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SU M M A R Y

In this thesis the hierarchical stability and chaotic  motion of the classical few body 

system are studied, and then extended into the fram ew ork  o f the relativistic theory o f 

gravitation. Because o f the importance o f integrability to both hierarchical stability and 

Hamiltonian chaos, a general discussion is also given on integrals and symmetries using 

the m o d em  language o f differential geometry. The study of this thesis is closely related 

to the stability problem  o f  our Solar System and the mass transfer process of compact 

binary star systems. The approach carried out is both computational and theoretical.

The com putational part is a systematical investigation of the hierarchical stability  

(no drastic change in orbital elements or of the hierarchy) o f the general 3-body problem, 

in com parison  with the H ill-type stability. The im portance o f  eccentricity in relation 

to stability is manifest, and the complexity of the phase space structure and fractal nature 

o f  the boundary between regular and chaotic regions are reflected in this study.

The theoretical work is a continuation o f the investigations o f the effects o f integrals 

on possible motions. Using a canonical transformation method, a stronger inequality is 

found for the spatial 3-body problem, giving better estimation of the Hill-type stability 

regions. It is proved that a Hill-type stability guarantees one of the three hierarchical 

stability conditions. This classical study is then developed into an inequality method 

establishing restrictions o f symmetries (integrals) on possible motions. The method is 

first applied  to gravitational systems in general relativity and their post-Newtonian 

approximations.

The thesis is split into part I, a general introduction and discussion of the relevant 

methods, and part II, the original research and main body o f the thesis.

In chap te r  1 a general introduction to the problem  o f  the Solar System's stability is 

given, w ith  an em phasis on Roy's hierarchical stability and the divergence problem of 

classical perturbadon theory due to chaos.

C hap ter  2 is a review of the theory of Ham iltonian  chaos, presented at a level o f  

com prehending  chaos mathematically. The importance o f  number theory, infinite series 

and integrability to chaos is emphasised. The geometrical method o f studying nonlinear 

dynamical systems is introduced; classical perturbation theory is used to comprehend the 

K A M  theorem . Particular attention is paid to coord ina te-free  interpretation of the



integrability and separability conditions. In this chapter, a collection o f integrable and 

chaotic systems is given because o f their conceptual value to later chapters. Based on the 

Toda and H enon-H eiles Ham iltonian systems, a discussion is given on the general 

relationship o f a system to its truncated system. This suggests a similar situation for the 

geodesic motion in Kerr geometry.

Chapter 3 is the last chapter o f  part I on chaos. In this chapter we study the history 

of chaotic dynamics and its impact on science in general. Although it is standard to study 

quantization o f regular and chaotic motions, the present author pays particular attention 

to a philosophical compatibility between the theory of chaotic attractors and quanuim 

mechanics. Noting that the two revolutionary theories were born at a lmost the same 

time, and that Poincare was a contributor to both theories, the present author carries out 

a historical search for a possible mutual influence in the development o f  the theories. 

However, it is found that such a connection is surprisingly tenuous.

The original work is included in part II. The classical 3-body problem is studied in 

chapters 4 and 5; and the relativistic few-body problem is studied in chapters 6 and 7.

In chapter 4, we first review the previous approaches on the Hill-type stability o f the 

general 3-body problem. It is found that all results o f  previous studies are equivalent and 

do not go beyond a direct use o f  Sundm an 's  inequality. Z a re ’s (1976) canonical 

transformation study on the coplanar 3-body problem is modified and applied to the 

spatial problem, thus obtaining inequalities stronger than Sundman’s. These inequalities 

determine the best possible Hill-type stability regions for the general 3-body problem, 

although the critical configurations and the value o f (C2H)c cannot be improved. In this 

approach, it is found that the mom ent o f  inertia ellipse of the system m ay be used to 

simplify the calculation. Because o f  this, it is hoped that the same stronger inequalities 

m ay also apply to systems with more than three bodies.

On the other hand, Sundman's inequality is generalised in appendix B to facilitate a 

similar study of relativistic systems in chapters 6 and 7. It is also hoped that the stronger 

inequalities obtained in chapter 4 may be developed into an inequality approach so they 

can be applied to improve the results o f  chapters 6 and 7.

In chapter  5, we prove that a Hill-type stability guarantees hierarchical stability 

condition HS-(C). The general case o f a result concerning the primary, secondary and 

tertiary bifurcation values o f C2H, which was proved in a limited case by Walker & Roy 

(1981), follows immediately from our proof of hierarchical stability. Based on analysis



o f  the function C 2H, we were able to establish several upper bounds for the value of otc, 

thus proving that no cross-over of orbit could occur if a system is inside the Hill-type 

region. T he  p roperty  o f  C 2H is also used to obtain a correlated  variation in the 

sem i-m ajor axes and eccentricities o f  the two binary systems for coplanar hierarchical 

3-body systems.

In the same chapter, a systematic numerical experiment is carried out to investigate 

the hierarchical stability o f  the coplanar 3-body systems with initially elliptic orbits. It is 

found that the eccentricity is the most important orbital parameter indicating the stability 

o f  the system, and the introduction of eccentricities into the initial orbits drastically 

com plicates the behaviour o f  the 3-body problem. Stable systems fin the sense of all 

three conditions o f hierarchical stability) have been found to exist oi.twith the 1 lill-type 

region, and unstable systems exist inside it. New  com plicated  valley and plateau

structures are observed in the lifetime vs. initial a  plot. This is believed to be a reflection 

o f  the com plica ted  island structures o f  a general nonlinear system. A failure o f the 

elliptical C 2H  stability criterion is concluded.

In chapter 6, we introduce the coordinate-free language o f  differential geometry and 

m ake a general discussion on symmetries and conserved quantities in general relativity. 

Because o f the key role played by integrals in the study of both hierarchical stability and 

chaos, we go into some detail in this general investigation. New forms o f integral 

conservation  laws were found for general systems; and a relationship is found for 

geodesic m otion between the Poisson bracket o f  a class of integrals and the Lie bracket 

o f  Killing vectors. The classical Sundman inequality is applied to geodesic motion in the 

Schwarzschild  geometry to obtain the standard bounded motion results, thus providing 

the first successful example o f  generalising the inequality method to general relativity.

In chapter 7, we apply the generalised inequality method to investigate restrictions on 

possible motions by symmetries. Although the study in the general case is not complete, 

we were able to obtain some new relations and analyse the difficulties. An application to 

the post-N ew tonian N-body problem yields useful results. In the 2-body case the result 

is satisfactory. In the 3-body case, the relations are good enough to show the existence 

of bounded motion, however, they are to be improved by future work.

The contents o f  chapters 6 and 7 have been accepted for publication by the journal 

G en era l  R e la t iv i ty  a n d  G ravita tion  under the titles S ym m etr ies  of space-tim e, 

Conservation Law s and Forbidden Motion, Part I. General Discussion; Part II. Bounded



Motion o f  the Post-Newtonian N-Body Problem.

The com putational results o f  chapter 5 have been accepted for publication in 

Predictability, Stability and Chaos in the N-Body Dynamical System,  in the N ATO  ASI 

Series.

The results of chapter 4 have been submitted to the journal Celestial Mechanics  with 

the title An Alternative D eduction o f the Hill-Type Surfaces of the Spatial 3-Body 

Problem.

The results o f  sections 5.1 and 5.2 are currently being rew ritten for publication.
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W e ought to regard the present state o f  the Universe as the effect o f  its preceding 

state and as the cause o f its succeeding state. — - Laplace

It is the nature o f  m athem atics  to pose and to solve problem s; there was no 

possibility o f  never knowing. In mathematics there can be no ignorabimus. --- Hilbert

CHAPTER 1

Introduction to Solar System Dynamics

Will the present configuration o f  the solar system be preserved for some long interval of 

time? Will the planets eventually  fall into the Sun or will some o f  the planets recede 

gradually from  the Sun so that they no longer belong to the Solar System ? Will any 

planet approach another planet and form a binary system revolving around the Sun like 

the Earth-M oon system or become more eccentric or more inclined to the ecliptic, and 

break the present configuration o f  the solar system? How were the satellite systems in 

the Solar System  formed in the past? Have the satellites been captured  during the 

passage o f the Sun through some aggregates o f cosmic rocks? Are the meteoric swarms 

really the remnants o f  comets? Are the gaps in the distribution of the semi-major axes of 

the asteroids and the gaps in Saturn's rings actually caused by gravitational actions, so 

that it is impossible for any small mass of particles to stay for a relatively long interval of 

time with the corresponding value o f  the semi-major axes? (Hagihara, 1957).

These are the questions likely to be raised by anybody when considering the marvels 

o f  celestial phenomena. Put more technically, is our Solar System stable? Seemingly an 

easy question, this has long been one o f the most acute problems in celestial mechanics. 

To many people this is a simple question, for it is but a system of 1+9 bodies interacting 

under the well-known laws o f  motion and gravitation, and it was Laplace (1749 - 1827) 

who said that given the present state o f  the Universe one can predict its past and future. 

Others, however, may regard the difficulty of the question as that no system found in 

reality is completely isolated from the uncontrolled influence of the environmental world. 

W ho knows the stability or future o f  a real system?



It is now  realised that the former group o f people are wrong, because even the 

dynamics o f  a system with only three bodies is not soluble analytically (Poincare, 1892) 

and  the ex is tence  o f  chaotic m otions in princip le  implies unpredic tability  when 

em ploy ing  num erical experim ents. On the surface the second opinion goes to an 

opposite extrem e (in fact Landau held the idea more or less like the former, while the 

young  F erm i the latter), however, both are based  on a single agreed intuition: 

theoretically speaking, a simple question such as the stability o f  the motion of a few 

bodies, if  the bodies were well isolated or if the influence of the outside woild was 

given, should have a simple answer. A simple system or a simple mathematical model 

should give simple phenomena and the comprehension of the complicated reality must be 

ach ieved  by understanding  enough simple specific cases (as was believed at the 

beginning o f  the century by eg. Klein and Sommerfeld). It turned out in the course o f 

history that such intuitive beliefs were false either due to oversimplified understanding of 

the problem or to the limit imposed on men by their time, for at a certain epoch only part 

o f  a particular problem could be grasped and was often taken as the whole.

Such in tuitions o f a simple and com prehensible nature have appeared in various 

forms in history and have been held by many famous scientists as the back-bone o f their 

life-long beliefs. For example, Fourier believed that every mathematical function, no 

m atter how  com plex, could be expressed as the sum o f  the basic simple sinusoidal 

functions. The investigation o f this idea lasted throughout most o f  the nineteenth century 

and involved many of the greatest m athem aticians of that time, including Dirichlet, 

Riemann, W eierstrass and Cantor. These successors o f  Fourier discovered what make 

his m ethods w ork and what might cause them to fail. It turns out that, through the 

celebrated works o f Poincare, these contributions are essential to an understanding o f the 

stability o f  the Solar System and they lie at the heart of the theory o f deterministic chaos 

(see later sections o f  this chapter and next chapter).

On the o ther hand, some beliefs of the simplicity and comprehensibility of Nature 

might still be justified by reality. A good example is Einstein's belief that Nature (in the 

sense o f its laws) is simple, beautiful and symmetric. Simple natural laws could be 

compatible with a complicated reality if they have rich complicated solutions (see chapter

3).
The m ain purpose o f the present thesis is to study the stability o f  systems with a few 

gravitationally interacting bodies like the Solar System, whose formulation is very easy. 

The thesis is div ided into two parts. In Part I, we review the recent progress made in 

u nders tand ing  the stability o f N-body system s and chaotic dynam ics  in general. 

A lthough m ost o f  the material in this part may be looked upon as standard, much 

original work and many ideas are included. For example, the present author attempts to

2



clarify some points such as the relation between separability and integrability which are 

often confused. Also discussed in this part (chapter 3) are the possibility o f  interpreting 

quantum  phenom ena using the notion o f strange attractors and the history of quantum 

m echan ics  in connection to that o f  chaos. Since this discussion deviates from the 

existing material, speculation does enter this p vt.

More original and conclusive work is inc1 uded in Part II, in which a specific kind of 

stability, hierarchical stability, is investigated both theoretically and numerically. In 

chapter 5, we prove a relation between hierarchical stability and Hill-type stability of 

3-body systems and investigate such relations in more detail by numerical experiments. 

In our experim ents,  phenom ena  not noticed before have been found. In chapter 4, 

stronger inequalities were established for the spatial 3-body problem and best possible 

Hill-type zero velocity surfaces are obtained. In chapters 6 and 7, the general relation 

between sym m etry, conservation laws and forbidden motion is discussed, based on 

which a first effort is made to generalise the Hill-type surfaces found in nonrelativistie 

celestial m echanics to the fram ew ork  o f general relativity and the post-Newtonian 

approximation.

In this chapter we first describe in section 1.1 the reality and phenom ena, namely, 

some o f  the relevant observations o f the Solar System from ancient times up to the 

present epoch. In section 1.2 the three fundam ental working theories (Newtonian 

m echanics, Einstein's relativity and quantum  mechanics) on the origin, stability and 

future o f  the solar system  are discussed. Finally in section 1.3, we summarise the 

successfu l explanations, open  questions and m ake an overv iew  o f  the relevant 

revolutionary concepts o f  the twentieth century mathematics such as fractal geometry and 

deterministic chaos.

1.1 T h e P h en om en a - O b served  S tru ctu res o f the Solar S ystem

The field o f  Solar System dynamics, namely celestial mechanics, studies the structures 

which exist in the Solar System, its possible dynamical origin, stability and future. In 

order to discuss the problem appropriately, it is useful to review some o f  the typical 

motions and basic structures observed in the Solar System. In addition to the fact that the 

motions o f  the planets are constrained to almost circular orbits on or close to a plane, the 

ec lip tic ,  and that the m o tions  are in the sam e direction , ie. p rog rade  (direct, 

co-rotational), the characteristic phenom ena also include the well-known Titius-Bode's 

law of the planetary orbits, com m ensurabilit ies  in mean motion, the condensation and 

gap feature in the distribution of the asteroids, the ordered motion o f the satellites and the

3
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JU PIT E R

TROJANS
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Figure 1.1 Orbits of the nine planets, (a). The orbits o f  the four inner planets.

(b). The orbits o f  the outer Five. (c). The orbits o f  the asteroids. 

(Taken from Baugher, 1988)



ring systems.

K ep ler 's  L aw s

Johannes Kepler (1571 1630), from a study o f the mass o f observational data on the 

planets' positions collected by Tycho Brahe (1546-1601), formulated the three laws of 

planetary motion forever associated with his name. They are:

1. The orbit o f  each planet is an ellipse with the Sun at one focus.

2. For any planet the rate o f  description o f  area by the radius vector joining 

planet to Sun is constant.

3. The cubes of the semimajor axes o f  the planetary orbits are proportional 

to the squares o f the planets' periods o f  revolution.

Table 1.1 Planetary distance from the Sun (in AU)

Planet n
Distance from Sun (AU)

Eccentricity Inclination
Bode’s law Actual

Mercury _ oo 0.4 0.387 099 0.205 627 7.003 99

Venus 0 0.7 0.723 332 0.006 793 3.394 23

Earth 1 1.0 1.000 000 0.016 726 0.0

Mars 2 1.6 1.523 691 0.093 368 1.849 91

asteroids ? 3 2.8 2 .80

Jupiter 4 5.2 5.202 803 0.048 435 1.305 36

Saturn 5 10.0 9.538 843 0.055 682 2.489 91

U ranus 6 19.6 19.181 951 0.047 209 0.773 06

Neptune 7 38.8 30.057 779 0.008 575 1.773 75

Pluto 8 77.2 39.438 71 0.250 236 17.169 9

T it iu s -B o d e 's  L aw

O ne o f  the most striking manifestations o f order in the Solar System is found in the 

p lanetary distances from the Sun, the characteristics o f  which are shown in Table 1.1 

and Figure 1.1. It is seen that the mean orbital radii, rn , agree with Titius-Bode's law 

(found in 1766, Johann Titius 1729-1796, Johann Elert Bode 1747-1826) up to the orbit 

o f  Uranus, viz.

4



r n = 0 . 3 x 2 ” + 0 . 4  «  rn t | -  r „ = 0 . 3 x 2"

n = - ~ ,  0,  1, 2, 3 , .......

A lthough this law has not the same status as Kepler's  laws, it wus historically 

relevant particularly with the discovery o f a number of minor planets (asteroids), and it 

is related to com m ensurable  mean motions by Roy & Ovenden (1954). In addition 

similar laws can be found for the major satellite systems (Blagg, 1915; Roy, 1982, 1’5).

C o m n ie n s u ra b i l i t i e s  in M e a n  M o tio n

T h e re  e x is ts  in the S o la r  S y s tem  a rem ark ab le  n u m b er  o f  ap p ro x im a te  

c o m m e n s u r a b i l i t i e s  ( r e s o n a n c e s )  in mean motion between two or more bodies in

the planetary and satellite systems. If the mean angular velocities are denoted by co =

{CO},...... , con } and a set o f  non-vanishing integers denoted by k = { k j ,  ........, k n },

then the commensurability condition may be written as

< k , co > = I  (ki C0j) = 0.

For example, if C0j, cos , coN and C0 p are the mean motions in degrees per day of 

Jupiter, Saturn, Neptune and Pluto respectively, then

CDj = 0.083 091. cos = 0.033 460. coN = 0.005 981. cop = 0.003 979. 

<{2, - 5 },{coj,cds }> = - 0.001 118. <{3, -2},{coN,cop }> = - 0.000 025.

One o f  the triple commensurabilities is among the mean motions of three satellites of 

Jupiter; Io, Europa and G anym ede. In the same units the mean m otions and triple 

commensurability are

coj = 203.488 992 435, coE = 101.374 761 672, coG = 50.317 646 290, 

<{1, -2 ) ,{coi ,coe }> = 0.739 469 091, <{ 1, -2 ) ,{coE,coG}> = 0.739 469 092, 

<{1, -3 ,  2 },{coi ,cde ,G)g }> = 0.000 000 001.

C orresponding to this rem arkable commensurability in the mean motions o f  the 

satellites, there is an equally exact one in their mean longitudes, viz.

< ( i , - 3 ,  2},{CI. e E, e G)> = 180°.

This is called a c r i t ica l  a r g u m e n t .
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An example of resonances involving more elements is the well-known Saros found 

in the motion o f the Moon, on which more information is given in Roy (1973, 1982).

In fact, for any set o f  given numbers (here, mean motions) there always exists a set 

o f  non-vanishing intergers which can satisfy the commensurability condition arbitrarily 

closely. H ow ever,  it was shown by Roy and Ovenden (1954) that, if the integers are 

limited to small ones, the occurrence o f  approximated commensurable mean motions is 

higher than naturally possible (cf. KAM  theory, small divisor).

Note. For any two numbers {a], 3.2 ), there always exist two rationally independent

non-zero integers {kj, k 2 } such that (aj/a2  - an<̂  < k , a > both arbitrarily tend

to zero. H ow ever ,  care must be paid to the fact that the two expressions are not 

equivalent, since the value o f the k's are allowed to go to infinity. In fact, the former is a 

necessary, but not sufficient, condition for the latter; thus there are more k's satisfying 

the former relation than the latter one. This is evident from a simple example: for the

rational num ber 1/3 = 0.333..., the first relation can always be made arbitrarily small 

(below 0.0 ... 04) by the sequence o f  rationally independent integers {3 ... 3, 10 ... 0},

whereas for the same numbers the second relation equals to a constant, 1/3. 

D istr ib u tio n  o f  A stero id s betw een  M ars and J u p iter

The minor and major planets are divided by the asteroid belt centred on 2.8 AU from the 

Sun, and the majority o f the small bodies are distributed in the range 2.2 - 3.2 AU. 

Shown in Table 1.2 are a few important ones out o f  the thousands of these small bodies. 

It is seen that the eccentricities and inclinations o f the asteroids tend to be much higher 

than those o f  the planets but they are all in direct orbits.

H ow ever,  let us pay more attention to a more interesting phenom enon in the 

distribution o f  orbital radii shown in Fig. 1.2. The structures existing in the distribution 

o f  the asteroids in relation to commensurabilities has caused much curiosity for a long 

time and is still attracting active research.

O n the one hand there are the obvious breaks avoided by the asteroids, known as 

Kirkw ood gaps after their discoverer. These distances correspond to mean motions that 

are com m ensurab le  with that o f  Jupiter, the main disturber o f the asteroid orbits, 

nam ely, 1:2, 1:3, 2:5, 3:7 and so on. On the o ther hand, there is an accum ulation of 

asteroid orbits near the com mensurabilities o f  2:3, 3:4 etc. Finally the Trojans, first 

discovered by Lagrange (1736 - 1813), may be said to be a special case of condensation 

close to commensurability 1:1.
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Table 1.2 Some important asteroids

Asteroid Year of 
discovery

Diameter
(km)

Semi-major 
axis (AU)

Eccentricity Inclination

1 Ceres 1801 946 2.77 0.08 10.6

2 Pallas 1802 583 2.77 0 .23 34.8

3 Juno 1804 249 2.67 0 .2 6 13.0

4 Vesta 1807 555 2.36 0 .09 7.1

10 Hygiea 1849 443 3.14 0 .12 3.8

433 Eros 1898 20 1.46 0 A 2 10.8

1566 Icarus 1949 2 1.08 0 .83 22.9

1862 Apollo 1932 7 1.47 0.56 6.4

2102 1975YA 1975 1.29 0 .30 64.0

2363 5.13 0.04 32.8

2146 5.22 0 .10 38.1

1869 Philoctetes 1960 5.31 0 .06 3.4

M otion  o f  O th er S m aller  B odies

In ad d i t io n  to the g en e ra l ised  Bode 's  law for the sa te l l i te  sy s tem s  and 

commensurabilities mentioned above, the mean motions o f the satellites are found to be 

related to the spin periods o f the planets. The rings of Saturn are easily observed, with 

the gaps showing a correspondence with distances at which the orbital periods around 

Saturn are some simple fraction o f  the periods of some of its inner satellites. While most 

objects found in the Solar System follow direct orbits, retrograde orbits are found in the 

satellite systems o f Jupiter and Saturn.

The m otion o f  com ets  and m eteors is also o f some interest; in particular, o f  

dynam ical interest are close approaches (encounters) o f  such sm aller bodies with 

planets. For example, the orbit o f  Brook's comet was markedly changed by the action of 

Jupiter (see Roy, 1982). Before its encounter with the planet on July 20th 1886, its 

period o f revolution about the Sun was 29.2 years, its orbit lying outside Jupiter's. After 

encounter, its per iod  changed  to 7.10 years, while its orbit shrank in size to lie 

completely inside Jupiter's orbit.

The study o f  such close encounters is important to the capture theory o f the origin of 

the solar system, satellite systems and Pluto. For more detailed descriptions see Moore 

(1988), B augher  (1988) and D orm and & W oolfson (1989). For a d iscussion of 

dynamical capture theory see eg. Leimanis & Minorsky (1958) and Tanikawa (1983).
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B in ary  an d  M u ltip le  H ierarch ica l S ystem s

In contrast  to motions found in the solar system, stellar m otions may appear more 

random  and uncorrelated. H owever, this is not the case. In addition to the large scale 

super-structures, more than half o f  the stars are found to be moving in binary systems, 

in which the members may be separated so far from each other that their orbital periods 

m ay be hundreds o f years; in other cases the two stars are almost in contact, distorting 

each other's shape by tidal pull, sharing a com m on atmosphere or transferring material 

from one component to the other.

T he proportion o f triple and higher systems is also reasonably large, lying between 

one-quarter  and one-third o f  all stars (see Roy, 1982). In studying the motion o f  such 

sys tem s and  the ordered m otion in the solar system, E vans’s (1968) hierarchical 

approach  is found useful. In fact, the stability o f  such hierarchical systems has been 

studied by W alker (1980) and M c Donald (1986), and is also the main subject o f  the 

present thesis.

In this connection the work o f Heggie (1975) is worth mentioning. He found that 

binary and multiple systems can be formed dynamically in classical many-body systems. 

H ow ever ,  this m echanism  does not produce such systems in sufficient num bers to 

match the observed proportion.

S u m m a ry

In this section some o f the characteristic motions and most important features of the solar 

system  have been summarised. The theories that may be used to supply satisfactory 

explanation o f  such features shall be mentioned in the following sections. However, it is 

im portant to note that no theory is an absolute reflection o f truth, and its origin and 

developm ent rely heavily on the observed phenomena.

In fact the origin and developm ent o f N ewton's laws of motion and gravitation 

depended  heavily upon the careful observations by Brahe and Kepler. The test o f  the 

theory needs more accurate observation over longer time periods and it is worth noting 

that an accurate test o f  the theory is not possible at present since many of the bodies have 

only been discovered and traced relatively recently; in fact Pluto has only covered half of 

its orbit since its discovery in 1930 (see eg. W alker et al, 1980).

1.2 T h e T h eo r ies  - N ew ton 's L aw s o f M otion  and G ravita tion

The problem  o f  the motion o f celestial bodies and objects on the Earth has stimulated



much curiosity and speculation. As mankind is necessarily limited by personal activity 

and movements, the sensation of space came to man (either individual or society) earlier 

than time, and an Earth-centred universe was an almost obvious 'truth' held for a long 

time. W hile a normal man is bom  with sight, hearing and other sensation to feel the 

length, width and height o f  the 'universe',  the realisation o f time needs a conscious 

observation o f recurrent (periodic, almost periodic) phenomena. In ancient times the 

observation o f such recurrent phenom ena was inevitably mixed with art, religion and 

superstition; for example, the rise and set o f  the Sun, periodic motion o f the Moon, and 

more importantly, the relation o f  the motion o f the Sun to the periodicity o f  seasons, 

flood and field work. Therefore, the character of the civilisation of ancient times was that 

everything was correlated and o f  a unified 'God'. This was continued until the time o f 

Galileo (1564-1642), who was the main contributor to the modern scientific method o f  

reasoning and experiment characterised by the strategy 'divide and rule'.

O n the other hand the origin and development o f a scientific theory or method is 

almost always characteristic o f  successfully formulation and abstraction, which usually 

requires men to be creative, to bring some apparently irrelevant experiences together and 

pursue the principle o f  beauty, simplicity and economics. The historical development of 

Newton's law of gravitation is a very good example o f a successful formulation based 

on careful observations and creative intuition o f  seeing the com m on feature out o f  

apparently irrelevant events.

N ew to n 's  L aw s o f  M otion

At the time o f  Newton (1642-1727), the 'shoulders o f  the giants' were ready to be stood 

upon. In his celebrated work The Principia, Sir Isaac Newton proposed the three laws of 

motion by bringing together statics and kinetics:

(1). Every body continues in its state of rest or o f uniform motion in a 

straight line except insofar as it is compelled to change that state by 

an external impressed force.

(2). The rate o f  change o f m omentum of the body is proportional to the 

impressed force and takes place in the direction in which the force acts.

(3). To every action there is an equal and opposite reaction.

W hile  the third is independent,  the first two can be formulated into a unified 

mathematical equation, namely,

F = dP/dt = ma,
where the notation is standard. Based on this equation of motion, the theory of classical
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N ew tonian mechanics (both statics and dynamics) was established, and the origin and 

progress o f  the theory o f  calculus gradually followed.

N ow let us note that the power o f this formulation o f motion cannot be justified only 

at this level or remain at a level o f  philosophy; its power lies in its capability to be tested. 

M ost original theories share this property. How ever, the marvellous achievements o f 

Newtonian mechanics did also lead to false generalisations and enthusiasm (eg. ideas of 

Laplace and Hook). It is quite common in the history o f  science and in fact inevitable in 

any personal activity to lay aside situations where a theory does not work and remain 

enthusiastic  about where it works well. This is useful, but frequently, after many 

successes society and individuals tend to completely forget and remain blind to situations 

w here the theory is not valid (see the quotations o f  Laplace at the beginning o f this 

chapter).

In fact m ost o f  the problem s o f  'given force - find motion' are not com pletely 

solvable in closed form. Thus Newtonian mechanics is faced with the difficulty that it is 

purified out o f  a very small subset o f  simple facts (phenomena) and is solved by mental 

labour for a slightly larger subset, in which the theory is found to agree with some new 

facts, and thus the p ow er is shown. H ow ever,  the rem ain ing  large am ount of 

phenom ena are believed to be encompassed by the theory without any means o f testing 

since the theory cannot be solved nor com pared with the facts. Therefore the belief is 

faced with a serious drawback, but it is exactly due to this incompleteness that the theory 

is open to modification.

On a m ore technical level let us consider the difference between the configuration 

(physical, positional) space and state (phase) space. A configuration o f  a body is the 

position o f  it in space at a specific time, r(tQ); while a state of motion of a body is the 

position o f  it for some time interval, r(t), which is equivalent to knowing, for analytic 

m otions, all derivatives o f the position vector with respect to time at a specific time 

(according to Taylor expansion).

If a law o f  motion is, by assumption, an ordinary differential equation and capable of 

determ in ing  the state o f  motion, it could be o f  any order (zero, one, two, three or 

higher). H owever, a law of motion cannot be an O D E  of order zero (ie. algebraic), since 

this is just a direct description of the state of motion, thus not a useful theory; it cannot 

be o f  order one either since absolute motion (velocity) is meaningless, which had been 

realised well before Newton. Therefore the simplest nontrivial O D E must be of second 

order, like Newton's second law of motion. The problem is then why it should be the 

second order derivative rather than the third one that is related to 'force'. This is justified 

because 'force', a concept important to everyday life, is in fact defined as a second order
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derivative; whereas only in the case o f  slow motion, F is identified as the 'force' in 

statics. So we see that Newton's laws o f motion are purified from a rather limited class 

o f  motions analytic with time, with some implicit assumptions such as a continuous 

world and Galilean relativity; the approximate feature of the theory is also evident. Such 

m ethodology is also used in the foundation o f Einstein's relativity and wave (quantum) 

mechanics.

The state o f  motion, r( t) ,  during some time interval is de term ined  by a Taylor 

expansion and the recurrence relations of the coefficients. It tun s out that to find the 

state of motion defined by an n1*1 order ODE, it suffices to know the time derivatives of r 

at a specific time up to the (n - l ) lh order. Therefore, the initial value problem of the 

Newtonian mechanics is determined by giving initial position and velocity. This is why 

the space o f generalised coordinates and momenta is called the state (phase) space.

Because there are many a priori assum ptions and sim plifications in Newtonian 

mechanics, the theory was to be revolutionised by special relativity, general relativity 

and quantum mechanics, for which new fundamental concepts are needed. Because of 

the nonsolvability  o f the theory, a revolution completely  within the fram ework of 

Newtonian mechanics, namely, deterministic chaos, was also o f historical necessity.

N ew ton 's L aw  o f U n iversa l G ra v ita tio n

N ew to n ’s law o f  universal gravitation is one o f the m ost far-reaching  laws ever 

formulated, and is the basis o f  the studies o f  celestial mechanics and astrodynamics. It is 

based on the work o f Nicholas Copernicus (1473 - 1543), Tycho Brahe (1546 - 1601) 

and in particular Kepler's three laws o f planetary motion. Newton was the first to realise 

the importance and study systematically the three Kepler's laws. By using his laws of 

motion, he was able to show that the inverse square law of gravitation is the only law of 

force compatible with the three empirical laws of Kepler regarding motions of planets 

around the the Sun. The law is stated as:

Every particle o f  matter in the universe attracts every other particle of matter with a 

force directly proportional to the product o f the masses and inversely proportional to the 

square o f the distance between them. In other words,

F = Grr^rr^/ r2, 

where G is the universal constant o f  gravitation.

We note that the law o f  universal gravitation is a kind of two-body, linear law, since 

the interaction between any two of the m any (or infinity) bodies is com pletely
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independent o f  the existence of other bodies and the forces can be added by the linear 

triangle principle to form the resultant forces. This is another example o f many a priori 

assum ptions o f  Newtonian m echanics which were to be abandoned in the theory o f 

general relativity.

S u m m a ry

In this section we briefly discussed the main working theory in the studies o f  celestial 

m echanics,  N ewtonian mechanics, which enables the motion o f celestial bodies to be 

studied mathematically. Although in certain circumstances, the theories of relativity and 

quan tum  m echanics are also relevant, in practice, it is Newton's universal gravitation 

that dom inates the motion. Moreover the motion may often be modelled by that of some 

po in t-m ass  particles, with the influences o f  non-gravitational forces, the size and 

d istribution o f  mass in a body considered as perturbations. Therefore in the following 

section we shall discuss the ideal N-body problem.

1.3 S ta b ility  o f  the S olar S ystem  as an N -B ody P roblem

With New ton 's  laws o f motion and gravitation, the motion o f planets and asteroids may 

be treated as point masses interacting under mutual attractions only, this is a specific 

exam ple  o f  the classical N-body problem with one dom inating mass. The N-body 

problem m ay be defined by the following set o f  ordinary differential equations,

d 2R.  ^ G n i i
R i = - T7 i  = - I - r r R lj < U = 1 . 2  N)

d t  j . i  R
'I

R . . =
ij

R
• i R  = R - R

'i 1 i

where R, and rrij are the position vector o f  the ith mass point in an inertial reference 

fram e and its m ass respectively, while t is the time and G the gravitational constant 

which in the present thesis is taken as unity.

In this form ulation , the problem  of celestial m echanics is changed to find the 

solutions o f  this set o f  nonlinear ordinary differential equations. Although the 2-body 

problem  is solved, the 3-body problem poses a great difficulty. As a drawback even the 

restricted 3-body problem is not solvable in closed form, although the slightly different 

2-centre problem  is solvable. The solvability of the 2-body problem on the one hand and 

the nonsolvability o f  the 3-body problems on the other is due to the fact that there is only 

a limited n u m b er o f symmetries in the underlying space-time background. Therefore
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only a limited num ber o f  global isolating (uniform) first integrals may be used to 

facilitate solving the problem. Related with the solvability of the equations are also the 

singularity problems caused by possible collisions, for which the Cauchy existence and 

uniqueness theorem does not apply.

In connection with both aspects, the series expansion method (essentially Taylor and 

Fourier expansion) may be invoked and this, in fact, has been the main tool exploited to 

produce ephemerides and regularising transformations. However, difficulties have been 

encountered regarding the convergence of the series. It was not realised until the works 

o f  Bruns, Poincare, Painleve, Sundm an and Siegel that non-integrability  and real 

singularity are intrinsic problems o f the dynamics, for which divergence of infinite series 

is unavoidable rather than artificial (see eg. Siegel & Moser, 1971). It turns out that the 

previous belief o f  the integrability  and existence o f  convergent series solution was 

incorrect.

S in g u la r itie s  and R eg u la r iza tio n

O ne o f  the m ost obvious difficulties o f  the classical N-body problem  may be the 

existence o f  singularities in the differential equations caused by collisions between two 

or more bodies. When this happens the general existence and uniqueness theorem 

(sufficient conditions) does not apply; thus whether a solution exists or not is not certain 

from a mathematical point o f  view. It may happen that a solution does not exist at such 

singularities or exists but is not unique, because careful investigation shows that a 

singularity o f  a differential equation does not necessarily imply singular solutions. For 

simple examples the classical book by Stiefel & Scheifele (1971) should be consulted.

The s tandard  m ethod  o f  es tab lish ing  so lu tions through s ingu lar i t ie s  is by 

regularising transformations, whereby a change o f variables transforms the original 

singular equations to regular ones for which the general existence and uniqueness 

theorem applies. It was shown by Sundman (1912) that collision with either primaries of 

the restr ic ted  3-body problem s can be regularised. Solution can also be continued 

through non-simultaneous binary collisions in the N-body problem (eg. Wintrier, 1947); 

whereas not all collisions involving three (or more) bodies can be regularised (eg. Siegel 

and M oser,  1971) - they are real singularities in the sense that solutions at such 

collisions are necessarily singular in a topological sense. Furthermore, it may happen 

that a solution is singular but without any collision involved (eg. I^eimanis & Minorsky, 

1958, P97).

The singularity problems encountered in N-body problem and their regularization are 

not only of pure theoretical interest but also of computational value. For the references in 

this field Szebehely  (1967), Stiefel & Scheifele (1971) and Heggie (1974) must be
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referred to.

Gen eral  Perturbat ion theory

Under the limit that the many body problem, or even the two-body problem with at least 

one o f the bodies of arbitrary shape and mass distribution, cannot in general be solved in 

closed fo rm  for all time, various perturbation methods have been used to infer the 

characteris tic  behaviour o f  such systems. For example, for the motions in the Solar 

System such as the motion of a planet or asteroid around the Sun which is perturbed by 

another planet, or the motion o f natural and artificial satellites (treated as point particles'! 

in the field o f  a planet (treated as an extended body), the general perturbation theory can 

present satisfactory predictions about the motion o f the bodies for a finite time interval. 

In this theory, the motion o f the body under study may be formulated as the motion in 

the potential field, U q , of an integrable case and a perturbation potential, R, which is at 

least an order o f  magnitude smaller than U q. Thus the equation of motion may be written 

as,

d 2R /d t2 -  V (U 0+R), 

where U q is usually the potential function due to the point-mass 2-body problem.

The above equation may be equivalendy written as the so called Lagrange planetary 

equations, which determine the variation o f  the osculating elements (eg. Roy, 1982). 

The im portance o f osculating elements and the Lagrange planetary equations are often 

explained as a result o f  the smallness of the changes o f the orbital elements o f the Kepler 

problem due to the small perturbation. However, this often causes the misunderstanding 

that the L agrange equations are already approximate whereas they are rigorous. The 

m ore fundam ental aspects lie in that from the study of two bodies the coordinates and 

velocity components at any instant permit the determination of a unique set of six orbital 

e lem ents, and that the set o f  Delaunay elements, which are related to the classical 

elements by simple formulae, in fact forms a set of canonical variables. Therefore, the 

Lagrange equations are the equivalent laws o f motion written in a different coordinate 

system  (B ro u w er  & C lem ence, 1961). For future reference, we write down the 

equations, the proof o f  them may be found from most standard textbooks (eg. Stiefel & 

Scheifele, 1971). These references must also be consulted for more technical treatments 

on practical problems.
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L a g r a n g e ' s  p l a n e t a r y  e q u a t i o n s :  

2Va 3R
a = -

^ e  = -

I =  -

k  aM

1 -  e  aR _1_ / 1 - e 2 aR 
K e V a  aM + Ke v a 3co

1

KVa(T-e2)
~  + «  T 3 R  1  3 R

^ sinT^n.

M - K a

co = -

Q  -  -

- 3 / 2 +
2-v /a aR 1 - e 2 aR
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1 / 1 - e 2
Ke^i ' a

1

+
c t g l aR

KVa(1̂ e2) c")l

a(1 - e 2 ) si n I

aR
ai

where equals the sum o f  the two masses whose motion are under consideration, with 

the perturbation function R expressed in terms o f  the classical Keplerian elements (a, e,

I, M, co, Q), namely, the semi-major axes, eccentricity, inclination to invariable plane, 

mean anomaly, argument o f  pericentre and the longitude of ascending node.

C a n o n i c a l  e q u a t i o n s  in D e la u n a y  e l e m e n t s :

K4
3 £ ( L ,  G, H ; l , g , h )  = — ^  + R

2 L

d L / d t  = - 9 R / a i  [ d l / d t  = K4 / L 3 + a R / 9 L

d G / d t  = - 3 R / 3 g  j d g /  d t  = 3R/ 3G

d H / d t  = - 3 R / a h  [ d h / d t  = 3 R / 3 H

where the Delaunay elements (L, G, H; 1, g, h) are related to the classical elements by

j L = K V a  , G =  K V a ( 1 - e 2) , H = kV a(1  - e * )  c o s  I

jl = M , g  = co , h = Q

These two sets o f  equations describing the variation of arbitrary constants are in 

general nonlinear, nonintegrable ODEs, as are the equations in rectangular coordinates. 

Perturbation m ethods m ay be used to solve them  because of the sm allness o f  R in 

magnitude. Often such methods use successive approximations, such as the classical and 

secular perturbation theory and the averaging method. In fact, in transform ing the 

equations from rec tangu la r  coord ina tes  to the D elaunay canonical elem ents  and 

equations, we have just perform ed the preparatory procedure of putting the equations 

into action-angle variables in the classical and secular perturbation theory discussed in
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next chapter.

In the remaining part o f  this chapter the problems encountered in the perturbation 

m e th o d s  are briefly d iscussed. M ore deta iled  d iscussions on the occu rence  of 

resonances, small divisors, quasi-periodic solutions and chaotic solutions are postponed 

to the next chapter in the much broader context of Hamiltonian dynami s.

Fractal  Geometry  and the K A M  Theorem

Now  it is well realised that the 'domain o f a property' may not be defined by a simple set 

with  sm ooth boundary manifold, but rather o f  fractal feature (M andelbrot, 1977; 

Devaney, 1987; Feder, 1988). For example, let us take the simple mapping

Zn+i = Zn2 - C  with Zq = 0 ( or equivalently Zn+J = C'Z^i 1-Z^ ) )

where all the quantities are complex with C as a complex parameter. The question is very 

simple; as n —> infinity, for what values o f C does the mapping converge (respectively 

d iverge)? It turns out that the range o f  the convergence (divergence) property o f the 

m apping  cannot be described by a smooth boundary curve, although there is nothing 

w rong with the continuity nor the differentiability in the above mapping. This is the 

w ell-know n fractal Mandelbrot set (M andelbrot, 1983). This is a typical example o f  

simple questions with complicated answers. One can imagine the difficulties should one 

try to answer the question following a conventional method; one just lacks the notation 

to describe such a complicated boundary without the right notion for the solution to the 

problem.

In fact the above example is not artificial at all, it is found that the dom ain of a 

prescribed property is usually complicated in the parameter space. The property can be 

stability, equilibrium, convergence (divergence) and so on (see eg. Poston & Stewart, 

1978; L ich tenberg  & Lieberman, 1983). In the context o f  celestial mechanics, the 

topological methods and KAM theorem (named after Kolmogorov, Arnold and Moser) 

show that, in almost all nonintegrable systems, the properties of regular (periodic and 

almost periodic) and irregular (chaotic) motions are mixed in a very complicated way 

s im ila r  (not exactly) to that of the rational and irrational numbers. In phase space, the 

boundaries separating the two kinds o f solutions are o f  fractal feature (see Fig. 1.3). 

Only for regular solutions can the expansion method be used rigorously; the expansion 

method is not compatible with chaotic trajectories (functions, motions). Therefore, the 

divergence o f the series cannot always be justified by better expansions; this is an 

intrinsic difficulty.

The numerical integration method has been o f great importance. However, one needs
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to be aware o f the fact that the solution obtained on the computer may be quite different 

from  the real solution if the problem is in the chaotic region. Again only regular single 

trajectories are computable with satisfactory precision.

D e f in in g  C h a o s

C haos is well recognised by scientific society as a rule for dynam ical systems and in 

particular Newtonian mechanics. However, there is not an agreed definition for it. As is 

well know n, m odern  science does not always follow the old fashioned axiomatic 

formulation, but ra ther 'to define is to understand' (Poincare). Since chaos is one of 

many nonlinear phenom ena related to nonsolvability, nonpredietability and other limits, 

and is still a growing field not only digging in depth but also expanding in extent, its 

current status o f  not being universally defined should not be surprising. In the fol'owing 

w e give som e o f  the widely used definitions and point out their problem in order to 

comprehend the subject.

(1). Deterministic chaos is seemingly random and apparently irregular behaviour 

(solution, motion) o f  deterministic nonlinear dynamical systems, in contrast 

to smooth regular (eg. periodic) motions.

(2). Deterministic chaos is an intrinsic sensitive dependence on the initial conditions, 

exponential divergence o f neighbouring trajectories (solutions), or occurence of 

positive Liapunov characteristic exponents of solutions to ordinary differential and 

difference equations.

(3). Deterministic chaos is an aperiodic solution to deterministic system, or solutions 

with continuous Fourier spectra.

(4). Deterministic chaos always exists in (bounded) nonintegrable, nonlinear ordinary 

differential equations and mappings.

(5). Deterministic chaos is due to the existence of hyperbolic fixed points (or unstable 

conditionally periodic orbits), whereby the adjacent trajectories, close to each other 

but on different sides of the stable and unstable manifolds, may approach the 

hyperbolic point (or unstable conditionally periodic orbits), and then depart quickly 

on receding from the hyperbolic point (or unstable conditionally periodic orbits).

(6). Deterministic chaos is defined by area-filling trajectories on a 2-dimensional 

Poincare surface o f  section.

(7). Deterministic chaos is homoclinic and heteroclinic motions in conservative systems, 

and strange (chaotic) attractors in dissipative systems.

(8). Deterministic chaos fills fractal regions in phase space.

(9). Deterministic chaos is what happens in a system with a large number of particles
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(eg. a box of ideal gas) where the motion of every particle is governed in the strict 

sense by the deterministic laws of Newtonian mechanics; however, because the 

num ber o f  particles involved and the frequency of collisions are so large that a 

dynamical description becomes practically impossible, thus a transition to 

statistical laws is needed.

(10). Deterministic chaos is defined as sensitive responses to errors, perturbations, 

and nonpredictability, incomputability etc thus caused.

A few incomplete comments on the above tentative definitions on deterministic chaos 

is in order. The m ost obvious characteristic o f  them is that by chaos we mean the 

behaviour completely  intrinsic to determ in istic  dynamical systems such as the initial 

value problem s o f ordinary differential and difference equations, to which under very 

general conditions a unique solution exists for an arbitrarily long but not infinite  time 

interval. It is commonly held that the behaviour of such deterministic systems is simpler 

than that o f  a completely random or stochastic system; and the prediction o f its future 

behav iou r  based  on the present state o f  m otion is straightforw ard, if not trivial. 

How ever, the comprehension of generic chaotic solutions to such systems implies the 

futility o f such expectation.

In fact the first four statements are generally true descriptions of various aspects o f  

such deterministic chaos, with some underlying equivalence. However, none o f  them 

m ay be an ideal definition o f  chaos. The first is widely accepted by philosophers as a 

good definition because it uses the least exterior material and the most comprehensible 

language; the shortcoming of it is that the language is too descriptive, eg. a long periodic 

motion m ay seem irregular if observed in a relatively shorter time interval. The second 

needs m ore delicate specifications, although it does capture one o f the most important 

points o f  chaos. For example, it is well-known that solutions to linear systems may 

diverge exponentia lly  with time, but are not chaotic; moreover, the definition o f the 

Liapunov characteristic exponent needs much more careful specification (eg. Lichtenberg 

& L ieberm an, 1983, chapter 5). The third statement is probably a good definition for 

chaos in conservative systems, because periodic and aperiodic functions are very simple 

and  th eo re t ic a l ly  accura te  concepts; and in princip le ,  it is the m ost d irec tly  

com prehensib le  reason for the difficulties encountered in history related to chaos. 

How ever, in addition to its nonapplicability to linear systems, it may be blamed for the 

words being failing to convey all the beautiful aspects of the concepts. Furthermore, care 

must be paid not to confuse aperiodic functions with periodic functions o f arbitrarily 

long but finite period. The fourth statement says where to look for chaos; but it uses the 

very delicate notions like linearity and integrability, the determination of which cannot be
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done in general.

The sixth and seventh are true; but as is specified in the statements, they cannot be 

general definitions for chaos in other systems. The fifth is correct in em phasising the 

s ign if icance  o f  unstable period ic  solutions. H ow ever, the m echan ism  o f  quick 

divergence o f  neighbouring orbits is not appropriate; it must be interpreted in the sense 

o f  the seventh  statem ent where chaos is generated by hyperbolic points through 

hom oclinic and heteroclinic points. The eighth is true only for strange attractors in 

dissipative systems, although chaos also causes regular and irregular motions to mix up 

in all scales and the boundaries separating the two kinds of motions to be fractal fe d .

The last two statements shall be considered to be erroneous. The tenth makes the 

occurrence o f chaos a result o f  exterior influences, although the points stated arc 

important outcom es o f intrinsic chaos and structural instabilities. The error of the ninth 

statement needs particular attention, because it has been dominant in the ergodic theory 

o f  physical sciences. In statistical m echanics the H-theorem , which proves the 

non-decreasing  feature o f  entropy, relies strongly on the collision process. In fact 

collisions are not responsible for the ergodicity because the measure o f  the collision 

manifold is zero in phase space (Siegel & Moser, 1971).

Therefore we will try to comprehend aspects of chaos without sticking to a particular 

definition. W e would not even attempt to do that because we would like to leave the field 

open for new  nonlinear behaviours to be included in the future, although not all 

nonlinear phenom ena can be explained by the notion o f chaos.

Planetary  Mot ion  by L arge- Sc ale  Numerical  Integrat ions

Numerical experiments are essential in science nowadays due to the speed and accuracy 

o f  solution; it offers a very quick way o f seeing the otherwise impossible results. 

Numerical results may be used to test theory. Moreover, some of the theoretical research 

must be guided by numerical results, especially when the behaviour of a system is too 

complicated to be achieved analytically. In celestial mechanics, the ODEs in rectangular 

coordinates or the Lagrange planetary equations may be integrated directly on the 

computer, because on the one hand the perturbation theory is not always applicable in 

the sense o f  rigorous mathematics, and on the other hand the actual calculation involved 

is too large, especially when the classical mixed variable transformation is used. In fact, 

analytical research and computational research progress in a parallel way. Moreover, 

when the perturbation is too large, as is often required in a theoretical approach, the 

perturbation method does not lead to very interesting results.

Thus the stability o f  the Solar System cannot be answered by perturbation theory 

whose convergence is questionable; the sufficient conditions for stability required by the
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K A M  theorem  are also too restrictive. H owever, special perturbation theory may give 

som e hints in such cases. Num erical experim ents  are now usually used in celestial 

m echanics for large scale prediction or systematic investigation. For example, in the 

work o f  Cohen et al (1972), the orbits of the outer planets are calculated up to 1,000,(XX) 

years cen tred  at the epoch, January 6 o f  1941. In the L O N G ST O P  consortium , the 

m otion o f  the outer planets was com puted forward and back in time over a total o f  10s 

years. N ew  results such as com m ensurable mean motions are still being confirmed and 

observed. For a more detailed account see Roy (1988).

mm.

m

m

Fig. 1.4 The Jacobian vectors of the N-body problem

R oy' s  Hierarch ical  Stabil ity and Hil l -Typ e Stabil i ty

It is well know n that whether the motion o f a system is stable or not depends on how 

stability  is defined. The very natural L iapunov stability is not useful for practical 

interests, because even the Kepler motion is not stable in this sense. Poincare's orbital 

stability is o f  great value in theory, but from the history o f  celestial m echanics and 

dynam ics the condition o f such stability is too hard to be established for a practical 

problem . O ther  stability worth m ention ing  in this connection is Poisson stability, 

Laplace stability and Hill stability, which are related with some of the geometrical studies 

o f  Poincare.

An N-body system is stable in the sense o f Laplace if neither escape to infinity nor 

collision happens; whereas it is stable in the sense of Poisson if the system repasses to

20



the initial situation infinitely often. Hill stability is defined for the circular restricted 

th ree-body  prob lem  if the zero-velocity  curves close to trap the motion o f the 

in fin ites im al body. The E arth-M oon-Sun system  is stable in this sense o f  Hill 

(Szebehely, 1967; Roy, 1982).

Very recently much work has been done investigating stability in the sense o f Roy's 

hierarchical stability. This stability will be studied further in the second part o f  this thesis 

especially in the case of three-body problems. Like the Lagrange and Poisson stabilities, 

this stability again seems very simple; however, a complete answer is not so simple. The 

theore tical  reason  o f  choosing  this stability to study is due to the successful 

generalisation of the Hill-stability to general three-body problem recently (see chapter 4).

Hierarchical stability (hereafter HS in short) was defined by Walker & Roy (1983) in 

connection with the so called Jacobian coordinate system. A dynamical N-body system 

is held to be HS if, during an interval of time substantially longer than the periods of 

revolution o f  the bodies in the system, the following conditions hold:

HS-(A). none o f the bodies escapes to infinity from the system;

HS-(B). no dramatic changes occur in any orbit's size, shape or orientation to the 

invariable plane o f the system.

HS-(C). pj < pj for any i < j, where p i = I pj I (i=2, 3, ... , n), being the Jacobian 

vectors which connect the barycentre o f  the first (i-1) masses and the i^  mass 

(see Fig. 1.4).

These conditions will be referred to as stability conditions HS-(A), HS-(B) and 

HS-(C) respectively. W hen anyone of them is not satisfied it will be referred to as 

instability condition A, B or C. This stability will be investigated in detail in chapter 5.

S u m m a r y

Although the motion of the bodies in the Solar System and its stability, as was quoted at 

the beginning  from H agihara, has not been answered by dynam ical theory; much 

understanding and progress have been achieved by the N-body model. To sum up the 

success o f  the N-body model in answering the stability o f  the Solar System  and 

questions remaining open, Roy's (Roy, 1982, chapters 1 and 8) formulation o f stability 

of Solar System as an N-Body problem shall be quoted. Roy presents a list of questions 

which reasonably focuses the attempts made in the field of celestial mechanics, viz.
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(1). How old is the solar system ?

(2). Does the distribution o f planetary orbits alter appreciably in an astronomically 

long time?

(3). If  so, do the orbits alter slowly; or can sudden far-reaching changes occur in 

one or more o f  the planetary orbits, even to the extent of planets changing their 

order from the Sun or colliding ?

(4). If the Solar System is stable and only slowly evolving, is this due to its 

present set-up with almost circular orbits, low inclinations, near- 

commensurabilities in mean motion and direct orbits ?

(5). Are the retrograde outermost satellites of Jupiter and Saturn captured asteroids?

(6). Are most o f  the other satellite orbits stable over astronomically long intervals 

o f  time, even if tidal action is taken into account ?

It appears that the most successful theory which has been used in answering the 

above questions is the theory o f chaos. The advance made in this field will be reviewed 

in chapter 2, where we actually paid attention to chaotic dynamics in general. In chapter 

3 we investigate the historical influence on each other in the developm ent of chaotic 

dynamics and quantum mechanics.

In Part II o f  this thesis we will discuss in detail the hierarchical stability and Hill-type 

stability o f  the few-body problem. Compared with the theories reviewed in Part I, the 

attempts o f  Part II only has a limited power towards an answer to the above questions. 

However, many interesting results have been obtained in this field. In chapter 4 we have 

modified the previous approaches and obtained stronger inequalities governing Hill-type 

stability regions o f spatial 3-body problem. Chapter 5 is a numerical exploration on the 

hierarchical stability of the coplanar 3-body problem. In chapters 6 and 7 we discuss the 

relationship between symmetries and conservation laws in general relativity, and make a 

first attempt to generalising the classical study into the framework of general relativity.
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It may happen that small differences in the initial conditions produce very great ones 

in the final phenomena. A small error in the former will produce an en o rm o u s  error in 

the latter. Prediction becomes impossible, and we have the fortuitous phenomenon.

— Poincare

No significant formal system can ever be strong enough to prove or to refute every 

statement it can formulate. --- Godel

CHAPTER 2

Stable and Chaotic Behaviour in Hamiltonian Dynamics

In the last chapter  we briefly described the physical and astronomical phenom ena o f 

heavenly bodies and the fundamental theories relevant to their motion; stress is laid on 

particular cases in the Solar System. The successful explanations of such phenomena by 

Newtonian mechanics and the difficulties encountered in the classical N-body model are 

review ed, with an emphasis on the generic behaviour o f  chaos and its effects in both 

continuous and discrete dynamical systems.

In the present chapter, we will give a deeper view of chaotic (or resonant, nonlinear) 

dynam ics  and in doing this we consider all three revolutionary physical sciences o f the 

cen tu ry  (nam ely  relativity, quantum  theory and chaos). A d iscussion about the 

re la tionship to statistical mechanics is not included. This is not solely a review of the 

existing literature on the subjects which has received much popularity in the past several 

decades, but also a collection of the author's own opinions. Most o f  the material is not 

presented completely, nor is intended to be mathematically rigorous, but in a way to help 

com prehend  the problem mathematically. Nevertheless, com pared with the following 

chapter, the content o f  this chapter is closer to standard material; and many confusions 

often occurring in textbooks are clarified.

The chapter begins with a selected discussion on the theories of numbers, functions, 

differential equations and convergence of infinite series (section 2.1), followed by a 

sum m ary  o f  Lagrangian and Hamiltonian mechanics (section 2.2). Integrability and
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separability are discussed in more detail in section 2.3 because o f  their importance to 

chaos; emphasis is laid on the coord in ate-free interpretation of such concepts. In section

2.4 perturbation theories are outlined to comprehend the problem of small divisors, the 

possibility o f  chaotic motion and convergent method to establish quasi-periodic motion. 

T he geom etr ical  m ethod and K A M  theorem are included in section 2.5; chaos in 

Hamiltonian systems is discussed using Poincare's  surface o f section. The chapter is 

c o n c lu d e d  by a personal co m m en t  on the im p lica t ion  o f  the o ccu rrence  o f 

com m ensurable  mean motions in the solar system (section 2.8) suggested by Roy & 

Ovenden (1954).

In the discussion, effort is made to stress the importance o f the few-body problem 

and the m odern geometrical notion on manifolds. Although a detailed discussion on 

chaotic attractors in dissipative system is out of context, a collection o f such mappings 

occupying some significance in history and still under active investigation is presented in 

section 2.7. Characteristic features o f  chaos in both area-preserving m appings and 

dissipative mappings can easily be observed by putting them onto a computer.

2.1 In troduct ion  to Ordinary  Differential  Equations  and Ma ppings

It is usually remarked that the nineteenth century was the century o f linear dynamics, 

w hereas the twentieth century that o f  nonlinear dynam ics. As a result o f  historical 

inertia, even nowadays, scientific society living at the closing page of the century is still 

satisfied with the simple solutions inherent to linear systems, which are often easily 

distinguishable from stochastic phenomena. However, along the track of mathematical 

astronomy, it was already shown by the end o f the last century by Poincare (1892), and 

early this century by Birkhoff (1917, 1920, 1927) followed by the work o f Siegel and 

KAM , that nonlinear systems can produce in principle not only simple regular  (ie. 

conditionally periodic, as is used by Wisdom, 1987, Binney et a], 1987) solutions but 

also very irregular (ie. aperiodic) solutions which appear to be random. This kind o f 

chaotic solution, together with fractal geometry, has caused popular attention after being 

rediscovered from experiments (Lorenz, 1963) and made visualisable by the advent of 

the com pu te r  (eg. Henon and Heiles, 1964; H enon, 1965-70; Henon, 1969, 1976; 

Greene, 1979; Chirikov, 1979). Since then, chaotic dynam ics has found its increasing 

application in various fields from engineering to biology and econom ics (Stewart, 

1989).

Yet, chaotic dynamics and fractal mathematics are still growing subjects, and a great 

number o f  articles and literature have appeared to convey these new sciences to both the
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academic and public worlds. In this literature, much attention has been drawn to the fact 

that s im p le  dynam ica l system s such as the lo g i s t i c  m a p p i n g  can  p roduce 

excep tiona lly  com plicated phenom ena, im plying the possibility  that phenom ena 

previously taken to be stochastic may in fact obey certain underlying deterministic laws. 

How ever, the more fundamental root o f the 'simplicity producing com plexity ' rule is 

re spec ted  in this chapter. Indeed, what occurs in chaotic dynam ics  and fractal 

m athem atics  is very similar to the well-known chess-board gam e story. By simply 

placing one grain on the first square, two on the second, four on the third and so on, one 

finally finds oneself in an astonishing situation. This is just a result of iterating on the 

sim ple num bers. Chaos and fractals are the outcom e o f  certain similar procedures: 

iteration o f simple well-behaved functions. Repeating a few simple operations on simple 

elements would not cause a qualitative transition and usually results in something that is 

conceivable without detailed analysis; while increasing the number of operations can lead 

to results so complicated that is ultimately beyond any straightforward intuition.

In an iterative procedure, the nature of the final state depends on how the generating 

structures accum ulate  under iteration and how fast this process grows. Usually  an 

infinite n u m b er  o f  iterations leads to qualitatively different effects. This  may be

dem onstra ted  by some very simple examples. If E n = x"1 + x '2 + ... + x~n, then it is 

easy to verify that the corresponding infinite series equals l /(x - l) .  The singular point of 

the finite series is at x=0 no matter how large n is, whereas that o f  the infinite series is 

shifted to x = l .  A second example is based on the observation o f  Fourier expansion: 

when the function is periodic, no matter how large the period is, it can always be 

expanded  in convergent Fourier series; however, if the period is allowed to go to the 

limit o f  infinity, namely aperiodic limit, then the function usually cannot be developed by 

Fourier analysis.

Let us observe that a discrete mapping in fact creates an infinite sequence, the 

periodic points  o f  the m apping being just the repeating elem ents in this sequence, 

whereas the irregular trajectories can be viewed as the irregularity o f  the sequence. 

Chaotic  solutions are just complicated solutions; while fractals are a kind of order 

existing in the structure of chaos or in the domain where some specific properties appear 

for the solution when viewed in parameter space. Therefore chaos and fractals are just 

phenom ena which exist in principle, with differential and difference equations being 

simply their generators; thus there must be a compatible way of describ ing them as 

functions.
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F u nct i ons  an d  Infini te Series

Co ntinuous  functions are fundamental in science. One o f their most useful subsets is 

the set o f  sm ooth  functions (continuous derivatives up to some finite or infinite order 

exist). In this thesis a finite num ber o f bounded discontinuities are allowed; thus with 

slight m odifica tion ,  results on functions w ithout d iscontinuities  are also true for 

piecewise (or sectionally) continuous and smooth functions. Functions whose Taylor 

expansions converge in the neighbourhood o f a point are called analytic at that point.

In physics it has been conventional to assume that functions are either (piecewise) 

smooth up to the required order or (piecewise) analytic. These assumptions are met by 

e l e m e n t a r y  algebraic  (in tegral ra tional, fractional rational and irra tional) and 

transcendental (trigonometric, exponential, hyperbolic and their inverses) functions and 

often by convergent infinite series built upon them. Non-elementary functions such as 

the Dirichlet function (that is, f(t) is 1 if t is rational and 0 if t is irrational) are usually 

taken as the exception since they are not well behaved. However, the recently recognised 

application o f  fractal geometry such as the Koch curve (eg. Feder, 1988) has shown the 

im portance o f  continuous but not smooth functions; the continuous but nowhere

differentiable Weierstrass function (infinite series) E  ( k ! ) ' 1 s in  [ ( k ! ) 2x] is no longer 

regarded merely as a mathematician's abstract construction o f minority counter-examples 

(Komer, 1988, P38). They are becoming increasingly important in application.

Even if  only the class o f  smooth functions is concerned, its difference from analytic 

functions is not critically sharpened. In fact, the associated Taylor series o f  a smooth 

function m ay converge but to a different function, or it may diverge for all points in the 

neighbourhood  o f  the expanding  point except at it; well-know n exam ples  o f  these

'exceptional* cases are the functions, for the former, e x p ( - l / x 2), and for the latter,

£ e ' kCOS(k2x )  defined in the domain [-1,1] (see Poston & Stewart, 1978, P44).

This po in t shows how narrow the class o f  analytic functions is, which is more 

obvious for functions o f  com plex  variables. This point should also be a warning 

towards solving ordinary differential equations by power series, in which m ethod a 

power series is assumed to be the solution of an ODE and substituted into the equation to 

determ ine the coefficients. Since the formal solution always satisfies the equation 

(Poincare, 1892), a convergent series is always a smooth solution. However, if the 

series diverge, it may be that there is no solution, or the series expansion is inadequate 

(though useful solutions can often be achieved by such inadequate methods), o r  the 

solution is smooth but not analytic.

For initial value problems, the existence and uniqueness of smooth solutions are 

assured by theorems established in more powerful ways other than by series expansion
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(eg. Roxin, 1972); therefore the first case is discarded in regular regions. In particular, 

in occasions when the boundedness o f  a solution can be established (eg. Davies & 

Jam es, 1966), a failure o f  the Taylor series m ethod should be concluded from  its 

divergence. It is also useful to note that the existence and uniqueness theorem is only a 

kind o f  local notion, since it is only established for infinitely small or finite time intervals 

in phase space. In general the interval is allowed to be arbitrarily large but not infinite. 

M oreover,  the convergent successive procedures for constructing solutions is also 

limited to such a finite interval. This is not contradicted by the d ivergence o f  the 

successive procedures for solving the Lagrange planetary equations, because the method 

is applied on an infinite time interval. However, when the system is linear, the theorem 

becomes global in the sense that a unique solution exists and may be constructed by a 

suitable iterative method in the whole phase space for an infinite time interval.

Taylor and Fourier series are often used in solving initial value problems. However, 

neither is compatible with the existence and uniqueness theorem: smooth solutions are 

not always analytic; whereas a Fourier series imposes periodic restriction on solutions. It 

is usually rem arked by celestial mechanists that Fourier analysis has an advantage over 

Taylor expansion in the sense that the former is valid over the whole real line, while the 

latter only in the vicinity o f some points. However, this is not always true. Taylor

expansion can sometimes also be valid over the whole real line (eg. e x, sinx, cosx); 

whereas Fourier analysis is also only a local treatment, because periodic functions over 

the whole real line are in fact a repetition of a local property. When the period is taken to 

an infin ite ly  large limit, the above local property in a period cannot be arbitrary; 

o therw ise a divergence occurs in a Fourier analysis. Therefore there is no universal 

infinite series (nor procedures) valid for all smooth functions defined on (-00, +“ ), not 

to mention all continuous functions.

This point is important in order to see why the Fourier series solution o f the N-body 

problem should in general diverge as was studied in detail by Poincare (1892). To see 

this let us argue that a nonlinear ODE must in general have both quasi-periodic and 

aperiodic solutions. The case with all solutions quasi-periodic must be very atypical, 

because aperiodic solutions exist even in linear OD Es such as the well known M athieu  

e q u a tio n  (eg. M cLachlan, 1947; Jordan & Smith, 1977), although in general this 

aperiodicity does not mean chaos. Secondly, from intuitive observation, both (almost) 

periodic and aperiodic solutions exist in the real N-body problem; to be compatible with 

nature, the classical N-body problem must have both kinds o f solutions. However, 

aperiodic solutions defined for all time cannot be expressed in Fourier series. Keeping in 

mind that the conventionally obtained formal Fourier series always satisfyies the ODE, 

one sees that the series should not converge in general. Therefore, the divergence of the
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formal series solution, which was proved by Poincare (1892), is not surprising based on 

the above heuristic argument, nor is this divergence literally related to chaos. What is 

really important is that he showed the detailed condition o f convergence and its relation 

to the property o f numbers, and that the series is asymptotic. Therefore we say that 

aperiodicity and divergence o f  Fourier series is only a signal o f  chaos. The more direct 

contribution o f  Poincare's  relevant to chaos is his discovery o f nonintegrability and the 

ex is tence  o f  hom oclin ic  and heteroclinic points in the N -body problem . A fter a 

discussion o f  such problem s in later sections, we will see that it is the existence o f 

chaotic solutions that prevents Fourier series solutions from being convergent and the 

construction of solutions from being global.

F or boundary value problems, usually there is neither existence nor uniqueness 

theorem; nevertheless, certain conclusions can usually be achieved by the shooting 

m ethod in the light o f  initial value problem. The problem is simpler if the equation is 

linear so that a general solution may be established for the equation, then the constant of 

in tegra tion  m ay be determ ined  by the boundary conditions. W hen  the boundary 

condition is im posed on a Finite boundary and no singularity exists in the bounded 

dom ain , then the Fourier series should be applicable in general. Taylor series is also 

used, but it is not a complete method in principle.

For example, let us consider the Legendre linear O D E with boundary condition at 

x = - l  and 1. Although theorems exist to assure this is a Sturm-Liouville eigenvalue 

problem  (Courant & Hilbert, 1953), they cannot be used to determine the eigenvalues, 

nor to obtain physically interesting smooth eigenfunctions. The introductory way o f 

finding the eigenvalues and eigenfunctions is by power series, which is not a complete 

m ethod  - e igenvalues and smooth e igenfunctions may be missed by this method. 

Because o f the linearity of the Legendre differential equation (using the parameter n(n+l) 

as usual), there is no doubt that when n takes non-negative integer values, the n ^  order 

terminating polynomials (Legendre polynomials) are the unique solutions, nor on the 

m ethod o f  abandoning the infinite part which diverges at either boundary points and 

re ta in ing  the term inating polynom ials. H ow ever, doubt arises on the introductory 

argument that, since the pow er series diverges at either boundary point for any real n, 

and for non-integer values o f  n the series does not terminate, and hence no solution 

exists. Consequently, the problem is taken as an eigenvalue problem and all eigenvalues 

have been found.

Although the conclusion is correct, the logic is false because smooth but not analytic 

eigenfunctions may exist which cannot be found in the above way. When the problem is 

defined on a bounded dom ain  containing no singular points, the expansion method 

com patib le  with the physically interesting solutions, namely, smooth solutions, is a
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Fourier series and the so called generalised Fourier series, such as series o f  Legendre 

polynomials, which can be introduced in a different way other than as a solution of the 

Legendre  equation (see Courant & Hilbert, 1953). These can be shown to form a 

com plet e  orthogonal system, namely, piecewise continuous functions satisfying the 

boundary conditions can be expanded in a unique generalised Fourier series which 

converges in the mean (Courant & Hilbert, 1953). Absolute and uniform convergence of 

the series can be established under stronger smoothness conditions; whereas a C 1 

function satisfying some intermediate conditions and the boundary conditions can be 

expanded in a convergent series in terms o f these orthogonal functions. Therefore, if the 

solution is assumed to be an infinite series in terms of Legendre polynomials other than a 

Taylor series, then it can be shown that no extra eigenvalues nor extra eigenfunctions 

exist for the Legendre differential equation with the boundary conditions.

In connection to the convergence o f the perturbation theory and KAM  theorem, it is 

also useful to note the speed of convergence o f such series expansions; the smoother the 

function is, the more rapidly its Fourier series converges. In fact, if f(t) is C n smooth

and its associated Fourier series is ECke lka)l, then the coefficients can be estimated by

I I < c / k n , where c is a constant. This relation may be obtained immediately if the 

expression for the coefficients is integrated by parts k times. Similar results also exist for 

multiple periodic functions of many variables.

After pointing out the generality o f  (generalised) Fourier series, however, we shall 

mention a limitation o f it. The sufficient smoothness condition for the function to be 

expandable cannot be relaxed too much; there always exist continuous periodic functions 

w hose assoc ia ted  F ourier  series diverge at a given set o f  m easure  zero points 

(K olm ogorov considered the problem in depth, see Korner, 1988, P75). Let us also 

note that Fourier  series is only applicable to multiple periodic and co n d i t io n a l ly  

periodic (or almost periodic, quasi-periodic; see eg. Szebehely, 1967; Arnold, 1978; 

Siegel & Moser, 1971; Berge et al, 1984) functions, which only have a finite number of 

extremes in a period; while aperiodic functions cannot be treated in this way except for a 

small class that may be developed by Fourier and Laplace transforms. Functions defined 

on a finite domain can be developed either by Fourier series or Fourier transform.

A lthough most aperiodic functions cannot be expanded in convergent series, 

divergent asymptotic expansion can often be developed for practical usage (Poincare,

1892; W hit taker  & W atson , 1902). A series I A kx ' k is said to be an asymptotic 

expansion (either convergent or divergent) o f  a function f(x) if the sum over the first n

terms E A kX'k —> f(x) as x —> for fixed n. Such series are often the only possible
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m eans o f obtaining the solution to some problems, although they are usually produced 

by nonrigorous expansion. The semi-convctgent feature o f  the classical perturbation 

procedure shown by Poincare (1892) justifies its applicability in practice.

Historical interests in looking for convergent series for the N-body problem is in 

general related to asymptotic expansions. From the examples given in either Poincare 

(1892) or Whittaker & Watson (1902), we see that by rearranging the order o f  the terms, 

a convergent series may be made semi-convergent or even divergent. Therefore the 

divergence o f one expansion procedure does not necessarily imply the divergence o f a 

solution. In addition, the occurrence o f  secular or m ixed-secular terms in celestial 

mechanics does not imply divergent solutions either. An example of the latter case is the

function s in ( l+  e)t = sint + et cost - 0.5 e2t2 sint - ..., which is convergent for all t in 

spite o f  the mixed-secular terms (Roy, 1988).

Finally it is important to keep in mind the richness of infinite series, and in particular 

their compatibility with chaos and fractals. Obviously, some discontinuous functions can 

be defined by different simple functions in different regions; but this is not a convenient 

expression for such functions. In order to see a possible alternative, let us recall that 

infinite series built up on well behaved functions can in fact produce discontinuous 

functions (eg. Whittaker & Watson, 1902, P44). The most apparent example is probably 

the infinite trigonometric series. Conventionally, when this happens, attention then is 

turned to finding conditions under which the infinite series converges to continuous 

functions, and the importance o f  converging to d iscontinuous functions is ignored. 

H ow ever, at the times o f chaos and fractals, some em phasis must be paid to such so 

called exceptional cases.

K now ing  how to generate chaos (chaotic attractors and fractals can all be studied 

utilising infinite sequences), it is useful to study whether infinite series (or more 

generally infinite sequence) may converge to functions with many or infinite extremes, 

o r  even discontinuities. In fact, W eierstrass constructed a continuous but nowhere 

differentiable function.

O rd in a r y  Differentia l  (Dif ference)  Equatio ns

O rd ina ry  differential equations (ODE in this thesis) and discrete m a p p i n g s  (or 

transformations) are usually called (continuous and discrete) dynamical systems. Since 

most important theorems can be stated in a similar way, we shall concentrate on ODEs in 

general. This m athem atical notion finds its wide usage in science because o f  the 

implicitly assumed continuity and smoothness of the world: an observable variable is 

assum ed to be a function o f  position, time or other independent variables; by knowing
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the value o f  the observable variable at one point in the independent variable space, one 

hopes to grasp the behaviour in the neighbouring regions or future (or past), namely, 

making a prediction.

Algebraic equations were a great advance in the history o f  mathematics, because they 

treat unknow ns as knowns to form the equalities, and then solve the equations by 

systematic routines, and thus offer a unified method to replace the previously scattered 

m ethods o f  solving these problems. Differential equations, as im proved algebraic 

equations, take both the unknown functions and their derivatives as known material to 

formulate the equalities. The idea o f  equations is to find what is conserved in the case o f 

a natural process and construct the equations, because the world is believed to be 

casually interrelated with cause and effect. Something, such as a combination o f  the 

variables, m ust be conserved, but whether it is conceivable o r  not depends on the 

creativity o f  human being (combination o f variables, functions and their derivatives). 

The purpose o f studying equations is to find their solutions. If they cannot be solved due 

to some principle limit, then they must be replaced by more appropriate laws. Therefore 

the relevance o f differential equations is a result o f  regarding the world as variables, 

e lem entary  functions and infinite series built on them. The discovery o f chaos and 

fractals suggest a limit on the power of differential equations in general. Physically, this 

limit on dynamics is more fundamental than the two limits from relativity (speed o f light 

limit) and quantum theory (uncertainty principle).

D ifferen tia l  equations are classified by type and order. O rd inary  and partial 

differential equations are distinguished according to the types of derivatives involved; the 

order o f  a differential equation is the maximal order of the differentiation that appears in 

the differential equation. Only ordinary differential equations are o f concern in the 

present study.

An ordinary differential equation is a functional relationship o f  the form F(t, x, x', 

x", ... , x(n)) = 0 between an independent variable t, an unknown function x(t), and a 

finite num ber of its derivatives. Moreover, there may be systems of OD Es involving 

various unknow n functions x(t). In general, it is always possible to reduce such a 

system o f  O D Es to that in which only derivatives o f  the first order appear. This can be 

done by introducing new unknown functions. Thus it suffices to consider first order 

systems o f  the form, x ’ = F(t, x). This is an advantage for a unified theoretical study; 

nevertheless, second order ODEs are also o f practical convenience.

