhi (Greenwood 1984) and meningococcal vaccine (Williamson & 

Greenwood 1978). Data derived primarily from studies of mixed infections in mice 

have implicated malaria as an agent capable of enhancing the severity of other infectious 

diseases (Cox 1978).

Malaria-induced immunosuppression may also be instrumental in the proposed 

association between malaria, Epstein-Barr virus (EBV), and Burkitt's lymphoma, with 

which malaria has been implicated, perhaps because the geographical distribution of the 

two diseases coincide. Until recently, however, there have been few data to support the

64



contention that malaria enhances susceptibility to malignant disease (Burkitt 1969). In 

the P. voelii-infected mouse model, Wedderburn (1970) showed an increased incidence 

of malignant lymphoma due to Moloney leukaemia virus, and that mice with both 

infections did not produce anti-virus neutralising IgG (Bomford & Wedderburn 1973). 

In Papua New Guinea, where Burkitt's lymphoma is endemic, individuals living in 

malaria-endemic regions were found to have an impaired EBV-specific T cell immunity 

without any major alteration of anti-EBV Ab titres, compared to residents in non- 

malarious zones, or with Caucasians (Moss £ la i 1983). Furthermore, a report from 

the Gambia showed that individuals with an acute attack of P. falciparum malaria 

exhibited a loss of T cell control of EBV-infected B cells, which proliferated abnormally 

and secreted large amounts of Ig (Whittle £ ia i  1984). This finding, which was 

attributed to decreased numbers of CD4+ T cells, may explain the relationship between 

Burkitt's lymphoma and malaria. Similarly, massive antigenic stimulation by malaria 

may serve to activate immunologically CD4+ cells infected with HIV, resulting in the 

termination of virus latency and cell death (Zagury 1986).

Little is yet known about the mechanisms triggered by plasmodia in the development of 

immunosuppression, but several theories have been proposed, primarily on the basis of 

studies in rodents. These include clonal deletion of Ag-specific cells (Poels & Van 

Niekerk 1977), responses to polyclonal activation (Rosenberg 1978), antigenic 

competition (Terry 1978), and non-specific activation of suppressor cells of either T 

cell (Greenwood e ia i 1971 b, 1972, Theander £ ia i 1986 a & b) or macrophage origin 

(Correa £ ia i  1980, Loose £ i i l l  1984) (reviewed by Wyler 1983 b). In addition, 

splenic adherent cells, functionally defective as accessory cells in the response to Ags, 

have been implicated (Warren & Weidanz 1976, Weinbaum £ ia l 1987, Wyler e ia l  

1979 b).

Malaria induced immunosuppression has been shown to involve defects in IL-2 

production both in P. falciparum infection of humans (Troye-Blomberg £ ia l 1985) and 

in murine malaria (Lelchuk £ ia i 1984). In the latter model, these defects were not due 

to deficient IL-1 secretion, which was either unaffected or enhanced, depending on the 

mouse strain (Lelchuk & Playfair 1985). Factors inhibiting IL-2 or depressing 

lymphocyte responses in vitro to both plasmodial and unrelated Ags have been found in 

sera of malarious patients as well as in mice (Lelchuk £ ia i  1987, Theander £ ia l

1987). However, the chemical identity of these factors and their involvement in 

suppression remains to be established.
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(c) Cerebral malaria

Cerebral symptoms accompanying acute falciparum malaria represent severe 

complications with a frequently fatal outcome. This pathological manifestation of disease 

is not directly parasite-related but instead may be due to induction of a detrimental host 

immune response to the malaria parasite. The most common autopsy findings are 

vascular congestion and plugging of blood vessels with heavily parasitised RBC {Polder 

£ la i  1983). The neurones usually show no obvious lesions besides signs of anoxia 

associated with localised cerebral oedema, but brain oedema is a common finding (Oo £i 

a ! 1987). In vivo damage of endothelial cells with subsequent alteration of capillary 

permeability has been reported in both human (Areekul M a i 1984) and mouse 

(Depierreux £ ia i 1987) malaria. However, the hypothesis of an increased blood-brain 

barrier permeability during human cerebral malaria has recently been questioned 

(Warrell £ ia i 1986, Oo £ ia i 1987), and the pathogenesis of these changes remains 

unknown. Various hypotheses have been proposed including endothelial lesions (Wash

1979) with attachment of monocytes to the endothelium (Rest 1982); sequestration of 

pRBC in capillaries (Yoeli & Hargreaves 1974, MacPherson £ ia i  1985), possibly 

related to the particular adhesiveness of pRBC to endothelial cells (reviewed by Howard 

& Gilladoga 1989); T cell-mediated cellular immune reactions (Wright £ ia i  1971, 

Finley £ iaL 1982); and T cell-dependent humoral reactions involving circulating 

immune complexes (Contreras Qiai 1980, Adam £ ia l 1981, Rest 1982).

In humans, indirect evidence of a T cell involvement in neurological complications is 

provided by the observation of a lower frequency of cerebral malaria in malnourished 

children (Edington 1967). Thymic atrophy (Watts 1969, MacFarlane 1971) and 

functional impairment of cell-mediated responses (MacMurray 1984) have also been 

described in brain cortex capillaries of fatal cases of cerebral malaria (Oo £ ia l 1987). 

For ethical reasons, experimentation on malarial complications in humans is not 

possible, and because of the cultural attitude towards autopsy in many Third World 

countries, post mortem examinations are also limited. For this reason, rodent malaria 

infections have been used to study cerebral malaria, and have highlighted the importance 

of the immune system in modulation of cerebral pathology (Mackey £ ia i  1980, Rest 

1983, Franz £ ia i 1987, Cox £ ia i 1987, Grau e ia i 1987, Curfs f i ia i  1989). None of 

the rodent malaria species can be labelled as falciparum-like by parasitological, 

morphological or molecular criteria. However, some of these infections, e.g. P. berqhei
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ANKA strain in mice (Mackey £ ia l 1980, Grau e la l 1987) and P. berghei in hamsters 

(Rest 1983, Franz £ ia l  1987) exhibit important properties of human cerebral 

dysfunction. T cell-mediated immunity has been implicated in the development of 

experimental cerebral malaria, since neurological complications are less severe in 

neonatally thymectomised hamsters (Wright £ ia i 1971) and absent in athymic nude 

mice (Finley £ ia i 1982).

In the P. berghei ANKA mouse model in CBA/Ca mice, a strain of mouse which is thought 

to be genetically susceptible to the development of neurological lesions, a cumulative 

mortality of about 90% was observed between 7-15 d p.i. (Grau £ ia i  1986), when 

anaemia was moderate and parasitaemia relatively low. Several lines of evidence 

indicate that experimental cerebral malaria is strictly dependent on the presence of T 

cells with the Ly-4+ phenotype (Grau £ ia i  1986). The occurrence of the lethal 

neurological syndrome was abrogated completely in P. berghei-infected mice depleted of 

the Ly-4+ T cell subset by MAb treatment in vivo, but not by similar depletion of the 

Ly-2+ subset (Grau £ la l 1986). These results were confirmed in studies where adult- 

thymectomised, irradiated and bone marrow-reconstituted CBA/Ca mice appeared to be 

completely resistant to the onset of neurological signs upon infection with P. berghei. 

These findings extended those obtained by Finley M a i (1982) using nude mice. 

Moreover, reconstitution of mice depleted of T cells by adult thymectomy with normal 

Ly-4+ T cells rendered these mice fully susceptible to neurological complications. In 

contrast, mice reconstituted with Ly-2+ T cells did not die acutely with 

immunopathological signs but later developed severe anaemia and overwhelming 

parasitaemia (Grau £ la i 1986). The implication of these experiments is that murine 

cerebral malaria is mediated by immune mechanisms induced by infecting asexual blood 

stage plasmodia. Indeed, the development of cerebral malaria is not related directly to 

the level of parasitaemia or degree of anaemia, but rather appears as an expression of 

the immunopathological reactions of the infected host.

It is believed that multiple factors determine why some acute P. falciparum infections 

exhibit cerebral symptoms whereas others with equal or even higher blood parasitaemia 

do not. Differences in P. falciparum parasites in genetically and phenotypically 

heterogeneous wild populations (Thaithong £ ia i 1984), as well as variations in innate 

or acquired immune properties of the host, are all important. One event which does, 

however, appear to be consistent with all cases of acute cerebral malaria in man is the 

attachment of P. falciparum pRBC to endothelial cells lining brain capillaries, and
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consequent reduction of blood flow (MacPherson M a i 1985).

The most obvious cell-cell attachment involved in human cerebral malaria is that of 

pRBC with the endothelial cell lining of blood vessels (Trager M a i 1966, Luse & Miller 

1971, MacPherson M a i 1985). Cellular adhesion between pRBC and other host cells, 

including nRBC (Handunnetti Mai 1984, 1985) may also be of importance in 

sequestration and pathology of acute P. falciparum malaria.

In vitro models for sequestration have been developed using cultures of human umbilical 

cord endothelial cell line C32 (Udeinya Mai 1981, 1983 a, 1985). These assays, 

although only representing an approximation of the in vivo situation, have revealed 

properties of P. falciparum pRBC that can affect cytoadherence. So far, three 

heterologous molecules have been discovered to be involved in the adhesion of pRBC to the 

endothelial cell surface. These are: the integral membrane glycoprotein CD36 (Oquendo 

Mai 1989); the large platelet-derived secretory protein thrombospondin (Roberts Mai

1985); and the intercellular adhesion molecule ICAM-1 (Berendt Mai 1989). 

Emerging data suggest that some P. falciparum pRBC adhere to one or more of the three 

potential endothelial cell receptor proteins but not all (Howard & Gilladoga 1989). This 

could mean the expression of up to three structurally different receptors of pRBC, each 

recognising a different binding site on the endothelial cell proteins. Alternatively, all 

pRBC may express approximately the same single receptor site with subtle structural 

differences generating marked alterations in affinity for the three different cytoadhesion 

proteins.

ICAM-1 has a broad distribution on epithelial, endothelial, monocytic, fibroblast, and B 

and T cell lines, and was originally defined with MAbs that inhibited lymphocyte adhesion 

(Simmons M a i 1988, Staunton M a i 1988). It has recently been demonstrated that a 

wide variety of immune interactions involve ICAM-1-mediated cell adhesion (Dustin & 

Springer 1988, Dougherty Mai 1988, Makgoba Mai 1988), and induction of ICAM-1 

expression by cytokines in inflammation is important in regulation of leucocyte 

localisation in inflammatory sites (Staunton Mai 1988). Indeed, TNF-a, IL-1, IL-2 

and IFN-y can all upregulate ICAM-1 levels on diverse cell types, including endothelial 

cells, in vitro and in vivo (Dustin Mai 1986, Rothlein Mai 1988, Asarnow Mai

1989). Berendt M a i (1989) have suggested that severe malaria may occur when those 

individuals expressing elevated levels of ICAM-1 are also infected with a strain of 

malaria parasite that has a high affinity for ICAM-1.

Together, these findings implicate host cytokines in the induction of the
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immunopathology observed in patients with acute falciparum malaria. Paradoxically, 

these cytokines are secreted by Ly-4+ T cells from malaria patients in response to £* 

fa lciparum  Ags (Troye-Blomberg £ ia l  1985, Riley £ ia l  1988 a), and can inhibit 

malarial development in vivo (Maheshwari e ia l 1986, Clark £ ia i 1987). Therefore, 

the same mediators of asexual blood stage parasite destruction may prove 

disadvantageous to the host. This supposition about the possible mechanism of 

immunopathology in the cerebral malaria syndrome explains the essential role of Ly-4+ 

cells in the neurovascular complications of experimental malaria.

Once again, examination of the role of cytokines in cerebral malaria has been restricted 

largely to the P. berghei ANKA/ CBA/Ca mouse model. It was demonstrated that excessive 

release of TNF plays a critical role in the pathogenesis of experimental cerebral malaria 

(Grau £ ia i 1987). Markedly elevated serum TNF levels were seen only at the time of 

the neurological syndrome, whilst being undetectable in normal mice and only slightly 

increased in non-complicated cases of P. berghei infection of BALB/c mice, or in CBA/Ca 

mice infected with P. voelii. a species which does not induce cerebral malaria. In 

addition, in vivo depletion of Ly-4+ T cells, which blocked neurological manifestations, 

prevented the dramatic rise in serum titres of TNF usual in P. berqhei-infected CBA/Ca 

mice (Grau £ ia i  1986). Moreover, treatment by a single injection of anti-TNF Ab 

exerted a protective effect on the P. berghei-induced neurological syndrome (Grau £ ia i

1987). This administration prevented all pathological abnormalities including 

haemorrages and the focal arrest of monocytes and other circulating leucocytes within 

brain capillaries and venules, but without affecting blood parasitaemia. Also, the 

conspicuous macrophage accumulation in the spleen red pulp and lymph nodes of mice 

developing cerebral malaria was suppressed by anti-TNF Ab treatment, suggesting that 

self-amplification of TNF synthesis and of macrophage recruitment had been 

interrupted. Most recently, it has been shown that administration of recombinant 

murine TNF to a P. berghei ANKA-infected strain of mouse resistant to cerebral malaria 

induced a lethal neurological complication with all the clinical and histopathological 

features of cerebral malaria (Grau £ ia i 1989 a).

These observations may seem paradoxical with respect to the favourable role of T cells 

and macrophages in malaria infection. Indeed, these data show TNF to mediate host tissue 

lesion although it is known to participate in the cell-mediated killing of asexual 

erythrocytic stage plasmodia. Under these experimental conditions, at least, a beneficial 

role for TNF has not been demonstrated, since the level of parasitaemia is not changed by
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the injection of anti-TNF Ab (Grau £ la l 1987). It is not difficult, however, to conceive 

that macrophages and their products may have both beneficial and deleterious effects, 

depending of the degree of activation, timing and location, and thus may confer protective 

immunity, or, alternatively cause immunopathology during malaria infection.

In man, elevated concentrations of TNF have been noted in the serum of malaria patients 

(Scuderi £ ia i 1986, VanderMeer £ ia i 1988, Grau £ ia i 1989 b), but the relationship 

between serum TNF levels and human cerebral malaria has not yet been analysed. In 

human cases, accumulations of packed pRBC rather than macrophages observed in the 

murine model are described in cerebral vessels. However, both phenomena may result 

from a similar mechanism, such as increased endothelial adhesiveness, which may 

reflect TNF-mediated vascular alterations. Therefore, TNF may also be of pathogenic 

significance in human cerebral malaria.

Since the macrophage is the major source of TNF and because Ly-4+ T cells are required 

for cerebral malaria to occur, the role of T cell-derived cytokines able to activate 

macrophages has been analysed. In experiments involving in vivo neutralisation using 

anti-cytokine Abs, Grau £ ia l (1988, 1989 c) demonstrated that TNF hyperproduction 

is the result of a cytokine cascade. This implicates IL-3 and granulocyte-macrophage 

colony stimulating factor (GM-CSF), which act by enlarging the macrophage pool, as 

evident in lymphoid organs, and IFN-y, which upregulates macrophage function, 

including the release of TNF. In turn, TNF may exert its deleterious effect on cerebral 

lesions by its action on endothelial cells either directly or through the stimulation of 

IL-1 production (Dinarello £ ia l 1986, Nawroth £ ia l 1986). Both cytokines have been 

shown to increase the adherence of polymorphonuclear leucocytes and monocytes to 

human umbilical vein endothelium in vitro through the induction of surface expression 

of adhesion-promoting molecules (Bevilacqua £ la l 1985, Gamble £ ia i  1985). The 

cytoadherence of pRBC to endothelial cells may be similarly increased with resultant 

microcirculatory obstruction. With the establishment of the role of IFN-7 in TNF 

overproduction (Grau e la l 1989 c), and the demonstration that both cytokines can 

potentiate cytoadherence, it suggests that CD4+ or Ly-4+ cells of the TH1 subset may 

become pathogenic in a chronic or complicated malaria infection. This effect is not 

unlike the way in which TH2 cells exacerbate the normal disease progression in 

cutaneous leishmaniasis (Liew 1989, Scott 1989).
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1.13 Parasite evasion of immunity

Malaria infections are characteristically of long duration, the asexual erythrocytic 

stages of Plasmodium surviving in the blood in spite of the host's immune response 

making its environment as inhospitable as possible. In the case of P. vivax infections, 

latent liver stages intermittently complete their development and infect the blood. 

However, in other malarias, such as P. falciparum, there are no latent forms and the 

persistent fluctuating blood infection must reflect, therefore , either an incomplete 

immune response, for which there is some evidence, and/or evasion by the parasite of 

the full effects of the host's acquired resistance. Indeed, the survival of some plasmodia 

in the face of immunological elimination is implicit in the concept of premunition, and 

suggests that mechanisms of acquired immunity must be balanced by evasive strategies 

on part of the parasite.

(a) Sequestration

RBC containing mature parasites of some malaria species undergo deep vascular tissue 

schizogony during which schizonts tend to withdraw from the peripheral circulation 

(Garnham 1966). This peripheral withdrawal of pRBC is stage specific and is usually 

referred to as sequestration. Regardless of the state of immunity, only very immature 

sexual forms, rings, or mature gametocytes are usually found circulating in the blood of 

humans infected with P. falciparum. The more mature asexual stages localise to the 

post-capillary venular endothelium of the brain, placenta or gut. In the brain, 

sequestration causes cerebral malaria, a syndrome associated with high mortality 

(Warrell 1987). Gametocyte development takes place initially in the deep vascular bed 

(Smalley £ la l 1980); however, mature gametocytes are released into the peripheral 

blood, as they need to be accessible to mosquitoes.

In man, schizont withdrawal of P. falciparum is almost complete. This parasite also 

undergoes deep vascular schizogony in Aotus monkeys, in which the extent of schizont 

withdrawal is as marked, but the major sites, heart and adipose tissue, are different 

(Miller 1969). Parasites adapted to Saimiri monkeys are known to sequester, but not 

to the same extent as in the human host (David £ la i 1983). Thus, at least in the case of 

falciparum malaria, host factors clearly influence the distribution and extent of pRBC 

accumulation in deep vascular beds. Of the other human plasmodia, P. vivax shows some 

slight degree of withdrawal from the peripheral circulation from about 36 hr on in the 

48hr asexual schizogony cycle (Garnham 1966). No evidence has ever been produced
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that this occurs in P. malariae (Howard 1988), although with the typical low level 

infection this parasite normally produces, it may be difficult to detect.

Several primate and rodent species also show relative schizont disappearance from the 

blood stream during asexual maturation. This is most marked with P. coatneyi and E l 

fragile in both natural and unnatural hosts (Desowitz et a l 1969, Fremount & Miller 

1975). With both these parasites, tissue localisation was mainly in the cardiac muscle 

and to a lesser extent in adipose tissue or the small bowel mucosa. P. knowlesi shows 

weak schizont disappearance and similar tissue distribution in an unnatural host, the 

rhesus monkey; however, this only occurs at low parasitaemias (Miller £ la i  1971 a). 

At higher parasitaemias, trophozoites and schizonts are quite easily recognised in the 

peripheral blood.

In P. berghei. sequestration occurs predominantly in the liver and bone marrow in 

young rats, and in the spleen and bone marrow in mice (Alger 1963). In venous sinuses 

of the bone marrow of mice, Weiss (1983 b) observed reticulocytes parasitised with £* 

berghei adherent to endothelial cells and to non-parasitised reticulocytes. He suggested 

that merozoites may enter adherent reticulocytes in the local vicinity without 

significant extracellular exposure. The release of factors from pRBC or lymphocytes 

may explain the early reticulocytosis observed in this disease before the haematocrit 

falls greatly; thus, new reticulocytes would be released in a site favourable for 

parasitisation. By this anatomical arrangement, the spleen is largely avoided, and the 

pRBC are resistant to oxidant stress, so that cell-mediated immunity is less effective 

than in other murine malaria infections, which show far less predilection for bone 

marrow and may multiply in mature RBC.

The ANKA strain of P. berohei shows some accumulation of both pRBC and nRBC, and 

macrophages, at low parasitaemias in cerebral vessels of mice (Mackey £ la i 1980, Rest

1982). However, this may not represent preferential sequestration of parasites in the 

cerebral circulation (Warrell 1987), although this has been used as a model for human 

cerebral malaria (e.g. Grau f i ia l  1987). P. c. chabaudi also exhibits peripheral 

withdrawal (McDonald & Phillips 1978) and schizonts have been noted to accumulate 

markedly in the liver (Cox £ la l 1987).

In the few systems where marked stage-specific peripheral withdrawal of pRBC is 

observed, deep vascular schizogony is clearly a parasite-induced process. It is often 

suggested that the reason sequestration occurs is to avoid splenic filtration, or because of 

the parasite preference for the relatively anoxic environment of the deep vasculature
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(Howard 1988). Furthermore, it is often assumed that the less marked peripheral 

withdrawal shown by many species, e.g. P. knowlesi. also represents sequestration. No 

formal proof of this has been made in any model, and an alternative hypothesis is that 

this represents specific or non-specific host clearance mechanisms in the reticulo

endothelial system in the spleen or liver. The extent to which sequestration represents a 

characteristic feature of many malaria species, or a specific feature of only a few host- 

parasite combinations is thus unclear.

Mature trophozoite, schizont and segmented intracellular merozoite stage pRBC are all 

sequestered in various tissues by attachment to the endothelial cell lining of small blood 

vessels, particularly post-capillary venules. Several critical phases of parasite 

development, including nuclear division, growth in size, and segmentation of the 

multinucleate parasite cytoplasm into daughter merozoites, occur in this particular 

vascular microenvironment. P. falciparum asexual stage pRBC, particularly the mature 

forms, grow best in vitro under conditions of relatively low oxygen tension (Scheibel f i l 

a l 1979), conditions similar to those of their site of sequestration in vivo. A number of 

hypotheses have been proposed to account for evolution of this sequestration 

characteristic of P. falciparum, unique amongst the human malarias; these include the 

requirement for a microaerophilic environment.

Sequestration of mature pRBC also prevents their passage through the spleen and could 

enhance parasite survival by this means as well. Mature P. falciparum infected pRBC 

contain a large parasite inclusion and have grossly impaired deformability compared to 

nRBC and immature pRBC (Cranston £ ia i 1984). The splenic mechanisms for removal 

of RBC with reduced deformability (Sandza £ la l 1974, Driessen £ ia ! 1982, Card £ la l

1983), or inclusions (Schnitzer M a i 1972) as the cells exit the spleen through the 

five fenestrations between the cells of the venous sinus wall are thereby avoided. The 

surface of mature infected RBC is also altered in expression of new Ags (Howard & 

Barnwell 1983) and alterations in surface carbohydrates (Sherman & Greenan 1986). 

The recognition of foreign cell surfaces by resident macrophages (Wyler £ ia i 1979 a, 

Kreier & Green 1980) through Ab-dependent or independent mechanisms is also avoided 

by the capacity of P. falciparum pRBC to sequester to an immunologically privileged site. 

Although these concepts could account for the significantly greater virulence of FL 

falciparum as compared to other human malarias, in which all blood stages traverse the 

spleen and most mature pRBC may actually be destroyed, it does not account for the fact 

that other human malaria parasites survive at all as mature asexual stages in the
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peripheral circulation if splenic selection is so potent. Splenic trafficking may be 

altered in infections of P. vivax. P. malariae or P. ovale so that a proportion of 

trophozoites and schizonts do survive in the bloodstream. Indeed, malaria-induced 

changes in splenic trafficking and in histology have been reported for different malarias, 

including acute P. falciparum malaria (Wyler £ ia l  1981, Weiss £ i a l  1986, 

Looareesuwan £ ia l 1987). It is clear, however, that for P. falciparum, sequestration, 

and the mechanism of cytoadherence underlying it, are major determinants of parasite 

virulence. This is exemplified by the fact that parasite variants produced in the 

laboratory which do not cytoadhere in vitro or in vivo are of low virulence upon 

infection of Aotus monkeys (Lanners & Trager 1984, Green £ ia l  1985, Langreth & 

Peterson 1985).

Cytoadherence of pRBC to endothelial cells during falciparum malaria represents the 

acquisition of a specific, functional cell surface property on the infected cell. Immature 

pRBC, rings and early trophozoites, and nRBC do not adhere to endothelial cells (Udeinya 

£ ia i 1981) Thus, a specific receptor is expressed on the infected cell surface, capable 

of recognising a ligand(s) on the endothelial cells. The receptor is surface-exposed on 

pRBC for about 24 hr, half of the asexual schizogony cycle, and, since it must retain 

structural and functional homogeneity regardless of other phenotypic variations, it could 

represent an antigenically conserved target for an anti-malarial vaccine (Howard

1988).

A strong argument for the enhanced parasite survival conferred by the capacity of 

mature P. falciparum pRBC to sequester comes from studies with laboratory parasite 

variants lacking the cytoadherence property. Transmission electron microscopy of post 

mortem material of humans (Trager e ia l 1966, MacPherson £ la l 1985) and of Aotus 

(Luse & Miller 1971) have shown knob-like protusions of parasitised, sequestered RBC 

at the point of contact with the endothelium. Knobs are characteristic alterations of the 

pRBC membrane, only demonstrable by electron microscopy. They are conical 

protrusions of the RBC membrane, approximately 100 nm in diameter, overlying an 

electron dense core, which dynamically appear and change during parasite maturation 

(Langreth £ ia l 1978, Gruenberg £ la l 1983). Knobs are absent from ring stage pRBC 

of P. falciparum or any blood stage of other human malarias (Howard 1988), none of 

which sequester in vivo. Early investigators correlated the presence of knobs with the 

property of cytoadherence, showing that adhesiveness is acquired at the same time in the 

asexual development cycle as the characteristic morphological alterations of the host
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RBC membrane take place (Trager Mai 1966, Luse & Miller 1971, Langreth Mai 

1978). The role of knobs in adherence to host cells was later confirmed when knobless 

variants of P. falciparum (denoted K" to distinguish them from K+ knobby wild-type 

parasites) were shown to not cytoadhere in vitro (Udeinya Mai 1981), ex v ivo  

(Raventos-Suarez Mai 1985) or in vivo (Barnwell Mai 1983 a, David Mai 1983). 

Most important, K+ parasites sequestered in Aotus and Saimiri monkeys, whereas K" 

variants did not (Lanners & Trager 1984, Langreth & Peterson 1985). The K‘ 

plasmodia have arisen by either continuous passage of K+ parasites in human RBC in 

vitro (Langreth Mai 1979, Trager Mai 1981) or by passage of K+ parasites in 

splenectomised monkeys (Barnwell Mai 1983 a & b, David Mai 1983).

It is inferred, on this basis, therefore, that K‘ mutation is not selected for in the field. 

Studies with K+ and K' organisms infecting non-human primates have shown that 

although K+ parasites produce fully virulent, sequestering infections, K' variants lead 

to virulent infections with only very low parasitaemia (Lanners & Trager 1984, 

Langreth & Peterson 1985, Green M a i 1985). Moreover, K+ infections required drug 

cure of the animal host, whereas K" infections recovered spontaneously. In addition, in 

splenectomised monkeys, K+ and K" infections were almost identical in the course of 

peripheral blood parasitaemia; indeed, K' parasites often grew quicker in vivo in such 

hosts, consistent with a higher growth rate for K' parasites in vitro (David M a i 1983, 

Langreth & Peterson 1985). Therefore, in the absence of the selection pressure of the 

host spleen, K' infections proved fully virulent, the presence of mature K' pRBC in the 

peripheral blood having no disadvantage to the parasite.

It has also been shown that mature P. falciparum gametocyte-infected RBC derived from 

cytoadhering K+ asexual parasites do not express knobs at the cell surface (Miller 

1972) and do not sequester. Interestingly, immature gametocytes of the same species 

also fail to express knobs but are sequestered from the peripheral blood (Smalley M a i

1980), obviously by a different mechanism to that for mature asexual stages.

The correlation between sequestration and knob expression apparent for P. falciparum 

infections of man or monkey models extends to falciparum-like malaria species in non

human primates. P. coatnevi trophozoites express cell surface knobs (Kilejian M a i 

1977) and sequester in vivo in rhesus monkeys (Desowitz M a i 1969), whereas 

gametocytes are knobless and fail to sequester (Rudzinska & Trager 1968). Similarly, 

mature P. fragile pRBC express knobs and sequester in infected rhesus monkeys; 

gametocytes do not (Fremount & Miller 1975). Although knobs are required for
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cytoadherence of P. falciparum, their presence as morphological entities is alone 

insufficient to confer this functional property. This was demonstrated by Udeinya £ la l 

(1983 a & b) who passaged in vitro some K+ parasites which cytoadhere or bind 

(K+B+), whereupon they were converted to a K+ B‘ phenotype. Clearly, an additional 

surface membrane property other than knob expression is necessary for cytoadherence 

of P. falciparum, but this has not been identified. The quartan malaria parasites £* 

malariae and P. brasilianum both express knob profusions on the surface membrane of 

trophozoites, schizonts and gametocytes, yet none of these altered RBC sequester (Smith 

& Theakston 1979, Sterling £ ia l  1972). These observations support further the 

concept that knobs are insufficient for cytoadherence, and raise the possibility that 

other important functions, yet undiscovered, are mediated by these parasite-induced 

structures.

Knob composition is complex and not fully elucidated (reviewed by Howard 1988). One 

of the Histi dine Rich Proteins, HRP 1, has been identified as part of the knob protein 

(Kilejian 1979). Another component, called pf EMP2, has been localised to the knob 

structure (Howard 1987) and is identified to the mature parasite-infected erythrocyte 

surface antigen (MESA) (Coppel e ia i 1986). Pf EMP1 appears to be a surface-located 

protein associated with the knobs (Howard 1988). A further seven proteins have been 

identified in different laboratories as components of the RBC membrane of P. falciparum 

K + -infected cells. Whether a full complement of knob proteins is essential for 

sequestration is unclear.

Much recent work has been dependent on the development of an in vitro cytoadherence 

assay. Human endothelial cells derived from umbilical cords (Udeinya £ ia i  1981), 

melanoma cells, especially the amelanotic C32 line (Schmidt e ia l 1982) and monocytes 

(Ockenhouse £ ia i 1984) are all cells to which P. falciparum schizont-infected RBC will 

specifically adhere. Using such a binding assay, it has been possible to show that the 

cytoadherence ligand is trypsin sensitive (David e ia l 1984).

Saimiri immune serum that can reverse schizont binding in vitro can also reverse 

sequestration in vivo (David £ la i 1983). Reversal or blocking of binding is strain- 

specific, suggesting that a functional part of the sequestering molecule is either itself 

strain-specific or sterically inhibited by Ab to a strain-specific antigenic determinant 

(Udeinya £ ia l 1983 b).

The sequestering Ag is now thought to have been identified. This is a large protein of 300 

kDa, which is localised to the cell surface by trypsin activity and iodination (Leech £ ia ]
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1984). It is also retained after detergent extraction, suggesting an attachment to the 

pRBC cytoskeleton (Leech £ ia i 1984). It was the only protein immunoprecipitated with 

strain-specific immune serum that correlated with the ability of sera to interfere with 

cytoadherence. This antigenic determinant has recently been called pf EMP1 (Howard

1988), although no definitive proof of its identity has been obtained. How exactly its 

presence is functionally related to sequestration is not yet established.

(b) Antigenic variation

One paradox in malaria is the ability of asexual stage parasites to remain patent in the 

peripheral blood for weeks or months of chronic low-grade parasitaemia, whilst the 

host stays clinically immune to any adverse effects. This is a near ideal state of 

parasitism, but is only reached after considerable morbidity is experienced during the 

acute infections that generate such immunity. The complex interaction of immunised 

host and asexual parasite appears to involve both the evasion of immunity by the malaria 

parasite and the ability of the host to limit plasmodial growth below life-threatening 

levels. The availability of well-characterised antigenic variants has proved important 

in the study of this immune evasion mechanism. This is because, despite the fact that 

recent data from field studies in endemic areas indicate that human responses to the 

analogous pRBC surface Ags are isolate-specific (Marsh & Howard 1986), and that these 

particular responses have a role in protective immunity, it is obviously impossible to 

delineate the role of antigenic variation under field conditions with uncloned parasites 

and constant exposure.

In humans, and in several other systems, it is relatively easy to establish solid 

immunity to one strain or clone of malarial blood stage parasite with repeated challenge, 

but this does not occur in natural transmission (Kitchen 1949), where there is a slow 

acquisition of acquired immunity. This is thought to be due to immune evasion on the 

part of the parasite, as, for example, splenectomy during established infection of the 

primate quartan malaria P. inui can greatly reduce the period of chronic blood stream 

infection (Wyler £ ia i  1977). The inference from this and from other studies is that 

evasion mechanisms are selected for in the presence of immunological pressure by the 

host.

Although several explanations have been advanced for the chronicity of malaria and the 

capacity of asexual parasites to reinfect the host (Brown 1969), extensive serological 

and immunochemical data point to the ability of blood stage plasmodia to undergo
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phenotypic antigenic variation as of paramount importance (Brown & Brown 1965, 

Brown e la i  1968, Voller & Rossan 1969, Brown £ ia l  1970 a & b, Brown 1971, 

Butcher & Cohen 1972). During the period of a single infection, asexual erythrocytic 

stage parasites repeatedly change functional Ags presented to the host, thereby requiring 

the host to make a specific immune response, usually Ab-mediated, to each new antigenic 

or variant type as it appears. The new antigenic variants are unaffected by immunity to 

previous variants, and by the time that the response to the new Ag reaches effective 

levels, a still newer variant is being produced. This mechanism keeps the parasite a 

step in front of the host's protective response and allows its survival regardless of the 

effect of the specific acquired immunity. Usually the immune response, a major 

component of which will be anti-malarial Ab, to each new variant as it appears is rapid 

and correspondingly the parasitaemia is maintained at a low level. Indeed, it is 

speculated that the presence of an anti-parasite Ab specific for the immunodominant 

variant type in the peripheral circulation may provide the signal to the parasite to 

change its variant type (Phillips 1983). Phenotypic antigenic variation by the 

multiplicative blood stage has been observed in several Plasmodium species, and 

involves Ags on the surface of the pRBC expressed late in the asexual cycle; these may 

(Newbold & Marsh 1990) or may not be parasite-derived (Sherman & Winograd 1990) 

in origin.

As a general strategy for maintenance of chronic infection in parasites, the phenomenon 

of antigenic variation has been studied in trypanosomes (Cross 1978) and borrelian 

spirochaetes (Stoenner £ ia i 1982). Both these pathogens exist extracellularly in the 

bloodstream and are transmitted between host by blood-sucking arthropod vectors. Each 

organism has a surface-located immunodominant protein against which the host mounts a 

successful immune response. In such a way, one particular predominant antigenic 

variant is removed, thereby selecting for the expansion of another variant type which 

forms a patent wave or recrudescence of infection. Regular recrudescent peaks occur 

with the antigenically variant populations of both Trvpanosom a and Borrelia in 

experimental infections with clones or strains.

In wild populations and multiple infections, such regular patencies may not be seen. A 

similar pattern is observed in many laboratory infections of malaria. However, unlike 

the extracellular blood stream pathogens, malaria is predominantly intracellular, and 

pRBC are not covered with immunogenic parasite material. Rather, surface-located Ags, 

which are expressed by trophozoites and schizonts, but which are not immunodominant,
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have been described in several primate and rodent malarias.

The best described system for study of antigenic variation in malaria is P. knowlesi in 

rhesus monkeys (Brown1977), first reported by Brown & Brown (1969). One 

problem is that this is not a natural host-parasite combination, and P. knowlesi will kill 

the monkeys unless drug treatment is given. If subcurative chemotherapy is 

administered, such that the animal recovers but remains parasitaemic, successive waves 

of infection will occur, none of which need drug cover. Using this model, Eaton (1938) 

showed that schizont-infected RBC, but not the younger stages, can be agglutinated by 

immune serum. Later, the schizont-infected cell agglutination (SICA) test was 

developed to investigate the serology of patent recrudescent parasite populations; this 

was done initially with uncloned parasite lines (Brown M a i 1968), but has been 

repeated with pRBC clones (Barnwell M a i 1983 a). In all cases, each population 

stimulated specific agglutinating Ab in the infected monkey (Brown & Brown 1965). 

The new surface Ag responsible for Ab-mediated agglutination of pRBC was called the 

SICA or variant Ag (Brown M a i 1968) and has been identified as a high MW protein of 

about 200 kDa (Howard M a i 1983).

The ability of P. knowlesi to vary the SICA Ag is dependent on the presence of specific Ab 

of the appropriate variant specificity. Studies with both uncloned (Brown 1973) and 

cloned parasites (Barnwell M a i 1983 a) imply strongly that this variation is Ab- 

induced rather than an immunoselective process as it is in both trypanosomes and 

borreliae. Rechallenge of SICA-primed monkeys with homologous variants induces 

change to another variant, whereas a heterologous variant is not induced to change 

phenotypes. In addition, the presence or absence of the spleen markedly affects 

expression of the variant SICA Ags. SICA-positive clones passaged in splenectomised 

monkeys lose both their susceptibility to agglutination and their detectable surface 

fluorescence. This occurs as an alteration of expression of the phenotype in all cells 

rather than appearance and selection of a SICA negative line. This phenotype is stable in 

splenectomised monkeys, and for variable periods in intact animals, during an acute 

infections, so is unlikely to be due to unusual properties of splenectomised host RBC 

(Barnwell M a i 1983 a). Indeed, cloned SICA-negative lines can re-express the SICA 

positive phenotype after serial passage in intact monkeys. Howard & Barnwell (1985) 

showed by immunochemical analysis that the SICA-negative phenotype lacks expression 

of the variant SICA Ag, rather than expressing different non-functioning variants.

The induction of antigenic variation of SICA variants of P. knowlesi by Ab is also spleen
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dependent (Howard 1984). Monkeys fully drug-cured and thereby vaccinated against 

that variant induce variation of the homologous phenotype upon challenge. Immunised 

monkeys splenectomised just prior to challenge do not, however, induce switching, 

despite the presence of variant specific agglutinating Ab.

The function of the SICA Ag has not been established, as little work has been carried out 

on the natural host-parasite combination, P. knowlesi in the Kra or cynomolgus monkey. 

Observations made in the atypical rhesus infection may not be valid, especially as 

protective immunity is not established naturally. Nevertheless, a role in virulence is 

suggested, as intact rhesus monkeys challenged with SICA-negative parasites experience 

two different outcomes (Barnwell £ ia l 1983 a). With pRBC that do not revert to the 

SICA positive phenotype, the infections were controlled without drug intervention, 

whilst fulminating infections were suffered by monkeys in which parasites became 

agglutinatable. This did not relate to different multiplication rates, which were similar 

in both SICA-positive and negative clones in intact animals; similarly, both parasitic 

phenotypes form virulent infections in splenectomised monkeys. It has also been found 

that in this model, SICA negative phenotype is stable after mosquito passage (Barnwell 

a i 1983 b).

Other malaria parasites have been studied but in less detail. Ags localised on the surface 

of P. falciparum schizont infected RBC can be identified by binding of Ab-coated cells to 

protein A sepharose columns and by indirect immunofluorescence (Hommel a la i 1982). 

IFAT-detectable Ags are trypsin-sensitive and strain-specific (Hommel a ia i 1983), 

but it is not yet known whether these are localised at knobs or distributed over the 

entire pRBC surface.

In the P. falciparum/Saimiri monkey model, whereas hyperimmune sera showed some 

cross-strain reactivity, with convalescent monkey sera, high strain specificity, albeit 

of low titre, was noted (Hommel e ia i 1983). This specificity was used to examine 

surface phenotypes of recrudescent parasites, or of those taken from secondary peaks of 

infection, each following homologous challenge or after passive transfer of imune sera. 

These different strategies were necessary because in this particular system 

recrudescences or secondary parasitaemia peaks are not common after homologous 

challenge with all strains. These results probably show that under immune pressure the 

parasite has the genetic capacity to switch from one serotype to another within the time 

span of challenge and appearance of a patent recrudescence of new serotype. However, 

this work was performed with uncloned lines of P. falciparum (Hommel £ ia l 1983).
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However, P. falciparum isolates cloned by limiting dilution have been shown to undergo 

modulation of antigenic phenotype at the surface of pRBC (Hommel £ la l 1983).

This switch in expression of Ags occurs during a change in host environment, between 

intact and splenectomised monkeys. This could represent a switch between two separate 

groups of Ags expressed in either intact or splenectomised hosts, or expression of 

variant forms of a homologous Ag (Howard 1984). Until this change can be shown to be 

due to the latter effect, it cannot be described as antigenic variation in the sense that is 

appropriate to P. knowlesi. L..friucei or Borrelia.

Another primate species, P. fragile, is the most recently described parasite in which 

variation in surface-located schizont specific Ags has been described (Handunnetti £ ia l

1987). Cloned material was used, and is of special interest as all the work has been 

done using the toque monkey, Macaca sinica. a natural host for this parasite. Antigenic 

variation has been shown in other primate systems, but not located to a specific 

antigenic determinant.

There is no direct serological or biochemical evidence for antigenic variation with 

plasmodia other than P. knowlesi. P. falciparum, and P. fragile. Nevertheless, the 

findings of numerous biological studies are consistent with the existence of antigenic 

variation in several rodent malarias. This phenomenon was first described in P. berghei 

by Cox (1959, 1962), who showed that if acute infections were suppressed by drug 

treatment, a latent infection could be produced with periodic recrudescences. Challenge 

of naive mice with such recrudescences suggested that the parent and recrudescent 

populations were different in virulence and in immunity. Ab-induced variation in this 

parasite has also been demonstrated (Briggs £ ia i  1968). Additional evidence for 

antigenic differences between P. berghei derived under the selective pressure of 

homologous immunity has come from experiments with the ANKA strain of this parasite. 

Mice were multiply immunised by repeated infection and drug cure. After infection with 

a cloned parasite, successive waves of parasitaemia with distinct subpatencies were 

observed (Wery £ ia i  1979). Cross-challenge experiments between successive 

recrudescences suggested strongly that antigenic variation had occurred (Wery & 

Timperman 1979).

Using cloned lines of P. c. chabaudi AS in NIH mice, antigenic variation has been 

demonstrated in recrudescent populations by passive transfer of immune serum 

collected from mice following resolution of the acute infection before any recrudescence 

had occurred. Significant delay of the homologous parasite population to reach 2%
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parasitaemia was noted with this serum in passive transfer compared to normal mouse 

serum. However, most cloned recrudescent populations were less sensitive to this 

immune serum (McLean £ ia i 1982 b). A decline in the effector arm of the immune 

system takes place following resolution of the primary parasitaemia (McLean 1982 

a). However, this was excluded in the passive transfer system, and cannot explain 

differences in sensitivity between the parental and recrudescent cloned parasite 

populations.

In similar experiments with CBA/Ca mice, malaria populations of P. c. chabaudi AS 

breaking through such passively transferred immunity seem to have changed. 

Breakthrough populations were found to be much less sensitive to the same serum than 

the original infecting clone in a similar passive transfer (Jarra s ia i  1986). In the NIH 

model, some heterogeneity was noted in the response of distinct parasite populations to 

passive transfer; this occurred to a certain extent for clones from the primary 

parasitaemia, itself a clone, and to a greater extent for clones derived from the 

recrudescence (McLean £ la l 1986 b).

As an alternative to the relatively cumbersome passive transfer system, a surface 

immunofluorescence assay has been adapted to live schizont-infected RBC of P. c. 

chabaudi and used to distinguish between antigenically different populations of this 

parasite species (McLean £ ia i  1986 a, Gilks 1990). This has shown cloned 

recrudescent populations to be both different from the initial, infecting parental cloned 

population, and from each other, using both immune sera collected upon resolution of 

acute parasitaemias, and hyperimmune sera raised as described by Gilks (1990) 

(Brannan, L.R., personal communication). There does, therefore, appear to be strong 

evidence in favour of antigenic variation in the P. c. chabaudi model.

Overall, much work exists to suggest that antigenic variation occurs as a feature of 

recrudescing or relapsing chronic infection in malaria. Surface located parasite- 

derived neo-Ags, expressed at late trophozoite and schizont stages have been shown to be 

one group of Ags that is variant. However, no evidence shows unequivocally that 

phenotypic variation affects the duration of blood stream infection, and no function 

whereby such surface-located Ags may facilitate chronic infection has been defined. It is 

unlikely to be an immunoselective process, as, for instance, in trypanosome infection, 

because these surface Ags are not immunodominant; Ab also induces rather than selects 

variation. It is possible that the variant Ag has a specific function which needs a surface 

location. The obvious function is sequestration, and similarities between these two
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processes of immune evasion have been noted (Hommel 1985, Howard 1988).

Many similarities are apparent between asexual erythrocytic stage malaria parasites 

showing the sequestering phenotype and undergoing antigenic variation. Both phenomena 

are parasite-induced changes on the surface of the pRBC that become apparent as 

schizogony commences, and both phenotypes are modulated by the spleen. Moreover, 

those parasites which sequester in vivo tend to have detectable variant surface Ag. 

Biochemical similarities exist between pf EMP1, the probable sequestering Ag of 

falciparum and the SICA Ag of P. knowlesi. the best characterised surface variant Ag. 

Knobless and SICA-negative pRBC cause attenuated infections which induce effective 

immunity.

It has been suggested that the phenotypes may be the same Ags (Hommel 1985, Howard

1988). Until recently, no system in which both phenotypes have been linked had been 

described; however, Gilks f i la i (1990) have reported the use of P. c. chabaudi AS in 

CBA/Ca mice as such a model. Preliminary findings showed that cloned parasite lines 

exhibit both clonal antigenic variation in late stage-specific surface Ags, and deep 

vascular schizogony in the liver. Furthermore, both these features were modulated by 

the spleen and surface Ag expression was crucially involved in the sequestering 

phenotype.

(c) Antigenic diversity

An important recent development in malaria research has been the increasing 

appreciation of the degree of antigenic diversity that exists in malaria parasites. This is 

the expression of antigenically different forms of an Ag by different malaria isolates. 

Plasmodia exhibiting antigenic diversity may be derived from different geographical 

locations, different individuals at the same location, or different bouts of malaria within 

the one individual. In addition, diversity may also be recognisable in pRBC taken at 

various times from a non-cloned parasite isolate cultivated in v itro . Under such 

conditions, it cannot be assumed that the phenotypically distinct parasites are derived 

one from another or from a single parental type. Ags that exhibit diversity may, but do 

not necessarily, confer a selective advantage to the parasite, and thus Ab-dependent 

selection of different phenotypes is not implied (Howard 1984).

Diversity within different species of malaria is a major reason why asexual blood stage 

plasmodia survive despite the ability of their hosts to mount immune responses which 

are effective in eliminating a particular infecting population. Significant antigenic
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diversity in malaria parasites of humans was demonstrated when individuals 

deliberately infected with P. falciparum were found to be relatively more resistant to 

subsequent challenge with the homologous strain than with a heterologous strain (e.g. 

Jeffrey 1966). The slow development of immunity in people living in malaria endemic 

areas is consistent with the hypothesis that acquired immunity develops only after 

exposure to a large number of different parasite isolates.

For many years, geographical variation in drug resistance or transmissibility through 

mosquitoes has been recognised (Shute f i la l 1976). Immune serum from West Africa 

was less effective than East African serum on disease in East Africa (McGregor £ la l 

1963), and morphological differences between isolates of the same species or subspecies 

have long been suggested and disputed (Garnham 1966). Major geographical variation 

has now been shown by such techniques as enzyme electrophoresis, Ag characterisation, 

two dimensional protein electrophoresis, drug sensitivity and variation in Ag sequence. 

Nevertheless, P. falciparum is still considered a single species worldwide in which gene 

exchange can freely occur (Walliker 1983).

A serological typing system has been generated using different MAbs raised against blood 

stage Ags, principally recognising schizonts, merozoites, or both (McBride £iai1982). 

It has been shown that numerous malarial Ags exhibit antigenic diversity in different £* 

falciparum isolates; for example, the major glycoprotein on the surface of mature 

asexual stage pRBC (McBride £ ia i 1982) and the S Ag released into plasma during 

rupture of schizont-infected RBC (Wilson 1980).

Ths S Ag system of heat stable proteins of unknown function is probably the best studied 

of the polymorphic Ags. Extensive work with serotyping (Wilson 1980) or with 

immunoblotting (Anders £ ia i  1983) has been undertaken, and it is clear that even 

geographically quite localised populations have several different S Ag phenotypes at one 

time. For instance, in one area of Papua New Guinea, clear periodic small area variation 

of one (FC27) S Ag has been shown (Forsyth e ia i 1989).

In contrast to this enormous antigenic diversity, antigenic variation has been noted only 

in surface-expressed late stage-specific Ags and reflects the differential expression of a 

particular antigenic phenotype from a repertoire of genes capable of expressing 

alternative phenotypes in progeny organisms. However, antigenic diversity and 

variation are not necessarily mutually exclusive properties of a malarial Ag; in theory, 

an Ag that exhibits antigenic diversity could also undergo antigenic variation, though 

none has been found to date.
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The great phenotypic diversity achieved by malaria parasites is thought to be of 

advantage to the parasite as many host protective immune responses are relatively 

specific, at least initially. With the limited information available, it has always been 

assumed that the antigenic diversity of various pRBC Ags reflects the expression of 

different allelic forms of a single gene. The diverse forms are generated either by 

accumulation of mutations or by genetic rearrangements during meiosis. That 

heterogeneity is maintained by genetic recombination in addition to mutation has been 

shown in P. c. chabaudi (Walliker £ ia i 1975) and more recently with human malaria 

(Walliker f i la i  1987). In the latter case, two distinct gametocyte-containing cloned 

isolates of P. falciparum were mixed and mosquitoes fed on the blood meal. After 

transmission of resulting progeny sporozoites to a chimpanzee, the asexual erythrocytic 

stages were screened and recombination shown to have occurred.

1.14 Development of a malaria vaccine

P. falciparum affects millions of people, causes a potentially lethal disease and is 

becoming increasingly resistant to chemoprophylaxis and chemotherapy. Attempts to 

control the spread of the infection by combating the Anopheles mosquito vectors have 

failed. Some mosquitoes have become resistant to insecticides, and many species or 

subspecies are not strictly domicilary and are therefore very difficult to eliminate. It is 

clear that there is a pressing need for research towards vaccines, new anti-malarial 

drugs and novel methods to control mosquito vectors. The production of a safe and 

effective malaria vaccine must be the ultimate practical aim of research into the 

immunology of malaria, and during the last few years a great deal of fundamental work 

has been performed to this end.

Due to the complicated life cycle of malaria, each of the different stages presents 

possible target cells for immunisation, and experimental vaccines are being developed 

against all of them (Miller £iaL 1986). Thus, Ags for vaccine development are being 

identified from sporozoites, which are injected by mosquitoes into man; exoerythrocytic 

forms, which develop in hepatic parenchymal cells; asexual erythrocytic forms, which 

cause the disease; and sexual stages, which transmit the infection to mosquitoes. As 

acquired immunity appears to be stage-specific, this presents a problem in that a 

parasite which escapes immunity at one stage in the life cycle may be unaffected by this 

immunity during its development in the next stage. For example, if a parasite evades 

immunity induced by a sporozoite vaccine, it may proliferate to high parasitaemia in the
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asexual erythrocytic cycle and cause death. Thus, unless a sporozoite or liver vaccine is 

completely effective, an asexual erythrocytic vaccine, if feasible, would be the most 

useful in Africa where the goal is to reduce mortality. Immunological neutralisation of 

gametocytes or their products would interrupt transmission of infection from man to the 

uninfected mosquito. The disadvantage of such a vaccine is that it would not directly 

protect the vaccinated individual, but would only prevent further transmission to the 

community.

The features required of a malaria vaccine may vary according to its role. In order to be 

successful in a public health capacity, a cheap, single inoculation preparation is 

required, which must be effective in conferring considerable and long-lasting protection 

in infants who may have been exposed to both infection and to maternal Ab. In contrast, a 

vaccine for the non-immune visitor to endemic areas may be required to preclude the 

development of parasitaemia completely, because of the considerable danger of early 

death in an adult experiencing a first parasitaemia of P. falciparum, and in order to 

minimise the chances of spread of disease upon return home.

Regarding the potential usefulness of vaccines for disease control, permanent residents 

in endemic areas constitute by far the largest populations that would benefit from 

successful vaccination and they are the major target group for eventual vaccine use. 

Most of those living in areas where P. falciparum is endemic develop effective immunity 

to malaria only after suffering multiple infections, usually over a period of several 

years. At such a time, blood infections may not be suppressed completely and adults who 

have been exposed to malaria throughout life frequently have asymptomatic 

parasitaemias. Experimental infection of humans has shown that a single infection with 

P. falciparum tends to modify the severity of subsequent infections, and among children 

living in an endemic area the clinical effects of successive infections becomes 

progressively less severe. It is possible that an asexual blood stage vaccine would have 

an effect similar to that produced by repeated natural exposure, dramatically reducing 

mortality and morbidity whilst not completely preventing parasitaemia. In such a 

situation, subsequent infections may boost vaccine-induced immunity. Obviously, 

vaccination would be of special importance for babies and pregnant women, but, if an 

anti-pRBC vaccine were to 'shortcut' an otherwise slow and hazardous acquisition of 

immunity, it would have to be administered soon after birth. Vaccine-induced 

asymptomatic infections of infants and children may be attainable, since it has been 

possible to immunise monkeys against P. knowlesi (Mitchell £ ia l 1975), a malaria that
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can infect monkeys repeatedly and produce a chronic infection. Successful vaccination of 

monkeys required the use of whole, mature parasites emulsified in Freunds complete 

adjuvant. If, however, safe, effective adjuvants for use in children are not available, 

then finding such an adjuvant may be critical to the development of a malaria vaccine. 

Attenuated (Clyde M a i 1973, Weinbaum M a i 1976 b, Rieckmann M a i 1979, Waki M  

a i 1986) and killed (Desowitz & Miller 1980) malaria parasites have been shown to be 

efficacious as vaccines for humans or animals. The reason that such vaccine 

preparations are not currently used for disease prevention in humans is because of the 

difficulties of large scale in vitro cultivation of plasmodia (Trager & Jensen 1976) and 

the associated risks of preparing pRBC from cultures containing human serum, which is 

an essential requirement of in vitro cultivation. If such difficulties were to be 

overcome, it would be logical to develop a blood stage vaccine for human use from whole 

pRBC preparations. An attenuated live vaccine for P. falciparum could be a parasite 

isolate which, through gene deletion, has lost the capacity to adhere to endothelial cells 

(Pologe & Ravetch 1986). Such pRBC would not cause major organ pathology, notably 

cerebral malaria, and would circulate through the spleen, whereby they would be both 

cleared from the circulation and stimulate an immune response which would protect 

against a virulent parasite challenge.

At present, however, such a course is not possible. It is necessary, therefore, to 

stimulate protective immunity to the whole parasite from only one or a few parasite 

proteins, or derived peptides, prepared by recombinant or synthetic peptide technology, 

i.e. a subunit vaccine. The only possible active components of a vaccine are parasite- 

derived Ags, in particular pRBC surface Ags. It is asssumed that immune responses 

induced by the majority of these determinants are irrelevant to protection, or may even 

be undesirable, and that only a small number of the Ags induce protective responses. 

Subunit vaccines against falciparum malaria have already been tried with encouraging 

but limited success (Ballou M a i 1987, Herrington M a i  1987). These subunit 

vaccines, and others under consideration, have as their primary objective, the 

development of high titre anti-malaria Abs, which are thought to play a role in 

protection. However, the approach to malaria vaccines has been broadened significantly 

by the demonstration that a single CD4+ T cell clone can adoptively transfer protection 

for the murine malaria parasite P. c. adami (Brake M a i 1988). It has been inferred 

from this that a single T cell site on one parasite Ag can be a target for a protective 

immune response. Although there are manifest complications, not least of which is the
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genetic restriction of the immune response to individual T cell epitopes, it appears that 

any candidate anti-blood stage vaccine will need to contain multiple T sites within the 

immunogen for natural boosting of the Ab response.

The strategy for the development of synthetic malaria vaccines is based on the 

identification and characterisation of these parasite Ags which specifically stimulate 

protective immune responses. Hybridoma technology for the production of MAbs has 

been applied in an effort to identify surface Ags from small amounts of starting material, 

and affinity column chromatography has permitted the isolation of protective Ags (e.g. 

Holder & Freeman 1981). The next phases involve the application of recombinant DNA 

technology to clone the genes encoding the antigenic epitopes, their expression in 

bacterial or yeast expression vectors, analysis of the nucleotide sequences, deduction of 

the corresponding amino acid sequences of the encoded peptides, and production of these 

molecules either by genetic engineering or by chemical synthesis. To date, a large 

number of Ags of the asexual erythrocytic stages of P. falciparum have been described 

and the genes encoding many of them have been coded (e.g Kemp e ia i 1983). None of 

these Ags appears dominant as a target of protective immune responses. Rather, several 

Ags appear to be capable of inducing immunity that limits the growth or development of 

P. falciparum, and it is possible that maximum efficiency will be achieved only with a 

vaccine that combines several such Ags. Other factors to consider in the individual 

tailoring of a subunit vaccine include immunogenicity for the population and 

appreciation of plasmodial mechanisms for immune evasion.

(a) Sporozoite vaccine

One malaria vaccine strategy involves immunisation with sporozoite-specific 

immunogens in order to elicit an immune response that blocks sporozoite entry into 

hepatocytes and/or leads to the destruction of infected liver cells (Nussenzweig & 

Nussenzweig 1989). Of all the different parasite stages, the development of a vaccine 

against the mosquito-borne infective form of P. falciparum is currently at the most 

advanced stage. Studies in rodents (Nussenzweig £ ia ! 1969 a), monkeys (Gwadz £ ia i

1979) and humans (Clyde £ ia i 1975) have demonstrated that repeated administration 

of irradiated sporozoites can result in at least short-lived resistance to rechallenge with 

homologous sporozoites, and that this protective immunity is Ab-mediated. Vanderberg 

£ la l (1969) showed that this Ab reacts with the surface of sporozoites giving rise to the 

circumsporozoite precipitin (CSP) reaction, in which surface epitopes are crosslinked
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by Abs forming a characteristically long tail-like precipitate on the posterior end of the 

parasite. Since an immune response to sporozoites apparently occurs naturally only 

after many exposures to infected mosquitoes {Nardin f i l a i  1979), this vaccine 

represents an example of the approach of artificially immunising the host with Ags that 

the immune system may not readily respond to under natural conditions.

With use of MAbs, a stage-specific 44 kD protein has been identified on the surface of 

sporozoites (Yoshida £ ia l 1980). When transfused into mice, these MAbs or their Fab 

fragments gave protection from challenge with P. berghei sporozoites (Potocjak £ la l

1980), and it appears that the Ag inducing protective immunity and the CSP reaction 

were identical. Similar findings were obtained with P. knowlesi (Cochrane £ ia i 1982), 

P. vivax and P. falciparum (Nardin £ ia i 1982). It appears that the circumsporozoite 

(CS) protein which completely covers the sporozoite surface is involved in parasite 

invasion of hepatocytes, because, in the presence of Fab fragments, sporozoite 

attachment is prevented (Hollingdale e ia l 1982, 1984). Immature sporozoites found 

within oocysts in the midgut of anopheline mosquitoes bear little or no CS protein on 

their outer membrane (Aikawa £ ia i  1981) and are not infective. There is a close 

temporal relationship between the development of sporozoite infectivity and the 

appearance of CS protein on the membrane of the parasite. More importantly, the 

expression of CS protein upon maturation of sporozoites also correlates well with their 

capacity to induce protection in otherwise susceptible hosts (Vanderberg 1974). The CS 

proteins of rodent, simian and human malaria parasites have similar structural, 

biosynthetic and immunological properties (Nussenzweig & Nussenzweig 1984).

The CS protein is the most advanced of all candidate vaccine proteins and its structure 

has been elucidated by cloning and sequencing various CS genes. Ellis £ ia i (1983) 

cloned gene fragments encoding the P. knowlesi CS protein and Ozaki e ia l  (1983) 

described the sequence of the entire gene. Only one copy of the CS gene is present per 

haploid genome, and its DNA sequence is uninterrupted. The central region of all CS 

proteins is formed by tandemly repeated sequences of amino acids, which vary in 

number and in composition according to the plasmodial species. The first gene which has 

been cloned, that of the CS protein of the H strain of P. knowlesi. contains 12 repeats of 

12 amino acids each (Ozaki £ ia i 1983). In P. falciparum, for which the entire CS gene 

has also been sequenced, very little variation has been noted in the tandem repeats which 

constitute the immunodominant epitopes of this molecule (Dame £ ia i 1984, Enea £ ia i

1984), each consisting of only four amino acids. This sequence, asparagine-alanine-
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asparagine-proline (NANP) is reiterated between 36 and 41 times (Dame f i la l  1984). 

The immunodominant epitope of the CS protein of P. falciparum is represented by three 

consecutive repeats of NANP, denoted (NANP)3. This was determined by comparing the 

reactivity of synthetic peptides, containing different numbers of repeats, with MAbs 

(Zavala £ la l 1985 a). The (NANP)3 epitope occurs in sporozoites of many isolates of JE* 

falciparum from widely different areas of the world, all of which react with the same set 

of MAbs (Zavala £ la i 1985 b).

The CS proteins of P. vivax have recently been cloned and sequenced. The central repeat 

region consists of nine amino acid sequences, repeated in tandem 19 times (Arnot £ la i

1985). The genes of P. vivax and P. knowlesi CS proteins are similar, suggesting they 

are closely related. However, within the P. cynomolqi species, the CS protein 

immunodominant repeats are all different, and seem to have diverged more rapidly than 

the remainder of the gene (Galinski £ ia i 1987). Why this should have occurred in fL  

cvnomolgi but not in P. falciparum is not clear.

Immunisation of experimental animals, rabbits and mice, with the synthetic peptide 

(NANP)3 of P. falciparum coupled to a carrier protein, induced Abs which produce a CSP 

reaction, and furthermore, neutralise sporozoite infectivity to human hepatoma cells in 

vitro (Zavala £ ia i 1985 b, Ballou £ ia l 1985). Also, an Escherichia coli fusion protein 

containing a series of NANP repeats has been reported to be very immunogenic for mice 

and induced neutralising Abs (Young e ia i 1985). Similar results have been obtained for 

P. knowlesi and P. vivax CS repeats inserted into vaccinia virus and yeast expression 

vectors, respectively (Smith £ ia i 1984, Barr £ ia i  1987). Taken together, these 

findings indicated that the repeats of the CS molecule provide a promising candidate for 

vaccine development, which thus progessed to clinical testing.

Two sporozoite vaccines have been given to human volunteers, both aiming only at 

raising Abs to the repeat domain of the P. falciparum CS protein (Good e la l 1987 b, 

Etlinger e ia i 1988). One of the tested vaccines was a synthetic construct consisting of 

cysteine-(NANP)3 conjugated to tetanus toxoid (Herrington et aj. 1987), which was 

administered together with an aluminium hydroxide adjuvant. Seroconversions against 

(NANP)3 took place in 71% of recipients of 100 jug, the highest dose of vaccine. Most 

positive sera reacted with sporozoites by immunofluorescence and showed significant 

rises in serum Abs to NANP repeats. Three vaccinees with the highest Ab titres and four 

unimmunised controls were challenged with P. falciparum sporozoites by the bite of 

infected mosquitoes. Blood stage parasites were detected in all controls after 7-10 d
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(mean 8.5 d). In contrast, two vaccinated individuals did not show pRBC until 11 d, and 

the third was not infected at all. The significantly increased prepatent period in the two 

vaccinees is most likely due to the neutralisation of a large proportion of the invading 

sporozoites. Studies in sporozoite-induced malaria in both man and animal models (e.g. 

Schmidt a ia i 1982) have demonstrated an inverse relationship between the size of the 

sporozoite inoculum and the duration of the prepatent period. While the delay in 

prepatency was reported as statistically significant, its medical significance must be 

questioned since clinical manifestations of malaria were unmodified in these volunteers. 

One disappointing finding from this trial was that the serum titres of volunteers injected 

with (NANP)3-tetanus toxoid were much lower than those of mice or rabbits immunised 

with the same Ag (Zavala a ia l 1985 a, Etlinger a ia i 1988). This may, in part, be due 

to the fact that a lower vaccine dose was used in the human volunteers; however, the dose 

of this vaccine cannot be increased because of the toxic effects of the tetanus toxoid 

ca rrie r.

The other vaccine used in humans (Ballou a ia i  1987) was a recombinant protein, 

R32tet32, produced in E. coli and consisted of a polypeptide containing 32 repeats and 32 

irrelevant amino acids corresponding to part of a tetracycline resistance gene read out of 

frame (Young a ia l 1985). Of 15 individuals inoculated, 12 developed Abs to NANP 

repeats, but only in a single person was a high serum titre achieved. Six immunised 

volunteers and two controls were challenged. Parasitaemia did not devel^in the volunteer 

with the highest titre of Abs and was delayed in two others. The rather poor Ab response 

could have been due to lack of T cell recognition or inadequate processing of.the subunit 

vaccine, as suggested by studies showing that the immune response to NANP polymers in 

mice is severely restricted (Good a ia l  1986). Others have presented evidence 

suggesting that the 32 tetracycline-derived amino acids could have had a suppressive 

effect on the immune response to the NANP repeats (Russo a ia l 1988).

A comparison of anti-sporozoite Ab titres of volunteers following immunisation with 

either synthetic vaccine with those observed in adults from malaria endemic areas 

showed that even in the single volunteer who had the highest Ab response to R32tet32, 

the level of Abs was below that observed in sera from Indonesia and Kenya (Ballou a i ai 

1987). However, it is not clear from field studies that naturally acquired anti- 

sporozoite Abs are protective. Data from a malarious region of Kenya showed no 

difference between adults who did and did not develop parasitaemia in a longitudinal study 

(Hoffman a ia l  1987). A similar observation that levels of specific Abs were not
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protective in preventing clinical malaria was reported from an area of more seasonal 

exposure in Thailand (Webster a ia l 1987). This study also showed that Ab synthesis 

ceased in the presence of pRBC, suggesting possible immunosuppression induced by blood 

stage infection.

There was no evidence for parasite-specific T cell sensitisation in any of the peptide- 

vaccinated individuals in either clinical trial, indicating that protection can be achieved 

with Abs alone, if the titres are sufficiently high. Similarly, complete protection 

against P. berghei sporozoite challenge has been achieved in a large proportion of mice 

vaccinated with a repeat peptide conjugated to tetanus toxoid. The serum titres of Ab to 

the P. berghei CS protein were high, but T cells did not respond in vitro to the synthetic 

repeat peptide (Zavala a ia l  1987). However, in another experiment, Egan a ia l  

(1987) showed that despite high titre Ab, CS peptide-immunised mice were only 

partially protected after sporozoite challenge. Furthermore, T cells, not Ab or B cells, 

from mice immunised with irradiated sporozoites transferred protection to naive mice. 

Recently, it has been observed that protective immunity in mice inoculated with 

irradiated sporozoites of P. voelii is dependent on both CD8+ T cells and IFN-y (Schofield 

a ia l  1987 a, Weiss a ia l 1988). IFN-y is a T cell product which has a potent inhibitory 

effect on the exo-erythrocytic stages of the malaria parasite, and if produced at the time 

of challenge, would prevent the development of sporozoites which escape the neutralising 

activity of Ab (Ferreira a ia i 1986, 1987, Schofield a ia i 1987 a). A disadvantage of 

both peptide-conjugate vaccines so far used in clinical trials is that they may not prime 

parasite-specific T cells, and a boosting of the Ab response and lymphokine production 

may not occur during subsequent exposure to sporozoites under natural infection 

(Miller a ia l  1986).

It may be possible to synthesise T cell epitopes from the CS protein together with the 

NANP repeats to form a T-B parasite-specific vaccine. In fact, T cell epitopes from the 

P. falciparum CS protein recognised by certain strains of inbred mice have been 

characterised. NANP repeats are recognised by T cells from mice bearing l-Ab in MHC 

(Del Giudice a ia l 1986, Good a ia i 1986), while another sequence outside the repeat 

domain is recognised by mice bearing l-Ak (Good a ia l 1987 b). Moreover, this latter 

sequence has been shown to be the immunodominant T cell domain (Good a ta i 1988). 

These observations not only highlight the fact that T cell epitopes are very probably 

genetically restricted, and may not be recognised by all humans, but also that the CS 

protein may not provide the best basis of an anti-malaria vaccine as the immunogenic
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regions are not those tandemly repeated. Additional epitopes recognised by T ceils may 

be required and could be provided by other sporozoite or liver stage Ags. This suggests 

that although modifications in the carrier system, adjuvants, or vaccination schedules 

may provide some improvement, parasite-specific T ceil activation is likely to remain 

the major challenge for protective efficacy of potential sporozoite vaccines.

(b) Asexual blood stage vaccine

As the asexual erythrocytic parasite is the cause of malaria disease, the primary 

objective of a blood stage vaccine is the reduction of morbidity and mortality through 

suppression of parasite proliferation. Vaccination that induces only partial immunity 

will still be useful, since it will suppress parasitaemia, the level of which is 

approximately proportional to disease severity. Moreover, during the course of 

infection, boosting of immunity should extend the life of a vaccine.

Asexual blood stage parasites of P. falciparum have been the main focus of research 

aimed at developing a malaria vaccine, which reflects the fact that pRBC are the main 

target of specific acquired immunity and the ready availability of these stages from in  

vitro cultures. One vaccine strategy is based on the absolute necessity of merozoite 

invasion of RBC for parasite growth and survival, and the fact that invasion can be 

blocked by specific anti-malaria Abs. Merozoite attachment and entry involves multiple 

specific receptor-ligand interactions of parasite membrane and RBC membrane surface 

components (Hadley n ia l 1986). Therefore, anti-receptor Abs elicited by vaccination 

should decrease the number of merozoites that successfully invade RBC and reduce both 

the blood parasitaemia and clinical manifestations. The intraerythrocytic asexual 

parasite may also be accessible to immune-mediated destruction. Infected RBC may be 

killed by Ab-dependent or Ab-independent mechanisms. During the normal course of 

infection, P. falciparum pRBC bind to venular endothelium via knob protusions on the 

infected cell surface and are thus protected from destruction in the spleen. By blocking 

sequestration, Ab forces the parasite from this privileged site to pass through the spleen 

(David e ia l 1983). Whether a common domain for cytoadherence exists on all pRBC 

remains to be determined. There are numerous other Ags of the asexual parasite which 

elicit Ab responses, but only a small number of these are presumed to be targets of 

protective immunity.

Vaccination with isolated merozoites has been successful in simian malaria. Targett & 

Fulton (1965) demonstrated the immunisation of rhesus monkeys against P. knowlesi.
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which was later shown to be species-specific, stage-specific and long lasting (Mitchell 

£ l ell 1975). Owl monkeys that were immunised with P. falciparum merozoites were 

similarly protected (Mitchell a ia i 1977). Unfortunately, optimal protection required 

the use of adjuvants that are unacceptable for human use, although the success of less 

toxic new adjuvants in this experimental model is encouraging (Siddiqui a ia l 1978). 

Immunisation with purified Ag or passive transfer of Ab has provided evidence in 

several species of Plasmodium that a large MW Ag on the surface of the intracellular 

merozoite after schizont segmentation can induce protective responses. This Ag, first 

described in P. yoelii (Holder & Freeman 1981) appears to undergo specific processing 

from an early stage of schizont development. This 'precursor of the major merozoite 

surface Ags', PMMSA, is now known as the 'merozoite surface protein 1’, or MSP1. It is 

a molecule between 185-250 kDa, depending on species and strain, but in P . 

falciparum, processed fragments of 83, 41 and 19 kDa are recognised by human immune 

serum as major surface Ags on the free merozoite (Holder & Freeman 1984). 

Immunisation of Saimiri monkeys with P. falciparum MSP1, purified from cultured 

pRBC, induced partial protection (Hall a ia i  1984, Perrin a ia i  1984). However, in 

addition to being polymorphic in size, this molecule has been shown to exhibit 

considerable antigenic diversity (McBride a ia i  1982, 1985), and naturally acquired 

immunity against it may be markedly strain-specific. The extent to which antigenic 

diversity of MSP1 frustrates attempts to use it as a component of a vaccine remains to be 

seen.

Extensive evidence implicates glycophorin A and perhaps other glycophorins in the 

process of merozoite invasion (Pasvol a ia ! 1982). Several merozoite surface protein 

Ags of various sizes with affinity for glycophorins have been identified (Jungery a ia l 

1983, Perkins 1984), but unequivocal evidence that any of these molecules is a 

glycophorin receptor is lacking. Perkins (1984) demonstrated that the major 

specificities of polyclonal antiserum raised against heat-stable Ags in culture are 

against two glycophorin-binding proteins of 155 and 130 kDa. This antiserum inhibits 

merozoite invasion in vitro and also reacts with the merozoite surface, although it has 

proven difficult to establish that either of these molecules plays a critical role in the 

invasion event in vivo (Van Schravendijk a ia i 1987), and may be dispersed products of 

the maturing parasite (Bianco a ia l 1987). The cloning of these Ags enabled their part 

in merozoite entry to be resolved (Ravetch a ia i 1985), and ultimately showed their 

unsuitability for inclusion in a candidate vaccine. It is now clear that receptor
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functional phenotype varies amongst lines of P. falciparum (Mitchell M a i 1986, 

Perkins & Holt 1988) and there is good evidence that at least two glycophorin receptor 

systems function in merozoites. The expectation that a receptor molecule would prove an 

excellent vaccine candidate rested, in part, on the assumption that there was a single and 

invariant merozoite receptor for RBC, and this is now known not to be the case.

Also of interest are parasite molecules that have a function in modifying the membrane 

of infected RBC. As the asexual blood stages of P. falciparum mature, the pRBC develops 

knobs on its surface (Trager M a i 1966), which provide sites of interaction with the 

vascular endothelium and thereby enable mature pRBC to sequester out of the peripheral 

circulation (Luse & Miller 1971). The parasite Ag that mediates cytoadherence has not 

been identified unequivocally, but exhibits considerable antigenic diversity because 

naturally occurring Abs block cytoadherence in a strain-specific manner (Udeinya M a i 

1983 b). The knob-associated histidine-rich protein KAHRP or HRP1, one of several 

histidine-rich proteins (HRPs) identified in P. falciparum, has been shown to be a 

component of the knob (Leech M a i 1984). It is not clear whether this is the same Ag as 

the strain-specific Ag that has been identified on the infected cell surface by 

immunofluorescence (Hommel M a i 1983). Either way, Culvenor M a i (1987) have 

found that KAHRP is located on the cytoplasmic surface of the pRBC membrane, and 

although anti-KAHRP Abs are generated in man by natural infection, this molecule is not 

now thought to be a target of protective immune responses.

The ring-infected erythrocyte surface Ag (RESA, also called pf 155) has been located to 

the micronemes and dense bodies of merozoites and, after the merozoite invades to form 

the ring-stage parasite, RESA is transferred to, and associated with, the pRBC 

membrane and cytoskeleton (Perlmann M a i 1984, Brown M a i 1985). Presumably 

RESA is released via the merozoite apical pore at the time of entry.

This molecule ranks highly as a potential vaccine component, and it is apparent that 

most, if not all species of plasmodia, possess a RESA analogue, but its function remains 

unclear. Abs to RESA have been shown to be potent inhibitors of merozoite invasion in 

vitro (W&hlin M a i 1984), and fragments of the Ag produced in E. coli as fusion proteins 

partially protect Aotus monkeys against uncontrolled infection with P. falciparum 

(Collins M a i 1986). Furthermore, a polypeptide homologue of RESA has been isolated 

by affinity chromatography from P. chabaudi and used to immunise mice protectively 

against subsequent challenge (Wanidworanum M a i 1987). In contrast to MSP1, RESA 

has not been observed to exhibit antigenic heterogeneity among different isolates of fL.
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falciparum , adding further to its potential for vaccination studies. Sequencing of the 

RESA gene revealed that the polypeptide contains three sets of related sequence repeats, 

two of which are at the C-terminal end of the molecule and the other in the middle of the 

polypeptide (Coppel M a i 1984, Cowman M a i 1984). These repeats encode naturally 

immunogenic antigenic epitopes that are immunodominant. Ab responses to the major 

tetrameric repeat are most prominent in infected individuals (Anders M a i 1986); 

however, experiments in Aotus monkeys indicate that Abs of this specificity are not 

important to protection in contrast to Abs with specificity for the two minor repeats 

(Collins M a i 1986). The epitopes encoded by the RESA repetitive sequences are 

involved in a network of intra- and inter-molecular cross-reactions (Anders M a i

1987), which may impair the development of high affinity Ab responses and thereby 

favour pRBC survival in the infected host (Anders 1986).

Studies on P. falciparum indicate that merozoites attached to RBC must reorientate so 

that the apical end is apposed to the RBC membrane before invasion can proceed. The 

membrane-bound rhoptry organelles are located in this region of the merozoite and 

discharge of their contents is implicated in invasion. Whatever the role of rhoptry 

proteins, it appears that they can induce protective immunity that is Ab-mediated. 

Passive transfer of Abs raised to a 235 kD rhoptry protein of P. voelii protected against 

infection as did immunisation with the purified Ag (Holder & Freeman 1981). The 

analogous Ag in P. falciparum has not been identified, but a number of smaller MW Ags 

identified in the rhoptries of P. falciparum merozoites are being studied as potential 

vaccine Ags. At least five different Ags have been described that appear to exist in two 

soluble complexes. A low MW complex includes a polypeptide of 41 kD MW and an 83 kD 

Ag (Campbell M a i 1984, Howard M a i 1984, Schofield M a i 1986). The lower MW 

component, after purification on a MAb adsorbent column, was tested in Saimiri monkey 

vaccination trials (Perrin M a i 1985) and gave effective protection against £_>. 

falciparum challenge infections. The larger 83 kD component has more recently been 

used as part of a hybrid polypeptide polymer for human vaccination trials (Patarroyo M 

M  1988).

Three other Ags identified in the rhoptries of P. falciparum appear to be associated on a 

high MW complex (Campbell M a i 1984, Holder M a i 1985). One of these, of 155 kD 

MW, has been isolated from cultured parasites (Holder M a i 1985), and another (105 

kD) was cloned in E. coli (Coppel M a i 1987). Apart from their location, the only 

evidence supporting their candidacy is the finding that a MAb precipitating the complex
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weakly inhibited merozoite invasion in vitro (Cooper M a i 1988), but the component 

with which it reacts has not been established. Two other Ags have been located to 

rhoptries that are not associated with these high and low MW complexes. One of these 

Ags is synthesised as a 240 kD polypeptide that is processsed into a 225 kD molecule 

(Roger M a i 1988). The other, a 55 kD Ag, has been shown to have the solubility 

properties of an integral membrane protein (Smythe M ai 1988) and has already been 

put forward as part of a subunit vaccine for further development.

The identification of several different asexual blood stage Ags that have potential as 

vaccine molecules is reason for optimism concerning the future development of a 

malaria vaccine. Immunisation with a vaccine containing several of these Ags may not 

only induce a more protective immune response, but also should make it less likely that 

antigenic variation will frustrate vaccination against P. falciparum. Unlike sporozoite- 

induced infections, monkeys of the Aotus and Saim iri species can be infected 

reproducibly with P. falciparum by blood challenge. Thus, pRBC Ags that are candidate 

vaccine molecules are being tested for efficacy in preclinical trials before the use of 

human volunteers.

A number of trials have been performed in which some protection of immunised monkeys 

against challenge with P. falciparum was achieved with well-defined Ags. These were 

either isolated from cultured parasites (Hall M a i 1984, Perrin M a i  1984, 1985, 

Siddiqui M ai 1986, 1987), or were fragments of Ags expressed from genes cloned in EL 

coli (Collins M a i 1986), or synthetic peptides corresponding to known epitopes or N- 

terminal sequences of blood stage Ags (Cheung M ai 1986, Patarroyo M ai 1987). In one 

of these trials, fusion proteins containing fragments of RESA were used to immunise 

Aotus monkeys (Collins M a i 1986). Parasitaemias showed only a partial protection, 

but this correlated with Ab responses to repeat sequences in two different regions of the 

RESA polypeptide. A particularly impressive protective effect was achieved in another 

trial in which synthetic peptides conjugated to tetanus toxoid were used as the 

immunogen (Patarroyo M a i 1987). Peptides corresponding to the N-terminal 

sequences of MSP1 and two other uncharacterised Ags were more effective when used 

together than alone. These trials in monkeys have provided important information about 

Ags that may subsequently be tested in clinical trials. Monkey models are, however, less 

than ideal in that only a relatively limited number of strains of P, falciparum will give 

reproducible infections in available primate species, and the number of monkeys that 

can be used for vaccine trials is limited (Collins & Pappaionou 1985). Evidence from
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these non-human primate experiments suggests that the use of a single candidate Ag for 

use as a blood stage vaccine may be restricted. One reason for this is that as CD4+ T cells 

play a key role as effectors of anti-pRBC malaria immunity (Brake Qlal 1988), 

sufficient T cell epitopes to give a good response in a majority of the population would 

have to be included in a vaccine. This is likely to require more than one component. 

Nevertheless, both MSP1- and RESA-derived Ags remain clear candidates for inclusion 

in an eventual vaccine. This may in future be developed by combining several asexual 

erythrocytic stage Ags with the CS protein or Ags of other malaria life cycle stages.

No human studies have yet been reported using P. falciparum MSP1 or RESA as the sole 

immunogen, although sequences based on fragments of these molecules were major 

components of the hybrid high MW protein polymers used by Patarroyo £ la l  (1988). 

The first of these, SPf(66)30, was composed of three synthetic peptides corresponding 

to fragments of MW 83, 55, and 35 kD P. falciparum merozoite-specific proteins. The 

second, SPf(105)20, contained the synthetic 83 kD equivalent, plus a CS NANP repeat, 

two other CS sequences and the 5' region repeat of RESA. Ag was absorbed onto 

aluminium hydroxide and multiple doses given, without local or systemic side effects. In 

blood-challenged volunteers, there was evidence that individuals suffered modified 

infection. Since parasitaemia was not allowed to rise untreated, the necessary cure of 

some immunised volunteers complicated interpretation of the findings. Nevertheless, 

three recipients of SPf(66)30 controlled their infections, parasitaemia resolving 

spontaneously without reaching the 0.5% criterion for treatment. These subjects 

showed a significant rise in Ab titre to SPf(66)30 by ELISA, and an increase in 

schizont-specific Ab by IFAT. However, two of these persons were positive by ELISA or 

IFAT to at least two of the three malaria Ags present in the hybrid prior to 

immunisation, according to the criteria specified by the investigators. This suggests the 

possibility of previous exposure to malaria, in which case the vaccine may have acted by 

boosting an already acquired partial immunity in three volunteers. There is little 

evidence that the other hybrid vaccine administered, SPf(105)20, provided protection 

when compared to controls (Patarroyo £ ia i  1988). In subjects receiving this 

immunogen, no Abs were detected against the CS repeat molecule or against the RESA 

determinant, and clinical symptoms were present in all volunteers. Moreover, 

lymphocyte proliferation assays did not suggest a correlation with protection. Overall, 

it is of interest that the three volunteers inoculated with SPf(66)30 who cleared pRBC, 

exhibited a response intermediate between unprotected individuals and controls.
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How the synthetic proteins will work in larger studies remains to be seen. If this 

pragmatic approach is successful, the processes whereby protection is achieved can be 

established retrospectively. Further trials are currently being conducted and the 

results of these are awaited with great interest by the malaria research community.

