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Preface

Development of a prototype interferometric gravitational radiation detector of 10m arm 

length was initiated at Glasgow University in 1978. Development of this prototype still 

continues and over the past few years plans have been made to develop a long-baseline 

detector of 3km arm length (the GEO project). This project is proposed by a collaboration 

formed between various research groups including our own group at Glasgow 

University, a group at the University of Wales (College of Cardiff) and one at the Max- 

Planck Institute for Quantum Optics in Garching, Germany. This thesis is an account of 

the research carried out by the authoress between October 1987 and September 1990 as 

part of the development of the proposed detector, specifically in relation to certain aspects 

of vibration isolation and feedback control of the test masses in the detector.

Chapter 1 is a general introduction to the nature, sources and detection of 

gravitational radiation. The astrophysical sources which are most likely to be first 

detected and the two main types of Earth-based detectors currently under development are 

described (resonant bar detectors and laser interferometric detectors). The dominant 

sources of noise which limit the performance of laser interferometeric detectors are 

discussed. Most of this chapter is derived from the published literature.

Chapter 2 is an introduction to the vibration isolation methods commonly used in 

interferometric detectors. A brief introduction to the design and analysis of feedback 

control systems is also given in this chapter. Initial experimental investigations into the 

position control of a test mass suspended as a simple pendulum are then presented.

Chapter 3 presents some theoretical and experimental investigations carried out 

relating to the feedback position control and damping of a test mass suspended as a 

double pendulum.

Chapter 4 describes the analysis of, and experimental results from, a novel design 

of double pendulum suspension system incorporating frequency selective (split) feedback 

position control.

The work described in Chapters 2, 3 and 4 was carried out with the assistance of 

Dr. N.A. Robertson and Prof. J. Hough. The software package used for most of the 

feedback control loop analysis contained in this thesis was PC/MATLAB.

Chapter 5 presents the results obtained using the finite element method to predict the



level of vibration isolation obtainable in each dimension with the double pendulum 

system described in Chapter 4. The level of horizontal isolation of the system was 

measured experimentally to compare it with the theoretical prediction.

Chapter 6 describes a relatively detailed investigation into the limitations of the 

performance of vibration isolation stacks using finite element analysis. The finite element 

software used in Chapters 5 and 6 was MSC/NASTRAN.

The finite element analyses of Chapters 5 and 6 were carried out in collaboration 

with Mr. R.J.S. Greenhalgh (Rutherford Appleton Laboratory, Oxfordshire), and with 

the help of Prof. J.Hough and Dr. N.A. Robertson.

In Chapter 7 the conclusions are presented and the prospects for the future of 

gravitational radiation detection are discussed.

Appendix A is a simple calculation indicating the level of unwanted magnetic 

damping of a test mass suspended as a pendulum due to the feedback control transducers.

Appendix B is an example of an input data deck used for the finite element analysis 

of the vibration isolation stack model discussed in Chapter 6.

Appendix C contains some measurements of the spectrum of seismic ground tilt at 

two sites close to the prototype detector at Glasgow University. These data were obtained 

with the help of Prof. J. Hough.



Summary

Some Aspects of Vibration Isolation and Feedback 
Control for Interferometric Gravitational Radiation 
Detectors

Gravitational radiation, first predicted by Einstein in his General Theory of Relativity 

(1916), remains undetected despite considerable effort by researchers over the past few 

decades. Direct observation of gravitational radiation would not only provide a test of 

Einstein's theory, but would yield information on the astrophysical sources and 

processes involved in its production. Gravitational radiation is quadrupole in nature and it 

gives rise to a tidal strain in space. However its interaction with matter is very weak 

making it extremely difficult to detect. The prototype detector developed at Glasgow 

University is designed in such a way that it exploits the quadrupole nature of gravitational 

radiation by attempting to measure the differential change in length between two resonant 

cavities making up the orthogonal arms of an interferometer. Similar laser interferometric 

detectors are currently under development at various sites worldwide. Development of the 

10m prototype detector at Glasgow was initiated about 13 years ago and plans are now 

well under way for the development of a more sensitive detector of 3km arm length (the 

GEO project) in collaboration with various other research groups including a group at the 

University of Wales (College of Cardiff) and one at the Max-Planck-Institute for 

Quantum Optics in Garching, Germany.

Chapter 1 is a general introduction to the nature of gravitational radiation and the 

astrophysical sources likely to produce detectable levels of this radiation at the Earth. The 

main features of the two most promising types of detector currently being developed - 

resonant bar detectors and laser interferometric detectors - are described. The ultimate 

sensitivity of any gravitational wave detector is limited by various sources of noise and 

the dominant noise sources which degrade the performance of interferometric detectors 

are discussed in some detail. It is shown here that the sensitivity of such detectors is 

likely to be severely limited by the effects of seismic noise at low frequencies (below



about 100Hz).

The test masses forming the arms of an interferometric gravitational wave detector 

must be isolated from all external influences, particularly the seismic background, and 

must be 'free' to move under the influence of a gravitational wave. Furthermore, in order 

to operate an interferometric detector efficiently the position and orientation of the test 

masses must be controlled to a very high degree of accuracy.

In Chapter 2 the level of seismic noise expected at a typical detector site is 

discussed. Some of the methods commonly used to seismically isolate the test masses in 

interferometric detectors are then described. A brief introduction to the concept of 

feedback control and the methods of analysis available for designing feedback systems is 

then presented. Finally, preliminary experimental investigations into the position control 

of a test mass suspended as a simple pendulum are described.

In order to achieve the required level of seismic isolation of the test masses in the 

planned 3km detector (GEO) (an isolation factor of ~1010 at ~100Hz) it is proposed to 

use double pendulum suspensions in conjunction with five-layer vibration isolation 

stacks and air mounts. Chapter 3 gives an account of various theoretical investigations 

carried out into feedback control and damping of a test mass suspended as a double 

pendulum. Experimental investigations into feedback control and damping of various 

double pendulum systems were also conducted and the results from these are presented.

On applying feedback control and damping signals to an isolated test mass it is 

important to avoid re-introducing displacement noise. Chapter 4 describes a novel design 

of double pendulum suspension system with frequency selective (split) feedback control. 

This system was designed specifically to attempt to reduce the level of displacement noise 

occurring at the test mass due to the application of the feedback signals. Two different 

split feedback control systems were designed and their perfomance was tested 

experimentally.

A finite element model was generated to predict the levels of isolation in the 

horizontal and vertical directions achievable with the double pendulum system described 

in Chapter 4. The horizontal isolation was measured experimentally to compare it with the 

theoretically predicted isolation. The theoretical and experimental results are presented in 

Chapter 5.

As mentioned already, vibration isolation stacks are commonly used in conjunction 

with pendulum suspensions to obtain the desired level of isolation for the test masses.



These multi-layer stacks consist of alternating layers of rubber and heavy material. 

Chapter 6 describes theoretical investigations into the limitations to the performance of 

such multi-layer stack systems using a finite element model. The results obtained 

illustrate clearly that cross-coupling effects which could degrade the predicted isolation 

performance can possibly take place in such multi-layer stacks. The results obtained from 

these analyses were used to establish various design criteria for the stack systems of the 

proposed 3km detector (GEO). These criteria attempt to ensure that the resulting motion of 

a test mass suspended from the top of such a stack system is reduced to a satisfactory 

level.

In Chapter 7 the conclusions are presented and the prospects for the future of 

gravitational radiation detection are discussed.

Appendix A contains a simple calculation which shows that unwanted magnetic 

damping of a test mass suspended as a pendulum might take place due to electromagnetic 

induction in the coil/magnet transducers which are commonly used to control the position 

and orientation of the test masses in interferometric detectors.

Appendix B contains an example of an MSC/NASTRAN data deck used for the 

frequency response analysis of the vibration isolation stack model discussed in 

Chapter 6.

It was shown in Chapter 6 that ground tilting motions might couple strongly to 

horizontal motion at the top of the vibration isolation stacks used in gravitational radiation 

detectors. Since relatively little information is available on the magnitude of ground tilt at 

the Earth's surface it seemed important to make a measurement of the ground tilt 

spectrum at a typical detector site. Appendix C presents some measurements of the 

spectrum of seismic ground tilt at two sites close to the 10m prototype detector.
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Chapter 1

The Nature, Sources and Detection 
of Gravitational Radiation

1.1 Introduction

Gravitational waves were first predicted to exist by Einstein in his General Theory of 

Relativity (1916). Direct observation of gravitational waves remains one of the most 

challenging problems in 20th Century experimental physics. Over the past few decades 

much progress has been made in research towards their detection. Success in this field 

will be of considerable importance both in astronomy, where unique information about 

violent interactions in the Universe may be obtained, and in physics where fundamental 

aspects of relativistic theories may be checked.

Evidence for the existence of gravitational radiation has come from observation of 

the rate of orbital decay of the binary pulsar PSR1913+16 due to gravitational radiation 

reaction [Taylor et. al. 1979]. However as yet there has been no convincing direct 

observation of gravitational radiation. Experimental development has now advanced to 

the stage where the experts involved are confident that instruments can be constructed 

which are capable of detecting the levels of gravitational radiation predicted to be 

generated by astrophysical sources.

This chapter gives a brief introduction to the nature, sources and detection of 

gravitational radiation. More comprehensive reviews of these topics are given by Thome 

[Thome 1987] and Blair [Blair 1991].

1.2 The Nature of Gravitational Radiation

Gravitational waves are propagating ripples in the curvature of spacetime. They are 

produced by the acceleration of mass just as electromagnetic waves are produced by the 

acceleration of electric charge. Certain other features are common to both types of
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radiation. Both are transverse, propagate at the speed of light and have a zero rest mass 

particle associated with them (the graviton and the photon). However significant 

differences exist. Mass, unlike charge, has only one sign and a change in the quadrupole 

moment of a system of particles is necessary for the generation of gravitational waves. 

The gravitational interaction is much weaker than the electromagnetic interaction {e.g. the 

gravitational force between two stationary protons is about 1036 times weaker than the 

electrostatic force). For these reasons, the most promising sources for producing 

detectable levels of gravitational radiation are astrophysical in nature (involving large 

masses moving with high accelerations).

Gravitational waves give rise to tidal forces, the dimensionless amplitude h of a 

wave being characterised in terms of the strain it induces in space. For example, a 

gravitational wave of wavelength Xgw passing through a ring of test particles will cause 

the ring to oscillate as shown in Figure 1.1. The amplitude of the gravitational wave is 

defined as h = 2al/l where L « X gw. The amplitude falls off inversely with distance as 

the wave expands away from its source.

L+AL

Figure 1.1 Effect o f  a gravitational wave on a ring o f test particles. The  

wave is propagating perpendicular to the page and has"+" polarisation. 

The "x" polarisation produces the same effect but rotated 45° about the 

propagation axis.

Any gravitational wave can be described in terms of components of the two independent 

polarisation states ("+" (plus) and V  (cross)) and gravitational waves detected at the 

Earth can be fully characterised by the time evolution of their two waveforms h+ and hx 

and by the direction (0, 0) to their source.

Information on the amplitude, polarisation and velocity of these waves will provide
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important tests of general relativity or other relativistic theories of gravity.

Since the predicted sources of gravitational waves involve compact concentrations 
of mass they may be shrouded by surrounding matter. Electromagnetic radiation is unable 

to escape from these high gravity regions without interacting strongly with this matter. 

However gravitational waves are highly penetrating. They should be virtually unaffected 

by the surrounding matter and should give unique information about the astrophysical 

sources and processes involved in their production. However the highly penetrative 

nature of gravitational radiation means that its interaction with any detector will be weak. 

The currently proposed detectors aim to be capable of measuring extremely small changes 

in strain: h of the order of 10*22 over millisecond time-scales.

Despite the fact that their interaction with matter is weak, gravitational waves carry 

very large energy fluxes. For a typical wave of frequency /  at the sensitivity goal of 

currently proposed detectors the flux at the Earth is given by equation (1.1) 

[Schutz 1989]

This huge energy flux suggests that detectable gravitational wave events will be fairly 

infrequent.

The astrophysical sources of gravitational radiation which are most likely to 

produce gravitational waves within the frequency range of terrestrial detectors (from a 

few tens of hertz to a few kilohertz) are described in the next section.

1.3 Predicted Sources of Gravitational Radiation

It is useful to divide gravitational wave sources into two main categories according to the 

temporal behaviour of the waves they produce; those sources which produce bursts of 

gravitational waves and those sources which produce continuous gravitational waves. In 

addition to these two types of source it is believed that there is a stochastic background of 

gravitational radiation.

1.3 .1  Burst Sources 

Supernovae
The earliest designed gravitational wave detectors were optimised to look for signals from

( 1.1)
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stars collapsing as in supemovae. Supemovae can be divided into two categories 

depending on the composition of the original star. Type I supemovae are thought to occur 

when a white dwarf accretes matter from a companion star and undergoes nuclear 

explosion. The stellar core in this case may or may not collapse to form a neutron star. 

Type II supemovae occur when the radiation pressure from the nuclear reactions in the 

core of a highly evolved massive star is no longer sufficient to prevent rapid gravitational 

collapse. A neutron star or a black hole may be produced. If the collapse is non- 

symmetrical there will be a short burst of gravitational waves followed by a 'ringing' as 

the core recovers from the sudden collapse. Furthermore, if the initial angular momentum 

of the collapsing star is sufficiently high the collapsed core may become unstable, 

perhaps even bifurcating to produce two components. In this situation even greater levels 

of gravitational radiation can be emitted. n t Vie form of 3 mvitahoM I s)

The amplitude h produced by a burst source that emits an energy £  in a time t  

at a distance r  and frequency/is given approximately by:

h ~ 5 x 10 ■22

10-3M ©c2J l /
Ifl rikHz

lms.
■1/2 15Mpc

( 1-2)

where M© is the mass of the sun and 15Mpc is approximately the distance to the Virgo 

cluster [Hough et. al. 1987].

The exact level of gravitational radiation emitted by a supernova event depends on 

the asymmetry and rate of the collapse and therefore is not easy to predict. Numerical 

simulations to predict the shapes and amplitudes of the waveforms produced in 

supemovae events have been carried out by various people e.g. [Saenz and 

Shapiro 1981]. These simulations will be useful in aiding the interpretation of future 

observations.

Coalescing Compact Binaries
This type of source is currently believed to be the most promising for detection. Binaries 

are systems involving two objects orbiting each other under their mutual gravitational 

attraction. Such systems will emit continuous gravitational radiation at a frequency equal 

to twice their orbital frequency for the majority of their lifetime. Furthermore, binary 

systems made of compact objects such as neutron stars and/or black holes should 

eventually spiral together as a result of losing energy in the form of gravitational
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radiation, until the stars or holes coalesce. In the last few seconds prior to the collision, a 

characteristic 'chirp' of gravitational waves will be produced where both the frequency 

and amplitude of the waveform sweep upwards towards a maximum.

The characteristics of the signal depend on only a few parameters. Consider a 

binary system with total mass mT Mq  and reduced mass fi Af@, at a distance rl00 from 

the Earth (measured in hundreds of Mpc) emitting waves at a frequency f 100 (measured 

in hundreds of hertz). The amplitude <h> of the signal (which is averaged over the 

source and detector orientations) produced by such a system of coalescing objects is 

given by equation (1.3) [Schutz 1986]:

<h> =10"23m r2/3 fj. fioo213 rm _1. (1.3)

Furthermore the frequency of the signal changes on the time scale [Schutz 1986]

It is very significant that the masses mT and fi appear in both equations in such a way 

that they can be eliminated. The rate of change of frequency of the waveform can be 

measured as can the amplitude <h> (using a network of three detectors). This gives a 

way of determining the distance to the binary coalescence event independent of any 

assumptions about the masses of the stars involved. If the coalescing binary system can 

also be detected optically this would provide a means of measuring the Hubble constant 

to a higher degree of accuracy than ever before [Schutz 1986].

1.3 .2  Continuous Sources 

Rotating Neutron Stars
Rotating neutron stars can emit gravitational waves at twice their frequency of rotation if 

they deviate from axisymmetry. The greater the deviation and the higher the rotation rate, 

the stronger the emission. The deviations from axisymmetry can be caused by various 

effects. For example, if the neutron star is a pulsar the crust may be deformed by the 

presence of a magnetic field which is misaligned with the rotation axis 

[Zimmerman 1978]. The crust or core of the neutron star could have lumps in it due to 

the occurrence of starquakes. If the neutron star is accreting matter from a companion star

5



and is rotating rapidly enough an instability can occur creating hydrodynamic waves in 

the mantle and crust travelling in the opposite direction to the star's rotation. Gravitational 

waves can be emitted strongly from such a star [Wagoner 1984].

1.3 .3  The Stochastic Background

A random background of gravitational waves may exist due to the superposition of the 

emissions from many sources randomly distributed in time and space. Several possible 

sources of this gravitational wave background have been suggested. For instance, cosmic 

strings forming closed loops can oscillate producing gravitational waves over a wide 

range of frequencies as the loop size changes with time [Vachaspati and Vilenkin 1985]. 

These closed loops are predicted to seed the formation of galaxies and clusters. 

Observation of the background radiation might yield information on the process of galaxy 

formation.

It is also believed that the combined emission of all the existing binary stars should 

superpose to give rise to a stochastic background of radiation. However the peak 

amplitude of such radiation would lie at a frequency below about 10'2Hz.

There may also be remnant radiation from the big-bang (primordial radiation) which 

originated at a very early stage in the history of the Universe. The peak amplitude of such 

radiation probably lies outwith the frequency range of terrestrial detectors.

Binary coalescence and black hole formation in a population of large pregalactic 

stars (known as population HI stars) which evolved very rapidly would also contribute to 

the stochastic background of gravitational radiation. This class of source is controversial.

1.4 The Detection of Gravitational Radiation

Any method for directly detecting gravitational radiation will require making a 

measurement of the induced strain in space. Several research groups around the world are 

currently involved in the development of two distinct types of laboratory based 

instruments designed to be capable of measuring these minute strains; resonant bar 

detectors and laser interferometric detectors.
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1.4.1 Resonant Bar Detectors

The resonant bar detector was first proposed and developed by Joseph Weber of the 

University of Maryland in the 1960's. Currently there are many research groups in the
a ( i n c l u d i n g  A v s t c a  l w )

U.S.A., Europe and the Far East developing resonant bar detectors.

The resonant bar detector essentially consists of a single bar (mass of a few tonnes) 

of low intrinsic loss metal (high quality factor Q) whose fundamental longitudinal 

frequency is at about a kilohertz and which may be cooled to a temperature of a few 

kelvin. A gravitational wave of suitable frequency, orientation and polarisation passing 

through such a detector will produce a strain which will give rise to potentially detectable 

movements of the ends of the bar at its fundamental modal frequency. The induced 

motions can be measured using some sort of transducer (e.g. a parametric transducer or 

a resonant transducer) whose signals are amplified and monitored. To reduce the 

damping of the internal quality factor (Q) of the bar it is suspended inside a vacuum 

chamber. Further isolation from external vibrations is provided using a series of 

mechanical filters to connect the suspension point to the ground.

The sensitivity of resonant bar detectors is limited by noise in the sensors 

(transducers and amplifiers) and also by thermal noise in the bar itself. The effects of 

thermal noise can be reduced by using large mass bars of high Q material cooled to very 

low temperatures. For example, the aluminium bar at Stanford University of mass 

4800Kg has an internal Q of ~ 5 * 106 and is cooled to liquid helium temperature 

(4.2K).

However there is a more fundamental limitation to the performance of bar detectors 

in the form of the Heisenberg Uncertainty Principle. This places a limit on the strain 

sensitivity of a typical bar of the order of 10-20 [Thome et. al. 1979]. Techniques have 

been proposed for reducing this limit where the oscillating system is monitored without 

perturbing its quantum mechanical state ('quantum non-demolition' techniques). 

However considerable experimental development is needed before such techniques can be 

implemented.

The most sensitive bar detectors (i.e. those at Stanford University and CERN 

(University of Rome)) have achieved strain sensitivities of ~10-18 for millisecond pulses. 

However it seems unlikely that the sensitivity of bar detectors could be improved to the 

level where gravitational radiation will be likely to be detected. Also bar detectors are 

restricted in their bandwidth of operation since they are only sensitive to gravitational
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waves within a few tens of hertz of the frequency of the fundamental mode. However an 

array of bar detectors of different sizes could be used to achieve a broader bandwidth of 
operation.

1.4 .2  Laser Interferometric Detectors

The interferometric method for detecting gravitational radiation was pioneered by 

Forward [Forward 1978] and Weiss [Weiss 1972]. The Michelson interferometer forms 

the basis for the two types of interferometric detectors currently being developed.