In practice, autonomous systems and conservative systems are often encountered. A 

system is autonomous if F or F  is independent o f  t; such a system is called conservative,

if, furthermore, F (x )= V x U (x ) .  The class o f  systems with F(t, x) = V x lI( t ,  x) are also 

frequently used; but it is not conservative.
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In the case where F (or F) is a linear polynomial in the unknown function and its 

derivatives then the differential equation is called linear; otherwise it is called nonlinear. 

Linear O D E s are further classified as homogeneous and nonhomogeneous linear ODEs; 

or linear ODEs with constant coefficients and time dependent coefficients.

Although the local existence and uniqueness of C 1 solution is usually established by 

a successive approximation method for the first order systems, it is applicable to higher 

order systems. It is also stated as satisfying initial conditions, and the solution is a 

continuous function o f  the initial conditions. The above existence and uniqueness 

theorem can be sharpened for linear systems (eg. Roxin, 1972) and, in fact, it becomes a 

global theorem. Moreover, the solutions have more simple properties which are not 

shared by that o f  nonlinear systems. Because of these properties, there are no chaotic 

solutions in linear systems. However, this does not mean that linear systems can always 

be solved easily; their behaviour is not always simple, as can be seen from Floquet 

theory on linear systems with periodic coefficients (Jordan & Smith, 1977).

There is no general existence nor uniqueness theorem for boundary value problems. 

Eigenvalue and eigenfunctions are a result of boundary conditions, which may happen in 

both classical mechanics and quantum mechanics. However, in quantum  mechanics the 

m ost im portant condition leading to quantised states is that due to natural boundary 

conditions which are in fact symmetries o f  background space and periodicity. Thus 

quantization is a result of symmetry or periodicity.

In the general solution to a linear system of n first order ODEs, usually n arbitrary 

integration constants appear which must be determined by the n initial conditions in 

phase space; on the other hand a solution to a general nonlinear system of n first order 

ODEs is determ ined by n initial conditions. An integration constant is a function o f 

the form C(t,x), which is constant on a trajectory. This should not be confused with a 

first integral (or, conserved quantity, constant of motion, invariant o f  motion, integral 

o f  motion) which is a function o f the phase space variables, I(x), and is constant on a 

trajectory (but see Whittaker, 1904). A first integral is called i solat ing if it is single 

valued, or non-isolating if it is non-single valued. Since only isolating integrals are of 

importance, the word 'isolating' is usually dropped. The classical energy, m om entum  

and angular m om entum  integrals are isolating; for examples of non-isolating integrals 

see, eg. Binney & Tremaine (1987). The existence and uniqueness theorem says that a 

unique solution exists in the neighbourhood of an ordinary point, x(x0, tQ,t), which is a 

continuous single-valued function. Therefore the n initial coordinates, xq, can always be 

solved for inversely as functions of t and x. Thus they are integration constants, but in 

general not first integrals.

A dynamical system of n first order ODEs (mappings, respectively) is in teg rab le  if
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it can be solved by quadrature, which usually requires the existence of n independent 

single-valued first integrals. W e shall see in later sections that the class o f  Hamiltonian 

systems is a particularly interesting subset o f  ODEs, having more elegant properties and 

wide applications. For example, for a 2n dimensional Ham iltonian  system, n first 

integrals suffice for its integrability. It must be noted that the notion o f involution 

(defined by the Poisson bracked) is not defined in general dynamical systems; nor are 

the o ther conditions  and outcom es (cf. section 2.3) o f  an integrable H amiltonian 

applicable in the more general sense; because they may be a reflection of the particular 

property o f  canonical systems.

2.2 Sta ndard  Formulat ion of  Lagrangian and Hami ltonian Sys tems

Since the variational principle is just a reflection of some invariant properties, we shall 

follow A braham  & Marsden (1978) and not include the variational principle in the 

following discussion. Complete classical discussions on such systems may be found in 

W hittaker (1904), Goldstein (1950) and Arnold (1983).

L a g r a n g ia n  S ys tem s

Lagrangian  system s form a class o f  very important dynam ical systems, which are 

defined in configuration space and have the following expression,

_ d _ ^ k _ ^ L _ 0  L=L( q  q t) q =  —  d t  3q 3q ’ L - Li q . q . w -  q d t  -

where L  is the Lagrangian o f the system and q={qj} the generalised coordinates. For the 

motion o f  partic les in a potential field, L=T-U, where T=T(q, dq/dt, t) is the kinetic 

energy and U=U(q,t) the potential o f  the field.

It is well known that when one o f  the generalised coordinates, q, is absent in L, then 

there is a corresponding a first integral of the system. But this is usually carelessly 

remarked as: if one o f the q's is not involved in the potential, U, then a first integral 

results. T h is  s tatem ent is generally false, although it is always true if Cartesian 

coordinates are used. The reason is that the kinetic energy is dependent on q unless 

Cartesian coordinates are exploited.

It is instructive to look at this problem using the language o f m odem  differential 

geometry, as will be heavily relied on in the later chapters on relativity. To fix the idea, 

let us take the motion of a single particle in an exterior potential as an example. In fact, 

both T and U are coordinate independent scalar functions. Thus T = m v 2/2=rng(v,v)/2, 

(with v=d/dt) may be interpreted as a scalar of the contraction of the metric tensor with
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the tangent vectors o f  the solution curve q=q(t) in the standard Euclidean space. 

A lthough  in the Cartesian coordinates, the com ponents  o f  the m etric tensor are 

constants ,  they are usually functions o f the coordinates in an arbitrarily  chosen 

coordinate system. In order that a coordinate q is absent from L, that is, using geometric 

language, the Lie derivative of L along the vector field o f the q-coordinate is vanishing, a 

sufficient condition is that the q-field is a Killing vector of the metric tensor and that U is 

independent o f  q. Therefore, the coordinate basis field along which U is invariant does 

not necessarily correspond to any first integral; to do so it must also be a Killing field 

(Schutz, 1980).

The above Lagrangian system may be put into a canonical form, to which the 

remaining part of the section is devoted, via the following Legendre transformation,

H(q, p , t )  = Z ( q . p . ) - L ( q ,  q , t ) ,  w h e r e  p =  | j r  ,

where the time derivative o f H satisfies dH/dt=dH/dt=-dL/dt.

H am il to n ia n  Sys tem and Canonical  Tra nsfo rm atio n

A s is known, OD Es can be reduced to an equivalent first order system, dx/dt=F(t, x), in 

phase space; whereas Hamiltonian systems form a special class o f  ODEs with even (eg. 

2n) dimensional phase space, viz.

dq(t) 9H(q,p, t) dp(t) = _  9H(q, p, t) dH(q, p, t) = 9H(q, P, t) 
d t  9p ’ dt 3q ' d t  3 t

which can be written in an equivalent form by a use of Poisson bracket, viz.

q = { q , H )  , p = { p , H }  , H = 3 H / 3 t  ,

where H is the Hamiltonian, q={qj} and p={pj} are the generalised m om enta  and 

coordinates.

W hen H is independent o f  t, the canonical system is called an au tonom ous 

Hamiltonian system. Such a system is conservative, and H becomes the usual energy 

integral. M oreover, the conjugate m om entum  o f  any ignorable coordinate  is a first 

integral o f  the system (not all integrals can be made conjugate to coordinates o f  the base 

space even if a transformation is allowed). The Poisson bracket is useful in finding first

integrals because of the following relation for an arbitrary function F(p,q,t), viz.

dF _ W  dF dH dF dH A j3F _ r p i n ,  dF
d t  " f U q ,  dp,  dp,  d q j + dt  1 ’ '  dt  '

34



In solving the above set o f  first order differential equations, it is useful to lake the 

advantage o f  the ignorable coordinates so as to reduce the dimension o f the problem, 

with the equations o f  the remaining variables being still in canonical form. If such 

coordinates do exist, they can usually be found by performing canonical transformations 

in the phase space. A canonical transformation is a transformation o f the canonical

variables (p,q) o f  the phase space to a set o f  new canonical variables ( jy,c^M£>(p,q,t),

c^(p,q,t)), w hereas the canonical form of the differential equations is preserved. Such a 

transformation can usually be produced conveniently by a generating function. The four 

possible forms for the generating function, transformations and the new Hamiltonians 

are sum m arised  in Table 2.1 (Whittaker, 1904; Szebehely, 1967; Stiefel & Scheifele, 

1971).

T a b le  2.1
a s , a s , a s ,

S, (q,  cy, t): p -  + '3q ’ f* ~~ ~~ 3<y ; ^ = H  + at '

a s . a s . a s ,
S 2( q , J » , t ) : p -  ' aq ' * * - +

; *e  = H + at*

a s , a s  3 a s ,S 3( p , < y , t ) :
q = " ap • a«y

; = H + 3t’

a s a s 4
s 4( P . p . t ) :  ̂ 4 

q _  ap' ■ ^ - + w

; ^  =
dt

E x ten d ed  and R edu ce d  Phase Space

Since the solution o f a canonical Hamiltonian system usually depends on the dimension 

o f  the phase space, in order for a unified understanding o f the structure o f  the phase 

space, it is instructive to work in an extended phase space when the Hamiltonian is time 

dependent,  or in a reduced phase space when the Hamiltonian is time independent, 

whereas the canonical feature of the system is preserved.

If  the old Hamiltonian system in the 2n-dimensional phase space is,

u ,„ „ dq _  3H dp _ _  3HH(q, p,t) , dt gp • dt aq ■

then by performing the following transformation,
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<y = q . *» = p : <V„+, = t . *»„., = - H  ,

we obtain a new Hamiltonian system in the 2n+2 dimensional phase space, viz.

, I - , . ™ . .

where the new Hamiltonian, is independent o f  the new arbitrary 'time' variable, p. 

Conversely, given an 2n-dimensional Hamiltonian system, viz.

Hfn nl dq  -  9H dp) dH „
H(q' p) ' d t “ ap ' d t = ~ 3 q  ’ dT

then by choosing any generalised coordinate as the new 'time' p ,  and the conjugate

generalised m om entum  as the new 'time' dependent H amiltonian, we obtain a new

Hamiltonian system in the 2n-2 dimensional reduced phase space (W hittaker, 1904; 

Lichtenberg & Lieberman, 1983).

Therefore, the motion of a system with a time dependent Hamiltonian is equivalent to 

that o f  a time independent Hamiltonian with an additional degree o f freedom, and vice 

versa. In this way, the theory developed for a time independent Hamiltonian with n 

degrees o f  freedom also applies to a time dependent Hamiltonian with n-1 degrees of 

freedom. In particular, a time independent Hamiltonian with two degrees of freedom is 

dynamically equivalent to a time dependent Hamiltonian with one degree of freedom.

2.3 Solut ion Method  I - First Integrals  and Integrabi li ty

Although the successive approximation method exploited in establishing existence and 

uniqueness o f  solution may be used to construct solutions to an ODE, it is usually far 

from being applicable in practice, either because of the amount o f calculation involved or 

the unsatisfactory speed o f convergence. Nevertheless, such dynamical systems have a 

deterministic nature. This does not contradict the existence o f chaotic trajectories in the 

same dynamical systems, nor does it contradict the new concepts like nonpredicatability 

and non-computability. The point is that such an iteration method is a local notion only, 

which is not useful in distinguishing various topologically different types of solutions. 

Even worse, most differential equations admit neither an exact analytic solution nor a 

com ple te  qualita t ive  descrip tion  (Arnold, 1983). T herefore ,  various exact and 

approximation methods have been developed to solve the differential equations or to 

infer the qualitative feature o f  the solutions in phase space. The simplest cases of
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H am ilton ian  system s are discussed in this section, namely, system s reducib le  to 

quadrature. More complicated systems shall be considered in later sections.

S y m m e t r i e s  and  In tegr able / Non integrab le  H amil to n ian  S yst ems

It is well known that isolating first integrals are related to ignorable coordinates; more 

geom etr ica l ly  they are related with invariant properties and sym m etries  through 

N oe the r’s theorem  (Noether, 1918; Abraham  & Marsden, 1978; Olver, 1986). In the 

extrem e cases, a system may possess so many symmetries that the system is completely 

integrable by quadratures. Integrability is a coordinate-free noti. n, and may be defined 

in the following equivalent ways for autonomous Hamiltonian systems with n degrees of 

freedom:

Integrability in general sense:

(1). A Hamiltonian is integrable if it possesses n independent global isolating 

first integrals in involution (Liouville's integrability).

(2). A Hamiltonian is integrable if it is independent of all generalised coordinates.

(3). A Hamiltonian is integrable if 3 H /3 p i= f ( q i) for all i = l , ... , n, so that the n 

equations for the generalised coordinates can be integrated by quadrature,

ie., d t = d q i/ ( 3 H / a p i).

(4). A Hamiltonian is integrable if it is completely separable, namely, H = Z H ,(p i,q i).

For example, dynamical systems of Liouville's type are integrable (Whittaker,

1904, P67).

(5). A Hamiltonian is integrable if canonical transformations (or generating functions) 

exist such that it can be reduced to one of the first four cases.

Integrability in restrictive sense:

(6). A Hamiltonian is integrable if all solutions are bounded and conditionally periodic.

(7). A  Hamiltonian is integrable if it is equivalent (globally diffeomorphic) to a 

linear canonical system.

(8). A Hamiltonian is integrable if adjacent trajectories at worst diverge linearly.

It is useful to emphasise that we are restricted to Hamiltonian systems; otherwise the 

sixth and seventh statements would lead to contradictions: combining them will lead to 

the conclusion  that linear systems can only have quasi-periodic solutions, which is 

obviously false. It is a classical result that (see Arnold, 1978)
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{Liouville’s integrability}C{separability}C{integrability by quadratures}. 

H owever, the three sets may be identical in a practical (but coordinate-free) sense, 

because even the Toda Hamiltonian and geodesic motion in the Kerr geometry are easily 

verified to be integrable in the sense o f  Liouville. These two systems are integrable 

because o f  the existence o f  'hidden' symmetries and extra integrals which are not 

conjugate to any generalised coordinates o f  the configurational space (cf. section 6.4).

Thus the first five statements but (2) (certainly there are more than listed here) ma> 

be regarded as alternative definitions for integrability, and there is nothing ambiguous in 

them  (but see eg. W intner,  1947, P144 for d isagreem ent) .  On the other hand, 

integrability has always been a highly difficult problem (eg. Whittaker, 1904; Ix im anis  

& Minorsky, 1958; Broucke, 1979; Lichtenberg & Lieberman, 1983); because it is hard 

to decide whether a specific Hamiltonian is integrable or non-integrable. The situation 

here is very like that for the prime numbers. The standard definition for a prime number 

is that it is num ber which is not divisible by any number except one and itself; which can 

also be equivalently stated as a number which is not divisible by any number not greater 

than the square roo t o f  the number. The principle for choosing  one from many 

equivalent statements as the definition is that it involves as little conditions as possible, 

or it is conceptually as economical as possible; whereas the remaining ones are regarded 

as theorems useful for different purposes (eg. Steen, 1978).

F rom  the sixth statement above, we see that a useful m ethod  o f  determ ining 

integrability is to assume that the solutions are all quasi-periodic, thus all solutions may 

be expanded as convergent Fourier series; then substitute such series solutions into the 

differential equations and investigate whether any contradiction arises.

The p rogress  in chaotic dynam ics shows that the very natural defin itions o f 

Liapunov and Poincare stability, integrability and periodicity are all related to resonance, 

and ultimately to number theory (Whittaker, 1964; Moser, 1973). These relations were 

embedded in the very foundation o f mechanics, but they were not uncovered until the 

works characterised by Poincare (1892), Birkhoff (1927), Siegel (1941), and KAM. 

Therefore chaotic dynamics did not go by itself beyond the framework o f Newtonian 

mechanics, it enriched the content and displayed the underlying relations, making them 

more apparent. In history, many different definitions for stability have been given for 

various theoretical and practical purposes. O f  course, great progress has been made in 

this way by defining stability to be adapted to the physical problems (eg. Szebehely, 

1984), but it was just because o f  this com prom ise that the recognition o f  the most 

fundamental chaotic behaviour of dynamical systems was delayed.

To see the possibility of relating periodicity to number-theoretic results, let us give a 

very simple example. Can a function of a single real variable have more than one finite
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principal period? By intuition, the answer is no; but the rigorous proof which was first 

given by Jacobi (see eg. Forsyth, 1893) relies heavily on the properties o f  rational, 

irrational numbers and continued fractions.

In order to fix our ideas and use the modem language o f Riemannian manifolds to 

look at integrability, let us confine ourselves to the motion o f  a single particle in an 

exterior potential field; while the dimension of the configuration space is relaxed to any 

finite dimension.

In this way we can give a deeper view of the involution condition in Liouville 's 

in tegrability  (however, since hidden symmetries and Killing tensors are not well 

understood, we have to confine ourselves to integrals conjugate to coordinates, obvious 

symmetries, or Killing vectors). It is usually understood that if the n integrals are in 

involution (not in involution), then their conjugate coordinates exist (not exist). 

H owever, what might be less well known is the reason for the nonexistence of such 

conjugate coordinates if the integrals are not in involution. This becomes obvious by 

utilising the concepts o f  Lie derivatives and Killing vectors (cf. Schutz, 1980). In this 

context, first integrals are m ade correspondent to Killing vector fields ( iso m etr ie s ,  

sym m etries);  m oreover, the integrals being 'in involution' s imply m eans that the 

corresponding Killing vector fields commute, hence form a set o f  coordinate bases (cf. 

section 6.4). When the integrals are not in involution, the Killing fields do not commute, 

and therefore they do not form coordinate bases. That such independent Killing fields 

are not in involution do not ensure integrability is because they do not offer a one to one 

m apping  for the Riem annian manifold, hence they are not coordinate basis fields 

(Schutz, 1980). The advantage o f  working with the Tetrad formulation based on 

noncommutative independent fields is discussed in Chandrasekhar (1983).

In this way, first integrals are related to more fundamental and more apparent 

geom etric  concepts, namely, symmetries and Killing vector fields. This is a step 

forward, however, even the notion of symmetry is not always obvious (cf. section 6.4). 

In addition, there are symmetries (eg. reflection, Killing tensor) that cannot be included 

in such description. On the other hand, although Noether's theorem establishes stronger 

relations, it does not give any way o f  uncovering all invariant properties.

To see that the Killing vector version only uncovers a subset o f  all symmetries, let us 

note that it gives a sufficient but not necessary condition for the existence o f (obvious) 

integrals. In the previous section, we required that both T and U were independent of the 

generalised coordinates. However, it may happen that an invariant property exists for L, 

with the coordinate dependent part in T and U cancelled out. In the Toda Hamiltonian, 

there is no ignorable coordinate exist in physical space accounting for the additional 

integral; it is due to a more subtle invariant property of L or H in phase space (Hcnon,
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1974; also Lichtenberg & Lieberman, 1983). In the Kerr space-time, the extra integral is 

a result o f  a Killing tensor o f  the space-time.

T he difficulties and efforts made in deciding integrability and finding integrable 

system s can be found in W hittaker (1904), Lynden-Bell (1962) and Lichtenberg & 

Lieberm an (1983). More recent review on the advance in this subject may be found in 

Yoshida (1983), Hietarinta (1987) and Ramani et a! (1989).

Finally  we mention two important theorems considering 'how many' systems are 

integrable, and what occurs if a system is not integrable. Siegel's theorem considers the 

space o f  Hamiltonians analytic in their variables: non-integrable Hamiltonians are dense 

in this space, whereas integrable Hamiltonians are not. Nekhoroshev's theorem leads to 

the fact that all non-integrable systems have a phase space that contains chaotic regions 

(eg. Campbell,  1989).

H a m i l to n -J a co b i  Equation and A ct io n-Ang le  Variables

As is seen, integrability o f a Hamiltonian is a coordinate-free property. One o f the 

difficulties in determining whether a system is integrable or not is because a single 

Hamiltonian can show various forms in different coordinates. Thus one o f the efforts in 

finding in tegrable  Hamiltonians is to study their possible forms in some particular 

coordinate systems so they can be identified. The Hamilton-Jacobi equation is one such 

m ethod which identifies integrable Hamiltonians in a class o f  coordinate systems; in a 

looser but practical sense, this is often said to identify a class o f  integrable Hamiltonians. 

In this m ethod  integrability o f  the set o f  first o rder O D E s is made equivalent to 

separability o f  a first order PDE.

A remark may be made here on the widely accepted comment that separability is only 

a sufficient condition for integrability. The confusion really depends on whether one is 

using coordinate-dependent or coordinate-free language. It is true that an integrable 

Ham iltonian m ay always be put into a coordinate system such that it is not separable; 

thus separability does not identify all integrable systems. However, there always exists 

at least one  coordinate  system in which any integrable  Hamiltonian is separable. 

Therefore, separability is equivalent to integrability. It is in this coordinate-free sense 

that the equivalent definitions were given for integrability. From this we see why the 

action-angle variables are usually the most convenient coordinates to use in obtaining the 

approxim ate series solutions for near- integrable systems considered in more detail in 

the following sections.

Because o f  the equivalence of time-dependent and time-independent Hamiltonians, 

we shall only consider here the autonom ous H am iltonian systems. M oreover, only 

Hami lto n 's  characterist ic function is included. A more complete discussion on its
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relation to H am ilton's principle function is given in Goldstein (1980).

In attem pting  to obtain  a closed-form  so lu tion , a g iven H am ilton ian  m ay be 

transform ed to a new Ham iltonian by a generating function, say o f S2 type, so that more 

ignorable coordinates are used. The relationship between the new and old system s may

be found from  Table 2.1; and in general, any function S(q, p )  would generate a new 

canonical system.

For a H am ilton ian  H (p, q) com pletely  in tegrable in the sense o f L iouville , a 

generating function S (say o f S2 type without loss o f generality) exists to transform  the

system  into a new H am iltonian %£(p),  in which all the generalised coordinates are

absent and generalised m om enta p=<^ are integral constants of motion. The purpose of 

the H am ilton-Jacob i equation  form ulation is to find the generating function  so the 

transform ation can be carried out.

S u p p o se  H = = p  i = a,  then the g enera ting  fu n c tio n  m ust sa tisfy  the

H am ilton-Jacobi equation, H (0S(q, p )  fd q, q)=cv1? where the ^ 's  are to be regarded as 

param eters. In this way the effort o f  solving the original system  is changed to finding a

com plete solu tion to the H am ilton-Jacobi equation, S(q, <x, c), which is called the 

Ham ilton characteristic function. The constant c is a pure additive constant, which is not 

im portant to the transformation.

In practice the PD E is equally  hard to solve as the original ODE unless the H-J

eq u a tio n  can  be separa ted  co m p le te ly  in the form , H (p ,q )= X H ,(p p qj). The 

non-separable feature m ay be a reflection o f nonintegrability  or that an integrable 

H am iltonian is put in a badly chosen set o f coordinates. Therefore the advantage o f the 

H -J equation  is that integrable system s may be identified in a less restricted class of 

coordinates. In order that the system may be solved, the original system must be put into 

the appropriate coordinate system ; and there is no general m ethod with which to make 

the choice.

W hen the H -J eq u a tio n  is separab le , the actual p rocedure  o f fin d in g  the 

transform ation  m ay be found from  G oldstein  (1950) or L ichtenberg  & Lieberm an 

(1983).

For integrable Ham iltonians, any function of the conserved mom enta p  may also be 

taken as the new  generalised  m om enta. A particularly  im portant class o f Liouville 

integrable system s is one which possesses com pact phase space. For such system s the
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action-angle variables are a very useful class o f canonical variables which are defined by

F o r non triv ia l applications o f  such variab les the books by G oldstein  (1950) and 

Lichtenberg & Lieberman (1983) must be consulted.

E x a m p le s  o f  In te g ra b le  a n d  N o n in te g ra b le  S y stem s

It is instructive to sum m arise some of the integrable and nonintegrable system s which 

occupy som e position in chaotic dynam ics and have some significant im plication to the 

later work o f the present thesis.

(1). The T oda Lattice and Henon-Heiles System

The T oda lattice is a one dim ensional lattice in which the repulsive force between 

neighbouring particles moving on a ring is an exponentially decreasing function o f their 

angular distances. This is an integrable H am iltonian system , for which L ichtenberg & 

Lieberm an (1983) give more details and references. Here we only quote the relevant part 

o f  the problem .

A fter som e transform ations and use o f the sim ple integrals, the original 3-particle 

T oda lattice problem  is reduced to the T o d a  H am iltonian with two degrees o f 

freedom , w hich possesses the first integral, 4, nonlinear in the m om enta, viz.

T his H am iltonian is integrable. However, there is no obvious and simple sym m etry

(in physical space) corresponding to the first integral d.

If the above Toda Hamiltonian is expanded in a Taylor series with respect to x and y, 

and cubic term s are retained, we obtain the non-integrable H en o n  & H eiles (1963) 

H am iltonian system,
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H =  T ( p „  p y) + U(x, y) = l ( p 2 + p y2) + l ( x 2 + y 2) + x 2y -  - l y 3

In fact, truncated system s o f  the T oda H am iltonian to any order is not integrable. 

H ow ever, the following Hamiltonian system  is only slightly different from the Henon & 

H eiles system , but it is integrable,

T he in tegrability  o f the last system  is obvious by a change o f variables, nam ely, 

X =x+y and Y =x-y (eg. Cooper, 1989, P244). In fact, this exam ple belongs to a whole 

c lass o f in tegrable system s w hich satisfy the Painleve property (eg. L ichtenberg  & 

L ieberm an, 1983, P40; Ramani a!, 1989).

A t this point, we shall discuss som e re lationships betw een the integrability  o f a 

system  and its truncated systems, which m ight be helpful in understanding some o f the 

d iff icu ltie s  encoun te red  in the la te r ch ap te rs  on re la tiv ity  and post-N ew ton ian  

approxim ations.

O ne o f  the reasons for studying truncated system s is because o f the com plexity  o f 

the orig inal system  and the belief that a truncated system  is usually sim pler, hence a 

nonsolvable  system  may be solved by such an approxim ation m ethod. Exam ples are 

num erous; to list only two o f im m ediate in terest to the present thesis, stability  o f 

equilibrium  points is usually studied to first or second order; Newtonian m echanics and 

post-N ew tonian  approxim ation are the low est o rder truncation o f the full relativistic 

theory.

H ow ever, w hat we learn from  the the T oda lattice exam ple is that the relation 

betw een original and truncated system s is not so simple. F irstly, a relation found from 

the original system may be lost in an approxim ation procedure; because in a com plicated 

re la tion , the quantities on the two sides o f  '=' may ultim ately be regarded as infinite 

series, w hich are not necessarily based on the sam e constructions (lim A = lim B does 

not guarantee that A = B).

Secondly , qualitative d ifferences m ay be produced if a truncation is m ade with 

re sp ec t to m ore than one variab le . T o  fix our ideas, let us again co n sid er the

H = T(px, p y) + U(x, y) = i ( p x2 + p 2) + l ( x 2 + y2) + x2y + l y 3

d t2
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n-d im ensional m otion o f  a single particle in a fixed ex terio r potential field. If the 

potential is expanded and kept up to quadratic terms in q= (q j, ... , q n), then it is always 

possib le to find a transform ation such that the truncated potential becom es a standard 

quadratic  fo rm  w hich is separable. H ow ever, even for term s one order h igher, the 

standard cubic form s are not always separable (Poston & Stewart, chapter 2); therefore 

there is no guarantee for the integrability o f a truncated cubic potential, nor for higher 

o rd e r term s. T h is  ju s tif ie s  the in teg rab ility  o f the T oda H am ilto n ian  and the 

non-integrability o f the Henon-Heiles Hamiltonian.

W e conclude from  the above exam ples that although a truncated system  m ay be 

sim pler than the original system , this is not always tiue. H ow ever, this is not to deny the 

applicability  o f the approxim ation methods. These may be o f som e im portance in two 

respects in the later chapters. F irstly, the difficulty encountered in constructing the best 

inequalities for the post-N ew tonian many body problem  may not be intrinsic to the full 

re la tiv is tic  p rob lem , but ra ther a feature o f the p articu la r truncation . Secondly , 

com pletely  in tegrable system s in the full relativistic case, may becom e non-integrable 

and chaotic if  the system s are approxim ated to some nonlinear orders. This is a method 

o f studying relativistic chaos (see also Chandrasekhar, 1989; C ontopoulos, 1990). This 

point shall be discussed further in connection with quantization in the next chapter.

(2). Few -B ody Problem s

In teg rab le  and non-in tegrab le few -body problem s (W hittaker, 1904; S iegel & 

M oser, 1971) are d iscussed  briefly  here because o f their im portance in relation to 

quantum  chaology and chaos in general relativity.

The m otion o f a single particle in a fixed central field is integrable in both Newtonian 

m echanics and general relativity  (Schw arzschild geom etry). It is not integrable if the 

field  is no t cen tral (not static, spherically  sym m etric). The N ew tonian m otion is 

Keplerian if and only if the field is an inverse square law; any deviation from  such law 

results in pericentre precession due to quasi-periodic m otion or non-integrable m otion 

(G oldstein, 1980).

The Newtonian m otion o f two bodies interacting with radial forces is reducible to the 

m otion o f  a partic le  in a central field, hence integrable. U sually  the problem  is not 

integrable if the force is not radial. The motion o f two bodies with at least one extended 

body o f arbitrary shape is not integrable in Newtonian mechanics, nor in relativity.

The classical tw o-centre problem  is integrable, whereas the nonaligned m any-centre 

problem  is not. None o f such problem s is integrable in general relativity. As an extrem e 

case o f the tw o-centre problem , the motion of one mass in the field o f a point mass and a 

uniform  field is integrable.
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The m otion o f two bodies in an arbitrary exterior field is not integrable in Newtonian 

m echanics. N evertheless, the problem  is integrable if the exterior field is uniform ; but 

care m ust be taken that this problem  can be reduced to the two-body problem, hence it is 

sim pler than when one o f the m asses is fixed.

The m otion o f two opposite charges in a uniform electric field is integrable and can 

be reduced  to the corresponding gravitational problem  w ith one body fixed (Stark 

effect). The m otion o f two bodies with opposite charges in a uniform  m agnetic field is 

integrable (Zeeman's effect). These two models are of importance in quantum  m echanics 

(B orn, 1927; Berry, 1978). Irregu lar spectra are observed  corresponding  to them 

(H asegaw a et al, 1989).

T he restric ted  three-body problem  is not integrable (Henon, 1965-1970); such a 

problem  is not formulated in relativity. Hill's limiting problem is not integrable.

M any-body problem s are not integrable in N ewtonian m echanics, nor in general 

relativity.

(3). O thers

The harm onic oscillator is often quoted as an exam ple o f an integrable system  for 

w hich a closed-form  solution may be obtained explicitly. The simple pendulum  and the 

tw o-body problem  are exam ples o f in tegrable cases, but the solutions can only be 

obtained in an implicit infinite series o f time (Lichtenberg & Lieberman, 1983; Stiefel & 

Scheifele, 1971).

The ideal resonance problem  is an exam ple o f an integrable system  with a small

param eter, which may be w ritten in action-angle variables as H = H q(I) - £ A (I) cos0. 

T his has been used to investigate perturbation theory, resonance and small divisors (eg. 

G arfinkel, 1966; Ferraz-M ello, 1985).

The S itn ikov  motion in the elliptic restricted 3-body problem  is not integrable (eg. 

M oser, 1973). This is the motion o f the infinitesim al mass on the line perpendicular to 

the plane o f motion o f the prim aries and going through their centre o f mass, where the 

prim ary masses are o f the same size.

An interesting example of non-integrable systems is

H = - l ( p 2 + p (2) + a x y 2

for which all solutions escape. Thus no quasi-periodic solution exists (Broucke, 1979).
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2.4 S o lu tion  M ethod  II - Perturbation  T heory

A s is sh o w n  in the p reced in g  sec tio n s , in p a r tic u la r  by S ieg e l's  th eo rem , 

n o n -in teg rab ility  is the generic case for H am iltonian system s, for such system s it is 

im possible to obtain closed analytic solutions. This is not simply because ingenuity fails, 

but because  the notion o f closed-form  functions is too lim ited to accom m odate the 

solutions to the variety o f differential solutions encountered in practice. Although, under 

such a situation, iterative m ethods can be invoked, the solutions so found are often too 

com plicated  to display clearly the principal features o f the solution. Som etim es this is 

also true, even if  an analytic solution can be found; this is particularly true o f im plicit 

solutions and o f solutions which are in the form of integrals or infinite series. Therefore, 

qualitative study m ust be pursued, whereby im portant characteristics of the solutions can 

be deduced  w ithout actually solving the differential equations. H ow ever, one needs to 

keep in m ind  that som e differential equations do not even adm it a com plete qualitative 

description.

In this section we discuss the classical and secular perturbation theories for solving 

H am iltonian  system s. They are am ong the m ost im portant m ethods, which do not only 

offer solutions valid for finite time scale but also reflect the qualitative features.

C lassica l P erturbation  T heory  and Lie T ransform ation  M ethods

It is instructive to first look at the effects o f  resonances and sm all divisors in sim ple 

linear and non linear system s o f the form  x" = f(x, x')+ g(t), w here g(t) is a periodic

function o f  t w ith principal frequency Q. W hen there is no dam ping and f(x)=co2 x, then 

the equation  m ay be solved in Fourier series, which has a kind of blow-up oscillation

w henever there is a resonance (0 =kQ . Thus linear response to a driving frequency 

sim ply resu lts  in d ivergence. H ow ever, w hen the function f(x, x') is nonlinear the 

system  is saved from  an extrem e blow-up instability, and a com pletely new regim e o f 

responses such as jum p catastrophe and lim it cycles is produced. This can be observed

from  the w ell-know n D uffing's  equation w ith f(x, x ')= k x '+ a x + P x 3, and van d e r

Pol equation  w ith a small param eter f(x, x ')=e(x2 - l)x '+ x  (see Jordan & Sm ith, 1990).

From  these exam ples we see that linearity produces relatively uninteresting extreme 

responses to driving: either sim ple stability or sim ple divergence; while nonlinearity 

produces m ore com plicated responses which are more interesting.

N ow  let us turn to the m ore relevant alm ost integrable H am iltonian system s. Such 

H am iltonians are usually produced in several ways: (1). the Ham iltonian is analytic in a
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sm all param eter involved, with respect to which the H am iltonian may be expanded in a 

T aylor series; (2). the H am iltonian is analytic in some variables, and may be expanded 

w ith respect to such variables in the neighbourhood o f som e point or trajectory; (3 ). the 

last tw o cases m ay be truncated to certain order; (4). a finite pow er series o f a small 

param eter arising naturally or by assumption.

A tten tion  m ust be paid to the fact that the usually phrased o rd e r  o f a perturbation 

m ethod has nothing to do with the order where the truncation is m ade in the above four 

cases; it is the order o f the truncation in the final solution. O ne is usually in a class of

alm ost integrable Ham iltonians which may be written in the action-angle, (J, 8 ), form of 

the in tegrable part, Hq ,viz.

H (J , 0, e) = Hq(J)  + e H ^ J ,  0),

w here the perturbation  H |( J ,  0) is assum ed to be a m ultiple periodic function in the

angle variables; and the solution to H 0 is J  = Const, 0 = co t + Const, w = 3H() fd J.

The classical perturbation theory solves the com plete Hamiltonian system by seeking

a transfo rm ation  to the new variables for w hich the new  H am iltonian is a

function  o f  jo alone (certainly also o f e). B efore we actually  turn to details, let us 

observe w hat we m ay expect. If a well behaved transform ation could be found for the

above p u rpose , this w ould  im ply the in tegrab ility  o f the H am iltonian H (J , 0, e). 

B ecause in general this is not the case, some contradiction m ust arise at the end. In fact 

the c lass ica l pertu rbation  theory is based on form al series calcu lus, so that the 

transform ation is found by truncating such fo rm a l pow er series in the small param eter

e. If convergence can be established for the infinite series, then the solution has been 

found; if, how ever, the series diverges, we m ust conclude that the assum ption is 

probably false.

C onversely, if  the Hamiltonian is not integrable, this formal procedure must produce 

som e kind o f  divergence. In fact, it has been realised since Poincare that it is not simply 

a com plete convergence nor com plete divergence -- w hat happens depends much on 

initial cond itions, and the results o f num ber theory is o f great relevance. Poincare's 

work was furthered by B irkhoff (1927); since then, great progress has been made in two 

apparently opposite directions: the conditions for divergence were sharpened by Siegel 

(1945), w hereas the existence o f quasi-periodic solution and conditions for convergent 

series w ere sharpened by Kolm ogorov (1954), A rnold (1963) and M oser (1962). Now 

a com prehensive view has been built up for the topological structure of the phase space,
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in spite o f its incom pleteness.

A lthough it is now clear that the divergence o f the formal transform ation series is an 

in trinsic problem  for aperiodic solutions, the classical perturbation theory is still o f 

im portance in practice, because it has been shown by Poincare that such a series is 

asym pto tic (sem i-convergent). T herefore the series truncated up to certain  order can 

approxim ate the real solution. A nother support to this theory is from the KAM theorem , 

w hich shows that the m easure o f quasi-periodic solutions is positive.

N ow  let us try to infer these points by a closer look at the classical perturbation 

theory. In the classical m ethod o f  this theory the transform ation is represented by a

m ixed variable generating function independent o f time, S(f>, 0, e), (S 2 type o f Table

2 . 1) expanded in a pow er series o f e,

S = <j*, 0 > + e 0) + e 2 S 2(f>, 0) + ...
T he transform ation and new H am iltonian are to be obtained according to Table 2.1. In 

o rd e r to express the new  H am ilton ian  in the new variab les, h a lf o f the above 

transform ation relations m ust be inverted to find the old variables explicitly in term s of 

the new ones. A fter these procedures we com e to the follow ing new H am iltonian (eg. 

Lichtenberg & Lieberm an, 1983),

= 3 C 0 (J*) + e (j*. <V) + E2 V  + -

where

3 C 0 ( p )  = H q(J) , 3 C j ( p ,  «y) = w (j») a S jtJ* , <y) /0<y + H j(Ja , <y) , ...

In order to  obtain a new H am ilton ian  o f  the form  e), we sim ply average the

Spindependent terms o f JC- over and denote the averaged quantity by 3 £ }(fy). Then

w e sort for Sj  to cancel all the rem aining part o f Thus finally we com e to the

required new Hamiltonian,

+ e + e2  ^ 2 ^ )  + -

= H 0  ( ^ )  + e < H 1( j> ,< y ) >  + ... 

w here the explicit expression in term s of the old Hamiltonian is only given up to the first

order. (In this section we denote the average o f a function by <...>, which is sim ilar to 

the inner product o f two vectors but this m ay be understood from its content.)

The generating function may be obtained in multiple Fourier series, for exam ple, we 

have the following for the first order perturbation,
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co (J») 3S ,(J> , «y) /a<y = <^) - < H ,(  j>, <y) > = E k + 0H lk ( j») e ><M>

=> s , ( j » ,  6 ) = I k + 0  {H lk ( j*) e i<k,q>/<k,co (J»)>} , if <k,co (£>)> + 0 , 

where k = (k 1?... , kn) is a set o f  any integers.

F rom  this form ula let us observe the possibility  o f convergence and divergence o f 

the series for S j. The fo rm ula is only valid  fo r nonresonant (incom m ensurab le) 

frequency vectors; when this happens the so called secular perturbation theory is needed. 

By secular perturbation, one perform s a separate transform ation to elim inate one o f the 

original actions o f J , followed by the same procedures given here.

W hen the frequencies are not resonant, we have the small divisor problem , namely,

the denom inato r <k,co (^»)> can be an arbitrarily  small num ber. Therefore one may 

expect a general divergence. This, how ever, is not the case; it turns out by a use o f 

num ber theory that divergence is exceptional. To establish convergence one needs to 

estim ate the size o f the combination o f the Fourier coefficients and small divisors. It can 

be show n that the coefficient o f  a m ultiple Fourier expansion has a property sim ilar to

that o f a single variable, nam ely, it decreases exponentially with k= ZI kj | ; m oreover, it 

decreases m ore rapidly for sm oother functions. On the o ther hand, some frequencies 

have a property similar to that o f algebraic irrational numbers: their small divisors can be 

bounded from  below, that is,

<k,co > > C(co)/kn+1, for positive constant C(co) and all integer vector k.

In addition  such frequencies form  a set o f  positive m easure, w hereas only a zero 

m easure set o f frequencies does not satisfy this inequality (like transcendental numbers).

F o r su ffic ien tly  sm ooth pertu rbation  H j,  convergence can be estab lished  for 

frequencies satisfy ing the above num ber-theoretic inequality , although divergence 

always occurs for some frequencies (Brouw er & Clem ence, 1961).

W hen higher order perturbations are calculated, small divisors (and resonances) are 

also involved and a sim ilar feature happens for divergence and convergence o f each Sr  

It was Siegel who proved that only for a class o f m easure zero analytic H am iltonians, 

convergence can be established globally, which implies that divergence always exists for 

positive m easure H am iltonians. On the o ther hand, the KAM theorem  (next section) 

show s that for an alm ost integrable H am iltonian, convergence of the infinite pow er 

series for the generating function is the generic case.

N ow let us see why the order o f the original Hamiltonian is irrelevant to the order of 

the perturbation theory, which is the order o f the pow er series in the final H am iltonian.
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H igher order term s in the original H am iltonian m ay be included in H j. On the other 

hand, the new  H am iltonian may be calculated up to any order in the small param eter 

even if  the original Ham iltonian only involves the small param eter to the first order. The 

o rder o f the perturbation arose com pletely from the assum ption that the transform ation 

and the new Hamiltonian is analytic in the small parameter.

It is in order to m ake a com m ent on the averaging m ethod often used in solving 

O DEs. An averaging m ethod simply averages the low order perturbations in the original 

H am ilton ian  over fast variab les (see Lidov, 1963; A ksenov, 1979; A rnold, 1983); 

how ever, there is no theorem  to assure that the averaged system  would agree with the 

original system. In fact the above classical perturbation m ethod justifies the applicability 

o f the averaging m ethod, if the transfom iation can be developed in convergent series, 

and the averaging is perform ed on the new Hamiltonian system. The averaged part and 

the rem aining fast part play different roles. Even if such a transform ation does not exist, 

the m ethod  is still o f p ractical value because o f the sem i-convergent feature o f the 

procedure.

Now  we turn to the secular perturbation theory dealing with com m ensurable cases. 

A s w as rem arked by Poincare (1892), secular term s due to exact resonance are not an 

in trinsic  problem  o f the dynam ical system  (in contrast the sm all d iv isor problem  is 

intrinsic). Thus a secular perturbation procedure can always be carried out to avoid such 

a difficulty. In fact, a resonance appearing in a specific order leads to an extra (isolating) 

integral to that o rder o f perturbation. The procedure needed for such case is to perform  

an additional transform ation to eliminate the resonance by elim inating one o f the actions 

(frequencies); then put the new system into action-angle form  and carry out the above 

standard perturbation procedure. In principle the procedure is the sam e for resonances 

w hich appear in any order perturbation.

L et us take the sim plest case as an exam ple, nam ely, resonance in first o rder 

perturbation; in addition, the degree of freedom  of the system is assum ed to be two. If a

resonance exists betw een the unperturbed frequencies, viz. < (0^2,002),(k j,-k 2 )>=0 , we

choose the generating function S2 = (k 10 j - k2 0 2) ^ i  + 0 ^ 2 ’ w ^k'h defines a canonical 

transform ation

Jl = k 1 . ^2=^2~^2^1 ’ V̂l ~ 1̂̂ 1 ~ ^2̂ 2 ’ CV2~^2’

w here 02 is assum ed to be the slower angle variable of the two. This transfom iation puts 

the observer in a ro tating  fram e in which eyj m easures the slow  dev iation  from
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resonance due to the perturbation. The procedure follow ed is to average over and

obtain the corrected integral = ^2 + ^ 1  /^ l-  F ° r more detailed d iscussion on this,

rem oval o f h igher order resonances, in trinsic and accidental degeneracy , generic 

separatrix motion, and islands see Lichtenberg & Lieberman (1983).

T he above m ixed-variable transform ation m ethod is called von Z eipel's  m ethod. 

H ow ever, there are serious inconveniences when higher order perturbations are actually 

calculated. The so called Lie transform  m ethod has been developed to offer an easier 

algorithm  to carry out higher order calculations. For more details o f this m ethod see 

D eprit (1969a, 1969b), Kamel (1969), Cam pbell & Jefferys (1970), M ersm an (1971) 

and Choi & Tapley (1973).

F inally, it is worth noting that the same convergence problem  equally occurs in the 

Lie transform  algorithm . Like the norm al form  notion, the perturbation m ethod is a 

form al procedure, which works so long as there are no exact resonances; and an exact 

resonance can also be treated after a separate consideration. The questionable point o f 

perturbation theory is the convergence o f the series for incommensurable case.

2.5 Solution Method III - G eom etrica l M ethods and KAM  T heorem

The geom etrical method stim ulated by Poincare in solving dynam ical system s has been 

very fruitful. The most im portant ones are the Poincare surface o f section and Poincare - 

B irk h o ff fixed point theorem . The KAM  theorem  is also included here because a 

com bination o f the KAM invariant tori and Poincare-B irkhoff fixed point theorem  can 

give a very com prehensive description on the phase space structure of alm ost integrable 

system s; the im portance o f quasi-periodic solution to chaotic solution is also m anifest 

from  this. The converse KAM  m ethod is also briefly introduced. We shall begin the 

section by stating these im portant theorems.

P o in c a r e ’s R ecurrence T h eo rem

The theorem  says that if T is a continuous 1-1 volum e-preserving mapping which maps 

a bounded region onto itself, then any point in the region returns arbitrarily close to the 

point (nam ely, recurrence) for suffic iently  m any iteration o f the m apping (Poincare, 

1892). For an outline o f the proof see eg. A rnold (1978).

T his is actually  the con tinuous version  o f the returning property  o f a finite 

denum erable cyclic group. On more practical grounds, the theorem is related to Poisson
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stability  defined  for an N -body system, which requires that, in addition to the distance 

betw een any  two particles and its reciprocal being finite, the system  repasses an infinite 

num ber o f  tim es to the initial situation.

P o in c a r e  M a p p in g  and Surface o f Section

T his m ethod  w as initiated by Poincare to determ ine periodic solutions. By this m ethod, 

instead o f  the solution as a t-curve in phase space, one studies the relation (continuous 

Poincare m apping  T) between the neighbouring points at ti and their corresponding 

points at t2 ; and in doing this one can take advantage o f first integrals (Poincare 1892; 

Siegel & M oser, 1971). W hen t2 -tj equals the period o f a periodic solution, the periodic 

so lu tion  becom es a fixed point of the m apping in the neighbourhood o f the point. 

B ecause o f  this relationship between ODEs and difference equations (transform ations, 

m appings), the study o f the behaviour o f the latter becom es im portant even if it is not 

direcdy related to physically interesting ODEs.

T he m ethod  is especially  useful when the m apping is two dim ensional (surface o f 

section) and the m apping is bounded, w hereby a quasi-periodic solution becom es a 

sm ooth invarian t curve. In this way the search for a quasi-periodic solution is thereby 

reduced to determ ining the fixed point and invariant curve. The m ethod is fruitful when 

at least one fixed point can be found followed by the determ ination o f the higher order 

fixed po in ts and invariant curves in the neighbourhood o f it. This m ethod was used by 

P oincare and furthered by B irkhoff (1917, 1922, 1927). The surface o f section m ethod 

is also the easiest way to display chaotic motion.

B ecause o f  the sim plicity o f the transformation method and since it can speed up the 

standard num erical integration o f ODEs, it will be advantageous to obtain a m apping for 

a canonical system . This procedure and its conversion is described in L ichtenberg & 

L ieberm an (1983).

F ixed  P o in t  T h eo rem s o f  Poincare and B irk hoff

T here are m any  theorem s on the existence o f periodic solutions and fixed points (see 

S zebehely , 1967), am ong these are a set o f  theorem s conjectured  by Poincare which 

w ere proved and extended by B irkhoff (1913, 1926). W e shall only state them here; the 

original w orks m ay be referred to for the proof and more details. A lternatively, the proof 

can also be found in B irkhoff (1927) and Siegel & M oser (1971).

Poincare 's fixed point theorem was conjectured by Poincare and is o f interest for the 

restric ted  3-body problem . Because this is the work Poincare regarded as of highest 

im portance, although he was not able to prove it before his death in 1912, the theorem is
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also called Poincare's last geometric theorem. The characteristic style o f Poincare's work 

is obviously seen again in this theorem: it is not so sharp for application, nevertheless, it 

show s the possib ility  o f the existence o f periodic solutions in the restric ted  3 -body 

problem . The theorem  is geometrically beautiful although it may seem that the conditions 

are arbitrary.

G iven a ring 0 < a < r < b i n  the (r, 0) plane (r, 0 being polar coordinates) and a 

one-to-one continuous area-preserving mapping T  o f the ring onto itself, which maps the 

points on r=a and r=b in d ifferent directions, the theorem  says that there exist at least 

tw o points o f  the ring invariant under T.

The desired proof for the above theorem was given shortly after Poincare's death by 

B irkhoff (1913). In fact the num ber o f fixed points in Poincare’s theorem  was im proved 

to even num bers greater than two. The num ber o f fixed points is related to the rotational 

num ber o f the m apping which we shall give in the following. This theorem  was given 

the nam e the Poincare-B irkhoff fixed point theorem.

The fixed point theorem, extended by Birkhoff, establishes the existence of infinitely 

m any higher order fixed points (or periodic solutions) in the vicinity o f an elliptic fixed 

point (or stable periodic solution). Obviously the statement is stronger and the conditions 

are relaxed in favour o f practical application.

It is useful to note that these theorems have not been successfully extended to higher 

dim ensional m appings, as is remarked in Siegel & M oser (1971).

H ow ever, fo r system s reducible to a two dim ensional m apping, a com bination o f 

these theorem s with the KAM  theorem presents a com prehensive qualitative description 

o f  all possib le  types o f solutions and the interrelation o f them. W e shall see that the 

K A M  invariant tori can in fact act as the boundary o f the rings in Poincare's fixed point 

theorem .

K A M  T h eo rem  and Arnold Diffusion

T he in trinsic sm all div isor problem  in an alm ost integrable H am iltonian system  may 

cause d ivergence o f  various infinite series expression o f solutions to such system s 

(Poincare, 1892). M oreover, Siegel's theorem  says that m ost H am iltonian system s are 

not in tegrab le . T hese may be interpreted as that m ost quasi-period ic  solutions are 

destroyed  by sm all perturbations. This, however, is not the case. It was conjectured by 

K olm ogorov (1954), proved by Arnold (1963) and m odified by M oser (1962) that for 

su ffic ien tly  sm all perturbations, alm ost all quasi-period ic solu tions are preserved. 

A lthough  the cond itions are far from being o f practical value, the theorem  offers 

qualitatively  significant guidance towards m ore realistic estim ation o f the existence of 

such solutions and stability o f equilibrium  and periodic solutions. The conditions to be

53



satisfied  are stated as follow s (see Lichtenberg & L ieberm an, 1983; Siegel & M oser, 

1971; M oser, 1973), using the notations o f the last section.

(1). the linear independence (sufficient nonlinearity) o f the frequencies co(J) over

integers, nam ely, < co, k > *  0, over some dom ain o f J;

(2 ). sufficient smoothness condition on the perturbation (sufficient num ber of 

continuous derivatives o f H j);

(3). initial conditions sufficiently far from  resonance to satisfy | < co, k > | > c / k 'T for 

all k, where x is dependent on the num ber o f degrees of freedom  and sm oothness 

o f  H j, and c is dependent on e, the m agnitude o f H j, and the nonlinearity G of Hq.

A lthough the KAM  theorem  is proved by a different m ethod, the im portance o f the 

above conditions can be observed from  the perturbation theory o f the last section. The 

second and the third conditions are im portant to establish convergence o f the partial 

Fourier series and the com plete pow er series; whereas the first condition precludes the 

re so n an t case w hich needs separate  d iscussion . The first cond ition  can also  be 

in terpreted  as sufficient nonlinearity, as is evident if one observes that the frequencies 

are the derivatives o f  the in tegrab le H am iltonian. For further exp lanation  o f these 

conditions and the concepts o f accidental and intrinsic degeneracy etc. the references 

should be consulted.

Arnold 's sm oothness condition required that the Hamiltonian should be analytic in a 

strip defined by the action-angle variables; whereas M oser's original condition required 

it to have 333 derivatives. H enon (1966) carried out the com putations necessary to 

determ ine the size o f  the perturbation and show ed that for a system  of two degrees o f 

freedom , A rnold 's form  o f the theorem  required it to be less than 10' 333 an(j M oser's 

less than KL48. This estim ation is practically useless. Moreover, the incom m ensurability 

condition was later w eakened to the condition that there be no resonances o f order k=3 

and k=4 (M oser, 1973).

T he structure o f quasi-periodic and chaotic m otion in the phase space o f alm ost 

in tegrable system s is often m ade analogous to the structure o f rational and irrational 

num bers on the real line. H ow ever, care m ust be paid not to read too m uch into such 

analogy. In fact, they are sim ilar in the sense that the two kinds o f properties are mixed 

in so com plicated a way that neither covers a finite open domain no m atter how small the 

dom ain is. The difference lies in that rational num bers have measure zero, whereas both 

chaotic and quasi-periodic solutions have positive measure in phase space.

54



Trajectory

(«)

Tw o initial 
conditions (A, o) 
with s  = 6

a  irrational

(b)

Figure 2 .1 M otion  o f  a phase  space point for an in tegrable system  w ith tw o degrees 

o f  freed o m , (a). T he m otion  lies on  a torus J j= c o n s t, J2 =const.

(b). Illu s tra tin g  trajectory  in tersections w ith a su rface o f  section 02=const 

afte r a large  num ber o f  such intersections.



It is instructive to apply bo th  the K A M  theorem  and Poincare 's  fixed  poin t theorem  

to alm ost in tegrab le au tonom ous H am ilton ians w ith tw o degrees o f  freedom  and alm ost 

in teg rab le  area-p reserv in g  m ap p in g s to in fe r the g eneric  behav io u r o f  such system s, 

w here in the fo rm er case the H am ilton ian  is the on ly  g lobal in tegral and in the latter no 

global in tegra l exists. T he im p o rtan ce  o f  such low  d im ensional system s lies in that an 

au tonom ous H am ilton ian  o f  on e  degree o f  freedom  is alw ays in tegrab le by quadrature; 

w hereas fo r system s w ith d eg rees  o f  freed o m  h ig h er than tw o and high d im en sio n al 

surface o f  section, fixed poin t theorem s have not been established. T heorem s like these 

m ay no t ex is t fo r h igher d im en sio n al space, w hich  m ay  in turn be re la ted  w ith the so 

called A rnold  diffusion in h igher d im ensional space.

F or a H am ilton ian  w ith n d eg rees o f  freedom , the K A M  invarian t hypersurfaces are 

n d im en sio n al, w hereas the so lu tions are all on a fam ily  o f  2 n -l  d im en sio n al energy  

in tegral m an ifo lds. F rom  to p o lo g ica l study  it is ev id en t that a set o f  n d im en sio n al 

hy p ersu rfaces  can  d iv id e  an n + 1  d im en sio n a l space  in to  sep a ra ted  b o u n d ed  (n + 1  

dim en sio n al) reg ions. S o lv ing  the sim ple eq u a tio n  n + l= 2 n - l ,  we see that co m p le te  

iso la tion  o f  the ph ase  space h ap p en s o n ly  fo r a H am ilto n ian  w ith tw o d eg rees  o f  

freed o m  and  tw o d im en sio n a l a rea -p rese rv in g  m ap p in g s, w h ich  can n o t be fu r th e r 

separated . F o r h ig h er d im en sio n al system s, no m atte r how  sm all the p ertu rb a tio n  is, 

chao tic  reg io n s are  no t iso la ted  by K A M  tori, thus the so ca lled  A rn o ld  d if fu s ion  

throughout the phase space occurs.

U sing  the sam e notation  as in the last section , and assum ing  the sy stem ’s degree o f  

freedom  is tw o, we consider the system  in action-angle space o f the in tegrab le part. The

m otion fo r a g iven energy  o f  the u n pertu rbed  part is on  a set o f  tori (J j ,  0 1; J2 , 6 2 ), 

w here the tw o  actions are re la ted  through the equation  H o(Jj , J2 ) = const (Fig. 2 .1 .a). 

W hen the actions are such that the tw o frequencies are in resonance, the trajectories are 

closed, and  the m otion periodic; w hereas w hen the trajectories are not in exact resonance 

the trajectories are not closed and repass the v icin ity  o f  every point on the tom s infinitely 

m any tim es.

I f  w e choose the section o f  the to m s afte r every  2n  evo lu tion  in the slow  angle 0 2, 

then the surface o f  section is charac terised  by the J i - 0 j  (Fig. 2.1.b). If  the unpertu rbed

H am ilton ian  is not in trinsically  degenerate , that is, H q4=Ho(<C , J> ) , w here C  is a set o f  

real co n stan t, the surface o f  section  o f  the un p ertu rb ed  H am iltonian  is usually  a set o f  

sm ooth cu rves and a set o f  h ig h er o rd er fixed  po in ts , w hich are m ixed  in a w ay sim ilar
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F igure 2.2 R egular and irregular trajectories for a H am iltonian  w ith re la tive ly  large 

perturbation  (a), near the prim ary  fixed point; (b). expanded  (and  

circularized) scale near a second-order fixed point (from  L ich tenberg  & 

L ieberm an , 1983).



to rational and irra tiona l num bers. D efin ing  the ro ta t io n  n u m b e r  as o^co j/co2, w hich

has the m ean in g  that co rresponds to a 2n  increase in 0 2 there is a 2 m  increase  in 0  j ,

then the above p ro cess is d esc rib ed  on the Ji~ 0 1 su rface o f  sec tion  by the fo llow ing  

tw ist  m a p p in g ,

which is area-preserv ing . T he  fixed points o f  the m apping correspond  to ra tional a ,  and

invariant cu rves correspond  to irrational a .  F or exam ple, if  a=G )l/co2 = k 2/ k 1 ^ 2  an<^

k j relatively p rim e in tegers, the periodic trajectories close after k 2 revo lu tions in 0 j and

k j  revo lu tions in  0 2. O n the J^-0  j su rface o f  section , this p roduces a se t o f  fixed  

points (w ith p erio d  k j) .

W hen the system  is pertu rbed  slightly, then according to the K A M  theorem , m ost o f

the tori supporting  incom m ensurab le ro tation num bers, ie. irrational a ,  are p reserved  as 

invarian t to ri bu t s lig h tly  d is to rted  to  support the s ligh tly  d is to rted  q u as i-p e rio d ic

solutions (Fig. 2 .2 .a); w hereas tori supporting  the period ic so lu tions o f  ra tiona l a  and

those supporting  q u asi-period ic  solu tion  w ith not sufficiently  irra tional a  break  up in to  

ch a in s o f  is lan d s  an d  ch ao tic  reg io n s. T he  is w hy  chao tic  d y n am ics  is a lso  ca lled  

resonant d ynam ics .  T he la tte r is not d irectly  g iven  by the K A M  theorem , in fact this 

is also w here the K A M  theorem  m ay be sharpened. T his, how ever, m ay be exp lained  by 

a co m b in atio n  o f  th e  K A M  th eo rem  and the fix ed  po in t th eo rem s o f  P o in ca re  and 

B irkhoff; o r a lternative ly  by the still grow ing  converse K A M  theory  (eg. M acK ay  e t al,

1989), w h ich  a tte m p ts  to  e s tab lish  the n o n ex is ten c e  co n d itio n  o f  in v a ria n t to ri 

accom m odating quasi-periodic solutions.

For such a s ligh tly  p ertu rb ed  system , the surface o f  section m ay be rep resen ted  by 

certain  p ertu rbed  tw ist m app ing , w hose generic behav iou r is not lost by the fo llow ing  

sim pler radia l tw ist  m a p p in g  and s ta n d a rd  m a p p in g ,  re sp ec tiv e ly  w ritten  in the 

form

or
x n+1 r c o s ( 2 7 t a )  -  s i n ( 2 7 t a )  1 [ x n" 

y n + 1J [s in(27t  a) co s (27 t  a) J L y J  ’
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F ig u re  2.3 Illustrating  the P o incare -B irkhoff theorem  that som e fixed  po in ts are 

p reserved  in a sm all perturbation . T he in tersections o f  the heavy  solid 

and dashed  curves are the p reserved  fixed points (from  L ich tenberg  & 

L ieberm an , 1983).



f J n+1 = j  n + ef (6n) j j n + 1 = j n + p s i n e n

l e nt, = 0n + 2^a(J„+,) ’ l6n, ,  = e n + 2lt« ( J nt,)

w hich are both area-preserving.

F rom  the K A M  th eo rem , the in itia l co n d itio n s  b eco m e  m o st re le v a n t to the 

conservation  o f torus as o th er conditions are the sam e. P articu larly , in the case  o f  tw o 

dim ensional m apping, the torus m ost robust to perturbations (ie. the last K A M  curve) is

that w ith the ro ta tion  num ber equal to the golden section nu m b er g=(V5 - l ) / 2 , w hich  

is the num ber w orst approx im ated  by ra tionals according to num b er theory  (see B aker,

1984). T he next class o f  'm ost irra tional' num bers are those o f  the fo rm  p + [ l /(q + g )L  

w here p and q are in tegers (eg. G reene, 1979; G reene & P ercival, 1981; C o n topou los £t

1987). In connection  to  a resonant ro tation  num ber oc=k2 / k j ,  there are  at least tw o 

K A M  curves on each side c lo se  to it, w hich m ay often  be co n stru c ted  by the ro ta tion

num bers o t± [l/(q+ g)]. R elative to the rotation num ber a ,  the po in ts  on these tw o K A M  

curves are generically  m apped  in opposite directions. T herefo re, these K A M  curves can 

be regarded  as the boundary  o f  the ring in the P o in care -B irk h o ff fixed  p o in t theorem ; 

using it to the m apping, w e obtain 2 kkj fixed points, w here k is a positive in teger w hich 

is usually one, w ith h a lf o f them  elliptic and h a lf hyperbolic (Fig. 2.3). T herefo re  due to 

pertu rbation  som e o f the fixed  points are p reserved , w ith the position  u su ally  sh ifted  

(eg. B erry , 1978; L ich tenberg  & Lieberm an, 1983).

A pply ing  the B irk h o ff fixed  point theorem  and the K A M  theo rem  to h ig h er o rd er 

itera tion  o f  the m app ing , w e can estab lish  the p reserv a tio n  o f  in fin ite ly  m any  h ig h er 

o rder fixed  po in ts  and  h ig h er order K A M  curves. In the rem a in in g  part o f  this section 

we shall d iscuss w hat happens to the o ther fixed poin ts o f  the unpertu rbed  system  and 

those in v arian t cu rv es  no t su ffic ien tly  irra tiona l. It is in fac t the ch ao tic  so lu tio n s  

asym pto tic  to h y p erb o lic  p o in ts  that o ccupy  reg io n s o f  the  p h ase  sp ace  w h ere  no 

invariant curves ex ist (M oser, 1973).

H o m o c l in ic  a n d  H e te r o c l in ic  P o in ts

W e have seen, by a rep ea ted  use o f  the K A M  and the f ix ed  p o in t th eo re m s, the 

im portance o f  q u asi-p e rio d ic  m otions tow ards a co m p reh en siv e  p ic tu re  o f  the phase  

space structure. Its im portance in relation to chaotic m otions shall becom e obv ious in the 

follow ing discussion on elliptic and hyperbolic fixed points. H om oclin ic  and heteroclin ic 

points are the very first exam ples o f  chaotic m otion given by P o incare dem onstrating  the 

com plexity  o f  dynam ica l system s. In fact, their ex istence can  be easily  show n based on

57



KAM curve

Elliptic point

KAM curve

KAM curve

(a)

0.10

0.05  -

Hyperbolic 
fixed point

H ~

- 0.05  —

H*

- 0.10
0.100.05- 0.10 - 0.05 0

x

(b)

F igure  2.4 Illustrating  the effect o f  a hom oclin ic poin t on the generation o f chaos

near a separatrix . (a). T he stable (H+) and  u n stab le  (H ‘) branches o f  the 

separatrix  intersect infinitely m any tim es, (b). D e ta ils  o f  the intersections 

near the hyperbolic fixed point (from  L ich tenberg  &  L ieberm an, 1983).



hyperbolic po in ts o f  a continuous 2 -d im ensional area-preserving m apping.

W hen  the system  is in teg rab le  the stab le  and unstab le m anifo lds o f one (o r m any) 

h y p erb o lic  fix ed  p o in t(s )  co n n ects  sm o o th ly . W hen  the sy stem  is no t in teg ra b le , 

how ever, they  generica lly  in tersect w ith one another. S ince the m apping  is con tin u o u s 

and area-preserv ing , one intersection im plies infinitely  m any in tersections (eg. B irkhofl, 

1927; B erry , 1978); m oreover, as the stab le  (unstab le) m an ifo lds com es c lo se r to  the 

h yperbo lic  po in t, it m ust be stre tched  to p reserv e  the area. S ince a stab le  (unstab le) 

m an ifo ld  ca n n o t in te rsec t w ith a m an ifo ld  o f  the sam e type, it in te rsec ts  w ith  the 

elongated  unstab le (stable) m anifold again and again, thus producing a wildly entangled  

net. In this w ay area-filling  chaotic trajectories are generated (Fig. 2.4).

T he  in te rsec tio n s  o f  stab le and unstab le  m anifo lds o f  the sam e single hyperbo lic  

p o in t are ca lled  h o m o clin ic  points; w h ereas  the in tersec tio n s  o f  such m an ifo ld s  o f  

d iffe ren t hy p erb o lic  po in ts  are ca lled  he teroc lin ic  points. O ften  both k inds o f  chao tic  

m otions happen  in a single system .

H o w e v e r, w e m u st p o in t ou t th a t th ese  are  on ly  g en eric  b eh av io u r. E ven  in 

n o n in teg rab le  system s, it m ay happen that the stable and unstab le  m an ifo lds o f  so m e  

hyperbo lic  po in ts connect sm oothly, and thus no hom oclinic (or heteroclin ic) po in ts are 

p roduced  by such hyperbo lic  points. F o r m ore  detailed  d iscussion  on generic (typ ical) 

and non-generic  (atypical) behaviour, see P oston  & Stew art (1978).

N ow  w e see an o th er im p o rtan t asp ec t o f  quasi-p erio d ic  so lu tio n s in re la tio n  to 

chaos. T h e  K A M  cu rv es  are im p o rtan t to  estab lish  the ex is ten ce  o f  in fin ite ly  m any 

hyperbo lic  po in ts, w hich  in turn generate  hom oclin ic  and heteroclin ic  points and chaos. 

T herefo re , w ith  the p resen t know ledge o f  dynam ical system s, q uasi-period ic  so lu tions 

and in v arian t tori are essen tia l to p resen t a com prehensive qualita tive descrip tion  o f  the 

generic behav iou r for H am iltonian  system s and area-preserving m appings (Fig. 2 .2 .b).

It is useful here to  m ake a com m ent on W intner's com m ents on L iapounov stability 

given on page  98, and in tegrability  g iven on  pages 142 to 145 o f his 1947 book. H e w as 

quite righ t in saying that L iapounov stability  is highly exceptional and that such stability 

is re la ted  to  D iophan tine  problem s. B ut he a lso  rem arked  that this stability  requ ires too 

m uch, thus is not im portan t fo r practica l pu rposes. N ow  it has been rea lised  that it is 

exactly  this stability  together w ith P oincare 's  and  concepts like L iapounov characteristic  

exponents that are m ost closely  related to chao tic  and quasi-periodic m otions (eg. M oser, 

1973), w hich  are very useful practical concepts.

H is  co m m en ts  on  in teg rab ility  in the  tex t, are even m ore m is lead in g  (see eg. 

B ro u ck e , 1979 fo r a co m m en t). A s a to p o lo g is t, W in tn er took  a d e f in ite ly  m ore  

advantageous standpoint o f  looking at the qualitative feature o f  dynam ical system s ra ther 

than  a q u an tita tiv e  one; and rea lised  that som etim es one is equally  ho p eless  w ith a
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system  in teg rab le  in the sense o f  L iouville . B ecause o f  the d ifficu lty  o f  inversion  in 

analysis, a qualitative description is equally difficult to obtain (from  the im plicit solution 

in quadrature) for an integrable system  and a nonintegrable system . T his is true even in a 

slightly  pertu rbed  area-p reserv ing  m apping. F o r ex am p le  the su rface  o f  section  o f  the 

H enon-H eiles ' sy stem  seem s to  be com pletely  occup ied  by in v arian t cu rv es w hen the 

energ y  is very  low . T h is  system  is no n -in teg rab le ; h o w ev er, one co u ld  not easily  

d is tin g u ish  th is system  from  a co m p le te ly  in teg rab le  sy stem  w ith  s im ila r  in v arian t 

curves. O n the o th er hand , the invarian t circ les o f the tw ist m app ing  m ay  be d isto rted  

arbitrarily  so as to represen t ano ther area-preserving m apping , w hose solu tion  w ould be 

co m p lica ted  b ecau se  o f  the co m p lex ity  o f the tran sfo rm a tio n . Y et, the sy stem  is 

integrable; it is topologically  different from  non-integrable system s.

T h e re fo re , the  p re se n t au th o r w ou ld  argue  th a t in te g ra b ility  is a u sefu l and  

theore tically  rig o ro u s concep t, w hich  is w ell defined  at least in the p resen t theory  o f  

dynam ical system s. W hat is really  uncertain is how  to determ ine and distinguish  w hether 

a system  is in tegrab le , and how  to search for in tegrable system s.

O ne shou ld  no t conclude , from  the d ifficu lty  o f  dec id ing  co n v erg en ce  o f  in fin ite  

series that the notion  o f  convergence is quite undefined. In a b roader sense, the no tions 

o f  n o n p red ic tab ility  and  d e term in ism , u n d ec id ab ility  and  d e fin iten e ss  e tc . are not 

exclusive. T he idea o f  'no  construction , no ex istence ' (as w as held  by K ronecker) w as 

already dism issed  by the w ork  o f Cantor.

A n  ex am p le  m ore  like ly  to  be accep ted  by W in tn e r m ay  be th a t a good  cup  is 

d iffeom orph ic  w ith  a to ru s , w here  the g lobal d iffeo m o rp h ism  is no t triv ia l, and the 

analytic transform ation betw een them  is highly com plicated  in E uclidean  space. Yet, the 

notion o f  d iffeom orph ism  is very useful in topology.

2.6 S o lu t io n  M e th o d  IV - N u m er ica l  In teg ra tio n  and  N o n p r e d ic ta b i l i ty

B ecause o f  the ex isten ce  o f  chaotic  solutions, the re liab ility  o f  conven tional num erical 

rou tines fo r co n tin u o u s  d y n am ica l system s needs a m ore  ca re fu l d iscu ss io n . T h e  

com putab ility  (p red ic tab ility ) o f  single trajectories becom es questionab le  especially  fo r 

long term  n u m erica l in teg ra tions (eg. H eisenberg , 1967). S ince th is field  is only  at a 

beginning stage, w e shall on ly  m ention the problem  im portan t to num erical rou tines o f  

classical m any-body system s.

T he first in teg ra ls  such as energy  and angular m om entum  are often  used  as a check  

o f the accuracy  o f  the num erical routines (eg. S tiefel & Scheifele, 1971; H eggie , 1988). 

H ow ever, firs t in teg ra ls  are usually  'adiabatic '; they are not sensitive  to in teg ra tion
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errors. U sually , no difference can be observed in the change o f in tegrals betw een regular 

and  irreg u la r trajecto ries. T herefo re  they are very inadequate  fo r this conven tiona lly  

assum ed role; at m ost they can be a necessary check that the routines are not too bad.

O n the o th er hand, d ifference m ethods are usually  used in num erica l rou tines. It 

b eco m es q u es tio n ab le  w h e th e r these  in teg ra ls  are still p o ssessed  by the num erica l 

m ethod . In general, in teg ra ls  o f  co n tinuous system  m ay be lost by tru n ca tio n , as is 

already show n in the T oda lattice problem . In fact, the extra integral o f  the Toda potential 

is lost in H enon-H eiles system , and any higher order truncation o f  the T ay lo r expansion 

(eg . U d ry  & M artin e t, 1990). A lth o u g h  th is has not been show n for the T ay lo r 

expansion  w ith respect to time, the presen t author strongly feels that a lm ost all in tegrals 

are lost in such a truncated  system  (eg. the num erical routines used in chapter 5 ).

A  w ay o f  overcom ing this shortcom ing o f standard num erical in tegration  schem es is 

p ro b ab ly  by the  so -called  sim plectic  in teg ra tio n  a lgorithm  (eg. C h an n ell & Scovel,

1990). B y th is a lgorithm , the im portan t g lobal featu res o f the system s are preserved . 

T h e  m eth o d  p rese rv es  all the P o incare  in teg ra l in v arian ts  by seek in g  a g enerating  

function  w hich produces canonical transform ation betw een successive d iscrete times.

In teg ra tio n  erro rs  are also  estim ated  by in teg ra tin g  on in itia l co n d itio n s  w hose 

so lu tions are know n. H ow ever, this is equally  unreliable as the in tegral check. B ecause 

o f  the in trin sic  d ifference o f  solutions, errors do not grow  in the sam e w ay on d ifferen t 

trajectories.

In fact, since ad jacen t trajectories depart exponentia lly  w ith tim e in chaotic regions 

and linearly  in regular regions, the long term  com putation o f  single trajectories in chaotic 

reg ion  becom es im possible. In this case, the increase in accuracy o f  the initial conditions 

and the process o f  com putation grow s linearly with the time interval o f com putation; this 

w ould  push the pow er o f m odem  m achines to their limit.

2.7  A C o llec t io n  o f  M a p p in g s  w ith  R eg u la r  an d  C h aotic  S o lu t io n s

In  section 2.3 w e have seen exam ples o f chaos dem onstrated  on the surface o f section o f 

H am ilton ian  system s. H ow ever, it is also ev ident that it is m uch easie r to d isp lay  chaos 

on co m p u te r by  using  m appings (eg. the standard  m apping  o f  sec tion  2.5). In th is 

section w e give a collection o f the im portant m appings w hich have attracted m uch active 

re search  in terests , and have been successfu lly  used to  convey the m ean ing  o f chaos. 

T hey  w ill be d iv ided  in to  tw o groups, nam ely , area-preserving m appings and m appings 

possesses attractors.
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A r e a -P r e s e r v in g  M a p p in g s

A  2-dim ensional m apping is usually given the m ost general form  

| X =  f(x,  y)  

l Y = g ( x , y ) .

S uch  a m ap p in g  is in teg rab le  if  it adm its  an in teg ra l I(X , Y )= I(x , y)=--const. A n 

area-preserving m apping is not necessarily integrable.

In constructing an area-preserving m apping in practice it is very useful to assum e the 

fo llow ing general form s

f x =  y + aF (x )  j X  = x + aF(y)

' l Y = - x  + bG(X), |Y  = y + bG(X),

w here a and b are tw o arbitrary  constants. It is easy to verify  that the Jacobians o f both 

are equal to one, hence area-preserving. In fact, the constants a and b are included here 

to  in d ica te  th a t the signs p reced ing  the func tions F and G are no t im portan t to the 

area-preserv ing  property  o f  the m appings (although they can be used to indicate chaos); 

it is the signs o f  x and y that matter.