(c) Sexual stage vaccine

Vaccination which aims to block transmission of a malaria infection to the mosquito 

vector introduces a novel concept quite separate from the more readily appreciated aims 

of immunisation with sporozoite Ags and asexual blood stage Ags, of preventing infection 

or alleviating clinical malaria, respectively. Transmission-blocking vaccines may have 

no prophylactic use in that they would have no effect on the clinical course of disease in 

an individual, but would aim to eradicate malaria from endemic areas by reducing the 

number of infected mosquitoes to the point where transmission of infection could no 

longer be sustained. The site of attack of these vaccines is the interruption of the 

malaria life cycle in the mosquito midgut. Abs taken with the blood meal into the 

mosquito midgut block fertilisation in the absence of complement, lyse gametes and 

zygotes in the presence of complement, and block zygote development (reviewed by 

Carter e la i 1988). Since this approach, if used alone, offers no protection against 

disease to the individual vaccinated, it has been termed an altruistic vaccine. This may 

be used in malaria eradication programmes or in combination with vaccines to other 

stages to slow the appearance of parasite mutants. Of all vaccine candidates, those 

inducing interruption of transmission are the easiest to test. Abs from animals or 

humans are mixed with cultured gametocytes, and fed to mosquitoes, and their efficacy 

assayed by evaluating the reduction of oocyst burden in mosquitoes after a blood meal. 

Transmission blocking was demonstrated first by vaccination with attenuated whole 

gametes of avian (Carter & Chen 1976), rodent (Mendis & Targett 1979) and simian 

(Gwadz & Green 1978) malarias. The immunised animals were challenged and then 

exposed to the bites of vector mosquitoes. A highly effective immunity was achieved in 

avian and rodent studies without the need for adjuvants, but Freund's complete adjuvant 

was necessary in vaccination of rhesus monkeys with gametes of P. knowlesi (Gwadz & 

Green 1978). In a latter study, immunity to P. voelii nigeriensis. was still fully 

effective when an interval of a year intervened between vaccination and the challenge 

infection from which transmission was attempted (Harte £ ia i 1985 a). These and other 

studies also showed that parasite challenge served to boost vaccination-induced
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immunity (Mendis & Targett 1979), and this enhancement had the characteristics of an 

anamnestic response. Sera from animals vaccinated with intact microgametes prevented 

their release during exflagellation and/or agglutinated liberated gametes, indicating that 

one important effector mechanism is an Ab-mediated blockade of fertilisation in the 

mosquito gut (Gwadz 1976, Carter el ai 1979 b).

MAbs raised to both micro- and macro-gametes of various plasmodia, including E* 

fa lc ipa rum , have confirmed the effectiveness of Abs in blocking transmission by 

conferring passive immunity when inoculated into infected host animals (Harte M a i  

1985 b), or introduced into cultures used for membrane feeding of mosquitoes (Kaushal 

e la l 1983, Rener M ai 1983, Vermeulen M a i 1985). Single MAb treatment will block 

transmission totally if given in adequate dosage (Harte a ia i 1985 b), generally, though 

not always (Carter M a i 1984), without a requirement for complement. Such Abs 

suppressed both ookinete production and oocyst development. Other MAbs raised against 

zygotes and ookinetes (Sinden a ia l  1985, Vermeulen a ia l  1985), which also 

interrupted transmission, were found to have no effect on the fertilisation process, 

indicating that the target Ags were those involved in the transformation of zygotes and 

ookinetes into oocysts rather that in pre-fertilisation development.

Among the surface proteins of gametes, zygotes and ookinetes, several have been 

identified as the targets of transmission-blocking MAb. On gametes and newly fertilised 

zygotes these are the 230 kD proteins in P. gallinaceum (Kaushal M ai 1983) and in EL 

fa lciparum  (Carter M a i 1988), and the 48 and 45 kD molecules in P. falciparum 

(Vermeulen e la l 1985) and their P. vivax and P. y, nigeriensis analogues (Harte e la l  

1985 c). Soon after gamete fusion, these Ags are lost and replaced on the zygote by 

lower MW glycoproteins. For P. falciparum, this is a 25 kD protein (Carter & Kaushal 

1984, Vermeulen e la l 1985).

A notable feature of the target epitopes of transmission-blocking MAbs against the 48, 

45, and 25 kD Ags of P. falciparum is that their reactivity with MAb is abrogated by 

reduction (Vermeulen M a i 1985). This implies that these determinants have a tertiary 

protein structure maintained by disulphide bridges between adjacent cysteine residues. 

Until very recently, the conformation structure of these target epitopes had frustrated 

efforts to clone genes coding for these proteins from recombinant DNA expression 

libraries in E. coli due to the inability of such libraries to reform disulphide bonds as 

found in the original malaria Ags. However, this problem has now been overcome, 

making it possible to clone the gene encoding the 25 kD zygote Ag of P. falciparum, now
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called Pfs 25 (Kaslow £ la l 1988). This molecule is conserved in several isolates of E* 

falciparum, and the immune response to it does not appear to be genetically restricted, 

unlike the response to other surface epitopes of P. falciparum sexual stages (Carter £ la l

1988). The gene encoding a 24 kD Ag shared by P. vivax gametes and asexual stages, 

GAM 1, has also been cloned. This polypeptide is conserved in several P. vivax isolates, 

and, because it is also present in asexual blood stages in humans, a boosting of the 

vaccine-induced immune response by subsequent natural infection can be expected 

(Carter R., personal communication).

An important recent advance has been the establishment of the extent of natural 

transmission-blocking immunity in individuals living in malaria endemic areas. 

Mendis a ta i (1987) observed that immunity to the sexual stages of P. vivax in Sri 

Lanka is Ab-mediated and is directed agsinst surface Ags of gametes and zygotes, 

preventing their development in the mosquito vector. Patients developed the 

transmission-blocking Abs during acute primary infections, and titres increased 

further in subsequent attacks. The development of Abs to gamete surface epitopes, a 

stage found only in mosquitoes, is explained by the presence of these Ags, or precursors 

of them, in gametocytes, the sexual stages of the parasite in humans. This phenomenon 

has also been observed in P. falciparum malaria (Vermeulen £i<ai 1985). A second 

attack of P. vivax within four months of initial recovery was correlated with even 

greater transmission-blocking effects in experiments evaluating infectivity of patients 

to mosquitoes (Ranawaka £ ia i 1988). However, the boosting effect declined with longer 

intervals between successive infections and there was a suggestion of infectivity 

enhancement in one of the subjects studied. While it is assumed that young non-immune 

individuals are the greatest reservoir of gametocytes, it has been argued that the large 

adult population with low level infections may contribute significantly to transmission 

(Carter & Gwadz 1980). However, if the adult community displays effective natural 

immune responses to sexual stages of human malaria parasites, as now appears to be the 

case, this would possibly alter the target population to be vaccinated in future attempts 

to reduce or eliminate disease transmission in malarious regions.

To date, no clinical trials using transmission-blocking vaccines have been conducted. 

However, with the recent success of cloning genes encoding the epitopes of sexual stage 

Ags, studies can begin on the immunogenicity of synthetic constructs representing 

defined sexual-specific Ags.

With the global resurgence of malaria, the rising costs of control, and the failure of
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available techniques in areas such as Africa and South East Asia, the need for a malaria 

vaccine is apparent. The choice of vaccine; sporozoite, asexual or transmission- 

blocking, may vary depending on the requirement. Vaccines directed against asexual 

blood forms would probably reduce mortality in endemic areas. From sporozoite and 

transmission-blocking vaccines, a genuine reduction of malaria prevalence may be 

expected. The prevention of epidemics or the short period protection of non-immune 

persons entering an endemic area, e.g. tourists, would very likely require the 

deployment of multiple component vaccines, together with the ongoing use of other 

control measures. Due to the many unknowns about the immunogenicity and variability 

of Ags of various stages and the duration of protection engendered, it cannot be predicted 

what the ultimate form of the vaccine will be or the combination of Ags that will be most 

effective in each situation.

1.15 History of Plasmodium chabaudi chabaudi

Plasmodium chabaudi chabaudi was isolated from the blood of thicket rats, Thamnomys 

ru tilans. caught in the Central African Republic by Landau in 1965. The parasite 

infects mainly mature RBC (Landau 1965), although it can invade reticulocytes later in 

infection (Jarra & Brown 1989; Phillips, R.S., personal communication). Multiple 

infection of RBC with P. c. chabaudi does occur (Carter & Walliker 1975).

P. c. chabaudi AS strain was selected for this project because it has important 

similarities to P. falciparum in the human host. The parasite forms a chronic blood 

stream infection with recrudescences, but without liver stage relapses. The infection is 

synchronous, although the asexual erythrocytic cycle is completed in only 24 hr. 

Schizont peripheral withdrawal occurs to a small but significant extent as schizont 

maturation takes place (McDonald 1977, McDonald & Phillips 1978). Cloned, well 

characterised lines of the AS strain have been established by Carter & Walliker (1975) 

in laboratory mice from wild-caught isolates without any need for adaptation. These 

clones have been cyclically passaged in Anopheles stephensi and are free from 

contamination with other rodent malaria species or pathogens such as Eperythorozoon 

coccoides and Haemobartonella muris (Cox 1978). Isoenzyme patterns have been 

established for these AS strain clones, which have, unlike many laboratory strains of 

rodent malaria, remained close to the original isolate (Beale £ ia i 1978; Walliker, D., 

personal communication).

Most inbred strains of mouse, including the NIH strain used in this study, show a
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genetically determined resistance to P. c. chabaudi AS (Stevenson £ ia l  1982). The 

asexual erythrocytic infection shows an acute primary parasitaemia lasting 10-14 d 

(after inoculation of 105 pRBC), the parasitaemia increasing logarithmically to reach a 

peak of between 30-50 %. A period of subpatency is followed by one or two usually mild 

recrudescences. Infection in normal, immunocompetent mice can last up to two months 

and always features at least two patent waves of parasitaemia. Figure 1.2 shows a graph 

of a typical course of infection of P. c. chabaudi AS strain in naive NIH mice. Some 

groups of mice infected with the AS strain parasite show a second peak of parasitaemia 

shortly after the first (Fig. 1.3). In these animals, the parasitaemia becomes subpatent 

shortly later, but a recrudescence still occurs.

No correlation between the pattern of infection and the age or sex of the host, or with the 

size of the infective inoculum has been observed in this model system (McLean 1985; 

Phillips, R.S., personal communication).

The cloned AS strain of P. c. chabaudi was selected for use since it is considered the best 

murine model for P. falciparum (Mons & Sinden 1990). NIH mice were chosen because 

of the previous experience Professor Stephen Phillips' laboratory had with this host- 

parasite combination.

1.16 Experimental rationale

It is now clear that the major protective immune mechanisms to the erythrocytic stages 

of malaria parasites require the presence of T lymphocytes. This is substantiated by 

many rodent malaria models of malaria in which protection can be conferred by the 

adoptive transfer of specific T cells from immune mice (McDonald & Phillips 1978, 

Brinkmann e la l 1985, Cavacini e la i 1986). In addition, in T cell-deficient animals, 

parasitaemia cannot be controlled (Brown a ia i  1968, Weinbaum a ia i  1976, 

Jayawardena a ia i 1977, McDonald & Phillips 1978).

Whilst the role of the T cell in acquired immunity to blood stage plasmodia is generally 

considered to be that of a helper cell for the production of specific Abs, it is becoming 

increasingly apparent that Ab-independent mechanisms of immunity also make a 

significant contribution to host defences against the erythrocytic stages of the malaria 

parasite (reviewed by Weidanz & Long 1988). Strong support for this comes from the 

observation by Grun & Weidanz (1981) that mice rendered B cell-deficient by 

treatment with anti-p serum were able to resolve primary P. c, adami infections with 

the same kinetics as those of normal control animals. This experiment showed that
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whilst immunosuppressed mice could never totally sterilise their infections, humoral 

immunity was not required to control acute infection with this subspecies of 

Plasmodium. It was subsequently shown in both P. c. adami and P. c. chabaudi systems 

that Ly-4+ T cells are necessary to reduce the parasite burden (Cavacini e la l 1986, 

Brake elal 1986, 1988, Suss elal 1988, Langhorne elal 1989 b). In the experiments 

described in this thesis, the P. c. chabaudi AS/NIH mouse model has been used to define 

further the role of cellular immunity in response to malaria infection.

The starting point for this project was based on an original idea by Professor Stephen 

Phillips. He and coworkers had studied previously the lymphocyte migration patterns 

during the acute primary infection of C57/BL mice with P. c. chabaudi AS (Kumararatne 

e la l 1987). During this investigation, it was discovered that there was a considerable 

increase in total lymphocyte numbers in the peripheral blood just after the time of peak 

parasitaemia. It was supposed that this transient lymphocytosis afforded a population of 

freshly immunologically primed cells which may confer protection upon adoptive 

transfer to challenged naive mice. This was of interest, for all previous reconstitution 

studies had employed lymphoid populations taken after parasite clearance from 

recovered animals.

Initial findings showed that protection could be transferred with lymphocytes taken 

remarkably early in primary infection, before detectable levels of serum Abs arise. 

However, as greater levels of acquired resistance were achieved using cells taken from 

the spleen rather than the peripheral blood of semi-immune donors, this organ was used 

in most subsequent applications. Thereafter, the degree of protection, and its 

mechanisms, were dissected using a variety of immunologically suppressed murine 

recipients.

To analyse the mechanism of what appeared to be a T cell-dependent immunity, spleen 

cells taken during a primary P. c. chabaudi AS infection, as well as after further 

infections, were established in vitro as Ly-4+ T cell lines, and then after cloning by 

limiting dilution, as cloned lines. Each of these homogeneous populations was examined 

with respect to surface phenotype, ability to moderate and alter a challenge infection 

after adoptive transfer to syngeneic naive mice, capacity to release cytokines in vitro in 

response to stimulation with P. c. chabaudi AS Ags, and helper activity in terms of anti

parasite Ab production.

To examine further the role of the Ly-4+ T cell subset in the mediation of protective 

immunity to P. c. chabaudi AS infection, a different approach to that of adoptive transfer
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was subsequently taken. Mice were depleted selectively of specific T cell subsets by MAb 

treatment prior to challenge, and the effects of this serotherapy on the course of 

infection elucidated.

The dynamics of different T lymphocyte subsets in the evolution of an effective immune 

response during a malaria infection, and the implications of the successful transfer of 

immunity with cloned Ly-4+ cells, are discussed with regard to the development of 

asexual blood stage malaria vaccines.
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CHAPTER TWO 

GENERAL MATERIALS AND METHODS
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2.1 Mice

Inbred NIH mice were used for most experimental procedures. These were bred in the 

WLEP animal house breeding facility. The original mating pair on which the colony was 

founded came from Hacking & Churchill Ltd. in 1980, and all the studies described used 

animals inbred to between 18-25 generations. Congenic B10.S and B10.HTT strains 

were also supplied inhouse from colonies four and seven generations old, respectively. 

In each case, the original breeding pairs were purchased from Harlan Olac Ltd.. All mice 

born in the breeding facility were weaned at three weeks of age. C57BL/10 and all other 

B10 congenic mice were supplied by Harlan Olac Ltd. at six weeks of age. All mice were 

kept in the WLEP animal house at 22 °C ± 2 °C and 50-60% relative humidity, and 

maintained in 12 hr artificial light from 0800 to 2000 hr.

For all experimental procedures, female animals were used between 8-12 weeks old, 

when they weighed approximately 25 g. They were maintained on pelleted CRM breeder 

diet (Labsure Ltd.) and given both food and water ad libitum.

2.2 Parasites

The AS strain of Plasmodium chabaudi chabaudi was originally isolated from adult 

thicket rats (Thamnomvs rutilans) at La Maboke, Central African Republic in March 

1969 for Professor David Walliker (Institute of Cell, Animal & Population Biology, 

University of Edinburgh), established in laboratory mice and then cloned by limiting 

dilution (Walliker s ia i  1971). The parasites were supplied to the Department of 

Zoology, University of Glasgow by Professor Walliker in 1973, since when the parent 

AS clone has been maintained by cryopreservation and subpassage through mice (2.3 & 

2.4). Refer to Fig. 2.1 for a history of P. c. chabaudi AS since isolation.

The AS recrudescent parasite clone 10 was originally derived from the recrudescent 

patent infection of a mouse challenged with the AS parent parasite GUP 1349 and cloned 

by limiting dilution once. This was performed by Dr. Sheila McLean at WLEP. The 

parasites were maintained as an antigenically distinct clone by frequent subpassage and 

cryopreservation. Fig. 2.2 details the history of P. c. chabaudi AS recrudescent clone 

10 .
The CB strain of P. c. chabaudi was a kind gift of Professor Walliker (on behalf of the 

World Health Organisation Registry of Standard Strains of Malaria Parasites). This 

isolate was obtained from a thicket rat caught in the C.A.R. in 1970 and transported to 

Edinburgh (Beale e la i 1978). The parasite line was cloned by limiting dilution in
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1979 and the parasites frozen (Walliker, D., personal communication). It was one of 

these stabilates that was acquired from Edinburgh in 1989. Refer to Fig. 2.3 for a 

history of P. c. chabaudi CB since isolation.

2.3 Maintenance of parasites

Suspensions of pRBC taken at a specific time from a known source were designated 

stabilates as proposed by Lumsden & Hardy (1965). For longterm preservation, 

parasite stabilates were kept in liquid N2 (-196 °C)(BOC). When required for 

experimental use, infected blood was recovered from stabilate following the method of 

Mutetwa & James (1984 a & b). Each stabilate was defrosted by immersion of the 

frozen cryopreservation vial (Nunc, Gibco) in a 37 °C waterbath, then diluted with an 

equal volume of 15% w/v glucose in PBS (pH 7.2)(Appendix A) before immediate i.v. 

injection into one, or more usually two, recipient naive mice.

Parasites were maintained by blood passage in mice every 3-4 d. Mice were bled by 

cardiac puncture, under ether anaesthesia, into a syringe containing the anticoagulant 

sodium heparin (1000 i.u./ml, Evans Medical Ltd.) in PBS at 10 i.u. heparin per ml of 

blood. The infected blood was sub-inoculated immediately into recipient mice i.v. into 

the lateral tail vein.

2.4 Cryopreservation of infected blood

Parasites were stored as stabilates after the method of Phillips & Wilson (1978) using 

blood obtained from cardiac bleeding. Since ring-stage parasites survive the 

cryopreservation and subsequent thawing the best, mice were sacrificed before 1000 hr 

when early rings predominate in the infected blood. Blood was collected into heparinised 

PBS (10 i.u./ml) and diluted 1:1 with a solution of sorbitol-glycerol (Appendix C), 

added slowly dropwise with frequent mixing (Gray & Phillips 1981). Aliquots of 0 .2-

0.3 ml were dispensed into 1.2 ml cryopreservation vials and each labelled carefully 

with the WEP code (Wellcome Experimental Parasitology) and a number. These were 

immediately snap frozen by immersing in liquid N2 cannisters (Union Carbide or 

Taylor-W harton).

Careful records of establishment and use of each stabilate were kept. Parasites from one 

expanded stabilate were never used for more than two subpassages. Parasite stabilates 

were made from blood with a parasitaemia of 5-10%, and experimental mice infected 

with blood one passage from stabilate.
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2.5 Challenge infections

Infected blood for challenge infections was obtained by cardiac puncture and collected 

into 10 i.u./ml heparinised PBS. The blood parasitaemia of the donor mouse was 

determined by examination of a Giemsa's stained thin blood smear collected from the tail 

(2.7). The blood was diluted to the required concentration of pRBC/ml in complete 

RPMI 1640 medium (Gibco)(Moore e la l 1967)(Appendix B) supplemented with 10% 

FCS (Gibco). For all infections, naive mice were challenged with 1 x105 pRBC 

administered i.v. as a 0.2 ml inoculum, using a 1ml syringe fitted with a 26 G needle 

(both Becton Dickinson). For experimental challenges, as little time as possible was 

allowed between the bleeding of donor animals and the challenge, during which time 

parasites were kept on ice.

2.6 Inoculation

I.v. infection was performed via one of the tail veins, while each animal was held in a 

Perspex restrainer box. To realise a near 100% success rate of inoculation, prior to 

injection mice were warmed gently under a heat lamp, so causing vasodilation of the tail 

veins.

2.7 Determination of parasitaemia

Malaria infections were evaluated by determining parasitaemias from thin blood smears 

made directly from infected mouse tail blood. For daily parasitaemia counts monitoring 

the course of infection, smears were taken between 0900-1100 hr before any 

peripheral withdrawal had occurred.

Smears were made on microscope slides with ground glass edges (Chance Propper Ltd. or 

BDH Ltd.) from drops of tail blood drawn by piercing the mouse tail with a lancet 

(Monoject Scientific). The lancet was routinely sterilised in alcohol\bleeding each 

mouse or group of mice in order to minimise the possibility of transfer of pRBC between 

animals. Blood smears were allowed to dry in air at RT, fixed in 100% methanol 

(Analar, BDH Ltd.) for 1-2 min and then stained in Giemsa's stain (Gurr, BDH Ltd.) 

diluted 1:10 in phosphate buffer (pH 7.2) (Appendix A) for 30 min. Fixing and staining 

was carried out in Coplin jars. The blood smears were rinsed in tap water, air dried and 

examined under oil immersion using x100 objective and x10 eyepiece lenses on a Leitz 

S.M. Lux binocular microscope.
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When monitoring the course of infection, parasitaemias were obtained by calculating the 

number of pRBC from a total number of RBC. If the parasitaemia was 2-3% or greater 

(determined by observing more than 3-4 parasites per field), direct counts of the 

number of parasites per 500 RBC were made. Lower parasitaemias were enumerated by 

counting the number of parasites observed in a total of 30 fields. At this magnification, 

each field represented about 200 RBC when the cells were confluent but not overlapping. 

Infections were described as subpatent when no parasites were seen in 50 fields of view 

(approximately 10,000 RBC).

For experimental procedures, the day of infection was termed d 0 and smears taken from 

d 4-60 p.i. (when all mice had cleared infection). Smears were not taken prior to d 4 

after inoculation since this was the time most mice began to carry a patent infection. 

This follows from the inverse linear relationship between time to patency and the log10 

dose of parasites inoculated (Warhurst & Folwell 1968).

2.8 Presentation of parasitaemic data

The course of infection of a group of mice was represented graphically by plotting the 

geometric mean of the parasitaemia (mean log-j0 of the number of pRBC/105 RBC) 

against time (expressed in days). Vertical bars showing one standard deviation are 

included where necessary. However, to preserve the clarity of graphs where much data 

is presented, standard deviations are put in only if differences in parasitaemia courses 

are not self-evident. From the data collected and their graphical presentation, four main 

criteria were used to evaluate the effects of protective immune responses on challenge 

parasitaemias. These were (i) the time taken for mice to show a 2% parasitaemia (the 

pre-2% latent period) (Warhurst 1966) (ii) the day and level of peak parasitaemia 

(iii) any extension of the time taken for the primary parasitaemia to be resolved 

relative to the controls (assessed by recording the total time for the parasitaemia to rise 

from the 2% level to peak and then to fall to subpatency ) (a modification of the data 

evaluation of Jarra £ ia i  (1986)) (iv) any extension of the pre-recrudescent 

subpatent period relative to the controls.

For all in vivo studies in which the course of infection was followed, the minimum 

number of mice in each experimental group was 5-6. For such a group size, the 

reproducibility of individual parasitaemia determinations, which includes the variable 

of smear preparation as well as the parasite counting, is close to the predicted 

theoretical minimal level calculated using the binomial distribution (Gilks 1988).
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Groups of 5-6 mice were used so that the random scatter of parasitaemias would be 

expressed to cancel each other out. Thus, parasitaemia curves are relatively smooth. 

Despite these precautions, some variability wereencountered in the counts, especially 

after crisis and resolution of the primary parasitaemia. To minimise the impact of 

individual readings distorting the mean, the data was transformed by either of two 

computer programmes: a Fortran programme developed by Dr. Chris Newbold 

(University of Oxford) on the Dec 20 computer system at N.I.M.R., Mill Hill, London 

(this programme was a kind gift of Dr. Bill Jarra of the same Institute); and 

Cricketgraph version 1 .2.1 (Cricket Software) on an Apple Macintosh SE 

microcomputer (Scotsys Computer Systems). When differences in courses of infection 

between groups of mice were not obvious, statistical analysis using the non-parametric 

sign test (Colquhoun 1971) was performed using the same programmes (Jarra & Brown 

1985 ).

2.9 Haematology

Small volumes of blood were taken from mice by lancing the tail and collecting blood into 

microcentrifuge tubes (Eppendorf Geratebau or Scotlab) containing 10 pi 10 i.u./ml 

heparinised PBS. RBC and WBC counts were made with a haemocytometer (Improved 

Neubauer, Weber) after dilution of RBC 1:200 in PBS (pH 7.2) and WBC 1:10 or 1:20 

in white cell diluting fluid (Appendix C). Differential WBC counts were made by 

examining Giemsa’s stained thin blood smears. These were scanned their full length to 

eliminate problems arising from the uneven distribution of cells. Leucocytes were 

differentiated into lymphocytes, monocytes and granulocytes. Results are shown as both 

total numbers of peripheral blood leucocytes/ml or of each cell type/ml, and as 

differential numbers (% values).

For the adoptive transfer of peripheral blood leucocytes, a cytosmear of the WBC 

preparation was made using a cytospin centrifuge (300 g for 10 min at RT) (Shandon- 

Elliot Ltd.) (Dord & Balfour 1965). The Giemsa's stained slide was then viewed to 

enable a differential count of the relative proportions and absolute numbers of 

leucocytes inoculated at adoptive transfer.

2.10 Collection of serum

Large volumes of sera were collected by exsanguination by cardiac puncture under ether
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anaesthesia, yielding about 1-1.2 ml blood from a 25 g mouse. Either a 1 ml or a 2ml 

syringe was used, fitted with a 25 G needle. Blood was pooled, where appropriate, and 

allowed to clot. The clot was loosened from the edges of the container using a wooden 

stick, and left to contract for 1 hr at 37 °C (or overnight at RT). The overlying serum 

was collected by pipetting, any contaminating RBC being removed by centrifugation 

(300 g for 5 min)(MSE Mistral 3000i, Fisons). The serum was then aliquoted, 

labelled and stored frozen at -20 °C until required. Subsequent freeze-thawing was kept 

to a minimum. Large volumes of hyperimmune and normal sera were collected using 

this methodology. A stock of hyperimmune serum for use as positive controls in the 

anti-P. c. chabaudi slide I FAT was raised from donors which were challenged on three 

occasions successively with 1 x105, 1 x107 and 1 x108 pRBC at two monthly intervals. 

The mice were bled one week after the last challenge when the peripheral blood 

parasitaemia had been cleared. Normal serum was obtained from normal non-infected 

mice.

Smaller volumes of serum (up to 100 p.!) were obtained by bleeding mice from the tail 

into hard glass capillary tubes (BDH Ltd.) (Gray 1979). Mice were prewarmed under a 

heat lamp, then the distal 2-3 mm of the tail snipped off using a pair of clean, sharp 

scissors. Capillary tubes were 1/4 filled with blood, labelled and allowed to clot for 30 

min at 37 °C and then placed in a 4 °C refrigerator for a further 30 min to contract the 

clot. The serum was removed from the sedimented RBC and transferred to a 

microcentrifuge tube and spun (300 g for 5 min)(MSE Microcentaur, Fisons) to pellet 

any remaining RBC. The serum samples were then frozen at -20 °C until needed.

For the collection of immune serum from infected mice to show the levels of specific 

anti-malarial antibodies during the course of infection, sera were collected from 

different experimental groups at 2-3 d intervals from d 0-60. Within each 

experimental group, every mouse was bled on an equal number of occasions to ensure 

that anaemia did not result from the repeated bleeding of an individual animal, and also 

that the circulating leukocyte count was maintained in a steady state (Sluiter e laJ 

1985).

2.11 Irradiation of mice

Mice were irradiated with whole body gamma irradiation from a 60Co source chamber 

(Nuclear Engineering) in the Department of Veterinary Physiology, University of 

Glasgow. During the course of this study, the source emitted at a rate varying between
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3.78-4.58 Gy (1 Gy = 100 rad), and mice were exposed for suitable lengths of time to 

receive doses of 4, 6 or 7.5 Gy depending on the experiment (details in text). Mice were 

lowered in pairs into the source chamber and irradiated in an upright position. To 

lessen the risk of gut damage upon irradiation, mice were starved of food for 24 hr 

immediately preceeding treatment. This precaution increased the radiation resistance of 

the mice (Hudson & Hay 1989). Irradiation of recipient mice prior to adoptive transfer 

and challenge infection took place no earlier than 24 hr previously, but more often on 

the day of infection. Following immunosuppression, mice routinely received terramycin 

(3 g/l) (Pfizer) in their drinking water for one week to prevent superinfection- 

associated deaths (McDonald & Phillips 1978).

2.12 Preparation of peripheral blood lymphocytes for adoptive transfer

High purity lymphocyte preparations suitable for adoptive transfer were obtained by 

separating WBC from whole blood by differential centrifugation on density gradient 

media. To enable the adoptive transfer of a large number of peripheral blood 

lymphocytes collected from a relatively few donor animals, mice were bled at the time of 

peripheral blood lymphocytosis; this occurred just after peak primary parasitaemia, 

usually d 12-13 p.i. (Kumararatne £ ia i 1987) (see Chapter 3). These semi-immune 

donor mice were bled aseptically by cardiac puncture into heparinised PBS (10 i.u./ml) 

and the blood pooled. After preliminary investigations using several different separation 

media, it was found that a preformed discontinuous gradient of 30%, 40% and 50% 

Percoll (Pharmacia Fine Chemicals) (Pertoft £ ia i  1978) (Appendix D) gave the 

cleanest separation of lymphocytes from pRBC and nRBC (Ulmer & Flad 1979, Kurnick 

£ la l 1979 b). 6 ml whole blood was layered on a total of 9 ml Percoll (3 ml each layer, 

30% fraction uppermost) in a plastic universal tube (Sterilin) and spun at 400 g for 

15 min at 20 °C on an MSE Mistral 3000i centrifuge using an angle-headed rotor to 

band the different cell types at their isopycnic densities. The centrifuge run was slowed 

without breaking to prevent disruption of the separated layers. The lymphocytes formed 

an opalescent band above the 30% Percoll layer, the pRBC banded at the 40-50% 

interface, whilst the nRBC pelleted at the bottom of each tube. The uppermost 

lymphocyte layer was drawn off, removing as little of the gradient as possible. The cells 

were then washed twice in excess PBS (300 g for 5 min), resuspended in a minimal 

volume of 10% FCS RPMI 1640 medium, and kept on ice until used. For the purification 

of control populations of normal lymphocytes taken from non-infected donor mice, a
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satisfactory separation was achieved using a one-step gradient of Ficoll Hypaque 

(Nycomed UK Ltd.) (Boyum 1968) (Appendix D). Whole blood was layered onto Ficoll 

Hypaque (21 parts 9% Ficoll: 10 parts 33.9% Hypaque) and centrifuged without 

breaking at 420 g for 20 min at 4 °C. The turbid lymphocyte fraction was removed 

carefully using a flammed Pasteur pipette (Bilbate Ltd.), and the cells recovered as for 

the infected donor lymphocytes (Chi & Harris 1978).

2.13 Preparation of splenic lymphocyte suspensions

Mice were killed by overdosing with ether (May & Baker Ltd.) and the spleens dissected 

out using aseptic techniques. If several mice were used, each excised spleen was placed 

in a 9 cm Petri dish (Sterilin), containing incomplete RPMI 1640 medium until used. 

The spleens were dissociated by mashing through a stainless steel sieve (mesh size

0.025 mm2) using the inside plunger of a syringe (Becton Dickinson) to push the cells 

through, and collected into the incomplete medium. The cells were disaggregated by 

aspiration with a sterile Pasteur pipette and, after removing connective tissue debris 

and clumps of cells by sedimentation, the supernatant was collected. The spleen cells 

were washed twice in fresh medium (250 g for 5 min), then resuspended in a relatively 

small volume of 10% FCS RPMI 1640 medium to give a single cell suspension. 

Contaminating RBC were removed by haemolysis. 1 ml of spleen cells (approximately 

1x10 9 cells) was incubated in 9 ml 0.83% Tris-ammonium chloride (pH 7.4) 

(Appendix C) for 5 min at RT (Boyle 1968). Most macrophages and other adherent cells 

were removed from suspension by filtration through glass wool, as described by Julius 

f i la l  (1973) and Trizio & Cudkowicz (1974). A glass wool column, made by packing a 

10 ml plastic syringe barrel to the 8 ml mark with glass wool (Travenol Laboratories), 

was clamped in a vertical position and 30 ml incomplete RPMI 1640 medium, followed 

by 10ml 10% FCS RPMI 1640 medium, washed through the column. The spleen cell 

suspension, now lacking RBC, was loaded onto the soaked glass wool column under gravity 

and washed out with 10% FCS complete medium. This procedure, carried out at RT, as 

well as removing phagocytic cells, cleansed the suspension of dead cells.

2.14 Enrichment of spleen cell populations by nylon wool separation

The T and B subpopulations of prepared splenic lymphoid suspensions were fractionated 

by filtration through nylon wool. The enriched T cell population was collected by passage 

through nylon wool columns, based on the modification by Handwerger & Schwartz
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(1974) of the technique of Julius £ ia l  (1973). Recovery of the enriched B cell 

fraction was achieved by following the method of Trizio & Cudkowicz (1974).

The barrels of 10 ml plastic syringes were packed tightly to the 7 ml mark with 

scrubbed nylon wool (Leuko-pak, Fenwal Laboratories), autoclaved and stored wrapped 

in aluminium foil. The sterile nylon wool columns were rinsed with 30 ml 10% FCS 

RPMI 1640 medium, followed by 20 ml 20% FCS RPMI 1640 medium (used in all 

subsequent procedures) and any air bubbles dislodged by gentle tapping. All washing and 

eluting procedures were carried out in upright columns within a sterile lamina flow 

bench (Intermed microflow pathfinder). The wet columns, sealed at the top with 

parafilm (American Can Co.) and at the bottom with a 25 G needle stuck in a rubber 

bung, were kept in a humidified incubator (Hearson Ltd.) at 37 °C for 90 min prior to 

use. They were then washed through with 10 ml fresh medium at 37 °C before 2-3 

x108 cells in 2 ml volumes were added dropwise onto each column. The cells were 

washed into the columns with 1 ml prewarmed medium, the columns resealed and again 

incubated at 37 °C for 45-60 min. After incubation, the non-adherent cells were run 

out dropwise from the syringe. These cells were washed out with 20 ml medium warmed 

to 37 °C and were considered thereafter as the enriched T cell subpopulation. Nylon 

wool-adherent cells were eluted from the columns by physically disrupting the nylon 

wool with flamed forceps and by forcing fresh warm medium through the column using a 

10 ml syringe plunger. The released adherent cells were collected in 10 ml and thence 

referred to as the enriched B cell subpopulation. Both cell populations were washed, 

resuspended in 10% FCS RPMI 1640 medium and kept on ice until either injected into 

recipient animals or cultured in v itro . Spleen cell numbers were counted in a 

haemocytometer using white cell diluting fluid (2.9). The counts were adjusted after 

cell viability was determined by the trypan blue exclusion method (2.17).

2.15 Adult thymectomy of mice

Four to five week old female NIH mice were surgically thymectomised by the method of 

Millar (1960), as modified by Monaco f i ia i  (1966). Before the operation, animals 

were injected i.p. with 0.1 ml of a 1:10 dilution in sterile distilled water of Hypnorm 

(Janssen Animal Health) (Appendix G) and subsequently anaethetised by an i.p. injection 

of 0.2 ml of a 1:5 dilution of Valium (Roche) (Appendix G) in sterile distilled water 

(McKeand, J.B. , personal communication). Each animal was harnessed to a cork 

operating board in the supine position with the four limbs stretched out and secured.
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After sterilising the chest wall with a few drops of 70% alcohol (May & Baker Ltd.), a 

midline longitudinal incision was made through the skin just above the anterior 

sternum. The skin was then opened, the salivary glands deflected, and an anterior- 

posterior cut made through the sternum. The location of the thymus was revealed by 

parting the muscle underlying the sternum. Thymectomy was achieved by suction using 

a bent glass cannula connected via a glass T-piece to a vacuum line. The amount of 

suction at the cannula tip could be varied by changing the pressure of the thumb on the 

end of the T-piece. With fairly light suction, each thymic lobe was located and held 

firmly at the cannula tip, the mouse's diaphragm being pressed so that the contents of the 

thorax forced the thymus into a more convenient position for manipulation. When the 

lobe was loosened from its bed by gentle teasing, the suction was increased so that the 

gland was sucked out through the cannula. Both the left and right lobes of the thymus 

were removed in this way. The wound was closed by pinching together the skin and held 

with two Michel suture clips (Thackray). After the operation, mice were revived under 

a warm lamp. The Michel clips were removed one week later using clip inserting 

forceps. After practice, post-operative mortality was < 15%.

For all experimental groups of adult-thymectomised mice, at the time of sacrifice, 

selected mice were checked for thymic remnants and none were seen. The same operative 

procedure was carried out on littermates on the same day to prepare sham adult- 

thymectomised mice controls, except that the thymic lobes were not removed. These 

animals experienced the same surgical trauma as did the thymus-depleted mice.

2.16 Irradiation and bone marrow reconstitution

Four weeks after thymectomy , thymus-ablated mice were given a 7.5 Gy (750 rad) 

dose of whole body irradiation delivered by a gamma-emitting 60Co source (2.11). Bone 

marrow reconstitution was achieved within 2 hr by i.v. injection of 10^ syngeneic, 

adult, nucleated bone marrow cells. These were obtained by flushing the marrow 

cavities from dissected tibiae and femora with incomplete RPMI 1640 medium (Benner 

£ ia l  1981; Phillips, R.S., personal communication). Donor mice were killed by ether 

overdose and the skin wetted with 70% alcohol. To free the tibia or femur respectively, 

the elbow or knee tendons were cut as was the joint capsule at the top of each long bone. 

Each bone was then pulled away and residual muscle trimmed away. The marrow was 

isolated after cutting the head of the femur or tibia and small pieces of the greater 

trochanter on the upper side, and the condyle on the lower side. By means of a 2 ml
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syringe equipped with a 26 G needle, a hole was pricked in both spongious ends of the 

long bone, then the marrow collected by flushing the marrow cavity with 2 ml 

incomplete RPMI 1640 medium. Whether or not the marrow had been completely 

extracted could be judged from the colour of the shaft. The pooled cell plugs were 

disaggregated by forcing through a 21 G needle and the cells further dispersed by 

Pasteur pipette aspiration. The resulting single cell suspension was washed twice by 

centrifugation (300 g for 5 min) and resuspended to a small volume for 

counting/viability testing prior to reconstitution of the recently irradiated mice by the

i.v. route.

The recipient mice were protected from infection by administration of a single 0.2 ml 

dose of 5000 i.u. Penbritin (ampicillin sodium b.p., Beecham Animal Health) i.p., and 

for two weeks after irradiation 3 g/l terramycin in their drinking water.

Mice were used experimentally, by adoptive transfer and challenge infection, 

approximately four weeks after reconstitution. The described protocol of thymus 

ablation, gamma irradiation and bone marrow reconstitution effectively depleted the 

treated mice of all but some mature peripheral T cells; thus, each individual has 

historically been termed a 'B-mouse' (Hudson & Hay 1989).

2.17 Determination of cell viability

Viabilities of preparations of cells (peripheral blood, spleen, bone marrow) were 

measured by the trypan blue exclusion test (Naysmith & James 1968; recommended by 

Jerne £ ia l  1974). After making an appropriate dilution (usually 1:10 or 1:100) of 

the cell suspension in PBS (pH 7.2) if necessary, the cells were further diluted 1:1 in a 

solution of 0.2% w/v trypan blue (Gurr, BDH Ltd.) in PBS (pH 7.2) and mixed 

thoroughly. The suspension was incubated for 2-3 min at RT and then examined by 

phase contrast under oil immersion (x100 objective, x10 eyepiece) on a light 

microscope. Dead cells were unable to exclude the vital dye and stained blue, whereas 

viable cells remained clear. Leukocytes could be distinguished from erythrocytes by 

size, morphology and colour. The proportion of live to dead cells was expressed as a 

percentage viability, and adjustments to total cell numbers (determined by 

haemocytometry) made accordingly.

Viability of spleen cells passed successively through glass and nylon wools was usually > 

95% and always > 90%. Viabilities of peripheral blood lymphocytes and bone marrow 

cells was > 92% and > 97% respectively.
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2.18 Determination of anti-malarial antibody titres

Total anti-parasite antibody determinations were carried out on serum taken from 

infected mice at 2-3 d intervals throughout the course of infection using the slide I FAT 

procedure of Van Meirvenne £ ia l (1975) modified by McLean e ia l (1982 a), based on 

the indirect fluorescent antibody method for malaria parasites as described by Voller 

(1964) and O'Neil & Johnson (1970).

(a) Preparation of malarial antigen slides

Late-stage (trophozoite/schizont) pRBC were collected from infected mice and used as 

the source of antigen. Infected blood was prepared by cardiac bleeding donor mice with 

an ascending parasitaemia of between 5-15% into 10 i.u./ml heparinised PBS. This was 

performed late in the afternoon at a time when the normal lit mice contained a high 

proportion of late trophozoite and schizont stage parasites. pRBC were washed three 

times in 20 ml PBS (pH 7.2) by centrifugation (250 g for 5 min) and resuspension. 

After the last wash, the pellet was resuspended to less than the original blood volume 

ready for making thin blood smears.

Teflon-coated 12 well multitest slides (Flow) were washed in detergent, rinsed 

successively in tapwater, distilled water and ethanol (May & Baker Ltd.) and finally 

hand dried with Crestex tissue (British Tissue Co.). Using a P100 'pipetman' pipette 

(Gilson), 100 pi aliquots of pRBC suspension were pipetted up and down onto every 

reaction zone on each slide. The liquid was then aspirated from the slides, leaving a 

layer of cells in the circles. Slides were either air-dried or with a hair dryer at RT, 

and then wrapped in batches of five in tissue and dehydrated overnight in a dessicator 

packed with silica gel. The antigen slides were stored in sealed polythene bags with 

silica gel at -20 °C until required (Manawadu & Voller 1978).

(b) Assay

To avoid condensation when recovering slides from frozen, they were brought up to RT in 

a dessicator for 1-2 hr before use in the IFAT. Slides were fixed in absolute acetone 

(May & Baker Ltd.) and air dried. The smears were then rehydrated by placing in three 

successive baths (Coplin jars) of PBS (pH 7.2) and left to stand in the final PBS wash 

for 15 min. It was important that from this point onwards, the slides did not dry out; if 

the slides remained hydrated, non-specific fluorescence was prevented (McLean, S.A.,
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personal communication). Slides were drained briefly and the area between wells dried 

to leave 12 separate reaction zones. Serial 1:2 dilutions of normal serum (negative 

control), hyperimmune serum (positive control) and the immune sera to be tested were 

prepared in a 96 well microtitre plate (Nunc), starting at an initial dilution of 1:10 in 

PBS (pH 7.2). 20 p.1 of test and control sera at the appropriate dilutions were added to 

the reaction zones using a Gilson P20 'pipetman' pipette. For every serum sample 

tested, each taking one or two slides, the first reaction zone in each slide contained PBS 

in place of diluted serum, to act as a control for non-specific fluorescence. The slides 

were incubated in a humid chamber for 15 min at RT, then washed and rehydrated for 15 

min as before. Each slide was recovered from PBS and the edges dried (there was no need 

to separate each reaction zone as all were to receive the same conjugate mixture. A 1 ml 

solution of FITC-conjugated rabbit anti-mouse IgG (Sigma) diluted 1:200 in PBS 

containing Evans blue (1:10000 w/v) (Merck) was applied to each of the slides which 

were then incubated for a further 15 min. The FITC-conjugate mixture was prepared by 

mixing 5 pi neat conjugate solution with 100 pi of a stock solution of 1:1000 dilution of 

Evans blue in PBS, and making up to 1 ml with 895 pi PBS (pH 7.2). The Evans blue 

was required as a counterstain for the RBC in the antigen slide preparations (El Nahel & 

Bray 1963). The slides were washed again to remove unbound conjugate, and rehydrated 

in fresh PBS before mounting under a long coverslip in a 1:1 solution of non-fluorescent 

PBS/glycerol (Merck).

(c) Examination of slides

Fluorescence was observed using a Leitz ortholux microscope linked to an Epson PX4 

computer through a Leitz MPV Compact 2 microscope photometer. All apparatus was 

located in the WLEP darkroom. The overhead ultraviolet source was a Wotan HBO-50 

mercury lamp with 2 x KP490 exciting filters and a TK 510 dichroic beam-splitting 

mirror and a K515 suppression filter. The microscope was switched on 15-20 min 

prior to use to allow the mercury lamp to warm up slowly.

The slides were examined using a x50 water immersion objective and a x12 binocular 

eyepiece. For each specimen, 100-200 cells were counted, both in ordinary incident 

light and in u.v. light. The titre (endpoint) of the serum was considered to be the last 

serial dilution of serum at which specific parasite fluorescence was observed. For each 

slide, the control zones of hyperimmune or normal serum, as well as that of PBS alone, 

were examined for comparison.
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2.19 Preparation of parasitised erythrocyte lysate

Soluble Ex.Ci ctiabaudi AS strain antigens were prepared from whole blood cells enriched 

for mature trophozoite/schizont-infected RBC using a modification of the method 

described by McDonald & Sherman (1980). Since peripheral withdrawal of schizonts of 

some strains of P. c. chabaudi has been shown to occur in vivo (Shungu & Arnold 

1972), short-term in vitro culture was used to obtain considerable numbers of 

schizont stage pRBC.

Mice to be used as a source of Ag were kept under reversed light conditions (12 hr light 

between 2000-0800 hr) for a minimum of 10 d acclimatisation before infection. Using 

this system, schizogony is usually synchronous and occurs between 1100-1300 hr 

(compared to maintenance on a normal daylight cycle, when peak schizogony occurs at 

0100 hr, an unreasonable time to perform an experiment) (Jarra & Brown 1985). 

Cardiac blood was collected under sterile conditions from several donor mice undergoing 

primary peak parasitaemia (average parasitaemia 40%) by bleeding from the heart into 

heparinised PBS (10 i.u./ml). Bleeding took place between 0800-0900 hr, when most 

parasites were at the late ring stage (i.e. prior to deep vascular tissue sequestration). 

After washing twice in 5% FCS RPMI 1640 medium, RBC were resuspended to a 10% 

haematocrit in the same medium and cultured using the candle jar method of Trager & 

Jensen (1976). 15 ml of the 10% w/v suspension of the infected blood in medium were 

dispensed in 9 cm Petri dishes (Cel-Cult, Sterilin), which were placed, together with a 

candle, in a humidified glass dessicator. The candle was lit and the lid put on with the 

stopcock open. When the candle flame extinguished, the stopcock was closed. This 

procedure provided a gas phase of 3% C02 and 15 -17% 02, i.e. an atmosphere low in 0 2 

and high in C02 (Trager 1987). The candle jar was placed in a 37 °C incubator until the 

parasites had reached the schizont stage; parasite maturation was monitored every 30- 

45 min by examination of Giemsa's stained thin blood smears. After harvesting, the 

cultured parasites were washed in 5% FCS RPMI 1640 medium (200 g for 10 min) and 

resuspended to their original volume in sterile PBS. The blood solution was filtered 

through sterile Whatman CF11 powdered cellulose paper columns to remove leucocytes 

(Beutler £ ia i 1976) and the filtrate subsequently washed. The pellet containing the 

malaria parasites was restored to its previous volume in PBS (pH 7.2) and then freeze- 

thawed five times. Each cycle of freeze-thawing entailed snap freezing the preparation 

by plunging into liquid N2, then immediately defrosting the solution by placing in a 37
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°C water bath (GallenKamp). The rapid temperature transition brought about by this 

process acted to fracture the RBC, so releasing parasitised material from those lysed 

infected RBC present. The disrupted pRBC suspension was centrifuged at 1500 g for 10 

min and the S/N fluid collected. This was termed the pRBC lysate and was stored in 20- 

50 pi aliquots at -20 °C until required.

Since all procedures used were sterile, the lysate samples were suitable for direct in  

vitro use without prior filtration. The total protein concentration of the lysate was 

determined by the standard BCA assay (see 2.20). Using this method, the amount of 

contaminating RBC Ag in the crude Ag preparation was minimal as determined by PAGE 

(Sayles & Wassom 1988). Erythrocytes from normal uninfected mice (nRBC) treated 

in the same way were used as a control for testing Ag specificity (Dodge ninL1963).

2.20 Determination of total protein concentration

A quantitative estimation of total IgG and IgM in protein samples (pRBC and nRBC lysates 

and rat MAbs) was determined by spectrophotometric measurement at 595 nm. The 

procedure used was the BCA standard assay, as described by Smith £ la l (1985) using 

the Coomassie blue G-250 Pierce protein assay reagent (Pierce Chemical Co.) and BSA 

as a protein standard. This method was a modification of the original technique of 

Bradford (1976), which measures an absorbance shift from 465-595 nm that occurs 

when Coomassie blue binds to proteins in an acidic solution. The assay can be used to 

determine protein concentrations in the range of 150-1500 jig/ml, a range over which 

the intense purple response is relatively linear and thus permits accurate total protein 

quantitations of unknown samples as measured against a standard curve.

A known protein concentration series was prepared by diluting a 2 mg/ml stock BSA 

standard (Pierce) in deionised water. Convenient standard concentrations were used to 

cover the range 150-1500 jig/ml (Appendix F). 5.0 ml protein assay reagent was

added to 100 |il of each of the diluted standards and also to 100 pi of the unknown protein 

sample(s), in clear, clean test tubes and mixed well. 100 pi deionsed water sample 

diluent was used as a blank. All tubes were then incubated for 30 min at 37 °C . 

Absorbance was read at 595 nm on a uv spectrophotometer (Pye Unicam PU 8600) 

against the deionised water blank. This latter value was then subtracted from each 

standard or unknown protein sample absorbance to give the net absorbance at 595 nm of 

each sample tested. As the protein concentration of all samples tested during the course 

of this study exceeded the 1500 pg maximum, each solution had to be diluted
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appropriately (usually 1:10 or 1:100) to bring the diluted sample within the assay 

range suitable for spectrophotometric measurement.

2.21 Production of IL-2 for maintenance of T cells in vitro

For the routine maintenance of T cell lines and clones in vitro , S/N from rat spleen cell 

cultures stimulated with the T lymphocyte mitogen concanavalin A (Con A S/N) were 

used as a source of IL-2 (Douglas e ia l 1969).

Spleen cell suspensions were prepared from inbred female Wistar rats supplied by the 

WLEP animal house breeding facility (methodology as described previously) and these 

cultured at 2 x106 cells/ml in 10% FCS RPMI 1640 medium containing 2.5 jxg/ml Con 

A (Sigma Chemical Co. Ltd.) at 37 °C in a humidified atmosphere containing 5% C 02. 

The cultures were maintained horizontally as 40 ml volumes in 75 ml tissue culture 

flasks (Cel-Cult, Sterilin). After 48 hr, the cell suspensions were transferred to 50 

ml centrifuge tubes (Sterilin) and spun at 400 g for 10 min, the S/N aliquoted into 20 

ml Universal containers (Sterilin) containing 0.4 g of a-methyl mannoside (Sigma) and 

stored at -20 °C. a-methyl mannoside was added to sequester free Con A which may 

otherwise induce non-specific T cell activation when the Con A S/N was used 

subsequently. Every aliquot was filter-sterilised through a 0.22 nm microfilter 

(Millipore) prior to use. Each batch of Con A S/N was screened for IL-2 activity before 

use by determining the IL-2 titre in a microassay (Hamblin & O'Garra 1987) using 

polyclonally-activated T lymphocytes as test cells and recombinant murine IL-2 

(Genzyme)(Appendix E) as standard.

2.22 Production of IL-2 for use in T cell cloning

Helper T cell lines produce high levels of autocrine IL-2 after 48 hr exposure to Ag 

(Taylor £ ia i  1987). This source of IL-2 was reserved for those stages of culture 

involving cloning of the autologous Th lines. A helper T cell line specific for ovalbumin 

was raised and maintained in vitro by a repeat 'feed-starve-feed' cycle (Kimoto & 

Fathman 1980)(2.26). 2 x105 cells/ml 10 ml cultures were fed with 100 jig/ml

chicken egg ovalbumin (Sigma) and 2 x106 APC/ml and incubated in an upright 25 ml 

flask for 2 d. The medium (auto IL-2) was aspirated, 0.22 nm filter-sterilised and 

kept at -20 °C until required. Auto IL-2 was used in cloning procedures at 20% (v/v), 

as dictated by the IL-2 assay (2.23).
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2.23 Screening of stock IL-2 sources

Two sources of IL-2 were used for cloning and maintaining T cells in vitro : S/N from 

Con A-stimulated rat spleen cell cultures (Con A S/N) and auto IL-2, produced by Th 

cell lines after 2 d culture with Ag and APC. Prior to use in culture work, each batch of 

S/N was tested for IL-2 activity, so enabling subsequently an appropriate dilution to the 

optimal concentration shown to stimulate T cell proliferation.

Serial dilutions of S/N in quadruplicate were tested for their ability to support the 

growth of murine peripheral blood T cell blasts (Hamblin & O'Garra 1987, modified 

from Boylston a ta i 1981).

(a) Preparation of blast cells

Murine mitogen-activated T cell blasts were prepared as described by Malek £ la l  

(1983). Naive, uninfected NIH mice were bled aseptically by cardiac puncture into 

heparinised PBS (10 i.u./ml) and the blood pooled. Mononuclear cells were collected by 

separation of the blood on a Ficoll Hypaque (Nycomed U.K. Ltd.) gradient (Boyum 1968) 

(Appendix D)(2.12). Cells were resuspended at 1 x106/ml in 10% autologous serum 

in 10% FCS RPMI 1640 medium. The cell suspension was placed in 75 ml tissue 

culture flasks with 20 |ig/ml PHA-R (Wellcome) and cultured in a humidified 

atmosphere of 5% C 02 in air at 37 °C for 3 d. After incubation, the cells were 

recovered by washing twice with incomplete RPMI 1640 medium (300 g for 5 min) and 

counted.

A layered gradient of Percoll solutions (Pharmacia) (100%, 70%, 60%, 50%, 40% 

and 30%)(Appendix D) was prepared in plastic Universal tubes, allowing 2 ml of each 

dilution in every gradient. The blast cells were resuspended in the 30% Percoll fraction 

with no more than 5 x107 cells/gradient, prior to layering this dilution uppermost in 

each tube. The suspensions were spun at 450 g for 17 min at 20 °C using an angle

headed rotor centrifuge (MSE Mistral 3000i) and slowed without breaking, after which 

the cells were banded at the various density interfaces. The fraction most enriched for 

blast cells was the 40-50% Percoll interface; this layer was removed with a flamed 

Pasteur pipette into a sterile Universal tube and diluted with 20 ml 10% FCS RPMI 

1640 medium. Each tube was washed three times (200 g for 10 min) in complete 

medium. The blast cells were reincubated at 1 x10*7ml in 10% FCS RPMI 1640 

medium in 75 ml flasks at 37 °C in a humidified atmosphere at 5% C02 in air for 4 d.

126



(b) Blast cell assay

PHA-R-stimulated peripheral blood blast cell cultures were washed twice (200 g for 

10 min) and resuspended in 10% FCS RPMI 1640 medium at 2.5 x105 viable 

blasts/ml. Serial two-fold dilutions of both unknown and standard recombinant IL-2 

(Genzyme) (Appendix E) were made in complete RPMI 1640 medium. 100 pi of blast 

cell suspension was placed in each well of a 96 well flat-bottomed tissue culture plate 

(Nunc) and to this added 100 pi of a suitable dilution of IL-2. A Gilson P100 'pipetman' 

pipette was used for all micromanipulations. For each batch of IL-2 to be screened, four 

replicate cultures were set up for each dilution, together with appropriate negative 

controls without IL-2 . Each assay plate was cultured in a humidified C02 incubator 

at 37 °C  for 72 hr, whereupon 1.0 pCi [3 H-methyl] thymidine (Amersham 

International) as a 20 pi volume was added to each well. The radioactivity incorporated 

over an 18 hr pulse time was determined as described in 2.34. Samples containing IL-2 

gave dose-related stimulation of tritium incorporation into the mitogen-activated 

lymphocyte blasts. From the data, the optimum dilution of each batch of Con A S/N or 

auto IL-2 to add to T cell cultures could be determined.

2.24 Antigen presenting cells (APC)

Irradiated syngeneic spleen cells (Schwartz £ ia l 1978) are the most convenient source 

of large numbers of APC for routine maintenance of T cell lines or clones. APC were 

obtained from the spleens of naive syngeneic NIH mice (H-2C* haplotype). Spleen cell 

suspensions were prepared in 10% FCS RPMI 1640 medium and placed on ice. The cells 

were then irradiated to 30 Gy (3000 rad) by exposure to a 60Co (thereby inhibiting 

accessory lymphocyte proliferation in vitro). Preliminary investigation established 

that a dose of > 25 Gy irradiation was required to inhibit completely feeder cell growth 

in vitro using this particular gamma emitter. The cells were then washed twice (300 g 

for 5 min) and resuspended in complete medium. After taking a total cell count, the 

suspension of APC was added to the cultured T cells at an appropriate final concentration.

2.25 In vivo priming of Th cells to Plasmodium c. chabaudi

Prior to generating a helper T cell line by culturing spleen cell suspensions with pRBC 

lysate as a source of plasmodial antigens and irradiated splenic APC, the donor mice were 

primed in vivo to the antigenic stimulation, namely parent AS strain parasites of fL. &
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chakaudi-
Two strategies were employed in an attempt to prime spleen cells in vivo to varying 

degrees to the full range of plasmodial asexual erythrocytic stages. The standard way of 

priming mice was to allow for a complete course of infection to be cleared (> 60 d) and 

then to boost the immune response by inoculating one or more reinfective doses of pRBC; 

these were then cleared very rapidly by the pre-sensitised host immune system 

(similar methodology as for raising hyperimmune serum; 2.10). Alternatively, mice 

were primed for shorter periods of time by not waiting till parasite clearance before 

splenectomy but sacrificing donor animals at various points throughout the course of 

primary infection (discussed in text).

2.26 initiation and propagation of Ag-specific helper T cell lines

The original protocol followed for generation of Th cell lines in vitro was the cyclic 

stimulation and rest method first described by Kimoto & Fathman (1980; Fathman & 

Kimoto 1981), as modified by Taylor £ ia l (1987). This technique was subsequently 

adapted progressively in consultation with Dr. Richard Grencis (Dept, of Cell & 

Structural Biology, University of Manchester) in order to optimise conditions for 

raising clones by limiting dilution from established T cell lines. Although the majority 

of experiments described in this thesis were performed after the latter technique was 

standardised, some initial results were attained using cells generated by the former 

method, so each is described here.

(a) Original protocol

Spleen cell suspensions were prepared and cultures established at 4 x106 cells/ml in 

10% FCS RPMI 1640 medium containing 200 pg/ml pRBC lysate (previously 

determined optimal concentration of lysate shown to induce T cell proliferation). 40 ml 

aliquots were dispensed into 75 ml tissue culture flasks and these incubated in a 

humidified 5% C02 atmosphere fo 4 d. Cells were harvested, dead cells removed on 

Metrizamide (2.7) and viable cells resuspended at 2 x105/ml. Freshly prepared APC 

were added to the responder cells at a final concentration that ranged between 5 x105 -2 

x106/ml, and Con A S/N added at a suitable dilution to maintain cell viability. The 

cultures were incubated for a further 4 d.

The Th cells were recultured (2 x105/ml) with APC (2 x106/ml) for 6-8 d without 

pRBC Ag but with Con A S/N if necessary - this was the ’starve' period. Thereafter, the
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Th lines thus generated were maintained by a ’feed' (3-4 d, Ag + APC), ’starve’ (6-8 d, 

APC alone), 'feed' cycle.

Cell stocks were frozen down 3 d after the second or subsequent antigenic stimulations. 

Proliferation of established Th cell lines was assayed 8 d after the start of a starve 

period, i.e. when the cultures were spent of residual Ag and therefore optimally 

responsive to fresh stimulation.

(b) Modified protocol

The methodology outlined above was modified in order to increase the viability of 

routinely cultured responder cells, so promoting the probability of attaining clones by 

limiting dilution. To replace the 'feed-starve-feed' cycle used previously, the starve 

step (in which T cells were cultured without Ag but with Con A S/N) was omitted and 

cultures simply incubated without alteration between successive pRBC lysate feeds. The 

validification for including a starve period was to promote the growth of Ag-specific 

populations of cells (Fathman & Kimoto 1981) which could be achieved as efficiently by 

not disturbing the cultures for 12-15 d between successive subcultures with fresh APC 

and Ag (Grencis, R.K. & Wood, P.J., personal communication). An exogenous source 

of IL-2 was not considered essential as Th cells secrete autogenous IL-2 upon antigenic 

stimulation which would be sufficient to support the cells at times of Ag deprivation.

Th cells were established and maintained as stable lines in vitro using the protocol 

outlined in Table 2.1. After initiating the cultures at 4 x106/ml spleen cells, the 

number of responder cells was reduced stepwise at every subculture to 2.5 x104 

cells/ml, whence the concentration of proliferating cells was maintained at this level. 

From an initially low starting concentration, successfully primed responder cells, once 

established, were capable of proliferating rapidly to outgrow the fixed APC in culture. 

As it was found that the presence of residual dead cell debris had no detrimental effects 

on the rate of cell proliferation, non-viable cells were not removed between feeds. This 

was a benificial finding as Metrizamide treatment utilised in the original protocol 

removed all dead cells but resulted in a sometimes unsatisfactory recovery of viable 

cells.

2.27 Removal of dead cells from in id iia  cultures

Following the original protocol for in vitro propagation of T cells, dead responder cells 

and APC were removed from suspension at every subculture. The methodology used was
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first described by Kurnick f i la l (1979 a & b) using the centrifugation gradient medium 

Metrizamide (Nycomed (U.K.) Ltd.).

A stock solution of 35.3% w/v analytical grade Metrizamide was prepared in distilled 

water, filter-sterilised and kept at 4 °C for up to three months. For use, the colloid was 

diluted to 18% (v/v) by making up 1.02 ml of stock, 0.94 ml PBS and 0.04 ml 

FCS.

1 ml of this dilution was dispensed to a 12 x75 mm plastic centrifugation tube (Nunc), 

carefully overlayed with 1 x107 cells (washed and resuspended to 1 ml with 10% FCS 

RPMI 1640 medium) and the gradient centrifuged at 450 g for 15 min. Viable cells 

were recoverable from the interface and washed twice (300 g for 5 min) with 1 ml 

complete medium in similar centrifuge tubes. Recovery of intact, living cells was 

always > 83%.

2.28 Anti-CD3 monoclonal antibody assay

A cell suspension S/N taken from an exhausted culture of the 145-2C11 hybridoma cell 

line was a gift of Dr. Richard Grencis (Dept, of Cell & Structural Biology, University of 

Manchester) and was used routinely as a source of the anti-CD3 MAb for cloning Th cell 

lines by limiting dilution. Prior to using this S/N, its efficacy in stimulating 

lymphocytes had to be tested. To do this, a standard proliferation assay was carried out, 

using the MAb as the mitogen and naive splenic lymphocytes as the target cells.

A suspension of spleen cells was prepared at 4 x106/ml and 100 pi of this dispensed to 

wells of a 96 well flat-bottomed microtitre plate. The anti-CD3 S/N was titred out over 

a range of dilutions (1-100% original S/N concentration), 100 pl/well of each dilution 

was added to quadruplicate wells and the plate cultured in a humidified C02 incubator for 

72 hr. Thereafter, the method followed for quantification of cellular proliferation was 

identical to that described in 2.34.

From this assay, it was possible to determine the optimal dilution (v/v) of 145-2C11 

culture S/N to use to promote Th cell clonal proliferation.

2.29 Cloning of helper T cell lines by limiting dilution

For all attempts at cloning, cells were taken 3 d after the third or more round of 

antigenic stimulation; if attempts were to be made to obtain clones earlier, the efficiency 

of cloning would be extremely low, although a wider sample of the antigenically primed 

clonal repertoire may be obtained (Mills £ ia i 1986). Initial attempts at cloning used
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auto IL-2 to stimulate clonal growth (Sredni £ ia i  1980); this was superceded by a 

hamster anti-murine CD3 MAb (Leo e l ai 1987) with which clones were successfully 

expanded. The latter was a S/N taken from a spent culture of the 145-2C11 hybridoma. 

A suspension of irradiated virgin spleen cells (30 Gy, 4 x106/ml) was prepared in 

10% FCS RPMI 1640 medium supplemented with either 20% IL-2 or 20% anti-CD3 

(Wasik & Morimoto 1990) and pRBC lysate Ag (200 |ig/ml). This APC preparation was 

then plated out at 100 nl/well in flat-bottomed 96 well microtitre plates (Nunc) using 

an eight channel 50-200 \i\ pipette (Titertek, Flow). The Th lines to be cloned were 

washed (300 g for 5 min) and counted. Cells were diluted in complete medium 

containing 20% dilutions of either auto IL-2 or anti-CD3 to cover the concentration 

range 500-1 cells/ml (50-0.1 cells/well). These dilutions were plated out at 100 

|il/well into the previously prepared APC-containing microtitre plates, allowing two 

plates each for the lowest cell numbers. The cultures were incubated at 37 °C in a 

humidified C 02 incubator (Flow) for 7 d, when 25 jil of either auto IL-2 or anti-CD3 

(both at 100% S/N) was added to all wells. On d 10 and on subsequent days, plates were 

scored for wells containing growing cells. This was done by examination of the wells 

through a 25 x lens of an inverted phase contrast microscope (Leitz) with constant 

adjustment of focus. Cells forming a clone could be distinguished from clumps of 

background feeder cells by their larger, usually irregular shape and bright appearance 

under phase.

Although only the lowest dilution plates were used for expansion of clones, all plates 

were examined for the presence of clones to ensure that the greatest numbers were 

obtained at the highest cell concentrations, i.e. a Poisson distribution of growing clones 

for the number of cells seeded.

2.30 Expansion of helper T cell clones

A manageable number of clones (< 20) was chosen from the lowest dilution plates, i.e. 

those containing the lowest number of positive wells (< 10/96). Cell lines established 

from dilutions which gave rise to cell growth in < 30% of wells had > 83% probability 

of being clones (Henry £ ia l 1980) and are herein referred to as such. As this step of 

the limiting dilution procedure was reached only using the modified protocol, anti-CD3 

MAb was used throughout to stimulate clonal expansion.

APC (30 Gy; 2 x106/ml) were prepared in 10% FCS RPMI 1640 medium containing 

20% anti-CD3 MAb (145-2C11 cell line S/N) and 200 pg/ml soluble lysate Ag. This
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suspension was plated out at 1.5 ml/well in flat-bottomed 24 well plates (Linbro, 

Flow); growing clones considered to be of sufficient size were then transferred to 

prepared wells. It was found that if clones were transferred prematurely from 96 well 

to 24 well plates they failed to expand further. After 6 d incubation, 0.5 ml 20% anti- 

CD3 MAb was added to each well. A further 10-12 d later, each of the clones had grown 

sufficiently for the wells to be confluent. They were restimulated with APC/Ag (details 

as before) and transferred to 10 ml cultures (2 x106/ml) in upright 25 ml culture 

flasks. After sufficient proliferation, the flasks were tilted at an angle to the vertical to 

allow a larger surface area for cell growth. Finally, flasks were laid flat to enable the 

clones to establish completely in flasks.

The expansion and feeding of the Th clones was determined by their individual growth 

rates. When each clone was established as a flask culture, it was propagated following 

the modified maintenance protocol of the parent cell line. All new clones were tested as 

soon as possible for proliferation upon parasite stimulation (to verify Ag-specific 

responsiveness) and cell stocks established in liquid N2.

2.31 Cryopreservation of Th cell lines and clones

A library of helper T cell lines and clones was maintained for storage of cells for an 

indefinite period in a frozen state under liquid N2.

A cryoprotective solution was prepared by mixing 20% v/v DMSO (Sigma), 50% v/v 

FCS (Gibco) and 30% v/v incomplete RPMI 1640 medium (Hudson & Hay 1989), 

usually as a 10 or 20 ml final volume. This solution was kept on ice till use. Viable, 

actively growing cells were harvested from healthy cultures, pelleted by centrifugation 

at 350 g for 10 min and resupended in freezing medium. Cells were dispensed in 1 ml 

aliquots to 1.2 ml cryopreservation tubes (Nunc, Gibco)(labelled with the WEP code and 

a number) and frozen by controlled cooling (Theander £ ia i 1986 a). A cooling rate of 1 

°C/min was obtained by placing the ampoules in a freezing tray (Taylor-Wharton), this 

fitted on top of a liquid N2 cannister, and incubating in the vapour phase above liquid N2, 

either for 6-8 hr or overnight. Once frozen, the tubes were transferred to -196 °C for 

permanent storage.

Cells were recovered from liquid N2 storage by thawing rapidly by incubating at 37 °C; 

a warming rate of 12000 °C/min could be achieved by removing the cryopreservation 

tubes from frozen storage and dropping them directly into a water bath at 37 °C 

(Mutetwa & James 1984 b). The contents of an ampoule was transferred to a plastic
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Universal tube and the cell suspension diluted by adding 2 ml warm 10% FCS RPMI 

1640 medium dropwise with shaking, and another 7 ml of warm complete medium 

slowly. Cells were washed twice (250 g for 5 min at RT) using the minimum of 

centrifugation and pipetting, resuspended in a minimal volume and counted as described 

previously (2.9; WBC counts). The suspension was adjusted to a suitable cell 

concentration immediately prior to culturing in vitro.

Cell lines and clones recovered from stabilate and intended for adoptive transfer were 

not inoculated directly from frozen but always cultured in vitro beforehand. This had 

the advantages of ensuring that cells were in their logarithmic growth phase at the time 

of grafting and enabling the collection of sufficient Ag-primed cells for adoptive 

transfer. It also eliminated the possibility of injecting trace quantities of the toxic 

DMSO into recipient animals.

2.32 Surface phenotyping of T cell lines and clones

In v itro-propaoated T cell lines were periodically evaluated for the presence of cell 

membrane Ags by indirect immunofluorescence. Clones derived by limiting dilution 

from such lines were tested for homogeneity in expression of surface markers. 

Immunofluorescent staining was necessary to characterise at the cellular level the T cell 

subsets responsible for the cell-mediated immune responses functioning both in vivo 

and in vitro that are described in this thesis.

Cultures of T cell lines or clones were washed twice (300 g for 5 min) in chilled 10% 

FCS RPMI 1640 medium, cleansed of dead cells on Metrizamide and washed again. Cells 

were resuspended in complete medium to 1 ml, and their concentration adjusted to 

2 x107/ml after total and viable cell counts were made. Naive spleen cells were used as 

a control for surface phenotyping; these were prepared as single cell suspensions as 

described previously.

As the I FAT can be adapted for use with live cells or fixed material, at this stage the cells 

requiring phenotyping were either kept on ice for immediate testing (modified from 

Brake £ la l 1986) or coated onto glass slides for slide I FAT (modified from McLean e ia l 

1982 a). For the latter, thin smears of each lymphocyte suspension were aliquoted onto 

individual zones of teflon-coated multitest slides (Flow) and air-dried (2.18). These 

Ag slides could then be stored dessicated at -20 °C for testing at a later date.
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(a) Live ceils

Serial 1 : 2 dilutions of normal rat serum (negative control) (prepared as for normal 

mouse serum, 2.10) and the primary MAbs to be tested were prepared in a 96 well 

tissue culture plate, starting at an initial dilution of 1:10 in PBS (pH 7 .2). 50 pi of 

each MAb at the appropriate dilutions were mixed with 50 pi test suspension (2 x107 

cells/ml) in a microcentrifuge tube and incubated for 1 hr in a 37 °C waterbath. In all 

cases, a 1 : 200 dilution of FITC-conjugated goat anti-rat IgG (Sigma) was used as the 

secondary MAb. After washing twice in PBS (300 g for 3 min in an MSE microcentaur 

microcentrifuge), the cells were resuspended in a 100 pi volume of this solution and 

incubated for 30 min at 37 °C. Cells were washed twice as before to remove any 

unbound conjugate, resuspended to 0.5 ml in cold PBS and kept on ice until ready to 

view.

The % of positive cells was determined by fluorescent microscopy with the use of a Leitz 

incident light u.v. microscope equipped with a mercury lamp with an appropriate 

excitation filter for fluorescein. As the FITC-conjugated antiserum is unable to cross 

the intact cell membrane of viable lymphocytes, staining is confined to the external 

surface determinants. Positively stained cells, therefore, were visible as green rings 

and could be distinguished from dead cells showing bright homogeneous intracytoplasmic 

fluorescence. For each microscope field, the number of surface-fluorescent 

lymphocytes was counted and then the total number of viable lymphocytes enumerated 

under phase contrast viewing. For each specimen, ~ 200 cells were counted under 

visible light and the % of fluorescing lymphocytes calculated.

(b) Fixed cells

The methodology used for the slide I FAT was essentially similar to that detailed for anti- 

malarial Ab titre determinations, save using FITC-labelled goat anti-rat IgG as the 

second step reagent (without the addition of Evans blue counterstain for RBC).

Using either assay method, each cell sample was tested against a panel of primary MAbs, 

all of rat origin, specific for different surface Ags. Anti-mouse lgG2b MAbs specific for 

Ly-4 (L3T4; helper T cells) (Dialynas £ ia l  1983) and for Ly-2 (cytotoxic T cells) 

(Ledbetter & Herzenberg 1979) were either purchased from Sera-Lab in the first 

instance or purified from ascitic fluid (rat hybridomas a kind gift of Dr. Steve Cobbold, 

Dept, of Pathology, University of Cambridge), as outlined later. lgG2b MAbs to 

lymphocyte markers Thy-1 (pan T cell) (Chayen & Parkhouse 1982), Ly-17 (anti-Fc
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*9^2b raceptor) and Ly-40 (Mac-1; macrophages) were also used throughout (all from 

Sera-Lab). Normal rat serum was used in every assay as a negative control in place of 

each primary reagent to confirm the lack of non-specific fluorescence in the absence of 

specific MAbs. All reagents were diluted 1:10 in PBS upon receipt and stored in working 

aliquots (20-50 \l\) at -20 °C ready for use.

2.33 Complement-mediated cytotoxicity assay

As a confirmatory test to phenotypically characterise the T cell lines and clones raised to 

P. c. chabaudi , the cells were assessed for expression of surface markers using the 

technique of complement-mediated cytolysis described by Rose f i la l  (1976). MAbs 

directed against cell surface Ags were used to kill cells carrying these Ags with the aid of 

complement; cell death was assayed by exclusion of the dye trypan blue (2.17).

Rat anti-mouse MAbs specific for Ly-4 and Ly-2 determinants were purified from

ascites secreted by rat hybridoma cell lines. These hybridomas were acquired from Dr. 

Steve Cobbold (Dept, of Pathology, University of Cambridge) and the MAbs attained from 

them were evaluated for protein content by measuring absorption at 595 nm. Normal 

rat serum was used as a negative control for cytotoxicity.

In v itro -propaaated T cells were prepared for assay by washing twice (300 g for 5

min) in 10% FCS RPMI 1640 medium and dead cells separated out by Metrizamide 

gradient centrifugation. The viable cell fraction was washed once more and resuspended 

to 1 x107 cells/ml. Naive spleen cells, presumably containing approximately equal 

proportions of both major T cell subsets, were used as a control of specific MAb-induced 

cytolysis in the presence of complement. A spleen cell suspension was prepared, a T- 

enriched fraction collected over nylon wool and its concentration adjusted to 1 x107 

cells/ml as for each sample on test.

Six serial dilutions of each Ab or antiserum sample were made in 1 ml volumes in PBS 

(pH 7.2) to cover the titration range 1:10-1: 5000 initial concentration. A 200 M-l 

aliquot of every MAb dilution was added to 0.5 ml volumes of each T cell sample in a 

microcentrifuge tube and incubated at RT for 30 min. After incubation, each tube was 

spun (300 g for 5 min) in a microcentrifuge and the cell pellet resuspended in a 

minimal volume. 0.5 ml of a 1: 40 dilution in PBS of unabsorbed guinea-pig 

complement (Wellcome) was overlayed, then mixed and the suspension incubated at 37 

°C for 45 min. Complement was used at the dilution recommended to cause efficient lysis 

when treating 107 spleen cells (Waldmann, H., personal communication). After
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incubation, the microcentrifuge tubes were placed on ice to prevent further complement 

fixation and cell lysis. Once more, the cells were washed and resuspended to their 

original volume (0.5 ml) in PBS (pH 7.2) prior to cell counting. 0.1 ml of each cell

suspension was mixed with 0.1 ml of 0.2% w/v trypan blue in PBS and incubated for 2-

3 min at RT.

The number of viable lymphocytes (phase bright, unstained) was counted using a 

haemocytometer and a phase contrast microscope, as described in 2.17. The number of 

viable cells/ml could be calculated and from this the % lysis for each tube, according to 

the following equation (adapted from Hudson & Hay 1989):

% lysis = Cpg - CA x 1 00/Cq

where CN = number of live cells in normal rat serum 

CA = number of live cells in MAb dilution 

C0  = original number of live cells.

For each cell line or clone and each MAb used, a graph of % lysis against MAb dilution 

was plotted.

2.34 Helper T cell proliferation assay

This assay measured the ability of cultured Th cells to respond to specific antigenic 

stimulation and was a necessary inclusion in all in vitro studies to demonstrate that the 

cell lines and clones employed experimentally were primed to the asexual erythrocytic 

stages of P. c. chabaudi to which they were raised. In principal, the assay measured, at 

the microtitre level, the same cellular proliferation after restimulation with Ag and 

APC that accounted for cell growth after freshly feeding flask cultures. Apart from 

confirming the Ag-specific proliferation of Th lines and clones, this assay was a 

fundamental prerequisite to longterm bulk culturing of T cells in vitro since it was 

necessary to determine at the outset the optimum concentration of pRBC lysate required 

to induce maximal cellular proliferation in vitro. Once this variable was evaluated, the 

stock of lysate Ag could be diluted routinely to that final concentration when feeding cell 

suspensions.

When testing for cellular proliferation by incorporation of tritiated thymidine, it was 

necessary to deprive of Ag the lines or clones for 6-8 d before assay. This precaution 

avoided high background counts which would occur in the presence of residual 

stimulatory pRBC lysate.

For the assay, APC were prepared (2.24) at 4 x106/ml in 10% FCS RPMI 1640
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medium. The Th cells to be tested were washed twice in complete medium (300 g for 5 

min) to remove residual Ag or IL-2, resuspended in the APC suspension at 2 

x 1 0 5/ml, and the complete preparation then plated out at 100 pl/well in 96 well flat- 

bottomed microtitre plates (Nunc).

Using standard stocks of pRBC and nRBC lysates for which the total protein concentration 

had been determined previously, a range of Ag dilutions was prepared to cover the range 

of concentrations 5-400 p.g/ml RBC lysate. This was performed in a microtitre plate 

using 10% FCS RPMI 1640 medium as the diluent. For each concentration, 100 pi of 

diluted Ag was added to four successive test wells containing T cells and APC (i.e. the 

assay was performed in quadruplicate for each sample of Th cells at every dilution of 

lysate).

The 96 well plates were cultured at 37 °C in a humidified atmosphere containing 5% 

C 0 2 for 72 hr, at which time 1.0 pCi (37 kBq) of [3H-methyl] thymidine (20 pCi/ml, 

specific activity 5 Ci/mmol; Amersham International) was added to each well. Addition 

of tritiated thymidine provided a freely available alternative nucleotide which could be 

incorporated into the DNA synthesised. To add the radiolabelled nucleotide, 20 pCi/ml 

[3 H] thymidine stock was diluted 1: 20 in complete medium and 20 jil aliquoted to each 

well using a P20 'pipetman' pipette (Gilson). 18 hr later, the wells were harvested 

with a semi-automatic cell harvester (Titertek, Flow) onto glass fibre filter paper 

(FG/A, Whatman), washed twice with distilled water and dried. Each filter disc was 

transferred to a plastic beta vial (LKB) and 2 ml non-aqueous scintillation fluid 

(Optiscint 'safe', LKB) added using an automated dispenser (Jencons (Scientific) Ltd.). 

All the insert tubes were lidded, labelled and placed inside outer plastic scintillation 

vials ready for counting. The beta activity in each sample was detected using a liquid 

scintillation counter (LKB Wallac 1219 Rackbeta) (1 or 5 min count time) and 

quantified on a programmed computer (Olivetti DM282 100).

For individual wells, total counts and c.p.m. were measured, from which the arithmetic 

mean c.p.m. for quadruplicate wells could be calculated. From the data collected from all 

dilutions for a given assay, a dose-response curve of tritium incorporation against Ag 

concentration could be plotted; this showed the proliferative response of the cells tested 

to specific antigenic stimulus titred out at different concentrations, from which the 

optimum dilution of pRBC lysate stock could be determined.

In all cases, control wells containing responder cells alone, T cells and APC, plus T cells 

and Ag were set up to enable enumeration of background responses. Also, in certain
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instances, control cultures with APC, Ag or medium alone were added to give even lower 

background responses. The inclusion of negative control wells was necessary for 

statistical analysis of the proliferation measured; cells were considered to have given a 

positive cellular response if the counts for their wells were > 2 S.D. more than the 

c.p.m. values for appropriate negative controls.

2.35 MHC restriction

To examine whether or not presentation of plasmodial Ags to Th lines and clones in vitro 

in the P. c. chabaudi/NIH system is an MHC-restricted process, similar proliferation 

assays were performed as that detailed in 2.34 but using not only APC of the same 

haplotype (H-2^) as the responder cells (NIH), but allogeneic APC covering a range of 

varying haplotypes. If Ag presentation is a class II MHC-restricted phenomenon, it 

would be expected that only APC from syngeneic mouse strains (NIH, B10. G, B10. 

T(6 R)) would be able to process and present pRBC lysate to the parasite-primed Th 

cells in such a way as to induce their proliferation in v itro . However, if all APC, 

irrespective of the mouse strains used, potentiated responder cell stimulation, 

lymphocyte proliferation would be considered outwith genetic control.

The methodology followed was identical to that described for the standard proliferation 

assay, i.e. measurement of [3H] thymidine uptake (c.p.m.) over an 18 hr pulse period.

2.36 Collection of T cell culture S/N for assaying lymphokine secretion

Cells were harvested from maintenance culture between 6-8 d after the last feed with 

malarial Ag and stimulated for lymphokine production. The culture preparation was 

essentially similar to that for Th proliferation assays.

Cells were washed twice (300 g for 5 min) in 10% FCS RPMI 1640 medium, non-

viable cells removed on Metrizamide and the remainder resuspended in a previously 

prepared suspension of APC (4 x106/ml) in complete medium at 4 x105/ml. The 

suspension was dispensed into individual wells of 96 well microtitre plates at 100 

pl/well. Thereafter, quadruplicate cultures were overlayed with different dilutions 

(5-400 pg/ml) of pRBC lysate Ag (100 jil/well) and the plates incubated at 37 °C in a 

humidified atmosphere of 5% C 02 in air for 24 hr. After the incubation period, the 

culture-conditioned S/N were harvested by aspiration using a Gilson P200 ’pipetman' 

pipette (with a fresh sterile tip for each well) and clarified by centrifugation at 350 g

for 5 min. If the S/N were not to be tested immediately, they were stored at -20 °C
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until used; under these conditions, the lymphokine activity of cell culture S/N remains 

stable for extended periods of time (Araneo filia l 1989).