A simple Michelson interferometer is illustrated in Figure 1.2. A beamsplitter and 

two end mirrors form the arms of the interferometer. Laser light incident on the 

beamsplitter is split equally between the two arms. The light traversing each arm is 

returned by the end mirror (test mass) to be recombined at the beamsplitter. Any 

differential length change of the two arms will give rise to a change in the relative phase 

of the interfering beams. This produces a change in the intensity of the light detected by 

the photodiode at the output port.

test mass

test mass
beamsplitter

photodiode

Figure 1.2 Schematic diagram of a Michelson Interferometer.



The test masses must be free to move under the influence of a gravitational wave 

without being disturbed by external influences such as ground vibrations and air pressure 

fluctuations. Interferometric detectors are operated under high vacuum (e.g. ~10*4 mbar) 

with the test masses and other optical components 'freely' suspended as pendulums to 

reduce such effects.

Interferometric detectors are well suited to the quadrupole nature of gravitational 

radiation since the strain in space introduced by a gravitational wave has opposite signs in 

two directions perpendicular to each other. An obvious advantage these separated mass 

detectors have over resonant bar detectors is that they can be used to detea signals over a 

wide frequency range. Furthermore since gravitational radiation gives rise to strains in 

space, the sensitivity of any detector can be increased by increasing its physical size, and 

interferometric detectors can be made physically very large compared to bar detectors. In 

fact, to obtain the maximum signal response from a detector, the length of each arm 

should be equal to one quarter of the wavelength of the gravitational wave being searched 

for. This means that for signals of about a kilohertz the optimum arm length would be 

close to 100km. An arm length of this order can effectively be obtained by folding the 

optical paths in each arm using either optical delay lines or resonant cavities.

Delay-Line Detectors
This type of detector was first proposed by Weiss [Weiss 1972]. There are a number of 

groups at present developing delay-line detectors including the group at the Max Planck 

Institute for Quantum Optics (MPQ) in Garching who have a prototype detector of 30m 

arm length [Winkler 1991]. Figure 1.3 is a schematic diagram of a delay-line 

interferometer. The geometries of the mirrors are designed so that the beams of light 

within each aim are spatially separated.

In the Garching prototype an argon laser is used as the light source. The phase 

difference between the returning beams at the output is maintained on a null by adjusting 

the phase of the light within each of the arms using electro-optic modulators (Pockels 

cells) placed between the beamsplitter and entrance mirrors in each arm. At the lower 

frequencies (<~30Hz) the coarse optical path length adjustment is achieved by controlling 

the positions of the two outboard mirrors using coil/magnet feedback transducers.

In principle, an interferometer can be made insensitive to laser frequency 

fluctuations if the arm lengths are identical. However light scattered within the arms 

(which might have a much longer optical path length than the main beam) can leak back

9



1=7

photodiode

Figure I S  Schematic diagram of a delay-line interferometer,

towards die beamsplitter making the delay-line detector more sensitive to these laser 

frequency fluctuations. To teduce this effect the laser frequency is stabilised with respect 

to a reference cavity at low frequencies and with respect to the path length inside the 

interferometer at frequencies above about 10Hz.
am p l i t u d e

The best v sensitivity demonstrated so far on the Garching prototype is

1.1 x 10-19/fHz (above 2kHz) [Shoemaker et. al. 1988]. (This is equivalent to a 
displacement sensitivity of -3.3 x 10*18 This performance level is impressively

close to tbe fundamental limit set by the uncertainty associated with counting the photons 

on the output of the interferometer (for the illuminating light power used). This sensitivity 

limit (photon shot noise) will be discussed in more detail in Section 1.5.2.

Resonant Cavity Detectors

The technique of using resonant cavities (Fabry-Perot cavities) to increase the effective 

arm length of an interferometric detector was first developed at Glasgow University and 

there are now a number of other research groups who have adopted the resonant cavity 

configuration. Figure 1.4 is a schematic diagram of a resonant cavity interferometer.
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test
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m

photodiode

Figure 1.4 Schematic diagram of a resonant cavity interferometer.

The prototype detector at Glasgow has arms each of length 10m. Basically one of 

the cavities - the primary cavity - is held on resonance by locking the frequency of the 

laser light to the cavity at frequencies above a few hertz. At the lower frequencies the 

distance between the masses in the primary cavity is controlled with respect to the 

frequency of the laser. The length of the secondary cavity is then controlled to hold it on 

resonance with the highly stabilised light A gravitational wave of suitable polarisation 

passing through the detector will induce a relative change of length in the two arms, or 

rather, will move the secondary cavity off resonance with the laser light. However this 

change is compensated for by the feedback loop holding the secondary cavity on 

resonance. The feedback signal for this cavity provides the signal for searching for 

gravitational waves.

The resonant cavity interferometer requires more sophisticated control systems than 

its delay-line counterpart since the two cavities must be held on resonance with the laser 

light. This requires precision control of the test masses forming the cavities.

The resonant cavity detector has the advantage that smaller mirrors can be used 

than in a delay-line detector. Furthermore scattered light is less likely to be a problem 

since a very high degree of laser frequency stabilisation is necessary to keep the cavities 

tightly enough on resonance to achieve the required level of performance.
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The best displacement sensitivity demonstrated so far on the Glasgow prototype is 

-1.7 x 10-18 "/yHz (over a range between 1.5kHz and 2.5kHz) [Hough et. al. 1989]. 
This corresponds to a rv A sensitivity of -1.7 x 10‘19

1.5 Limitations to the Sensitivity of Laser 
Interferometric Detectors

The ultimate sensitivity of a laser interferometric detector is limited by various sources of 

noise. In this section some of the more significant noise sources will be described. A 

more exhaustive description of the possible noise sources can be found in the proposals 

for long-baseline detectors submitted by the various research groups to their funding 

authorities [Blair et. al. 1989, Giazotto et. al. 1989, Vogt et. al. 1989 and 

Hough et. al. 1989] (the AIGO, VIRGO, LIGO and GEO projects respectively). The 

last of these proposals, for a detector of 3km arm length (GEO), was submitted by a 

collaboration formed between several groups including the research group at the Max- 

Planck Institute for Quantum Optics (MPQ) and our group at Glasgow University. The 

GEO proposal [Hough et. al. 1989] will be frequently referred to throughout the 

remainder of this thesis.

1.5.1 Heisenberg Uncertainty Principle

The Heisenberg Uncertainty Principle places the lowest limit on the accuracy of any 

measurement of the position of a free mass. The minimum detectable differential 

displacement of the two suspended end masses (each of mass m) of an interferometer at 

frequency /  (over a bandwidth of Af) is set by the uncertainty principle to be 

[Edelstein et. al. 1978]:

(jimp 11 f vde

(1.5)

where If is Plancks constant divided by 2n. This sets a limit to the minimum possible 

gravitational wave amplitude h an interferometer can detect of:

( 1.6)
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where L is the arm length of the detector. From this one can see that the minimum 

detectable gravitational wave amplitude improves linearly with increasing detector arm 

length. It should be noted that for most practical designs of detector it seems that other 

limitations to the sensitivity will be more significant than that set by the uncertainty 

principle.

1.5 .2  Photon Shot Noise

An induced phase shift between the light in the two arms will produce a change in the 

power of the light on the output of the interferometer. The minimum detectable phase 

shift and hence minimum detectable differential displacement in a time Tis determined 

by the minimum detectable change in light power. This is limited by the Vw uncertainty 

associated with counting an average of n photons at the photodiode in a time t  (photon 

shot noise). The limiting sensitivity due to photon shot noise as a function of frequency/ 

is given by [Hough et. al. 1989]:

h = t e ]  ’W m  ( i -7)

where X is the light wavelength, I0 is the light power, e is the quantum efficiency of 

the photodiode, c is the velocity of light in vacuum and %s is the storage time of the light 

in the arms. From this equation one can see that the effect of shot noise can be reduced by 

increasing the light power. Equation (1.7) also shows that the sensitivity of the 

interferometer can be optimised by setting the storage time ts of the light in each arm 

equal to half the period of the gravitational wave being searched for. (In a resonant cavity 

interferometer the far mirror in each cavity is chosen to have very high reflectivity R; the 

reflectivity of the input mirror on each arm can be chosen to give the desired storage 

time.)

Various techniques can be used to reduce the effect of shot noise - for example, 

standard recycling. If the mirrors in the detector are very low loss, when the detector is 

operated on a null fringe, most of the illuminating light power will be returned towards 

the laser and will be wasted. This wasted light can be coherently added to the input light 

beam by careful positioning of a mirror (m) on the input port as shown in Figure l.V. 

This increases the light power in the interferometer reducing the shot noise effect
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[Drever et. al. 1983]. The limiting sensitivity due to photon shot noise as a function of 
frequency is then given by:

h = ■nXf(l-R)
. e I 0L .

1/2

/Vit (1.8)

where L is the arm length of the detector and the storage time of the light %s has been set 

equal to half the gravitational wave period [Hough et. al. 1989].

Another method of improving the sensitivity beyond the shot noise limit has been 

proposed where squeezed light is injected into the output port of the interferometer 

[Caves 1981]. However much development is required before this technique will become 

practical.

1.5 .3  Thermal Noise

Thermal noise associated with the modes of the pendulum suspensions and modes of the 

test masses themselves can limit the sensitivity of an interferometric detector.

Consider a test mass m suspended as a simple pendulum with resonant frequency 

f 0 and quality factor Q. The thermal motion of the pendulum associated with the 

pendulum mode is peaked at the resonant frequency, which is typically about 1Hz. For 

frequencies/much higher than this it can be shown that the r.m.s. spectral displacement 

density of these thermal motions is given by [Weiss 1972]

Xrmx — k T f p  
2 m Q  n3f  .

1/2
(1.9)

where kT is the thermal energy associated with the resonance, k being Boltzmann's 

constant and T  the absolute temperature. This sets a limit to the minimum possible 

gravitational wave amplitude h an interferometer can detect of:

h ~ i
2 k T fp

m Q n3/ 4

1/2
/VhT ( 1.10)

where L is the arm length of the detector.

In a similar way it can be show that in the case of the thermal motion associated
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with the internal modes of the test masses, the r.m.s. spectral displacement density at
/I is

frequencies below the internal resonant frequency f 0 given by [Weiss 1972]

Xrmx — A T
2 m Q n3fo3

1/2

where Q is the internal quality factor of the mass m. This sets a limit to the minimum 

possible gravitational wave amplitude h an interferometer can detect of:

h ~ a  y- 2 k T
m Q n3fo3

1/2
/VHz ( 1.12)

where a  is some factor of the order of a few which accounts for the summation of the 

effects of a number of internal resonant modes.

It is clear from both equations (1.10) and (1.12) that apart from reducing the 

temperature T  the thermal noise can be minimised by using high Q materials for the test 

masses and high Q pendulum suspensions. The detector can also become less sensitive 

to the thermal noise effects if the arm length L is made large. In the proposed 3km 

detector (GEO) we aim to use test masses with g~106-107 and pendulum suspensions 

with {2~107-108 [Hough et. al. 1989].

1.5 .4  Seismic Noise

Seismic noise is a significant problem for all terrestrial interferometric detectors, 

especially at low frequencies. The test masses and other optical components of an 

interferometer need to be isolated from ground vibrations in order to reduce the effects of 

seismic noise to an acceptably low level. This isolation can be achieved using various 

types of mechanical isolators e.g. pendulum suspensions, vibration isolation stacks and 

air springs, to couple the test masses and other sensitive components to the ground. 

However despite these measures seismic noise is likely to limit the sensitivity of earth- 

bome detectors at frequencies below about a few tens of hertz.

To a large extent this thesis is concerned with investigations into the performance of 

the passive isolation systems commonly used in interferometric detectors.
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1.5 .5  Other Sources of Noise

There are many other sources of noise which might limit the sensitivity of an 

interferometric detector. For example, fluctuations in the residual gas pressure of the 

vacuum can give rise to noise in the detector by varying the optical path lengths of the 

light beams. Frequency and intensity fluctuations of the laser light can limit the sensitivity 

of the detector and these need to be stabilised using feedback systems. Rotational and 

tilting motions of the suspended test masses can cause misalignment of the optical cavities 

leading to fluctuations in the intensity of the detected light and a reduction in sensitivity. 

The alignment of optical cavities must be maintained using local control of the orientation 

of the test masses. Such control systems are discussed in Chapter 4.

1.5.6 Summary of the Predicted Noise Levels

For reference, Figure 1.5 shows a graph of the predicted levels of noise in the 

proposed 3km detector (GEO) when it is optimised to search for burst sources of 

gravitational waves. The seismic noise curve was calculated here assuming that the test 

masses were isolated using passive air mounts, five-layer vibration isolation stacks and 

double pendulum suspensions. The photon shot noise curve was calculated assuming that 

standard recycling (Section 1.5.2) was being used. This graph is taken directly from the 

GEO proposal [Hough et. al. 1989] where further details can be obtained. From this 

graph one can see that the dominant noise source towards the higher frequencies is 

photon shot noise. At the lower frequencies (below about 100Hz) the sensitivity of the 

detector is severely limited by the effects of seismic noise.
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Figure 1.5 The predicted levels o f  noise in the proposed 3km  detector 

when optimised to search fo r  burst sources o f  gravitational 

waves (such as neutron star formation and compact binary 

coalescences). The ordinate hê  is the root-mean-squared amplitude 

for pulse signals o f characteristic frequency f  measured over a bandwidth 

of f /2 . The seismic noise curve was determined here assuming that the 

test masses were isolated using passive air mounts, five-layer vibration 

isolation stacks and double pendulum suspensions. The photon shot 

noise curve was determined assuming that standard recycling was being 

used. The predicted amplitudes o f two different types o f burst source 

have been superimposed for comparison. This graph is taken directly 

from the GEO proposal [Hough et. al. 1989] where further details are 

given.



Chapter 2

An Introduction to Test Mass 
Isolation and Feedback Control 
Techniques

2.1 Introduction

The ultimate sensitivity of an interferometric gravitational radiation detector is limited by 

various sources of noise some of which have spectra which rise towards lower 

frequencies as discussed in Chapter 1. This category includes thermal noise from the 

pendulum suspensions of the test masses and more particularly seismic noise. Since there 

are interesting sources of gravitational waves in the frequency region of ten to a few 

hundred hertz the test masses must be seismically isolated to a high level in order to 

ensure that the potential large bandwidth operation of an interferometric detector may be 

realised.

The problem of thermal noise can be alleviated by ensuring that the last stage of 

pendulum suspension of the test mass has a high quality factor Q ~107 or 108 

[Hough et. al. 1989]. Regarding seismic noise, simple passive isolation techniques 

offer adequate performance in reducing the effects at frequencies above about 1kHz. 

However at lower frequencies, due to the inherently larger amplitude of seismic noise and 

generally speaking less effective performance of simple isolation systems, more 

sophisticated seismic isolation systems must be used. Furthermore, in order to control the 

position and orientation of the isolated mass to the high degree of accuracy necessary in a 

resonant cavity interferometer, high gain electronic feedback systems must be used. 

Feedback must also be used to electronically damp the high Q resonances of the 

pendulum system. However it is essential that the application of electronic feedback to the 

suspended mass does not compromise the level of isolation achieved by the suspension 

system.
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2.2 Seismic Noise

The seismic background is an important source of noise for Earth-based gravitational 

radiation detectors. It gives rise to components of motion at the Earth’s surface in the 

horizontal, vertical and rotational senses. These motions can be natural or man-made in 

origin, discrete or continuous in nature.

The most important region of the seismic spectrum in the context of gravitational 

wave detection is the high frequency region (> 0.5Hz). High frequency noise is mainly 

local in origin and the amplitude is commonly seen to increase during the daytime 

indicating that it is man-made. The coupling of the wind to trees or man-made structures 

is another major source of high frequency noise. Generally speaking the amplitude of 

noise in the horizontal and vertical directions is approximately the same. A common 

observation is that the linear spectral density of ground displacement attenuates a s / 2in 

both dimensions. However the amplitude of the seismic background can vary 

considerably from area to area by up to a few orders of magnitude. To illustrate this point 

consider the following observations which were made at various sites (in a bandwidth 

from ~10Hz to -1kHz):

linear spectral density 
of ground displacement

location reference

3x10-7 m 
f 2 VHz

1 X IQ-6 m
f 2 VHz

1x10-7 m 
f 2 VHz

1.5x10-7 m 
f 2 VHz

Garching, W. Germany [Shoemaker et. al. 1988]

Pisa, Italy [Giazotto 1987]

Tentsmuir, Scotland [Hough et. al. 1986]

Pisa, Italy [Del Fabbro et. al. 1988a]

In general the level of the noise is much greater at the surface of the Earth than at depth as 

illustrated by a measurement made down a zinc mine at a depth of ~0.5km in a frequency 

band between ~10Hz and 100Hz:

2 x 10-9 m
f 2 VHz

Ogdensburg, U.S.A. [Isacks and Oliver 1964]
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In the proposed 3km detector we are aiming for a limiting gravitational wave
-24

amplitude due to seismic noise of h ~ 12— or better at 100Hz [Hough et. al. 1989]. For
VHz

a near surface based detector this implies that an isolation factor of about 1010 or better at 

100Hz is required. Some passive methods of vibration isolation commonly used in 

gravitational wave detectors are described in the next section.

2.3 Passive Methods of Vibration Isolation

2 .3 .1  Simple Pendulum

Conceptually the simplest way of achieving passive isolation of a test mass is to suspend 

the mass as a pendulum. There will be some transfer of motion between the point of 

suspension and the mass, the amplitude of which is governed by the transfer function of 

the pendulum i.e.

 ______________ _  displacement of mass ,transfer function = ——;-------------   :-------- :— (Z. 1)
displacement o f suspension point

Consider a point mass m suspended from the ground using a wire of length L and

negligibly small mass as shown in Figure 2.1. Consider motions of the mass in the

horizontal direction with respect to an arbitrary reference point. The mass will be subject 

to a restoring force Fr given by:

Fr = T sin 0 (2.2)

where 0 = the angle the suspension wire makes with the vertical axis,

T ~ mg (for small 9) 

and, g = the acceleration due to gravity.

Assume that die mass is also subject to a velocity dependent damping force Fd given by:

F d ^ b ix i -x o )  (2.3)

where b = the damping coefficient of the pendulum.
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<  x,  >

arbitrary
reference
point

Figure 2.1 Simple pendulum suspension o f a point mass. The symbols 

used here are defined in the text which follows.

For small displacements of the mass the approximation sin 0 -  ^  can be made
L

and the equation of motion of the mass can be written as

mxt+ ̂  (xj - xo) + b (xi-x0) = 0 (2.4)

Taking the Laplace transformation of this equation, assuming zero initial conditions, 

yields the transfer function for the pendulum (the magnitude of which gives the 

transmissibility T ) in the frequency domain s:

where,

xLws_ V ± * _  ( 2 5 )

x° s 2 + ys + oft

s -  jo) (where j 2 -  -1)

(Oq -  the natural angular resonant frequency of the pendulum = Info

M2 -  g
° ~  ~L

20



y = the damping factor of the pendulum = ^

and Q = the quality factor of the pendulum.

The form of equation (2.5) tells us that at frequencies below the natural resonant 

frequency f 0 of the pendulum the transmissibility is unity i.e. there is no isolation of 

the suspended mass. At the resonant frequency f 0, apeak occurs in the transfer function 

curve, the magnitude of which depends on the damping factor 7 of the pendulum.

Above this frequency isolation is obtained, the transfer function falling as / f 2 until a 

frequency given by f - f o Q  (commonly referred to as the comer frequency) where the 

effects of the damping in the pendulum become apparent and the transfer function tends 

to behave as f ° l Q f .

As already mentioned in Chapter 1, with application to gravitational wave detectors, 

high Q (-107 or 108) pendulum suspensions for the test masses are necessary in order to 

try to minimise the random motions occurring due to thermal effects 

[Hough et. a/.1989]. Typically the pendulums used in laser interferometers have a 

resonant frequency of -1Hz. In such high Q, low resonant frequency systems the effects 

of damping are negligibly small with the comer frequency lying at about 104 or 105 kHz 

which is well outwith the frequency range of interest for the detection of gravity waves 

(up to about 10kHz). Note that under this condition (y—> 0) the transfer function of the 

simple pendulum approximates to:

= _ (2 .6) 
*> s i  + ag

Essentially each stage of a typical pendulum suspension designed for use in a

gravitational wave detector would behave as f° I f2 at frequencies above the resonant 

frequency of the pendulum. Thus for a 1Hz pendulum the horizontal transmissibility at 

100Hz would be T ~ 1 * 10'4. It should be pointed out here that the isolation of a 

simple pendulum increases proportionally as the length of suspension wire increases. 

However in order to achieve a significant improvement in the isolation level achieved one 

would need to use unfeasibly long suspension wires.