(1). Sw eet's  M apping

S w eet construc ted  a class o f  non linear m appings o f  type-I with F=G  (in the 1980's, 

but not published), w hich is included here because o f the richness o f their structure. The 

very  general m apping is

a x  + b x 2 + kx3X =  y +

Y =  -  x +

1 -  2bx + c x 2 
aX + bX2 + kX3

1-abX+cX2 ’

w here a, b, c and k  are arbitrary  constants.

W hen k= 0  the m apping becom es integrable, although it is still nonlinear. In order to 

obtain the integral, we rew rite the first equation and square it to give

y 2 =  X2 -  2xX  a + b x -  + x 2( a + -b4 ? .
1 -  2 b x +  c x  (1 -  2 bx  + c x  )

T hus w e have

y 2(1 -  2 bx  + c x 2) + x 2 1 -

( a +  bx)
1 -  2 bx + c x 2 J

= x 2 + X2 - 2 a x X  + c x 2X2 - 2 b x X (x +  X) .

N ote that the RHS is a sym m etrical function  o f  (x, X). On squaring the second equation
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o f the m apping  one arrives at the sam e function on the RH S w hile  on the LH S is the 

sam e fu n c tio n  o f  (X , Y ). H ence w e o b ta in  the q u a n tity  in v a ria n t u n d e r the 

transform ation , viz.

I(x, y)  = y 2(1 -  2 b x  + c x 2) + x : (a + bx)
= cons t .1 -  2bx + cx2.

It is a lso  in te restin g  to note that w hen b=0 the m apping  is sim plified , but all the 

im portan t qua lita tiv e  featu res o f  the orig inal system  are p reserv ed . F o r exam ple , the 

system  is in tegrab le  if  k=0. A s the value o f  k increases m ore and m ore o f the invariant 

curves break  up in to  islands and chaotic sea.

(2). H enon-H eiles ' M apping

H enon  & H eiles (1964) introduced an nonlinear m apping o f  type II, w hich d isp lays 

the characteristic feature o f  their nonintegrable H am iltonian system . T he m apping is

| X =  x + a ( y  - y 3)

| Y =  y -  a ( X -  X3),

w here a is a param eter. C haos occurs w hen a?K) (eg. a=1.6).

(3). H enon 's Q uadratic M apping

In his 1969 paper, H enon  in troduced and studied in detail h is now adays classical 

quadratic m apping

JX= x cos a  -  ( y - x 2)sina  
| y = x sin a  + (y -  x2) cos a ,

w here a  is a param eter. T ypical structures m ay be observed in the (-1, l ) x ( - l ,  1) square

dom ain  w ith param eter values cosa= 0 .8 , 0.4, 0, -0.01 etc.

It is also interesting to note that the linear m apping

fbX= bx cos a -  a y  sin a x2 y2
1 v u I = iT + — = const
[aY = bx sin a  + a y  cos a, a b

is in teg rab le , w h ere  a, b, and a  are param eters  and I is an iso la tin g  in teg ra l. T he 

m apping

bX= bx cos^/(x2 + y 2) -  a y  sin-^(x2 + y2) 

a Y =  bx sin^/jx2 + y2) + a y  cos^/fx2 + y 2)

is apparently  nonlinear, but it is easy to show that it possesses the fo llow ing integral
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x 2 yI = - 5- +  —z  = c o n s t .  
a2 b

hence it is integrable.

(4). F roesch le 's  M apping

F roesch le  (1971, 1973) studied  the fo llow ing  area-preserv ing  m apping  o f  angu lar 

variables

w here typical values o f  the param eter giving interesting features are a=-0.3, -1.3.

(5). R annou 's M apping O perating  on Integers

T o  avoid the round-o ff erro rs usually involved in any com putation , R annou (1974) 

studied F roeschle 's m apping by lim iting the variables (x, y) in the field o f integers. The 

m apping is

w here (p, q), (P, Q) and k  are integers; a [...] represents the integral part o f the num ber. 

T his m apping  d isp lays sim ilar invariant curves, islands and chaotic seas as F roesch le 's  

m ap p in g ; so it co n firm s th a t the d isap p earan ce  o f  iso la ting  in teg ra l is no t due to 

com puting errors. See A ppendix  A for a sim ilar exam ple well studied in num ber theory.

M a p p in g s  w ith  A ttractors

W hen a dynam ical system  has both driving and dam ping m echanism s, it is very likely to 

produce the phenom ena o f  attractors. A ttractors can either be a sm ooth m anifold  having 

in teg ra l d im en sio n s  (eg. p o in t a ttrac to r, lim it cyc les), o r they  can  have frac ta l 

d im ensions; in the latter case, they are ca lled  strange (or chaotic) attractors. W hile the 

phenom ena o f  lim it cycles was know n at the turn o f  the century, the first fractal a ttractor 

w as not d iscovered  until 1963 w hen L orenz observed his strange attractor from  a set o f  

three nonlinear differential equations. L ater m ore and m ore such attractors w as observed 

from  both experim ent and theoretical com putation (see H olden, 1986). T oday num erous 

effo rts  have been d irec ted  tow ards find ing  a ttrac to rs even in b io log ical science and 

eco n o m ics (see S tew art, 1989). H ow ever, the easiest way o f  ob ta in ing  a ttracto rs  on 

com puter is to use m appings w hich are not area-preserving. The follow ing is a b rief list 

o f  the im portant ones. They m ay find som e use for the proposal o f  the next chapter.

(mod 2%)

p=p+[ ^ sini r (p+q) ( m o d  k)
Q =  p + q
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(1). L og istic  M apping

T h e  log istic  m apping  is o f  som e im portance in biological science, w hich is usually  

w ritten  as

X =  X.x(1 -  x) o r  X=  x2 -  c

w here X and c are param eters.

(2). M ande lb ro t Set

T he m apping  giving the M andelbrot set in the param eter space is the com plex version 

o f  the log istic  m apping, viz.

w h ere  z is a com plex  variab le and C is a com plex  param eter. T h is m apping  m ay be 

expressed  by a 2-dim ensional m apping using real variables and param eters

(3). C an to r Set

A  sim ple C antor set can be produced as the attractor o f the follow ing m apping

(4). H en o n 's  A ttrac to r

H en o n  (1976) construc ted  his w ell-know n 2-d im ensional m apping  w ith a strange 

a ttractor, w hich  is

w h ere  a and  b are tw o param eters. The typ ical values o f the p aram eters  are a=1.4 ,

b= 0 .3 , an d  the  a ttrac to r lies in the dom ain (-1.5, 1 .5)x (-0.5, 0.5). T he Jacob ian  o f the 

m app ing  is a constan t, -b.

T h is is a very  good exam ple to dem onstrate how the em bedding theorem  w orks (see 

H o lden , 1986; S tew art, 1989). To explain  the m eaning o f this theorem , let us suppose 

that the above m apping defines a com plete hidden dynam ics (say that o f  econom ics) with 

tw o co u p led  variab les (x, y), but only x is observable; then the theorem  says that one 

can recover the attractor by looking at the x sequence (or time series). T he technique is to

Z = z 2 -  C

w h e r e

X =  y + 1 -  a x 2 
Y =  bx,
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construct a 2-d im ensional sequence ( x j ,  Xj+ n )  for a fixed n, and regard  it as the sequence 

o f a 2-dim ensional m apping; then the sam e attractor (m ay be unfolded) appears in such a 

p h a se  p o r t r a i t .  M ost o f  the curren t research  on chaos in econom ics is based on this 

theorem .

(5). The fo llow ing m appings produce attractors w ith sym m etry

X= (2x2 + 2 y 2 -  p) x -  ~ ( x 2 -  y2) 
.2 . 2

X= (2x2 + 2y2 -  p)x -  -t-(x2 -  y2) 

Y = ( 2 X %  2y2 -  p)y + Xy,Y = (2x + 2y -  p)y + xy

w here p is a param eter. In teresting values o f the param eter are p=1.5, 1.8, 1.9.

(6 ). T he  fo llo w in g  m ap p in g s  have p o in t a ttra c to rs , lim itin g  cy c le s  and o th e r  

1-d im ensional attractors, and have som e connection  to one D iophan tine equation  given 

in A ppend ix  A. W e w ill give the equations o f  the m appings and the local invarian ts  

defining the lim it cycles, they are

f b X  — b  X 3  y  . 2 ̂ 2 .  2 \ p -  / i ^ ?  2 2 \ 2 t  . 2 ? 2 2  _ .
\ b a  + a  Y = b x + a  y => I = b x  + a y  = 0,1
|aY = 2 a b x y  ,

[  =  b  X +  a  y l ^ V 2  2 v / 2  / u 2  2  2 2 \ 2  t  u 2  2  2 2
< b x - a Y  = ( b  x - a  y ) => l = b x  - a  y = 0 , 1
[ a Y =  2 a b x y  ,

w here a and b are two arbitrary constants. For exam ple , a = l ,  V2 and b = l are in teresting 

param eter values.

2 .8  O n  th e  O c c u r re n c e  o f  C o m m e n s u ra b i l i t ie s  in  th e  S o la r  S y s te m

T o end this review  chapter, we shall m ake a few  com m ents, base on the K A M  theorem , 

on the occu rren ce  o f  com m ensurab le  m ean m otions in the Solar System , a p rob lem  

w hich w as studied  by Roy & O venden (1954, 1955).

The ex istence o f  the T itius-B ode law in the d istance distribution o f  p lanets from  the 

Sun has a lw ay s been a cu rious p rob lem . Is the law  fo rtu itous, o r is it a re su lt o f  

d y n am ica l ev o lu tio n ?  O n a ttack in g  th is p ro b lem , B lagg  (1913) p ro p o sed  m ore 

com plicated  re la tio n s w hich  are applicable to sa tellite  system s o f  Jup iter, Saturn  and 

U ranus. V ery recently , the problem  has been studied num erically by C onw ay (1988); in 

his w ork the significance o f  the T itius-B ode law to stability is shown.

O n a d iffe ren t track , R oy & O venden  (1954 , 1955) re la ted  the p ro b lem  to  the
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o ccurrence o f  com m ensurab le  m ean m otions approxim ated by sm all in tegers; because 

orb ital m o tions approx im ated  by low  o rder resonances can d isp lay  sim ple geom etrical 

d istribu tion  in d istance. It w as found  by Roy & O venden (1954) that the occurrence o f  

com m en su rab le  m ean  m otions in the S o lar System  is m ore frequen t than by a chance 

d is trib u tio n . F ro m  th is  they  co n c lu d ed  that com m ensurab le  m ean  m otions m ay be 

p re fe rred  by a d y n am ica l m echan ism . T his po in t w as show n to be supported  by the 

M irro r th eo rem  in th e ir seco n d  paper; bu t as w as p o in ted  o u t in the pap er, the 

ex p lan a tio n  is no t rig o ro u s. L ate r, by in troducing  the in fluence o f tidal fo rces this 

preference o f  com m ensurable m ean m otions was explained by G oldreich (1965).

In fact, the dynam ical significance o f resonances to stability is m ade m ore obvious in 

chao tic  dynam ics; w hich  has been applied  to the d istribution  o f asteroids (eg. S iegel & 

M o ser, 1971). H o w ev er, in ch ao tic  d ynam ics (in p articu la r the K A M  th eo rem ) a 

re so n an ce  is o ften  used  to  ex p la in  in stab ility  ra th e r than stab ility ; thus the above 

in terpretation o f R oy e t al is not com patible with the H am iltonian chaos theory.

A c co rd in g  to ch ao tic  d y n am ics  o f  H am ilton ian  system s, re la ted  to a re so n an t 

frequency , usually  there are both ellip tic (stable) and hyperbolic (unstable) fixed points 

(period ic  m o tions); thus in general both stable quasi-period ic  so lu tions and chao tic  

so lu tions ex is t in connection  w ith a resonance. A lthough the occurrence o f chaos at a 

re so n an ce  can n o t be used  to  argue aga inst the p reference o f  re so n an t m o tions, it is 

show n not o n ly  by the K A M  theorem  but also in num erical w ork that initial conditions 

m ost fu rther aw ay fro m  resonances are m ore stable. T herefore, if  the p lanetary  m otions 

can be ap p ro x im a ted  by the N -po in t-m ass m odel, then concep tually  com m ensurab le  

m ean m otions m ust be the least favoured  for stability by dynam ics.

H o w ev er, it m ust be po in ted  ou t that chaotic dynam ics o f H am ilton  system  is not 

against the statistica l analysis given by Roy & O venden, but only against the resonance 

p reference in terp re ta tion  o f  such an analysis. M oreover, controversy  arises only w hen 

exact resonance is re ferred  to  in their interpretation; chaotic dynam ics is not yet strong 

enough to d ism iss near resonances, w hich m ight be m eant by Roy & O venden.

It is a lso  useful to  no te the fo llow ing  fact considering the d istribution o f num bers. It 

is read ily  seen that i f  x is un ifo rm ly  d istribu ted  in the dom ain (0 , 1 ), then in general

f ( x ) e (0 ,  1) is no t u n ifo rm ly  d istribu ted . T his is true, fo r exam ple , if  x and f(x) are 

defined  by a fin ite  n um ber o f  d ig its 0 .A ...B .

If  the ra tio  o f  tw o frequencies is assum ed to be uniform ly distribu ted  in (0, 1), then 

the analysis o f  Roy &  O venden m ay suggest that the occurrence o f  resonances is greater 

than natural. H ow ever, there is no reason why such an assum ption m ust be true. In fact, 

if  w e assum e that the frequencies are d istributed uniform ly in the sense that all num bers 

o f  the fo rm  0 .A ...B  are eq u a lly  possib le , then the ra tio  o f  frequencies w ould  disp lay
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certain  resonance preferences.

A final an sw er to this question  is far from  been possib le  at p resen t because chao tic  

dynam ics o f  d issipa tive  system s can produce resonance locking m echan ism s (B erge, et 

al, 1984). T herefo re  a m ore com plete investigation on the N -body m odel and the effect 

o f  tidal fo rces using  the m odem  chaotic  dynam ics is desirable. B efore this is possib le , 

both the statistical analysis and its interpretation rem ain open.
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I believe that G od does not play dice.

H e doesn 't need  n o ta t io n s , he needs n o tio n s. 

T he essence o f  m athem atics resides in its freedom.

--- E instein

—  G auss

—  C antor

CHAPTER 3 

Deterministic Chaos and Quantization
- a H euristic D iscussion

In the last tw o  chap te rs  w e have briefly  d iscussed  the p h en o m en a  and fundam en ta l 

th eo ries re lev an t to the m o tion  o f  heavenly  bodies, in p a rtic u la r  those in the so lar 

sy stem . T he  su cc essfu l ex p lan a tio n s  by N ew to n ian  m e c h a n ic s  an d  d iff ic u ltie s  

encoun te red  in the c lassica l N -body m odel are review ed. E m p h asis  w as m ade on the 

generic chaotic  behav iour found  in both continuous and discre te  dynam ica l system s. In 

the p re sen t ch ap te r, w e w ill d ev ia te  from  the standard  m ate ria l and g ive  a ra th e r 

speculative and personal v iew  o f  chaotic dynam ics, paying som e atten tion  to its im pact 

on science in general.

In section  3.1, the au th o r p roposes a possib le  alternative  in te rp re ta tio n  to w ave 

m echanics o r quantum  m echanics (QM , hereafter). This idea cam e to the author's m ind 

based on the observation o f certain  form al sim ilarities betw een the chaotic  a ttracto r and 

quan tum  state. In the sp irit o f  looking  for a determ inistic  in te rp re ta tio n  to quan tum  

m echanics, we shall speculate the m echanism  required for attractors in atom ic level, and 

d e m o n s tra te  th a t the  k ey  c h a rac te ris tic s  o f  q u an tu m  m e c h a n ic s  can  be w ell 

accom m odated  in the no tion  o f  a chaotic attractor. In section 3.2, the h istorical re la tion  

betw een determ inistic chaos and quantum  m echanics is discussed. A n attem pt is m ade to 

explain  in a broader sense the nonpredictable feature o f the determ inistic  history, w hich 

is not on ly  m anifest in the history  o f  quantum  m echanics but also  h istory  in general. In 

sec tion  3 .3 , w e w ill look  at q uan tiza tion  in a m athem atica l w ay , and m ake som e 

com m ents on the revo lu tionary  d ifferences betw een the m icroscop ic  and m acroscop ic 

w o rld s  w h ich  seem  to  h av e  been  o v erem p h asised  b ased  on the co n v e n tio n a l
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in terp re ta tio n  to  QM . T he possible rou tes leading to quantization  in the fram ew ork  o f  

c la ss ica l p h y s ic s  (C P) are sum m arised . F ina lly , the im pact o f  ch ao s on sc ience , 

p a rticu la rly  on the significance o f the concepts such as eq u ilib rium  and linearity  to 

natural phenom ena, is discussed in section 3 .4 .

3.1 C h a o t ic  A ttractors  and Q uan tization  - F orm al C om p atib il i ty

It is w ell know n  that quantum  m echanics is one o f the three revo lu tionary  physical 

th eo rie s  b o m  at the turn o f the cen tu ry , because it reso lved  the  c lassica l p h y sics  

d ifficu lties  in  explain ing  a num ber o f  w ell-established experim ental and observational 

phenom ena such as the black-body spectrum  (ie. the ultraviolet ca tastrophe), absorption 

spec tra  and  stab ility  o f  atom  (the classical radiation  catastrophe). It has alw ays been 

stressed  th a t c lassica l physics produces a continuous and determ in istic  m acro-w orld , 

w hereas q u an tu m  physics creates a d iscrete and probabilistic  m icro-w orld . D ue to the 

re v o lu tio n a ry  theory  o f  quantum  m echan ics w e now have built up a q u an tised  and 

p ro b ab ilis tic  p ic tu re  fo r the atom ic and sub-atom ic physical w orld . H ow ever, from  

m ath em atica l physics we know  that quantiza tion  is not unique to quan tum  (or w ave) 

m ech an ics , n o r is the probabilistic  view  o f  nature solely due to  quan tum  m echanics. 

H o w ev er, co m p ared  to the d iscre teness, uncerta in ty  and  indeterm in ism  fam ilia r in 

c lassica l p h y sics , those arising from  quantum  m echanics have been given com pletely  

d ifferen t significance in physics.

A t alm ost the sam e time when the old quantum  theory was bom , there also occurred 

the rev o lu tio n  in re la tiv ity  and chaos, w here the la tte r’s im portance w as recogn ised  

co m p le te ly  w ith in  the fram ew ork o f  determ in istic  N ew tonian  m echan ics (P o incare, 

1892). H isto ry  has w itnessed an alm ost parallel p rogress and m utual influence on each 

o th er in the developm ent o f  quantum  m echanics and relativity; how ever, because o f  the 

delayed  reco g n itio n  o f  the revolutionary theory o f chaos, the in terpretation o f Q M  m ay 

have been  acciden ta lly  m ade probabilistic. H ere w e shall propose a possible alternative 

determ in istic  in terpretation for quantum  m echanics using chaotic attractors discussed in 

p rev ious chap ters. A ccording to this in terpretation, QM  m ay be put in to  a position  like 

that o f  statistica l m echanics relative to N ew tonian m echanics; it w ould becom e a theory 

w ith underly ing  determ inism , and the revolutionary aspects o f Q M  w ould only lie at the 

transition  fro m  N ew tonian m echanics to QM . T hus nature m ay deviate from  som e Q M  

d esc rip tio n s  du e  to effects o f  classical m echanics; s im ilar deviation  from  statistica l 

m ech an ics  (eg. Ferm i & Pasta & U lam , 1955) has already been recognised  because o f 

the w ork  o f  K olm ogorov, A rnold and M oser.
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No attem pt is assum ed (in fact one could not, at the present stage) to argue fo r the 

po in t that the conven tional in terpretation to Q M  is false; how ever, we w ould  at least 

argue against the general op inion on the failure o f  classical physics and need fo r the 

revolutionary  quantum  theory contained in alm ost all standard textbooks. A lso discussed 

is the problem  o f  continuity and determ inism  o f  classical m echanics for the m acro-w orld 

an d  the  d isc re te n e ss  and  in d e te rm in ism  o f  q u an tu m  m ech an ics  g o v e rn in g  the 

m icro-w orld .

E sca p e  fr o m  C lass ica l C a ta stro p h es

Firstly , the o ften tim es rem arked continuity  o f classical physics cannot be taken literally. 

F rom  chaotic dynam ics (eg. the K AM  theorem ), m otions in nonintegrable conservative 

system s cannot be stable (here, quasi-periodic) for all initial conditions; in phase space, 

s tab ility  does not change con tinuously  w ith in itia l conditions. T hus nong lobal first 

in teg ra ls  ap p ea r w hich  ex ist on ly  on  invarian t tori. I f  such in teg ra ls  are fo rm ally  

generalised  to the w hole phase space, then one finds that only for som e d iscre te  set o f 

values o f  them  stable orbits exist; o therw ise m otions are not stable (ie. chaotic).

In this d irec tion  m uch investigation has been carried  out; a com prehensive  review  

m ay be found  from  Berry (1978, 1987). For exam ple , sem i-classical quan tiza tion  o f 

adiabatic invariants has been studied by G utzw iller (1971, 1980), B erry & T abor (1976) 

etc., w hich can be traced back to the very first effort o f  Bohr. Efforts on quantization o f 

quasi-periodic, hom oclinic and heteroclinic m otions can be found in O zorio  de A lm eida 

(1989) and references therein.

E ven  in linear system s such as M athieu 's and H ill's equations, w here chaos does not 

occur, the stab ility  condition  leads to quantization o f  the param eters o f  the O D E s (see 

Jordan &  Sm ith, 1990). The im portance o f  such equations will be stressed in section 3.3 

in guiding the construction o f O D Es sim ulating sim ple m odels treated in QM .

Secondly , the determ inistic view  o f classical physics is not true either. B efore the 

theo ry  o f  ch ao s, the tw o w ords 'de te rm in istic ' and 'p red ictab le ' w ere not c ritica lly  

d is tin g u ish ed  in physics, no r in ph ilosophy . T h erefo re , in the p re -chaos v iew , the 

b eh av io u r o f  c lass ica l p hysics system s is no t on ly  taken as de te rm in is tic  but also  

p red ic tab le  as a re su lt o f  the general ex istence and un iqueness theo rem  o f  O D E s. 

H o w ev er, c la ss ica l physics is now  rea lised  as determ in istic  because  o f  the local 

ex istence and uniqueness o f solution to O D Es; the behaviour o f  a dynam ical system  is 

not predictable fo r an arbitrarily long time scale. Because o f this nonpredictability feature 

o f classical system s, a probabilistic and statistical approach m ust be adopted. T his is the 

indeterm inistic aspect o f  classical physics.

T h ird ly , the classical radiation catastrophe m ay not be so catastroph ic to classical
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ph y sics  as w as alw ays thought. It is in fact only ca tastroph ic  to linearised  c lassica l 

physics, because the old quantum  theory was developed unfortunately  under the shadow  

o f  linearity  and  in tegrability  assum ed im plicitly  for classical physics. I f  n on linear term s 

are not o m itted  in the analysis, it m ay happen that the electron  in  the hydro g en  atom  

w ould  no t co llapse  into the nuclei. T he w ay out is easily seen w ith the notion  o f  chaotic 

attracto rs in  d issipa tive  system s w ith driv ing term s, since chao tic  a ttracto rs supply  not 

only chaotic m otions but also a new  kind o f equilibrium  state.

In B o h r's  trea tm en t o f  the hydrogen  atom , the classical rad ia tio n  w as artific ia lly  

d isca rd ed  b y  im posing  a ra th e r a rtific ia l quan tiza tion  cond ition . In co n tra s t, chao tic  

a ttrac to rs  m ay  o ffe r a m ore natu ra l and com fortab le  ex p lan a tio n  fo r the stab ility  o f 

q uan tum  sta tes and quan tum  jum ps; because all the classical effec ts m ay be preserved . 

A t first g lance , one m ay find  that the m odel lacks a driving m echanism . T his, how ever, 

is  no t a se r io u s  p ro b lem  to c lass ica l ph y sics, because w e see th a t all a to m s and 

m olecu les a re  staying in the a tm osphere o f  a radiation sea m ade up o f  e lec trom agnetic  

w aves (at leas t the cosm olog ical background radiation is alw ays there, though  this m ay 

no t be the co rrec t one). T herefore both driving and dissipation m echan ism s are inherent 

to  classical physics; the hard  problem  is in fact how  to construct o r choose som e m odels 

and study th e ir chaotic dynam ics in m ore detail.

In d o ing  th is there are tw o po in ts that need particu lar care. O ne is that the problem  

m ay  have to  be fo rm ulated  in the fram ew ork  o f  special re la tiv ity  because  o f  the high 

v e lo c ity  in v o lv e d  in the  m icro -w o rld ; g en era l re la tiv ity  is a lso  im p o rtan t w hen 

e lem en ta ry  partic les are studied. T hese suggest the im portance o f  study ing  re la tiv istic  

chaos. T h e  o th e r p o in t is th a t in such an approach, the rad ia tion  sea m ay  have to be 

q u an tised  b e fo re  the  b eh av io u r o f  the rad ia to r, as h is to rica lly  P la n ck 's  w o rk  also  

p reced ed  B o h r's . H ow ever, P lanck 's  b lack  body rad ia tion  m ay be used  in study ing  

q u an tiza tio n  o f  an atom , since w e are not challenging  the resu lt o f  Q M  at the p resen t 

stage. It m ay  happen that quantization o f the black body radiation is easier to study first. 

In fac t, su ch  a v iew  is held  by m any  scien tis ts  (eg. G a lg an i, 1985 and  re fe ren ces  

therein ). D ed u c tio n s  o f  P lanck 's law  have been carried  out in various d iffe ren t w ays, 

and  a p o ss ib le  deviation  from  P lanck 's law  in the R ayleigh-Jeans reg ion  is theoretically  

conceived.

In addition , the situation o f this proposal m ay be com pared to som e problem s related 

to  re la tiv ity . F o r  exam ple , E instein 's  second assum ption on special re la tiv ity , nam ely , 

the co n stan cy  o f  light speed, is not needed since it is consisten t w ith classica l physics, 

a lthough it is o f  fundam ental significance to special relativity. T he in terp re tation  to QM  

by H e isen b erg , B om  and B ohr m ay not be needed because o f the d iscovery  o f  chaotic  

attractors, although it is fundam ental to QM  in w ithstanding the historical questioning by
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E instein . A  second exam ple suggesting a possib le  sign ificance o f rela tiv ity  is the spin 

deg ree  o f  freedom  fam iliar in QM . Spin is usually introduced in QM  as a new  degree o f  

freedom , w hich  is to tally  ex terio r to the nonrela tiv istic  quantum  theory. It, how ever, 

m ay  be ex p la in ed  in the re la tiv istic  quan tum  theory  (eg. Schw eber, 1961; S trea te r & 

W igh tm an , 1964).

Q u a n tu m  States  and Q u a n tu m  J u m p s

W e have pointed out that the historical catastrophes were not so fatal to classical physics 

as p rev io u sly  thought. The m echan ism  needed in p roducing  chaotic attrac to rs can be 

found  w ithin  classical physics to supply possib ly  a determ inistic in terpretation  fo r QM  

phenom ena. H ow ever, it rem ains to investigate the m ore detailed com patib ility  betw een 

chaotic  attractors and the quantum  state and quantum  jum p process.

H isto rically , the quanta phenom ena w ould  not be catastrophic to classical physics if 

a ttracto rs  (no t necessarily  chaotic , eg. lim it circles found in the van d er Pol equation ) 

w ere know n to physicists explaining the stability o f atoms; neither w ould the line spectra 

due to quan tum  jum p  be so difficult to classical physics, supposing the jum p phenom ena 

in  system s such as D u ffin g ’s equation  w ere fam iliar to physicists at the turn  o f  the 

cen tu ry . I f  these phenom ena com plete ly  w ith in  classical physics w ere adm itted  to the 

sc ience com m unity , then at least concep tually  classical physics w ould not have had to 

face a fatal challenge.

H o w ev er, from  the resu lts o f  Q M , w e see that the structure o f  m anifo ld  attracto rs 

(eg. po in ts, circles) is too sim ple to accom m odate quantum  states. C haotic attractors are 

usually  fractals, in w hich the m otion o f the system  is chaotic and the state distribution o f 

the system  becom es ultim ately probabilistic . Q uantum  jum ps then m ay be in terpreted  as 

ju m p s  betw een  a ttrac to rs e ith er due to a d is tu rb in g  exc ita tion  o r even a sta tis tica l 

fluctua tion . In this way the w idth o f line spectra m ay be related  to the size o f  attractors; 

w hile fine structures o f  spectra m ay be a reflection o f the fractal feature o f the attractors.

H ere m any problem s cannot be m ade clear w ithout actually constructing m odels and 

study ing  their deta iled  behaviour, and in fact this is the key  difficulty  o f the proposa l. 

F o r exam ple , can  one construct attractors sim ulating the quantised energy states, say in 

the hydrogen atom ? W ill the tim e-averaged distribution o f states in attractors agree to the 

d istrib u tio n  determ ined  by the w ave function? A nother problem  is, supposing  ju m p s 

be tw een  a ttractors produce the line spectra, then w hat observational effects w ould  the 

classical radiation due to the m otion inside each attractor produce? A lthough these points 

are not yet clarified, they cannot yet be used to argue against the proposed interpretation.

72



U n ce r ta in ty  P r in c ip le  an d  P robab ility  In terp re ta t io n

A s prev iously  stated , the key point o f the proposed determ inistic in terpretation to Q M  is 

to actually  construc t som e nonlinear m odels and study their behaviour. H ow ever, before 

any co n stru c tio n  is possib le  it is useful to investigate w hether such an in terp re ta tion  is 

consisten t w ith  the m ain indeterm inistic and probabilistic characteristics o f  Q M , nam ely, 

H e isen b erg 's  U n certa in ty  P rincip le  and B om 's p robab ility  in terp re ta tion  to the wave 

function .

If the detailed  inform ation o f the uncertainty principle and probability  interpretation is 

laid  aside , it is very  easy  to  see the agreem ent betw een  ch ao tic  a ttrac to rs and  Q M . 

F irstly , the indeterm in ism  o f  Q M  m ust not be m ade in con trad iction  to the determ inism  

o f N ew ton ian  m echan ics; because the indeterm inistic aspect o f  N ew tonian  m echanics, 

eg. nonpred ic tab ility , has been uncovered by chaotic dynam ics. H ere, care m ust be paid 

to  that in to d ay 's  theo ry  o f  chaos, the two w ords 'de term in istic ' and 'p red ictab le ' carry 

d iffe ren t m ean in g . In  the co n v en tio n a l d iscu ssio n  o f  in d e te rm in ism  o f  Q M  and 

d e te rm in ism  o f  N ew ton ian  m echanics, how ever, they are  not sharp ly  d istin g u ish ed . 

S econdly , the uncertain ty  feature o f  m otion in the chaotic a ttracto r is evident, since one 

can  o n ly  te ll w h ich  a ttrac to r the system  is in, bu t not ex ac tly  w here  it is in side  the 

a ttrac to r b ased  on p rio r know ledge o f  its m otion. B ecause o f  the h igh  speed o f  m otion 

and high d im en sio n  o f  the attractors, it m ay happen that a m acroscop ic  short tim e scale 

invo lved  in  any  ideal m easurem ents is too long to locate a single position  o f  the system  

in the a ttra c to r; th u s the determ ination  o f  all gen era lised  co o rd in a tes  and  m om en ta  

b eco m es im p o ss ib le  in  p rinc ip le . H ow ever, it rem a in s  to  study  in d e ta il w hy the 

u ncerta in ty  shou ld  be betw een conjugate quantities. In this connection  it is w orthw hile  

m en tion ing  that uncerta in ty  phenom ena betw een con jugate  quan titie s  have been found 

num erically  in the restric ted  three-body problem  (see Szebehely, 1984).

T he concep tual com patib ility  between attractors and B om 's probability  interpretation 

w as a lread y  ev id e n t fro m  the d iscussion  o f  the p rev io u s subsec tion . In fact, m any 

approaches have been carried out in studying the probability  problem  in chaotic attractors 

(see eg. L ich ten b e rg  & L ieberm an, 1983). W hat is still not c lea r is w hether a detailed  

agreem ent can be m ade to the wave function.

3.2 H is to r y  o f  D e term in ism  (o f  CP) and I n d e ter m in ism  (o f  Q M )

O ne o bv ious q u estio n  to  ask in connection w ith the determ in istic  in terp re ta tion  o f  Q M  

proposed  here  is, i f  it w ere true, then why did history choose the false one and stay with 

it fo r alm ost a cen tu ry? In this section we turn to a historical consideration because o f  the
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difficulty involved in a m athem atical approach on the proposal o f the last section. Such a 

d iscussion is adm itted ly  d ifficu lt because o f the enorm ous am ount o f available m aterial 

and the fact that the answ er to the above question really  depends on personal view  o f 

h istory .

The author believes that natural and social courses are m utually related and have their 

determ in istic  fea tu re  locally  (in space-tim e and o ther degrees o f  freedom ); the history 

flow  on  som e iso la ted  degrees o f freedom  is determ inistic in a short tim e scale. T hus 

history  is determ in istic , but it is no t necessarily  predictable; som e accidental selection 

and bifurcation  m ay happen. In fact, irrational num bers w ere already  conceived  by the 

ancient G reek, but a com plete theory for it was not developed until only the last century 

by C an to r (see B ell, 1937). In N ew ton 's tim e, his partic le  in te rp re ta tio n  fo r light 

dom inated  over H uygens' w ave interpretation m ore than a century, although the latter is 

c lo ser to truth (see any tex tbook  on light). M ore recently , the th ree c lassica l tests o f  

relativistic gravity  com puted  by E instein were the gravitational red-shift experim ent, the 

d eflec tio n  o f  lig h t, and the perih e lio n  sh ift o f  M ercury . H o w ev er, the fourth  test 

p roposed  by S hap iro  (1964), nam ely , the tim e delay  o f  light, w hich  in p rincip le  is 

c losely  re la ted  to  the deflection  o f  light, is one o f  the m ost p recise tests o f  general 

re la tiv ity  to date. It rem ains a m ystery  w hy E instein  did not d isco v er this effec t (W ill, 

1981). T hese are exam ples o f  defects in science due to personal influence.

O n the o ther hand, exam ples ex ist show ing the influence o f  technology and hum an 

com prehensib ility . L e t us look at the fate o f  the three revolu tionary  physical sciences, 

relativ ity , quantum  m echanics and chaos. H istory has w itnessed a continuous grow th o f 

quantum  m echanics in spite o f  its conceptually  abstract features; this is actually because 

Q M  has alw ays been related  to experim ents and productive results. In contrast, the great 

in terest o f  the physical com m unity  in general re la tiv ity  lasted only  until the 1930's, a 

couple o f  decades since its foundation , then this in terest had alm ost lapsed during  the 

next tw enty years. T he situation w as not changed until the late 50's and early  60’s when 

great experim ental p rogress w as m ade, and for exam ple the 3K m icrow ave background 

rad iation  w as d iscovered , the K err m etric w as found and a break-through w as m ade on 

the m athem atical structure o f general relativity (Infeld, 1964).

D ete rm in istic  chaos w as already  w ell understood  by P o incare  at the end  o f  last 

century, but it w as not accepted by the scientific com m unity until the 1960’s when chaos 

was observed from  experim ents and easily  dem onstrated due to the advent o f  com puting 

facilities. A lthough  the approach  along this line d id  not stop in the first h a lf o f  this 

cen tu ry , n e ith e r  B irk h o ff  n o r S ieg e l p o p u la rised  the n o tion . In fact, even  the 

developm ent o f  fractals also  fo llow ed a sim ilar course. Thus it m ay be concluded  that 

history does not necessarily  choose the truth and m ake it flourish for ever.
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S ince  it is alm ost certain  that the notion o f  chaos d id  not in fluence m uch o f  the 

d ev e lo p m e n t o f  quan tum  m echan ics, an obv ious a lte rn a tiv e  w ay o f  an sw erin g  the 

q u estion  sta ted  at the beg inn ing  o f  the section is p robab ly  to  find  ou t w h e th e r the 

d ev e lo p m en t o f  chaos has in fluenced  the m ain con tribu to rs to quan tum  theory , w ave 

m echan ics and quantum  m echanics. In this investigation, the m ain  re ferences used are 

M eh ra  (1 9 7 5 , 1982), B om  (1971), W heeler et al (1983), the m ateria ls on the So lvay  

C onferences, in particu lar those on the first and the fifth and those on the B ohr-E instein  

debate . T h e  recogn ised  figures involved  in the debate  have also w ritten m any  books 

reflecting  their opinion.

In ta lk ing  about the history o f Q M , it is conventional to d istinguish  the period o f  the 

o ld  q u an tu m  theory from  that o f  the quantum  (and w ave) m echanics. It is useful to note 

that the o ld  quan tum  theory concentrated on the question o f 'quanta', or the d iscre teness 

o f  the m icroscop ic  world; w hereas the later quantum  m echanics paid  m ore atten tion  to 

the uncertain ty  and probabilistic questions o f the theory. A s a historical co incidence, one 

can  co n sid e r the death  o f  Poincare as a useful m ark betw een the old and new  quan tum  

theory. A s is already shown, chaotic dynam ics can produce very naturally  both d iscre te  

and  in d e te rm in is tic  (in the p re -chaos sense) phenom ena. T he in d e te rm in is tic  and  

u n p red ic tab le  feature o f  classical m echanics w as already c lea r to Poincare. H ow ever, 

considering  how  m athem atically  involved Poincare 's w orks are and the fact that the old 

quantum  theory  was developed in the years im m ediately follow ing the publication o f  his 

w orks, on e  m ust not expect m uch influence on the contribu tors to Q M  w hen they w ere 

fo u n d in g  th e  o ld  quan tum  theory , fo r exam ple , P lan ck 's  w ork on the  b lack  body 

rad ia tio n , E in ste in 's  w ork on the pho to -e lectric  effect and B ohr's q u an tisa tio n  o f  the 

h ydrogen  atom . M oreover, P oincare probably  did not conceive o f  the d iscre ten ess  o f  

classical m echanics; this had to w ait until the establishm ent o f the K A M  theorem  and the 

d iscovery  o f  L orenz attractor in the 1960's. Thus one should not be surprised that in the 

early  d ev e lo p m en t o f  the quantum  theory, it w as P oincare w ho d ism issed  on the first 

Solvay C onference  any attem pt (say Jeans) o f  producing d iscreteness in the fram ew ork  

o f  c la ss ica l p h y sics , and la ter 'p roved ' that an essen tial d iscre teness w as needed  to 

p roduce quanta.

H ere a few  questions m ay be appropriately  asked. W hat w ould happen to quan tum  

m ech an ics an d  m odem  physics in general, had P oincare lived at least ano ther fifteen  

years so th a t he could  contribute to the developm ent o f the new  quantum  theory and its 

in terp re tation? W ould he still insist on the need for a discrete m echanism  for the quanta. 

If he had jo in ed  the B ohr-E instein debate, w ould he agree that c lassical m echanics w as 

d e te rm in is tic  and quantum  m echanics is p robab ilistic?  S ince he had a lw ays show n
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in terests tow ards the physical sciences, as can be seen from  his contribu tion  to special 

re la tiv ity  and his efforts show ed on quantum  theory, w ould not his w ork at least have 

influenced m ore deeply those figures involved in the historical Bohr-E instein debate?

A m o n g  the con tribu to rs to the new  quantum  m echanics, de B roglie show ed great 

interest in in terpreting w ave m echanics in a m anner different from  that o f B ohr's school. 

H o w ev er, his ideas m ust be co n sid ered  alm ost irre levan t to the in d e te rm in ism  in 

classical physics, and they are often confusing. It is m ore hopeful to look at the figures 

involved  in the in terpretation  o f  quan tum  and w ave m echanics in the m id -1920 's , and 

the h istorically  heated B ohr-E instein  debate on determ inism  or indeterm inism  o f Q M  in 

1930's. H ere  E instein  show ed his strong feeling against the QM  probab ilis tic  v iew  o f  

the natu ra l w orld  and the b e lie f o f  a determ in istic  in terpretation  to q u an tu m  theory . 

M o reo v er he took  an o p in io n  o p p o site  to  P o in care 's ; as can be seen  fro m  his 

co rrespondence to B om , E instein m entioned m any tim es that quanta m ust be a resu lt o f  

con tinuous d iffe ren tia l equations. A lthough  his specific suggestion o f 'redundancy  o f  

variab les ' is obv iously  false , c learly  he d id  not m ean anyth ing  like the w ell-know n  

eigenvalue problem  o f partial differential equations, but som ething dynam ical.

O n the o ther hand, although the debate m ainly  concentrated  on the in terp re ta tion  o f  

QM , both  B ohr and E instein , as w ell as H eisenberg , Born and Jordan are good m asters 

o f P o incare 's  w ork. A m ong them  both B ohr (1932) and E instein (1917) stud ied  deep ly  

alm ost period ic  functions, w hich are o f  key im portance to the d ivergence cau sed  by 

chaos; w hile  B om  and H eisenberg  m astered  P oincare 's  w ork on the d ivergence o f  the 

general pertu rbation  theory , as m ay be seen from  B om 's (1924) classical book w hich 

w as com ple ted  w ith som e help by H eisenberg . H ow ever, it seem s that none o f  them  

understood  the chaotic notion in P oincare 's w ork; in fact they only adopted  P o incare 's  

perturbation theory as a m athem atical tool.

In sp ite  o f  the sim ilarity  betw een  the indeterm in ism  in c lassica l physics and the 

uncerta in ty  and p robab ilistic  feature o f  quan tum  m echanics it seem s that no ev idence 

su pports  the no tion  th a t P o in care 's  w ork  co n trib u ted  to the stud ies o f  B orn and 

H e isen b erg  w hen they d iscovered  the p robab ility  in terp re tation  and the u n certa in ty  

principle in the years 1926 and 1927.

It seem s that w hen the debate w as re la tively  heated in the 1930's, none o f  them , nor 

anybody else quoted the indeterm inistic feature o f  N ew tonian m echanics m ade c lear by 

Poincare (in both academ ic and popular w ritings) to argue against Einstein. This is really 

a m ystery, for at least E instein m et Poincare in 1911 on the first Solvay C onference; and 

in the sam e year both P o incare  and M adam e C urie  highly com m ended E instein  (see 

M ehra, 1975), although E instein  was not im pressed  by Poincare at that tim e. F rom  the 

debate and E instein 's  fam ous say 'I believe G od does not play dice' one usually  com es
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to the unfortunate  conclusion  that E instein, an im portant con tribu to r to the old quantum 

theory, a lthough  open  m inded  elsew here, becam e very stubborn tow ards the new  QM . 

H ow ever, there  m ig h t be som e ju stice  to look at E instein 's  'conservative ' a ttitude in a 

positive  w ay. It m igh t be P oincare 's  assum ed 'progressive' attitude tow ards the need for 

a new  d iscre te  theory that m ade his work on chaos and indeterm inism  leave no m ark on 

the history  o f  quantum  m echanics.

It is a lso  in teresting  to look at the w ritings o f B om  and H eisenberg  afte r the heated 

debate . In 1955, B orn  w ro te  an essay 'Is C lassical M echanics D eterm in istic  ? ’, w here 

his o p in ion  w as that it w as not; but his argum ent still re lied  heavily  on the co llisiona l 

p h en o m en a  (see his 1956 B ook). O ne thus has to assum e that he did not understand  

chaos even  in the 1950's. In contrast, H eisenberg presented  a review  paper on non linear 

ph y sics  in  1967, in  w h ich  he c learly  stressed  the n o n p red ic tab ility  o f  the c lassica l 

th ree -b o d y  p ro b lem  an d  show ed  his p roper understan d in g  o f  chaos. T h ese  are the 

artic les re lev an t to  the p roposal o f  the present chapter, how ever, neither o f the authors 

m entioned the relation to their articles on quantum  m echanics. Here one is inclined to ask 

the fo llow ing  questions.

W hy  w as B o m  in terested  in indeterm inism  o f classical m echanics in 1950's? W as 

he try in g  to  find  in d eterm in ism  from  classical m echanics to argue against E inste in 's  

q u estio n in g ?  I f  yes, then w hy did he turn to this d irection so late? O ne m ust note that 

although  th is w as the tim e w hen E instein m entioned m ore often  to B om  his 'quanta by 

red u n d an cy  o f  equations', th is is to be considered as a d iffe ren t m atter. B ecause in the 

co n tex t o f  q u an tu m  m ech an ics, the no tions o f  p ro b ab ility  and q u an ta  are usually  

regarded  as tw o independent fundam ental rules.

W hen  d id  H e isen b erg  becom e in terested  in non linear dynam ics?  W as his 1967 

rev iew  on ly  a re su lt o f  his w ork in nonlinear quantum  theory, or was it that he w as also 

lo ok ing  fo r indeterm in ism  from  classical m echanics and found the correc t one? If  it 

w ere the la tte r, then w hy d id  he not m ention anything tow ards the h istorical debate in 

this rev iew ?

C o n sid e rin g  the good collaboration  betw een H eisenberg  and B om , d id  the fo rm er 

com m unicate  to the latter about the nonpredictability o f classical m echanics. It is w ould 

be in te re stin g  to fin d  ou t w he ther the figures m entioned  w rote any fu rth e r a rtic les 

d iscussing the problem  related to the debate on determ inism  or indeterm inism .

3.3  M a th e m a t ic a l  A sp ect  o f  Q uan tisa tion

In the p rev ious sections we have shown the possibility o f producing quantization  by the
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determ inistic chaotic attractor; also discussed was the historical relationship betw een the 

theo ries o f  q uan tum  m echan ics and  chaos. In this section w e w ill d iscuss b riefly  the 

m athem atica l aspects ra ther than the physical aspects o f  quantization, so as to p rov ide 

fu rther support for the proposal.

In physica l sciences, the revo lu tionary  aspects o f the quantum  theory have alw ays 

been em p h asised . T oday  even  school students know  that the m icroscop ic  w o rld  is 

d ram a tica lly  d iffe ren t from  the fam ilia r m acroscopic w orld; they are g o v ern ed  by 

c o m p le te ly  d iffe ren t law s, a lth o u g h  there is a ce rta in  co rresp o n d en ce  p rin c ip le  

co n n ectin g  the tw o w orlds. H o w ev er, based on the progress m ade in d e term in is tic  

chaos, the au thor has com e to a d ifferent opinion.

In the  co n tex t o f  m athem atica l physics, it is w ell know n that quan tiza tion  is not 

un iq u e  to  qu an tu m  m echan ics. A  large class o f c lassica l p rob lem s re la ted  to w ave 

p henom ena share the sam e type o f  quantization with Schrodinger's wave m echanics. In 

both classical and quantum  w ave m echanics, quantization is usually a result o f boundary 

cond itions and natural boundary conditions. If  we regard quantum  (w ave) m echanics as 

phenom enological, then w hat has been tested by experim ent is that the m icro-w orld does 

obey  the theory . H ow ever, the in terpre tation  o f a new  theory usually depends on w hat 

the com m unity  o f  the tim e has ach ieved  based on a prev ious understanding o f  nature. 

This is a d ifferen t m atter and probably w here a m istake is unavoidable.

It is w o rth  no ting  th a t q u an tiza tio n  is usually  due to boundary  co n d itio n s  o f 

d iffe ren tia l equations, w hich , in quan tum  m echanics, is in turn a m anifesta tion  o f  the 

sym m etry  o f  the space background. N ow  we see that in chaotic dynam ics, sym m etry , 

period ic ity  and stability  restric tions can also  resu lt in discreteness. T herefore there is a 

possibility  o f  producing quantization phenom ena by im posing sym m etry, periodicity and 

s tab ility  co n d itio n s , w hich  are m ore  na tu ra l than the co n v en tio n a l q u an tiza tio n  

co n d itio n s . In fact, the sim ple B ohr-S om m erfe ld  quan tiza tion  cond ition  w as only  

successfu l in classically  in teg rab le  p rob lem s (neglect radiation). It is a m ystery  why 

there should be such a relationship betw een classical m echanics and quantum  m echanics, 

and w hy the integrability o f  an O D E should m atter to what is governed by PD Es.

In fact, deviation  from  Q M  has been observed in experim ent; and the current opinion 

o f  a w ay o u t is  to  go back  to  c lass ica l chao tic  dynam ics and study  how  c lassica l 

m ech an ics  transits to QM . F o r exam ple , irregu lar spectra have been observed  in the 

Z eem an and S tark effects (H asegaw a £t a!, 1989; Friedrich & W intgen, 1989).

In look ing  at quan tiza tion  as chao tic  attractors, we shall specially  em phasise  tw o 

po in ts. T he first one is M ath ieu 's equation , w hose solution is surprising ly  s im ilar to 

w hat happens in quantum  m echan ics prob lem s (say the sim ple harm onic oscilla to r), as 

can be seen  in F ig . 3.1. T he param eters  o f  the equation  (one is the linear frequency ,
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w hich is a lw ay s re la ted  to  energy  in Q M ) are q uan tised  to p roduce stab le  solu tions; 

m oreover, in  the p a ram ete r space the boundaries separating  the stab le  and unstab le 

reg ions co rresp o n d  to  period ic  solutions to the d iffe ren tia l equation . In th is c lassica l 

problem  w e see that d iscre teness can be produced by stability  and periodicity . T his type 

o f eq u a tio n s m ay be very  usefu l in guiding the search fo r the app ropria te  p rob lem  to 

study. It m ay  even  happen  that a set o f  chaotic  attracto rs  m ay be found  by adding 

nonlinear d riv ing  and dam ping term s into M athieu's equation.

A  second point is that an investigation into relativistic chaos m ay provide som e hints 

on how  to  co n stru c t the attractors. In fact, re la tiv ity  is a m ore su itab le  theory  for the 

m icroscop ic  w orld  than classica l nonrelativistic physics. B ased on this, one m ay learn 

w hat type  o f  te rm s m u st be added  to  nonre la tiv istic  p ro b lem s, hence fo rm  som e 

sem i-re la tiv is tic  m odels. It m ay even  happen that c lassica lly  in teg rab le  system s can 

becom e nonin tegrab le in relativity and produce the attractors we are looking for.

3.4 I m p a c t  o f  C h a o s  on  S cien tif ic  M eth o d o lo g y

In this sec tion  w e w ill d iscuss som e philosophical m eanings o f chaos and its im pact on 

science in genera l. M any artic les ex ist on this subject, so  w e shall concen tra te  on the 

questions w h ich  the au thor has been considering.

T o physical scientists and m athem aticians, both H am iltonian chaos and attractors are 

im portant; w hereas attractors and fractals are m ore fam iliar to the public and nonphysical 

scien tists. O n e  o f  the  im p o rtan t im pacts on sc ien tific  th ink ing  is that very  irregu la r 

b eh a v io u r m ay  be p ro d u c ed  by sim p le  d e te rm in is tic  d y n am ics; th e re fo re  som e 

p h en o m en a  p re v io u s ly  reg ard ed  as random  m ay in fact be g o v ern ed  by sim ple 

d e te rm in is tic  law s. T o d ay , based  on the em bedding  theorem , m uch  e ffo rt has been 

d irected  to  find ing  fractals and  attractors from  statistic data  o f econom ics, b io logy and 

o ther sciences; fo r i f  one can find an attractor then one probably has found a new natural 

law . H o w ev er, the au thor's  personal opinion on such researches is m ore conservative. 

F irstly , th e  b eh av io u r o f  a ttrac to rs  is very sensitive to noise; it is not c lea r w hat will 

happen w hen  a ttrac to rs are m odulated  by noise. T herefore the p resent au tho r favours a 

m athem atical construction  o f  attractors rather than looking for them  from  data. Secondly, 

random  fra c ta ls  a lso  ex ist, w hich  canno t be d is tin g u ish ed  from  an a ttra c to r by the 

curren tly  av a ila b le  m ethods. In fact, the so-called phase portra it analysis on, say, the 

stock m arket data , a lm ost alw ays show s a structure like that o f  a ttractors; but a sim ple 

random  tim e series can produce sim ilar structures as well. Therefore the current research 

in these fie lds is questionable.
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A second im pact o f  chaos is that the d iscovery o f  chaotic  attractors has changed  the 

idea o f  stab ility  and equilibrium . C onventionally , stab ility  has alw ays been  defined  in 

connection to  equilibrium . C haotic attractors provide a new  type o f  stable behav iour and 

equ ilib rium . S ince  chao tic  a ttracto rs are not sm ooth  m an ifo lds, the b eh av io u r inside 

them  can show  m uch  irregularity  and divergence. B ased  on the conven tional notion o f 

stability and equilibrium , one is very likely to conclude an instability; but the system  is at 

a stable eq u ilib rium  state, w hich cannot escape from  the attractor. W hen the m otion o f 

the system  in the a ttrac to r is very  fast, one can  o b serv e  a k ind  o f s ta tis tica l stable 

equilibrium .

Thirdly , w e com e to one o f  the m ost challenging questions, is nature determ inistic or 

p ro b ab ilis tic?  T h is  question  has been discussed  not on ly  in co nnection  to statistica l 

m echanics but to quantum  m echanics. W e do not attem pt to give an answ er here; but try 

to add som e o f  the au thor's  personal understanding  o f  the p rob lem  w hich  is re la ted  to 

chaos. F rom  the p rogress on determ inistic chaos, today 'determ in istic ' and 'p red ictab le ' 

have been d istinguished  from  one another. The com plete classical physics descrip tion o f 

nature is that w e can  know  everything exactly at least in p rincip le , a lthough a practical 

p red ic tion  is a lw ays lim ited. O n the o ther hand, quan tum  m echanics im plies that even 

nature itse lf  d o es  not know  exactly  its classical ph y sics  variab les. If  we com bine the 

post-chaos classical physics and QM  together to look at the m acroscopic w orld  then we 

see that the QM  uncertain ty  can always act as the erro r o f  the system 's states. Therefore, 

n a tu re  i ts e lf  is  u ltim a te ly  p ro b a b ilis tic . W h a t c h a o tic  d y n am ics  ad d s  to  the 

com prehension  o f  nature is that even if  w ithout QM , the natural w orld is also  practically  

probab ilistic . S ince such practical indeterm inism  is c lo ser to the conven tional notion o f 

indeterm in ism  o th e r than conventional determ inism , one m ay have to adopt the form er 

notion as a principle.

It is a lso  in o rd e r to m ake a com m ent on E in s te in ’s b e lie f that na tu ra l law s are 

sim ple. By saying this he does not mean that the solutions to  the law s are sim ple, nor are 

the natu ra l phenom ena. T hen  the question arises how  can sim ple law s be com patib le  

w ith com plicated  phenom ena. The present author th inks that the notion o f nonlinearity , 

nonintegrability  and  chaos provides a possible answ er. By a com plicated  w orld  we m ean 

that phenom enologically  the variation o f the variables describ ing the w orld are a m ixture 

o f  sim ple quasiperiod ic and com plicated chaotic behaviours. I f  w e stick to  the historical 

linearity  and integrability  rule o f natural laws, then w e see that they cannot produce wild 

p roperties. N atu ral law s m ust be nonlinear to be sim ple; one cannot have both sim ple 

and beautiful law s, and at the sam e tim e sim ple solutions as well.

H o w ev er, th ere  are several po ints that need p articu la r m ention . F irstly , one can 

argue that co m p lica ted  behav iour m ay still be p rod u ced  by law s equ iva len t to linear
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law s, i f  the tran sfo rm atio n  is com plicated . This is not really  true; because h o w ev er 

co m p lica ted  a tran sfo rm atio n  is, quasiperiod ic  m otion  can on ly  be tran sfo rm ed  to 

quasiperiod ic  m otion, w hich is unlikely to be a good description o f  natural phenom ena. 

T he second  poin t is that it rem ains to verify that nature does adm it laws. T h is is a very 

fundam ental assum ption o f  science w hich is not appropriate to discuss here.

F in a lly , i f  law s are nonlinear, nonsolvable, then there is a question  on how  to test 

the law s. L aw s are usually  purified  and abstracted from  the observation  on a very  sm all 

set o f  na tu ra l phenom ena; then they are solved for a larger set o f  cases and com pared  

w ith reality , thus the law s are conventionally  regarded as having been tested. H ow ever, 

if  m o st c a se s  o f  the law s can n o t be so lved  (eg. N ew ton ian  m ech an ics, re la tiv ity , 

quan tum  m echan ics), then can one still believe that the law s are truth? In particu lar, fo r 

law s in the fo rm  o f  O D E s, how can we dec ide w hether the law s are true  in ch ao tic  

region? It seem s to m e that all these questions need further investigation.

T able 3.1 A  Selected C hronology o f  the Three R evolutionary Physical Sciences

Year Persons and Events

1638 G alileo: Two New Sciences

1675 N ew ton: corpuscular theory o f light

1678 H uygens: w ave theory o f light

1687 Newton: Principia

1850 Clausius: second law  o f therm odynam ics

1860 M axwell: speed distribution law

1865 Clausius: entropy

1864 M axwell: Dynamical Theory of Electromagnetic Field

1877 Boltzm ann: entropy <=> therm odynam ic probability

1892 Poincare: New Method o f Celestial Mechanics

1896 Zeem an (& Lorentz): Zeem an effect

1901 Planck: quantum  theory o f radiation and h.

1904 W hittaker: Analytical Dynamics

1905 Einstein: photo-electric effect, Brownian m otion 
Einstein: special relativity
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1908 M inkowski: geom etrical interpretation o f special relativity

1911 Rutherford: atom ic nucleus 
F irst Solvay C onference on physics

1912 Poincare: died
Bohr: quantization o f hydrogen atom

1913 Stark: Stark effect
Second Solvay C onference on physics

1916 Einstein: general relativity 
Schwarzschild: Schw arzschild m etric

1918 Duffing: D uffing 's equation
1922 van der Pol: van der Pol equation

1924 Com pton: C om pton effect
B om : The Mechanics o f the Atom, G erm an edition
Fourth Solvay C onference on physics

1925 de Broglie: m atter wave
B om  & Jordan: quantum  m echanics

1926 Schrodinger: w ave m echanics
B om : probability interpretation o f wave function

1927 Heisenberg: uncertainty principle
B om : The Mechanics o f  the Atom, E nglish  translation
Birkhoff: Dynamical Systems
Fifth  Solvay C onference on physics

1929 H ubble: H ubble's law

1954 Kolm ogorov: conservation o f invariant tori 
Siegel: generic divergence o f transform ation

1955 Bom: Is Classical Mechanics Deterministic ?
1956 Bom : Physics o f My Generation

1962 Arnold: conservation o f invariant tori

1963 Lorenz: strange attractor
M oser: conservation o f  invariant tori

1964 H enon & Heiles: C haos o f  H enon-H eiles Ham iltonian 
Penzias & W ilson: 3K  m icrow ave background 
Shapiro: fourth test o f  general relativity 
Kerr: Kerr m etric

1967 Heisenberg: Nonlinear Problems in Physics
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CHAPTER 4 

First Integrals, Possible Motion and Hierarchical Stability  

of the Classical N-Body Problem

In th is an d  the fo llo w in g  ch a p te rs  we w ill concen tra te  on g ra v ita tio n a l few - and  

m any-body p rob lem s and  study  a specific type o f  s tab ility  o f  th e ir m otion , nam ely , 

h ierarchical stability (shorthand as H S) defined by W alker & R oy (1983). T he defin ition  

o f this concept is already given in chapter 1 .

T here are several reasons for studying hierarchical stability. T he first one has already 

been d iscu ssed  in ch ap te r 1 , w h ich  is based  on the p ractical o b serv a tio n  th a t m ost 

m otions o f  the heavenly  bodies are found to be ordered. The second reason is due to the 

progress m ade in the un d erstan d in g  o f  the general 3-body p ro b lem  since the 1970's in 

E urope and A m erica. A rtic le s  are num erous in this d irec tion , in c lu d in g  fo r ex am p le  

E aston (1971), Sm ale (1970), M archal & Saari (1975), B ozis (1976) and Z are  (1976, 

1977).

It is w e ll k n o w n  th a t th e  c irc u la r  re s tr ic ted  3 -body  p ro b le m  p o sse s se s  the  

w ell-know n Jacobian  in tegra l (Szebehely , 1967; Roy, 1982), w hich  is p ositive  defin ite  

in the v e lo c itie s  re la tiv e  to  the ro ta tin g  fram e. T his in teg ra l thus leads to  the H ill 

zero-velocity  surfaces , w hich  d iv id e  the physical space into p o ssib le  and  im possib le  

regions o f  m otion, such that w hen  the Jacobian integral constant is suffic ien tly  large the 

m otion o f  the in fin itesim al m ass is restric ted  to lie w ith in  som e d is jo in t H ill reg ions. 

T his is ca lled  the Hill s tab ili ty ,  and  the E arth -M oon-S un  sy stem  is s tab le  in th is 

sense. T hese  H ill su rfaces are  a lso  ca lled  the R oche lobe in the fie ld  o f  c lo se  b inary  

stars, w here one is in terested  in the m otion o f  fluid in the field o f tw o stars (m odelled  as 

point m asses) circulating  each o ther (Pringle & W ade, 1985).

H ow ever, even in the slightly  m ore com plicated elliptical restric ted  3-body problem , 

no in tegral exists, thus H ill stab ility  cannot be strictly established in this case, although  

the 'Jacob ian  in tegra l' is show n to  be only slow ly changing  w ith tim e. B ased  on th is 

'ad iabatic ' fea tu re , H ill s tab ility  has been generalised  to a fin ite  tim e sca le  (R oy & 

Steves, 1988).

A  real break-through w as no t m ade in E urope and A m erica until the w ork  o f  E aston  

(1971), S m ale  (1970) an d  M arch a l & S aari (1975). G e o m e tr ica l re su lts  h av in g  

dynam ical value sim ilar to that o f  the c ircu lar restric ted  problem  w ere found to ex ist in 

the general 3-body p roblem , w here the integral playing the role o f  the Jacobian  integral
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is a co m b in a tio n  o f  the to tal energy and angu lar m om en tum  in tegra ls; m oreover, the 

determ ination o f  the H ill-type surfaces is essentially  based on Sundm an's inequality.

T he pu rp o se  o f  this chap ter is to review  this advance in the field  o f  3-body problem  

and to generalise  and im prove the current results; in doing this the approaches that could 

be ap p lied  to  re la tiv is tic  p rob lem s are d iscu ssed  in m ore deta il. In section  4 .1 , the 

relevant form ulation  o f the classical N -body problem  is sum m arised in a form  favourable 

to the p ro b lem s to  be stud ied  in the fo llow ing  sections and chapters. In section  4 .2 , in 

order to facilitate the present study we choose, am ong the existing literature, to review  in 

m ore d e ta il S u n d m an 's  in eq u ality  m eth o d  used  by M archal &  S aari (1975), la te r 

sim p lified  by  S aari (1976), and  the canon ica l tran sfo rm atio n  m ethod  used by Z are 

(1976). T he fo rm ally  d ifferen t results o f  the tw o m ethods are show n to be equivalen t in 

th is sec tio n . A tten tio n  is a lso  paid to a re la ted  open q u estio n , nam ely , the cen tra l 

c o n fig u ra tio n . In  sec tion  4 .3 , w e shall d ed u ce  som e s tro n g er in eq u a lities  fo r the 

3 -d im ensional m otion  o f  the general 3 -body problem . T his w ork  w as o rig inally  carried  

ou t by the p resen t au thor in 1987 by m odifying Z are 's transform ation  m ethod; how ever, 

w hen eq u a tio n  (4 .13 ) w as arrived  at, S aari's  (1987) w ork  ap p eared  in the jo u rn a l 

C elestial M echan ics, a w ork  w hich dealt w ith a b roader class o f  p roblem s, nam ely , the 

f la t N -b o d y  p ro b lem s. T herefo re , h is app roach  shall be ad o p ted  in the d ed u c tio n  

fo llow ing  th is  eq u a tio n , bu t his deduction  is sho rtened  and m ade m ore apparen t by 

noting  its re la tio n  to the w ell-know n m om ent o f  in e r t ia  e llip so id .

F inally , w e m ust m ention that the so-called H ill-type stability  was actually  obtained 

ea rlie r in R u ssia  by G olubev  (1968) fo llow ing  the m ost effic ien t S undm an 's inequality  

m ethod  (see a lso  Saari, 1976). H ow ever, this w ork  w as alm ost iso la ted  and the w orks 

p ro d u ced  in  the W est w ere  com pletely  in d ep en d en t until the firs t m ention  o f  it by 

Szebehely  &  Z are (1976). It seem s that G o lubev’s w ork did not even lead to  any fu rther 

w ork  in R ussia . In fact, e fforts tow ards a generalised  H ill-type trapped  m otion  w ere 

a lread y  c le a r ly  m ad e  by P o incare  (1892 , V ol. 3, C hap . 26, Sec. 301). H e w as 

obv iously  on  the righ t track not only by using  the com plete  S undm an 's inequality  but 

a lso  d ro p p in g  te rm s as G o lubev  (1968) and  S aari (1976) d id , th a t is, u s in g  the

inequality  H -U > C 2/2 I. H ow ever, since he pursued  too m uch m athem atical rigour ra ther 

than a p ic to ria l approach, he did not obtain the inequality  IU 2> -2 C 2H , w hich is the key 

eq u a tio n  fo r  the  b reak -th ro u g h  and is a lm o st an au to m atic  ou tcom e o f  the fo rm er 

inequality.

T h e  in eq u a lity  IU 2> -2 C 2H  has been ca lled  E asto n 's  inequality  by som e celestia l 

m echan ists , how ever, this inequality  already appeared  ea rlie r in G olubev 's  w ork. It is 

also  im p o rtan t to  keep  in m ind that a H ill-type stab ility  does not estab lish  any trapped 

m otion in the orig inal sense o f the Hill stability, since escape is not precluded.
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4.1 S ta n d a r d  R e su lts  in th e  N -B o d y  S y s tem

The N -b o d y  p ro b lem  is u su a lly  stud ied  in d iffe ren t co o rd in a te s  d ep en d in g  on ones 

objectives. H ere w e shall sum m arise  the form ulation  o f  the p rob lem  in an inertial fram e 

and the b a ry cen tre  fram e (b a ry cen tre  no t n ecessa rily  at co o rd in a te  o rig in ), u sing  

C artesian coord ina tes, Jacob ian  coord inates and re la tive coo rd ina tes as w ell. T he m ain 

references are W in tn er (1947) and Szebehely (1973). In e ith er the inertial o r barycentre  

fram e w e have the fo llow ing  coordinate-free equations,

The Vi r i a l  T h e o r e m  I = 4 T + 2 U
2 * 2

S u n d m a n ’ s  I n e q u a l i t y  C + J-(I) < 2 I T

where I is the system 's m om ent o f  inertia, U  and T  being the potential energy and kinetic 

energy respectively , and C  the norm  o f  the system 's total angu lar m om entum  C. I and C  

must be calculated  w ith respect to the sam e origin. A dot denotes the tim e derivative.

It is im portan t to  rea lise  th a t the V irial theorem  is on ly  valid  to a lim ited  class o f 

po ten tia ls  o f  the sp ec if ic  p ro b lem . W h ereas  S u n d m an 's  in eq u a lity  is co m p le te ly  

independent o f  the actual system ; it is solely a resu lt o f  N ew to n ’s law s o f m otion . T he

term  (d l/d t)2 in S undm an 's inequality  is irrelevant, thus it w ill be dropped  in the curren t 

study.

W e shall alw ays call the inequality  w ithou t the (d l/d t ) 2  term  S undm an 's inequality . 

L ater an in d ep en d en t p ro o f  w ill be g iven  and the in eq u a lity  w ill be g en e ra lised  in 

A ppendix B so that it m ay be used in relativity.

T hough  the tw o  eq u a tio n s  are co o rd in a te -free , the  q u an titie s  I, T  and  C  have 

different expressions in d iffe ren t coordinate system s. In w hat fo llow s we shall give their 

form ulae in the barycentre fram e using Jacobian coordinates and relative coordinates

Jacobian C oord inates

The Jacob ian  v ec to r co o rd in a te s  are d efin ed  in ch ap te r 1 fo r the c lass ica l N -body  

p rob lem  (see F ig. 1.4). U sin g  these  v ec to rs  w e have , in a b a ry cen tric  fram e, the 

fo llow ing  ex p ressio n s fo r th e  system 's m o m en t o f  in e rtia  I, k in e tic  en e rg y  T , and 

angular m om entum  C , viz.

i = X m ?  ■ t  =  - 5 - 2 X v ? • C = £ n i p i x v i . ( 4 .1 a )
i = 2 \ =2 i = 2

w here m j / (  M i_ i+ m j), w ith  M j.j being  the sum  o f  the firs t ( i - 1) m asses.

M oreover, in these equa tions, I and C  m ust be ca lcu la ted  w ith resp ec t to the system 's
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centre o f  m ass.

R e la t iv e  C o o r d in a te s

The ex p ressio n s fo r I, T  and  C  in a barycentric fram e m ay be fo rm ulated  such that no 

abso lu te  p o sitio n  and  v e lo c ity  v ec to rs  are invo lved , nam ely , on ly  in trin sic  re la tiv e  

position and velocity  vectors appear, viz.

w here (i, j )  m eans all possib le  pairs w ithout repetition . The p ro o f o f  these eq ua tions is 

straightforw ard.

M o m en t o f  In ert ia  E l l ip so id

It is w ell-know n that the E u ler angles, inertia tensor and inertia ellip so id  are very  useful 

in s tu d y in g  the  m o tio n  o f  rig id  bod ies (G o ld ste in , 1980). W e shall d ed u c e  som e 

equations invo lv ing  the elem ents o f  the m om ent o f  inertia tensor, w hich rely  heavily  on 

the inertia ellipsoid  and will be used in later investigation o f the spatial 3-body problem .

Saari (1987) obtained the best possib le restric tions on the possib le m otion  o f  the flat 

N -body p ro b lem  by defin ing  'reference positions ' and 'p rincipal re fe ren ce  p o sitio n s ', 

w hose p h y sica l m ean ing  are clearer if  they are re la ted  to the inertia e llip so id  (S aari d id  

not p o in t ou t this link). Saari's w ork  will be in terpreted  here in connection  to the inertia  

ellipsoid.

C o n sid e r N p o in t m asses  w hich are d istrib u ted  on a single O -x y  p lane. T h ere  is 

certain ly  a spatial inertia  e llip so id  associa ted  w ith this system , how ever, w e are only  

in terested  in the inertia  ellipse in the O -xy plane.

(1). Inertia Ellipse
T he m o m en t o f  inertia  o f  the above system  about an axis defined  by the unit v ec to r 

n = { c o sa ,c o sp } = { c o sa ,s in a }  in the the O -xy plane is easily  show n to be

(4.1b)

I n = I xxc o s 2 a  + I yyc o s 2 p -  2 1 xy c o s  a  c o s p  .
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If one defines a vec to r R = {Rx, R y } = n /V ln, then one sees that R defines an ellip se , 

ie. the inertia ellipse, in the O -xy plane by the equation

I x x R x  +  I y y R 2y - 2 I x y R x R y =  1  ,

since the inertia tensor is positive definite.

P .R .P

Fig. 4.1. Inertia ellipse, exam ples o f P.R.P. and S.P.

A ccording to Saari (1987), the system  is at a re feren ce  posit ion  (R .P .) w hen the 

system ’s position  in the coord ina te  system  O -xy  is such  that Ix= Iy; w hereas a re feren ce  

position w ith  Ixy > 0  is ca lled  a p rinc ipa l  r e fer en ce  p osit ion  (P .R .P .). W h en  the 

system  is ro ta ted  in the p lane by -45° o r -22 5 ° from  a p rincipa l re ference position , the 

system is said  to be at a s tan d ard  posit ion  (S .P .). T he m ean ing  o f  these co n cep ts  is 

made transparent if  we look  at them  re la tive  to  the in ertia  ellipse. W e have show n an 

exam ple fo r each  o f  these  p o sitio n s in F ig . 4 .1 . O b v io u sly , there  are u su a lly  fo u r

reference positions w ith krt/ 2  angle d ifferences, out o f  w hich tw o are principal reference

positions w ith kit angle d ifferences; m o reo v er there are usually  tw o standard  p o sitio n s

with kft angle d iffe ren ces , w hich  are the p o s itio n s  w hen  the long  m ajo r ax is o f  the 

inertia ellipse coincides w ith the Ox axis.

For such a planar m ass d istribu tion , a co n fig u ra t io n a l  angle  can  be d efin ed  at a

principal reference position  by a  = arccos (Ixy /  Ix) e  [ 0 , 7t /2 ]. This is ju stif ied  because 

by C auchy 's inequality  (see A ppend ix  B ) w e a lw ay s have (Ix y ) 2 ^  Ix Iy , w h ich  at a 

principal reference position  im plies Ixy < Ix.
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(2). T ransform ation o f  the Inertia T ensor

It is useful to investiga te  how  the inertia tensor changes w hen a system  is ro tated  in

the plane by an ang le  (j) w ith  the coord inate  system  fixed. I f  the e lem en ts o f  the inertia  

tensor are d en o ted  by Ix , Iy , and Ixy before the ro tation , and by I 'x, I 'y, and  I 'xy a fte r 

the ro tation o f  the system  w ith respect to the coordinate system , then sim ple calcu lation  

show s

l \  =  X m i ( x i s m ( {) +  y jCOScf) )2 =  I xc o s 2<}>+ I ys i n 2<{> + 1  xysin24> 

l ' y = ^ m j( x ic o s 0 - y ssin<t>) = I „ s i n 2<t)+ I yc o s 2<j>-I sin2<|>

‘ 1 =  S m i(x iC0 S(l>-  y i sin<»  (x,sin<t> + y jCOS^)

= ^ s i  n(2<(>) (I y -  I x) + I xyc o s 2 0  

I =  I „  + I y = I x +  I y =  I.

T he adv an tag e  o f  d e fin in g  p rinc ipa l re ference positions is that any  p o sitio n  o f  a

system  can  be o b ta in ed  by ro ta ting  the system  an angle <{) from  a p rin c ip a l re feren ce  

position, and the e lem ents o f  the inertia tensor can be expressed as very sim ple functions

of the rotation free quan tity , Ir s  1/ 2 , and the configurational angle a ,  viz.

I X = I X+ I  sin2<t> = I r[1 + c o s a s i n  2<t>]x y

I = 1 - 1  s in  2 6  = I r[1 -  c o s a  si n2<bl
xy (4 .  2 )

I" = I c o s 2 6 =  I rc o s a c o s 2d)X y x y  T  r  T

l '  = I = 2 1  r .

(3). Equations Invo lv ing  the Inertia  T ensor

In the la te r  d ev e lo p m e n t o f  the  spatial 3 -body p rob lem , w e w ill en co u n te r the 

determ inant o f  the inertia  tenso r w ith respect to the centre o f  m ass, IxIy - (Ixy)2, w hich is 

the key link betw een  o u r re su lt and  S aari’s (1987). W hat w e w ant to  show  here is that 

this function m ay be re la ted  to the area o f the triangle form ed by the th ree poin t m asses. 

In general we have
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1 , 1 , - 1* ,  = ( l miXi ) ( S miy i ) - ( I m jx iy i)2

= I I m im i Xi y,  -  XXmi i r i j x ,  y . x ,  yj = Z m . m j x i y j ( x i y | - x jy ,)
i

i *i

= I r n im j ( x i y j - x iy i)2 =  £  m. mj t R,  x  R , ) 2 = 4  £  nr m S 2
( i .j) (' .i ) (i ,j )

for any N p o in t m asses  ly in g  in a sing le p lane, w here is the area o f  the triang le  

formed by and  the sum m ation notation

1 4 2 1
(i.i) ' i * '

means that the sum  is taken over all possible pairs w ithout repetition o f  indices.