The same S/N samples were either used in all three lymphokine bioassays employed or 

samples from identical cultures compared, so reducing batch variation of lymphokine 

activities. In all instances, spleen cell culture controls were set up and. S/N taken from 

these for assay; naive and post-infection spleen cells, the latter taken by 

splenectomising a mouse recently recovered from a primary infection. S/N derived 

from culturing APC alone and medium containing pRBC lysate were used as background 

controls for all lymphokine assays.

2.37 Bioassays for IL-2 and IL-4

IL-2 and IL-4 have convergent effects in the immune system, both maintaining the 

proliferation of activated T cells, although the molecules are structurally different and 

presumably act through separate receptors. This enables the assaying of both cytokines 

by measuring the increase in proliferation of the same dependent cell line (Gillis f i ia l  

1978). The line used was the C57BU6 mouse T cell lymphoblast CTLL (Gillis & Smith 

1977). Prior to the discovery of IL-4, the CTLL-2 cell line was reported to be solely 

an IL-2-dependent line; however, it is now known to respond to both lymphokines, 

although to a much lesser extent to IL-4 (this particular clone gives a maximal response 

to saturating concentrations of IL-4 approximately 1/10 -1/20 of that to saturating 

IL-2) (Cushley, W., personal communication; Kelso & Gough 1988). Monospecificity 

for each lymphokine was achieved by incubation of the target cells with or without an

anti-IL-4 MAb (Ohara & Paul 1985).

(a) Maintenance of the CTLL-2 cell line

The CTLL-2 cell line was obtained from the European Collection of Animal Cell Cultures,

PHLS Centre for Applied Microbiology & Research, Porton Down, Salisbury, Wiltshire

(originally deposited by Prof. D. Kilburn, Dept, of Microbiology, University of 

Vancouver).

Upon receipt, the frozen cell suspension (2 x106 cells) was thawed rapidly at 37 °C, 

washed in 10% FCS RPMI 1640 medium (250 g for 5 min) and the cells resuspended in 

fresh complete medium (pregassed and prewarmed) containing 10 i.u./ml murine 

recombinant IL-2 (Genzyme) (Appendix E) to a 10 ml volume (cell density _ 2 

x105/ml). The cells were incubated in an upright 25 ml tissue culture flask overnight
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at 37 °C in a humidified CO2 incubator. After overnight culture at a relatively high 

starting concentration (to allow rapid conditioning of the medium), the cells had reached 

saturation density, when they were subcultured at 2 x104 cells/ml in 10% FCS RPMI 

1640 medium supplemented with Con A S/N as a laboratory-prepared source of IL-2. 

Thereafter, the cell line was subcultured every 2-3 d by splitting the cultures to 5 

x103 cells/ml in fresh medium. As new cultures were seeded, stocks of CTLL-2 cells 

were frozen down (protocol as for 2.31).

(b) Maintenance of the 11B11 cell line

The anti-IL-4 MAb-secreting 11B11 lymphocyte line was a kind gift of Dr. William 

Paul (National Institutes of Health, Bethesda, Maryland). This was supplied as a 

growing 10 ml culture in a 25 ml tissue culture flask; upon arrival, this was washed 

(250 g for 5 min) and the cells resuspended to 3 x105/ml in 10% FCS RPMI 1640 

medium prior to incubation at 37 °C in a humidified atmosphere containing 5% C 02. 

Suspensions were subcultured every 4-5 d when the line had reached saturation density, 

at which time conditioned 11B11 culture S/N was drawn off and this used as a source of 

the anti-IL-4 MAb (11B11 S/N). The exhausted culture S/N was 0.22 pm filter- 

sterilised and stored as 1 ml aliquots at -20 °C. Cultures from which the S/N had been 

decanted were either subcultured at 3 x105/ml in fresh medium or frozen as stabilate 

in liquid N2, using DMSO as a cryoprotectant (2.31).

(c) Assays for IL-2 and IL-4

CTLL-2 cells were harvested 3 d after feeding with IL-2. The cells were washed twice 

by centrifugation (250 g for 5 min) in 10% FCS RPMI 1640 medium prior to the assay 

to remove any remaining IL-2.

Nine serial two-fold dilutions (1:1-1: 256 v/v) of each assay sample were prepared in 

complete medium. In addition, similar dilutions of a laboratory standard preparation of 

murine recombinant IL-2 (Genzyme) were titrated out. This acted as a positive control 

for IL-2-dependent cellular proliferation, whilst the negative control used was culture 

medium alone. 100 pi aliquots were distributed in quadruplicate wells for each 

titration into individual wells of a flat-bottomed 96 well microtitre plate (Nunclon, 

Nunc).

100 pi washed CTLL-2 cells were added to each well at 2 x104 viable cells/ml in 10% 

FCS RPMI 1640 medium (containing 11B11 S/N if necessary; see below), and the
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plates incubated at 37 °C in a humidified atmosphere of 5% C 02 in air for 24 hr. After 

this time, 20 jil of [3H-methyl] thymidine (Amersham International) containing 1.0 

jiCi in complete medium was added to each well and the plates reincubated for a further 

20 hr at 37 °C in a C02 incubator. The contents of each well was harvested onto glass 

fibre filters using a semi-automated cell harvester (Titertek, Flow) and the 

radioactivity incorporated into DNA determined by liquid scintillation spectroscopy 

(details as for 2.34).

Using the recombinant IL-2 control, a standard curve of proliferation could be generated 

(radioactive incorporation plotted against IL-2 dilution). Lymphocyte culture S/N 

containing IL-2 or IL-4 gave similar patterns, though different levels, of dose-related 

stimulation of thymidine incorporation.

To achieve monospecificity for the two different lymphokines assayed, paired assays 

were run simultaneously, either incubated in the absence or in the presence of the anti- 

IL-4 MAb. For the latter, 11B11 culture S/N was added to microtitre cultures at a final 

concentration of 1: 20 v/v (optimal concentration to block IL-4 activity; Cushley, W., 

personal communication). To do this, a 1:10 dilution in 10% FCS RPMI 1640 medium 

was made and this used to resuspend washed CTLL-2 cells; when the cell suspension was 

added to the distributed titrations of sample S/N to be measured, a final concentration of 

1: 20 v/v 11B11 S/N was realised. The addition of the anti-IL-4 MAb abbrogated 

completely all IL-4 activity in vitro. Thus, any target cell proliferation when incubated 

with this MAb could be attributed to the presence of IL-2 in solution; this gave 

effectively an IL-2-specific bioassay. As the comparable anti-IL-2 MAb (Mosmann qX 
a i 1986) was not available, a correspondingly monospecific IL-4 assay could not be 

attained. However, the presence of this lymphokine in culture S/N could be determined 

by direct comparison of dose-response curves for cells cultured in the presence or 

absence of the anti-IL-4 MAb. Any proliferation in the absence of the MAb which was 

lost when the Mab was added, was an IL-4-dependent response by the CTLL-2 cell line. 

Although this method was not as unequivocal as using an anti-IL-2 MAb, it proved a valid 

assay, partly because all Th cell lines and clones gave unambiguous lymphokine profiles 

(see text).

2.38 Quantification of gamma interferon by anti-viral assay

To determine an accurate titre for IFN-y in Th cell lines and clones, its long-established 

anti-viral properties (DeSomer £ la l 1962, Lockart e ia i 1962) were used as the basis
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of an assay to measure the effect of multiple serial dilutions of S/N samples on viral 

replication. Specifically, IFN-y was assayed by inhibition of Semliki Forest virus- 

directed RNA synthesis in susceptible murine adipose tissue L-929 fibroblasts (Earle £ i 

£ i 1943), using a modification (Warren & Sanderson 1985) of the technique of Allen & 

Giron (1970). Semliki Forest virus lends itself to ready quantification of intracellular 

viral RNA production, achieved by measuring incorporation of [3H] uridine into viral 

RNA (distinguished from any host RNA synthesis by its resistance to inhibition by 

actinomycin D). IFN-y titrations were performed in the Dept, of Biochemistry, 

University of Glasgow, under the supervision of Dr. Bill Cushley, or by Dr. Peter Wood, 

Dept, of Immunology, University of Manchester.

(a) Growth of the L-929 fibroblast cell line

The target L-929 cell line was obtained from the European Collection of Animal Cell 

Cultures, PHLS Centre for Applied Microbiology & Research, Porton Down, Salisbury, 

Wiltshire as a 10 ml culture in a 25 ml tissue culture flask. Upon receipt, it was 

incubated overnight at 37 °C in a C02 incubator. The confluent cells were then 

subcultured by splitting the suspension between three flasks (cell density ^ 3 

x105/ml) using 10% FCS RPMI 1640 as the growth medium. Further subculturing 

took place every 3-4 d and frozen stocks of L-929 fibroblasts established. In 

preparation for biochemically assaying the challenge virus, a stock of L-929 cells were 

grown up in complete medium as described.

(b) Preparation of Semliki Forest virus

Semliki Forest virus belongs to the rhabdovirus class and is a lipid-enveloped, negative 

strand RNA virus. It infects a wide range of animal cells and is easily grown; humans 

are, however, not generally susceptible to infection.

Virus stocks were prepared in L-929 fibroblast cells using MEM with Earle's salts 

(Gibco) (Appendix B) supplemented with penicillin (100 i.u./ml), streptomycin (50 

pg/ml) and 10% FCS.

Fibroblast cells were seeded in 10 cm Petri dishes (Sterilin) and grown to confluency. 

A dilution of Semliki Forest virus in sterile PBS (pH 7.2) at 3 x106 p.f.u./ml (m.o.i. = 

0.1 p.f.u./cell) was prepared. After removing culture medium from the cell 

monolayers, they were rinsed once with prewarmed PBS and then 1.0 ml of the diluted 

virus added per dish (it was important to use a low input multiplicity to avoid the
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generation of defective, interfering virus particles). The virus was adsorbed at 37 °C 

by incubating for 1 hr in a humidified atmosphere containing 5% C 02, after which the 

inoculum was removed by aspiration and the cultures rinsed gently once with warm PBS. 

Each fibroblast monolayer was overlayed with 5 ml 2% FCS RPMI 1640 medium and the 

cultures incubated for 24 hr at 37 °C in a humidified C02 incubator, at which time the 

target cells were observed to show a strong cytopathic effect.

The culture dishes were successively frozen and thawed by placing in a -70 °C freezer

and then in a 37 °C dry incubator, after which the freeze-thaw cycle was repeated. The

culture fluid was collected aseptically in a sterile 50 ml centrifuge tube and spun 

at 2000 g for 10 min at 4 °C. The virus-containing S/N was collected, aliquoted in 1 ml 

volumes in 1.2 ml cryopreservation tubes and these stored at -70 °C. Each preparation 

was titred routinely by plaque assay in order to determine the concentration of 

infectious virus particles in the stock solution.

(c) Plaque assay of challenge virus yield

For each stock of Semliki Forest virus to be titred, twelve confluent cultures of L-929

indicator cells were prepared in 6 cm Petri dishes (Sterilin). The sample to be tested 

was recovered from -70 °C by thawing rapidly in a 37 °C waterbath and then kept on ice 

until used. A series of five sterile plastic bijoux (Sterilin) were labelled -2, -4, -6, 

-7 and -8. 1.0 ml of sterile PBS (pH 7.2) was added to the first three containers and 

0.9 ml to the others. The virus sample was mixed thoroughly (but avoiding vigorous 

vortexing) and 10 îl transferred to the -2 tube (giving a 100-fold dilution) and the 

solution mixed gently by vortexing. Further 1: 100 dilutions were made by 

successively transferring 10 jil from the -2 to the -4 dilution, and then again from the 

-4 to the -6 dilution. The next two dilutions were 10-fold steps, so 100 \i\ aliquots 

were transferred from the -6 to the -7 tube, and then from the -7 to the -8. All 

dilutions were performed with either Gilson P20 or P100 'pipetman' pipettes, using a 

new pipette tip (Finntip Labsystems) at each stage, ensuring complete mixing between 

transfers.

The maintenance medium was aspirated from the cultures to be used and 0.25 ml of the 

three highest dilutions (-8, -7 and -6) added to three dishes each. In addition, 0.25 ml 

PBS was dispensed to a further set of dishes as a control. All cultures were incubated at 

37 °C for 1 hr, during which time the indicator overlay was prepared.

50 ml of molten 1.0% agarose was equilibrated at 45 °C. This was prepared at the time
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of use by autoclaving 1 g of agarose (Oxoid) in 50 ml distilled water. 2 x MEM 

concentrate was made up by diluting the 10 x medium concentrate (Gibco) 1: 5 in 

distilled water, and this then equilibrated at 37 °C. Immediately before adding to the 

plates, equal volumes of the 2 x MEM and 1% agarose were combined and FCS added to a 

5% final concentration. The virus inocula were removed from the culture dishes and 7 

ml of agarose overlayed quickly to avoid gelling of the agarose stock. The plates were left 

at RT for 10 min to allow the agarose to solidify, when they were placed inverted in a 

CO2 incubator for 2 d for Semliki Forest virus plaques to develop.

A stock solution of 3% neutral red (Gurr, BDH) was diluted 1: 10 in PBS and each plate 

stained by the addition of 2 ml of 0.03% dye solution on top of the agarose and incubating 

at 37 °C in a C 02-enriched atmosphere for 2 hr. Plaques were then visible as clear 

areas in the red-stained viable L-929 fibroblast monolayer. The number of plaques on 

dishes where individual plaques could clearly be distinguished was counted (usually -8 

and -7 plates only). Enumeration was achieved by holding each dish to an anglepoise 

lamp and spotting each plaque with a marker pen as it was counted. The arithmetical 

mean number of plaques (N) for each quantifiable dilution was calculated. The virus 

titre was given by:

Titre = N x dilution factor x 4.

From this, the number of p.f.u./ml could be determined and the concentration of virus 

stock adjusted accordingly prior to assaying IFN-y levels.

(d) Assay

L-929 indicator cells were seeded at 3 x105 cells in 1.0 ml aliquots in plastic 

scintillation vial inserts (LKB), allowing four tubes for each dilution of culture S/N 

tested. As no murine IFN-y reference standard is currently available, a set of cells was 

also seeded for the murine IFN international standard G-002-904-511 (Research 

Resources Branch, NIAID, NIH, Bethesda, MD). The cultures were grown to confluency 

by incubating overnight at 37 °C in a humidified atmosphere gassed with 5% C02. The 

tissue culture S/N was removed from each vial by aspiration using a Pasteur pipette 

attached to a vacuum line, and replaced with 200 pi aliquots of serial dilutions of the 

samples under test. The cultures were reincubated for 18 hr under the same conditions 

as used previously.

To all test vials, 200 pi of infectious challenge Semliki Forest virus was added at 1 

x io 7 p.f.u./ml in complete RPMI 1640 medium supplemented with 2% FCS and 3 pg/ml
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actinomycin D (Calbiochem) (purchased as sterile vials containing 200 pg of solid and 

reconstituted just before use in 0.8 ml PBS to provide a working stock of 250 pg/ml). 

The viral inoculum gave a relatively high m.o.i. of approximately 25-50 p.f.u./cell, 

empirically determined to give high levels of [3H] uridine incorporation. To control 

vials, 200 pi of actinomycin D-containing complete medium alone (lacking virus) was 

added, then all cultures incubated for 3 hr at 37 °C in a humidified C02 incubator. 

Without removing the virus inoculum, 100 pi 2% FCS RPMI 1640 medium containing 1 

pg/ml actinomycin D and 5 pCi/ml (1.85 x105 Bq/ml) [3H] uridine (20 Ci/mmol, 

Amersham International) was added to all the tubes and each incubated for a further 3 

hr. For each vial, the radioactive medium was aspirated before washing the cell 

monolayer twice with 1 ml 5% ice-cold TCA (Sigma) and once with 1 ml ethanol (May & 

Baker Ltd.). The residual ethanol was aspirated and the vials dried for 15 min in a 60 

°C dry incubator. Solubilisation of TCA-precipitated cell monolayers was effected by the 

addition to each insert tube of 500 pi soluene (BDH Ltd.) diluted 1: 2 in toluene 

(Sigma), after which 2 ml non-aqueous scintillation fluid (Optiscint 'safe', LKB) was 

dispensed directly to each vial. Incorporation of beta radioactivity was measured by 

conventional liquid scintillation counting methods.

Titration of IFN-y was assessed by measuring the decrease in viral RNA synthesis. The 

mean c.p.m. for four replicate cultures was plotted against log10 IFN-y dilution. The 

inhibition of virus proliferation, measured as inhibition of [3H] uridine uptake, was 

proportional to IFN-y concentration. The IFN-y titre was the reciprocal dilution of T 

cell culture S/N corresponding to a 50% reduction in tritium incorporation (the 

midpoint value between virus and cell controls) (Meager 1987).

2.39 Helper T cell activity

The ability of T cell lines and clones to induce splenic B cells to make a specific anti-IL 

c. chabaudi Ab response in vitro was assayed. A modification of the method of Pearson 

a l (1983) (Phillips, R.S., personal communication) was followed. The malaria-primed 

Th cells were co-cultured with B cells of varying immunocompetence to examine the 

ability of the former to induce a humoral immune response to the erythrocytic stages of 

P. c. chabaudi , represented in vlim . by pRBC lysate. Culture S/N were assayed for 

anti-malarial Ab using the IFAT (McLean nistl 1982 a).

For assaying helper T cell function, T cells were freshly stimulated with Ag; to do this,
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lysate-exhausted cultures were used (8 d after last subculture). Cells were harvested 

and washed twice (300 g for 5 min) in 10% FCS RPMI 1640 medium, and dead cells 

removed on Metrizamide. Viable T cells were resuspended in a suspension of 

APC (4 x106/ml) (preparation described in 2.24) in complete medium at 4 x105/ml. 

Spleen cell suspensions were prepared using sterile technique and enriched for B cells 

by nylon wool filtration. Naive or immunologically experienced B cells were taken from 

uninfected or primary infection-recovered mice, respectively. The prepared B cells 

were added to the T cell/ APC suspension to give a concentration equivalent to that of the 

T cells, i.e. 4 x105/ml. Antigenic stimulation was provided by lysates of either pRBC or 

nRBC, each at 200 pg/ml (the previously determined optimal concentration for in vitro 

culture). 10 ml volumes were aliquoted to 25 ml tissue culture flasks and the cultures 

incubated in a horizontal position in a humidified C 02 incubator at 37 °C for 9 d. 

Cultures were also set up using naive and post-infective T cells in place of in vitro- 

maintained Th cells as controls for in vitro Ab secretion. In practice, the T cells used 

were obtained as the non-adherent cell filtrate from the same nylon wool separations 

that gave the enriched B cell suspensions.

Cultures were harvested into plastic Universal containers, centrifuged (300 g for 5 

min) to pellet the cellular fraction and the S/N collected by aspiration. As preliminary 

investigation showed that low reciprocal Ab titres were attained with neat S/N, each 

sample was concentrated three times by ultrafiltration using a Centriprep-10 

concentrator (Centricon, Amicon) with a 10000 MW cut-off (Blatt e la l 1968). A 5 ml 

volume of each S/N was poured into the Centricon sample container and the concentrator 

centrifuged at 1000 g for 30 min at 25 °C, when the filtrate was discarded. A further 4 

ml of the same S/N was added to the original 5 ml (now less) and this new volume spun 

as before, after which the filtrate was decanted. Further concentration was achieved, if 

necessary, by centrifuging again, until the retentate volume was reduced to 3 ml. Each 

ultrafiltrated S/N was recovered and either assayed immediately or stored frozen (-20 

°C).

The immunofluorescence method used to assay all culture S/N for in vitro. Ab production 

was identical to that described in 2.18, using S/N in place of serum for testing.

2.40 Production of MAbs for T cell subset depletion jn vjlrp. and in vivo

Rat lgG2b MAbs to mouse T lymphocyte subsets were prepared by propagation of Ab-
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secreting hybridoma cells as ascites tumours in (DA x LOU) F1 rats. The hybridomas 

were obtained from the European Collection of Animal Cell Cultures, PHLS Centre for 

Applied Microbiology & Research, Porton Down, Salisbury, Wiltshire (originally 

deposited by Prof. H. Waldmann and Dr. S.P. Cobbold, Dept, of Pathology, University of 

Cambridge). The two MAbs used recognise in all strains of mice tested the two 

monomorphic cell surface glycoproteins Ly-2 and Ly-4, the differential expression of 

which separates all T cells into two subsets. YTS 169.4 binds to mouse suppressor/ 

cytotoxic T cells (Ly-2+ = CD8+ equivalent) and their precursors in vitro , but not to 

helper T cells. Conversely, YTS 191.1 is specific for Ly-4-bearing mouse helper/ 

inducer and delayed hypersensitivity T cells (CD4+ equivalent), but not for cytotoxic T 

cells or their precursors in vitro (Aqel £ ia i 1984).

The MAbs were selected from fusions by the protocol of Waldmann & Milstein (1982) 

between the rat myeloma Y3.Agl.2.3 (Galfre e la i  1979) and DA rat spleen cells 

immunised to CBA bone marrow or thymocytes (Cobbold 1983). Recloned hybrid 

myeloma lines were maintained in Iscove's modified Dulbecco's medium (Gibco) 

(Appendix B) supplemented with 1% FCS.

MAb production in high concentration was conveniently achieved by growing the Ab- 

secreting hybridoma cells in vivo as ascites tumours in (DA x LOU) F1 rats primed with 

mineral oil (Potter n ia l 1972). The agent used for priming the peritoneal cavity of 

rats prior to inoculation of hybridoma cells was a component of mineral oil, 2, 6, 10, 

14-tetramethylpentadecane or pristane (Hoogenraad n la i 1983, B rodeurn ia l 1984). 

The ascitic fluids were partially purified by precipitation with 40-45% ammonium 

sulphate. The precipitates were redissolved in PBS, concentrated by dialysis and 

sterilised by filtration. Before use in vivo , the specificity and cytotoxic potential of the 

MAbs were ascertained by immunofluorescence (Cobbold n ia l 1986) and complement- 

mediated cytolysis (Bruce n la l 1981), respectively.

(a) In vitro  culture of hybridoma cell lines

The hybridomas were received as two frozen ampoules packed in dry ice. On arrival, the 

contents of each cryopreservation tube was thawed rapidly in a 37 °C water bath, 

decanted into a 20 ml plastic Universal tube and the cells washed in excess PBS (250 g 

for 5 min). The pellet was resuspended in 8 ml prewarmed and gassed RPMI 1640 

medium containing 10% FCS at 2 x105 cells/ml in a 25 ml culture flask and incubated 

overnight at 37 °C in an atmosphere of 5% C 02 in air. When they had reached
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confluency, cells were subcultured by splitting the flasks into two 8 ml volumes for 

reincubation. Thereafter, the hybridomas were subcultured every 2-3 d in 20 ml 

volumes (75 ml flasks) at 5 x105 cells/ml. Stocks of the two cell lines were 

cryopreserved in liquid N2 for longterm storage. Rather than discarding culture- 

conditioned medium S/N at every subculture, these were kept frozen as an additional 

source of MAbs to be used if the tumours failed to take in recipient rats. In the event, 

ascitic fluid was recovered from all rats inoculated and was used for all T cell depletions.

(b) Ascites production

Adult male DA and female LOU rats purchased from Harlan Olac Ltd. were mated in the 

WLEP animal house. Twelve female (DA x LOU) F1 hybrids were used at 12 weeks of 

age. Rats were primed with an i.p. injection of 1 ml pristane (Aldrich Chemical Co.) 7 d 

prior to the inoculation of 3.20 x106 anti-Ly-4 or 4.18 x106 anti-Ly-2 hybridoma 

cells in 0.4 ml incomplete RPMI 1640 medium. Animals were monitored daily for 

abdominal swelling. Ascitic fluid was collected by inserting a 21 G needle into the 

peritoneal cavity and allowing the ascites to drain into 20 ml sterile Universal vessels 

containing 0.5 ml of 5% EDTA in PBS (pH 7.2) as anticoagulant. Animals were tapped 

subjectively based on the degree of swelling over a period from 12-19 d after 

hybridoma implantation. On each day, the ascites collected were centrifuged at 500 g for 

10 min, the lime green-coloured S/N harvested and stored at -20 °C.

(c) Purification of ascitic fluid

The IgG fraction of the collected ascitic fluid was isolated by salting out with a 40-45% 

w/v saturated solution of ammonium sulphate. 20 ml aliquots of ascitic fluid were 

thawed in a 25 °C water bath, 5.4 g ammonium sulphate (BDH Ltd.) added to each to 

make a 45% w/v solution. After stirring thoroughly to dissolve, each ascites sample 

was incubated for 30 min at 25 °C. The large light green precipitate was pelleted by 

centrifugation at 1000 g for 30 min at 25 °C. The S/N was discarded and the protein 

precipitate redissolved in distilled water up to 10 ml. The IgG was reprecipitated by 

addition of 1.35 g ammonium sulphate to make an overall 40% w/v solution. Once 

dissolved, each solution was incubated for 30 min at 25 °C. The white precipitate was 

collected by centrifugation (1000 g for 30 min at 25 °C), pooled and redissolved in 

distilled water up to 80 ml.

To remove final traces of the precipitating agent, ammonium sulphate, the redissolved
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precipitate was dialysed against PBS (pH 7.2). This procedure also acted to concentrate 

the IgG present in solution. Cellulose acetate dialysis tubing (nominal MW cut-off 

12000, flat width 35 mm) (Sigma) was cut into 35 cm lengths and presoaked in PBS 

buffer. For each tubing, one end was sealed with a Pierce dialysis clip and 20 ml of 

either MAb solution to be dialysed poured in using a small glass funnel. The bag was not 

overfilled since the volume was expected to approximately double due to the high 

osmolarity of the salted out S/N. After sealing the top end, each bag was placed in a 5 I 

glass beaker filled with PBS and agitated gently with a magnetic bar and stirrer motor. 

The dialysis bags were left overnight at 4 °C (in a refrigeration cabinet) to reach 

equilibrium. After dialysis was complete, the opalescent, partially purified IgG 

anti-Ly-2 and anti-Ly-4 MAb samples were each pooled to give 150 ml and 145 ml 

volumes, respectively, which were then filter-sterilised (0.22 pm, Millipore). The 

IgG concentration, determined by a modification of the Bradford dye-binding assay, was 

shown to be 6.4 mg/ml and 10.8 mg/ml for the anti-Ly-2 and anti-Ly-4 monoclonals, 

respectively. The MAb preparations were stored as either 20 ml or 5 ml aliquots 

at -20 °C, avoiding denaturation through repeated freeze-thawing.

2.41 In v itro  depletion of T cell subsets

Protocols enabling the typing to the Ly-4+ mouse T cell subset of helper T cell lines and 

clones raised in vitro have been described already; these were surface indirect 

immunofluorescence and complement-mediated cytotoxicity, both of which employed the 

anti-Ly-4 and anti-Ly-2 MAbs prepared from hybridoma ascites. Each of the T cell 

lines was characterised as being a relatively homogeneous population of Ly-4+ cells (see 

text); however, there was a residual fraction of Ly-2+ and/or non-staining (Ly-4‘ Ly- 

2') cells. To ensure that Ag-specific proliferation was not due to overgrowth of these 

cells, either in vitro or upon adoptive transfer, and that the cell-mediated immune 

activity did not reside within this minority of cells, two similar assays were performed. 

One was a proliferation assay with the cells cultured in the presence of specific Ab and 

complement (Cobbold, S.P. & Phillips, R.S., personal communication); the response of 

any cells surviving treatment was monitored by tritium incorporation in the usual way. 

This assay was necessary to confirm at a functional level, i.e. cellular proliferation, 

effective T cell subset depletion in vitro , and represented an extension of the cytolysis 

assay. Both differential and total T cell depletion had to be shown iayittG Pri° r to direct 

in vivo administration of the prepared MAbs. Similar culture conditions were utilised
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for the other assay, whereby the T cell lines were depleted, in part or completely, by 

brief incubation with either or both MAbs, respectively, together with complement. 

After treatment, the cell fractions were inoculated into parasite-challenged recipient 

animals and the course of infection followed. By this means, it was possible to determine 

which T cell subset(s) conferred protection and whether any immunity was transferred 

by the Ly-4' Ly-2' population of non-staining T cells.

(a) In vitro T cell subset depletion for proliferation assay

In preparation for assay, flask cultures of T cell lines were washed twice (300 g for 5 

min) in 10% FCS RPMI 1640 medium and dead cells removed on Metrizamide. After 

washing the viable cell fraction, it was resuspended to 4 x105 cells/ml. A naive splenic 

T cell control was also prepared at a similar concentration, and both suspensions plated 

out at 100 pl/well in 96 well flat-bottomed microtitre plates. 100 pi aliquots of a 

suspension of APC (4 x106/ml) in complete medium supplemented with 200 pg/ml 

pRBC lysate Ag (previously determined optimal concentration) were added to each well 

to give a 200 pi volume. The plates were cultured in a humidified incubator gassed with 

5% C 02 at 37 °C for 48 hr.

Five serial dilutions of each MAb were made in 1 ml volumes in PBS (pH 7.2) containing 

a 1: 40 dilution (i.e. 25 pi) of unabsorbed guinea-pig complement, to cover the 

titration range 1: 50 -1: 1000 initial concentration (differential T cell subset 

depletion). In addition, a dilution series containing both MAbs was prepared for near 

total T cell depletion. A 100 pi aliquot of every MAb dilution was added to quadruplicate 

test wells, leaving control wells without MAb. Cells in each well were resuspended and 

reincubated for 45 min at 37 °C. After the depletion procedure, the 300 pi culture 

medium overlaying the cells in each well (now settled to the bottom) was removed by 

gentle aspiration using a Pasteur pipette attached to a vacuum line. Trace quantities of 

MAb and/or complement were removed from the culture wells by washing the cells with 

PBS; thisjthen aspirated and replaced with fresh 10% FCS RPMI 1640 medium. After 

reculturing the plates for 24 hr, 1.0 pCi [3H-methyl] thymidine was added to each well 

as a 20 pi aliquot and the cultures incubated for a further 18 hr, at which time they 

were harvested and subjected to liquid scintillation counting (2.34, Helper T cell 

proliferation assay).
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(b) liLidirflL subset depletion for adoptive transfer

T cell lines were either raised from stabilate or subcultured from existing in vitro 

cultures at 4 x105 cells/ml in a suspension of APC (4 x106/ml). Antigenic stimulation 

was provided by the addition of pRBC lysate at 200 pg/ml. 40 ml volumes were 

dispensed into 75 ml tissue culture flasks and these incubated for 72 hr at 37 °C in a 

humidified atmosphere of 5% CO2 in air. After this time, the cells were washed twice 

(300 g for 5 min) in 10% FCS RPMI 1640 medium and resuspended to 40 ml in the 

same medium containing the appropriate MAb at a dilution of 1: 50 (i.e. 0.8 ml) (Harte 

e la i  1985 a) with guinea-pig complement (Wellcome) diluted to 1: 40 (i.e. 1 ml). 

After incubating for 45 min at 37 °C in a humidified C02 incubator, flasks were washed 

twice in incomplete RPMI 1640 medium and resuspended to 2 ml. 1 ml of each sample 

(either depleted of Ly-4+ or Ly-2+ T cells, or both subsets) was kept aside for i.v. 

injection of complete cell suspensions (containing principally dead cells) into recipient 

mice; this transfer was desirable to show that only viable, and not dead, Ly-4+ T cells 

could confer immunity against a challenge P. c. chabaudi infection in v ivo . The 

remaining 1 ml volumes were separated into live and dead cells by Metrizamide gradient 

centrifugation and only the former viable fraction collected for i.v. inoculation.

Each mouse receiving a T cell-depleted preparation was injected with a number of cells 

that corresponded to the proportion of original total spleen cells which could not be 

accounted for as Ly-4+, Ly-2+ or both, depending on the sample (as determined 

previously by surface immunofluorescence, 2.32; and complement-mediated 

cytotoxicity, 2.33) (modified from Araya e ia l 1989). In the event, it transpired that 

the ia  vitro depletion procedure was so effective that the proportion of cells surviving 

each depletion treatment was close to that predicted by phenotypic characterisation for 

each MAb incubated with each cell line.

As for all protection tests in vivo , tail blood smears were prepared daily from mice, 

fixed with methanol and stained with Giemsa's stain. Parasitaemias were determined by 

microscopic examination of slides till clearance of infection (2.7).

2.42 In vivo depletion of T cell subsets

Rat T lymphocyte hybridomas were a kind gift of Dr. Steve Cobbold, Dept, of Pathology, 

University of Cambridge. The monoclonal ascitic fluids drained from tumour-bearing 

rats inoculated with these cell lines were purified to give preparations of high lgG2b 

content which were specific for the T lymphocyte subset Ags Ly-2 and Ly-4 (2.40 &
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2.41). These monoclonals have been shown to be remarkably effective at removing the 

Ly-2- and Ly-4-bearing T cell subsets iayiyg. (Cobbold a ia i 1984) and could thus be 

used for the selective manipulation of different aspects of the immune response. In 

order to dissect the host cell-mediated immune response to P. c. chabaudi infection, and 

to determine the T cell subset(s) mediating the protective effector mechanisms involved, 

the MAbs were used to deplete effectively completely in vivo either or both of the two 

subsets of T cells recognised. In vivo depletion was achieved by direct i.v. 

administration of appropriately diluted ascites containing anti-Ly-2 or anti-Ly-4 

MAbs. Two different protocols were followed:

(a) Direct depletion of naive mice

T cell subsets were negatively selected through a complete course of depletion (i.e. MAb 

administration) during primary infection of naive animals (Cobbold a ia i 1984). The 

methodology followed was that described by Suss e ia l (1988); mice were injected i.v. 

with purified Abs diluted to the appropriate concentration in PBS (pH 7.2) and delivered 

as a 0.25 ml inoculum. Animals received an injection of 500 pig of purified Ab 5 d prior 

to infection, followed by 250 pg 4 d and 1 d before challenge (total of three 

pretreatments). At 7, 14, 21 and 28 d p.i., experimental mice were given a further 

dose of 250 pg Ab, and 100 pg on d 35 and weekly thereafter for the remainder of the 

experiment. A control group that received normal rat serum in place of specific Ab was 

also established.

Groups of experimentally infected animals were sufficiently large (10 mice/group) to 

allow sacrifice of individual mice at weekly intervals, at and following challenge. These 

mice were examined to monitor the efficiency of depletion of the relevant T cell 

subset(s), as determined by an immunofluorescence assay (see below).

(b) Thymectomy and T cell subset depletion

In instances where protective T cell lines were adoptively transferred into 

immunosuppressed mice at the time of adoptive transfer, long term depletion by MAb 

treatment was not possible. To deplete the host T cell complement without negating the 

effects conferred by the grafted T cells, adult-thymectomised mice were used so that new 

T cells would not be produced after MAb pretreatment (Leist f i la i 1987; Phillips, R.S., 

personal communication). Immune protection conferred by the transferred cell 

populations could then be measured in the absence of any short term effects of each Ab.
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Mice were adult-thymectomised at five weeks of age according to the method of Monaco fil 

i l l  (1966) described earlier. Sham-thymectomised controls were included. The 

animals were allowed to recover for at least four weeks before treatment with Ab. 

Thymectomised mice were given two 0.25 ml i.v. injections of 250 pg purified MAb 4 d 

apart, the animals being infected with P. c. chabaudi 12 d after the second injection 

(modified from Leist £ ia i 1987).

(c) Monitoring of T cell subsets in vivo

The specificity of each of the depletion treatments was assessed by an 

immunofluorescence assay on acetone-fixed material (Cobbold £ ia l 1986). This was 

more convenient than using a live IFAT since slides could be pooled at -20 °C for 

assaying in one or two batches at a later time , usually at the end of the experiments.

Mice were exsanguinated under terminal anaesthesia by cardiac puncture into 

heparinised PBS (10 i.u./ml). The peripheral blood so collected was separated by 

centrifugation (400 g for 15 min at 20 °C) on a discontinuous 30%, 40% and 50% 

Percoll column, and the lymphocyte layer drawn off from between the uppermost plasma 

and the 30% Percoll layer (described elsewhere). These cells were washed twice in 

excess PBS (300 g for 5 min) and resuspended to a 1 ml volume in 10% FCS RPMI 

1640 medium. After total and viable cell counts were made, the lymphocyte 

concentration was adjusted to 2 x107/ml. Thin smears of each suspension of peripheral 

blood lymphocytes were made on glass microscope slides, dried in air and the slides 

stored dessicated at -20 °C until testing.

The methodology followed for the assay was essentially that described previously (2.32) 

but with minor modifications. Briefly, instead of titrating out the primary MAb, it was 

used at a predetermined optimal dilution of 1:100 in PBS. The Abs used were anti

mouse lgG2b monoclonals specific for Ly-4, Ly-2 and Thy-1 T cell determinants. 

Rather than making use of the same MAb preparations employed for inyjvo. treatment to 

test for the efficiency of that depletion, commercially available reagents (Sera-Lab) 

were used. In each instance, normal rat serum was used in place of the primary MAb as 

a negative control, and a 1: 200 dilution in PBS of FITC-conjugated goat anti-rat IgG 

(Sigma) was added to detect indirect immunofluorescence.
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Figure 2.1 
History of Plasmodium chabaudi chabaudi 
AS strain parent populations

Derived from Thamnomys rutilans number 339 caught 
in the Central African Republic in March 1969.
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Figure 2.2 
History of Plasmodium chabaudi chabaudi 
AS strain recrudescent clone 10

Derived from Thamnomys rutilans number 339 caught 
in the Central African Republic in March 1969.

Cloned parent population (see Fig. 2.1) 
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Figure 2.3 
History of Plasmodium chabaudi chabaudi 
CB parent populations

Derived from Thamnomvs rutilans caught in the 
Central African Republic in September 1970.
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CHAPTER THREE

ADOPTIVE TRANSFER OF IMMUNITY WITH LYMPHOCYTE 
SUBPOPULATIONS TAKEN AT DONOR PERIPHERAL BLOOD

LYMPHOCYTOSIS



3.1 Introduction

Billingham M i i l  (1954) referred to the transfer of immunity by lymphoid cells from 

animals which had previously received an antigenic stimulus to non-reactive hosts as 

'adoptive' immunity. Immunity can be transferred between animals in such a way 

that cell-mediated and humoral immune responses can be demonstrated in recipients 

(Billingham M a i 1954, Mitchison 1957).

The basic model for cell transfer studies in rodent malaria was developed by 

Stechschulte (1969), who showed that immunity to Plasmodium berghei could be 

transferred from a recovered rat to a syngeneic susceptible rat by the injection of 

splenic lymphocytes. Using the same model, Gravely & Kreier (1976) confirmed 

that the degree of immunity transferred with spleen cells is roughly proportional to 

the number of cells injected. Since the initial study, a wealth of evidence has shown 

that protection can be engendered by reconstitution with immune spleen and lymph 

node cells (Roberts & Tracy-Patte 1969, Phillips 1970, Kasper & Alger 1973, 

Brown M a i 1976 a & b, McDonald & Phillips 1978, 1980, Fahey & Spitalny 1986, 

Cavacini M a i 1986, Favila-Castillo M a i 1990). However, in most of these studies, 

unfractionated spleen cells or preparations enriched for populations of either T or B 

lymphocytes, were prepared from donor mice which had recovered from at least one 

previous infection. Only in two instances have spleen cells been taken from donor 

animals at a range of times during primary infection; P. berghei in rats (Brown M a i 

1976 a) and P. yoelii 17X in mice (Fahey & Spitalny 1986), when cells were taken 

at a time when they had been exposed to the infecting parent parasite population but 

not immunologically primed to any variant types.

For the P. c. chabaudi AS system, transfer of immunity with splenic lymphocytes has 

been shown in both NIH (McDonald & Phillips 1978, 1980) and CBA/Ca (Favila- 

Castillo M a i 1990) mice, but in both these investigations, only spleen cells taken 

from post-infective mice were used. A study was therefore undertaken to determine 

whether lymphocytes taken from semi-immune donors still showing a patent 

parasitaemia were capable of transferring immunity to naive and to sublethally 

irradiated recipients. In addition, as an alternative to the enlarging spleen as a source 

of lymphocytes, it was examined whether lymphocytes taken from the peripheral 

blood of donor mice early during infection had the capacity to protect. To do this, the 

reported phenomenon of a pronounced peripheral lymphocytosis during the remission 

of primary parasitaemia (Jayawardena M a i 1977, Kumararatne M a i 1987) was
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at the time of peak primary parasitaemia.

After crisis, the number of lymphocytes observed in the peripheral blood rose 

sharply, climaxing in a marked lymphocytosis on d 13 p.i., when a level of 1.98 x107 

cells/ml was reported. This vigorous lymphocyte response was very short-lived, 

being followed by a precipitous drop in values during the later stages of remission of 

the acute parasitaemia. Thereafter, from a low point of ~ 5 x106/ml, lymphocyte 

numbers increased gradually throughout the subpatent and recrudesent periods, but 

reached a plateau of 1.3 x107/ml by d 28 p.i., above which levels did not rise. By the 

time of parasite clearance, lymphocyte numbers in the blood stream had fallen to 

those observed at the time of challenge. In subsequent experiments, peripheral blood 

leucocyte counts were made from prospective donor mice up to and including the 

expected time of a maximal lymphocyte response. These studies confirmed that the 

pronounced lymphocytosis just after crisis was a consistent feature of P. c. chabaudi 

AS primary infection of the NIH mouse. That the increase of lymphocytes in the blood 

was actually an immune response to infection was shown by comparing the levels of 

circulatory lymphocytes in infected and uninfected mice (Fig. 3.2.2). It can be seen 

that in normal mice, under no immunological pressure, the numbers of blood-borne 

lymphocytes is reasonably constant at ~ 5 x106/ml, though quite variable about this 

mean. This variation may reflect a flux in the natural lymphocyte exchange between 

the blood and lymphoid organs, or may alternatively be due to an inherent error in the 

method by which lymphocyte levels were counted. In either case, during the proposed 

enhanced lymphocyte counts throughout infection, the number of cells in the 

peripheral blood of malarious mice was at least twice that of background levels. At 

the time of peak lymphocytosis, there was a 4.2-fold increase in detectable 

lymphocytes in the blood of malaria-infected mice compared to that of normal mice. 

Although the lymphocyte is the predominant type of leucocyte in the peripheral blood 

generally, and certainly during P. c. chabaudi AS infection (Fig. 3.2.3), the increase 

in the absolute numbers of lymphocytes at the time of lymphocytosis was not reflected 

entirely by the differential leucocyte counts (Fig. 3.2.4). This is because the 

absolute neutrophil count was quite raised at this time, resulting in an increase in 

absolute total leucocyte levels but not an increase in the proportion of these cells that 

were lymphocytes. Throughout infection, lymphocytes accounted for the bulk of 

peripheral blood leucocytes; for the acute phase for which data is shown (Fig. 3.2.4), 

lymphocytes represented between 48-88% of leucocytes. The maximal proportion of
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these cells was detected not on d 13 p.i. (peak lymphocytosis) but on d 18 p.i. when 

neutrophil levels were depressed. The lowest differential lymphocyte count arose as a 

result of an early peak neutrophil response to infection, when on d 5 p.i., lymphocyte 

and neutrophil levels were equal.

During infection, neutrophil counts fluctuated greatly, there being a 10-fold 

difference between minimum (1.12 x106/ml, d 18 p.i.) and maximum (1.18 

x107/ml, d 36 p.i.) levels (Fig. 3.2.5). Generally, neutrophil levels were greater 

in infected than in uninfected mice; this was particularly evident during the 

recrudescence, throughout which neutrophil numbers remained elevated. At this 

time, neutrophils represented at least 40% of peripheral leucocytes; indeed, on d 36 

p.i., neutrophils made up 56% of leucocytes in the circulation.

Despite the fact that in terms of absolute numbers of leucocytes observable in the 

blood stream, monocytes always made up only a small minority (Fig. 3.2.3), when the 

levels of monocytes were examined alone, it was found that there was a profound 

monocytosis during the prepatent and acute parasitaemia after which counts fell to 

those of uninfected mice (Fig. 3.2.6). Peak monocyte levels were attained on d 2 p.i., 

when a transient monocytosis of 1.78 x106 cells/ml was recorded, making up 7% of 

the total number of leucocytes. After this, levels dropped rapidly but rose again in 

parallel with primary parasitaemia. These raised levels of monocytes were not 

reflected in the differential cell counts as it coincided with the peak lymphocytosis of 

much greater magnitude.

3.3 Adoptive transfer to immunocompetent recipients of peripheral 

blood lymphocytes taken at lymphocytosis.

A group of 10 NIH female mice was infected with 1 x105 P. c. chabaudi AS pRBC and 

the course of infection and absolute lymphocyte counts determined. On d 12 p.i., the 

time of mean peak peripheral lymphocytosis for this group of mice, these lymphocyte 

donors were bled and their peripheral blood lymphocytes adoptively transferred to a 

group of five naive, syngeneic recipients. Each mouse was injected with 2.50 x106 

leucocytes, containing 2.36 x106 lymphocytes. Uninfected blood was collected from 

12 normal, age-matched mice and 4.73 x106 leucocytes (2.40 x106 lymphocytes) 

given to each of a group of five control mice. All these experimental mice were 

challenged with 1 x105 pRBC and the course of infection followed. In addition, two 

further mice were inoculated with a similar dose of primed leucocytes but without a
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challenge infection. These animals were monitored for the presence of a patent 

parasitaemia and acted as a control for the possible transfer of contaminating pRBC 

with leucocytes separated from the peripheral blood of donor mice.

Some protective activity was transferred with pRBC-primed lymphocytes taken from 

semi-immune donors (Fig. 3.3.1). Each of the mice which received peripheral blood 

lymphocytes from infected mice had a slightly reduced primary parasitaemia 

compared to normal cell recipients. Furthermore, primed lymphocyte recipients 

were able to reduce their primary parasitaemia to subpatent levels significantly 

more quickly than controls (subpatency d 14 p.i. compared to d 18 p.i. for control 

mice; p < 0.01). All mice exhibited patent recrudescences, but those in recipients of 

semi-immune cells were of significantly shorter duration (p < 0.01), resulting in a 

final parasite clearance 6 d prior to that observed in naive lymphocyte recipients. 

Thus, by some of the parameters used to gauge the transfer of immunity, the enriched 

lymphocyte populations collected from infected mice at lymphocytosis clearly 

conferred anti-malarial activity. However, in both groups of mice the acute rise in 

parasitaemia followed a similar course. Also, although the timing of the secondary 

parasitaemias differed between recipients of primed and naive lymphocytes, there 

was no significant difference in the actual levels of recrudescent parasitaemia attained 

(p > 0.05).

pRBC were not observed in blood smears taken from mice inoculated with lymphocyte 

preparations alone, showing that the method used to isolate RBC from leucocytes 

(2.12) worked satisfactorily. Obviously, if this had not been the case, each 

challenged mouse would have received a far larger parasite inoculum than the105 

pRBC dose intended. Not only would this have been of variable size, and thus 

invalidated the experiment, but perhaps would have led to an overwhelming infection 

of atypical characteristics.

3.4 Adoptive transfer to immunocompromised recipients of peripheral 

blood lymphocytes taken at lymphocytosis.

In order to amplify the protection given to recipient mice by the transfer of 

unfractionated peripheral blood lymphocytes, mice were immunodepressed by gamma 

irradiation shortly before adoptive transfer and challenge.

18 NIH female mice were given 4 Gy whole body irradiation 24 hr before infection. 

Of these, one group of six mice was injected with 2.38 x106 semi-immune
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peripheral blood leucocytes (2.13 x106 lymphocytes) each, and another six mice 

each inoculated with 3.45 x106 naive leucocytes (2.20 x106 lymphocytes). All these 

recipients received 1 x105 P. c. chabaudi AS pRBC as did three other mice acting as 

controls of the normal course of infection upon sublethal irradiation. The remaining 

three irradiated animals were injected with 2.13 x106 circulatory lymphocytes as a 

control of pRBC contamination in the peripheral blood pool collected at lymphocytosis. 

Identical groups of non-irradiated, naive mice were also set up. To enable the 

adoptive transfer of immunologically primed lymphocytes to a total of 18 animals 

(six irradiated challenged mice, three irradiated controls, six naive challenged mice, 

three naive controls), 24 donor mice were bled on d 13 p.i., when lymphocytosis took 

place. 18 uninfected donor mice were used to transfer naive peripheral blood 

lymphocytes to groups of six irradiated and normal mice.

There was a clear demonstration of protection in irradiated recipients of parasite- 

exposed lymphocytes (Fig. 3.4.1). Compared to mice receiving a similar number of 

unprimed lymphocytes, there was a significantly reduced peak parasitaemia (p < 

0.05), with subpatency being reached 4 d before that in naive circulatory lymphocyte 

recipients. The recrudescences were of a similar magnitude in both groups but for 

semi-immune lymphocyte recipients total parasite clearance occurred 6 d earlier 

than for normal lymphocyte recipients. In many respects, the differences between 

the courses of infection in irradiated mice receiving either normal or primed 

peripheral blood cells were no greater than those seen in the non-irradiated situation 

(Figs. 3.3.1 & 3.4.2). Immunosuppression of the host had no obvious effect on the 

timing of the recrudescences or the duration of the subpatencies. What can be seen, 

however, is that irradiation acted to amplify the magnitude of parasitaemia upon 

subsequent challenge. This was manifested as a greater level of recrudescence in 

irradiated mice (Fig. 3.4.1) compared to their non-irradiated counterparts (Fig. 

3.4.2). The major effect of immunosuppression was that it was able to amplify the 

difference in primary parasitaemia between recipients of semi-immune lymphocytes 

and those of normal lymphocytes. Thus, there was a depressed peak of acute infection 

in recipients of lymphocytosis-derived peripheral blood cells compared to mice 

inoculated with naive lymphocytes.

Although there was no such divergence in the levels of the secondary parasitaemia 

between irradiated mice receiving one or other cell type (Fig. 3.4.1), that whole body 

irradiation increased host susceptibility to malaria infection was noticeable from
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comparing the recrudescences of irradiated and non-irradiated recipients of either 

peripheral blood semi-immune lymphocytes (Fig. 3.4.3) or normal lymphocytes 

(Fig. 3.4.4). In both cases, the recrudescence observed in immunocompromised mice 

more than doubled that seen in naive recipients (p < 0.01). Figures 3.4.3 and 3.4.4 

also illustrate that irrespective of the source of immunological activity of the cells 

adoptively transferred, suppression of the host's immune system changed the level, 

but not the pattern of infection. The only appreciable difference with regard to the 

course of infection in these two different immunological states was that in most 

irradiated mice, the onset of a patent parasitaemia occurred after that in naive mice, 

indicating an initial resistance to infection in irradiated hosts injected with either 

semi-immune (Fig. 3.4.3) or normal (Fig. 3.4.4) lymphocytes of peripheral blood 

orig in.

3.5 Adoptive transfer of peripheral blood T & B lymphocyte populations 

to immunocompromised recipients

To examine whether either or both T and B lymphocyte subsets were responsible for 

the protection conferred by immunologically primed lymphocytes to host animals 

infected with P. c. chabaudi AS, subpopulations of enriched peripheral blood B and T 

cells, separated on nylon wool, were transferred to sublethally irradiated mice and 

the challenge infection followed.

Groups of six NIH female mice were irradiated with 4 Gy 24 hr before challenge with 

1 x105 P. c. chabaudi AS pRBC. Mice were infected as soon as possible after adoptive 

transfer of either 7.5 x106 enriched semi-immune T or B cells, or 7.5 x106 

enriched naive T or B cells. In addition, further groups of six mice each were given 

similar doses of one of these treatments. Primed and normal lymphocytes were 

collected from the peripheral blood of a total of 41 infected and 40 naive donors, 

respectively (a sufficient donor size to compensate for the loss of cells during the 

fractionation procedure). The number of parasite-exposed peripheral blood 

lymphocytes collected was maximised by bleeding the donor mice at peak peripheral 

lymphocytosis on d 12 p.i..

The degree of enrichment of lymphocyte preparations for either B or T cells was 

determined by IFAT. For the semi-immune lymphocytes, 85.93% of the B-enriched 

fraction were Ig-bearing cells (11.27% T cells), whilst the T cell population 

comprised 82.14% Thy-1-bearing cells and 9.04% contaminating B cells. In the
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case of the normal lymphocytes, the nylon wool-adherent population contained 

79.37% B cells (12.41% T cells), whilst T & B cells made up 82.46% T and 

10.35% B cells.

The enriched peripheral blood T cell population taken at lymphocytosis of infected 

donors gave a greater degree of protection to adoptively transferred recipients than 

did naive circulatory T cells. This was manifested as a subpatency lasting 11 d 

compared to 1 d for normal cell recipients (Fig. 3.5.1). However, the patterns of the 

two patencies and the levels of both were not significantly different between the two 

groups studied (p > 0.05). For the analogous situation of the transfer of peripheral 

blood B cell-enriched populations, irradiated semi-immune B cell recipients also 

showed an extended subpatent period, 11 d, compared to recipients of naive B cells (8 

d) (Fig. 3.5.2). The effect of the transfer of either semi-immune T or B cells into 

sublethally irradiated mice was similar to that of the previously discussed transfer of 

unfractionated peripheral blood lymphocytes into similarly immunosuppressed 

recipients except in one notable respect. Recipients of enriched cells collected at 

lymphocytosis recrudesced after their naive lymphocyte counterparts (Figs. 3.5.1 & 

2), whilst those receiving either unfractionated semi-immune cells or naive cells 

recrudesced at the same time (Figs. 3.4.1).

In the case of non-irradiated mice inoculated with enriched populations of semi- 

immune T cells, there was not such a clearly defined difference in the patterns of 

parasitaemia compared to that for naive T cell recipients (Fig. 3.5.3). This was to be 

expected since in these mice the host immune response was not dampened and thus it 

was difficult to distinguish the protective activity of the repopulating inoculations. 

The acute infections were identical for recipients of semi-immune and naive 

peripheral blood lymphocytes (Fig. 3.5.3) However, the course of infection for 

normal T cell recipients showed only a transient subpatency, whilst that for mice 

inoculated with immunologically primed T cells was more long lived. Similarly, in 

immunocompetent recipients of B lymphocytes, the protective activity conferred by 

enriched parasite-exposed B cells was mosi clearly seen after remission of the 

primary parasitaemia to subpatency (Fig. 3.5.4); again, for naive B cell recipients, 

subpatency lasted only 24 hr, compared to 6 d for semi-immune lymphocyte 

recipients.

The adoptive transfer of the T cell fraction taken during peripheral blood 

lymphocytosis of donor animals gave a greater degree of protection to sublethally
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irradiated recipients than did the transfer of the B cell fraction. It has been 

established that both lymphocyte subsets confer greater protective activity to 

immunocompromised challenged mice than do naive T or B cell controls, seen as an 

extended subpatency. However, the enhanced protection engendered by the enriched T 

cell population was not observed as a difference in this parameter but in the level of 

recrudescence attained in infected mice. The magnitude of the recrudescence in 

animals reconstituted with semi-immune circulatory T lymphocytes was 

significantly lower than that for animals injected with enriched peripheral blood B 

cells (p < 0.01) (Fig. 3.5.5). This divergence in protective activity was also 

apparent in sublethally irradiated mice transferred with naive B or T cells (Fig. 

3.5.6). In this instance, however, the lower recrudescence in mice receiving normal 

peripheral blood T cells was offset by a significantly less efficient parasite clearance 

after the acute phase of infection (p < 0.05).

The enhanced immune response by recipients of semi-immune T cells over that of B 

cells that was apparent in immunosuppressed mice (Fig. 3.5.5) was not observed in 

non-irradiated recipients, where the levels of recrudescent parasitaemia were 

similar (Fig. 3.5.7). In contrast, for naive recipients of non-immune peripheral 

blood lymphocyte subsets, the courses of infection observed were not alike (Fig. 

3.5.8); although the primary parasitaemias were very similar, mice receiving naive 

T cells reached subpatency 4 d before recipients of B cells. However, in each case, 

malaria parasites reappeared in the blood stream almost immediately. This 

chronicity of infection was not as apparent in irradiated mice (Fig. 3.4.5) and 

suggested the possibility of immunosuppression by the host immune system. This 

effect was not so obvious in recipients of semi-immune lymphocytes, but in 

immunocompromised mice (Fig. 3.5.5) the subpatent period was significantly longer 

than for non-irradiated recipients of either semi-immune B or T cells (p < 0.01) 

(Fig. 3.5.7).

Comparing the adoptive transfer of semi-immune T- or B-enriched peripheral blood 

populations into irradiated and naive mice (Fig. 3.5.9), irradiated mice exhibited a 

delayed onset of parasitaemia, but suffered a heightened primary parasitaemia and a 

course of infection that extended by 12 d that in normal mice. In the analogous 

transfers of enriched lymphocytosis-derived B cell populations there was a similar 

situation (Fig. 3.4.10). If these graphs are compared with the courses of infection 

for irradiated and non-irradiated mice receiving an unfractionated T & B lymphocyte
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population (Fig. 3.4.3), it can be seen that there was no lengthened parent 

parasitaemia in immunosuppressed mice. However, irradiation appeared to enhance 

the level of recrudescence, a feature not observed when the peripheral blood 

lymphocytes were separated into T and B subsets before adoptive transfer. This 

anomaly apart, it is clear that a greater degree of protection was conferred by a mixed 

population of primed T & B cells, as demonstrated by a substantially quicker 

clearance of parasites from the peripheral blood (p < 0.01). The larger 

recrudescence observed in irradiated recipients of unfractionated cells (Fig 3.4.3) 

compared to normal recipients of the same cells may have been due to the fact that all 

these mice received a quite small inoculum size (2.13 x106 cells) which may not 

have been sufficient to counteract the effects of irradiation. In contrast, the mice 

injected with peripheral blood lymphocytes enriched for either B or T cell fractions 

received a dose of 7.5 x106 cells; this increase in the number of repopulating cells 

was sufficient to control the recrudescence in irradiated mice and masked the fact that 

the transfer of a mixed lymphocyte population gave a greater immune response. 

There was a similar case for recipients of naive peripheral blood cells; irradiated 

mice receiving either B or T enriched fractions cleared their parasitaemias markedly 

later than did non-irradiated controls (Figs. 3.5.11 & 12). There was no such 

difference between these two states of immunocompetence when an unfractionated T & 

B cell population was injected into challenged mice (Fig. 3.4.4). Thus, this 

phenomenon is an innate characteristic of lymphoid cells of the murine immune 

system and not dependent upon previous exposure to P. c. chabaudi AS pRBC. 

However, priming did lead to a greater protective activity in irradiated and non- 

irradiated recipients alike. Whether immunocompromised mice received semi- 

immune or naive peripheral blood lymphocytes, one consistent feature observed from 

these studies was the delayed appearance of pRBC in the blood, compared to similarly 

infected non-irradiated recipients. This delay in the onset of parasitaemia was a 

direct result of the irradiation treatment, which caused a transiently enhanced non

specific immune response. As adoptive transfer took place only 24 hr after 

immunosuppression, phagocytic activity was probably heightened and it was this 

which led to the slow appearance of a patent parasitaemia.
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3.6 Adoptive transfer of peripheral blood and splenic lymphocytes to 

immunocompromised recipients.

Previous results described in this chapter have shown that peripheral blood 

lymphocytes are capable of transferring immune protection to mice challenged with 

P. c. chabaudi AS. To gain a sufficient number of cells to inoculate into recipient 

animals, and to determine the degree of immunological priming achieved by a brief 

exposure to the malaria parasite, lymphocytes were derived from donor mice at a 

point just after crisis. Although this had proved satisfactory, it was thought desirable 

to compare the acquired immunity transferred by splenic lymphocytes with that given 

by lymphocytes extracted from the peripheral blood. This was performed with a view 

to using the spleen as a source of lymphocytes for future adoptive transfers since this 

lymphoid organ represented a far larger pool of readily available T and B cells than 

the circulatory system.

As the separation procedure used to isolate lymphocytes from RBC, in particular 

pRBC, had to be biased against the accidental collection of parasites, it was found that 

the yield of peripheral blood lymphocytes was far from ideal. Hence, a large number 

of donor animals was required for each adoptive transfer, a problem which was 

thought could be circumvented by the alternative use of the spleen as a source of 

lymphocytes.

This study was performed to examine whether similar sized inocula of lymphocytes 

from these two different sites gave similar or different levels of protection to 

immunosuppressed mice. To enable the collection of peripheral blood cells, donor 

mice were sacrificed at the time of lymphocytosis, when they were both bled and 

splenectomised.

NIH female mice were exposed to 4 Gy gamma irradiation and 24 hr later infected 

with 1 x10 5 P. c. chabaudi AS pRBC. At the time of challenge, each mouse was also 

inoculated with an aliquot of 7.5 x106 lymphocytes. Recipients of semi-immune 

lymphocytes were separated into groups of six mice each, and received either 

unfractionated peripheral blood lymphocytes, unfractionated splenic lymphocytes, or 

enriched T or B cell populations.

To enable the adoptive transfer of primed lymphocytes, 14 syngeneic donor mice had 

been previously infected and were bled on d 12 p.i. at peak peripheral blood 

lymphocytosis, when splenomegaly was evident.

Also, non-primed circulating and splenic T & B cells were inoculated into two groups
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of six mice each. Eight uninfected mice were used as a source of naive lymphocytes 

for adoptive transfer and cells were collected immediately prior to injection.

The identity of the nylon wool-separated lymphocyte preparations was shown by 

immunofluorescence. The B cell- and T cell-enriched fractions exhibited 87.92% 

and 85.04% fluorescence with anti-K and anti-Thy-1 markers, respectively. The 

enriched B cells contained 7.55% T cells, whilst the purified T population contained 

8.75% B lymphocytes.

For each of the groups of mice, small volumes of serum were collected from the tails 

of infected animals at intervals during the course of infection. The serum Ab levels of 

challenged mice were then determined by IFAT.

The adoptive transfer of fractionated semi-immune spleen cell populations led to 

courses of infection in the two groups which were markedly different from those of 

mice receiving whole splenic lymphocytes (Fig. 3.6.1). Considering the course of 

infection of primed splenic T cell recipients with respect to B and T & B cell 

recipients , there was a quicker remission of the acute infection with subpatency 

being reached an d 21 p.i., 3 and 4 d before the B or mixed cell-transferred groups, 

respectively. However, unlike the other two situations, where a defined 

recrudescence took place only after a prolonged subpatency, for the splenic T cell 

recipients, subpatency was brief (3 d), after which there was a chronic period of low 

level parasitaemia. The pattern of parasitaemia in mice injected with enriched 

splenic B cells taken from infected donors resembled that of similar recipients of the 

complete lymphocyte suspension (Fig. 3.6.1); the lack of immunologically primed T 

cells did not appear to have any effect during subpatency, but the levels of both the 

primary recrudescent parasitaemias reached significantly higher levels (p < 0.01) 

for B cell recipients lacking a semi-immune T cell population.

That primed T cells taken from the spleen did confer some degree of protection is 

illustrated in Fig. 3.6.2, which compares the course of infection of semi-immune 

splenic T cell recipients with that of a control group receiving a naive syngeneic 

population of T & B spleen cells. The considerably enhanced protection conferred by 

the primed T cells was seen as a profound reduction of primary parasitaemia (p < 

0.01) and subpatency reached on d 21 p.i.. Mice transferred with the unstimulated 

mixed lymphocyte population ultimately cleared the infection but without ever 

achieving a period of subpatency. Thus, the unprimed B cells inoculated into these 

recipients were unable to produce the same parasite clearance after the acute
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infection as did the semi-immune splenic B cell population (Fig. 3.6.3).

From these studies it can be seen that some immunity to P. c. chabaudi AS could be 

transferred with splenic lymphocyte subsets taken from infected mice as early as d 

12 after challenge. When identical numbers of cells were transferred to recipient 

animals, the greatest protection was achieved with a mixed T & B spleen cell

inoculum, suggesting that there was a degree of synergistic activity between

parasite-primed T and B lymphocytes in the immune control of infection in 

sublethally irradiated mice. This synergism is further supported by examination of 

the Ab titre profiles for recipients of semi-immune T, B, or T & B spleen cells over

the course of infection (Figs. 3.6.4, 5 & 6). In each case, the mean Ab titre rose

during the first wave of patent parasitaemia and plateaued during the subpatent 

period. Ab levels again rose either later during subpatency (B or T & B recipients; 

Figs. 3.6.5 & 6) or when the parasitaemia was recrudescing (T cell recipients, Fig. 

3.6.4). The fluorescent Ab levels reached a peak between d 31-33 p.i. in all three 

groups, and thereafter declined slowly. The levels of specific anti-P. c. chabaudi AS 

Ab detected in the serum of mice injected with a mixed primed spleen cell population 

were greater than those in mice receiving an enriched suspension of either 

lymphocyte subset (Fig. 3.6.7). However, the highest reciprocal Ab titre attained in 

IFAT for sera collected from the semi-immune T & B lymphocyte recipient mice, 

2024, was not significantly greater than those recorded for either splenic B (1024) 

or T (512) cell-transferred animals.

The enhanced ability of stimulated spleen cells over naive cells to control a primary 

malaria infection is further illustrated in Fig. 3.6.8, which shows the courses of 

infection of mice challenged with P. c. chabaudi AS after adoptive transfer of mixed 

lymphocyte suspensions taken from infected and naive donor mice. As for transfer of 

separated T or B semi-immune spleen cells (Figs. 3.6.2 & 3), transfer of 

unfractionated spleen cells to recipient mice resulted in remission to subpatency, an 

achievement not reached by recipients of naive spleen cells. Overall, the infection in 

mice receiving unprimed T & B lymphocytes was shorter than that exhibited by 

animals inoculated with primed splenic T & B cells, but this was a natural result of 

the 15 d subpatent period following acute infection in this latter group of mice, in 

which breakthrough parasitaemia occurred only on d 38 p.i.. For the analogous 

transfers of primed and unprimed whole lymphocyte populations derived from 

peripheral blood (Fig. 3.6.9), priming the immune response resulted in a better
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control of challenge infection, as indicated by a subpatency of significant duration, 

and, in this case, a quicker parasite clearance than for mice receiving naive 

peripheral blood lymphocytes. In this group, the time taken for the primary 

parasitaemia to be resolved was 15 d compared to 8 d for recipients of semi-immune 

circulatory lymphocytes. However, one anomalous finding was the lower mean peak 

primary parasitaemia in recipients of non-immune cells (Fig. 3.6.9); this was 

shown only by lymphocytes taken from the peripheral blood and was not repeated by 

splenic cells (Fig. 3.6.8).

Comparing the patterns of parasitaemia in groups of mice inoculated with either 

pRBC-primed whole lymphocyte populations from the two different lymphoid 

sources, the acute infections had very similar characteristics (Fig. 3.6.10). 

Remission to subpatency was achieved for peripheral blood recipients by d 17 p.i., 6 

d before that for splenic T & B cell-transferred mice. However, in mice receiving the 

primed spleen cells, subpatency lasted 15 d, significantly longer than the 9 d shown 

by mice transferred circulatory lymphocytes (p < 0.01). However, in the peripheral 

blood cell recipients, the secondary parasitaemia, although elevated, was short-lived, 

resulting in parasite clearance by d 37 p.i.. This contrasted with clearance of 

parasitaemia by only d 53 in mice injected with semi-immune T & B cells of splenic 

origin; however, this lag in clearance times was due, at least in part, to the extended 

subpatency already discussed. It appears, therefore, that syngeneic lymphocytes 

primed to P. c. chabaudi AS gave protection to challenged mice regardless of 

lymphocyte origin, but the degree of protective immunity conferred varied according 

to the parameters of protection used. Recipients of unprimed whole lymphocyte 

populations from either of the two sources used in this study gave more similar 

courses of infection than did mice inoculated with semi-immune cells (Fig. 3.6.11). 

In both cases, infection was cleared before d 40 p.i., and in this regard, transfer of 

naive splenic or peripheral blood T & B cells resembled transfer of circulatory T & B 

lymphocytes previously primed to infection (Fig. 3.6.10). However, unlike the 

course of infection in mice receiving primed cells, recipients of naive lymphocytes 

showed little or no post-primary parasitaemic subpatency.

3.7 Discussion

Haematology performed on peripheral blood taken from naive NIH mice infected with 

P. c. chabaudi AS showed that there was a substantial increase in the blood lymphocyte
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count shortly after peak parasitaemia. This was a consistent finding both in its 

appearance in all mice followed within a group, and its reproducibility between 

various batches of mice infected at different times. This lymphocytosis had been 

previously reported by Kumararatne M a i (1987) using this same species of malaria 

parasite to challenge C57BL mice. However, the increased presence of lymphocytes in 

the blood of mice during acute infection may not be a feature common to all parasite- 

host combinations of rodent malaria as both Lelchuck M a i (1979) and Strickland M  

a l (1979) did not note a pronounced lymphocytosis as a characteristic of P. yoelii 

infections of C57BL or C3H/HeJ mouse strains, although it has been shown for P. 

yoelii-challenQed CBA mice (Jayawardena M a i 1977).

Raised levels of lymphocytes in the bloodstream around 3 d after crisis is thought to 

be due not to lymphocytopoiesis, but rather to a redistribution of the lymphocyte pool 

(Kumararatne M a i 1987). As the phenomenon of lymphocytosis is well described in 

splenectomised animals (Ford & Smith 1979) and in those in which lymphocyte 

circulation through the lymphoid tissues has been impaired, as in rats treated with 

lymphocytosis-promoting factor extracted from Bordetella pertussis (De Sousa 

1981), it may be that in malarious mice, a decreased or altered lymphocyte traffic 

through the spleen may lead to a lymphocytosis. Shortly after peak primary 

parasitaemia, lymphocyte localisation in the spleen is reduced (Brissette M a i 

1978); concomitantly, there is a rise in lymphocyte migration to the blood, and to the 

lungs and especially the liver (Playfair & De Souza 1982), indicating a complex 

redistribution of the recirculating lymphocyte pool (Kumararatne M a i 1987). The 

reason for the reduced lymphocyte migration through the spleen and the significant 

increase in T and B cells in the peripheral blood and liver of malaria-infected mice is 

not clearly understood. For P. c. chabaudi. sequestration of the parasite in deep 

capillary beds may affect the distribution of lymphocytes. As there is evidence for 

sequestration in the liver but not in the spleen (Shungu & Arnold 1972, Cox & 

Hommel 1984), lymphocytes may accumulate preferentially in the liver. Although it 

is well established that the complex migratory pathways of lymphocytes through the 

spleen are necessary for the cellular interactions required for a normal immune 

response to blood-borne Ags (Ford 1975), and that these are depressed around peak 

parasitaemia (Weidanz 1982), all the naive donor or recipient animals studied in 

this report recovered from primary parasitaemia. This suggests that the liver is 

important in the development of protective immunity, a finding first documented by
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Taliaferro & Cannon (1936). If this is the case, this would explain the increased cell 

migration to the liver during malaria infection (Brissette £ ia i  1978, Playfair & De 

Souza 1982, Kumararatne e l ai 1987). The impaired passage of lymphocytes through 

the spleen may actually increase the circulation of immunologically primed T and B 

cells to the liver where parasite destruction is taking place. This would precipitate 

the accumulation in the liver of substantial numbers of T cells and macrophages in a 

localised environment containing pRBC, which would enable the induction of cell- 

mediated mechanisms of immunity, by one of several possible effector metabolites.

It would appear that the peripheral blood lymphocytosis observed in this study is a 

consequence of the flux of lymphocytes between different lymphoid organs during 

acute infection. This suggested migration of lymphocytes from the spleen to other 

organs, notably the liver, would explain both the transient nature of the blood 

lymphocytosis and its timing, at the beginning of the remission of the primary 

parasitaemia. From the view point of the adoptive transfer experiments that 

followed, the occurrence of peripheral blood lymphocytosis was fortunate for it 

enabled the collection of a large population of committed immunologically competent 

cells for inoculating challenged mice. This afforded the opportunity to study whether 

protection was conferred by lymphocytes derived from a source other than the spleen. 

However, a limitation of this methodology was that it enabled cells to be taken at only 

one time point, relatively early in infection, due to the shortlived nature of the 

lymphocytosis. During the remission of the primary parasitaemia, the circulatory 

lymphocytes were exposed to predominantly the infecting parasite type and not the 

whole range of antigenic variants encountered by T and B memory cells recovered 

from mice after a complete course of infection. It was not possible to collect 

lymphocytes from the peripheral blood from immune mice that had recently cleared 

infection due to the low levels of cells in the blood at times other than lymphocytosis, 

and the vast number of donor mice that this approach would therefore demand. 

Maximal neutrophil levels were recorded in the peripheral blood of infected mice on d 

36 p.i., at the time of recrudescence. During the second patency, absolute neutrophil 

counts remained consistently higher than the background counts attained in uninfected 

control mice. This finding was in contrast to the only previously reported neutrophil 

counts during a rodent malaria infection (Jayawardena £ la i 1977), which showed a 

peak neutrophil response on d 13 p.i.. As neutrophils have an essential dependence on 

Abs to exert their principal anti-microbial mechanism of phagocytosis (through
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opsonisation of foreign material), it would be reasonable to assume that in malaria, in 

which Ab levels do not rise till remission of primary parasitaemia, neutrophil levels 

would be greatest at or after this time. Once serum Ab titres rise, they are 

maintained at substantial levels throughout infection, although protective Ig levels 

may decline, thus facilitating the increase in neutrophil numbers observed in this 

study.

Monocyte levels in the peripheral blood were greatest 48 hr after challenge, at a time 

before pRBC were detectable in the blood. This monocytosis, which was quite 

shortlived, may have been due to a redistribution of these cells throughout the 

circulation, but is more likely to have been caused by monocyte proliferation. This is 

because monocytes are always detectable in the blood and because it is hard to 

attribute such a contrast in cell numbers over a period of 24 hr immediately upon 

infection solely to recruitment of monocytes to the peripheral blood. It is more likely 

that this effect represents one of the initial steps in the stimulation of the immune 

system by the very few bloodstream parasites that are present upon challenge 

inoculation. The fall in the levels of detectable monocytes over the next few days may, 

in turn, be due to the maturation of these monocytes into macrophages which then 

emigrate from the blood to the lymphoid tissues. The variable, but sustained high 

levels of monocytes in the blood during the acute phase of infection fit with this 

proposed process of macrophage activation following monocyte proliferation. The 

elevated concentration of macrophages occurs at a time when non-specific 

mechanisms of immunity are thought to predominate in the acquired resistance to 

malaria infection. The monocytosis observed during the remission of the primary 

parasitaemia concurs with that found by Jayawardena £ la i (1977) at the same stage 

of infection of P. yoelii-infected CBA mice.

Regarding the adoptive transfer of lymphocytes into challenged mice, the first study, 

which used competent recipients and transferred unfractionated peripheral blood 

lymphocytes, showed that a mixed lymphocyte population could transfer protective 

immunity to naive mice as early as 12 d after infection of the cell donors. Protection 

was also conferred by the transfer of such semi-immune lymphocytes to 4 Gy- 

irradiated mice. These observations with the P. c. chabaudi/NIH system were in 

accordance with those of Fahey & Spitalny (1986) using P. yoelii 17X infection of 

A/Tru mice. In this model, successful adoptive immunisation of naive recipients with 

unfractionated spleen cells, T cells or B cells was first demonstrable with
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lymphocytes harvested 7 d p.i., peaked at 14 d p.i. and was no longer detectable by d 

21 p.i., concomitant with the elimination of the primary infection in donor mice. 

This study and the results described in this chapter are, however, at variance with 

the recent report by Favila-Castillo £ ia i (1990). These investigators used the same 

strain of parasite, P. c. chabaudi AS, as used here, but in CBA/Ca mice, and claimed 

that it was only possible to transfer immunity to 4.5 Gy-irradiated mice with spleen 

cells taken from donors which had been infected seven times prior to cell transfer. In 

mice inoculated with unfractionated splenic lymphocytes taken after recovery from a 

single infection, there was a 100% mortality rate. This discrepancy is difficult to 

reconcile but points to the possibility of a genetic factor involved in host immunity to 

P. c. chabaudi. as suggested by Stevenson £ ia l (1982). However, neither the CBA/Ca 

or NIH strain of mouse was employed in this study. Alternatively, the non-transfer of 

immunity with lymphocytes other than those taken from superinfected donors 

(Favila-Castillo £ ia l 1990) could be due to the immune response by memory T and B 

cells requiring in vivo stimulation of the immune donor cells before adoptive transfer 

to recipients. This would be necessary to boost the proliferative response of these 

primed, aged lymphocytes which would not normally be stimulated to replicate. The 

failure to transfer protection with P. c. chabaudi AS-specific lymphocytes taken from 

donor mice after the elimination of pRBC may be due to their reduced proliferation. 

As it is reasonable to hypothesise that the transfer of immunity against challenge 

infection requires T and B cells harvested during that phase of the primary immune 

response to the malaria parasite when the host is actively expressing immunity to an 

ongoing infection, protective lymphocytes tend to be cells capable of rapid replication. 

In none of the experiments performed herein did the adoptive transfer of 

lymphocytes, regardless of source or state of immunological commitment, suppress 

the ascending acute blood infection. Instead, protection was indicated by the 

subsequent suppression of parasitaemia. This was in keeping with previous studies of 

adoptive immunity to rodent malarias (Brown e la i  1976 a & b, Gravely & Kreier 

1976, McDonald & Phillips 1978, 1980, Brinkmann £ ia l  1985, Cavacini M a i 

1986) who showed that in various levels of immunological suppression, infected mice 

and rats inoculated with immune lymphocytes exhibited a protective response 

demonstrable by reduced parasitaemia, quickened pRBC elimination and/or host 

survival.

In sublethally irradiated mice, the protective effect of unfractionated lymphocytes
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was greater than that of either enriched semi-immune T or B cells, although both of 

these subsets did give effective immunity. This maximal protection was observed as a 

combination of the immune responses conferred by either lymphocyte subset when 

transferred alone, and is suggestive of a synergistic effect between the inoculated cells 

of mixed phenotype with each other, and also possibly with the radioresistant 

lymphocytes circulating in the irradiated recipient. Working with the same host- 

parasite combination, McDonald & Phillips (1978) also showed that for the most 

efficient protection of irradiated mice against P. c. chabaudi infection with immune 

syngeneic cells (from donor mice infected at least twice), a population containing both 

T and B cells, such as unfractionated spleen cells, was required. However, they failed 

to show unequivocally synergistic activity between primed lymphocyte subsets in 

irradiated mice. The fact that enriched subpopulations of both T and B lymphocytes 

taken from donor mice during resolution of primary acute infection imparted some 

protection to recipients, as shown here, implies that both lymphocyte subsets may be 

required for the elaboration of maximal acquired immunity. This finding is in 

concurrence with those of McDonald & Phillips (1978, 1980) and of Favila-Castillo 

£ ia i  (1990). McDonald & Phillips (1978) have shown that most but not all of the 

protective activity on adoptive transfer of P. c. chabaudi immune spleen cells lay in 

the B cell-enriched fraction; Ferraroni & Speer (1982) had a similar result with JL 

berghei-primed mouse splenic lymphocytes. Brown £ ia i (1976 a) demonstrated 

protective activity of T-enriched populations from the spleen of P. berghei infected 

rats upon adoptive transfer to naive, syngeneic recipients, but there was increased 

protection on the addition of B cells. Moreover, in this study, it was reported that 

immunity could be transferred with lymphocytes taken as early as 11 d after 

infection of the cell donors, although greater levels of protective activity were 

achieved using spleen cells collected later in the infection.

In a similar study, Gravely & Kreier (1976) concluded that the bulk of the protection 

conferred to rats infected with P. berghei resided in the differentiated splenic B cell 

population. The enriched splenic T cell fraction was generally less protective than the 

B cells or the mixed T & B lymphocyte pool, and they considered that the primed T 

cells were acting as helper cells in the production of specific anti-P. berghei 

protective Ab. This suggested role for T cells was first proposed by Brown (1974). 

He reported that lymphocyte suspensions from rats immune to P. berghei and depleted 

of the B cell fraction were capable of conferring immunity to subsequent challenge of
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naive recipients, and interpreted this as meaning that the inoculated immune T cells 

were acting as helpers in the humoral response driven by the B cell complement of 

the infected host. For P. berghei and P. c. chabaudi. which are known to undergo 

antigenic variation, it can be argued that the enriched B cell population recovered 

from mice which have cleared at least one infection contains B memory cells which 

are already primed to new variant-specific Ags as they emerge during recrudescent 

parasitaemias, as well as to determinants common to all parasite variants, and are 

thus equipped to synthesise specific protective Abs. Th memory cells, in contrast, 

may only respond to Ags common to all plasmodial variants but characteristic of the 

strain producing infection. As B cells are more radiosensitive than T cells (Janeway 

1975 b), irradiation treatment may lead to adoptive transfer recipients having 

insufficient B cells, virgin or primed, to cooperate with to generate variant-specific 

protective Abs rapidly. This was suggested by McDonald & Phillips (1978) as the 

reason for their finding that recrudescences occurred most frequently in 6 or 8 Gy- 

irradiated mice receiving an enriched immune T cell population. In the studies 

described herein, all patent parasitaemias recrudesced in sublethally irradiated mice 

adoptively transferred with lymphocyte populations, regardless of phenotype, and 

this indicates that this may have been caused by something other than a specific defect 

in the T cell repertoire. That recrudescent parasitaemias were a consistent feature of 

infection of mice infused with either peripheral blood or splenic lymphocytes, 

regardless of origin or type, may have been due to the fact that the heterogeneous 

populations of lymphocytes transferred presumably had a range of different 

specificities. It is, however, more probably a reflection of the fact that the cells 

transferred were immunologically not fully mature. This perhaps was to be expected 

as the lymphocytes were collected from donor animals on d 12-13 p.i., when it was 

likely that only the predominant antigenic type, that of the infecting parasite 

population, had been encountered. Thus, neither B or T cells were primed to variant- 

specific Ags present on the surface of pRBC emerging in the bloodstream under 

immunological pressure. However, an Ab-mediated response was clearly detectable 

in recipients of adoptively transferred cells; that there was no significant difference 

in the specific anti-P. c. chabaudi Ab profiles and endpoint titres for recipients of 

semi-immune T, B or T & B lymphocytes does indeed suggest that the B cells present 

failed to recognise a wider antigenic repertoire that did the T cells, hence the similar 

kinetics with which a protective response arose. Indeed, in sublethally irradiated
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mice, recipients of splenic B cells alone exhibited a recrudescence of larger 

magnitude, if lesser duration, than mice reconstituted with splenic T cells. It can be 

inferred from these collective results that protection to P. c. chabaudi is 

predominantly due to a humoral response, although other mechanisms may play a 

part. After all, although mice receiving primed lymphocytes taken on d 12-13 p.i. 

showed patent recrudescences, infection was cleared effectively. As these donor cells 

were collected from mice at a time when it is thought that non-specific mechanisms of 

immunity, such as the release of toxic mediators by activated macrophages, 

predominate in the immune response to P. c. chabaudi (Langhorne 1989), 

lymphocytes, in particular the T cell subset, taken at this time from donor mice may 

engender protection by this pathway.