Pendulum suspensions also provide some degree of isolation from vertical seismic 

motions, although not as effectively as in the horizontal direction. The vertical transfer
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function for a single pendulum is similar in form to equation (2.5), the horizontal transfer 

function. However, in this case the natural frequency of oscillation and the isolation 

characteristics of the pendulum are governed by the elastic properties of the loaded 

suspension wire. The restoring force on the mass in the vertical z direction has the form

Fr -  kvz (2.7)

where & îs the vertical stiffness of the wire which is determined according to

(2.8)

where,
E = the Young's modulus for the wire material 

and A  = the cross-sectional area of the wire.

The vertical resonant angular frequency of the pendulum is given by

g£ = | * .  (2.9)

For instance, a high Q pendulum consisting of a steel suspension wire loaded to within a 

factor of two from its breaking strain (which is ~ 1.4 x 10 2) and of horizontal resonant 

frequency 1Hz would have a vertical resonant frequency of ~12Hz. This pendulum 

would have a vertical transmissibility of T ~ 1.4 * 10'2 at 100Hz.

2 .3 .2  Multiple Pendulum

Increased isolation can be achieved by using two or more pendulums connected in series. 

Vibrations at the top of the multiple pendulum are then subject to several stages of 

attenuation in their journey down the system. The total attenuation will depend on the 

physical characteristics of each stage i.e. the lengths of wires (Lj, L2,..etc.) and size 

of the masses (rrij, m2 ,..etc.) suspended.
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Figure 2.2 Double pendulum suspension o f a poin t mass. The symbols 

used here are defined in the text.

Consider die double pendulum illustrated in Figure 2.2. The intermediate and lower 

masses will be subject to restoring forces as described below:

Fri- T i  sin# - T2 sm<p (2.10)

Fn = T2 sm<f> (2.11)

Note that the restoring force acting on the intermediate mass m} depends on the total
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mass in the chain below. Assume also that the masses are subject to velocity dependent 
damping forces given by

Fdl = bj (xj-xo) (2.12)

Fdj = t>2 (x2-x;). (2.13)

For small horizontal displacements the equations of motion of the masses are

m ixj + (m/+m2) / -  (x/ - x0) - (*2 - x/) + bj (x; -x0) = 0 (2.14)Lj L2

and 1712X2 + (x2 - x/) + b2 (x2-x/) = 0 (2.15)
L2

Again by taking the Laplace transformation of these equations, assuming zero initial 

conditions, the transfer function to the lower mass can be derived i.e.

X2 _ ____________ m s 2+ [(i+a«)ii4+ rt4 ]s + v+omWi 4 _____________

10 s4+ [n+Yi[s3 +  [(<^+flj|)(i+ fl^}+r/»]^2 +  [{\+Om)Wi+yi<$]s + (i+am)4 4
(2.16)

where f j  = the damping factor for the first stage of the pendulum

y2 -  the damping factor for the second stage of the pendulum 

and = the mass ratio m2tm}.

The natural resonances of the separate stages at angular frequencies C0 j=^Jg/L] a n d  

316 coupled together giving two new natural frequencies of oscillation for the 

double pendulum at %  and (lower and upper resonances).

It is interesting to note here that it has been shown that for a double pendulum 

system consisting of two identical 1Hz pendulums (mass ~ 400Kg), one only requires 

the Q of the upper s t a g e  t o  b e  -104, to  keep the thermal noise level of a similar 

magnitude to that for a s in g le  I Hz p e n d u lu m  of g - l  O8 at frequencies greater than 10Hz 

[Robertson D.1.1 9 9 0 ] .  T h e  u s e  of a  r e l a t i v e ly  lower Q first stage has the advantage of 

reducing th e  a m p l i t u d e  o f  t e s t  m a s s  m o t io n  a t  th e  resonant frequencies of the coupled 

system, easing the d y n a m ic  r a n g e  r e q u i r e m e n ts  of any control system used to control the 

motions of the test m a s s .
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The transfer function described in equation (2.16) can be re-written in the limit 

where y  for each stage is small (as is the case for the pendulums discussed here):

X2
x 0 (2.17)

S4 + [(oyj +CC$) (1 + «m)]^2+ (1 + (ZmWl <4

The two resonant frequencies of the coupled system coy and coy are obtained by taking 

the roots of the denominator of this transfer function. One can immediately see that their 

values depend on the lengths and masses in each stage. For instance, for a double 

pendulum with identical masses and lengths in both stages (natural angular resonant 

frequencies (Oq) these resonances are at the frequencies given by col = Y(2 - fl).coo and 

coy = Y(2 + Y2) .wo.

At frequencies higher than the upper resonance (<%) of the coupled system, the 

transfer function approximates to:

From this one can see that to achieve the best possible isolation with a high Q double 

pendulum one should aim for the condition m2<mr  Comparing this to equation (2.6) 

one can see that the isolation increases as f 4 which is much better than for a single 

pendulum where the isolation increases only as f 2. For instance, a system of two 

identical 1Hz pendulums will have a horizontal transmissibility of T ~ 2 x 10'8 at

Obviously even higher levels of isolation can be achieved by increasing the number 

of pendulum stages connected in series. However this results in an increase in the 

number of degrees of freedom of the system i.e. an increase in the number of natural 

modes of oscillation. Since we are dealing with high Q pendulums, the phase changes 

associated with each pendulum resonance will be very rapid. Therefore any feedback 

system used to control the position of the lower mass of such a high Q multiple-stage 

pendulum would have to compensate for these fast phase changes in the pendulum 

transfer function in order to maintain stability in the closed feedback loop. Furthermore, 

the resulting increase in the number of degrees of freedom of the system can aggravate 

the problem of linear and non-linear cross-coupling of modes (see Section 2.3.3). A way

*2
XO

(2.18)

100Hz.
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of minimising these problems is to use as few stages of isolation as possible consistent 

with achieving the required isolation level.

It is proposed to use double pendulum suspensions for the test masses in the 3km 

detector (GEO). Chapter 4 describes a novel design of double pendulum suspension 

system which was developed for use in such an interferometric detector.

Double pendulum suspensions are currently used in the 30m prototype detector at 

MPQ, Garching [Shoemaker et. al. 1988]. The upper stage of each double pendulum 

consists of a plate suspended using four vertical springs. The test mass is then suspended 

from the plate using a single wire loop. An alternative design of double pendulum 

suspension which is based on similar ideas to the system used at MPQ and that described 

in Chapter 4 is currently being developed at MIT [Stephens et. al. 1991]. Here the test 

mass is suspended inside a hollow cylindrical shell mass using a single wire loop. The 

shell itself is then suspended from a support plate using four vertical springs. Note that 

the use of vertical springs in the upper stage of each of these double pendulum systems 

increases the isolation of the test mass to vertical and tilting motions at the top suspension 

point.

It is interesting to note here that a research group at the INFN laboratory in Pisa have 

designed and constructed a ’seven-stage super attenuator' for use in interferometric 

detectors operating down to as low a frequency as ~10Hz. This super-attenuator which 

provides isolation in the three dimensions consists of a seven-stage pendulum for 

attenuation in the horizontal plane and seven gas springs for attenuation in the vertical 

direction. This system is capable of supporting a large (400kg) test mass for use in the 

proposed VIRGO long-baseline interferometer. The highest frequency vertical mode of 

this compound suspension system is at about 6.0Hz, with the highest frequency 

horizontal mode at about 3.3Hz. It has already been demonstrated that this system can 

reduce the seismic noise by at least a factor of ~ 2 x l 0 8 above 10Hz 

[Del Fabbro et. al. 1988b].

2 .3 .3  Limitations to the Isolation Achievable with Pendulums

hi deriving the transfer functions for the pendulum systems described in Sections 2.3.1 

and 2.3.2, two assumptions were made which are in general not totally justifiable. The 

first of these was that the suspended mass was point-sized. In reality a suspended mass 

will be finite in size and therefore will have internal modes of oscillation. Generally
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speaking, for the size of mass typically used in prototype gravity wave detectors (<10kg) 

the lowest of these modes lies at a frequency outwith the upper detection frequency for 

gravity waves (a few tens of kHz). If the intrinsic Q of the mass is sufficiently high then 

thermal noise associated with these modes will not limit the sensitivity of the detector (see 

Section 1.5.3). Intrinsic Q’s of ~106 or better are required for the 3km gravitational 

radiation detector [Hough et. al. 1989].

Another consequence of the suspended mass having finite size is that its tilting and 

rotational motions can couple to horizontal motion at the mirrored surface of the mass. In 

order to minimise this effect, the frequencies of the tilting and rotational modes should be 

made as low as possible relative to the fundamental pendulum mode. In the case of the 

tilting mode this can be achieved by attempting to ensure that the positioning error of the 

breakaway point from the centre of mass is as small as possible. It is also possible to 

electronically damp these modes to an acceptable level (refer to Section 2.4). However 

great care must be taken that the electronic damping systems do not re-introduce 

displacement noise to the isolated test mass. Chapter 4 describes a test mass isolation and 

feedback control system designed specifically to minimise such effects.

A second and possibly more serious invalid assumption in the analysis of the 

pendulum was that the suspension wire of the pendulum was of negligible mass. In 

practice the internal modes of the taut wire (commonly referred to as 'violin-modes') are a 

significant limitation to the isolation obtained with a pendulum suspension. If one 

considers the motion of the suspended mass (m) in a single pendulum of length L to be 

due to a travelling wave in the wire then, in the absence of damping, the transfer function 

as a function of angular frequency mis [Robertson N.A. 1981]:

xj_ =_________ 1X]_ = (2.19)
x ° cos ( I t ) .  « * , ( * ■ )

where,

c = the propagation velocity of the wave in the wire = pL

with, T  = the tension in the wire = mg 

and pL = the linear density of the wire.

The first resonance of this system can be obtained by setting «  1. Equation (2.19) 

then approximates to equation (2.6) for the single pendulum with no damping which was 

derived ignoring the internal modes of the wire. The first resonant frequency is therefore



at C 0 q ,  the natural frequency of the pendulum. All of the other violin resonances fall into 

a series con such that:

-  2L (2.20)

where n = 1,2,3,....etc.

The higher the value of n the less approximate this relation becomes.

In the case of steel piano wire ( breaking stress 3 x 109 N nr2; density 7800kgm'3) 

loaded to within a factor N  = 2 of its breaking stress, these resonances are at 

frequencies given by [Robertson N.A. 1991]:

880 ( 0  ( f ) ( A ) 2 m  (2-21)

Hence the first few of these resonances will fall within the working frequency range of a 

typical gravitational wave detector (up to a few kilohertz).

Note also from equation (2.19) that at best the isolation is <ac4 , the transmissibility 

curve falling a s /  instead o f f 2 as predicted in the absence of the violin modes. Hence 

the presence of violin modes in the wire has two negative effects on the isolation 

properties of a pendulum. Firstly there is a reduction in the isolation at the violin mode 

frequencies (these tend to be fairly high Q of the order of about 104 [Shoemaker 1987]).

Secondly the isolation of the pendulum increases only as/instead o f / 2at frequencies

above the first violin mode. Fortunately this transition should occur at a high enough 

frequency that the detector sensitivity should not be affected.

2 .3 .4  Vibration Isolation Stacks

Another system commonly used to achieve isolation of the test masses in gravitational 

wave detectors is the vibration isolation stack. Stacks are commonly used in conjunction 

with pendulum suspension systems to enhance the isolation levels obtained. A one-stage 

stack consists of a layer of a heavy material (e.g. lead) supported by an elastic material 

(e.g. rubber) as shown in Figure 2.3.
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Figure 2.3 Schematic diagram of a one-stage vibration isolation stack.

This system behaves in each dimension like a mass connected to a damped spring. Shear 

motions of the rubber give the stack horizontal spring and damping whilst compressional 

motions of the rubber give the stack vertical spring and damping. This system is 

analogous to the one-stage pendulum discussed in Section 2.3.1 where the gravitational 

restoring force on the mass gives the pendulum horizontal stiffness and stretching of the 

wire gives the pendulum vertical stiffness.

The transfer functions for a one-stage stack in each dimension can be derived using 

simple dynamical theory. For instance, to obtain the horizontal transfer function the 

simple spring /  damper model illustrated in Figure 2.4 can be used to represent the stack.

x o

^  ^ supported plate

ground * \
< ------------------------------------------

arbitrary
reference

point

Figure 2.4 Simple spring/damper model representing the horizontal 

dynamical behaviour o f  a one-stage vibration isolation stack.

The transfer function in the horizontal direction is then:

*L -  YhS + —  (2.22)
x° s 2 + YhS + col

29



which is identical in form to equation (2.5) for the simple pendulum, falling as/ 2 until 

the comer frequency where f - f ^ Q  where it tends to fall as/. However in this case the 

horizontal resonant angular frequency is given by:

(2.23)
and the damping factor by:

-b h  _(Oh
m Qh

(2.24)

Here the horizontal stiffness is related to the Shear modulus G of the rubber by the 

equation

with,

A  = the total loaded area of the rubber support 

and z = the height of the rubber supports.

For instance, it has been demonstrated that a stack with a 6kg mass supported by 

'neoprene* rubber of cross-sectional area ~4cm3 and thickness ~0.6cm has a horizontal
resonant frequency of//,~7Hz. According to equation (2.22), and assuming a quality 

factor of Q h~ 5 *, the transmissibility of this system at 100Hz will be

T  ~ f h/{2f ~ 1.4 x 10'2. This is much larger than for a typical one stage pendulum due 

to the higher frequency of the resonance and lower Q value (lower comer frequency).

Similar equations to (2.22), (2.23) and (2.24) can be derived for the vertical 

direction where the vertical stiffness is related to the Young's modulus E by

For a one-stage stack of the dimensions described above, it has been demonstrated

that the vertical resonant frequency will be of the order of/,~17Hz. Assuming a quality 

factor of Q v~ 15 * such a system would give a transmissibility at 100Hz of

r  ~ 2.9x10*2.

One of the main advantages of stack systems compared to pendulum systems is that 

they can be physically much more compact in size. Furthermore, since they are low Q 

systems the motions which occur at the resonant frequencies are much smaller than for

* Based on previous measurements made with silicone rubber.

n Z (2.25)

(2.26)
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high Q pendulum systems.

Conversely a major disadvantage is that a one-stage stack will produce more 

thermal noise than a one-stage pendulum due to the much higher level of damping 

occurring in a stack. However, since stacks are commonly used in conjunction with 

pendulum suspensions, usually being placed somewhere between the ground and the 

point of pendulum suspension, any thermally generated displacements at the top of the 

stack should be attenuated to an acceptable level by the time they reach the suspended test 

mass.

On extending the analysis to a two-stage stack, the horizontal transfer function from 

motion at the ground x0io motion at the centre of mass of the top plate of the stack x2 is 

given by:

a =  +   ( 2 2

X° S4 +  + ® 2 + K K + ^ - ] s 2 +  [ W + r j ® 2 2] s  +

"wher^te- subscripts'fefer ttvlayers one and twd/At frequencies above the resonant 

jfrdqracies and^befqre "the Aeffecfs^£•̂ fv̂ d?a^)^ung' become ,appai£m this equation

'appro^j^es to* >rat.

a  -  d s i  (2.28)
x 0 s4

Comparing this to equation (2.18) one can see that there is a fundamental difference in the 

horizontal isolation characteristics of the two-stage stack compared to the two-stage 

pendulum. In the case of the multi-stage pendulum the horizontal restoring force acting 

on each mass depends on the total mass in the chain below as illustrated by 

equation (2.14). However in a multi-layer stack system, to first order, the horizontal 

restoring forces acting on any mass depends solely on the elastic properties of the rubber. 

Both systems do however behave similarly in the vertical sense.

2 .3 .5  Limitations to the Isolation Achievable with Stacks

The level of horizontal isolation predicted using the simple spring/damper model as 

shown in Figure 2.4 may not be achievable in practice due to cross-coupling effects 

which might take place in stacks due to their extended geometry. A detailed investigation
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of the limitations to the performance of vibration isolation stacks due to the effects of 
coupling is described in Chapter 6.

2.4 Orientation and Position Control of the Test 
Masses in Laser Interferometers

In resonant cavity interferometers it is essential to control both the position and 

orientation of the test masses to a high degree of accuracy. However it is very important 

that the application of feedback to the test masses does not degrade the detector 

performance.

Axial control of the test masses must be provided in order to control the absolute 

lengths of the cavities. As discussed in Section 1.4.2, a control system is used to stabilise 

the laser frequency to the length of the primary cavity in the 10m prototype detector. 

However it is unreasonably demanding to expect such a feedback system to have enough 

dynamic range to compensate for the large low frequency motions of the suspended test 

masses. Therefore the distance between the masses in the primary cavity must be locked 

to the laser frequency at low frequencies (below a few hertz) by applying feedback to the 

test masses. Similarly feedback must also be applied to the test masses of the secondary 

cavity in order to control the length of this cavity with respect to the length of primary 

cavity and the frequency of the laser light i.e. to operate the detector on a null fringe, 

providing the main output signal of the detector. Furthermore, these axial control systems 

must also electronically damp the high Q pendulum modes sufficiently well to maintain 

stability in the feedback loops and to avoid excessive motions at the pendulum modal 

frequencies.

If the cavities and the laser are held exactly on resonance producing a null fringe in 

the detector output, the system will be insensitive to fluctuations in the laser intensity. 

However any offset Ax in the length of a cavity (of length L) from its correct locking 

point will lead to a reduction in the detector sensitivity due to such fluctuations. Suppose 

that the fluctuations in the light intensity /  are of the order of ( y )  ~ 10 /vhz and that we 

are aiming for a detector sensitivity of h ~ 10 Vyhz at 100Hz. In the presence of an offset 

Ax, the detector sensitivity h as a function of the laser intensity fluctuations is given by 

[Hough et. al.1986]

(2.29)
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Up to frequencies of a few hertz, when in the unlocked state, one might expect Ax to be 

a few microns. Over an arm length of 3km this would mean that a feedback gain of about 

107 or 108 would be necessary in this low frequency region in order to reduce Ax to the 

required level at the higher frequencies. This indicates that control systems of bandwidth 

of a few kHz are required for locking the arms. Note that if recycling is used in the 

detector (Section 1.5.2) then the locking requirements would be less demanding since 

this technique reduces the intensity noise (photon shot noise) of the light detected at the 

output of the interferometer.

Orientation control of the test masses must be used in order to control precisely the 

directions of the optical axes of the cavity mirrors. The pointing accuracy must be 

sufficiently high and stable for the cavities to be aligned in such a way as to optimise the 

detector efficiency. Any misalignment of the optical axes of the mirrors with the laser 

beam would cause the fundamental transverse mode amplitude of the cavity to decrease 

leading to a reduction in the sensitivity of the detector. For instance, it has been calculated 

that the misalignment angle must be less than about 10‘7 rad in order to retain 95% of the 

gravitational wave signal [Hough et. a/.1986].

Furthermore, if the beamsplitter is not symmetrical between the two interferometer 

arms but deviates by some angle then a lateral beam jitter fix will produce a phase 

fluctuation in the detected light. This is equivalent to fluctuations in the relative lengths of 

the cavities. If two beams interfere at an angle a  and displace laterally by a distance fix 

with respect to each other, a phase fluctuation of

= a  $x (2.30)
X

is induced between the two beams, where A is the wavelength of the argon ion laser 

light (514nm). For a misalignment angle of say a  = 105 rad, this places a limit on the 

positional fluctuations of light returning towards the beamsplitter of the order of 

~ 10-12 "/yit- For a cavity length of 3km this corresponds to an angular stability of the 
test masses of about 3 * 10' 16 [Hough et. al. 1986].

It is important that the orientation control systems for the test masses do not couple 

the stabilised tilting and rotational modes to the fundamental pendulum mode. Noise in 

the feedback signals for the orientation control could then drive motions of the test mass 

in the longitudinal test direction. This can be minimised by using narrow bandwidth
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feedback loops for damping of these modes. However as mentioned earlier, care should 

be taken that the high Q's of the pendulum suspensions and the test masses are not be 

reduced by the presence of the orientation control transducers. This is discussed in 

Chapter 4.

2.5 The Design and Analysis of Feedback 
Control Systems

2.5 .1  Negative Feedback Control Systems

Negative feedback control systems are used to control the position and orientation of the 

test masses in laser interferometric gravitational wave detectors. A negative feedback 

control system is a closed-loop system which produces an output signal to cancel a 

selected input signal which might be varying. Figure 2.5 is a loop diagram representing a 

simple closed-loop negative feedback control system.

R —

-  A

Figure 2.5 B lock diagram representation o f  a sim ple closed-loop  

negative feedback system. The symbols used are defined in the text.