If  only th ree bod ies are invo lved  and the orig in  is set at the cen tre  o f  m ass, then w e

have m im jS ij= m 1m 2 S 12 fo r any pa ir (i j  I i* j), and S jj= m kS /M  fo r  any trip le t (i j k

I i* j*k*i). T hese are easily  show n by taking the cross product o f  the equation  E m jR j=0  

with every m jRj. Substitu ting these into the above result we obtain

I xI y- I x2y = 4 S 2m 1m 2m 3/ M > 0  ( 4 . 3 )

for three po in t m asses ly ing  in the p lane O -xy, w ith the origin at the barycen tre  o f  the 

system.

4.2 S u n d m a n 's  In eq u a li ty ,  P o ss ib le  M otion  and  C en tra l  C o n f ig u r a t io n

There are m any  ap p ro ach es used to estab lish  the restric tio n  on p o ssib le  m o tion  o f  

dynam ical system s by first in tegrals. A w ell-know n m ethod  is the  so -ca lled  e ffec tiv e  

potential m ethod , w hich  w as generalised  by Z are (1976) to  a c la ss  o f  H am ilto n ian  

systems w ith a positive defin ite  property and applied to the cop lanar 3 -body problem . In 

principle, his m ethod  is com ple te  and w idely  applicab le. H ow ever, in th is section w e 

will concentrate  on  a s im p le r inequality  m ethod  based  on a d irec t use o f  S u n d m an ’s 

inequality to dem onstra te  the m eaning  o f  the H ill-type stability  o f  the general 3-body 

problem  ob ta in ed  in  th is w ay (G olubev , 1968; M archal & Saari, 1975; S aari, 1976). 

This m ethod can establish  equally  good results, and show s its advantage in dealing w ith 

more com plicated system s.

It turns out that the critica l configurations for the H ill-type stab ility  is exactly  the
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same as the so ca lled  cen tral configurations (W intner, 1947), the determ ination  o f w hich 

is still an open  question  fo r system s w ith m ore than three bodies. T he recent advances in 

this direction are also  review ed.

F inally  w e w ill co m p are  the bounded  m o tio n s o f  som e c lassica l system s and show  

their re la tion  to  S u n d m an ’s inequality . In do ing  this w e try to show  the generality  o f  the 

inequality m ethod , supporting  its applications to relativistic problem s in later chapters.

S u n d m a n 's  I n e q u a l i ty  a n d  P o ss ib le  M o t io n

S undm an 's in e q u a lity  w as in tro d u ced  to  stu d y  co llis io n s  in the c lassica l N -b o d y  

problem  (see W in tn er, 1947). F o r the p u rp o se  o f  studying  fo rb idden  m otion  the term

involving d l /d t  can  be d ropped  from  the o rig in a l expression , g iv ing  a w eaker but still 

useful inequality . H ence w e w rite,

where C is the v alue  o f  the total angu lar m om entum  vector C, T  the kinetic energy and I 

the m om en t o f  in e rtia . T h is  eq u a tio n  w ill be ca lled  S u n d m a n 's  in eq u a li ty  in the 

present approach . T h e  p ro o f  o f  it is s tra ig h tfo rw ard  by u tilising  C auchy 's ineq u ality , 

equation (B 2) in A ppend ix  B, viz.

Since the to ta l en e rg y , H , o f  the N -body  system  is the sum  o f  the po ten tial energy , U, 

and the k inetic energy , the Sundm an 's inequality  (4.4a) can be w ritten as

If the total en e rg y  o f  the system  is negative , then w e can fu rther perfo rm  the fo llow ing  

deduction alm ost autom atically ,

where Z(A) is a sca le -free  function  o f  p o sitio n s  only , C 2H is sca le-free as well. F o r a

3-body system  Z(A ) is a func tion  o f  the shape o f  the triangle form ed by the th ree m ass 

points. F rom  the p roo f, one sees that these equa tions are very general; they are not only 

valid to an iso la ted  system , bu t a lso  to  a subsystem . M oreover, the system s are not

C2 < 2 IT ( 4 . 4  a)

C2 = | I ( m iR ix V , ) f < ( X | m 1Ri x V l| ) 2 = ( X m i RiV is i n e ) 2

= 2 I T .

C2 < 2 1(H- U) o r  - H + U + ^ r < 0 . (4 .4 b)

=> Z(A) = II)2 > -  2 C2H ( 4 . 4c )
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F ig u re  4 .2  T he critica l con tou r o f  Z  fo r m ^ O .7 5 , m 2=0.25 and 013= 1 .



F igure 4 .3  T h e  su rface  d efin ed  by the func tion  Z (X , Y )= IU 2 fo r m ^ O .5 0 5 ,

m 2 = 0 .495  and m 3=0 . 1 . T he m irro r im age o f  the surface is show n to 

d isp lay  the detail o f  the critical points.



necessarily po in t m ass N -body system s, they can be rig id  body system s o r a system  o f 

continuous m edium . T h ere  are no  requ irem ents on the actual action  force o r potential. 

The quantities H  and  C  are not necessarily conserved.

E q u a tio n s (4 .4 b ) and  (4 .4c) can be used  to o b ta in  som e in te re stin g  and  usefu l 

forbidden m otions v a lid  fo r all tim e if  H  and  C are con serv ed  quan titie s , o r for som e 

finite tim e scale  i f  H  and  C are chang ing  slow ly  w ith tim e .T h e  basic  idea is that the 

com bination  o f  the  co n se rv ed  (o r slow ly  chan g in g ) q u an titie s  on  the rig h t side o f

equation (4 .4c), C 2 H , im poses restric tions on the function , Z(A), o f  the positions o f  the 

bodies on the left hand  side, hence on the possib le configurations the bodies could form.

W e also note that inequality  (4.4b) (alternatively  (4.4a)) is the relation utilising both 

energy and an g u lar m o m en tu m  integrals; it is stronger than the re la tion  H -U >0, w hich 

only uses the en e rg y  in teg ra l. H ow ever, w ithou t m ore in fo rm atio n  abou t the specific 

problem it is d ifficu lt to determ ine w hich o f  the two inequalities, H -U >0 or (4.4c), is the 

stronger and therefore the better one to adopt.

A pply ing  eq u a tio n  (4 .4c) to the 3-body system  in its b arycen tre  system , we obtain  

the H ill-type reg ions show n  in Fig. 4.2. M ore specifically , the restric tio n s on possib le  

configuration by equation  (4.4c) can be studied by selecting tw o o f  the partic les to define 

a reference line and  u n it o f  d istance, then seeking the possib le  re la tive  positions o f  the

rem aining body. In th is  w ay, one finds that, based  on the level sets o f  Z(A) (see Fig. 

4.3), there ex ist trip ly  co n n ected  forbidden reg ions in  the sca led  physical space if  the 

values o f  C 2H  satisfy  the relation C 2H < (C2H )c. The critical value o f  (C 2H )c is equal to

that o f -Z /2  estim ated  at one o f  the critical po in ts o f  Z. T hese  critica l po in ts are called  

cr it ica l c o n f ig u r a t io n s ,  w h ile  th is k in d  o f  s tab ility  is te rm ed  the H i l l - t y p e  

s ta b ility .

H ow ever, in o rd e r to  show  the relation  to the so -called  cen tra l con figu rations, we 

will call all c r itic a l p o in ts  o f  the function  Z  critica l co n fig u ra tio n s  o f  the N -body 

problem.

O bviously , the re su lt is no t only true fo r co p lan a r 3 -body  p ro b lem s but also  for 

spatial 3 -body  p ro b lem s. T hus, the H ill cu rv es are on the in v ariab le  p lane for the 

coplanar problem ; and the sam e Hill curves are on the instantaneous plane defined by the 

three m ass po in ts fo r the spatial problem . M oreover, if  the m ass param eters  are fixed, 

the critical co n fig u ra tio n s  and critical values o f  (C2H )c are the sam e fo r the spatial and 

coplanar p rob lem s. T h u s  fin a lly  one ob ta ins the H ill su rfa ces  for the spatial 3-body 

problem by ro ta tin g  th e  H ill cu rve found on the invariab le  p lane in the co p lan a r case 

around the re fe ren ce  lin e  d e term in ed  by tw o o f  the m ass poin ts. T h is  re su lt w ill be 

improved in the next section.
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It is w orth  poin ting  out th a t w hile the critica l configurations o f  the cop lanar 3-body 

p rob lem  co rre sp o n d  to  the  im p o rtan t p a r tic u la r  so lu tio n s  o f  the sy stem  (ca lled  

hom ographic so lu tions), nam ely , L ag ran g e 's  equ ila tera l triang le  so lu tions and E u ler's  

co llinear so lu tio n s , the sam e critica l co n fig u ra tio n s  in the sp a tia l p ro b lem  are no t 

necessarily  re la ted  to any rea l m o tio n ; they  are m erely  so m e sp ec ia l g eo m etrica l 

arrangem ents o f  the p ositions o f  the m asses. T hus, in o rder to avo id  con fusion , w hen 

necessary the critica l con figu rations w ill be called  L agrange 's o r E u ler's  configurations 

(or points) instead  o f  solutions. S im ilarly , the central configuration  is also ju st a concep t 

o f statics. H ow ever, these configurations are all related to each other and have dynam ical 

value.

M archal & Saari (1975) stud ied  the H ill-type curves by a d irec t use o f  S undm an 's 

inequality. H ow ever, they used  the m ean quadratic  d istance a  and the m ean harm onic  

distance v , w h ich  are resp ec tiv e ly  d e fin e d  by M * g 2=M I and M * v '1= -U /G , w here  

M *=Emjmj. O bviously  their essen tial equation  o /v  > (-2C 2H M /G 2M * 3) 1/2 is equ ivalen t

to ours, ie. I ^ - U )  > [-2C 2H ]1/2. H ere the grav itational constan t G  is retained.

The notion  o f  H ill-type stability  o f  the general 3-body problem  has been regarded  as 

a break-through in  ce lestia l m echan ics, because  it guaran tees the h ierarch ica l stab ility  

condition H S -(C ) defined  by R oy & W alk e r (1983) (cf. chapters 1 and  5). H ow ever, its 

theoretical value m ust be balanced by the fact that unlike the Hill stability o f  the restricted 

problem , a H ill- ty p e  s tab ility  d o es n o t p re c lu d e  escape  o f  o n e  b o d y  n o r b in ary  

collisions. N ext, s im ilar geom etrical re su lts  have been estab lished  for a 3 -body system  

with non-negative total energy  (M archal &  B ozis, 1982). M oreover, H ill-type stab ility  

cannot be estab lished  in the sam e w ay fo r system s w ith m ore than three bodies (M ilan i 

& Nobili, 1983, 1985); nor fo r the p rob lem  o f  the c ircu lar restric ted  2+2 bodies (M ilani 

& N obili, 1988).

N evertheless, the notion is im portan t in application because real system s are usually  

approxim ated by a 2-body m odel, and a 3-body m odel will be a better approxim ation . If 

the total energy  is negative, then  at m ost one body can escape to in fin ity . A s a resu lt o f  

this, the inner b inary  canno t escape if  the system  is H ill-type stable. M oreover, if  the 

system is H ill-type stab le, and  the to tal an g u la r m om entum  is not zero, then the o u te r 

mass canno t co llide w ith e ith er o f  the in n er m asses. W e will see in the next ch ap te r that 

the outer m ass is a lw ays bounded  ou t o f  the circ le  spanned by the line jo in in g  the tw o 

inner m asses.
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C ritical C o n fig u ra tio n  and  C en tra l C o n fig u ra tio n

The s ign ificance o f  cen tra l co n fig u ra tio n s is that a very  im p o rtan t c lass o f  p a rticu la r 

solutions, nam ely , the  h o m ograph ic  so lu tions, to  the c lassica l g rav ita tio n a l N -body  

problem  is re la ted  to  it. W e w ill show  that the cen tra l co n fig u ra tio n s are exac tly  the 

critical co n fig u ra tio n s  o f  in te re st here. M o reo v er, the d e te rm in a tio n , o r  ev en  the 

counting, o f  such co n fig u ra tio n s  is still a fascinating  but unso lved  question . W e will 

review briefly  the recen t advances m ade in this field and obtain  tw o sim ple theorem s as 

an outcom e o f  d efin ing  cen tral con figu rations in d iffe ren t coord ina tes. T he dynam ica l 

meaning o f one o f  the theorem s still needs further exploration.

(1). Central C onfiguration  in B arycentre System

F ollow ing  W in tn er (1947), a cen tral configuration  m ay be defined , in a b arycen tre  

system, as:

T he N  p o s itio n  v ec to rs  R j  o f  the N  b o d ies  m j  w ill be sa id  to fo rm  a cen tra l 

configuration  w ith  re sp ec t to  the N  fix ed  p o sitiv e  m ass p aram ete rs , if the fo rce  o f  

gravitation acting  on  irq at the m om ent o f  the g iven configuration  is p roportional to the 

mass m* and to the barycentric position  vector Rj, ie. i f  the set o f  equations

F| = - V  R U = -  a m , R i ( i = 1 ......... N) ( 4 . 5 a )

hold for som e scalar o  w hich is independent o f i.

In fact, s ince  a Z m j ( R j ) 2 = Z < R j ,V  Rj U > = -U , the v a lu e  o f  a  is u n iq u e ly

determ ined by a = - U / I ,  w here  U is the  po ten tia l energy  o f  the system , and  I is the 

system 's m o m en t o f  in e rtia  w ith  re sp ec t to the cen tre  o f m ass. M o reo v er, eq u a tio n

(4.5a) im plies that E n ijR j =0, i f  w e notice that fo r a se lf  g rav ita tional N -body system ,

Rj U = ZFj =0. T h is im plies that not all o f the equations are independent.

By the L ag ran g e  m u ltip lie r  theo rem , it is ev id en t that eq u a tio n  (4 .5a) m ay be 

interpreted as the critica l po in ts o f  U w ith the constrain t I=const. T hus equation  (4.5a) is 

equivalent to

VRU=0 , I =  const. ( i = 1......( 4 . 5 b )
i

The cen tra l co n fig u ra tio n s  m ay be fu rth e r equ iva len tly  in te rp re ted  as the c ritica l 

points o f  the fu n c tio n  Z = IU 2 , n am ely , the  c ritica l co n fig u ra tio n s  o f  the  H ill-ty p e  

stability, viz.
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V„i u2 = 0  (i = 1........N) (4.5c)
i

if one notices the fo llow ing relations

VBIU2 = U2V r I + 2 I U V r U = l / 2 m  Ri + 2 I U V RU .
i

It is clear that the notion o f  a central configuration determ ined by the three equivalent 

equations (4 .5a , b, c) is in d ep en d en t o f  the o rien ta tion  o f the bary cen tric  co o rd in a te  

system  and the  un it o f  leng th . C orrespond ing ly , the c lass  o f  cen tra l co n fig u ra tio n s  

which can go  into each o ther through a rotation or scaling will be considered  as identical. 

Because o f th is, one can alw ays find the central configurations o f  the N -body system  by 

solving only  ( N - l )  eq u a tio n s  for the (N - l)  unknow n R 's , if  one chooses the o rig in  o f 

the coord inates at the bary cen tre  and arb itrarily  fix one o f  the m asses, say m N, at the 

position (1, 0 , 0). T h e re fo re , on ly  (N - l)  o f  the N eq u a tio n s are  in d ep en d en t. T h u s 

central configurations can be equivalently  defined by

F j = - V RU = - o m . R j , o = - U / I  ( i = 1, , N —1) ( 4 . 5 d )

V r IU2 = 0  ( i = 1 ..........N - 1 )  ( 4 ,5e )
i

These tw o eq u a tio n s are a resu lt o f  the above sym m etry  and sca ling  argum ent. In 

addition, one can  deduce  equa tions (4.5a) and (4.5c) from  these tw o equa tions by a use

of the equation  XrrqRj = 0. T he  set o f  equations (4.5d) allow s a sim p le  and  in teresting  

interpretation stated in the follow ing theorem:

Theorem  4.1. F o r an N -body  system , if  the resu ltan t g rav ita tional fo rces  on (N - l)  o f  

the m asses sa tisfy  eq u a tio n s  o f  the form  (4 .5d) o r (4 .5e), then so does the re su ltan t 

force on the rem ain ing  m ass.

(2). Central C onfiguration  in an A rbitrary  C oordinate System

Sim ilarly one can define the central configurations in an arbitrary coord ina te  system  

by the set o f  equations

F i = - V R U = -  o m . ( R i  -  A) (i = 1, ... , ( 4 . 6 a )

Based on the sam e argum ents as before, a  is uniquely determ ined  by o=-U /l>  w here U 

is the po tential energy  o f  the system , and I again is the system 's m om ent o f  inertia w ith

respect to the cen tre  o f  m ass. E quation  (4.6a) also im plies that A = E m iR i /M , thus A is

94



necessarily  the system 's cen tre  o f  m ass and not all o f  the equations are independen t. 

Similarly, equation (4.6a) is equivalent to the follow ing equations

V R U = 0  , I = c o n s t .  (i = 1 IS} (4.6b)
i

V „ I U 2 = 0  ( i = 1 ........N) ( 4 . 6 c )

where I is the system 's m o m en t o f  in ertia  re la tiv e  to the bary cen tre  ra th e r than the 

coordinate origin.

H ow ever, based  on  the  tran s la tio n a l, ro ta tio n al and sca ling  sy m m etries  o f  the 

system, one sees that only  (N -2) o f  the equations are independent. T hus one can find the 

central configurations by selecting  a coord inate  system  such that tw o o f  the m asses, say 

mjsf and m ^ - i ,  are lo ca ted  at the po sitio n s (0 , 0 , 0 ) and ( 1 , 0 , 0 ) re sp ec tiv e ly , then 

solving the fo llow ing set o f  (N -2) equations

F i = - V R U = - c m . ( R - A )  ,............................. (i = 1........N - 2 )  ( 4 . 6 d )
i

w h e r e  o = - U / I ,  A  = ^ m . R | / M

V R I l / = 0  ( i = 1 ____N - 2 )  ( 4 . 6 e )
i

Equation (4.6d) now  allow s the fo llow ing  interpretation,

Theorem  4.2. F o r an N -body  system , if  the resu ltan t g rav ita tional fo rces on (N -2) o f  

the m asses satisfy  equations o f  the form  (4.6d) o r (4.6e), then so do  the re su ltan t forces 

on the rem aining tw o m asses.

This theorem  w as o b ta in ed  by the sym m etry  argum ents, thus one m ust be ab le to  

deduce eq u a tio n  (4 .6 a) o r  (4 .6 c) fro m  eq u a tio n  (4 .6d) o r (4 .6e) by a use o f  the

equations L F j = 0 (or eq u iv a len tly , Z m jR j = M A ) and E (R jX F i) = 0. H ow ever, the 

author has not been ab le to  verify  this point. T his is desirable for a fu ture w ork, because 

if it were true, then it reveals the dynam ical m eaning o f the theorem .

For the 3-body p rob lem , one can verify  the theorem  after the central con figu ra tions 

are all found . H o w e v e r, fo r  sy stem s w ith  m ore than th ree  b o d ies , the  c e n tra l 

configurations has not been  solved; in fact even the question o f coun ting  the num ber o f  

central configurations is still open. T herefore, if  the above suggestion canno t be proved , 

then the theorem  raises a p rob lem  related  to the m ore general open question.

(3). Recent A dvances

Here we w ill sum m arise  very  briefly  several points o f the recen t p rog ress m ade in 

counting the num b er o f  cen tra l configurations. But first let us c larify  several concep ts
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needed in study ing  critica l points o f functions in  general (defin itions m ay be found from  

Poston & S tew art, 1978).

A critica l p o in t is iso la ted  if  there is no o th er critica l po in t in a su ffic ien tly  sm all 

neighbourhood o f  the point. A critical po in t o f  a function  is nondegenerate  (degenerate) 

if the H essian  m atrix  o f  the function  is nondegenera te  (degenerate) at the point. W hile 

nondegenera te  c ritica l po in ts  are alw ays iso la ted , the converse  is no t true. M oreover, 

nondegenerate critica l po ints are structurally stable, and degenerate critical points are not 

structurally unstab le. O ne o f  the difficulties m et in counting the num ber o f  critical points 

is that d e g e n e ra c y  ca n  p ro d u ce  in f in ite ly  m an y  c r itic a l p o in ts , thus th e  m o re  

m athem atica lly  in v o lv ed  M orse theory  o f  critica l po in ts and m easu re  theory  m ust be 

invoked.

It w as a lread y  show n by M oulton (1910) that fo r an N -body system , there are N !/2  

co llinear c e n tra l co n fig u ra tio n s . It is su g g ested  by W in tn e r (1 9 4 7 ) that the la rg est 

co n trib u tio n  to  th e  n u m b e r o f  c e n tra l c o n f ig u ra tio n s  is d u e  to  the c o ll in e a r  

configurations. T h is  is true for N=3 but false fo r N >4, because P a lm o re  (1973) show ed 

that w hen the m ass param eters are such that all central configurations are nondegenerate,

then the m in im u m  n u m b er o f  p lanar cen tra l con figu rations equals (3 N -4 )[(N -l)! /2 ] . In 

the n o n d eg en era te  4 -b o d y  cases, th is  m in im u m  estim atio n  g iv es  24 p lan a r cen tra l 

configurations, am o n g  them  12 are co llinear. H ow ever, it is show n in the sam e artic le  

that the sy stem  o f  fo u r equal m asses has a to tal num ber o f  1 2 0  nond eg en era te  cen tra l 

configurations. T h erefo re , the contribution o f  nonco llinear p lanar central configurations 

spectacularly exceeds that o f the collinear ones.

It is a c lass ica l fac t that the 3-body p rob lem  has only  five cen tral configurations; all 

of them  are iso la ted  and  nondegenerate critica l po in ts (see W intner, 1947). D egeneracy  

already h ap p en s in  the case  o f  4-body p rob lem s, and an exam ple  is g iven by P alm ore  

(1975). It is easy  to  show  that the configuration  w ith three unit m asses at the vertices o f 

an equilateral trian g le  and the fourth m ass at the cen tre  o f  m ass o f  the first three m asses 

is a central configuration ; by a direct ca lculation one can show  that the H essian m atrix  is

degenerate w hen  the v a lu e  o f  the fourth  m ass is (2 + 3 V 3 )/(1 8 -5 V 3 )< l. E x am p les  o f  

degeneracy can be constructed  for any N >4 in a sim ilar way.

P alm ore (1975) a lso  proved the fo llow ing con jectu re o f  Sm ale (1970): for alm ost all 

(in the sense o f  L eb esg u e  m easure) m ass p aram eters  m = {m i ,..., m ^}  there are only  a 

finite num ber o f  p lan ar central configurations; and they are all nondegenerate. M oreover, 

Palm ore (1976) p ro v ed  that in the N -d im ensional m ass p aram eter space (N >4), the set 

of m asses g iv in g  d eg en era te  cen tral co n fig u ra tio n s  has L eb esg u e  m easu re  zero, but 

positive k -d im en sio n a l H au sd o rff m easu re , w ith  0 < k < N - l .  T h ese  resu lts partia lly
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answ ered a q u es tio n  ra ise d  by W in tn er (1947), nam ely , is the n u m b er o f  cen tra l 

configurations finite o r infinite?

T rap ped  M o tio n  o f  V a r io u s  F ew -B o d y  P ro b lem s

It is w ell-know n that bo u n d ed  m otions can be found by the effective poten tial m ethod , 

or after the p rob lem  has been solved in closed form. E xam ples o f  the first case m ay be 

found from  standard  tex tb o o k s (eg. F etter & W alecka, 1980; G oldstein , 1980); in fact, 

the c irc u la r re s tr ic te d  p ro b lem  is a w e ll-k n o w n  n o n triv ia l ex am p le . W e ll-k n o w n  

exam ples o f  the second  case  are the 2-body prob lem  and the 2 -cen tre  p rob lem  (B om , 

1927).

Fig. 4.4 T he K epler m otion  is bounded betw een the pericentre and apocentre 
d istance by  S undm an 's  inequality , equation (4.4b).

It is in teresting  to  no te  that m ost o f  these standard  resu lts m ay be ob ta ined  as d irect 

outcomes o f S undm an 's  inequality  by a use o f  equations (4.4b) or (4.4c); w e favour this 

inequality m ethod  b ecau se  it is m ore general. F or exam ple, it is w ell know n  that the 

m otion o f  the tw o -b o d y  p ro b lem  (w ith  n eg a tiv e  to tal energy ) is lim ited  betw een  

apocentre and pericen tre  d istances and this is the best possible resu lt since one can find 

this resu lt a fte r the p ro b lem  is solved. E xac tly  the sam e resu lt m ay be ob ta in ed  by
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applying equa tion  (4.4b) in the barycentre  system . O ne can easily  verify  that the m otion  

is possible on ly  if  the d istance betw een the tw o bodies is lim ited  in the reg ion  a ( l-e )  and

a(l+ e), w ith a —i r q m ^ H  and ( l - e 2)=  -2 C 2H (m 1+m 2 ) / (m 1m 2) 3 (see Fig. 4.4).

F or m ore app lica tions o f  S undm an 's inequality  in studying bounded  m otion , see for 

example, C hapsiad is et al (1988), Sergysels (1988) and V eres (1989).

4.3 A S tro n g er  In eq u a lity  fo r  th e  S p a tia l 3 -B o d y  P ro b lem

As has a lready  been m entioned , m any au thors have m ade the approach  o f  es tab lish in g  

H ill-type stab ility  for the general 3 -body problem . A lthough their m ethods o f  app roach  

differ, th e ir re su lts  d id  not go  beyond  th a t w hich can be o b ta in ed  by a d irec t use o f  

Sundm an's inequality  until the w ork o f  Saari (1987). M oreover, som e o f  the app roaches 

merely reproduced  the very general Sundm an 's inequality in certain  ra ther lim ited  cases. 

For exam ple, Zare (1976) only applied the (extended point) transform ation  m ethod to the 

coplanar 3 -b o d y  system , and  o b ta in ed  equa tion  (4 .8a) w hich w ill be show n  in th is 

section to be eq u iv a len t to S undm an 's  inequality . T herefo re  there  is a need  to ex ten d  

some o f  the approaches to m ore general cases, and to w ork for stronger resu lts.

A m ong  th e  m eth o d s  used  so far, tw o  o f  them  need  p a r tic u la r  m en tio n  fo r the 

interests o f  th is thesis, nam ely , d irec t S undm an 's  inequality  m ethod  used  by G o lu b ev  

(1968) and Saari (1976) and  the canon ical transform ation m ethod  used  by Z are (1976). 

The first m ethod  w as rev iew ed  in the last section. B ecause o f  its sim p lic ity  and  general 

applicability , it w ill be  generalised  in A ppend ix  B and used la te r to study re la tiv is tic  

problem s. H o w ev er, Sundm an 's inequality  and those estab lished  in A ppend ix  B are not 

the best possib le  ones, they still allow  im provem ents.

The second  m ethod  is a m odified  version  o f  Z are 's approach , w h ich  w as o rig in a lly  

limited to ex tended  poin t transform ations so as to preserve the positive  defin ite p roperty  

of the H am iltonian w ith respect to all generalised m om enta. The m odified  m ethod will be 

used here to study  the spatial 3-body problem . In principle, the canon ical transform ation  

method is a co m p le te  m ethod  since no inform ation  is lost in such reductions. H ow ever, 

when the n u m b e r o f  bo d ies in v o lv ed  in c reases , the am o u n t o f  a lg eb ra  n eed ed  fo r 

carrying o u t th e  ca lcu la tion  w ould  becom e too large. F o r exam ple , it w ou ld  be ra th e r 

hopeless sh o u ld  o n e  try  to  d ed u ce  S u n d m an 's  in eq u a lity  fo r the  N -b o d y  p ro b lem  

following Z are 's  p rocedure .

In this section  the m odified  transform ation m ethod will be applied to study the spatial 

motion o f  the  3 -body  p rob lem . In d o in g  this it is found that a s im ilarity  ex is ts  in the
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form o f  the H am ilton ians o f  the spatial and  cop lanar p rob lem s, w hich is a re flection  o f  

the fact that three points alw ays lie in a plane. It is exactly due to this property that Zare 's 

results o f  the c o p la n a r  p ro b lem  can  be u sed  to sim p lify  the in v es tig a tio n  here . 

Inequalities stronger than Sundm an's have been found.

The resu lts  w ere also  ob tained  before  the p resen t app roach  by Saari (1987), w ho 

studied a m ore general class o f p roblem s, ie. the flat N -body problem  (3-body is alw ays 

flat). H is w ork  a lso  show s som e co nnection  betw een  the V irial theorem  and H ill-ty p e  

surfaces th ro u g h  the  so -called  rig id  m o tio n  (see also  P alm ore, 1979). H ow ever, the 

present app roach  w as independen t o f  S aa ri’s. T he ob jec tive  o f  the p resen t au th o r was 

limited in developing  a m ore general inequality  m ethod to study bounded m otion in both 

classical and re la tiv istic  gravitational system s, with the transform ation m ethod as an aid 

(since it is in  p rin c ip le  com plete). S aari's  (1987) w ork  w as p u b lished  w hen eq u a tio n  

(4.13) w as obtained , so the developm ent afte r that equation is m ainly due to him.

E q u iv a len ce  o f  Z a re 's  R esu lt w ith  S u n d m a n 's  In eq u a lity

Zare (1976) estab lished  restric tions o f  first in tegra ls on possib le  m otion  fo r dynam ical 

system s p o ssessin g  tim e-independen t H am ilto n ian s o r system s reducib le  to that form  

using o n ly  ex ten d e d  p o in t tran sfo rm a tio n s . T h e  m eth o d  d ep en d s  on the p o sitiv e  

defin iteness o f  the H am ilton ian  in all g en era lised  m om enta, and that this p roperty  is 

preserved by ex tended  poin t transform ations. T he study is in fact a generalisation  o f  the 

so-called effective potential m ethod often encountered w hen a rotating fram e is used.

The m ethod  w as applied to the coplanar general 3-body problem  by Zare and derived  

the H ill-ty p e  cu rv es  w h ich  m ay be u sed  to  m ak e  s ta tem en ts  co n ce rn in g  p o ss ib le  

con figu rations o f  the th ree  bo d ies ap p lica b le  fo r all tim e. H e o b ta in ed  a red u ced  

H am ilton ian  by  usin g  the ex ten d ed  p o in t tran sfo rm a tio n s  d iscu ssed  in d e ta il by 

W hittaker (1904). In spite o f a slight fo rm al d iffe rence, the H am ilton ian  appearing  in 

Zare's paper is equ ivalen t to that o f  W h ittak er (1904, section 161). In order to facilita te  

our study on the  3 -d im ensional p ro b lem  (W h ittak e r also  g ives the tran sfo rm atio n s, 

w hich are  a ll e x te n d e d  p o in t tra n s fo rm a tio n s ) , w e shall w rite  d ow n  the fin a l 

H am iltonian, taken from  W hittaker, viz.

H = 1 + 1

+

+

2m1 2 m 3

1 1+2 m2 2 m3J

P ^ ( P 3Q 2 - P A - C )2

2 2 

( P ,  +  P J

m + u (4.7)
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w here m i ,  m 2 an d  m 3 a re  the m asses, H  and C are the  to ta l en e rg y  and  an g u la r 

m om entum  in teg ra ls  w ith  re sp ec t to the system 's centre o f  m ass. Q j is the d is tan ce  o f  

0131111, Q 2  and Q 3  are  the p ro jec tio n s o f 11131112 on and p erp en d icu la r to 1113m l, Q 4 the 

angle b e tw een  11131111 and  the x -ax is  fixed  in space th ro u g h  the cen tre  o f  m ass. 

Furtherm ore, P i is the com ponen t o f  the m om entum  o f m i along 11131111, P 2 and  P 3 are 

the com ponents o f  the m om en tum  o f  m 2 parallel and p erp en d icu lar to 11131111, and P 4 is 

the total angu lar m o m en tu m  o f  the system  with respect to the cen tre  o f  m ass. U is the 

potential energy , w hich  is a function o f  the generalised coord ina tes Q 's only.

By in troducing  the variab les X , Y, Z  and r\, where 

O  Q
X+ i Y ^  + i -g - , Z = Q ,  . i = VT

and solving the se t o f  lin ear equations OH/OPj = 0 ( i= l ,  2, 3) he o b ta in ed  the  un ique 

solution fo r the P 's ex p ressed  in the above variables, viz.

P = C Z Y  p = _
r 1 2  ’ 2 m U

C ¥ Y  p
7 ’ 3 1 _ l 1 +  7 f i 7 lx

C'P

where 'P  = xF (m , X , Y).

Finally , by using  the positive  defin ite feature o f the H am ilton ian  w ith resp ect to the 

m om enta P 's  an d  su b s titu tin g  the  above  eq u a tio n s  o f  P 's  in to  eq u a tio n  (4 .7 ), he 

obtained the inequality  govern ing  the regions o f possible m otions, nam ely,

F(n,Z) = HZ2 + G b ( i i ) Z - - ^ c ( T i ) > 0  (4.8a)

where

M = m 1 - f m 2 + m 3

-1 1 1 - 1
b(ri) = m1m 2|r\-1| + m 2m 3|ri| + m 3m,

c ( t |)  = [ m , m j r | - 1 1 + m 2m 3|ri| + m 3m,] .

T his e q u a tio n  d e f in e s  re g io n s  o f  p o ss ib le  and  im p o ss ib le  m o tio n s  in th e  

3-dim ensional space O -X Y Z  w hose boundaries are given by a quadratic equation  in Z. If 

the total energy  is n eg a tiv e , the  p ro jec tion  o f the reg ions o f  p o ssib le  m o tio n s on the

complex q -p la n e  es tab lish es  all possib le  configurations independen t o f  the scale and is 

given by
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A(n) = GV(r|) + 2 M C 2Hc(Ti) >0. (4.8b)

The critical configurations are defined as the singularities o f  the m anifo ld  F(rj, Z )=0 

in the (r|, Z) space, nam ely ,

F(ri, Z) = 0 and 3F/9Z = 0 and V , F =  3F/9X + i3F/aY = 0 

or equivalently, the projection o f  the singularities on the rpp lan e  determ ined by 

A(ti) = 0 and dA/drj = 0A/3X + i3zV3Y = 0 .

The equ ivalence o f  equations (4.8a, b) to equations (4.4a, b, c) in the case o f  three 

bodies is evident i f  w e notice the expression o f the U and I in the barycentre  system  and 

using the re la tiv e  d is tan ces, nam ely , equation  (4.1b). O b v io u sly , this tran sfo rm atio n  

deduction is on ly  v a lid  fo r co p lan a r 3-body problem , w h ereas the d ed u c tio n  o f  last 

section is valid  fo r any N -body system , w hich is not necessarily  planar.

R eduction  o f  th e  S p a tia l 3 -B o d y  P ro b lem  and  S tro n g er  In e q u a lit ie s

To describe the m otion  o f  the general 3-body problem , w e fo llow  W hittaker (1904) and 

use the follow ing notations defined in a rectangular coordinate system

m ass general coordinate general m om entum

m i q i 92 93 Pi P2 P 3

m 2 94 95 96 P 4 P 5 P6

m 3 97 98 99 P 7 P8 P 9

In an inertial fram e the H am iltonian is

9  - 2

H = T  + u = I ^ -  +  u
i = 1 k

_ p ? + p 22 + p23 t p 24 + p 25 + p 26 t p27 + p28 + p29

2 m1 2 m 2 2 m 1

m 2 m 3 m 3 m i

^12 ^23  ^31

where k is equal to the in teger part o f  (i+2)/3 and
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3 2 3 3 

^ 1 2 =  S ^ P i  + 3 P  i )  ’ ^ 2 3 “  ^ ( P i  + 6 _ P i + 3 ) ' ^ 3 i = ^ j ( Q i ~ Q i  + 6 )i= 1 i = 1 i= 1

This system  has nine pairs o f  canonical equations o f  m otion 

q i = 9 H / 3 p i , p i = - 9 H / 3 q j ( i = 1 ...........9 )

and p o ssesses  seven  in d ep en d en t in teg ra ls  co rresp o n d in g  to one tim e transla tion  and 

three spatial translation  sym m etries, and three ro tation  sym m etries, nam ely,

H = c o n s t  

p , +  p 4 +  p 7 =  c o n s t .

P 2 +  P s +  P a = c o n s t - 

- P 3 +  P e +  P 9 = c onst .

qiP2-P2P1 + P4Ps-Cl5P4 +q7P8-P8P7 = COnSt-
P  2P  3 P  3 P  2  P  5P  6 P  6 ?  5 P  s P  9 P  9 P  8 =  C O n S t .

P 3P ,  - P 1 P 3 + P 6 P 4 - P 4 P 6 + P 9P 7 - P 7 P 9 =  C O n S t -

T his H am ilto n ia n  is p o sitiv e  d efin ite  in all gen era lised  m om en ta  p 's. It m ay  be 

reduced by  p erfo rm in g  a series o f  canonical transform ations from  (q, p) space to (Q , P) 

space, w h ich  are g iven by W hittaker (1904) and  are all ex tended  po in t transfo rm ations 

of the fo rm  Q = Q (q). In fact W h ittak er o n ly  g ives the generating  functions (all are  o f  

Ss-type); the  transfo rm ations m ay be found easily  using  T able 2.1. Zare (1976) p roved  

that ex tended  transform ations preserve the positive definite property o f  a H am iltonian .

Several techn ical po in ts need  special m ention . If the in tegrals o f  a H am ilto n ian  are 

not co n ju g ate  to  ig n o rab le  generalised  co o rd in a tes  o f  the w ork ing  coo rd in a te  system , 

then in general they cannot be pu t in to  H  before  the derivatives o f  H are fo rm ed  in the 

canonical eq u a tio n s; nor is H usually  p ositive  defin ite  in the p 's if  such in teg ra ls  are 

substituted.

In the fo llo w in g  ca lcu lation , w e alw ays assum e that a transform ation  is m ade from  

(q, p) variab les to  (Q , P) variab les. A fter the transform ation , we change the Q 's and P 's 

back to be d en o ted  by q 's and p 's so as to perfo rm  the next transform ation.

(1). R eduction  by M eans o f  L inear M om entum  Integrals

T he e x p lic it  tran sfo rm atio n  m ay be fo u n d  using  T ab le  2.1 using  the fo llo w in g  

generating function
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6 3

i = 1 i = 1

p , q , +  p 2o ,  + p 3q 3 +  p 4q 4 +  p 5q 6 +  p 6q .  

+  ( P , +  P 4 +  P 7) Q 7 +  ( P 2 +  P s +  P s ) Q e +  ( P 3 +  P 6 +  P 9 ) Q 9

where (Q j, Q 2 , Q 3 ) a n d  (Q 4 , Q 5 , Q 6 ) the relative coordinates o f  irq and m 2  with 

respect to m 3  respectively, with (Q7 , Qg, Q9 ) being the coordinates o f  m 3  in the previous 

rectangular coordinates. Furthermore, (P |, P2 , P3 ) and (P4 , P 5 , P^) are ti e mom entum  

components o f  irq and m 2  respectively, with (P7 , Pg, P9 ) being those o f  the centre o f  

mass (i.e. total m om entum  o f  the system).

On substitution o f  the new variables for the old the new H am iltonian may be 

obtained; it is found that (Q 7, Qg, Q 9) are ignorable coordinates. H ence without loss o f  

generality one can choose that (P7 , Pg, P9 )=0 , as this only means that the centre o f  mass 

is taken to be at rest. Finally the Hamiltonian is simplified to

where |ik= (m k+ m 3 ) /m k, and for the sake o f  further reductions the sym bols (p, q) are 

used to denote the new  variables instead o f (P, Q). N ow  the system  is defined by six 

pairs o f canonical equations

(2). Further Reduction by M eans o f the Angular Momentum Integral

We perform another canonical transformation defined by the generating function,

2HT+ 2ilr (Pi2 + P 2 + P23) + nTT( p ’p < + p 2p * + PsPe)1 3 _

q s = 9 H /  3p, , p l = - 3 H / 3 q l ( i = 1 .......... 6 )

which possesses four independent integrals, namely,

H= c o n s t

p ,p 2 - q 2p, + q 4p 5 - q 5P4 + q 7p 8 - P e P 7 = c o n s t -

P 2P 3 - P 3 P 2 +  Cl 5 P 6 - Cl 6 P 5  +  Cl 8 P 9 - P 9 P 8  =  C O n S t - 

p3p, -q,P3 + ci6P4 - q 4P6 + ci9P7- q 7P9 = const-
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W2 = p, ( Q ,c o s Q 5 -  Q , c o s Q 6s i n Q 5) + p 4(Q3c o s Q 5 - Q 4c o s Q 6s i n Q 5) 

+ p 2(Q ,s  i n Q 5 + Q 2c o s Q 6c o s Q 5) + p 5(Q3s i n Q 5 + Q 4c o s Q 6c o s Q 5)

+ p 3Q 2s i n Q 6 + p 6Q4s i n Q 6 .+ p 6Q4s i n Q 6 .

In add ition  to  the o ld  rec tan g u la r coord inates O -x 'y ’z' fixed in space, w e take a new  

set o f  m o v in g  co o rd in a tes  O -x y z , w h ere  O  is at the  cen tre  o f  m ass and  O x is the 

in tersec tion  (o r node) o f  th e  p lan e  O -xy  w ith the p lan e  o f  the th ree  b o d ies; O y is 

perpendicular to O x and ly ing in  the p lane o f  the three bodies, while O z is norm al to the 

plane o f  the th ree  bodies and fo rm s a rig h t hand coord inates w ith O x and O y. T hen  the 

new variab les m ay be in terpreted  as follow s:

(Q l, Q2 ) and (Q 3 , Q4 ) are the coordinates o f irq and m 2  respectively, relative to the 

axes drawn through m 3  and parallel to Ox and Oy; Q5  is the angle between Ox and Ox'; 

Q s is the angle betw een O z and Oz'. Furthermore, (P j, P2 ) and (P 3 , P4 ) are the 

momentum com ponents o f  irq and m2  respectively, relative to Ox and Oy; P5  and Pg are 

the angular mom entum com ponents o f  the system along Oz' and Ox axes respectively. 

On substitution w e obtain the new  Hamiltonian, in which Q5  does not occur, thus P 5

is a first in teg ra l o f  the system , w hich  w e shall denote as P$=C. A gain  w e shall use (p, 

q) to denote the new  variables o f  the system . Then the new  H am iltonian system  is

Five  p a i r s  o f  c a n o n i c a l  e q u a t i o n s  

H= c o n s t  

T w o  a n g u l a r  m o m e n t u m  i n t e g r a l s

For more details see section 158 o f  Whittaker (1904).

The expression o f  the above system  can be greatly simplified if  the invariable plane

choice o f  the  coo rd ina te  system  O -x 'y 'z ' re la tive  to the invariab le  p lane o f  the system  

(with the co o rd in a te  o rig in  a t b ary cen tre ), C  becom es the norm  o f  the to tal angu lar 

m om entum  v ec to r w ith re sp ec t to the system 's barycentre; m oreover, the eq u a tio n s o f  

the other tw o angu lar m om entum  in tegrals becom e sim pler, viz.

So fa r the  invariab le  p lane has on ly  been used to sim plify  the above tw o  angu lar 

m om entum  in tegra ls; the H am ilton ian  and  (five pairs) canonical equations are still the

is set to co in c id e  w ith the o ld  O -x 'y ' p lane w ithout loss o f generality . B ecause  o f  th is

( 4 . 9 a )  

( 4 . 9 b )
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sam e as b efo re . A lth o u g h  in  g en e ra l eq u a tio n s  (4 .9a, b) c a n n o t be pu t in to  the 

H am iltonian before fo rm ing  derivatives and determ ining  the positive defin iteness o f  the 

Ham iltonian; equation  (4 .9a) can be substitu ted  because if the invariab le plane w as used 

at the very beginning, then after the sam e series o f  canonical transform ations one obtains 

the sam e H am ilton ian . Such a H am iltonian  w ill be positive defin ite  in the p 's no m atter 

whether p$ is included; the canon ical equations can  be form ed e ith er before o r afte r the 

substitution o f  equation  (4.9a).

It is p roved  in W h ittak er (1904) that equation  (4.9b) can  also be substitu ted  in to  the 

Ham iltonian rep lacing  q^ w ithout influencing the calculation o f the derivatives o f  H with 

respect to the first fo u r p's.

T h erefo re , eq u a tio n s  (4 .9a, b) can  be reg ard ed  as rep lacing  the pa ir o f canon ica l 

equations o f  p$ and q£; m oreover they can be substitu ted  to ob tain  the H am iltonian  as a 

function o f  (pj, qj), w ith  i = l , ..., 4. T h is H am ilton ian  has fou r d eg rees o f  freedom , and 

possesses on ly  one in teg ra l H =const. H ow ever, this H am ilton ian  is no longer positive  

defmite in the four p 's  because o f  the substitu tion  o f  equation (4.9b).

It m ust be no ted  that these  tw o equations are ex tra restric tions on the system , thus 

the change o f  variab les accord ing  to  them  does no t produce a canonical transform ation . 

Therefore the p ositive  defin ite  fea tu re  o f  the H am ilton ian  p reserved  by ex tended  point 

canonical transfo rm ations cannot be p reserved  in the H am ilton ian  fo llow ing  the above 

replacem ents. In fac t the firs t rep lacem en t P6=0 does not change this fea tu re  o f  the 

function H , it is the seco n d  rep lacem en t that m akes the new  H am ilton ian  not positive  

definite in the v ariab les (p j , P2 , P3 , P4 ). So Z a re ’s theory cannot be d irectly  app lied  to 

the spatial 3-body problem .

From  here  on, if  the in v ariab le  p lane is a lw ays used, then at least three types o f  

further reductions m ay  be fo llow ed  fo r d iffe ren t purposes: (a), retain  the occurrence o f 

in H, and the p ositive  defin ite  property  o f  H  w ithout using equation  (4.9b); (b). keep 

the occurrence o f  q$ in H , but abandon the positive  defin ite  p roperty  o f  H by a use o f 

equation (4.9b) so as to sim plify  the expression  o f  H; (c). abandon both the occurrence 

of q6 in H  and  the p o s itiv e  d efin ite  p roperty  o f  H  by using  equa tion  (4 .9b) so as to 

simplify the exp ression  o f  H.

W h ittak er ch o se  (c), b ecau se  h is in te re st w as to  sim plify  the H am ilto n ian  and 

canonical equations. T h u s fo r o u r purpose, a cho ice m ust be m ade betw een  (a) and (b) 

so as to keep the variab le  q^, because it carries significant physical m eaning, nam ely, the 

inclination o f  the p lane o f  m otion  re la tive to the invariable plane. H ow ever, (a) fo llow s 

exactly Zare's approach  and w ill lead to a lengthy calculation, since the invariable plane
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is not u sed  to sim plify  H . T h erefo re  w e w ill choose to fo llow  ro u tin e  (b) by no ting  a 

sim ilarity  b e tw een  the sp a tia l and  p lan a r H am ilton ians. In th is  w ay the co m p le te  

advantage o f  the invariab le  p lane is taken to sim plify H , so long  as is no t lost from  

the final ex p ressio n ; although  one has to abandon the p o sitiv e  d e fin ite  p ro p erty  as a 

price. N evertheless, th is p roperty  is not so im portant as stressed in Z are (1976).

In w hat fo llow s w e shall g ive the H am ilton ian  fo llow ing  all th ree  rou tines so as to 

keep the physical m eaning  clear, but the study o f possible and forb idden  m otions w ill be 

carried out along routine (b) only.

In o rd e r to  m ak e the ex p lic it ex p ressio n  o f  the H am ilto n ian  m o re  co m p ac t w e 

introduce a function o f  the generalised coordinates, viz.

F W -
1

( P  2^  3 P l P  4 )

1 +
1

2 m . 2 m )q24 + ( 1
+

1
2 m .  2 m

2 ^ 2^4
m „

_£n_
4 S :

m 1 +  m 2 +  m 3 

2 m ,m  2m 3
>0 ( 4 . 1 0 )

where S is the area o f  the triangle form ed by the three bodies, In is the m om ent o f  inertia 

of the 3-body system  about the node, that is, the line th rough the system 's barycen tre  in 

which the p lane o f  the three bodies m eets the invariable plane.

(Routine a). I f  equation  (4.9b) is not u sed , the new H am ilton ian  becom es

H = 1 1+
2 m . 2 m

+ 1
■ +

1
2m2 1 2m3J

(P, + P2) + TfT^PiPs+ P2P 4) 

(Pa + P.) + U

+ F ( q ) [ C c o s e c q 6 -  ( p 2q, -  p , q 2 + p 4q 3 -  p 3q 4) c t g q 6] (4 .11a)

(Routine b). I f  equa tion  (4.9b) is u sed , the last term  o f the above H am ilto n ian  m ay be 

further sim plified, thus obtain ing the H am iltonian

H = 1
+ 1

2 m . 2 m

+ 1
+

1
2m2 2m3

+ F(q)C2 s i n 2 q

(p 1 +  P 2) + m 3 (PiP 3 + P 2P 4) 

(P2 + P2 ) + U

(4 .11 b)

106



(Routine c). W hen equation  (4 .9b) is u sed , one can also  obtain  a H am ilto n ian  o f  the 

form

H =
1 1

+

+

2m, 2m3
1 1

■ +2m2 2m3

(P2 + P 22) + n ^ ( p , p 3 + p 2p 4)

(P2, + P2„) + u

+ F(q)[C - ( p 2q , - p , q 2 + p 4q 3 - p 3q 4) ] (4 .11 c)

The dynam ics o f the system  is governed by four pairs o f  canonical equations

q, = 0H/ 3p, , p, = - 3H /  3 q i ( i = 1 .......... 4 )

and the extra equations rep lacing  the pair o f equations o f  (qg, pg), viz. 

p 6 = 0  a n d  C e o s  q 6 = p 2q,  -  p , q 2 + p 4q 3 -  p 3q 4

where the partia l d eriv a tiv es  o f  H  m ust be ca lcu la ted  from  e ither eq u a tio n  (4 .11a) o r 

(4.11c). T he  system  still p o ssesses  the energy  in tegra l. T he can o n ica l eq u a tio n s  o f  

motion canno t be fo rm ed  from  eq u a tio n  (4 .11b). H ow ever, w e w ill see that it is th is 

equation that is im portan t fo r our purpose here.

(3). Further R eduction in the P lane o f  the T hree Bodies

Perform  another canonical transform ation defined by the generating function

W3 = p 1Q1c o s Q 4 + p 2Q 1s i n Q 4 + p 3(Q 2c o s Q 4 -  Q 3s i n Q 4)

+  p ^  +  p 4 (Q 2 s i n Q 4 + Q 3 c o s Q 4)

which is construc ted  by observ ing  the sim ilarity  o f  the spatial and p lan ar p rob lem s. In 

fact the term  pgQg is the on ly  ex tra  term  com pared  to the generating  fu n c tio n  o f  the 

planar p rob lem  (W hittaker, 1904, sec tion  161). S ince the actual ca lcu la tio n  is qu ite  

involved and this transform ation  is no t given by W hittaker (1904), here w e will give the 

detailed calculation.

The explicit transform ations m ay be found from

q i = a w 3/ a P . , p .  = a w 3/ a Q i (i = 1, 2 , 3 , 4 , 6 )

that is
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=  Q , c o s Q 4 

q 2 = Q , s i n Q 4

' q 3 -  Q 2 c o s Q 4 -  Q , s i n Q 4 

q 4 = s  i n Q4 + Q 3c o s Q 4

. q 6 =  Q 6

P , =  p , c o s Q 4 + p 2 s i n Q 4 

P 2 = p 3c o s Q 4 + p 4 s i n Q 4 

p 3 = - P 3 s i n Q 4 + p 4 c o s Q 4 

i  P 4 = - p , Q 1s i n Q 4+ p 2Q , c o s Q 4

- p 3(Q2s i n Q 4+ Q 3c o s Q 4)

+ p 4(Q2c o s Q 4- Q 3s i n Q 4) 

P 4 = p c = 0

w here Q i is  th e  d is tan ce  o f  r r^ m i, Q 2 and Q 3 are the p ro jec tio n s  o f  r r ^ n ^  on and 

p e rp en d icu la r to  Q 4 is the angle betw een  r r^ m i and  the x-ax is, (ie. the node

through the cen tre  o f  m ass), Q$ is the inclination  o f  the p lane o f  m otion re la tive  to the 

invariab le  p lan e . F u rth erm o re , P j is the co m p o n en t o f  the m o m en tu m  o f  irq  a long  

1113m l, P 2 and  P 3 are the com ponents o f  the m om entum  o f  m 2 parallel and perpend icu lar 

to n ^ m i ,  and  P 4  is the com ponent o f  total angular m om entum  o f the system  on O z axis.

Since the  eq u a tio n  fo r P 4 m ay be w ritten as

we can in troduce an auxiliary variable Q  to replace P4 in the course o f  calculation, via.

F ro m  th e s e  e q u a tio n s  w e m ay  co n s tru c t the fo llo w in g  eq u a tio n s  in v o lv in g  

com pound term s w hich  appear in the o ld  H am iltonian,

P 4 = - Q , ( p , s i n Q 4- p 2 c o s Q 4) + P 3Q , - P 2Q 3

Q = ^ ' ( P 3 Q 2 -  p 2 Q a -  p 4 )  =  P , s i n Q 4 - P 2 c o s Q 4

Then the usefu l transfo rm ation  relations, w ith P4 rep laced  by £2, becom e

p , =  p, c o s Q 4+  p 2 s i n Q 4 

H =  p, s i n Q 4 - p 2c o s Q 4 

| p 2 = p 3c o s Q 4 + p 4 s i n Q 4 

| P 3 = - p 3 s i n Q „ +  p 4 c o s Q 4

P 2 + P 3 =  P 23 +  P 4  ■ P 3 Q 2 - P 2Q 3  =  P 4 C13 - P 3 P 4

p , P 2 - p 3n = p , P 3 + p 2P4 [ -  Q,Q3 = q 2q 3- q , q 4

F>4 = P 2q 1- p , q 2 + P 4q 3 - p 3q 4 = C c o s Q 6 e [ - C , C ]  .
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Substitu ting  th ese  eq u a tio n s  in to  the o ld  H am ilton ian  we finally  ob ta in  the ex p lic it 

expressions fo r the new  H am iltonian:

(Routine a). I f  equation  (4.9b) is not u sed , we have 

H =

( p 2,  + p 2J +  1m

+ U + F * ( Q ) [ C c o s e c Q 6 -  P 4c t g Q 6]

where F*(Q )= F[q(Q )], C  is the norm  o f  the total angular m om entum .

(Routine b). I f  equation  (4.9b) is u sed , we have

H = P 12 +  A ( p A - p 2 Q i _ p 4)

(p22 + p23)+ 1m P,P2- ^ ( P 3Q2- P 2Q3- P 4)

+ U + F * ( Q ) C  s i n 2 i

where P4 = C cos i, w ith  i being the inclination.

(Routine c). I f  equation  (4.9b) is u sed , w e can also obtain 

H =

P
(P22 + P23)+ 1m P iP 2- - ^ ( P 3Q 2 - P A - P 4)

+ u  +F*(Q)(C2- P 24).

( 4 . 1 2  a)

( 4 . 1 2 b )

(4.1 2 c )

These th ree  equa tions are those govern ing  the possib le and forbidden m otion o f  the 

problem. S ince all th ree canon ica l transfo rm ations generated  by W j, W 2 and W 3 are 

extended po in t transfo rm ations (i.e. Q = Q (q)), then accord ing  to  the theorem  given by 

Zare (1976), the p o s itiv e  d e f in ite  p ro p e rty  o f  the H am ilto n ian  in the g en e ra lised  

momenta is p reserv ed  in the H am ilton ian , equation (4.12a). So one can fo llow  Z are 's  

method to find the restric tion on the possib le  m otion by solving a set o f linear equations
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9 H /3 P i= 0  ( i= l ,  4) based  on eq u a tio n  (4.12a).

H o w e v er, w e w ill try  to  av o id  such  a ted ious ca lcu la tio n  by n o tic in g  a fo rm al 

sim ilarity  b e tw een  the above H am ilto n ian  and the final H am ilto n ian  o f  the co p lan a r 

problem , eq u a tio n  (4.7), and tak ing  advantage o f Z are's result.

(4). R estric tions on Possib le M otions by C and H

L et us o b serv e  that there are  only  tw o differences betw een  the  H am ilton ians o f  the 

spatial an d  co p la n a r p ro b lem s. T he  H am ilto n ian  o f  the sp a tia l p ro b lem , eq u a tio n  

(4 .12b), m ay  be o b ta in ed  by rep lac in g  C o f  the H am ilto n ian  o f  the p lan a r p rob lem ,

equation  (4 .7 ), by  P4 =  C co s  i, and  add ing  the ex tra  term , F * (Q )C 2 s in 2 i. S ince the 

H am ilton ian  d efin ed  by equa tion  (4 .7) is positive defin ite  w ith respect to the three P's 

(also in C , tho u g h  this is irre lev an t), the part o f the H am ilton ian  defined  by equa tion  

(4.12b) no t includ ing  the last term  is also positive defin ite  w ith respect to the first th ree 

P's. T h ere fo re , i f  P4  is reg ard ed  as a param eter rep lacing  C o f  the p lanar p ro b lem  and 

the ex tra  te rm  is  le ft asid e , then  the re su lt o f  Z are (1976), ie. eq u a tio n  (4 .8 a), o r 

equivalently  equation  (4.4b), can be applied  directly to the rem ain ing  term s o f  the above 

H am iltonian o f  the spatial 3-body problem . W ritten out explicitly , w e have the fo llow ing 

inequality govern ing  the possib le  m otions,

H -  U > -C g ° s 2 ' + F * ( Q ) C 2s i n 2 i

I M <4 '13>
F*(Q) = F [q (Q ) ]  = — -----------

8 S  2m 3

w here H  an d  C  are the total energy  and angu lar m om entum  in tegrals in the barycen tre  

system  re sp ec tiv e ly , U  is the p o ten tia l energy  o f  the system , w ith I being  the system 's 

m om ent o f  in e rtia  w ith respect to the barycentre; M  is the total m ass, S is the area o f  the 

triangle fo rm ed  by the th ree  m ass-po in ts , w ith In being  the m om ent o f  in ertia  o f  the 

system  w ith  re sp ec t to the in tersec tion  line o f  the invariab le  p lane and the p lane o f  the 

three b o d ies  (ie. node); th is line necessarily  passes th rough  the cen tre  o f  m ass. T he 

variable i is eq u a l to  Q& the inc lina tion  o f  the plane defined  by the th ree bod ies w ith 

respect to  the  invariab le  plane.

The func tion  F *(Q ) is alw ays greater than (or equal to) a function  o f  the shape o f  the 

triangle fo rm ed  by the th ree m asses; because from  the p roperty  o f  the inertia  e llipse  in 

the p lane d e fin ed  by the th ree  m ass po in ts, one sees that In is a lw ays g rea ter than (or 

equal to) the m o m en t o f  inertia  o f  the system  with respect to the long m ajor axis o f  the

110



inertia ellipse. T h is  is exactly  the standard  position  defined  by Saari (1987). H ow ever, 

we w ill not carry  ou t the ca lcu la tio n  d irectly  from  the above expression  o f  F * (Q ), but 

instead, w e w ill p rove the equ iva lence  o f  th is expression  to that given by Saari (1987) 

and adopt his developm ent.

(5). Saari's E xpression  o f F*(Q )

Saari (1987) o b ta in ed  the fo llo w in g  key  in eq u a lity  govern ing  the p o ssib le  and 

forbidden m otions o f  the fla t N -body  p rob lem  (for defin ition  o f  flat p roblem , see also  

W intner, 1947),

, ,  l l v  C 2c o s 2 i . I * C 2s i n 2 j c 2 D(R)
H -  U > -----— -------1- —

2 1  2  (1 , 1 , - 1 ^  2 1  

I I ,
\ ' \ l  ( 4 . 1 4 a )

D(R) = c o s 2 i + s i n 2 i
I I - I 2x x *  y * x y

where the O -xyz coordinate system  is defined relative to the system 's invariable plane in 

the sam e w ay  as o u rs  (eg. O x  is the  no d e  th ro u g h  the system 's b a ry cen tre ). T he  

equation gives autom atically the inequality

IU2 > - 2 D ( R ) C 2H o r  IU 2/ D ( R ) > - 2 C 2H ( 4 . 1 4 b )

where D  is a function  o f  the position  vec to rs R 's  only.

From  equation (4.3) we see that for the three-body problem  we have

K M  K
P ( Q )  =

8 S 2m , m 2m 3 2 ( I „ l y - l 2 )y * x y /

T herefo re , in  the  case  o f  3 -b o d y  p ro b lem , o u r re su lt d ed u ced  fro m  ca n o n ic a l 

transfo rm ation , eq u a tio n  (4 .13 ), is eq u iv a le n t to S aa ri’s, ie. equation  (4 .14a). T he 

following developm ent o f  the function D (R ) is due to Saari (1987); but we shall sim plify 

his original deduction  to obtain the best possib le  H ill-type surfaces.

Using equation  (4.2) we obtain  the fo llow ing  expression for the function D (R ), viz.

D(R) = c o s 2i + s i n 2i (I I x) /  ( I XI y -  1 2y) 

= c o s 2i + 2 s in2 i [1 + c o s  a  sin(2<>)]/ (1 -  c o s 2 a)  
= 1 h- s i n 2 i [1 + 2 c o s  a  s in  (2<J>) + c o s 2 a ] /  (1 -  c o s 2 a)  

> 1 -h s i n 2 i (1 -  c o s  a)  / (1 + c o s  a )  ('= if f -<J> = t c / 4  , 5n/  4 )  

>1 .

From this w e obtain  the follow ing inequality  w hich is w eaker than equation (4.14b)

E(A, i) = I U 2/ [1 + s i n 2i (1 -  c o s a )  /  (1 + c o s  a ) ]  > - 2 C 2H (4 .1  5)
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which is the version  o f  equation  (4.14b) at the tw o standard  positions.

H ow ever, since E(A , i) is a function  o f the shape o f  the triang le  and the inclination  

of the plane o f  m otion  w ith respect to the invariable p lane, by regard ing  i as a param eter, 

this inequality  determ ines the best possible H ill-type curves at all inclinations, they form  

better H ill-type surfaces in  the 3-dim ensional space (Fig. 4.5).

(6 ). C ritical C onfiguration  due to E(A, i)

The critical po in ts  o f  the function  E(A, i), w here i is to be trea ted  as a param eter, are

im portant in determ in ing  hierarchical m otion, as those o f  the function Z  (A) in the p lanar

case. Such critica l p o in ts  o f  E(A , i) w ill be called  critica l con figu ra tions at inclination  i. 

This po in t w as s tu d ied  by S aari (1987), w ho o b ta in ed  the fo llo w in g  re su lts  fo r the 

3-body problem :

F o r N - 3  and  i*0 , there is one and  only one noncollinear critical configura tion  (w ith  

respect to re flec tio n ) a t ea ch  inclina tion . This con figura tion  is a (eq u ila tera l tr ia n g le ) 

central con figura tion  i f f  a ll three m asses are equal. In  genera l, a n o n co llin ea r critica l

configuration o fE (A , i) is n o t a cen tra l configuration (nam ely, c r itica l con figura tion  o f

Z(A )).

A co llin ea r  co n fig u ra tio n  is a cr itica l co n fig u ra tio n  o f  E (A , i) i f f  it is a cen tra l 

configuration. These critical configurations all lie in the invariable p lane.

L et us no te  th a t a t a co llin ea r con figu ration , c o s a = l ,  and thus E (A ,i) reach es  its

m axim um  v alue Z(A ) at a co llin ear configuration . T herefo re  the c ritica l value  (C 2 H )c 

must be ev a lu a ted  at a co llin ea r critica l configuration . C om bin ing  this po in t w ith  the 

above statem ent it is c lear that although stronger restrictions and larger forbidden regions 

exist for spatial m o tio n , the critica l value o f  (C 2H )c is not im proved  by these stronger 

inequalities. M o re o v e r it is the sam e fo r the spatial and p lan ar m o tio n s o f the three 

bodies if the m ass param eters  are kept unchanged.

Saari (1984) has p ro v ed  that, fo r the 3 -body problem , if  i* 0  at one m om ent then i^O 

for all tim e. T hus m otions w ith  and w ithout inclination canno t pass in to  each other. On 

the o ther hand , at the d a te  o f  syzygy all three m asses m ust lie in the inv ariab le  plane 

(W intner, 1947). T h u s sh o u ld  the three m asses form  a co llin ear co n fig u ra tio n , they 

necessarily lie  a lo n g  the line  o f  nodes. H ow ever, acco rd ing  to Saari (1984), th is is
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a

Figure 4.5 T h e  ch an g e  o f  the H ill-type stability regions w ith inclination  for (a).

m 1= m 2 = m 3 = 0 .5 ; (b). m i= m 2 =0 .5  and m 3=0 .0 1 . T h e  m asses m j and 

m 2 lie on  the O x-axis, and the m irror im age is g iven to show  the detail o f 

the H ill-ty p e  regions. It is clear that as the value o f  the ou ter m ass m 3 

decreases the  ou ter surface tends to that o f  the restric ted  problem .





im probable. T herefo re , syzygy is a rare  configuration  in the case o f  spatial m otion  o f  

three bodies, and the co llinear critical configuration is very unlikely to be achieved. T his 

is different from  cop lanar m otion  o f  three bodies.

(7). C onclusion

In th is  sec tio n  w e h av e  o b ta in ed  stro n g er in eq u a litie s  fo r the sp a tia l 3 -b o d y  

problem s, w hich  d e te rm in e  la rg e r forb idden  reg ions o f m otion . H o w ev er, a lthough  

these in eq u alities  are s tro n g er than  S undm an 's inequality , they d o  no t g ive a b e tte r 

estim ation for the critica l v a lu es  o f  (C ^H )c. T he sam e resu lts w ere ob ta in ed  ea rlie r by 

Saari (1987), but the d ed u c tio n  given  here is independent. T he co n cep t o f  the inertia  

ellipsoid is used to in terpre t and sim plify Saari's deduction, and to show  the equivalence 

of the p resen t au thor's  resu lts  w ith  Saari's.

In Fig. 4 .5 , the H ill-type cu rves are plotted against inclination  for tw o sets o f  m ass 

param eters. T hey  m ay be m ore in tu itively  v isualised  in a 3-d im ensional physical space 

as follows:

C onsider a coo rd ina te  system  O -xyz, w ith the tw o m asses rrq and m 2 ly ing on O x. 

Put the H ill-ty p e  cu rv es at in c lin a tio n  i on the p lane passing  th rough O x and hav ing  

inclination i w ith respect to  O -xy . T hen these curves with a continuous param eter i form  

a surface in the above co o rd in a te  system . T his surface d iv ides the space in to  possib le  

and fo rb idden  reg io n s o f  m o tion . W e w ill call such surfaces and reg io n s H il l - ty p e  

su rfaces  and reg ions respec tive ly .

C om paring  these H ill-ty p e  su rfaces w ith those ob tained  fo r the c ircu la r re s tric ted  

3-body p ro b lem  (see L u n d b erg  & S zebehely  e t a!, 1985), one fin d s that the in n er 

surfaces are quite sim ilar, bu t the outer surfaces differ: it is closed and sphere-like in the 

general problem , w hile in the restricted problem  it is open and cylinder-like.

4.4 Sum m ary

Instead o f  sum m arising  w hat we have obtained in this chapter, w e shall m ention  in 

particular som e possib le  fu tu re  w ork, w hich will certain ly  benefit the im provem en t o f  

the inequality  m eth o d  em p h asised  in this thesis, the resu lt o f  A p p en d ix  B , and the 

approach to relativ istic p roblem s in chapters 6  and 7.

The im portan t p o in t is th a t equation  (4.14a) found  by Saari (1984 , 1987) fo r flat 

N-body p ro b lem s (N > 3) u s in g  a r ig id  m o tion  m ethod  m ust ad m it an a lte rn a tiv e  

inequality deduction . In fact, th is resu lt im plies the ex istence o f general m athem atica l 

inequalities stronger than Sundm an 's and those collected  in A ppendix  B. M oreover, it is
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very likely that the resu lt m ay be generalised for spatial N -body problem s.

T he  v a lu e  o f  an a lte rn a tiv e  p ro o f is obv io u sly  seen from  Z are 's  (1976) w ork . A 

proof o f  S un d m an 's  inequality  for the N -body p rob lem  w ould  be likely  to  becom e very  

lengthy shou ld  one attem pt to follow  the transform ation m ethod, although such an effort 

would be im portan t if  one could  succeed.
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CHAPTER 5

Hierarchical Stability and Hill-Type Stability 

of the General 3-Body Problem

In the last ch ap te r w e d iscu ssed  the restric tions on p o ssib le  m o tio n s o f  the general 

3-body p rob lem  by the energy  and angu lar m om entum  integrals. T he basic  resu lts  are 

obtained by a d irec t use o f  S undm an 's inequality . It is found  that a H ill-ty p e  stab ility  

exists w hen the value  o f  C 2H  is below  a critica l v alue  (C 2 H )c, w h ich  is d e term in ed  

solely by the size o f  the three m asses. B ecause o f the key ro le the function  C 2H  plays in 

the p rob lem , the above stab ility  crite rion  is ca lled  a C 2H  stab ility  c rite rio n  as well. In 

connection  w ith  th is ana ly tica l stab ility , R oy & W alk e r (1983) d e fin ed  h iera rch ica l 

stability (see chap te r 1) and  studied it both theoretically  and num erically . T he purposes 

of the p re sen t c h a p te r is to  p ro v e  a re la tio n  b e tw een  the  H ill- ty p e  s tab ility  and 

hierarchical stab ility  condition  H S -(C ), and to con tinue the num erical investigation  on 

hierarch ica l s tab ility  o f  in itia lly  e llip tic  co p lan a r 3 -body  system s. T h ro u g h o u t the 

chapter, the no tion  o f  h ierarch ical stab ility  (shortened  as H S ) w ill be used  as the m ain 

concept fo r stability . H ow ever, before we go in to  any deta il, let us first m ake c lea r the 

relevance and lim itation o f such an approach.

The concept o f  hierarchical stability is relevant because h ierarchical arrangem ents are 

w idely observed  in the un iverse . F o r exam ple, m u ltip le -sta r system s and o u r p lanetary  

system  are fo u n d  to  m ove in w ell o rdered  o rb its such th a t their o rb ita l e lem en ts  are 

closely  ap p ro x im a te d  to  by tw o -b o d y  m otions. T h e  s ig n ific an c e  o f  it has been  

strengthened since the d iscovery  o f  H ill-type stab ility  (H T S  h ereafte r) in the general 

3-body problem . It is w idely  held  that this analytical stab ility  assures cond ition  H S-(C ) 

although there is no sim ple ana ly tica l crite rion  to g u aran tee  all th ree co n d itio n s (cf. 

section 5.1). A  fu rther contribu tion  to  the hierarchical stab ility  approach  arose from  the 

num erical in teg ra tion  experim en ts on in itia lly  c ircu lar C H T  (sho rthand  fo r C op lanar 

H ierarchical T h ree-b o d y ) system s by W alk e r and R oy (1983). T h is  w ork  p o sitiv e ly  

dem onstrated the good  agreem ent betw een the above tw o types o f  stability  (h ierarchical 

stability and H ill-type stab ility ) and the ex istence o f  em pirica l (h ie rarch ica l) stab ility  

regions outside the analytical H ill-type stability region.

These observations and num erical experim ents m ay suggest that h ierarchical stability 

could be a generally  applicable concept o f  stability, and supports the fo llow ing  attractive 

picture: a lth o u g h  in stab ilitie s  (A ), (B) and  co llis ion  are not p rec lu d ed  in H ill-type
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stab ility  reg io n s , they  w ere  not o b serv ed  in such reg ions; thus H ill- ty p e  s tab ility  

analy tically  defines an sign ificant h ierarch ical stability  region, out o f  w hich  em p irica l 

stability reg ions w ere found  by fitting em pirical stability curves to the expected  life-tim e 

versus ra tio  o f  m ajor axes p lo ts o f  the num erically  in tegrated  fictitious system s (W alker 

and R oy , 1983; M cD o n ald , 1986). It w ould  be sa tisfac to ry  if  th is w ere  true fo r all 

3 -body system s. U n fo rtu n a te ly , H ill-ty p e  stab ility  does not ex is t fo r p ro b lem s w ith 

m ore than  three p a rtic ip a tin g  m asses. M oreover, the num erical ex p e rim en ts  o f  the 

present ch ap te r suggests that even for the coplanar 3 -body problem , the p rev ious p icture 

appears to be false if  the initial orbits are elliptic.

T he stability  cond ition  H S-(C ) is p robably  the m ost d istinguished  and  a ttractive  one 

among the three conditions; but there are certain lim its on this geom etrical condition . A s 

is w ell know n , Jacob ian  coord ina tes can  be applied  to any N -body system . H o w ev er, 

not all configurations can be described by hierarchies. C ontrariw ise som e configurations 

can be defined  by m ore than one h ierarchical structure. C onsequently , it is possib le  that 

h ierarchical stab ility  m ay no t include all im portan t stable m otions. O ne ex am p le  is the 

w ell-know n L agrange (equ ila teral triangle) solution o f  the 3 -body p ro b lem , w here the 

m otion is period ic , and stab le (at least linearly) if  the m asses satisfy som e co n d itio n s 

(Danby, 1964; S iegel & M oser, 1971). It is obvious that the Jacobian  vec to rs define  no 

ordering, thus this m o tion  cannot be covered  by ou r approach. N evertheless, num erical 

experim ents on the 3-body problem  suggest that once the m otion is such that the system  

exhibits no  h ierarchy, instabilities usually set in very quickly - stability is atypical for the 

m otion o f  n o n -h ie ra rch ica l system s. A  second  po in t is that w e only  need  to  study  

hierarchical stability fo r one o f  the possib le hierarchies, since all possib ilities are covered  

by vary ing  the m ass param eters. F o r exam ple , a system  m ay possess a h iera rchy  fo r a 

while, and destroy it to achieve another stable hierarchy after a time. In the p resen t study 

we term inate  the p rog ram m e at the break-up o f  the first hierarchy and conclude that the 

first is not stable. W e do  not find and study the new  hierarchy, because a new  h ierarchy  

simply m eans a new  set o f  m asses and o rb ital param eters - our system atic  investigation  

covers, in  p rin c ip le , a ll p o ss ib le  co m b in a tio n s  o f  these p aram ete rs  and  all in itia l 

conditions so long as the system  is h ierarchically  positioned.

L im its a lso  ex ist co n cern in g  cond itions H S -(A ) and H S-(B ). M otions m ay still be 

quasi-periodic even  if  the  o rb its  su ffe r d rastic  changes (F erraz-M ello , 1990). In fact 

even collisional quasi-period ic  m otions exists (eg. H enon, 1976; H enon & Petit, 1986).