In other rodent models of malaria, immune lymphocytes appear to resolve primary 

infection by non-humoral mechanisms. This has been shown for P. voelii 17X in 

CBA/Ca or C57BL mice (Jayawardena 1982, Brinkmann £ ia i  1985), an Ab- 

dependent system, and also in P. chabaudi adami in BALB/c mice (Cavacini e l a] 

1986), an Ab-independent system. Brinkmann £ la i (1985) concluded that resident 

T cells of recipient animals were required for expression of adoptively transferred 

anti-P. voelii immunity and that the failure to confer protection to nude mice was due 

to their congenital T cell depletion. By reconstituting with naive T cells, but not with 

B cells, before adoptive transfer, a protective immune response could be restored to 

the recipient animals. These findings contrast with the results of Jayawardena £ ia l 

(1982), who transferred protection to mice which were selectively T cell depleted by 

adult thymectomy, irradiation and bone marrow reconstitution prior to adoptive 

transfer. This discrepancy may have been due to nude mice lacking a cell population 

relevant to the development of protection, which is present in adult-thymectomised 

and normal uninfected mice alike. In the case of athymic mice infected with P. c. 

adami. a high-grade, fulminating infection developed; however, T lymphocytes were 

shown to mediate protection in recipient mice, since T cell-, but not B cell-enriched 

spleen cell fractions suppressed challenge infection in otherwise susceptible nude 

mice (Cavacini £ ia i 1986). In these cases, protection was achieved by activating as 

yet unidentified inhibiting cell systems; these may well be the same as those non-Ab 

mediated responses that may account for the immune reactivity of semi-immune T 

cells that protect against a primary challenge of P. c. chabaudi. Certainly, in this 

study, in which T and B cells were collected at the time of lymphocytosis, transfer of

178



an enriched T cell population led to a similar pattern of primary parasitaemia in 

recipient mice as in those inoculated with a mixed unfractionated preparation. 

Furthermore, animals reconstituted with T cells alone had a significantly lower peak 

parasitaemia than did recipients of an enriched B cell population, and cleared the 

acute infection to subpatency far more rapidly. These findings implicate a role for 

cell-mediated immunity other than T cell help, in protection of NIH mice against P. c. 

chabaudi AS.
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CHAPTER FOUR 

IN VITRO CULTURE OF T CELL LINES AND CLONES
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4.1 Introduction

Recent studies using mice depleted of T cells in vivo and in adoptive transfer 

experiments have demonstrated that the protective immune response to the asexual 

erythrocytic stages of Plasmodium chabaudi chabaudi and P. yoelii is absolutely 

dependent on the presence of Ly-4-bearing T cells (Suss £ la i 1988, Vinetz £ ia l 1990). 

These reports supported the pioneering work of Jayawardena £ ia !  (1982), who 

implicated a role for Ly-4+ but not Ly-2+ T cells in acquired resistance to blood stage 

malaria parasites, a view later contradicted by Mogil e ia i  (1987) working with the 

same 17X strain of P. voelii. The discrepancy in the results obtained was thought to be 

due to attempts to dissect the contributions of the two subsets of T lymphocytes using 

enriched, but nevertheless heterogeneous populations of cells for adoptive transfer. 

This problem has been overcome through the recent advance in T cell biology of the 

generation and use of Ag-specific T cell lines and clones (Gillis & Smith 1977). It is 

now known that following Ag recognition, T cells secrete IL-2 and express high affinity 

IL-2 receptors at their cell surface. The combination of IL-2 with its receptor and 

subsequent signal transduction allows Ag-stimulated T cells to undergo clonal expansion 

(Smith 1984). With this knowledge, it has proved possible to enrich for Ag-specific T 

cells of either Ly-2+ or Ly-4+ phenotype by repeated cycles of Ag stimulation followed 

by expansion with IL-2, or alternatively MAb against CD3 (Van Wauve e la i  1980). 

These T cells may be maintained as a polyclonal population, or, following cloning, as 

cells with a unique Ag specificity. Recognition of Ag by T lymphocytes may then be 

assayed either by lymphokine release (Kappler £ ia i  1980) or by T cell proliferation 

(Seeger & Oppenheim 1970). Using this technology, malaria-specific T cell lines have 

been raised, the transfer of which has been demonstrated to provide protection against fL  

berghei infections in rats (Gross e l al 1984) and P. c. adami infections in BALB/c mice 

(Brake e la i  1986). In this latter study, one of the Ly-4+ cell lines was cloned without 

loss of adoptive protection in this Ab-independent rodent malaria system (Brake e la i

1 98 8 ).

The work described in this chapter outlines the preparation of Ly-4+ T cell lines and 

daughter clones from different time points of a primary infection of NIH mice with P. c. 

chabaudi AS. The initiation and maintenance of long term cultured spleen cells is 

detailed, as is the adaptation of established T lymphocyte limiting dilution cloning 

techniques employed successfully to attain homogeneous populations of cells. The results 

of the routine assaying of Ly-4-bearing lymphocytes by the measure of a proliferative
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response to semi-defined P, c. chabaudi AS pRBC Ags is also described, but the further 

characterisation of each of the lines or clones used in adoptive transfer experiments 

(Chapters 5-9) is detailed separately in Chapter 9 of this thesis.

Before any attempt was made to raise malaria-specific T cell lines in vitro, each of the 

variable culture conditions was examined. This necessitated the defining of in vitro 

culture conditions optimal for growth of Ly-4+ cells; variables included concentrations 

of IL-2, pRBC lysate Ag, responder T cells, APC and FCS supplements to RPMI 1640 

medium, as well as batch analysis of serum to test for support of cell growth, but lack of 

non-specific proliferation. For this preliminary work, spleen cells were taken from 

either naive donors or from mice recently recovered from a primary infection. 

However, as the adoptive transfer experiments described in Chapter 3 showed that some 

protection to P. c. chabaudi AS could be give to naive mice with enriched T cells from at 

least as early as d 12 of infection when the acute primary parasitaemia was in decline, it 

was decided to attempt to raise lines with spleen cells isolated from donor animals before 

they had cleared primary infection. These lines would have a similar immunological 

status as the lymphocytosis-derived T cells used previously, but would have the 

advantage of being cultivated in vitro as relatively homogeneous populations suitable for 

assaying lymphokine secretion and B cell helper activity. In addition, these lines could 

be cultured in bulk to provide sufficient cell numbers to facilitate adoptive transfer into 

syngeneic recipient mice of differing states of immunological competence. As well as 

culturing spleen cells taken from infected donor mice, animals that had cleared multiple 

infections with the same P. c. chabaudi AS parasite clone were splenectomised. Thus, 

lines of T cells were initiated using lymphocytes primed to different degrees to the 

infecting malaria parasite and, therefore, presumably of varying immunological 

competence. This would allow the study of specific cellular responses both during and 

after malaria infection in this immune system, results of which would bear comparison 

with similar experiments using human T cells primed to P. falciparum (e.g. Troye- 

Blomberg £ ia l 1983 b, 1984, Riley £ ia l 1988 a & b) and to P. vivax (Goonewardena Ql 

ai 1990).

4.2 Assay of IL-2 on murine T cell blasts and murine spleen cells.

The survival of T lymphocytes in vitro is critically dependent on IL-2, a tissue-specific 

growth factor synthesised and secreted by helper T cells (CD4+ or Ly-4+ in man and 

mouse, respectively) following their activation with Ags or polyclonal mitogens (Smith
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1989). For the in vitro culture of T cell lines and clones, three different sources of IL- 

2 were used in all, namely Con A S/N (2.21), autocrine IL-2 (2.22) and recombinant 

murine IL-2. As a prerequisite for routine long term culture, each batch of these 

various sources was tested for its ability to support the growth of polyclonally-activated 

murine T cell blasts (2.23). After establishing the growth-supporting ability of each 

IL-2 stock, they were then tested against spleen cells ranging in their states of 

immunological commitment. This was done in order to discover whether this 

lymphokine would maintain each cell type equally well in vitro.

Figure 4.2.1 shows a typical result of a blast cell assay. Each of the three sources of IL- 

2 maintained the growth of the PHA-R-stimulated peripheral blood blast cells, seen as a 

significantly higher rate of DNA synthesis over that of the negative controls (p < 0.01). 

This support of lymphocyte proliferation occurred at relatively high levels for all 

concentrations of IL-2 used, but was maximal at 10% v/v for each sample; this was 

equivalent to 10 i.u./ml for the recombinant murine IL-2. Thus, it was decided to use 

IL-2 stock at 10% v/v in the culturing of T cells, unless conditions dictated otherwise. 

Having assayed the IL-2 content of each sample by measurement of the proliferation of a 

specialised IL-2-dependent cell line, the samples were then assayed in a similar manner 

against NIH mouse spleen cells taken from naive animals, mice recently recovered from 

a primary infection, or from mice sacrificed on d 16 of a primary infection. The dose- 

response curves of tritium uptake (Figs. 4.2.2-4) indicate that Con A S/N, auto IL-2 

and rlL-2 all supported the growth of the specific cell types that would be used in future 

studies. Moreover, the IL-2-dependent proliferation did not appear to be dependent 

upon the state of commitment or competence of the cells tested, as unprimed naive spleen 

cells and P. c. chabaudi AS-primed memory spleen cells proliferated at approximately 

the same rate in each of the assays. Lymphocytes taken from mice during the subpatent 

period of primary infection with P. c. chabaudi AS, equivalent to the semi-immune cells 

used in Chapter 3, also grew in vitro in an IL-2-dependent manner (Figs. 4.2.2-4), if 

at a slightly lesser rate. However, the levels of tritium incorporation for each spleen 

cell sample cultured with each IL-2 stock at a given concentration were not significantly 

different (p > 0.05).

An additional point to make is that in all three proliferation profiles, maximal growth 

was attained when IL-2 was used as a 10% v/v supplement to RPMI 1640 medium. This 

observation underlines the validity of the original IL-2 concentration assay (Fig. 4.2.1) 

and stresses that IL-2 supports the proliferation of all T lymphocytes, regardless of cell
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lineage. Furthermore, it confirms that in the spleen cell proliferation assays, the 

lymphocytes were responding to the IL-2 present in solution and were not stimulated by 

any other factor in the growth medium.

Regardless of the proliferative response of each cell type, within each group the 

stimulation given by auto IL-2 was significantly less than that induced by either Con A 

S/N or r IL-2 (p < 0.01) (Figs. 4.2.5-7).

4.3 Assay of anti-CD3 MAb on naive spleen cells.

For use in cloning by limiting dilution, the anti-CD3 MAb was used as an alternative to 

auto IL-2. This was obtained as a cell culture S/N from the 145-2C11 hybridoma, and 

prior to use in stimulating T cell clone expansion, the S/N stock was assayed for 

quantification of cellular proliferation against naive splenic lymphocytes (2.28).

Results showed that Ab against CD3 was able to induce a very high proliferative response 

from the cultured test cells (Fig. 4.3.1). Each of the S/N dilutions assayed gave an equal 

or greater stimulation to T lymphocyte growth than did 10% auto IL-2 run in parallel. 

Thus, any of the MAb titres used was deemed suitable for use in cloning (2.29); in the 

event, 20% S/N v/v was employed in Ly-4+ cell expansion, as recommended by Wasik 

& Morimoto (1990).

4.4 Batch testing of FCS for use in v it r o .

It is known that FCS may induce non-specific mitogenic stimulation of lymphocytes 

which may obscure the effects of Ag-specific T cell responses in vitro (Hudson & Hay

1989). The incidence of mitogenic activity in random test samples of FCS may be as 

high as 85% (Shiigi & Mishell 1975). It was therefore necessary to pretest FCS for 

its supportive activity for an immune response in v itro . This was performed initially 

by assaying proliferation of naive spleen cells cultured in RPMI 1640 medium 

supplemented with 5-20% v/v additions of FCS made available by different suppliers 

(Fig. 4.4.1). Once batches of a certain commercially available FCS had shown a 

demonstrable lack of mitogenic stimulation, they were tested further for support of IL- 

2-promoted lymphocyte proliferation (Fig. 4.4.2).

It was found that most sera tested induced cell proliferation to a considerable degree 

(Fig. 4.4.1) and proved, therefore, unacceptable for the purposes of in vitro culture. Of 

FCS obtained from four different companies, only batches from Flow Laboratories Ltd. 

routinely gave minimal support to lymphocyte growth. On this basis, it was decided to
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use FCS from this company in all subsequent in vitro cultivation procedures, and each 

batch purchased throughout the course of this study was screened for mitogenicity prior 

to use; most samples proved very satisfactory.

When assaying for the support of spleen cell growth in the presence of Con A S/N, the 

FCS was added to RPMI 1640 medium at 10% v/v, a concentration used standardly for 

supplementing media for the culture of T cells (Taylor £ ia i 1987). Figure 4.4.2 shows 

a typical profile of Con A S/N-stimulated lymphocyte proliferation. At a concentration 

of 10% v/v, the selected batch of FCS gave acceptable cell survival without a high 

background of incorporation of the DNA analogue.

4.5 Assay of responder cell concentration

To determine the optimal concentration of responder cells for the Ag-specific 

proliferation assay and for bulk T cell cultures, a test system was set up using a fixed 

concentration of 10% v/v Con A S/N in 10% FCS RPMI 1640 medium, and titrating out 

the proliferative response of spleen cells over the starting concentration range 0.1 - 10 

x105 cells/ml. As for 4.2, lymphocytes from three different sources were tested.

This assay showed that the proliferation of activated lymphocytes was dependent upon an 

adequate initial concentration of cells in the microtitre environment. A responder cell 

concentration of < 1 x105/m! was insufficient to support spleen cell growth (Fig. 

4.5.1). Above this level, all inocula enabled a reasonable rate of [3H ]thym id ine 

incorporation, maximal values being attained when the cultures were started at 2 x105 

cells/ml. When the spleen cells were plated out at a high density, 0.5-1 x106 cells/ml, 

the degree of incorporation of the radiolabel fell away, presumably because these cells 

were reaching the plateau phase of their growth by the time of addition of the titrated 

thymidine. Therefore, a concentration of 2 x105/ml was chosen for all further 

proliferation assays, this value enabling the responder cells to survive initial plating 

and to proliferate logarithmically by 72 hr when the DNA nucleotide analogue was most 

usually added.

A further point of interest from this experiment was the significantly lower 

proliferative response at all starting concentrations of the splenic lymphocytes taken 

from infected mice after clearance of the acute infection (p < 0.01) (Fig. 4.5.1). For 

the other two sources of spleen cells, uninfected or post-infective mice, the 

proliferation profiles were not significantly different from each other. These two 

observations will be raised again later (4.6 & 4.8).
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4.6 Assay of APC concentration

Another variable in the in vitro culture of T cells lines and clones that needed to be 

optimised was the concentration of APC. These cells were required to process native 

pRBC lysate Ag and present it to the Ly-4+ T cells in an MHC class ll-restricted manner 

(reviewed by Unanue 1984, Schwartz 1986). Without the processing function of the 

syngeneic APC, the primed T cells would not be able to recognise the antigenic 

determinant(s) to which they specifically respond. A co-stimulatory activity for T 

lymphocyte stimulation has also been advocated (reviewed by Weaver & Unanue 1990). 

The easiest available source of APC for T cell culture was the spleens of uninfected NIH 

mice; splenic B cells, macrophages and dendritic cells would all perform the task of Ag 

presentation. Each spleen cell suspension was subjected to gamma irradiation prior to 

culturing to block the background growth of these cells rather than that of the desired T 

cells.

APC concentration was assayed over the range 0.1-10 x106/ml using fixed 

concentrations of 2 x105/ml responder cells and 10% v/v IL-2. Con A S/N, auto IL-2 

and rlL-2 were all tested against each of post-infection, post-primary parasitaemia and 

naive spleen cell preparations.

For each source of responder cells, maximal proliferation was attained when the APC 

concentration was 2 x106/ml, i.e. 10 times that of the responder cells themselves 

(Figs. 4.6.1-3). This was regardless of which stock of IL-2 was used to stimulate T cell 

activation (Figs. 4.6.4-6). Using Con A S/N at 10% v/v to stimulate cellular 

proliferation (Fig. 4.6.4), there was a similar finding to that seen in Fig. 4.5.1, 

namely, the same level of growth by post-infection and naive spleen cells, but a 

significantly lower level for lymphocytes taken on d 16 p.i. (p < 0.01). This 

observation was repeated using auto IL-2 and r IL-2 (Figs. 4.6.5 & 6). Also, for each 

splenic lymphocyte type, regardless of its intrinsic ability to proliferate in response to 

IL-2, the response at each APC concentration upon activation with auto IL-2 was always 

less, and significantly so (p < 0.01), than the responses to Con A S/N or r IL-2 (Figs. 

4.6.1-3). This supported the observations made during the IL-2 proliferation assays 

(Figs. 4.2.5-7). Only in the case of post-acute infection spleen cells did the 

proliferative activity induced by auto IL-2 come within 2 SD of that of r IL-2, and then 

only at the optimal APC concentration, 2 x106/ml (Fig. 4.6.3). This was due, in all 

probability, not to the enhanced proliferation of d 16 splenic lymphocytes in the 

presence of auto IL-2 but because of the generally depressed activity of these cells in
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4.7 Assay of inhibition of APC proliferation

To inhibit the potential proliferation under culture conditions of the freshly prepared 

naive spleen cell preparations which were routinely used as a source of APC during this 

project, each sample was subjected to a dose of gamma irradiation sufficient to block 

cellular proliferation. This treatment had no adverse effects on the capacity of such 

cells to present Ag in a suitable manner for responder cell recognition and activation. To 

ascertain the minimum exposure to 60Co required to prevent spleen cell proliferation, 

naive NIH splenic preparations were assayed for growth (2.34) after receiving 

different levels of irradiation.

Figure 4.7.1 shows that a dose of 20 Gy immediately prior to culture was necessary to 

abrogate cellular proliferation; lesser levels of irradiation failed to reduce to 

background values the degree of tritium incorporation. In the event, a dose of 30 Gy was 

adopted as the standard gamma irradiation treatment for preparation of APC for all 

subsequent T lymphocyte in vitro culture.



response to stimulation of any kind.

4.8 Assay of Ag concentration

The T cell lines raised in vitro were primed to P. c. chabaudi AS in vivo and thereafter 

stimulated to proliferate under culture conditions upon exposure to a crude lysate of 

pRBC of the same parasite. To elucidate whether a lysate of RBC was a suitable source of 

antigenic determinants against which a cellular response could be mounted, an Ag 

concentration assay was performed. This also would determine the optimum 

concentration of protein necessary to elicit the maximal level of proliferation, and, by 

using lysates of both pRBC and nRBC, show whether lymphocyte growth was in response 

to recognition of parasite-specific Ag(s).

Initial studies were performed using naive spleen cells or those taken from mice primed 

to P. c. chabaudi AS through either complete or partial courses of infection. These were 

cultured at 2 x105/ml with 2 x106/ml APC in microtitre wells and assayed for 

proliferation by [3H]thymidine incorporation.

The proliferative response of immune or semi-immune splenic T cells to P. c. chabaudi 

AS Ags in the form of a pRBC lysate was dose-dependent (Figs. 4.8.1 & 2). In each case, 

the activation induced by pRBC Ag was considerably greater than that induced by nRBC Ag 

(p < 0.01), indicating that the stimulus for cell growth was parasite-specific and not a 

common determinant on all RBC. For lymphocytes prepared from the spleens of 

uninfected mice, there was no significant difference between the proliferation profiles of 

the responder cells to the two different lysates over the concentration range tested (Fig. 

4.8.3). This observation implied that previous exposure to the parasite Ags, in this case 

by in vivo priming, was a necessary prerequisite for the P. c. chabaudi AS-specific 

proliferative response by Ly-4+ T cells in the presence of syngeneic accessory cells. 

Another finding from this experiment was that where a dose-dependent response to 

plasmodial Ags did occur, the maximal proliferation was in cultures containing 200 

pg/ml pRBC lysate (Figs 4.8.1 & 2). For these in vivo primed spleen cells, the nRBC- 

stimulated cell growth peaked at a concentration of 150 jig/ml protein lysate. This again 

implied that the response to pRBC was activated by one or more plasmodial determinants. 

Moreover, the response of naive splenic lymphocytes to both pRBC and nRBC lysates 

showed optimum levels at 150 jig/ml lysate concentration (Fig. 4.8.3); this suggests 

that the non-specific proliferation by these unprimed cells to the pRBC Ag was because 

the same or similar non-plasmodial epitopes were recognised in all RBC lysate
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preparations.

When the proliferation of each of the spleen cell populations upon activation by pRBC 

lysate is considered, it can be seen that at each concentration of lysate assayed the 

response by post-infection lymphocytes was significantly greater than that by 

lymphocytes taken during infection (p < 0.01) (Fig. 4.8.4). For the response to the 

nRBC control, the response of d 16 p.i. spleen cells was again significantly depressed 

(Fig. 4.8.5). This was similar to the results of assays for both responder cell 

concentration (Fig. 4.5.1) and APC concentration (Figs. 4.6.4-6). The reduced 

proliferative response of these semi-immune lynphocytes was therefore observed upon 

activation by IL-2 and by lysates of parasitised and uninfected RBC.

In the case of naive splenic lymphocytes, the lack of response by these cells when 

cultured with pRBC lysate (Fig. 4.8.4) was due to a specific non-recognition of parasite 

Ags. Only under these circumstances did the growth of naive cells fall below that of 

lymphocytes taken from infected mice. Tritium incorporation was similar with both 

lysate samples used and was not parasite-specific (Fig. 4.8.3). That cells from 

uninfected donor mice were capable of mounting a proliferative response had been shown 

previously (Figs. 4.5.1 and 4.6.4-6), when the growth recorded upon activation with 

IL-2 was of the same magnitude as that exhibited by primed spleen cells.

4.9 Initiation and maintenance of helper T cell lines

Having standardised the variable factors present in the in vitro cultivation of T cells by 

preliminary studies using unfractionated spleen cell preparations, it was now possible 

to attempt to generate helper T cell lines in vitro. These could then be analysed both in 

vitro and in vivo for an anti-P. c. chabaudi AS immune response.

All Ly-4+ cell lines established in vitro were raised by priming to P. c. chabaudi AS in  

vivo and then by following either the original or modified protocols for the generation of 

helper T cells in vitro (2.26). However, for later use, these lines were recovered from 

cryopreservation and propagated exclusively by the modified protocol outlined in 2.26. 

Although the classical feed-starve-feed methodology of Kimoto & Fathman (1980) 

proved successful in generating Ly-4+ cell lines by selective pRBC Ag-induced clonal 

expansion in v itro , it was considered that this regimen was too cumbersome for the 

purposes of routine culture of well-established T cell lines. Specifically, the starve 

period, in which responder cells were cultured with Con A S/N and APC but without 

antigenic stimulation, was omitted and replaced by a longer time between successive
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feeds. This alteration of the in vitro culture technique had no apparent effect on the 

composition or character of each of the lines propagated; indeed, all the Ly-4+ lines and 

daughter clones described in this thesis maintained their Ag-specificity and function 

upon long term growth in vitro (this chapter and Chapter 9).

It was noted that with the modified cultivation protocol, in which dead cells and debris 

were not removed at every subculture, there was no drop in the viability of the cultured 

helper T cells. As the use of Metrizamide to remove the dead cell fraction had been 

effective but had always resulted in an unnecessary loss of viable responder 

lymphocytes, the dropping of this procedure resulted in a relative enrichment of Ly-4+ 

cells at every subculture, compared to the yields attained previously.

Several splenic lymphocyte lines were raised during this study but only four were used

in further experiments. The details of the generation of these cell lines is shown in 

Table 4.9.1. All donor mice used for in vivo priming were infected with the same parent 

P. c. chabaudi AS clone, WEP 685 (Fig. 2.1), with which the mice bled to prepare the 

pRBC lysate stocks had been challenged.

4.10 Generation of helper T cell clones by limiting dilution

The initial attempt at single cell cloning of an established Ly-4+ cell line, WEP 737,

proved unsuccessful. Lymphocytes were collected 3 d after the fifth antigenic 

stimulation with pRBC lysate and diluted out in microtitre plates. A 20% auto IL-2 v/v 

supplement to RPMI 1640 medium was intended to promote single cell growth. This 

procedure, however, failed to yield any clones of a sufficient size to expand from plate to 

flask culture. Clones were detected routinely upon screening 12-16 d after cloning, and 

were identified by having a larger, more amorphous shape than background APC and 

appearing quite bright under phase contrast microscopy. Unfortunately, the expected 

cell growth did not occur, all remaining a regularly small appearance. Instead of 

expanding such small cell clusters, the microtitre plates were maintained by replacing 

20% auto IL-2 and 200 ng/ml pRBC Ag in 10% FCS PRMI 1640 medium every 3-4 d. 

Despite these efforts to trigger continuous clonal proliferation, all clones failed to grow 

from their initially detected size.

Due to this lack of success, subsequent adoptive transfer experiments were performed 

with each of the four IL-2-dependent Ag-specific lymphocyte lines described in Table 

4.9.1. Results showed that these lines were relatively homogeneous in their expression 

of the Ly-4 surface Ag (Chapter 9), and, furthermore, that they could adoptively
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transfer protection to both immunocompetent and immunosuppressed mice challenged 

with P, c. chabaudi AS (Chapters 5-8). Since they could confer a protective immune 

response to the parasite line to which they had been raised, these lines were ideal 

candidates for consideration with regard to cloning. Thus, a further attempt at cloning 

was made considerably later in this project, using the Ly-4+ lines WEP 737 and WEP 

775 as the basis for development of cloned cells. The methodology followed was similar 

to that first used (2.29), but replacing auto IL-2 with anti-CD3 MAb as a 20% 

supplement to complete RPMI 1640 medium. Plates were scored for the presence of 

clones on d 10-14 and microtitre wells supporting positive colony growth were 

expanded on d 14-15 following initial cloning (2.30). Of 384 wells plated at the three 

lowest limiting dilution densities used, 10-1 cell/ml (1-0.1 cell/well), only 10 and 

11 wells exhibited positive cell growth for WEP 737 and WEP 775, respectively. 

However, all these T cell clones were successfully expanded in vitro with the use of 

anti-CD3 to stimulate clonal proliferation. Between 16-18 d after the clones had been 

transferred from 96 to 24 well plates, each had grown to confluency and was 

transferred to flask culture, first as 10 ml volumes in 25 ml flasks and then as 30-40 

ml volumes in 75 ml flasks. Once established in bulk culture, each Ly-4+ clone was 

maintained by the modified protocol for T cell propagation (2.29). Except in one or two 

instances where 20% anti-CD3 was continued as the supplement to the main culture 

medium, no difficulties were encountered in switching the newly established clonal 

populations from stimulation with anti-CD3 used for clonal expansion to auto IL-2 used 

for routine maintenance.

Table 4.10.1 shows the history of each of the T lymphocyte clones isolated by limiting 

dilution. For both sets of clones, only those derived by diluting the parent lymphocyte 

line to either 0.5 or 0.1 cells/well (5 or 1 cells/ml) were used for characterisation 

and functional assays in vitro and for adoptive transfer in vivo (Chapter 9). This was to 

ensure the absolute clonality of the populations used in subsequent analyses.

4.11 Assay of Ag-specific proliferation

The proliferative responsiveness of Ly-4+ T cell populations to a soluble lysate of pRBC 

Ags was routinely tested as described in 2.34. This assay determined the antigenic 

specificity of various lines and clones cultured in vitro and thereby demonstrated 

whether or not these preparations were immunologically primed to the blood stages of 

c. chabaudi AS against which the original cell lines used in this study had been raised. As
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such, this assay was used not only to confirm the antigenic reactivity of newly generated 

T cell lines and clones but also to examine periodically the maintenance of this 

specificity by long term cultures.

Figure 4.11.1 shows the proliferative responses of the four cultured IL-2-propagated T

lymphocyte lines used in this study. Each was assayed initially 7 d after the fourth

round of antigenic stimulation with solubilised pRBC lysate to enable comparison of the

respective growth rates. All the lines derived from semi-immune or immune mice
►

showed a significant proliferation when cultured with P. c. chabaudi AS Ag over the 

entire range of Ag lysate concentrations assayed. For each lymphocyte line, the maximal 

cellular growth was achieved by activation with 200 pg/ml pRBC lysate Ag, the same 

concentration already demonstrated to give optimal proliferations of unfractionated 

primed spleen cells (Fig. 4.8.4). Although the patterns of the dose-response curves for 

all the lines were essentially similar, the actual levels of tritium incorporation attained 

varied markedly. For WEP 737 and WEP 723, the cell lines established by culturing 

splenic lymphocytes taken from mice recovered from multiple infections, the degree of 

proliferation over the range 150-400 fig/ml pRBC lysate was significantly increased 

(p < 0.01) over that exhibited by either WEP 775 or WEP 779, derived from mice 

during primary infection (Fig. 4.11.1). There were, however, no significant 

differences (p < 0.05) between the proliferative responses between WEP 737 and WEP 

723 or between WEP 775 and WEP 779 at any lysate dilution tested. This reduced 

cellular growth pattern of the splenic lymphocyte lines taken from mice during the 

remission or subpatent periods of a primary P. c. chabaudi AS infection was similar to 

that observed previously for unfractionated post-primary parasitaemia spleen cells 

(Fig. 4.8.4). However, unlike the Ag concentration assays already described, where the 

response of d 16 p.i. freshly cultured spleen cells to uninfected RBC was also 

significantly less than that of post-infection splenic lymphocytes (Fig. 4.8.5), the level 

of proliferation of WEP 775 and of WEP 779 to nRBC lysate Ag was similar to that of 

WEP 737 and of WEP 723 (Fig. 4.11.2). There was no significant difference in the 

degree of [3H]thymidine uptake between any of the four Ly-4+ lines upon stimulation 

with uninfected RBC in vitro. Moreover, each population showed a peak proliferation 

when cultured with 150 pg/ml nRBC lysate Ag. Incidentally, this was the same nRBC 

lysate concentration observed to stimulate maximal growth of heterogeneous spleen cell 

populations (Fig. 4.8.5). The dose-response profiles upon activation by nRBC Ag (Fig. 

4.11.2) were similar to those for pRBC Ag-stimulated proliferation (Fig. 4.11.1);
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however, the peak responses for the former did not exceed 4,000 c.p.m. whereas those 

for the latter nearly reached a mean c.p.m. value of 30,000. Thus, the ability of pRBC 

lysate to induce lymphocyte proliferation by each of the P. c. chabaudi AS-primed cell 

lines was well in excess of that of the lysate preparation of uninfected RBC. This 

suggests strongly that the proliferation of each established Ly-4+ line was largely in 

response to stimulation by cocultured parasite-determined antigenic determinants. This 

response was dependent on the availability of APC, since no proliferation was observed 

when T cells were stimulated with pRBC lysate alone. That the lymphocyte lines were 

not activated by APC themselves was showed by a similar lack of growth in the absence of 

pRBC Ag (Fig. 4.11.1). Thus, the proliferation assay controls showed that APC were 

necessary in the in vitro culture system to process and present P. c. chabaudi AS Ags in a 

form recognised by the Ly-4+ T cell-APC complex.

In order to assess whether each of the in vitro-propagated lymphocyte lines varied in its 

Ag specificity upon continuous culture or after cryopreservation, the cell lines were 

assayed at different times throughout this study. This was necessary to ensure that the 

in vivo-primed and in vitro-cultivated spleen cell populations still recognised pRBC Ags 

before commencing an adoptive transfer experiment. That the lines did not drift in their 

Ag-specific proliferative response is shown in Figures 4.11.3 & 4, for WEP 775 and 

WEP 737, respectively. These were the two lines used for cell cloning. Each figure 

compares the dose-response curve of the originally assayed population (i.e. 7 d after the 

fourth feed) with that of the same stabilate after prolonged in vitro cultivation (cells 

assayed 7 d after the ninth feed; cultures were cryopreserved after the sixth 

stimulation and recovered from frozen to initiate the seventh feed). For both WEP 775 

and WEP 737, the tritium incorporation by the subcultured cell preparation was higher 

than that of the originally established population. This indicated that the lymphocyte 

lines not only maintained their Ag specificity in long term culture but actually exhibited 

an enhanced proliferative response after repeated subculture in vitro.

The clones derived by limiting dilution culture were also subjected to an Ag-specific 

proliferation assay; this was performed, as for the T cell lines, 7 d after the fourth feed 

with pRBC lysate, i.e. soon after the cloned populations had become established. Each 

batch of clones exhibited the same P. c. chabaudi AS pRBC-dependent cellular 

proliferation as that exhibited by the parent cell line (Figs. 4.11.5 & 6). For each 

cloned parent line, the pRBC lysate-stimulated proliferation at each Ag concentration for 

most of the daughter clones was within 2 S.D. of each other. However, each clone did
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have a recognisably distinct proiiferation pattern and differences did occur, most 

notably the lower growth rates of WEP 985 and WEP 986 compared to similar clones 

and to the parent WEP 737 (Fig. 4.11.6). In general, however, the growth rate 

characteristics of the homogeneous lymphocyte populations were similar to those of the 

line from which they were cloned, in terms of both specificity and magnitude. There was 

no difference in the Ag specificity of lymphocytes cloned from cell lines derived either 

from semi-immune or immune mice (for daughter clones of WEP 775 or WEP 737, 

respectively). This suggests that in vivo exposure to P. c. chabaudi AS for the relatively 

short period of 16 d was adequate to prime the splenic T cell population sufficiently to 

give a parasite-specific proliferative response that was maintained not only upon long 

term culture but also after cloning.

4.12 Assay of MHC restriction of Ag-specific proliferation

This assay was identical to that described previously to determine whether or not the 

proliferative response of Ly-4+ T cells was specific towards P. c. chabaudi AS Ag, save 

that instead of using only syngeneic NIH irradiated spleen cells as APC, allogeneic APC 

were also assayed (2.35). Various strains of inbred (NIH, C57BL/10) and H-2 

congenic (B10.AKM, B10.AQR, B10.BR, B10.D2, B10.G, B10.HTT, B10.R111, B10.S, 

B10.S(9R) & B10.6(TR)) mice were used to cover a wide range of MHC haplotypes 

(Table 4.12.1). All congenic mice used were on the B10 genetic background so that 

non-H-2 genes were identical; thus, any differences between the proliferation of Ly- 

4+ cells in response to presentation of pRBC Ag by APC of varying haplotype would be 

due to the influence of the H-2 complex alone. By using recombinant haplotypes, in 

which a genetic crossover has occurred within the MHC, it was possible to map, to a 

limited degree, the locus at which restriction resides.

As for 4.11, assays were performed on either Ly-4+ T cell lines or clones that had been 

established long term in vitro. This circumvented the problem of using non-selected T 

cells in such a system. If freshly primed Ly-4+ lymphocytes had been used, the assay 

would have been complicated by the presence of T cells with specificity for allogeneic H- 

2 determinants, thereby inducing a mixed lymphocyte reaction. The two cell lines 

tested, WEP 775 and WEP 737, were those that had been cloned by limiting dilution 

(4.10), and were taken 7 d after the seventh antigenic feed. The two representative 

clones investigated were WEP 999 and WEP 988, the highest dilution (0.1 cell/well) 

clones of WEP 775 and WEP 737, respectively. These were assayed 7 d after the fifth
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stimulation with pRBC lysate.

The results of these studies showed that the interaction of Ly-4+ T cells with accessory 

cells exhibited demonstrable MHC restriction in the recognition of P. c. chabaudi AS Ag. 

This was manifested by substantial proliferation of responder cells upon Ag presentation 

by syngeneic APC (NIH, B10.G strains) but not by allogeneic APC (Figs. 4.12.1-4). The 

dose-response curves of proliferation over the concentration range of pRBC lysate 

assayed were essentially alike for Ly-4+ cells presented Ag by H-2q haplotype of either 

NIH or B10.G origin, and were similar to those attained previously (4.11). Save for one 

exception, the proliferation by the responder cells cultured with allogeneic APC did not 

show dose-response kinetics, recording levels of tritium incorporation at all lysate 

concentrations barely greater than for negative controls (Figs. 4.12.1-4). There was 

no significant difference between the proliferation profiles of Ly-4+ lines and their 

daughter clones; this not only demonstrated the similarity in the proliferative response 

of cells before and after cloning, as shown earlier (4.11) but confirmed the enrichment 

of long term-cultivated T cells for malaria parasite antigenic specificity. If the 

proliferation of these lines in response to allogeneic APC function had been higher than 

that of background or had shown a response that varied with lysate concentration, it 

could be concluded that these responder cell preparations were not sufficiently pure to 

react in a unique manner in v itro . Fortunately, the homogeneity of the in vitro 

maintained lymphocyte populations was very high (Chapter 9), and thus these lines 

showed the same proliferation kinetics as did the daughter preparations for which 

clonality is assured.

A further insight into the basis of this genetically restricted proliferative response was 

gained by using APC of recombinant haplotype, in particular y1 and y2. APC from the 

B10.6 (TR) strain, which has the H-2d allele at the H-2° locus, but for which all other 

loci are filled by H-2^ alleles, supported a P. c. chabaudi AS-specific proliferation of 

the same intensity as that attained using syngeneic APC (Figs. 4.12.1-4). It would 

appear from this that the D region of the H-2 complex is not involved in the control of 

immune responsiveness to P. c. chabaudi AS. This finding was substantiated further by 

the use of B10.AQR strain mice as the source of splenic lymphocytes for Ag presentation. 

In this haplotype, none of the loci are occupied by H-2C' alleles except for the K locus 

(Table 4.12.1). APC from this mouse strain could not induce a proliferative response 

by the H-2C> Ly-4+ lymphocytes under test. Furthermore, the loss of the H-2^ allele at 

the H-2 l-A and l-E loci when changing APC recombinants from B10.6(TR) to B10.AQR
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resulted in the absence of a pRBC-specific cellular response. These data would therefore 

also occlude the D region of the MHC from a role in the control of T cell immunity to P. c. 

chabaudi AS. Further attempts to assign those H-2 genes influencing anti-malarial 

resistance to the different subregions of the MHC complex were not possible as only a 

limited number of H-2 recombinant mouse strains carrying H-2^ alleles are available 

at present. The results of this study do, however, indicate that malaria protective Ags 

can be presented in context with one or more molecules encoded by the l-A or l-E 

subregions of the H-2 complex.

4.13 Discussion

The results of the experiments detailed in this chapter describe the initiation and 

maintenance of anti-malaria helper T cell lines. This involved preliminary 

investigations to determine the optimum in vitro conditions suitable for specific Ly-4+ 

T cell enrichment by selective P. c. chabaudi AS-induced clonal expansion. The 

established pRBC Ag-dependent, IL-2-propagated lines were then subjected to single

cell cloning. Both daughter clones and parent lymphocyte lines retained Ag specificity in 

vitro, as evidenced by the fact that they could proliferate in response to a crude soluble 

lysate of P. c. chabaudi AS pRBC but not to a similar preparation made from nRBC. These 

results concur with previous findings using T cell lines raised against P. berghei (Gross 

f i l a l  1984, Gross & Frankenburg 1988) and P. c. adami (Brake £ ia i  1986, 1988). 

However, in both these sets of experiments, helper T cell populations were isolated only 

from the spleens of mice recovered from two full courses of blood stage malaria infection 

and not from mice at any earlier time. The data presented in this chapter indicates that 

anti-malaria T cell lines could be raised as soon as d 16 after challenge of the donor 

animals. Previously, Chemtai £ ia l (1984 a) had raised lymph node cell lines specific 

for the virulent IPPCI strain of P. c. chabaudi. These preparations were made using 

cells taken from naive mice primed for either 8 or 14 d. The proliferative response of 

these established lines was parasite-specific with similar dose-response 

characteristics. Recently, it has been reported that a specific response from splenic T 

cells could be measured as early as 7 d p.i. (Langhorne & Simon 1989). This 

investigation employed a limiting dilution assay of undefined splenic lymphocytes. 

Interestingly, Chemtai £ la i (1984 a) found no difference between the ability of whole 

or lysed pRBC to induce lymphocyte activation. Unlike the results presented, however, 

these workers failed to establish pRBC-specific lines in v itro  using splenic
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lymphocytes. They did succeed in attaining a P. c. chabaudi-specific T cell line by 

infecting donor BALB/c mice with P. c. chabaudi AS and rechallenging after recovery 

with the virulent IPPCI strain of the parasite. Thus, in all reported cases, it was 

possible to generate splenic T cell lines exhibiting parasite-specific responsiveness 

after priming by at least one in vivo infection. Therefore, in v ivo -primed T cells 

cultured in v itro  retain their capacity to respond to plasmodial Ags in v it ro . 

Furthermore, De Souza & Playfair (1988) demonstrated that there was a significant 

correlation between priming in vivo for helper T cells against blood stage P. voelii 

malaria and the immune protection conferred by the in vitro cultured cells upon 

subsequent immunisation. The effectiveness of in vivo activation of splenic T cells to 

malarial Ags, however, contradicts the report of Bandeira M a i (1987) who showed that 

in vivo primed splenic lymphocytes were refractory to IL-2-dependent growth in vitro. 

It is thought that this divergence may be due to the varying states of differentiation of the 

T cell populations involved.

Throughout this study, naive spleen cells were irradiated and these then used as the 

regular source of APC for in vitro culture purposes. These preparations proved 

satisfactory in the presentation of plasmodial Ags, so enabling clonal expansion of the 

responder cell population. However, Brake Mai (1988) found that coculturing APC 

with the same soluble Ag as that used to stimulate T cell proliferation for 3 hr before 

irradiation gave the highest cell growth response. This was presumably because the 

macrophages and B cells present in the spleen cell preparation were sensitised to the 

pRBC lysate Ags prior to cultivation. Furthermore, Chemtai Mai (1984 a & b) showed 

an increased proliferative response of peripheral lymph node cells to P. c. chabaudi 

pRBC lysate using lysate-fed macrophages. One drawback of APC sensitisation, however, 

is the reduced radiosensitivity at 30 Gy (Ashwell Mai 1988).

The preliminary standardisation of the in vitro culture conditions resulted in the use of 

these variables at values similar to those employed in previous studies. The responder 

Ly-4+ cells were cultured at 2 x105/ml, a concentration also used by Gross M a i 

(1984) and by Brake M a i (1986, 1988) whilst Chemtai M a i (1984 a) put lines up at 

5 x105 cells/ml. As the pRBC Ag used took the form of a lysate, its concentration was 

measured in terms of protein concentration. It was thus difficult to determine the 

amount of antigenic stimulation provided with that of other experimenters, who used 

whole, unlysed pRBC at 1 x106 pRBC/ml (Gross M a i 1984, Brake M a i 1986, 1988). 

Where Chemtai M a i (1984 a) did not use a lysate preparation, they quantified the
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volume added as a whole pRBC equivalent (2 x106/ml). The only study which can be 

compared directly to this one showed that the response of normal and P. voelii-immune 

freshly cultured BALB/c splenic lymphocytes was optimal with a dose of 400 jig /m l 

soluble Ag preparation (Weinbaum M a i 1976 a). This is twice the concentration of 

antigenic material used to stimulate T cell proliferation in this culture system, but this 

variance has no significance. In terms of APC concentration, there was a considerable 

difference between the various culture protocols. Gross M a i (1984) used 6 x106 

spleen cells/ml, whereas Brake M a i (1986, 1988) only 2 x105 spleen cells/ml. In 

the experiment described herein, splenic APC were cultured in vitro at 2 x106/ml, a 

value close to the 1 x106/ml peritoneal macrophages quoted by Chemtai M a i (1984 a). 

This variation in numbers is hard to explain, but is probably a reflection of the fact that 

spleen cell concentration is not a direct measure of APC concentration. Rather, the 

functional frequency of cells which fulfill the role of APC to different types of responder 

cell may vary according to such factors as the state of purification or differentiation of 

the T lymphocyte population. For instance, it has been demonstrated that the frequency 

of APC in unfractionated spleen cells is ^ 1:7000 but this increases markedly to 1:15 

when enriched populations consisting of 70-95% dendritic cells are used as stimulators 

(Goodacre M a i 1987). Despite this possibility of a large discrepancy in actual APC 

numbers used in different anti-malaria T cell culture systems, this variation is 

probably not critical as Goodacre M a i (1987) showed that APC frequency did not reflect 

directly the magnitude of Ag-induced T cell proliferation.

The in vitro proliferative response of immune spleen cells taken from mice recently 

recovered from a P. yoelii infection was maximal on d 3 when cultured with 106 pRBC 

(Weinbaum M a i 1976 a). Similarly, Chemtai M a i (1984 a) demonstrated in time- 

response experiments a maximal proliferation 3 d after initiation of cultures. These 

findings showed that in the T cell proliferation assays employed as a measure of pRBC 

Ag-specific cell growth, the [3H]thymidine alternative nucleotide precursor was added 

to the microtitre test plates when the lymphocytes were growing exponentially. Hence, 

the c.p.m. values obtained were likely to correlate well with the actual rate of induction 

of P. c. chabaudi AS-specific proliferation encountered after recent subculture of each of 

the Ly-4+ lines or clones.

Continuous T cell lines were propagated in culture by repetitive stimulation in the 

presence of P. c. chabaudi AS Ag and accessory cells. This technique of repeated cycles of 

antigenic stimulation and rest selects for a subset of T cells capable of supporting their
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own growth. This is because the continuous activation of lymphocytes in vitro by 

specific parasite Ags requires the presence of IL-2. As the exogenous supply of this 

lymphokine to cultured T cells would either be consumed rapidly under physiological 

conditions or otherwise denatured, the only lymphocytes that survive in vitro are those 

that produce their own autocrine growth factor. This selection mechanism, therefore, 

automatically favours the growth of Ly-4+ rather than Ly-2+ T cells as the latter have 

an absolute requirement for exogenous IL-2 for in vitro propagation (Taylor M ad

1987). It is now known that the two Ly-4+ T cell subsets, TH1 and TH2 differ in their 

autocrine growth factor secretion and growth response (Greenbaum M a i 1988). The 

inflammatory subset, TH1, produces IL-2 as its autocrine growth factor, proliferates in 

response to IL-2 and, in the presence of limiting amounts of IL-2, shows increased 

proliferation to IL-4. In contrast, the TH2 helper subset secretes IL-4 and proliferates 

in response to IL-2 or IL-4 in the presence of IL-1. It would appear that freshly 

cultured Ly-4+ lymphocytes of splenic origin would contain proportions of both 

functionally distinct subsets but that upon long term in vitro cultivation, established 

Ly-4+ lines contain predominantly cells of one or other type, but not both (Chapter 9). 

Although the reason for this differential selection of Ly-4+ subsets is not substantiated 

unequivocally, Greenbaum M a i (1988) have suggested that IL-1 may play a controlling 

role in the clonal expansion of Ly-4+ T cells of different functional types. This is 

because only TH2 lymphocytes grow in response to IL-4 and this is dependent on the 

addition of IL-1 (IL-1 is constitutively secreted by all Ly-4+ cells). This, in turn, 

suggests means by which the Ly-4+ T cell immune response could be directed into Ab- 

mediated or Ab-independent pathways.

Another aspect of the initiation and maintenance of T cell lines by the protocols used in 

this study is that after five cycles of Ag stimulation, the resulting Ly-4+ lymphocyte 

populations are comprised almost exclusively of pRBC lysate-specific cells so that 

cloning from these highly P. c. chabaudi AS Ag-specific lines can yield, with reasonable 

assurance, clones of predefined specificity. Indeed, this was the case when the WEP 775 

and WEP 737 lines were cloned by the modified methodology. The failure of the first 

attempt at cloning to yield any clones of sufficient size to propagate further may have 

been due, in part, to a low specific precursor frequency. The subsequent limiting 

dilution procedure employed lines that had been established long term in culture, and 

were, therefore, presumably of a more homogeneous nature. However, the difference in 

the success rates of the two cloning attempts was also attributable to the switch from
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auto IL-2 to anti-CD3 Abs to activate polyclonally T cells in v itro . Whereas virgin T 

lymphocytes remain relatively quiescent with regard to cell growth in the presence of 

anti-CD3, it has been shown that the Ab to CD3 induces IL-2 production and cellular 

proliferation of primed or memory T cells in vitro (Byrne £ la i 1988). Thus, the use of 

this MAb to trigger clonal expansion acts to bias single cell proliferation in favour of 

those cells which are malaria parasite-specific. Although clonal activation and 

proliferation by such means can occur in vitro, it remains to be seen whether such 

expansion can be driven regularly by Ag under anything approaching physiological 

conditions.

The response of Ly-4-bearing T cells, both before and after cloning, was specific to the 

AS strain of P. c. chabaudi against which the lines had been previously primed in vivo. 

The proliferative response, as measured by tritium incorporation, was consistently 

found to be specific for pRBC, compared to an nRBC control. In another study, Brake £ i 

a i (1986) showed that Ly-4+ cell lines raised to P. c. adami pRBC could proliferate in 

response to cells infected with this species, but not to a similar preparation made from 

RBC infected with P. berghei. This highly specific proliferation is not that surprising in 

view of the fact that in vitro propagation selects for populations of cells with greater 

reactivity to the original priming Ags (Horn a ta i 1986).

The process of plasmodial Ag recognition by cultured T cells has an absolute requirement 

for APC, since no proliferation was detected in the absence of such cells. These findings 

are consistent with previous observations that showed Ag-specific proliferation to 

parasite Ags only in the presence of additional accessory cells (Louis £ ia i 1979, 1981). 

In particular, other studies have reported the necessity for APC in anti-malaria T cell 

cultures (Chemtai e la l  1984 a & b, Gross £ ia i 1984, Gross & Frankenburg 1988, 

Brake £ la i 1986, 1988). Furthermore, MHC compatibility between APC and responder 

T lymphocytes was required for P. c. chabaudi AS-induced T cell proliferation, since 

only syngeneic splenic APC were effective in presenting pRBC Ag. In the system studied, 

APC of the same H-2^ haplotype as the NIH murine Ly-4+ cells used were capable of 

participating in the APC-T cell complex. However, allogeneic APC failed to participate 

in any cognate T cell-APC reaction. These data suggest that splenic T cells derived from 

P. c. chabaudi AS-immune or semi-immune NIH mice maintain plasmodial Ag specificity 

in an H-2-restricted manner when cultured in vitro. A similar finding was reported by 

Brake £ ia i  (1986), who showed MHC restriction in the presentation of Ags to P. c. 

adam i-specific T cells. In this case, BALB/c mouse strain APC of the same H-2d
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haplotype as the responder cells could effectively present lysate, but allogeneic H-2k 

haplotype APC (CBA/J mice) were unable to induce a proliferative response in the 

presence of homologous pRBC. The mechanism of resistance to P. c. chabaudi AS has been 

examined, first by Stevenson M a i (1982) and then in more detail by Wunderlich e ia l 

(1988). These investigations indicated that murine resistance to P. c. chabaudi AS is 

under complex polygenic control involving one or more non-H-2 genes as well as genes 

in both l-A and l-E subregions of the H-2 complex. With regard to parasite-specific T 

cell proliferation, malaria-protective Ags were thought to be presented in context with 

l-Ab molecules but not in context with l-Ak molecules. The data presented, though less 

complete, do support these findings. Using strains of mice recombinant at the H-2 

complex, preliminary investigations implicated the l-A and/or l-E regions of the MHC 

in the determination of parasite-specific immune reactivity. That l-Ab-encoded 

molecules present Ag could not be discounted from the results. Moreover, the 

observation by Wunderlich M a i (1988) that the D MHC region lies outwith genetic 

control'of anti-P. c. chabaudi immunity was confirmed. Together, both sets of MHC 

restriction analyses indicate that the proteins encoded by the K and D regions of the H-2 

complex do not interact in Ag recognition and presentation. This is not surprising since 

the K and D loci contain class I genes which code for transplantation Ags, the presence of 

which on cytotoxic Ly-2+ T cells plays a role in killing target cells. This fits with other 

line of investigation which tend against Ly-2+ T cells conferring protection against blood 

stage malaria parasites.

As genes in the I region of the H-2 complex encode class II molecules which play a 

dominant role in Ag presentation to Ly-4+ cells (Klein 1975), it was originally 

presumed that Ag presentation and/or T cells were defective with respect to pRBC Ags in 

P. c. chabaudi AS-susceptible strains of mouse. This, however, proved not to be the case 

(Wunderlich M a i 1988) as no general defect in APC presentation or in the ability of 

Ly-4+ T cells to be stimulated by P. c. chabaudi AS amongst various murine strains has 

been found. Rather, it has been demonstrated that host survival after infection with this 

malaria parasite may be determined by the ability to replace destroyed RBC quickly and 

efficiently (Stevenson M a i 1982). It appears that it is the rate of erythropoiesis that 

is genetically controlled. Moreover, information is available that murine resistance to 

Plasmodium is sex-dependent in that female mice are more resistant than male mice; 

this has been ascribed to a superior erythropoietic system in females (Stevenson M a i 

1982). Recently, the sex hormone testosterone, the regulation of which is H-2-linked
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(Klein 1975), has been implicated in susceptibility to malaria. Wunderlich £ ia i  

(1988) described experiments in which the l-Ab-controlled resistance to P. c. chabaudi 

AS was abrogated by treatment of mice with testosterone prior to challenge. The 

mechanism by which testosterone exerts its negative effect is unknown, but whatever 

this may be, the fact that this sex hormone interferes with the development of protective 

immune mechanisms against malaria parasites has an important implication for vaccine 

development against human malaria. Thus far, studies of natural P. falciparum 

infections in man have indicated, but not proven, that the apparent non-responsiveness 

to the malaria-specific Ag Pf155/RESA of certain blood donors is due to genetic 

restriction, in this case of the HLA complex (e.g. Troye-Blomberg £ ia i  1988). The 

uncertainty with which results have been viewed reflects the fact that in most field 

studies in endemic regions, very few of the infected individuals examined had a similar 

match of MHC class II haplotypes, making evaluation of the relationship between MHC 

type and malaria T cell responsiveness very difficult. It should be stressed that genetic 

control of immunity to malaria is not unique to the asexual erythrocytic stages, for it 

has also been shown that protection to the exoerythrocytic stages of P. yoelii is 

controlled by H-2 and non-H-2 genes (Weiss £ ia i  1989). If similar complex 

regulation of immunity to these stages also occurs in the human malarias, this too will 

be a major hurdle for vaccine production.

Finally, the results of this chapter show the occurrence of immunodepressed lymphocyte 

responses to P. c. chabaudi AS Ags. This was observed both with unfractionated spleen 

cell preparations, and, more significantly, with established lines and clones of the Ly- 

4+ phenotype. With all these sources of cells, the Ag-specific proliferative response 

was significantly lower for lymphocytes taken during acute infection than for those 

taken from mice convalescing from infection. This transient immune non

responsiveness of the cell-mediated immune system has been little studied in murine 

models of malaria and has been described previously only for P. voelii-infected mice 

(Weinbaum £ ia i 1976 a, 1978). In the experiments performed, the cellular growth of 

all assayed cells, irrespective of the degree of response, was pRBC lysate-specific. This 

finding is in line with those reported by others working on P. falciparum infection (Kass 

f i ia i  1971, Wyler & Oppenheim 1974, Bygbjerg £ la i  1981, Troye-Blomberg £ ia i  

1983 b). Further, responsiveness of T cells from patients with acute P. falciparum 

malaria gave a weak but specific proliferation, peaking after 3-4 d of incubation, but 

waning within 5-6 d (Troye-Blomberg £ ia l 1983 b, 1984). In contrast, T cells from
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a group of apparently immune donors living in highly malaria endemic areas developed 

strong and long-lasting proliferative responses to P. falciparum AS with a peak on d 5-6 

of in vitro culture. A very similar response pattern was also obtained with spleen cells 

from malarious mice (Weinbaum 1976 a). The experiments herein were also very 

similar, for spleen cells taken on d 16 of a primary infection of P. c. chabaudi AS or Ly- 

4+ lines or clones generated from spleens of mice sacrificed on d 16 or d 20 p.i. showed 

low proliferative responses compared to spleen cell preparations or lines derived from 

multiply-infected mice. The finding of reduced proliferation of lymphocytes only during 

the primary parasitaemia or subpatency indicates the occurrence of immune 

suppression. Like the P. falciparum system of Troye-Blomberg £ ia l  (1983 b), this 

suppression could not be overcome by increasing the pRBC Ag dose.

There are conflicting reports on the proliferation of lymphocytes of non-sensitised 

individuals upon exposure in vitro to P. falciparum Ags. It has been reported that 

plasmodial extracts have non-specific mitogenic effects on human lymphocytes in vitro 

(Wyler & Oppenheim 1974, Greenwood & Vick 1975, Greenwood £ ia i 1979, Druilhe Ql 
a i 1980, Ballet e ia i  1981, Gabrielsen & Jensen 1982). However, Bygbjerg £ ia l  

(1981, 1985) indicated that P. falciparum Ags had a seemingly specific stimulating 

effect on parasite-primed human lymphocytes. The results described in this chapter 

support this latter view, for the response of uninfected spleen cells to P. c. chabaudi AS 

pRBC Ags was markedly less than that of primed lymphocytes, even those taken on d 16 

p.i.. This difference may be due to the difficulties encountered by many authors in 

distinguishing between Ag-specific and polyclonal stimulatory effects of malaria blood 

stage extracts. Recently, Riley £ ia i (1988 a) have shown that lymphocytes of malaria- 

immune adults respond in an Ag-specific manner to purified soluble malaria Ags but that 

crude P. falciparum schizont sonic extract is non-specifically mitogenic for both 

immune and non-immune cells. Thus, the different results described previously may be 

due to the use of pRBC Ag preparations of varying definition.

A preliminary investigation into the mitogenic reactivity of spleen cells primed to 

varying degrees to P. c. chabaudi AS suggested that the response of semi-immune 

lymphocytes to the T cell mitogen Con A was less than that of either fully immune or 

naive spleen cells. This would indicate a general suppression to all sources of 

stimulation on behalf of lymphocytes taken during the acute phase of a primary 

infection. This finding contradicts that of others using P. falciparum (Brasseur £ ia l  

1983, Troye-Blomberg e la l 1984). This observation may have reflected the activation
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of suppressor mechanisms by other splenic cell types. Indeed, a major suppressor cell 

of adherent macrophage origin has been suggested to be important in animal malaria 

(Strambachova-McBride & Micklem 1978, Correa e l a l  1980). As such, this 

experiment most likely highlighted the feature of non-specific immunosuppression that 

occurs in acute falciparum malaria infections in man (Weidanz 1982) and presumably 

also during murine malaria. Recent evidence suggests that there is also specific 

suppression of T cell-mediated responses to malaria Ags during acute infection, but that 

cellular responses to many other Ags are not affected. As the established Ly-4+ lines and 

clones were not tested for reactivity upon mitogenic stimulation, neither possibility 

could be pursued. What was unequivocally demonstrated, however, was the dose- 

responsiveness of Ly-4+ in vivo-primed T lymphocytes to homologous pRBC lysate in 

v itro . An alternative explanation of these findings has been provided by Riley £ ia !  

(1988 b) who found that a crude extract of P. falciparum Ags did suppress 

lymphoproliferative responses to mitogens. The degree of suppression appeared to 

correlate with the level of lymphocyte proliferation to the pRBC preparation, and was 

correspondingly more marked in malaria-immune donors than in non-immune donors. 

This study is similar to that carried out herein in the use of crude parasite 

preparations, and this may have been responsible for the similar patterns of T cell 

mitogenic activity.

The consensus of opinion now forming is that for P. falciparum in man, cellular immune 

responses are suppressed during acute infection and that this may contribute to the slow 

acquisition of protective immunity after natural exposure to infection. However, 

specific lymphoproliferation can be induced by crude parasite extracts and soluble 

purified Ag in peripheral blood lymphocytes from recently recovered individuals 

(Wyler & Oppenheim 1974, Troye-Blomberg £ ia i 1983 b, Bygbjerg £ laJ 1985). A 

similar response was observed using cloned lines of Ly-4+ T cells derived from mice 

primed to P. c. chabaudi AS by multiple infection. For further dissection of this system, 

purified P. c. chabaudi AS Ags will have to be used for lymphocyte activation. The use of 

defined Ags has been used already to study the lymphocyte proliferative response to fL. 

falciparum (Riley £ la i  1990) and to P. vivax (Goonewardene q1 q[ 1990) malarias, in 

both of which non-responsiveness was a feature.

In general, non-responsiveness to a given Ag could have several causes, including the 

induction of suppressor circuits (Sercatz e i a i  1978), the failure of Ag-MHC 

interaction (Allen 1987) or tolerance to MHC-Ag complexes (Vidovic & Matzinger
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1988). T cell clones have also been rendered non-responsive or tolerised by exposure 

to high doses of IL-2 (Pawelec s ia l  1989). It appears that in Trypanosoma cruzi 

infection of mice, for which suppression of the parasite-specific proliferative response 

is also restricted to the acute phase of infection, the high antigenic load and the extensive 

polyclonal activation of lymphocytes that occur in the spleen may be responsible for the 

reduction in the specific spleen cell responses elicited soon after the start of infection 

(Curotto de Lafaille f i l  a l 1990). For falciparum malaria, there is some evidence that 

C D 8+ T cells are implicated in the Ag-specific suppression of primed lymphocyte 

proliferation (Riley £ ia l  1989 a & b).
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Table 4.10.1
Generation of Ly-4-bearing T lymphocyte clones

Id en tity  Cloned Limiting dilution

(WEP no.) L y - 4 + line ( C e l l s / w e l l )

979 1.0
980 1.0
981 1.0
982 1.0
983 737 1.0
984 1.0
985 0.5
986 0.5
987 0.5
988 0.1

989 1.0
990 1.0
991 1.0
992 1.0
993 1.0
994 775 1.0
995 1.0
996 0.5
997 0.5
998 0.5
999 0.1
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Table 4.12.1
MHC restriction analysis of Ag-specific 
prol i ferat ion:
strains of mice used and their H-2 haplotypes.

Strain Haplotype H-2 locus alleles

Classical K

C
O

.
■<

A-a E-p E-a D

NIH q q q q q q q
B10.G q q q q q q q

C57BL/10 b b b b b b b

B10.BR k k k k k k k

B10.AKM m m m m m m m

B10.R111 r r r r r r r

B10.S s s s s s s s

Recombinant

B10.D2 91 d d d d d b

B10.HTT t3 s s s s/k k d
B10.S(9R) t4 s s s s/k k d

B10.AQR yi q k k k k d

B10.6(TR) y 2 q q q q q d
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CHAPTER FIVE

ADOPTIVE TRANSFER OF T CELL LINES TO NAIVE 

SYNGENEIC RECIPIENTS
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5.1 Introduction

Adoptive transfer of immunity to malaria has been performed in the past using 

unfractionated or enriched lymphocytes of lymph node or splenic origin from immune 

rodents (Stechschulte 1969, Roberts & Tracey-Patte 1969, Kasper & Alger 1973, 

Gravely & Kreier 1976, McDonald & Phillips 1978, Cavacini e la i  1986, Favila- 

Castillo a la l 1990). An alternative to the use of in vivo-derived lymphocytes is to use 

in vitro-oenerated. Ag-specific T cell lines. Such cultured lines have in recent years 

been shown to transfer a protective immune response to Plasmodium berghei (Gross a l 

a l 1984) and to P. c. adami (Brake £ ia i 1986). Accordingly, it was decided to adopt a 

similar approach for this work.

The generation of four stable Ly-4+ T cell lines was described in Chapter 4. As for 

previous investigations, two of these lines were derived from donor mice rendered 

immune by two (WEP 737) or three (WEP 723) P. c. chabaudi AS infections. For the 

first time, however, pRBC lysate-specific, in vitro-propagated Ly-4-bearing T cells 

derived originally from mice undergoing a primary infection have been used in the P. c. 

chabaudi AS/NIH mouse system for analysing the possibility of conferring immunity 

using a relatively homogeneous Ly-4+ cell population. Two lines were prepared from 

mice recovering from the primary parasitaemia, on d 16 and d 20 p.i. (WEP 775 and 

WEP 779, respectively).

The evidence so far points to an important role for Ly-4+ T cells in the protective 

immune response to P. c. chabaudi (Suss 1988) and to the related parasite P. c. 

adami (Cavacini £ ia i  1986). Furthermore, protection against an infection with P. c. 

adami was demonstrated with Ly-4+ T cell lines specific for undetermined pRBC Ags 

(Brake £ ia i  1986). Suss £ ia i  (1988) implicated Ly-4+ cells in resistance to P. c. 

chabaudi by an alternative approach of selective immunodepletion. Thus, the parallel 

study to that of Brake £ la i  (1986) had not previously been performed in this rodent 

model system.

Following pRBC Ag stimulation in vitro, the effects of adoptive T cell transfer of host 

resistance to a primary infection with P. c. chabaudi AS in immunocompetent, naive 

mice were assessed. Functional heterogeneity of Ly-4+ T cell clones specific for a 

variety of antigenic determinants has been evaluated extensively (Mosmann & Coffman 

1987, Abbas 1987), and it has been speculated that in vivo these T cells may play 

different roles in immune responses and have different activation requirements. With 

regard to P. c. chabaudi AS infection, the frequency of appearance of Ly-4+ subsets

276



throughout infection suggests that the majority of Ly-4+ lymphocytes responding to P. c. 

chabaudi AS early in infection are of the TH1-type, whereas by the time of patent 

recrudescence, this pattern is reversed with a predominance of TH2 responder cells 

(Langhorne £ ia i 1989 a). Therefore, the use for adoptive transfer of Ly-4+ lines taken 

by d 20 p.i. and of lines taken after reinfection proved pertinent in examining the nature 

of the in vivo T cell response.

It has been established that each of the four splenic lymphocyte lines described in this 

chapter respond specifically to P. c. chabaudi AS pRBC Ags in v itro , in an MHC- 

restricted manner (Chapter 4). The adoptive transfer studies documented herein extend 

this in vitro characterisation by correlating the lymphoproliferation observed under 

culture conditions with protection against homologous parasite challenge in vivo. This 

link between specific lymphoblast proliferation in vitro and immunity to malaria was 

originally demonstrated by Weissberger £ ia l  (1980), so it was surmised that each 

proliferative T cell line generated may exhibit immunological activity in v ivo . Prior to 

the dissection of the effector mechanisms of the anti-P. c. chabaudi AS response by T cell 

reconstitution of immunocompromised recipient mice (Chapters 7 & 8 ), it was 

necessary to evaluate the effect of each of the Ly-4+ populations on the expression of 

infection in normal, immunocompetent recipients. Also, further experiments were 

performed to determine whether or not the protection engendered by the T cell 

preparations inoculated into challenged mice was due to the mediation of lymphocytes of 

the Ly-4+ phenotype, or, alternatively, to any minority of cells possibly contaminating 

each preparation. The value of this precaution had been highlighted by the finding of 

Mogil e ia l  (1987) that the transfer of immunity to P. yoelii 17X NL by immune Ly-1 + 

T cells (predominantly Ly-4+) was absolutely dependent upon cotransfer of a non- 

T/non-B immune spleen cell found in splenic preparations at a low frequency. As no 

equivalent requirement has been reported for the elaboration of immunity to P. c. 

chabaudi AS, it was likely that any protective effects observed in vivo were caused by the 

majority Ly-4+ population. However, as these lines were uncloned at the time of this 

study, this qualification was essential.

5.2 Adoptive transfer of in vitro generated P. c. chabaudi AS-specific T 

cell lines to naive, syngeneic recipients.

Each of the four Ly-4+ cell lines to be used in this study was propagated in vitro in bulk 

cultures prior to adoptive transfer to gain sufficient viable lymphocytes for inoculation.
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As a result of the intrinsic proliferative response of these Ly-4+ populations to 

antigenic stimulation, cultures were harvested 3-4 d after the previous subculture 

when the cultures had grown sufficiently but when the majority of cells were still 

dividing logarithmically.

For each line, lymphocytes were adoptively transferred to six age-matched NIH female 

mice. The standard inoculum used was 3 x107 viable cells, injected i.v.. Control groups 

receiving similar sized inocula of either unfractionated splenic T & B cells or enriched T 

cells were also prepared. For these, naive non-immune donor mice were used. All 

animals were infected with 1 x105 pRBC P. c. chabaudi AS immediately after adoptive 

transfer, and the consequent infection followed by daily blood smears. Two normal mice 

were also challenged as a control of infection in immunocompetent individuals.

Each of the Ly-4+ T cell lines gave detectable protection against homologous P. c. 

chabaudi AS challenge after adoptive transfer into naive syngeneic recipient mice. This 

was manifested as a significantly lowered primary peak parasitaemia, a more rapid 

remission phase and a shift in the recrudescence parasitaemia which was also usually 

depressed, compared with control mice given a similar number of naive splenic T or T & 

B cells (Figs. 5.2.1 & 2). This was a general trend of enhanced immunity to infection. 

There were, however, exceptions; although all mice inoculated with WEP 775, 779 or 

737 resolved the acute infection by d 16 p.i., mice given WEP 723 showed a subpatent 

parasitaemia only at the same time, d 19 p.i., as did those mice given naive spleen cells. 

Also, for WEP 723, the reduction of peak primary parasitaemia (mean = 23%) 

compared to control groups (e.g. splenic T & B recipients, mean = 35%) was not as 

significant (p < 0.05) as those seen upon transfer of the other cell lines (e.g. WEP 779, 

mean = 11%, p < 0.01). However, WEP 723-transferred mice did show a lower 

recrudescence than did mice receiving either WEP 737 or splenic T & B cells.

For recipients of all lymphocyte lines, the subpatent period was of longer duration than 

for control groups, in which subpatency lasted either 7 or 8 d (Figs. 5.2.1 & 2). The 

length of the subpatent period ranged from 10 d (WEP 723) to 21 d (WEP 779). 

Despite the fact that the subpatency was so extended for recipients of WEP 779, the 

mean parasite clearance for this group was at the same time as that of mice inoculated 

with naive spleen cells (Fig. 5.2.1). For WEP 737 and WEP 723, recipients cleared the 

infection by d 43 and 44 p.i., respectively, well in advance of the d 54 p.i. clearance 

time for mice injected with naive T & B lymphocytes (Fig. 5.2.2).

It was apparent from this experiment that each Ly-4+ cell line was capable of
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conferring considerable protection to naive mice against P. c. chabaudi AS challenge. 

This was observable as each of the criteria used to evaluate the effects of protective 

immune responses on challenge parasitaemias (2.8). However, it was also evident from 

the parasitaemia determinations that the courses of infection in the recipients of these T 

cell lines fell into two distinct groups, WEP 775 and WEP 779 (Fig. 5.2.3), and WEP 

737 and WEP 723 (Fig. 5.2.4). Within each category, the patterns of parasitaemia 

were broadly similar, but between categories, there were clear differences (Figs. 5.2.3 

& 4). In the case of WEP 775 and WEP 779, those lines derived early during primary 

P. c. chabaudi AS infection, the subpatent period was considerably longer than those in 

recipients of the multiple infection-derived cell lines, WEP 737 and WEP 723. 

Consequently, the recrudescent parasitaemias occurred earlier and were cleared earlier 

for mice receiving either lymphocyte population from the Latter group. It should be 

noted, however, that the divergency in the patterns of parasitaemia observed upon 

adoptive transfer of different P. c. chabaudi AS-specific T cell lines to naive recipients 

was noticeable principally only after remission of the acute infection to subpatent 

levels. During the first wave of infection, the pattern of the primary parasitaemia and 

the timing of its peak, if not its level, were essentially similar. This dichotomy in the 

manifestation of the protection conferred by the various in vitro-propaaated cell lines is 

exemplified by Fig. 5.2.5. The courses of infection of mice receiving WEP 775 and WEP 

737 began to differ significantly only on d 26 p.i., before which the pattern and degree 

of parasitaemia were indistiguishable. In each case, the level of immunity conferred by 

transfer of these parasite-specific populations was greater than either naive spleen cell 

preparation used. It was encouraging to see P. c. chabaudi AS-specific immune 

responses exhibited by both WEP 775 and WEP 737 in the immunocompetent transfer 

system (Fig. 5.2.5), as these were the two Ly-4+ lines which were subsequently cloned 

by limiting dilution. This enhanced protection beyond that engendered by either naive 

transferred lymphocytes or naive background lymphocytes already present in the 

immunocompetent host demonstrated that there was a direct correlation between the 

plasmodial specificity for lymphoproliferation in vitro and the protective immune 

response observed in vivo. In turn, this finding showed that it was not necessary to 

prime donor animals by a full course of infection to achieve effective protection in vivo, 

for WEP 775 and WEP 779, derived from infected mice on d 16 and d 20 of primary 

infection, adoptively transferred specific anti-P. c. chabaudi AS immunity. Clearly, the 

priming of these two Ly-4+ lines to only early appearing, and not recrudescent,

279



antigenic determinants did not prevent or reduce their ability to confer protection in  

vivo. Also, for all cell lines, the fact that a heightened immune response was observed 

upon adoptive transfer indicated that each Ly-4+ population had maintained its specific 

recognition of P. c, chabaudi AS Ags throughout in vivo priming, in vitro propagation and 

then adoptive transfer. This vindicated the selection of a pRBC lysate enriched for late 

trophozoite and schizont stages of the malaria parasite for antigenic stimulation in vitro, 

and showed that the same pRBC Ags were recognisable in vivo as in vitro.

5.3 In vi tro depletion of Ly-4+ T cell lines

The adoptive transfer experiments described in 5.2 would suggest that each of the T cell 

lines established in vitro was capable of conferring immune protection in v iv o . 

However, from surface immunofluorescence and complement-mediated cytotoxicity 

studies (Chapter 9), it was known that there was a residual population of cells present 

in each T lymphocyte population that was not phenotyped to either the Ly-4+ or Ly-2+ T 

cell subset. To examine the proliferation of these Ly-4' Ly-2' cells in v it ro , a 

population of a given T cell line could be depleted of lymphocytes bearing either or both 

Ly-4 or Ly-2 cell surface markers (2.41). This was achieved by incubation of the cell 

line with either one or both MAbs to Ly-4 or Ly-2 Ags to give Ly-4', Ly-2' or Ly-4' 

Ly-2* populations. The cellular response of any cells surviving this treatment was 

measured by a proliferation assay in the presence of P. c. chabaudi AS pRBC lysate as the 

source of stimulation (2.41 a).

Figs. 5.3.1 & 2 show the proliferative response, as determined by [3 H] thymidine 

incorporation, of the WEP 775 and WEP 737 T cell lines after various in vitro depletion 

treatments. The levels of tritium uptake measured were of those cells not lysed by 

incubation with specific MAb and complement. As the lymphocyte lines were known to be 

predominantly of the Ly-4+ phenotype (Chapter 9), use of the anti-Ly-2 MAb had 

negligible effect on the proliferation detected (Figs. 5.3.1 & 2). In contrast, use of both 

MAbs abrogated completely the proliferative response of the test cells. Incubation of the 

cultured populations with the anti-Ly-4 MAb had a similar effect in reducing the 

subsequent cell growth to a minimum level. Thus, the effective loss of responder cell 

growth by treatment with the anti-Ly-4 MAb alone would suggest strongly that it was 

the majority Ly-4-bearing lymphocytes that were responsible for proliferation in the 

presence of P. c. chabaudi AS Ags under optimal in vitro culture conditions. Upon 

depletion of Ly-4+ cells, the small Ly-2-bearing population did not grow, showing that
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these lymphocytes were incapable of proliferating in response to P. c. chabaudi AS pRBC 

Ags. This was because the Ly-2+ T cell subset has an absolute requirement for class I 

H-2-restricted Ag presentation. Moreover, the fact that there was little detectable 

growth in the absence of both Ly-4+ and Ly-2+ T lymphocytes showed that the minority 

fraction of Ly-4' Ly-2' cells contaminating each preparation was unable to overgrow 

the T cells under physiological conditions.

That the non-proliferation of the WEP 775 and WEP 737 cell lines upon incubation with 

the anti-Ly-4 MAb was due to specific depletion of Ly-4-bearing lymphocytes and not to 

some non-specific cytotoxic effect was demonstrated by assaying control cultures of 

naive splenic T ceils with each of the MAbs (Figs. 5.3.3). For these preparations, the 

depletion by a combination of anti-Ly-4 and anti-Ly-2 MAbs was nearly complete. 

However, the proliferation attained after incubation with either MAb by itself was just 

over half that attained by the negative control to which no MAbs was added. Allowing for 

contamination, especially by B cells, of this nylon wool-enriched preparation, the 

degree of tritium incorporation after incubation with either anti-Ly-4 or anti-Ly-2 

MAbs was commensurate with the fact that each subset comprises approximately half of 

the splenic T cell complement.

As each MAb was cultured with both Ly-4+ lines at a range of dilutions, this assay also 

served as a quantitative determination of the minimum titre of both anti-Ly-4 and anti- 

Ly-2 MAbs that could be used to deplete effectively these T cell subsets in vitro. As is 

evident from Fig. 5.3.4, the highest titre of the anti-Ly-4 MAb used in this study, 

1:1000, was sufficient to eliminate most Ly-4+ lymphocytes present in the culture 

wells. All activity was lost at lower dilutions. There was a similar situation in the case 

of anti-Ly-2 depletion, exemplified by Fig. 5.3.5. This is not as straightforward to 

interpret, as the depletion occurred only for splenic T cells, and then it was only partial. 

However, examination reveals that the level of depletion was similar at all MAb titres, 

and was not dependent upon the dilution used. Figure 5.3.6 shows similarly that for all 

preparations, including the splenic T cell control, total lymphocyte depletion was 

achieved by incubation of cultures with both MAbs at all dilutions tested. This was 

manifested as a lack of proliferation of any remaining viable cells present in the test 

wells. Thus, it appeared that for both MAbs, against Ly-4 and Ly-2 T cell surface 

determinants, depletion could be effected at quite low titres and therefore the dilutions 

used to remove subsets from culture for adoptive transfer of those cells surviving such 

treatment would not be critical (5.4). In the event, the relatively high titre of 1:50
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was used, as recommended (2.41 b) (Cobbold £ la i 1984, Harte £ la l  1985 a).

5.4 Adoptive transfer of in vi t ro Ly-4+- and/or Ly-2+-depleted T cell 

lines to naive syngeneic recipients

The adoptive transfer of Ly-4+ T cell lines to immunocompetent recipients showed that 

in this system these relatively homogeneous populations of lymphocytes were able to 

give detectable protection against primary P. c. chabaudi AS infection (5.2). 

Furthermore, depletion of the majority Ly-4+ cellular component of either WEP 775 or 

WEP 737 using a specific MAb abrogated the P. c. chabaudi AS Ag-specific proliferation 

that was a characterisic of these cell lines (4.11). There was, therefore, indirect 

evidence that it was the Ly-4-bearing proportion of lymphocytes in each population that 

was responsible for the protection conferred by these cell lines upon adoptive transfer. 

To demonstrate unequivocally in which T cell subset or other cellular fraction the 

protective activity resided, a further adoptive transfer was performed. The courses of 

infection of challenged mice were followed after inoculation of either WEP 775 or WEP 

737 cell lines which had been previously treated in vitro to deplete differentially either 

Ly-4+ or Ly-2+ T lymphocyte subset or deplete totally both (2.41 b). Most transfers 

involved the administration of complete cell culture preparations, which usually 

contained large numbers of dead cells. To control for the possibility of exacerbation of 

parasitaemia due to immunological consequences of the inoculation of a large dose of dead 

material and non-cellular debris that may conceivably have occurred, control groups 

were prepared. Mice in these groups received in v itro -depleted lym phocyte 

preparations that had been cleansed of the non-viable fraction so that only extant cells 

were transferred. This was desirable to show whether or not Ly-4' Ly-2' cells, in the 

absence of cellular interaction with these T cell subsets, could transfer any degree of 

resistance against P. c. chabaudi AS challenge.

Groups of five NIH mice were set up, including undepleted WEP 775 and WEP 737 T cell 

lines. For recipients of these lymphocytes, each mouse was given 3.0 x107 cells. In the 

case of Ly-2+-depleted cultures, the total number of cells to be transferred was 

adjusted so that 3.0 x107 viable cells were administered to recipient animals. However, 

in the instances where MAb treatment resulted in a very low yield of surviving cells, 

such as Ly-4+-depletion or combined MAb depletion, it was impracticable to inoculate a 

similar number of viable cells; thus, a total of 3.0 x107 cells was used for adoptive 

transfer, and the actual number of viable cells inoculated was proportional to the
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percentage of cells in the original T cell line preparation which the cells surviving 

treatment comprised. No effort was made to inoculate equal numbers of all 

phenotypically distinct subpopulations within each T cell line, as the numbers 

administered reflected their proportions in these populations, and thus, the effects of 

each under experimental conditions. It is probable that if 3.0 x107 Ly-4 ' Ly-2' cells 

had been transferred to naive recipients, a non-specific protective effect may have been 

observed. This would be a dose-dependent phenomenon and would not reflect the specific 

anti-P. c. chabaudi AS immune activity conferred by the in vitro-propaoated lines upon 

inoculation of the equivalent of a splenic population, i.e. 3.0 x107 undepleted 

lymphocytes of either WEP 775 or WEP 737 Ly-4+ cell line.

The courses of infection upon adoptive transfer of in vitro-depleted WEP 775 cells to 

challenged naive mice is shown in Fig. 5.4.1. For recipients of either Ly-4+-depleted 

or Ly-4+-/Ly-2+-depleted preparations, the resultant course of infection was similar 

to that seen in negative controls of mice challenged without adoptive transfer. This was 

observed as a similar pattern of parasitaemia with the same degree of acute 

parasitaemia, the same length of subpatency and the presence of a secondary 

recrudescence. Indeed, the remission of the acute infection occurred later, though not 

significantly (p > 0.05), than for the normal P. c. chabaudi AS infection in naive mice. 

Thus, it appeared from these results that the Ly-4' or Ly-4' Ly-2' populations of the 

original WEP 775 line, upon adoptive transfer, gave negligible protection against 

homologous parasite infection. That the patterns of infection in these two groups of mice 

were very similar also inferred that the lack of protective activity was not due to the 

loss of the Ly-2+ component of the WEP 775 cell line. This view was confirmed by 

examination of the courses of infection in mice receiving either the anti-Ly-2 MAb- 

treated cell line or the undepleted population (Fig. 5.4.1). In these cases, there was a 

considerable protection conferred, and the level of immunity transferred by the Ly-2' 

WEP 775 preparation was very much the same as that transferred by the complete 

population. This was manifested as a significantly depressed peak primary 

parasitaemia, a quickened remission to subpatency, which was double the time of that 

observed in other groups, a lower recrudescence and an overall quicker clearance time. 

Thus, by all the criteria used to evaluate immune protection, it was clear that the Ly-2 ' 

population was able to confer as effective an activity as did the Ly-4+ Ly-2+population. 

It would seem, therefore, that the Ly-4+ majority population within the WEP 775 cell 

line was responsible for the anti-P. c. chabaudi AS activity in vivo as well as in vitro.
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That the non-staining Ly-4* Ly-2' residual fraction of cells failed to confer any 

protection was established by adoptive transfer of the double depleted WEP 775 

preparation, which showed a total lack of ability to alter the normal course of infection 

in immunocompetent recipient mice.

Very similar results were attained for the adoptive transfer of in vitro-depleted WEP 

737 populations (Fig. 5.4.2). Here too, an effective enhancement of protection was 

observed only in mice receiving either the original lymphocyte line or a Ly-2' 

derivative of it. Preparations lacking a Ly-4+ population failed to give any protection 

upon adoptive transfer, compared to the negative control group.