Here G is the forward transfer function for the system to be controlled and H  is the

feedback transfer function. The open-loop transfer function is defined as GH and the

closed-loop transfer function is defined as £- = —£— .
r  R l+ G H

The magnitude of the error point signal e (the difference between the reference 

input signal R and the feedback signal CH) is a measure of how well the system 

performs. When operating correctly, the closed-loop system should behave in such a way 

that the error signal £ is minimised.
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There are some fundamental requirements which the feedback systems used for the 

position and orientation control of the test masses in resonant cavity interferometers must 

fulfil. The closed-loop system should be stable, that is, under excitation it should settle 

to a steady value, its oscillations decaying in amplitude reasonably rapidly. Furthermore, 

this steady state value should be as close to zero as possible. The system should also 

have high enough gain that it exhibits satisfactory behaviour over the specified frequency 

range i.e. good dynamic accuracy and large bandwidth.

When analysing such linear control systems one begins by forming a mathematical 

description of the physical system in the time domain t in the form of an «th order linear 

differential equation relating the output of the system C(t) to the input of the system 

R(t). In order to determine the behaviour of the closed-loop system this equation must be 

solved. To do this the Laplace transform of the differential equation in the time domain t 

can be taken to give the corresponding algebraic equation in the frequency domain s. 

This yields polynomial expressions for the open and closed-loop transfer functions in the 

frequency domain. The behaviour of the closed-loop system can then be predicted by 

analysing these functions using various techniques.

2 .5 .2  Stability of a CIosed-Loop Control System 

Absolute Stability
The characteristic equation by which the absolute stability of a closed-loop system can be 

assessed is obtained by setting the denominator of the closed-loop transfer function equal 

to zero i.e.

The roots of the characteristic equation give the closed-loop poles (resonances) of the 

system where the transfer function becomes infinite. Correspondingly, the roots of the 

numerator of the closed-loop transfer function give the zeros (nulls) of the system where 

the transfer function becomes zero. The poles and zeros of the closed-loop transfer 

function can be real or complex. If they are complex they must appear as conjugate pairs 

since the polynomials describing the closed-loop transfer function are real.

By way of an example consider the closed-loop transfer function shown below:

1 + GH = 0 (2,31)

(2.32)
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where a and b are the complex poles given by a = (cr +j co), b = (<r - j  co) and c is 

a purely real pole. Mathematically, the meaning of the poles can be understood by taking 

the inverse Laplace transformation to give the time solution of the transfer function

X(t) = A ete+M* + B C ec/ (2.33)

where A, B and C are constants. Hence the locations of the poles in the complex 

j-plane i.e. the magnitudes of c, a  and co determine the time response of the closed- 

loop system. Note that if the imaginary parts are non-zero and the real parts are equal to 

zero then the response of the system is purely oscillatory. If the real parts are negative 

and the imaginary parts are non-zero the oscillations will decay exponentially with time. 

Conversely, if the real parts are positive and the imaginary parts are non-zero the 

oscillations will grow exponentially with time. Therefore the condition for absolute 

stability is that the real parts of the poles of the closed-loop transfer function are negative. 

If the real parts are zero the system is classified as marginally stable. Hence the exact 

locations of the poles on the 5-plane also indicate the relative stability of the system.

Relative Stability
The relative stability of a closed-loop control system can be assessed by measuring the 

gain margin and phase margin of the system. In order to understand the meaning of these 

terms consider once more the simple control-loop shown in Figure 2.5 with closed-loop 

.transfer,function S- - and open-loop transfer function GH. It is clear that if \GH\ = 1 

'and the-phase of this trapsfer. function is -180® then the closed-loop transfer function 

.becom ^hifinit^^tidlhe closed-loop system is unstable. This \s undesirable and how 

systemJstathis condition defines the relative stability;. ' .

The 'gain margin* is defined as the magnitude of the reciprocal of QBevaluated at 

'the phase,cross-over frequency con at which the phase angle 0 of GH is - 1800, (or in 

c m ^  words ihe factor by which the gain, must be-increasedin order to just produce 

insf^iSty)/ ‘ \  v >
jThê  'phqse margin* is defined as 18Q° plus the phase angle 0 of GH at the gain 

cross-over frequency, (or unity gain frejqueneyy qij at which \GH\ = L(or in other words 

•the"amOurifof phase^hift at p ,  which would'just proditf ̂ 'instability). - . '■< .
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, ' Generally speaking a phase margin of about £5° or more, coupled with a positive 

gain margin when expressed in units, of decibels (e.g. lOdB), is desirable in order to be 

'fairly confident about observing stable closed-loop behaviour [Bt!Azzo and 
Houpis 1982]. .*■ : ‘ ~ . 1 . - - 4 .  V :

2 .5 .3  Some Methods of Analysis

Some methods of analyses commonly used to predict the behaviour and relative stability 

of closed-loop control systems are described here. The first of these, namely 'root locus 

analysis' can be used to determine the transient response of the system; the other methods 

namely 'Nyquist analysis' and 'Bode analysis' are useful for determining the frequency 

response of the system. These methods of analysis were applied at various stages in 

order to design and analyse the feedback control systems described in Chapters 3 and 4.

Root Locus Analysis
This method enables one to study the effects of varying the open-loop characteristics on 

the closed-loop transient response of the system. For instance, the locations of the 

closed-loop poles on the complex 5-plane change as the open-loop gain factor is varied. 

A locus of these pole locations on the 5-plane as a function of gain is called a root-locus. 

(An example of a root locus plot is given in Section 3.2.2, Figure 3.6). As the open-loop 

gain factor is increased from zero to infinity, the closed-loop poles originate from the 

open-loop poles and proceed towards the open-loop zeros.

Once the root-locus for the system is plotted a value for the gain can be chosen 

such that the behaviour of the closed-loop control system is satisfactory with respect to 

stability and transient response performance.

Nyquist Analysis
A Nyquist curve is a polar plot of the gain and phase of the open-loop transfer function 

GH. A system is defined to be stable if the Nyquist curve does not encircle the (-1,0) 

point ('Nyquist Stability Criterion1) / ^  i0U$tfatethis ieon î4bE.:tiiS'M^et^.^uiye.s’-fQr;tiie 

two o|>en-loop transfer functions shown in Figure 2.6. The Open-loo£ transfer function 

fepfeseftted by die dashed curve-encloses the point (4 ,0) 'so there 'exist roots of the 

characteristic'fequatioh (denominator pf fee closed-loop transfer function) with "positive
^  ■' ^ -- ... . .. . ^--- _ ---..I— ------- /

37



-3 - unstable
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real(GH)

Figure 2.6 Examples o f  Nyquist plots (polar plots o f  the gain and phase 

o f  the open-loop transfer function  GH). The point (-1,0) 

indicates a unity gain at a phase shift o f -180 °. The open-loop transfer

fu fS iorfP epresented  By the d a s M ^ c w ^ t  ̂ n d o s ^ § ^ e  pdiht .

'hence the-'syst^m is unstable (regions to the right handslde bj »

£urvd plotted correspond to <y>0).The system, represented by the splfd

left hand side-of the +Ve co curve plotted correspond to a<0). The relative 

s m b d l0  ofthis^system can be assessed by measuring the gain and phasesm bul0dfth is^system  can be assessed by measuring the gain and phase
i is* IP -flrt/i vs* *i]r\r»/yj. rvf (~l- J-T ri\ iri hi/7 to f \  srt f fai? D n/1 O

Brass- over frequency (on at which the phase angle f t  o f ‘O ff is -180 9,

The phase margin is defined as 180 0 plus the phase’angle § o f GH at the

unity gam frequency <pj /



real parts ;and the system is therefore unstable. In contrast the system-represented by the 

solid eufve is stable since the'curve does not-enclose the-point (-1,0)'. The relative 

stability can be assessed by measuring the gain and phase margins as- mdicated in 

Figu i'e  &6z. t ' . '  * ' > \  , ' * J
^ J a * * * 1 ) > • •* • ^  -‘iiv ; • . .. 1,' — ■*' ■ -    -—

Bode Analysis

Bode plots are complementary graphs of the magnitude of GH against frequency and the 

phase of GH against frequency. The phase shift and the rate of change of gain of a 

transfer function are usually interdependent. A slope of -6dB/octave on the Bode 

magnitude plot indicates a phase lag of 90°. A slope of -12dB/octave indicates a phase lag 

of 180°. Thus for the system to be stable, the magnitude of the slope of the Bode 

magnitude curve must not exceed -12dB/octave at the unity gain frequency cov The 

relative stability can be assessed by measuring the gain and phase margins from these 

plots. Examples of a Bode magnitude and phase plots are shown in Section 4.3, 

Figures 4.6 & 4.7.

2.6 Position Control of a Test Mass Suspended as 
a Simple Pendulum

As mentioned in Section 2.4 axial control of the suspended test masses forming the 

cavities in a laser interferometric gravitational wave detector must be provided in order to 

keep the cavities on resonance with the laser light. Furthermore, the relative lengths of the 

two cavities must also be stabilised in order to operate the detector on a null interference 

fringe.

Preliminary investigations into the axial position control and electronic damping of a 

suspended test mass by the application of negative feedback are presented in this section. 

To achieve the required isolation level it is intended to use double pendulum suspensions 

for the test masses in the 3km gravitational wave detector. However for the purpose of 

these initial investigations, the test mass to be controlled here was suspended as a simple 

pendulum. The control and damping of double pendulum suspension systems by the 

application of feedback is discussed in Chapters 3 and 4.
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2.6 .1  Components of the Position Sensing and Feedback 
Control System

Position Sensing
The position of the test mass to be controlled was sensed with respect to a reference point 

using the Michelson interferometer arrangement shown in Figure 2.7. The reference point 

used here was a reference mirror mounted on the ground. However in a gravitational 

wave detector the reference point would be another suspended test mass/mirror which is 

isolated from ground vibrations.

rigid base-plate

auxiliary feedback loop

reference mirror

A helium-neon laser 

( X  = 633nm) beamsplitter
suspended k
test mass

output port

photodiode 
amplifier box

coil/magnet
transducers

test mass feedback loop

Figure 2.7 M ichelson interferometer position sensing and feedback  

control system.
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A mirror was mounted on the front face of the test mass and in conjunction with the 

beamsplitter (which would also be seismically isolated in a laser interferometric 

gravitational wave detector) this formed one arm of the Michelson interferometer. The 

reference mirror and the beamsplitter formed the second arm of the interferometer. Note 

that since these two components were mounted on a rigid base-plate, the length of this 

arm was essentially unaffected by ground vibrations.

By illuminating the interferometer with helium-neon laser light and detecting the 

fringe signal of the interfered beams at the output port, any changes in the relative lengths 

of the interferometer arms could be monitored.

Test Mass Feedback Loop
A photodiode was used to detect the fringe intensity signal on the output of the 

interferometer and convert it to a voltage signal. This signal could then be suitably 

amplified and filtered and fed to coil/magnet transducers acting between the suspended 

test mass and the ground in such a way as to minimise the changes in the relative lengths 

of the two arms (see Figure 2.7).

Note that in a gravitational wave detector the feedback coils acting on the test mass 

would be seismically isolated in order to avoid electromagnetic coupling of ground 

motions directly to the test mass. However for the preliminary investigations into 

feedback position control presented here it seemed sensible to avoid suspending the 

feedback coils at this early stage since this would introduce further complexity to the 

control loop. Test mass feedback control systems incorporating feedback coils mounted 

on a suspended reaction mass are discussed in Chapters 3 and 4.

Auxiliary Feedback Loop (PZT)
A second feedback loop was introduced to the system by placing a PZT (piezo-electric 

transducer) between the reference mirror and its ground based mount. This was a useful 

addition to the system for various reasons. In its pre-locked state, the low frequency 

motions of the freely swinging test mass with respect to the ground-borne reference 

mirror would be relatively large (a few microns perhaps) and there would be a high rate 

of fringe passage observed on the output of the interferometer. If an amplified voltage 

signal proportional to the detected fringe intensity signal was fed back to the PZT in such 

a way as to make the reference mirror follow the large low-frequency motions of the test 

mass, then this would effectively slow down the rate of fringe passage. This would then
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make it much easier for the test mass feedback loop to initially acquire lock and having 

done so the gain in the auxiliary loop could then be turned down if desired.

Another advantage of having the PZT present in the system was that it provided a 

means for introducing displacement noise of known amplitude to the reference mirror, 

making it possible to measure the open-loop gain in the test mass feedback loop. The 

method used for this is described in more detail in the next section.

2 .6 .2  Behaviour of the Two-Loop System

The loop diagram representing the two-loop system is shown in Figure 2.8. Note that all 

displacements shown here are measured with respect to an arbitrary reference point.

displacement noise applied to PZT

auxiliary feedback loop (PZT)
beamsplitter

m-  X

suspension
point

test mass feedback loop

Figure 2.8 Loop diagram representation o f  the two-loop control 

system (where the symbols have the definition given in the text).

The symbols used in Figure 2.8 have the definitions given below:

x0 = the displacement of the beamsplitter /  suspension point due to ground noise
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Xi -  the resulting displacement of the test mass due to ground noise x0 at the 
pendulum suspension point 

xm = the residual displacement of the test mass with the test mass feedback loop 
closed

xn = the displacement noise introduced to the reference mirror by applying a 
voltage signal across the PZT 

xp = the residual displacement of the reference mirror with the auxiliary feedback 

loop closed

e = the error point signal with the loops closed 

= the ’residual locked fringe signal'

= xp- xm+xo
(note that with the feedback loops open this becomes e = xn- Xj+ x0)

Gp = the passive transfer function for the simple pendulum of resonant angular 

frequency co0, assuming that it has negligible natural damping 

(equation (2.6))

r  - x i -  u p ~ -  ~x0 7 2 
S 2 +  (0Q

He = the transfer function for the conversion of the detected fringe signal e in 

terms of displacement, to the acceleration produced by the coil/magnet 

feedback transducers. The frequency dependence of this function is 

determined by the form of the electronics used for amplification/filtering. 

Note also that this function has the dimensions of sec'2.

and

Ga = the transfer function for the conversion of the acceleration produced by the 

coil/magnet feedback transducers to the resulting test mass displacement 

i.e.
GA= — (2. 34)

S 2 +  (00

Note that this function has dimensions of sec2.

Hp = the transfer function for the conversion of the detected fringe signal e in
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terms of displacement, to the displacement of the reference mirror produced 

by the PZT. The frequency dependence of this function depends on the 
form of the electronics used for amplification/filtering.

Consider the situation where the amplitude of motion of the beamsplitter and the test 

mass produced by ground noise Xq is negligible compared to the amplitude of motion of 

the reference mirror due to an applied noise signal xn. The loop diagram then simplifies 

to that shown in Figure 2.9.

auxiliary feedback loop (PZT)

displacement noise 
applied to PZT

m

test mass feedback loop

Figure 2.9 Sim plified loop diagram representation o f  the two-loop 

control system (where the symbols have the definitions given in the 

text).

The error point signal e for this closed-loop system will now be given by 

£ = xp - xm. On analysing this loop diagram the closed-loop transfer function can be 

derived (see Section 2.5.1):

closed-loop transfer function = — = ---------   (2.35)
*/« 1 +HP + HCGA

Substituting for GA gives the closed-loop transfer function in terms of the feedback
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transfer functions Hc and HP

_e_
Xn

S2 + (Oq
(2.36)

s2( l+ H P)+ [Hc + (1 + t f / W ]

In order to investigate the behaviour of the test mass feedback loop, it is desirable to 

reduce the gain in the auxiliary feedback loop to as low a setting as possible after the test 

mass feedback loop has acquired lock. (Also in a gravitational wave detector any 

equivalent auxiliary loop used to ease the acquisition of lock of the main feedback loop 

might introduce noise to the test mass, degrading the detector sensitivity.) Under this 

condition (Hp = 0 and xp = xn) the closed-loop transfer function simplifies to:

From this equation one can see that the application of negative feedback to the test mass 

in this way forces the natural resonance of the pendulum to a higher frequency given by

The open-loop transfer function (open-loop gain) of the test mass feedback loop 

HcGa is given by (refer to Section 2.5.1):

mirror is reduced by the application of feedback up to this frequency. Note that the unity 

gain frequency is approximately equal to the new resonant frequency of the pendulum if 

H c »  m02.
As well as being forced to a higher frequency, the new resonance of the pendulum 

can also be electronically damped by the application of feedback. This can be achieved by 

using differentiation in the test mass feedback transfer function i.e. if Hc  has the form 

H c  = H Co(1+tcs). Here rc is the time constant of the differentiator. The comer 

frequency f c for this differentiation is related to tc by:

(2.37)
s 2 + ( h c  + co02)

( O — V H c  +  (Oq  .

(2.38)

By setting |HqGJi = 1 in this equation one can see that the unity gain frequency of the

feedback loop is at co= ^H c - gXq. The relative motion of the test mass and the reference
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(2.39)

The closed-loop transfer function then becomes

1___ = _______ S2+Q)q (2.40)
Xp 1 + Hc& a s2+Hco %cs+ (Hco+C0$ )

The damping factor y  for the pendulum is determined according to the relationship 

y=  rc/ / C0.Thus the Q value of the new pendulum resonance can be controlled by 

varying the size of the test mass feedback gain Hco and the time constant tc according 

to the relationship:

(under the condition Hco»  a$).

Note that when differentiation is used to damp the pendulum resonance in this way, 

the unity gain frequency of the feedback loop will increase. For instance, with feedback 

of the form H c  = H Co(1+tcs) where xc is chosen to achieve critical damping 

(Q=0.5), it can be shown that the unity gain frequency will occur at co = V(2+75]Hco 

(under the condition Hco»  co$).

It is useful to know the value of the unity gain frequency of the test mass feedback 

loop since it indicates the bandwidth over which the position of the test mass is being 

controlled effectively. Referring to Figure 2.9, the open-loop gain of the test mass 

feedback loop H CGA as a function of frequency can be measured by studying the 

behaviour of the closed-loop system since

Note that this relationship holds whether the auxiliary feedback loop is closed or not since 

it is the residual displacement of the reference miiror xp which is observed.

Figure 2.10 shows an example of an experimentally measured loop gain curve of 

/ / CGAversus frequency. The feedback amplifier circuits used in the two loops are shown 

in Figure 2.11. Note that the differentiation time constant tc was chosen to be small here 

so that the electronic damping of the pendulum would be small i.e. Hc  ~ Hco.

^ -= 1  +HcGa 
£

(2.42)
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510

12dB/octave

unity gain frequency of 
test mass feedback loop

| natural resonant 
| frequency of 
1 pendulum

310

Frequency (Hz)

Figure 2,10 Open-loop gain o f  the test mass feedback loop (HCGA) as a 

function  o f frequency (typical error bars are shown).The 

measurements were made using white noise as the test signal applied to 

the PZT.

It was hoped that this would enable an observation to be made of the the new resonance 

peak in the residual locked fringe signal spectrum. It was believed that stability would be 

maintained in the closed-loop by the existence of some small degree of natural damping in 

the pendulum.
The data shown in Figure 2.10 were obtained using the following method. Firstly 

the fringe intensity signal was D.C. biased to be symmetrical about zero volts. This 

ensured that the error point signal of the locked system would contain information on the
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relative direction of movement of the reference mirror and the test mass. The gain in the 

auxiliary loop was then increased to slow down the rate of fringe passage. The test mass 

feedback loop was then locked to the side of a fringe and the gain in the auxiliary loop 

was reduced to as low a value as possible without the system losing lock. A displacement 

noise signal xn was introduced to the closed-loop system by applying a test signal 

('white' voltage signal) to the PZT (see Figures 2.9 and 2.11). The magnitudes of the 

residual displacement signal xp at the PZT and the 'residual locked fringe signal' e were 

then observed over a range of frequencies (see Figure 2.9).

The residual locked fringe voltage signal was converted to a relative displacement 

e using the relationship:

where F vpp is the fringe peak to peak voltage amplitude before locking (see 

Figure 2.12).

Figure 2.12 Conversion o f  the fringe intensity signal to a relative 

displacement signal when locking to the side o f  a 

fringe. The symbols used have the definitions given in the text.

The residual voltage signal observed at the PZT was converted to a residual 

displacement signal xp using the calibration factor for the PZT which was measured to be

~ 3.9 x 10-7 mV’1.

(2.43)

unlocked
fringe
signal

,zero volts, 
(biased)

zero intensity*
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The loop gain curve shown in Figure 2.10 has the form predicted by 

equation (2.38) falling at 12dB/octave at frequencies above the natural pendulum 

frequency f 0 which is seen here as a peak at ~0.9Hz. By extrapolation the unity gain

frequency of the test mass feedback loop is seen here to be at (o= V//co - (ol ~110Hz. 

This yields a value for Hco of -  4.8 * 105 rads*2. Using equation (2.38) and substituting 

for Hco, the gain at low frequencies where s «  (Oq2 was calculated to be - 1.5 * 104. 

This agrees reasonably well with the value extrapolated from the curve within the limits 

of the errors.