In section  5.1 w e w ill p rove that H ill-type stability  guarantees h ierarch ical stab ility  

condition H S -(C ). S ec tion  5.2 sum m arise  som e o f the resu lts that m ay  be o b ta in ed  

based on th e  p ro p e rtie s  o f  C 2 H; th e  p ro o f  o f  them  is o u tlin ed . T h e  n u m erica l 

experim ents are p resen ted  in sections 5.3, 5.4 and 5.5.
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5.1 H il l -T y p e  S ta b i l i ty  a n d  H ie r a rc h ic a l  S ta b i l i ty  C o n d i t io n  H S -(C )

The aim  o f  th is section  is to p rove analytically  that in the case o f  the general 3 -body 

problem , e ith e r co p lan a r o r spatial, a H ill-type  stab ility  guaran tees the h ie ra rch ica l 

stab ility  co n d itio n  H S -(C ), a lthough  it does no t p rec lu d e  'e scap e ' n o r 'co llis io n ' 

instabilities.

21

0 - P )  r  0 0

Fig. 5.1 The Jacobian  vectors

To do  th is le t us co n sid er the 3-body problem  in a Jacobian  coord inate  system , and 

denote the Jacobian  vector connecting m j and m 2 by r, and that connecting the centre o f

mass o f  the f irs t tw o  m asses, C, and m 3 by p; the angle betw een  these tw o Jacob ian

vectors is d e n o ted  as 0 (see F ig. 5.1). L et the un it o f  m ass be such that m i + m 2 = l

(m 1>m 2), h ence (m j, m 2, m 3)= ( l-p ,  p , p 3), w ith  p e [ 0 ,  0.5]. W e also choose  r  as the 

reference line and  r  as the variab le  unit o f length  w ithout loss o f  generality . T hen  the 

functions I (w ith  resp ect to the system 's centre o f  m ass), U  (in this section we use U to

denote | U | ) and  Z  m ay be w ritten out explicitly in the Jacobian coordinate according to 

equation (4 .1), viz.
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I = I(p) =  p 0 - p )  + : j ^ - p 2

pp.
U =  U( p , e )  = P ( 1  -  n )  +  —  +

13 23

( 5 . 1 )

where

Ft,3 = V p 2 + p2 + 2 p p c o s 0  

R23= J( 1 - p ) 2 + p2 -  2  (1 -  p)p C O S 0

Suppose that irq and  m 2 fo rm  the inner binary, with m 3 being the ou ter m ass. A s the

value o f  C 2H  is in c reased  fro m  - 0 0 , the fo rb idden  reg ions firs t ap p ear aro u n d  the

equilateral triangu lar po in ts if  C2 H =-(Z m im j)3/ 2 M; then these regions expand until they 

become trip ly  connected , hence the system  is stable in the sense o f  H ill. It is c lear that in 

our case  L 2  is  n o t the c r itic a l co n fig u ra tio n  at w hich we are to estim ate  (C 2 H )c . 

Therefore, it m ust be e ith e r o r L 3 accord ing  as w hich one has a g rea ter Z = IU 2 (see 

Fig. 5.2).

X 1 2 X

b . L 2 l 3

Fig. 5 .2 T he co llinear critical configurations

Now let us p rove that i f  C 2H < -m a x { Z i, Z 3 ) / 2 , then p >1 (ie. p> r) in the fo llow ing  

steps.

(1). p > 1  at L i  and L 3

It is a classical resu lt that the position  o f the two collinear critical configurations m ay
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be determ ined  by the equation  (see R oy, 1982)

F( x, n, n 3) = x5+x4 (3-n)+x3 (3-2 n)-x 2(3n 3+n)-x (3 n3+2 n)-(ji3+n) = 0

which gives

p at L 3 by p = 1-p+x, i f  p  = n ^ A r rq + n ^ )  e  [0, 0.5],

p at L j by p = 1-p+x, i f  p  = irq /O rq + n ^ )  e  [0.5, 1].

It is w ell k now n  that th ere  is one and only  one positive  real so lu tion  x to the above

polynom ial equation , if  p. and p 3 are considered as tw o param eters. M oreover, it is easy 

to verify  that F (0) < 0, and F(+°°) = + 00  > 0. O n the o ther hand

F(x=p) < x 5+ ( 3 - p ) x 4+ ( 3 - 2 p ) x 3- p x 2- 2 p x - p ('=■ i f  f H3= 0 )
x = p

= -  p ( 1 - p ) ( p 2 + 3 p + 1 ) < 0 (p e  [ 0 , 1 ] ,  '=' i ff p = 0 o r 1 ) .

It fo llow s that x > p  fo r p  e  [0, 1] and p 3 e  [0, +00) if  at m ost one m ass is allow ed to

vanish. T hus un d er the sam e condition w e obtain p >1 at L j and L 3.

F urth erm o re , i f  F (x , p , P 3 ) is considered  as a function  o f all three variab les, then

according to  the im p lic it func tion  theorem , w e m ay solve the equation  F(x, p , p 3) = 0

for x = x (p , p 3), h en ce  w rite  f(p , p 3 )= F (x (p , p 3), p , p 3 )=0. It is s tra ig h tfo rw ard  to

verify that 3 F /3 p  <0, 3 F /3 p 3 <0 and 3F /3x  I f _q >0. T hus accord ing  to the chain  ru le

we have 3 x /3 p  | F = 0  >0, 3 F /3 p 3 I F = 0  ^0 . S ince p (L 3) < 0.5 < pCLj), we have x (L 3) < 

x(L i).

It w ill be  a lso  usefu l if  w e can show  that the prim ary bifurcation value o f C2H 

requires the sm allest mass to be the central mass in the collinear configuration, whereas 

the tertiary requires the largest mass and the secondary the intermediate mass to be so 

positioned. T his sta tem en t w as proved by W alker & Roy (1981) near the lim it o f three 

equal m asses, and  show n to be alw ays true from  num erical calculation. H ow ever, it has 

not been p ro v ed  ana ly tica lly  in the general sense, m ainly due to a com plicated  re lation

between p (L 3) and p (L j)  (but see G olubev, 1968). This point can be used to shorten the
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fo llow ing p roof; how ever, w e w ill p roceed  w ithout it. In fact it m ay be ob ta in ed  as an 

im m ediate resu lt o f  the fo llow ing proof.

(2). L 1? L 2  and  L 3 are  saddle points; L4 and L 5 are m inim a o f  Z  (see Fig. 4.3)

C onsider the function  Z = IU 2 as a function o f  0 with p as a param eter, we study the 

behaviour o f  the function  w ith respect to 0. U sing the fact that I is independent o f  0, it is 

straightforw ard to show  that the value o f  3Z /30  is proportional to U 3U /30 , nam ely ,

U
p s i n 0 P s i n 9

R13 R 23

and that o f  3 2Z /3 0 2 is p roportional to  U 32U /3 0 2+ (3U /30)2, nam ely,

U
p c o s 0  p c o s 0  ^ 3 p p 2 s i n 2 0 3(1 - p)p2 s i n 2 0

R l 3  R 23 R 13

+ p(1 -  p )
p s i n 0  p s i n 0

R 13 R23

R 23

From these w e obtain

az/ae = o, a2z/ae2<o, ate = o,n
[az/ae = o, a z / a e > o ,  ate = ±e0

where 0 q is the  ang le  co rresp o n d in g  to Ri3=R-23- T h erefo re , the func tion  Z has tw o

local m ax im a at 0 = 0  and  7t ,  and tw o local m in im a at 0 = ± 0 q w ith re sp ec t to the 0

variable. T hese  are the only  critical points o f  the function w ith respect to  0.

A tedious bu t straigh tforw ard  calculation will show  that at all five critical points, we

have 3 Z /3 p = 0  and  32 Z /3 p 2 > 0. T hus the resu lt concern ing  the property  o f  the critica l 

points is proved . In  add ition  it is also straightforw ard to show  that all five critica l points 

are nondegenerate (cf. section  4.2).
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(3 ). Z (0) < Z(0=tc) < Z(0=O) i f  p = c o n s t.> l

In o rd e r to com pare the va lu es o f  the function  Z  at the tw o co llin ear cases, nam ely ,

0=0 and k , w e again  use the fact that I is independent o f 0; thus on ly  the values o f  U (p ,

0 ) need  to  be com pared . O b v io u sly  the d iffe ren ce  o f U at the tw o c o llin e a r  cases,

U(0 =O)-U(0 =7t), is p roportional to  the fo llow ing  quantity ,

1 ~ P  P _  1
P + P p -  (1 -  p) p

1 - P  , P  1 

P _  P p + (1 -  (i) P

p ( i - p )  p O - p ) >

p(p + p) [p - ( 1  - p ) ] p ( p - p ) [ p  + (i - p ) ]

which is valid  w h enever p > l  and '=0' is true iff  }i=0.5.

T herefore the value o f  Z  on a circ le  w ith a radius p > l and the cen tre  at C, the centre 

of m ass o f  the first tw o m asses, has its greatest value in the d irec tion  0= 0. A s the value 

of 0 is in creased  from  zero , the value  o f  the function  Z  decreases until it reach es  its

m inim um  at 0 O; thereafter it increases until it reaches the secondary  local m ax im u m  at 

0 =7t. T his is show n in F ig . 5.3.

(4). p > l  in general

C onsider the circle w ith its cen tre at C and o f radius pG-3 ), then the greatest value o f

Z is ach ieved  at 0=0, ie. Z (0 ) < Z(0=O). B ecause L 3 is a nondegenera te  sadd le  po int, 

the con tour cu rve passing  th rough  L 3 b ifurcates into tw o b ranches, one lies in side  the 

circle, the o ther outside.

B ecause the tw o m ajo r d irec tions o f  this saddle point are tangent and p erp en d icu lar

to the circle at this po int (eg. Z —> + °°  as p —> +°°), and that there is no singu lar po in t out

of this c irc le , w ith  a p o ss ib le  ex cep tio n  at 0 = 7t (no th ing  is know n ab o u t its  p o sitio n  

relative the c irc le ; th is u n ce rta in ty  does no t in fluence the fo llow ing  p o in ts), w e m ay 

conclude that w ithin som e neighbourhood o f L 3 the outside branch o f the con tou r curves 

passing through L 3 lies com pletely  outside the circle.

B ecause the value o f  Z  on the circle cannot be the same as that at L 3 except at 0=0 or
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F igure 5.4 T he con tour curve and circle passing  through L 3 . T he m ass param eters 

are m i= 0 .7 5 , m 2=0.25 and 1113= !.



K, the co n to u r p assing  through L 3 cannot cross over the circle; thus the ou tside con to u r 

curve is necessarily  outside the circle everyw here.

O n the o th e r hand , as the con tour extends from  0=0 to 0 = 7t, it canno t fold back  to

close at a d irec tion  other than 0 =0 , for this w ould produce at least a sixth critical point. 

T hus the  co n to u r m ust stay outside the c irc le  and  c lose  on to  itse lf  w ithou t any

folding, as w h a t is show n in Fig. 5.4. T herefore p (0 ) > p(0=O) >1.

B ecause  the con to u r passing through L 3 closes outside the circle, L j m ust lie inside 

this co n to u r lin e  (bu t no th ing  is know n about its position  relative the circle) and hence 

Z (L j) < Z (L 3>. F rom  this the statem ent quoted in step (1) follow s im m ediately.

S im ilarly , one can show  that the branch inside the circle always lie inside.

(5). C om m ents

O ne m ay  feel that there is a need to prove the fo llow ing  as well: choose R 13 as the 

reference line  an d  its length  the variable unit o f  d istance, and then prove the resu lt that

^ 1 2  < P (see F ig . 5.5). A lthough one can produce an independent proof, the resu lt w ill 

be eq u iv a len t to  w hat w e have given above. H ere w e shall ou tline a p ro o f using  the 

notations o f  F ig . 5 .5 , thereby we do not have to do the technical ca lcu lations because o f  

some sim ple re la tions betw een the two form ulations o f  the question.

Fig. 5.5 T he Jacobian  vectors
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O bviously , in th is case the critica l configuration  is one o f  the tw o w ith the m asses 

arranged in the o rd er (m i i r^ n ^ )  and (ir^ m iir^ ) ; the fo rm er is denoted  as L in Fig. 5.5.

From  the re su lt o f  step (1), it is ev iden t that R 12 < p is true w hen m 2 is at L. Secondly ,

since the angle a  is m onoton ic w ith  0, the property o f  Z  w ith  respect to a  is sim ilar to

that w ith respect to 0. O n a c irc le  w ith its centre at m^ and rad ius not greater than R j l ,

the func tion  Z  has a p rim ary  m ax im um  at oc=0 and a secondary  m ax im u m  at cl=k . 

M oreover there is no  o ther critica l point inside the circ le  passing  through L excep t at

a = 7t. B ecause  L is a nond eg en era te  saddle point, the co n to u r curves b ifu rcate  at L. 

B ased on a sim ilar argum ent, it fo llow s that the critical oval around m j bounding  the

m otion o f  m 2  lies com pletely  inside the previous circle, thus R j2 <  p is true in general. 

Other resu lts fo llow  sim ilarly.

It is w e ll-know n that the critica l points in the restric ted  problem , e ither c ircu lar o r 

elliptic, are the lim iting  cases o f  the general 3 -body p ro b lem  w ith one o f  the m asses 

tends to zero . It is a lso  in teresting  to note that the p roperty  o f  the H ill cu rv es o f  the 

coplanar c ircu la r restric ted  p rob lem  is sim ilar to the H ill-type curves o f  the co p lan a r 

general p rob lem , because o f  a sim ilarity  betw een the function  Q  and Z, on w hose level 

sets the cu rves are based. W here Q  is the effective poten tial o f  the restric ted  p rob lem , 

that is,

^  2 2 (1 - p )  2  p
Q. — p +  — i + /......... ... . ........

v V 2 + p2 + 2  up c o s e  + P2 - 2 ( i  - n ) p c o s e

using the no tation  o f  F ig. 5.1.

The analysis g iven in this section only depends on the function Z, so it also applies 

to the H ill-type stability  found by M archal & B ozis (1982) for the non-negative energy 

case. T hus the h ierarch ica l stab ility  condition H S -(C ) is also  guaran teed  ana ly tica lly , 

even if  the total energy o f  the 3-body system  is not negative.

M archal £ t al (1984) s tud ied  the escape cond itions w ith in  the H ill-type stab ility

region by assum ing  that r /p  < K , w here K is a constan t in the region (0, l+ (m 2 /m i) ) .

From our resu lt a c lo ser estim ation  on the upper lim it o f  r /p  m ay be obtained , nam ely,

r/p < k, w here k = l /p ( L 3) e  (0, 1).

F inally  it is w orth  m en tio n in g  the w ork  o f G olubev  (1968), in w hich  the au th o r
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obtained not only the H ill-type stability (cf. chapter 4) but also the statem ent quoted  from  

W alker &  R oy (1981). It is in teresting  to note that the m ethod G olubev  o u tlined  is the 

sam e as the approach o f  th is section, although the purposes are d ifferent.

H o w ev er, the p re sen t au tho r's  approach  is independen t, because  h is p u rp o se  is to 

prove the re la tio n  b e tw een  H ill-ty p e  stability  and R oy 's h ie ra rch ica l stab ility . M any 

attem pts have been m ade by the p resen t au thor to m odify the p ro o f given by W alk er & 

Roy (1981) befo re  he rea lised  th a t this apparen tly  d iffe ren t q u estio n  fo llow  from  the 

same argum ents.

5.2 R e su lt s  B a sed  on A n a ly s is  o f  the F u nction  C 2H

In th is sec tion  w e rev iew  som e re lev an t analy tica l and num erical resu lts o b ta in ed  by 

earlier au tho rs. M o reo v er, it w ill becom e clear that som e w idely  held  ideas m ay be 

proved o r d isp roved  based  on straightforw ard but tedious analysis on  the functions C 2H 

and IU 2; but the detailed  p ro o f will not be included.

W e w ill use p 2  and  to deno te  the Jacobian vectors describ ing  the m otion  o f  the

second m ass  around  the first, and  that o f  the third around the centre  o f  m ass o f  the first 

two m asses respectively ; they w ill be called the inner and outer orbits. C orrespond ing  to 

this w e use a2 , e2 , i2 > and f2  to  denote the sem i-m ajor axis, eccentric ity , inclination  and 

true an o m aly  o f  the  in n e r o rb it respectively , and i3 , and f3 those o f  the o u ter

orbit. T he norm alised  m asses p. and p.3 will also be used.

If w e use  U j, T j, Ij and  C j (i=2, 3) to denote the po ten tial energy , k inetic  energy ,

m om ent o f  inertia  and angu lar m om entum  o f the orbit pj respectively, then we have

c2 = c2 + C 2 + 2 C 2C 3 c o s i

H2
= nz ( 1 - n )  a 2( 1 ~ e | )  + r - f r a 3( 1 - e ; )

H-3

2 h ( 1 - h )h 3

• \ A + ^
e > , C -  e 3> c o s i

(5.  2a)

H=  [ ( T 2 +  u 2) +  ( T 3 + U 3)] +  ( U23 + U 13 -  U3) = h 2 + h 3 + 5H

P 3

2 a 0 2 a , 3 R 23

j n
p 3

1
’13

(5.  2b)
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Figure 5 .6  T he  critica l stab ility  surfaces o f the 3-body problem  in the O -a p p .3 space

w ith  the o rig in  at ( a ,  |i, | i 3 )=(0, 10 '8, 1 0 '8). T he 0 } i and  0 | i 3 axes are 

logarithm ic , (a). T he  surface is m onotonic w hen e i= e 2 :=:0 . (b). The 

su rface  is tu n n el-sh ap ed  w hen e j= e2=0.05 . (c). e j= e 2 = 0  and i=50°.
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where i is the angle betw een C 2 and C 3 .

S in ce  the fu n c tio n  C 2H  is sca le -free , the fo llo w in g  ra tio s  w ill be u sefu l in 

sim plify ing  equations (5.2a) and (5.2b), viz.

a 2 p 2
a  =  , ot 23 — p— (5 . 3 )

(1). (C 2H )c and a c stability  criterion

It is show n in the last chap ter that a H ill-type stability  may be determ ined  by a C 2H 

s ta b il ity  c r i te r io n ,  that is, by com pare  the actual value o f C 2H and its c ritica l value 

(C 2 H )c, w here  the critica l value  dep en d s on the m asses o f the th ree  bo d ies only . In 

addition, a m ore conven ien t version w as in troduced  by Szebehely & Z are (1976), w hich 

is expressed  in the ra tio  o f  the sem i-m ajor axis o f  the inner binary ov er that o f  the ou ter

one, ie. a = a 2/ a 3. T he critical value expressed  in a  m ay be solved from  the critical value 

o f C 2 H , b ecau se  the  la tte r  is a fu n c tio n  o f  the  m asses  and the o rb ita l e lem en ts .

O bviously  this critica l value, deno ted  as a c, is in general a function o f  the m asses and

the o th er o rb ita l elem ents. If  the actual value  o f  a  o f  a real 3-body system  is below  a c

then the system  is H ill-type stable; thus the stab ility  criterion is som etim es ca lled  a c 

c r i te r io n  as w ell.

W alker e t a! (1980) in troduced  the critical stability  surfaces, nam ely, the surfaces o f  

a c p lo tted  against p. and p 3 in the 0 - a p p 3 space. T hey found that w hen the eccentricities

vanish, the critical surfaces are m onotonic in p  and p 3 (see Fig. 5.6a).

(2 ). T unnel effect o f  the eccentricities

It w as found  by Szebehely  &  Z are (1976) that the eccentricities and inclination  are

the m ost im p o rtan t p a ram eters  that in flu en ce  the v alue  o f  a c. In th e ir ca lcu la tio n , a 

2-body ap p ro x im a tio n  w as used  in the en erg y , nam ely , the 8 H term  w as neg lec ted .

A pplication  to the trip le  star system s show s the valid ity  o f a c in in d ica tin g  actual 

stability.

In a la te r w ork using the exact expression , V alsecchi et a! (1984) found  that w hen
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eccen tric ities are in tro d u ced  in to  the orbits, the c ritica l stab ility  su rfaces  su ffe r d rastic  

collapse on the tw o side w ing  reg ions (see Fig. 5.6b); w ith e2 being  resp o n sib le  fo r the

collapse on  the p -s id e  w ing , w hile 63  accounts fo r the co llap se  on  the p 3-sid e  w ing.

This w ill be ca lled  the 'tu n n e l e ffec t' o f eccentric ities on the c ritica l stab ility  surfaces. 

A pplication  o f  th e ir ca lcu la tio n  to real P lanet-S ate llite -S un  sy stem s su ggests  that the 

analytical stability  criterion should be taken as too restrictive.

F ig . 5 .6c is an  ex am p le  show ing  the effect o f  the re la tiv e  in c lin a tio n  o f  the tw o 

orbital p lan e , from  w h ich  w e see that in addition to an overall co llap se , the e ffec t o f  

inclination is very  like that o f  the inner eccentricity e2-

(3). U pper bo u n d s on  a c

S ince th e  v a lu e  o f  C  o n ly  depends on the sem i-m ajo r axes, e ccen tric itie s  and  the

angle i, it is ev id en t that the dependence o f C 2H on 0, the angle betw een  p 2 and  p 3, is

com pletely  d u e  to th a t o f  8 H . A straigh tforw ard  ca lcu la tio n  show s that 0= 0  and  n  are

two local m in im a  o f  C 2H , and  0= ±0q (correspond to R i 3= R 2 3 ) a ô c a  ̂ m ax im um .

M oreover, 5H (0= O )<  5 H (0 = 7t)  < 0, hence the value o f C 2H  at 0 = 0  is m ore  neg a tiv e  

than at 0=7t . T h is  p ro p e rty  is very  sim ilar to that o f  the fu n c tio n  Z, and  is usefu l in

finding the o rb ita l e lem ents corresponding to the greatest and sm allest value o f  a c.

F rom  the analysis o f  the last section we have already proved the resu lt that the critical

ratio o f  a 23  is be lo w  P 2/P L  w here p L is the d is tan ce  o f  the c ritica l co n fig u ra tio n  

from the cen tre  o f  m ass o f  the first tw o m asses. In fact based on analysis  o f  the function

C2H, one can  show  th a t in  the range (0 , P2/P 1J  there is one and on ly  one so lu tion , a 23, 

satisfying the equation  C 2H = (C 2H )c.

L et us d en o te  the  v e ry  sim ple but im portan t position  w ith  o rb ita l e lem en t va lues

(0=0, f2 = 7t, f3 =0) by S ,  nam ely , the inner m asses are at their ap o cen tres  and the ou ter 

one at its p e ric en tre . A n  im p o rtan t p roperty  o f  th is p o sitio n  is th a t it is the un ique

position w h e re  5H , h en c e  C 2H  reaches its m ost negative  v a lu e  am ong  all p o ssib le  

positions. C onsequen tly , the critical value a c has its greatest value at this position , based
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on w hich and the above b ound  on the critical ratio  in 0^ 3 , w e can obtain  an upper bound 

for the value o f a c, viz.

It is w idely held th a t w hen  a 3-body system  satisfy the C^H  stab ility  criterion , then

both <*2 3 ^ 1  and a < l  are true. T he above resu lts show  that they are in fact true; but there 

is no causal relation betw een them , one m ust establish them  separately.

In their num erical experim ents, W alker & Roy (1983) used a cross-over ratio  instead 

of HS-(C ) to check  w hether the h ierarchy is still preserved, that is

H ow ever, w hen p ->  0 .5 , th is c ro ss-o v er ra tio  can go beyond 1, w hich is very unlikely  

to co rrespond  to  any s tab le  o rb its . In the p resen t approach  w e shall d rop  the fac to r

1/ ( 1-p,), thus defin ing the cross-over ra tio  as

O bviously, w hen a system  is H ill-type stable, w e have

It is w idely held that syzygy (aline o r conjunction) position  is a destruc tive  position  

for the stability  o f  a m any-body  dynam ical system , particu larly  w hen the inner m asses 

are at the apocentre  and  the o u te r m ass at the pericen tre . T his position  is exactly  the

position S  fo r a 3-body system , w hich g ives the greatest critical stability  ra tio  a c. T hus

such syzygy positions are the m ost favourab le  ones for H ill-type stability . H ow ever, it 

remains to investigate w hich is true.

It is w id ely  h e ld  an d  w as c lea rly  sta ted  by H arrin g to n  (1 9 7 2 ) b ased  on h is 

observations on the re su lts  o f  n u m erica l ex p e rim en ts  that the h ig h er  the va lu es  o f  

eccentricities, the less s tab le  the system s are. A  later w ork by Szebehely  & Zare (1976)

showed that the value o f  a c alw ays decreases w ith the eccen tric ities, hence confirm ing  

H arrington's observation  by analy tical criterion . H ow ever, w e will see in la ter sections

( 5 . 4 )

( 5 . 5 a )

( 5 . 6 )
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that there are excep tions to H arrington 's observation ; m oreover, there are excep tions to

the b ehav iou r o f  a c w ith eccentricities as w ell. By a careful analysis o f equations (5.2a,

b) at the position  E  w ith i=0, one can construct a function K such that the solution to  the

eq u a tio n  K = (C 2 H )c b o unds the v alue  o f  a c from  below , but eq u a ls  a c w hen  the 

e c cen tric itie s  v an ish . O ne can show  th a t the so lu tion  o f  the co n s tru c te d  eq u a tio n

increases w ith  bo th  eccen tric ities  i f  their sizes are sm all. T hus the value  o f  a c at the

position  E  fo r the co p lan a r problem  alw ays increases w ith eccen tric itie s  at least in a 

small range.

H a rr in g to n  (1 9 7 2 ) a lso  o b serv ed  th a t fo r 3 -body  sy stem s w ith  g iven  m ass  

param eters, it seem s that the 'best index o f  stability ' is T he strongest upper

bound on  a c d e fin e d  by equation  (5 .4) m ay be w ritten  as P 2 >

w here the rig h t side is a scale-free function  o f the m asses only. I f  one notices that in the 

case o f  th ree  a lm o st equal m asses, the upper bound given by eq u a tio n  (5 .4) is qu ite

close to the ac tua l v alue  o f  a c (cf. F ig. 5 .6b), and that H arring ton 's ex p erim en ts used 

such m asses , th en  one sees that a p o ssib le  index  o f  s tab ility  m ay  be o f  the  fo rm

a3( l - e 3 ) /a 2 ( l+ e 2 ). T h e  less significant position  o f  the facto r ( l+ e 2 ) in the d en o m in ato r 

may explain  w hy it w as not noticed by H arrington.

T hese  a re  the  re su lts  o b ta ined  fo llo w in g  the co n v en tio n a l ro le  g ran ted  fo r the 

function  C 2 H ; h o w ev er, th e  num erical ex p e rim en ts  o f  the fo llo w in g  sec tio n s  w ill 

suggest th a t such  re su lts  can hardly  be reg ard ed  as o f  general im p o rtan ce . In w hat 

follows w e w ill apply  the analysis o f C 2H  to a d ifferent use.

(4). N oticeab le  varia tion  patterns o f the a's and e's

It w as fo u n d  by W alk e r & Roy (1983) from  their num erical in teg ra tions on d irec t 

CHT system s w ith in itially  circular orbits that on com m encing the num erica l in tegration  

procedure the sem i-m a jor axis o f  the inner b inary alw ays decreases, w hereas tha t o f  the 

outer b inary  a lw a ys increases. W e will try to explain this sim ply using the conservation  

of C, H  and  th e ir com bination  C2H. T he p rob lem  m ay be studied under the fo llow ing  

two assum ptions.

(i). I f  a 2-body  approxim ation w orks w ell for the total energy H , then its 

conservation  law  requires that the tw o sem i-m ajor axes m ust change in
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opposite w ays w ith time.

A n in d ep en d en t use o f  C does not p rov ide m uch useful in fo rm ation  because all 

im portant o rb ita l e lem en ts are involved. H ow ever, w e can m ake use o f the sca le-free

p roperty  o f  the  q u a n tity  C 2 H. T he value  o f  a c is the so lu tio n  to  the eq u a tio n  

C 2 H -(C 2 H )c =0  (F ig . 5 .6), w hich  fo r a C H T  system  is m ain ly  in flu en ced  by the

eccen tric ities. T h e  m ost s ign ifican t effec t is the d ec rease  o f  a c w ith ec cen tric itie s , 

especially w hen both eccentric ities are changing in the sam e way. O bviously , this effect 

is also true fo r the solu tion  to any equation C 2H -(C 2 H)q =0, w ith (C 2H)q < (C 2 H )c.

(ii). T he second assum ption is to assum e that the above effect is also true 

for certain  (C 2H )q sufficiently  close to but g reater than (C 2H )c, nam ely, 

for system s not stable in the sense o f  Hill.

C om bin ing  the above two assum ptions we obtain  that m ost observable varia tions in 

the orbital elem ents are either o f  those shown in Table 5.1. It is w orth noting that as long 

as the assum ptions are satisfied , then this T able app lies to  long term  trends, as w ell as 

short term  changes.

Table 5.1

(a): 3 2 -I CD
ro

 —
»

e 3 ^
(b): e 2 J. a 3 l

e 3 ' L

H ere w e m u st em p h asise  that T ab le 5.1 o n ly  in c lu d es  m o st o f  the o b se rv ab le  

variations in the m ajo r o rb ita l e lem ents. T hey  are o n ly  'o b serv ab le ' ones because  

com plicated  sm all v aria tions d o  exist; 'm ost o f  the o b serv ab le ' ones because not all 

observable varia tions are included.

The behav iou rs listed  in T able 5.1 m ay be v io la ted  if  e ither o f  the assum ptions fails 

to be held  by  a system . M oreover, even i f  both  w ere held , there are still o bservab le  

changes w hen the tw o eccen tric ities are chang ing  in opposite  w ays. T his is especially  

true w hen one o f  the b inaries has dom inant m asses.

The resu lts found by W alker & R oy (1983) can be explained as follow s. T hey  found 

that (a) o f  the T ab le  is a lw ays the case, b ecau se  they  m ade the o b serv a tio n  on ly  

im m ed ia te ly  a fte r  co m m en cin g  the in teg ra tio n , w hen  the on ly  po ssib ility  fo r both 

eccen tric ities  is to  in c rease ; and  the ec c e n tr ic itie s  m ust ch an g e  b ecau se  o f  the
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pertu rbation . M o reo v er, the only  possib ility  fo r the first n o ticeab le  change  in a  is to 

decrease  (e ith e r  g rad u a lly  o r su d d en ly ), because the in itia l co n d itio n s  they  ch o se

correspond to  the greatest value o f  a .

O ur num erical experim ents on initially elliptic orbits in the next section w ill produce 

exam ples d ev ia tin g  from  T ab le  5.1. F o r system s deeply  inside the  H ill-ty p e  stab ility

region, ie. a « a c , usually  the short term  changes are not easily  observed . B ut abou t

90%  o f the  sy stem 's  long  term  changes agree w ith T ab le  5.1. F o r system s in sid e  o r 

outside the H ill-ty p e  stab ility  reg ion , there are noticeable short term  changes; am ong 

them  ab o u t 80%  ag ree  w ell w ith  those listed  in T ab le 5.1. H o w ev er, it rem a in s to 

explain  in d e ta il w hy  the tw o assum ptions and T able 5.1 are sa tisfied  by so m any  

system s.

(5). The em pirical stability £ param eters

W a lk e r an d  R oy (1983) in tro d u ced  the p aram eters  e 2 3 and e 32 to c h a rac te rise

respectively  the size o f  the d istu rbances o f  the inner orbit on the o u te r and the o u te r on 

the inner. T hey  are defined  by

e 23 =  H ( 1 - n ) ( a 2 3 ) 2 . e 32 =  M a 23>3 • ( 5 - 7 >

In o rd e r to  co m p are  ou r study w ith W alker & Roy's in the fo llow ing  sec tions, we 

need to ca lcu la te  the param eters such as a c and in the (£ 23 e32) space.

The critical stability  surface m ay be first calculated in the 0 - a p | i 3 space by solving a

set o f  a lgeb raic  eq u a tio n s , then transform ed into the (£ 23 £32) space. A  p roperty  o f  the 

transform ation  w as g iven  in W alk e r e t a i (1980), nam ely, w hen  the critica l s tab ility  

surface in the fo rm er space is m apped onto the critical stability surface in the latter space, 

no points can  ch a n g e  from  one side o f  the critical stab ility  su rface  to the o th e r side 

during the transfo rm ation . T he  p ro o f w as given for the c ircu lar case, but it is a general 

result because the Jacobian  m atrix  o f  the transform ation is non-singular except on part o f  

the boundary en c losing  the H ill-type stability regions. A nother property  is that all po ints 

below the critica l stab ility  surface in the form er space are h ierarch ically  stable, w hereas 

in the transfo rm ed  space those below  the surface defined by

“ 2 3 ■ a  < a ' ^ 2 ^ 7 ( 1 - e 3) / ( 1  + e 2) (5-8)

are physically  m eaningless. H ow ever, this is sim ply a deform ation o f  the transform ation
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Figure 5.8 Illustrating  the increase o f  a c w ith eccentricities for a fixed (£2 3 , e32)

pair. T his is due to a distortion produced by the transfo rm ation , equation

(5.1).



(5.1), w hich  transform s the region w ith p. > 0.5 in 0 - a f i p 3 space into the reg ion  below

the ab o v e  su rface. T h e  shapes o f  the critica l stab ility  surfaces in the tw o  spaces are 

sim ilar (see F ig. 5 .7), w hich is understandable if  we look at their level sets.

A s w as show n  a n a ly tic a lly , the  v a lu e  o f  a c can in c rease  (s lig h tly ) as the

eccen tric ities  increase, and this phenom enon is m ore obv ious in the e-space (see F ig . 

5.8). A lth o u g h  th is is a d isto rtion  due to the transfo rm ation , it suggests that stab ility  

m ight in crease  as eccen tric ities  increase. W e w ill give som e exam ples supporting  th is 

point from  o u r num erical experim ents. W e w ill also give exam ples suggesting that aline 

con figu rations are no t necessarily  alw ays the w orst positions for stab ility , w hich has 

hitherto been taken fo r granted, but opposed by the analytical H ill-type stability criterion.

B ased  on  equa tion  (5.4) and H arring ton 's  (1972) resu lt we w ill use the fo llo w in g  

stability in d ica to r w hich  can be calcu lated  d irectly  from  the resu lts o f  W alk er (1983), 

viz.

t t , =  « c o -  0  _ e 3) /  t1+ e 2) (5 - 9 >

where a co is the c ritica l value o f  the ra tio  o f  the sem i-m ajor axes ca lcu la ted  fo r the 

circular system  w ith the sam e m ass param eters w hen the bodies are in conjunction . T he

essen tia l fe a tu re  o f  th is  s tab ility  in d ica to r, cij, is that the effec t o f  e ccen tric itie s  is

sim plified by  neg lec ting  the 'tunnel-effect', w hich will be show n in the next section to 

be not easily  detectab le by short term  num erical integrations. H ow ever, the properties o f

this stab ility  ind icato r are different in the ( |ip 3)-space and the (e23 e32)-space due to the 

deform ation o f  the transform ation . F or exam ple, oq is above a c in the (p p 3 )-space, but 

this is no t necessarily  true in the ( e ^  e32)-space, nor is it necessarily close to it.

In the ( e ^  e 32)-space, the value o f  a 'x is m ore convenien tly  g iven in the e's ra th e r 

than p 's . T h is  can be done by solving equations (5.7) for a ,
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e 23 =  n ( 1 - n ) a 23 CX23 JJ. CX23 +  £ 23

^  23

^  (  **23 “̂ /* * 2 3  ~  ^  ^ 2 3  )  — ^  **23 0  ~  ^ )  i

a  < 1 0 - e , )
1 - H  (t + e 2) 

(1-

a(1 -  n) <

( 1 - e 2) /  (1 + e 2 c o s f  2) 

(1 + e 3) /  (1 + e 3 c o s f  )

(1 -  e 3) 

(1+ e 2)

= W .

( « 2 3 +  V a 2 3 _ 4 e 2 3 )  S 2 W  = *  « 2 3 S W + - ^ r

(1 e 3^
75---------- • 11 + e , ,
(1 +  e , )  I 23

(1 + e 3) /  (1 + e 3 c o s f  3)  ̂

(1 - e . )  / (1 + e ,  c o s f , )2 '
f =  a ;

From  this w e see that the p ro p erties  o f  the tw o cross-over ra tio s d efin ed  by equa tions 

(5.5a) and (5 .5b) are not changed  due to the transform ation. T hus w e w ill choose to use

that defined by  the later equation , ie. a  , w hose expression is not changed  either.

5.3 N um erical E xp erim en ts on 3-B ody System s I 

- A F irst T est o f  the Tunnel Effect

Valsecchi e t al (1984) found  the 'tunnel effect' o f the eccentricities on the critical stability

surfaces o f  the  3 -body  p ro b lem . T h eir app lica tion  o f  the a c s tab ility  c rite rion  to the 

P lanet-S atellite -S un  system s show ed  that the ellip tic criterion  shou ld  be taken as too

restrictive, since the ca lcu la tion  gives a c far below  the actual a  o f  these system s, and it

is a w ell-know n  fac t th a t the system s are qu ite  stable. O n the o th e r hand  it has been 

shown by W a lk e r &  R oy  (1983) that the c ircu lar criterion is a very  good ind icato r for a 

practical stability . T h u s there  is a need to investigate by num erical experim ents w hether 

the tunnel shaped  stability  surface does reflect the truth.

In this sec tion  w e w ill m ake  a very  first investigation  on the question . O ne has to 

carry out a system atic  study to  obtain any certain  conclusion. T he study o f  this section is
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Figure 5.9 N um erical investigation (up to 600 synodical periods) on the

tunnel-shaped  surface o f stability for a cross section close to the

S u n-N ep tune-P lu to  subsystem . The m ass p aram eter is p = 5 .1 9 5 * 1 0 -5, 

and the in itial eccentricities are e2 =0 .0 0 8  and e 3=0 .2 .



lim ited to  system s w ith p aram eters  close to that o f  the S u n -N ep tu n e-P lu to  system . In

Table 5 .2  w e give a c lass o f  the values o f  a c by in troducing  m ore and  m ore  the real

orbital e lem en ts o f  the S un-N ep tune-P lu to  system  into the ca lcu la tion . It is seen  that 

there is som e uncertain ty  about the system 's stability.

T able 5.2 V alues o f  a c for Sun-N eptune-Pluto system  at E  

( H = 5 .2 0 x 1 0 ' 5 H3 =  5 .0 0 x 1 0 ‘9 a  = 0 .762 )

e 2= 0  e 3= 0 e 2= 0 .00858 e 3 = 0 .250

i = 0 ° 0 .915 0 .3 1 4

i = 17° 0.671 0 .2 8 2

Show n in Fig. 5.9 are the num erical integration results for d irect C H T  system s w ith 

initial eccen tric ities  close to those o f  the Sun-N eptune-P luto  system , nam ely , e2=0.008,

e3=0 .2 . T he  in teg ra ted  system s have the sam e param eter j i= 5 .1 9 5 x l0 ’5, but d iffe ren t

P3= 1 0 -10, 1 0 '9, ..., 10‘2, and the in itia l a ’s take the values in a range  covering  0.76. In

the d iagram , a V  den o tes a c ro ss-o v er o f  orbits, a ’o ’ deno tes a system  w hich  is stable 

up to 600 synodic periods, w hich is the lim it o f the num erical experim ents.

It is seen  th a t no  tu n n el e ffec ts  ap p ear on the d iag ram . T h is  su g g ests  th a t a 

m onotonically decreasing  stability  surface (as obtained by the c ircu lar criterion) seem s to 

be the clearer qualitative feature o f  the problem , while the tunnel-shaped elliptic criterion 

may be o f  little  p rac tica l value. H ow ever, a longer-term  investigation  is req u ired  for a 

more decisive conclusion.

5.4 N u m e r ic a l  E x p e r im e n ts  on 3 -B o d y  S ystem s II 

- S y s te m a t ic  I n v e s t ig a t io n  o f  E llip tic  M otion s

In this section  w e w ill m ake a m ore  com plete and system atic num erical investigation  o f  

the behav iour o f  the in itia lly  e llip tic  C H T  system s using the concep t o f  the h ierarch ical 

stability co n d itio n s (cf. ch ap te r 1). B ut first let us justify  the stab ility  cond itions so that 

they can be im plem ented on  the com puter.

In the defin ition  o f  h ierarch ical stability, instability by collision is not listed since the
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co llis ion  m an ifo ld  is o f  m easu re  zero  (in co n tra s t, little  is k now n  abou t the e sc ap e  

instab ility ). H ow ever, w e have given this w ord a d iffe ren t m ean in g  in ou r num erica l 

experim ents. A  co llision  is said to occur if  one o f  the eccen tric ities goes up to so h igh a 

value that the accuracy o f  ou r num erical routine becom es unreliable. T his instability  m ay 

in fact be o n ly  a p ro cess  p receding  an escape. A second poin t is that both in stab ility  

conditions H S-(A ) and  H S-(B ) can occur in the H ill-type stability  region, which im plies 

a potential incom patib ility  betw een hierarchical stability (w hich by definition involves all 

three cond itions) and  H ill-type stability. This w as not so serious in W alker et al's (1980, 

1983) w ork , but can be fatal fo r the p icture they  have built, in w hich great consistency  

was d isp lay ed  b e tw een  these  tw o no tions o f  stab ility . R ela ted  to th is  is the cru c ia l 

d ifficulty  in how  to dec ide  w hether a drastic change has occurred  o r not; this is a very 

sub jective  m atte r. M an y  such am b ig u o u s ch an g es have been  o b serv ed  d u rin g  the 

num erical experim en ts no t only ou tside the H ill-type stability  reg ion , but also  inside it. 

The experim enter is faced  w ith a choice; either he forgets about this am biguity  inside the 

H ill-type s tab ility  reg io n  in o rder to  p reserv e  the 'neat' p ic tu re , o r he ab an d o n s the 

picture. T he present au thor has chosen the latter because o f the experim ents like [0226] 

shown in  F ig . 5 .11, w here  assured instab ilities (A) and (B) have been observed  inside 

the H ill-ty p e  s tab ility  reg ion . T he  sets o f  experim en ts, [1062] and [2062], w ere also  

helpful in choosing  this decision. A detailed discussion on this m atter is presented in this 

section.

M uch ana ly tica l w ork  has been carried  ou t (see, fo r exam ple , M archal e t al, 1984) 

concerning the condition  o f  escape. H ow ever, it cannot be applied to the present study to 

d e term in e , b e fo re  th e  in teg ra tio n , w h ich  bo d y  w ill e scap e , s in ce  o u r n u m eric a l 

experim ents are begun from  m irror configurations. Escape m ight be ju d g ed  to happen  if  

one o f  the bod ies is th row n fa r aw ay from  the cen tre o f  m ass, but in fact we check  the 

sign o f  the en e rg y  o f  the tw o-body subsystem s. Subsequen t recap tu re  is possib le , but 

since th is is o bv iously  not a stable situation it is not the m ajor in terest o f  this study. It 

m ay a lso  be n o ted  th a t in stab ility  (B) can on o ccasio n  be very  severe  such th a t a 

co llision, o r  e scap e  occu rs , though it can also  be less severe. T he la tte r case  is  too 

difficult fo r the num erical routine to deal w ith, and it is up to the experim en ter to  ju d g e  

from experience. Therefore the follow ing form ulation o f  instabilities w as adopted so that 

num erical rou tines could  be used to signal the follow ing cases:

(a), escape - energy o f  any 2 -body subsystem  becom es nonnegative;

(b l) .  co llis ion  - eccentricity  o f  any 2-body subsystem  grow s beyond 0.99;

(b2 ). c lose encoun ter - a close approach betw een tw o bodies occurs resulting

in drastic changes in the sem i-m ajor axes and eccentricities o f  the orbits
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o f  the 2 -body  subsystem s, but is not so severe as (a) and (bl ) ;

(c). cross over - the pericentre  distance o f the ou ter orbit, P 3 , becom es less than

the apocentre d istance o f  the inner orbit, p 2 -

N ote that in stab ility  (c) is slightly  d ifferen t from  the 'c ross-over' version  in W alker 

and R oy (1983). T h e  advan tage o f condition  (c) over H S -(C ) is that the very  unstab le

and less in te restin g  cases  w ith a  > 1 can  be p recluded  beforehand . A n o th er d iffe ren ce  

betw een o u r num erica l experim ents and W alker and R oy’s (1983) is that in the p resen t 

study w e do  not te rm inate  com puting  w hen a less severe close encoun te r (b2) occurs. It 

should also be no ted  that (a) and (bl )  m ust be preceded by one o r several (b2 ), but (c) is 

not necessarily  p reced ed  by (b2). (bl ) ,  how ever, m ay signal the occu rren ce  o f  (a). In 

this approach  w e p re sen t in Fig. 5.11 the com plete  resu lts  w ithou t no ting  in stab ility  

(b2). O nly  afte r a d e ta iled  discussion  based on careful observations o f  o rb ital stab ility , 

do we then schem atically  show  in Table 5.2 the result w ith (b2) noted.

It w ill be seen that on ly  one o f  the sixteen plots supports the neat em pirical stability  

picture built up in the case  w here the num erical experim ents begin from  o rb its  in itia lly  

circular. W e w ill see that the introduction  o f initial eccentricities drastica lly  com plicates 

the b eh av io u r o f  the system s. T he m otion  tu rns out to  be so irre g u la r  th a t in any 

particular experim ent the uncertainty in any m easure o f  the life-tim e reading is far b igger 

than one synod ic  p erio d . T h is, toge ther w ith the new ly ob serv ed  valley  an d  p la teau  

structures, m akes it a lm o st im possib le  to fit em pirical stab ility  cu rves to  the data . In 

addition, m any p henom ena hitherto  unencountered in this w ork w ere observed  such that 

the 'close en co u n te r' v e rs io n  is not easy to use. Instab ilities  in the H ill-ty p e  stab ility  

regions com pletely  destroy  the attractive picture o f  em pirical stability regions outside the 

H ill-type stab ility  reg io n s. T he em pirica l stability  p icture m ust there fo re  be m od ified  

drastically so that the em pirica l stability  curves, if  a curve-fitting  procedure  is possib le ,

go straight in to  the H ill-ty p e  stability  reg ions below  a Q. A ccord ing ly  the 'tunnel effect' 

of eccentricities on the critical stability surface m ay be com pletely irrelevant.

The N u m er ica l  M e th o d

W e presen t here  the re su lt o f  several hundred  num erical in teg ra tion  ex p e rim en ts  on 

initially elliptic, co ro ta tional, coplanar 3-body system s. All the experim ents w ere carried 

out on the IC L  3 9 8 0  m ain fram e  co m p u te r at G lasgow  U n iv ersity , using  the sam e 

num erical ro u tin e  th a t W a lk e r and R oy (1983) used. In this rou tine  the m utual rad iu s  

vectors are ca lcu lated  by a tenth order T aylor series, where the derivatives are evaluated
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by recu rrence relations. T he program m e incorporates an au tom atic s tep-length  regu la to r 

which shortens o r lengthens the in tegration length o f the com pu ter in o rder that the erro r 

caused by trunca ting  the T ay lo r series after the tenth order is less then a g iven to lerance 

( 1 0 ‘ 12 in th is approach).

A s is kno w n , fo r essen tia lly  any num erical m ethod local tru n ca tio n  e rro rs  can be 

controlled; estim ations for the accum ulated truncation error after m any steps are not often 

possib le . In  a ch ao tic  system  such as the N -body problem  tw o  tra jec to ries  w ith  nearby  

initial cond itions d ep art at an exponential rate, thus the in tegration  e rro r m ust grow  in a 

m an n er m o re  co m p lica ted  than ex p o n en tia l d ivergence. F o r th is  re aso n , the  o rb its  

ob ta ined  on the c o m p u te r m ay be very  fa r apart from  the real so lu tio n , bu t they do 

capture the reliable properties o f the real orbits. The accuracy o f  the in tegration routine is 

also a ffec ted  by ro u n d -o ff  erro r o f  the com puter. T hough pu re  ro u n d -o ff  e rro r can be 

studied statistica lly , a rigorous analysis is im possible w hen m odified  by truncation  error. 

W ith th ese  facts in m ind , w e have to  find  ano ther way to get som e rough  id ea  abou t 

error accum ulation  and for how  long w e can run the num erical in tegration . F or exam ple,

we can run  the p rog ram m e for fictitious 3-body system s w ith e's -> 0 o r fo r the linearly  

stable eq u ila te ra l m o tio n , w hose o rb ita l e lem en ts should  rem a in  co n stan t. Such  an 

estim ation  g ives the re su lt o f  about 6000  synodic periods fo r an 0 . 1 % re la tiv e  e rro r in 

the position . P rogram m es have been run up to 1000 synodic periods if  no instab ility  sets 

in b efo re  th is  tim e scale . E nergy  and  an g u lar m om en tum  w ere  u sed  to ch eck  the 

integration error, though they are not very adequate for this ro le  (an in tegral o f  m otion  is 

not sen sitiv e  to in teg ra tio n  erro r even  if  the m otion is irregu lar). T he re la tiv e  e rro r o f  

them  on com m encing  and  at the end o f  the integration is found alw ays below  1 0 ‘7.

T he in itial conditions are chosen such that the m asses form  a m irro r configuration  on 

com m encing the integrations. It is useful to be clear about the aspects o f  this choice. O ne 

consideration  is based  on the fact that the trajectories after that epoch  are m irro r im ages 

o f their tra jec to ries  befo re  that epoch (R oy & O venden, 1955). T h erefo re , by studying  

one d irec tio n  o f  tim e w e also  gain know ledge o f  the o ther one, so that the tim e-sca le  is 

cut dow n . T o  fu rth e r th is po in t the in itial cond itions are ac tu a lly  ch o sen  at w hat is

believed to  be the w orst configurations (ie. E ): the body in the inner o rb it at apocen tre , 

w ith the o u te r  m ass a t its pericen tre , and all m asses collinear. S econd ly , co m m en c in g  

from  a m irro r  co n fig u ra tio n  m ay g ive  m ore chance o f  p ick in g  up s tab le  p e r io d ic  

tra jecto ries  (w h ich  is  very  ra re  in irreg u la r reg ions), because  the  o ccu rren ce  o f  tw o 

m irror c o n f ig u ra tio n s  g uaran tees p erio d ic ity  o f the m otion . O n  the o th e r hand , one 

advantage o f  th is s tudy  is that w e p u rsue  a m ethod o f  'en sem b le ' study  in stead  o f  a 

study o f  long  tim e behaviour; but this choice o f  m irror configuration  m eans w e are only
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stu d y in g  a v ery  sm all su b se t o f  the co m p le te  'en sem b le '. N ev e rth e le ss  w e h av e  

confidence that this subset captures the general feature o f  the w hole set.

S ince the am bigu ity  o f  detec ting  instab ility  is m agnified  due to the in troduction  o f 

eccen tric ities, we w ill first p resen t the resu lt w ith on ly  assured in stab ilities  no ted  and 

then carefu lly  com pare the d ifference w ith W alker and Roy (1983). O nly  afte r this is it 

possib le  to m ake som e com m ents on those am biguous close encoun ters. T he o rig inal 

p lo ts o f  h ierarch ica l stability  lifetim e o f  the orbits in synodic periods (deno ted  by N s)

versus the initial a  values are presented in Fig. 5.11. T he diagram s there are nam ed by a

set o f  n u m b er o f  the fo rm  [2062], being a shorthand  for the values o f  [e2 e 3 £23  £3 2 ], 

w here the first num ber 2  m eans that e2 =0 .2 , the second num ber 0  m eans e 3= 0 .0 , w h ile

the th ird  n u m b er 6  s tands fo r e 2 3 = 1 0 '6 , and  the fourth  num ber 2, £3 2 = 1 0 '2 . In Fig.

5.12 som e typ ical exam ples are show n o f  the varia tion  w ith tim e o f  o rb ita l e lem en ts  

observed during the integration; they w ill be referred to as a, b etc.

In w hat fo llow s w e w ill use som e descrip tive  w ords for the size o f  eccen tric ities , 

viz., 'very  sm all' fo r the reg ion  (0 , 0 .1), 'sm all' (0.1 , 0 .25), 'm oderate ' (0 .25 , 0 .55 ), 

'high' (0 .55 , 0 .75 ), 'very  high ' (0.75 , 0 .99) and 'co llision ' fo r values above 0 .99 . O f 

course such w ords can not be accurate , and there is an uncertain ty  o f  about 0 .05 in the 

value o f  the d iv id ing  points. N evertheless we find from  the num erical experim en ts that 

this d iv is io n  is usefu l: a shift from  one reg ion  to ano ther is o f  s ign ificance  fo r the 

stab ility  o f  the system s. B ased  on th is d iv is io n , w e w ill also  use te rm s like 's tab le  

m ode', 'sub -stab le  m odes', 'random  stab le m ode' and 'com et-like o rb it', w hich  w ill be 

explained in the appropriate place and Fig. 5.12.

G eneral B ehaviour o f E ccentricities and Sem i-m ajor Axes

It is ob v io u s th a t fo r system s w ith very  sm all values in both £ 's (eg. < 10~6), the 

v aria tio n  o f  the  o rb ita l e lem en ts , a 's  and  e 's , is very  sm all and  sm oo th ; and  the 

variations are s im ilar fo r d ifferen t in itial conditions. A ccord ing  to pertu rbation  theory , 

such system s can be regarded  as chang ing  alm ost linearly  w ith tim e. It is observed  that, 

during a period  o f  1 0 0 0  synodic period, the value o f initially vanishing e grow s up to  the 

o rder 1 0 ‘2 , w h ile  the change o f  the o th e r e is below  1 0 ' 3 and  the a 's stay  a lm o st 

constant.

T h ere fo re  i f  one o f  the in itia l o rb its  is c ircu lar, the o ther one h av in g  a sm all 

eccentricity , then during  the tim e lim it o f  in tegration  the stability w ould depend  m ainly  

on how the value o f  the eccentricity  grow s in the initially circular orbit. In such a system
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Fig. 5.10 T he  te rm in atin g  value o f  e 3  vs. in itial value o f a  fo r the set o f  experim ents 

[2066]. A  c irc le  'o ' deno te stability , and a cross '+ ' c ro ss-o v er o f  o rb its, as is 

the sam e in F ig . 5.11. A  linear curve is fitted to the data, w ith the excep tion  o f 

the only  stable system  at left bottom  com er o f the diagram . T hose stable 

system s ind icated  by the circles close to the line are very likely to suffer 

cross-over in stab ilities for slightly longer investigation, w hile the one in the 

co rn er is not.



the only in s tab ility  is the cross-over o f  orbits; the accum ulation  o f  in stab ility  cou ld  not 

becom e la rg e  en o u g h  to  lead  to e ither co llision  o r escape, w h ile  a close en co u n te r is 

highly im p ro b ab le . F ro m  equa tion  (5.5b), it is seen that the te rm in atin g  value o f  th is 

specific ec cen tric ity  - that is the value  o f  it w hen a c ro ss-o v er is de tec ted  - is a lin ear

function o f  the value  o f  the in itial ra tio  o f  sem i-m ajor axes ( a  ~  (l-e^) to the first o rder 

in eccen tric ity ). O ne exam ple  is show n in Fig. 5 .10 fo r the set o f  experim ents, [2066], 

o f F ig. 5 .11 . In fac t, th is app rox im ation  is m ore adequate  fo r in itia lly  c ircu la r o u te r 

orbits than  fo r the  in n e r ones. R eca lling  that the a ’s and  e's vary  a lm ost linearly  w ith

tim e w e see  th a t fo r the d iag ram s d en o ted  by [ ..... 6 6 ], the v a lid ity  o f  the above

approxim ation is a lso  reflected  in the lifetim e versus ra tio  o f  sem i-m ajor axes plot and a 

linear fittin g  is m ore  reaso n ab le  than an exponen tia l fitting . M oreover, it is seen that 

[1066] and [2066] show  better linearity  than [0166] and [0266].

A p h en o m en o n  w orth  no ting concerns the system s w ith at least one e > 1 0 A  If both

e 's are o f  th e  sam e o rd e r, it is u n d ers tan d ab le  that the re su lt g iven  in sec tion  5.2 

concern ing  'm o st o b serv ab le ' changes in a's and e 's is a good  ap p ro x im atio n  (cf. F ig.

5.12a). W h en  on e  o f  the tw o  pertu rbations dom inates ov er the o th er (eg. one e is 10‘6, 

the o ther 10"2), som e o th er possib ilities are also expected. H ow ever, except in one o f the

cases w ith  b o th  e = 1 0 ' 6 , it is found  that e 2 , ^  a lm o st a lw ay s vary  in the sam e

m anner, w h ile  a 2 v aries  in a d irection opposite to them , if  these changes are noticeable. 

This w as an a ly sed  in the last section, the notable po int being that th is result cap tures the 

feature o f  a lm o s t all system s though the m ethod to ob ta in  it is by  no m eans rigorous. It 

is also n o ted  that th is im p lies  that energy  and angu lar m om en tum  m ust transfer in the 

same d irec tion , e ith e r from  inner orbit to ou ter o r vice versa, w hile the param eter C2H  o f 

the tw o su bsystem s m ust vary in the sam e way.

A s a co n se q u en ce  o f  this observation , the behav iou r o f  the fo u r e lem ents, a's and 

e's, can be u n d ers to o d  by looking  at one o f  them  only. W e choose  one (som etim es two) 

of the eccen tric ities and  consider its (or their) effect on stability.

C om plexity o f  the L ife-tim e vs. R atio o f Sem i-m ajor A xes Plot 

The m otion  o f  an N -b o d y  system  is chaotic . T h is com plex ity  o f  phase  space w ill be 

reflected in o u r  life -tim e vs. ra tio  o f  m ajor axes plots. A sm ooth curve fitting to sam ples 

each w ith o n ly  ab o u t th irty  elem ents should therefore not be expected . T he curves fitted 

in W a lk e r an d  R o y  (1 9 8 3 ) m ust be reg ard ed  as s ta tis tica l o n es. B ecau se  o f  the 

considerable d iffe ren ce  betw een  in itially  circular and ellip tical m otion , a th irty-elem ent
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sample, good enough in the fo rm er case to obtain reasonably fitted curves, is insufficient 

in the in itia lly  e llip tic  case; a m uch la rg er sam ple is req u ired  in the p resen t study. 

B ecause o f  lim its on co m p u tin g  tim e and  expense, we test th is only ten ta tiv e ly  in the 

next section . N o a ttem p t is m ade to  fit cu rves to  the data  in F ig. 5.11. In stead  we w ill 

describe the resu lt in this subsection and try to m ake som e com m ents suggested  by these 

experim ents. T he experim ental sets are now  considered in turn.

[1066] : T h is  is one o f  the s im p lest sets o f  experim en ts. D uring  the in teg ra tion  

period the o rb its  o f  both 2 -body  subsystem s suffer little change. N either co llision  no r 

escape w as de tec ted  up to  the tim e lim it o f  1000 synodic periods (SP hereafter), no r is 

close encoun ter a usefu l co n cep t fo r detec ting  instability. A ll instab ilities are due to the 

slight increase  in e 3 w hich  even tua lly  leads to  a cross-over o f  orbit. It is observed  that 

the value o f  e 3 fo r all o rb its grow s in alm ost the sam e w ay, and its term inating  value is

close to a lin ear function  o f  the in itia l a 's  (cf. Fig. 5.10). T he b iggest value o f  the ou ter 

eccentricity  is found  fo r those stab le  o rb its, w hich is abou t 5 .0 x l0 '2. Should  we try to 

fit a cu rve to  th is set o f  ex p erim en ts, a lin ear ra ther than an exponen tia l one is m ore

suitable. A  sim ple calcu lation  by equation (5.5b) show s that for the orbit w ith initial a  =

0.8 (w hich is below  a c ) to cross over, a sm all value o f 9 x l0 ' 2 in the ou ter eccen tric ity

will suffice. T h ere fo re  u n certa in ties  ex ist fo r the stab ility  o f  the system s w hich  have 

survived up to  1000 SPs: the lin ear fittin g  m ay  go straigh t in to  the H ill-type stab ility  

region, how ever, an exponen tia l curve m ay be fitted if longer investigations are carried  

out.

[1062] : T h is is one o f  the m ost in teresting  sets o f experim ents, which is quite well 

approxim ated to by the c ircu lar restric ted  3-body problem . T he perturbation  o f  the ou ter 

orbit on the in n er one is strong , w hile the inner on the o u te r is weak. In stab ilities are 

therefore due to the changes the inner orb it suffers. A gain  neither escape nor co llision 

instability has been found up to the tim e lim it o f  the integration; but close encounters do 

occur in m any  cases w h ich  are no t yet strong  enough to  lead  to a c ro ss-o v er o r o ther 

instabilities; they  are thus no t included  in the plot. The o u ter o rb it suffers little  change, 

values o f  the o u ter eccen tric ity  never grow  above an o rder o f  1 0 '5. N oticeab le changes 

were o bserved  in the in n er o rb its, a2 and e2 alw ays chang ing  in the opposite  way: we

choose to  look at e2 only.

One o f  the m ost apparent features o f  this plo t is that there is an obvious valley  in the

range a e ( 0 .5 3  , 0 .55) and p la teau  in a e ( 0 .5 5  , 0.59) so that no curve fitting  w ould be 

successful. L e t us deno te  'p la teau ' by 'P ' and  'va lley ' by 'V '. It is o b serv ed  that the
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group o f  o rb its  d eno ted  as PI are m ore stab le  than those in group  PO, although  inside  

each g ro u p  the o rb its  on  the righ t edges are less s tab le  than  the o thers. U p  to  1000 

synodic p e rio d s , the eccen tric ity  o f  group  PI changes a lm ost period ically  be tw een  0.01 

and 0 .3  (te rm e d  a 's tab le  m o d e ', see F ig . 5 .12b , e an d  f); w h ile  that o f  g ro u p  P0  

behaves in th is  w ay  fo r abou t one o r tw o hundred  synodic periods and then w ith in  one 

or a few  sy n o d ic  periods ju m p s to an o th er m ode such that the ou ter eccen tric ity  varies  

fa irly  re g u la r ly  w ith in  the m o d era te  reg io n s be tw een  0 . 1  and  0 . 5  ( 'ran d o m  stab le  

m ode', F ig . 5 .12b). In a sense the eccen tric ity  changes o f  the o rb its in g roup  P 0  are 

sim ilar to  th e  u nstab le  ones in the g roup  V w hich su ffer cross-over; but P0 su rv iv ed

because it h as  a sm aller value  o f  in itia l a .  S ince the o rb it on the fa r left o f  the p lo t is 

a lready  on  the ed g e  o f  the H ill-ty p e  stab ility  reg ion  and  still su ffe rin g  ea rly  c lo se  

encounters (jum p o f  m ode), we expect this to penetrate into the H ill-type stability  region, 

thus clo se  en co u n te r is not consisten t w ith  the concep t o f  H ill-type stability , no r w ith  a 

study on co n d itio n  H S-(C ). Even if  w e note the close encoun te r instab ility , there is still 

no w ay o f  b rin g in g  dow n the stable p lateau  PI, hence a m onoton ic curve fitting  w ould  

not be su ccessfu l, n o r can we fit a cu rve  to po in ts ex cep t g roup  PI and exp la in  P I by 

invoking com m ensurab ility  as W alker and  R oy (1983) did; because this is a w ide 'band ' 

instead o f  a sharp  'peak '. F rom  w hat w e w ill see in the fo llow ing  p lo ts w e co n jec tu re  

that P0 m ay a lso  have further com plicated  fine structures.

[1026] : In  th is  case  there  is no  a c b ecau se  o f  the d is to rtio n  p ro d u ced  by  the

transform ation  from  the p -space to e-space. B oth escape and co llision  o f  the ou ter o rb it 

have b een  fo u n d  in  add ition  to  cross-over. A lthough a m ix tu re  o f  stable and unstab le  

orbits is ap p a ren tly  d isp layed  in the p lo t, those stable orb its, w ith  the excep tion  o f  the 

two on th e  fa r  le ft, are believed  to be u n stab le  fo r a lo n g e r in v estig a tio n : i f  c lo se  

encounter is  used , they  can be brought dow n to reasonably  shorter lifetim es. In all these 

experim ents, it is a lw ays the o u ter o rb it that suffers sig n ifican t d istu rbance , w h ile  the 

inner one is  o n ly  sligh tly  d istu rbed  - a situation  for w hich the e llip tic  restric ted  3-body  

problem  is a  good  approxim ation . T he size o f  ^  and e 3 are alw ays found to vary  in the 

sam e tren d . A g a in  w e ch o o se  the eccen tric ity  o f  the o u te r o rb it as the ch a rac te ris tic  

param eter to  describe  the variation o f the ou ter orbit.

It is fo u n d  that the first tw o orb its on the left o f the p lo t are very stable, the size o f  

the o u te r  e c c e n tr ic ity  b e ing  bou n d ed  be lo w  0 .15  d u rin g  the in teg ra tio n  p erio d . In 

contrast to  th is, all o th er orbits, including  those w hich surv ive up to 1000 SPs, show  a 

sim ilarity in the tim e varia tion  o f the ou ter eccentricity . It accum ulates very  slow ly  fo r 

the first few  tens o f  SPs, then grow s in a faste r rate to a m odera te  value ov er an o th er
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few tens o f  SPs b efo re  sudden ly , due to a severe c lo se  en co u n te r, the o u te r m ass  is 

thrown in to  a com et-like  o rb it w ith high o r very high eccen tric ity  and a b igger value  o f  

m ajor axis. A fte r this strong close encounter it m ay vibrate  in an erratic m anner betw een 

the very  h igh  reg io n  and m odera te  reg ion , o r it m ay stay  in this com et-like  o rb it up to 

above 1000 SPs, o r  m ay even be throw n so far aw ay that the energy  o f  the ou ter 2-body 

subsystem  b ecom es positive , w hich is regarded  as an escape  o f  the ou ter m ass. A s for 

collision, it is not easy  to know  w hether an escape w ill occu r o r not if  the in teg ra tion  is 

continued since the outer m ass is already thrown into orbits o f very high eccentric ity  and 

larger m a jo r axis. W ith  th is uncerta in ty  in m ind  w e sim ply  ca ll such o rb its  w ith  the 

eccen tric ity  ab o v e  0 .99  bu t n eg a tiv e  energy  'co llis io n '. It is in fact q u ite  a rb itra ry  

whether the orb it can  survive o r not after the close encounter.

F or th is set o f  experim ents the procedure o f W alker and R oy (1983) is possib le  since 

very stable system s have been observed. If  close encounters are all treated as instabilities 

then a sm ooth  exponen tia l curve m ay be fitted to the data. H ow ever, since no analy tical 

H ill-type stability  stability  region exists, the picture o f  an em pirica l hierarchical stability 

region outside the H ill-type stability region cannot be verified.

[1022] : In this case both orbits are strongly d isturbed  so that noticeable changes can 

be observed in all four orbital elem ents: they all obey the general ru le  given in T ab le 5.2. 

N either co llis io n  no r escape have been observed . W e ch o o se  the tw o  eccen tric itie s  as 

characteristic param eters  fo r describ ing the variation  o f  the orb its since both change  not 

only in the sam e d irec tion  but also w ith alm ost the sam e varia tion  in size. C om p ared  to 

other sets o f  experim en ts, this one show s m ore reg u la ritie s  w ith respect to the v alue  o f  

initial ra tio  o f  m ajo r axes, although the perturbations are stronger.

W e sum m arise  this po in t by starting  from  a b ig g er to sm alle r value o f  the ra tio  o f

m ajor axes. F or a  > 0.65, a close encoun ter occurs on com m encing  the in tegration  such 

that both eccen tric ities  jum p in to  the high region and  then vary irregularly  in this reg ion  

or enter the very high region; it is quite accidental w hether the system  can pass this close 

encoun ter and  su rv iv e  a fte r this severe even t w ithou t c ro ssin g  over. The tw o 'stab le ' 

orbits are not rea lly  stable since they have entered the very  high eccen tric ity  reg ion  and 

survive accidentally .

F o r 0 .55  < a  < 0 .65 , a new  m ode suggesting stab ility  begins to appear im m ediately  

after the in teg ra tion  begins. B efore both e ’s begin to behave like the p rev ious case, they 

stay below  0.3 fo r several SPs. T he tw o 'stab le ' ex p e rim en ts  in th is reg ion  are again  

accidental. A s the value o f  the ratio  o f m ajor axes decreases, this new  stability m ode last 

for a few  m ore SPs (Fig. 5.12d). T his process con tinues until a value  o f abou t 0 .475  in 

the ratio  o f  m ajo r axes is reached, when suddenly the stability  m ode spreads up to above

141



1000 SPs. T h e  v aria tio n s  o f  bo th  eccen tric ities  are now  a lm o st p e rio d ic , and  the 

am plitude dec reases  to below  0.25. T he transient region is very  narrow  as can be seen 

on the plot. F ro m  this poin t on, the sm aller the value o f the ratio o f  m ajo r axes, the m ore 

stable the sy stem  is: the am plitude o f  the e's' variation decreases w ith it.

I f  c lo se  en co u n te rs  are no ted , the study o f W alker and R oy (1983) is ap p licab le , 

with an em pirical stability region found outside the H ill-type stability region.

[2066] : T h is  is the sim plest set o f  experim ents. All features are like those o f  [1066] 

except that the behaviour is better. T his is shown in Fig. 5 .10 already. T he accum ulation  

of the ou ter eccentric ity  is found alw ays to be below  4.0 x 10 '2.

[2062] : T h is  in te re stin g  set o f  experim en ts  d isp lay s  a co m p lica ted  stru c tu re . 

E ssen tially  the  featu res o f  this case  are the sam e as [1062], but w ith m ore v a lley s  and 

plateaus. T w o  valley s, VI and V II, have been detected , w ith  V II on  the ed g e  o f  the 

H ill-type s tab ility  region. A lthough here P0 is com pletely  w ithin the H ill-type stab ility  

region, it is less  stable than PI (in the sense that the orbital elem ents change m ore), w hile 

PII is the m o st stab le group. E ven w ithin  P0, stability decreases fo r a sm alle r ra tio  o f  

m ajor axes (o b serv ed  from  those system s in the plot). It is not c lea r w he ther P0 has got 

m ore fine s tru c tu res  o r not, although as a general ru le very stab le system s shou ld  ex is t 

for very  sm all ra tio s  o f  the m ajor axes. The accum ulation in the o u te r e is below  10*5. 

The rep resen ta tiv e  param eter is the inner eccentricity, w hose value is found to be below  

0.3 fo r P II, b e lo w  0 .6  fo r P I, w h ile  fo r P0 its v alue  can  go up to  0 .7 , and  m ore  

irregularity  b e in g  noticed. T he o ther d ifference betw een P0, PI and P II is that there  are 

two m o d es in  the  fo rm er g roups, one below  0.3 and the o th er b e tw een  0 .6  and  0 .2 , 

w hile in the la tte r  group only the m ore stable m ode exists up to 1000 SPs. T he stab le 

m ode lasts lo n g e r in PI than in P0 afte r com m encing the in tegra tion . C lose en co u n te r 

instab ility  w o u ld  co n trad ic t the concep t o f  H ill-type stability  and there is no sense  in 

fitting curves no  m atter how  close encounters are treated.

[2026] : In  m any  w ays th is set o f  experim ents has features w hich  resem ble  [1026]: 

no critica l ra tio  o f  m ajo r axes exists due to the distortion o f the transform ation . E scapes 

of the o u te r  m ass  w ere  detec ted , but no  collision w as found  up to 1000 SPs, w hich  is 

very likely  to  o ccu r if  the in tegra tion  w ere continued  for a lon g er tim e. T hose 'stab le ' 

systems en tang led  w ith unstable ones are not actually stable since they spend m ost o f  the 

time w ith v e ry  h igh  eccen tric ities fo r the outer orbits. A gain  a stable m ode in the o u te r 

eccen tric ity  w ith  am p litu d e  below  0 . 2  is found im m edia te ly  a f te r  co m m en c in g  the 

in teg ra tion  fo r  a lm o st all system s. T h is m ode is fo llow ed  by a v ery  sev e re  c lo se  

encounter such  that the outer m ass is thrown to a m ore distant com et-like orbit w ith high 

or very h igh  eccentric ity . It is the extension o f the stable m ode over the re latively  narrow

region 0 .485  <  a  < 0.51 that charac terises the transition  o f  o rb its  from  in stab ility  to
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stability . T hose  system s w ith a  < 0 .48  are all very  stab le and only  a lm ost p erio d ic  

changes o f  the stab le m ode w ere observed  in the ou ter eccen tric ity . T he cu rve  fitting  

technique o f  W alker and Roy (1983) is applicable here.

[2022] : E ssentially  the properties o f  this set o f  orbits are the sam e as [1022] w ith the 

exception that this set is less stable. T he stable m ode has go t a b igger am plitude in both 

e's, and its dura tion  is still m uch less than 1000 SPs even inside the H ill-ty p e  stab ility  

region. T he m ost stable system  o f  those run is the first one on the left, w hich  is ju s t 

inside the H ill-ty p e  stab ility  reg ion . H ow ever, the stab le  m ode on ly  lasts fo r a few  

hundred  SPs, and  then a close en co u n te r fo llow s w hich 'k icks ' the system  to a less 

stable m ode: both  e 's vary in the h igh eccen tric ity  reg ion  in an irreg u la r w ay. C lose  

encounter is in contrad iction  to the concep t o f  H ill-type stability . Should  we try to fit a 

curve using  the procedure  o f W alk er and R oy (1983) it is found  to p en e tra te  in to  the 

H ill-type stability region.

[0166] : T h is is essentially  sim ilar to [1066] and [2066], but w ith larger ch an g es in 

e's. F o r those unstab le orbits it is found that usually  a cro ss-o v er in stab ility  o ccu rs  as 

the in n er e g row s to about 0.05, w hile  the ou ter e decreases to abou t the sam e value . 

H ow ever, those stable cases m ay becom e unstab le, since by the tim e 1000 SPs have 

elapsed, they usually  have gained values o f  abou t 0 . 1  in the inner e, w hile  the o u te r e 

has gone dow n to about 0.01. There therefore rem ain  som e uncertain ties for th is set o f  

experim ents. It is in this set o f  experim ents that a v io lation  o f  the general b eh av io u r o f  

eccentricities and sem i-m ajor axes (Table 5.1) is clearly observed.

[0162] : T here  is no critical ra tio  o f  m ajo r axes fo r this set o f  param eters. W e have 

investigated  those orbits w ith values o f  ra tios o f  m ajo r axes dow n to abou t 0 .5 , w here  

the o rb its are found  to  be reasonably  stable w ith  random  stable m odes. T he  in n er e is 

alw ays b o u n d ed  u n d er 0 .5 . No strong  c lo se  en co u n te r occu rs p ro d u c in g  d is tin c tly  

different m odes around different values: changes are quite sm ooth and reversib le . E ven 

for unstab le  system s w ith b igger ra tio s o f  m ajo r axes, no  severe clo se  en co u n te r has 

been found. C ross-over either occurs w ith the in n er e below  0.5 o r due to a m odera te  

close en co u n te r fo llow ing  the random  stable m ode, w hich brings the in n er e up to the 

high reg ion  in about ten SPs.

[0126] : T his set seem s to be the best one for W alker and R oy's (1983) cu rve fitting  

procedure to  be valid. Those system s inside the H ill-type stability region are all found to 

be very  stab le : the  inner e is a lw ays b e lo w  1 0 ' 4 , w hile  the o u te r e v a rie s  a lm o st 

period ically  below  0.2. T hose 'stable ' system s ou t o f the H ill-type stab ility  reg ion  are 

quite d iffe ren t from  the prev ious one, th e ir b eh av io u r show  sim ilarity  to the escape  

system s: the sy stem  stays on the stab le  m o d e fo r a sho rt period  o f  tim e and  then  

suddenly a very strong close encounter th row s the ou ter m ass to a com et-like orb it w ith
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very large n ew  m ajo r ax is and very  high eccen tric ity , and stays un til up to 1000 SPs 

w ithou t an y  m o re  n o ticea b le  ch an g es in a's and e 's. It is seen  on  the p lo t that an 

exponen tia l cu rv e  can  be fitted  to  the data. H ow ever, fo llo w in g  the sam e m eth o d  as 

W alker and R oy  (1983), no  obvious em pirical stability reg ion  ex ists o u t o f the H ill-type 

stability reg ion .