An interesting feature of this experiment was that the patterns of recrudescent 

parasitaemia varied between differentially depleted populations of cells. For 

preparations lacking cells of the Ly-4+ phenotype, after adoptive transfer, the course of 

recrudescent infection was identical to that normally observed in naive mice, 

irrespective of the cell line depleted (Fig. 5.4.3). For these Ly-4' populations, the 

dichotomy of the appearance of the secondary parasitaemia that was a feature of the 

adoptive transfer of WEP 775 and WEP 737 lines to immunocompetent recipients (both 

here and in 5.2) was not apparent. However, for the corresponding depletion of Ly-2+ 

cells from each lymphocyte line, the Ly-4+ Ly-2' populations did retain the divergent 

recrudescent parasitaemias that were characteristic of the original cell lines (Fig. 

5.4.4). This analysis supported the view that the protective activity resided with the 

Ly-4-bearing lymphocyte population, but extended it further to suggest that the 

different effector mechanisms underlying the observable manifestation of a shift in the 

recrudescent parasitaemia were dependent on the presence of P. c . chabaudi AS-primed 

Ly-4+ lymphocytes.

All the results reported thus far are of adoptive transfers of total cell populations. For 

these inoculations, recipients were given culture preparations containing a mixture of 

dead and live cells, the ratio of which was dependent upon the particular depletion 

carried out. An additional set of transfers was performed for both WEP 775 and WEP 

737 cell lines, for which only viable cells retained after complete lymphocyte depletion, 

were injected into challenged animals. Figures 5.4.5 & 6 indicate that for the adoptive 

transfer of Ly-4' Ly-2' populations to naive recipients, there was no significant 

difference between the parasitaemias of mice given total or cleansed preparations. There 

was a slight exacerbation of the primary parasitaemia in recipients of complete 

populations, seen as a remission to subpatency 2 d or 1 d later than for the other two
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groups, for WEP 775 (Fig. 5.4.5) and WEP 737 (Fig. 5.4.6), respectively. This 

phenomenon was consistent, suggesting a possible inhibition of clearance of parasites to 

subpatent levels in mice given a large inoculum of non-viable material, but this effect 

notwithstanding, the presence of dead cells appeared to have no gross non-specific 

deleterious effect on the course of infection attained upon adoptive transfer to competent 

mice. Moreover, this study demonstrated clearly that splenic Ly-4' Ly-2 ' cells were 

incapable of transferring protection in this system, and thus the minimal level of 

contamination of all four T cell lines typed to the Ly-4+ subset that were used for 

adoptive transfer experiments was irrelevant to the immune reactivity engendered by 

these lines.

5.5 Discussion

The results of the two adoptive transfer studies described in this chapter showed that 

each of the four Ly-4+ cell lines used was capable of providing adoptive protection 

against P. c. chabaudi AS in vivo. This protection appeared to be aimed specifically at the 

malaria parasite against which the lines had been raised. This was surmised because for 

the two representative lines assayed, WEP 775 and WEP 737, the Ly-4-bearing cells 

which comprised the overwhelming majority of cells in each lymphocyte population 

showed a marked proliferative response upon stimulation with pRBC lysate in vitro. 

Furthermore, it was this same T cell subset which was shown to confer the immune 

protection in vivo in the absence of the cotransfer of other cell types. These findings 

vindicated the use of employing long term in vitro-propaaated populations of uncloned 

Ly-4+ T cell lines of a defined Ag specificity for the study of host immunity to P. c. 

chabaudi AS. It was the intention at the outset of this project to use only completely 

homogeneous populations, but as cloning of T cells of the Ly-4+ phenotype proved to be 

initially problematic (4.10), stable Ly-4-bearing T cell lines were used successfully 

in place of clones.

That the anti-P. c. chabaudi AS lines did confer protection against primary parasite 

challenge in an immunocompetent host is in accord with the findings of Gross £ ia l  

(1984) and Brake £ la i (1986), who had both previously raised T cell lines to the blood 

stages of P. berghei or P. c. adami. respectively, and shown these lines to be protective 

upon adoptive transfer. Brake £ ia l  (1986), however, did not use naive mice as 

recipients but instead congenitally T cell-deficient nude mice. This is an

immunologically incompetent host in which any differences between the presence and
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absence of protection tend to be amplified. Thus, that the manifestations of immune 

reactivity upon adoptive transfer of the Ly-4+ lines used were so clearly evident in the 

more immunologically complex normal mouse recipient showed the considerable degree 

of this protection. For the P. berghei model, it was also possible to demonstrate 

protection without artificially inducing an immunocompromised state in the host animal. 

In this study, recipient mice all became infected and always developed a significant 

parasitaemia before suppression of the acute infection. It would appear, therefore, that 

the transferred cells did not function immediately as effector cells, but rather that they 

activated other mechanisms within the competent host or possibly elsewhere within the 

donor population to effect resolution of infection. Such activation is presumably the 

consequence of lymphokine secretion by the grafted lymphocytes. This finding concurred 

with that of Brake £ ia i (1986). These workers subsequently developed a T cell clone 

from a cell line possessing protective activity; this homogeneous population was shown 

to secrete IFN-7 and IL-2 in response to homologous malarial Ag in vitro (Brake 

1988). A similar characterisation of lymphokine production by the Ly-4+ lines and 

clones described in this thesis is detailed in Chapter 9. Both these findings differ from 

those of Gross £ ia i  (1984), who utilised T cell lines derived from rats that had 

recovered from a P. berghei infection to transfer protection against homologous parasite 

challenge of naive rats. In this instance, the transferred lines appeared to induce 

protection by secreting mediators which activated macrophages and/or lymphocytes 

non-specifically.

Although the cellular events occurring during the prepatent period are not known, it 

appeared that the trigger for their activation was specific P. c. chabaudi AS Ag. This is 

because of the well-defined pRBC lysate-induced proliferative response of these 

lymphocytes (4.11 & 5.3). It is likely that this function observed in vitro would be 

maintained in v ivo , and thus parasite-specific Ly-4+ lymphocytes could be similarly 

induced to grow to large numbers in vivo and to survive long term with retention of 

specific anti-malarial activity upon introduction into the host by adoptive transfer. 

Indeed, in an analogous model using tumour-specific T cells, Chen £ ia i (1990) reported 

an 11-fold increase in total donor T cell numbers recoverable from host ascites and 

spleen a week after adoptive transfer. They showed that the intermittent restimulation 

with specific Ag that presumably occurs in vivo induced spasmodic regrowth of donor T 

cells, maintained the number of lymphocytes of donor origin at greater than the number 

transferred for longer than a month, and allowed detection of substantially augmented
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donor T cell-mediated specific anti-tumour function over that period of time. There is 

no reason why such a proliferative response in vivo should not occur upon stimulation 

through a natural P. c. chabaudi AS infection. Indeed, the optimal conditions for Ly-4+ 

cell growth in v itro , including restimulation with pRBC lysate followed by periods of 

rest, are only an attempt to recreate the in vivo environment under artificial culture 

conditions. T cell proliferation in vivo can be studied by transferring T cells i.v. into 

irradiated H-2-different mice, pulsing the recipients with radiolabelled DNA 

precursors such as tritiated thymidine (Sprent & M iller 1972) or 1 2 5 l-  

iododeoxyuridine (Bennett 1971) and then removing the spleen or lymph nodes to 

measure radioisotope uptake. Although lymphocyte migration patterns have been 

examined for the host lymphocyte reservoir during malaria infection (e.g. Kumararatne 

£ i a i  1987), it is believed that no similar studies have been performed on the 

distribution of lymphoid cells introduced by artificial means into a malaria-challenged 

animal. Such a study would reveal the homing patterns of inoculated cells after their 

introduction into the host blood stream, and show whether or not they have the capacity 

to migrate to appropriate sites. Many cloned T cells display aberrant trafficking 

patterns, a phenomenon which may be due, in part, to the loss of the MEL-14 homing 

receptor (Gallatin £ ia l  1986). In the case of malaria, it is thought that a small 

subpopulation of the cultured anti-P. c. adami T cell lines (Brake £ ia l 1986) may still 

express the MEL-14 cell surface Ag (Weidanz & Long 1988) and thus may distribute to 

immunologically critical sites. Much evidence exists pointing to the role of the spleen in 

resolution of malaria infections. Therefore, it may be important for the grafted 

lymphocytes to reach the spleen, and perhaps even microenvironments within it, in 

order to fulfill their protective capacity. Indeed, Kumar £ ia i  (1989) have recently 

stressed the interdependence of Ly-4+ cells and the host spleen in immunity to FL 

vinckei vinckei.
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6.1 Introduction

The specificity of the host immune response to falciparum malaria has been a subject of 

much controversy for many years. Species- and strain-specific immunity (James M a i 

1932, Covell & Nicoll 1951), heterologous immunity (Boyd & Kitchen 1945, McCarthy 

M a i  1978, Pazzaglia & Woodward 1982) or the non-existence of any effective 

immunity (Jeffrey 1966) have all been proposed. Early studies on rodent malarias 

showed that prior immunisation or infection induced solid immunity against homologous 

reinfection (Cox & Voller 1966, Nussenzweig M a i 1966, Cox 1978). These studies

also indicated the existence of interspecies cross-immunity detectable in the I FAT,

which reflected the appreciable homology in Ags of plasmodia of different species.

Recent studies using more homogeneous parasite preparations have confirmed that 

homology, as well as extensive genotypic and phenotypic variability, exists in antigenic 

determinants of cloned lines of asexual stage parasites of the same species derived from 

different isolates or even from a single isolate (e.g. Schofield M a i 1982, Newbold M a i

1984). Due to the diversity of the parasite population, analysis of the induction of

protective immunity can be carried out only in extremely well defined host-parasite 

systems. For this reason, most advances in this area have come by studying cloned 

isolates of rodent malarias in syngeneic hosts. For instance, Jarra & Brown (1985) 

demonstrated more intense parasitaemias upon heterologous strain (genotype) infection 

in the cloned P. c. chabaudi/ CBA/Ca mouse model, but the absence of significant 

recrudescence even after heterologous challenge. These observations and others (Brown 

M a i  1970 a & b, Phillips 1970, Barnwell MaL 1983 a, Howard & Barnwell 1985, 

Marsh & Howard 1986) are indicative of a considerable degree of immunity 

transcending intrastrain phenotypic diversity, and to a lesser extent, interstrain 

genotypic differences. Both effects may be incomplete, reducing parasitaemia and 

clinical disease without necessarily clearing infection. At least part of this immunity is 

associated with a serum factor which retains species, strain and phenotypic variant 

specificity (McLean M a i  1982 a, Jarra M a i  1986). However, Abs of a given 

specificity are unlikely to be a sufficient prerequisite for immunity. Rather, T cell 

recognition leading to protective helper T cell responses is considered to be of central 

importance to anti-malarial protective immunity (Jayawardena 1981, Brown M a i  

1986). This is because it has been shown that the spleen, highly primed at the helper T 

cell level, is required to mount an effective immune response (Brown 1971, Brown M  

M  1976 a, Jayawardena 1981). The sensitised spleen has the capacity for rapid
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anamnestic parasiticidal Ab responses to the extensive range of parasite-derived surface 

exposed epitopes which the Plasmodium gene pool is capable of encoding, and also for the 

T h2 cell-mediated mechanisms of immunity that may be necessary for reduction of the 

clinical manifestations of disease.

A feature of all in vivo models of malaria is that immunisation with lysed parasites or 

whole non-irradiated pRBC, or with purified Ags,'requires potent adjuvants for even 

modest effect. Immunisation without adjuvant requires a previous priming infection or 

the use of pRBC rendered non-replicating, usually by irradiation or chemotherapy. 

Brown £ la i  (1986) showed that after a primary P. c. chabaudi AS infection, there is a 

clear difference between mice immunised by purified Ag and mice immunised by 

infection or gamma-irradiated pRBC. Infections in the former approximate to those 

suffered by naive mice undergoing a primary, recrudescing infection, except that after 

homologous challenge, the initial parasitaemia is delayed and the level of recrudescence 

is increased. In contrast, mice challenged after a primary infection or immunisation 

with gamma-irradiated pRBC have no recrudescence, even when challenged with a 

different isolate.

These findings prompted an examination of the specificity of immunity generated by 

infection of NIH mice with P. c. chabaudi. In all, three different adoptive transfer 

experiments were performed to dissect the genotypic and phenotypic specificity of 

immunological reconstitution. To do this, cloned parent populations of the AS and CB 

strains of P. c. chabaudi were used, as was an antigenically variant recrudescent 

population collected from a P. c. chabaudi AS primary infection. Previously, it had been 

demonstrated that lymphocytes primed to P. c. chabaudi AS for a relatively brief period 

were capable of conferring protection against homologous parasite challenge upon 

adoptive transfer to both competent and compromised recipients (Chapter 3). As an 

extension of this study, the differences in host susceptibility to homologous and 

heterologous strain challenge were examined upon reconstitution of immunosuppressed 

recipients with either splenic or peripheral blood lymphocytes primed to either AS or 

CB strain P. c. chabaudi. The study of interstrain variation in immunity to homologous 

or heterologous infection on either an AS- or CB-primed background was thought 

worthwhile as all previous studies bar one had adoptively transferred hyperimmune 

cells from superinfected mice (Cox 1970, Grun & Weidanz 1981, 1983, Cavacini £ ia l 

1986, Falanga & Pereira da Silva 1989, Favila-Castillo £ ia i  1990) Using P. yoelii. 

however, Fahey & Spitalny (1986) had shown that adoptive immunisation of A/Tru mice
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with spleen cells from syngeneic donors with a primary, non-virulent 17X strain 

infection conferred on recipients the capacity to resist a challenge infection with the 

virulent YM strain. Of importance with regard to the methodology used herein, 

unfractionated splenic lymphocytes as well as spleen cells enriched for T or B cells 

capable of transferring protective immunity were detected as early as d 7 of the 

primary avirulent infection. This showed that it was possible to generate an adequate 

level of immunity against parasites of a different genotype to those used to initiate the 

primary infection, and, furthermore, that this strain-transcending immune response 

could be adoptively transferred to syngeneic recipients. Rather than using P. yoelii 

parasites, immunity to which is known to be Ab-dependent (Weidanz & Long 1988), JEL 

c. chabaudi AS and CB strains were used in this study, but lymphocytes were taken from 

donor mice similarly during infection, at the time of peak peripheral blood 

lymphocytosis.

A further experiment was performed in which the WEP 775 and WEP 737 in vitro- 

propagated Ly-4+ T cell lines were adoptively transferred into naive, syngeneic mice. 

These recipients were challenged either with the homologous AS strain of P. c. chabaudi 

to which they had been primed, or with heterologous strain (CB) or phenotypic variant 

(RC10) parasites. Already, it had been shown that these lines could transfer 

successfully immune protection to the AS parent population in vivo (Chapter 5), but the 

specificity of this reactivity had not been determined. As the proliferation of these 

lymphocyte populations in vitro was P. c. chabaudi AS pRBC Ag-specific, it was thought 

likely that these cells would exhibit a limited specificity in v ivo . However, as the 

plasmodial epitope(s) to which these lines had been exposed were not identified, either 

or both lines tested may have shown a specificity of protection indicative of priming to a 

determinant common to all phenotypes of the AS strain, or even possibly all strains of 

the P. c. chabaudi species. To ascertain the specificity of protection of these AS-primed 

lines, an adoptive transfer was necessary.

6.2 Adoptive transfer of P. c. chabaudi AS-primed lymphocyte populations 

at homologous and heterologous parasite strain challenge in 

immunologically compromised recipients

40 NIH female mice were exposed to 4 Gy gamma irradiation and 24 hr later infected 

with either 1 x105 P. c. chabaudi AS or CB strain pRBC. At the time of challenge, each 

mouse was also inoculated with an aliquot of 1.0 x107 lymphocytes. Groups of 10 mice
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each received populations of primed splenic T & B cells, normal splenic T & B cells or 

normal peripheral blood T & B cells. Within each group, batches of five mice were 

infected with either AS or CB strains of P. c. chabaudi.

To enable the adoptive transfer of AS semi-immune lymphocytes, a group of 20 

syngeneic female mice was infected with 1 x105 P. c. chabaudi AS pRBC and the course of 

infection and absolute lymphocyte counts determined. When the mean peak peripheral 

lymphocytosis was reached, d 12 p.i., each donor mouse was bled and splenectomised. 14 

uninfected mice were used as a source of naive lymphocytes for adoptive transfer.

As it had been shown previously that a mixed population of T & B lymphocytes gave 

better protection to homologous challenge than either separated cell fraction (Chapter 

3), whole preparations of either splenic or peripheral blood lymphocytes were used for 

reconstitution.

A further group of controls was set up to determine the normal courses of infection of AS 

and CB parasites in irradiated recipients, and to check for the non-transfer of pRBC in 

donor lymphoid cell preparations.

There was an element of strain-specificity in the protection conferred to 

immunocompromised recipients upon challenge infection. This is observed most clearly 

in Fig. 6.2.1 for P. c. chabaudi AS-primed spleen cell transfers. The greatest protection 

was given by AS semi-immune splenic lymphocytes, all of the recipients of which were 

able to resolve the primary infection, subpatency being achieved by d 22 p.i., then 

lasting 15 d. However, a marked recrudescence did take place in all five mice studied. 

In contrast, for the heterologous CB strain challenge of mice inoculated with AS-primed 

cells, the primary parasitaemia, though of a similar peak level to that shown for 

homologous challenge, was of considerably longer duration, remission occurring on only 

d 37 p.i.. Although three of five mice died at crisis, no recrudescent parasitaemia was 

observed for the two surviving animals (Fig. 6.2.1). It appeared, therefore, that by one 

of the parameters of protection used in this study, the presence and/or level of 

recrudescence, that homologous challenge gave an exacerbated infection. It should be 

stressed, however, that this effect occurred only in mice surviving acute infection, 

which led to fatalities amongst the heterologous challenge group.

Naive spleen cells were quite capable of transferring protection to sublethally irradiated 

mice infected with P. c. chabaudi AS, three of five mice clearing blood-borne parasites 

(Fig. 6.2.2). For naive splenic lymphocyte transfer to CB-challenged mice, all 

recipients died by peak primary parasitaemia. This difference in the protection given
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by spleen cells not previously exposed to P, c. chabaudi Ags reflects the increased 

virulence of the CB strain over the AS strain of P. c. chabaudi in the NIH mouse.

That some recipients of splenic lymphocytes primed to a different strain of P. c. 

chabaudi were able to clear CB strain challenge, yet no mice adoptively transferred 

normal spleen cells were able to do so (Fig. 6.2.3), shows that there was a protective 

activity present in the sensitised lymphocytes not present in the naive lymphocytes, 

and, furthermore, that this protection was able to transcend interstrain differences. 

Thus, with the CB strain of P. c. chabaudi. adoptive transfer of cells primed to the AS 

strain were capable, to a limited degree, of conferring an immune reactivity sufficient 

to clear challenge infection.

Unlike P. c. chabaudi CB challenge, immunosuppressed mice receiving naive spleen cells 

were able to clear AS strain parasites, at least in some cases. This protection was not as 

effective as that given by the AS semi-immune splenic lymphocytes (Fig. 6.2.4). 

Although onset of acute infection was similar in the two groups of mice, recipients of 

homologously-primed lymphocytes showed a significantly lower peak parasitaemia (p < 

0.05), with remission 3 d ahead of the naive spleen cell recipients. However, for the 

mice adoptively transferred, AS-primed cells, the secondary parasitaemia reached a 

significantly greater level (p < 0.05), and was of longer duration, than that shown by 

the normal spleen cell controls (Fig. 6.2.4). Thus, prior sensitisation to the challenge 

parasites led to a quickened remission to subpatency but appeared to cause an 

immunosuppressive effect during the recrudescent phase of infection.

It had been shown previously that AS semi-immune peripheral blood lymphocytes were 

capable of engendering protection to homologously challenged 4 Gy-irradiated mice 

(Chapter 3). However, in this particular study, mice receiving peripheral blood cells 

died at crisis whereas those receiving spleen cells all cleared P. c. chabaudi AS infection 

(Fig. 6.2.5). Likewise, adoptive transfer of AS-primed splenic lymphocytes conferred 

sufficient cross-strain immune activity for two of five mice to control CB infection, 

whereas recipients of a similar number of donor AS lymphocytosis-derived peripheral 

blood lymphocytes all succumbed at crisis (Fig. 6.2.6). These findings do not negate 

those in 3.4 and 3.5, wherein it proved possible to transfer protection against 

homologous challenge in the P. c. chabaudi AS/NIH mouse system by the inoculation of 

peripheral blood lymphocytes. Instead, this study highlights the difficulty encountered 

attempting to transfer protection with populations of blood lymphocytes that are present 

only transiently in the peripheral circulation. Furthermore, it confirms the spleen as
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the lymphoid organ of choice for such adoptive transfers, for not only is the spleen a 

concentrated source of lymphocytes and as a secondary lymphoid organ, a site of 

immunological memory, it has a well documented role in malarial parasite clearance. 

This role of the spleen in anti-malaria immunity is reflected by the protection 

conferred by AS-primed spleen cells at both homologous and heterologous challenge (3.6 

and this experiment).

All recipients of peripheral blood cells, either semi-immune or naive, died by d 14 p.i. 

of homologous AS infection, as did negative controls showing a normal course of infection 

in sublethally irradiated mice (Fig. 6.2.7). There was no significant difference in the 

timing or level of parasitaemia between the three groups studied. For the corresponding 

heterologous CB challenge, peripheral blood lymphocyte-transferred recipients were 

equally unable to control infection and all succumbed at crisis, if a little earlier, d 11 

p.i., than did AS-infected mice (Fig. 6.2.8).

6.3 Adoptive transfer of P. c. chabaudi CB-prim ed lym phocyte  

populations at homologous and heterologous parasite strain challenge in 

immunologically compromised recipients.

As this was the reciprocal challenge experiment to that described in 6.2, identical 

conditions were followed but using P. c. chabaudi CB-infected syngeneic donor mice as 

the source of semi-immune lymphocytes. As before, all recipients were exposed to 4 Gy 

sublethal irradiation 24 hr prior to adoptive transfer of 1 x 107 lymphocytes and 

challenge with 1 x 105 pRBC.

There was a clearly defined strain specificity of protection conferred by adoptive 

transfer of P. c. chabaudi CB-primed splenic lymphocytes to challenged 

immunocompromised mice. Homologously infected recipients were able to control 

infection effectively, with the acute parasitaemia reaching subpatent levels by d 21 p.i., 

at which time only one of five mice had died (Fig. 6.3.1). Thereafter, there were two 

brief patencies before parasitaemia was cleared on d 46 p.i.. For mice receiving an 

identical inoculum of CB-semi-immune spleen cells but challenged with the AS strain 

parasite, all five recipients suffered an elevated peak primary parasitaemia and died 

shortly afterwards (Fig. 6.3.1). This marked specificity of resistance was in contrast 

to the analogous challenge on an AS-primed background (Fig. 6.2.1), where two of five 

CB-challenged mice recovered completely. As the CB strain of P. c. chabaudi is more 

virulent in the NIH murine host than is the AS strain, this finding was unexpected, but

311



may reflect a better priming to P. c. chabaudi antigenic determinants common to all 

strains upon AS rather than CB strain infection.

The substantial degree of immunity conferred by transfer of CB-primed splenic 

lymphocytes to homologously infected mice can be appreciated by comparing the mean 

course of infection for this group with that for mice receiving naive spleen cells at P. c. 

chabaudi CB challenge {Fig. 6.3.2). Whereas only one mouse succumbed to infection 

after receiving parasite-primed spleen cells, all five mice receiving normal spleen 

cells did so. Although the effects of adoptive immunity were apparent during primary 

parasitaemia, at which time the normal lymphocyte recipients all died, the actual levels 

of ascending parasitaemia for the two groups were identical. Thus the differences in the 

protective activity of reconstituted cells was observed only beginning at the time of peak 

acute infection.

The protection given by transferring spleen cell preparations taken at peak 

lymphocytosis from P. c. chabuadi CB-infected donor animals was not matched by that 

conferred by peripheral blood lymphocytes collected from the same donors (Fig. 6.3.3). 

As for normal spleen cell recipients, mice inoculated with CB-primed peripheral blood 

lymphocytes all died during the remission of the primary parasitaemia. This finding 

was similar to that for the reciprocal AS challenge (Fig. 6.2.5) and showed that, 

irrespective of the infecting strain of P. c. chabaudi. a greater protection is conferred by 

homologously primed lymphocytes of splenic origin rather than those taken from the 

peripheral circulation. It is of no surprise that since recipients of CB-primed splenic 

lymphocytes failed to clear challenge P. c. chabaudi AS infection, mice injected with the 

same numbers of similarly primed peripheral blood cells did not do so either (Fig. 

6.3.4). All mice died between 11-14 d p.i., at or just after peak primary parasitaemia, 

a feature common to all recipient animals succumbing to infection.

Irradiated mice died at crisis irrespective of whether they had received primed or 

normal peripheral blood lymphocytes and whether or not they were challenged by 

homologous CB or heterologous AS strain P. c. chabaudi parasites (Figs. 6.3.5 & 6). It 

would be reasonable to consider, therefore, that any enhanced immune effects observed 

upon adoptive transfer were not of ultimate survival value to the host animals. Indeed, 

in the case of AS challenge (Fig. 6.3.6), there was no significant difference in the 

patterns of ascending parasitaemia for recipients of either CB-primed or naive 

peripheral blood cells compared to negative control mice. This was similar to the 

previous results for both AS and CB challenges on an AS-primed background (Figs. 6.2.7
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& 8). However, in the case of the reciprocal P. c, chabaudi CB infection (Fig. 6.3.5), 

mice receiving circulatory lymphocytes of either CB-sensitised or naive status showed a 

delayed onset of patent parasitaemia of between 1-2 d, compared to negative controls of 

CB-infected mice. For both groups, this observable lag in the appearance of blood 

stream parasites was statistically not significant (p > 0.05), nor was the later deaths of 

recipients of primed lymphocytes. However, these observations are suggestive of a 

protective effect upon transfer of peripheral blood cells, as has been demonstrated 

previously (Chapter 3). In this instance, however, the virulence of the CB strain 

parasite ensured that the biological significance of this minimal immune reactivity 

observed during the ascending acute infection was not fully realised.

The cumulative findings of both AS- and CB-primed lymphocyte adoptive transfers to 

homologous and heterologous P. c. chabaudi infection (6.2 & 3) showed a pronounced 

strain specificity. Of mice infected with AS strain pRBC, only those inoculated with AS- 

primed spleen cells could control parasitaemia. Priming to the heterologous CB parasite 

was insufficient to prevent recipient animals succumbing to infection (Fig. 6.3.7). For 

the corresponding P. c. chabaudi CB challenges, a strain-specific protective effect was 

also evident, though less marked (Fig. 6.3.8). Two of five AS-primed splenic 

lymphocyte recipients did survive challenge infection with the heterologous CB strain, 

indicating the presence of a strain-transcending immunity. In such cases where mice 

were able to control the acute phase of a heterologous challenge, no subsequent patencies 

occurred once the primary infection was resolved (Figs. 6.2.1 & 6.3.8). However, for 

both sets of homologous challenges, where recipient fatality was minimal, 

recrudescences were always observed (Figs. 6.2.1, 6.3.1, 7 & 8). This was indicative 

of an immunosuppressive effect of homologously-primed lymphocytes later in the 

course of infection of recipient animals. Such a phenomenon did not detract from the 

greatly enhanced overall protection engendered by spleen cells previously sensitised to 

that strain of P. c. chabaudi used to infect the mice to which these cells were transferred. 

The ability to confer a protective activity sufficient to control acute infection was 

achieved by semi-immune lymphocytes taken from the spleens but not from the 

peripheral blood of donor animals.
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6.4 Adoptive transfer of in vitro generated P. c. chabaudi AS-specific T 

cell lines at homologous and heterologous parasite challenge in naive 

syngeneic recipients.

Although enriched T cell populations were obtained from the peripheral blood and spleen 

of infected mice and assessed for their protective activity by adoptive transfer at 

homologous (Chapters 3 & 6) and heterologous (Chapter 6) challenges, the 

heterogeneous nature of these populations made it difficult to determine accurately the 

phenotype and subset of T cells mediating protection. For this reason, T cell lines were 

prepared from the spleens of P. c. chabaudi AS-infected donor mice and cultivated in 

vitro to give relatively homogeneous Ly-4+ T cell populations (Chapters 4 & 9). These 

preparations showed a P. c. chabaudi AS-specific responsiveness in vitro. Furthermore, 

each of the four different lines was then shown to be protective against homologous AS 

challenge in naive NIH mice (Chapter 5). The experiment below details the adoptive 

transfer of these Ly-4+ lines to fully competent syngeneic recipient animals at both 

homologous AS strain and heterologous CB strain challenges. In addition, the intrastrain 

specificity of adoptive protection was examined using a phenotypically variant AS 

population, collected from the recrudescence of an AS parent infection, to challenge naive 

mice at the time of reconstitution. As the protection carried by the adoptively 

transferred Ly-4+ lines was apparent in homologously challenged immunologically 

competent hosts (Chapter 5), it was decided to use intact recipients for the 

corresponding heterologous infections. Any immune reactivity transferred by the lines 

would be distinguishable from that transferred by a splenic T cell control population or 

by that background innate immunity to P. c. chabaudi CB challenge exhibited by naive 

NIH mice.

The two lines used were those which were subsequently cloned (Chapter 4), WEP 775, 

derived from d 16 of primary P. c. chabaudi AS infection, and WEP 737, taken from 

mice recovered from a secondary challenge. For each line, 1.77 x107 lymphocytes were 

adoptively transferred to 15 age-matched NIH female mice. These were then boxed in 

groups of five mice, each group receiving a challenge infection of 1 x105 pRBC of either 

P. c. chabaudi AS or CB strain parent stabilates, or P. c. chabaudi AS recrudescent clone 

10. Control groups receiving 2.29 x107 enriched naive splenic T cells were also set up. 

These were similarly infected with one of the three different challenge parasites 

available. In addition, three normal, untransferred NIH mice were challenged with each 

of the three pRBC populations to act as a control of the normal course of primary
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infection of these P. c. chabaudi parasites in this model system.

Figure 6.4.1 shows the courses of infection upon homologous challenge with the AS 

strain of P. c. chabaudi. i.e. those parasites against which the cell lines were raised. 

Both lines exhibited enhanced protection compared to a control of unprimed splenic T 

cells. This was observed as a shortened primary parasitaemia, significantly depressed 

peaks of both primary and secondary patencies (both p < 0.01), extended subpatent 

periods and the presence of only two patent waves of infection (Fig. 6.4.1). Thus, by all 

of the criteria used to determine immune protection, reconstitution with either AS- 

primed Ly-4+ line was more effective than with a slightly larger inoculum of naive T 

cells. The latter, in fact, did give some but not very much protection, compared to the 

normal course of AS strain infection. These results are essentially similar to those 

described previously (5.2) for adoptive transfer of these lines with homologous 

challenge (Figs. 5.2.1 & 2). This stresses the reproducibility of the adoptive protection 

conferred by each of these stable Ly-4-bearing T cell lines. As described before, 

although the WEP 775 and WEP 737 lines each engendered considerable protection upon 

adoptive transfer, mice receiving these lines differed in their onset of recrudescence. 

WEP 737-transferred animals recrudesced 4 d ahead of those given WEP 775 cells (Fig. 

6.4.1). Since this was a repetition of the data of 5.2 (Figs. 5.2.3 & 4), it would appear 

that this divergence in the timing of recrudescence in recipients of these Ly-4+ 

populations is a feature of their transfer.

Naive mice infected with the phenotypically variant recrudescent clone of P. c. chabaudi 

AS were able to control infection better upon adoptive transfer of either Ly-4+ cell line 

primed to the parent population of the AS strain than were controls (Fig. 6.4.2). As for 

homologous challenge (Fig. 6.4.1), recipients showed a shortened primary 

parasitaemia, clearly depressed peak acute and recrudescent parasitaemias (p < 0.01 in 

each case), and a markedly quicker final parasite clearance, each compared to mice 

receiving a similar dose of naive splenic T lymphocytes (Fig. 6.4.2).

The courses of infection in naive NIH mice upon challenge with the CB strain of P. c. 

chabaudi. i.e. heterologous strain challenge, are depicted in Fig. 6.4.3. It is apparent 

that there was some enhanced protection conferred by the transfer of AS-primed 

lymphocytes, but to a much lesser extent to that upon challenge by parasites of the same 

genotype (Figs. 6.4.1 & 2). Using the same parameters of protection as before, there 

was a slightly reduced peak primary parasitaemia, a significantly depressed 

recrudescence (p < 0.01) and a shorter total infection time, again with respect to naive

315



spleen cell recipients {Fig. 6.4.3). However, there was no quickened remission to 

subpatency compared even to the P. c. chabaudi CB challenge alone. Furthermore, for all 

four groups, the subpatency was very shortlived, recipients of either WEP 775 or WEP 

737 recrudescing at the same time, 3 d after remission, as did naive splenic T cell 

recipients (Fig. 6.4.3), and this only 24 hr after the untransferred controls began to 

recrudesce.

Evidently, some protection was engendered by the Ly-4+ lines primed to the parent 

population of P. c. chabaudi AS upon challenge of recipient mice by antigenically variant 

AS and CB strain pRBC, yet the greatest protection was against the homologous AS parent 

infection (Figs. 6.4.1-3). It may be that of the late trophozoite/schizont pRBC Ags 

against which the Ly-4+ were raised, some are unique to the AS parent population whilst 

others are common to all strains of P. c. chabaudi. Although no direct comparison can be 

made between the protection conferred by AS semi-immune splenic T & B lymphocytes 

(6.2) and the AS-specific Ly-4+ lines used here (since in the former study, the 

recipient mice were sublethally irradiated prior to infection), it would appear that the 

homogeneous Ly-4-bearing lines do give greater protection at heterologous challenge 

than do the freshly prepared spleen cells. This is because P. c. chabaudi CB-challenged 

recipients of the in vitro-cultured cell lines exhibited a pattern of parasitaemia broadly 

similar to that shown by mice challenged with the homologous AS strain (Figs. 6.4.1 & 

3); i.e. two waves of parasitaemia separated by a distinct subpatent period. For the 

analogous AS and CB strain challenges to mice inoculated with AS-primed splenic 

lymphocytes (Fig. 6.2.1), the course of infection in P. c. chabaudi CB-infected animals 

was very different to that in AS strain-infected animals, as characterised by a chronic 

acute infection but no recrudescence. It would appear that either the larger inoculum of 

primed Ly-4+ lymphocytes present in the cell line gives a considerably enhanced 

protection to heterologous strain challenge over that of a mixed lymphocyte population, 

or, alternatively, that the mechanisms involved in mediating control of infection are 

different. This is a possibility because of the seemingly more effective immunity given 

by the splenic T & B cells after remission of the primary P. c. chabaudi CB parasitaemia 

(Fig. 6.2.1). Alternatively, this latter characteristic may be caused by an 

immunosuppressive effect at homologous AS challenge, which is not observed upon 

infection with genotypically variant pRBC (Fig. 6.2.1).

One interesting aspect of this experiment was that the dichotomy observed during the 

recrudescent phase of infection with the AS parent pRBC in WEP 775- and WEP 737-

316



transferred mice (Fig. 6.4.1) was not evident upon either AS recrudescent clone 10 

(Fig. 6.4.2) or CB strain (Fig. 6.4.3) challenge. For these infections, both the timing 

and levels of parasitaemia were similar in mice receiving either Ly-4+ line. The 

simultaneous appearance of recrudescent parasites appeared to be due to the earlier 

onset of recrudescence in mice given the WEP 775 cell line at heterologous challenge 

(Figs. 6.4.2 & 3), compared to homologous challenge (Fig. 6.4.1). This is appreciated 

more easily by examination of Fig. 6.4.4. For transfer of WEP 737 to mice infected 

with each of the three P. c. chabaudi parasite types (Fig. 6.4.5), it can be seen that the 

recrudescence of AS parent pRBC-infected animals actually occurred later than did those 

for heterologously challenged mice. This delayed onset of recrudescence of 1-2 d was not 

thought to be significant, and reflected the longer subpatent period observed upon 

homologous infection before the appearance of a breakthrough parasite population. 

Moreover, the observed lag did not detract from the fact that upon infection with the AS 

parent pRBC to which the Ly-4+ lines were sensitised, recipients of WEP 737 

recrudesced significantly ahead of those of WEP 775 (p < 0.01) (Fig. 6.4.1). That the 

difference between the transfers of WEP 775 and WEP 737 was apparent only upon 

homologous challenge may reflect a change in the underlying mechanisms of immunity 

employed to control challenge infection. At heterologous challenge, the pattern of 

parasitaemia shown by WEP 775-inoculated mice reverted to that shown by mice given 

WEP 737 under conditions of homologous infection. It may be that under the pressure of 

infection by antigenically variant pRBC, the mechanism by which immunity was 

mediated by WEP 737 cells was better equipped to control infection, and thus the 

functional dichotomy seen at homologous challenge was not apparent. The differences in 

the mediation of resistance of these Ly-4+ lymphocyte lines to P. c. chabaudi AS 

infection are dissected further in the proceeding chapters (7-9).

Regardless of the differences between the immunity transferred by each of the AS- 

primed Ly-4+ lymphocyte populations at homologous challenge (Fig. 6.4.1), and the 

similarities at heterologous challenge (Figs. 6.4.2 & 3), for each cell line the strain 

specificity of protection was obvious. It is clear that there is a strain-transcending 

element of immunity conferred by these P. c. chabaudi AS-primed lines that, for 

example, enabled recipients to withstand infection with the heterologous CB strain of 

this malaria species (Fig. 6.4.3). However, it is equally evident that the protection 

given to mice infected with the AS parent type was greater than that given to those 

infected with the AS recrudescent clone, which, in turn, was greater than that given to
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mice challenged with the CB strain parasites (Figs. 6.4.4 & 5). This strain-specific 

element of immunity is most elegantly revealed by examination of the length of the 

recrudescent periods of infected mice. For both WEP 775 and WEP 737 recipients, the 

homologous recrudescence lasted less (9 and 10 d, respectively) than did that for the 

variant phenotypic challenge (12 and 11 d) or that for the variant genotypic challenge 

(17 and 16 d) (Figs. 6.4.4 & 5). These differences were significant at the 0.01 level 

for both lymphocyte lines. Furthermore, for each line, the protection transferred, as 

determined by the length of recrudescence, was greater than that which naive splenic T 

cells could transfer to similarly challenged mice (Fig. 6.4.6). There was some 

immunity conferred by these unprimed cells, however, and this was most striking after 

remission of the primary parasitaemia, as the courses of the acute infection were 

similar to those observed in untransferred control groups (Fig. 6.4.7). For splenic T 

cell recipients, the mean recrudescence time was 12, 15 and 18 d for mice challenged 

with AS parent, AS recrudescent clone and CB parent P. c. chabaudi pRBC, respectively. 

Although significantly longer than the secondary parasitaemias exhibited by mice 

infected with either WEP 775 or WEP 737 (Figs. 6.4.4 & 5), these patencies 

represented a shortening by 4, 3 and 4 d, respectively, of those recrudescences in the 

negative control mice (Fig. 6.4.7).

Also noteworthy was the fact that the peak parasitaemia during acute infections of mice 

given either Ly-4+ line (Figs. 6.4.4 & 5) was significantly lower (p < 0.01) for 

recipients of homologous rather than heterologous parasites. In both cases, the level of 

parasitaemia reached by AS parent-infected mice was higher than that for mice 

challenged with the AS recrudescent pRBC (Figs. 6.4.4 & 5). It would appear per $£ that 

the protection conferred early in infection by these lines was greater against challenge 

by the phenotypic variant. However, analysis of the normal courses of infection of these 

parasite populations (Fig. 6.4.7) shows that the peak of primary parasitaemia in naive 

NIH mice was innately lower in mice infected with the recrudescent population rather 

than the parent clone of P. c. chabaudi AS.

The strain specificity of protection conferred by the Ly-4+ cell lines was evident from 

examination of the serum Ab titres for recipient animals infected with each of the three 

different parasite populations (Figs. 6.4.8 & 9). For both WEP 775 and WEP 737, the 

peak Ab levels were for homologous AS parent challenge, whilst the lowest levels were 

recorded for heterologous CB strain infection. The maximal Ab titre, 1:1028, was 

maintained for a longer period for recipients of WEP 737 (Fig. 6.4.9) than for WEP

318



775-transferred mice, which exhibited a transient serum Ab peak at this titre (Fig. 

6.4.8). The different serum Ab profiles may reflect the fundamental differences in 

mediation of anti-P. c. chabaudi protection shown by these two T lymphocyte lines 

(Chapters 7-9). Irrespective of the titres measured, for both cell lines the patterns of 

the Ab titre profiles for different infections were similar (Figs. 6.4.8 & 9). The 

general pattern observed was of a rising serum Ab titre during acute infection which 

levelled out before increasing substantially at the time of recrudescence. This pattern 

was also reproducible in recipients of splenic T cells (Fig. 6.4.10), suggesting that the 

immune system of the immunocompetent host is inher ently capable of controlling 

infection by Ab-mediated means, and that, to some degree at least, the kinetics of serum 

Ig production in response to P. c. chabaudi infection are independent of the transferred 

AS-primed lymphocytes. However, it would be misleading to infer that the immune 

response, as gauged by the Ab levels during infection, is not inextricably linked to the 

reconstituted lymphocyte populations. This is because for infection with pRBC of AS 

parent (Fig. 6.4.11), AS recrudescent clone 10 (Fig. 6.4.12) or CB parent (Fig. 

6.4.13), the peak Ab responses were detected in recipients of WEP 775 or WEP 737 

significantly ahead of those of splenic T cells. This indicates that the transfer at the time 

of challenge of a population of Ly-4+ lymphocytes previously primed to P. c. chabaudi AS 

aided the Ab-mediated response mounted by the host animals, demonstrable as a quicker 

maximal Ab titre (Figs. 6.4.11-13). What is interesting is that although recipients of 

unprimed T cells took longer to show peak peripheral blood anti-parasite Ig levels, when 

they were reached, they were of the same magnitude as those observed for primed cell 

recipients (Figs. 6.4.11-13). The 1:1028 Ab titre attained for AS parent-challenged 

mice was equal to that for the anti-P. c. chabaudi AS hyperimmune serum IFAT control. 

Thus, it is clear that in the P. c. chabaudi/NIH mouse model used, the adoptive transfer 

of AS-primed Ly-4+ cells was not necessary to control infection, but their transfer 

lowered the parasitaemia and quickened parasite clearance. Moreover, anti-P. c. 

chabaudi serum Ab levels were elevated at the peak of recrudescence, d 35-38 p.i., when 

Ab-mediated mechanisms of immunity are considered to predominate (Figs. 6.4.8 & 9). 

Ab levels were also raised in control mice but at a time corresponding to the late 

remission of recrudescence, d 45-48 p.i. (Fig. 6.4.10). It would appear, therefore, 

that there was a degree of synergism between the AS-specific Ly-4+ lines inoculated 

into challenged animals and the background primary immune response to malaria 

infection. This was manifested during the recrudescent phase of infection as a quickened
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humoral response, but may equally have been effected by Ab-independent cellular 

mechanisms; these may have accounted for the lower primary parasitaemia and 

quickened remission to subpatency that were hallmarks of protection in WEP 775 and 

WEP 737 recipients upon AS parent and AS recrudescent clone challenge (Figs. 6.4.1 & 

2). That the protection conferred by the transfer of Ly-4+ cell lines to P. c. chabaudi 

CB strain-infected mice was not so nearly as clearly defined during the acute infection as 

for challenges with the other two parasite populations (Fig. 6.4.3) is suggestive of a 

lesser role for cell-mediated immunity in the control of infection with malaria 

parasites of a heterologous genotype. This would, in turn, suggest that Ab-independent 

mechanisms of immunity are strain-specific in this system, whilst Ab-dependent 

immune responses are, at least in part, capable of transcending interstrain barriers.

6.5 Discussion

The results detailed in this chapter in general concur with previously reported findings 

of a limited variant specificity of protective immunity to malaria in rodents. Using 

splenic lymphocytes taken from donor animals at peak peripheral lymphocytosis, cells 

primed to either the AS or CB strains of P. c. chabaudi were found to be better at 

conferring protection to homologous than to heterologous challenges. Indeed, most mice 

infected with a genotypically variant strain to the priming strain of parasite died at 

crisis. Jarra & Brown (1985) examined the interstrain specificity of immunity 

induced by infection with P. c. chabaudi. Mice previously infected with either the AS or 

CB strain were able to control heterologous reinfection but less well than their 

homologous challenge counterparts. However, only in naive control mice were fatalities 

observed. For the heterologous challenges described herein, mice undergoing a primary 

infection but receiving a semi-immune lymphocyte population were usually incapable of 

controlling acute parasitaemia. Only AS-primed CB-challenged animals overcame crisis 

to clear parasitaemia to subpatent levels. The differences noted between these two 

experiments using very similar systems, P. c. chabaudi AS and CB in NIH and CBA/Ca 

mice, are not thought to be due to any variation in the degree of cross-immunity 

detected. They are more likely to be caused by the relative ineffectiveness of transfer of 

lymphocytes primed to P. c. chabaudi pRBC for only 12 d of a primary infection 

compared to priming mice through a complete course of infection. No comparable studies 

on the adoptive transfer of protection to interstrain or intrastrain variant P. c. chabaudi 

have, to my knowledge, been published. It is possible that the variance seen here may

320



also reflect the effectiveness of adoptive transfer to syngeneic recipients, since, in other 

studies, hyperimmune splenic lymphocytes collected from donor animals infected at 

least twice failed to generate adequate levels of immunity to heterologous species 

challenge in naive recipients (Cox 1970, Favila-Castillo e ia l  1990). However, in 

these instances, adoptive protection had to transcend genotypic variability between 

malaria parasites. It is not surprising, therefore, that in mice immunologically 

suppressed before infection, no cross-protective activity was observed (Grun & 

Weidanz 1981, 1983, Cavacini £ ia i  1986). Moreover, Falanga & Pereira da Silva 

(1989) showed that mice recovered from a primary P. c. chabaudi infection after a 

transfusion of normal blood did not have the capacity to resist challenge with P. voelii 

17X pRBC. As the mice protected following RBC transfusions exhibited a strong 

immunity to the homologous parasite, these results indicate that the destruction of P. c. 

chabaudi is due to a specific immune response that shows a lack of cross-reactivity. 

Paradoxically, Murphy & Lefford (1979) demonstrated that mice given a primary 

infection with the nonvirulent 17X strain of P. voelii acquired a state of immunity which 

provided them with a prolonged heightened resistance against challenge with either the 

homologous parasite or highly virulent strains of P. yoelii. Furthermore, it has since 

been shown that cross-protective immunity could be transferred against virulent 

challenge by spleen cell populations taken early after infection of donor animals (Fahey 

& Spitalny 1986). This difference in the efficiency of transfer of protection by immune 

or semi-immune lymphocytes to heterologous strains of P. c. chabaudi and of P. yoelii is 

hard to reconcile but may be due to the contribution of different pRBC surface Ag types to 

the induction of protective immunity in the two systems.

In recent years, immunogenic determinants on the surface of pRBC of varying plasmodial 

species have been isolated and characterised. It is now known that the 250 kD, 230 kD 

and 190 kD proteins of P. c. chabaudi (Boyle £ ia i 1982), P. yoelii (Holder & Freeman 

1981) and P. falciparum (Holder & Freeman 1982) are equivalent (Newbold £ ia l  

1984). This Ag is a member of a family of schizont/merozoite-associated polypeptides 

which have been implicated in the induction of protective immunity to these plasmodia. 

There exists serological cross-reactivity between polyvalent mouse sera raised against 

these different high MW proteins (Holder e ia l 1983) but not between MAbs specific for 

each Ag. Being non cross-reactive, the MAbs must therefore recognise species-specific 

antigenic determinants of this class of malaria proteins. The fact that an Ag involved in 

the induction of immunity shows such inter- and intra-species diversity indicates that
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at least part of genotype- and phenotype-specific components of malarial immunity may 

be directed against this family of protein Ags common to all mammalian plasmodia 

examined. In a study of the protective immunity induced by immunisation with purified 

250 kD polymorphic schizont Ags of P. c. chabaudi AS and CB, Bates M ai (1988) showed 

that pre-challenge serum from AS Ag-immunised CBA/Ca mice reacted with both AS and 

CB preparations, as determined by both IFAT and immunoprecipitation. This cross

reactivity was manifested as a delay in the onset of parasitaemia in AS Ag-immunised 

mice after both AS and CB challenge, although the delay was most marked after 

homologous challenge. Pre-challenge serum from CB Ag-immunised mice, however, was 

CB-specific by IFAT and immunoprecipitation, and only after homologous infection was a 

significant delay in initial parasitaemia observed. These findings correlate well with 

cross-reactive adoptive protection transferred by AS- but not CB-semi-immune 

splenic lymphocytes described in this chapter. On this basis, it would be tempting to 

envisage a prominant role for the 250 kD Ag in induction of immunity to P. c. chabaudi 

in the NIH mouse model as well as that of the CBA/Ca model, but it is clear that this 

determinant is one of several polypeptides to which an immune response is mounted, and 

its precise role in this process is unknown.

A feature of the immunisation wH*the 250 kD glycoprotein of AS or CB strains of P. c. 

chabaudi at homologous and/or heterologous challenge (Brown M a i 1985, Bates M a i 

1988) was the occurrence of recrudescent parasitaemias, which were observed upon 

homologous challenge only. Since the parasite lines used were clones, the breakthrough 

parasites were presumably phenotypic variants with regard to exposed pRBC Ags, 

including the 250 kD polypeptide. Similarly, in the adoptive transfers at heterologous 

challenge described here (6.2 & 3), in irradiated recipients of AS-primed lymphocytes, 

only AS-challenged mice recrudesced. Although CB-infected animals suffered a 

protracted primary parasitaemia, once they had resolved acute infection, no further 

patencies were observed. Thus, the enhanced recrudescence, both in this study and for 

250 kD Ag-immunised animals, indicates a negative effect of priming on the normal 

development of protective immunity upon infection by P. c. chabaudi pRBC. The reduced 

ability of the host to control the second wave of infection appeared to have specificity in 

that it was detectable only after challenge with homologous parasites. This is possibly 

indicative of a suppressor effect, the mechanism of which is not known. However, 

evidence from in vitro studies of P. falciparum suggest that periods of specific 

immunosuppression do occur during malaria infection (Brasseur M a i 1983, Troye-
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Blomberg £ ia l  1983 b, 1984). Chronicity is maintained by phenotypic antigenic 

variation within the infective parasite strain, leading to low grade infection controlled 

by a variant-transcending immunity. It is thought that temporary suppression of the 

effector arm of the immune response allows expansion of the pRBC population 

circulating at the time at which suppression occurs to give rise to a patent 

recrudescence (McLean e la i 1982 b, 1986 a).

With regard to the adoptive transfer of the P. c. chabaudi AS-specific Ly-4+ lines 

(6.4), there was some evidence for both strain-specific and non-specific elements of 

protective immunity. For this study, recipient mice were immunologically intact so 

that the specificity of resistance engendered by transfer of these cell lines could not be 

scrutinised as closely as if the challenged mice were immunologically compromised. 

Although the differences in protection conferred upon homologous and heterologous 

infection were clearly distinguishable, even CB-challenged mice suffered acute-type, 

non-lethal infections. In the only published report of the specificity of adoptive 

transfer of in v itro -propagated Ly-4+ cells (Brake (1988), BALB/c nude

recipients were reconstituted with a Ly-4+ clone and infected with the homologous P. c. 

adami. After parasite clearance, mice were then challenged with the same parasite or 

with the heterologous P. yoelii 17X. It was found that mice challenged with P. c. adami 

developed short lived parasitaemias of < 1%, whereas those challenged with the normally 

avirulent P. voelii 17X developed fulminating malaria and died. The susceptibility of the 

nude mice to heterologous infection indicated that the Ly-4+ clone possessed 

immunological memory for previous exposure to P. c. adami. Moreover, nude mice 

reconstituted with the protective clone failed to respond immunologically to either 

dinitrofluorobenzene or keyhole limpet haemocyanin when these Ags were administered 

following the resolution of P. c. adami infection (Brake oial 1988). These findings 

were not unexpected since the T lymphocyte clone used for the adoptive transfer would 

have limited ability to recognise diverse antigenic epitopes (Brake £ ta i 1986, Chapter 

4). However, athymic mice grafted with the clone and infected with P. c. adami did 

develop Abs capable of recognising a large number of malarial polypeptides, as judged by 

radioimmunoprecipitation (Goldring £ ia i 1989). Ab reactivities were similar to those 

seen in infected euthymic mice and contrasted with their absence in infected nude mice. 

It may be that the reconstituted Ly-4+ lymphocytes had been exposed to a specific 

plasmodial epitope as a result of infection and had consequently secreted lymphokines 

capable of supporting the polyclonal differentiation of B cells. In the present study,
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anti-P. c. chabaudi Ab levels were elevated throughout infection but the specificity of the 

antigenic determinants eliciting such a response was not established. It would be 

doubtful, however, that such high serum Ab titres could be induced by a humoral 

response to a single immunogenic pRBC cell surface Ag, such as, for example the 250 kD 

polymorphic schizont Ag. What is known is that P. c. adami infection of C3HeB/FeJ mice 

is characterised by a predominant and persistent IgM response, moderate lgG2 and lgG3 

and little significant lgG1 response during a primary challenge (Langhorne £ ia l 1984). 

In both the adoptive transfer experiments, the Ig isotype distribution of malaria- 

specific Ab production during infection was not examined, but presumably they follow a 

similar pattern. This is not guaranteed, however, since Ags shared by P. c. chabaudi and 

P. c. adami may not necessarily induce similar Ab responses in the two infections. In fL. 

yoelii infections, for example, lgG2 is the predominant isotype (Langhorne olol 1984). 

The results of Goldring £ ia l  (1989) that, regardless of the nature of the Ly-4+ cell 

graft, sera from recipient animals recognised an array of plasmodial Ags suggests that it 

will not be possible to determine the antigenic specificity of cloned T lymphocyte 

populations in malaria infections by their capacity to provide help to restricted 

populations of B lymphocytes. It does, however, stress the concept that T cells, 

especially those of the Ly-4+ subset, have a helper role in the production of protective 

Abs. This hypothesis was first put forward by Brown (1971, 1974) who suggested that 

helper T cells aid B cells in the synthesis of variant-specific protective Abs. Brown 

proposed that during malaria infection, T cells become primed to a determinant common 

to all plasmodial variants characteristic of the strain producing the infection, and, 

further, that each antigenic variant stimulates a separate B lymphocyte population. 

According to this hypothesis, the sensitisation of T cells with one variant type would 

produce an expanded T cell population capable of acting as helpers to all B cell clones 

responding to phenotypic variants as they arise later in infection. This proposal for the 

underlying mechanism of strain-specific anti-plasmodial immunity still holds favour 

today and explains the requirement for B cells in recipients of T cells sensitised to P. c. 

chabaudi AS (McDonald & Phillips 1978, see also Chapter 7). Variant-transcending 

immunity controls the growth, to a greater or lesser extent, of all phenotypic variants 

of the infective parasite genotype and accounts for the sharp drop in parasitaemia at 

crisis that leads to resolution of acute infection. In addition, a non-specific generalised 

protection transcending interstrain boundaries also plays a role in immunity to P. c. 

chabaudi. At present, however, the nature of this protective response has not been
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elucidated and the mechanism involved has yet to be defined.
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CHAPTER SEVEN

ADOPTIVE TRANSFER OF T CELL LINES TO 
IMMUNOCOMPROMISED SYNGENEIC RECIPIENTS
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7.1 Introduction

There is now a substantial weight of evidence derived from studies utilising animal 

models with thymic defects either induced experimentally or congenic in origin showing 

that development of a protective immune response to Plasmodium requires the presence 

of T lymphocytes. For example, neonatal thymectomy (Brown £ la ] 1968 a, Stechschulte 

1969), treatment with anti-thymocyte serum (Spira £ ia i 1970) or the use of athymic 

nude mice (Clark & Allison 1974, Weinbaum £ ia i 1976 b) prevented the development 

of resistance to either P. berghei or P. voelii. As both these species of Rasmodjuwapoear 

to be susceptible to Ab-mediated mechanisms of immunity, as determined by passive 

immunisation studies (Diggs & Osier 1969), these findings collectively gave rise to the 

concept that T cells have a helper role in the production of protective Abs and led Brown 

(1971) to hypothesise that helper T cells aid B cells in the synthesis of asexual blood 

stage variant-specific protective Abs.

In addition, accumulating evidence points to additional effector roles for T lymphocytes 

which can act in conjunction with, or independently of, anti-malarial Abs. Observations 

supporting this concept include: the ability of B cell-deficient hosts to resolve malaria 

infection spontaneously or to resist reinfection by both avian (Ferris a ta i 1973, Rank 

& Weidanz 1976) and murine (Grun & Weidanz 1981, 1983) parasites; and the 

reduced effectiveness of passively transferred immune sera to protect splenectomised or 

T cell-deprived recipients against infection (Brown & Phillips 1974, Jayawardena a la i 

19 77).

Another line of evidence supporting cell-mediated immunity to malaria comes from the 

effective transfer of immunity using specific T cells from immune animals. The earlier 

adoptive transfer studies mostly involved the transfer of lymphoid cells from immune to 

non-immune but immunologically competent recipients (Roberts & Tracey-Patte 1969, 

Phillips 1970, Kasper & Alger 1973, Gravely & Kreier 1976). This made it difficult 

to differentiate between the protective activities provided by the transferred 

lymphocytes alone and that resulting from the cooperation between these and the 

recipients' intact immune system. The contribution of the latter can be reduced by 

exposure to gamma-irradiation. Thus, in more recent studies, either congenitally T 

cell-deficient nude mice (Brinkmann M a i 1985, Cavacini o ia i  1986) or recipients 

rendered T cell-deficient by adult thymectomy and irradiation (McDonald & Phillips 

1978) have been used. These experiments revealed that immunity to P. c. chabaudi. P. 

c. adami and P. voelii was best transferred with primed splenic T cells of the Ly-4+
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subset, but not with immune B cells.

Such studies have been carried further by Brake £ ia i (1986), who established in vitro 

Ly-4+ cell lines taken from mice immune to P. c. adami. When these cultured cells were 

adoptively transferred to nude mice, recipients were capable of surviving homologous 

parasite challenge. Since the cell lines possessed protective activity, they were used to 

develop Ly-4+ clones, one of which transferred protection adoptively (Brake £ ia l  

1988). This reasoning was behind the similar methodology described in this thesis for 

the in vitro maintenance of Ly-4+ T cell lines primed to P. c. chabaudi AS (Chapter 4) 

and their adoptive transfer to immunocompetent syngeneic recipient animals (Chapter 

5). Having shown that each of the Ly-4-bearing populations conferred protection to 

naive host mice upon homologous challenge, further examination of the mechanisms of 

acquired immunity necessitated the use of recipients having a relative absence of 

endogenous T cells. The complete failure of athymic mice to develop a functioning 

thymus during ontogeny (Wortis £ ia l 1971) or to exhibit T cell-mediated responses 

recommends this model for the study of cellular immunity to malaria. A deficiency in T 

lymphocytes makes these animals very susceptible to P. c. chabaudi and infections with 

this parasite, like those of P. c. adami. are lethal. It would be thought, therefore, that 

nude mice would be ideal to use as recipients for adoptive transfer experiments, as 

Brake £ ia i  (1986, 1988) had found. However, in this particular instance, it was not 

possible to use these athymic mutants because of their histoincompatability to the 

transferred cell lines. The MHC disparity between the H-29 haplotype of the Ly-4+ 

cells to be transferred and the H-2d haplotype of the BALB/c nude mice would mean a 

failure of the allogeneic lymphocytes to survive upon injection (Kindred & Shreffler 

1972, Kindred & Loor 1975). This has been illustrated amply for murine malaria by 

Brinkmann e la l (1985), who were unable to transfer protection to C57BL76 nude mice 

by injecting spleen cells from immune C57BL710 mice. Their inability to adoptively 

transfer protection was thought to have been caused by the fact that the donor and 

recipient mice were not syngeneic, even though they were congenic for MHC genes.

In a similar manner, the recently developed murine SCID mutation would prove 

unsuccessful as this arose in the C.B-17 inbred strain of mouse, a congenic partner of 

BALB/c (Ansell & Bancroft 1989). To date, only preliminary adoptive transfers in 

SCID mice (lacking both functional T and B lymphocytes) with Ly-4+ cells have been 

performed (Meding, S.J. & Langhorne, J., unpublished results).

In the experiments described in this chapter, immunologically crippled NIH mice were
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prepared as recipients of syngeneic Ly-4+ cell line inocula. Thymectomy followed by 

lethal irradiation and bone marrow stem cell replacement created recipients that could 

remain T cell-deficient indefinitely {Loveland M a i 1981). This was thought a

satisfactory model for T cell depletion despite the unphysiological intervention required.

With care, the uncertainty regarding incomplete thymus ablation was reduced to a

minimum. In such a situation, the enormous potential for a small number of T

lymphocytes to expand in vivo (Bell M a i 1987) in T cell-deficient animals was 

beneficial.

7.2 Adoptive transfer of T cell lines to adult-thymectomised, lethally 

irradiated & bone marrow-reconstituted syngeneic recipients

NIH female mice were thymectomised at four to five weeks of age (2.15). Four weeks 

later, they were subjected to 7.5 Gy gamma irradiation and injected with 5 x107 

syngeneic bone marrow cells (2.16). The T cell-deprived animals so obtained were 

experimentally infected a further month afterwards when they were approximately 12 

weeks old.

Each of the four established Ly-4+ cell lines used for adoptive transfer was propagated 

in vitro after recovery from cryopreservation and harvested for reconstitution 3-4 d 

after subculturing. For each line, lymphocytes were adoptively transferred to five age- 

matched T cell-deprived NIH female mice. The inoculum used was 4.0 x107 viable cells, 

except for WEP 723, in which case 3.54 x107 cells/mouse were injected.

Similar sized control groups were set up to control for the in vivo manipulation of the 

immune system of the immunocompromised recipient hosts. These included both 

thymectomised and sham-thymectomised recipients of a population of syngeneic splenic 

T & B cells in place of a specific Ly-4+ line, and also T cell-depleted and sham-depleted 

mice, which were reconstituted with bone marrow cells after irradiation but without 

further adoptive transfer. In addition, a non-thymectomised control was prepared; 

these mice were lethally irradiated and B cell-reconstituted but not surgically 

interfered. This acted as a negative control for the surgical trauma experienced by 

sham-thymectomised mice.

In summary, all mice receiving Ly-4+ lymphocytes were T cell-deprived, whilst of 

control mice, some were also adult-thymectomised, lethally irradiated and bone 

marrow-reconstituted, some were sham-thymectomised whilst others were not 

thymectomised. These latter controls did, however, experience irradiation treatment
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and B cell reconstitution. All mice in this experiment were inoculated i.v. with 1 x105 

of a parent population of P. c. chabaudi AS pRBC.

The protection conferred by adoptive transfer of each of the four Ly-4+ lines upon P. c. 

chabaudi AS challenge of T cell-depleted recipients is shown in Figs. 7.2.1 & 2. For the 

lines taken from infected donor mice on d 16 or d 20 of primary infection, WEP 775 and 

WEP 779, respectively, there was a clearly observable protective immunity given by 

the inoculation of these semi-immune lymphocytes (Fig. 7.2.1). This was seen as a 

lower peak primary parasitaemia, a significantly quickened remission to subpatency (p 

< 0.01), and a significantly lower recrudescence (p < 0.01), all compared to a control 

group of similarly T cell-depleted mice receiving naive splenic T & B cells. In contrast, 

for those lines derived from mice recovered from either a secondary or tertiary P. c. 

chabaudi AS infection, WEP 737 and WEP 723, respectively, the protection engendered 

was not nearly so great. Indeed, the courses of infection of recipients of these lines and 

of splenic T & B lymphocytes were comparable (Fig. 7.2.2). As can be seen from this 

figure, the pattern of acute infection was similar for all three groups with a comparable 

level and timing of peak parasitaemia, but a significantly quicker remission for mice 

inoculated with unprimed T & B cells (p < 0.05). Indeed, recipients of WEP 737 

actually failed to clear the primary parasitaemia to subpatent levels, whilst those mice 

given WEP 723 did so only for 1 d. Moreover, the magnitude of the recrudescence was 

similar for recipients of WEP 723 and of naive splenic lymphocytes.

It would appear that the divergent patterns of parasitaemia attained upon adoptive 

transfer of these Ly-4+ lymphocyte populations to immunocompetent recipients 

(Chapter 5) are enhanced against a background of host T cell depletion. This is most 

easily appreciated by comparison of the courses of infection of immunocompromised 

mice given either WEP 775 or WEP 737 (Fig. 7.2.3). It is evident that the Ly-4+ lines 

each provided a distinct immune protection, and suggests that in vivo their behaviour 

fell into two classes. For WEP 737, the protection engendered under these 

circumstances was no greater than that given by a similar number of mixed T & B cells 

(positive thymectomy control). Figure 7.2.4 compares the patterns of parasitaemia of 

WEP 775 and of WEP 737 recipients with that in mice receiving no additional 

lymphocytes after B cell reconstitution (negative thymectomy control). For the latter 

group, four of five mice failed to control infection and in the other the chronic high 

parasitaemia resolved only on d 39 p.i.. This served to show the necessity for 

repopulation of the immune system with syngeneic T lymphocytes. These would be

359



ideally those with previous experience of P. c. chabaudi AS, but this was not essentia! as 

shown by the resistance to infection acquired by thymectomised recipients of unprimed 

spleen cells (Fig. 7.2.3).

Examination of the courses of infection in mice thymectomised before challenge 

compared to their sham-thymectomised counterparts is very revealing (Fig. 7.2.5). 

Mice that were sham-thymectomised, then lethally irradiated and bone marrow- 

reconstituted, but without further adoptive transfer, i.e. the sham controls for the 

negative thymectomy group, showed similar levels of parasitaemia as did the non

reconstituted thymectomised animals, also with some fatalities. These mice contained an 

intact thymus, and therefore presumably a full complement of mature T lymphocytes, 

yet were equally unable to clear P. c. chabaudi AS infection a month after lethal 

irradiation and B cell reconstitution as were the thymectomised mice. As the peripheral 

blood population of T cells would have recovered to normal levels during the time 

between immunosuppression and parasite challenge, it would suggest that the failure of 

the thymectomised animals (negative thymectomy control) to curb infection could not be 

due directly to their lack of T cells caused by thymectomy, as one may at first have 

suspected by studying Fig. 7.2.4. Confirmation of this comes from the sham positive 

thymectomy mice, i.e. the sham equivalents of those mice receiving splenic T & B cells 

after T cell depletion. Although the acute infection was of higher peak parasitaemia and 

reached subpatency 4 d later than did that for the sham-thymectomised mice, 

thymectomised recipients of splenic lymphocytes at the time of challenge thereafter 

showed identical kinetics of infection as did their sham equivalents (Fig. 7.2.5). Thus, 

the recrudescent phase of infection did not appear to be dependent on the presence of a 

full T cell complement. This is suggestive of the resolution of recrudescence leading to 

parasite clearance being a B cell-dependent phenomenon, and not necessarily requiring 

the presence of T cells to function. As there was a clear difference during the early part 

of the infection between thymectomised and sham-thymectomised mice (Fig. 7.2.5), it 

would appear that the mechanisms of immunity involved in control of the primary 

parasitaemia have a T cell dependency. The inability of both T cell-depleted mice that did 

not receive a further spleen cell reconstitution upon infection and their sham- 

thymectomised counterparts to control either the early or late phases of P. c. chabaudi 

AS infection would appear to be due to a lesion in the B cell compartment of these 

immunocompromised animals. The presence of T cells in sham control mice did not 

offset the effects of lethal irradiation, in which peripheral blood and splenic
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lymphocytes were removed. In sham mice, the circulation was repopulated with 

thymus-derived T cells, yet this did not alter the course of the subsequent infection. 

Both T cell-depleted and sham-depleted mice were still immunoincompetent, even after 

bone marrow reconstitution. This reflected the relative radiosensitivity of B 

lymphocytes compared to T lymphocytes; as the 7.5 Gy irradiation dose had to be 

sufficient to destroy the peripheral blood T cell population, it effectively knocked out the 

B cell population. The repopulating inoculum of bone marrow stem cells was clearly 

insufficient to offset the P. c. chabaudi AS infection and mice died, presumably due to a 

lack of B cell-mediated immune responses.

With regard to the adoptive transfer of the Ly-4+ cell lines (Figs. 7.2.1 & 2), the 

relative inability of WEP 737 and WEP 723 to control infection (Fig. 7.2.2) compared 

to WEP 775 and WEP 779 (Fig. 7.2.1) may have been caused by a lack of B lymphocytes 

in the challenged hosts. In naive recipients of these cell lines, the patterns of 

parasitaemia also fell into the same two classes, although the protection engendered was 

essentially similar (Chapter 5). In this case, the recipients used were fully 

immunocompetent and possessed both B and T lymphocytes, though with no previous 

exposure to the infecting parasite. Thus, the divergency in response of these lines upon 

transfer to T cell-depleted recipients may reflect an underlying difference in the 

mechanisms by which these two groups of Ly-4-bearing lymphocytes mediate anti- 

malarial activity in vivo.

7.3 Adoptive transfer of T cell lines and additional splenic B cells to 

adult-thymectomised, lethally irradiated & bone marrow-reconstituted 

syngeneic recipients

The results of the adoptive transfer study described in 7.2 furthered the findings of 

Chapter 5 in discriminating between the behaviour of the P. c. chabaudi AS-specific Ly- 

4+ cell lines in terms of protection against homologous challenge. For the lines taken 

after multiple infections of donor mice, WEP 737 and WEP 723, there was less 

protection conferred in T cell-depleted mice than in immunocompetent mice. Analysis of 

appropriate control groups indicated that this effect was probably due to a lack of B 

lymphocytes, and, therefore, that these lines mediate protection through B cell help. In 

contrast, for the lines taken during primary infection of donor mice, WEP 775 and WEP 

779, there were similar effects on the two different immunological backgrounds. The 

retention of activity upon T cell depletion suggested indirectly that these Ly-4+ cells
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acted by a mechanism other than B cell activation. This proposed discrepancy between 

the T cell-dependent mechanisms of immunity utilised by different Ly-4+ populations 

warranted further investigation. This section describes the adoptive transfer of the Ag- 

reactive Ly-4+ lines to T cell-deprived recipient mice either alone (as for 7.2) or 

together with syngeneic splenic B or T & B cells.

As before, prospective recipient NIH female mice were surgically thymectomised, 

lethally irradiated and reconstituted with 5 x107 syngeneic bone marrow cells. Four 

weeks after immunosuppression, these animals were infected with 1 x105 pRBC P. c. 

chabaudi AS and the course of infection followed. Three groups of six age-matched mice 

were each i^oc^U ted with either WEP 775 or WEP 737; the inoculum used was 4.15 ± 

0.06 x107 viable cells/mouse. For each cell line, mice in one group were given these 

cells alone (as a confirmation of 7.2), whilst mice in the other two groups received 

additional injections of either 4 x107 naive syngeneic splenic B cells or of a mixed T & B 

population. For these investigations, WEP 775 and WEP 737 were used as 

representative lines of the Ly-4+ populations derived during primary or after multiple 

P. c. chabaudi AS infections. However, for the specific case of reconstitution of enriched 

splenic B cells, WEP 779 and WEP 723 were also adoptively transferred to recipient T 

cell-deprived mice. To gauge the possibly enhanced protection conferred by these lines 

in the presence of sufficient B cells, mice receiving 4 x107 splenic T cells and 4 x107 

splenic B cells taken from naive donors were also prepared. In addition, the protection 

engendered by either of these two lymphocyte populations inoculated alone was also 

assessed.

The protection conferred by each of the Ly-4-bearing lines upon adoptive transfer with 

an equal number of naive, syngeneic B cells is shown in Figs. 7.3.1 & 2. It is clear that 

all four populations engendered an immune reactivity upon reconstitution; this was 

manifested principally as a reduction of parasitaemia to subpatent levels compared to 

control T cell-deprived recipients of naive splenic lymphocytes. In this regard, the 

patterns of parasitaemia were essentially similar to those attained upon transfer to P. c. 

chabaudi AS-infected naive mice (Chapter 5); this was especially noticeable for WEP 

737 and WEP 723, the transfer of which to T cell-deprived recipients failed to resolve 

acute infection to subpatency (7.2). Thus, the repopulating of the lethally irradiated 

recipients with mature B cells was responsible, in part, for the resolution of primary 

parasitaemia in these mice as for fully immunocompetent animals. As for naive 

recipients, the courses of infection of mice given lymphocytes from either of the two
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groups did not differ significantly during the acute infection, but varied in the timing of 

the recrudescence (Fig. 7.3.3). All experimentally challenged mice resolved primary 

parasitaemia either on d 22 or d 23 p.i.. However, T cell-depleted recipients of WEP 

737 and additional naive B cells showed a recrudescence ahead of similarly depleted mice 

given WEP 775 and B cells. These differences between the kinetics of infection upon 

transfer of these two Ly-4+ lines to T cell-depleted mice was evident only when naive B 

cells were cotransferred (Fig. 7.3.3) and not in their absence (Fig. 7.2.3). This was 

due to a change in the pattern of parasitaemia of recipients of WEP 737 upon full B 

lymphocyte reconstitution (Figs. 7.2.2 & 7.3.2) and not of the parasitaemia exhibited 

by WEP 775-inoculated mice under these varying conditions (Figs. 7.2.1 & 7.3.1). 

Therefore, mice deficient of T cells but fully competent in the B cell repertoire showed 

the same level of resistance to P. c. chabaudi AS pRBC upon transfer of WEP 737 as did 

mice possessing both lymphocyte compartments. This suggests strongly a B cell 

dependency for the WEP 737 and WEP 723 Ly-4+ lines to mediate anti-P. c. chabaudi 

immunity in v ivo.

The B cell dependency of the Ly-4-bearing lines derived from the spleens of mice 

recovered from secondary or tertiary malaria infections is evidenced by the divergent 

patterns of immune protection elicited by WEP 775 and WEP 737 to T cell-depleted 

mice in the absence of B cells (confirmation of 7.2) (Fig. 7.3.4). Recipients of WEP 

737 reached a transient subpatency on d 34 p.i., compared to d 25 p.i. for WEP 775- 

transferred mice. The magnitude of the recrudescence in the former was in fact higher 

than that detected in mice given a control population of unprimed splenic T cells, 

although parasite clearance was quicker (Fig. 7.3.4). Thus, the degree of protection 

conferred by WEP 737 in the relative absence of B cells was not nearly as great as that 

conferred in a B cell-rich environment (Fig. 7.3.3). For WEP 775, however, the 

presence or absence of additional B cells had a lesser effect on the level of protection 

engendered by this T lymphocyte line to immunocompromised host animals (Figs. 7.3.3 

& 4). Thus, unlike WEP 737, WEP 775 appeared to mediate protection in vivo largely 

through B cell-independent mechanisms.

That the requirement of the Ly-4+ lines taken from reinfected donor mice was for B 

cells rather than for T cells can be determined by examination of Fig. 7.3.5. These 

adult-thymectomised, irradiated & bone marrow-reconstituted mice received a total of 

4 x107 naive splenic T & B cells as well as either WEP 735 or WEP 737 (the control 

group received 8 x107 spleen cells). For both recipients of either Ly-4+ line, the
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course of infection observed upon cotransfer with a mixed splenic population was very 

similar to that seen in the presence of just B cells (Fig. 7.3.3). Thus, the additional 

presence of unprimed T lymphocytes did not appear to have an appreciable effect on the 

patterns of parasitaemia in recipients of either the proposed B cell-dependent or B cell- 

independent T cell lines. The mediation of protection by both these lines, thought to be 

by different immunological pathways, therefore, did not depend upon a repopulating T 

cell population for functional activation in vivo. This is not to suggest that non-immune 

T cells do not necessarily play a part in immune protection through Ly-4+ effector 

mechanisms, but that the numbers involved are very probably fewer, thus not 

demanding a substantial repopulation of thymectomised and lethally irradiated animals 

for significant reactivity.

The dichotomy of protection given by the adoptively transferred Ly-4+ populations is 

appreciated best by studying the courses of infection of mice receiving these cells with 

or without supplementary lymphocytes (Figs. 7.3.6 & 7). The similar patterns of 

reactivity of WEP 737 upon transfer to T cell-depleted recipients with additional 

syngeneic B cells and with a mixture of naive T & B cells (Fig. 7.3.6) suggest that it is 

predominantly the B lymphocyte fraction of the heterologous splenic population with 

which the malaria-primed Ly-4+ cells interact. This is highlighted by the course of 

infection for mice receiving the WEP 737 lymphocytes alone, thus with relatively few B 

cells present. In this case, the B cell/T cell interaction was limited, thereby restricting 

specific Ab production. Hence, the P. c. chabaudi AS-challenged mice suffered an 

extended primary parasitaemia and a heightened recrudescence (Fig. 7.3.6).

For the Ly-4+ lines considered to be B cell-independent in their mode of action, this 

experiment showed qualified support for this hypothesis. WEP 775 lymphocytes 

transferred to T cell-depleted recipients together with an equal total number of splenic 

B & T cells as B cells alone gave identical courses of infection (Fig.7.3.7). Thus, a 

reduction by approximately 50% in the number of B cells present in the system had no 

effect on the behaviour of this protective Ly-4+ T cell line. Animals inoculated with 

WEP 775 cells alone recrudesced at the same time as did those given additional non

reactive lymphocytes. However, there was a lag of 4 d in resolution of the primary 

parasitaemia with respect to recipients of more complex multiple transfers. This 

divergence in behaviour occurred at a time of infection when non-specific effects 

usually predominate in the anti-malarial immune response. The apparent greater 

protection in the presence of an excess of naive B lymphocytes, as determined by the
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quicker resolution of acute infection (Fig. 7.3.7), was thought to be due to an additive 

effect of the considerable population of mature B cells present in those mice given B 

cells in addition to WEP 775 lymphocytes. This explanation of this shift of the primary 

parasitaemia in the absence of a B cell population was considered more likely than a 

specific B cell/T cell interaction between WEP 775 and those naive B cells inoculated, 

since, this effect notwithstanding, the patterns of parasitaemia in T cell-depleted 

recipients of WEP 775 were very similar in the presence or absence of naive B and/or 

T & B cells (Fig. 7.3.7). The only difference observed was before a specific anti-P. c. 

chabaudi AS response could be mounted. During the subpatent and recrudescent periods, 

when specific effector mechanisms are thought to offer a greater protection, the 

parasitaemias were essentially alike. An alternative view of the anomalous reactivity of 

the WEP 775 line in the absence and presence of additional B cells is that this may have 

been due to its not being pure, i.e. a mix of two or more Ly-4+ T cell subsets or cell 

types. Hence, the overall effect may be the sum of the actions of both individual types. 

However, homogeneous cloned populations derived from the WEP 775 line showed a 

similar behaviour in vivo (Chapter 9), indicating that contamination of the Ly-4- 

bearing population was an implausible explanation for the results obtained. These 

findings, therefore, generally support the view that those cell lines derived from 

spleens taken early during primary P. c. chabaudi AS infection, WEP 775 and WEP 779, 

exert protective immunity by non-Ab-mediated mechanisms.

The effect of the addition of unprimed B lymphocytes could not, however, explain the 

difference in reactivity of the WEP 737 Ly-4+ line with or without B cells or non

specific T cells (Fig. 7.3.6). This T cell line is thought to behave in a synergistic helper 

role with those B lymphocytes present, and this hypothesis gained strength from this 

adoptive transfer study. The immunity conferred by WEP 737 was greatly enhanced by 

the concurrent inoculation of splenic B cells, reducing the pre-subpatent period, the 

height of the recrudescence and the total time for parasite clearance. For the first 20 d 

p.i. the patterns of parasitaemia were very similar in all recipients of WEP 737 (Fig. 

7.3.6), and it was only during the remission of the primary infection that a discrepancy 

in the protection conferred by WEP 737 cells in the presence or absence of additional B 

cells was first noticeable. The relative lack of protection engendered by the WEP 737 

line in the absence of sufficient repopulating B cells would indicate a helper role for 

these T cells in variant-specific anti-P. c. chabaudi AS Ab synthesis. Hence, when 

cotransferred with a large population of mature B cells, lymphocytes of the WEP 737
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line were able to control infection, presumably through classical Ab-mediated 

mechanisms. When insufficient B cells were inoculated into recipient mice at the time 

of challenge, during the second phase of infection a humoral immune response could not 

be mounted and phenotypically variant asexual stage parasites were able to multiply 

unchecked, thereby causing a protracted infection (Fig. 7.3.6).

Different groups of naive spleen cells inoculated into immunosuppressed mice without 

Ly-4-bearing T cell lines were set up as controls for this experiment. Transfer of 

either unfractionated T & B splenic lympocytes or T- or B-enriched populations did give 

some protection compared to a negative control of the normal course of infection of P. c. 

chabaudi AS observed in non-reconstituted T cell-deprived NIH mice (Fig. 7.3.8). Each 

group of naive lymphocytes was capable of reducing the level of parasitaemia, but their 

adoptive transfer affected neither the pattern nor the total length of infection. Thus, 

recipients of unprimed cells alone suffered a chronic primary parasitaemia lasting not 

less than 38 d. By comparison, the Ly-4+ lines were effective in conferring immune 

protection, seen as a reduced level and shortened duration of acute infection, remission 

to subpatency, and as a significantly quicker final clearance of parasites (Fig. 7.3.3). 

The inability of naive lymphocytes to control the course of challenge infection in 

immunosuppressed mice was especially significant in the case of recipients of 8 x107 

unprimed B cells (Fig. 7.3.8). This showed that the ability of WEP 737-transferred 

recipients to control challenge in the presence of additional B cells (Fig. 7.3.6) was 

caused by a synergism between Ly-4+ lymphocytes and the naive B cells and not due to 

the mediation of the latter alone.

7.4 Discussion

The work presented in this chapter attempted to explore the pathways by which each of 

the four Ly-4-bearing T cell lines specific for P. c. chabaudi AS used throughout this 

study mediated protection to homologously challenged recipients. It had been established 

that each line gave some protection when adoptively transferred to naive, syngeneic mice 

(Chapter 5). To elucidate the nature of this protection further, recipient animals were 

previously surgically thymectomised, gamma-irradiated and bone marrow- 

reconstituted. This in vivo manipulation, from which the mice were allowed to 

recuperate fully, produced an immunocompromised state effectively devoid of mature T 

lymphocytes. Initial studies revealed that the patterns of reactivity in vivo were not all 

the same but fell into two distinct groups. Those Ly-4+ lines derived originally during
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primary P. c. chabaudi AS infection, WEP 775 and WEP 779, were able to control 

challenge upon reconstitution of T cell-deprived mice in a similar way to adoptively 

transferred immunocompetent, naive mice. These findings concurred with those of 

Brake £ la l (1986), who showed that in yiim-propagated Ly-4+ lines were effective in 

transferring protection adoptively to athymic nude mice challenged with P. c. adami. 