Notice however that the open-loop gain curve appears to pass through the unity 

gain point with a gradient of approximately 12dB/octave indicating that the pendulum had 

very little natural damping. According to the Nyquist Stability Criterion (refer to 

Section 2.5.2) the closed-loop system should therefore be verging on instability.

However when these measurements of open-loop gain were made the auxiliary loop 

had non-zero gain. The closed-loop response of the system therefore depends on the 

behaviour of both the feedback loops according to equation (2.36). From the circuit 

diagram shown in Figure 2.11, the feedback transfer function for the auxiliary loop Hp 

involved an integration with a relatively large time constant Tp i.e. had the form:

" ' = < n v )  (Z44)

with the comer frequency f c for the integration (roll-off) of the auxiliary feedback signal 

given by

' - s f e  ( 2 -4 5 )

On substituting equation (2.44) into equation (2.36) one obtains the more explicit 

version of the closed-loop transfer function shown below

_£_  = ____________________ V 3 + S 2 4- TpCOqS + COq_____________________________________

Xn %pS3 + (1 + Hpo)s2 +  ( t 'p(0$+TpHCo)s + (®o + Hpocoq + HCo)

Recall from Section 2.5.2, equation (2.31) that the roots of the denominator

(characteristic equation) give the poles or resonances of the closed-loop system.

The magnitude of HP0 in the auxiliary loop was calculated to be -5.3 with
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Tp ~ 9.4 x 10'4 s. On substituting values for the various other parameters into 
equation (2.46) and taking the roots, the new resonant frequency of the pendulum was 

calculated to be at ~44Hz with a corresponding quality factor of the pendulum of Q~ 5. 

Hence, according to equation (2.46), the integration in the auxiliary feedback loop of time 

constant Tp provides damping of the pendulum resonance.

This concept was verified experimentally by applying a stepped lOmV pulse across 

the feedback coils in the closed-loop state (see Figure 2.11) and observing the decaying 

oscillation in the residual fringe signal with a storage scope. Figure 2.13 shows an 

example of such an observed step response.

stepped pulse

lOmV

50mV

damped oscillation

10ms

Figure 2.13 M easured transient response o f  the closed two-loop 

system. The step function used here had an amplitude o f ~10mV and 

a duration of-7ms. The average frequency observed over the first two 

cycles i s f ~  43Hz, with a corresponding Q o f-4.

In conclusion, in the absence of electronic damping (differentiation) in the test mass 

control loop, stability is maintained in the closed-loop by the presence of an integration in 

the auxiliary loop feedback transfer function. The action of the auxiliary feedback loop 

had the effect of reducing both the magnitude, and the Q of the new pendulum resonance 

as illustrated in Figure 2.13.
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2 .6 .3  Conclusion

It has been shown here that the position of a test mass suspended as a simple pendulum 

of high Q can be controlled with respect to a reference point using negative feedback. In 

applying feedback to the test mass in this way, the natural resonant frequency of the 

pendulum is forced to a higher value approximately equal to the unity gain frequency of 

the feedback loop. The unity gain frequency indicates the bandwidth over which the 

feedback system is controlling the mass effectively, and this can be increased by 

increasing the open-loop gain of the feedback loop. The undesirably large motions of the 

suspended test mass at the resonant frequency of the high Q pendulum can also be 

electronically damped by introducing a differentiation stage of the appropriate time 

constant in the feedback electronics.

It was also interesting to observe here for this two-loop feedback system, that 

electronic damping of the high Q pendulum resonance could also be provided by 

introducing an integration stage with the appropriate time constant in the feedback 

electronics of the auxiliary loop. The action of this auxiliary feedback loop also had the 

effect of reducing the value of the new resonant frequency of the pendulum.

In Chapter 3 theoretical and experimental investigations into the feedback position 

control and damping of a test mass suspended as a double pendulum are discussed.
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Chapter 3

Feedback Control and Damping of 
Double Pendulums

3.1 Introduction

In order to achieve the required level of isolation from seismic and mechanical noise 

(r~10-10 or better at 100Hz) it is proposed to use double pendulum suspensions for the 

test masses in the 3km detector [Hough et. al. 1989]. In conjunction with the five-layer 

vibration isolation stacks and air springs used to connect the double pendulums to the 

ground, it is believed that the levels of isolation achievable will be more than adequate at 

frequencies > 100Hz.

As well as providing better isolation, there are other advantages in using double 

pendulum suspensions. As discussed in Chapter 2, the test masses of a laser 

interferometer must be controlled in both position and orientation. Furthermore, the 

natural modes of oscillation of the suspended masses must be electronically damped to 

avoid large motions at the various resonant frequencies. By using double pendulum 

suspensions, the position control of the test masses at low frequencies can be 

implemented by applying feedback signals to the intermediate pendulum masses. 

Chapter 4 discusses the analysis and implementation of such feedback control systems 

where the low frequency portion of the position control signal is applied to the 

intermediate mass, the higher frequency signals being applied to the test mass.

These low frequency feedback signals are inherently larger in amplitude than the 

higher frequency signals due to a combination of the fact that seismic noise is larger at 

low frequencies and also passive isolation is poorer. Therefore applying the large low 

frequency feedback signals to the intermediate mass in this way reduces the possibility of 

high frequency displacement noise being introduced to the test mass via non-linear 

conversion of low frequency signals in the feedback electronics or transducers. At
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frequencies greater than the natural resonant frequency of the high Q lower pendulum 

stage, any such displacement noise at the intermediate mass will be attenuated by 
12dB/octave in its transmission to the test mass.

In the 3km detector it has been proposed that the orientation of the test masses will 

be controlled using double-loop suspension wires for the test masses and applying 

suitable low frequency, narrow bandwidth feedback signals to the intermediate masses.

There are however some disadvantages associated with double pendulum 

suspensions as discussed in Chapter 2. The number of degrees of freedom of the system 

will increase by a factor of two giving rise to an increase in the number of resonances 

which must be electronically damped. The linear and non-linear cross-coupling of modes 

may be aggravated by die increase in the number of degrees of freedom. However, if care 

is taken in the design and construction these effects can be reduced to an acceptably low 

level.

In Section 2.6 it was shown that the position of a test mass suspended as a simple 

pendulum can be controlled by sensing the position of the mass and applying a feedback 

signal directly to the mass. The test mass can also be damped electronically by the 

feedback signal enabling a suspension of high natural Q to be used without giving rise to 

undesirably large motion at the new pendulum resonant frequency.

This present chapter is concerned with investigations into the position control and 

electronic damping of a test mass suspended as a double pendulum. Some theoretical 

analyses conducted on the possibilities of controlling the position of the test mass whilst 

damping both of the natural pendulum resonances by sensing the position of the test mass 

and feeding back to this mass are presented. An evaluation is made of the resulting 

amplitude of test mass motion at each of the pendulum resonances in order to assess their 

relative significance as regards the effective operation of a laser interferometric 

gravitational wave detector. Damping of the resonances by sensing the acceleration of, 

and feeding back a signal to, the intermediate mass was also investigated theoretically. 

The closed-loop response of the pendulum with both of these types of feedback in 

operation was then analysed to see if both large bandwidth position control and critical 

damping of the resonances could be achieved simultaneously.

Experimental results from investigations into the position control and electronic 

damping of a test mass suspended as a double pendulum are presented. It is shown that, 

to avoid coupling seismic noise to the test mass, it is necessary to isolate the feedback 

transducers. Finally, the results from a balanced double pendulum system incorporating
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suspended feedback coils are described. The results presented here were then used as a 

basis for the design of the nested double pendulum isolation system discussed in 
Chapter 4.

3.2 Position Control and Damping by the 
Application of Feedback to the Lower Mass

It is the purpose of this section to examine theoretically the degree to which the coupled 

resonances of a high Q double pendulum can be electronically damped whilst controlling 

the position of the lower mass, by sensing the position of, and applying a feedback signal 

to, the lower mass. The aim here is to reduce the amplitude of motion of the lower mass 

(test mass in a laser interferometric detector) to an acceptable level at both of the 

pendulum resonant frequencies and to achieve large bandwidth position control. Large 

bandwidth position control is required in a laser interferometric detector to keep the 

Fabry-Perot cavities on resonance and to operate the detector on a null fringe (refer to 

Section 2.4). The implementation of electronic damping avoids any undesirably large 

motions of the test mass which might reduce the overall detector sensitivity or cause loss 

of lock.

3 .2 .1 . The Closed-Loop System

Consider a double pendulum similar to that illustrated in Figure 2.2, Chapter 2. It is 

assumed here that the natural damping present in each stage of the pendulum is negligibly 

small (i.e. high Q pendulum stages, ft, f t  -> 0) since we are here concerned with the 
possibility of damping the pendulum exclusively by the application of feedback.

Consider the situation where the position of the lower mass m2 is sensed relative to 

some arbitrary point x3. A feedback force of the form F2=m2k(x3-x2) can then be 

applied to the lower mass to hold the position of the mass fixed relative to the reference 

point x3. Here k is the transfer function for the conversion of the sensed displacement 

to the feedback acceleration produced by the coils. The frequency dependence of this 

function depends on the form of the electronics used for amplification and filtering.

If one assumes that the reference point x3 is absolutely stationary at all frequencies 

(for instance, the reference point is the fixed stars, or a very highly isolated test mass), 

then one can set x3=Q. The equations of motion for the two pendulum masses can then
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be derived in a similar way to those in Section 2.3.2, yielding the transfer function from 

motion of the top of the pendulum x0, to motion of the test mass x2, as a function of s, 
in the closed-loop state i.e.

S- = 
*0 (3.1)

Here M  is the total mass of the system i.e. M=mj+ m2, with coj and cty representing 

the natural angular resonant frequencies of the separate stages of the pendulum. 

Equation (3.1) is similar in form to equation (2.16) if one sets y7=y2=0; note however 

that equation (3.1) also involves the feedback transfer function k. The loop diagram 

representation of this closed-loop system is shown in Figure 3.1.

ground noise inpat

X
f l m /
V J f -----------------

xf

>■

V

H

Figure 3,1 Loop diagram fo r  the position control and electronic 

damping o f  a double pendulum via the lower mass.

In Figure 3.1 the symbols have the definitions given below, where all displacements are 

measured with respect to an arbitrary reference point:

xo =

Xm

Xf  =
X2  =

G =

die displacement of the suspension point due to ground noise 

die displacement of the lower mass due to ground noise at the suspension point 

die displacement of the lower mass due to the applied feedback signal 

die residual displacement of the lower mass with the feedback loop closed 

the passive transfer function for the double pendulum (see equation (2.17)):

10 mjs4 + M(dt+ c4)s2 +
(3.2)
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H  = the transfer function for the conversion of the detected displacement x2 to the 

resulting displacement of the lower mass due to the applied feedback signal. The 

precise form of this will depend on the form of the feedback electronics used for 

amplification and filtering i.e. the form of k used. Note that H  is the open-loop 
transfer function.

On analysing this loop one can see that the closed-loop transfer function for this 

system is in fact given by which is equal to equation (3.1). From this, and1 +H
equation (3.2) which describes G, the passive pendulum transfer function, the explicit 

version of the open-loop transfer function H  can be obtained, as shown in 

equation (3.3).

H = kmis2 + k (Mofi + f̂ 2ofi)
mis4 + M(afi+afi)s2 + Maficifi

In conjunction, the closed-loop transfer function (equation (3.1)) and the open-loop 

transfer function (equation (3.3)) contain all of the information necessary for 

quantitatively assessing the behaviour of the closed-loop system for various types of 

feedback transfer function k.

Recall that the root-locus method described in Section 2.5.3 enables the direct 

observation of the pole positions of the closed-loop transfer function of a system on the 

complex s-plane, as the open-loop transfer function characteristics are varied. It is 

therefore useful to employ this method to determine the levels of damping of the normal 

modes of the double pendulum for various forms of feedback transfer function k.

Firstly it is informative to determine the poles (resonances) and zeros of the open- 

loop system using equation (3.3). The pendulum was modelled to have identical masses 

{m1=m2=2kg; Af=4kg) and identical natural resonant frequencies for each stage 

(fi);=6^=6rads'1). With these parameters, the open-loop system was found to have two 

poles (resonances) at a ^ ^ r a d s -1 and 0 =11.(^rads-1. The system also had one zero 

at G^lOJSfrads-1. The lower resonance of the double pendulum is the mode where the 

masses move in phase as shown schematically in Figure 3.2. The upper resonance is 

also shown in Figure 3.2 and here the masses move in antiphase. Note that the frequency 

at which the zero occurs (o=10.39rads-1), agrees exactly with that calculated by 

considering the dynamics of the intermediate mass when the lower mass is pinned 

vertically below the suspension point i.e. cozero= V3"o0 (where 0)q=6rads_1).
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lower resonance
(the two masses move in phase)

upper resonance
(the two masses move in antiphase)

Figure 3.2 Snapshot in time showing the two resonances of the

As the feedback gain is increased, the closed-loop poles will originate from the 

open-loop poles and tend towards the open-loop zeros of the system. Therefore with 

feedback, one of the two new pendulum resonances will occur at a frequency of 

o ^ lO ^ r a d s -1 (the frequency of the natural open-loop zero), corresponding to the 
situation where the lower mass is pinned below the suspension point. The second new 

resonance of the double pendulum will occur at a frequency governed by the feedback 

transfer function gain and phase characteristics.

It was shown in Section 2.6 that the resonance of a single pendulum can be 

electronically damped by using differentiation in the position control feedback electronics 

(equations (2.40) & (2.41)). In a similar way the coupled resonances of a double 

pendulum can be damped to varying degrees by the use of differentiation.

3 .2 .2  Levels of Damping Achievable

Consider the case where the transfer function k involves both spring (for position 

control) and damping terms i.e. k = k0( 1 + sTj), (refer to Section 2.6). When the 

feedback involves differentiation in this way, the closed-loop transfer function 

(equation (3.1)) can be re-written as:

passive double pendulum.

X, (1+amW M
x° (s2 + ybs + c i)  (s2 + yus + a&)

(3.4)



where (xm is the mass ratio m2/m  ̂ . Here cql  and (Oy are the angular frequencies for the 

new lower and upper resonances (poles), with corresponding damping factors % and 

Yu* respectively. It can be shown that the quality factor Q for either of these resonances 
(Oi±jcQi) can be determined from the root-locus plot using the relationship

tan e= V m 2 - 1) where tan 9= ®i/G.. Thus as a pole locus tends towards the real axis it 

becomes more heavily damped. Critical damping occurs when the complex conjugate 
roots of a pole intersect the real axis.

Using the commercial package m a t l a b , the poles of the closed-loop transfer 

function (equation (3.1)) were plotted for various values of t 7 as a function of gain k0. 

Figure 3.3 shows the loci of the positive roots obtained for some selected cases. The 

corresponding negative roots have loci which are the mirror image of these about the real 

axis.

These loci plots show that one of the natural resonances of the pendulum is forced 

to a higher frequency by the application of feedback and that this can be critically damped 

if the correct combination of k0 and Xj is chosen (this resonance will be referred to as 

the new upper resonance here). Recall from Section 2.6.2 that the unity gain frequency of 

the feedback loop (which indicates the bandwidth of control) is related to the gain k0 by 

co~‘{[2+i^)k0 when this new upper resonance is damped critically. Figure 3.4 is an 
enlargement of the first plot showing more clearly the loci for the new lower resonance of 

the system. Note that in using this simple type of feedback transfer function, the new 

lower resonance can never be critically damped. This is a consequence of the presence of 

the natural open-loop zero at co= KkSQrads*1. One of the natural poles must ultimately 

tend towards this zero with increasing gain.

However, for relatively low values of gain, the Q factor of the new lower 

resonance can be set to an optimally low value. Note also that by using the relatively large 

gain required to critically damp the new upper resonance, the Q of the new lower 

resonance becomes higher than its minimum value. From Figure 3.3, one can see that the 

new upper resonance originates from either the natural lower resonance or the natural 

upper resonance depending on the frequency at which the differentiation begins i.e. on 

the value of Xj chosen. Figure 3.5 is a table illustrating some of the Q values achieved 

for both resonances as a function of Xj and k0.
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Figure 3.3 The loci o f  the two positive roots o f  equation (3.1) with a 
feedback transfer function  o f the fo rm  k ^ k ^ l + s x j .  T h e  
roots are plotted as a function of gain k0 and time constant r}. The pairs 
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other tends towards the zero at ■ VTr The origin o f the pole which tends 
towards this zero depends on the xl value chosen. The k0 value at which 
the new upper resonance becomes critically damped is shown.
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loci are labelled a,b,c,d and e corresponding to %)= 0.06s, 0.07s,
0.08s, 0.09s and 0.1s.



Z j  (sec) ~kQ (sec’2) "“Q lower "Q upper

0.005
60 46 94

1.6 xlO5 2.6 xlO5 0.5

0.01
60 23 47

4.0 x 104 3.2 x 104 0.5

0.06
60 4 8

X o 190 0.5

0.08
70 3 5

660 97 0.5

0.09
80 4 2

530 75 0.5

0.2
40 9 1

130 22 0.5

Figure 3.5 Table showing the Q values achieved fo r  both pendulum  

resonances with feedback transfer function k  = k0( l+sr I) fo r  

different values o f  time constant x2 and gain factor k0. For a

given Xj the first kg value stated is that necessary to optimally damp the 

new lower pendulum resonance; the second stated is that necessary to 

critically damp the new upper pendulum resonance. (Some o f the cases 

considered here are illustrated in Figures 33  and 3.4).

From this table one can see that when the new lower resonance is optimally damped by 

choosing a relatively low gain factor k0 (resulting in relatively narrow bandwidth 

position control of the mass), the corresponding Q factor of the new upper resonance is 

reduced to a comparable level e.g. with x1 = 0.09 s and k0 ~ 80 s*2 then QL ~ 4 and 

Q u~  2.
However one would like to force the new upper resonance to as high a frequency as 

possible (using high gain feedback), ensuring large bandwidth position control of the 

lower mass. Furthermore, it would be desirable to critically damp both new pendulum 

resonances simultaneously.
With this objective various other forms of feedback transfer function k were 

investigated in a similar way to that described above. These were designed to have a 

larger low frequency phase lead than for the above example, without increasing the gain 

and phase lead at higher frequency. The aim was to achieve better damping of the lower 

resonance whilst critically damping the upper resonance and forcing it to a relatively high
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frequency. This was attempted using transfer functions involving both differentiation and 

integration terms of the form k = ^Q/ l +/ T;)(1+/ T2) (where the fs  are time constants).
(1 + SX3) ’

For instance, a root-locus plot for the feedback transfer function 

& = *o.(1 + *s shown in Figure 3.6. This plot shows the locus of the upper

pole as a function of gain k0 where the time constants were t /  = V20 s; t2 =  V150 s and 

T? =  V 1 0 0 S . The locus of the lower pole can't be seen on this plot due to the limited 

resolution, however it tends towards the open-loop zero at co= 10.39 rads-1 as the gain 

is increased. Figure 3.7 is a table showing the Q values obtained for each resonance as a 

function of gain k0. The corresponding upper pole positions for each gain k0 

considered are shown on Figure 3.6.

From Figure 3.7 one can see that with a relatively low gain of k0~60 s-2, the Q of 

the lower resonance can be reduced to QL~ 5 with the upper at Qv ~ 10. Using a higher 

gain of k0~ 1.2 x 104s*2 (giving a unity gain frequency of o>~420rads-1 (computed using 

MATLAB)) the new upper resonance becomes critically damped. The corresponding Q of 

the lower resonance with this particular gain is QL~2.6 x 103. Compare this to the 

previous form of feedback described in Figure 3.5 where a unity gain frequency of 

<1>~V(2+V5~)fc0 ~ 410rads’1 was achieved when tj  = 0.01s and k0~4.0 x 104s-2. This 
gave a Q for the lower resonance of Qi~2>2 x 104. Hence this second design of 

feedback transfer function reduces the Q of the lower resonance by more than a factor of 

10, without compromising the bandwidth of the position control signal.

It was not possible to derive any form of feedback transfer function of this simple 

form (which introduced real open-loop zeros to the system), which achieved critical 

damping of both of the pendulum resonances simultaneously.