[0122] : T his set o f  experim ents, together w ith [0222], p roduces a new  phenom enon 

in the b eh a v io u r o f  a 's and  e 's. A gain  the tw o e's are chosen  to  d esc rib e  the general 

behaviour o f  the orbits. T he tim e variation o f those system s w ithin the H ill-type stability 

region co n sis ts  o f  o n ly  a stab le m ode w ith low eccentric ities, w hile  those unstable ones 

outside u su a lly  c o n s is t o f  a set o f  'sub -stab le  m odes ', w ith  v e ry  sm all am p litu d es , 

around v a rio u s  eccen tric itie s , w hich m odes are separated  by som e close encounters. 

Those 's tab le ' o n es  o u ts id e  the H ill-type stability  reg ion  are co m b in atio n s o f  about 500 

SPs stab le  m o d e  fo llo w ed  by the above sub-stab le  m odes (see F ig . 5 .12c). T he new  

p h en o m en o n  w h ich  h as  o n ly  been  found  in these tw o  se ts  o f  ex p e rim en ts  is an 

in teresting  v a ria tio n  o f  the e's (and the a's): som e system s ju s t  o u ts id e  the H ill-type 

stability reg io n  co n sis t o f  a few  hundred  SPs stable m ode p lus a short unstab le m ode, 

follow ed by  a new  m o d e  w hich  is a com bination  o f  som e short p erio d ic  changes w ith 

very sm all am p litu d e  and  a very  long  periodic change w ith reaso n ab ly  large am plitude. 

This seem s strange , h in tin g  that an  irregular orbit can  even tually  fin d  its way to becom e 

regular. It is o b serv ed  th a t m ost system s w ith initially  h ighly  eccen tric  orbits share this 

same feature.

[0266] : E ssen tia lly  the sam e as [0166], but w ith apparen tly  sm aller varia tion  in a's 

and e's: varia tio n  o f  o u te r e below  10 '2, accum ulation o f  inner e o f  the o rder 10-2. T his 

does not im p ly  th a t sy stem s w ith h igher values o f e 's are m ore stab le  than those w ith 

low er e 's, b ecau se  the  ra tio  o f  m ajo r axes lies in d iffe ren t reg io n s  in the tw o p lo ts. 

B ecause o f  the w eak n ess  o f  pertu rbations, it is not p ractical to  use clo se  encoun ters  to 

determ ine stab ility . T h ere fo re  there is no reason to bring dow n the tw o stable po in ts on 

the righ t hand  side.

[0262] : N o c r itic a l ra tio  o f  m ajo r axes ex ists fo r th is set o f  p a ram eters . It is 

essen tia lly  th e  sam e as [0162], bu t c lose  encoun ters  are s lig h tly  s tro n g er such that 

collision o f  the in n er o rb it has been observed. In fact this is the only  set o f  experim ents 

with co llision  o f  in n er orbit. It is observed that as the inner eccentricity  goes up to a very 

high value the  in n e r sem i-m ajo r ax is usually  decreases by half. V aria tion  o f  ou ter e is 

below 10-2. T h e  th ree  s tab le  system s on the right hand side are found  to  consist o f  only 

random  stab le  m o d e  b o u n d ed  below  0.5, w hile the o ther stable o n es  are bounded  by a 

lower value, abou t 0 .3 . T h is  is p resum ably  another exam ple w ith com plicated  structures 

of valley an d  p lateau.
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[0226] : T h is  seem s to  be the m ost exotic set o f  experim ents w hich  d isp lays c learly  

the in consistency  o f  the concep t o f  H ill-type stability and h ierarch ica l stability  used  in 

W alker and  R o y  (1983). N o t on ly  co llis ion  and break-up  o f  the o u ter o rb it bu t a lso  

assured c lo se  en co u n te r instab ilities  w ere found w ithin the H ill-ty p e  stab ility  reg ion . 

This m akes com p u tin g  useless regard ing  an investigation o f  cond ition  H S-(C ) on ly; on 

the o th e r hand , i f  w e in v estig a te  all th ree  h ierarch ical s tab ility  co n d itio n s and  note 

instabilities regard less o f the existence o f the H ill-type stability region, then a curve m ay

be fitted to the d a ta  bu t it w ould go into the H ill-type stability  reg ion  below  a Q. In any

case there  is  ab so lu te ly  no  w ay to  fo llow  W alk er and R oy (1983) to fit cu rv es and 

investigate em pirical stability regions outw ith the H ill-type stability region.

T his is in  fact an  in trinsic  problem  o f  the concept h ierarch ica l stab ility  itself, since 

H ill-type stab ility  does not preclude collision  nor escape o f  m asses, it m akes num erical 

in tegra tion  s tu d ies  on  'h ie ra rch ica l' s tab ility  im possib le  even  if  we only  ch eck  the 

stability o f  the h ierarchy . T ak ing  in to  accoun t the fact that in stab ility  can cut short the 

time scale o f  num erical experim ents, w e chose to test the statistical conjecture by using 

this set o f  param eters . N one o f the 'stable' system s, except the only stable one on the far 

left, is stable, since they  survive through on com et-like orbits.

[0222] : N one o f  this set o f  experim ents is really  stable, because  alm ost all o f  them  

have suffered  a c lo se  encoun ter im m ediately  after com m encing  the in tegra tions, w hich 

increases the e's by abou t 0.3. A fter this a quasi-stable m ode fo llow ed, w hich lasts from  

a few  to a few  tens o f  SPs, and then ano ther close encounter k icks the system  in to  the

high eccen tric ity  region. E xceptions have only  been observed  fo r a  < 0.39, w here there 

is no no ticeab le c lose  encounter on com m encing  the integration. It is also in this reg ion  

that the new  p h en o m en o n  no ticed  in [0 1 2 2 ] w as observed  again , bu t w ith re la tiv e ly  

longer m u ltip le  sub -stab le  m odes. Even the system  on the fa r left inside the H ill-type 

stability reg ion  su ffers a strong  close encoun ter which kicks eccen tric ities  to about 0.5 

and doubles the size o f  the ou ter m ajor axis.

A co m m en t is in  o rd e r concern ing  the d iffe rence betw een  e=0.1 and e= 0 .2 . For 

system s w ith  h ig h e r  e c c e n tric itie s , sev e re  c lo se  e n c o u n te rs  a re  q u ite  co m m o n  

im m ed ia te ly  a f te r  the  in teg ra tio n  has been  begun , then  it seem s that, a f te r  th is  

red istribu tion  o f  en e rg y  and  angu lar m o m en tu m  betw een  the tw o  su b sy stem s, the 

systems fin d  m o re  stab le states (see Fig. 5 .12g, h and i).

Com m ents on the H ierarchical Stab ility  o f C oplanar 3-body System s

The above  e x p e rim en ts  c lea rly  dem o n stra te  the com plex ity  o f  the g en era l 3 -body  

problem. In m aking  these com m ents let us recall what our purpose is. The m otivation  o f
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the p resen t study  can  be traced  back to estim ating  the life-tim e o f  our p lan e ta ry  system . 

Since there is no general analytical answ er regarding its orbital stability, W alker and R oy 

(1983) ta c k le d  th e  p ro b lem  by ask in g  an ap p a ren tly  w eak er q u es tio n , b ased  on 

h ierarch ical stab ility . T he m ethodo logy  o f  their study is to ex trapo la te  the life -tim e o f  

weakly p ertu rb ed  system s (real system s usually  are) by investigating  fic titious system s 

with stronger perturbations so as to cut short the tim e-scale o f  the num erical in tegrations 

and c ircu m v en t the  p rob lem  o f  re liab ility  fo r long  term  behav io u r, w h ich  is u sually  

beyond the  ab ility  o f  ou r num erical rou tines. T h is was successfu l in W alk er and R oy

(1983) b ecau se  o f  the sm ooth  b eh av io u r o f  the life-tim e ag a in s t the p a ram ete r a .  

H ow ever, no t too  m uch should  be read  into such results since chaotic  system s do  not in 

general p o s se s s  sm o o th  p ro p e rtie s . T h is  p o in t has been  c le a r ly  sh o w n  in o u r 

investigation  o f  in itia lly  e llip tica l system s. T he reason  w hy a co m p le te ly  d iffe ren t 

phenom enon has been  o bserved  in the tw o stud ies is that eccen tric itie s  m ake a g reat 

d ifference in  co n sid erin g  the long  term  behaviour. A nother reason  is th a t W alk e r and 

Roy (1983) stud ied  fo r a re la tive ly  shorter tim e scale and that since the in itia l e 's w ere 

zero th e ir v a lu es  w ere  not a llow ed  to  grow  o u t o f  the very sm all e reg ion , o th erw ise  

instability w as noted. Therefore their study w as lim ited  to the very low  e reg ion  not only 

at the b eg inn ing  o f  the in tegra tion  but also  afterw ard  because orb its w ere ob serv ed  fo r 

relatively sh o rte r tim es, in w hich situation chaos w as not yet clearly  m anifested . T h is is 

also w hy co m m en su rab ility  w as a p lausib le  exp lana tion  for the ex is ten ce  o f  peaks in 

their g raphs. E m p irica l s tab ility  reg io n s w ere found  generally  to ex is t, an d  as the 

system s w ere  begun  w ith param eters  nearer and  nearer to the critica l stab ility  su rfaces 

the time varia tion  o f  a's and e 's are found to becom e m ore periodic.

In co n tra s t to  th is, the p resen t study has been  carried  ou t not on ly  fo r lo n g er tim e 

scales but a lso  fo r  h igher e's. T he studies o f  W alker and Roy (1983) re ly  heav ily  on the 

C2H  crite rio n , w h ich  on ly  g uaran tees cond ition  H S -(C ), neither H S -(A ) no r H S -(B ). 

The idea o f  an em pirical stability region outside the H ill-type stability region w as actually 

based on  the  o b serv a tio n  that H S -(C ) g u aran tee  both H S-(A ) and  H S -(B ) in th e ir  

num erical ex p e rim en ts . H ow ever, the set o f  experim ents [0226], am ong  m any  o thers, 

contradicts this: instab ilities (A) and (B) can occu r w hen (C) is guaranteed . B ecause o f  

this w e cam e to  reg ard  m odera te  c lose  encoun te rs  as instability . T h is  po in t o f  v iew  is 

confirm ed by  in teg ra ting  som e o f  the o rb its  backw ards in tim e: o rb its w ith substan tial 

close encounters usually  cannot be integrated back to the starting condition, unlike orbits 

w ithout c lo se  en co u n te rs . T h e  re su lt is  th a t in  the full sense o f W a lk e r and  R o y ’s 

definition o f  h ie ra rch ica l s tab ility , v iz., co n d itio n  H S-(A ), H S -(B ) and H S -(C ) (see 

section 1.3), m any  system s in the H ill-type stability regions are not h ierarch ically  stable,
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nor do  the system s becom e m ore stable w hen a  decreases. In fact only  one o f the sets o f  

experim en ts, nam ely , [1022], supports the valid ity  o f  the a ttractive  p icture o f  W alk er 

and R oy (1983). A ll these are schem atically  show n in T ab le  5.4.

Can w e hope to preserve the em pirical stability picture if  we only consider instability  

condition (C )? C erta in ly , w ith in  the H ill-type stab ility  reg io n  cond ition  H S -(C ) holds; 

but w ha t ab o u t o u ts id e  it? T he answ er is still 'no ', no t o n ly  up to  1000 SPs, but in 

p rincip le; b ecau se  in s tab ilitie s  (A ) and (B) m akes it im p o ssib le  fo r any n u m erica l 

in teg ra tion  to  be co n tin u ed  indefin ite ly . In fact, H S -(C ) can  be p re se rv ed  even  fo r 

system s w ith  n o n -n eg a tiv e  total energy  (M archal & B ozis, 1982). O n  the o ther hand , 

even if  the above d ifficu lty  d id  not exist, nor w as the very  exo tic  [0226] p lo t observed , 

the sim ple p ic tu re  o f  an em pirical stability region outside the H ill-type stability region is 

not n ecessa rily  true. A good exam ple is the p lo t [0126], w here  all system s inside the 

H ill-type s tab ility  reg io n  are quite  stable, w hile the in s tab ilities  ex tend  righ t up to the 

very edge o f  th is ana ly tica l stability  region. W e see from  the above com m ents that it is 

advantageous to  keep  the fu ll defin ition  o f  h ierarch ical stab ility  and m odify  the fo rm er 

picture o f  em p irica l stability  so that the em pirical stability  cu rves are allow ed to go into 

the H ill-type stab ility  regions.

T he su g g estio n  from  [2062], am ong o thers, is that even  i f  there are h ierarch ica lly  

stable system s (accord ing  to either H S-(C ) only, o r all three stability  conditions) outside 

the c ritica l stab ility  surface, they do not fo llow  the sim p le  p ic tu re  g iven by W alker and 

Roy (1983): they  are found  to  be m ixed  w ith non-h ierarch ica lly  stable system s. T hese  

are also  the ex p e rim en ts  w hich challenge the m od ified  p ic tu re  o f  em pirica l s tab ility , 

nevertheless, the statistical interpretation given in the next section m ay justify  this point.

A t th is p o in t it is appropria te  to m ake som e o ther com m ents. C om m ensurab ility  o f  

mean m o tio n s  d o es  no t seem  to p lay  a s ign ifican t ro le  even  in n o n-coup led  ellip tica l 

system s, s in ce  th ey  w ill be very  a ty p ica l. T h e re fo re , W a lk e r and R oy 's  (1 9 8 3 ) 

explanation o f  the p eaks by com m ensurability  does not seem  to apply  to the resu lts o f  

the p re sen t s tudy . E ven  if  co m m en su rab ility  w ere im p o rtan t, it w ou ld  o n ly  be fo r 

weakly co u p led  system s. T here  is therefo re  no sim ple ex p lan a tio n  fo r o u r 'peaks' in 

Fig. 5.11, w hich  are in fact not peaks if  we consider clo se  encoun ter. O nly  w hen close 

encounters are  taken  in to  account, could  com m ensurab ility  p lay  a possib le  role. It is in 

fact observed  that, w ith  respect to the sets o f  data, there are no apparen t sharp peaks like 

those found  in W alk e r and Roy. W hat we have now  are valleys and plateaus, w ith peaks

(near a c) taken  to  be deg en era te  valleys o r p lateaus. T h is  can n o t co rresp o n d  to any

isolate single value com m ensurability .

If  w e lo o k  at the sets [0062], [1062] and [2062], it is ev iden t that the p lateaus PI and
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PII on the la tte r tw o are m ore stable than the system s w ith sam e in itial a  in the c ircu lar 

case in W alk e r and R oy (1983). Furtherm ore , betw een 0.53 and 0 .55 , PO in [2062] is 

m ore stable than V in [1062]. T hese are exam ples w hich support the po in t that stab ility  

can increase w ith increasing the values o f  the eccentricities (see last section).

F rom  F ig . 5 .12, w hich  is rep resen ta tiv e  o f the w hole in v estig a tio n , it seem s that 

syzygy is no t alw ays the w orst configuration, since changes in the elem ents do  not seem  

larger near syzygy than  fa r  from  it. In fact, the accum ulation  o f  in s tab ility  b u ild s up 

through a w hole  synodic period , i f  not at the last fatal one. It is a lso  obv ious from  Fig.

5.12 th a t th e  q u an tiza tio n  o f  read in g  life tim e in SP is n o t one in g en e ra l, as w as 

rem arked by W alker, subjective read ing  can m iss a great num ber o f  synodic periods.

A  com parison  betw een W alker and  Roy (1983) and M cdonald  (1986) show s that in 

general re trograde system s are m ore stable than prograde ones, w hich w as also  observed  

by H enon (1970) in the con tex t o f  the restric ted  3-body problem . It is ob serv ed  in Fig.

5.12 that th is is because  re tro g rad e  m otions can pass the w orst co n fig u ra tio n s  m ore 

quickly  such that a c lose  en co u n te r o f  the sam e size w ill not last tim e eno u g h  fo r the 

re trograde o rb its  to  bu ild  up in stab ility , even though there are m ore c lose  en co u n te rs  

during the sam e tim e interval.

A n observation  on escape given by W alker and Roy (1983) is also  con firm ed  in our 

experim ents. It is observed  that, if  the sm allest m ass is in the ou ter orbit, it is alw ays this 

m ass that is throw n fa r aw ay w hich signals an escape. H ow ever, there  is an  uncertain ty  

if the sm allest m ass is invo lved  in the inner orbit, w here the sem i-m ajor ax is decreases 

as e grow s to  a very high value.

It is a lso  no tab le  that, from  T ab le  5 .4 , there seem s to be an apparen t d iffe ren ce  in 

that the 'c ircu lar restric ted  3-body system s' show m ore valley and plateau  structures than 

the elliptical ones. This m ay be explained as that the form er case has m ore stable m otions 

m ixed w ith unstab le ones in the p resum ab ly  unstable regions. N ote fu rth e r that in the 

two c ircu la r cases, the system s w ith  the sm allest m ass in the inner o rb it show  m ore 

structures than w hen the sm allest m ass is put in the outer o rbit round both 'p rim aries’.

F in a lly , w e po in t o u t that, th o u g h  o u r exp erim en ts have been  p re sen ted  in  the

e-param eter space w hich d isto rts the p ictu res, the general nature o f  the re su lt shou ld  be

the same in the ^.-parameter space; because instabilities have been observed within the 

Hill-type stability regions, and stabilities outside such regions, which cannot be changed  

by the transformation.
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Table 5.3  V alue  o f  the stab ility  indicators. A '*' in the a e colum n m eans that system s

w ith in itial a  equal to o r below  the num ber are quite stable up to  the time lim it o f  

the num erical investigation  (1000 SPs); no stable system  has been yet found for 

those sets o f  experim en ts w ithou t '*'.

e 2 e 3 e23 e32 a ' (Xc a i a e a x

0 . 0 0 . 0

- 6 - 6 . 0 0 2 . 9 7 3 . 9 7 3 0 .9 7 4

1 . 0 0 0
- 6 - 2 . 0 0 2 . 4 1 2 . 4 1 2 0 .5 1 6

- 2 - 6 . 2 0 0 . 5 2 0 . 5 2 0 0 .6 2 7

- 2 - 2 . 2 0 0 . 3 2 3 . 3 2 3 0 .4 7 5

0 . 0 0 . 1

- 6 - 6 . 0 0 2 . 8 4 2 . 8 7 5 <  0 .8 6 0

0 . 9 0 0
- 6 - 2 . 0 0 2 . 3 7 1 <  0 .5 0 0

- 2 - 6 . 1 8 0 . 5 4 6 . 4 6 5 <  0 .5 4 6 *

- 2 - 2 . 1 8 0 . 3 6 9 . 2 9 1 <  0 .3 6 9 *

0 . 0 0 . 2

- 6 - 6 . 0 0 2 . 7 0 0 . 7 7 8 <  0 .7 7 0

0 . 8 0 0
- 6 - 2 . 0 0 2 . 3 3 0 <  0 .3 8 0 *

- 2 - 6 . 1 6 0 . 5 4 8 . 4 1 6 <  0 .4 4 0 *

- 2 - 2 . 1 6 0 . 3 7 4 . 2 5 9 <  0 .3 7 0

0 . 1 0 . 0

- 6 - 6 . 0 0 2 . 8 5 2 . 8 8 4 <  0 .8 6 5

0 . 9 0 9
- 6 - 2 . 0 0 2 . 4 9 6 . 3 7 5 <  0 .5 0 0

- 2 - 6 . 1 8 2 . 4 7 3 <  0 .4 8 0 *

- 2 - 2 . 1 8 2 . 3 7 6 . 2 9 4 <  0 .4 7 0 *

0 . 2 0 . 0

- 6 - 6 . 0 0 2 . 7 3 5 . 8 1 0 <  0 .8 0 0

0 . 8 3 3
- 6 - 2 . 0 0 2 . 5 5 2 . 3 4 3 <  0 .5 4 0

- 2 - 6 . 1 6 7 . 4 3 3 <  0 .4 8 0 *

- 2 - 2 . 1 6 7 . 4 0 7 . 2 6 9 <  0 .4 0 7



T ab le  5 .4  S chem atic  p lo t o f  the sets o f  experim ents as close encoun ter instab ility  is 

no ted . N ote the linear nature in the sets [...6 6 ], the valleys and plateaus in the 

sets [1062] and [2062], instabilities inside H ill-type reg ions in the sets [0226], 

[0 2 2 2 ] and [2 0 2 2 ]. [ 1 0 2 2 ] is the only set show ing em pirical stability  reg ions 

ou tside  H ill-type stability  region, w hile the tw o sets [0126] and [0122] have 

no em pirical stability regions outside H ill-type region.

[1066] [0266][2066] [0166]

[2062] [0162] [0262][1062]

( Ci r c u l a r  R e s tr ic te d ) (El l ipt i cal  Res t r i c t ed)

[2026] 

(El l i p t i ca l  R es tric te d )

[0226] 

(Ci r cu l a r  Res t r i c t ed)

[1026] [0126]

[0222][2022][1022] [0122]

C r o s s - o v e r .
C lose encounter  not noted.

Cr o s s - o v e r .  
C lose encoun 
The only one 
of inner orbit:

er.
with ollision 

[0262],

C r o s s - o v e r .
C lose  encoi nter.  
Collision anc escape o f 
o u te r m ass.

C r o s s - o v e r .
C lose  encoun er.
The  only one w ith em pirical 
stab ility  regioi : [ 1 0 2 2 ].



[... 66]

[1062] [2062] [0162] [0262]

[0126] [0226][1026] [2026]

[0122][1022] [2022] [0222]



Fig. 5.11

Presented in this set o f  d iagram s is the resu lt o f  several hundred num erical in tegration  o f  

fic titious system s. T he c lose  encoun te r instab ility  is not no ted  here. T he p lo ts are the 

sam e as in W alker and R oy (1983), nam ely , the vertical axis is the life-tim e (Ns) o f  the 

system s in  synodic p e rio d  (SP), w h ile  the x -ax is is the in itia l v a lu e  o f  the  ra tio  o f

sem i-m ajor axes (a ) . T he sym bols used in the plot are defined as

o   s tab le  up to 1000 SP

+   c ro ss  o v e r o f  o rb its

□ .................................en e rg y  o f  one o rb it becom es non-negative

• ....................... eccen tric ity  o f  at least one o rb it goes bey o n d  0.99.

T he po in ts in the d iagram s are jo in t by dotted  lines to indicate the o rder o f  them . On

som e o f  the plots a dark broken vertical line is draw n to indicate the value o f  a c.

A lso  note that in these num erical experim ents escapes (energy o f one o rb it becom es 

non-negative) are only o bserved  fo r the  o u te r orbit. A lm ost the sam e p h en o m en o n  is 

observed  fo r co llisions, w ith the only excep tion  o f  the set [0262], w here  co llis io n s are 

observed in the inner orbit.
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Fig. 5.12

P resen ted  h e re  are som e ty p ica l exam ples o f  the v aria tio n  o f  se m i-m a jo r ax es and  

eccen tric ities  w ith  respect to tim e (in fact w e have used the num ber o f  in teg ra tio n  steps 

'N ST E P '). In  the d iag ram s a star '*' ind icates a con junction  o f  the  th ree  m asses  in  the 

order o f  1 , 2  and  3.

(a). T y p ic a l c o rre la te d  b e h a v io u r  o f  the sem i-m a jo r ax es (in  ful l  cu rv e s ) and  

eccentricities (in broken curves).

(b). A  's tab le  m ode' fo llo w ed  by a 'random  stable m ode ' in &2-

(c). A  's tab le  m ode ' fo llow ed  by som e 'sub-stab le m odes' in 6 3 .

(d). A n ex ten sio n  o f  the 'stab le m ode' p receding  instability .

(e). A stable (alm ost) periodic m otion.

(f). A no ther stable (alm ost) periodic m otion.

(g). A n e x a m p le  o f  p o ss ib le  se lf-stab ilisa tio n : 's tab le  m ode ' + 'su b -s tab le  m o d es ' + 

'long term  perio d ic  m otion '.

(h). A b e tte r exam ple  o f  possib le  self-stabilisation: 'strong  close en co u n te r ' + 'irreg u lar 

m otion ' + 'long  term  period ic  m otion '.

(i). A n ex a m p le  o f  p o ss ib le  se lf-s tab ilisa tio n : 's tab le  m ode ' + 'su b -s ta b le  m o d es ' + 

'long term  p erio d ic  m otion ' +  'sub-stab le  m odes'.

(j). A co m p ariso n  o f  a p ro g rad e  and  co rrespond ing  re trog rade m otion . T h e  d iag ram s 

only co v e r 38 SP  in  each  case. T he stab le (alm ost) period ic m o tion  o f  the re tro g rad e  

system is m ain tained  up to the tim e lim it o f  the num erical integration, nam ely , 1000 SPs; 

w hile the d ire c t sy stem  su ffe rs  c lo se  en co u n te rs  a fte r abou t 10 S P s an d  f inal ly a 

cross-over instab ility  occurs a t 8 6  SPs.
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Figure 5.13 Distribution of systems with their lifetimes (Ns) for the same (£23, e32)

parameters and eccentricities. The four coplanar 3-body systems are 

taken from the set [0226] of Figure 5.11. The number in the up right

comer of each diagram indicates the value of the initial a . About 200

systems are investigated for each a ,  and the top 'bar' counts for the 

number of systems which last more than 30 SPs.
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5.5 N u m e r ic a l  E x p e r im e n ts  on 3 -B o d y  S y s tem s  III

- A  F irst  T es t  o f  R o y 's  S ta tis t ica l  S tab ility  C o n je c tu r e

C onsidering the practical value o f  the com plete defin ition  o f  h ierarch ical stability  it still 

rem ains p o ssib le  to fit sm ooth  cu rv es  to the lifetim e p lo t fo llo w in g  W alk e r and  R oy 

(1983), w ith a m odification o f  allow ing the curve to  go into the H ill-type stability  reg ion  

given by the C 2H  criterion . F u rtherm ore , the fitted  cu rv es  m ust be ju s tif ie d  to  ca rry  a 

statistical interpretation: coplanar hierarchical 3-body system s with the sam e initial (c2 ^3

e23 e 32 a ) Param eters but different relative orientation o f  the two orbits and different 

initial positions on the orbits o f  the m asses usually have correlated lifetime; the maximal

possible lifetim e for each initial a  fits into a sm ooth curve.

In o rd e r to test o r ob tain  this curve, how ever, one w ould  need a m uch  larger set o f  

num erical in teg ra tio n  experim en ts. In the present w ork, only  abou t 200  system s are

num erically  in tegrated  for each o f  the four initial a 's  taken out o f the set [0226]. T his set

was chosen  because  o f the instabilities below  a c, which m ake possib le  a test o f system s 

inside the H ill-type stability region.

The resu lts are presen ted  in Fig. 5.13, w here the range o f  life-tim e is chosen  so as to 

cover the  m ax im ally  possib le  life-tim e. It is a lready  c lea r that the m ax im al p o ssib le

lifetim e sh ifts con tinuously  tow ard  larger values for sm aller values o f  the initial a ,  and 

the d istribu tion  o f  the system s are m ore spread out over larger life-tim es. In fact, w hile

m ost o f  the system s' life-tim e is below  30 SPs for in itial a= 0 .6 5 9 , 0 .63, and 0 .59 , on ly

about 40  o f  the 200  system s w ith initial a = 0 .5 1 1 have life-tim e below  30 SPs, although 

the m axim al possib le  life-tim e is only about 15 SPs. W e also note that for sm aller value

of initial a ,  the life-tim e is very unlikely to be zero. Thus we conjecture that, the sm aller

the value o f  initial a ,  the bigger the value o f the shortest life-tim e.

W e n o te  from  F ig . 5.11 that although the a= 0 .5 1 1  system  is in side  the H ill-ty p e  

stability reg ion , the cross-over instability  was observed during this investigation . T h is  is 

not a co u n te r exam ple  fo r the resu lt proved  in sections 5.1 and 5.2 (see equation  (5.4));

because the value  o f  a c is also  a function  o f  the rela tive orien ta tion  and the position  o f

the m asses on the orbits. T he value  o f  a c ind icated  in F ig. 5.11 is in fact the g reatest 

value for the g iven param eters specified there.
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5.6 Summary

In this ch ap te r w e p roved  using a geom etrical m ethod that w hen a 3-body system  (either 

p lanar o r spatial) satisfies the H ill-type stability condition, then it preserves a geom etrical

h ie ra rch y  in  the sense  th a t n o t on ly  p 2 < p 3 but a lso  a c < a x < 1. A n im p o rtan t

s ta tem en t co n cern in g  the size o f  IU 2 at the th ree co llin ear critica l co n fig u ra tio n s w as 

proved  by W alk e r & R oy (1981) in a lim ited case. This is show n to be true in general as 

an im m ed ia te  resu lt o f  o u r proof.

In spite o f  the theoretical im portance o f  the analytical H ill-type stability criterion  and 

the applicab ility  o f  the circu lar C 2H  stability criterion (see eg. Szebehely and Zare, 1976; 

W alk er an d  R oy, 1983), it is show n in the p resen t w ork  that the ellip tical C 2H  stab ility  

criterion  is valueless in indicating  stability o f the prograde coplanar 3-body system s. T he 

n um erical ex p e rim en t does not show  obvious tunnel-shaped  critical stab ility  surfaces. 

M o reo v er, s tab le  sy stem s ex is t ou tside  the an a ly tica l stab ility  reg ion  an d  u n stab le  

system s ex is t inside it. N ew  com plicated  valley  and p la teau  structures are observed  in 

the d iag ram s o f  F ig . 5.11, w hich are believed  to  be a reflection  o f the com plex ity  o f  the 

phase space structure o f  a general nonlinear system .

A s a fu tu re  w o rk  w e ho p e  to ca rry  o u t the n u m erica l ex p e rim en t u sin g  the

p -param eters , and investigate  the 3-dim ensional m otion o f  the 3-body problem . It is also 

d esirab le  to  f in d  som e ex p lan a tio n  fo r the p h en o m en a  ob serv ed  here fro m  ch ao tic  

dynam ics.
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CHAPTER 6 

Symmetries and Conservation Laws in General Relativity

In the last tw o chapters w e have d iscussed  the restric tions on possib le m otion  o f  c lassica l 

grav ita tional N -body system s by the energy  and angular m om entum  in tegrals. H ow ever, 

the re su lt is on ly  im p o rtan t fo r system s w ith not m ore than three bodies, and  can n o t be 

generalised to  system s w ith m ore than three bodies. The purpose o f this and the fo llow ing 

chapters is to  generalise  the c lassica l resu lts into the fram ew ork o f  general re la tiv ity ; in 

particular, bounded m otion  o f  iso lated  g ravita tional few -body system s in asym pto tic  flat 

spacetim e (see M isner ai, 1973). Such an approach is com pletely  novel. A lthough  it is 

quite apparent that m any o f  the general difficulties will be encountered in the course o f  this 

approach, w e w ill obtain  som e im portant results.

T o  proceed  w e m ust m odify  the conventional way o f achieving restric tions on allow ed 

m otion. In stead  o f  d iscu ssin g  the co n stra in ts  o f  conserved quan tities (in teg ra ls) on the 

possible m otion , as is usual and apparently  obvious, we look for the re la tionsh ip  betw een 

forbidden m otion and the underly ing  sym m etries o f the problem . In classical m echanics, it 

may look  as though this change o f view  is triv ial if  not strange, for it is w ell-know n that 

conservation law s are re la ted  to sym m etries through N oether's theorem  (N oether, 1918; 

see a lso  O lver, 1986; A b rah am  & M arsden , 1978). In fact, Sm ale (1970) p re fe rred  to 

discuss the topo logy  o f  m echan ical system s in term s o f 'sym m etry ' ra th er than  'in tegrals' 

although in this case the d iffe rence in approach  w as not im portant (see also  H eisenberg , 

1967).

H o w ev er, it tu rns ou t to  be n ecessary  to m ake such a change o f  v iew  in general 

relativity, because here there is in general no tensorial integral conservation  law s (but see 

D ixon, 1979) since a sp ace tim e m etric  d o es not usually  adm it K illing  vec to rs . T h is  

problem  caused  som e severe  d ifficu lties  fo r several decades after the estab lish m en t o f  

general re la tiv ity  and is still a ttracting  ex tensive  in terest today (see, fo r exam ple , E hlers 

(1979) fo r som e rev iew  papers on  the alternative  form ulation o f conservation  law s). T he 

coordinate d ep en d en t fo rm u la tio n  o f  co n se rv a tio n  law s found by L andau  & L iftsh itz  

(1962) has gone som e w ay  to  so lv ing  this p rob lem  in a restric ted  w ay but m uch  w ork  is 

still requ ired . F ro m  the d iscussion  on coord ina te  dependent conservation  law s given  in 

section 6 .3 , we see that som e nontrivial uncertainties may exist concerning the relationship 

between conserved  quan tities  such as energy and angular m om entum  and any sym m etries 

which m ay ex ist. In co n tras t, it is qu ite  natu ra l and in fact necessary  to pu t the system
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under in v es tig a tio n  in to  an asym pto tica lly  fla t sp ace tim e and  to  assu m e som e d efin ite  

asym ptotic sym m etries. A sym ptotic sym m etry  is a lw ays a defin ite  concep t and therefo re  

its re la tio n sh ip  to  fo rb id d en  m otion  m ay be m ore fu n d am en ta l, w h ile  the n o tio n  o f  

conserved q uan titie s  m ay be regarded m erely as o f  secondary im portance but nevertheless 

useful. In fact, from  the present d iscussion , it is found  that it is no t strange to re la te  these  

two concepts d irec tly  by ignoring the concept o f integrals.

It is n o t su rp ris in g  that forb idden  m otion  m ay  be found  fo r som e fic titious sy stem s 

p ossessing  sy m m etrie s  (K illing  vec to rs). H ow ever, an in v es tig a tio n  o f  the re la tio n sh ip  

betw een fo rb id d en  m otion  and asym ptotic sym m etries in m ore general cases is not only  

im portant fo r the sake o f  determ ining ordered m otion , but is also  o f  in terest by itself. T he 

analysis o f  th is ch ap te r w ill provide the reason w hy w e finally  adop t the idea o f ask ing  for 

the re la tio n sh ip  b e tw een  forb idden  m otion  and (asym pto tic ) sym m etry ; and in the  next 

chapter w e w ill show  that the latter does im pose restric tions on the m otion  o f the system . 

W e w ill d iscu ss  the constra in ts  im posed  by energy  and  an g u la r m o m en tu m , bu t a lw ay s 

keep in m ind  that it is the sym m etry that is im portant.

T he  ta sk  o f  th is  ch a p te r  is to p re sen t a g en e ra l d iscu ss io n  on sy m m etrie s  and  

conservation  law s in  general relativity; and in particu lar, the system 's energy  and an g u la r 

m om entum . M ost o f  the m aterial is standard; but it will be form ulated  to favour the present 

approach. In  the  m ean tim e, som e questions are clarified  by m ore p ro fo u n d  answ ers. W e 

have chosen  to  keep  o u r notation in this and the fo llow ing  chap ters  as close as po ssib le  to 

Schutz (1980), nam ely , a bold face letter denotes tensor, barred  le tte r a vector, tilded  letter 

a 1-form .

In sec tio n  6.1 the re lev an t resu lts  from  d iffe ren tia l g eo m etry  are in tro d u ced . A 

fundam en tal d iffe ren c e  betw een  v ec to r and  1 -fo rm  on m an ifo ld  is em p h asised , w hich  

finds an ap p lica tio n  in  la te r sections. In sec tion  6 .2  w e d iscu ss  a re la tio n sh ip  be tw een  

K illing v ec to rs  and  conserved  quan titie s  fo r geodesic  m o tion  on m etric  m an ifo ld s . A 

q u estio n  c o n c e rn in g  the  im p o rtan ce  o f  v ec to rs  an d  1 -fo rm s  in co n n e c tio n  w ith  

conserva tion  law s is  answ ered . In section  6.3 G auss ' th eo rem  is in tro d u ced  u sin g  the 

language o f  m a n ifo ld s , and app lied  to  in v es tig a te  the g en e ra l re la tio n sh ip  b e tw een  

(a sy m p to tic  sy m m e trie s )  and co n se rv a tio n  law s in  g en e ra l re la tiv ity . N ew  fo rm a l 

conservation law s are constructed.

In sec tio n  6 .4  w e p ropose to study the in teg rab ility  o f  re la tiv is tic  system s and  to 

d iscuss a p o ss ib le  w ay  o f  determ in ing  re la tiv is tic  chaos. T he c la ss ica l m o tion  o f  one 

particle in  an  ex terio r field  (cf. chapter 2 ) is form ulated  in the language o f  geodesic m otion 

on R iem ann  m an ifo ld s; thus estab lish ing  a connection  betw een  the P o isson  b racket and 

Lie b racket. In sec tion  6.5 we m ake the first a ttem pt to generalise  the c lassica l S undm an  

inequality  ap p ro ach  in to  the study o f b ounded  m otion  in re la tiv ity . T h is  is app lied  to
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produce the sim p lest fo rb idden  m otion in general re la tiv ity , nam ely , that o f  the geodesic 

m otion in the Schw arzschild  geom etry.

6.1 E le m e n ta r y  D if fere n t ia l  G eo m etry

A lthough both H am ilton ian  dynam ics and re la tiv ity  can be fo rm u la ted  using coo rd in a te  

dependent languages, the coo rd ina te-free  geom etric no tion p rov ides a g reat advan tage in 

dealing w ith these prob lem s. In approaches using geom etric ob jects one often  feels a lack 

of no tation  fo r w ha t on e  w ants to express; how ever, the freedom  ob ta in ed  by escap in g  

from  the co n stra in ts  o f  a p articu la r coo rd ina te  system  often  p ro v id e  a m ore p ro fo u n d  

insight into the question .

In th is sec tio n  w e w ill in tro d u ce  the re lev an t co n cep ts  o f  to p o lo g y , ca lcu lu s  on 

differential and R iem ann  m anifolds. T he m ain re ferences are B ishop &  G oldberg  (1968), 

M isn erg t al (1973), C hoquet-B ruhat et al (1977), and Schutz (1980).

M an ifo ld ,  V e c to r ,  1 -F o rm  and  T en so r

The ab strac t co n cep ts  o f  m o d em  m ath em atics are o ften  p u rified  v ers io n s  o f  fam ilia r 

concepts. T o  som e ex ten t, m o d em  m ath em atics  m ay  be looked  upon  as an ab strac t 

building process that in troduces m ore and m ore structures to the m ost basic concepts o f set 

theory . A  to p o lo g ic a l  s p a c e  m ay be in te rp re ted  as a set w ith  a lo ca l t o p o l o g y  

structure, w hich  d efin es  a n e ig h b o u rh o o d  for each  po in t o f  the set (see Jan ich , 1984). 

A to p o lo g ic a l sp ac e  is  s till  v e ry  a b s tra c t, s in ce  the to p o lo g ic a l s tru c tu re , ie. 

neighbourhood, is n o t necessarily  a continuous region. F o r exam ple , a fin ite la ttice form s 

a trivial topological space; w hereas the norm al distance can induce a topology on the linear 

space R n. In o rder to define som ething m ore useful for the physics o f  the real w orld , m ore 

structures m ust be in troduced  one after another, the first one being continuity .

A m an ifo ld  is a topo log ical space w ith a local topo logy  sim ilar to that o f  the linear 

space Rn, w hose local topo logy  is defined  in the usual w ay. Put in o th er w ords, a chart  

coordinate system  { x 1, ..., xn ) is defined  for a neighbourhood  o f  any poin t on a m anifold; 

m oreover, in the reg io n  w here tw o  ch art co o rd in a tes  overlap , there  m ust be a 1-1 C k 

transform ation betw een the tw o chart coordinates. The second requ irem ent im plies that all 

the chart coord inates m ust have the sam e dim ension , w hich is ca lled  the d im ension  o f the 

m anifold. L ater w e w ill see that a m etric tensor m ay be in troduced  to  fo rm  a R iem annian  

m anifold.

M appings be tw een  m an ifo lds are also  o ften  encountered . A h o m e o m o r p h is m  is a 

continuous 1 -1  o n to  m app ing  betw een  tw o con tinuous topo log ical spaces such that the
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inverse m app ing  is also continuous. It is w orth noting that the con tinu ity  o f  a 1-1 m apping  

does n o t gu aran tee  the con tinu ity  o f  the inverse m apping. A d if fe o m o rp h is m  is a C°° 

1-1  o n to  m ap p in g  be tw een  tw o co n tin u o u s to p o lo g ica l sp aces such  th a t the in v e rse  

m apping  is also  C°°. In the sam e way one can define Ck differen tiab le m appings.

O n m an ifo ld , one can talk  about m ost physically  useful co n cep ts  such as func tions, 

curves and  tangen t vectors. A  function on a m anifo ld  is a m apping  from  the m anifo ld  to  a 

subset o f  R 1. A  curve is defined as a d ifferentiable m apping from  an open  set o f  R 1 in to  a

m an ifo ld  M . T hus one associates to each  poin t on  the curve w ith a num ber, say X, in the

open se t o f  R 1; the cu rve is said to  be p aram eterized  by the p a ram e te r X.  D iffe ren t 

param eterization  o f  a single path will be considered as d ifferent curves.

It is  w e ll-k n o w n  that in lin ear a lgeb ra , vec to rs and v ec to r space are taken  as the  

starting  p o in t, then  1-form s and tensors can  be defined  on the v ec to r space as operato rs. 

The w h o le  co n ten t o f  these can be defined  on the m an ifo ld  as w ell, but they w ill carry  

richer m ean ing . F o r exam ple , in linear algebra vectors and 1-fo rm s have equal position , 

they are  d iffe ren t on  a m anifold . A lthough  th is linear s tructu re  can  be in troduced  to  a 

m anifo ld  e ith e r by starting  from  vecto rs o r starting  from  1-fo rm s, it is co nven tiona l to 

fo llow  the fo rm er. In develop ing  th is structure on a m anifo ld , one a lw ays assum es the 

tensor a lg eb ra  on  linear space as prelim inary.

In lin ea r algebra , a l-form  (denoted by a tilde o v er a le tter) is defined  as a linear, 

real-valued operato r on vectors. M oreover, we can define the addition o f  1-form s and their 

m u ltip lica tion  by  real num bers such that they form  a linear space, ca lled  the dual space  

of the v ec to r space. It can be proved  that the d im ension  o f  the dual space is the sam e as 

that o f  the v ec to r space; m oreover, because o f  the linearity  structu re  o f  both vectors and 

1-form s, they  have a sym m etric dual position . T he fo llow ing  n o ta tio n s w ill be used  to  

denote the con traction  o f  a 1-form  with a vector, viz.

co(V) =V(co) = < S),V > = <V, co> .

T hus in  l in e a r  a lg eb ra , v ec to rs  and  1 -fo rm s are sy m m etric , th a t is, they  are n o t 

d istingu ishab le by their properties. H ow ever, w e will see that this sym m etry  is b roken on 

m anifold.

In the lin ea r space o f  1 -form s dual to  that o f  the vectors, any n linearly  independen t 

1-form s co n stitu te  a basis. H ow ever, once a basis has been chosen  fo r the vec to rs, th is 

induces a pre fe rred  basis for the 1-form s, called  the dual b asis . It is defined  by

^  i _  j
< co , e  > =  8

i i

for ev e ry  i, j = l ,  n.
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A  tenso r (denoted  by a bold face letter) is defined  as a linear, real-valued  o p era to r on 

1-fo rm s an d  v ec to rs. A  tenso r o f  type (N , N ') takes as a rg u m en ts  N 1 -fo rm s an d  N' 

vectors, and it is conven tional to pu t all the 1-form s before  the vectors. T enso rs o f  each  

type are also  assigned  a linear structure to  form  linear spaces. T ensors can be co n stru c ted

from  the  o u ter  prod uct o f tenso rs (deno ted  by ® ) ,  and  the o u te r  p ro d u c t o f  b as is  

vectors and  th e ir dual basis 1-form s form s a basis o f  the tenso r spaces. H ow ever, no t all 

tensors can  be fo rm ed  by ou ter products. F or exam ple , N ot all (2, 0) type tensors can  be 

expressed as the ou ter product o f  tw o vectors (see Schutz, 1980, P59). W e also  note that a 

tensor is com pletely  determ ined by its com ponents on a basis.

A tangent vector on a m anifold is a particular k ind o f  linear operator, called derivation , 

which is  n o t n ecessarily  lim ited  to a m anifo ld . A  d e r iv a t io n  is a linear o p e ra to r (o r 

m apping) on  an a lgebraic  system  (eg. linear space) w hich  satisfies the L eibn iz ru le . A n 

antiderivation is a linear operator on an algebraic system  w hich satisfies the an ti-L eibn iz  

rule. F o r ex am p le , w e can exp licitly  w rite  out the d e riv a tio n  defined  on the a lg eb ra ic  

system  o f  all tensors T, including scalar functions. L et the operato r be denoted as P, then 

being a derivation it m ust satisfy the axiom s

(a).  P T  = a  t e n s o r  o f  t h e  s a m e  t y p e  a s  T  ,

(d). HD (A  <8> B) = (ID) A) <8> B + A  <8> ( P B )  ( L e i b n i z  r u l e ) ,

where a, b an d  c are co n stan t num bers; and the co n v en tio n a l n o ta tio n s fo r v ec to rs , 

1-forms, tenso rs, basis vectors and its dual 1-form  basis are used (eg. Schutz, 1980). A  

derivation can have its ow n linear structures to form  a linear space. By using the first three 

axioms, it is straightforw ard to show that the Leibniz rule can be equivalently  w ritten as

(b ) .  !□)<©, V > = < P 5 , V >  + < c o , P  V >

EDC = 0 , nD<col , e j>=iD)5lj = 0

(c ) .  ID) (a A  + bB) =  a  P A  + b P B  ( l i n e a r  o p e r a t o r ) ,
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C onsider an  n -d im ensional m anifo ld  M , w ith a coord inate system  {x^}. O ne can show

that an o rd in ary  d eriv a tiv e  at a po in t m  on the m anifo ld  M  along  a X-curve satisfies the 

above co n d itio n s, i f  the a lg eb ra ic  system  operated  on is the space o f  all ana ly tic  sca la r 

functions. T h is  is a very  usefu l k ind  o f  derivation  defined on  a m anifo ld ; it is ca lled  the

(tangent) v e c to r  at the  p o in t m e M  (denoted  by a bar o v e r a le tter). Such tan g en t 

vectors (w ith  the usual lin ear structure) at a po int m  form  a linear space, T m, ca lled  the 

ta n g e n t  s p a c e  a t m , w h o se  d im en sio n  is equal to that o f  the m an ifo ld . O ne can  a lso  

show that the  tan g en t v ec to rs  along  the coord ina te  lines {x*} fo rm  a natural basis  o f  the

tangent space at m; such a basis is a c o o rd in a te  basis. T he tangen t v ec to r o f  a X -curve 

is usually  deno ted  by d/dX, and the coord inate  basis by {3/5xi}, o r {0j}, thus w e have

w _  _d_ = d )f  _3_ _  3 w ,  n  _  d !  _  d x ‘ at
v -n i v -n i' v \ ' /  ~dX dX ax' 3 x ' ’ dX dX ax'

where the sum m ation  conven tion  is used.

A  v ec to r f ie ld  re fe rs  to  a ru le  fo r defin ing  a vec to r at each  p o in t o f  M . L i n e a r  

in d e p e n d e n c e  can be d efin ed  fo r both vectors at a po int and vec to r fields; in the la tte r 

case, the in d ep en d en ce  is o v er scalar functions ra ther than constan t num bers. A  set o f  n 

linearly  in d e p e n d e n t v e c to rs  (f ie ld s) fo rm s a b a s is  (fie ld s), w h ich  need  no t be a 

coordinate basis. G iven  a C 1 vec to r field  there is one and only  one in tegral curve passing  

through each poin t, w hose tangent vector is exactly the vector field.

A L ie b racket can be defined  for two tangent vectors (not for vectors in linear algebra), 

which can be p ro v ed  to p roduce a new  vector,

u . A  y a A .
dn ’ dX

[ O . v H u v - v u - i i - i i .

One m ust no te  that although  the L ie bracket o f tw o vectors defines a vector, neither o f  the 

two term s is in general a vector. T herefore, the individual term s o f the above equation  are 

only defined  on  functions; bu t w e w ill see that the bracket, as a vector, is also  defin ed  on 

1-form s.

F or v ec to rs  w e have the fo llo w in g  tw o very im portan t resu lts: (1). any n o n sin g u la r 

vector can be a  basis field ; (2 ). a set o f  n independent vectors form s a coord ina te  basis iff  

any tw o o f  th em  c o m m u te , ie. their b racket vanishes.

On m an ifo ld s, 1-fo rm s can  also  be defined independent o f  tangent vectors. H ow ever,

it is conven tional to d efin e  a 1 -form  at a point m e M  based on the tangen t vec to r space at
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m. A 1-form  field is a ru le w hich  defines a 1-form  at every poin t o f  the m anifo ld . T hen  

tensors at a po in t and tensor fie ld s on the m anifo ld  can be developed  in the sam e w ay. 

A gain  th e ir linearity  as e ith er o p era to r o r linear space is defined  ov er n u m b ers  a t each 

point, ie. functions. It can be show n that the gradient o f  a function (w ith the usual addition 

and m ultip lica tion  rule) is a 1-form  on a m anifold. H ow ever, not all 1-form s are g rad ien ts 

o f a function . O n a m anifo ld  the dual space is ca lled  the co tangen t space at m , T * m. W e 

have the fo llow ing equations

F ro m  the  la s t o f  the above eq u a tio n s  we see that the 1-form  g ra d ie n ts  o f  the

see afte r the ex terio r derivative is defined  that no t every 1-form  can be adap ted  to  a set o f  

coo rd ina te  basis 1-form s. The reason  is that not all 1-form s are exact (n o r c lo sed ), but 

coo rd ina te  basis 1-form s are necessarily  exact. T h is  is one o f the exam ples sh o w in g  the 

d ifferent p roperties o f  1-form s and vectors on a m anifold.

P ro p erties  o f  tensors and basis transfo rm ations are essen tia lly  the sam e as in lin ear 

algebra, hence notations will be specified in the context.

Lie D e r iv a t iv e ,  E x ter io r  D er iv a t iv e  an d  C o v a r ia n t  D er iv a t iv e

The L ie  d eriv a tiv e  is another exam ple o f  a derivation  on a m anifo ld , w hich  o p era tes  on 

tensors o f  any type. A lthough the L ie derivative can  be defined  in  m any s tandard  w ays 

(see the  re fe ren ces m entioned at the beginning  o f  this section), the fo llow ing  observation  

is m o re  co n v en ien t. S ince the m an ifo ld  is d efin ed  as a space w ith co o rd in a te  ch a rts  

covering  it, the m ost natural and sim p lest d eriv a tiv es  o f tensors on a m an ifo ld , as a 

gen era lisa tio n  o f  the everyday  ca lcu lus, are partia l deriva tives o f  the co m p o n en ts  o f  a 

tensor w ith  re sp ec t to the coord ina tes. T he Lie d erivative  is ju s t  the co o rd in a te -free , 

g eo m etric  v e rs io n  o f  th is: c o n s id e r the one o f  the co o rd in a te  v e c to r  f ie ld s  as a 

co o rd in a te -free  v ec to r field , and regard  the p artia l deriva tives o f  the co m p o n en ts  o f  a 

tensor in  this coord inate  system  with respect to the chosen coordinate as a coo rd ina te-free  

tensor o f  the sam e type. We thus have the Lie derivative o f any tensor field w ith respect to 

any vec to r field

T his interpretation is possib le because any non-singular vector field  can be a

V = - 4 -  , w = 3f = f , 3x'

< a x i , 9 / a x i > = — = 5i. .
dx' '

coord ina tes {x*} are in fact the basis dual to  the coordinate basis vectors {a/ax*}. W e will
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coord inate  basis  fie ld . T h is  po in t is very  useful in rew ritin g  co m p o n en t eq ua tions w ith 

partial d e r iv a tiv e s  w ith  re sp ec t to coo rd ina tes in to  a ten so ria l fo rm  in v o lv in g  the L ie 

derivative an d  co v a rian t derivative. U sing  the standard  no ta tions we have the fo llow ing  

results

^ f =v(f) = ^  , £-u=[v,0] = -& -v

[ ^ V ’ ^ u ] = ^ [ V. U]  ’ +  ^ 1) = ^  V+b

M oreover, a L ie  deriva tive  has all the properties o f a derivation.

N ow  w e are  ab le  to state a very  im portan t theorem  abou t the subm an ifo ld , nam ely , 

F robenius' theo rem . A n  m -d im ensional su b m a n ifo ld  S o f  an n -d im ensional m anifo ld  M 

is a set o f  p o in ts  o f  M  w hich  are characterised  in a coord ina te  system  by x 1 = ... = xn' m = 

0. It is easy  to  p ro v e  that i f  tw o v ec to rs  are linear co m b in a tio n s  (no t n ecessarily  w ith 

constant coe ffic ien ts) o f  m  vecto r fields, then their L ie b racket is a lin ear com b in atio n  o f 

the sam e m  v e c to r  fie ld s  as w ell. F r o b e n iu s ' th e o re m  sta tes its converse: if  the L ie 

brackets o f  a set o f  m  C°° vec to r fields w ith one another are linear com binations o f  the m 

vector fields, then the in tegral curves o f  the fields m esh to form  a fam ily  o f  subm anifolds.

O n an n -d im en sio n al m anifo ld  w e can also define d ifferen tial fo rm s, in tegral ca lcu lus 

and ex terio r d eriva tives. A  p -fo rm  (p>2) is defined to be a com plete ly  an tisym m etric  (or, 

skew -sym m etric) ten so r o f  (0, p) type. S im ilarly , p -vecto rs can be defined . A 1-form  is a

(0, 1) tensor; a sca la r function  is a 0-form . T he an tisym m etric  part o f  a (0, p) tenso r is a

p-form. In th is w ork  w e w ill adopt the norm alised antisym m etric (and sym m etric) part, for 

example,

aA(0. V) = L[a(0, v) - s(v, 0)], (ffiA)A = aA 

as(u, v) = L [ s (u, v) + s(v. u» , ( sys= s 8 .

Similarly, w e use the fo llow ing  notations for antisym m etric (and sym m etric) indices

, =  T r r f c o .  -  c o .  1 =  ( 65 A) . .  , c o . . . = 7 r : [ c o . . +  c o . . ]  =  ( S J[ij] 2 ! L 'i )■ A ') (' i) 2 !  'i *' ')

It is w orth  n o tin g  th a t the sym m etry  p roperty  o f  a tensor is co o rd in a te  independen t. In 

other w ords, if  the co m ponen ts o f  a tensor are sym m etric (skew -sym m etric) on one basis, 

then so are they  on  any  basis.

It is w e ll-k n o w n  th a t any (0, 2) tenso r (ie. m atrix) can be decoup led  as the sum  o f  its 

sym m etric p a r t and  an tisym m etric  part. H ow ever, this is not true fo r h igher o rd er tensors. 

One can a lso  p rove that all p -form s form s a linear subspace o f  the (0 ,p) tenso r space, its 

dimension is
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p n _________ n !______

p "  p !(n -  p ) ! *

Just as higher order tensors could be made from the outer product of lower order 

tensors, we can define a w edge product for constructing differential forms o f higher 

degree, for example,

rv ~ ~ ~ pq
p A q  =  p ® q - q ® p  = ( - 1 )  q A p .

Any p-form can be decomposed on the wedge product o f a set of basis 1-forms

1 ~ i 1 Ja = —ra .co a  ... a  co = — :af. , , c o a . . . a c o  . p! ' - i  p!  i > jl

Contraction o f a vector with a p-form is defined as

5 (4 )  s  5 ( 4 ,  . . . )  = T^ -;'j 4 ' a . .  |,co'a . . .AC0k .

In studying differential and integral calculus on manifolds it is often convenient to 

introduce the completely antisymmetric Levi-Civita sym bols

I’+ l  i f { i j . . .  K} i s  an  e v e n  p e r m u t a t i o n  o f  {1, 2 , n} 

e k = e 'i "'k = ^ -1  i f { i j . . .  K} i s  an odd p e r m u t a t i o n  o f  {1, 2,  , n}

[ 0  o t h e r w i s e .

One must note that they are not entries of any tensor. In fact they have the following

meaning on any basis

~ ~ 2 ~ n i J   ̂ k
e = CO ACO A ... ACO = — . CO A CO A ... A CO .n ! ') k

Now we can define the integral o f an n-form on n-dimensional m anifolds. The 

dimension of the n-form space is exactly one, so in a coordinate system any n-form can be 

expressed as

co= coe = codx1 a 3 x 2 a ... a 3 x n

dx1 a 3 x2 a ... A d x n ( d x 13 r d x 23 2, . . . ,  dxn3 n) = d x 1d x 2 . . . d x n .

Thus a coordinate-free integral can be defined by 

Jco = Jcoe = Jcodx’d x 2 . . . d x n = Jcod°x .

However, one must notice that both co and the volume elem ent dnx are coordinate 

dependent. Moreover, no integral is defined for arbitrary tensors.

The exterior derivative is an operation inverse to integration, and is a very useful kind 

of antiderivation. The exterior derivative is defined to satisfy the following axioms
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a i s p - f o r m ,  p i s q - f o r m

(a). 3f = 1-form, 3 a  = (p+1)-form

(b) . 3(a  + (3) = 3 a  + 3 p

(c). 3 (a a  p) = (3 a) a  p + (-1)P& a  3 p

(d). 3 ( 3  a)  = 0.

From  these one can show

a (f 3g) = 3f a 3g ;
a  n

2^S=3[ f f i (V) ]  + ( 3 S ) ( V ) ,  i t - (3 S) = 3 ( ^ - u )

M oreover, on an n -d im ensional m anifo ld  the L ie deriv a tiv e  o f  a v o lum e n -fo rm  has 

some particu la r properties w hich are not shared by form s o f  d ifferent degree. F o r exam ple

Based on  the special properties o f  the volum e n-form s a d iv e rg e n c e  can also  be defined

closed, bu t a c lo sed  form  is exact only  locally  (this is ca lled  the P o incare  lem m a). T he 

g lobal q u e s tio n  d e p e n d s  on the re g io n  b e in g  c o n s id e re d  (se e  S c h u tz , 1980). 

(N evertheless, on an 1-dim ensional m anifold  a closed 1-form  is alw ays exact.)

N ow  le t us take a look  at ano ther very  usefu l d eriv a tio n , the co v a rian t d eriv a tiv e .

have been ta lk ing  about so far. In addition to  the d ifferen tial structure we m ust in troduce 

another s tructure on to  m anifolds, nam ely, the affine connection , w hich g ives the m anifo ld

shape and  cu rv a tu re . B y d efin itio n  an a ff in e  co n n ec t io n  ( V )  is a ru le  fo r p a ra lle l 

transport o f  vec to rs along vector fields, viz.

V-V = o <=> V i s  paral le l - transported along D .

£ - a = a [ S ( $ ) ]
} => 2 , f- ©  =  2 ,- ( f< 5 ) .

3 [ a ( f Q ]  =  a [ fd 5 ( 9 ]  J

w - d i v e r g e n c e o f  £:div £

A  d iffe ren tia l form  is said to be closed i f  its ex terio r deriva tive  vanishes. A p -fo rm  is 

exact i f  it is eq u a l to  the ex terio r deriv a tiv e  o f  a (p - l) -fo rm . An exact fo rm  is a lw ays

Unlike the L ie derivative, the covariant derivative cannot be defined on the m anifold w e
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U sing th is p aralle l transport rule, w e can easily  define the cov arian t deriva tive  o f  vec to r 

fields along  a v ec to r fie ld  (see Schutz, 1980), w hich  is in p rin c ip le  not m uch d iffe ren t 

from  the derivative o f  vectors in vector analysis.

W e no te  th a t in the defin itions o f  L ie  and co v a rian t d e riv a tiv es , v ec to r fie ld s and 

1-form  fields are given another asym m etric position , since no sim ilar derivative is defined 

along a 1 -fo rm  fie ld . T his p o in t is in fac t a re flec tio n  o f  the p rev io u s fu n d am en ta l 

d iffe rence  o f  the  tw o  co n cep ts , and  show s th a t the an a ly sis  on  m an ifo ld  is rea lly  a 

generalisation o f calculus (ie. differentiation is only defined w ith respect to a field  that can 

always be re la ted  to coordinates).

T he co v arian t deriva tive  along a vec to r field  ( V ( sat i sf i es the ax iom s o f  the

derivation, in particu lar, the L eibniz ru le, by w hich covarian t deriva tives can be defined  

for a tensor o f  any type. But the covariant derivative o f  a function is defined as

V-f  =  £ - f = V ( f )  .

T he co v arian t deriv a tiv e  does no t on ly  share w ith  the L ie deriva tive  their com m on 

properties belonging  to the derivation, but has the follow ing ex tra property,

V -  - T  =  f V - T +  a V - T  .( u +g v u y  v

This p ro p e rty  a llow s us to rem o v e the v ec to r fie ld  from  the d efin itio n  o f  co v a rian t 

derivative , h en ce  d efin ing  an o th er tenso r, the g r a d ie n t  o f tensors. If T is an (N , N ')

tensor, then  V T  is an (N, N '+ l)  tensor. T h is  grad ien t operato r (V )  is no t a deriva tion , 

but one can  show  that it satisfies axiom s (b), (c) and (d) o f derivations, viz.

v f = 3 f ,  v c  = o ,

V[ffi(V)] = (VS)(V| ) + (VV)(3|  ) ,

V(f A + g B ) = f  V A + g V B  , V ( A <8> B ) = ( V A )  ® B +  A ® ( V B )  ,

where c is a  co n stan t num ber, f  and  g are arb itrary  sca lar functions. F or the o rd er o f  the 

argum ents o f  a ten so r, w e have used  the co n v en tio n  o f  p u ttin g  the 1-fo rm s befo re  a 

sem i-colon, vec to rs afte r it, and the vec to r along  w hich deriva tives is taken is pu t to the 

right side o f  a vertical bar.

H o w ev er, p ro p e rtie s  (d ') and  (d") do  not app ly  to  th is g rad ien t o p era to r, fo r by 

definition, ten so rs  do  not take h igher o rd e r tensors as argum ents. A lthough  one m igh t 

justify using  the concep t o f  con traction  to develop  (d1) and (d") fo r the gradient, it w ould  

not be very  usefu l. T he  value o f  these tw o properties is that they can develop  com ponen t 

expressions fo r a geom etric derivation, but fo r gradients this can alw ays be ob tained  from
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the properties o f  the covarian t derivative operator,

G eo d esic  cu rv es  m ay be defined  on m anifo lds w ith affine connections. A g e o d e s ic  

curve is a cu rve w hich parallel-transports its ow n tangent vector, viz.

The param eter o f  a geodesic curve is called affine param eter.

S ince any  ten so r can  be exp ressed  as a linear com bination  o f  basis tensors, and these 

basis tensors are all derivab le from  the vector basis (not necessarily  coo rd ina te  basis), the 

connection can  be com pletely  described by giving the gradients o f  the basis vectors. So we 

defme

v - . =  v . , v  f s i . ( i )  = f V e - r kI  ,ei t i i' > i i j j i k

w here the o rd e r  o f  the  ind ices is im portan t. T he fu n c tio n s  F s  are ca lled  C h r i s to f f e l  

symbols; th ey  do  not form  the com ponents o f  a tensor. N ow  the g rad ien t o f  tenso rs can  

be w ritten in com ponen t form

( v v ) ‘ = v | , + r klv k ,

t L V . ,  = ( V T ) ! f ' , ,  = ( V T ) ( < o '........... 5 1; 1 .............5 , 1 5 , )

=  <V . T >1 ..'i =  ( V . T X e j ’ I k e () ,

(A B ) , ^ [ V ( A ® B ) ]  , = [V . ( A  <g> B)]

=  A , B + A B , .

F or an affine connection  w e can define a (1, 2) torsion tensor by

T( ; D . V ) = V - uV - V - D - [ U . V ]  .

W hen the to rsion  tenso r vanishes the connection is said to be sym m etric, viz.

v gV - V v U = [ 0 , V ]  o  V i s  a  s y m m e t r i c  c o n n e c t i o n  

<=>rk = r k i n a c o o r d i n a t e b a s i s .
ij J'

In the p re sen t ap p ro ach  only  sym m etric  connections are considered .

W hen the  co n n ectio n  is sym m etric, then in any expression  fo r the co m p o n en ts  o f  the
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Lie deriva tive  o f  a tensor, all com m as can be rep laced  by sem icolons (see S chutz, 1980, 

P208). In this statem ent the com ponen ts are taken in a coord inate  basis, because  'com m a' 

and 'sem ico lon ' can only  be ta lked  abou t in  a coord inate  system . O ne m ust also  note that 

the trad itio n a lly  term ed co v a rian t 'sem ico lon ' re la tions are still co o rd in a te  d ep en d en t, 

although they are closer to tensorial re la tions than 'com m a' ones.

O ne can prove that the operator (not necessarily sym m etric connection)

R(U , V) = [V - , v - ] - v ru -

is a (1, 1) tenso r. M o reo v er, R  can also  be p roved  to  be a (1, 3) tenso r, ca lled  the 

R iem ann curvature tensor. T his is a very  im portan t tensor on R iem ann m an ifo lds and 

in general relativity. W e use the standard convention for the order o f  the indices, nam ely,

R(S; 1 1 D , V) = R(U , V) (ffi; \ )  = { [ W- ,  V - ]  1 -  V (-  -  1}(£6)

K k, -  ^  I . e )  = V , ] e  -  V [k M e |} (co1) .

It is w ell know n that the E uclidean space and M inkow ski spacetim e are flat m anifolds. 

In the language  here, a space is flat iff  the R iem ann tensor vanishes. A flat space has a 

global notion o f  parallelism : parallel transport o f  vectors becom es path  independent. O n a 

flat m an ifo ld , there ex is t co o rd in a te  system s in w hich all C hristo ffe l sy m b o ls  van ish  

everyw here; bu t it is possib le  to ch o o se  a coo rd ina te  system  in w hich  the C h ris to ffe l 

sym bols d o  n o t vanish. H ow ever, general re la tiv ity  uses a curved  spacetim e, on w hich 

there is no  coord ina te  system  in  w hich  the C hristoffel sym bols vanish. F or the ca lcu lation  

of the R iem ann tensor from  the C hristoffel sym bols and other properties o f  this tensor, we 

refer to the standard  re ferences (eg. S chu tz, 1980). N ow  let us turn to w ha t is m ore 

important for general relativity, nam ely, a m etric connection.

A m etric  tensor is a sym m etric  (0, 2) tensor, nam ely,

g(u,v) = g(v,U) = <D,v> .
From  the m atrix  theory , we k n o w  that any lin ea r space w ith a m etric  ten so r has an 

orthonorm al basis on w hich the m etric  tensor is d iagonal w ith ±1 as en tries. T he  trace o f 

the canon ical fo rm  is ca lled  the s ignature  o f  the m etric. B ecause the d iag o n al fo rm  o f  a 

continuous m etric  tensor field  is the sam e everyw here on the m anifold , the signatu re is a 

global constant. A  positive definite m etric is called a R iem annian m etric. In particu lar, if  it

happens that on a basis gij=5jj> then the m etric  is ca lled  an E uclidean  m etric , the basis  a

Cartesian basis. If  the canonical form  o f  an indefin ite m etric is a Lorentz m etric, ie. ( - 1 , 1 , 

1), then  th e  m etric  is ca lled  a M in k o w sk i m etric . T he o rth o n o rm al b asis  o f  a 

M inkowski space is called a Lorentz basis.
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A s a te n so r  on  m an ifo ld s , the m etric  ten so r can  in d u ce  m an y  s tru c tu re s  to  the 

m anifo lds, w h ich  are stronger than any o f  those w e have been d iscussing . F or exam ple , a 

m etric ten so r can  induce a d istance , and hence a topology; it can also  induce a p referred  

v o lum e fo rm , a co n n ec tio n  etc. T herefo re  on a m an ifo ld  w ith v ario u s  struc tu res it is 

im portan t that they m ust be com patib le  w ith one another. The strongest restric tions com e 

from  the com patib ility  with the m etric tensor.

O ne can  p rove that the inverse m atrix  o f  a m etric tensor (g) defines a sym m etric (2, 0) 

tensor (g 1). A  m etric tensor can m ap a 1-form  to a vector, and vice versa, by

S im ilarly , the m etric  can  m ap a tenso r (includ ing  itself) by the so -called  ind ex  raising  

and lo w er in g  to its associa ted  tensor. It is conven tional to w rite the m etric in one o f  the 

fo llow ing  form s

where both  gy and  gU are sym m etric m atrices.

W e h av e  the  fo llo w in g  th ree  m ain  co m p a tib ility  co n d itio n s  be tw een  the m etric , 

connection an d  vo lum e n-form , nam ely,

where g = det(g ) (in general relativity  I g I =-g). T hese com patibility  conditions are a kind o f 

equ iva lence  re la tio n , th a t is, i f  A  is co m p atib le  w ith B , then so is B w ith  A ; if  A  is 

com patible w ith  B, and  B w ith C, then A  is com patib le w ith C.

T he co m p a tib ility  betw een  the m etric  and vo lum e n-fo rm  in fac t defines a p re ferred  

volum e n -fo rm  in an o rthonorm al basis, viz.

g <->£>: co= © a  c o 2 a  . . .  a  £>" (in o r th o n o r m a lb a s i s )  

which in general relativ ity  is the proper volum e.

V = g(V, ) = g( ,v), v= g'(V. )= g'( ,V)

d s 2 = g . . d x id x l , g = g . . 3 x i ®  3 x ' , g ' = g

V [g ( A , B) ] = 0 ; V g  = 0 ( = > V g ' = 0 )

V<->g:  ( . .
rjk= 2 $ (91j .h + 9| k | -  9 jk ,) (in c o o r d in a t e  bas is )

g co: S>= a/IsT ^ = -%/fg| 3x1 a 3 x 2 a  ... a 3 x "  (in c o o r d in a te  bas is )

. Vco = 0  .
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A  m an ifo ld  w ith  structu res satisfy ing  the above co m p atib ility  co n d itio n s is w hat is 

im portant to general relativity , on w hich the R iem ann tensor can be calculated  by

r>m 1 /
i j kl  ^ i m  j kl  2  i l . j k  ^  i k ,  j I ^  j k  , il ^ j l . i k '

in n o rm a l coo rd ina tes (ie. all coordinate curves are geodesic curves).

G enera l re la tiv ity  assum es a 4-d im ensional spacetim e m anifo ld , w hich is locally  fla t 

and the m etric  tenso r is locally  equivalen t to a L orentz m etric. B ut due to the ex istence o f 

grav ita tion , the  R iem ann  ten so r is not zero and the sp ace tim e is curved . T he re la tion  o f  

m atter d is trib u tio n  and  geom etry  is governed by E instein 's fie ld  equation (the unit is such 

that c = G  =  1)

G + A g = 8 7 t T ,  G ° S+ AgaS = 8 j t T ° li

w here A is the co sm o lo g ica l constan t, usually  taken as zero. T , g and  G  are the stress- 

energy ten so r, m etric  ten so r and the E instein  tensor respectively . T he E inste in  tensor is 

defined by

Einstein tensor: GaP = RaP-^-RgaP 

Ricci tensor: Rap = Rap  ̂ Ricci scalar: R = e  r “

The d e ta iled  p ro p e rtie s  o f  these tensors are g iven in m any tex tbooks (eg. Schutz, 1980).

H ow ever, it is w o rthw hile  m entioning the d ifferen tial conservation  law s adm itted  by 

the above field  equations. D ue to the local flatness o f  the spacetim e o f  general re la tiv ity , 

we have

6.2 K il l in g  V e c to r s  a n d  C o n s e rv a tio n  L a w s  a lo n g  G e o d e s ic s

In this sec tion  w e study  the re la tionship  betw een sym m etries that can be rep resen ted  by 

Killing vec to rs and conservation  laws for geodesic m otion. B ecause o f the com plication  in 

notation th e re  is a lim ita tio n  to  the use o f  co o rd in a te -free  ex p ressio n s; so m etim es a 

com ponen t e x p re ss io n  is show n to advan tage esp ec ia lly  w hen  w e are co n stru c tin g  

com plexes ( te n so rs )  fro m  the co n trac tio n  o f  sev e ra l ten so rs . H o w e v e r, ten so ria l 

expressions are used  as long as possible because o f  their conceptual clarity.

For exam ple , w e have the follow ing useful relation on a m etric m anifold
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v 7 [g( B) ] = g ( V-  B) + g( V - B) 

V -  < C , B )  =  ( V - ? ) ( B )  +  ( ? ) ( V - B )

) = V - % ,  w h e r e  ) .  (6.1)

It is w orth m entioning  that there is not a sim ilar relation for the L ie derivative , because the 

Lie derivative o f  g along an arbitrary  vec to r field is not necessarily zero.

It is very  usefu l to note tw o p o in ts  here. T he first po in t is a sim ple o b serva tion  on the 

m eaning o f  L ie derivative: the L ie derivative o f  a tensor is ju st the coord ina te-free  version  

o f the partia l derivatives o f  the com ponen ts o f tensor. T h is is useful in rew riting  equations 

involving partial derivatives w ith respect to coordinates into a tensorial form  involv ing  the 

Lie derivative and covarian t derivative . The second poin t is a property  o f  the deriva tive  o f  

scalars. T he L ie derivative and covariant derivative o f  a scalar w ith respect to  a vector field 

are the sam e, and they are equal to the derivative o f the scalar with respect to the param eter 

of the vec to r field , i.e. the scalar ob ta ined  by operating the vector on the scalar. T his po in t 

is very  usefu l as it enab les us to co n v ert betw een d ifferen t k inds o f  d e riv a tiv e s  and use 

their special p roperties to  the best effec t. In th is section a particularly  im p o rtan t sca lar is 

the con traction  o f  the m etric ten so r w ith  vec to rs and /o r 1-form s. T he  above  p ro p e rty  o f  

this scalar is used to prove m any relations.

U sin g  the  ab o v e  tech n iq u e s  w e can  tran s la te  m any  re la tio n s , u su a lly  g iv en  in 

com ponent form , in to  tensorial form . T his is not ju s t a trivial exercise; w e w ill see that in 

this w ay m any  resu lts  can be s im p lified  and  in terp re ted  in a p ro p e r w ay. F o r ex am p le , 

using equation  (6 . 1 ) and  the above tw o p ro p erties  w e obtain  the fo llo w in g  re su lts  fo r 

metric spaces (see A ppendix  D  fo r a geom etrical proof)

( £ - g )  ( A,  B) = (V -  £) (B) + (V s  ?)  ( A) = 2 (V ? ) .  (B | A)  (6.2a)

( * 1 g ) ( A , B ) = ( V -  1 ) ( B )  + ( V 5 1 ) ( A )

= ( V « ( B | A )  + (v 1 ) ( A | B )  ( 6 2 b )

£ 5  [8  (P.  $ ) ] =  V ? [ g ( P , ^ ) ]  =  1 ( £ -  g ) ( P , P )  + g ( V ? P ,  I )  (6.3a)

£ p [ P ^ ) ] = £ - P[ =  g ) ( P . P )  + g ( V - p M )  ( 6 . 3b)

where
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p - g ( p .  ). 5 - g ( $ .  )

a t p [ 8 ( P . ^ ) l “ P [ 8  ( P . i ) ] “  V - [ g ( P . 1 ) ]  .