However, similar P. c. chabaudi AS-specific lines taken from mice after a secondary 

(WEP 737) or tertiary (WEP 723) infection showed a lesser protection in T cell- 

deprived mice than in fully competent mice. From this information, it would appear that 

thymus ablation had a deleterious effect on the conferment of protection by these two 

lines. Examination of control mice showed that animals challenged without receiving an 

inoculum of T cells exhibited a fulminating lethal infection regardless of whether they 

had been adult-thymectomised or only sham-thymectomised. Therefore, the presence of 

an intact thymus appeared to be irrelevant to the mediation of protection by WEP 737 or 

WEP 723 to immunosuppressed animals. Assuming that the deficiency in the host mice 

was in the B cell rather than the T cell compartment, another adoptive transfer 

experiment was performed to explore this possibility. That the greater parasitaemia in 

immunosuppressed mice transferred Ly-4+ lines taken from reinfected mice was due to 

a lack of B lymphocytes was not an unreasonable suggestion in view of their greater 

sensitivity to the acute effects of radiation than T lymphocytes (Kataoka 4 Sado 1974). 

It may be that either or both the number of bone marrow stem cells inoculated after 

lethal irradiation and the time between reconstitution and challenge were insufficient to 

produce a population of circulating mature B cells sufficiently large to interact with the 

adoptively transferred Ly-4-bearing lymphocytes to give rise to an Ab-dependent 

cellular response to infection. When a large repopulating inoculum of mature splenic B 

cells was cotransferred with WEP 737 cells, an effective immune response was elicited, 

for a level of protection was engendered sufficient to control challenge as for 

immunocompetent recipients. The behaviour of this Ly-4+ line was, therefore, similar 

to that exhibited by cells of the Ly-1 + 23 ' phenotype (mostly Ly-4+ cells) upon 

adoptive transfer to T cell-deprived mice challenged with P. voelii (Jayawardena n la l 

1982). In this study, it was shown that Ly-1+ T cells reconstituted the ability of T 

cell-deprived mice to produce anti-malarial Abs. Furthermore, there was a clear 

synergism between inoculated Ly-1+ cells and B cells, for mice injected with a mixture 

of the two cell types mounted an earlier and more vigorous Ab response than mice 

receiving either cell type alone. It would be expected that any cell-mediated immune
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response to P. yoelii would be in a helper capacity for Ab synthesis, since, for this 

particular plasmodial species, resolution of infection is through humoral immunity. 

Adoptive transfer of the Ly-4+ lines into P. c. chabaudi AS-infected T cell-deprived 

recipients with or without additional B or T & B cells demonstrated clearly that the lines 

from reinfected mice, WEP 737 and WEP 723, gave greater protection when 

reconstituted with syngeneic B cells, whereas the lines from mice recovering from 

primary parasitaemia, WEP 775 and WEP 779, showed similar levels of protection in 

the presence or absence of naive B cells and/or non-reactive T cells. This dichotomy of 

the protection engendered in vivo by these T cells, all of which were phenotyped to the 

Ly-4+ T cell subset (Chapter 9), correlated with a functional heterogeneity of these 

lines at a cellular level. The secondary and tertiary infection-derived cells appeared to 

act by Ab-mediated mechanisms, i.e. as helper T cells for specific Ig production. The two 

lines taken early in primary infection did not behave in this way and were considered B 

cell-independent in their reactivity in v ivo . It was thought that they may cause 

protection through alternative effector mechanisms, such as, for instance, the induction 

of activated macrophages. To dissect the underlying mechanisms responsible for the 

mediation of protection conferred by each of the Ly-4+ lines upon adoptive transfer, 

every line was subjected to a detailed characterisation in vitro , as described elsewhere 

(Chapter 9).

The findings reported here match very closely those of Langhorne el al using the same £* 

c. chabaudi AS parasite in C57BLV6 mice. These workers have investigated the type of T 

lymphocytes involved in immunity to P. c. chabaudi AS by application of a limiting 

dilution assay system on splenic lymphocytes taken from mice during the course of an 

infection (Langhorne & Simon 1989, Langhorne e ia i 1989 a), and by using rat MAbs 

against murine Ly-2 and Ly-4 determinants to deplete mice of these T cell subsets prior 

to or during a P. c. chabaudi AS infection (Suss £ ia i 1988, Langhorne £ la i 1989 b). 

They found that Ly-4+ cells had a major role in controlling challenge infection whereas 

cells of the Ly-2+ subset were concluded to be of marginal importance. During the first 

14 d of a primary infection, the predominant Ly-4+ T cell response was of the TH1- 

type, i.e. Ab-independent (Langhorne e la l 1989 a). From d 14 p.i., the frequency of 

this cell type declined and by d 21 p.i. the Ly-4+ response was predominantly of TH2 

cells, characteristic of an Ab-dependent activity. These data provided indirect evidence 

that the effector mechanisms controlling the primary patent parasitaemia of a P. c. 

chabaudi AS infection may be Ab-independent, but that this is superceded by Ab-
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mediated immunity. The functional dichotomy of the Ly-4-bearing T cell subset 

described for host immunity to P. c. chabaudi AS in C57BU6 mice was revealed again by 

the experiments described herein using NIH mice. In essence, therefore, the results of 

these studies using two different approaches were alike. The two lines recovered from 

donor mice on d 16 and d 20 of a primary infection, WEP 775 and WEP 779, 

respectively, were determined to be B cell-independent in their reactivity in vivo and 

could thus be nominally termed TH1 cells, although evidence for this classification 

required characterisation of lymphokine secretion profiles (Chapter 9). These lines 

represented the majority of Ly-4+ cells present in the spleens from which they were 

taken at the time of splenectomy, in that TH1 lymphocytes are more frequent during the 

acute phase of infection of P. c. chabaudi AS and shortly thereafter. As there is thought to 

be a shift in the balance of Ly-4+ cells towards those of the TH2 subset later in infection 

to coincide with the appearance of detectable levels of serum Ig, the lines taken from 

multiply-infected mice, WEP 737 and WEP 723, were likewise representative of the 

majority of Ly-4-bearing lymphocytes present in the host immune system after 

prolonged exposure to P. c. chabaudi AS.

One interesting aspect of the present study was the presence of recrudescent 

parasitaemias in the T cell-reconstituted immunosuppressed challenged mice. For the 

second experiment (7.3), animals received an inoculum of naive B cells in addition to 

lymphocytes of a Ly-4+ cell line, and all recipients managed to control infection. The 

parasitaemia showed a typical biphasic pattern similar to that seen in immunocompetent 

mice. It has been suggested that for P. knowlesi infection of rhesus monkeys the switch 

from one parasite variant to another under host immune pressure may be Ab-induced 

(Brown 1973, Brown & Hills 1974). Although the selective pressure for induction of 

antigenic variation in P. c. chabaudi AS has not been elucidated, these data do not suggest 

other than an Ab-mediated mechanism. Paradoxically, however, in the earlier 

experiment in which a large repopulating dose of B cells was not cotransferred with each 

Ly-4+ line, recrudescent parasitaemias were still observed (7.2). As it is known that 

the number of mature B lymphocytes present in these immunosuppressed animals was 

not sufficient to interact with the B cell-dependent Ly-4+ cells to synthesise variant- 

specific Ab, presumably the low level of B cells would also have affected the induction of 

antigenic variation. However, both for recipients of these lines and for those given the 

lines thought to be B cell-independent, pronounced recrudescences were observed, 

indicative of the presence of phenotypically variant parasites in the peripheral
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circulation. This would indicate a selection pressure for induction of antigenic variation 

by P. c. chabaudi AS pRBC that does not involve variant-specific Ab for its expression. 

If this is the case, as for P. c. adami infection, protection cannot be principally Ab- 

mediated. Grun & Weidanz (1981) showed that P. c. adami infection in B cell-deficient 

mice resulted in an activation of a T cell-dependent immune mechanism which 

terminated acute malaria in a similar way to that seen in immunologically intact mice. 

In contrast, B cell-deficient mice and chickens died of fulminant malaria when infected 

with P. yoelii and P. gallinaceum. respectively (Rank & Weidanz 1976, Weinbaum M a i 

1976 b, Roberts M a i 1977), but when their acute infections were controlled with 

subcurative chemotherapy, B cell-deficient hosts developed chronic low grade infections 

and resisted challenge with homologous parasites (Roberts M a i 1977, Roberts & 

Weidanz 1979). Responses to infections by the two rodent plasmodial species P. yoelii 

17X and P. c. adami appear to represent extremes in the repertoire of host immune 

responses to malaria, one predominantly cell-mediated and one predominantly humoral. 

It remains unclear why resolution of infections by these two rodent parasites should 

require different types of responses by the host, but it may relate to the phylogenetic 

distance between the two plasmodia and the fact that they parasitise preferentially 

different types of RBC. It is plausible, however, that both Ab-independent and humoral 

immune mechanisms may participate in resolution of all murine malarial infections, 

but that one or the other may predominate in particular circumstances. Indeed, the 

current thinking concerning immunity to P. c. chabaudi AS perceives a host resistance to 

primary infection involving both Ab-dependent and Ab-independent mechanisms 

(Langhorne 1989). If this is the case, the selection of two Ly-4+ lines which 

collaborate in the synthesis of anti-P. c. chabaudi AS Ab and two other lines which 

appear to participate in or activate other cell-mediated mechanisms of immunity is of 

particular relevance.

In the case of P. knowlesi and P. voelii infections, the detection of antigenically variant 

pRBC in the blood stream is thought to be caused by a selective pressure enforced by the 

presence of variant-specific Ig, whereas for P. c. adami challenge, resolution of acute 

infection is primarily independent of Ab. The results of this study suggest that both 

cellular and humoral immunity play a role in acquired resistance to P. c. chabaudi AS, 

and, therefore, induction of parasite antigenic variation may not be critically dependent 

upon either for its expression in v ivo . For P. c. chabaudi AS, there is also the 

possibility that phenotypic variation in the expression of parasitic antigenic
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determinants is not induced by immunological selection at all, but is instead an innate 

property of the asexual blood stages of this species. There is no precedence for this 

proposal, but as direct evidence for host immunological induction of antigenic variation 

is still lacking, it cannot be excluded. Indeed, the ubiquitous presence of recrudescent 

parasitaemia in mice immunologically crippled in both T and B cell functions, as shown 

in this study, would not detract from this possibility. In light of evidence in favour of 

immunological selection inducing antigenic variation in other murine plasmodia, it is 

unlikely that the appearance of recrudescent pRBC would occur without immunological 

intervention but this remains unproven. To address this question, well-defined 

immunologically deficient models such as nude or SCID mice could be used, to which P. c. 

chabaudi AS-specific T cell or B cell lines may be transferred adoptively. If, for 

instance, specific Ab responses, as measured by increased levels of serum Ig, titred out 

in parallel with protective immunity, it would show variant-specific Ab activity in the 

presence of a particular T cell line, which would thereby be performing in an Ab helper 

capacity. In the experiments described herein, it was not a primary objective to 

examine the nature of the mechanism of induction of antigenic variation; it was 

coincidental that the results touched on this subject. The findings reported were not 

unequivocal, however, since the immunodeficient mice used were not totally B cell- 

deprived, but only lacking a mature B cell compartment. To analyse whether or not 

variation in parasite phenotype amongst P. c. chabaudi AS pRBC is a B cell-mediated 

phenomenon, it would be best to use host animals rendered B cell-deficient by lifelong 

treatment with goat anti-mouse IgM serum (anti-p.), or alternatively to use mice 

suffering from severe combined immunodeficiency (SCID), from which both functional 

B and T lymphocytes are lacking. Unfortunately, in conjunction with such studies, at 

least in congenitally deficient mice, the Ly-4+ T cell lines raised against P. c. chabaudi 

AS may not be used due to histocompatibility restriction, which would cause their non

functioning upon transfer to recipients of a different H-2 haplotype, as found by 

Brinkmann £ ia l (1985). These difficulties would not, however, prevent dissection of 

the roles of different lymphocyte subsets in protective immunity to P. c. chabaudi AS 

infection by specific T or B cell depletion of immunocompetent host animals through MAb 

therapy. Such a technique has been used to circumvent partially problems of both 

histocompatability and effective lymphocyte depletion and will be described in Chapter 

8.
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CHAPTER 8
ADOPTIVE TRANSFER OF T CELL LINES TO SELECTIVELY 

T CELL-DEPLETED SYNGENEIC RECIPIENTS
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8.1 In troduction

A pivotal role for CD4+ or Ly-4+ T lymphocytes in the protective immune response to 

malaria infection is now undisputed (Weidanz & Long 1988, Long 1988, Langhorne 

1989). Some of the most elegant studies demonstrating the importance of T cells in 

effector stage immunity to the asexual stages of Plasmodium were performed using 

manipulative techniques to deplete the host immune system artificially of mature B 

lymphocytes. Thus, bursectomised birds and ji-suppressed mice, which did not contain 

B cells or circulating Ig, could be immunised by natural infection and shown to be 

protected against subsequent parasite challenge (Ferris £ la i 1973, Rank & Weidanz 

1976, Grun & Weidanz 1981, 1983).

In recent years, the adoptive transfer of immune spleen cells (e.g. Brown e la i 1976 a, 

McDonald & Phillips 1978, Cavacini a ia i 1986) and of T cell lines (Gross a ia i 1984, 

Brake a ia i  1986) was shown to transfer immunity to various murine malaria 

parasites. Most recently, Brake ai&L (1988) demonstrated that a T cell clone 

transferred protection against P. c. adami infection in nude mice; moreover, this clone 

was of the Ly-4+ phenotype.

Major efforts are now being directed towards delineating the anti-malarial T cell 

response and the relevant Ags which stimulate it. It is necessary to determine the 

protective effector mechanisms involved and the subset(s) of T lymphocytes which 

mediates these effects in order to design a vaccine which incorporates epitopes which are 

appropriately presented to the given T cells. By demonstrating that a single Ly-4+ T 

cell clone could transfer protection against malarial challenge adoptively, Brake £ ia i 

(1988) indicated the possibility that a single T cell site on one parasite Ag could be a 

target for a protective immune response and gave credence to the T cell immunity 

approach for subunit vaccine research.

A major caveat of this work was that only one of 10 clones tested was protective. This 

begs the question whether or not all T cell epitopes on malaria proteins are equally 

effective in mediating protection, or if the numbers are strictly limited. In view of this 

latter possibility, the value of analysis of anti-malarial immunity through alternative 

means of dissection of the host immune response has become apparent.

One such approach used to manipulate the immune system exploits the ability of MAbs 

against cell surface differentiation Ags to eliminate or block functional subsets of T cells 

in vivo (Cobbold £ ia i  1984). This lymphocyte elimination results in a significant 

immunosuppression more specific than that seen following previously used methods (e.g.
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anti-lymphocyte serum, thymectomy, splenectomy or irradiation) and without the 

concomitant disturbance of the experimental system experienced with surgery or whole 

body irradiation. The precise specificity of MAbs makes them ideal probes for 

elucidating the lymphocyte sub-population(s) involved in elimination of various 

infectious agents, including viruses (Leist £ ia i 1987) and trypanosomes (House & Dean 

1988). Regarding malaria, the advent of MAb technology realised the correlation 

between the occurrence of cerebral malaria and Ly-4+ cells (Grau £ ia i 1986). This 

new tool has also been deployed to examine immunoprotective rather than 

immunopathological effects of T cell subsets at challenge infection.

The experiments described in this chapter utilised the immunodepletive ability of MAbs 

directed against Ly-2- and Ly-4-bearing T cells to examine the roles of these T 

lymphocyte subsets in the development of a protective immune response to a primary 

infection of P. c. chabaudi AS in the NIH mouse. The MAbs employed were chosen for 

their ability to lyse selectively, in the presence of endogenous complement, the target 

lymphocyte of interest. Through a course of continuous treatment, it was possible to 

reduce to minimal levels during infection the host complement in naive mice of Ly-4+ 

and/or Ly-2+ T cells. In vivo depletion of one T ceil subset enabled analysis of the 

nature of the remaining subset in relative isolation. Essentially, this methodology 

represented the negative corollary of the previous adoptive transfers of enriched or 

cloned T cell populations, and was similar to the study of Suss I (1988).

An extension of the application of anti-T cell MAbs was to deplete selectively mice of a T 

cell subset prior to P. c. chabaudi AS infection. Rather than continuing the treatment 

after challenge in order to ensure Ly-2+ or Ly-4+ depletion, infected mice had been 

previously adult-thymectomised. The procedure of thymectomy , which removed all T 

cell precursors, followed by peripheral blood T cell subset removal effectively gave rise 

to animals permanently lacking a T lymphocyte of a given phenotype. The state of 

immunosuppression achieved by this technique was the same as that reached through 

regular administration of MAbs during the course of infection. However, in this 

experimental system, it was possible additionally to examine the degree of protection 

conferred by any T cells introduced by adoptive transfer. By this methodology, immune 

or naive splenic T cells enriched for Ly-2+ or Ly-4+ lymphocytes by in vitro MAb 

treatment were transferred adoptively to similarly depleted recipient mice and the 

protection engendered by the repopulating inocula observed upon challenge with fL  

vinckei (Kumar e ia i 1989) or P. yoelii (Vinetz f i ia l  1990). In the present study, this
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procedure was taken a step further by the use of stable, in vitro-propaaated P. c. 

chabaudi AS-specific Ly-4+ T cell lines. The populations chosen for reconstitution of 

MAb-treated mice were two of the four Ly-4+ lines previously shown to confer 

immunity to P. c. chabaudi AS in vivo (Chapters 5-7); these were WEP 775 and WEP 

737, putatively classed as TH1- and TH2-type T cells on the basis of their reactivity in 

vivo (Chapter 7). Using the more precise treatment of MAb inoculation rather than 

lethal irradiation followed by bone marrow reconstitution, in the experiments described 

herein it was possible to achieve a T cell-depleted or -deficient background without 

concommitant reduction of the host B cell compartment. This treatment thereby gave 

conditions suitable for the observation of the maximal possible protective effects of the 

adoptive transferred P. c. chabaudi AS-primed Ly-4+ lines upon homologous challenge of 

such Ly-4+- and/or Ly-2+-depleted murine recipients.

8.2 Effects of selective T cell subset depletion on host immunity to 

Plasmodium chabaudi chabaudi AS

Four groups of 10 NIH naive female mice in each were used for this T cell subset 

depletion study. Individual mice were immunologically modified by a series of injections 

of a specific rat anti-mouse MAb prepared from ascitic fluid (2.40). Experimental 

groups were as follows: mice treated with either anti-Ly-2 or anti-Ly-4 MAbs, or

both, or a control group receiving normal rat serum (2.42 a). From each group of 10 

mice, all were challenged with 1 x105 pRBC P. c. chabaudi AS and five were retained to 

determine the parasitaemia throughout infection. Of the remaining five mice per group, 

individuals were sacrificed at various times after infection to determine the efficacy of 

depletion of the relevant T cell subset; this was assessed by immunofluorescence (2.42 

c).

The phenotypic characterisation of peripheral blood lymphocytes taken from individual 

immunodepleted mice sacrificed at weekly intervals after P. c. chabaudi AS challenge is 

shown in Table 8.2.1. These data indicate that mice treated with monoclonal anti-Ly-2 

and -Ly-4 Abs ia vivo were depleted of the appropriate subsets of T lymphocytes. Both 

rat lgG2b reagents used, when administered i.v., gave a substantial and long term 

depletion. For either anti-Ly-2 or anti-Ly-4 treatment, the level of depletion attained 

at the time of parasite challenge was approximately half of the maximal values attained 

thereafter. This showed that the three MAb treatments prior to infection took some time 

to take effect. That they did was shown for anti-Ly-4 and anti-Ly-2 treatment,
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respectively, by 92% and 95% depletion levels recorded in mice 5 d p.i., i.e. 2 d before 

the next MAb inoculum was to have been administered (Table 8.2.1). Thereafter, 

weekly inoculation of either or both MAbs, depending on the elimination required, was 

sufficient to maintain levels of T cell subset depletion at 79% throughout the 60 d time 

course of this experiment. Thus, treatment in vivo with MAbs recognising Ly-2 or Ly- 

4 cell surface determinants never reached 100%. This was presumably due either to 

the presence of Ly-2' Ly-4' double negative cells (for double depletion), or possibly 

the emergence of cells that had lost the expression of either marker (for single MAb 

depletion).

One interesting aspect of this immunosuppression was that elimination of either Ly-2+ 

or Ly-4+ T lymphocytes from the peripheral blood of treated animals was accompanied 

by a slight but significant compensatory increase in cells of the other T cell phenotype 

(Table 8.2.1). Hence, the level of Ly-2+ lymphocytes detected by immunofluorescence 

rose from 2.8% to 4.4% upon Ly-4+ depletion; conversely, in Ly-2+-depleted mice, 

the % of Ly-4-bearing cells rose from 1.5% to 3.5% throughout the course of infection. 

These marginal increases were, however, not of significance compared to the number of 

lymphocytes lysed by specific Ab therapy, and were not thought to have affected the 

immunological status of the depleted mice thus attained. In the case of double-depleted 

mice, this compensatory increase in either Ly-2+ or Ly-4+ cell numbers obviously did 

not occur. In mice rendered Ly-2' Ly-4', the degree of lymphocyte elimination 

remained constant from shortly after challenge to the termination of the experiment 

(Table 8.2.1). In addition, the number of Thy-1+ lymphocytes was also 

correspondingly reduced. For individual T cell subset depletion, the proportion of those 

Thy-1-bearing lymphocytes lost reflected the proportion of all T cells bearing either 

the Ly-2 or Ly-4 cell surface Ag. Thus, although in Ly-2+-depleted animals, up to 

97% of the Ly-2+ lymphocytes were removed from the peripheral circulation, this 

represented only approximately 31% of all Thy-1 cells. This was in accordance with 

the accepted ratio of Ly-4+: Ly-2+ T cells of 2.6 in naive mice (Goronzy g ta i 1986). 

The effect of different T cell subset depletions on the outcome of P. c. chabaudi AS 

infection in the NIH mouse is shown in Figs. 8.2.1 & 2. These two figures illustrate 

identical data but using different scales for quantification of parasitaemia; log10 (8.2.1) 

and % (8.2.2). They have both been included since each emphasises different features of 

the course of infection with blood stage malaria parasites. The figures show that there 

was a marked difference in the patterns of parasitaemia of mice receiving varying T cell
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subset depletion treatments upon pRBC challenge. For the control group, for which mice 

were inoculated with normal rat serum in place of a purified MAb, the course of 

infection was essentially similar to that seen in normal, immunocompetent host animals 

(Fig. 1.2). Parasites could be observed in the peripheral blood 4 d after injection and 

the acute infection reached a peak parasitaemia 9 d p.i., and was then cleared to 

subpatency by 17 d p.i.. A recrudescent patency characteristic of P. c. chabaudi AS in 

this murine model took place before final parasite clearance 38 d p.i. (Figs. 8.2.1 & 2). 

In Ly-2+-depleted mice, the peak parasitaemia was significantly greater than that 

observed in the control group (p < 0.05) (Fig. 8.2.2). However, after remission of the 

primary patency to subpatent levels by 19 d p.i., the course of infection of mice 

deficient of a Ly-2+ T cell compartment resembled closely that seen in the controls (Fig. 

8.2.1). This was characterised by the same length of subpatency (8 d) and similar 

spans and peak levels of recrudescence (14 d and 0.399% for Ly-2' mice, and 13 d and 

0.266% for NRS-transferred mice). From these data, it can be inferred that Ly-2+ T 

cells are not critical for development of a protective immune response to P. c. chabaudi 

AS. Further, they suggest that lymphocytes of the Ly-2+ phenotype are only of marginal 

importance to host acquired resistance to infection, since in their absence the pattern of 

parasitaemia is broadly similar to, and the degree of parasitaemia only slightly higher 

than for, undepleted control animals (Figs. 8.2.1 & 2).

In contrast to the negligible effects of Ly-2+ depletion on the resolution of P. c. chabaudi 

AS infection, elimination of Ly-4+ lymphocytes had a profound effect on the outcome of 

infection. Mice depleted of Ly-4+ cells developed a significantly higher peak of acute 

infection than for either Ly-2+-depleted or undepleted mice (p < 0.01) (Figs. 8.2.1 & 

2). The parasitaemia was reduced to 18% by d 11 p.i. but did not fall below this level 

thereafter. Indeed, parasitaemia rose again to 33% (d 18 p.i.) before consistently 

recording values of between 25-22% from d 24 after challenge until the termination of 

the experiment (Fig. 8.2.2). This intriguing observation clearly shows the inability of 

mice lacking Ly-4+ lymphocytes to clear infection, but the invariability of the 

parasitaemia sustained and the lack of fatalities sustained also reflects the possibility 

that an equilibrium had been reached between parasite burden and the host immune 

response. In Ly-4+-depleted mice chronically infected with parasitaemia of 

approximately 25% it may be that rate of parasite invasion of RBC matched the rate of 

erythropoiesis, so leading to a saturating parasitaemia. In this proposed steady state, 

the parasitaemia could not rise unless the rate of RBC synthesis and maturation outgrew
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the rate of pRBC uptake. Conversely, the parasitaemia could fall only if the supply of 

available RBC to be infected declined or if an effective immune response was mounted. 

Since these mice were Ly-4+-deficient, the Ab-dependent response that is predominant 

in the latter stages of a normal course of P. c. chabaudi AS infection would be severely 

hampered by the lack of helper T cells that this depletion would cause. Daily 

examination of blood smears revealed that the rate of erythropoiesis did fall, but not 

drastically, to give mildly anaemic mice. Under these circumstances, the number of RBC 

were so few that it forced merozoite invasion of reticulocytes under host immune 

pressure (P. c. chabaudi AS will infect reticulocytes but usually shows a preference for 

the older normocyte (Jarra & Brown 1989). Thus, although parasitaemia was 

maintained at approximately 25% for at least 36 d (certainly longer if the time course 

were to have been extended), the actual absolute total number of pRBC at this time was 

substantially less than that recorded at peak primary parasitaemia. Despite the anaemic 

condition of Ly-4+-deficient mice, free merozoites were observed in thin blood smears 

quite infrequently, suggesting that those merozoites that were not able to infect RBC 

upon schizont rupture were effectively eliminated by host immune mechanisms; such 

mechanisms of parasite clearance were obviously not dependent on Ly-4+ lymphocytes 

and were probably non-specific in nature. It thus appears that acute P. c. chabaudi AS 

infection could be partially reduced in mice deficient of a Ly-4+ T cell compartment, but 

that the parasitaemia could not be cleared.

For mice depleted of both Ly-2+ and Ly-4+ subsets of T lymphocytes, the course of 

infection was identical to that of Ly-4+-depleted animals. From this group, as for all 

others, there was a similar prepatent period of 3 d, after which the kinetics of infection 

were virtually indistinguishable from those of mice lacking Ly-4+ but possessing Ly- 

2+ cells (Figs. 8.2.1 & 2). The peak parasitaemia recorded during acute infection was 

47% on d 8 p.i. (c.f. 51% on d 8 p.i. for Ly-4+-depleted mice), but this insignificant 

deviance (p > 0.05) apart, the levels of parasitaemia recorded in double-depleted mice 

and those depleted of only the Ly-4+ subset were not significantly different (p > 0.05). 

This similarity between the courses of infection of P. c. chabaudi AS in mice treated with 

MAbs against cells of both T cell phenotypes and against cells of the Ly-4+ subset alone 

confirmed the finding from Ly-2+-depleted animals that Ly-2+ T cells play a minimal 

role in the protective immune response to the erythrocytic stages of this murine 

malaria parasite. The fact that no greater protection was conferred by the presence of 

Ly-2-bearing lymphocytes in mice depleted of the Ly-4+ subset over that exhibited by
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double-depleted mice also indicates that there was no synergistic activity between 

populations of the two different T cell subsets towards a protective immune response, 

and moreover, suggested that they acted independently of each other in vivo. Another 

finding apparent from examination of the data collected from the double depletion group 

was the observation of an initial reduction in the degree of parasitaemia at or around 

crisis (d 9-11 p.i.) in the relative absence of T lymphocytes (Fig. 8.2.2). Results 

showed that any further resolution of acute infection necessitated the presence of Ly-4+ 

cells, but this transient reduction of peripheral blood parasitaemia may be due to the 

mediation of activated macrophages, the products of which may be directly parasiticidal.

8.3 Adoptive transfer of T cell lines to selectively T cell-depleted 

syngeneic recipients.

For each of three categories of adult-thymectomised, sham-thymectomised and non- 

thymectomised NIH female mice, every animal was immunosuppressed through a series 

of treatment of MAbs prior to malaria challenge. As for 8.2, the MAbs used were 

specific for Ly-2 or Ly-4 T lymphocyte surface markers and groups were set up to 

include either Ly-4+- or Ly-2+-depleted, as well as double-depleted, mice. Adult- 

thymectomised mice were boxed in groups of 10 to allow sacrifice at weekly intervals of 

individuals to monitor for effective T cell subset depletion by the methodology used 

(2.42 b & c); sham- and non-thymectomised animals were arranged in groups of five 

mice, each of which was examined daily following infection for peripheral blood 

parasitaemia. In addition, control groups of undepleted adult-thymectomised, sham- 

thymectomised and immunocompetent naive mice were prepared.

A further nine groups of five mice each were set up; these consisted of three groups of 

either adult-, sham- or non-thymectomised mice. Within each category of recipient 

mouse, animals were adoptively transferred either WEP 775, WEP 737 or naive 

splenic T cells. In each instance, the inoculum used was 4.0 x107 viable lymphocytes 

inoculated i.v.. Shortly after adoptive transfer, recipient mice were challenged with 1 

x105 pRBC P. c. chabaudi AS, this being the standard parasite dose to infect all 

experimental mice used in this study.

As can be seen from Table 8.3.1, the depletion of subsets of T lymphocytes from mice by 

MAb treatment following adult thymectomy was completely satisfactory. The levels of 

depletion achieved by this technique were comparable with those attained through a 

series of MAb inoculations both before and after pRBC challenge (Table 8.2.1). Indeed,
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the degrees of elimination reached at the time of challenge, d 0, were near maximum 

levels, and certainly higher than those observed in mice treated with MAbs alone (Table 

8.2.1 & 8.3.1). The satisfactory depletions attained showed that this alternative 

methodology employed to prevent the elimination of Ly-4+ cells upon adoptive transfer 

to mice containing circulating anti-Ly-4 MAbs was effective in maintaining T 

lymphocyte subset levels at a minimum up to 60 d after P. c. chabaudi AS challenge 

(when the experiment was ended), i.e. 72 d after the latter of two MAb injections (2.42 

b). The fact that the number of lymphocytes of either Ly-2+ or/and Ly-4+ population 

remained the same despite the lack of continuous MAb therapy showed that once the 

complement of mature peripheral circulatory T cells had been eliminated, this could not 

be replaced by thymic progenitors, as would normally be the case, due to the surgical 

removal of the thymus from mice at five weeks of age (2.15). The combination of adult 

thymectomy and peripheral blood T cell elimination thus produced mice with a 

permanent deficiency of mature Ly-4+ and/or Ly-2+ lymphocytes, but without 

affecting the B cell compartment of the host immune system. The methodology described 

therefore appeared very suitable for the T cell deprivation of host animals prior to the 

adoptive transfer of P. c. chabaudi AS-specific Ly-4+ lines at homologous challenge.

The efficacy of adult thymectomy and MAb pretreatment was shown not only by 

phenotypic characterisation of those lymphocytes remaining (Table 8.3.1), but also by 

the courses of infection upon P. c. chabaudi AS challenge of depleted animals (Fig. 8.3.1). 

The parasitaemias attained in thymectomised mice were remarkably similar to those 

observed in MAb-treated mice (Fig. 8.2.1). Hence, Ly-2+-depleted animals had the 

same kinetics of parasite clearance as did adult-thymectomised mice which did not 

receive MAb treatment. For the latter control group, peripheral blood T cells of both 

phenotypes had not been eliminated, but lacking thymic replenishment, they appeared 

not to provide any observable protection; indeed, in these mice, a secondary 

recrudescence was detected, which was not present in animals devoid of Ly-2+ cells. 

Thus, a possible immunosuppressive role for those relatively few remaining circulatory 

Ly-2-bearing lymphocytes in non-MAb-treated mice is suggested. For mice given 

anti-Ly-4 MAbs following thymus ablation, the resulting infection showed an identical 

pattern to that seen in similarly thymectomised animals that received both anti-Ly-4 

and anti-Ly-2 MAbs (Fig. 8.3.1). In both cases, the ascending primary parasitaemia 

was the same as for the other two groups studied, but after a significantly higher peak 

parasitaemia (p < 0.01), these animals failed to clear the post-crisis pRBC from the
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peripheral blood. The chronic infection that ensued was very similar to that seen 

previously (Fig. 8.2.1). The identity between Ly-2+-deprived animals and those 

lacking both T cell subsets confirmed both the critical part played by T cells of the Ly- 

4+ phenotype in clearance of P. c. chabaudi AS, and also the apparent inability of Ly-2+ 

cells to contribute to the anti-parasitic immune response, at least towards asexual blood 

stages of malaria.

In sham-thymectomised recipients of various depletive treatments (Fig. 8.3.2), the 

patterns of parasitaemia were each like that described previously for P. c. chabaudi AS 

infection of thymus-ablated animals (Fig. 8.3.1). Thus, Ly-4+-depleted or double

depleted mice were also incapable of clearing infection, which again reached a plateau of 

parasitaemia. In addition, animals rendered deficient of the Ly-2+ T cell compartment 

resolved both acute and secondary waves of infection with the same characteristics as 

sham controls (Fig. 8.3.2). Furthermore, for non-thymectomised mice challenged with 

the same parasite (Fig. 8.3.3), the courses of infection for each of the four groups 

showed the same features as for the corresponding animals in the adult- or sham- 

thymectomy categories (Figs. 8.3.1 & 2). The similarity between the parasitaemias 

observed in mice receiving identical MAb treatments in sham- and non-thymectomised 

situations indicated that the trauma suffered by mice undergoing sham thymectomy had a 

negligible effect on the outcome of the subsequent malaria infection. Hence, mice that 

had been anaesthetised and surgically manipulated without thymus removal suffered no 

ill effects and showed the same levels of protective immunity to P. c. chabaudi AS 

challenge as found in non-thymectomised mice, before or after T cell subset depletion 

(Figs. 8.3.2 & 3). This was a pleasing finding, since surgical procedure p£r Sfi. was not 

intended to have any serious effects on the immunological state of the host animals. 

Sham-thymectomised mice were only acting as a negative control for the adult- 

thymectomised group. The similarities between the courses of infection not only in non- 

and sham-thymectomised mice (Figs. 8.3.2 & 3), but also in sham- and adult- 

thymectomised mice (Figs. 8.3.1 & 2) challenged with P. c. chabaudi AS, showed that 

thymus removal had little or no adverse effect on the outcome of infection. In each case, 

the protective immunity engendered by the host immune system appeared to be dependent 

solely on the subset of T cells surviving MAb depletion. Thus, Ly-4+-depleted mice 

were incapable of clearing blood stream parasites whilst Ly-2+ depletion had no such 

adverse effects on the kinetics of pRBC destruction. It is apparent that MAb treatment to 

remove peripheral blood T lymphocytes was sufficient to effectively eliminate the
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mature T cell populations of either Ly-2+ or Ly-4+ phenotype, and that an intact 

thymus was incapable of reconstituting the depleted mature circulatory lymphocytes, at 

least during the time course of a primary P. c. chabaudi AS infection. Moreover, this 

study showed that two quite large inocula of MAb suitably in advance of parasite 

challenge (the latter injection being 12 d before infection) were sufficient to deplete to 

residual levels peripheral circulatory populations of either T lymphocyte subset by the 

time of challenge (Table 8.3.1), thus negating the necessity for continuous MAb 

treatment during infection (Table 8.2.1). Prior to this study, neither the long-lasting 

effect of MAb therapy on the constitution of the peripheral blood, or the slowness of 

repletion of each eliminated T cell population by thymic precursors had not been 

appreciated fully.

As well as confirming that adult thymectomy had little effect upon mature immune 

function, direct comparisons of each MAb depletion for each of the three immunologically 

manipulated conditions (Figs. 8.3.4-7) emphasised the roles of each T lymphocyte 

subset in the mediation of a protective response to P. c. chabaudi AS in immunologically 

intact host animals. There was no observable difference between the effects of anti-Ly- 

4 and of combined anti-Ly-4 and -Ly-2 treatments (Figs. 8.3.4 & 5), indicating that it 

was the loss of the Ly-4+ population that prevented the mediation of an effector immune 

function. The dependence of host immunity upon cells of the Ly-4+ T lymphocyte subset 

was confirmed by the lack of protective activity shown by Ly-2-bearing lymphocytes 

towards blood stage malarial infection. The course of P. c. chabaudi AS infection in Ly- 

2+-depleted mice (Fig. 8.3.6) was essentially no different from that in untreated mice 

(Fig. 8.3.7). A consistent feature, however, was a slight secondary recrudescence in 

mice possessing a complete mature lymphocyte population (Fig. 8.3.7), but not in mice 

deficient of Ly-2+ lymphocytes (Fig. 8.3.6). The extension of infection at patent levels 

through a second breakthrough parasite population observed in adult-thymectomised or 

competent mice (Fig. 8.3.7) was thought to be caused by an immunosuppressive effect of 

peripheral Ly-2+ cells, as when these were removed (Fig. 8.3.6), pertebation of 

infection ceased.

Concerning the reconstitution of T cell-depleted mice by adoptive transfer of P. c. 

chabaudi AS-raised Ly-4+ lymphocyte lines, the inoculation of both WEP 775 and WEP 

737 cells provided an immune protection; this was apparent as reconstitution of the 

activity provided in undepleted host animals by peripheral blood lymphocytes belonging 

to the Ly-4+ T cell subset. In mice depleted of either the Ly-4+ population or of both T
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lymphocyte subsets, similar patterns of ascending primary parasitaemia were observed 

for all experimental groups (Figs. 8.3.8 & 9), showing that the kinetics of parasite 

multiplication prior to the mounting of an immune response were identical in 

immunodepressed and competent mice alike. However, thereafter, profound differences 

occurred in the parasitaemias of T cell-depleted mice and those depleted and then 

reconstituted. These differences were equally apparent in animals deficient of Ly-4- 

bearing lymphocytes (Fig. 8.3.8) and those lacking both Ly-4+ and Ly-2+ T cell subsets 

(Fig. 8.3.9), due to the absence of immunity to the asexual stages of P. c. chabaudi AS 

resident within the Ly-2+ compartment of the murine immune system. The peak of 

acute infection was reached at the same time, d 10 p.i. for all groups, but the level of 

parasitaemia attained was significantly lower (p < 0.05) for mice receiving either WEP 

775 or WEP 737 cells than for their non-recontituted counterparts (Figs. 8.3.8 & 9). 

Mice depleted of the Ly-4+ population, either alone or with concurrent Ly-2+ cell 

depletion, were incapable of clearing P. c. chabaudi AS to subpatent levels, as noted 

previously. Likewise, challenged mice receiving naive splenic T cells were unable to 

control infection, which remained chronically patent (Figs. 8.3.8 & 9). Unprimed 

splenic T cells did provide some protection upon adoptive transfer, manifested by a 

significantly reduced parasitaemia with respect to non-reconstituted mice (p < 0.01) 

(Figs. 8.3.8 & 9). For both groups of depleted recipients, however, mice inoculated 

with naive splenic T cells at the time of challenge always exhibited a parasitaemia of not 

less than 1% throughout infection; thus, adoptively transferred lymphocytes not 

previously exposed to P. c. chabaudi AS did not have the capacity to replace the resistance 

to homologous infection normally provided by the host complement of mature Ly-4- 

bearing lymphocytes.

By comparison, repopulating inocula of malaria-primed Ly-4+ lymphocyte lines, taken 

either from d 16 of a primary infection (WEP 775) or after recovery from a secondary 

infection (WEP 737), transferred the potential to control P. c. chabaudi AS challenge. 

Hence, MAb-treated recipients of either Ly-4+ line showed similar .disease 

characteristics as did those mice which had been adult-thymectomised without further 

manipulation (these already having been shown to be immunocompetent with regard to E* 

c. chabaudi AS infection; Fig. 8.3.7). Otherwise immunologically incompetent mice 

reconstituted with populations of primed Ly-4+ lines, stable for phenotype and 

presumably also function, exhibited courses of infection typical of mice possessing a 

fully intact immune system. Thus, primary parasitaemia was resolved by d 18 p.i.,
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followed by a subpatency of 4-5 d (WEP 737) or 7-8 d (WEP 775) and parasite 

clearance by d 50 p.i. (Figs. 8.3.8 & 9). That the manifestations of protection observed 

upon adoptive transfer of each of the Ly-4+ lines were actually engendered by these 

lymphocytes was apparent by examining the kinetics of infection, which were 

characteristic of the Ly-4-bearing lymphocyte populations inoculated. Hence, in both 

Ly-4+-depleted and double-depleted mice, recipients of WEP 775 recrudesced later 

than did recipients of WEP 737 (Figs. 8.3.8 & 9). This divergence in the onset of 

recrudescence in mice receiving these two Ly-4+ lines was characteristic of their 

adoptive transfer and had been noted previously in both naive and immunosuppressed 

mice (Chapters 5-7).

For Ly-2+-depleted animals, the protection conferred by adoptive transfer of Ly-4+ 

lymphocytes was not so obvious; this was not because of any lesser activity of the 

reconstituted lymphocytes but rather due to the fact that mice lacking a peripheral 

circulatory Ly-2+ population were still quite capable of controlling infection (Fig.

8.3.10). Nevertheless, the specific anti-plasmodial reactivity given upon transfer of 

the P. c. chabaudi AS-primed Ly-4+ lines was distinguishable from the acquired 

resistance to primary infection of the background host immune response. For each 

group of mice, the pattern and level of primary parasitaemia was very similar (Fig.

8.3.10), showing that Ly-2+-depletion or Ly-4+ line reconstitution had no apparent 

effect on the outcome of the acute infection. Thereafter, the subsequent courses of 

infection in adult-thymectomised and in adult-thymectomised and Ly-2+-depleted mice 

were alike, as illustrated by a similar onset, peak and clearance of recrudescent 

parasitaemia. This again served to emphasise the lack of acquired resistance resident 

within the Ly-2+ T cell subset, for its removal had no adverse effect on the mediation of 

anti-plasmodial immunity. For mice receiving either WEP 775 or WEP 737 Ly-4+ 

cells, a substantial degree of protection was conferred by the adoptive transfer of these 

populations; this was manifested as significantly longer subpatencies (p < 0.01), 

followed by lower (p < 0.01) and shorter lasting (p < 0.01) recrudescences (Fig.

8.3.10), compared to either splenic T cell recipients or unreconstituted, Ly-2+- 

depleted mice. In fact, mice given an inoculum of naive splenic T lymphocytes showed 

the same level and length of recrudescence as did either unreconstituted control group 

and actually recrudesced much more quickly, subpatency lasting only 24 hr (c.f. 6-7 d 

in thymectomised mice or thymus-ablated, anti-Ly-2 MAb-treated mice) (Fig.

8.3.10). Therefore, as for their adoptive transfer to Ly-4+-deficient recipients (Figs.
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8.3.8 & 9), unprimed populations of spleen cells enriched for T lymphocytes conferred 

little specific protection upon P. c. chabaudi AS challenge.

Adoptive transfer of the WEP 775 line appeared to restore the Ly-4+ activity to mice 

depleted of this T cell subset (Fig. 8.3.11). Such animals showed a course of infection 

not unlike that for mice that had been adult-thymectomised, but still retaining both 

subsets of circulatory T cells. The best protection conferred by the adoptive transfer of 

WEP 775 lymphocytes was to Ly-2+-depleted mice. Compared to Ly-4+- or double

depleted recipients, enhanced protection was detectable as an extended subpatency (16 d 

rather than 7-8 d), a significantly lower recrudescence (p < 0.01) and a shorter length 

of secondary patency (8 d rather than 13-14 d). It is not clear whether this greater 

immunity in Ly-2+-depleted animals was due to the removal of Ly-2+ cells, and 

therefore a loss of possible suppressor activity, or alternatively, the presence of a full, 

undepleted Ly-4+ T cell compartment, or perhaps both. As for inoculation of WEP775 

cells, transfer of WEP 737 lymphocytes conferred similar levels of protection to 

variously depleted recipients hosts of P. c. chabaudi AS infection (Fig. 8.3.12). In this 

instance, however, reconstituted Ly-4+-depleted mice recrudesced at the same time as 

did the adult-thymectomised control, and not after, as for WEP 775-transferred mice 

(Fig. 8.3.11). This discrepancy in the appearance of recrudescence in recipients of the 

two Ly-4+ lines did not detract from the protective immunity conferred to T cell- 

depleted mice upon reconstitution of either population. It did serve to stress the fact that 

although each Ly-4+ line was fully effective at restoring immune reactivity to that of 

levels seen in unmanipulated animals, the underlying mechanisms by which this 

protection was mediated by lymphocytes belonging to either WEP 775 or WEP 737 

populations are very probably different.

Figure 8.3.13 shows the courses of infection upon adoptive transfer of naive splenic T 

cells to mice deficient of either or both Ly-2+ or Ly-4+ T cell subsets. It can be seen 

that this mixed population of unprimed T lymphocytes of both phenotypes was unable to 

restore Ly-4+ function to mice from which this T cell compartment had been removed, 

and hence they suffered chronic blood-borne infections. For mice that controlled 

infection, similar magnitudes of both primary and secondary parasitaemias were 

recorded for Ly-2+-depleted, naive splenic T lymphocyte repopulated animals and for 

adult-thymectomised mice (Fig. 8.3.13). The additional presence of naive spleen cells 

in Ly-2+-deficient mice therefore did not seem to enhance the level of protective 

immunity observed. The transient secondary recrudescence in such Ly-2+-depleted
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recipients of a splenic T cell preparation (Fig. 8.3.13) was presumably due to partial 

reconstitution of Ly-2+ lymphocytes to these mice. It has already been shown that 

extension of P. c. chabaudi AS infection through the appearance of a tertiary patency 

occurred in intact (Fig. 8.3.7) but not in Ly-2+-depleted (Fig. 8.3.6) mice. Also, WEP 

775- and WEP 737-transferred recipients exhibited a secondary recrudescence in all 

situations except after Ly-2+ T cell subset elimination (Figs. 8.3.11 & 12). It would 

thus appear that the presence of a Ly-2+ population was a necessary prerequisite for the 

appearance of breakthrough variant P. c. chabaudi AS pRBC, presumably due to 

immunosuppression of an otherwise usually immunologically competent host immune 

system.

8.4 Discussion

The experiments described in this chapter were designed to evaluate the roles of the 

major T lymphocyte subsets of Ly-2 and Ly-4-bearing cells in the immune response of 

an unprimed host to primary infection with P. c. chabaudi AS. As well as studying the 

ability of the background immunity of the host immune system to provide sufficient 

acquired resistance to control challenge infection, the capacity of in vivo-primed. jn  

v itro -propaoated P. c. chabaudi AS-specific Ly-4+ lines to transfer immunity 

adoptively was examined in a controlled system selectively manipulated to deplete either 

or both subsets of T lymphocytes.

Selective depletion was achieved readily with rat lgG2b monoclonal anti-Ly-2 or -Ly-4 

MAbs, which, when given i.v., were highly immunosuppressive. For example, mice 

treated with the anti-Ly-2 MAb showed a specific depletion of 97% compared to control 

mice (Table 8.2.1). This degree of elimination compares favourably with those recorded 

originally using the identical MAbs (Cobbold £ ia i 1984). In each instance, animals 

depleted by serotherapy still retained some residual Ly-2+ or Ly-4+ cells, as also 

reported in other studies (Wofsy & Seaman 1985, Howard £ ia i 1989). In this study, 

effective depletion was assayed by immunofluorescence of peripheral blood lymphocytes 

only, although it was presumed that all mature T lymphocytes would be exposed to 

circulating MAbs and therefore be susceptible to lysis. This assumption was not 

unreasonable since lgG2b Abs have been found to be very effective in eliminating the 

appropriate T cells in the blood, spleen, lymph nodes and bone marrow after in vivo 

administration (Cobbold £ la i 1984, 1985, Nash £ ia i 1987).

The first protocol followed for in vivo manipulation used weekly inoculations of MAbs to
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achieve T cell depletion (after Suss Mai 1988). It was shown subsequently that the dose 

of MAbs used was considerably in excess of that required for effective 

immunosuppression. Adult-thymectomised mice that received just two injections of 

lgG2b Ab prior to challenge exhibited a level of depletion of peripheral blood T cells as 

great as that observed in mice receiving more regular treatments for the full time 

course of infection (60 d) (Tables 8.2.1 & 8.3.1). This finding is little surprising in 

view of the fact that Cobbold Mai (1984, 1985) found that a profound immunodepletion 

of target T lymphocytes could be sustained for periods up to one year in adult- 

thymectomised animals. They showed that over a 12 month observation period, there 

was no detectable change in Ly-4 or Ly-2 expression in appropriately depleted mice. 

This demonstrated that any remaining Ly-2- or Ly-4-bearing T cells were unable to 

repopulate deficient animals and that, under these conditions, the mature Ly-2‘ or Ly- 

4 ' phenotypes were stable and irreversible and not subject to phenotypic switching. 

Previously, long term immunosuppression could only be achieved, albeit inefficiently, 

by using populations of T lymphocytes depleted of Ly-1+ or Ly-2+ subsets in vitro to 

reconstitute lethally irradiated, thymectomised mice (Huber M a i  1976). This 

methodology was used, amongst others, by Jayawardena Mai (1979) and by Leke Mai
(1981) to study experimental malaria infection. Such T cell-depleted animals may 

have a contribution from radio-resistant lymphocytes (LeFrancois & Bevan 1984), a 

complication which is avoided by in vivo MAb treatment. Moreover, the production of an 

Ab response to the injected MAbs that is a feature of in vivo depletion of primates and 

calves (Howard M a i 1989) was not observed with murine recipients. Mice inoculated 

with rat lgG2b MAbs directed against either Ly-2 or Ly-4 Ags become tolerant to those 

Abs (Benjamin & Waldmann 1986, Gutstein M a i 1986). Furthermore, it has been 

shown for the murine system that the most effective immunosuppression, which leads to 

the induction of tolerance, is obtained with Abs that can both deplete T cells and exert 

functional inhibition (Cobbold M a i 1985). These workers showed that the best suited Ig 

isotype to perform this task was the lgG2b class used in this study.

The first depletion experiment using these rat MAbs to murine Ly-2+ and Ly-4+ T 

lymphocytes gave essentially the same results as those obtained by Suss Mai (1988), 

also with P. c. chabaudi AS. The strain of mouse used was C57BL76 (H-2b) rather than 

NIH (H-2q) used here, but for both, infection with this malaria parasite is usually 

non-lethal (Stevenson M a i 1982). Both sets of data showed unequivocally that Ly-4+ 

cells are an essential component of the protective immune response to P. c. chabaudi AS.
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As described herein, Suss £ ia i (1988) showed that mice lacking a peripheral Ly-4+ 

lymphocyte compartment had significantly higher primary parasitaemias than did 

control groups, which they were unable to reduce below 20% for the duration of the 

experiment. Again, the chronic parasitaemia was very stable, a phenomenon also 

reported for P. c. chabaudi infection of adult-thymectomised and irradiated mice (Leke 

M ai 1981). Suss M ai attributed the partial limitation of parasitaemia to a persistent 

reticulocytosis (this parasite does not show a preference for younger RBC), and also the 

low titres of transient malaria-specific IgM Abs in the peripheral blood of such Ly-4+- 

depleted mice challenged with P. c. chabaudi AS.

Neither this study nor the one by Suss Mai (1988), however, allowed delineation of the 

functions of the Ly-4-bearing cells in vivo. It is possible that they mediate their effect 

as helper cells either for production of specific Ab (B cell-dependent mechanisms), or 

for the generation of specific cytotoxic T cells, or alternatively as initiators of 

macrophage activation and delayed-type hypersensitivity reactions (B cell-independent 

mechanisms). The anti-Ly-4 MAb used could not discriminate between TH1- and TH2- 

type cells and thus further dissection of the effector mechanisms of protection involving 

these lymphocytes necessitated the adoptive transfer of T cell lines of defined phenotypic 

and functional specificity.

The initial depletion experiment showed that mice deficient of mature Ly-2-bearing 

lymphocytes were quite capable of mounting a parasite-clearing protective response 

similar to that observed in intact animals, a finding which concurred with the studies of 

Suss M ai (1988) and of Kumar Mai (1989), with P. c. chabaudi AS and P. vinckei. 

respectively. Suss M ai expressed the opinion that, under experimental conditions, a 

role for Ly-2+ cells in host immunity to P. c. chabaudi AS infection could not be 

discounted since it is possible that in the absence of Ly-4+ cells and their soluble

mediators, Ly-2+ effector cells could not be activated appropriately. Although it is not

known whether Ly-2-bearing T lymphocytes in vivo require an exogenous IL-2 source 

(supplied, at least in vitro, by Ly-4+ cells), in a second experiment, recombinant IL-2

was given to Ly-4+-depleted mice. This did not affect parasitaemia significantly,

challenged recipients still being incapable of clearing infection (Suss MaL 1988). 

Recently, Podoba & Stevenson (1989) showed a role for Ly-2+ T cells in immunity to 

the blood stages of P. c. chabaudi AS infection. In vivo depletion of Ly-2-bearing 

lymphocytes had no effect on the prepatent period or peak parasitaemia. However, 

compared to controls, Ly-2+-depleted mice had two recrudescent patencies. These
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workers consider that both T cell subsets contribute to acquired immunity to P. c. 

chabaudi AS pRBC, but in the absence of Ly-4+ lymphocytes, those of the Ly-2+ 

phenotype cannot function (Stevenson, M.M., personal communication). These data, 

together with adoptive transfer studies, such as those by Cavacini g la l (1986) and by 

Vinetz £ la i (1990) in P. c. adami and P. yoelii infections, suggest that T lymphocytes 

belonging to the Ly-2+ subset do not play a major protective role in host immunity to 

murine malarias. These findings are in direct contrast to the crucial role proposed for 

Ly-2+ cells in the protective response against the exoerythrocytic stages of Plasmodium 

(Schofield £ ia !  1987, Weiss £ ia i  1988). Indeed, Ly-2-bearing cells may have a 

deleterious effect upon the host immune response to infection with P. c. chabaudi AS. The 

slight immunosuppressive effect in the presence of Ly-2+ lymphocytes which is absent 

upon their removal agrees with the suggestion that activated T suppressor cells may 

contribute to the immunosuppression associated with P. falciparum malaria in humans 

(Troye-Blomberg s ia l  1984, Riley a la l 1989 a).

In the parallel experiments described here and by Suss a la i (1988), MAb treatment 

started shortly prior to P. c. chabaudi AS challenge and continued throughout the course 

of the ensuing infections. Most recently, this methodology has been refined by initiating 

Ly-4+ and/or Ly-2+ T cell removal at various times during infection, in order to 

examine whether or not the presence of Ly-4+ lymphocytes is required throughout an 

infection to exert a protective response (Langhorne a ia l 1990). It was found that 

removal of the Ly-4+ T cell subset at the beginning of infection or during the acute phase 

of infection rendered mice incapable of reducing their parasite load. In contrast, loss of 

this T cell phenotype after this time affected the parasitaemia only transiently, 

manifested as a slightly enhanced recrudescence, which was subsequently resolved. 

Later still, depletion of the Ly-4+ compartment from mice recovered from a primary 

infection had no detectable effect on the protective secondary response to P. c. chabaudi 

AS upon rechallenge. Collectively, these data showed that Ly-4+ cells are essential only 

to control the primary parasitaemia and that recrudescent parasitaemia can be cleared 

in their absence. Measurement of malaria-specific Abs during infection revealed that 

the ability to control parasitaemia correlated with the appearance of P. c. chabaudi AS- 

specific IgG. Langhorne £ ia i suggested a mechanism of parasite control requiring the 

presence of Ly-4+ lymphocytes during the acute pre-IgG period. These would 

presumably be of the TH1 subset and limit acute parasitaemia through Ab-independent 

machanisms. In view of this, it is interesting to note that the Ly-4+ lines derived from
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d 16 and d 20 of a primary P. c. chabaudi AS infection were shown to have a B cell- 

independent reactivity in vivo (Chapter 7). Control of parasitaemia in the second phase 

of infection correlated both with the ability to make IgG Abs and with the prevalence of 

Ly-4+ TH2-type helper cells for Ab synthesis (Langhorne £ ia l 1989 a). It is evident 

that Ab-mediated resistance can occur in the absence of the Ly-4+ helper function, but 

the presence of these lymphocytes is desirable, if only to help B cells switch from IgM to 

IgG production. Again, it is relevant that those Ly-4+ lines raised to P. c. chabaudi AS in 

vivo taken from rechallenged mice exhibited a B cell dependency to confer protection in 

vivo (Chapter 7).

The second series of depletions, for which mice were reconstituted with Ly-4+ lines, 

necessitated the surgical removal of the thymus in advance of parasite challenge. 

Comparison of the courses of infection in these animals compared to those in sham- 

thymectomised or non-thymectomised control mice revealed that thymectomy at the age 

of five weeks had a negligible effect on the outcome of P. c. chabaudi AS infection in mice 

depleted by serotherapy. It has been reported that thymectomy in adult life results in 

little detectable effect on levels of recirculating lymphocytes, and, further, that the 

primary immune response is unimpaired for up to one year after surgery (Taylor 

1965, Millar 1965). This suggests the longevity of peripheral blood lymphocytes and 

emphasises the importance of MAb depletion used here. With regard to malaria 

infection, Seitz (1972) showed that thymectomy at six weeks of age did not influence the 

course of P. berahei infection if mice were allowed two months recuperation after 

surgery. These findings together suggest that the thymus plays no direct part in host 

immunity to ongoing malaria infection, except for its providing T lymphocytes. These 

populations migrate from the thymus to peripheral lymphoid tissues mainly during the 

neonatal period, and are maintained throughout the life of the animal (Weissman 1967). 

In contrast to adult thymectomy, neonatal thymus removal results in severe depletion of 

all peripheral T lymphocytes and major defects in both humoral and cellular immune 

responses (Millar 1962, Good £ ia l 1962). Hence, for malaria, a more severe disease 

in neonatally-thymectomised animals and a shortened life span compared to that of 

infected controls was found for P. berghei infection of rats (Brown £ ia i 1968 a) and of 

hamsters (Chapman & Hanson 1971). Seitz (1976), however, reported that neonatal 

thymectomy had no influence on the outcome of P. berghei challenge; it may be that 

species differences in host resistance may account for this discrepancy, but this is not 

established. There is also the possibility that thymus ablation of newborn mice, which
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leads to a lesion in the mature T cell component of the immune system, results in the 

development of alternative effector immune mechanisms. This possibility has not been 

reported for malaria, but has for infection of congenitally athymic mice with the 

facultative intracellular parasite Listeria monocytogenes (Nickol & Bonventre 1977). 

Nude mice showed heightened innate resistance to this bacterial pathogen, a phenomenon 

attributed to the activation of fixed tissue macrophages. Activation of macrophages with 

enhanced microbicidal activities appeared to arise as a direct result of T cell deficiency, 

since thymus implantation abrogated the high resistance of nude mice to L , 

monocytogenes challenge. In support of this possible mechanism of parasite control not 

requiring the presence of T lymphocytes are data showing products of activated 

macrophages to be toxic for a variety of plasmodia in vitro (Clark & Hunt 1983, 

Dockrell & Playfair 1983, Ockenhouse £ ia l 1984). It has to be stressed, however, that 

the production of such toxic mediators normally occurs as a result of T cell-induced 

activation in vivo, when activated macrophages can be envisaged to play a role in Ab- 

independent mechanisms of immunity to murine malarias, but their activation in 

isolation of T cells is difficult to reconcile.

The importance of the Ly-4+ T cell subset to immunity induced by infection with P. c. 

chabaudi AS in NIH mice was examined both by in vivo depletion of this population, and of 

Ly-2+ cells (discussed previously), and by reconstitution of these depleted animals with 

homologously primed in vitro-propagated Ly-4+ lines. Adoptive transfer of malaria- 

specific T cell lines to recipients selectively depleted of either one or both Ly-4+ or Ly- 

2+ T cell compartments had not previously been performed. Kumar e la i (1989) did, 

however, perform a similar study by transferring immune spleen cells from freshly 

sacrificed mice recovered from a primary infection with P. vinckei. In the BALB/c 

mouse strain used, P. vinckei is lethal even in immunocompetent hosts, but solid 

immunity can be induced by two successive drug-cured challenges. It was demonstrated 

that Ly-4-bearing lymphocytes are absolutely necessary for immunity to P. vinckei in 

these experimentally manipulated animals. Ly-4+-depleted mice that were previously 

immune to P. vinckei died after inoculation of homologous pRBC. Furthermore, the 

transfer of a population of Ly-4+-enriched splenic T cells, taken from immune donor 

mice, to Ly-4+-deficient recipients reconstituted immunity. These results very closely 

concur with those described in this chapter, albeit that Kumar e la i used a more complex 

host-parasite system. The fact that P. vinckei is uniformly lethal upon primary 

infection necessitated the artificial induction of immunity through drug cure to produce
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animals that could then be Ly-4+-depleted and reconstituted. This, however, did not 

invalidate the findings which bear comparison with those in the non-lethal P. c. chabaudi 

AS/NIH mouse model.

For the study of immunity to P. vinckei (Kumar M a i 1989), splenectomy of mice 

rendered immune by drug-cured infection caused complete loss of immunity. Repletion 

of immune splenectomised mice with their own separated spleen cells failed to 

reconstitute protection, showing that an architecturally intact spleen was necessary for 

the expression of immunity. From this it can be inferred that, although Ly-4+ 

lymphocytes are important mediators of anti-malarial immunity, they are alone 

insufficient to provide protection. The spleen is required for destroying pRBC in rodent 

malarias and for the characteristic drop in parasitaemia, crisis, during acute infection. 

Crisis is associated with a shift from a closed to an open circulation through the red pulp 

of the spleen (Quinn & Wyler 1979 b), which results in the exposure of pRBC to a high 

concentration of cellular elements.

In the present study, P. c. chabaudi AS-specific Ly-4+ lymphocytes were demonstrated 

to be quite sufficient to restore immunity to mice otherwise deficient of Ly-4+ cells. 

This was not the case, however, for the corresponding P. vinckei situation, where, 

despite the requirement for lymphocytes of the Ly-4+ T cell subset, these cells were not 

sufficient to confer immunity (Kumar M aL 1989). Whereas adoptive transfer of 

immune Ly-4-bearing cells to Ly-4+-depleted immune mice reconstituted immunity in 

the majority of mice, the inoculation of the same immune Ly-4+ cells into naive or nude 

mice had no protective effect on P. vinckei infection, which was invariably fatal. This 

differed from observations using P. c. adami. in which transfer of immune spleen cells 

(Cavacini M a i 1986), a Ly-4+ line (Brake M a i 1986) or a Ly-4+ clone (Brake M a i 

1988) could transfer protection to prevent an otherwise fatal infection in nude mice. 

Although it is conceivable that the failure of T cell transfer to effect immunity against £* 

vinckei in naive mice may be due to a requirement for the activation or recruitment of 

another cell type, such as monocytes, in the spleen, Kumar M a i (1989) proposed that 

the more virulent nature of P. vinckei (i.e. its rapid rate of multiplication) probably 

explains the failure of Ly-4+ transfer to render unprimed animals immune. The 

successful transfer of protection to Ly-4+-depleted but not to naive mice is evidence 

that the Ly-4+ T lymphocyte itself is not the effector cell, but instead an intermediary 

mediator of anti-plasmodial immunity. The transfer of immunity to P. c. chabaudi AS 

and to P. c. adami with Ly-4-bearing T cell clones that secrete IFN-y (Chapter 9 and
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Brake £ ia i  1988) suggests that this lymphokine may activate macrophages or 

monocytes to kill intracellular malaria parasites.

Depletion of the Ly-2+ T lymphocyte complement of mice suffering from P. c. chabaudi 

AS (this chapter and Suss £ ia l 1988) and P. vinckei (Kumar e l al 1989) infections did 

not affect the mediation of host immunity. Likewise, Vinetz (1990) showed that 

elimination of Ly-2+ cells during primary infection of P. yoelii in BALB/c mice did not 

diminish the capacity of these mice to resolve their infections. Furthermore, adoptive 

transfer of immune Ly-2+ splenic lymphocytes from BALB/c and C57BL710 donors to 

congenitally athymic BALB/c or C57BL710 recipients, respectively, did not transfer 

immunity, and, upon P. voelii challenge, recipient mice succumbed to infection. In 

addition, inoculation of Ly-4+-depleted CBA/CaJ mice with P. voelii-primed Ly-2+ 

cells also did not give protection to homologous challenge, from which all mice died. This 

methodology was the corollary of the transfer of Ly-4+ lines primed to P. c. chabaudi AS 

to Ly-4+- and/or Ly-2+-depleted recipients at homologous challenge that is described 

in this chapter. Vinetz £ ia i (1990) failed to observe any direct effect of Ly-2-bearing 

T cells on immunity to the asexual stages of P. voelii. as they were neither protective 

nor did they enhance immunity. This supported the earlier work of Jayawardena £ ia i

(1982) that Ly-1+ but not Ly-2+ cells could transfer protection to P. yoelii infection. 

Both these experiments were in disagreement with the claim by Mogil (1987) that 

adoptive transfer of either Ly-1+ or Ly-2+ T cells could give protection. These 

differences were reconciled by Vinetz £ ia l  (1990), who suggested a minor but 

significant contamination of Ly-4+ cells in the in vitro purified Ly-2+ T cell population 

upon in vitro depletion of spleen cells that preceded adoptive transfer to P. voelii 

challenged recipients in the report of Mogil e ia l (1987). This anomalous report apart, 

data suggest that Ly-2+ lymphocytes, in the absence of Ly-4+ cells, do not play any role 

in the protective response of mice to P. yoelii. This notion is supported by experiments 

on other murine malarias, including those described herein.

For the P. yoelii model, the reciprocal adoptive transfers of Ly-4+-enriched immune 

splenic T cells or unfractionated immune spleen cells to syngeneic nude recipients 

rapidly transferred protection against P. yoelii. Challenged mice resolved homologous 

infection and recovered (Vinetz £ ia l 1990). The transfer of protection by Ly-4+ cells 

in a T lymphocyte-deficient system for a different murine malaria, P. yoelii. confirmed 

that immunity to blood stage murine malaria parasites resided in the Ly-4+ T cell 

compartment, as shown here for P. c. chabaudi AS (both by- depletion and adoptive
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transfer). Furthermore, these findings vindicated the generation and propagation of 

stable T cell lines of the Ly-4+ phenotype specific for P. c. chabaudi AS to examine the 

protective immune response to homologous (Chapters 5, 7 & 8) and heterologous 

(Chapter 6) parasite challenge.
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Table 8.2.1 Phenotypic analysis of in vivo T cell 
subset depletion by continuous MAb treatment.

Stain Day 0 5 12 19 33 47 6 0

( a ) Ly-4 depletion

a-Ly-4 47 92 93 93 95 94 94
a-Ly-2 2.8 2.9 2.8 3.4 3.5 4.4 4.3
a-Thy-1 35 58 61 62 62 62 61
a-Rat Ig 2.7 2.8 2.5 2.2 2.3 1.9 2.0

( b ) Ly-2 depletion

a-Ly-4 1.5 2.4 2.4 3.2 2.9 3.2 3.5
a-Ly-2 42 95 97 97 96 97 97
a-Thy-1 16 28 29 30 28 30 31
a-Rat Ig 2.1 2.3 2.3 2.5 2.2 2.2 2.1

( c ) Ly-2/Ly-4 depletion

a-Ly-4 43 88 93 92 92 90 91
a-Ly-2 35 93 91 93 93 92 91
a-Thy-1 75 91 90 90 89 86 85
a-Rat Ig 2.1 1.9 1.9 2.0 2.2 2.3 2.1

% depletion compared to animals given no Ab treatment (0% depletion)
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Table 8.3.1 Phenotypic analysis of in vivo T cell 
subset depletion by adult thymectomy and MAb 
pretreatm ent.

Stain Day 0 5 12 19 33 47 6 0

(a) Ly-4 depletion

a-Ly-4 89 88 90 92 91 92 92
a-Ly-2 2.6 2.8 2.8 3.1 3.3 3.6 3.8
a-Thy-1 57 56 59 62 61 63 62
a-Rat Ig 2.0 2.6 2.5 2.5 2.4 . 2.5 2.3

( b ) Ly-2 dep le tion

a-Ly-4 1.2 1.7 1.9 2.0 2.3 2.4 2.7
a-Ly-2 96 97 97 98 98 97 97
a-Thy-1 33 34 34 35 35 33 34
a-Rat Ig 2.1 1.9 1.9 2.2 2.4 1.9 2.0

( c ) Ly-2/Ly-4 de p le tio n

a-Ly-4 86 87 86 88 88 87 87
a-Ly-2 94 95 94 97 97 95 96
a-Thy-1 91 92 89 93 93 91 90
a-Rat Ig 2.1 2.1 1.8 1.9 2.0 2.2 2.3

% depletion compared to non-thymectomised animals given no Ab treatment 

(0% depletion).
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CHAPTER 9

CHARACTERISATION OF T CELL LINES AND CLONES
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9.1 Introduction

Three types of functionally distinct T lymphocytes have been described: helper, 

suppressor and cytotoxic T cells. Th cells mediate a variety of immunological functions 

and generally regulate the immune response. Cells of this lymphocyte class mediate Ab 

responses, and are also involved in the activation of Tc cells. Since the discovery that Th 

and Tc lymphocytes could be separated by differences in cell surface Ags (Cantor & Boyse 

1975), several lines of evidence have suggested that further subdivisions exist within 

the Th cell population. Studies by Marrack & Kappler (1975) and by Janeway (1975 

a) first proposed the existence of additional heterogeneity among Th cells, since when 

several reports have confirmed that Th cells were functionally heterogeneous (Janeway 

M a i 1977, Tada M a i 1978, Swierkosz M a i 1979, Imperiale M a i 1982) and that two 

main types could be distinguished based on the type of help provided to B cells (Tada M ai 

1978, Imperiale M a i 1982).

In the last few years, with the development of techniques to clone and propagate 

functionally active and Ag-specific Th lymphocytes in vitro (Kimoto & Fathman 1980), 

their heterogeneity has become even more apparent. Mosmann and Coffman showed that 

long term clones of murine Ly-4+ T cells could be divided into two non-overlapping 

subsets, based on patterns of lymphokine gene transcription and secretion (Mosmann M 

M 1986, Cherwinski M a i 1987, Mosmann & Coffman 1987). One subset, designated 

T h 1, secretes uniquely IL-2, IFN-y and lymphotoxin, whilst the other, designated TH2, 

secretes uniquely IL-4, IL-5 and IL-6. Several other lymphokines, notably IL-3 and 

GM-CSF, appear to be produced by both cell types, although in some cases in different 

quantities (Mosmann M a i 1986). These secretion patterns have been confirmed in 

several panels of Th clones, and this is currently the best defined criterion for 

delineation of mouse Ly-4-bearing T lymphocyte subsets. An alternative classification, 

proposed by Bottomly and colleagues (Kim M a i 1985, K illa rM ai 1987, Rasmussen M 

M  1988) divides Th cells into 'helper' and 'inflammatory' subtypes. These two 

categories are, for the most part, equivalent to the TH2 and TH1 subsets, respectively. 

Subsequent studies in several laboratories have shown that cloned Ly-4+ T cell lines can 

usually be divided into TH1/inflammatory and TH2/helper types by either function or 

lymphokine secretion. Recently, however, the finding of murine T cell clones capable of 

producing both IL-4 and IFN-y (Kelso & Gough 1988) has raised the possibility that 

some or all TH1 and TH2 clones may represent differentiated cells derived from a 

common precursor. Furthermore, among human T cell clones, the frequency of cells
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making both IL-4 and IFN-y is high (Maggi e la l 1988), although marked differences in 

the ratios of these two products have been observed and have been linked to varying 

functions of the cells.

The characterisation of the two types of Th cells has been carried out in vitro using 

established clones (Mosmann £ la i 1986, Cherwinski £ la i  1987, Cher & Mosmann

1987). It is therefore possible that variables in the techniques used for isolating, 

growing and cloning Ly-4+ lymphocytes may have selected clones that were not 

representative of their in vivo counterparts. However, recent evidence has been 

provided that the functional differences and production of distinct lymphokines by TH1 

and Th2 populations in vitro may also be true of normal Ly-4+ T cells in the mouse 

(Tite f i la l  1985, Bottomly £ ia i 1989, Carding e ia l 1989). These developments in the 

characterisation of Ly-4-bearing lymphocytes serve to stress the relevance of using in 

vitro-propaaated. Ag-specific T cell clones to dissect specific mechanisms of cell- 

mediated immunity, as will be described in this chapter for P. c. chabaudi AS infection of 

NIH mice.

Attributable to the different lymphokines secreted by these lymphocytes, TH1 and TH2 

clones perform fundamentally different functions. Most important with regard to 

malaria, TH1 cells mediate delayed-type hypersensitivity, and TH2 cells act as helper 

cells for specific Ab production (Mosmann & Coffman 1987, Abbas 1987, Bottomly

1988). T)_|2 clones may specifically enhance polyclonal Ab synthesis of particular 

isotypes, namely lgG1 and IgE, presumably through IL-4 (Roehm e la i 1984, Vitetta £ i 

al 1985, Coffman & Carty 1986). Indeed, there is now very strong evidence that the in 

vivo synthesis of IgE depends upon production of IL-4 and is opposed by IFN-y 

(Finkelman n l a l  1986, 1988 a & b). .Similarly, IFN-y synthesis in v ivo is 

responsible uniquely for lgG2a Ab responses (Finkelman n la !  1988 a). These 

observations have suggested that the immune response to various antigenic stimuli may 

be regulated by the differential activation of Ly-4+ T cell subsets (Snapper & Paul 

1987). For example, selective activation of TH1 clones producing IL-2 and IFN-y may 

occur during viral infection, leading to lgG2a being the dominant subclass in the IgG 

anti-viral response (Coutelier £ ia i 1987, Taylor £ ia i  1990). In contrast, infection 

with helminths such as Nippostrongylus brasiliensis favours strongly secretion of IgE 

(Jarrett & Stewart 1972), through selective activation of TH2 clones (producing IL-4, 

which can regulate IgE synthesis and enhance growth of mast cells) (Finkelman £ la ] 

1986). Recent studies of Leishmania major infection of various mouse strains has
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shown that Ag-specific T cell clones from mice that limit their infection produce IL-2 

and IFN-y, whereas such clones from mice that develop progressive leishmaniasis 

produce mainly IL-4 (Heinzel M M  1989). These results support the contention that 

for the immunoregulation of this disease, Ly-4+ cells that transfer protective immunity 

or exacerbation belong to different Th subsets and respond to different parasite Ags 

(Scott M M  1988).

With regard to malarial infection, the determination of the functional characterisation of 

the Ly-4+ T cells responding to malarial Ags is itself of interest, but may also have 

important implications for anti-malarial vaccine development, since this will 

necessarily select Ags which induce the appropriate functions of the Ly-4+ lymphocyte 

in the host immune response to the asexual erythrocytic stages of Plasmodium. An 

investigation of the functional heterogeneity of Ly-4+ cells in a P. c. chabaudi AS 

infection is particularly pertinent since it has been shown that Ly-4-bearing cells are 

necessary for a protective immune response to this parasite (Suss M a i 1988, 

Langhorne M a i 1990, also Chapter 8).

Previously in this thesis, it has been shown that in vitro-propaaated. P. c. chabaudi AS- 

specific splenic T cell lines are capable of transferring protection adoptively to 

homologous challenge in immunocompetent and compromised hosts alike (Chapter 5, 7 & 

8). Moreover, a dichotomy in the behaviour of the lines in vivo was revealed, two lines 

appearing to be Ab-dependent and two Ab-independent in their reactivity upon adoptive 

transfer (Chapters 7 & 8). This divergence in the requirement of Ly-4+ lines to confer 

immunity is suggestive of an underlying functional heterogeneity between the different 

P. c. chabaudi AS-primed population. To determine if differential induction of TH1 and 

Tj_|2 cells could explain the results of the documented immunisation studies, the 

properties of each of the cell lines were analysed. Their Ag specificity using 

conventional proliferation assays, and the lymphokine secretion profiles after 

stimulation were determined. It was hoped to elucidate at the cellular level the 

mechanisms responsible for the divergent patterns of protective immunity observed in 

vivo upon adoptive transfer of these Ly-4-bearing populations. To define these 

mechanisms more precisely, limiting dilution techniques were used to develop a series 

of Ly-4+ lymphocyte clones, which were then expanded with plasmodial Ag and IL-2 

(Chapter 4). As for the parent lines, the secretory products of the clones were analysed 

in an attempt to define protective factors. Furthermore, the ability of each monoclonal 

population to transfer protection adoptively to non-immune mice was examined.

428



Previously, Brake e la i (1988) had shown a Ly-4+ T cell clone specific for an unknown 

Ag of P. c. adami to be protective in vivo. As this clone produced IL-2 and IFN-y upon 

antigenic stimulation, it was thought to belong to the TH1 subset. This identification was 

not surprising in view of the Ab-independent nature of the host immune response to P. c. 

adami (Grun & Weidanz 1981, Cavacini a la i 1986, Brake a ia i 1986). For the P. c. 

chabaudi AS/NIH mouse model, both humoral and cell-mediated components of immunity 

are thought to contribute, as exemplified by the homologously primed lines described 

herein. Thus, the release of lymphokines by each of the protective T cell clones in vivo 

may display a similar pattern to that observed for the P. c. adami-specific clone, or may 

display a distinct secretion profile, indicative of the exertion of a different anti- 

plasmodial effect. The findings detailed in this chapter extend the results of others who 

have reported T cell clones with protective activity against various intracellular 

pathogens, including influenza virus, Listeria monocytogenes. Mycobacterium bovis and 

Trypanosoma cruzi (Lukacher £ ia i 1984, Kaufmann & Hahn 1982, Pedrazzini & Louis 

1986, Nickell £ ia l  1987).

9.2 Surface phenotyping of T cell lines & clones

Each in vitro-propaaated P. c. chabaudi AS-specific splenic T lymphocyte line and clone 

used in this study was evaluated for the presence of different surface membrane markers 

by both indirect immunofluorescence (2.32) and by complement-mediated cytolysis 

(2.33). Figure 9.2.1 shows the results of the IFAT performed on each of the four in 

v ivo -primed splenic T cell lines shortly after establishment of each as a stable 

population in bulk culture. This was the first phenotypic analysis of the cell lines 

following their generation and gave an indication of the efficacy of the procedures used to 

raise homogeneous Ly-4+ T cell populations. For each line, > 91% of cells expressed the 

Thy-1 surface Ag, indicative of T lymphocytes. In addition, depending on the line, 

between 78-91% of the cells exhibited the Ly-4 Ag of the helper/inducer T cell subset, 

whereas only 4-8% displayed the Ly-2 marker characteristic of the 

suppressor/cytotoxic subset. The degree of B cell contamination was negligible, as was 

that from macrophages and monocytes (data not shown).

The small fraction of cells which failed to stain upon incubation with the pan-T cell
x ,

marker did not do so for any of the other MAbs used. Although they may have represented 

non-T non-B lymphocytes, it is more probable that this residual non-fluorescent 

population contained T cells which could not be detected under the experimental
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conditions used, highlighting an inherent error in this assay system. This body of cells, 

therefore, was not thought to represent a significant contamination of the malaria- 

specific populations raised, and thus did not invalidate the interpretation of the 

protective effect observed upon adoptive transfer of these lymphocytes (Chapters 5-8). 

In any case, it was later demonstrated unequivocally that the protective activity resided 

within the majority Ly-4+ population of each lymphocyte line (Chapter 5).

These data indicate the relative homogeneity of each of the cell lines for expression of the 

Ly-4 surface Ag at the outset of in vitro cultivation. The spleen cells taken from mice 

for in vitro culture had all been exposed previously to P. c. chabaudi AS pRBC. This may 

or may not have preselected those cells for proliferation in vitro, but it is true that the 

proportion of Ly-4+ cells increased with the time allowed for in vivo priming. Hence, 

spleens taken from animals recovered from a tertiary infection yielded 91% Ly-4+ 

cells (WEP 723), whereas those taken from mice sacrificed on d 16 of primary 

infection gave only 78% Ly-4-bearing lymphocytes (WEP 775) (Fig. 9.2.1). Further 

experimentation revealed that upon continued subculture, not only did surface Ag 

expression for each line remain relatively constant, but that long term in v itro  

propagation actually enriched each population for lymphocytes of the Ly-4+ T cell 

subset (data not shown). Hence, the Ly-4 marker was expressed by not less than 96% 

of all cultured lymphocytes at the time of cloning.

The extent of the homogeneity of the splenic T cell lines after initiation and propagation 

in vitro is apparent by comparing with a control IFAT which was performed on a 

population of naive spleen cells (Fig. 9.2.2). In this instance, all the MAbs used showed 

significant fluorescence, indicating the assortment of cell types that is usually present 

in this secondary lymphoid organ. Indeed, only 27% of freshly cultured naive 

splenocytes displayed the Ly-4+ phenotype. The increase in the proportion of cells 

bearing the Ly-4 marker from 27% to > 90% after the initial stages of in v itro  

propagation was indicative of the positive selection pressure for Ly-4+ lymphocytes 

imposed by the culture protocol followed (2.26).

The complement-mediated cytotoxicity assay was used with both anti-Ly-4 and anti- 

Ly-2 MAbs to confirm the Ly-4+ characterisation of the T lymphocyte lines raised to PL 

c. chabaudi AS. The cytotoxicity of the anti-Ly-4 MAb towards each of the cell 

preparations tested is shown in Fig. 9.2.3. As can be seen, for both cell lines assayed 

(WEP 775 and WEP 737, those subsequently cloned), at the lowest two titres used, 

1/10 and 1/50, the levels of lysis observed, and thus by implication, the proportions of
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cells carrying the Ly-4 determinant, were similar to those recorded by indirect 

immunofluorescence (Fig. 9.2.1). In fact, the fraction of cells characterised as 

belonging to the Ly-4+ subset was greater for the cytolysis assay than for IFAT. Thus, 

for instance, the proportion of Ly-4-bearing WEP 737 cells was as high as 91% here, 

but only 80% using immunofluorescence. Despite this slight discrepancy between the 

sensitivity of the two assays, it is clear that for both systems the phenotypic 

characterisation of the P. c. chabaudi AS-specific lines tested is that of predominantly 

Ly-4-bearing lymphocytes. The sensitivity of the anti-Ly-4 MAb used was evidenced 

by the lack of cytotoxicity towards a control preparation of naive splenic B cells, and 

lysis of only those 43% of naive splenic T cells exhibiting the Ly-4 surface Ag (Fig. 

9.2.3). For the corresponding assay using the anti-Ly-2 MAb (Fig. 9.2.4), the highest 

level of lysis recorded was 39% for the naive splenic T lymphocyte population. For both 

WEP 775 and WEP 737 preparations, only 7-8% of cells lysed upon incubation with 

this MAb. This suggested a degree of contamination of the T cell lines with Ly-2+ cells 

that correlated extremely well with that determined by IFAT (Fig. 9.2.1). Regardless of 

the origin of the splenic T cell lines assayed, the cytotoxicity recorded in the presence of 

either MAb used or the normal rat serum control was very similar. This was 

demonstrated by the similarity of the MAb titre profiles for WEP 775 (Fig. 9.2.5) and 

for WEP 737 (Fig. 9.2.6) lymphocyte lines. In each case, even at the highest MAb titre 

tested, 1/5000, the number of cells lysed by incubating with the anti-Ly-4 MAb was 

considerably in.excess of those lysed by either of the other preparations used. Again, 

this indicated the degree of enrichment of the normal splenic T cell population 

(cytotoxicity profile shown in Fig. 9.2.7) for the Ly-4+ subset that was achieved by the 

in vitro culture methodology followed.