3 .2 .3  Amplitude of Motion of the Lower Mass at the New 
Resonant Frequencies

In the previous section it was shown that it is possible to damp both of the resonances of 

a double pendulum to a relatively high degree by sensing the position of, and applying a 

relatively low gain (narrow bandwidth) feedback signal to the lower mass. This gave 

Q's of a few for each resonance. Using higher gain (larger bandwidth feedback) it was 

shown that it was possible to critically damp the new upper resonance which was forced 

to a higher frequency by the feedback. However, increasing the bandwidth in this way
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Figure 3.6 The loci o f the roots corresponding to the new upper pole 
(resonance) o f  equation (3.1) with a feedback transfer 
function o f the form  k = ko .̂ l+srî l+ST2K The time constants have the(l-MTj)
values Ty = V20 s, 12 = V150 s and t 3 = V100 s. The arrows show the 
direction of increasing gain k0. A few k0 values are labelled for 
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kQ (sec*2) Q lower Q upper

1.2 x 104 2600 0.5

6700 1400 0.6

1200 240 0.6

60 5 10

Figure 3.7 Table showing the Q values achieved fo r  both pendulum  
r e s o n a n c e s  wi th f e e d b a c k  t r a n s f e r  f u n c t i o n

k  = koS1 * yT/̂ (1 + fo r  d ifferent gain factors k0. H e r e
(1 + s r 3)

Ty = V 20 s> *2 =  V 150 s and z3 = V 100 s. The first k0 value stated is 
that necessary to critically damp the new upper pendulum resonance; 
the fourth stated is that necessary to optimally damp the new lower 
pendulum resonance. The upper pole positions for the gain values 
shown are indicated on Figure 3.6.



reduced the level of damping of the new lower resonance ( to a Q of the order of few 

thousand). In order to understand the implications of these results for the operation of a 

gravitational radiation detector, the relative amplitude of the motion of the lower mass 

(test mass) must be evaluated at each of the new resonant frequencies.

It was shown in Section 2.5.2. that the transient behaviour of a closed-loop system 

can be determined by taking the inverse Laplace transform of the closed-loop transfer 

function. In order to find the time solution for the closed-loop system of Section 3.2.2, 

the closed-loop transfer function (as given in equation (3.4)) can be re-written in partial 

fraction form i.e.

X2  _______ (1+<Xm)orf®2_______ __ As+ B + Cs + D (3 5)
x ° (s2 + yis + (d ) {s2 + yus + aft) s 2 + %s  + cq£ s2 + yus + o$

where A,B ,C  and D are constants. The inverse Laplace transformation of this 

expression is then:

Ae'Wbcos coj +  m  + C e v ^cosoit+ \ & - s in cit
Lfii 2<%J L<tt/ 2CU/J

(3.6a)

where, a)L = col V 1 - 1/aqI (3.6b)
etc.
This can be re-written as:

X L € yLth sin { m  +Ol) + X v sin (c&t +ccu) (3.7),

where the amplitudes of the damped lower and upper resonances XL and X v  are given

and

^ = [ c 2 + ( & - § p 2] ^  <3-9>

with the initial phases Ol = tan (3.10)

and au = tsn '1( § )  (3,11)

respectively.
For instance, consider the situation where k = k0( 1 + sTj) with x1 = 0.09 s and
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ko — 80 S'2. Recall from Figure 3.5 that this form of feedback transfer function yielded 

quality factors of Qi~4 and Qu~2. Figure 3.8 shows a plot of the closed-loop transfer 

function given in equation (3.1) both with feedback and with k -  0. With k = 0 two 

large peaks corresponding to the coupled undamped pendulum resonances are clearly 

visible at fit>~4.59rads' 1 and co~l 1.09rads_1. Above these resonances, natural isolation 

of the suspended test mass occurs with the ratio becoming smaller in magnitude. 

With the feedback applied, the motion of the test mass is reduced up to approximately the 

new upper resonant frequency of the system. The two new resonances occur at similar 

frequencies giving rise to one damped peak in the closed-loop transfer function curve.

Using the impulse response facility in MATLAB, the amplitude of test mass motion 

at the two resonant frequencies was observed as a function of time. The impulse response 

plots for the two damped resonances are shown separately in Figure 3.9. From this we 

can see, that the amplitudes of oscillation are roughly equal, however the oscillation 

corresponding to what ends up as the uppermost of the two resonances with increasing 

gain is slightly better damped as one would expect.

Since the amplitude of test mass motion is approximately equal at the two resonant 

frequencies it would seem important to damp both resonances to a similarly high degree. 

The upper resonance, if pushed to a much higher frequency, might coincide with the 

frequency of a gravitational wave signal and obviously it would be necessary to critically 

damp this resonance. Furthermore, both resonances should be critically damped since it 

is undesirable to have large motions of the test mass at any frequency due to the 

possibility of cross-coupling of modes. Such an effect might lead to the misalignment of 

the reflected laser light with the cavity axis causing reduced sensitivity or loss of lock.

3 .2 .4  Conclusions

If aiming for large bandwidth position control, it appears to be necessary to damp the 

new lower resonance by some other means than via the position control signal to the 

lower mass. Another scheme whereby the resonances of a double pendulum are damped 

by sensing the acceleration of, and applying a feedback signal to the intermediate mass, is 

discussed in Section 3.3.
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3.3 Damping by the Application of Feedback to 
the Intermediate Mass

It is the purpose of this section to examine the degree to which the coupled resonances of 

a high Q double pendulum can be damped by sensing the acceleration of, and applying a 

feedback signal to the intermediate mass. Ideally one would like to be able to critically 

damp both of the pendulum resonances simultaneously. This feedback system could then 

be used to reduce the motion of the lower mass (test mass) to a low level, reducing the 

dynamic range requirements of the main position control feedback loop.

3.3 .1  The Closed-Loop System

Consider once more the double pendulum shown in Figure 2.2. Consider the situation 

where a damping feedback force of the form Fj = bjxj is applied to the intermediate 

mass where bj is some gain factor.

The equations of motion of the two masses can be derived to yield the transfer 

function from motion at the top of the pendulum x0, to motion at the test mass x2, as a 

function of frequency 5, in the closed-loop state i.e.

x ^ _ ___________________ (1 4- amW,<4___________________  (3.J2)
x° s4 + y ,s3 + [(1 + a m)((u? + <4)]s2 + y ,o $ s  + (1 + am)cdjc4

Here a m is the mass ratio m2/m/ and coj and co2 are the natural angular resonant 

frequencies of the two separate stages of the pendulum. Note also that here y} is the 

electronic damping factor given by yj =bi/mi-
As mentioned in Section 2.5.2, the roots of the denominator of a closed-loop 

transfer function i.e. the roots of the characteristic equation, give the positions of the 

poles of the closed-loop system on the complex 5-plane. Thus the levels of damping of 

the two resonances can be assessed by observing the positions of the roots of the 

denominator of equation (3.12) as a function of b1 (or y{).

Figure 3.10 is a root-locus plot showing the pole positions as a function of yl for 

the case where the two stages of the double pendulum had identical mass and length i.e. 

m7=m2=2kg and fi)/ =fi)2=6rads-1. From this one can see that the lower frequency 

resonance of the pendulum corresponding to the first sketch shown in Figure 3.2 at
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m=4.59 rads-1, is pushed to a slightly higher frequency by the feedback. With large yh  

this resonance ends up at <&= brads*1. This frequency corresponds to the situation where 

the intermediate mass is essentially pinned vertically below the suspension point and the 

lower stage of the pendulum oscillates as if it were uncoupled from the upper stage. This 

resonance cannot be critically damped by applying feedback of this type. The new upper 

resonance of the system (which originates from the pole at m=11.09 ra d s1) can be 

critically damped using a gain factor of bj~3SNsm*1 (y~19 s-1), the frequency of 

oscillation becoming increasingly smaller as the level of damping is increased. This form 

of feedback also damps the lower resonance to a fairly low Q i.e. Ql~3A.

Figure 3.11 shows the corresponding plot of the closed-loop transfer function *Vjco 

(given in equation (3.12)) for this system as a function of angular frequency co, both 

with and without the described feedback applied. Without feedback, the two peaks 

corresponding to the coupled undamped pendulum resonances are clearly visible at 

m=4.59rads*1 and n>=11.09rads-1. Above these resonances, isolation of the suspended 
test mass occurs with the ratio becoming smaller in magnitude. With the feedback 

applied the resulting motion of the test mass at the resonant frequencies is greatly 

reduced. The new lower resonance is pushed to a frequency of co~ 5.6 rads*1 and its Q 

is reduced to Ql~3A. Correspondingly, the new upper resonance becomes critically 

damped.
An investigation was made to see if better simultaneous damping of the two 

resonances could be achieved by varying the relative length and mass ratios of the two 

pendulum stages. A marginal improvement in the relative damping ratios was obtained 

using a pendulum whose upper stage was twice the length of its lower stage, with the 

lower mass twice the intermediate mass. For m ;=lkg, m2= 2kg, fi);=6rads*1, 

a^=8.5rads~1, critical damping of the upper resonance was achieved for Yj =29 s*1 
(bj=29 N snr1), and this gave a corresponding quality factor for the lower resonance of 

Ql ~1A.

3 .3 .2  Conclusions

It has been shown here that by applying inertial damping to the intermediate mass of a 

high Q double pendulum, the resulting motion of the lower mass at the pendulum 

resonant frequencies can be reduced to a very low level. The use of such a feedback 

system would reduce the dynamic range requirements of any separate servo-system used

63



!•
.S

-10

real part ( o~  ̂

Figure 3.10 The loci o f the two positive roots o f equation (3.12) as a 
function o f yv  The arrows show the direction of increasing yr

fO = U ■ 5^ rads
uJ = l (. r a d s

101

10 '10°

angular frequency (rads per sec.)

1(H

Figure 3.11 The corresponding p lo t o f  the closed-loop transfer  
function  (lower curve). The new lower resonance is at 
(DL~5 firads'1 with a corresponding Q value o f QL~3.4. The upper 
resonance is critically damped. The upper curve shows the equivalent 
plot with yj=0 (no feedback).



to control the position of the lower mass. Furthermore, this feedback loop would provide 

damping for the lower frequency resonance when the main position control loop is 

locked. (It was shown in the previous section that poor damping of this resonance is 

achieved by the position control feedback loop, if it has to operate over a relatively large 

bandwidth.) The performance of such a combined feedback system is analysed in the 
next section.

3.4 Position Control and Damping by the 
Application of Feedback to Both Masses

It is the purpose of this section to examine the level to which the coupled resonances of a 

high Q double pendulum can be damped and the position of the lower mass controlled, 

by applying feedback to both masses simultaneously. The feedback signal to the 

intermediate mass is derived by sensing the acceleration of the intermediate mass, whilst 

the feedback signal to the lower mass is derived by sensing the position of the lower 

mass relative to an arbitrary reference point (e.g. another highly isolated test mass in a 

laser interferometric detector). This analysis is based on the results of the previous two 

sections. The aim here is to produce a combined feedback system which controls the 

position of the lower mass over a relatively large bandwidth whilst critically damping 

both of the new pendulum resonances.

3.4 .1  The CIosed-Loop System

Consider once more the double pendulum shown in Figure 2.2 with identical length and 

mass in each stage (irij - m 2 -  2kg and 0)j = co2 = brads'1). Consider the situation 

where feedback forces of the form Fj = bjX] and F 2=m2k(x^-x2) are applied to the 

intermediate and lower masses respectively (where bj and k are gain factors and the 

other symbols have their usual meanings). If one assumes that the reference point x$ is 

absolutely stationary at all frequencies, then by setting Xj = 0 and considering the 

equations of motion of the two masses, one can derive the transfer function from the 

motion at the top of the pendulum xq to motion of the lower mass x2 i.e.
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(1 + Orrdajoi

x ° s * + y s 3 + [ ( l  + am)((oj + ($ )+ k]s2 + (Q]t+k)Ys + [ ( U a m)a?I + amc 4 ] k + ( U a j a j o t

(3.13)
Here the symbols have their usual meaning. Note that when y = bllmi= 0, 

equation (3.13) reduces to equation (3.1); also when k = 0 it reduces to equation (3.12) 

as expected. The positions of the poles on the complex s-plane (the roots of the 

denominator of equation (3.13) were observed for various forms of 7 and k to see how 

well both of the resonances could be damped and to observe the new resonant 

frequencies. For instance, with k = /:0(l+ces) where k0 = H ^ s*2 and a  = 0.001 s, 

with 7 = 8 s_1, the new lower and upper resonances were at angular frequencies 

cdl~ 9 .brads*1 and to^STO rads-1 with quality factors of QL~ \ 3  and Q y - l . O  
respectively. Figure 3.12 shows the closed-loop transfer function curve both with and 

without the feedback loops closed. The position of the lower mass is being controlled 

approximately up to the new upper resonant frequency of the double pendulum.

It is desirable to operate the damping feedback to the intermediate mass over a 

restricted bandwidth to reduce the possibility of introducing noise to the test mass at 

higher frequencies. Figure 3.12 also shows the transfer curve where the feedback signal 

to the intermediate mass had three integrations with comer frequencies of n>=30rads-1

i.e. the feedback force was of the form F] = mi yxis/ ^ +ST]̂  with T; = V30 s. Three 

integrations were used here so that a 12dB/octave roll-off of the intermediate feedback 

signal was achieved (stability was maintained by the differentiation in the feedback to the 

lower mass). This resulted in the Q of the lower resonance increasing to about QL~1. 

There is a trade-off between the damping achieved for the lower resonance and the 

bandwidth of the intermediate mass feedback loop, and some suitable compromise must 

be adopted.
In order to operate the position control loop over an even larger bandwidth and 

maintain critical damping of the new upper resonance, a larger gain factor k0 with a 

correspondingly smaller differentiation time constant a  could be used.

3 .4 .2  Conclusions

From Figure 3.12 one can see that the position of the lower mass is being controlled over 

a relatively large bandwidth and that both new resonances are being close to critically
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damped. The lower mass feedback loop is providing damping of the new upper 

resonance of the double pendulum. The new lower frequency resonance, where the lower 

mass is held fixed by the lower mass feedback and the intermediate mass essentially 

moves freely, is being damped by the feedback applied to the intermediate mass.

3.5 Experimental Investigations into the Position 
Control and Damping of a Double Pendulum

Experimental investigations into the position control and damping of a test mass 

suspended as a double pendulum, via feedback applied to the test mass initially using 

ground-based feedback coils and latterly using suspended feedback coils, are presented. 

Experimental investigations into the damping and position control of a double pendulum 

system via feedback applied to the intermediate mass are discussed in Chapter 4.

3.5 .1  Characteristics of the CIosed-Loop System

Consider a double pendulum where the position of the lower mass is being sensed with 

respect to an arbitrary reference point using the Michelson interferometer arrangement 

discussed in Section 2.6.1 and shown schematically in Figure 2.7. As for the single 

pendulum of Section 2.6, the feedback signal here is applied to the test mass via ground 

based feedback coils for simplicity. The simplified loop diagram for this system, under 

the condition where jc0=0, is identical to that for the single pendulum system as shown 

in Figure 2.9. However, in this instance GP (see Figure 2.8) describes the passive 

transfer function for the double pendulum (equation (2.17)). Furthermore, the transfer 

function for the conversion of the acceleration produced by the coil/magnet feedback 

transducers to the resulting test mass displacement, GA, is now given by:

s2 + (1 + (3.14)
s4 + (1 + am) ( a + o%)s2 + (1 + a jc a jo i

where the symbols have their usual meaning.
The closed-loop transfer function for this system, as given in equation (2.35), can 

be expressed in terms of the feedback transfer functions for the test mass feedback loop 

and the auxiliary loop, Hc and HP, respectively i.e.
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£   s 4 + (1 + Om)((o} + (£%)s2 + (1 + am)(0?a£______________________
(1 +Hp)s4 +[(1+HP)(\ + OrnXcof W )  + HC]s2 + (!+///•)(! + + / / c [ ( l  + dm) Cof + t W ]

Recall from equation (2.42) that the open-loop transfer function HCGA, or open-loop 

gain of the test mass feedback loop, can be measured as a function of frequency by 

studying the behaviour of the closed-loop system. If Hc is constant in the frequency 

range considered, then according to equation (3.14), the open-loop gain, HCGA, should 

fall at 12dB/octave at frequencies above the upper natural resonant frequency of the 
double pendulum.

3 .5 .2  Observed Behaviour of the CIosed-Loop System

A double pendulum with identical stages was constructed where m1 =m2 ~ 3kg and 

C0q ~ 5.7rads_1 for each stage. The coupled resonances of the double pendulum were 

calculated to be at angular frequencies coL~ 4.4rads*1 and coy- 10.6rads_1 (refer to 

Section 2.3.2).

The position of the test mass was sensed with respect to the reference mirror shown 

in Figure 2.7 and the test mass feedback loop was locked with the aid of a small amount 

of gain in the auxiliary loop. The amplifier circuits used for the two loops are shown in 

Figure 2.11 where the damping capacitor in the test mass feedback loop had the value 

0 ^ = 0 . lfiF. The gain in the auxiliary loop was then reduced to a low level.

In the locked state, a peak corresponding to the new lower resonant frequency of 

the pendulum was observed in the residual fringe spectrum at coL~ 9.8rads*1. This 

agreed well with that predicted from theory i.e. (Ol-  fTco0~ 9.9rads_1 (Section 3.2.1).

The open-loop gain of the test mass feedback loop was measured as in 

Section 2.6.2 by observing the magnitude of the residual displacement signal xp at the 

PZT and the residual locked fringe signal e, over a range of frequencies (see Figure 2.9 

and equation (2.42)). The observed voltage signals were converted to displacements 

using the calibrations given in Section 2.6.2.
Figure 3.13 shows the measured open-loop gain as a function of frequency. As 

predicted the gain falls at approximately 12dB/octave since we are at frequencies greater 

than the upper resonant frequency of the passive pendulum (t%~ lO^rads-1). However, 

the gradient of the curve (and hence the phase margin) on approaching the unity gain 

frequency is not obvious from the data because of the large uncertainties in the
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measurements.

To predict the phase of HCG^ at the unity gain frequency, the open-loop response 

was modelled using MATLAB. The transfer function Hq was approximated to 

H c =Hcoa+sT) where r  was the comer frequency for the differentiation at ~340Hz 

(due to the presence of Cdamp=0.l\iF). The calibration for the volts produced at the 

photodiode per unit displacement of the test mass was avL - 1 3  xl()3 wlmm and the

displacement of the test mass per volt across the feedback coils was A x/ a v  -0 .1 4  ""^v 

From considerations of the loop, the loop gain at zero frequency was calculated to be of 

the order ~9*104. Using equation (3.14), Hco was calculated to be ~2xl06 s 2. (Note 

that both of these values are dependent on the setting of the gain control knob in the 

feedback loop.) The model predicted the gradient of the loop gain curve to be 

-9dB/octave around the unity gain frequency which was at G>~1.8xl03rads_1 

(f~290Hz), with a corresponding phase margin of -40°. The comer frequency for the 

transition from a gradient of 12dB/octave to 9dB/octave was at the relatively high 

frequency of <a>~800rads'1 (f-130Hz). This is consistent with the experimental data in 

Figure 3.13, where the errors are large at this frequency. The model also predicted that 

the new upper resonance was being damped to a Qu~ 1.5 due to this feedback.

3 .5 .3  Noise Introduced to the Test Mass v ia  the Feedback 
Coils

Since coil/magnet feedback transducers are used to control the motions of the test mass, it 

is possible that these might re-introduce noise, degrading the isolation obtained by 

suspending the mass. For instance, motions of the ground based coils, due to say the 

seismic background, might give rise to displacement noise of the test mass via 

electromagnetic coupling between the coils and magnets. At frequencies within the 

bandwidth of the position control loop, relatively large currents are driven through the 

coils and this effect could be large. At frequencies above the unity gain point of the 

feedback loop, this effect would be reduced depending on how fast the feedback signal is 

rolled-off above unity gain. It is therefore important to consider this electromagnetic 

coupling effect.
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Consider the magnet to be a magnetic dipole of moment P which is aligned with 

the axis of a circular current loop of radius a, carrying current I (as shown in 
Figure 3.14).

circular current loop

dipole

Figure 3.14 Dipole aligned with the axis o f a current loop. The dipole o f 

moment P is displaced a distance r along the axis o f the coil loop of 

radius a and carrying current I.

The force on the dipole is given by:

Fr = p { ^ r )  (3.16)
v d r  coil

For a circular coil of radius a, carrying current I and of N  turns (assuming negligible 

length), the magnetic field along the axis of the coil is given by:

Br = *>IN  E * (3.17)
2(a2 + r2) k

where fio is the permeability of free space. Thus according to equation (3.16) the force 

on the dipole as a function of the relative separation r is given by:

FrJ * > ,F N  f  (3.18)
2(a2 + r2) '2

The optimum separation r for the coil/magnet pairs would be where the force is 

independent of small relative motions i.e.
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t * ) =0 (3-19>

This condition holds when the separation is r ~ 0.5a i.e. when the magnet is situated at 

half a coil radius from the coil. In this situation, to first order, small variations in the 

relative separation of the coils and magnets will not couple displacement noise to the test 

mass. However, if the separation is not optimised in this way, then relative motions 

between the two components will result in displacement noise at the test mass.