E q u a tio n s  (6 .3a) and (6 .3b) are very general re la tions; they m ay be sim plified  w hen 

the derivatives are taken along a geodesic curve, viz.

K illing  V e c to r s  and  C o n serv a t io n  L a w s a lo n g  G e o d e s ic s  

It is very im portan t to define K illing vector fields on m etric m anifolds, since a K illing  field 

defines an  isom etry  o f  the m etric, thus a sym m etry  o f  the m anifo ld . C om bining  th is w ith 

N oether's theorem , w e see that conservation law s can be re la ted  w ith K illing fields.

F ro m  the  p rev io u s  eq u a tio n s (6.1, 6 .2 , 6 .3 , 6 .4) it fo llo w s im m ed ia te ly  th a t the 

Killing v ec to r can be equivalently  defined in the follow ing w ays

G eo d esic  m o tio n  in a p re sc rib ed  geom etry  is a very im p o rtan t sub ject in gen era l 

relativity. T here  are quantities conserved along geodesics if  the m etric adm its som e K illing

vector fields. T o  see this let us consider a geodesic curve w ith param eter x, defined by

where m  is a  positive constan t num ber. From  the above geodesic equation , one can show

Thus Pp is a conserved  quantity  along the geodesics if  the p -coord inate  curve is a K illing

I f V -  P= 0, then

£ 5 [ g ( P , I ) ] = v - [ g ( P , 1 ) ]  = l ( £ -  g ) (p,p)  

^ p [ P s( i ) ] = ^ - P [ P ( ! ) ] = - j ( i t t- g ) ( p , p )  .

( 6 . 4 a )

( 6 . 4 b )

£L-g = 0 <=> v f  i sa 2-form

o  I  . =  £ <=> P .  . = 0  <=> i  . + 1  . =  0
: i  m i  : i )  M ' i l )  ^ i ; j M  :■

o  £ - [ g ( A , B ) ]  = 0 f a  {all  A, B:  £ - A =  i L - B =  0}

<=> g.. k = 0 (butg'Jk #0) in acoordinate system with R= 3

V = d*jx, V;„V°=0; P= mV , pP„P° = Pp;aPa = 0
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vector. T he p ro o f o f  equation  (6.5a) is usually given in a coord inate  system , viz.

p P:„P ° = P , , P ° -  C  P° P ,  = 0 , P p.0P° = P ( P , )  =

d P  .
= r ; P “ P 7 4 9 ^ ( g M , a +  g , 0 , p - g a ^ ) P “ P r 

= i  ( ^ M  +  9 M . r 9 « J p “ p '

= 4- g ,p“p ' .2  M- a . P

H o w ev er, here  w e fav o u r a com pletely  geom etric  equation . Such a co o rd in a te-free  

equation can be constructed  from  equation (6.5a) by using the rem arks on the p roperties o f 

Lie and covariant derivatives w hich is m ade at the beginning o f the section. The key idea is

to regard  the p-coord inate  curve as that o f a coordinate-free vector, so equation  (6.5a) m ay 

be directly  rew ritten  as

m ^ [ g ( P , K ) ]  = P [g(P ,K )]  = £.-p[g(P,K)] = l  ( £ Rg ) ( P , P )  (6.5b)

T herefore if  the K -field  is a K illing  vector field, then one obtains a conserved  quantity . In 

fact eq u a tio n  (6 .5b ) is ex ac tly  eq u a tio n  (6 .4a), w hich  has a lread y  been  p ro v ed  in a 

g eo m etrica l w ay . N ow  le t us d iscu ss  a s im p le  q u estio n  to  show  the  ad v an tag e  o f 

geom etric equations over com ponent ones.

In general re la tiv ity , a tim elike  K illing  vec to r is o f  particu la r im portance ; because  a 

space-tim e geom etry  is ca lled  stationary if  the m etric adm its such a field. In this case one 

can alw ays choose a coord inate system  such that the m etric com ponents are independent o f  

the t-coo rd ina te . It is w o rthw hile  m ention ing  that such a cho ice is not unique. A special 

case o f  a s tationary  space-tim e is one for w hich the tim elike K illing  vec to r is norm al to a 

fam ily o f  spacelike  hypersurfaces; such a spacetim e is called static. In a static spacetim e 

there ex ists  a coo rd in a te  system , w hich is adapted to the tim elike K illing  v ec to r field , in

w hich both  o f  the cond itions, 3gjiV/d x °= 0  and gok=0 , are satisfied.

Vector or 1-Form?
The fo llo w in g  q u estio n  arises if  w e only consider the co m p o n en t re la tion , (6 .5a). T he 

conserved  q u an titie s  are d e te rm in ed  by the 'low ered ' co m p o n en ts  o f  the m o m en tu m  

vector, ra th e r  than  'ra ised ' com p o n en ts. S ince the co m p o n en t p ro o f  show s that th is 

particular p reference is re la ted  to the skew -sym m etric feature o f the C hristoffel sym bols as 

functions o f  the m etric com ponen ts and their first derivatives, one m ay conc lude  that the
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co n se rv a tio n  o f  'low ered ' ra th e r than  'raised ' co m ponen ts  is due to  the  co m p a tib ility  

betw een connection and m etric.

T h is is partly  correct. W ith  the above in terp re ta tion , one cou ld  co m e to the w rong 

conclusion  that 1 -form s are m ore im portan t than (their associa ted) vec to rs in re la tion  to 

isom etry  an d  co n se rv a tio n  law s. T h is  con fusion  is easily  c la rified  by lo o k in g  at the 

coord inate-free equation , (6 .5b), and the answ er turns out to be m ore p ro found . N ote that 

equation (6.5b) is true no m atter w hether the K -field  is a K illing v ec to r o r  not. The above 

question o f how  to in terpre t the im portance o f vectors and 1 -form s acco rd in g  to equation  

(6.5a) is only  related to the right side quantity  o f equation (6.5b), nam ely  the in terpretation 

of

g(P,K) = < P , K>  = P(K)  = ( P , R> = P(R) . (6.6)

It is seen that this quantity  is sym m etric in the P -field  and K -field. W h e th e r this term  is 

in te rp re ted  as a 'lo w er' o r  'ra ised ' co m p o n en t d ep en d s on w h e th e r w e can  find  a 

coordinate system  such that the K illing vector is a coordinate basis v ec to r field , o r that its 

associated 1 -form  is a coordinate basis 1-form  (one o f the com plete set o f  dual bases o f  the 

coo rd ina te  vec to r fie lds). It m ay happen  that both are possib le  in a sp ec ific  p ro b lem . 

H ow ever, the general d iffe ren ce  betw een  vec to rs and 1-form s on a m an ifo ld , as w as 

m entioned before, is m anifest here.

O n a m anifo ld , any non-singu lar v ec to r field  can be a coord inate  basis, w hile  only  an 

exact 1-form  can be a co o rd in a te  1-form . T herefo re  not all 1-fo rm s can  be ch o sen  as 

coordinate form s.

If  w e look at the local property o f  any sm ooth m anifold, then although a closed  p-form  

is ex ac t as a resu lt o f the P o incare  lem m a, not all p -form s are closed ; w h ereas  a general 

class o f  vectors satisfies the above coordinate condition.

If  w e look at the g lobal question , then it m ay happen that no vec to r fie ld  satisfies the 

co o rd in a te  con d itio n  b ecau se  o f  the n o n triv ia l s truc tu re  g roup  o f  the  m an ifo ld . F o r  

ex am p le , on  a 2 n -d im en sio n a l sp h ere  o r a M o b iu s band  th ere  is no  c o n tin u o u s , 

s ingu larity -free  vec to r field . So it is no t a lw ays possib le  to choose a v ec to r fie ld  as a 

global coord ina te  basis field. N onetheless, in this case, a closed p -fo rm  is not necessarily  

exact (see Schutz, 1980) even if  the m anifold  considered has a trivial s tructu re  group  (eg. 

a reg io n  o f  R n w hich  is no t s im p ly  co n n ected ); thus p rov id ing  ev en  less ch o ice  o f 

coordinate 1-form s.

In the particu la r question  considered  here, the associa ted  1-form  o f  a K illing  v ec to r 

field is not necessarily  exact, so it is not alw ays possib le  to in terpret the above term  as a 

'raised ' com ponen t.

T hus the answ er to the question o f conserved quantities relates to the very fundam ental
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property  o f  vec to rs  and  1-form s; it is an outcom e o f  the differentia] structure o f  m anifolds, 

but no t that o f  the m etric connection. H ow ever, this d ifference only  occurs on a m anifold; 

linear v ec to r spaces are not rich enough to produce this difference.

6.3  G a u s s ' T h e o r e m  a n d  In te g r a l  C o n s e rv a tio n  L aw s

In las t sec tio n  w e d iscussed  conserved  quan tities along  geodesics. In th is section  we will 

d iscuss the m o re  general form  o f  conservation law s adm itted  by general re la tiv ity , w hich 

are usually  g iv en  as d ifferential equations, nam ely, T1AV; v=0. It is im portan t to obtain  their 

in teg ra l co u n te rp a rts . T o  do this S tokes' theorem  and G auss ' th eo rem  m ust be invoked . 

T hus in  th is  sec tio n  w e will d iscuss the theorem s in the language o f  d ifferen tial m anifo ld , 

and then ap p ly  them  to the study o f conservation laws. In doing this, particu lar attention is 

paid to those im portan t in general relativity.

G a u s s ' T h e o r e m  a n d  S to k e s ' th e o re m

Let 3U  be a sm oo th  orien tab le boundary o f  an n-dim ensional reg ion  U  on a m anifo ld , then 

S to k e s ' t h e o r e m  m ay  be w ritten

a  = ( n - l ) - f o r m  , w = n - f o r m

G a u s s ' t h e o r e m  (o r G reen 's) m ay be ob ta ined  from  the second  ex p ressio n  o f  S tokes' 

theorem  by  d eco u p lin g  the volum e n-form  into the w edge p roduct o f  an (n - l) -fo rm  and  a 

1-form  n o rm al to  3U , viz.

fj = 1 - f o r m  n o r m a l  t o  3U, p = ( n - l ) - f o r m

A com plete  p ro o f  o f  these tw o theorem s m ay be found in Schutz (1980).

In G au ss ' th eo rem , w e have used the concep t o f  an 1 -form  norm al to  a h ypersu rface , 

by w hich  w e m ean  that the associated  vec to r o f  the 1 -form  is norm al to the hypersurface. 

For exam ple  the  1-form

is norm al to  th e  hypersurface  f(x)=const.

G au ss ' th e o re m  is o ften  w ritten in a special coo rd ina te  system  ( x ‘) ( i= l ,  2 , ..., n) o f

3u

3f = 3 f / 3 x '  3x'
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U such th a t {x*} (i=2, n) m esh to form  the coo rd ina tes o f  3U , thus

3x1 i s norm alto  3U.

In th is co o rd in a te  system , the deco m p o sitio n  o f  the v o lu m e n -fo rm  in the p rev io u s 

expression  o f  G auss' theorem  m ay be carried out explicitly

rj i s determined up to a fu nc t ion  F, rj = F3x1 , w here  F =  r j ^ ) ;

3   a ") 3  2 a  „and B = ------------------- dx a . . . a 3 x .

I f w e c h o o s e  ^(3^=1, and e* = 3x2a ... a 3 x n, then

r r ~ -  © (9 ,, •••. ^ n) r -
J (div  Q <oe ti( Q  — ------  e * = £  f j (^)coe*,
u ® au au

|  = J  (co '̂) , e = f  f j ( 9 ( o e * = ^  rj(|)dZ = f  i ( 3 z )  .
Ju ’ ■' au au Jau

A s w e see, on an n-d im ensional m anifo ld  an in tegral is only defined  fo r an n-form , 

and there is no  integral defined  for a general (N, N ') tensor. T o  generalise the integral o f  a 

tensor m et in ca lcu lus on to  a m anifold, one has to define  how  the tensors at every  point 

are to  be transported  to a single point. O ne sees that such an integral w ould  depend on the 

path o f  the transportation and the point to w hich the tensors are transported.

It is w ell-know n  that S tokes' and G auss' theorem s are very  im portan t in transferring  

d iffe ren tia l conservation  law s to in tegral ones. O n a m anifo ld , how ever, if  one pursues a 

tensorial exp ression , then in general there is no in tegral conservation  law s correspond ing  

to d iffe ren tia l ones in v o lv in g  'sem ico lon ' d e riv a tiv e s , ex cep t fo r those o f  a v ec to r. 

N evertheless, w e can still w ork fo r it in a coordinate system  by constructing a vec to r for a 

tensor, nam ely , contracting the tensor w ith som e basis vectors and 1-form s.

T  = (N, isf) t e n s o r ,  v ' h T (( ;;) i | ')) ; T :i = 0  => v' ;i = 0  ,

w here (...) ind icates that the ind ices are not to be regarded  as tensor indices as usual, but 

as co n trac tio n  o f  the tenso r w ith  the ind icated  basis vec to rs and 1-form s. T hen we can 

apply  G a u ss ' th eo rem  to the v ec to r co m p o n en ts  {V1} co n s tru c te d  in the w o rk in g  

coordinates,
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J V! j ooe = J (© V1) . e = f (co T . e
J U ' 1 J U ' 1

= J -^(coT.. .1::..) j coe = J ( T . . r ' t : . k. ..)coe
u ’ u

= 6  T ri j coe * = 6  T!” ti d l =  (B T ' dZ .
au J au J au 1

N ote th a t this set o f  equa tions are coord inate-dependen t; they are true in any  coo rd in a te  

sy stem , b u t th e ir  v a lu es  d iffe r  in d iffe ren t co o rd in a te  sy stem . M o re o v e r, all th ese  

equations the integrals m ust be estim ated in the sam e coordinate system .

W e also  po in t o u t that the above 'G auss' theorem ’ for tensors is n o t in  ag reem en t w ith

stan d ard  tex tb o o k s in fo rm  because  o f  the ex is ten ce  o f  the co-factor an d  the T -te rm .

H ow ever, th is does not b ring  ours into contrad iction  w ith theirs. T h e  co-factor and  T -term  

have been  re ta ined  in o rder that the theorem  fo r the constructed  v ec to r is a coo rd ina te-free  

equation . B ut since th is is im possib le  fo r tensors, the above 'G auss ' th eo rem ' fo r tensors

is in fact coo rd ina te  dependen t. T herefore, there is no need to keep  the co-factor. S tarting

with the vo lum e n-form  (co=l)

e = 3 x 1 a  ... a 3 x "

one can  ea s ily  o b ta in  the s tan d ard  co o rd in a te  dep en d en t G au ss ' th eo rem  fo r ten so rs  

w ithout the co-factor, no r the T-term .

A s y m p to tic  S y m m e tr ie s  a n d  I n te g r a l  C o n s e rv a tio n  L a w s

As can  be seen from  the p rev ious d iscussion , i f  the space tim e p o ssesses  no sym m etry , 

then u su a lly  th ere  is no  ten so ria l in teg ra l co n se rv a tio n  law s c o r re sp o n d in g  to the 

d ifferen tial on e  TMV; v=0- H ow ever, there are alw ays (scalar) in tegra l co n se rv a tio n  law s 

for AM-; ^  =0. So w h en ev er a K illing  v ec to r fie ld  is adm itted  by the m e tric , a (scalar) 

integral conservation  law  can alw ays be constructed  in the fo llow ing  w ay (see H aw king  & 

Ellis, 1973)

I f K is a  Ki l l i ng —v e c t o r ,  R = g ( K,  ) . c o n s t r u c t  P = T(R,  ) . t h e n  

(Tl*°K|1) ; o = Tl' a;aK 11 + T'1° K |i;a 

P° « = 0  <= - r ;a = 0 ,  T ,llal = 0  , K (r o)= 0

P =  j p ° ^ d \  =  J f X V - S d ’ x =  c o n s t  (6.7a)
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If w e choose a coordinate system  such that

K =  d a , t h e n K , ,  = g |ia 

P = J T °  d 3x = c o n s t  . (6 .7  b)

T his form ulation o f  conservation  laws im poses too m uch restriction on the space-tim e, 

hence i t  lo ses  its  gen era lity . H o w ev er, fo llo w in g  L andau  & L ifsh itz  (1962), a m ore 

general fo rm ulation  o f  in teg ra l co n serv a tio n  law s can  be ob tained , (a lthough  w e should  

note th a t w hile  the co n se rv a tio n  law s are not ten so ria l in th is fo rm u la tio n , they on ly  

d ep en d  on the asy m p to tic  sy m m etries  o f  the sp acetim e). T he  m ain  fe a tu re  o f  th is 

fo rm u la tio n  is to rew rite  the E inste in  fie ld  eq u a tio n s such that the 'sem i-co lo n ' in the 

d iffe ren tia l conserva tion  law s is rep laced  by a 'com m a'. T he standard  L an d au -L ifsh itz  

form ulation is usually expressed  in any asym pto tic M inkow ski (Lorentz, inertial, universal 

rest) coo rd in a te  system  (M isner et al, 1973). H ere w e give a m ore general fo rm ulation  in 

any co o rd in a te  system  so long  as the tim e-co o rd in a te  is tim e-like ev ery w h ere  and the 

spacetim e is asym pto tically  flat. A lthough  this is only  a form al generalisa tion , it ra ises 

som e q u estio n s on the im portance  o f these co o rd in a te  dependen t in tegra l co n se rv a tio n  

law s.

N o te  that the crucial step o f  co n stru c tin g  the above in tegral conserva tion  law s is to 

construct a vec to r from  T  and the associated  1-form  o f  a K illing vector. T he d ifficu lty  lies 

in the  o cc u rre n ce  o f  'se m i-co lo n ' in s tead  o f  'com m a'. L et us o b se rv e  the ab o v e  

p rocedure  the o ther w ay round. W e see that if  the sem i-colon is rep laced  by a com m a, 

then the on ly  obstac les are  that w e need  a 'co m m a' fo rm ed  co n se rv a tio n  law  o f  som e

sy m m etric  co m p lex  ^T^a ,a= 0  and  a Killing p s e u d o -v e c to r  fie ld  ^ C ° .  If  is the

associa ted  p seudo-fo rm  o f  a K illing  p seu d o -v ec to r, defined  by a )=0> then  we can 

construct

w here the facto r (-g ) 1/ 2 has been dropped, since this is not essential w hen the in tegrals do  

not define  tensorial quantities (scalar here). In con trast to equation (6.7b), here we cannot 

alw ays choose a coord inate system  such that the pseudo-vecto r is a coordinate basis field ,

(6 .8 )
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{ ^C ^}= 9 a ; because  the pseudo-vecto r is determ ined  by som e coord ina te  co nd itions in a 

coordinate system .

N ow  let us observe  the m eaning o f  the above tw o requ ired  equations. W e know  that in 

a flat sp ace tim e there  is a g lobal M inkow ski (C artesian) co o rd in a te  system  in w hich the 

C hristoffel sym bo ls vanish , thus 'sem i-colon ' is equ ivalen t to 'com m a'. T herefo re  in such 

M in k o w sk i co o rd in a te  system s the above eq u a tio n s  d e fin e  rea l K illin g  v ec to rs ; in 

asym pto tic  M in k o w sk i coo rd ina te  system s they define  p seu d o -v ec to r fie ld s  w hich  are 

K illing v ec to rs  in an asym ptotic flat region. But it m ust be noted that these equations only 

d efine  p seu d o -v e c to rs , becau se , in co n tra s t to  the 'sem i-co lo n ' eq u a tio n s , the ab o v e  

equations alw ays adm it the follow ing solution (see C arm eli, 1982)

0  «  ^ C tl = A e [Ma]x a +  ( 6 . 9 )

w here A  and  the B 's are constan ts. T hus in any coord ina te  system  ten such indep en d en t 

(K illing) p seu d o -fo rm s can be found; how ever, w e do  not know  in general how  m any  

in d e p e n d e n t (K il l in g )  p s e u d o -v e c to rs  th ese  fo rm s  c o r re s p o n d  to. In fa c t the  

p seu d o -v ec to rs  a re  no t req u ired  fo r the co n stru c tio n  o f  co n se rv ed  q u an titie s . I f  the 

'com m a' co n se rv a tio n  law s can  be form ulated, ten independen t conserved  qu an titie s  can  

be ob ta in ed  in any  coord ina te  system . W e also  notice that even in the g lobal M inkow sk i 

coord ina te  sy stem  o f  special relativ ity , po lar o r spherical co o rd in a tes  can be used  fo r the 

spatial part, an d  there  are certain ly  integral conservation  law s in these coo rd ina tes w hich  

are d ifferen t from  those defined in Cartesian coordinates. T he m eaning  o f  these unfam iliar 

conservation  law s and  th e ir re la tions w ith the conventional one needs to  be investigated  

further.

L et us now  co n sid er the possib ility  o f  'com m a' conservation  law s. D efine a com plex  

and an e ffec tiv e  en ergy -m om en tum  tensor fo llow ing  L an d au -L ifsh itz  (see M isner e t al, 

chapters 19 an d  20) viz.

H1“‘vSM-g)(gl‘V " -g 0V p) ;
j _ | M - a v p    ^ v P j i a    ^  [H ® ] l v  P ]  | _ | ^ J a v p l _ Q  .

T : (; - i 6 * ( - t o ( T F , + o ,

w here the s tress-en erg y  pseudotensor tM-v is defined by 

1 6 *  ( - g ) t ^ ^ H ^ v; r 1 6 K ( - g ) y v =  HH“ vPa 9 - 2  R j ) ^  .

This fo rm al generalisation  is based on the observation that the d ifferential conservation
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law s o f  the effec tive  T  is a sole resu lt o f the sym m etry and skew -sym m etry  ch arac te rs  o f  

the construc ted  com plex  H. B ecause the g's and G 's are com ponen ts o f  tensors, the above 

fo rm ulation  is valid  in any coo rd ina te  system : the requ ired  sy m m etry  p ro p e rtie s  o f  the 

com plex H  are held , the t's are satisfactory  functions o f  m etric co m p o n en ts  and hence o f  

the g rav ita tion  feature. In addition, the factor (-g) m ay be neg lec ted  w ithou t ch ang ing  the 

essential result.

Therefore in any coordinate system  there are ten independent satisfy ing the the set

o f eq u a tio n s  anc  ̂ a 'com m a' co n se rv a tio n  law  o f  the  sy m m etric  e ffec tiv e

energy-m om entum . F rom  these ten independent conserved  q u an titie s  are ob ta in ed  in any 

coordinate system ,

W hen w e are w o rk in g  in asym ptotic M inkow ski coo rd in a te  sy stem s the above K illing  

p seu d o -v ec to rs  b ec o m e  the ten in d ep en d en t a sy m p to tic  K illin g  v ec to rs , an d  the 

conservation law s becom e the conventional Landau-L ifshitz conservation  laws.

Som e co m m en ts  on  asym pto tic  features o f  spacetim e (sy m m etries , fla tn ess) are in 

order. It is p o in ted  o u t in M isner a l (1973) that asym pto tic  fla tn ess  is requ ired  fo r any 

m eaningful co n cep t like m ass and (angular) m om entum . A lthough  they  stress that th is is 

because o f  the m easurem ent required, a careful observation o f  the above procedure  show s 

that asym pto tic  fla tn ess  is not necessary for a form al defin ition  o f  such quan tities. In  the 

defin ing  p ro ced u res, asym pto tic  fla tness is im portan t on ly  b ecau se  th is is a su ffic ien t 

condition for the convergence o f the above form al integrals.

A n o th er p o in t a rise s  w ith the choice o f  stating  the re la tio n sh ip  be tw een  fo rb id d en  

m otion and (asym pto tic) sym m etries, although it is conven tional to  re la te  to conservation  

laws. It has been  n o ted  fo r a long tim e that there is a general co rresp o n d en ce  betw een  

conservation law s and  sym m etries (Noether, 1918), and that the la tte r is m ore conven ien t 

to study. F o r ex am p le , in classical m echanics, it is m uch ea s ie r to  o b ta in  the m ax im al 

num ber o f  in d ep en d en t first in tegrals by using sym m etries ra th e r than  co n serv a tio n  law s 

(W einberg , 1972). It is not apparen t that the (asym pto tic) sy m m etries  o f  the p rob lem  

determ ine fo rb id d en  m otion  and hence o rdered  m otion. B ut th is re la tio n  m ay be m ore 

fundam ental. In  g en e ra l re la tiv ity , we see that the asym pto tic  sy m m etries  are  d efin ite , 

w hile the co n se rv ed  quan tities  are not. Therefore, som e o f  the above con serv ed  quan tities 

in a bad co o rd in a te  system  m ay even, in principle, have no value at all. F o r defin iteness 

we m ust, th ere fo re , ask  fo r the re la tionsh ip  betw een forb idden  m otion  and (asym pto tic) 

sym m etries.

( 6.1 0 )
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6.4  I n t e g r a b l e  M o tio n  a n d  R e la t iv is t ic  C h a o s

In th e  las t sec tio n  w e have d iscu ssed  the re la tio n s  be tw een  ap p a ren t (a sy m p to tic )  

sym m etries o f  space-tim e and co n serv a tio n  law s in general re la tiv ity , and w e know  that 

su ffic ie n t co n se rv e d  q u an titie s  can  lead  to  in teg rab ility  o f  a c la ss ica l sy stem , an d  

re la tiv is tic  sy s tem  as w ell (eg. the c lass ica l 2 -body p rob lem  and g eo d esic  m o tio n  in 

S ch w a rzsch ild  geom etry ). In th is sec tion  w e g ive a H am ilto n ian  fo rm u la tio n  fo r the 

geodesic  m o tion  and show  its equ ivalence to  the geom etrical form ulation  given in section

6.2. B ecause  o f  this w e can look at the in tegrability  question using d ifferen t m athem atical 

languages. T h e  idea o f  in tegrals re la ted  to no apparen t sym m etries and a possib le  w ay o f 

p ro d u c in g  c h a o s  b ased  on tru n ca tio n  o f  re la tiv is tic  p ro b lem s are in tro d u ced . T h is  

in v estig a tio n  has som e im portance in understand ing  the in tegrab ility  co n d itio n s  and the 

general approxim ation  m ethod often used in  treating relativistic problem s.

A  geodesic  m otion  on m etric m anifo lds can also be form ulated in a H am ilton ian  form  

by in tro d u c in g  a super-H am ilton ian  (M isn er et al, 1973, P645; C handrasekhar, 1983) in 

the (xl1, Pp) p h ase  space, viz.

T o  see that this set o f  equations o f  m otion  is equivalent to equations (6 .4a), (6 .5a) and 

the standard  geodesic equation, we only  need to show the follow ing relation

w here  th e  th ree  f ie ld s , A , B and  are a rb itra ry . T he ten so ria l eq u a tio n  fo llo w s  

im m ediately i f  one applies the L eibniz rule to the following four identical scalars

A s a re su lt o f  th is H am ilton ian  fo rm ulation , the conserved quantities a long  geodesics 

in a m etric  space  (g no t necessarily  p o sitiv e  defin ite) can be regarded  as in teg ra ls  o f  a

d M

which is ju s t a particular case o f the m ore general relation

g”1*̂  A aBp = -  |1A°B? or (£-g)  (A, B) = - (^g') (A,  B)

176



can o n ica l H am ilto n ian  system . O n the o ther hand, a large  class o f  c lassica l d y n am ica l 

p ro b lem s can a lso  be fo rm ulated  as geodesics o f  a m etric  space (cf. ch ap te r 2). In the 

language o f  d iffe ren tia l geom etry , the function  g(P , K ) is an in tegral o f  m otion , if  K  is a 

K illing  v ec to r o f  the m etric tensor. If this K  vecto r field is adapted to a coordinate system ,

say as th e  x ^-coord ina te , then this coordinate does not o ccu r in the H am ilton ian  ^  and 

the in tegral becom es P^, the conjugate m om entum  o f xM-.

W hen  there is an additional potential field  acting on the partic le , then its m otion  is no 

longer geodesic . T he equation  o f  m otion becom es equation  (6.3) and the poten tial energy  

m ust be added  to  the above H am iltonian . In th is case, K  being  a K illing  field  does not 

guaran tee g (P , K ) being  an integral.

L et us now  show  a re la tionsh ip  betw een the Poisson b racket (o f tw o scalars) and the 

Lie b racket (o f tw o vectors), which was used in chapter 2 to view  L iouvillie 's in tegrability  

co n d itio n s  in  th is  language . U sing  the sam e n o ta tio n s as above , le t us c o n s id e r the 

problem  in the (xl1, P ^) phase space, then a d irect calculation show s

{ g ( P . A ) , g ( P , B )  }  = - g ( P , [ A , B ] ) .

w here A  and B are arbitrary  vec to r fields. This result does not requ ire  the m etric tensor to 

be p o s itiv e  defin ite . H ow ever, if  the m etric tensor is defin ite , then the van ish in g  o f  the 

P o isson  b ra ck e t an d  L ie  b rack et are eq u iv a len t. T h e re fo re , tw o  in teg ra ls  b e in g  in 

involution m eans that their K illing vectors com m ute.

A s seen  from  its application in chapter 2, although the present results are not o f  general 

applicability  yet (to deal w ith m ore com plicated  problem s, the m ore advanced  notions o f  

sym plectic m anifo ld  and  Poisson m anifold have to  be invoked), they provide m uch clearer 

view  to  m an y  qu estio n s in classical dynam ics. M oreover, a use o f  the L ie a lgeb ra  o f  the 

vec to rs (o r the  sca la rs) o r a d irec t app lica tion  o f  F ro b en iu s ' th eo rem  on the v ec to rs  

prov ides the co n d itio n s  un d er w hich one can construc t n in teg ra ls  in invo lu tion  from  n 

integrals w hich  are not.

So fa r  w e h av e  on ly  d iscu ssed  con serv ed  q u an titie s  co rre sp o n d in g  to  ap p a ren t 

sym m etries. H ow ever, not all conserved quantities m ay be re la ted  to obvious sym m etries, 

nor K illing  vec to rs. A  w ell-know n classical exam ple is the ex tra  in tegral that leads to  the 

in teg rab ility  o f  the T o d a  la ttice  (see chap ter 2); w hile  the in teg rab ility  o f  the g eodesic  

motion in  K err geom etry  is a very good exam ple in general relativity.

It w a s  f ir s t  sh o w n  by  C a rte r  (1968) u sin g  the te ch n iq u e  o f  sep a ra tin g  the  

H am ilton -Jacob i equa tion  that there is an additional independen t in tegral in the second 

exam ple. L a te r  th is  w as also  successfu lly  es tab lish ed  using  the tech n iq u e  o f  K illin g  

ten so rs  (W a lk e r  & P en ro se , 1970) and  N ew m an -P en ro se  te tra d  fo rm a lism  (see
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C handrasekhar, 1983). H ow ever, the sim plest w ay o f co nstruc ting  th is in tegral tu rns out 

to be the m ost elem en ta ry  techn ique fam iliar in so lving the c lassica l 2-body p rob lem . To

do this, one m ay w rite the equa tion  o f  m otion o f  d P e /d i in the standard  B o y er-L in d q u is t 

coord inates using  the above H am ilton ian  form ulation, and then m ultip ly  both  sides o f  the 

equation  by P q. A  sim ple ca lcu la tio n  resu lts  in the add itional in teg ra l in v o lv in g  (P q)2. 

B ecause o f  th e  ex is ten ce  o f  such  a 'h idden ' sym m etry , g eo d es ic  m o tio n  in the K err 

geom etry becom es com pletely  integrable.

In addition  to the linear in tegrals corresponding to K illing vectors, there m ay exit m ore 

independen t h ig h er o rd er in teg ra ls  re la ted  w ith a class o f K illing  tenso rs (see W alk e r & 

P enrose , 1970; W oo d h o u se , 1975; D olan  e t al, 1989). F rom  the d iscu ss io n  o f  sec tion

6.2, a K illing  vec to r defines an in tegral linear in the 4-m om entum  (cf. equation  6.2a)

(vK)s = o =* £p[R(P) ]  = v - [R(P) ]  = o .
Sim ilarly, a K illing  tensor F  defines a h igher order integral (cf. equation  6.3b)

(VF)s h O => & p [ F ( P  P ) ] = V- [ F ( P  P ) ] = 0  .

It is easy to  verify  that the m etric tensor is a K illing tensor. M oreover, w e have

{ * ( P ) . C ( P  P) } = - ( ^ C ) ( P  P) ,

where A and  C  are an arb itrary  vec to r and tensor respectively. A lthough  w e have not been 

ab le to  e s ta b lish  a s im ila r  re la tio n  fo r th e  P o isso n  b rack e t o f  tw o  in te g ra ls  b o th  

co rre sp o n d in g  to  K illin g  ten so rs , the above  re la tio n s  su ffice  to  show  th a t the  fo u r 

independent in tegrals o f  the K err geodesic m otion are in involution.

It is w o rth  no ting  that in S ch w arzsch ild  geom etry  the h idden  sym m etry  still ex is ts , 

how ever, it degenerates into a linear function o f the K illing vectors.

T he N ew m an -P en ro se  fo rm alism  using  a nu ll t e t r a d  bases is also  a very  im p o rtan t 

w ay o f  o b ta in in g  in teg ra ls  o f  g eo d es ic  m o tio n s. A te trad  fo rm a lism  uses lin ea rly  

independent vec to r fields, w hich  do  not necessarily  com m ute w ith one another, as a basis; 

this can fa v o u r the inheren t sym m etries o f  the space-tim e. T he v a lu e  o f  ch o o sin g  null 

vectors, instead  o f  the conventional o rthonorm al vectors, as basis fields lies in the fact that 

the essen tia l e lem en t o f  a space-tim e is its ligh t-cone structure. F o r the app lica tion  o f  this 

fo rm alism  to  o b ta in  the add itional in tegral o f  geodesic m otion  in the K err geo m etry  see 

C handrasekhar (1983, P343).

B ecause o f  in tegrability , there is no chaotic geodesic m otion in e ither Schw arzschild  or 

K err geom etry . H ow ever, it is in teresting  to study the app rox im ation  o f  these p rob lem s. 

A lthough th is  w ould  not lead  to chaos in  the S chw arzsch ild  spacetim e , this m ay shed
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some ligh t on the relation betw een com plete relativistic problem s and their approxim ations. 

T his is im p o rtan t because  the app rox im ation  m ethod  is usually  un av o id ab le  in studying  

re la tiv istic  q uestions, and  a truncation  o f  an infin ite series m ay lead to  a system  w hich  is 

topo log ically  d iffe ren t (an ex p an sio n  is usually  m ade w ith re sp ec t to  som e co o rd in a te s , 

hence only  K illing  vectors  are respected). B ecause the extra in tegral o f  geodesic m otion in 

the K err spacetim e are re la ted  to  an independent irreducible K illing  tensor, w hich canno t 

be e x p re sse d  as a c o o rd in a te , a tru n ca tio n  in th is  case  is v e ry  lik e ly  to p ro d u c e  

nonintegrability  and thus chaos, as is sim ilar to the T oda lattice problem .

A no ther possib le  exam ple w hich m ay have com pletely relativistic chaos is the geodesic 

m otion  o f  an u n ch a rg ed  m ass in the g rav ita tional field  o f  tw o fixed  b lack  holes. In th is 

p ro b lem  the g rav ita tio n a l a ttrac tio n  o f  the tw o b lack  holes is b a lan ced  by the e lec tric  

rep e llin g  fo rce . T h is  is an ex ac t so lu tion  to the E inste in -M axw ell eq u a tio n s , ca lled  the 

M a ju m d a r-P a p a p e tro u  so lu tio n  (C h a n d ra se k h a r , 1983, P 5 9 1 ). It w as sh o w n  by 

C h an d ra sek h a r (1 9 8 9 ) th a t in  h is  co o rd in a te s  the H a m ilto n -Jac o b i eq u a tio n  is no t 

separable for the m erid ian  geodesics. H e poin ted  out that the question  is very  un likely  to 

be separab le in any coordinates. L ater C ontopoulos (1990) found by num erical integration 

that the trap p ed  (stab le) and  escape  (unstab le) geodesic solu tions d epend  sensitively  on 

initial conditions. In fact the in itial cond itions o f the tw o cases are m ixed  like a C an to r set 

(see ch ap te r 2). T his is a signal o f  chaos.

M oreover, the 2-body prob lem  in general relativ ity  has not been solved; and it is very 

un likely  to be in teg rab le . It seem s th a t the in tegrab ility  o f the p o st-N ew to n ian  2 -body  

p rob lem  has not been  stud ied  e ither. O ne m ay in fer from  the situa tion  o f  the c lass ica l 

N -body p ro b lem  that the post-N ew ton ian  N -body problem s (N >3) are very  unlikely  to be 

in tegrab le . T h u s all these system s are good cand ida tes for the p ro d u c tio n  o f  re la tiv istic  

chaos w hich  have not yet been investigated  extensively.

F ina lly  it w ill be usefu l to  p u t together the sim ple problem s, say the c lassica l 2 -centre 

problem , the geodesic m otion  in S chw arzschild  and K err geom etries, and investigate  their 

in teg rab ility  co n d itio n s  in a u n ified  w ay. It rem ains to study  w h e th e r the f irs t o rd e r 

post-N ew ton ian  2 -body  and  m ore body problem s and the geodesic m otion  in the fie ld  o f  

two fixed  b lack  ho les are in teg rab le  o r not. C haos will defin ite ly  o ccu r if  they are not 

integrable, and this is a very  in teresting  question.

6.5 B o u n d e d  G e o d e s ic  M o t io n  in S ch w a rz sc h i ld  G e o m e tr y

The pu rp o se  o f  th is and  the fo llow ing  chap ter is to establish  re la tio n s betw een  bounded  

m otion and  sy m m etries  o f  spacetim e, in this section w e will study the sim p lest case  o f
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re la tiv is tic  p ro b le m s , n am ely , g eo d esic  m o tio n  in  S c h w a rz sc h ild  g eo m etry . It is 

w ell-know n that th is p rob lem  is com pletely  in tegrable, and  sim ple bounded  m otion  ex ists 

(S ch u tz , 1980; C h a n d ra sek h a r , 1983). H o w ev er, w e w ill g e n e ra lise  the  c la s s ic a l 

inequality  m eth o d  d iscussed  in chap ter 4 and apply it to  th is problem . In this w ay w e can 

m ake the study  o f  bou n d ed  m otion  in this re la tiv istic  ex am p le  p ara lle l to the c lass ica l 

study. T h is  is the  firs t exam ple  show ing  the possib ility  o f  s tudying  b o u n d ed  m otions in 

relativity using the inequality  m ethod.

T he In e q u a l i ty

For the study o f  th is section, w e need to generalise S undm an 's inequality  so that it w ill not 

only be v a lid  in a 3 -d im ensional E uclid ian  space but a lso  in h igher d im en sio n al lin ear 

spaces. It turns ou t that its validity  is independent o f  the defin ition  o f  an inner product; this 

is a very  u se fu l p o in t in study ing  re la tiv is tic  p ro b lem s using  c la ss ica l m ethods. T he 

inequality is

2 £ ( |T,A IiB k l ) 2 = i X ( m A l Bk- m A kB 1) 2
i , k i , k

Li. 2
(6 .11)

w here {A ‘) and  {B*} are tw o arbitrary  vectors and m  is a constan t. In in tro d u cin g  these 

vectors w e h av e  ch o sen  to  w ork  w ith the an tisy m m etric  p art o f  the g eo m etric  o b jec t 

chosen since this is closely related to  vorticity  and rotation. W e will show  in the exam ples 

to fo llow  that these term s can indeed  represent som e m easure o f  the angu lar m om entum  in 

a general re lativ istic system .

S ta n d a r d  B o u n d e d  G eo d es ic  M o t io n  in S c h w a r z sc h i ld  C o o r d in a te s

S chw arzsch ild  spacetim e has a preferred  coord inate  system , in w hich the co m ponen ts  o f  

the m etric tensor take the sim plest form

ds2 = - ( l - - y ^ - ) d t 2 + ( l - - y ^ )  dr2 + r2(d02 -f s i n 20d(p2) (6.12a) 

g 3t + 3r <8> 3r

+ r2 (39 <8> 30 + s i n 203cp<S> 3cp) (6 .1 2 b )
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g v  r )  a t 69 a t  + v  r J ? F ® 7 Fat  a t

+  ^ ( 4 : ® ^ :  +
1

~ 5 r ^ 7 T

a (6.1 2 c)
r2 ae ae Sin2e ^9 <̂p;

w here M  is the m ass, t is the coord ina te  tim e, and (r, 0, (p) are the spherical coord ina tes. 

The fo llow ing  coordinates are often used as well

' 1  M Y*
1 " ^ '   ̂ M "4

d s  = -
1 +

d s 2 = -
1 -

2r *
M 

2  r * J

M ^
2r *

1 +
M

d s 2 =
1 -

2 r * J

M > 
2r *

1 +
M

2  r *

d t 2+

d t 2+

d t 2+

1 +

1 +

2r * J

M

(dr* + r *  d0  + r * s i n  0dcp2) (6.13a)

1 +

2r

M 
2r *

(dx2 + d y 2 + d z 2 )

(dp2 + p2d(p2 + d z 2 )

(6.1 3b)

(6.1 3c)

w here the spatial coo rd ina tes used  in equation  (6.13b) are ca lled  is o tro p ic  co o rd in a tes . 

The transform ation  betw een the coordinates (6.12a) and (6.13a) is

( r > 2M) 

t = t

< r =  r *( l  +

0 =  0 

1 9 =  9

M
2r *

1 2M _  ( ,  _  M 
1 r ~  v1 2r *

ara r Ol

^ a '- =  1 F  =
=  1 -

/ 1 1  + 

M

M

2r *
1 +

2  r * 

M

g r. . = Ar . Arr. g  = 1  +o  r r r r 53 r r V
M

2r *

4

2r *

and the transfo rm ations betw een (6.13a), (6.13b) and (6 .13c) are

( 6 . 13b)  <->(6.1 3a) ( 6 . 13c)  +>(6.1 3a) (6.13b)  +> (6.13c)

t = t t = t t = t

x = r * s i n  0 c o s  cp
\ * • *  • i y = r s i n  0 s i n  cp

p = r * s i n  0
K „ j 
z = r c o s  0

X = p c o s  cp

y = p s i n  cp

z  = r * c o s  0 -6 n -6 z  = z

( r*2 = x 2 + y 2 + z 2) ( r*2 = p2 + z 2) . r 2 = p 2 + z 2 ) .

F o r th e  g eo d es ic  m o tio n  in the above spacetim e, it is a s tan d ard  re su lt that the 

co n se rv a tio n  o f  en e rg y  an d  an g u la r m om en tum  im p o se  re s tr ic tio n s  on the p o ss ib le  

m otions. T h ere  ex is t tw o  standard  approaches, one is geom etric  (eg. S chu tz, 1980), the 

other uses a H am ilton ian  form ulation. H ow ever, the basic equations are the sam e, nam ely,
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    -I____________________________ _
P = m V = m - ^ -  i s  t h e  4 - m o m e n t u m ,  K i s  a  K i l l i n g  v e c t o r

g ( P . P)  = - m 2 « .  g ^ P V ^ g ^ P . P ^ - m 2 (6.14a)

^ g ( P . K ) } = ^ ( ^ Rg ) ( P , P )  «  m ^ = i g , , a P V .  ( 6 1 4 b )

H o w ev er, a p re ferred  coord ina te  system  is needed to dea l w ith  these equations: one 

m ust p u t eq u a tio n s  (6 .14a, b) in  a coo rd in a te  system  w hich  co n ta in s  as m any K illing  

vec to rs as p o ssib le  as the basis vec to r fields, nam ely  the S chw arzsch ild  coord inates. It is 

also  s tra ig h tfo rw ard  to verify  that in the N ew ton ian  lim it, these eq u a tio n s reduce to the 

classical conservation  law s and S undm an's inequality , equation  (4.4b).

It fo llo w s from  equation  (6 .14b) that the t-coord inate  and cp-coordinate basis v ec to r 

fie ld s a re  tw o  independen t K illing  vectors. T herefo re  equation  (6 .14b) show s that the 

geodesic m o tion  possesses tw o conserved  quantities P t = -H  and P<p = C (these quan tities,

energy  H  and  angu lar m om entum  C, are defined  in a coordinate system  in w hich i f  0 = 9 0 °

and d0/dt=O  at one m om ent then 0 is a constan t fo r all time, see P apapetrou , 1974). Then 

the co m p o n en t form  o f  equation (6.14a) gives the forbidden m otion results, viz.

T h is  is the no rm al approach, but it m ay be observed  that, in the sam e spacetim e, the 

tenso ria l eq u a tio n s  (6.14a, b) m ust determ ine the sam e forb idden  reg ion , in d ep en d en t o f  

the c o o rd in a te s  used . W e w ill now  ad o p t an iso tro p ic  co o rd in a te  system , eq u a tio n  

(6 .13b), and rep roduce the sam e results.

B o u n d e d  G e o d e s ic  M o tio n  in  I s o t ro p ic  C o o rd in a te s

B efore a successfu l m ethod is found to  p u t th is study into a com plete ly  co o rd in a te-free  

form , let us rep roduce the results by using the inequality  m ethod review ed in chap ter 4 and 

gen e ra lised  in  A ppendix  B. A lthough  th is approach  is still not tenso ria l - we p re fe r to 

w ork  in a coo rd ina te  system  w ith 'C artesian ' (orthonorm al) spatial coord ina tes - it is m ore 

generally  applicable because alm ost all standard results in general relativ ity  are g iven  in an 

asym pto tic  M inkow sk i coord inate system . T he  concepts defined  by equations (6 .14a, b) 

shou ld  rem a in  unchanged  but it is not im m ed ia te ly  obv ious, in this coo rd in a te  system , 

how  to  ca rry  o u t the appropriate ca lcu la tion . U se  o f equation  (6.11) m akes it apparen t: 

eq u a tio n  (6 .1 4 b ) supplies the co n se rv ed  q u an titie s  upon w hich  w e w rite  Su n d ma n ' s

- 1

(6.14c)
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inequality , w hile the norm alisation equation (6.14a) plays the ro le o f  replacing the 'k inetic 

energy ' by conserved  'total energy ' and 'po tential energy '.

L et us o bserve that w ork ing  in coo rd ina tes (6 .13a) does not m ake m uch  d iffe ren ce  

from  w ork ing  in (6.12a): K illing  vectors and conserved  qu an titie s  are not changed  un d er 

this co o rd in a te  tran sfo rm atio n . H ow ever, in the co o rd in a te  system  (6 .13b), on ly  the 

t-coord ina te  basis is a K illing  vector, thus only the energy is exp lic itly  conserved . O th e r 

K illing vec to rs, and correspond ing ly  conserved  quantities, m ust in general be stud ied  by 

solving the K illing  equation. H ow ever, since the K illing vectors can also be ob ta ined  by a 

coordinate transform ation m ethod, the difficulty  here does not lie in finding all the K illing 

vectors. T h e  p rob lem  is how  to study the forbidden m otion defined  by equations (6 .14a, 

b) in co o rd in a te  system  (6.13b); that is, how  to obtain equa tion  (6 .14c) from  eq u a tio n s  

(6 .14a, b) i f  the  K illin g  v ec to rs  are kn o w n . T h is is by no  m eans easy  u n less  the 

generalised  inequality  (6 .11) is used. In this w ay the study o f  forb idden  m otion in general 

relativity can be m ade parallel to that in the classical study.

T o  o b ta in  the requ ired  K illing  vec to rs w e observe that the 9 -coord inate  basis v ec to r 

field is a K illing  vector. In the coordinate system  o f  (6.13b) this vector field  is found to be

_ d _ =  9  =  = 3 x _ i L  =  _  9  +  x 9
d<p 0 (p 0 X11 9(p gx 5cp 9y 9x 9y

If the sym m etry  in the coord ina tes x, y, and z is noted, then by construc ting  co o rd in a tes  

like (6 .13a) it is seen that the spacetim e possesses the fo llow ing three independent K illing  

vectors in  addition to the t-coordinate basis field:

K = ± ( x i9 k - x ka j )

A ccordingly, the three corresponding conserved quantities (angular m om enta) are
4

g(K,P) = = k  P k+ k ' p ,  = x jP k- x kP, = (1 + 2 7 V )  (x ' pk -  x kp i) .

The generalised  Sundm an's inequality  on these quantities reads

c 2 = i 5 > i p k- x k p l) 2
j.k

= 2 l ( x liP k/  ( l ( x * ) 2 ) ( l ( P k)2)  ( 6 1 5 a )

w here w e h av e  d en o ted  the  le ft side o f  equa tion  (6 .11) by C to p ro v id e  a fo rm al 

association w ith  the angu lar m om entum  in the classical S undm an inequality . T he first 

facto r on  the  r ig h t side o f  (6 .15a) is a fu n c tio n  o f  the c o o rd in a te s  a lread y . T h e  

n o rm alisa tion  eq u a tio n  (6 .14a) is now  u sed  to decoup le  the 'k in e tic ' and  'p o ten tia l' 

energy, hence the second factor,
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Finally  w e o b ta in  Sundm an 's inequality  in general re lativ ity  capab le o f  studying forbidden 

m otion , viz.

w hich is ex ac tly  the sam e equation  as (6.14c). T hus in an iso trop ic coord ina te  system  we 

have ob ta in ed  a resu lt equivalen t to that in the coordinate system  (6 . 1 2 a).

T h is s tudy  is fo rm ally  s im ilar to the classical approach: equation  (6 .14b) supplies the 

defin ition  fo r the com ponen ts o f  the angu lar m om entum , w hile equation  (6.14a) p rov ides 

a d eco u p lin g  b e tw een  p o ten tia l and  k in e tic  energy . H o w ev er, w e w ill see in the next 

chapter that in general relativ ity  a com plete decoupling is in general im possible.

A  fu r th e r  g en e ra lisa tio n  o f  the  above  approach  in to  a rb itra ry  co o rd in a te s  is still 

desired. W e a lso  hope to apply  ou r m ethod  to the study o f  bounded geodesic m otion  in an 

axially sym m etric  spacetim e (Schutz, 1980; C handrasekhar, 1983).

6 .6  S u m m a r y

In this ch ap te r w e have discussed the general problem  o f  form ulating conservation law s on 

a m an ifo ld , in  p articu la r, the spacetim e geom etry  o f  general re la tiv ity . It is show n that 

som e o f  the  co n se rv a tio n  law s can  be regarded  as a re su lt o f  ob v io u s sym m etries  and 

asym ptotic  sym m etries o f  the spacetim e m anifold . Such re la tions are estab lished  through 

the K illing  v ec to r fields o r  G auss' theorem .

In  the  co u rse  o f  th is study , w e have c la rified  several po in ts. F irs tly , w e asked  the 

question : w h ich  is m ore im portan t to conservation  law s, a vec to r o r 1-form ? It is found 

that the answ er to  this seem ingly  artificial question is surprisingly fundam ental; the answ er 

has no th ing  to  d o  w ith the m etric  connection  o f  the m anifo ld , but is a resu lt o f  the m ost 

basic p ro p erties  o f  vecto rs and 1-form s, and the d ifferential structure o f  the m anifold . The 

differential s tructure o f  a m anifold  in troduces the d ifferences o f  the tw o concepts w hich do 

not ex ist on  lin ear vec to r space.

S eco n d ly , w e fo u n d  that the coo rd ina te  dependen t G auss ' theo rem  fo r a ten so r can

4

(615b)
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have ex p ressio n s d iffe ren t from  that used in standard  textbooks. S ince the eq u a tio n s are

not ten so ria l in any  case , the  ex tra  term  and  fac to r m ay be sw itch ed  o n /o f f  in the 

equations, thus prov id ing  m ore flexibility . It is also useful to note a technical re la tion  used 

in ou r fo rm ulation  o f  G auss' theo rem , that is,

( V : -9  T  "  ) . ^ T : “ . u + 3 *  T  * u ( 6.1 6 )

is a lw ay s tru e  fo r an y  ten so r T  in  g eneral re la tiv ity . T h is  is so le ly  a re su lt  o f  the 

com patib ility  cond itions betw een  the m etric, volum e form  and connection . A  d irec t p ro o f 

o f th is equa tion  w ould  be very  leng thy . T he in tegral conservation  law s re la ted  to  K illing  

vectors m ay also  be ob ta ined  using  this equation (see Landau & L ifshitz, 1962, P341).

T h ird ly , w e have found ano ther class o f  coordinate dependent conservation  law s, as a 

generalisation  o f  the L an d au -L ifsh itz  form ulation . It is a standard  resu lt that the o rig inal 

L an d a u -L ifsh itz  fo rm u la tio n  is re la ted  to asy m p to tic  sy m m etries  o f  the sp ace tim e . 

H ow ever, it is not c lear how  o u r generalised  conservation  law s are re la ted  to sym m etries. 

O ur resu lts apply  to  any coord ina tes, and in general lead to d ifferen t conserved  quan titie s  

in d iffe ren t co o rd in a tes . T h is  re su lt ra ises som e questions co n cern in g  the re la tio n sh ip  

betw een sym m etries and  conservation  laws. B ecause o f this, in the d iscussion  o f  the next 

chapter w e w ill ask fo r the re la tionsh ip  betw een bounded m otions and sym m etries instead  

o f conservation  laws.

In th is ch a p te r w e a lso  m ad e  the firs t g enera lisa tion  o f  the c la ss ica l S u n d m an 's  

inequality  m ethod  to  investigate  restric tions o f  in tegrals on possib le  m otion  o f  re la tiv istic  

sy stem s. T h e  s ta n d a rd  b o u n d ed  g eo d e s ic  m o tio n  in S ch w a rz sc h ild  sp ac e tim e  is 

reproduced using the generalised  inequality  m ethod. In the next chapter w ill m ake a further 

generalisation and apply it to  investigate m ore com plicated problem s.
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CHAPTER 7 

Symmetries of Spacetime, Conservation Laws  

and Forbidden Motion

T h e  las t ch a p te r  p resen ted  a general d iscussion  on the sy m m etry  o f  space tim e  and 

c o n se rv a tio n  law  in g en e ra l re la tiv ity  using  the m o d ern  la n g u a g e  o f  d iffe ren tia l 

m anifolds. A t the end o f  the chapter w e dem onstrated a successful use o f  the generalised  

S undm an 's  in eq u a lity  m ethod  in general re la tiv ity  to es tab lish  co n stra in ts  on possib le  

m otion  im p o sed  by sym m etries and conservation  law s. T h e  standard  bounded  geodesic  

m o tio n  in S ch w arzsch ild  spacetim e w as reproduced  using  o u r in eq u ality  m ethod. It is 

the p u rp o se  o f  th is  ch ap te r to  fu rth e r g en e ra lise  th is m eth o d  and  ap p ly  it to m ore  

co m p lica ted  re la tiv istic  system s. In spite o f  the sim plicity  o f  the m ethod , w e are able to 

p resen t som e new  results.

W e p ro p o se  to  study the restric tions on  the possib le  m o tion  o f  iso la ted  few -body  

system s in  asy m p to tic  fla t spacetim e im posed  by sy m m etries o f  spacetim e . A s in the 

c la ss ica l sy s tem s s tud ied  in  ch ap te rs  4 and  5, such  re s tr ic tio n s  can  lead  to  som e 

in te re s tin g  b o u n d ed  m otion  and  h ie ra rch ica l o rb ita l m o tio n . Such  an ap p ro ach  is 

im p o rtan t b ecau se  it is now  rea lised , ow ing  to  the p ro g ress  m ade in u n d ers tan d in g  

d e te rm in is tic  ch ao s in n on linear system s, that in m ost cases the g en e ra l eq u a tio n s o f  

m o tio n  a re  no t so lub le  in  c lo sed -fo rm  in N ew ton ian  m ech an ics , n o r in re la tiv ity . 

T h e re fo re  i f  an ap p ro x im a tio n  m ethod  is no t ad o p ted , all o n e  can  say ab o u t the 

b eh a v io u r  is b ased  on co n se rv a tio n  law s and  sy m m etrie s  o f  the  p ro b le m  u n d er 

investigation .

O u r e ffo rt in  the p resen t chap te r w ill be focused  on the re s tr ic tio n s  aris in g  from  

co n se rv ed  q u an titie s , especia lly  in those situations w here  the co n fig u ra tio n  space is 

d iv id ed  to  m an ife st som e o rdered  h ierarch ica l g eo m etrica l s tru c tu re . H o w ev er, it is 

im p o ssib le  to  g eneralise  this study fu rther in to  system s w ith  m ore than  th ree  bod ies, 

because the num ber o f conserved quantities is lim ited. (In general a non linear dynam ical 

sy stem  d e fin e d  on  a fin ite  d im ensional space p o ssesses  o n ly  a lim ited  n u m b er o f  

sym m etries, o r  integrals.) Therefore only a very lim ited group o f system s are solvable in 

clo sed  form , w h ile  a slightly  larger group o f  system s p ossess o rdered  m otion  due to the 

p resen ce  o f  in teg ra ls . F o r th is reason w e shall re s tr ic t o u r a tten tio n  to  the  'few -body ' 

p ro b lem  an d  co n sid e r a generalisation  o f  o rdered  m o tio n  o f  g rav ita tio n a l few -body  

system s in  the con tex t o f  general relativity.
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W e ask the follow ing question: Can the attractive results o f  bounded m otion be taken 

over in to  the fram ew ork  o f  general relativ ity? Put d ifferen tly , do  the conservation  law s 

in general re la tiv ity  im pose restric tions on the m otion  o f  the partic ip a tin g  bo d ies such 

that under som e cond itions the conservation  law s determ ine som e connected  fo rb idden  

w orld  tubes and the m otion  o f  the bodies are restric ted  to m ove w ithin  som e separated  

possib le  w orld  tubes? W e shall confine  ourselves to the case w here a space + tim e split 

is po ssib le  and assum e th a t the typ ical size o f  the bod ies be sm all com pared  w ith the 

typ ical d istance betw een them . B ecause o f  the m any d ifficu lties  in general re la tiv ity , a 

negative first response to th is consideration  w ould not be unexpected . F o r ex am p le  the 

ex istence o f  g rav ita tional rad ia tio n  m eans that energy and an g u lar m om en tum  w ill be 

carried  aw ay  from  the system . N or is it yet c lear w hether a p o in t-m ass (or alternative ly , 

cen tre  o f  m ass) id ea lisa tio n  is po ssib le  in  general re la tiv ity  (th is is a very  im p o rtan t 

consideration  if  useful forb idden  m otion is to be expected). T hus, no easy generalisation  

o f  the c la ss ica l re su lts  can  be m ade im m ed ia te ly . T he s itu a tio n , h o w ev er, is no t 

com plete ly  hopeless. A lth o u g h  th is problem  is far from  being com plete ly  so lved , m uch 

m ore useful resu lts than ex p ec ted  are ob tained. It will becom e clear, by a ttem p tin g  to 

re lax  the va lid ity  cond ition  o f  the classical analysis, that g rav ita tional rad ia tion  is not a 

serious d ifficulty  (radiation is by no  m eans unique to general relativ ity), but that the m ain 

difficulty lies in the curved spacetim e and the highly nonlinear nature o f  the E instein field 

equations.

A s w as show n in the p rev io u s chap ter, the coo rd ina te  d ep en d en t L an d au -L ifsh itz  

(1962) fo rm ulation  o f  co n serv atio n  law s can be generalised  to an arb itrary  co o rd in a te  

system . H o w ev er, since sy m m etries  and asym pto tic  sy m m etries  o f  a sp ace tim e are 

alw ays a definite concept, o u r generalisation posed som e doubts about the un iqueness o f  

co n se rv a tio n  law s. T h ere fo re  in o rd e r to avoid  th is am b ig u ity , w e shall p ro ceed  by 

m odify ing  the conven tiona l w ay o f  achieving forbidden m otion . Instead  o f  d iscu ssin g  

the constra in ts o f  conserved  quan tities (integrals) on the possib le  m otion, as is usual and 

ap p a ren tly  o b v io u s, w e lo o k  fo r  the re la tio n  be tw een  fo rb id d en  m o tio n  an d  the 

u n d erly in g  (a sy m p to tic ) sy m m etrie s  o f  the p ro b lem . W e w ill still ta lk  ab o u t the 

constra in ts im posed  by energy  and  angu lar m om entum , but a lw ays keep  in m ind  that it 

is the sym m etry that is im portant.

F ro m  the fo rb idden  m o tio n  stud ies in c lassica l m ech an ics w e selec t the m eth o d  

w hich best suits o u r purpose. It m ust not only be as sim ple as possib le , but also  re ly  as 

little  as possib le  on the spec ific  p rob lem  and N ew tonian concep ts. Ideally  the best ones 

should  be those  w h ich  d ep en d  on ly  on the (asym pto tic) sym m etry  o f  the p ro b lem . 

A lthough  a coo rd in a te-free  m eth o d  is desired , at p resen t a m ethod  co m p atib le  w ith  an 

asym pto tic  M inkow ski co o rd in a te  system  m ust be em ployed  since it is a lm ost alw ays

187



m ost co nven ien t to  w ork in such coordinates, and as m ost ex isting  standard  resu lts have 

been form ulated  in them.

W e now  consider how forbidden m otion is studied in classical m echanics. T here are 

essen tia lly  tw o kinds o f  forbidden m otion analyses, nam ely  those w hich are determ ined  

by a co n stra in t o f  the energy only , and those w hich are determ ined  jo in tly  by both the 

en e rg y  and  angu lar m om entum . A lthough the study o f  constra in t by energy  alone is o f 

som e in te re st, w e w ill co n cen tra te  on th o se  m o tio n s re str ic ted  by both  en e rg y  and 

an g u la r m om en tum  (in general re la tiv ity  the norm alisa tion  cond ition , equation  (6 .14a) 

m ust a lso  be added). The use o f  the angular m om entum  im proves the forbidden m otion  

in  th ree  sen ses  (all o f  them  m ay o ccu r in a s in g le  p ro b lem ). F irs tly , the re g io n s  

fo rb id d e n  by energy  co n stra in ts  a lone are en la rg ed  by m ak in g  use o f  the an g u la r 

m om en tum . E xam ples include the m otion o f  a po in t m ass in the po tential field  o f  fixed  

bod ies p o ssessin g  ro tational sym m etry, w here the m ass o f the bodies can be d istribu ted  

in  a u n ifo rm  sphere, spheroid, ring  o r disc. Secondly , w hen the energy is not enough  to 

p ro v id e  bo u n d s on the m otion, the in troduction  o f  angu lar m om entum  streng thens the 

re s tr ic tio n  so  that the m otion  m ay becom e bounded . A good exam ple  is the general 

3 -body problem . A lthough in this case only one integral is effectively used and a w eaker 

inequality  is applied the restric tions are obv iously  stronger than those obtained from  the 

e n e rg y  co n s tra in t, H >U , alone. P u t an o th e r w ay , the co m b in ed  firs t in teg ra l C 2H  

im poses a  restric tion  w hich is stricter than that im posed  by the energy. T hird ly , angu lar 

m o m en tu m  also  keeps the system  aw ay from  sim ultaneous co llision  or, in the case  o f  

on ly  on e  m oving  point m ass, from  approach ing  the axis o f  the ro tational sym m etry . A n 

exam ple  is  the aligned-m any-centre problem . F o r detailed  results o f forbidden m otion o f 

the 2 -c en tre  p rob lem  see B om  (1927). T w o  m ethods are o f  concern ; the e ffec tiv e  

po ten tial (canonical transform ation) m ethod and Sundm an 's inequality  m ethod.

T h e  effective potential m ethod is based on the fact that the H am iltonian o f  a system  is 

positive  defin ite in the generalised m om enta. By choosing generalised coordinates w hich 

co n ta in  as m an y  ignorab le  co o rd in a tes  as p o ssib le , w e see that the co rre sp o n d in g  

co n se rv ed  qu an titie s  w ill im pose re s tric tio n s  on the possib le  values o f  the rem ain in g  

co o rd in a te s , hence there w ill ex ist possib le  and fo rb idden  m otion. If  the d im ension  o f  

the system  is low  then connected forb idden  reg io n s can be form ed, thus defin ing  som e 

so rt o f  o rd e r in the system . H ow ever, this m ethod  has som e d isadvan tages a lthough in 

p r in c ip le  i t  m ig h t be o f  general use. F o r ex am p le , as a general ru le  all co n se rv ed  

q u an titie s  m ay  contribu te to set up restric tions, how ever, usually  no single coo rd ina te  

system  can  be sim ultaneously adapted to all independen t conserved quan tities (because 

they  a re  no t necessarily  in involu tion), and  hence not all independen t in teg ra ls  can be 

m ad e  ex p lic itly  co rrespond ing  to ig n o rab le  co o rd in a tes  at the sam e tim e (in e ith e r
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N ew ton ian  m echan ics or general relativity). Even if  the above p rocedure is possib le  the 

am ount o f  algebra w ould grow  enorm ously w ith the d im ension  o f  the system . H ow ever, 

from  the experience in N ew tonian  m echanics, a com plete  study o f  all restric tions is not 

n ecessa ry  fo r  the pu rpose o f  de term in ing  h iera rch y . T he cru c ia l co n se rv a tio n  law s 

re lev an t to  the p rob lem  are angu lar m om entum  and energy . B ecause  o f  this we w ill 

co n cen tra te  on the second m ethod  (Sundm an inequality ) w hich is m uch sim pler and  

m ore s tra ig h tfo rw ard . T his m ethod con ta ins less in fo rm atio n  bu t en o u g h  to d efin e  

h ie ra rch y . T h e  S undm an 's  inequality  is no t on ly  a very  general re la tio n  bu t is m ore  

flex ib le . It w ill be gen era lised  to a m ath em atica l re la tio n  reg ard less  o f  its p h y sica l 

content.

T he quan titie s  involved in this approach are angular m o m en tu m , m om en t o f inertia, 

k inetic  energy  and poten tial energy. In N ew ton ian  m echan ics, all these q uan titie s  are 

w ell d e fin ed . T he  in eq u a lity  is valid  fo r bo th  the  c la ss ic a l N -b o d y  sy stem  an d  

co n tin u o u s  system s, as w ell as parts o f the system . It is a lso  valid  fo r a system  o f  

ch a rg ed  p artic le s  w hich rad ia te . T he inequality  is a lso  re lev an t w hen re fe rred  to  the 

cen tre  o f  m ass. In general re la tiv ity , usually  there  are no co o rd in a te -free  co n se rv ed  

quan tities , hence the norm  o f angular m om entum  is not w ell defined . H ow ever, we can  

try to  co n stru c t, from  the c o o rd in a te -d e p e n d e n t  co n serv ed  q u an titie s , a g en e ra lised  

S undm an 's  inequality . This allow s us to study forb idden  m otion  and h ierarchy  desp ite  

the fact that the inequalities chosen m ay no t be the only possib le  ones. T he  undefined  

quan tities, m om ent o f  inertia and kinetic energy, are not essen tial to the investigation  so 

long as the fo rm er is a function o f  coord inates only, w hile the la tter can be rep laced  by 

'energy ' and  a function  o f  coordinates.

In section  7.1 w e generalise the classical Sundm an 's inequality  to  becom e the central 

m athem atica l tool fo r the p resent study. A ppendix  B collects the im portan t inequalities 

and their p roofs, and is closely  relevant to this section. Section 7.2 is a d iscussion  on the 

general p rob lem , w here we hope to establish the existence o f forbidden m otion based on 

a sy m p to tic  sy m m etry . In sec tion  7 .3  w e ap p ly  the m e th o d  to  the  f irs t  o rd e r  

p o s t-N e w to n ia n  ap p ro x im a tio n  o f  general re la tiv ity  and ob ta in  in eq u a litie s  w hich  

determ ine useful bounded m otion for the 2- and 3-body problem s.

7.1 G en era lised  Sundm an's Inequality

In the  p re v io u s  ch ap te r w e have already seen the first g en e ra lisa tio n  o f  S u ndm an 's  

in eq u ality , w h ich  ex ten d s the inequality  w ith one body invo lved  from  3 -d im ensional 

E uclid ian  space to  h igher dim ensional linear spaces (the inner p roduct is irre levant fo r
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its valid ity ), viz.

(7 .1 )

w here, {A1}and { B ^ a re  tw o  arb itrary  vectors and m  a constant.

A  fu rther generalisation  o f  the Sundm an 's inequality  is from  that invo lv ing  one point 

to that involv ing  m any points on the m anifold, viz.

w here  at each  p o in t b, there  are tw o  arb itrary  vectors A 5 and B^, and  a n on-negative  

n u m b er m^. In A ppend ix  B, equation  (7.2) is p roved w ith m ^ ^ l ,  the p ro o f  fo r arb itrary  

nonnegative m b is straightforw ard. In fact the p roo f given is m ore general than the above 

in terpretation. A lso  we note that all these equations can be applied to continuous system s 

i f  the sum  over points is replaced by integral over a positive m easure elem ent.

W e observe that although the cross product operation only belongs to  3-dim ensional 

space  and  is acc id en ta l to  this d im ension , a fo rm al g enera lisa tion  o f  the S u n d m an 's  

in eq u a lity  in v o lv in g  the 'no rm  o f  the (w edge) cross p ro d u c t' to  h ig h e r d im en sio n al 

space is possib le . L et us now  take a look  at som e re laxation  o f  the standard  Sundm an 's 

inequality  from  the p o in t o f  v iew  o f  equations (7.1) and (7.2). F irstly , the to tal angu lar 

m om en tum  and the total energy  o f  the system  need not be conserved fo r its validity . F or 

exam ple , it is not on ly  valid  fo r a subsystem  but also fo r a system  o f  ch arg ed  partic les 

w here  e lec trom agnetic  rad ia tion  carries angu lar m om entum  and energy  aw ay from  the 

system . T h is is w hy w e b elieve that g rav ita tional w aves w ould not be a p rob lem  fo r 

g en e ra lis in g  these equa tions. H ow ever, a good understand ing  o f  co n se rv a tio n  law s is 

re lev an t because  w e m ust app ly  ou r too l to som e physical q u an titie s  fo r m ean ing fu l 

resu lts . S econd ly , i f  a cen tre  o f  m ass can  be defined  fo r each body in v o lv ed , then an 

in eq u a lity  can  be co n stru c ted  fo r the cen tre  o f  m ass. A  separate  stu d y  o f  how  these 

cen tre  o f  m ass q u an titie s  ch an g e  and in teract w ith  the in terio r m o tion  o f  the bodies is 

needed , bu t th is is no t the m ain  in te re st o f the p resen t paper, b ecau se  w e can  alw ays 

reasonably  assum e that this in teraction is weak.

T h e  second  p rob lem  ra ises a d ifficu lty  in rela tiv ity , because a useful cen tre  o f  m ass 

is no t easily  defined  (see C arm eli, 1982). The difficulty  o f this study is therefore related 

to the  b ro ad e r d ifficu lties  in general re la tiv ity : conservation  law s and  cen tre  o f  m ass.

s r X m X ) T l m b(B'b)2 ( 7 . 2 )
i , b i , b
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A n y  p ro g ress  in this general approach w ould  be useful to  ou r study. O n the o th er hand , 

an y  d efin itio n  for angu lar m om entum  m ust re flect the underly ing  ro ta tional sym m etry  

(thus invo lv ing  the w edge product in som e way); the estab lishm ent o f  som e new  form al 

re la tio n s involving angular m om entum  m ay also contribute to the approach on the above 

general difficulties in relativity.

C o n sid e rin g  the d ifficu lty  o f decoup ling  the p rob lem  o f  m otion  in to  ex tern a l and  

in terna l in general relativity  (see the review  paper by D am our, 1987) together w ith o ther 

d ifficu lties , w e w ill follow  one o f  tw o form ulations.

(a). T h e  w hole  continuous system

a l .  F orm ally  define energy, angular m om entum  etc., w hich are conserved  w hen 

re la ted  to K illing vectors, but w hich nonetheless capture the conceptual m ean ing  

ev en  if  not conserved.

a2. A pply  the Sundm an inequality to  these quantities o f  the w hole system .

a3. D ecoup le  the energy into 'effective ' potential + k inetic energy, ('effective ' w ill

be defined  m ore rigorously later)

(b). 'M ass-cen tre ' part

b l .  C onstruct a m ass-centre and decouple the m otion in to  orbital + in terio r + 

coup led  term s.

b2. A pply  Sundm an 's inequality  to the quantities o f the m ass-centre. 

b3 . S p lit energy  in to  'effective ' poten tial + kinetic.

B oth  o f  these form ulations can be successfully  carried  out in N ew tonian  m echan ics. 

T h e  seco n d  p rocedure  in e ither fo rm ulation  w ill be the m ain  approach  adop ted  in  the 

p re sen t study . T his can alw ays be done w ithou t m uch d ifficu lty . T he full po ten tia l o f  

th is  m e th o d  has only  been touched  upon  in this ch ap te r, how ever, the in eq u a litie s  

c o n s tru c te d  and  p ro v ed  in A p p en d ix  B are a lread y  s trong  en o u g h  to  sh o w  th a t 

asym pto tic  sym m etries do im pose restric tions on the m otion o f a continuous system .

In  the fu ll relativ istic theory, an im m ediate application o f  the generalised  Sundm an 's 

in eq u a litie s  fo r the cen tre o f  m ass is not possib le  since m ass-cen tre  is no t w e ll-defined . 

T h ere fo re , w e canno t obtain any hierarch ical orbital m otion  in this situation . H o w ev er, 

w e can  in v estig a te  the general question  o f  the restric tion  o f  (asym pto tic) sym m etry  on 

m otion , fo llow ing  the first form ulation above. To do this we choose the L andau-L ifsh itz  

fo rm u la tio n  o f  conservation  law s because o f  its apparen t sim plicity  and m ath em atica l 

trac tab ility . T hus the first tw o stages, o f  defin ing  conserved  quantities and app ly ing  the 

g en e ra lised  inequality  m ethod, can be so lved  form ally , but the deco u p lin g  o f  the total
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energy  is a m uch m ore d ifficu lt problem . H ow ever, since these th ree p rocedures are not 

in d ep en d en t, a good  approach  to the first tw o stages m ay fac ilita te  a so lu tion  to the 

problem  encountered  in the third.

T he form ulation  o f the m ass-centre and conservation law s by D ixon  (1979) (see also 

D eW itt & B rehm e, 1960; B ailey  & Israel, 1980) m igh t be a be tte r a lte rn a tiv e  to those 

co n sid ered  here. T hese  au thors used a tw o-po in t ten so r to ex p ress  co n se rv a tio n  law s 

and  o b ta in  a u n iq u e  m ass-cen tre , and thus their approach  is a lso  co m p atib le  w ith the 

second fo rm ulation  above. O ne o ther advantage o f theirs is that the conserved  quan tities 

are tensorial. T hese tensorial quantities are not conserved if  the spacetim e does not adm it 

sym m etries, as is usually  the  case in general re lativ ity . H ow ever, one can still arrive at 

u sefu l re su lts  i f  these  q u an titie s  are chang ing  slow ly  and  the  ra te  o f  ch an g e  can  be 

estim ated  since  the in eq u alities  are m ain tained  even  if  the q u an titie s  in v o lv ed  are no t 

conserved . W hat is im portan t is that the object considered  m ust cap tu re  the m ean ing  o f  

such q u an titie s  as ang u lar m om entum . D ixon 's fo rm ulation  has no t been  ca rried  ou t in 

the p resen t study and  is left to a future work.