The P. c. chabaudi AS-specific Ly-4-bearing lines previously documented to transfer 

protection adoptively to primary challenged mice of varying immunological status 

(Chapters 5-8) were used as the basis for the development of cloned cells (Chapter 4). 

Of 10 and 11 clones derived and expanded from each of the two parent lines, WEP 737 

and WEP 775, respectively, used for limiting dilution cultivation, four of each were 

used for subsequent in vitro and in vivo experimentation. Table 9.2.1 shows the 

phenotypic characterisation of these cloned in vitro-propagated lines. For each clone, 

regardless of origin, surface immunofluorescence revealed a total homogeneity of the 

population for expression of the Thy-1 and Ly-4 cell surface Ags. Indeed, in each 

instance, the number of positively fluorescing cells upon incubation with MAbs to either
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marker was identical. Furthermore, for all clonal preparations tested, not one cell was 

noted as being Ly-2+, nor was a positive identification made using either anti-0 or anti- 

k  MAbs. Thus, allowing for the limitations of this detection system that will 

occassionally yield a non-fluorescing cell, all the populations were characterised as 

being monoclonal with regard to surface phenotype, belonging to the Ly-4+ Ly-2' subset 

of T lymphocytes. This finding was confirmed by typing each of the clones by 

complement-mediated cytotoxicity (Table 9.2.2). At the lowest dilution of anti-Ly-4 

MAb used, 1/10, the degree of lysis of the cloned populations was never less than 99%. 

Although the level of cytotoxicity titred out with MAb dilution (Table 9.2.2), it was 

noticeable that for the cloned preparations, the degree of lysis observed at higher 

titrations, such as 1/1000, was markedly greater than that observed for the particular 

parent cell line (Figs. 9.2.5 & 6). Whether or not this was a reflection of the increased 

homogeneity of the T lymphocyte populations after cloning by limiting dilution is open to 

question.

9.3 Assay of Ag-specific proliferation of T cell clones

The proliferation of Ly-4+ T cell lines in response to stimulation with a soluble lysate 

of P. c. chabaudi AS pRBC has been described previously (Chapter 4). It was 

demonstrated that the proliferative response of each splenic T lymphocyte line, derived 

from mice semi- or fully-immune to P. c. chabaudi AS, was parasite-specific and 

exhibited dose-response kinetics. The lymphocyte proliferation assay (2.34) was 

performed on each of the Ly-4+ clones used for further analysis in order to verify the 

retention of the Ag-specific responsiveness of the cloned populations derived from 

parent lines of known specificity.

Figure 9.3.1 shows the proliferative responses of all eight clones used in this study. To 

enable comparison of the respective growth rates, both with each other and with the 

parent cell lines, each lymphocyte preparation was assayed at the same time, 7 d after 

the fourth round of antigenic stimulation post cloning. All the cloned populations 

exhibited a significant proliferation when incubated with P. c. chabaudi AS pRBC Ag, the 

kinetics of which were dose-dependent. In this regard, the response of the clones to 

antigenic stimulation was essentially identical to that observed upon activation of the 

uncloned parent lines (Fig. 4.11.1). Again, as for WEP 775 and WEP 737, each 

daughter clone showed optimal growth when cultured with 200 pg/ml pRBC lysate Ag 

(Fig. 9.3.1). Although there was a variation in the level of tritium incorporation
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attained in response to incubation with this concentration of pRBC lysate, the variation 

was as marked between clones of the same origin (Figs. 9.3.2 & 3) as between those 

derived from different parent lines (Fig. 9.3.1). At the higher range of concentrations 

assayed, however, there was a noticeable difference in the proliferative responsiveness 

of the clones; those derived from WEP 775 had a greater growth rate than those attained 

from cloning WEP 737 (Fig. 9.3.1). Although the difference was statistically 

significant (p < 0.05), the biological significance of this variance is debatable in view of 

the generally reduced growth response of the P. c. chabaudi AS-primed lymphocytes in 

vitro upon homologous antigenic stimulation at such an antigenically high concentration 

of lysate. At concentrations of Ag below 250 jig/ml, there was variation in the level of 

proliferation of individual clones, but this was not significant (p > 0.05), and did not 

show any obvious pattern (Fig. 9.3.1).

A measure of the heightened proliferative responsiveness of Ly-4+ clonal populations 

primed by natural infection to P. c. chabaudi AS and restimulated in vitro with 

homologous plasmodial Ags was gained by examination of the proliferation of control 

preparations of splenic T cells taken from naive or immunised mice (Fig. 9.3.1). 

Although the response of a mixed population of in vivo-primed splenic T lymphocytes to 

specific antigenic stimulation was greater than that of unprimed splenic T cells, both its 

magnitude and distribution over a range of lysate concentrations was considerably less 

(p < 0.01) than that shown by a homogeneous population of Ly-4+ P. c. chabaudi AS- 

specific lymphocytes that each clone represented.

The P. c. chabaudi AS-specific proliferative responsiveness of each of the daughter 

cloned populations derived from splenic T cell lines primed in vivo to the homologous 

parasite was shown to be dependent upon the availability of APC. When Ly-4+ clones 

were cultured either alone or with lysate, but without APC, no proliferation occurred. 

Similarly, the presence of APC but without pRBC lysate Ag, was insufficient to induce 

clonal proliferation (Fig. 9.3.1). It therefore appeared that Ag processing and 

presentation by syngeneic APC was a necessary step in the process of T cell activation 

leading to Ag-specific proliferation. Moreover, APC of the same haplotype (H-2cl) as 

the NIH strain responder cells were required for correct Ag presentation to all clones 

tested (data not shown), showing that this is an MHC-restricted phenomenon.

Finally, it was demonstrated that this response was directed to P. c. chabaudi AS Ags (of 

unknown identity) since antigenic stimulation with a control lysate of uninfected RBC 

gave significantly less proliferation (p < 0.01) (data not shown). In all of these
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regards, the Ly-4-bearing monoclonal populations behaved in an identical fashion to 

their parent P. c, chabaudi AS-specific T lymphocyte lines (4.11 & 12). It was thus 

demonstrated that the populations attained by limiting dilution cloning retained the 

specificity of the original uncloned Ly-4+ lines towards P. c. chabaudi AS, as 

exemplified by pRBC lysate-specific proliferation in vitro.

Since the monoclonality of the cloned populations was ensured, and demonstrated by 

surface phenotyping (9.2), the identity of the parasite-specific lymphoproliferation of 

both Ly-4-bearing lines and clones emphasises that this reactivity was representative 

of the majority Ly-4+ cells in each T lymphocyte line preparation from which the 

cloned daughter populations were taken.

9.4 Assay of helper T cell function

The ability of P. c. chabaudi AS-specific, in vitro-propaaated lymphocyte lines and 

clones of the Ly-4+ T cell subset to induce splenic B cells to produce specific anti- 

plasmodial Abs in vitro was assayed by IFAT (2.39).

Considering the Ly-4+ lines, there was a pronounced variation in the capacity of these 

lymphocytes to stimulate B cell differentiation in vitro. Those lines taken from donor 

mice after resolution of multiple infections, WEP 737 and WEP 723, induced a large 

specific Ab response, as shown by very high IFAT end point titres (Fig. 9.4.1). These 

Ly-4-bearing preparations were those which were considered to confer protection 

against homologous challenge in vivo by Ab-mediated mechanisms (Chapter 7). 

Conversely, those lines which had been shown previously to have a B cell-independent 

reactivity in vivo (Chapter 7), WEP 775 and WEP 779 (taken from donor mice during 

a primary P. c. chabaudi AS infection) were unable to promote anti-plasmodial Ab 

synthesis (Fig. 9.4.1). In fact, the Ab titres achieved by culturing these lines with 

parasite-primed B cells and homologous Ag were as low as those recorded by naive 

splenic T cells, and significantly lower than the titre attained by coculturing post- 

infective B cells with similarly primed splenic T lymphocytes (p < 0.05). These latter 

two groups of splenic T cells of mixed phenotype were a necessary inclusion to control 

for the normal levels of T cell help usually provided in v itro -propaaated splenic 

lymphocytes.

The segregation of the four Ly-4+ lines used in this study into two groups based upon 

their ability to induce an Ab response to P. c. chabaudi AS in vitro was confirmed at the 

clonal level. Each of the four clones derived from either WEP 775 or WEP 737 was
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incubated with plasmodial-primed splenic B cells and P. c. chabaudi AS pRBC lysate and 

the culture S/N assayed by IFAT. Figure 9.4.2 shows that there was a very significant 

difference in the secondary Ab response induced by these two sets of phenotypically 

identical clones (p < 0.01). The reciprocal Ab titre of each clone was usually similar to 

that of its parent cell line, those clones derived from WEP 737 consistently inducing a 

greater Ab response from cocultured B cells than did WEP 775-derived clones. Although 

this was the general trend, there was some variation. For instance, the Ab titres for the 

daughter clones of WEP 775 ranged from 1/128 to 1/2048 (WEP 997 and WEP 996, 

respectively). Also, for the WEP 737-derived clones, the end point titre for WEP 986, 

1/16384, was twice that for WEP 985, 1/8192 (Fig. 9.4.2). Obviously, for both WEP 

996 and for WEP 986, the level of indirect immunofluorescence recorded was 

significantly greater than that of the respective parent lines, WEP 775 and WEP 737 (p 

< 0.05). In each case, however, the variation was not so great either to obscure the 

identity of the parent line or to invalidate the groupings of P. c. chabaudi AS-specific 

populations into B cell helper and non-helper categories. The difference between the 

lowest Ab titre of the proposed Ab helper clones (WEP 985; 1/8192) and the highest Ab 

titre of the non-helper clones (WEP 996; 1/2028) was not only statistically 

significant (p < 0.01), it suggested strongly a difference of biological significance, 

namely a dichotomy in the mechanisms by which WEP 775 and WEP 737 and their 

respective daughter clones mediate protection in vitro, and presumably therefore in 

vivo.

Further experimentation revealed that for each Ly-4+ lymphocyte line, regardless of its 

ability to induce specific parasiticidal B cell responses (Fig. 9.4.1), the greatest Ab 

response was achieved for Ly-4-bearing cells cultured with pRBC Ag and post-infective 

B cells (Fig. 9.4.3). These Ab-producing lymphocytes were taken from the spleens of 

mice recently recovered from a primary P. c. chabaudi AS infection. The substantial 

response of these B cells upon restimulation with homologous Ag in vitro was therefore 

an anamnestic response, presumably characteristic of the large proportion of memory B 

cells thought to be present in the spleen following recovery from natural infection. Of 

the two variables in the culture system, the responder B cells of varying 

immunocompetence and the source of antigenic stimulation, it is clear that the latter 

made a greater contribution towards the detectable Ab response in  vitro. This was 

suggested by the fact that the degree of B cell responsiveness induced by culturing any of 

the Ly-4+ lines with pRBC lysate Ag and naive B cells was, in each case, significantly
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greater than that induced by the reciprocal cultures containing uninfected RBC lysate and 

post-infective B cells (p < 0.01) (Fig. 9.4.3). The failure of P. c. chabaudi AS-primed 

B lymphocytes to synthesise specific Abs in vitro upon incubation with nRBC lysate 

demonstrated the Ag-specific nature of this response; like lymphoproliferation (4.11 

and 9.3), cells were stimulated in vitro specifically by the plasmodial Ags to which they 

had been primed previously by natural infection. The lesser response of naive B cells 

compared to the corresponding cells previously exposed to P. c. chabaudi AS when both 

were cultured with pRBC lysate (p< 0.05 for both WEP 737 and WEP 723) (Fig. 9.4.3) 

reflected the fact that the naive lymphocytes were making a primary Ab response 

whereas for the post-infective cells, the kinetics and magnitude of Ab production were 

characteristic of a secondary response. For both situations, however, the maximal 

induction of B cell activation occurred in the presence of those T cells, WEP 737 and 

WEP 723, considered to be good T helpers for Ab production.

9.5 Assay of IL-2 and IL-4 production

An investigation was undertaken to examine whether or not antigenic stimulation of the 

Ly-4+ P. c. chabaudi AS-specific lymphocytes in vitro induced the secretion of 

lymphokines that may play a role in the activation of protective immune effector 

mechanisms. The production of three different lymphokines was monitored, IL-2 and 

IL-4 described here, and also IFN-y (9.6). The presence of IL-2 and/or IL-4 was 

assessed by testing the effect of different S/N dilutions on the growth of the CTLL-2 cell 

line, which responds to both these lymphokines. Monospecificity for IL-2 or IL-4 was 

achieved by incubation with or without an anti-IL-4 MAb, respectively (2.37).

Firstly, considering the ability of culture S/N taken from incubating each of the four 

Ly-4+ parent lymphocyte lines to support the proliferation of the lymphokine- 

dependent cell line (Fig. 9.5.1), it can be seen that in the absence of blocking MAb, there 

was a striking divergency in the tritium incorporation levels attained. For the 

recombinant IL-2 control included to gauge the growth of the target cell line, cellular 

proliferation titred out directly with the dilution of IL-2 used. This formed the control 

against which all other c.p.m. values could be compared, for it was known that the 

responsiveness of CTLL-2 cells to IL-2 was much greater than that to IL-4 (2.37). 

Figure 9.5.1 shows that the degree of support given to the target cell line by S/N of WEP 

775 and of WEP 779 cultured lymphocytes was considerable. At lower S/N dilutions, 

CTLL-2 cell growth, and thus, by inference, IL-2 and/or IL-4 concentration, was
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comparable with that of similarly diluted pure IL-2 . Thus, these S/N contained a potent 

activator of proliferation of the IL-2-/IL-4-dependent cell line, presumably IL-2 

and/or IL-4. Indeed, at higher S/N dilutions, the ability of WEP 775- and of WEP 

779-derived S/N to support CTLL-2 growth was actually greater than that of the 

recombinant IL-2 control.

In contrast, in the presence of S/N taken from culturing either WEP 737 or WEP 723 

Ly-4+ lines in v itro , only low level CTLL-2 proliferation took place (Fig. 9.5.1). 

These S/N did not lack an ability to support target cell proliferation, since the levels of 

tritium uptake at all but the highest dilutions tested were significantly raised (p < 

0.05) compared to c.p.m. values for the negative control of CTLL-2 cells incubated in 

the absence of lymphokine stimulation. However, the support given to the target cell 

line by S/N of WEP 737 and of WEP 723 was significantly less than that afforded by S/N 

from either cultured naive or post-infective splenic T cells (p < 0.01). Indeed, for 

undiluted S/N, the c.p.m. values recorded for WEP 737 (2301) and for WEP 723 

(1942) were an order of magnitude less than those recorded for WEP 775 (20723) and 

for WEP 779 (17403). This disparity between the abilities of S/N taken from each of 

the four Ly-4+ lines to enable the IL-2-/IL-4-dependent CTLL-2 cell line to grow in  

vitro was due either to a dichotomy in the types of lymphokine elaborated, or 

alternatively, to a quantitative difference in the levels of IL-2 and/or IL-4 secreted; 

which was the case could be determined only by repeating this analysis in the presence of 

11B11 cell line S/N (anti-IL-4 MAb).

Figure 9.5.2 shows the lymphokine secretion profiles for S/N from each of the four P. c. 

chabaudi AS-specific Ly-4-bearing lymphocyte lines, but this time incubating the 

target cells with an anti-IL-4 MAb to achieve monospecificity for the detection of IL-2 . 

Again, there was a clear and significant difference in the capacities of the lymphocyte- 

derived S/N to promote the proliferation of the target line. Under these experimental 

conditions, the growth of the CTLL-2 cells was due entirely to the presence of IL-2 in 

the culture S/N. For WEP 775 and WEP 779, each gave a very similar proliferation 

profile, as measured by tritium incorporation, to that of the corresponding assay in the 

absence of anti-IL-4 MAb (Fig. 9.5.1). Comparison of the c.p.m. values attained both in 

the absence and presence of the anti-IL-4 MAb (Fig. 9.5.3) showed that the culture S/N 

from WEP 775 and WEP 779 supported an extremely similar level of target cell growth 

in both instances. Indeed, there was no significant difference between the proliferation 

of CTLL-2 cells with or without the presence of 11B11 S/N in the culture system for
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both lymphocyte lines tested (p > 0.05). Thus, identical levels of support of target cell 

growth in the monospecific IL-2 assay (Fig. 9.5.2) and in the original IL-2/IL-4 assay 

(Fig. 9.5.1) not only showed that the WEP 775 and WEP 779 Ly-4+ lines secreted high 

levels of IL-2 upon antigenic stimulation in vitro, they also implicated that these 

lymphocyte populations did not produce detectable quantities of IL-4, at least not under 

the experimental conditions employed. Although a note of caution is advisable concerning 

the interpretation of these data, it is highly likely that these P. c. chabaudi AS-specific 

Ly-4+ lines were capable of secreting IL-2, but not IL-4, upon activation with pRBC 

lysate Ag in vitro. It would have been desirable to repeat this assay using an anti-IL-2 

MAb, but unfortunately the anti-IL-2 Mab-secreting S4B6 cell line was not available. 

This would have demonstrated unequivocally the IL-2-secreting property of both WEP 

775 and WEP 779 Ly-4+ lines; however, that this reciprocal assay was not performed 

does not invalidate the findings (Cushley, W., Grencis, R.G., Wood, P.R., personal 

communication), and many reports have been published using either one or the other 

MAb to achieve monospecificity, but not both (e.g. Spinella £ ia i 1990).

Examination of Fig. 9.5.1 would show that at the higher S/N dilutions assayed, the level 

of CTLL-2 proliferation supported by each of WEP 775 and WEP 779 culture S/N was 

significantly greater than that supported by the recombinant IL-2 control (p < 0.05). A 

similar disparity upon repetition of this assay with anti-IL-4 MAb (Fig. 9.5.2) ruled 

out the possibility of IL-4 contributing towards the enhanced growth support of these 

S/N. It is presumed this phenomenon was due to the presence in solution of one or more 

non-specific growth factors of undetermined identity in the culture S/N which acted to 

promote further the proliferation of the incubated CTLL-2 cells.

In view of the identical lymphokine secretion of WEP 775 and WEP 779 lymphocyte 

lines in the presence or absence of the anti-IL-4 MAb, initial inspection of Fig. 9.5.2 

may lead one to summise that it is no different from Fig. 9.5.1. Detailed scrutiny would 

show this not to be the case, however, for there was a graphically small but biologically 

significant difference in the degrees of target cell proliferation attained by culturing 

S/N taken from WEP 737 or WEP 723 cultures without or with the addition of 11B11 

cell culture S/N (Figs. 9.5.1 & 2, respectively). Direct comparison of these two assays 

(Fig. 9.5.4) reveals that for both Ly-4+ lines at all S/N dilutions tested, the level of 

tritium incorporation recorded by culturing the target cells in the absence of the anti- 

IL-4 MAb was significantly greater than that recorded upon the addition of this MAb (p < 

0.01). Moreover, for the monospecific IL-2 assay, the proliferation of the IL-2-/IL-
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4-dependent cell line upon addition of either WEP 737 or WEP 723 culture S/N was 

reduced to the background level of the negative control (Fig. 9.5.2). The observation of a 

low grade stimulation of CTLL-2 growth in the original assay (Fig. 9.5.1) which was 

lost in the monospecific IL-2 assay (Fig. 9.5.2) indicates the presence of IL-4 in the 

WEP 737 and WEP 723 culture S/N. It would appear that these two Ly-4-bearing T 

cell populations produced IL-4 upon antigenic stimulation in vitro, and it was this which 

was responsible for the low level maintenance of the lymphokine-dependent target cell 

line used. Unlike the other two P. c. chabaudi AS-specific Ly-4+ lines, WEP 775 and 

WEP 779, used throughout this study, the IL-4-secreting lines were unable to produce 

IL-2 upon activation in vitro. This was concluded from the fact that upon blocking the 

IL-4 activity present in either WEP 737 or WEP 723 culture S/N by incubation with 

the anti-IL-4 MAb, the CTLL-2 growth-supporting property of these S/N was abrogated 

completely (Fig. 9.5.4). It thus transpired that the dichotomy in the lymphokine 

secretion profiles of the four Ly-4+ lymphocyte lines showed a qualitative rather than a 

quantitative effect. Hence, two lines (WEP 775 and WEP 779) secreted IL-2 but not 

IL-4 in vitro, whilst two others (WEP 737 and WEP 723) showed the reverse pattern 

of synthesis and secretion.

Comparison of the ability of S/N taken from either of the two control cultures used to 

enable the proliferation of the target cell line gave an indication of the proportions of 

lymphocytes of mixed heterogeneity capable of secreting different lymphokines. Figure 

9.5.4 showed that, both in the absence and presence of 11B11 S/N, post-infective 

splenic T cell culture S/N was capable of supporting CTLL-2 cellular proliferation. In 

the absence of the anti-IL-4 MAb, the c.p.m. values attained were significantly greater 

than those when this MAb was added to the culture system. Unlike the WEP 737 or WEP 

723 culture S/N, however, conversion to an IL-2 monospecific assay did not result in 

the abrogation of all lymphokine activity (Fig. 9.5.4). Thus, unlike any of the S/N of 

cultured homogeneous populations of in yiM-propagated Ly-4+ lymphocyte lines, 

which contained either IL-2 (WEP 775 and WEP 779) or IL-4 (WEP 737 and WEP 

723), but not both, S/N collected from similarly incubated splenic T cells isolated from 

mice recently recovered from a primary challenge with P. c. chabaudi possessed 

detectable quantities of both IL-2 and IL-4. This mixed lymphokine response was 

attributable to the heterogeneity of the T lymphocyte population resident within the 

spleen. To a lesser extent, naive splenic T cells also elaborated both IL-2 and IL-4 upon 

in vitro cultivation, but in this instance the degree of IL-4 production was relatively
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slight compared to IL-2 synthesis (Fig. 9.5.4). The assays performed for IL-2 and for 

IL-4 secretion showed that there was a difference in the lymphokine secretion patterns 

amongst the four Ly-4+ lines tested. Considerable IL-2 activities could be detected in 

culture S/N taken from the primary infection-derived lymphocyte lines (WEP 775 and 

WEP 779). These were the preparations thought to confer protection through B cell- 

independent effector functions in vivo (Chapter 7), and shown to lack a helper activity 

for Ab production in vitro (9.4). Conversely, those Ly-4-bearing lines shown to have a 

B cell dependence to engender protection against P. c. chabaudi AS challenge (WEP 737 

and WEP 723) (Chapter 7) were those for which a T cell helper function for specific 

anti-malarial Ab production in vitro was demonstrated (9.4), and were those now shown 

to synthesise and secrete IL-4, but not IL-2, upon antigenic stimulation in vitro.

When this work was extended to assay for lymphokine activity of culture S/N taken from 

each of the daughter cloned lines of WEP 775 and WEP 737, the results obtained 

confirmed the division of the parent Ly-4+ populations on the basis of differential 

lymphokine production. It was found that in all cases, the monoclonal populations 

possessed the same lymphokine secretion profiles as did their parent lines from which 

they were isolated. Although there was some variation between clones of the same origin 

in the magnitude of the support given to CTLL-2 test cells cocultured with S/N, and thus, 

by implication, the levels of IL-2 or IL-4 produced, these differences were only 

quantitative. Thus, the cloning procedure did not select for all cell types exhibiting a 

qualitatively distinct secretion of lymphokines to that of the uncloned parent population. 

Hence, as for helper T cell function, the daughter Ly-4+ clones appeared to show a range 

of activities representative of the majority Ly-4-bearing lymphocytes from which they 

were derived.

Since the clones behaved like their parent lines with regard to lymphokine synthesis, 

Fig. 9.5.5 for the proliferation of the target cell line when incubated with clone culture 

S/N in the absence of anti-IL-4 MAb is essentially identical to Fig. 9.5.1 previously 

described. Likewise, the corresponding graphs for monospecific IL-2 secretion by the 

Ly-4+ lines (Fig. 9.5.2) and clones (Fig. 9.5.6) are very similar.

For the WEP 775-derived T cell clones, comparison of bi- and mono-specific CTLL-2 

proliferation assay data (Fig. 9.5.7) showed no significant difference (p > 0.05) 

between the two for each clone tested. Hence, there was no detectable loss of activity 

upon addition of the anti-IL-4 MAb to the culture system and the support of target cell 

growth was therefore attributable to the presence of IL-2 in each culture S/N. There
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was no significant difference between the c.p.m. values recorded for three of the clones, 

WEP 997-999 (p > 0.05). However, in the case of WEP 996, culture S/N supported a 

significantly reduced level of CTLL-2 growth than did S/N taken from culturing in vitro 

any of the three other daughter clones of WEP 775 studied (p < 0.05) (Fig. 9.5.7). 

Although this difference in the levels of tritium incorporation is only slight compared to 

the large difference between the c.p.m. values recorded by incubating the target cell line 

with culture S/N of daughter clones of either WEP 775 or WEP 737, it may be of 

profound significance. This is because it is this clone, WEP 996, which, of the WEP 

775-derived cloned lines, induced the highest anti-plasmodial Ab response (Fig. 9.4.2). 

Taken together, these findings suggest that there is a natural variation in the ability of 

P. c, chabaudi AS-specific Ly-4+ clones to perform protective immune functions in 

vitro. Whether of not this qualitative difference in immune capacity of the Ly-4+ clones 

has a bearing on either the mechanism of protective immunity followed in vivo or the 

efficacy of that effector function remains to be established.

As for the parent lymphocyte line, WEP 737, the capacity of culture S/N taken from any 

of the four daughter clones, WEP 985-988, to maintain the growth of the IL-2-/IL-4- 

dependent cell line CTLL-2 was abrogated completely by the addition of the anti-IL-4 

MAb. Figure 9.5.8 compares the levels of tritium incorporation with those for the 

control groups tested, whereas the differential lymhokine secretion by these clones in 

the absence and presence of the anti-IL-4 MAb can be appreciated more readily by 

studying the same data in more detail (Fig. 9.5.9). The lack of growth of the target cells 

after blocking IL-4 activity showed conclusively that these clones did not secrete IL-2, 

but rather IL-4. The actual c.p.m. values attained for CTLL-2 growth were not 

necessarily a reflection of the absolute quantities of IL-4 produced by each cloned 

population in v itro , since this target line is known to respond more efficiently to 

stimulation with IL-2 than with IL-4. Despite this, the relative levels of tritium 

incorporation, and therefore IL-4 synthesis, could be compared amongst clones of the 

same WEP 737 origin. For each clone, the c.p.m. values recorded in the bi- and mono- 

specific assays were significantly different (p < 0.01) (Fig. 9.5.9). Comparison of the 

tritium incorporation levels induced by S/N from different clones under the same assay 

conditions, however, indicated that there was no significant difference in the IL-4 

activity present in each of the four batches of culture S/N (p > 0.05). It is true that at 

each S/N dilution, WEP 986 S/N gave the most support to CTLL-2 cellular proliferation 

(Fig. 9.5.9), the same clone which induced the largest anti-P. c. chabaudi AS secondary
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Ab response (Fig. 9.4.2). However, although this observation hints at a direct link 

between IL-4 secretion by Ly-4+ lymphocyte clones and their ability to act as helper 

cells for specific Ab production, the standard deviations between both the levels of IL-4 

synthesis and anti-malarial Ab titres amongst the four WEP 737 daughter clones were 

too small to support such a proposal.

9.6 Assay of IFN-y production

In order to define further the nature of the specific protective mechanisms mediated by 

each of the Ly-4+ T cell lines and clones that have been analysed, each was assayed for 

the production in vitro of the lymphokine IFN-y. The concentration of IFN-y in each 

S/N sample was measured by a plaque inhibition assay using Semliki Forest virus and 

L-929 cells (2.38). In the first instance, viral proliferation was recorded (tritium 

incorporation), this being indirectly proportional to IFN-y concentration. The dilution 

of S/N that conferred a 50% level of protection to the target cell monolayer was used to 

calculate the IFN-y titre of each sample (BRMP U/ml).

Figure 9.6.1 shows that there was a most noticeable difference in the levels of IFN-y 

detected in S/N of the cultured Ly-4+ lymphocyte lines. The P. c. chabaudi AS-specific 

lines WEP 775 and WEP 779 were those populations prepared by sacrificing semi- 

immune mice 16 and 20 d, respectively, after primary challenge. Upon in vitro 

culture under optimal conditions (incubation with pRBC lysate Ag and parasite-primed 

B cells), the collected S/N showed quite respectable IFN-y titres of 92 U/ml (WEP 

775) and 81 U/ml (WEP 779). The demonstration of an IFN-y activity for these two 

Ly-4-bearing populations was not surprising in light of existing knowledge of the 

character of these lymphocytes. Previously, it had been reported that WEP 775 and 

WEP 779 were B cell-independent in their protective reactivity upon adoptive transfer 

(Chapter 7), which correlated well with their inability to promote a specific anti- 

plasmodial B cell response in vitro (9.4). More importantly with respect to this assay, 

it was shown that these lines produced considerable quantities of IL-2 upon appropriate 

antigenic stimulation in vitro (9.5). As will be discussed later, elaboration of both IL- 

2 and IFN-y by malaria-specific murine and human T cell clones is a phenomenon which 

has been documented previously.

The remaining two Ly-4+ populations studied, WEP 737 and WEP 723, isolated from 

the spleens of multiply infected donor mice, failed to prevent viral RNA synthesis and 

therefore recorded only base line IFN-y titres for most culturing conditions employed
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(Fig. 9.6.1) (it should be noted that the negative controls of conditioned medium alone 

were included, but not shown). WEP 737 and WEP 723 were the lines shown to confer 

protection through B cell-dependent mechanisms in vivo (Chapter 7), and in vitro that 

secreted IL-4 (9.5) and promoted an Ab response (9.4).

For each Ly-4+ cell line, four different culture S/N were assayed for IFN-y content. It 

was found that regardless of the capacity of each line to secrete this lymphokine in vitro 

(Fig. 9.6.1), the highest IFN-y titres were attained upon antigenic stimulation of the E* 

c. chabaudi AS-specific lymphocytes with homologous parasite Ag (Fig. 9.6.2). As 

described before for both lymphoproliferation (4.11 & 9.3) and for helper T cell 

function (9.4), the response of the pRBC-primed Ly-4+ cells upon incubation with 

nRBC lysate as a source of Ag was very poor, stressing the requirement of all 

lymphocyte functions in vitro for activation by specific plasmodial Ags.

The culture S/N tested for the presence of IFN-y were the same as those assayed for 

helper T cell function (9.4). The cultures therefore contained B cells of varying 

immunological competence which were considered not to affect the lymphokine-secreting 

potential of the Ly-4+ lymphocytes present. This was found to be essentially true, for 

although the IFN-y titres for WEP 775 and WEP 779 cells cocultured with post- 

infective B cells were greater than the corresponding titres for S/N taken from cultures 

containing naive B cells, in each case, the difference was not significant (p > 0.05) (Fig.

9.6.1).

A further finding from the preliminary IFN-y assays was the constancy of the 

differential levels of secretion attained with each of the four distinct culture conditions. 

Thus, for each different set of cultures, WEP 775 culture S/N had the highest IFN-y 

activity, followed in order by S/N from WEP 779, WEP 737 and WEP 723 cultures 

(Fig. 9.6.2). It is interesting to note that this represents an ordered sequence of the 

Ly-4+ lines based upon the length of priming to P. c. chabaudi AS achieved through 

natural immunisation. Thus, WEP 775 cells, which were exposed to plasmodial 

erythrocytic stages in vivo for a maximum of 16 d, produced the greatest concentrations 

of IFN-y in vitro. Conversely, WEP 723 cells, isolated from donor mice after recovery 

from a tertiary infection, and therefore presumably fully immunolpgically primed to a 

range of antigenically variant pRBC, produced bearably detectable levels of IFN-y in 

vitro (Figs. 9.6.1 & 2). It may be, therefore, that this inverse correlation between the 

exposure time to P. c. chabaudi AS inv lv fi prior to initiating each of the Ly-4+ lines in 

vitro and their ability to secrete IFN-y upon homologous antigenic stimulation in vitro
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reflects an underlying heterogeneity with which each of these populations of identical 

phenotype exert their anti-plasmodial effects in v ivo. Moreover, this suggests an 

apparent sequential appearance in v ivo , first, of IFN-y-secreting Ly-4-bearing 

lymphocytes, represented here by WEP 775 and WEP 779, and second, some time later, 

of IL-4-secreting Ly-4+ cells that act as helpers for Ab synthesis, represented here by 

WEP 737 and WEP 723. Assuming that the effector functions displayed by each of the 

characterised lines of Ly-4+ phenotype were representative of the predominant cell 

type present in vivo at the times when the lines were developed, this temporal 

regulation of the type of Ly-4+ cell present in the peripheral blood, and thus of the 

prevailing protective reactivity, may reflect the natural course of the host immune 

response to a P. c. chabaudi AS challenge.

After it had been determined that culturing lymphocytes of the Ly-4+ T cell subset in 

vitro with P. c. chabaudi AS pRBC lysate and post-infective B cells optimised the 

secretion of IFN-y (Fig. 9.6.2), these cultural conditions were used to examine the IFN- 

y secretion profiles of both Ly-4-bearing lines (Fig. 9.6.3) and clones (Fig. 9.6.4). As 

can be seen from Fig. 9.6.3, for each of the lymphocyte lines, the concentration of IFN-y 

in the culture S/N titred out directly with the dilutions of the respective S/N. This 

pattern of IFN-y distribution was observed for each line, irrespective of the actual 

absolute levels of lymphokine detected at each dilution. Indeed, the uniformity with 

which IFN-y concentration fell with increasing S/N dilution for all four lines assayed 

meant that at the highest dilution tested, 1/32, WEP 775 and WEP 723 remained the 

highest and lowest IFN-y producers, respectively (Fig. 9.6.3).

The cloned populations derived from WEP 775 or WEP 737 showed similar IFN-y 

secretion profiles as did the respective parent lines (Fig. 9.6.4). Thus, the disparity 

between the levels of IFN-y produced by WEP 775 and WEP 737 (Figs. 9.6.1 & 3) was 

also shown by their daughter clones. There was a significant difference between the 

concentrations of this lymphokine detected for the clones of different origin at all but the 

highest S/N dilution tested (p < 0.01) (Fig. 9.6.4). Within each group of four clones, 

there was little variation between the IFN-y titres attained at each S/N dilution. It was 

again noticeable, however, that for WEP 996, culture S/N contained less biological 

activity than did S/N collected from other WEP 775-derived clones; on this occasion, 

however, this discrepancy was not of statistical significance (p > 0.05). Thus, for IFN- 

y synthesis, as for all other assays performed to characterise functionally the Ly-4+ 

preparations raised against P. c. chabaudi AS, the monoclonal populations expanded from
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limiting dilution cultures of WEP 775 or WEP 737 showed a similar behaviour in  

vitro, both to each other and to the parent line from which they were derived.

9.7 Adoptive transfer of T cell clones to naive syngeneic recipients

In this chapter thus far, it has been shown that the cloned Ly-4+ lymphocyte populations 

studied had the same activity in vitro as the uncloned parent lines. Such cells have been 

characterised for their surface phenotype (9.2), Ag-reactivity (9.3), B cell helper 

activity (9.4) and their secretion of various lymphokines (9.5 & 6). These assays had 

shown clearly that the heterogeneity between WEP 775 and WEP 737 of the anti- 

malarial immune effector functions displayed by these two Ly-4+ lines was maintained 

after cloning. Having observed this divergence of behaviour of the clones in vitro, it was 

desirable to examine, firstly, whether these P. c. chabaudi AS-specific monoclonal Ly- 

4+ populations could transfer protection in v ivo, and secondly, if so, whether the 

heterogeneity of response in vitro could be detected at the level of the immune response 

to natural infection. In order to address these possibilities, the ability of each of the 

clones to transfer immunity adoptively to non-immune mice was examined. The

experiments performed were essentially a repeat of those previously described for the 

adoptive transfer of the Ly-4+ parent lines to naive NIH recipients (5.2 & 6.4), save 

inoculating cloned lymphocyte preparations. For each clone, 3.0 x107 cells were 

inoculated i.v. into each of five age-matched NIH female mice. To enable comparison, 

similar groups of mice receiving WEP 775, WEP 737 or naive splenic T cells were 

prepared. All animals were infected with 1 x105 pRBC P. c. chabaudi AS at the time of 

adoptive transfer, and the level of peripheral blood infection monitored by examination 

of blood smears.

Each of the Ly-4+ clones conferred considerable protection against challenge infection 

with P. c. chabaudi AS upon adoptive transfer into naive syngeneic recipient mice. This 

was not unexpected considering the previously described protective capacity of the 

parent lymphocyte lines (Chapter 5). The adoptive transfer of WEP 775 and of WEP 

737 cells into non-immune mice was repeated here (Fig. 9.7.1) to enable comparison 

with the transfer of daughter clones. As was noted before (5.2 & 6.4), recipients of 

either parent population showed a significantly suppressed recrudescent parasitaemia of 

shortened duration, compared to control mice inoculated with naive splenic T cells or 

with mice not receiving any additional lymphocytes (p < 0.01) (Fig. 9.7.1). However, 

unlike the two previous occasions when WEP 775 or WEP 737 Ly-4+ lines have been
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transferred to intact recipients (Figs. 5.2.5 & 6.4.1), the differences in the levels of 

protection conferred by these P. c. chabaudi AS-specific lines and by unprimed splenic T 

cells at homologous challenge were not as great. This time, the primary parasitaemias 

attained were similar both in their level and duration (Fig. 9.7.1). This anomaly 

notwithstanding, the transfers of WEP 775 and WEP 737 to naive NIH mice served as 

adequate controls for the analysis of the protective capacity of the derived Ly-4-bearing 

monoclonal populations. This was because comparisons were being made between the 

courses of infection of mice receiving each of the clones, and not between these and other 

cell transfers. Since the patterns of parasitaemia exhibited by mice given either WEP 

775 or WEP 737 differed only in the onset of recrudescence (Figs. 5.2.5, 6.4.1 &

9.7.1), it was only this characteristic which was of direct interest as a gauge of 

protective immunity in this experiment. As it transpired, even for this parameter of 

protection, the variation observed here was not as pronounced as that described earlier; 

recipients of WEP 737 did recrudesce prior to those of WEP 775 (Fig. 9.7.1), but this 

difference was not statistically significant (p > 0.05).

Comparing the courses of infection of mice adoptively transferred each of the clones with 

the patterns of parasitaemia attained for the respective parent uncloned lines (Figs. 

9.7.2 & 3), it is noticeable that, in general terms, the kinetics of blood stream P. c. 

chabaudi AS infection were very similar. Indeed, for both WEP 775- and WEP 737- 

derived clones, the dynamics of primary parasitaemia were identical to those of the 

respective parent lines upon transfer to naive mice (Figs. 9.7.2 & 3). For each 

daughter clone of WEP 737, upon adoptive transfer, there was no significant difference 

(p > 0.05) between the onset, magnitude or duration of recrudescence, compared with 

either that parasitaemia observed in recipients of the parent Ly-4+ cell line or of other 

clones of similar parentage (Fig. 9.7.3). Likewise, for WEP 775-derived clones, 

recipient mice showed patterns of recrudescent parasitaemia that were insignificantly 

different from those observed for WEP 775-inoculated animals (p > 0.05) (Fig. 9.7.2). 

However, although the manifestation of protection conferred by each of the clones was 

similar to that of the parent cell line, there were variations between the recrudescent 

parasitaemias seen in recipients of different clones, which, compared to each other, 

were of significance. For instance, mice given WEP 996 recrudesced on d 26 p.i., 3 d 

earlier than did mice transferred WEP 997 (p < 0.05).

As the daughter clones of WEP 775 and of WEP 737 essentially conferred similar 

protection to naive mice upon P. c. chabaudi AS challenge as did the parent malaria-

446



specific lines (Figs. 9.7.2 & 3), in general terms, recipients of WEP 775-derived 

clones recrudesced earlier than did their counterparts given clones of WEP 737 origin. 

Comparison of Figs. 9.7.2 & 3 shows this to be so, for the onset of recrudescence for 

recipients of clones WEP 996-999 was between 26-29 d p.i. (Fig. 9.7.2), compared to

25-26 d p.i. for mice given one of clones WEP 985-988 (Fig. 9.7.3). From these data, 

it could be argued that the mediation of different effector functions in vitro (previously 

described in this chapter) correlates with a divergence in the protective capacity of 

these clones upon adoptive transfer. However, such an interpretation would be 

misleading because the differences detailed above were, in most cases, not statistically 

significant (p > 0.05). The variation in the behaviour of different Ly-4+ clones of the 

same derivation meant that, for some, recipient mice did indeed show distinctly different 

kinetics of recrudescent parasitaemia compared to recipients of clones of alternative 

origin. This is exemplified by Fig. 9.7.4 which shows the extremes of variation with 

regard to recrudescence. WEP 986 and WEP 988 were those WEP 737-isolated Ly-4+ 

clones that recrudesced the earliest (d 25 p.i.), whilst WEP 997 and WEP 999 were 

those clones derived from WEP 775 that recrudesced the latest (d 29 and d 28 p.i., 

respectively). The difference in onset of recrudescence seen here was significant (p < 

0.05), which supports the contention that this reflects the dichotomy of the reactivity of 

the clones at the cellular level. However, this finding was not universal, and the 

differences in origin of some clones conferring a similar protection in vivo with regard 

to recrudescent parasitaemia (Fig. 9.7.5) was not at all obvious. Figure 9.7.5 depicts 

the courses of infection in P. c. chabaudi AS-infected recipient mice upon adoptive 

transfer of either WEP 996 and WEP 998 (of WEP 775 origin) or WEP 985 and WEP 

987 (of WEP 737 origin). For each, breakthrough recrudescence was observed either 

on d 26 or d 27 p.i., so there was no significant difference in this parameter of

protection between these particular clones (p > 0.05).

For all the monoclonal Ly-4+ populations examined for the adoptive transfer of 

immunity to homologous challenge, a measurably greater degree of protection was 

engendered compared to the transfer of unprimed naive T cells; this was manifested as a 

significant lowering of the peak recrudecence (p < 0.01) (Figs. 9.7.4 & 5), and 

occurred irrespective of the variation in the timing of the recrudescence between

recipients of different clones. Thus, the relatively subtle differences in the kinetics of

parasite clearance between mice given Ly-4+ clones of the same or different origin 

should not detract from the enhanced capacity of each of these P. c. chabaudi AS-specific
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populations to control homologous primary infection compared to similar numbers of 

non-immune T cells.

Comparison of the courses of infection in mice receiving different cloned populations 

with those of the parent cell lines, WEP 775 and WEP 737, revealed that the 

distribution of recrudescent parasitaemias observed upon adoptive transfer of different 

clones ranged about a mean that included the parent lines. Thus, for Fig. 9.7.6, which 

shows the extremes of recrudescence attained in this study, the time over which 

secondary parasitaemia was observed was 25-41 d p.i., compared to 27-39 d p.i. and

26-38 d p.i. for recipients of WEP 775 or WEP 737, respectively. The fact that the 

parasitaemia for recipients of either uncloned line formed the mid point of the range of 

recrudescences (Figs. 9.7.6 & 7) indicated that there was a normal distribution (non

skewed) of variation in this parameter of protection exhibited by clones of the same 

origin, from which it could be inferred that the deviation of the behaviour of each clone 

from the norm was not of likely biological significance. Further, detailed examination of 

the patterns of parasitaemia attained upon adoptive transfer of each of the Ly-4+ 

preparations showed that for all clones and both lines studied, the length of the patent 

recrudescence was between 12-13 d (14 d for controls), regardless of the onset of 

secondary parasitaemia (Figs. 9.7.6 & 7). Thus, the variation in the course of infection 

in recipients of different P. c. chabaudi AS-specific clones did not relate at all to the 

magnitude or duration of either acute or recrudescent patencies (Figs. 9.7.6 & 7). 

Rather, the difference in onset of recrudescence that was sometimes observed (Fig. 

9 .7 .6) was a result of the slight variation in the length of the prerecrudescent subpatent 

period. Hence, the latest breakthrough recrudescence, on d 29 p.i., for recipients of 

WEP 997, was preceded by the longest recorded subpatency (10 d). Likewise, for the 

similarly WEP 775-derived WEP 996, the subpatent period was only 6 d, resulting in 

detection of recrudescent pRBC in the peripheral blood by d 26 p.i. (Fig. 9.7.2). In this 

regard, it should be noted that WEP 996 and WEP 997 showed slight but appreciable 

differences in levels of activity in vitro with respect to lymphokine secretion (9.5 & 6) 

and helper function for Ab production (9.4). However, these clones represented the 

extremes of responsiveness in vitro, and whether or not such minor differences at the 

cellular level could be converted into significant changes in the control of challenge 

infection of competent host animals is debatable. The preliminary investigation 

described revealed that the protective activity of the P. c. chabaudi AS-specific clones of 

Ly-4+ phenotype did show some heterogeneity in v ivo. Whether or not this was of

448



significance, and, if so, whether it could be attributed to differences in the effector 

function of monoclonal populations of identical phenotype could be answered only by 

examining the transfer of protection to immunologically deprived mice.

9.8 Discussion

An obligatory requirement for lymphocytes of the Ly-4+ T cell subset in the protective 

immune response to infection with P. c. chabaudi AS is now undisputed (Langhorne 

1989). Langhorne and colleagues have investigated the type of T cells involved in 

immunity to P. c. chabaudi AS by application of a limiting dilution assay system on 

splenic lymphocytes isolated from mice during the course of a primary infection 

(Langhorne & Simon 1989, Langhorne f i la l  1989 a) and by rat MAbs against murine 

Ly-2 and Ly-4 determinants to deplete mice of specific T cells prior to or during 

infection (Suss £ ia i  1988, Langhorne £ i£ i 1989 b). This latter technique was also 

used herein (Chapter 8), both studies finding a major role for Ly-4+ but not for Ly-2+ 

T cells in controlling peripheral blood infection. Throughout this thesis, however, a 

different approach has been documented: the establishment in vitro of P. c. chabaudi AS- 

specific T cell lines from repeatedly stimulated bulk cultures (Chapter 4) and their 

adoptive transfer to both immunocompetent (Chapters 5 & 6) and compromised 

(Chapters 7 & 8) non-immune mice. Upon transfer of the four lymphocyte lines studied 

to immunologically suppressed recipients, it was demonstrated that those lines taken 

from reinfected mice (WEP 737 and WEP 723) were B cell-dependent in vivo, whereas 

those lines taken on d 16 (WEP 775) and d 20 (WEP 779) of primary infection were 

largely B cell-independent in vivo. To examine whether this heterogeneity of the T cell 

response elicited during a P. c. chabaudi AS infection in NIH mice was indicative of a 

dichotomy in the mechanisms by which these in vivo-primed lines mediate protection, 

each was subjected to functional analysis in vitro, as described in this chapter. In 

addition, since heterogeneous populations of T cells were used, it was considered that it 

may be both difficult to dissect the specific mechanisms of T lymphocyte-mediated 

immunity involved, and to justify the conclusions drawn from the results. Thus, 

limiting dilution techniques were used to develop a series of clones which were then 

expanded with plasmodial Ag and anti-CD3 MAb (Chapter 4). These too were assayed for 

functional activity in vitro and also for their ability to confer protection during a 

primary infection in this parasite-host model of malaria.

The phenotypic characterisation detailed in this chapter confirmed the predicted identity
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of the in ntrn-propagated T lymphocyte lines primed to P. c. chabaudi AS as belonging to 

the Ly-4+ T cell subset. This was not surprising as, although the characterisation of the 

uncloned lines is included in this chapter to enable direct comparison with that of the 

respective daughter clones, these assays were actually performed prior to the adoptive 

transfer experiments described in Chapters 5-8. Thus, although it was not stated, these 

reconstitution studies were performed in the knowledge of the identity of the P. c. 

chabaudi AS-specific lines being of the Ly-4+ phenotype, which therefore validified the 

conclusions reached. At the initiation of in vitro culture, expression of the Ly-4 Ag 

amongst the four propagated lines, as determined by I FAT, was between 78-91%. This 

compared favourably with the 75% positive fluorescence detected with the Ly-1 marker 

at the same stage of culture of a P. c. adami-specific T cell line (Brake M a i 1986). 

This is the only comparable study which has been made, for which spleens were removed 

from BALB/c ByJ mice recently recovered from a secondary infection and cultured in 
vitro with specific P. c. adami Ag and syngeneic APC. The methodology followed to 

generate this line was therefore essentially similar to that followed for the initiation of 

the WEP 737 line (Chapter 4). For the P. c. adami-primed line, expression of the Ly-1 

cell surface determinant increased from 75% to 80% over a two month culture period, 

with a concomitant drop in the proportion of contaminating Ly-2+ cells from 8% to 6% 

(Brake M a i 1986). For WEP 737, a similar enrichment of the lymphocyte population 

for cells of the majority Ly-4+ characterisation was also observed; thus, exhibition of 

the Ly-4 Ag rose from 88% to 95% after several subcultures, whilst the contamination 

through Ly-2+ lymphocytes fell from 6% to 3% over the same period of time (data not 

shown). These findings suggested that both in vitro culture techniques used not only 

selected for lymphocytes of the Ly-4-bearing T cell subset at the outset of propagation 

but continued to do so upon prolonged in vitro cultivation, so giving rise to Plasmodium- 

specific lines which were close to homogeneity for expression of the Ly-4+ phenotype. 

For WEP 775 and WEP 737, such a state of homogeneity was achieved by cloning each 

population by limiting dilution, whereupon each of the clones tested expressed the Ly- 

4+Ly-2' surface phenotype, as judged by both indirect immunofluorescence and 

complement-mediated cytotoxicity. Similarly, Brake Mai (1988) typed nine cloned 

lines of the original P. c. adami-raised population as having an identical phenotypic 

characterisation.

For the eight monoclonal populations analysed, each was shown to proliferate in vitro 

specifically in response to P. c. chabaudi AS Ag, in the form of a pRBC lysate, presented
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by syngeneic APC. In this respect, the clones behaved similarly to their parent uncloned 

lines, WEP 775 or WEP 737 (Chapter 4). These results concurred with those of Brake 

filal (1988) with P. c, adami-specific Ly-4+ clones, which were shown to maintain 

plasmodial Ag specificity and were H-2-restricted when cultured in vitro. In addition, 

in a similar experimental system, Baldwin £ ia l (1987) reported the MHC-restricted 

Ag-specific proliferation in vitro of bovine helper T cell clones raised against 

lymphocytes infected with Theileria parva (Mugaga). In this study, clones proliferated 

in the absence of exogenous IL-2 in a dose-dependent manner to specific Ag, an 

observation repeated here with both lines (4.11) and clones (9.3) specific for P. c. 

chabaudi AS. The proliferation profiles of lines and clones alike showed that an optimal 

rate of growth was achieved at a pRBC lysate concentration of 200 pg/ml, above which 

Ag-induced suppression of the proliferative response occurred. This inhibition of Ag- 

specific proliferation of T cell clones at high Ag concentrations has been attributed to the 

blocking of cell division following repeated exposure of T lymphocytes to Ag-APC 

complexes (Suzuki f i ia l 1988).

Since the delineation of Ly-4-bearing T lymphocytes into two subsets based on the 

secretion of different lymphokines (Mosmann £ ia i 1986), evidence has accumulated 

that clones representing TH1- and TH2-types are functionally different. It has been 

demonstrated that TH1 and TH2 clones use IL-2 or IL-4, respectively, as autocrine 

growth factors in vitro (Fernandez-Botran £ ia i 1986, Lichtman £ia i. 1987, Kupper s i 

Si 1987). In addition, TH2 cells can also use IL-2 as a paracrine growth factor, and 

their responsiveness to IL-2 and IL-4 increases concomitantly after antigenic 

stimulation (Vitetta siai 1987). These findings suggested that the proliferation of 

normal TH2 cells could be regulated, at least in part, by TH1 cells. Indeed, Fernandez- 

Botran siai (1988) demonstrated that for a mixed population of TH lymphocytes, the 

proliferative response in vitro was predominantly one of TH1 cells. In the present 

study, monoclonal and not heterogeneous populations were studied, so no direct 

comparison can be made. However, at the optimal concentration of Ag shown to induce 

Ly-4+ T lymphocyte proliferation (200 pg/ml), there was no significant difference 

between the detected growth of WEP 996-999 and of WEP 985-988, considered to be 

Tj_j 1 and TH2 cells on the basis of differential lymphokine production (discussed later). 

Enhanced growth of the WEP 996-999 clones was observed, however, at the higher end 

of the range of Ag concentrations assayed. These results concur with current opinion in 

that the growth in isolation of WEP 996-999 clones and of WEP 985-988 clones was
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presumably after autocrine synthesis of IL-2 and IL-4, respectively. The fact that 

cloned populations of P. c. chabaudi AS-specific Ly-4+ lymphocytes were able to grow in 

response to appropriate antigenic stimulation but in the absence of exogenous T cell 

growth factors showed that this proliferative response was under autocrine regulation. 

The growth of the cloned TH2 populations (WEP 985-988) in vitro also showed that this 

was, at least, a secondary response to plasmodial Ag stimulation. This is because IL-4 

production by splenic T cells taken from naive donor mice was shown to be completely 

dependent upon the presence of IL-2, either intentially added to cultures or produced in 

situ (Ben-Sasson s ia i 1990). None of the WEP 737-derived clones required exogenous 

IL-2 to proliferate in v itro , thus demonstrating that these lymphocytes had been 

activated previously by IL-2 during the process of priming by natural infection. The 

reduced growth of clones WEP 985-988 (TH2) compared to that of clones WEP 996- 

999 (T|_|1) at superoptimal concentrations of pRBC lysate was thought not to be of 

significance to the mediation of different effector functions by these two classes of Ly- 

4-bearing cells. This phenomenon was most probably attributable to the greater 

sensitivity of the TH2 clones compared to the TH1 clones with regard to suppression of 

proliferation at high Ag concentrations (Suzuki e la i 1988). It was considered unlikely 

that this depression of the TH2 response was due to a regulatory effect of TH1-derived 

IFN-y. This was because any contamination of the WEP 737 parent line with cells of the 

T h 1 Ly-4+ phenotype was eliminated by cloning this population, thereby giving rise to 

the WEP 985-988 monoclonal populations. Thus, any IFN-y possibly present in the 

culture S/N of in vitro-propaaated WEP 737 cells would have been removed at the 

cloning stage. In any case, if the decreased proliferation was caused by the inhibitory 

effect of IFN-y, this would have occurred, to a greater or lesser degree, at all pRBC 

lysate concentrations assayed. Hence, the down-regulation of IL-2- and IL-4-mediated 

proliferation of TH2 but not TH1 cells in mixed cultures in vitro (Fernandez-Botran s i 

Si 1988, Gajewski & Fitch 1988), and probably in v ivo, could not account for the 

differential Ag-induced suppression of cloned Ly-4+ lymphocytes detailed herein.

With regard to malaria-induced proliferation of T lymphocytes taken from donors 

previously exposed to plasmodia, this is thought to provide a measure both of the degree 

of priming to parasite-derived Ags and of the existing immunological memory (Troye- 

Blomberg & Perlmann 1988). By this rationale, it could be reasoned that those TH2 

clones (WEP 985-988) derived from WEP 737, which itself was initiated using 

splenic T lymphocytes from mice recovered from a secondary P. c. chabaudi AS infection,
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would be expected to proliferate more under identical conditions of stimulation with 

homologous Ag and syngeneic APC than those TH1 clones (WEP 996-999), derived from 

WEP 775, itself established in vitro from mice splenectomised on d 16 of a primary 

infection. However, the proliferation assays described in this chapter do nothing to 

support any proposed difference in the growth rates of P. c. chabaudi AS-specific Ly-4+ 

clones primed in vivo for different lengths of time. This does not mean that these 

findings show a negative correlation between proliferation and the extent of priming 

either, since there was no significant difference in the growth of clones of either WEP 

775 or WEP 737 origin over most of the pRBC lysate concentration range assayed. It is 

interesting to note that, as a consequence of those clones primed in vivo to P. c. chabaudi 

AS for two infections (WEP 985-988) belonging to the TH2 T cell subset, the predicted 

results of the in vitro proliferative responsiveness of these populations would appear to 

be contradictory. Current immunological literature would favour an enhanced 

proliferation of TH1 over TH2 lymphocytes, whilst malaria studies indicate a level of 

growth in vitro commensurate with the length of priming in vivo. As it transpired, 

neither of these two claims could be supported by the available data, and it is of interest 

to speculate that these potentially antagonistic factors led to the proliferative responses 

of all the Ly-4-bearing cloned populations being insignicantly different from eachother. 

Alternatively, and more probably, the detected lack of variation for the proliferation 

rates amongst the clones tested would indicate an insufficient sensitivity of this assay 

system to detect possibly marginal differences between the growth rates of lymphocytes 

of varying origin or helper T cell subset.

In contrast to the studies of proliferation in vitro, the measurement of T helper cell 

activation, by determination of T-dependent Ig production in an in vitro T-B cooperation 

system, did show a heterogeneity of response of both lines and clones primed to P. c. 

chabaudi AS in vivo to varying degrees. It was found that the lines primed by multiple 

natural infections (WEP 737 and WEP 723) gave substantial Ab titres when assayed by 

I FAT, whereas those lines exposed to P. c. chabaudi AS only transiently during either the 

first 16 or 20 d of a primary infection (WEP 775 or WEP 779, respectively) gave only 

modest titres. Thus, WEP 737 and WEP 723, which had been shown previously to 

confer protection in vivo by B cell-dependent mechanisms (Chapter 7), were 

demonstrated to be good helper cells for specific Ab production, whilst this was not so 

for WEP 775 and WEP 779, known to exert anti-parasiticidal effects in vivo in the 

relative absence of B cells. These results were repeated at the clonal level, using WEP
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775- and WEP 737-derived populations. Together, these findings concur with those of 

Langhorne f i la i  (1989 a), who, also with P. c. chabaudi AS, demonstrated that the 

majority of Ly-4+ lymphocytes elicited during the acute phase of primary infection 

were relatively poor helpers for Ab synthesis whilst the frequency of good helpers 

increased by the later stages of a patent peripheral blood infection.

It had been shown previously that the optimal concentration of P. c. chabaudi AS pRBC 

lysate to induce Ag-specific reactivity in vitro was 200 jig/ml (Chapter 4). This was 

hence used thereafter as the standard Ag concentration for all in vitro culture 

procedures, including assaying for helper T cell function. This proved to be very 

satisfactory, for at this pRBC lysate concentration, a clear delineation could be made 

between those Ly-4+ cells offering effective help for anti-P. c. chabaudi AS Ig 

production and those not doing so. The method used to assess helper T cell activity was a 

modification of that described by Pearson £ ia l (1983), who cultured 5 x106 spleen 

cells with 2 x106 whole infected RBC as a source of Ag. At this relatively high P. c. 

chabaudi AS Ag concentration, splenic lymphocytes were stimulated to produce specific 

Ab in vitro. Contradictory results have been shown for anti-P. falciparum Ab secretion 

in vitro, which was induced by low Ag concentrations (10-100 ng/ml soluble protein) 

(Kabilan &1 &L 1987). At these low doses, either crude or Pf155-enriched FL. 

falciparum Ag preparations induced IgG secretion in syngeneic B cells cocultured with T 

cells extracted from a P. falciparum-infected donor, whereas the control RBC ghost Ag 

did not. That this was indeed a T helper cell-dependent function was demonstrated by the 

lack of IgG secretion in the absence of T cells. High Ag doses (> 10 pg/ml) induced an 

extensive polyclonal IgG secretion, also seen with the RBC ghost Ag, and in lymphocyte 

cultures of both P. falciparum and control P. vivax patients. It may be thought that this 

variance represents a difference between the two malaria parasites studied, £_, 

fa lciparum  and P. c. chabaudi AS. It is clear that there was a difference in the 

concentration of plasmodial Ags required to induce parasite-specific Ig responses. 

However, the available data do not suggest that malaria-specific Ab is the only Ig 

secreted in the culture system used in the assay described herein, since in this study, 

the level of P. n. chabaudi AS-specific Abs was measured, but not the level of all Ig 

secretion. Thus, either at the 200 ng/ml pRBC lysate Ag concentration used, or at a 

higher Ag dosage, it is likely that polyclonal Ab responses would have been detected, if 

this had been examined. Polyclonal lymphocyte activation by P. falciparum Ag, as 

reflected by an increased Ig secretion, has been reported previously (Greenwood £ ia i
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1979, Ballet Mai 1981, Kataaha Mai 1984). Polyclonal Ab responses, however, are 

not restricted to T and B lymphocytes cocultured in vitro with P. falciparum pRBC. 

Goldring Mai (1989) established that a Ly-4+ T cell clone, shown to be protective upon 

adoptive transfer to nude mice at homologous P. c. adami challenge (Brake Mai 1988), 

recognised a relatively large number of Ag specificities upon immunoprecipitation with 

sera collected from nude mice reconstituted with the identical T cell clone. From these 

findings, Goldring Mai suggested that it would not be possible to determine the Ag 

specificity of cloned Ly-4+ cells in malaria infections by their capacity to provide help 

to restricted populations of B lymphocytes. As P. c. adami has a very close phylogenetic 

relationship to P. c. chabaudi AS, it is possible that they share common cell surface Ags, 

which would imply a polyclonality of Ig secretion by B cells in response to specific 

stimulation by the latter parasite. This polyclonal response is quite distinct from the 

exquisitely-defined monoclonal Ab production that has been detected both in this study 

and by Kabilan Mai (1987), which may occur either at different concentrations of Ag to 

the polyclonal response, or alternatively as a component of the polyclonal activation 

over a range of Ag concentrations, which may or may not be of physiological significance 

to the analogous in vivo situation. The detection of specific anti-plasmodial Ig at widely 

divergent concentrations of Ag in vitro in this study and that of Kabilan M a i (1987) 

should not detract from the fact that a specific T helper cell requirement was needed in 

order to activate B cell differentiation and secretion of specific Ab in both instances.

The requirement for a helper T cell function was fulfilled in the assay detailed in this 

chapter by those lymphocytes categorised as TH2, i.e. WEP 737, WEP 723 and the WEP 

737-derived clones WEP 985-988. These data agree with the currently accepted view 

that Th 2 lymphocytes provide efficient help for B cell growth and differentiation (Kim 

Mai 1985, Killar Mai 1987, Boom Mai 1988, De Kruyff Mai 1989). TH2 clones can 

stimulate significant clonal expansion and Ig secretion by 50-80% of splenic B cells in 

limiting dilution cultures (Lebman & Coffman 1988), and can stimulate populations of 

either small resting B cells (Boom Mai 1988) or large B cells (Rasmussen Mai 
1988), through the mediation of either IL-4 and IL-5, or IL-5 alone, respectively.

In contrast, the ability of the TH1 subset to function in a helper role for B cells is 

considerably more controversial. TH1 clones have been reported to provide help for Ag- 

specific responses from primed B cells (Giedlin Mai 1986, De Kruyff Mai 1989) and 

for primary responses from hapten-purified unprimed B cells (Stevens Mai 1988). 

However, other workers have accounted the failure of TH1 clones to provide help for
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primary responses either to specific Ags (Kim g ia l  1985, Killar g ia i  1987) or in the 

rabbit Ig polyclonal system (Boom £ la l 1988). These apparent discrepancies have now 

been reconciled by the fact that IFN-y, present in some culture S/N but not in others, 

has a regulatory effect on B cell activity. It has been shown that IFN-y at low 

concentrations acts as a specific antagonist of IL-4-mediated effects on B cells (Coffman 

& Carty 1986, Coffman £ i a l  1986, Snapper & Paul 1987), and, at higher 

concentrations, acts as an inhibitor of B cell growth and differentiation (Coffman & 

Carty 1986, Mosmann & Coffman 1989 a). T|_j 1 clones have even been shown to be 

inhibitory for responses stimulated by TH2 clones (Bottomly £ ia i 1983, Friedman £ ia l 

1985), and much of this inhibition can be blocked with anti-IFN-y Abs (Mosmann & 

Coffman 1989 b). In the assays performed, those clones designated to be TH1 

lymphocytes, WEP 997-999, as well as the Ly-4+ lines, WEP 775 and WEP 779, 

induced a B cell response, as determined by I FAT of specific anti-P. c. chabaudi AS Ig, not 

significantly greater than that of the background controls. Thus, under the cultural 

conditions employed, these malaria-primed Ly-4-bearing cells did not appear to 

provide any appreciable help to B cells for Ig synthesis. These findings concur with 

those of other studies, since at the relative high dosage of pRBC lysate Ag used, activated 

T |_|1 lymphocytes would be expected to be directly suppressive in cultures optimally 

stimulated by TH2 cells (Bottomly g ia i 1983, Friedman g la i 1985), as indeed was the 

case. The lack of helper activity of these particular P. c. chabaudi AS-specific Ly-4+ 

lymphocytes in the T-B cell cooperation system used correlates well with the IFN-y 

activity found in S/N taken from similar cultures. Thus, the secretion of IFN-y by these 

Th 1 cells, but not by the TH2 cells that mediate an Ig response, may account for the 

distinct inability of these populations to stimulate Ab production in vitro. One notable 

exception to the general failure of those Ly-4+ populations primed to P. c. chabaudi AS 

during a primary infection to induce a significant B cell response in vitro was WEP 

996, the incubation of which with post-infective B lymphocytes did enable the latter to 

mount an appreciable Ab response upon antigenic stimulation. Although the reciprocal 

I FAT titre attained was significantly below that of the lowest titre for TH2-promoted Ab 

production, WEP 996 induced a degree of Ig synthesis significantly in excess of those 

recorded for other TH1 cultures. This is consistent with the fact that WEP 996 culture 

S/N contained a reduced level of IFN-y compared to those S/N of other WEP 775-derived 

Ly-4 + clones. This intriguing finding was similar to that of De Kruyff g ia l  (1989), 

who demonstrated a heterogeneity amongst T^1 clones with regard to helper T cell
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function. This study showed that although most monoclonal TH1 populations induced 

little or no Ab synthesis with TNP-primed B cells, others were very effective at 

inducing anti-TNP IgG responses in similarly primed B cells. It was supposed that 

despite helper and non-helper TH1 clones producing similar amounts of IL-2 , non

helper Th 1 cells may secrete higher levels of inhibitory factors, including IFN-y. De 

Kruyff £ i ai concluded that although T cell clones can be classified as TH1- or TH2- types 

according to patterns of IL-2, IFN-y or IL-4 synthesis, the functional capacity of Ly- 

4+ lymphocytes to induce Ab secretion cannot be predicted solely by their ability to 

produce these lymphokines. In the instance of WEP 996, there was a considerable 

quantitative difference between both the levels of anti-P. c. chabaudi AS Ig induced, and 

the levels of IFN-y secreted, by WEP 996 compared to the TH2 clones, WEP 985-988. 

Therefore, this Ly-4-bearing clone, designated TH1 because of its ability to secrete IL- 

2 and IFN-y but not IL-4, could not be mistaken for a TH2 clone. However, the 

pronounced divergence of the reactivity ia vitro of this clone with respect to helper T 

cell function, and, to a lesser extent, IFN-y secretion, compared to the other TH1 clones, 

WEP 997-999, and to the parent Ly-4+ lymphocyte line, WEP 775, did suggest a 

functional heterogeneity in vitro amongst the four P. c. chabaudi AS-specific Ly-4+ 

clones. Whether or not this slight heterogeneity in vitro amongst the TH1 clones 

compared to the clearly defined differences between the two groups of TH1 and TH2 

lymphocytes is of significance in vivo is not known.

In the helper T cell assay described herein, for each of the P. c. chabaudi AS-specific 

Ly-4+ lines, the highest Ab titres were realised upon incubation with pRBC lysate and 

post-infective B cells. Since these B cells were parasite-primed in vivo, the reactivity 

observed in vitro was an anamnestic response. By comparison, the level of specific Ab 

synthesis that took place when naive B cells were used was significantly lower, 

suggesting that this was a primary Ab response. In this study, the isotype of Ig secreted 

upon specific stimulation with P. c. chabaudi AS Ag was not examined. However, the 

available data do support the findings of Kabilan £ ta i (1987) who did subject the Ig 

produced to isotypic analysis. They showed that a prerequisite for the induction of anti- 

P. falciparum Abs in vitro was that the donors had detectable amounts of homologous Abs 

in their sera. The induced Abs were primarily of IgG isotype, very little IgM being found 

in P. falciparum-exposed cultures. It was concluded that what was measured in these 

experiments was a secondary response in vitro of in vivo-primed lymphocytes. As an 

identical T-B cooperation assay was performed herein, it is very probable that the
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specific anti-P, c. chabaudi AS Abs detected were predominantly of IgG isotype. These 

conclusions were also supported by the results of assaying cultures for secretion of Abs 

to Pf 155 in a modified I FAT (Perlmann £ ia l 1984). Specific Abs to this Ag were found 

only among donors with elevated serum titres to Pf155. The importance to the detection 

of Abs in vitro of priming in vivo has also been reported for other systems using various 

antigenic sources, such as tetanus toxoid (Volkman 1982) or polio virus (Emini q± 
a i 1983).

It should be noted that the secretion of IgG by P. c. chabaudi AS-primed B cells when 

cultured in v itro  with homologous Ag and either WEP 737 or WEP 723 Ly-4+ 

lymphocyte lines could have been predicted on the basis of the reported strong IgG ^ 

enhancing activity of TH2 clones (Vitetta a la i 1985). This induction occurred in the 

absence of IL-4, suggesting that TH2 cells can activate substantial lgG1 responses, even 

in the presence of the IL-4 antagonist, IFN-y (Coffman a ta i 1988). This is in contrast 

to the unique dependence of IgE responses on IL-4 and the ability of relatively low 

concentrations of IFN-y to inhibit this activity of IL-4 (Coffman & Carty 1986). For 

the uncloned WEP 737 and WEP 723 Ly-4+ populations, therefore, any traces of IFN-y 

secreted into culture by TH1 cells possibly present would suppress the synthesis of IgE 

but not of IgG^ Hence, the IFAT titres under optimal conditions for Ab secretion were 

essentially similar for WEP 737 and its clones, WEP 985-988, reflecting lgG1 

secretion by the in vivo-primed B cells. The low level of Ab production induced by WEP 

775 and WEP 779, and clones WEP 996-999 derived from the former, was most likely 

of lgG2a. This is because not only have TH1 clones been shown to induce substantially 

more lgG2a than TH2 clones (Stevens a la l 1988, Coffman a ta l 1988), but also that this 

response requires IFN-y (Snapper & Paul 1987, Finkelman 1988 a). As detailed 

in this chapter, all of the proposed TH1 populations, WEP 775, WEP 779 and WEP 

996-999, were demonstrated to secrete IFN-y in vitro, from which it could be inferred 

that what little Ig was detected for these Ly-4+ populations in the helper T cell assay 

was lgG2a. Although the proposed induction of secretion of lgG1 and of lgG2a by TH2 and 

Th 1 P. c . chabaudi AS-specific Ly-4-bearing clones, respectively, agrees with current 

T cell dogma, these claims have to be substantiated.

The same assay system as used here and by Kabilan £ ia i (1987) has also been used to 

investigate the helper function of P. falciparum-specific T cell clones which were shown 

to induce malaria-specific Ab production in syngeneic B cells in vitro (Sinigaglia jg ia l

1987). The similarity of the findings emphasises the relevance to the human condition
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of data collected from rodent models, such as the P. c. chabaudi AS-NIH model described 

throughout this thesis. One such study revealed a direct correlation between the ability 

of lymphocytes of either splenic or peripheral blood origin from P. c. chabaudi AS- 

infected mice to produce specific Abs after antigenic stimulation in vitro and the ability 

of such mice to control homologous challenge infection (Pearson q±qL 1983). Although 

Ab detected by I FAT is not necessarily protective, these authors showed that the level of 

immunological memory in primed lymphocytes from mice recovered from primary P. c. 

chabaudi AS infection, as measured by an Ab response in vitro, did reflect the capacity of 

the mice, similar in all respects to the immune cell donors, to mount an effective 

secondary response to a further challenge. In the present study, the induction of 

secondary Ab responses in vitro by those populations thought to be of the TH2 Ly-4+ 

subset, WEP 737 and WEP 985-988, correlated well with their ability to confer 

protection upon adoptive transfer to naive syngeneic mice challenged with P. c. chabaudi 

AS. However, those Ly-4+ lymphocytes belonging to the TH1 subset, WEP 775 and its 

derived clones WEP 996-999, were able to control primary challenge equally well 

after adoptive transfer without the ability to induce substantial secondary Ab responses 

in v itro . From these contradictory results, it is clear that these two distinct types of 

Ly-4-bearing P. c. chabaudi AS-specific lymphocytes mediate protection against 

homologous challenge by different immune responses, only one of which involves a 

major Ab component.

Thus far in this discussion, the malaria-primed Ly-4+ T cell lines and clones described 

have been shown to fall into two discrete subsets on the basis of their relative ability to 

provide a helper function for B cell activation and induction of Ab synthesis. This is 

consistent with the previous findings of Kim £ ia i (1985) and of Cher & Mosmann 

(1987), showing that two types of Ly-4-bearing lymphocyte clones can be 

distinguished which differ in some effector functions, including B cell help. New 

interest has been focussed on the possibility of helper T cell subsets by the findings that 

the pattern of secretion of non-overlapping groups of lymphokines can delineate two 

types of functionally distinct Ly-4+ cell (Mosmann £ ia l 1986, Cherwinski £ ia i  1987). 

Tj_|1 lines secrete unique lymphokines IL-2, IFN-y (Mosmann £ ia i  1986) and 

lymphotoxin (Cherwinski e ia i  1987) when stimulated by either Ag or Con A. In 

contrast, cells of the TH2 subset produce IL-4 and IL-5 in response to Ag or Con A 

stimulation (Mosmann £ ia i 1986). Such differences in lymphokine secretion would be 

expected to lead to dramatic differences in the function of such subtypes of Ly-4+ T cells.
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This is pertinent to the study of the development of protective immunity to P. c. chabaudi 

AS since a heterogeneity in reactivity of the homologously primed Ly-4+ lines and clones 

to Ags of P. c. chabaudi AS pRBC iq vitro may explain the divergent responses of the lines 

in vivo (Chapter 5-8) and their different requirement to confer protective immunity 

upon adoptive transfer (Chapter 8).

Three monospecific bioassays were performed to detect the presence of IL-2, IL-4 or 

IFN-y. For the first two, due to the multiplicity of lymphokine action, the basic CTLL-2 

proliferation assay was modified by using the anti-IL-4 MAb (Ohara & Paul 1985) to 

achieve monospecificity for IL-2. It was found that the patterns of lymphokine secretion 

separated the Ly-4-bearing populations analysed into the same two groupings made with 

respect to activation of B cells and their differentiation into Ab-producing cells. 

Moreover, this distinction was made between lymphocyte preparations that produced 

both IL-2 and IFN-y, but not IL-4, or IL-4 but not IL-2 or IFN-y, i.e. the TH1 and TH2 

categories introduced by Mosmann £ ia i (1986) to classify long term helper T cell lines 

according to their lymphokine secretion profiles. Hence, those lines and clones that had 

no Ab helper activity in vitro. WEP 775, WEP 779 and WEP 996-999, secreted both 

IL-2 and IFN-y upon antigenic stimulation in v itro . Each of these populations was 

considered to be of the TH1 subset. Conversely, those lines and clones that did induce a 

specific anti-plasmodial Ab response in vitro. WEP 737, WEP 723 and WEP 985-988, 

produced IL-4 uniquely amongst the three lymphokines tested. Hence, these Ly-4+ 

preparations appeared to belong to the TH2 subset. There was, therefore, a correlation 

between the lymphokines secreted by a given P. c. chabaudi AS-specific Ly-4+ 

lymphocyte population and its capacity to participate in Ab-dependent mechanisms of 

immunity. IL-4 produced by TH2 cells stimulated the production of lgG1 by cocultured 

activated B cells, an activity which was inhibited by the presence of IFN-y, secreted by 

Th 1 cells. This confirmed the previous work of Coffman & Carty (1986) and of Snapper 

& Paul (1987), working with LPS-stimulated B cells. With specific regard to malaria, 

Brake e la l (1988) had previously reported the characterisation of a Ly-4+ cell clone 

which elaborated IL-2 and IFN-y when stimulated by P. c. adami pRBC Ag in v itro . 

Likewise, in similar systems, Ly-4-bearing clones raised to Leishmania major (Scott 

£ ia i 1990) and to Listeria monocytogenes (Magee & Wing 1988) produced exclusively 

IL-2 and IFN-y upon stimulation in v itro . All of these clones had a lymphokine 

secretion pattern indicative of cells of the TH1 Ly-4+ subset. The data presented herein 

extend the work of Brake e ia l (1988) in that not only were four cloned populations
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raised to P. c. chabaudi AS shown to produce IL-2 and IFN-y in vitro {WEP 996-999; 

TH1 typing), but four further clones were found to secrete not IL-2 and IFN-y, but IL-4 

upon appropriate stimulation in vitro. By these parameters, these clones (WEP 985- 

988) were classified as being TH2 lymphocytes, this being the first time monoclonal 

populations of malaria-specific Ly-4+ T cells of the Tj_|2 subset have been propagated 

successfully in vitro with plasmodial Ag.

Using the same P. c. chabaudi AS parasite as used here, Langhorne and colleagues 

(Langhorne & Simon 1989 , Langhorne £ ia l  1989 a) described the precursor 

frequencies of malaria-reactive T cells in a limiting dilution assay. It was claimed by 

these authors that this system had the advantage over bulk cultures of providing 

information on T cell responses at the clonal level, without the bias of in vitro selection. 

However, such a view has been disputed by Street £ ia i (1990), who reported that it was 

equally possible to show a heterogeneity of mouse helper T cells from bulk cultures and 

limiting dilution cloning. Despite this discrepancy in determination of the results of 

different assays, essentially similar findings were revealed by Langhorne £ ia i as in the 

experiments presented in this chapter. The initial studies of this group indicated that 

the response of primed Ly-4+ T lymphocytes to P. c. chabaudi AS pRBC Ag was 

heterogeneous (Langhorne & Simon 1989). The precursor frequency of proliferating 

Ly-4-bearing T cells was greater than that of specific helper T cells, implying that 

there was a proportion of activated Ly-4+ lymphocytes which did not function in a 

helper capacity. Similarly, for the four Ly-4+ lines primed by natural infection to P. c. 

chabaudi AS and propagated in vitro, only two appeared to function as helper cells for Ab 

production, whilst two others not only failed to induce B cell activation but also 

exhibited the lymphokine secretion pattern of TH 1 cells. Despite these differences 

between the reactivity of the various P. c. chabaudi AS-specific Ly-4-bearing lines, 

each has been shown to proliferate directly in response to homologous Ags presented in 

an MHC-restricted manner. There was, therefore, no direct link between proliferation 

and IFN-y production, indicating that these two phenomena, which both reflect T cell 

activation, may be partially independent processes. Likewise, for P. falciparum- 

exposed individuals, no obvious correlation between lymphoproliferation and IFN-y 

secretion in response to antigenic stimulation has been found, both for malaria-immune 

individuals and acute malaria patients (Troye-Blomberg e ia l 1985, 1987, Riley £ ia l 

1988 a). Furthermore, Troye-Blomberg £ ia l  (1984, 1985) had earlier performed 

experiments the results of which indicated that specific T cell-dependent B lymphocyte
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activation could be induced in patients with acute P. falciparum infection in whom IL-2 

production may be abortive or suppressed. It was concluded that the T cell fraction 

involved in B cell help in this particular instance was an IL-4-producing population 

distinct from the major IL-2-producing fractions (Troye-Blomberg & Perlmann

1988). Whilst these studies did not use cloned human CD4+ lymphocyte populations, it 

is clear that those cultures producing IFN-7 or IL-4 corresponded to what would now be 

termed TH1 or TH2 cells, respectively. Thus, the finding that IL-2 synthesis and helper 

activity for Ab production were independent properties of CD4+ lymphocytes was an 

early indication of the segregation of malaria-primed T cells into TH1 and TH2 

compartments, which itself was a reflection of the different effector functions displayed 

by the host immune system that can be activated in response to malarial infection. More 

recently, Langhorne £ ia i (1989 a) showed that under limiting dilution conditions, there 

was an obvious lack of correlation between IFN-y production and T helper cell function, 

suggesting that in clonal cultures these functions may be carried out by distinct cells. 

These findings concur with those described herein, using both long term lines and 

monoclonal populations of P. c. chabaudi AS-specific Ly-4+ lymphocytes. In contrast, 

both studies demonstrated a strong correlation between the secretion of IL-2 and IFN-y, 

the production of both these lymphokines being a parameter of TH1 -like function. Since 

the measurement of IL-4 proved difficult in microculture, Langhorne e la l (1989 a) did 

not make a direct measurement of TH2-like function. However, it appeared that TH2- 

type Ly-4+ clones were the more efficient at activating resting B cells into malaria- 

specific Ab production, presumably due to the activities of IL-4 and IL-5 (Swain £ ia l 

1988 a). Using the bulk culture technique, it was possible to perform an IL-4 

monospecific bioassay, from which TH2 characterisation could be extrapolated. It was 

found that the preliminary typing of those populations giving B cell help as TH2 cells 

was vindicated, since these lymphocytes alone of those assayed, produced detectable 

quantities of IL-4 in v itro .

Early experiments by Langhorne & Simon (1989) were carried out using splenic T cells 

isolated from mice recovered from a primary infection; these lymphocytes had been 

exposed to P. c. chabaudi AS pRBC through immunisation of the donor animals and 

therefore had reached a state of immunological competence similar to that attained by 

some of the Ly-4 -bearing lymphocyte populations used in this study. Here, WEP 737 

and WEP 985-988 cells were primed to P. c. chabaudi AS by two successive challenges, 

whilst WEP 723 lymphocytes were taken from mice recovered from a tertiary infection.
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These long term in yjlXQ-propagated Ly-4+ populations were classified as fitting within 

the T[_|2 subset as culture S/N collected from each contained substantial levels of IL-4. 

This is consistent with the finding of Langhorne & Simon (1989) that the precursor 

frequencies of T helper cells from animals convalescing from primary infection were 

always greater than those for IL-2 or IFN-y production. Further studies were 

undertaken by Langhorne e l ai (1989 a & b) to determine the type of T lymphocytes 

involved in immunity to P. c. chabaudi AS during the course of a primary infection. 