(A more rigorous calculation has been carried out taking account of the finite size of 

the coils and magnets. This calculation showed that the position of constant field gradient 

might in fact lie closer to the end of the coil. However this depends critically on the 

precise dimensions of the system under consideration [Mackenzie 1989].)

For instance, consider the case where the coils are situated at one coil radius from 

the magnets i.e. r = a. From equation (3.18), the magnitude of the field gradient will 

be
W r
dr = M £ )  (3-20>

where F0 is the static force generated between the coils and the magnets.

Using typical values e.g. a ~ 1cm, F0 ~ 5 x 10‘3 N, then at a frequency of 

100Hz, where the seismic background will have an amplitude typically of 

8r  ~ 10"11 "/vhz (refer to Section 2.2), this would result in a noise force of 

8F  ~ 7.5 x 10"12 N/vik 31 the test mass. At 100Hz, this would give rise to a displacement 

noise of the ffeely suspended mass (3kg) of approximately 8x 6 x 10-18"/vhT

which is larger than the displacement transmitted to the test mass via its double 

pendulum suspension (refer to Section 2.3.2). Hence for the effective low frequency 

operation of a laser interferometric detector, it is sensible to take the precautionary 

measure of isolating the feedback coils from seismic motions.

3 .5 .4  Feedback v ia  Suspended Transducers

To reduce the coupling of seismic noise directly to the test mass, the feedback coils were 

mounted on a reaction mass (m ~ 3kg) suspended as a high Q pendulum of angular 

resonant frequency co= 4.0 rads-1 as shown schematically in Figure 3.15.
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Figure 3.15 Schematic diagram o f the double pendulum with feedback

The open-loop gain of the test mass position control loop was then measured. This 

was done using the usual method where a test signal was applied to the PZT (reference 

mirror) and the residual fringe signal with the position control loop locked was observed. 

A small amount of gain was also used in the auxiliary loop (feeding back to the reference 

mirror). The circuits used for the test mass and auxiliary loops are as shown in 

Figure 2.11, where the damping capacitor had a value of Cdamp=0.1 pF. The loop gain 

curve obtained was of a similar form to that shown in Figure 3.13. The maximum unity 

gain frequency observed was ~290Hz. However the resonance of the reaction pendulum 

was observed to electromagnetically couple to the test mass giving rise to a large peak in 

the residual fringe spectrum at (0~4 rads-1. It was therefore necessary to electronically 

damp the reaction mass to the ground over a restricted bandwidth. Any displacement 

noise introduced to the reaction mass via electromagnetic coupling to the ground would 

only occur, to first order, at frequencies within this bandwidth (say below a few tens of 

hertz).

3 .5 .5  Shadow Sensor Servo-Systems

The electronic damping of the reaction mass to the ground at low frequencies was 

achieved using 'shadow sensor’ coil/magnet assemblies. These are self-contained 

position sensing and feedback control elements which were originally implemented in the 

delay line detector at the Max-Planck-Institute [Shoemaker 1987].

Two magnets were mounted on the rear face of the reaction mass at positions

supplied via a suspended reaction mass.
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directly opposite two feedback coils rigidly mounted on the ground. A small flag was 

mounted perpendicular to the surface of each magnet. Each coil contained a light emitting 

diode and silicon photodiode placed directly opposite each other on the coil 

circumference. In each unit the flag partially interrupted the light incident on the 

photodiode, and a signal was developed which was proportional to the relative 

displacement of the flag and the detector/emitter pair. This signal was then suitably 

amplified and filtered and fed to the coil in such a way as to damp the motion of the 
reaction mass with respect to the ground.

Figure 3.16 shows the circuit used for each shadow sensor device on this occasion. 

The comer frequencies for the integrations were set at about 35Hz and 70Hz with the 

damping capacitors of value C=0.47pF. To observe how well the reaction pendulum 

was being damped due to the feedback, white noise was applied in each circuit at the 

point shown in Figure 3.16 to drive the reaction pendulum whilst the feedback loops 

were closed. Figure 3.17 shows the spectrum of the light intensity signal detected at one 

of the monitor points (see Figure 3.16) for different feedback gains. This shows clearly 

that as the gain is increased, the resonance of the reaction pendulum is both damped and 

forced to a slightly higher frequency by the action of the feedback.

3.6  A Prototype Balanced Double Pendulum 
Suspension System

Since the reaction mass and the test mass will have a force acting between them when the 

position control feedback loop is closed, if the system is not properly balanced, it is 

possible that there might be some net reaction at the points of suspension of the two 

masses. This might lead to the excitation of resonances in the support structure of the 

isolation system which could couple displacement noise to the test mass and potentially 

limit the gain and bandwidth of operation of the control loop.

One way of reducing the likelihood of this effect is to suspend both the test mass 

and reaction mass from a common intermediate mass, forming a balanced double 

pendulum arrangement as shown in Figure 3.18. The test mass and reaction mass are 

symmetrically suspended in such a way as to make the net reaction at the intermediate 

mass due to their interaction zero. Since the intermediate mass is itself suspended, the 

effect on the support structure of any slight imbalance in the lower stages will be reduced.

Furthermore, since the reaction mass is isolated to the same high level as the test
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mass, seismic noise of significant magnitude cannot be re-introduced to the test mass via 

electromagnetic coupling effects in the feedback transducers, as described in 
Section 3.5.3.

Such a balanced double pendulum was constructed in order to experimentally 

investigate some of the aspects of its control and damping using feedback signals applied 

between the test mass and reaction mass which was damped to the ground over a 
restricted bandwidth.

3.6 .1  Physical Description

Figure 3.18 shows the dimensions of the constructed balanced double pendulum. The 

support plate (1" thick aluminium) for the pendulum was connected to a ground-borne 

"dexion" support structure via two stage isolation stacks used to provide some extra 

isolation. Note that in an interferometric detector, both the support plate for the pendulum 

and the support structure would be carefully designed to have very low Q internal 

resonances to avoid introducing noise to the test mass.

Double loop suspension wires (steel piano wires) were used for each of the three 

pendulum masses in order to make it easier for the system to lock without the aid of tilt 

and rotational damping servo-systems. However, it would be more desirable to use a 

single loop suspension wire for the upper stage to avoid directly coupling low frequency 

ground tilting motions to the pendulum. For the dimensions of wires chosen the lowest 

frequency violin resonances were calculated to be at /~480Hz and/~180Hz for the 

upper and lower stages respectively (refer to Section 2.3.3).

An aluminium bar of mass mj~ 11kg was used in the intermediate stage. The test 

mass and reaction mass were aluminium bars of similar dimensions 3kg). The

use of a relatively heavier intermediate mass gives better isolation (equation (2.18)).

As in the previous experiments, the position of the test mass was sensed using the 

Michelson interferometer arrangement described in Section 2.6 and illustrated in 

Figure 2.7. Four coils were mounted on the front face of the reaction mass adjacent to 

four double magnets mounted on the rear face of the test mass. The main position control 

feedback signal could then be fed to these transducers to lock the position of the test mass 

to the reference mirror. To minimise the motion of the reaction mass at its pendulum 

resonant frequency, two shadow sensor coil/magnet arrangements were used to damp the 

reaction mass to the ground in the same way as described in Section 3.5.5 with slightly
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larger damping capacitors of C=lpP (refer to Figure 3.16).

3 .6 .2  Behaviour of the Closed-Loop System

The passive pendulum had three separate suspension stages and therefore three coupled 

pendulum modes. For the dimensions discussed these were calculated to be at 

Ct)~4.2rads"1, fi)~4.8rads"1 and fi^S.Srads-1. However, since the reaction pendulum 
was locked to the ground by its damping servo loops (up to a few tens of hertz), and the 

intermediate mass was much larger than the test mass, the lower resonant frequency of 

this multiple system was predicted to closely correspond to the uncoupled natural 

resonant frequency of the test mass pendulum which was at o~4.8rads-1. The new 

lower resonance with the position control feedback loop locked was predicted to 

correspond closely to the situation where the test mass was fixed in its static position with 

the intermediate mass oscillating relatively freely. This new lower resonance was 

predicted to be at fi)~7.8 rads-1.

With the reaction mass damped to the ground, and the test mass and auxiliary 

feedback loops closed, a peak was observed in the residual locked fringe signal at 

(D~8.2 rads*1 corresponding to the new lower resonance of the pendulum. This agrees 
fairly well with the prediction. The new upper resonance was not clearly visible in the 

residual fringe spectrum, even with the damping capacitor removed from the test mass 

feedback loop, since it was being damped by the integration present in the auxiliary loop 

(feeding back to the reference mirror) (refer to Section 2.6.2). An integration was 

introduced to the test mass feedback loop at about 70Hz, to try to reduce this damping 

effect by cancelling out the 170Hz integration in the auxiliary feedback loop. The new 

upper resonance peak observed in the residual fringe spectrum was observed to increase 

in Q as predicted. The maximum observed upper resonant frequency with both loops 

closed was at about 250Hz. This extra integration was subsequently removed from the 

circuit.
The transfer function, GA, for the conversion of the acceleration produced by the 

coil/magnet feedback transducers to the resulting test mass displacement, will have 

slightly different form from equation (3.14) since the reaction mass is suspended from 

the common intermediate mass in this system. It can be shown that GA has the form
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(3.21)
with M=mj +mj +mj  and O)jico2,(o3, the natural angular frequencies for the 
intermediate, test and reaction mass stages respectively.

This transfer function, though complicated in appearance, when plotted looks like 

that for a single pendulum with feedback from an identically suspended mass (the lower 

stages of the balanced system). The two zeros in the numerator cancel with two of the 

poles in the denominator. Thus at frequencies above the resonance of the test mass 

pendulum (fi)~4.8rads*1), the open-loop transfer function, H cG A, will fall at 

12dB/octave if Hc is constant in the frequency range considered.

The open-loop gain of the coil feedback loop was measured using the standard 

method employed in previous measurements (refer to Section 2.6). However, in order to 

be able to increase the amplitude of the test signal introduced to the reference mirror 

(auxiliary loop) at any given frequency (thus reducing the error in the measurements), a 

sine wave signal of a single frequency was used instead of a white noise signal. The 

circuits for the two feedback loops are shown in Figure 3.19 where the damping 

capacitor in the test mass circuit was relatively small (Cdam/=100pF). Stability was 

maintained in the combined loop by the action of the auxiliary feedback to the reference 

mirror (as described in Section 2.6.2).

Figure 3.20 shows two sets of open-loop gain data obtained with different coil 

feedback gain settings. Both curves fall at 12dB/octave in the observed frequency range, 

as predicted. Furthermore, the unity gain frequency is observed to increase as the test 

mass feedback gain is increased as one would expect. By extrapolation, the highest unity 

gain frequency for this loop is at about 900Hz as shown in Figure 3.20 .

3 .6 .3  Interaction of the Test Mass and Auxiliary Feedback 
Loops

It is interesting to note that since both the auxiliary (feeding back to the reference mirror) 

and the test mass feedback loops were closed, the unity gain frequency of the test mass 

feedback loop does not dictate the new upper resonant frequency of the pendulum which 

was of the order of a few hundred hertz (refer to Section 2.6.2).
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To demonstrate the effect of the interaction of the loops on the new upper resonant 

frequency, a simple experiment was conducted. White noise was fed into the auxiliary 

loop at the point shown in Figure 3.19. The loop diagram in this situation had the form 
shown in Figure 3.21.

auxiliary feedback loop (PZT)

white noise signal 
applied to PZT

pw

m

test mass feedback loop

Figure 3.21 Loop diagram fo r  the analysis o f the unity gain frequencies 

o f the two loops (with symbols as defined in text).

where xpw is the white noise signal being applied and P is the electronic transfer 

function for the amplifier stages between the input port and the PZT. The transfer 

function from the acceleration produced by the feedback coils to the test mass 

displacement, GA, is given by equation (3.21). All of the other symbols have their usual 

meaning (refer to Section 2.6.2). From this loop diagram it can be shown that:

_ P{\ + HcGa) 2 2 )
Xpw (:i +H p+H cGa)

where xp is the signal measured directly on the PZT with both loops closed and the 

white noise applied. Note that the zero of this transfer function is at the unity gain 

frequency of the test mass feedback loop alone and that the pole of this transfer function
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(the new upper resonant frequency of the pendulum) is at the unity gain frequency of the 
combined loops.

Figure 3.22 shows two experimentally measured spectra of the transfer function 
Xp/xpw with fixed auxiliary loop gain and two different test mass feedback gain settings. 

These transfer functions were obtained by monitoring the voltage signals at the 
appropriate points in the loop (refer to Figure 3.21).

The transfer function Xp/Xpw was then modelled using m a t l a b  by considering the 

form of each of the separate transfer functions on the right hand side of equation (3.22). 

Figure 3.23 shows the two plots of Xp/Xpw which correspond to the experimentally 

measured spectra in Figure 3.22. The modelled transfer functions agree fairly well with 

the measured transfer functions at the two different gain settings. Note that each curve 

exhibits a null and a damped resonance peak as predicted, the damping being provided by 

the integration at /~170Hz in the auxiliary loop.

From these results we can see that the unity gain frequency of the combined loops 

(new upper resonant frequency) does indeed occur at a lower frequency than the unity 

gain frequency of the test mass feedback loop alone, as observed experimentally. 

Furthermore, the new upper resonance is being damped by the action of the auxiliary 

loop as predicted.

3.7  Conclusions

In this chapter it has been demonstrated, both theoretically and experimentally, that it is 

possible to control the position of a test mass suspended as a double pendulum over a 

large bandwidth (up to about a kilohertz or more), by sensing the position of, and 

applying a feedback signal directly to, the test mass.

As a consequence of using such large bandwidth feedback control, one of the 

resonances of the pendulum is forced to a much higher frequency which might lie within 

the detection frequency range of the proposed interferometric detector (in the region of 

about 100Hz to a few kilohertz). However, it has been shown that it is possible to 

electronically damp this resonance to a very high degree by incorporating a differentiation 

stage with the appropriate time constant in the feedback loop. Unfortunately, it is not 

possible to simultaneously damp the new lower resonance of the pendulum to a 

satisfactory level using the same feedback signal. To avoid dynamic range problems or 

the possibility of cross-coupling effects in the suspension, this lower frequency
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resonance must be damped by some other means e.g. by sensing the acceleration of, and 

feeding a signal to, the intermediate mass. Incorporating such a subsidiary damping loop 

in the suspension system has a secondary advantage in that it reduces the dynamic range 

requirements of the test mass position control loop, making it much easier for this loop to 

initially acquire lock.

It was also shown here that it is sensible to isolate the feedback transducers acting 

on the test mass to avoid the possibility of re-introducing seismic noise, shorting-out the 

passive isolation obtained by using the double pendulum suspension. Large bandwidth 

position control of a test mass suspended as part of a balanced double pendulum system 

has been demonstrated experimentally and there were no obvious problems with stability 

due to the introduction of the extra reaction pendulum stage.
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Chapter 4

A Nested Double Pendulum System 
with Split Feedback Control

4.1 Introduction

A nested double pendulum suspension system with split (frequency selective) feedback 

control has been developed based on the theoretical and experimental investigations 

described in Chapters 2 and 3. This system has several special design features aimed at 

attempting to reduce the level of displacement noise occurring at the test mass due to the 

application of feedback control and damping signals.

The nested system essentially consists of a 'three-stage' double pendulum whose 

intermediate mass supports a test and reaction mass, on independent parallel suspensions, 

in such a way that the test mass is totally enclosed by the box-shaped reaction mass. This 

configuration enables the position and orientation of the test mass to be controlled via 

coil/magnet transducers coupling the test mass to the surrounding reaction mass (see 

Figure 4.1).

To reduce the level of displacement noise occurring at the test mass it would be 

desirable to avoid applying position control feedback signals directly to the test mass as 

discussed in Section 3.1. Initial investigations were conducted to see whether it would be 

possible in theory to control the motion of the lower mass of a double pendulum over a 

large bandwidth by applying feedback signals solely to the intermediate mass. In theory 

this appeared to be possible. However it seems highly unlikely that such a system would 

perform satisfactorily in practice due to the unreasonable dynamic range requirements 

placed on the electronics necessary for amplification and filtering.

A reasonable compromise is to consider a split-feedback arrangement where the 

lower frequency feedback signals are applied to the intermediate mass, the higher 

frequency signals being applied to the test mass. Seismic noise is larger at low 

frequencies (see Section 2.2) and passive isolation is poorer (see Section 2.3), hence the
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The feedback signal is split into two frequency bands.

intermediate mass m j  ~ 11.0kg upper stage L j  ~  0.28m

wire diameter d j  = 0.31mm
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Figure 4.1 Schematic diagram o f the nested double pendulum suspension system 
illustrating the split feedback control arrangement. In this system the 
test mass and surrounding reaction mass are independently suspended 
from the intermediate mass. The split feedback control arrangement is 
explained in more detail in Section 43.



largest control signals are associated with these low frequency corrections. It is possible 

that if these low frequency signals are applied directly to the test mass they might give 

rise to higher frequency displacement noise at the test mass via non-linear conversion in 

the feedback electronics or transducers. However such noise imposed on the intermediate 

mass by application of the large low frequency control signals will be attenuated by the 
high Q suspension in its effect on the test mass.

Two split-feedback systems ("Type I" and "Type II", which involved different 

feedback bandwidths to the two masses) were designed for application to the nested 

double pendulum. Initially the behaviour of the nested pendulum with feedback applied 

solely to the test mass was investigated experimentally to ensure that there were no 

obvious problems associated with the novel pendulum design. Each of the split-feedback 

systems were then tested experimentally to assess their performance.

4.2  Design Philosophy

The nested double pendulum system is illustrated schematically in Figure 4.1. This 

system incorporates a top supporting plate mounted on two stages of isolation stack. The 

'three-stage' double pendulum is then suspended from this isolated plate. The 

intermediate mass is suspended using double loops. Ideally single loop suspension 

should be used for this mass to reduce the possibility of ground tilts coupling to the 

pendulum. The reaction (box) mass in this system is also suspended using double loops. 

The test mass is suspended using a single loop to enable the orientation of the test mass in 

tilt (about the y-axis) and rotation (about the z-axis) to be controlled by way of shadow 

sensor coil/magnet assemblies coupling the test mass to the reaction mass. For the 

dimensions of wires chosen, the lowest frequency violin resonances were calculated to be 

at/~470Hz, 150Hz and 250Hz for the intermediate, reaction and test mass suspensions 

respectively.
The separation of all coil/magnet pairs is chosen such that the magnets lie in the 

position of constant coil field gradient, reducing spurious coupling effects (see 

Section 3.5.3). However, it is shown in Appendix A that electromagnetic coupling 

effects can take place between these coil/magnet pairs possibly damping the high Q 

pendulum to what might be an unacceptably low level. To reduce the level of damping of 

the test mass in the test direction due to this effect the axes of the tilt and rotation control 

coils in the nested system are arranged to lie perpendicular to the horizontal test direction
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(see Figure 4.1).

Another important design feature of this system is of course the split (frequency 

selective) feedback arrangement as shown in Figure 4.1. The error point signal e  sensed 

between the test mass and the reference point can be split into two frequency bands. The 

lower frequency signals can be fed back to the intermediate mass (by way of coils 

mounted on the ground, though ideally these coils would be connected to the top of the 

stacks), with the higher frequency signals being fed to the test mass via longitudinal 

driving coils mounted on the suspended reaction mass. This reduces the noise imposed 

on the test mass due to the feedback control signals as discussed in Section 4.1.

Furthermore, as a consequence of limiting the feedback between the test mass and 

reaction mass to the. higher frequency smaller magnitude signals, less flux linkage is 

required for the coil/magnet position controlling transducers. This reduces the magnitude 

of the damping of the suspended test mass due to electromagnetic induction (see 

Appendix A).

The reaction mass in this system is damped electronically to the ground using 

shadow sensor feedback systems (see Section 3.5.5) and latterly, the intermediate mass 

was also damped electronically to the ground (see Section 4.6.4).

4.3 Split Feedback Control

It was shown in Chapter 3 that it is relatively straightforward to maintain stability in the 

closed-loop system when sensing the position of, and feeding signals directly to, the 

lower mass of a double pendulum if differentiation is used in the feedback electronics. 

The use of differentiation ensures that the open-loop transfer function has a phase greater 

than -180° at frequencies where the gain is close to unity, avoiding the possibility of 

positive feedback. The ease of achieving stability in such a double resonance system is 

largely due to the fact that the open-loop transfer function contains a zero which lies at a 

frequency between the two natural poles (pendulum resonances) each having an 

associated -180° phase change. This zero provides a +180° phase change after the first 

resonance which ensures that the Nyquist curve for the system does not enclose the point 

(-1,0) and hence is stable (see Section 2.5.3). The relative stability is of course 

determined by the degree of differentiation used in the feedback electronics. However 

when feeding back to the intermediate mass in such a system, there is a fundamental 

difference in the open-loop transfer function which makes it much less simple to maintain
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stability in the feedback loop, as will be illustrated below.