B o th  fo rm u la tio n s  can  be ca rried  ou t in the p o s t-N e w to n ia n  lim it, b ecau se  a 

conserved  m ass and  m ass-centre  can be defined to this order. It will be show n in section

7.3 that the classical hierarchical orbital m otion is still held to this order.

T h o u g h  the ab o v e  tw o  eq u a tio n s  are valid  in any co o rd in a te  sy stem , they  are 

re la tions be tw een  d iffe ren t quan tities  in d ifferen t coord ina tes. In o rd e r to  be re la ted  to 

physically  m ean ingfu l conservation  law s, a preferred  coord ina te  system  is required , eg ., 

asym pto tically  M inkow ski coordinates. T hus a further generalisation  in to  tensorial form  

is requ ired  fo r fu tu re research .

7.2 G eneral D iscussion o f  the Full Relativistic N -B ody Problem

In th is sec tio n  w e are co n cern ed  w ith a general ana lysis  o f  the  p ro b lem  in general 

re la tiv ity . N e v e rth e le ss , sp ec ia l re la tiv ity  is a lso  d iscu ssed  b ecau se  o f  the  fo rm a l 

sim ilarity betw een the integral conservation laws in both the special and general theories. 

I f  the L andau-L ifsh itz  form ulation  is follow ed and a pseudo energy -m om en tum  tensor is 

defined  fo r g rav ita tion  (the facto r -g is neglected  here, cf. section 6.3) then w e have the 

fo llow ing conserved  4 -m om entum  and angular m om entum  in an asym pto tic  M inkow ski 

coord inate system ,

w h ere  ttiv is  a fu n c tio n  o f  m e tric , w hich  in  tu rn  is fo rm a lly  o n ly  a fu n c tio n  o f
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coord ina tes. T his quantity  van ishes in a global M inkow ski spacetim e. N ow  let us apply 

eq u a tio n s  (7 .1 ), (7 .2) an d  those  g iven in A p p en d ix  B to the  q u an titie s  d e f in ed  by 

equa tion  (7.3).

A Form al Study in G eneral Relativity and Special Relativ ity

I f  w e assu m e that the spacetim e is such that there is no co o rd in a te  s ingu larity , then  we 

can  ap p ly  the  g en e ra lised  S u n d m an 's  in eq u a lity , e q u a tio n  (7 .2 ) an d  (B 8 ), to  the 

co n se rv ed  co m p o n en ts  o f  the angu lar m om entum . A lth o u g h  w e can  sum  o v er all the 

com ponents, w e believe that a physically  useful construction  is to sum  over spatial parts 

only . (T his can  be done fo rm ally  by p ro jec tin g  any v aria tio n s  in the co m p o n en ts  o f  

angu lar m om entum  onto a spatial hypersurface orthogonal to  the 4 -velocity  since we are 

p rim arily  in te re sted  in how  the spatial com ponen ts behave). H ence, fo r a system  o f  

w idely  separated  bodies, w e have

(N ote that w e have again defined C form ally here).

T h ese  are tw o exam ples o f the inequalities. N ow  let us observe from  equation  (7.5), 

say, th a t the  L H S  and  the first fac to r on the R H S are in a sa tis fac to ry  fo rm  fo r the 

defin ition  o f  forb idden  m otion. T he problem  is then how  to use the conservation  o f  the

4-m om entum  and norm alisation condition to replace the first term  o f  the second factor by 

q u an titie s  in v o lv in g  only  conserved  quan tities and fun c tio n s o f  coo rd ina tes. T h is  w as 

su ccessfu lly  ca rried  ou t in the last section fo r geodesic  m otion . W e can n o t do  it in the

( 7 . 4 )

i . k

< ( 2 Jr2d3x) • J I ( T i0)2 d3x +j X ( t i0) V x ( 7 . 5 )

where r2 s  X(x')2 ■
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sam e w ay here, because the 'energy equation ' o f  P ° in equation  (7 .3 ) is not usefu l to us 

s in ce  it  d o es  no t in v o lv e  the  (TJO) 2 term . T h is is a com m on  d iff icu lty  in  g en e ra l 

re la tiv ity . H o w ev er, by u tilis in g  the flex ib ility  o f  o u r m ethod , the u n w e lco m e term  

being  p o sitiv e  defin ite  m ay be effectively  rem oved from  the analysis. It m ust be kep t in 

m in d  th a t in do ing  this the in eq u ality  is w eakened  and, in fact, m ay not be ph y sica lly  

reaso n ab le , since it is possib le  that a physically  sign ifican t term  cou ld  be n eg lec ted  in 

this w ay. H ow ever, som e form  o f  forbidden m otion m ay still be obtained.

A  firs t approach  is to use the flex ib ility  o f  one o f  the m any possib le  genera lisa tions 

o f  S u n d m an 's  inequality , equation  (B 8 ) o f  A ppend ix  B , so that we can  m ake the first 

term  o f  the second factor in equation  (7.5) very sm all, viz.

w here  A  is a positive num ber o r function. T here alw ays exists a large enough A  to  m ake 

the la s t tw o  approx im ations possib le . T herefo re , the RHS is a function  o f  co o rd in a tes  

o n ly . T h is  m u st ca rry  som e in fo rm atio n  abou t the re s tr ic tio n  on c o o rd in a te s  by 

co n se rv a tio n  law s a lthough  on ly  the an g u la r m om entum  is used  in th is in eq u a lity . 

H ow ever, it g ives useful forb idden  m otion only if  the num ber o f coord inates invo lved  is 

sm all. F ro m  experience gained  in the classica l study, this m eans on ly  if  a one, tw o, o r 

th ree  body  p rob lem  is concerned . S ince in general re la tiv ity , a po in t m ass p ro d u ces a 

s in g u la rity  p ro b lem  (in fac t, th is  has som e p h y sica l d iff icu ltie s , fo r ex a m p le , a

5 -function  d istribu tion  cannot be in troduced  arbitrarily), we m ust consider the cen tre  o f  

m ass. H o w ev er, as m en tioned  ea rlie r th is co n cep t is no t w ell u n d ersto o d  in general 

re la tiv ity . D ixon 's tw o-point tensor form ulation (see also Carm eli, 1982; D am our, 1987) 

m ay  p ro v e  to  be useful, but cannot readily  be used and is too detailed  to co n sid er here. I f  

th is d ifficu lty  w ere solved, then equation  (7.6) should give concep tually  an an a lo g o u s 

re su lt as in N ew to n ian  m ech an ics , w hich  m igh t be o f  little  p rac tica l v a lu e . T h is  is 

because  that usually  the m atter con tribu tion  is b igger than that from  grav ita tion , so that 

the above p rocedure has w eakened the orig inal relation by dropping the sign ificant term .

C o n s id e r now  a m ore co m p le te  study  w ith  the en e rg y -m o m en tu m  ten so r o f  the 

m atte r ex p lic itly  given. In addition  to  the above d ifficu lty  there arises an o th er general

= ( j r 2d3x)- ^jX(T‘°)2d3x +A JX(t'°)2d3xj

(7 .6)
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difficu lty  o f  general relativity. C onsider a perfect flu id  m odel, then we have the standard 

expression  fo r the energy-m em entum  tensor,

- T ^ t p  + r t V V + p g 1" , ( 7 . 7 )

V = i s  t h e  v e l o c i t y  v e c t o r

w here  p and  p are the to tal energy  density  and  the  p ressu re  w hich  are, by defin itio n ,

m easu red  in a m om entarily  com oving local L orentz fram e o f the fluid elem ent. A pplying

equa tion  (B 8 ) to equations (7.3) and (7.7), w e obtain

° 2 =  2  Z  ( J ( P  + p ) v V ' V k| + p x ug k'° + x ut h' °d3x )
j.k

^  { j [ ( P + P ) ( V °)2 +  p 2 +  1 ] r V  x }  •

| J S ( P  + P) (V') Vx + J £ ( g '  ° ) 2 +  ( t ' ° ) 2d 3x l  ( 7 . 8 )

H ere, the d ifficu lty  is again how to replace the term  invo lv ing  Z (V i)2. In o rd er to do  this 

w e m ust invoke the conservation o f energy, viz.

P° = J [ ( P  + P) V°V° + p g 00 + t ° ° ] d 3x ( 7 . 9 )

and  carry  ou t tw o coord inate transform ations: one betw een  the coord ina te  fram e and an 

o rth o n o rm al fram e attached to it, the o ther betw een  th is attached  L oren tz  fram e and  the 

locally  com oving  Lorentz fram e. A nother d ifficu lty  is the property  o f the t term . In o rder 

to o b ta in  som e forb idden  m otions like those found  in c lassica l m echan ics, th is term  is 

req u ired  to  increase as the bodies com e closer. It is no t im m ediately  obvious that this is 

the case. H ow ever, the fo llow ing dem onstration  in special re la tiv ity  suggests that there 

m ight be a w ay to overcom e these difficulties.

C o n sid e r the sam e problem  in special re la tiv ity , w ith  again  a perfec t flu id  system . 

B ecau se  w e now  have a g lobal L oren tz fram e, w e on ly  need  the s im p le r one o f  the

above transfo rm ations (or equivalently  use the norm alisa tion  cond ition  g (V ,V )= -l and

the sp ec ia l m etric  g=Tj). It turns out that the w ell kno w n  d ifficu lty  o f  d efin in g  k inetic  

energ y  in  special relativ ity  is not a p roblem  here, and  the d ifficu lty  o f  u tilising  equation  

(7.9) can  be easily  resolved. Thus equations (7.3) and (7.8) can be w ritten

p P . J , £ ± £ . f l *  .

J 1 — v I — v

195



C^ 2 X j (p + P)X‘iv V X
j , k ^

„ f(P + P)r2 f ( p +  P)v j3
< I—  2 d x • I—  —  d x

1 — V J 1 -  V

(p +  P) r= j U - ^ d 3x ( p ° _ J p d 3x )  ( 7 1 0 )

an d  w e see that w e have succeeded  in determ in ing  reasonable fo rb idden  m otion  fo r a 

re la tiv is tic  system . H ere  w e em p h asise  that the w eak  e n e rg y  c o n d i t io n  (S y n g e , 

1960; H aw king  & E llis , 1973) p lays a sign ifican t role in ob ta in in g  both equation  (7.8)

and  (7 .10). T his cond ition  guarantees that p and p+p are nonnegative . W e also observe  

that the fac to r ( l-v ^ ) does not p resen t a serious difficulty , since th is sim ply  m eans that 

w hen  d e fin in g  the 'm om en t o f  inertia1 the p roper distance should  be used  instead  o f  the 

s lig h tly  d iffe ren t co o rd in a te  d istance. T h is is a lso  the reason  b eh in d  the ch o ice , in 

eq u a tio n  (7 .8), o f  asso c ia tin g  the facto r V® w ith the coord ina te  r  ra th e r than  w ith  V*. 

(T his is possib le  w ith no loss o f  generality .)

A  com m ent on how  to define 'm om ent o f inertia ' and 'k inetic energy ' in re la tiv ity  is 

in o rd e r here. T he d ifficulty  o f such classical concepts is not that they cannot be defined; 

it is ra th e r w hy d efin e  them , w hat is their use, w hat is the m ost usefu l d efin itio n ?  O f  

co u rse , a q u an tity  can  be reg ard ed  as a co u n terp art in re la tiv ity  if  it red u ces  to the 

c lass ica l on e  in the N ew ton ian  order. T h is  is s im ilar to w hat hap p en s in the 'co m m a 

g o es to sem ico lon ' ru le , so such coun terparts in re la tiv ity  are no t unique. W e can  thus 

im p o se  an o th er restric tion : form al sim ilarity . A  m ore physically  usefu l restric tion  is to 

study the relation o f  such quantities to conservation laws -  in physics a useful concep t is 

one w hich  is related  to conservation laws.

T he  success o f  equation  (7.10) in special relativ ity  is encourag ing  and it is possib le  

that a system  o f charged  partic les can be studied in this way to obtain  ordered  m otion for 

som e finite time. It is hoped  that this will be studied at a later date.

D iscu ssion  and C onclusion

In  th is  sec tion  w e d iscu ssed  the re la tion  betw een  forb idden  m o tio n  and  asy m p to tic  

sym m etry . D esp ite  the d ifficu lties  in general re la tiv ity  o f  d efin in g  such  co n cep ts  as 

energy  and angu lar m om entum , a m athem atical m ethod w as developed  w hich, a lthough 

restric ted  in som e cases, p rov ided  an ideal p latform  from  w hich to  study  the possib ility  

o f  fo rb id d en  m o tio n  w ith in  the co n tex t o f  geom etrica l spacetim es. T h is  m eth o d  is 

p ro p o sed  as a g enera lisa tion  o f  S undm an 's inequality  m ethod o f  d efin in g  h ierarchy  in 

c lass ica l system s and  p ro v ed  to  be particu la rly  successful (see sec tion  6.5) w hen we
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considered  the effects o f  energy  and angular m om entum  constra in ts on geodesic m otion  

in a S chw arzsch ild  spacetim e and in the case w here the spacetim e under investigation  

w as d esc rib ed  by a M in k o w sk i m etric . F u rth e r ap p lica tio n  o f  th is  m eth o d  to  less 

re s tric ted  system s suffers from  m any difficu lties. H ow ever, the ana lysis  ca rried  ou t in 

th is  sec tio n  suggests  that the p resence  o f  an asym pto tic  sy m m etry  in a sy stem  o f  

g rav ita tio n a lly  in teracting  bo d ies m ust im pose som e re stric tio n  on  possib le  m otion . 

T h e re fo re , it shou ld  be p o ss ib le  to  d iscuss o rdered  m otion  fo r a g eneral c la ss  o f  

so lu tio n s d isp lay ing  the p roperty  o f  asym pto tic sym m etry  (i.e. K illin g  vec to rs can  be 

defined  at large distances from  the local system).

It is also  argued, by analogy  to the classical problem , that although  the inclusion  o f  

g rav ita tio n a l rad ia tion , w h ich  m ay carry  aw ay both energy  and an g u la r m o m en tu m , 

p revents even the 2 -body prob lem  from  being adequately d iscussed  in general re lativ ity , 

it d o es  no t prove to be a serious d ifficu lty  w hen considering  fo rb idden  m otion , if  the 

quan tities involved are slow ly varying. The m ain problem  encoun tered  is due to the fact 

that the spacetim e is cu rved  and that there is no a priori spacetim e geom etry  in general 

re la tiv ity . T hus, in general, it is not possib le to assum e the ex istence o f  K illing  vec to rs 

(sy m m etries). It is  a lso  fo u n d  that w hen attem pting  to d efin e  a cen tre  o f  m ass, the 

n o n lin ear aspect o f  general re la tiv ity  prevents us from  carry ing  ou t a rigorous ana lysis  

ex cep t in  som e special cases. B ecause o f  this we hope to apply  the m ethod  considered  

here to  the theory developed  by D ixon (1979), w here the centre o f  m ass is defined.

T he inequality  m ethod described in this paper allows us to consider in m ore detail the 

co n d itio n s  fo r the ex istence o f  forb idden , o r ordered , m otions in system s ou tw ith  the 

rea lm  o f  N ew ton ian  m ech an ics. By rep lacing  the classical em p h asis  on 'in teg ra ls  o f  

m o tio n ' w ith  one o f  'sym m etries o f  the spacetim e ' w e are ab le, fo r  som e system s at 

least, to develop  useful resu lts regard ing  the form ation o f forbidden reg ions in a general 

re la tiv istic  context. In o rd e r to do this a coordinate fram ew ork w as required . H ow ever, 

it sh o u ld  be p o ss ib le , a lth o u g h  no t triv ia l, to exp ress the re la tio n s  u se fu lly  in a 

co o rd in a te -free  fo rm alism . T h is  is hoped  to be carried  out as a fu tu re  w ork. In th is 

respect, a use o f  the tetrad form alism  m ay be a useful alternative approach.

A  typical feature o f  the inequality  m ethod is its flexibility and this will be applied to  a 

p o st-N ew to n ian  fo rm alism  in the next section. It is also hoped  th a t the app lica tion  to  

stationary  axially -sym m etric  system s m ay provide som e useful resu lts fo r the spacetim e 

su rro u n d in g  p u lsa rs  and  K err b lack  holes (see C handrasekhar, 1983). M uch w ork  is 

req u ired , how ever, in o rd e r to im prove the app licab ility  and  th e  g en e ra lity  o f  th is 

m ethod . A ny  resu lts  in the fie ld  o f  conservation  law s in g eneral re la tiv ity  w o u ld  be 

invaluab le  to this analysis. O ne great benefit w hich m ay be ob ta ined  from  the approach  

outlined  in this section is in the study o f  m ass transfer betw een the tw o stars o f  a b inary
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system . B y co n sid erin g  the grav ita tional fie ld  o f  the system  in a s im ilar w ay to that o f  

C o n to p o u lo s  (1 9 9 0 ) and  C h an d ra sek h a r (1 9 8 9 ) it m ay  be p o ss ib le  to u tilise  the 

flex ib ility  o f  the inequality  m ethod  to  ob tain  the re la tiv istic  lim its on the m otion o f  the 

tran sfe rrin g  m ass. T h is  w ould  be an in teresting  a lternative  to the classica l R o ch e  lo b e  

analysis fo r a b inary  system .

7 .3  B o u n d e d  M o t io n  o f  the P o s t -N e w to n ia n  N -B o d y  P r o b le m

In  the las t ch ap te r and p rev ious section, the p o ssib ility  o f  estab lish in g  bounded m otion  

in  the re la tiv istic , g ravitational few -body system  w as investigated . It w as show n that the 

ex is ten ce  o f  an  asym pto tic  sym m etry  in the system  shou ld  re su lt in the m otion being  

b o u n d e d . In  the  p re se n t sec tio n  w e w ill ap p ly  the  m e th o d  d ev e lo p e d  to  th e  

p o s t-N ew to n ian  approxim ation . A lthough  the p ost-N ew ton ian  approx im ation  has been  

c r itic is e d  fo r  the  ad v e rse  s id e -e ffec t o f  in tro d u c in g  im p lic itly  a 'n eo -N ew to n ian ' 

in terp retation  o f  general relativity  and in general such an approxim ation m ethod m ay not 

g ive  co n cep tu a lly  usefu l resu lts (C arm eli, 1982; D am our, 1987), this investigation  is 

carried  o u t fo r the fo llow ing  reasons.

F irstly , post-N ew ton ian  approx im ation  is a s im p le r and easily  m anageab le  case, in 

w hich  co n c re te  resu lts  m ay be ach ieved. S econd ly , it m ay serve as a fu rther exam ple  

w ith  w h ich  to test the  m ethod : if  b o u n d ed  m o tio n  can n o t be es tab lish ed  to the  

post-N ew ton ian  order then we m ay have to conclude that the m ethod proposed in section

7 .2  is no t ap p licab le  to the fu ll re la tiv is tic  case . H o w ev er, if  w e can  ob ta in  b ounded  

m o tio n  th en  th is m ay at least suggest th a t the  m eth o d  cap tu res  som e o f  the essen tia l 

m ech an ism  o f  bounded  m otion in general re la tiv ity  (S chu tz, 1990). F ina lly , in a m ore 

p ractica l sense , the investigation o f a g rav ita tional system  to post-N ew ton ian  order is in 

i tse lf  a u sefu l exercise. Such investigations have been ca rried  out ex tensive ly  since the 

general re la tiv is tic  theory  w as estab lished  (see W ill, 1981). N everthe less, it has been 

conven tional to restric t the study to the re la tiv istic  corrections o f  the orbital elem ents. T o 

the au tho r's  know ledge, no bounded m otion  has yet been estab lished .

T he  investigation  o f  bounded m otion to post-N ew ton ian  o rder is the m ain  in terest o f  

the p re sen t section . W e first give the energ y  and  (angu lar) m o m en tu m  in tegrals o f  the 

p o st-N ew to n ian  equations o f  m otion. T hen  the inequality  m ethod  is applied  to the first 

o rder post-N ew ton ian  N -body problem . S om e inequalities  are ob tained , based on w hich 

b o u n d ed  m o tio n  m ay be easily  es tab lish ed  fo r the (p o st-N ew to n ian ) 2- and 3 -body 

p ro b lem s. T h e  standard  post-N ew ton ian  fo rm u la tio n  is used  (W ill, 1981; W einberg , 

1972; F o ck , 1959; M isner 1973) and  th e  units are chosen  such that the speed o f
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light and  the grav itational constant are both unity. The notation o f this section is the sam e 

as the chapters on c lassica l studies.

C o n se r v e d  Q u a n t i t ie s  o f  the P o s t -N e w to n ia n  E q u a t io n s  o f  M o t io n

T he P o st-N ew to n ian  equa tions o f  m otion  have been o b ta ined  and studied  m any tim es 

since the fo u n d a tio n  o f  general re la tiv ity . In spite o f  the d iv erg en ce  o f  app roaches in 

ach iev ing  them , the  resu lts  are essen tia lly  the sam e. T hese  eq ua tions o f  m otion  can be 

in te rp re ted  as those  o f  the  cen tres  o f  inertia l m ass o f  p e rfec t flu id  ex ten d ed  bod ies 

(averaged  o v er som e in terio r tim e scales) (W ill, 1981), o r as those o f  the po in t m asses 

(W einberg , 1972). In  fact, in the first o rder post-N ew ton ian  approx im ation , the m otion  

o f  the c e n tre  o f  in e rtia l m ass (o r the p o in t m ass) fo llo w s the g eo d es ic s  o f  the 

p o s t-N e w to n ia n  m e tr ic  g e n e ra ted  by o th e r  b o d ies  (see  W ill, 1981), an d  th is  

approxim ation allow s the concept o f  point m ass to be adm itted.

It can be show n stra igh tfo rw ard ly  that the post-N ew ton ian  equa tions o f  m otion  can 

be (w ith no  ad d itio n al app rox im ation) d esc ribed  in  a L agrang ian  fo rm  (Fock , 1959). 

T his m eans that w e can in troduce a L agrangian from  general relativ ity  and then study the 

L ag ran g ian  system  in the  fram ew ork  o f  N ew ton ian  m echan ics in a rig o ro u s m anner. 

T herefo re  all the c lassica l techn iques such as the H am ilton ian  fo rm ula tion , canon ical 

tran sfo rm atio n  and  v ec to r ana lysis  can  be used. It fo llow s im m ed ia te ly  that such  a 

p ost-N ew ton ian  L ag ran g ian  system  possesses sim ilar classical conservation  law s since 

the L ag ran g ian  is in v arian t w ith respect to  a tim e transla tion , spatia l transla tions and 

ro ta tio n s. H o w ev er, th ese  co n se rv a tio n  law s m igh t re su lt fro m  the  iso m etry  o f  the 

background M inkow ski space-tim e ra ther than the asym ptotic sym m etries o f  the original 

re la tiv istic  p rob lem . T h erefo re  the forb idden  m otion ob tained  to post-N ew ton ian  o rd er 

m ay not be usefu l as a re liab le  support fo r the general question  o f  the re la tion  betw een 

forbidden m otion  and asym ptotic sym m etries.

T o obtain the (exact) conservation law s o f  the (first order post-N ew tonian) equations 

o f  m o tion  (o r L ag ran g ian ), le t us w rite  the L agrang ian  (see W ill, 1981) in a m ore  

convenient form

£ ( R ( t ), V ( t )) = - X m b+ X  (^-mbVb + { m bVb4 )
b b

m bm d m bm d(mb+ m a)
— —FS  +  5 (7.11)

( b , d )  ^ 2 r ;bd
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w h ere  the n o ta tio n  is the sam e as the standard  c lass ica l app roach : m b stan d s fo r the 

co n stan t m ass o f  the body, the vectors R b, V b denote rad ia l and  ve locity  vec to rs in

E u clid ean  3-space, t being the universal tim e and n ^ ^ R ^ / R ^ ,  R ^ ^ R ^ -R d -  T he sum  

over (b,d) deno tes the sum m ation over all possib le pairs w ithout repetition.

It w ill becom e clear, after the conserved  H am ilton ian  is ob ta ined , that the last term  

m ay  be in terp re ted  as 'potential energy'. T he generalised  linear m om entum  o f  each body 

P b, co rrespond ing  to the coord inates R b, is determ ined  in the standard  w ay, nam ely ,

p b = {dzt / axb, 02, / ayb, 02, / 0Zb}

=  ( m b + i m bV b2 ) V b + f Z
V d #  b

4 i

mbm dA
R

3 V

m  j t ld d

b d  J  

m bm  d
2  I R d J 2  I R

d * b  \  b d  J  d >• b  \  b d

1 ___ -t m. m .
= ( mb+ J - m bVb - I

( V d - n  J n
b d

d * b b d

(  m . m .
b a

R
( y d- b d

b d

( 7 .1 2 )
d # b V "bd

T he H am ilton ian  is then given (the velocities have not been rep laced  by m om enta),

# ( R ( t ) . V ( t ) ) =  I ( V b . P b) - £

E m b + I  ( y m bv b +  f m bv b )

+
1 rn. m . 2 2
T  I  ~p [(3Vb + 3Vd) - 7 V b

+

( b . d )

I
( b . d )

b d

- ( V b - n J ( V d - n  J ]b d '

„■■■„ . m bmd(mb+ m d) Anr m
R

+
bd 2 R

b d

(7.13)

T h is  co rresp o n d s  to the conserved  'to tal en e rg y ’ o f  the system . T h is en e rg y  can be

sp lit in to  a 'p o ten tia l energy ', a 'k inetic  energy ', and the 'to tal in e rtia l m ass ', ( I m b). 

T he  la s t te rm  in th is  equation  can be rea lised  as the 'po ten tia l en e rg y ' (d en o ted  by U ) 

b ecau se  it is  not o n ly  a function  o f  coo rd ina tes, but a lso  the part w hich  has o p p o site  

s igns in the L ag ran g ian  and H am ilton ian  respectively . T he rem ain ing  term s, invo lv ing  

v e lo c ity , o f  th is  to tal energy  are regarded  as the 'k inetic  energy '. H o w ev er, a tten tion  

m u st be p a id  to  the co effic ien t d iffe rence o f  the (V b ) 4 term s in the L ag ran g ian  and  

H a m ilto n ia n , and  to the fac t that the to ta l inertia l m ass has d iffe ren t s ig n s in the
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L ag ran g ian  and  H am ilton ian . B ecause o f  th is the L agrang ian  can n o t be w ritten  as the 

d iffe ren ce  betw een  the 'k inetic ' and 'p o ten tia l' energ ies. A s in the c lass ica l N -b o d y  

p roblem , the total linear and angular m om enta are also conserved, viz.

p = X P b = c o n s t : J = X ( Rb x P b) = c o n s t .  ( 7 . 1 4 )
b b

T he co n serv a tio n  o f  the total linear m om en tum  can be show n from  the E u ler-L ag ran g e  

equa tions o f  m otion. F or exam ple,

. d (x'dZL}dtU*b, axL

b * x b
=  0

dt 2 ^ | = o  =bd f v
ax ax. = c o n s t

V b b 'b

T he  co n se rv a tio n  o f  the angu lar m om en tum  can  be show n in the fo llo w in g  o u tlin ed  

schem e,

^  =  £ < S R b X p b ) = I V b x P b + X R b x ^
b b b

=  I v b x P b + X R b x v R £ = o  .
b b b

T h is p ro o f is essentially  sim ilar to the c lassica l proof: the E u ler-L agrange equa tions 

o f  m o tion  m ust be used and the m anipu lation  o f  the g rad ien t o f  po sitio n  vec to rs m ust 

again  be invoked.

A lthough  it is straightforw ard to write out the total linear and angular m om entum , we 

g ive  th e ir ex p lic it expressions because som e o f  the term s occu rred  in P b cancel ou t to 

y ie ld  sim p ler results, viz.

p =  2 > b + 7 Tm bV b -  I  \
m bm d

- I I  \
/ m bm d

b d -  b R

. . 2 Rd * d b d

( V j n In'  d b d '  bd

) V

bd

= I ( m b+ ^ bV b) V b -  2  l - ^ - i ( V b + V d)
(b. d)

2 Rbd

(b.d)

^ m bm d

R
[ ( Vb + V d) - n  J n bd

bd

( 7 . 1 5 )
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~ [ ( V b + V J -  n J R . x n J ( 7 . 1 6 )

F inally , w e note that there is another useful expression for the total linear m om entum  

re lev an t to  defin ing  the centre o f  m ass, nam ely,

In  th is section  we have sum m arised  the conservation  law s o f  the firs t o rd e r post- 

N ew ton ian  N -body problem . T hese equations are all exact, excep t eq u a tio n s  (7.18) and 

(7 .19), in  w hich  fu rther approxim ation  are involved.

S u n d m a n 's  In e q u a l i ty  o f  th e  P o s t -N ew to n ia n  N -b o d y  p r o b le m

A s already  noted  in the p rev ious section, the inequality  m ethod is ex trem ely  flexible. In 

general, m any  inequalities m ay be constructed  for a given problem . T h is  is also  true in 

the post-N ew tonian  lim it considered here; different interpretations o f  the param eters such 

as m ass resu lt in d ifferen t constructions. O n the o ther hand we can construc t inequalities 

in w h ich  the ’en e rg y ’ and 'angu la r m om entum ' are changing slow ly . W ith  these p o in ts  

in m ind  w e give the fo llow ing three sim plest relations.

I f  w e apply  the inequality  to  the sim plest and m ost im portant term s, then w e have

(7 .17)

(7.1 8)

F rom  this equation a centre o f  m ass can be defined as

(7 . 19)
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H1 = x m b + x  ( f m bv b + f  m bv b )  +  u
b b °

J,  = X ^ b R b X  V b
b

1 O 1 ^  rl
=  I ( m b + ^ m bV b - X  ^ I R . x V

b d * b I t . .

( J , )  ^ ( l M b Rb j ( 2 X v :

s 2 f l M bR ^  ( H , - £ m b- U ) (7.20)

w h ere  H j  and ( J j ) 2  are slow ly chang ing  in teg ra ls  acco rd ing  to  the  co n se rv a tio n  o f  

en e rg y  an d  angu lar m om en tum . I f  the cen tre  o f m ass is lo ca ted  at the o rig in  o f  the 

co o rd in a te  system , the 'm om ent o f inertia ' can be rew ritten  in an o th er form , as is a lso  

true in the classical study,

l M b R 2b = (  l M bMd R 2 ) /  ( 5 X ) (7.21)
(b, d)

w h ere  XM b is constan t to  the approxim ation taken. The advantage o f  th is exp ression  o f  

the  'm o m en t o f  inertia ' is that on ly  re la tive  d istances are invo lved . It th ere fo re  helps 

red u ce  the  (configurational) d im ension  o f  the system  by one, since w e can  now  chose  

the separation  o f  one pa ir as the unit o f  length. W e finally  ob tain  an inequality  w hich  is 

sim ilar to the classical Sundm an's inequality 

2 2
( J , )  *

I K  1, ? , M A R

H , - X m b - X
b (b, d)

f  m bm .  nnbm d( m b + m )\1

R.
+

2 r :
(7.22)

bd 'bd

F ro m  th is equation , b ounded  m otion  can be de term ined  fo r a fin ite  tim e scale . T he 

p ro b lem  th a t the m ass, M b, is no t constan t can be e lim ina ted  by a use o f  the V iria l 

theo rem , w hich  gives < m^. Thus,

( j , )  ^
I M ,

X  m bm d R
b L(b. d)

H, - X m b -  X
b (b, d)

r  m bm d m bm d( m b + m dn i
 +   ----------

R. 2 r : J)

(7.23)
bd —■ 'bd

T h e  above analysis is the sim plest generalisation o f  the c lassica l resu lt. L e t us now
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try to m odify  it by including  m ore o f  the energy and angu lar m om entum  term s, and thus 

increase the tim e scale o f  validity. I f  w e define

H 2 =  X m b + Z  ( j m bV b +  f m bV b )
b b °

1 v—' ffi j o 2
+ J  I  t ( 3 V b + 3 V d) - 7 V b - V  d]

J 2 = S ( m b +  | - m bV b -  S  | - ^ 1 ) R b x V
b  *  d * b  ^  n b d

7  m hm d
+ X T - ^ { R b „ * ( V b- v  n

(b .  d ) 2  R
b d

then a use o f  the inequalities developed in A ppendix  B gives

( j / 4 l M bR2b +2 '  ' j  -b- b ^  2  p  ■ ' b d ,
b ( b . d )  n bd

l M bv : +  x j ^ ( v b - v / ;
» ib.di^ R b(J

w here the tw o  factors on the right side m ay be fu rther sim plified, viz. 

{ F i r s t  F a c t o r }  = { l M bR 2 + £  J ^ Rbdl
I  b ( b .<D K b d  J

= {( I  MbMdRL ) / (lMb) + I  J ^ R L l
[  ( b . d )  b ( b . d )  H b d  J

{Second Factor}  = J X M bV 2 + £  V b -  V d)“
l b  ( b . d )  R bd

Iv*/ 1 \ / 2 V' 1 b d u / 2  y-> b d r 7 / \ / 2 1 / 2X -7*7 *7 1

= { Z ( m b + 2 m i>V b - Z  2 ~ R ----- ) V»+ Vb+ V d ) _ 7 V b'V dl
[ b ^  d # b bd (t),d) H bd

= { 5 > b + ; K v b2 ) V b2 + I ^ ( 3 ( V b + V d) - 7 V b- V d] l
[ b (h.d) h bd j

= i l ( y m b + | m bV b2)V 2b+l  X ^ [ 3 ( V :  + V 2) - 7 V b. v d] l x  2
( b . d ) b d

< 2 { H 2 - X m b - U }
b

and  w e finally  obtain  the inequality
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E m bm dR

( J J
J ( b ,  d)

I H
+ I  ( > b " i dR j f  { H a- £ m b- U }  ( 7 . 2 4 )

(b,d)

T his re la tion  is m ore  satisfactory  than equations (7.20, 22, 23), since the changes o f  

H 2 and (J2 )^ are  s lo w er than  and (J j)^  re sp ec tiv e ly . F o r the  (p o st-N ew to n ian ) 

2 -body  p rob lem , J 2 = J , since the neglected  term s in J  van ish  if  the cen tre  o f  m ass is set 

at the o rig in  o f  the co o rd in a te  system . O n the o th er hand , since the ve lo c ity  vectors o f  

the tw o bodies are alm ost anti-parallel (with centre o f m ass at the origin o f  the coordinate

sy stem ), the  term  n eg lec ted  in %% is n on -negative  (ex cep t w hen  these  tw o velocity  

vec to rs are a lm o st p e rp en d icu lar to the connecting  vector; how ever, w hen this happens 

th e  n eg lec ted  te rm  is v an ish in g ly  sm all). T herefo re  eq u a tio n  (7 .24) is rigo rous fo r a

2 -body  p rob lem , that is,

( j )  2  2
" \ m X d  +  7 m bm d R I d

M b +  M d

^  - Z m b +

R bd

b d

R.

m bm d ( m b +  m d) 

2 Rf
( 7 . 2 5 )

bd ■ -b d

w here b and  d  are the ind ices o f  the tw o bodies.

A  sa tisfac to ry  in eq u a lity  has not yet been found  fo r the fu ll en e rg y  and an g u lar 

m o m en tu m  o f  sy s tem s w ith  m ore  than tw o b o d ies . H o w ev er, eq u a tio n  (7 .25) is 

possib ly  a general re la tion  for system s w ith m ore than tw o bodies. W e now  dem onstrate 

the d ifficu lty  by the fo llow ing  construction,

m j n  wb  o
J =  i K  +  X ^ V b - X  l - M ) R b * v2 

rrrm

d * b Rbd

+ X  X  f t R b *  X 7  (V b-V d ) - - J = (  v  d. n J  n J
b d u b Rbd

j M s x r t + x x
m . m .  2 
— 17 R b

b d . b Rbd

XMbVb2+ X X f 1 f t (V b - V d) - 7^ ( V  d n bd) n J
bd

V7

where
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{ S e c o n d  F a c t o r }  =  

= 5 X v b% I I _ '
m  Km ,b d

b d * b R
h / 7 ( V b- V rt)— 1 = ( V a. n bd) n bd]

bd V 7

=  l M bV b2 +  X X l ^ [ 7 ( V b - v /
b b d # b  H.bd

- 2 ( V b- n bd) ( V d. n bd) + ^ ( V d. n  J 2]

= 5 X V b% X  (V b -  V d)2 -2  ( V b n bd) ( V d n bd) ]
b (b.d) “ bd

1 m bm d 1  5

b d u b R ( V d ' n J
bd

m u m
= I ( m b+5-mbV b)Vb+ £  : ir ^ [ 3  (Vb+Vd2) - 7 V b- V

(b. d) R bd

- ( V b- n bd) ( V d. n bd)] + H z ^ 1# ( V d- n j 2

=  2 ( 3 « - I m b- U - l £ " bV b4 + i l 5 ; J it l  m 1 5

b d - 4  R bd 7
b d , " ( V d- n bd)

<2 1 5 m d >

b  l d , b R b d /  J

In  th is  d ed u c tio n  w e have used  the V iria l theo rem  in the last step. N ow  w e hav e  the 

inequality

J 2 ^ { l M b R b2 + 5 : i ^ 7 R 21
b dub  ^ b d

^ - L n v U + i f x ( l m ^
b V d b d  /  J

( 7 . 2 6 )

F ro m  this re la tion  w e see that bounded  m otion  also ex ists in the m ore co m p lica ted  

(p o st-N ew to n ian ) 3 -body p rob lem  since the RH S is a fu n c tio n  o f  co o rd in a tes  on ly . 

H o w ev er, the re su lt has been ach ieved  because  the V irial theorem  w as used  in the last 

s te p . B e c a u s e  o f  th e  p o s itiv e  re s id u a l  te rm , a p p ly in g  th is  re la t io n  to  th e  

(p o st-N ew to n ian ) 2 -body problem  leads to  a re la tion  w eak er than eq u a tio n  (7.25). W e 

are therefore o f  the opinion that this term  will vanish if  we carry ou t a better construction 

o f  the inequality  from  the beginning.
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A n im p ro v em en t in the construc tion  m ay be m ade by u tilis in g  the co rresp o n d en ce  

b e tw een  the term s in the energy and those in the m om entum . T h is  is very  useful in the 

co n s tru c tio n  o f  the  term s on the r ig h t han d  side o f the in eq u a lity  from  the an g u la r 

m o m en tu m  and by using  the gen era lised  S undm an 's  in eq u a litie s , so that these  term s 

m ay  be rep laced  by the 'kinetic energy ' term s in the total energy.

T he  shapes o f  the possib le  and fo rb idden  reg ions have not yet been p lo tted . T h is  is 

straigh tfo rw ard , because  from  an observation  o f the c lassica l analysis (cf. ch ap te r 4) w e 

see  th a t the  in eq u a litie s  ob ta ined  su ffice  fo r an in v es tig a tio n  o f  b o u n d ed  m o tio n . 

H o w ev er, the ca lcu la tio n  o f  the c ritica l con figu rations and the con d itio n  fo r bounded  

m otion  is m ore com plicated  and will be the subject o f  a fu ture work.

D is c u s s io n  a n d  C o n c lu s io n

In  th is  s e c tio n  w e h av e  g e n e ra lis e d  th e  S u n d m a n 's  in e q u a li ty  s tu d y  to  th e  

p o st-N ew to n ian  approx im ation  o f  the grav ita tional N -body  p ro b lem , w hich  suffices to 

es tab lish  the ex istence o f  bounded m otion  fo r the grav ita tional 2- and 3-body  system  in 

the  sam e lim it. T he resu lt is especially  satisfactory  fo r the 2 -body  p rob lem . It w ill also  

be  in te re s tin g  fo r  p ra c tic a l c o n s id e ra tio n  if  w e can  ap p ly  th is  ap p ro ach  to  the  

post-M inkow sk ian  approxim ation.

T h e  re su lts  fo r system s w ith m ore than  tw o bodies are not com plete ly  satisfac to ry . 

T h e  d ifficulty  encountered m ay be a reflection o f the sam e problem  in the full relativ istic 

case; it, how ever, m ay also be due to the trunca tion  o f  the co m p le te  p rob lem . A m ore 

com plete  treatm ent o f  the post-N ew tonian approxim ation m ay be related to the fo llow ing 

q u e s tio n  d e fin e d  in  th e  fram ew o rk  o f  N e w to n ian  m ech an ics . I f  an au to n o m o u s  

L agrang ian  system  is defined  in N ew tonian  space-tim e and the total energy  and angu lar 

m o m en tu m  are con serv ed  (w ith the C artesian  coord ina tes as generalised  co o rd in a tes),

then  do es the gen e ra lised  Sundm an inequality , o f  the fo rm  J2<2I(H -U ), ho ld  fo r any 

such  L ag ran g ian  system ? If  not, can w e d e term in e  the c lass  o f  L ag ran g ian s  w hich  

sa tisfies such re la tion? W e hope that the answ er to this question  can  shed som e light on 

im prov ing  the resu lt in ou r study o f  the post-N ew tonian  N -body problem .

7 .4  S u m m a r y

In  th is  ch a p te r and  A p p en d ix  B w e d ev e lo p ed  an in eq u a lity  m eth o d  to  in v es tig a te  

re s tr ic tio n s  im p o sed  by sy m m etries  on  p o ss ib le  m o tio n  o f  re la tiv is tic  fe w -b o d y  

p ro b lem s. Such re str ic tio n s  m ay lead  to in tere stin g  bounded  m otion  o r  h ie ra rch ica l 

o rb ita l m otion  w hich  is im portant in, say, studying m ass transfer o f  a b inary  system  fo r 

it m ay  p ro v id e  a possib le  relativ istic a lternative to the c lassica l R oche lobe. U sing  this
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m ethod  w e w ere able to establish  som e inequality relations for relativ istic system s.

T he  p o w er o f  the m ethod has only been touched  in this chap ter. W e hope to apply  

th is approach  to the theory  o f  D ixon (1979) and estab lish  som e re la tions fo r the m otion  

o f  the cen tre  o f  m ass the au tho r defined. T he post-M inkow sk ian  approx im ation  is also 

an in teresting  field to apply our approach.
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I do  n o t know  w hat I m ay appear to  the w orld; bu t to m y se lf I seem  to have been 

o n ly  like a boy p lay ing  on the seashore, and  d iverting  m y se lf in now  and then find ing  a 

sm o o th er p eb b le  o r a p re ttie r shell than o rd inary , w hile the great ocean  o f  tru th  lay all 

u n d isco v ered  before  m e. —  Sir Isaac N ew ton

C H A PTER  8 Future Work

T h e  p u rp o se  o f  th is thesis w as to in v estig a te  h ierarch ica l o rb ita l m o tio n  and  chao tic  

m o tio n  in  b o th  c lassica l and  re la tiv istic  g rav ita tional few -body  system s. T he  c lassica l 

p ro b lem  has been a w ell-know n historical problem  w hich canno t be so lved  analytically ; 

w h ereas the re la tiv istic  p rob lem  concerned  in this thesis is the firs t a ttem p t at such an 

investigation . T herefore, it is inevitable that in a research such as this there rem ain  m any 

u n an sw e red  q u estio n s . S om e (in  p articu la r the c lass ica l p a rt) h av e  ex is ted  fo r m any  

y ea rs  p rev io u s ly , o thers (re la tiv istic  part) have arisen  du ring  the co u rse  o f  th is w ork. 

T h is  fin a l ch ap te r is concerned  w ith look ing  at som e o f  the m ore im p o rtan t q u estio n s 

w h ich  m ay  be  solved in the near future fo llow ing  the m ethods suggested .

8 .1  C la s s ic a l  G ra v ita t io n a l  3 -B o d y  P ro b lem s

In  ch a p te r  4 , w e have ob ta in ed  in eq u alities  s tronger than S u n d m an 's  fo r the 3 -body  

p ro b lem . B ecause  o f  the ro le  p layed  by the m om ent o f  inertia tenso r and e llipso id  in the 

d ed u c tio n  an d  S aari's  (1984, 1987) resu lt o f  the sam e prob lem  in a fla t N -body  system , 

w e feel s tro n g ly  that s im ilar re la tions ex is t for the general N -body  p rob lem . T his study 

h as  th e re fo re  le ft  us w ith  sev era l op en  q u es tio n s  w h ich  m ay  o n ly  re q u ire  som e 

stra ig h tfo rw ard  attack. H ow ever, the answ er to these questions w ould  greatly  benefit the 

study  o f  chap te rs  6  and 7. W e propose the fo llow ing tw o lines o f  fu tu re research.

O n  th e  o n e  h an d , w e m ay ex tend  the canon ica l tran sfo rm atio n  ap p ro ach  to the 

g en e ra l N -b o d y  system . A s is po in ted  o u t in the m ain  body o f  the th esis , such  an
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ap p ro ach  is d irec t an d  no re la tion  o f  the system  w o u ld  be  w eak en ed  in the  cou rse  o f  

deduction ; how ever, d ifficulty  m ay arise due to the large am ount o f  algebra.

O n  the o th er hand , w e m ay look fo r an alternative p ro o f  o f  the stro n g er inequalities, 

a general inequality  p ro o f sim ilar to those given in append ix  B. O ne m ay first look at the

3-body  p ro b lem  and  then generalise the approach  to system s w ith m ore bodies. In fact, 

the in eq u a litie s  o f  appendix  B w as ob tained  by the p resen t au tho r in this w ay , based  on 

the b e lie f that the num ber '3' is nothing special in th is contex t.

O n ce  ineq u a litie s  are ob tained  in this w ay, then they  can  be ap p lied  to re la tiv is tic  

system s because  o f  the generality o f  the proof.

T he  re search  o f  chap ter 5 has also left us w ith som e fu tu re co m p u ta tio n al w ork and 

th eo re tic a l in v es tig a tio n . F irstly , w e need  to ca rry  o u t lo n g e r tim e -sca le  n u m erica l 

e x p e rim en t to  reach  a m ore defin ite  answ er to the q u es tio n  o f  the im p o rtan ce  o f  the 

tu n n el-sh ap ed  stab ility  surface, and to investigate larger sam ple o f  system s to  test R oy 's 

s ta tis tica l s tab ility  con jec tu re . S econd ly , it is d es ira b le  to  ca rry  o u t the  system atic

n u m erica l ex p e rim en ts  using the Q4 I3) instead  o f  the {^2^ 7)  p a ram eters , because  the

d is to rtio n  p ro d u ced  due to the transform ation  from  the fo rm er to  the la tte r param eters  

p rev en t us from  look ing  at som e o f  the num erical re su lts  w ith  re sp ec t to  the H ill-ty p e  

stab ility . W ith  his schem e, it w ill also be in teresting  to  in v estig a te  the b eh av io u r o f  the 

spatial m o tion  o f  the 3-body system .

F o llo w in g  the num erical w ork o f  M cK enzie  & S zeb eh e ly  (1981) on the c ircu la r 

re s tr ic ted  3 -body  p rob lem , it is w orth investigating  the s tab ility  and  in stab ility  fo r the 

m otion  in the neighbourhood o f the equilateral triangle point.

F ina lly , it w ill be useful if  we could find a theoretical exp lanation  fo r the phenom ena 

o bserved  from  the experim ents.

8 .2  R e la t iv i s t ic  G r a v ita t io n a l  F e w -B o d y  P r o b le m s

In  ch ap te rs  6  and  7, w e have generalised  the c lassica l in eq u ality  app roach  on possib le  

an d  fo rb id d en  m otions in to  the fram ew ork  o f  g eneral re la tiv ity . S ince th is  is the first 

a ttem p t a t su ch , m an y  open  q uestions are left fo r fu tu re  re sea rch es . In ad d itio n  to 

im prov ing  the re la tionsh ips o f appendix B in the light o f  the classica l approach , w e shall 

m en tion  the fo llow ing.

It is d e s ira b le  to  app ly  the m ethod  d ev e lo p ed  in th is th esis  to  D ix o n 's  (1979) 

fo rm ulation  o f  the gravitational system s and tensorial conservation  law s. T he advantage
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o f  th is theory  is th a t the cen tre  o f  m ass w as defined  and  the re la tio n sh ip s  ob ta ined  are 

co o rd in a te -free . O n m ore p rac tica l g rounds, we hope to app ly  o u r  ap p ro ach  to  the 

p o s t-M in k o w s k ia n  a p p ro x im a tio n  o f  g e n e ra l r e la t iv i ty .  C o m p a re d  wi t h  the 

p ost-N ew ton ian  approx im ation , this is applicab le to com pac t ob jec ts , and  there fo re  o f 

astrophysical im portance.

F inally , w e shall m ention  a particu larly  in teresting  p roblem , geodesic  m otion  in the 

K err geom etry , w hich  m ay p rov ide m any  im portan t theo re tica l resu lts . S ince there  is 

standard  bounded  m otion  in this p rob lem , it w ill be in te restin g  to  app ly  o u r inequality  

m eth o d  to  th is p ro b lem  to test its valid ity . D ue to the ex is ten ce  o f  in d ep en d en t ex tra  

in tegrals (cf. T oda H am ilton ian) nonlinear in the 4 -m om entum , the m otion  is integrable. 

It is w ell-know n that such integrals do not correspond to any obv ious sym m etry  (K illing 

vector), but are re la ted  to K illing tensors. H ow ever, if  an approx im ation  is m ade for this 

p ro b lem  using the K err coord ina tes, then the K illing  tenso rs m ay be lost, and thus the 

ex tra  in tegrals m ay d isappear (like the T oda H am iltonian). In this w ay re la tiv istic  chaos 

w o u ld  occu r. S uch  an ap p ro ach  w o u ld  a lso  shed  som e lig h t on  th e  v a lid ity  o f  

ap p ro x im a tio n  m eth o d s in general, w hich  is o ften  u sed  in the s tu d y  o f  re la tiv is tic  

p rob lem s.
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A PPE N D IX  A. 

Elem entary Num ber-Theoretic  Results

In th is A p p en d ix  w e sum m arise som e basic  resu lts  o f  n u m b er theo ry  re lev an t to  the 

K A M  theo rem  (see chap te r 2) and a com prehensive  un d erstan d in g  o f  chaos in general. 

T hese  re su lts  are included  in m ost in troducto ry  books to  theo ry  o f  num bers. W e shall 

m ention  in p articu la r tw o books by B ak er (1975 and 1984), and  the o rig inal w orks o f 

A rnold  (1963) and M oser (1962).

I t  is  w e ll-k n o w n  th a t rea l nu m b ers can  b e  d iv id ed  in to  ra tio n a l an d  irra tio n a l

num bers; in fact, even the ancient G reeks knew  that V2 cannot be expressed  as a fraction 

o f  tw o in teg e rs . H o w ev er, it w as n o t un til 1844 that the th eo ry  o f  tran scen d en ta l 

num bers w as o rig inated  by L iouville , w ho show ed that a c lass o f  num bers sa tisfies  no 

a lgebraic  equa tion  w ith in teger coefficien ts. T he theory  o f  nu m b ers w as no t perfec ted  

until the end  o f  the nineteenth century by Cantor.

A lth o u g h  the structu re  o f  q u asi-p e rio d ic  and  chao tic  so lu tio n s  to n o n in teg rab le  

system s is o ften  said to be like that o f  ra tional and  irra tional num bers; it is the p roperty  

o f  a lg eb ra ic  an d  tran scen d en ta l nu m b ers th a t is im p o rtan t to  ch ao s an d  the  K A M  

theorem . B riefly , a num ber is said to be a lgebraic  if  it is a zero  o f  a p o ly n o m ia l w ith

in teg e r co e ff ic ie n ts  (eg. 0 .3 , V2, the g o ld en  sec tion  g); o th e rw ise  it is te rm ed  a

tran sc en d en ta l n u m b er (eg. e, 7t ,  0 .1 0 1 0 0 1 0 0 0 1 ...) . T h e  d eg ree  o f  th e  irre d u c ib le  

po lynom ial is ca lled  the degree o f  the algebraic num ber. W e shall adop t the conven tion

that by a ra tio n a l p /q , w e m ean that p and q are re la tive ly  p rim e  in tegers. W e have the 

fo llow ing  resu lts for num bers:

(1). I f  ( p i ,  q i )  and  (P2 , q 2 ) are  tw o p a irs  o f  re la tiv e ly  p rim e  in teg ra l n u m b ers  

re sp ec tiv e ly , th en  so are ( ( p iq 2 ±<liP 2 ) ’ (9192)) and  ( ( k q i± p i) ,  q i ) ,  w h ere  k is an 

integer.

(2). T he D irich le t theorem  (found in 1842) says that fo r any  real n u m b er a  and any 

in teger Q  th ere  ex is t some in tegers p, q (not necessarily  re la tiv e ly  p rim e) w ith  0 < q< Q  

such that

|q  «  —PI “  Q  ■ | a - ^ | ^

and the tw o  expressions are equivalent.
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(2 ’). T he D irich le t theorem  is usually  in terpreted  in the fo llow ing  w ay, as a co ro lla ry  o f 

the theo rem , show ing that irrational num bers can be approxim ated  arb itrarily  c losely  by

ra tiona ls . F o r any re a l num ber a ,  there ex ist so m e ra tionals  p /q  such  that

| q a - p | - > 0  , a “ q  ® a s  P ^ 00-

T h is s ta tem en t is true; how ever, it is valid  in a b roader sense (eg. q< Q  is not needed), 

th u s sh o u ld  be taken as an indep en d en t result. M oreover, the tw o ex p ress io n s  are  no 

lo n g er eq u iv a len t; in fact, m ore ra tiona ls  satisfy the second  expression . F o r ex am p le , 

one can  allow  q  to be arbitrarily large such that the second expression is arbitrarily  sm all,

b u t the firs t expression is finite. A n  exam ple w as g iven in chap te r 1 w hen  a  is a ra tional 

num ber.

(2"). T h e re  is ano ther very im p o rtan t coro llary  o f  the D irich le t theo rem , show ing  how  

g o o d  th e  app rox im ation  o f  irra tio n a ls  by ra tio n a ls  is. F o r any i r r a t i o n a l  n u m b er a ,  

there  ex ists  in fin ite ly  m any ra tiona ls p /q  such that

| q a - p  < 1
a “ q

1

and  the tw o  expressions are equivalent. W e will see that the continued  fraction algorithm  

g ives the b es t possible construction o f such a rational approxim ation.

N o te  th a t th is co ro lla ry  is  no t true for r a t i o n a ls ;  there  are  o n ly  f in i te ly  m any

ra tio n a ls . In  fact i f  a = a /b , then e ith er p /q = a/b  o r p /q ^ a /b ; in the la tte r case, it is easy  to 

show  th a t

! q c c - p | >  ^ a  - _1_
q b

(3). O n  the o ther hand, L iouville established in 1844 a low er lim it fo r the approx im ation  

o f  irra tio n a ls  by ra tionals. L iouv ille 's  theorem  says that, fo r any a lg e b r a ic  n u m b er a  

w ith  deg ree  n > l ,  there exists c = c (a )  such that

a  -  —  > J L
q  - q "

fo r  a l l  ra tio n a ls  p /q . T h is th eo rem  led  to the firs t co n s tru c tio n  o f  tran sc e n d e n ta l 

n u m b ers . T h e  above inequality  is still an excep tional case, because  it w as show n by 

C a n to r  in  1874  th a t a lm o st a ll nu m b ers  (in the sense  o f  L eb e sg u e  m easu re ) are 

transcenden ta l and the set o f all algebraic num bers is countable.

L io u v ille 's  theorem  w as later im proved as
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> - ^  , X >  - \ /2 n  
Q

and X>2 is  the best possib le .

H o w ev er, w hen w e have a set o f  num bers a s im ilar inequality  is satisfied  by alm ost 

a ll sets o f  n um bers. T h ese  are the co n d itio n s  c lo se ly  re la ted  to  th e  K A M  th eo rem .

A lm o st all vec to rs a = ( a l5 ..., a k) satisfy  the inequality

| q i a ,  + .. .  + q k o J a ^ r  , Q =  |q, |  + . . . +  | q k|.

fo r a co n stan t c = c (a )  and all in tegral vectors q = ( q i , ..., q k )* 0 .

(4). A  co ro lla ry  o f  M in k o w sk i's  theorem  m ay be reg ard ed  as a g en e ra lisa tio n  o f  the

D irich le t theo rem . It says that if  ( a l 5 ..., a k) is a set o f  any  real n um bers and  if  Q > 0

then  th ere  ex is t in tegers p and  (q lt ..., q^), no t all zero , such that I qi I < Q  ( i= l ,  k) 

and

q , a , +  . . . +  q ka h -  p|  < A  •

(5). T h e  c o n tin u ed  frac tio n  a lg o rith m  sets up  an 1-1 co rre sp o n d en c e  b e tw een  all 

irra tio n a l a  and  all in fin ite  sets o f  in tegers (a<), a. \ , . . . )  w ith  ( a j , . . . )  all positive . It a lso

sets up an 1- 1  co rrespondence betw een  all ra tiona ls  a  and  all fin ite sets o f  in tegers (ao, 

a j , ..., ak) w ith  ( a j , ..., a^-i) all positive  and a ^ 2 .  W e shall use the fo llo w in g  no ta tions 

fo r a con tinued  fraction

CX — [3 q , 3^, 3 2 1 ••• ] (X — [ 3 0, 3 1, . . .  , 3 k]

=  3« +  ---------------  = 3 n +  1o '  1 “ O'  1 •
a ,  +  — 1—  s 1 + --------------------------

1 a 2 + a 2 +

It is a lso  conven tional to call the in tegers (a ^  a 1?. . . )  the partia l quo tien ts o f  a ;  w hereas 

the n u m b ers  a n=[ao, a j, ..., an]= p n/q n are know n as the com plete  q u o tien ts  o f  a .  W e

also  d e fin e  a n+1 by a=[aQ , a j , ..., an, a n+1].

A  co n tin u ed  fraction represents a quadratic irrational iff  it is u ltim ately  period ic , that
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is , i f f  th e  p artia l q u o tien ts  sa tisfy  am+n= a n fo r som e p o s itiv e  in te g e r  m  an d  fo r 

suffic ien tly  large n.

I f  w e define Po=ao  anc* P i= a iao+l> Q i - a i> then the co m p le te  q u o tien ts  can be 

generated  recursively  by the equations

Pn— ^nPn-1-*’ Pn-2

kP n —  ̂nP n - 1 Pn-2'

B ased  on this equation , one can show that a  lies betw een pn/qn and  Pn+i/O n+l- W e a ŝo  

have

Pnq„+1- p nt1q „ = ( - i ) n*1

Pn Pn + 1
q n q „ , ,

It fo llow s that 

Pn

1
PnP n+1

a - Pn P  n P n  +

and  so certain ly  p n/q n converges to a as n —>«>; and Pn/qn is ca lled  the co n v erg en t o f  a. 

In fact the follow ing stronger inequality hold for any convergen t o f  a

1
(a„ + , + 2 ) q 2„

a - P i
Pn

1
2 ’

^ n  + lP n

an d  co n v erg en ts  are indeed  the b e s t approx im ations to a  in the sense that, if  (p, q) are 

in tegers w ith  0 <q< qn then

|p oc -  p > P « - P - i
a

P n

O ne can  also  show  that i f  a rational p /q  satisfies

- t
1

2q‘

then it is a convergent to a.
(6 ). W e see from  above that the continued fraction algorithm  co n stru c ts  the convergen ts  

p /q  o f  a ,  each  o f  them  satisfies

a - 1

In  fa c t we have a series o f  s im ila r resu lts . F o r ex am p le , at lea s t o n e  o f  an y  tw o
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consecutive convergents, say pn/qn and pn+i/qn+i» satisfies

M oreover, at least one o f  any three consecutive convergents satisfies

T h e re fo re , fo r any irra tiona l n u m b er there  are a lw ays in fin ite ly  m any ra tio n a ls

approx im ation  o f  it by rationals is the w orst ou t o f  all irrational num bers.

I f  on e  ex c lu d es all irra tionals w hose con tinued  fractions have all but fin itely  m any

p artia l q u o tien ts  equal to  1 , then the best possib le  constan t becom es 1/V 8 . T here  is an

in fin ite  sequence o f  such constants w hich tends to 1/ 3 .

(7). U sing  the  above property  o f  continued  fractions and  convergents, it is easy to prove 

that a p e rio d ic  function  o f  a single v ariab le  can only  have one p rin c ip a l period . T h is 

p ro o f  w as firs t g iven  by Jacobi (see F orsy th , 1893, P200).

T h e  D io p h an tin e  equation  x2 =2y4 - l  has exactly  tw o so lu tions in p ositive  in tegers,

n am ely , ( 1 , 1 )  and  (239, 13). H ow ever, the o th er D iophan tine  eq u a tio n  x2 -2 y 2= l  has 

in fin ite ly  m an y  p o sitiv e  in teg er so lu tions. It is  easy  to  verify  th a t (3 , 2) is one such  

so lu tion  to  th is equation , and if  (x, y) is a so lu tion  then new  so lu tions (x*, y*) m ay be 

constructed  using the follow ing form ulae

T his has so m e sim ilarity  w ith the concep t local in tegra ls o f  dynam ica l system s. In the 

space o f  positive  integers, the original equation m ay be regarded as a local integral o f  the 

linear m app ing  w hich is valid  only for som e poin ts o f  the space.

satisfy ing each  o f  the three inequalities. In fact the constant 1/V5 o f  the third inequality  is 

the b e s t  p o ss ib le  as can be verified  by tak ing  the golden section  n u m b er g = ( 1+ V5) 

/2  = [1, 1, 1, ... ]. T h is  num ber is the m o st irra tio n a l n u m b er in the sense that the

(8).

x * = 3 x + 4 y  

y * =  2 x  + 3 y .
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A PPE N D IX  B. 

G eneralised C auchy’s Inequality and Sundm an's Inequality

T his A ppend ix  includes the m ost general p roo f o f  C auchy 's and S u n dm an 's  inequalities  

used in chap ter 4, and som e generalisation o f  them. T he inequalities m ay seem  basic; but 

they  w ere construc ted  and proved  com pletely  by the au thor, because  they  are needed  in 

h is in eq u ality  app roach  p roposed  in chap ters 6  and 7 to  the in v es tig a tio n  o f  b ounded  

m otion  in general relativ ity . T he classical book on inequality  by H ard y  £ i a i (1934) m ay 

be a good re feren ce  fo r fu rther generalisation  o f  the inequalities  g iven  here. T he  m ain  

inequalities used in chapter 4, 6  and 7 are

E quation  (B 2) is usually  called C auchy 's inequality , w hile (B 3) is a generalisation  o f 

S u n dm an 's  inequality . T hese tw o equations fo llow  im m edia te ly  fro m  the basic  re la tion  

( B l ) ,  w h o se  p ro o f  is  s tra ig h tfo rw a rd . E q u a tio n s  (B 4 ) an d  (B 5 ) a re  fu r th e r

(B1)

2

( B2)

( B3)

( B4 )

( B5)

w h e r e  C lik, = | - ( C i k - C ki) ; i , k = 1 m ;  b , d  = 1 n.
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g en e ra lisa tio n  from  quan tities at one po in t to  q u an titie s  at m any po in ts . (B 4) fo llow s 

im m ed ia te ly  from  (B2), but equation (B5) needs a m ore involved proof.

[P ro o f o f  (B 5)]: T he p ro o f o f equation  (B 5) is d iv ided  in to  three steps. W e p ro v e  tw o 

basic  in eq u alities  in the first two steps.

( * )

LHS = X ( l c ' ) f x c ' ) =XXc'c' < X Xc'c1,
i V b /  V  d /  b . d  i b . d  i

RHS=x/l(c57l/X (c i)r =X /(KC/YXfc:
b V  i d V  i b , d  V  v  i A  i

b u t  ( B2 )  <=> IPA S I(C'b) X(Ca)

< * * )  z f s c
i , kV b J  V b V  ' • k

i

Jk,2

J

E q u atio n  (**) fo llow s im m ediately  from  equation  (*) if  w e substitu te  the index  i by 

the in d ices  (i,k). N ow  we can give the p ro o f o f  equation  (B5) itself.

lfdKk=A'X' , then

zlflA'X'l^lx/KA'X1)
i . k  V  b

I A kk 2
(A

b 'yj i , k j
(use * * )

[i  kj 2 A
i  2  x ( a ' : b : )

b V  i . k

I

(use B3)

A a 1 ' 2
V b “V  i

, U S 8 K )

=  g ( A ib )2 ) ( X ( B 'b)
i . 2

F in a lly , w e note that a positive function  d ifferen t from  point to point can be pu t into 

the equa tions w ithout changing them . T he sum  over points (a or b) can be replaced by an
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in teg ra l w ith o u t ch an g in g  the  re la tio n s, b u t the m easu re  e le m e n t m u st be p o s itiv e  

every w h ere , w hich is u sually  the case. T he last restric tion  is fro m  the righ t hand  side o f 

the  re la tio n , w hich  is not req u ired  by the left hand side. A lso  n o te  that the use o f  the

en e rg y  co n d itio n  in ch ap te r 7, that is the positiveness o f  (p + p ) is no t req u ired  by the 

inequalities but ra ther the requ irem ent to collaborate the splitting  o f  poten tial and  kinetic 

energy .

T h ere  are m any o ther possib ilities in addition to the above five equations, w hich are 

the m ost im m edia te  generalisations. H ere w e give som e m ore supp lem en tary  ones used 

in ch ap te r 7, their valid ity  should  be readily  seen by the appropriate  understand ing  o f the 

above five basic equations.

[ g ( A , B ) ] 2 < [ g ( A , A ) ] -  [ g ( B . B ) ] j

I t A ' B ' f s f K A ' n f K B 1) 2'   ̂ ( B6 )

T h e  firs t eq u a tio n  is v a lid  fo r any p ositive  d efin ite  m etric  g , w h ile  the second , 

a lth o u g h  it m ay  no t be v ery  usefu l by itself, is im p o rtan t w h en  co m b in ed  w ith  the 

fo llo w in g  re la tio n s . A ll o f  the inequalities given in th is ap p en d ix  still h o ld  no  m atte r 

w he ther it is a '+' o r p reced in g  any term  on the left hand  side.

s ± ax± ex)22 px )2+ + ( D i »)2) (B7>
2 1(I± aX'± cLX’)2s ( l ( A ib)2 + (C'j^XX)2 + X)2 )  (B 8 )

T h ese  tw o equations are useful because the angular m om en tum  in re la tiv ity  involve 

the sum  o f  several skew -sym m etric term s. W e also note that one source o f  the flex ib ility  

(in add ition  to the fact th a t s tronger equations exist) o f  these in eq u alities  is that we can 

in terchange the positions o f  A  and B, o r C and D on the right hand  side o f  the above tw o 

equations. W e m ust choose this from  the physical conten t carried  by them , that is, to put 

th e  sam e k in d  o f  q u an titie s  toge ther. A n o th er flex ib ility  is p o ss ib le  in  th ese  tw o 

eq u a tio n s  becau se , fo r ex am p le , w e can alw ays m ultip ly  C  w ith  a b ig  n u m b er and  

d iv id ed  D  by the sam e n um ber, hence finally  om it the term  in v o lv in g  D . T h o u g h  the 

final re la tion  is w eaker, this is a very useful technique w hen there  are som e com plicated  

but less im p o rtan t q uan titie s  invo lved  in the angular m om entum . T he  v a lid ity  o f  these 

tw o equa tions is m ore apparent if  we put them  in a m ore general form , viz.
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I  ± AX* I  C KdDkd < X (A 'br  + X  ( C J  j [X (B 'b) + I  (D*d)
i , b  k,  d J V i . b  k,  d A i . b  k, d

2 l ( I ±  A ' X ' ± I  C'Jd ;j ) < ( I ( A ' bf  + I  ( C ; n [ X ( B ' b) % X  (D‘d)
i . k v b  d /  Vi, b k, d i, b k,d

2 ^  ,_k 2
d /

k, d y Vi. b

2 x—' ,_k 2'
d '

k, d A  i.b

2 x—' k 2
(C

k, d

2 x—i k 2
^  (C '
k, d

F inally , in the attem pt to construct better inequalities, an equality  fo r the m any-po in t 

p ro b lem  lik e  that o f  the one-po in t problem , eq u a tio n  (B l) ,  shou ld  be very  in teresting  

an d  usefu l.
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A P P E N D IX  C. 

Transform ation of the Critical Stability Surfaces  

from (jijj.3 ) to (e2 3  £3 2 ) Space and Attractors

T he critica l stability surface (cf. chap ter 5) is usually calculated  first in the O -a jip ^  space

by so lv ing  a set o f  algeb raic  equations, then transform ed in to  the 0 -cx£23 e 32 space (for 

m ore  d e ta ils  see W alk e r e t a l ,  1980). T he transform ation  from  the fo rm er space to the 

la tte r one is ca rried  ou t by an itera tive  p rocedure , w hich in theo ry  d efin es  an itera tive 

d iscre te  m app ing  like w hat is d iscussed  in chap ter 2. The p u rpose  o f  this appendix  is to 

v iew  the co n v e rg in g  and  d iv erg in g  p rocess o f  the ite ra tiv e  p ro c ed u re  as the generic  

b eh av io u r o f  m ap p in g , w h ich  is n ow adays a hot topic due to  the  p ro g ress  m ade in 

understan d in g  chaos.

S ince the func tion  a c= F ( |i ,  p.3 ) is not explicit, the tran sfo rm atio n  to  the (£23  £3 2 )

p a ram ete r space can n o t be ca rried  ou t exp lic itly  either. In stead  an ite ra tiv e  p roced u re  

m u st be u sed  (see W a lk e r e t al , 1980), w hich  can be v iew ed  as a 3 -d im en sio n a l 

m apping  (non-volum e preserv ing) w ith tw o param eters, viz.

, a 23 =  H 3)

w here a  and 0 ^ 3  are re la ted  to each o ther by the very sim ple equation  (5.3). To calculate 

a c fo r a g iven  (£23  £32) pair, w e choose an estim ated  value fo r it, say  0 .5 , and then carry 

o u t the above m app ing  until w hen a substitution o f the calcu lated  (ji p.3 a )  in to  equation

(5 .7) g ives values o f  (£23  £32) su ffic ien tly  close to the g iven values. T he  e rro r in a c o f

this calcu lation  cannot be contro lled  directly, but can only be con tro lled  through the £'s. 

T h e  p ro ced u re  w as su ccessfu l in th e ir (W alker et al , 1980) ca lcu la tio n  o f  the

£23 and £32 a r e  p a r a m e t e r s
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c ircu la r case, since the critical stability  surface possesses a m onotonic p roperty  (see Fig. 

5 .6a). B ut in the e llip tical case the procedure  d iverges around m any poin ts, because  o f  

the co m p lex ity  o f the 'tunnel-shaped ' critica l s tab ility  surface due to the eccen tric itie s  

(see F ig. 5.6b). T his can be exp lained  by looking  at the process o f  the p rocedure  if  we 

note that

w hich  p roduces the typical iterative rou te  show n in Fig. C l .

In fac t th is d ivergence is a very  g eneral p h en o m en o n  co n cern in g  m ap p in g s. T he 

p rocedure  m ay also be view ed as a 1-d im ensional m apping w ith tw o param eters,

In  o rd e r th a t the m apping  converges, it m ust possess  'a ttracto rs ' dense  ev e ry w h ere  in 

the  space . H ow ever, it is w ell know n  that even  the p ro p e rty  o f  a s im p le  q u ad ra tic  

m ap p in g  can  be very  com plicated . T h ere  is n o  g u aran tee  fo r co n v e rg en ce  w ith o u t 

carefu lly  studying the m apping, w hich is defined  im plicitly  here. In the study o f  ch ap te r 

5, the ana ly tica l property  o f  the m apping  is not o f  im portance , because w e are aim ing

on ly  at the calcu lation  o f  a c, for w hich pu rpose an in terpo la tion  m ethod  can a lw ays be

used  as supplem entary .

T h is  is ano ther exam ple w hich show s the s ign ificance o f  eccen tric ity . A s is w ell- 

k n o w n , in p rincip le  an arb itrarily  sm all eccen tric ity  in the o rb it o f  the p rim arie s  w ill 

c h a n g e  c o m p le te ly  the n a tu re  o f  th e  re s tr ic te d  3 -b o d y  p ro b le m , v iz ., the

ex is ten ce/n o n ex is ten ce  o f  the Jacobian in tegral. E ccen tric ity  is also the m ost im portan t 

p aram eter characterising regular and irregular m otion, as was ev ident from  the num erical 

investigation  o f chapter 5.

de23 = 2 n ( 1 - n ) a 23da23 + ( 1 -2 | i ) a 223 dn 

de32 — 3 ^3 ct23 d a 23 + cx23 d^3

d a 23- dp < 0

d « 2 3 d ^ 3 < 0

V

3 9 ( a 23 ’ ^23 ’ ^32
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Fig. C l  C onvergence and divergence o f the iterative procedure o f  calcu lating  

a c fo r a g iven  (£23  £32 ) pair. O nly a section with p ^ c o n s t .  is show n in the 

diagram . T he procedure converges in a region o f the critical stability surface like 

that on the righ t side; it d iverges in a region like that on the left side.
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A P P E N D IX  D. 

P roof o f Equations (6.2) and (6.3)

[P roof o f (6.2a, b)]: W e on ly  need  to  p ro v e  the firs t re la tio n  o f  eq u a tio n  (6 .2a); all 

th e  o th e rs  fo llo w  im m ed ia te ly  from  th is  re la tio n  by a use o f  eq u a tio n  (6 .1). T h e  

fo llow ing  p ro o f is based on the m ost general p roperties o f  scalar, vector, and  tensor; L ie 

and  covarian t derivatives, and the L eibniz ru le  these derivatives obey; sym m etry  feature 

o f  co n n ec tio n , com patib ility  o f  co n n ectio n  and  m etric . In co n tra s t to a co n v en tio n a l 

co m p o n en t proof, w e can see the m ore basic assum ptions on w hich the the resu lts really  

depend .

( 2 ^ g )  ( A, B)

=  £ - [  g (A, § ) ]  -  g ( £  -A,  B) -  g (A,  2 ,  -B)  

= V - [ g ( A , B ) ] - g ( £ i A , B ) - g ( A £ - B )  

=  g ( V -  A , B )  + g ( A V - B )  

- g ( £ - A ,  B) -  g (A, S L -B)  

= g(V7 l ^  + g (A,V5l)

=  ( V x ? ) ( B ) + ( V 5 ? ) ( A )

=  ( v ;  © <B ) +  ( v 5 ! ) ( A )

L e i b n i z  r u l e  f o r  3 1 -

S y m m e t r y  o f  V

2 , - f  = V - f
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[P ro o f  o f  (6 .3 a , b )]: O n ly  eq u a tio n  (6.3a) needs a n o n -triv ia l p ro o f. T h e  fo llo w in g  

p ro o f  is  in d e p e n d e n t o f  co o rd in a tes . U sing  the c o m p a tib ility  co n d itio n  b e tw een

connection  and  m etric , Vg=o, w e obtain

V p [ g ( P , ^ ) ] = g ( V - P , l )  + g ( P , V - l )  < = V g  = 0 ( c o m p a t i b i l i t y )

w here on ly  the second term  need further calculation,

g(P.Vp^)  = g ( P , V - P +

= g ( P . V - P )  + g(P,

= g ( P , V - P ) - g ( P ,  2 .-P ) 

= V - g ( P ,  P) -  ( v i g) (P.P)} 

-  ^ - { ^ f g ( p . p )  -  ( ^ - g ) ( p ,  P)}

i  ( £ - g ) ( P , P )

V - £ - V - P  = ( s y m m e t r i c V )

L e i b n i z  r u l e  f o  r V-  

L e i b n i z  r u l e  t o  r ZL-

V g  = 0  ; V- f  = 2 , - f  
6 $
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