Assays were performed at two time points after challenge: 7 d p.i., at the onset of patent 

parasitaemia, and 28 d p.i., when the parasitaemia was subpatent. Early in infection, 7 

d p.i., there were more microcultures which produced IFN-y than contained helper T 

cells for specific anti-plasmodial Ab production, and the precursor frequency tended to 

decrease as the infection progressed. Thus, the majority of Ly-4-bearing T cells 

specific for P. c. chabaudi AS early in infection were of the TH1 subset. In contrast, 

after 28 d p.i., the majority of parasite-specific Ly-4+ cells provided help for Ab 

synthesis, thus resembling TH2 lymphocytes. Since the proportion of TH2-type cells 

increased as the level of total responder lymphocytes decreased, the relative frequency 

of TH2 cells within all T cells responding to P. c. chabaudi AS, therefore, tended to rise 

throughout infection. In the experiments detailed in this chapter, those Ly-4+ 

populations characterised as TH1, WEP 775 and its cloned derivatives WEP 996-999, 

and also WEP 779, were recovered from challenged mice either on d 16 or d 20 of 

primary infection. These lymphocytes were collected at times between those time points 

used by Langhorne £ ia i (1989 a & b), so no direct comparison can be made. However, it 

would appear that the consistent characterisation of Ly-4+ lymphocytes isolated on 

either d 16 or d 20 p.i. as being cells that secreted IL-2 and IFN-y, but not IL-4, i.e. of 

the TH1-type, would fit broadly with the data presented by Langhorne £ ia i (1989 a & 

b). At 16 or 20 d p.i., the parasitaemia was either in remission or subpatent, at which 

time Langhorne £ ia i suggested that the proportions of TH1 and TH2 precursors were 

approximately equal (Langhorne 1989). Thus, it may have been chance that both lines 

derived from spleens of mice infected for this length of time exhibited the TH1 Ly-4+ T 

cell response. However, the findings presented do stress the importance of the Ab- 

independent cell-mediated immune response until such a time following challenge when 

an effective humoral immunity can be mounted. The advantage of applying a limiting 

dilution assay to an investigation of the effector mechanisms controlling a primary 

infection of P. c. chabaudi AS is that it provides information on the relative frequencies
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of the different T cells participating in a protective immune response. This is not the 

case with lines raised by bulk culture in vitro propagation unless many different lines 

are initiated and then maintained together, which is a practical implausibility. For the 

two lines used herein, WEP 775 and WEP 779, their reactivity in vitro suggested that 

they belonged to the TH1 subset, a finding that is not unreasonable in view of the fact that 

they were taken from donor animals at a time when serum Ab levels had not peaked.

It has been demonstrated here that the TH1 and TH2 clones studied produced different T 

cell growth factors upon incubation in v itro . IL-2 and IL-4, respectively. These two 

lymphokines are each capable of mediating proliferation of activated Ly-4+ clones 

(Kurt-Jones £ ia l 1987, Greenbaum £ ia i 1988), and thus have not been reported to 

have conflicting effects on the responsiveness of either T cell subset. Indeed, 

Fernandez-Botran £ ia l (1988) showed that both TH1 and TH2 cells respond to IL-4 and 

IL-2 shortly after antigenic stimulation and that responsiveness to both lymphokines 

decreases with time after activation. Moreover, when both IL-2 and IL-4 were added to 

cultures of TH1 or TH2 clones, the proliferative response of both cell types was 

synergistic, suggesting that the presence of both lymphokines may be required for an 

optimal response. There is, therefore, no evidence, both from this study and from those 

of others, that IL-4, secreted by TH2 lymphocytes, is a specific inhibitor of IL-2- 

mediated lymphoproliferation during malarial infection. Previous reports had indicated 

that infection of mice with P. berghei or P. voelii leads to depressed splenic 

proliferative responses to mitogens and this depression has been linked to defective IL-2 

production (Lelchuk oial 1984). Inhibitors of IL-2 present in normal mouse serum 

(Hardt £ ia i  1981) and in increased amounts during malarial infection (Lelchuk & 

Playfair 1985, Male e la i  1985) were thought to play a part in maintaining 

immunosuppression. This has been confirmed recently by Natarajan £ ia i (1988), who 

showed that sera of mice undergoing lethal P. berahei infection contained a factor which 

inhibited the production of and/or the response to IL-2. The inhibitor appeared to 

function by binding to its putative target cell, suggested by the observation that excess 

IL-2 could not rescue CTLL cells from the effects of the inhibitor. On this basis, this 

factor could not be IL-4 since it is known from the work detailed in this chapter that the 

CTLL-2 cell line is responsive to both IL-2 and IL-4. Moreover, if the inhibition is 

competitive, as available data would suggest, IL-2 and the unknown factor would 

presumably have the same target molecule, the IL-2 receptor, on the T cell surface, 

which is not the case for IL-2 and IL-4, which have distinct membrane-bound receptors
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(Vitetta £ la i 1988). Therefore, although IL-4 and IL-2 are secreted by subsets of Ly- 

4+ T lymphocytes having different roles in host immunity to asexual stage plasmodia, 

their effects are not directly antagonistic, partly perhaps because they tend to mediate 

protection at different times following challenge of the host animal (Langhorne a la l  

1989 a & b, also this chapter). It is possible that a pluripotent lymphokine such as 

IFN-y, which has a large number of biological activities on various cell types, may, 

under certain conditions, cause the malaria-induced immunosuppression reported both 

for human (Troye-Blomberg £ ia l 1985) and murine (Lelchuk 1984, Natarajan £ l 

a l 1988) malaria. Thus, it has been reported that TH2 but not TH1 proliferation is 

inhibited by IFN-y (Fernandez-Botran e la i  1988, Gajewski & Fitch 1988). This 

would concur with data showing that a strong candidate for the production of an IL-2 

inhibitor is a T cell population (TH1?) (Hardt a ia i  1981, Lelchuk & Playfair 1985, 

Honda a ia l 1985, Emara & Battisto 1987). This possibility has yet to be substantiated; 

indeed, the similar levels of proliferation upon specific antigenic stimulation in vitro 

shown by all the Ly-4+ lines and clones assayed suggested that, under the experimental 

conditions prevailing, IFN-y synthesis had no bearing on the relative proliferative 

responses of primed TH1 and TH2 lymphocytes upon activation with homologous Ag. 

These data add to the apparently conflicting information available regarding the nature of 

the presently undefined factor involved in or causing immunosuppression during 

malarial infection. Another possibility for the identity of this factor is the much mooted 

cytokine synthesis inhibition factor (Fiorentino £ i a i 1989), but this would be 

envisaged to have a far wider ranging effect on the immune system than the exquisitely 

specific blocking of IL-2 synthesis. Investigations into the activity of this molecule are 

in their infancy and to date no reports of its effects on the immune system of a malarious 

individual, human or otherwise, have been published.

If it is not established whether or not IFN-y plays a part in suppression of Ly-4+ T cell 

proliferation during an immune response to malaria, it is known that IFN-y acts as an 

antagonist of all the activities of IL-4 on B cells (Mond M a i 1985, 1986, Coffman & 

Carty 1986, Rabin a ia i 1986). As these two lymphokines are secreted by different TH 

subsets, it infers that the mediation of varying effector functions by cells of either TH1 

or Th 2 subset is achieved principally by elaboration of either IFN-y or IL-4, 

respectively. It was first appreciated that IFN-y plays a role in immunity to malaria 

when it was shown to be demonstrable in the sera of mice infected with P. berghei 

(Hwang e la i  1968). Shortly after, Jahiel £ ia i (1968 a & b) reported that various IFN

465



inducers exerted a protective effect in similarly infected animals. More recently, 

several workers have examined the kinetics of IFN-y production by spleen cells in vitro 

in response to malarial Ag during the course of infection. Stevenson M a i (1990) found 

that following P, c. chabaudi AS challenge of C57BL76 mice, the peak of IFN-y secretion 

occurred just before peak parasitaemia, followed by a decrease to negligible IFN-y 

production by 25 d p.i.. This agreed with the earlier report of Sauvager M a i (1979) 

that P. berghei was a good inducer of circulating IFN at the beginning of patent infection 

soon after challenge, when IFN could be detected in the sera of infected mice. 

Furthermore, Ojo-Amaize M a i (1981) found comparatively high levels of anti-viral 

activity in sera of P. falciparum-infected children, the titres of which correlated with 

the degree of parasitaemia. With regard to P. c. chabaudi AS, Langhorne and colleagues 

extended their previous findings (Langhorne & Simon 1989, Langhorne M a i 1989 a) by 

showing that the early response of lymphocytes of the TH1 subset to pRBC Ag in vitro 

correlated well with the transient appearance of IFN-y in the serum of infected mice 

(Slade & Langhorne 1989). This occurred 2-3 d before peak primary parasitaemia, 

and thus concurred with the finding of Stevenson M a i (1990) using an identical 

parasite-mouse model. Of significance is the fact that the results of the present study 

also agree with those of Slade & Langhorne (1989) and of Stevenson M a i (1990). Since 

long term Ly-4-bearing lines and clones primed to P. c. chabaudi AS were isolated on a 

limited number of occasions instead of preparing limiting dilution cultures at frequent 

intervals following infection, direct comparisons between experiments could not be 

made. However, it was demonstrated unequivocally that those lines and clones derived 

relatively early after challenge of donor mice, WEP 775, WEP 779 and WEP 996-999, 

secreted comparatively high levels of IFN-y upon in vitro culture. By comparison, S/N 

collected from cultures of those populations primed to malaria through multiple 

infections, WEP 737, WEP 723 and WEP 985-988, recorded substantially lower but 

significant IFN-y titres. The fact that circulating IFN-y could actually be measured 

after rechallenge suggests that a significant number of TH1 Ly-4+ lymphocytes are still 

able to mount an IFN-y-mediated response to reinfection, despite the predominance of Ab 

helper cells of the TH2 subset previously observed in immune mice (Langhorne M a i 

1989 a & b). This finding has been confirmed by Meding M a i (in press), who were able 

to detect IFN-y at extremely low titres in the sera of rechallenged mice, using a 

sensitive ELISA assay. The weight of evidence points to IFN-y playing an important part 

in the initial clearance of acute malarial infection, since the presence of this lymphokine

466



has been reported consistently as a predominant feature of the Ly-4+ T cell response to 

asexual stage pRBC soon after challenge, at a time when there is relatively little help for 

Ab production and only a low titre of Plasmodium-specific Ig in the peripheral blood 

(Slade & Langhorne 1989, Stevenson 1990, also this chapter).

For the human malaria P. falciparum. CD4+ lymphocytes collected from infected 

individuals have been shown to produce IFN-y in vitro in response to stimulation with 

the asexual erythrocytic stages (Rhodes-Feuillette £ ia i 1985 a & b, Sinigaglia & Pink 

1985, Troye-Blomberg 1985, 1987). Although cells secreting IFN-y would be

expected to be of the TH1-type, the lymphokine expression patterns of human CD4- 

bearing T cell clones do not fall clearly into different subsets. Large panels of cloned 

populations have been tested for expression of each of IL-2, IL-4 and IFN-y and clones 

synthesising all of the possible combinations of these lymphokines have been observed 

(Del Prete £ ia i 1988, Maggi e la i 1988, Paliard a ia i 1988, Pene a la l  1988, Rotteveel 

£ ia l  1988, Umetsu a la i  1988).

The characterisation of the two types of murine helper T cells has been carried out in 

vitro using established cloned populations (Mosmann n ia i  1986, Cherwinski n ia i  

1987, Killar a ia i  1987, Cher & Mosmann 1987, also this chapter). It is therefore 

possible that variable in the techniques used for isolating, propagating and cloning Ly- 

4+ lines may select clones that are not representative of their in vivo counterparts. 

Direct evidence of TH1 or TH2 subsets prior to Ag-driven activation in vivo is lacking. 

However, since the phenotype and lymphokine secretion profiles of each of the clones 

used in this study and those of others are stable, it would appear that most clones fit into 

one of the two categories described by Mosmann £ la !  (1986), and, furthermore, are 

representative of the type and distribution of lymphocytes to be found in vivo in 

uninfected naive mice (Bottomly 1988, Swain e la i 1988 a, Mosmann & Coffman 1989 a 

& b).

Although characteristic patterns of lymphokine expression can be used as functional 

markers to distinguish murine TH1 and TH2 cells (Mosmann e is i 1986, Cherwinski 

al 1987), no cell surface marker has been described that is present exclusively on 

either type of Ly-4-bearing lymphocyte. However, Birkeland £ ia i  (1988) have used 

two MAbs recognising different epitopes on the common leucocyte Ag, CD45R, to 

distiguish between functionally different helper T cells. The different subtypes of clones 

stain to varying degrees: 'CD45R-low' and 'CD45-high' T cells produce IL-4 or IL-2 and 

IFN-y and correspond to TH2 and TH1 lymphocytes, respectively (Bottomly 1988).

467



Subsequent studies using these MAbs in an I FAT assay have correlated the phenotype of 

normal Ly-4+ cells (CD45-low and -high) with their pattern of lymphokine secretion 

and other functional properties to provide strong evidence that analogues of TH1 and TH2 

lymphocytes exist in vivo (Birkeland £ ia i 1988, Bottomly 1988).

The effector mechanisms of the host immune response which are operative during a P. c. 

chabaudi AS infection will depend largely upon the nature of the Ly-4+ cells present at 

different times following challenge. The experiments detailed herein show that the Ly- 

4+ T cell response to P. c. chabaudi AS pRBC is heterogeneous, in that distinct functions 

can be performed by different responding lymphocytes. The patterns of reactivity of 

malaria-specific Ly-4-bearing populations in vitro generally support the idea of two 

functionally distinct Ly-4+ subsets. Those cell lines (WEP 775 and WEP 779) and 

clones (WEP 996-999), shown to be B cell-independent in vivo (Chapter 7) secreted 

high levels of both IL-2 and IFN-y upon antigenic stimulation in v itro , whilst the B 

cell-dependent populations (WEP 737, WEP 723 and WEP 985-988) acted as effective 

helper cells for specific Ab synthesis in vitro. Not only do these results suggest that the 

Ly-4-bearing cells fall into the two proposed helper T cell subsets, TH1 and TH2, 

respectively, but the fact that those populations that performed a B cell helper function 

in vitro were the same ones that had a B cell requirement to confer protection in vivo

stresses the relevance of the analysis of effector functions of Ly-4+ cells at the clonal

level to the in vivo situation. It should be noted that it was those lines and clones derived 

at an early stage (d 16 and d 20 p.i.) of primary infection that had the effector 

repertoire of the inflammatory-type TH1 Ly-4+ subset. Moreover, those populations 

taken for in vitro culture after resolution of further infections displayed the helper 

activity for Ab production characteristic of TH2 Ly-4+ cells. These data, gained using 

isolated, long term cultured lines and clones raised to P. c. chabaudi AS, correlate

strongly with those of Langhorne £ ia i (1989 a), applying a limiting dilution assay to

the same parasite. These workers showed that for P. c. chabaudi AS-challenged C57BU6 

mice (compared to NIH mice used here), the acute infection corresponding to the 

primary parasitaemia was characterised by those T cells of the Ly-4+ subset which 

secreted predominantly IL-2 and IFN-y. During the later stages of infection, once 

peripheral blood parasitaemia has been controlled, the Ly-4+ T lymphocytes responding 

specifically to malarial Ag in vitro were mainly helper T cells for the production of 

specific anti-plasmodial Abs. Both these different approaches aimed at dissecting the 

cell-mediated immune response elicited during a blood stage infection of P. c. chabaudi
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AS suggest that distinct protective effector mechanisms are operative in early and late 

stages of primary infection. It appears that there may be a sequential appearance during 

the course of infection of TH1, followed by TH2 cells specific for P. c. chabaudi AS- 

infected RBC. This flux in the relative frequencies of parasite-specific Ly-4+ 

lymphocytes in infected animals may be due to the temporally-regulated activation of 

Ly-4+ subsets by the same or different pRBC Ags. Alternatively, it could reflect the 

predetermined pathway of differentiation of every Ly-4-bearing lymphocyte undergoing 

an immune response in v ivo . As yet, neither possibility has been substantiated. 

Recently, however, the picture has been clarified partially by experiments, the results 

of which have suggested the existence of precursors of TH1 and TH2 subsets (Kelso & 

Gough 1988, Mosmann & Coffman 1989 a). It has not been proven yet whether the 

precursors are committed to a particular cell type before expressing the mature 

lymphokine secretion pattern, or whether a common precursor lymphocyte can be 

induced to differentiate into either TH1 or TH2 cells.

The balance between Ly-4+ lymphocyte subsets producing different lymphokines that 

has been described both here and elsewhere (Langhorne £ ia i 1989 a & b, Langhorne 

1989) for the development of immunity to the asexual blood stages of P. c. chabaudi AS 

may be unique to this malaria parasite. In similar studies examining the role of Ly-4- 

bearing T cells in protective immunity to other murine plasmodia, it was found that the 

magnitude and kinetics of the lymphokine response varied markedly to that described for 

P. c. chabaudi AS. Shear £ ia i (1990) have shown that both TH1 and TH2 subsets of Ly- 

4+ cells are activated during P. c. adami infection. As for P. c. chabaudi AS infection, the 

peak IFN-y response occurred 2-3 d before peak parasitaemia, whereafter the level of 

IFN-y declined to control levels at which it remained. In contrast to the situation 

reported herein, however, maximal IL-4 levels were reached not later in infection but 

on d 6 p.i., several days prior to peak parasitaemia. The modest IL-4 titres then 

decreased and remained low for the rest of the study period. Hence, for P. c. adami 

challenge of naive mice, the TH1 response was very similar to that observable upon P. c. 

chabaudi AS infection, but the TH2 response was not nearly as great and occurred 

considerably earlier than that in P. c. chabaudi AS-infected animals. Likewise, for JL 

v inckei-challenged mice, TH1 cells were activated immediately following infection, 

giving rise to peak IFN-y release on d 4 p.i., a few days before maximum parasitaemia 

was attained (Perlmann e ia i  1990). In this model, however, the number of cells 

secreting IL-4 was indistinguishable from that found in control mice, and the amounts of
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IL-4 produced were low even when the mice were rechallenged with P. vinckei pRBC 

shortly before testing. Therefore, no discernable TH2 activity was involved in 

regulating immunity to this malaria parasite. These apparently contradictory findings 

in different murine models of malaria can be reconciled by the fact that acquired 

immunity to PJ_y.incjsei and to P, c, adami infections is Ly-4+ lymphocyte-dependent and 

can develop in the absence of functional B cells (Weidanz & Long 1988, Long 1988). 

Studies performed by Grun & Weidanz (1981) demonstrated that B cell-deficient mice 

resolved acute primary infections of P. c. adami with the same kinetics as normal mice 

and were immune to subsequent challenge with homologous pRBC. Although P. vinckei 

infection is uniformly lethal in mice, both B cell-deficient and immunologically intact 

animals develop immunity after two drug-cured infections with this parasite (Kumar q± 
ai 1989). Thus, Ab-independent mechanisms of immunity have been shown to be 

primarily responsible for resolution of acute infection caused by these plasmodial 

species. This is not the case for the host immune response to P. c. chabaudi AS, which is 

known to have a substantial humoral component (McDonald & Phillips 1978). The role 

of specific Abs in immunity to P. c. chabaudi AS, and the cooperation of T and B cells in 

this response, have been confirmed by experiments described in this thesis showing the 

B cell-dependent behaviour of certain malaria-primed Ly-4+ lymphocyte lines upon 

adoptive transfer to immunocompromised recipients (Chapter 7). Hence, the work 

presented here and by Langhorne £ ia i (1989 a & b) showing a distinct temporal pattern 

of lymphokine production during the course of infection with P. c. chabaudi AS, reflects 

the fact that both Ab-dependent and Ab-independent effector mechanisms play a role in 

the protective immune response to this parasite in vivo. It has been shown both here 

(Chapter 8) and by Suss £ ia i  (1988) that Ly-4+ T lymphocytes are an essential 

component of the acquired immune response to P. c. chabaudi AS, and presumably these 

cells contribute both in a helper capacity for Ig production and by activating 

macrophages through the mediation of IFN-y. In this context, the sequential release of 

the lymphokines IFN-y and IL-4 by different subsets of Ly-4+ cells is entirely 

explicable. Moreover, Langhorne £ ia l (1990) have reported recently that for effective 

pRBC clearance, the presence of Ly-4+ lymphocytes is required only in the acute phase 

of P. c. chabaudi AS infection, at which time IFN-y-secreting TH1 cells have been shown 

to predominate (Langhorne olal 1989 a, also this chapter). Later, after IgG has been 

produced, parasitaemia can be controlled in the absence of Ly-4-bearing cells, although 

the presence of the majority TH2 cells at this time does act to promote B cell
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differentiation and induction of Ab synthesis.

Apart from conducting extensive studies in vitro on each of the P. c. chabaudi AS-specific 

Ly-4+ clones generated by cloning established cultured cell lines by limiting dilution, 

the effector function of each clone was shown in vivo by its adoptive transfer to non- 

immune recipients. It was demonstrated that all eight Ly-4-bearing monoclonal 

populations tested were able to confer protection against challenge with blood stage P. c. 

chabaudi AS. Of these clones, four had been typed as belonging to the TH1 Ly-4+ subset, 

and another four to the TH2 subset, based upon both functional characteristics and 

lymphokine expression. The protection engendered by these parasite-specific clones 

appeared to correlate with their respective reactivity in vitro. Thus, although it was 

not proven, the data indicated that the protective capacity of the TH1 clones (WEP 996- 

999) in vivo resulted from their ability to produce IFN-7. Likewise, the property of 

the TH2 clones (WEP 985-988) to induce B cell activation in vitro presumably enabled 

them to adoptively transfer protection. There was no obvious difference in the way in 

which recipients of clones of either type controlled infection, as observed by similar 

patterns of parasitaemia. This was a reflection of the fact that immunity to the asexual 

erythrocytic stages of P. c. chabaudi AS is mediated by both Ab-dependent and Ab- 

independent mechanisms (Weidanz & Long 1988). This, in turn, implies that both TH1 

and Th 2 clones have the capacity to transfer resistance in this experimental model. This 

is in contrast, for example, to host immunity to leishmaniasis, which is associated with 

the stimulation of the TH1 subset of Ly-4-bearing lymphocytes, whereas susceptibility 

and disease promotion is associated with TH2 cells (Scott £ ia i 1988, 1990, Heinzel e la l 

198 9 ).

With regard to malarial infection, only one other group had previously investigated the 

capacity of T cell clones to mediate specific protection against blood stage plasmodia [q 

v iv o . Working with P. c. adami. Brake e la i  (1986) first reported the successful 

transfer of immunity to immunologically deficient mice with an Ag-specific, IL-2- 

expanded Ly-4+ line, a finding which concurred with experiments detailed previously 

(Chapter 7 & 8) using the AS strain of the other subspecies of this malaria parasite, £* 

c. chabaudi. In both cases, the protective in vitro-propaaated lines were cloned to 

provide malaria-specific populations of homogeneous phenotype, which were subjected 

to analysis both in vitro and in vivo. Brake £ ia l (1988) presented data showing that a 

clonal population of Ly-4-bearing T cells could adoptively protect susceptible nude mice 

against challenge infection with P. c. adami. This clone secreted both IFN-y and IL-2,
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and therefore was of the Tj_j1 subset. However, this was only one of 10 clones tested, the 

rest of which failed to transfer immunity and were thus not protective. For the adoptive 

transfers described in this chapter, all eight clones were able to confer protective 

activity upon inoculation into naive recipients, although unlike the study of Brake M a i 

(1 9 8 8 ) , these animals were immunologically fully competent. As the clones gave a 

similar degree of protection to non-immune recipients as did their respective parent 

cell lines, there is no reason to believe that the resistance transferred by each of the 

parent populations to immunologically compromised animals (Chapters 7 & 8) would 

not be repeated in the case of the cloned lines. This is particularly so because, as has 

been shown here, each of the clones retained the reactivity in vitro of the Ly-4+ line 

from which it was derived.

The data detailed herein therefore demonstrates the ability of clones of either TH1 or TH2 

subsets of Ly-4+ phenotype to engender protection in vivo against challenge with the 

same P. c. chabaudi AS parasite to which the clones had been raised. These findings 

extend the results of Brake M a i (1988) in confirming that TH1 cells are capable of 

conferring protection upon reconstitution of malaria-infected animals. These results 

also agree with the studies of Magee & Wing (1988), who showed that cloned Ly-4+ 

lymphocytes protected mice against another intracellular pathogen, L is te ria  

monocytogenes, by secreting IFN-y. Elaboration of this lymphokine by human CD4+ 

clones, specific for the asexual erythrocytic stages of P. falciparum has been reported 

(Sinigaglia & Pink 1985, Chizzolini & Perrin 1986), a finding which promises well 

for the development of an anti-malaria vaccine, since it has been reasoned that if Ab- 

independent mechanisms of immunity are operative in murine malarias, they should also 

be effective in primate malarias (Good & Miller 1989). The corollary to the human 

condition also stresses the importance of such work on murine models of malaria that 

has indicated the necessity for T cell epitopes in a putative subunit vaccine.

This study has demonstrated for the first time the capability of Ly-4+ T cell clones of 

the T h 2 subset to mediate effective immunity in vivo against blood stage malarial 

infection. In the only other similar study, Brake M a i (1988) did not attain an IL-4- 

secreting clone upon limiting dilution culture of a P. c, adami-specific Ly-4+ line, 

presumably because immunity to this malaria parasite is largely Ab-independent 

(Weidanz & Long 1988, Long 1988). The demonstration of protective TH2 cloned 

populations against P. c. chabaudi AS is in contrast to previous reports of adoptively 

transferred TH2 Ly-4 -bearing clones actually exacerbating infections of Leishmania
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trop ica  (Liew 1983), L , . major (Scott £ ia i  1988, 1990) and Trypanosom a cruz i 

(Spinella M a i 1990) in recipient mice. In the first two instances, disease progression 

was characterised by the non-healing of visceral and cutaneous lesions, whilst for 

chronic Chagas' disease, exacerbation was typified by polyclonal B cell activation, 

mainly of cells secreting lgG2 isotypes. The reason for this disparity in the behaviour of 

Th 2 lymphocytes in vivo in mice challenged with different intracellular parasites is not 

known. Certainly, for malaria, there is no equivalent of the immunopathological 

consequences seen upon adoptive transfer of TH2 clones to animals suffering from either 

leishmaniasis or trypanosomiasis. Even for the murine malarias P. vinckei and P. c. 

adam i. immunity to which is considered to be B cell-independent (Weidanz & Long 

1988), there is no evidence to suggest that the TH2 subset of the Ly-4+ T lymphocyte 

phenotype is involved in the immunopathology of malaria. Indeed, there is evidence 

implicating not the TH2, but the TH1 subset in the cerebral complication of P. berghei 

ANKA infection of CBA/Ca mice (Grau M a i 1989 c). This concurs with the recent 

finding of Mendis M a i (1990), who suggested that individuals acquire natural immunity 

to P. vivax by avoiding the induction of high levels of IFN-y and TNF. Evidence showed 

that whilst these cytokines mediated killing of pRBC during clinical paroxysms of £* 

vivax infection when present in sera at low titres, they also appeared to be critical 

intermediates in mechanisms of clinical disease in malaria.

For both the adoptive transfers of P. c. chabaudi AS-Ly-4+ clones described here, and 

for the transfer of a P. c. adami-primed Ly-4-bearing clone (Brake M a i  1988), 

recipient mice displayed significant patent parasitaemia before resolution of acute 

infection. This suggested that in each model, the transferred Ly-4+ cells were not 

directly parasiticidal, but that lymphokine-mediated activation of other host effector 

functions may have led to eventual clearance of peripheral blood infection. It is assumed 

that the lymphokine secretion pattern in vitro of either TH1 or TH2 subset of Ly-4+ 

lymphocyte clones raised against P. c. chabaudi AS correlates with the mechanism of 

protective immunity followed in vivo. Thus, it could be envisaged that IL-2 may be 

secreted by TH1 clones into a localised environment in vivo in response to stimulation by 

plasmodial Ag upon adoptive transfer to a challenged animal. This, in turn, may lead to 

the clonal expansion of WEP 996-999 cells in v ivo , thereby resulting in increased 

levels of IFN-y and subsequent activation of macrophages or other effector cells. 

Similarly, after inoculation of TH2 clones into recipient mice, these may then 

proliferate in response to autocrine IL-4 or to endogenous IL-2, whereupon WEP 985-
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988 could induce specific humoral immunity by helping B cells to produce anti-P. c. 

chabaudi as Abs.

The significance of the successful adoptive transfer of malaria-primed cultured Ly-4+ 

lymphocytes lies in the possibility of dissecting the mechanisms by which these cells 

mediate protection as well as identifying plasmodial Ags capable of inducing protective 

immune responses. However, neither the P. c. chabaudi AS Ags nor the P. c. adami Ags 

recognised by either the protective Ly-4-bearing lines and clone(s) employed in this 

thesis or by Brake £ i al (1986, 1988) have yet been identified. This could be achieved 

by constructing cDNA libraries and identifying the relevant antigenic epitopes expressed 

by screening with the respective T cell populations. In the present study, such an 

undertaking was not attempted, but it is an objective of future work to determine to 

which P. c. chabaudi AS Ags the Ly-4+ clones are responsive. Although in this study, all 

eight monoclonal T cell populations conferred protective activity in v ivo . Brake a la l  

(1988) demonstrated that only a single clone of 10 tested was protective. This begs the 

question of whether a variety of plasmodial Ags and T cell epitopes on parasite-expressed 

peptides can elicit a Ly-4+ T lymphocyte response or whether the number of protective 

Ags is more limited. The identification and distribution of putative protective blood stage 

Ags is of direct relevance to the prospects of developing anti-malaria vaccine candidates 

incorporating T cell epitopes of either recombinant or synthetic origin.
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Table 9.2.2 Phenotyping of T cell clones by 
complement-mediated cytotoxicity.

Clone MAb
10 50 100

Titre (-1)
500 1000 5000 Neg.

WEP 999 a-Ly-4 100 100 92.93 88.34 69.0 25.43 2.58
a - L y -2 1.08 0.56 0 0 0.53 0 0.58

Rat serum 1.44 1.01 0.46 0.52

996 a -L y -4 99.46 100 90.61 82.05 60.70 23.27 1.04
a -L y -2 1.33 0.48 0 0 0.52 0 0.56

Rat serum 1.84 0.95 0 0.93

997 a -L y -4 100 100 94.79 86.83 71.79 30.94 1.56
a -L y -2 0.49 0.51 0 0 0.57 0 0

Rat serum 0.94 0.91 0.51 0.50

998 a -L y -4 99.51 99.50 92.86 88.72 64.90 30.00 1.52
a -L y -2 0.93 0.54 0 0.57 0 0 0.51

Rat serum 1.05 0.57 0.49 0.50

WEP 988 a -L y -4 1 00 100 96.15 84.86 67.84 28.04 1.05
a-Ly-2 1.03 0.49 0.52 0 0 0 0

Rat serum 1.38 0.93 0 0.47

985 a - L y - 4 99.07 99.52 89.78 82.81 59.09 21.95 0.93
a - L y - 2 0.97 0.51 0 0 0 0.46 0.50

Rat serum 0.99 0.92 0.52 0.49

986 a - L y - 4 1 00 99.07 95.90 86.19 74.09 34.63 1.05

a - L y - 2 1.01 0.48 0.47 0 0.50 0 0.49
Rat serum 0.97 0.87 0.56 0.48

987 a - L y - 4 99.52 98.07 91.33 84.76 68 .11 25.85 1.07

a - L y - 2 1.04 0.48 0.50 0 0 0 0

Rat serum 0.57 0.94 0 0.46

% lysis values
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CHAPTER 10

GENERAL DISCUSSION

THE PATHWAYS OF CELL-MEDIATED IMMUNE REACTIVITY 
LEADING TO PROTECTION AGAINST THE ASEXUAL 

ERYTHROCYTIC STAGES OF MALARIA
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The experiments described in this thesis have demonstrated the importance of T 

lymphocytes carrying the Ly-4 cell surface marker in the development <Jf protective 

immunity to the blood stages of Plasmodium chabaudi chabaudi AS. Rather than 

reiterating points made previously, this discussion is intended to speculate on the ways 

in which different Ly-4+ T cell-dependent effector functions may be involved in the 

control or elimination of blood-borne malaria parasites. The Ly-4-bearing T 

lymphocyte can be characterised functionally as a cell which can mediate delayed-type 

hypersensitivity and which can also act as a helper cell for Ab production. Recent 

experiments (Mosmann £ ia i 1986, Cherwinski £ la i 1987) have indicated that these 

functions may be performed by distinct subsets of Ly-4+ cells, TH1 and TH2, 

respectively. Both types of lymphocyte recognise plasmodial peptides which have been 

processed and presented on H-2 class II molecules of APC (Chapter 4). When they are 

thus activated, TH1 cells secrete exclusively IL-2 and IFN-y, amongst other 

lymphokines (Mosmann & Coffman 1987, Chapter 9). IFN-y is a potent activator of 

macrophages, which leads to their expression of raised levels of MHC class II 

determinants (King & Jones 1983, Fernandez-Botran £ ia !  1988), and thereby their 

becoming more efficient APC (Zlotnik £ ia l 1983). Macrophage activation results also 

in enhanced phagocytosis (Zlotnik e ia i  1983) and in the release of a variety of 

mediators, such as TNF (Dockrell & Playfair 1983), reactive oxygen radicals (Clark £ i 

Hi 1987) and toxic nitrogen oxides (Green s ia l  1990 b). There is mounting evidence 

for the effectiveness of such a pathway contributing towards clearance of malaria pRBC. 

As has been shown here (Chapter 9) and elsewhere (Langhorne a la i 1989 a & b), the 

rapid host response to P. c. chabaudi AS is dominated by those Ly-4+ cells that produce 

IFN-y and IL-2, i.e., T H1 cells. Activated macrophages phagocytose effectively 

Plasmodium-infected RBC (Ockenhouse & Shear 1983, Shear 1984) and inflammatory 

mediators, such as the products of activated macrophages, are known to be toxic for 

murine malaria pRBC in vitro (Ockenhouse n ia l 1984, Rockett n ia i 1988) and in vivo 

(Clark & Hunt 1983, Clark a ia i 1984). The detection of TNF in the serum of patients 

with acute malaria (Scuderi £ ia i 1986) implies that these processes could also explain 

the toxicity of such serum to P. falciparum in vitro (Tharavanij elal 1984), Butcher el 
a i 1985). The importance of these effector mechanisms in protective anti-malarial 

immunity has been supported by the reports that P. c. adami infection can be controlled 

by Ab-independent means (Grun & Weidanz 1981, 1983), and that administration of 

inducers of inflammatory responses, BCG, TNS and TNF, causes parasiticidal effects in
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vivo (Clark Mai 1977, Taverne Mai 1987).

T|_|1 Ly-4+ lymphocytes, through their synthesis and secretion of IFN-y (Chapter 9), 
are thus effective initiators of the activation of the mononuclear phagocytic system, and 

hence, indirectly, of Ab-independent pathways of cell-mediated immunity involving 

non-specific toxic effector molecules. The levels of IFN-y detectable in the circulation 

of P. c. chabaudi AS-infected mice are maximal just before peak parasitaemia (Slade & 

Langhorne 1989, Stevenson Mai 1990), i.e., at a time soon after challenge when Ly-4- 

bearing cells of the TH1 subset are thought to predominate (Langhorne 1989). Thus, 

there is a direct correlation between the kinetics of production of IFN-y in vitro (Slade 

& Langhorne 1989, Stevenson Mai 1990) and in vivo (Meding Mai in press) by spleen 

cells from infected animals and the requirement in vivo for the endogenous molecule 

during the acute phase of infection. This concurs with the claim that resolution of the 

primary parasitaemia of P. c. adami is independent of specific Ab production (Grun & 

Weidanz 1981). Moreover, TH1 lymphocytes are thought to be unable to stimulate 

resting B cells (Boom Mai 1988). As the frequency of TH2 cells, which can induce the 

activation of resting B cells, is very low in the first two weeks following P. c. chabaudi 

AS challenge (Langhorne M a i 1989 a), this may explain the slow appearance of 

significant levels of malaria-specific Ab (Langhorne Mai 1984). What little Ab is 

detectable during this time is of the lgG2a isotype, the synthesis of which is positively 

regulated by IFN-y (Snapper & Paul 1987). In contrast, the suppressed levels of lgG1 

Abs elaborated during the primary patency (Langhorne Mai 1984, Langhorne Mai 
1985, Langhorne & Asofsky 1986, Falanga Mai 1987) may be due to the TH1-produced 

IFN-y; this is a potent inhibitor of lgG1 synthesis, both in vitro and in v ivo , probably 

by its antagonistic effects on IL-4-dependent responses (Rabin Mai 1986, Snapper & 

Paul 1987, Snapper Mai 1988). In this regard, it is relevant to consider that the Ly- 

4+ lines and clones derived from P. c. chabaudi AS-challenged mice during the early 

stages of infection produce both IFN-y and IL-2 in vitro (Chapter 9) and give protection 

in vivo (Chapters 5-9). Likewise, Brake Mai (1988) found that the only one of 10 
Ly-4-bearing lymphocyte clones raised in vitro to P. c. adami to confer protection upon 

adoptive transfer had a lymphokine secretion pattern of the TH1 subset.

The Ab-independent responses described do not explain the protective immune response 

to an erythrocytic infection with all species of malaria parasite. Some plasmodia, such 

as P. yoelii 17X cannot be controlled in mice lacking B cells and specific Ab (Weinbaum 

M a i 1976 b), and others, e.g., P. voelii 17XL and P. berghei. are fully virulent in

512



animals pretreated with non-specific inducers of inflammatory responses (Weidanz & 

Long 1988, Long 1988). Even for host immune responses shown to comprise a cell- 

mediated element to control pRBC multiplication, such as that to P. c. chabaudi AS 

involving IFN-y, data show that parasite elimination and resolution of infection require 

the activation of alternative effector functions (Slade & Langhorne 1989, Stevenson £ la i 

1990, Meding £ ia l  in press). Moreover, there is a pronounced species-specific 

element of protective immunity in rodent models of malaria. This is manifested as the 

attainment of effective protection normally only against challenge with homologous 

species, strains or variants (McLean £ ia l  1982 a, Jarra & Brown 1985, Jarra £ la i  

1986, Chapter 6). These findings are not reconciled readily with the Ly-4+ cell- 

dependent pathway of protection characterised by specifically-induced but non-specific 

toxic effector molecules.

The other major pathway of Ly-4+ cells in acquired resistance to malaria is the 

induction of the TH2-driven Ab helper function. Activation of cells of the TH1 Ly-4+ 

subset triggers the release of IL-2 and the subsequent activation of macrophages to 

produce IL-1 (Mosmann & Coffman 1989 a & b). Both these lymphokines act as 

paracrine growth factors for TH2-type Ly-4-bearing lymphocytes (Powers £ ia l

1988), which then secrete their own growth factor, IL-4. After encounter with the 

same or different malaria Ags as those that stimulated a TH1 response, TH2 cells provide 

help in the form of IL-4 and IL-5 for B lymphocytes to produce specific Ab (Mosmann & 

Coffman 1987). Ig specific for blood stage malaria parasites has been shown to serve 

several functions. Circulating Abs against pRBC membrane-bound determinants may 

cause elimination of infected RBC through agglutination (Brown £ ia i  1970 b) or 

complement-mediated lysis, or alternatively, function in a neutralising capacity by 

blocking reinvasion of merozoites into RBC (Butcher £ ia l  1978). In addition, 

circulating Ig acts as an opsonin for the Fc receptor-mediated phagocytosis of pRBC 

(Ockenhouse & Shear 1984). In turn, this signals further mononuclear phagocytic cell 

activation and the subsequent release of toxic mediators into the surrounding localities of 

liver and spleen. Alternatively, B lymphocyte membrane-bound Ig specific for surface 

Ags of free merozoites or pRBC may function as a reservoir for parasite material, 

thereby facilitating the uptake, processing and presentation of plasmodial Ags by 

available APC to Ly-4+ cells (Langhorne 1989). This would serve to recruit further 

effector T cells to the parasite-directed immune response.

The present study showed that Ly-4+ populations specific for P. c. chabaudi AS obtained

513



from immune mice which had no detectable pRBC belonged to the TH2 subset and provided 

considerable help for specific Ab synthesis (Chapter 9). This agreed with the findings of 

Langhorne £ ia i (1989 a) that it was only after three weeks of primary infection with EL 

c. chabaudi AS, or during further challenges, that the predominant Ly-4+ response was 

that of T|_)2 cells. Furthermore, only with this increased frequency of TH2 lymphocytes 

could Abs of the IgG isotype be detected (Langhorne £ ia i 1984, Langhorne & Asofsky 

1986). For host immunity to P. c. chabaudi AS, which appears to combine Ab-dependent 

and Ab-independent mechanisms, the sequential appearance of the two subsets of Ly-4- 

bearing cells may reflect the requirement for an Ab-independent effector function to 

control parasitaemia in the period prior to the relatively slow induction of malaria- 

specific IgG Abs. Although this is no doubt true, the temporally-regulated activation of 

different Ly-4+ subsets may, in part, be a result of their varying requirements for 

developing into lymphokine-secreting cells. Powers £ ia i  (1988) and Swain a ia i  

(1988 b) reported independently that , in contrast to IL-2 secretion, readily detectable 

levels of IL-4 and IL-5 production are found only after TH2 lymphocyte populations are 

primed and restimulated. Furthermore, both the expansion of TH2 cells and their 

secretion of IL-4 in vitro upon repeated exposure to Ag is dependent on the presence of 

IL-2 (Powers £ ia l  1988). From these findings it can be inferred that the delayed 

development of IL-4-producing helper T cells is by no means unique to the acquired 

immune response to malarial infection, and suggests that TH2 Ly-4-bearing 

lymphocytes may play a particularly important role in immunity to Ags that persist or 

that are encountered repeatedly. Another implication of these data is that the activation 

of T|_|1 cells, and the resultant elaboration of IL-2, is a necessary prerequisite for 

stimulation of cells of the TH2 subset. It would thus appear that the protective immune 

response to P. c. chabaudi AS in vivo provides an ideal example of the way in which the 

diverse activities of TH1 and TH2 Ly-4+ cells are coordinated to achieve the appropriate 

regulation of the immune system.

Several studies have indicated the important role played by Ab in the elimination of 

plasmodia in vivo. Successful passive transfer experiments have been undertaken using 

rodent models and immune serum or MAbs specific for merozoite or pRBC surface 

determinants (Freeman s ia l 1980, Yoshida a la i 1980, reviewed by Deans & Cohen 

1983). For a P. c. chabaudi AS infection, the ability to control parasitaemia coincides 

with the production of specific IgG but not IgM Abs, and the predominance of helper T 

lymphocytes of the TH2 Ly-4+ subset (Langhorne a ia i 1989 b). This is consistent with
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the hypothesis of Grun & Weidanz (1981, 1983) that although acute parasitaemia can 

be cleared by Ag-independent mechanisms, B cells are necessary to eliminate peripheral 

blood infection. Taken together with other experiments illustrating the need for an 

intact and activated spleen for successful pRBC clearance (Grun £ ia i 1985, Kumar e ia l

1989), Langhorne (1989) proposed that the available data would suggest that a major 

role for specific anti-malaria Ab is in the promotion of phagocytosis, and the focussing 

of asexual stage plasmodia to those areas of the spleen where they would be brought into 

close proximity to activated macrophages or other mediators of effector function. 

Certainly, this view explains the apparent anomaly between the exquisite specificity of 

the acquired immune response elicited by a given species or subspecies of Plasmodium 

(Jarra & Brown 1985) and the efficacy of a protective effector mechanism 

characterised only by non-specific inflammatory mediators released by IFN-y- 

stimulated macrophages.

The relative contributions of the Ab-dependent and Ab-independent pathways operating 

during an in vivo immune response to P. c. chabaudi AS will be a reflection of the balance 

between the two subsets of Ly-4-bearing lymphocytes at any given time. It has been 

argued (Langhorne 1989) that soon after challenge when TH1 cells predominate, a 

major mechanism for parasite destruction will be via oxidative and non-oxidative toxic 

mediators secreted by stimulated macrophages. As Ly-4+ cells of the TH2-type increase 

both in numbers and proportion in the later stages of infection, Ab-mediated 

mechanisms of protective immunity will begin to operate. As peripheral blood 

parasitaemia falls, Ab will become necessary not just to neutralise circulating pRBC, 

but also to trap residual parasite populations in the spleen and liver by means of 

opsonising or surface Ig, so enabling the clearance, to subpatent levels at least, of the 

challenge infection. The divergent reactivities of the different Ly-4+ lines and clones 

raised to P. c. chabaudi AS (summarised in Table 10.1), both at a cellular level 

(Chapter 9) and in vivo (Chapter 7), is compatible with a change in the mechanism of 

protection with time following infection, and in showing that this switch is dependent 

upon the type of Ly-4+ subset present at a particular point in time. This view of the 

roles of TH1 and TH2 cells in host immunity to malaria infection concurs with the 

current level of understanding of the contribution of these two subsets of the Ly-4- 

bearing lymphocyte to immune responses to a range of antigenic stimuli (Mosmann & 

Coffman 1989 b). It is postulated that during an immune response that involves TH1 but 

not Tj_|2 cells, as specifically exemplified by the early stages of P. c. chabaudi AS blood-

515



borne infection, delayed-type hypersensitivity (DTH) should be induced strongly, but B 

cell activation would probably not occur due to the inhibitory effects of an excess of 

IFN-y produced in an overwhelming TH1 response without TH2 involvement. 

Furthermore, a strong TH2 response accompanied by a moderate TH1 response, as 

typified by the later phases of infection with P. c. chabaudi AS pRBC, would be expected 

to lead to considerable Ab production. This is because of a predicted secretion of IL-4, 

IL-5 and IL-6 production, with a possible bias away from lgG2a towards IgG-j, induced 

by IL-4. DTH should be detectable but weakly so, since TH2 lymphocytes appear to 

inhibit this TH1 function. This classical model of T cell interaction would therefore 

appear to predict most of the immunological features of an ongoing infection of P. c. 

chabaudi AS, as described by Langhorne £ ia l (1989 a) and herein (Chapters 7 & 9). 

Manipulation of this model in favour of a strong TH2 response without TH1 activation, or 

vice-versa, would provide a plausible explanation of the host immune responses to 

infections by two other rodent plasmodial species, P. voelii 17X and P. c. adami. 

respectively. These appear to represent extremes in the repertoire of protective 

immunity to malaria, one predominantly humoral and the other predominantly cell- 

mediated.

Although this hypothetical model explains satisfactorily the behaviour of different Ly- 

4+ cell types once they have become established, it does not explain the signal for the 

switch from a TH1- to a TH2-dominated response or the activation requirements of 

either cell type. Many data are compatible with the concept that TH1 and TH2 

lymphocytes represent the mature stages of different developmental pathways of Ly-4- 

bearing cells (reviewed by Janeway £ ia i 1988, Mosmann & Coffman 1989 a & b). It is 

also possible, however, that the sequential appearance of TH1 and TH2 cells specific for 

P. c. chabaudi AS pRBC represents the different developmental stages in the course of 

differentiation taken by every activated Ly-4+ lymphocyte (Janeway £ ia i 1988).

In either case, despite the fact that TH 1 and TH2 subsets may respond to the same 

antigenic stimulus (Mosmann & Coffman 1987, Liew, F.Y., personal communication), it 

is also possible that particular Ags trigger one or other type of response. Observations 

by Scott filal (1988, 1990) on the nature of the Ly-4+ T cell response to leishmanial 

Ags suggest this may occur. It was shown that TH1 cells responded to a particular cell 

fraction and could protect against infection, whereas cells of the TH2-type responded to a 

different fraction and exacerbated the disease. Infection of mice with L. major provides 

the clearest example of the divergent consequences of a TH1 or a TH2 response to a
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pathogen, these having profoundly different effects on the outcome of disease. Although 

the effect of stimulation is not as marked as that observed in leishmaniasis, it is 

important to determine the activation requirements in response to plasmodial Ags of 

different malaria-specific Ly-4+ populations. This is not only to elucidate the 

mechanisms of protective immunity of anti-plasmodial T cell clones more fully, but to 

evaluate their worth with a view to subunit vaccine development. At present, the 

determining factor in the differential induction or selective activation of one or other of 

the two Ly-4-bearing subsets has not been established. The ratio of TH1 to TH2 cells 

produced in various immune responses appears to be controlled tightly, as assessed both 

by the types of clones generated in tissue culture, and by the characteristic responses 

elicited by particular Ags or modes of immunisation. This control is considered by some 

to be very probably genetically-restricted, though evidence for this is not forthcoming 

(Liew, F.Y., personal communication). Whether or not the responding Ly-4+ 

lymphocytes are already precommitted to the TH1 or TH2 profiles, mechanisms must 

presumably exist for selectively activating, expanding or differentiating precursor T 

cells into one of either TH1 or TH2 subset. The APC is a probable candidate for the cell 

influencing the TH1: TH2 ratio, although the precise nature of its involvement is not 

clear. It has been proposed that TH1 lymphocytes may be activated and expanded 

selectively by B cells, whereas the secretion of IL-1 by macrophages causes clonal 

expansion of TH2 cells (Janeway g ia l 1988). This possibility notwithstanding, TH1 

cells are probably more effective at activating macrophages, whereas cells of the TH2- 

type are undoubtedly the major B cell helper population (Alexander, J.H., personal 

communication), leading to the proposal that the most important interaction of TH1 and 

Tj_|2 cells during an immune response are with macrophages and B cells, respectively 

(Boom £ ia i 1988).

These two divergent views could represent a real dichotomy between the most 

advantageous T cell-APC interaction for T cell proliferation, as distinct from the optimal 

interaction for activation of the non-T cell partner. It is known for the response of Ly- 

4+ clones to malarial Ags that proliferation and lymphokine gene expression are not 

necessarily interlinked (Troye-Blomberg & Perlmann 1988). Alternatively, each 

proposal may be partially correct, since B cells can enhance Ag presentation to 

proliferating T cells (probably TH1) by direct presentation as well a by producing Ab 

that enhances the ability of non-B cells, notably macrophages, to also present Ag (Kurt- 

Jones s ia i 1988). Conversely, TH2 activation can be mediated by macrophages, and by
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B cells if IL-1 is added exogenously or supplied by bystander macrophages (Rock e l a]

1986). Thus, the distinction between IL-1-producing and non-producing APC may be 

important in vivo only when systemic or local IL-1 concentrations are limiting. A 

variety of quite different cell types can act as APC, each of which may also influence the 

T|_|1: Th 2 ratio by providing different accessory signals to Ly-4-bearing lymphocytes, 

depending on the physical nature of the Ag encountered. For example, Janeway £ la l 

(1988) have suggested that TH1 cells can be activated only by a high density of Ag on the 

surface of the corresponding APC. This model is consistent with the observation that 

many intracellular pathogens, the Ags of which should be presented at high density by 

infected cells, elicit strong TH1 responses, including DTH, lgG2a synthesis and IFN-y 

production (e.g. Finkelman £ ia l  1988 a, reviewed by Janeway £ ia i  1988). With 

regard to the protocol followed here to raise Ly-4+ populations specific for P. c. 

chabaudi AS pRBC, total spleen cell populations were used as a source of APC throughout 

the study. Such a heterogeneous pool of cells would contain B cells, macrophages, 

endothelial cells and dendritic cells, all of which are capable of performing an Ag- 

presenting function. It is unlikely, therefore, that the mixed APC population present in 

in vitro culture would bias the selection of TH1 or TH2 types towards one or other 

subset. It is more probable that under the immunological pressure represented by a 

malarial challenge, a biased response is induced in favour of an initially strong TH1 cell 

reactivity. Induction of TH1 function causes specific secretion of the lymphokines IL-2 

and IFN-y, the former acting as an autocrine growth factor and the latter promoting the 

activation of non-specific anti-malarial effector mechanisms. The release of toxic 

mediators into the localised environments of the lymphoid organs into which pRBC pass 

kills blood stage parasites so enabling adequate control of parasitaemia prior to the 

mounting of a humoral response. In a previously uninfected animal, the production of 

specific anti-P. c. chabaudi Ab, in particular IgG, would be characterised by the 

relatively slow kinetics of a primary Ab response. The reason for this is that the clonal 

expansion and differentiation necessary to supply a population of Ab-secreting plasma 

cells takes a finite time (up to two weeks). During this intervening period, there would 

be little point in TH2 cells contributing to the Ly-4+ response, since there would be 

negligible Ab function in which to assist.

Thus, the proportion of the Ly-4-bearing population comprising TH2-type lymphocytes 

during the acute phase of a P. c. chabaudi AS infection is low (Langhorne e ia i 1989 a), 

and rises only later at a rate seemingly commensurate with its requirement to provide
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help for specific Ig production. Although the mechanism by which the frequencies of J H1 

and T|_|2 cells change has not been demonstrated unequivocally, in light of the lack of 

requirement of TH2 cells till after resolution of primary parasitaemia, it may be that 

the delayed development of Ly-4+ cells of the TH2-type observed in other systems 

(Powers £ i2 l  1988, Swain £ ia i  1988 a) may be significant. Not only do TH2 

lymphocytes require activation by IL-2 prior to secretion of their specific autocrine 

growth factor IL-4, but naive cells can expand only once stimulated with Ag. For 

malaria, one could envisage a situation in which TH2 cells are not produced immediately 

upon challenge, not only because they are dependent upon a TH1 cell product, IL-2, for 

initial activation, but also because, like the B cells with which they interact to produce 

an effective immune response, they require prior priming to plasmodial Ags. 

Speculation this may be, but if such a scenario were to occur in the host immune 

response to P. c. chabaudi AS, it would not only explain the observed frequencies of Ly- 

4+ cells during a primary infection, but provide a possible mechanism by which the 

levels of Th 1 and TH2 cells are regulated during infection with this particular malaria 

parasite. This temporal regulation of activation of the two subsets of Ly-4-bearing 

lymphocytes is not the only example of a biased immune response induced by infectious 

agents. A notable example of this phenomenon is the resistance acquired by rodent hosts 

to infestation with the intestinal helminth Nippostrongylus brasiliensis. Infestation 

induces substantially raised levels of IgE, usually accompanied by eosinophilia and 

mucosal tissue mast cell hyperplasia (Ogilvie & Jones 1969, Kelly & Ogilvie 1972). 

All three effects are T cell-dependent (Jarrett & Ferguson 1974) and can be explained 

by the preferential activation or selective amplification of TH2 cells. It has recently 

been found that for spleen and lymph node cells from N. brasiliensis-infected mice, the 

levels of IL-2 and IFN-y are suppressed below normal and that IL-4 and IL-5 levels are 

greatly elevated (Street & Mosmann in press), giving support to this interpretation of 

the regulation of the immune response to this metazoan parasite.

Although the TH1 and TH2 patterns of lymphokine expression are distinct when long term 

murine T cell clones are examined, as exemplified by the P. c. chabaudi AS-specific 

populations described herein (Chapter 9), it is not yet known if normal resting mouse 

lymphocytes are already committed to these patterns. Whilst the TH1 and TH2 profiles 

of lymphokine synthesis are found commonly among murine T cell clones of the Ly-4+ 

phenotype, several lines of evidence suggest that precursor stages may exist. 

Examination of the lymphokine secretion profiles of Ly-4+ clones 2-10 weeks after
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establishment in culture revealed that early patterns were not recognisably TH1 or TH2 

but sometimes changed to unambiguous TH1 or TH2 expression upon continued growth in 

vitro (Mosmann & Coffman 1989 a). Monoclonal populations from immunised mice gave 

rise to clear-cut TH1- and TH2-type cultures notably more rapidly than did those from 

naive mice. Further evidence for precursors of TH1 and TH2 cells comes from 

experiments in which mixed Ly-4+ splenic cell populations, after polyclonal or Ag- 

specific stimulation, produce large amounts of IL-2 but little IFN-y, IL-4 or IL-5 

(Swain M a i 1988 a & b, Street M a i 1990). Furthermore, after prolonged incubation 

in vitro of Ly-4+ clones stimulated with Con A, it was found that a high proportion of 

cultures secreted a broad spectrum of lymphokines, including IL-2, IL-3, IL-4, IFN-y 

and TNF (Firestein M a i 1989). These patterns of secretion cannot be explained simply 

by some mixture of TH1 and TH2 lymphocytes, suggesting that there are at least two 

precursor stages in the development of the TH1 and TH2 differentiation states, termed 

Th P and Th0, respectively. If this is so, TH1 and TH2 cells may be thought of as the 

mature stages of development of the Ly-4-bearing lymphocyte, and, as such, analogous 

to the plasma cells of the B cell lineage which produce different isotypes of Ig. It 

remains to be determined whether the precursors are committed to a particular 

development before expressing the mature lymphokine pattern, i.e., before exposure to 

Ag, or whether a common precursor (ThO?) can be induced to differentiate into either 

T h 1 or T,_|2 cells. Current models of Ly-4+ lymphocyte differentiation (Mosmann & 

Coffman 1989 b, Street M a i 1990) envisage the IL-2-secreting THP cell giving rise to 

a cell, Th O, exhibiting an unrestricted pattern of lymphokine secretion. Additional 

unidentified differentiation states may exist, but it is agreed that TH1 and TH2 cells 

represent the final activated state of the Ly-4+ lymphocyte lineage. It is thought that 

the Th P and ThO precursors may be equivalent to the non-recirculating and short-lived 

T1 cells that are rapidly lost in vivo after adult thymectomy (Araneo M a i 1975), 

whereas the long-lived T2 population includes both mature TH1 and TH2 cell types 

(Mosmann & Coffman 1989 a & b). This matching of two different divisions of Ly-4+ T 

lymphocytes shows that it is the stimulated, fully differentiated effector T cells, TH1 and 

T|_|2, which are relatively resistant to T cell depletion by surgical procedures. This 

highlights the importance of the additional irradiation or MAb treatments used to 

produce mice of immunologically compromised status prior to the adoptive transfer of 

various P. c. chabaudi AS-primed Ly-4+ populations at homologous parasite challenge 

(Chapters 7 & 8). The mice used were naive and therefore not previously exposed to
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malarial Ags, yet even in unprimed animals, the balance of TH1 to TH2 cells upon 

subsequent infection may be biased in either direction, depending on the background 

immunity that would be attained by animals exposed to a large number of infectious 

agents, as is the case in any mouse colony (Mosmann & Coffman 1989 a). Depletion of 

circulating Ly-4-bearing lymphocytes removes any possibility of an unbalanced 

residual immune potential affecting the course of infection of P. c. chabaudi AS in these 

animals first immunologically crippled by thymectomy, then repopulated with pRBC- 

specific preparations of either TH1 or TH2 Ly-4+ cells.

In spite of the clear dichotomy of murine TH1 and TH2 clones, as exemplified by the 

monoclonal populations raised against P. c. chabaudi AS described herein, and the 

accumulating evidence for their involvement in a range of immune responses, including 

to malaria (Chapter 9), the segregation of human CD4+ cells into two comparable 

subsets has not been established. Although TH1 and TH2 clones have been reported 

(Maggi £ ia i  1988, Umetsu e la i  1988), the majority of CD4-bearing monoclonal 

populations secrete a mixture of the two lymphokine patterns, i.e., IL-2, IL-4 and IFN- 

y (Paliard £ ia i  1988, Maggi £ ia i 1988). These results can be reconciled with data 

from murine studies if it is assumed that in vitro human lymphocytes tend to persist as 

the earlier, mixed lymphokine secretion cell type, ThO, whereas clones from mice tend 

to differentiate more rapidly into either TH1 or TH2 populations. What would therefore 

appear to be contradictory findings between human and murine systems can thus be 

explained in terms of the varying stability of different developmental stages of the CD4+ 

or Ly-4+ lineage in vitro. Until recently, there was no evidence for the existence of TH1 

and T|_|2 cells in malarious humans. Preliminary results from patients convalescing 

from a recent bout of falciparum malaria showed that all the pRBC-specific CD4+ clones 

recovered produced IL-2, and most IFN-y, upon stimulation with homologous Ag (Ho & 

Webster 1990 b). These findings suggest that these CD4-bearing clones are compatible 

with the Th 1 characterisation. Troye-Blomberg £ la i (1990) have analysed human 

CD4+ responses to defined immunodominant T cell epitopes of the P. falciparum Ag 

Pf155/RESA. Available evidence indicates the activation of cells from individual donors 

producing either IFN-y or IL-4. Interestingly, the induction of IL-4, but not that of 

proliferation or IFN-y synthesis, correlated well with elevated levels of Abs to the 

activating peptide in the serum of lymphocyte donors. These results indicate that IL-4- 

secreting CD4+ cells, similar to cells of the TH2-type in mice, are involved in the 

induction of Pf155/RESA-specific Abs in people who have acquired functional immunity
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to falciparum malaria after prolonged natural exposure to the parasite. Thus, it may 

transpire that in the host immune response to P. falciparum, there may be a regulatory 

compartment of CD4-bearing lymphocytes that at rest is composed of cells with diverse 

lymphokine secretion profiles, similar to the TH0 cell type found in mice (Firestein £ i 

a i 1989). Upon stimulation, these cells may be driven to adopt lymphokine expression 

patterns analogous to those of the murine TH1 or TH2 Ly-4+ subsets observed for clones 

isolated from mice infected with P. c. chabaudi AS (Chapter 9).

While CD8- or Ly-2-bearing lymphocytes appear to play a significant role in immunity 

to sporozoites (Schofield a ia i  1987 b, Weiss a la i  1988), evidence supporting the 

notion that Ly-2+ cells also play an essential part in resolving blood stage malaria is 

contradictory. Studies of P. yoelii in the mouse have suggested that Ly-2+ cells can 

protect against challenge infection (Mogil £ial 1987). This ability was correlated with 

an increase of expression of class I MHC molecules on infected reticulocytes and led to 

the postulation that lymphocytes of the Ly-2+ phenotype may be directly cytotoxic for 

pRBC (Jayawardena oioi 1982, 1983). However, when Vinetz £ la l (1990) attempted 

to repeat this finding in the same system, they were unsuccessful. Similarly, depletion 

experiments using anti-Ly-2 and anti-Ly-4 MAbs have shown little indication that Ly- 

2+ lymphocytes have any significant role in resisting challenge with either P. c. 

chabaudi AS (Suss £ i3 l  1988, Langhorne £ ia i  1989 b, Chapter 8) or P. vinckei 

(Kumar £ ia l  1989), since, in their absence, parasitaemias are only marginally higher 

and the infection is cleared.

However, it is possible that under the conditions of these experiments, Ly-2-bearing 

cells could not be activated appropriately. This may provide an explanation for the 

recent report that C57BLV6 mice depleted of Ly-2+ cells cannot eliminate P. c. chabaudi 

AS infection as efficiently as intact animals (Stevenson, M.M., personal communication, 

Podoba & Stevenson in press). In this regard, it is relevant to note that similarly 

contradictory findings with a totally unrelated infectious agent, Listeria monocytogenes, 

were clarified only when Ly-2+ lymphocytes were activated prior to adoptive transfer 

(Bishop & Hinrichs 1987). There is the suggestion, therefore, that suitably activated 

Ly-2+ cells elicited during malaria infections could perform a parasiticidal function. 

However, these data and those from adoptive transfer experiments in P. c. chabaudi AS 

infection (McDonald & Phillips 1978, Chapters 5-9) indicate that it is the Ly-4- 

bearing T cell subset that performs the major protective role against this particular 

parasite. If Ly-2+ lymphocytes do play an ancillary part in acquired resistance to the
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asexual erythrocytic stages of P. c. chabaudi AS, it is unlikely that they are directly 

cytotoxic, since this species of malaria preferentially invades mature RBC which 

present little or no class I MHC molecules. It is known, however, that activated Ly-2+ 

cells produce a spectrum of lymphokines similar to that for TH1 Ly-4-bearing cells, 

i.e. IL-2 and IFN-y (Fong & Mosmann 1990). From this, Ly-2+ lymphocytes 

responding to a multiplicity of plasmodial Ags could serve to amplify markedly the 

activity of Ly-4+ cells in the triggering of non-specific effector mechanisms 

responsible for the elimination of blood stage parasites. Although there is no direct 

evidence for this forthcoming, Weidanz £lai (1990) pointed to the observations of a 

disproportionate increase in Ly-2+ lymphocytes in the spleens of P. berghei- and P. c. 

adami-infected mice at the time of maximal pRBC destruction (Gross & Frankenburg 

1989, Weidanz a ia i 1990). As the number of Ly-2-bearing cells decreases after the 

acute phase of infection, this transient flux in the Ly-4+: Ly-2+ ratio may indeed be of 

significance. There is a corollary here with respect to P. falciparum in humans, where 

the development of CD8+ clones from donors with acute infection (Troye-Blomberg a ia l 

1983 a, 1984, Sinigaglia atai 1987) may be a reflection of the increased number of 

such T cells found in the blood of acutely ill patients as contrasted to clinically immune 

donors (Troye-Blomberg a la i 1984). If Ly-2-bearing cells do interact with TH1 Ly- 

4+ cells to control parasitaemia prior to the induction of Ab-mediated mechanisms of 

protective immunity, as is proposed, it could be envisaged that the rise in levels of Ly- 

2+ lymphocytes at this time is due to the activation of these cells. As clonal expansion of 

Ly-2+ cells is an IL-2-driven process (Janeway a la l 1988), it is highly probable that 

growth of this T cell population in response to malarial Ag is dependent upon IL-2 

secreted by TH1-type Ly-4-bearing lymphocytes, in much the same way as would 

appear to be the case for the initial activation of TH2 cells (Powers £iaJ 1988).

For P. falciparum malaria in man, with which murine models must stand comparison, 

cloning technology has been applied recently to human peripheral blood T cells taken 

from donors of varying immunological status (Sinigaglia & Pink 1985, Chizzolini & 

Perrin 1986). While both CD4+ and CD8+ clones have been isolated, the latter have 

been recoverable only from patients with, or recovering from, clinical malaria 

(Sinigaglia £iai 1987). Not only would this appear to agree with the finding that CD8- 

bearing cells are activated in vivo in some patients with acute falciparum malaria 

(Troye-Blomberg f i la l  1984), it would suggest that for studies of murine malarias 

which showed that Ly-2+ lymphocytes do not contribute significantly to the protective
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immune response to blood stage parasites (Suss M a i 1988, Langhorne M a i 1989 b, 

Kumar M ai 1989, Vinetz Mai 1990, Chapter 8), this may have been due to a failure to 

fulfill the activation requirements of this T cell phenotype. All CD8+ clones analysed to 

date have been shown to produce IFN-y (Sinigaglia & Pink 1985, Pink M ai 1987), a 

finding which would support the notion from murine studies that Ly-2-bearing 

lymphocytes may act by boosting the IFN-Y-mediated activation of macrophages by Ly- 

4+ cells (Weidanz M ai 1990). It would be reasonable to assume, therefore, that the 

principal contribution of cells bearing either the Ly-2 or CD8 marker towards a 

protective immune response to malaria is through the promotion of Ab-independent 

effector functions. However, Sinigaglia Mai (1987) have reported that the CD8+ clones 

which they isolated successfully from acutely ill donors displayed MHC restriction when 

activated with P. falciparum Ao in vitro but showed an MHC-unrestricted cytotoxicity 

towards unrelated tumour cells. Thus, CD8-bearing monoclonal populations raised 

against P. falciparum pRBC do exhibit a cytotoxic potential, albeit not in an Ag-specific 

manner. This behaviour is different to that thought by some workers to be shown by 

Ly-2+ cells in the immune response to P. c. chabaudi AS (Suss M a i 1988, Langhorne, 

J., personal communication). This distinction can be explained by the fact that £_l 

falciparum has a predeliction for invading metabolically young RBC (Phillips 1983), 

whereas P. c. chabaudi AS tends to prefer mature RBC. Reticulocytes (very young RBC) 

express MHC class I determinants at their cell surface, so enabling P. falciparum- 

infected RBC to perform an Ag-presenting role to CD8+ cells for which they themselves 

are the target of cytotoxic activity. Since the MHC class I receptor is lost from the RBC 

membrane as the cell matures, P. c. chabaudi AS pRBC would not normally express this 

molecule, hence making them inaccessible to direct Ly-2+ lymphocyte cytotoxicity. It 

would therefore appear that this possible mechanism of immunity to asexual stage 

plasmodia is related to MHC class I expression on reticulocytes, and is thus restricted to 

acquired resistance to those species of malaria, such as P. falciparum. P. vivax. P, 

ovale. P. berahei and P. vinckei. which commonly invade reticulocytes. It would be 

thought that a mechanism of protective immunity of such limited application would not 

constitute the major effector function of Ly-2+ or CD8+ lymphocytes towards clearance 

of blood stage malaria parasites. However, the extent to which CD8-bearing cells play a 

role in immunity to malaria remains to be determined.

The relatively recent development of methods enabling long term culture and cloning of T 

cell lines with preserved antigenic specificity has been important to the understanding
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of the specificity and functioning of T cells in immunity to malaria. Several 

investigators have reported the generation of human or rodent continuous T lymphocyte 

lines (Gross M a i 1984, Chemtai M a i 1984 a & b, Brake M a i 1986) and clones 

(Sinigaglia & Pink 1985, Chizzolini & Perrin 1986, Sinigaglia M a i 1987, Pink M a i 

1987, Good M a i 1987 a, Simitsek M a i 1987, Brake M a i 1988). In the present study, 

P. c. chabaudi AS pRBC-reactive Ly-4-bearing T cells were maintained in vitro as lines 

in the presence of plasmodial Ag and APC and periodic boosting with IL-2 (Chapter 4). 

The stable lines were also cloned by limiting dilution to generate malaria-specific Ly- 

4 + clones that were then maintained in the same fashion (Chapter 4). All these 

populations have been characterised in vitro for their proliferative responsiveness, 

lymphokine secretion and helper activity (Chapters 4 & 9), studies which have provided 

ample indirect evidence for the participation of the Ly-4+ subset of T lymphocytes in 

protective immunity to P. c. chabaudi AS. Similar analyses have been performed on 

human T cells responding specifically to asexual blood stages (Sinigaglia & Pink 1985, 

Chizzolini & Perrin 1986, Sinigaglia M a i  1987, Pink M a i  1987, Simitsek M a i

1987) or gametocytes (Good M a i 1987 a) of P. falciparum found to be present in the 

peripheral blood of individuals with or without previous exposure to malaria. An 

advantage of studying murine models of malaria rather than P. falciparum directly is 

that it allows adoptive transfer experiments to be performed, which, for ethical and 

practical considerations, may not be permitted in humans. The undertaking of the 

adoptive transfers described herein demonstrated unequivocally the protective activity 

in vivo of selected TH1 and TH2 populations of P. c. chabaudi AS-specific Ly-4+ lines 

(Chapter 5-8) and clones (Chapter 9). Inoculation of uncloned preparations of Ly-4- 

bearing cells into challenged mice showed that such lines were able to confer enhanced 

immunity to naive mice (Chapters 5 & 6) and selectively lymphocyte-depleted 

recipients (Chapters 7 & 8) against P. c. chabaudi AS infection. Similarly, Brake M  al 

(1986) were able to protect both nude and sublethally irradiated mice against 

homologous challenge by the adoptive transfer of P. c. adami-reactive Ly-4+ lines. Upon 

cloning of these populations, it was found that only one of 10 clones could adoptively 

transfer protection (Brake M a i 1988), this clone belonging to the TH1 subset of Ly-4+ 

cells. In contrast, the present study showed that each of the four monoclonal populations 

of either TH1- or TH2-type were capable of conferring protection upon challenge of 

recipient animals with the same P. c. chabaudi AS isolate to which they had been raised 

(Chapter 9). For both these studies, the plasmodial Ags responsible for stimulating
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protective T cell immunity have yet to be identified. However, Good & Miller (1989) 

have argued that if non-specific effector mechanisms of acquired resistance can protect 

from blood stage malaria , one would think that most Ags capable of stimulating T cells 

would be suitable for vaccine design. Unfortunately, the finding of Brake £ la i (1988) 

using a P. c. adami model in which TH1 Ly-4-bearing lymphocytes play a primary role 

in recovery from blood-borne infection independent of Ab production (Weidanz & Long 

1988, Long 1988), suggests that this may not be true. The successful transfer of 

protection with all eight P. c. chabaudi AS-specific clones, however, would offer hope 

that it may not prove too difficult to identify and isolate malaria-reactive T cell 

epitopes. Analysis of these clones in vitro has revealed that whilst some are of the TH1 

subset and thus mediate protection by activating non-specific effector functions, others 

belong to the TH2 subset noted for providing help for specific Ab production. This 

finding is of particular importance for it shows that Ly-4+ lymphocytes of either type 

may confer protection against P. c. chabaudi AS infection, and thus indicates that TH2 as 

well as Tj_| 1 epitopes may be worth consideration for inclusion in a subunit vaccine 

candidate. As the immunogens included in such a construct should contain B cell epitopes 

as well as T cell-reactive antigenic sites, it would be hoped that either a single epitope 

would be recognised by both B and TH2 cells, or that once stimulated by different 

antigenic fragments, TH2 cells would amplify the induced Ab response. This possibility 

serves to illustrate the central role of the Ly-4+ or CD4+ T cell system for the induction 

and maintenance of protective immunity to malaria and should be taken into account in 

vaccine development.

With regard to the construction of subunit vaccines, the work presented here and by 

Brake £ ia l  (1988) has given credibility to this approach to vaccine design. In both 

studies, it was shown that a single Ly-4+ lymphocyte clone could transfer protection 

adoptively against challenge with a murine malaria parasite, either P. c. adami (Brake 

f i la l  1988) or P. c. chabaudi AS (Chapter 9). The inference that can be made from this 

is that the recognition by a T cell clone of the Ly-4+ phenotype of a single protective 

epitope expressed on the pRBC surface is sufficient to cause the induction of protective 

immunity against blood stage malaria infection. Due to the problem of MHC restriction 

of the immune response, for practical purposes, the identification of any one T cell 

epitope will be unlikely to be sufficient for vaccine development. Therefore, to be fully 

effective, an anti-malarial vaccine should contain several T cell antigenic determinants, 

at least one of which would be recognised by any given individual receiving the vaccine.
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The reason for the varying success of generating clones engendering a protective activity 

ill vivo is not clear, but may not necessarily be due to the recognition of non-protective 

pRBC determinants by most of the P. c. adami-specific Ly-4+ populations (Brake M a i

1988). Not only may differences in Ag processing between the situation in vitro and in 

vivo, or variation in lymphokine secretion profiles, provide plausible explanations of 

the differences in protection conferred by the various malaria-specific clones, so too 

may potentially critical differences in homing ability between the clones. Many in vivo 

studies have been hampered by the aberrant trafficking patterns of such cultured cells, a 

phenomenon which may be due, in part, to the loss of homing receptors from the 

lymphocyte surface membrane (Gallatin M a i 1986). These receptors are thought to be 

needed by lymphocytes in order to recirculate through the lymphatic system, a capacity 

which may or may not be required for their protective function. It may be, however, 

that there are critical antigenic determinants, the recognition of which is required to 

induce a Ly-4+ lymphocyte response. If this is the case, it would appear that all the £* 

c. chabaudi AS-specific clones recognised the same or different critical Ags (Chapter 9), 

whilst only a single clone raised against P. c. adami did likewise (Brake M a i 1988). 

Although this may suggest that there is a limited pool of suitable epitopes, it is still 

likely that there will be many different Ags that could successfully stimulate protective 

Ly-4- or CD4-bearing T cells.

Further characterisation of the protective Ly-4+ lymphocyte clones described herein 

and by Brake Mai (1988) is required to attain a better understanding of the host 

immune responses involved in acquired resistance to malaria. In particular, as T cell 

clones such as these provide a unique tool for the identification and characterisation of 

protective T cell-reactive epitopes, identification of the Ags to which these clones react 

is a major priority. The method which is being employed either currently or in the 

future to identify the Ags reactive to P. c. chabaudi AS and P. c. adami Ly-4+ clones is the 

screening of Ji-gt 11 expression libraries with specific T cells (Phillips, R.S., personal 

communication; Long, C.A., personal communication)(Mustafa M a i 1986). An 

alternative approach that could be used is that of the T cell Western blot, where a Ly-4- 

bearing clone is tested for reactivity to a panel of pRBC Ags separated on the basis of 

mass or charge (Lamb & Young 1987, Abou-Zeid Mai 1987). After identifying the 

protein that stimulates a given clone, it can then be used to immunise mice and to screen 

an expression library with the immune sera collected. When such Ags are identified in 

murine malarias, it may be possible to identify the homologous antigenic determinants of
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P. falciparum that could similarly induce a protective CD4+ lymphocyte response in 

humans.

A recent advance in vaccine technology has been the use of a live vector as a carrier for 

an anti-pRBC vaccine (Kumar & Miller 1990). The carrier used was a strain of

Salmonella typhimurium. SL3235, the virulence of which attenuates in v ivo , but

persists long enough in mice to induce immunity to a virulent strain of the same 

bacterium (Hoiseth & Stocker 1981, Killar & Eisenstein 1985). These properties lend 

this strain of S. typhimurium to being a vehicle to deliver recombinant Ags. In the 

experiments of Kumar & Miller (1990), despite the fact that immunity to the normally 

lethal P. vinckei could be achieved with live pRBC challenge and drug cure, 

immunisation of BALB/c mice with killed parasites with various adjuvants failed to 

protect recipients from live challenge. In contrast, immunisation with parasite Ags 

from killed P. vinckei pRBC in combination with attenuated S. typhimurium SL 3235 

induced a high degree of protective immunity. These results, and previous ones by this 

group (Kumar £ ia l  1989), suggest that induction of immunity against P. vinckei and 

other virulent malarias using this immunisation procedure requires both the induction 

of Ly-4+ T cells and certain splenic modifications of either parasite or carrier origin 

that occur during infection. Kumar & Miller (1990) proposed that successful 

vaccination against asexual stage malaria parasites may require a combination of 

plasmodial Ags chosen to stimulate a protective Ly-4+ response, and an agent which 

could have a similar modifying effect on the host spleen as does malarial infection. 

Although studies to date have used P. vinckei. the ultimate aim of such research is to 

engineer a vaccine comprising an attenuated strain of Salm onella expressing JL. 

falciparum pRBC genes that may induce the protective immunity and splenic changes 

necessary to provide protection for vaccinated humans.
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APPENDIX A 

Isotonic Buffers

PBS

Stock solution

60.0 g Na2HP04.12H20  

13.6 g NaH2P04. 2H20

8.5 g NaCI

Made up to 1 I with distilled water.

0.9% saline

9.0 g NaCI

Made up to 1 I with distilled water

B . u l t e i  

40 ml stock

Made up to 1 I with 0.9% saline and adjusted to pH 7.2

Giemsa's stain

3.0 g Na2HP04 

0.6 g KH2P04

Made up to 1 I with distilled water and adjusted to pH 6.8
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APPENDIX B 

Media

RPMI

Stock

10.39 g RPMI 1640 powdered medium (with L-glutamine) (Gibco)

5.94 g N2-hydroxyethylpiperazine-N'-2 ethane sulphonic acid (Hepes) 

(Sigma)

Made up to 960 ml with distilled water, filter-sterilised (Millipore filter size 

0.22 pm) and aliquoted into 100 ml bottles.

Incomplete RPMI 

100 ml RPMI

4.2 ml 5% w/v NaHC03  (filter-sterilised)

2.5 mg gentamycin sulphate (Sigma)

Complete RPMI

90 ml Incomplete RPMI

10 ml FCS (Gibco), unless otherwise stated

Sterile FCS was heat-inactivated at 56°C for 30 min and stored at -70 °C until 

use.

All supplements to RPMI stock solution were added immediately before use.
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Minimal Essential Medium (MEM)

Slock

9.70 g MEM powdered medium (with Earle's salts, non-essential amino acids & 

L-glutamine) (Gibco)

5.94 g Hepes (Sigma)

2.20 g NaHC03

Made up to 1 I with distilled water (pH 7.2), filter-sterilised (Millipore filter 

size 0.22 pm) and aliquoted into 100 ml bottles.

Incomplete MEM 

100 ml MEM

1.0 mg (100,000 i.u.) penicillin-G (Sigma)

2.0 mg (200,000 i.u.) streptomycin sulphate (Sigma)

Complete MEM

90 ml Incomplete MEM

10 ml FCS (Gibco)

Iscove's Modified Dulbecco's Medium (IMDM)

Stock

9.60 g IMDM powdered medium (with L-glutamine) (Gibco)

5.94 g Hepes (Sigma)

Made up to 1 I with distilled water (pH 7.2), filter-sterilised (Millipore filter 

size 0.22 pm) and aliquoted into 90 ml bottles.

Supplement of 1% FCS (0.9 ml) (Gibco) before use.
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APPENDIX C 

Miscellaneous Reagents

Sorbitol-glycerol (for cryopreservation of parasites)

380 g glycerol (Sigma)

39 g sorbitol (BDH)

6.3 g NaCI

White cell diluting fluid

490 ml distilled water

10 ml glacial acetic acid (BDH)

Few drops crystal violet stain (Gurr, BDH)

Tris-ammonium chloride (for RBC lysis)

0.17 M Tris(hydroxymethyl)aminomethane (20.60 g/l)

0.16 M ammonium chloride (8.30 g/l) (BDH)

10 ml Tris added to 90 ml ammonium chloride and the 0.83% stock solution 

adjusted to pH 7.4.
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APPENDIX D 

Density Gradient Centrifugation Media 

Ficoll Hypaque

Stock

33.9% w/v Isopaque (Triosil 75)

20.0 ml Isopaque (Nycomed UK Ltd.)

23.9 ml sterile distilled water

9.0% w/v Ficoll

9.0 g Ficoll 400 (Pharmacia)

Made up to 100 ml with distilled water and autoclaved

Gradient

10 ml 33.9% Isopaque mixed with 21 ml 9% Ficoll, filter-sterilised and stored 

at 4 °C.

P erco ll

10 x PBS

40 ml PBS stock (see Appendix A)

48 ml 18% saline (18.0 g NaCI made up to 100 ml with distilled water)

12 ml distilled water

9Q% stock

90 ml stock isotonic Percoll (Pharmacia)

10 ml 10 x PBS

Sterilised by autoclaving and stored at 4 °C.
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Gradients

Dilutions Volumes .iml)

% Percoll 90% stock Incomplete RPMI 1640 (see Appendix B)

30 3 6

40 4 5

50 5 4
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APPENDIX E 

Recombinant Mouse lnterleukin-2

Quantity

10,000 BRMP units/vial

One unit of IL-2 bioactivity is that amount of IL-2 which is required to support 

half-maximal [3H] incorporation by CTLL-2 cells (the BRMP unit system is an 

interim standard for IL-2 bioactivity established by the NIH).

Eormulation

IL-2 was lyophilised from solution in sterile PBS containing 0.1% highly 

purified BSA

Reconstitution

Each vial was reconstituted in 1 ml incomplete RPMI 1640 medium. After 

reconstitution, the product was stable for 30 d at -70 °C.

APPENDIX F

Pierce BCA Standard Protein Assay

Slock

2 mg/ml BSA standard

Qihitiooa

Protein (no/mil Volume (ml)

BSA standard PBS

1500 0.375 0.125

1000 0.25 0.25

500 0.125 0.375

200 0.05 0.45
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APPENDIX G 

Anaesthetic Agents

Hypnorm (Janssen Animal Health)

10.0 mg/ml fluanisone (a neuroleptic of the butyrophenone group)

0.315 mg/ml fentanyl citrate (an analgesic of the morphine type)

Diluted 1: 10 with sterile distilled water for use, and 0.1 ml/30 g mouse 

bodyweight administered i.p.

Valium (Roche)

5.0 mg/ml diazepam

Diluted 1: 5 with sterile distilled water for use, and 0.2 ml/30 g" mouse 

bodyweight administered i.p.

The combined use of these drugs gave satisfactory pre-operative sedation and 

muscle relaxation for surgical anaesthetic purposes.
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