Consider the nested double pendulum where feedback forces are applied to the 
masses in both stages simultaneously, as shown in Figure 4.2.

/ / / / / / / / / / / / / / / / / / / / / / /

intermediate mass feedback

sense

.test mass 
feedback

reference point

split feedback

Figure 4 .2  Sketch o f the nested double pendulum with split-feedback 

control. The position of the test mass is sensed with respect to the 

reference point. The feedback signal is then split into two frequency 

bands with the low frequency signals being applied to the intermediate 

mass and the higher frequency signals being applied to the test mass.

The upper stage of the nested pendulum has natural angular resonant frequency 

fi);~5.tods*1, with the two identical lower stages having frequency 6)2=CDi ~4.7rads-1 
(test mass and reaction mass stages respectively). The position of the test mass x2 is 

sensed relative to an arbitrary reference point x4 and the feedback forces acting on the 

interm ediate and test masses are of the form Fj = mjHi{x4 -X2) and

F2 = m2H 2(x4 - xf) respectively.
The loop diagram representation of this split-feedback system is shown in 

Figure 4.3, assuming that the motion of the suspension point is zero i.e. Xq=Q\
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Figure 4.3 Loop diagram fo r  the split-feedback arrangement applied to 

the nested double pendulum (symbols as defined in text).

This can be simplified to the single loop equivalent shown in Figure 4.4:

displacement of 
the reference point

error point signal 

_  £
■ > © — --------

-  A

(± * w,g1 + h2g2)

split feedback loop

Figure 4 .4  Simplified loop diagram fo r  the split-feedback arrangement 

applied to the nested double pendulum (symbols as defined 

in text).

where,

x4

*2 
e

the motion of the reference point (reference mirror (see Section 2.6.)) 

the displacement of the test mass with both of the feedback loops closed 

the error point signal with the feedback loops closed = x4 - *2 

the transfer function for the conversion of the detected fringe signal e in 

terms of displacement, to the acceleration produced by the coil/magnet
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feedback transducers acting on the intermediate mass. The frequency 

dependence of this function is determined by the form of the electronics 

used for amplification/filtering. Note also that this function has dimensions 
of sec-2.

H2 — similar to Hj, except refers to the transducers acting between the test mass 
and the reaction mass (dimensions of sec-2).

Gj = the transfer function for the feedback acceleration of the intermediate mass, 

to the resulting test mass displacement (dimensions of sec2) i.e.

~  C09 ( s 2  +CQI)Gj = ------------------------------------£ ------- H--------------------------------- (4.1)
s 6 +  [A (o ]+ B (o 22+ C (o j] s 4 +  A id )2 CD2 + cof(D2+ o ^ c o j) s 2 +  A  CQ2 CO2(1)3

G2 = similar to Gj except refers to the feedback acceleration of the test mass 

(dimensions of sec2) i.e.

G ____________ S4 + (Aa)j+a2fi)f+C<pf)s2 + Aic^aj____________

s 6 + [Aaj+BcOj+CcojIs4 + Aia^ai^+oifaij+o^co^s2 + A cofco^oij

The open-loop transfer function (//;G;+//2G2) is therefore given by:

, r r  „  r r  s .  \ + f f l j ) +  H 2[ S4 +  +  A t o f o ) ^ ]
( t i j C r j  + 1 1 2 ^ 2 )  — ------------ --------------------------- --------------------------------------------------

s 6 + [Aq)2+B(o2+Ccq2]s4 + A(co2co2+co2co2+co2 Co2)s 2 +  Aco2co2co2

(4-3)

where the coefficients A = (1+ a ^ a 3), B = (l+ a2) and C = (1+a?), with the mass ratios 
a2 = m*lm  and a j  = m*lmv The corresponding closed-loop transfer function 

—-—1 can be derived easily using equation (4.3).
1 +{HiGi +H&)

This pendulum has three natural modes of oscillation as shown in Figure 4.5.
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lower
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Figure 4.5 The three natural resonances o f the nested double pendulum .

The presence of the reaction mass pendulum in parallel with the test mass 

pendulum gives rise to the additional resonance at (oz.

From equation (4.3) ,  one can see that when / / ;= 0 and feedback is applied solely 

to the test mass from the suspended reaction mass, the open-loop transfer function has 

two zeros and three poles. Two of these poles are in fact cancelled by the two zeros 

leaving one remaining pole corresponding to the natural resonance of the lower stages of 

the system ( f i) I =tf>2= f i> 3 ~ 4 .7 r a d s - 1)  as shown in Figure 4 .5 . This loop is similar in 

form to that for a simple pendulum with feedback applied from an uncoupled point e.g. 

the ground. It is therefore fairly straightforward to achieve stability by using 

differentiation in the feedback electronics. When H2= 0 and feedback is applied solely to 

the intermediate mass (from an uncoupled point), there is a pole-zero cancellation at 

tot=cq3. In this situation the closed-loop system is inherently unstable since there are 
two -180° phase changes in close succession associated with the two remaining poles at

6)L~4.1rads’1 and ct)u~&.3vadsA.
A way of achieving stability when feeding back to the intermediate mass alone 

(H2=0) would be to introduce an artificial zero between the two natural poles, giving a 

+180° phase change and close to zero magnitude at the selected frequency in the open- 

loop transfer function. One way of doing this is by using a parallel-T-network in the 

feedback circuit [Hammond 1958]. This network (or notch) gives a high attenuation at a 

selected frequency and can be designed in such a way that it produces a +180° phase 

change at this frequency. Figures 4.6 and 4.7 show the gain and phase characteristics of 

such a notch derived using MATLAB.
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Figures 4.6 & 4.7 Bode magnitude and phase plots fo r  a Parallel-T-

Network.

The notch frequency in this example was designed to occur at fi)nolcA~6rads_1. The 

desired null and associated +180° phase change are exhibited. However note that the 

phase on approaching the rejection frequency is -90°. If not compensated for, this 

negative phase introduced in the region of the first (lower) pendulum resonance would 

cause the feedback system for the double pendulum to become unstable.

4.4  Initial Experimental Investigations

The behaviour of the nested pendulum system with all of the position control feedback 

signals applied directly to the test mass via the feedback coils mounted on the reaction 

mass was investigated experimentally. This initial investigation was earned out prior to 

the installation of a split-feedback scheme to check that there were no obvious problems 

associated with the novel pendulum design or interaction of the shadow sensor damping 

loops with the main position control loop.
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The rotational motions of the test mass about the y (tilt) and z -axes (see Figure 4.1) 

were damped electronically using two shadow sensor feedback systems (see 
Section 3.5.5) in each degree of freedom. The reaction mass was also damped to the 

ground using two such shadow sensor devices. The circuits used are shown in 

Figure 4.8. Note that these circuits are D.C. coupled. This means that each resonance 

would not only be damped but would be forced to slightly higher frequency depending 

on the gain in the relevant loop. Each of these shadow sensor feedback loops were 

observed to adequately damp their respective motions preserving the optical alignment of 
the interferometer.

With the above loops closed the position of the test mass was locked to the 

reference mirror with the aid of some gain in the auxiliary feedback loop (which 

controlled the position of the reference mirror) to initially slow down the rate of fringe 

passage (refer to Section 2.6.1). Once lock was achieved the gain in the auxiliary loop 

was reduced to zero. The circuit used for the test mass feedback loop is shown in 

Figure 4.9 with the damping capacitor having a value of £ ^ ^ = 0 .4 7 ^ .  Three sets of 

open-loop gain data were obtained using the standard method described in Section 2.6.
A were

Sine wave signals of a single frequency used to drive the PZT on which the reference 

mirror was mounted. The electronic gain setting was similar for each set of 

measurements. The open-loop gain curves obtained are shown in Figure 4.10.

From Figure 4.10 one can see that the three sets of data are consistent. To compare 

with experiment, the open-loop transfer function was modelled using equation (4.3) with 

H2=0. The calibration for the displacement of the test mass per volt across the position

control feedback coils was H&v ~ 0.2 mml\  with the photodiode calibration being 

AV/ a x  ~ 6.4 x 103 v /mm. The model predicted the gradient of the open-loop gain curve to 
be 12dB/octave until approximately 60Hz where the presence of the damping capacitor

Qam/>=0-47|iF caused a reduction in the gradient. This was observed. The predicted 
unity gain frequency was about 500Hz which agrees fairly well with the extrapolated 

value.
In order to search for the new upper resonant frequency with the loop closed, the 

damping capacitor was reduced to Cdamp=0.1 p.F. The maximum observed upper 

resonant frequency was at f upper~220Hz and had a Q of a few. Reducing the damping 

capacitor in this way caused a reduction in the unity gain frequency.
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Figure 4.8 The circuit for the shadow sensor damping servos.
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Figure 4.10 Open-loop gain data fo r  the nested double pendulum

system where all o f  the position control signals are applied

directly to the test mass via coils mounted on the

surrounding reaction mass.

These initial investigations were suitably encouraging since there were no obvious 

problems associated with the novel pendulum design or interaction of the shadow sensor 

damping loops with the main position control loop.

4.5 Split-Feedback System - 11 Type I”

4 .5 .1  Initial Design

The designed Type I split-feedback system used a parallel-T-network similar to that 

described in Section 4.3 to achieve stability in the intermediate mass feedback loop. The 

forms of Hj (intermediate mass loop) and H2 (test mass loop) used are described below



in terms of their filter comer frequencies:

H,= gain of
L~l*104. [ minimum 

notch with 0)~6rads
phase 1 f two differentiations from 1 two integrations] 
b ra d s '1! ' L6M).45rads'' to fiJ-BlOrads'1! ‘ L at fl)~450rads-1 J

H2 —
gain of] [ mini
.“8x104J' Ph“ e

minimum 
notch 

Lwith co^rads'1.
[ differentiation from ] 
LtiJ-Orads'* to GJ-lSOrads'1 J '

differentiation from 
fi>-450rads'1 to 
Ĝ .TxK̂ rads"1

one integration at 
o^-S.lxlcAads'1 .

Note that H2 is A.C. coupled.

The modelled Bode magnitude plots for the separate feedback loops (H1Gl and 

H 2G2) are shown in Figure 4.11. The feedback signal to the intermediate mass 

dominates at low frequencies below a few tens of hertz. Figure 4.12 shows the Bode 

magnitude plot for the combined loop. The bump in the curve at about 30Hz marks the 

approximate cross-over frequency between the two loops. The unity gain frequency of 

the combined loop is at c^^ -S x lC P rad s-1 (/'~480Hz). The gain margin is -14 with a 

phase margin of -70° and therefore the system is stable (see Section 2.5.3).

The Nyquist plot for the Type I split-feedback system is shown in Figure 4.13. The 

system is stable since the Nyquist curve does not enclose the (-1,0) point (see 

Section 2.5.3). The two differentiations in H 1 at o j-O ^ rad s-1 provide sufficient 

phase lead to ensure that the first resonance loop at 0)L~4.1rads' 1 lies in the 1st, 4th and 

3rd quadrants. Two differentiations are necessary to compensate for the negative phase 

change (->-90°) introduced by the notch at frequencies below the rejection frequency (see 

Figure 4.7) and to provide some phase lead (damping of the lower resonance). The 

intermediate resonance at o ^ J r a d s *1 is not completely cancelled by the zero in HjGj 

since H2G2 has large magnitude at this frequency (see Figure 4.11) and this causes the 

observed phase fluctuation in the Nyquist plot at ~(Dr  The notch at cu^^-b rads ' 1 

produces a minimum (with a +180° phase change) in the transfer function before the 

upper resonance at 8.3rads_1 ensuring that this resonance loop does not encircle the 

point (-1,0). Note that the notch is also present in H2 to ensure that H2G2 does not 

dominate at the notch frequency reducing the effective depth of the null (see Figure 4.11). 

Differentiation is present in H2 to establish the feedback cross-over frequency to be at 

about 30Hz. H1 is then rolled-off (integrated) at a frequency higher than this cross-over 

between the two feedback loops to avoid saturation of the feedback amplifiers driving the 

intermediate mass. The differentiation in H2 at ~450rads'1 maintains the phase lead 

necessary for stability at the higher frequencies. H2 is then rolled-off above the unity
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Figure 4.11 Bode magnitude plots of the open-loop transfer functions 
H iG i and H2 G2 with the Type I split-feedback design.
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Figure 4.12 Bode magnitude plot of the open-loop transfer function 
(H 1G 1+H2G2) with the Type I split-feedback design.
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gain frequency of the split-feedback loop.

4 .5 .2  Performance

The transfer function of the notch was measured. An attenuation of ~55dB with a phase 

change of +180° at to^^^brads-1 (f~0.96Hz) was obtained as desired. The rotational 
(about the z-axis) and tilting (about the y-axis) motions of the test mass were damped 

using the shadow sensor devices described in Section 4.4 (see Figure 4.1). The reaction 

mass was also damped to the ground here as in Section 4.4. Recall that the natural 

frequency of the reaction pendulum may have been forced to a higher frequency by the 

action of this loop since the feedback circuit used was D.C. coupled. However the gain in 

this loop was kept low and this effect should have been small. Furthermore it was shown 

theoretically that the effect of this shadow sensor feedback loop on the pole-zero 

configuration of the nested pendulum would not compromise the stability of the Type I 

split-feedback system even if the reaction pendulum frequency was forced up to a reUihveUj 

high frequency e.g. 10Hz.

With the shadow sensor loops damping their respective motions the performance of 

the Type I split-feedback system was tested. The test mass feedback loop (high frequency 

feedback) was observed to operate satisfactorily. If the gain in this loop was turned too 

high it became unstable at ~800Hz (approximately the unity gain frequency). However 

the gain which could be used in the low frequency feedback loop was severely limited by 

various mechanical resonances which were excited by the application of feedback signals 

to the intermediate mass. These resonances, which were not accounted for in the loop 

design, caused the feedback signal to the intermediate mass to saturate at very low gain.

For example, two such troublesome resonances were at ~20Hz and ~30Hz. These 

were suspected to be tilting resonances of the intermediate mass and the top plate about 

the y-axis (see Figure 4.1). If the coil/magnet transducers were not acting exactly along 

the centre of mass of the intermediate mass it is feasible that such resonances could be 

excited since the intermediate mass was suspended using double wire loops. In order to 

investigate this further the test feedback loop was D.C. coupled and used to lock the 

position of the test mass to the reference mirror. The intermediate mass was then driven 

over a range of frequencies. Two peaks were observed in the residual fringe signal at the 

frequencies corresponding to these two resonances. This verified that these were indeed 

mechanical resonances and were not associated with the designed feedback loop. The
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tilting motion of the intermediate mass was damped with respect to the support 

framework by connecting a vertical paddle immersed in an oil pot to each end of the 
mass.

Another troublesome resonance was at ~45Hz and this was suspected to be a tilting 

resonance of the reaction mass. Oil damping pots and vertical paddles were attached to 

each end of the reaction mass in such a way as to damp this tilting motion.

Another resonance which caused the intermediate mass feedback signal to saturate 

was at ~24Hz. A smaller peak at ~12Hz was also observed in the feedback signal. It was 

suspected that these peaks were associated with the stacks connecting the support plate of 

the pendulum to the support framework. A vertical accelerometer placed on the top 

support plate showed peaks at these frequencies. To try to improve the damping of the 

pendulum masses in the vertical direction thicker oil was used in the oil damping pots. On 

doing this the 12Hz peak was observed to be much better damped. However the 24Hz 

peak was still causing the feedback signal to saturate. The stacks were shorted out by 

clamping the top plate to the support frame and this reduced the amplitude of the 24Hz 

peak. However the gain which could be used in the intermediate mass feedback loop was 

once more limited by the 12Hz oscillation.

Since the clamps ruined the alignment of the shadow sensors which were used to 

damp the box to the ground they were removed. Instead the top support plate was 

damped to the support frame using vertical paddles attached to the ends and centre of the 

plate and immersed in pots containing very thick oil. An accelerometer on top plate 

showed that the peak at ~12Hz was well damped. The peak at ~24Hz was also damped to 

some degree. The intermediate mass feedback signal was now seen to saturate at ~24Hz. 

Smaller peaks were also present in the feedback signal at ~12Hz and ~48Hz.

Throughout these experimental investigations attempts were made to reduce the gain 
in the intermediate mass feedback loop at the frequencies where the resonance peaks were 

encountered. This was done by introducing lower frequency integrations in the 

electronics used in this feedback loop. However it was not possible to reduce the gain 

rapidly enough to avoid exciting these troublesome resonances.

4 .5 .3  Conclusions

The analysis presented here shows that it is possible in theory to control the position of a 

test mass suspended as a double pendulum using split-feedback, avoiding feeding the
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large low frequency signals (below about 30Hz) directly to the test mass, without losing 

stability and without imposing unreasonable dynamic range requirements on the feedback 

amplifiers. Unfortunately it was not possible to demonstrate the operation of this split- 

feedback system experimentally since practical difficulties were encountered which were 

not intrinsically related to the designed feedback system. The designed feedback system 

accounted for the presence of the three fundamental pendulum resonances in the 

horizontal test direction (see Figure 4.5). However no account was taken of the effects of 

the pendulum resonances in the remaining degrees of freedom or the effects of the 

resonances of the isolation stacks and support structure which connected the pendulum to 

the ground. The excitation of such extraneous resonances by the application of feedback 

signals to the intermediate mass caused the feedback amplifiers in this loop to saturate at 

very low gain and a significant cross-over frequency was never achieved. However the 

performance of the Type I split-feedback system should be further investigated since 

there is no fundamental reason why it should not operate satisfactorily if care is taken in 

the construction and design of the isolation system and support framework to minimise 

the effects of these extraneous resonances.

4.6  Split-Feedback System - "Type II"

4.6 .1  Initial Design

The Type II split-feedback system was less ambitious than the Type I system in that the 

feedback cross-over frequency between the two loops occurred at a much lower 

frequency (at a frequency below the first pendulum resonance). Despite this lower cross­

over frequency, the Type II system should be capable of reducing the noise level at the 

test mass by a significant amount since the largest of the low frequency signals are 

applied to the intermediate mass (see Section 4.1).
This split-feedback system was based on the feedback system used to control the 

test mass via signals applied solely to the test mass, as described in Section 4.4. The 

output signal from the circuit in Figure 4.9 is applied directly to the test mass as 

previously. However this signal is then further amplified and filtered and fed to the 

transducers acting on the intermediate mass. The extra amplification is designed to be of a 

large enough magnitude that the intermediate mass feedback loop dominates at 

frequencies below the pendulum resonances. Above the resonances the system is
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designed to behave similarly to the original test mass feedback loop.

The forms of Hi (intermediate mass loop) and H2 (test mass loop) used initially 
are described below in terms of their filter comer frequencies:

~4xlO,2J ‘L
gain ofj f one integration at 

o-TxlO^rads'1 .
[ one integration at 

o-lrads'1
differentiation from 

to^SOrads'1 to 
fi .̂SxlO^ads'1

two integrations at 
Ct)~2.1xl04rads'1 .

differentiation from 
o^SOrads'1 to 
o-̂ .SxK r̂ads'1

two integrations at 
flV-^.lxK^rads' 1 .

4 .6 .2  Performance

The Type II split-feedback system was observed to operate well. The shadow sensor 

loops were used to damp the test mass in tilt and rotation and also to damp the reaction 

mass with respect to the ground. The Type II feedback system was then used to lock the 

position of the test mass to the reference mirror (see Figure 2.7) with the aid of a small 

amount of gain in the auxiliary loop (which controlled the position of the reference 

mirror). The tilting motions of the intermediate and reaction masses about the y-axis (see 

Figure 4.1) were also being damped here using the oil pots and paddles implemented in 

Section 4.5. The circuit used for the test mass feedback loop is shown in Figure 4.9. The 

signal from this circuit was then further amplified and filtered using the circuit shown in 

Figure 4.14 and fed to the coil/magnet transducers acting between the intermediate mass 

and ground (see Figure 4.1). The open-loop gain was measured using the standard 

method described previously in Section 2.6.2 where the reference mirror of the 

interferometer (which was mounted on a PZT) was driven using sine wave signals of a 

single frequency. Figure 4.15 shows three sets of data of the open-loop gain as a 

function of frequency.
Measurements (A) and (C) were obtained without the 100K feedback resistor in 

place (see Figure 4.14). The gain setting for measurement (C) was slightly higher than 

for (A) and (B). Measurement (B) illustrates the effect on the low frequency gain of 

placing the 100K feedback resistor on the first amplifier stage causing the integration in 

Hi to occur at a lower frequency. The two curves (A) and (B) merge at the predicted 

frequency.

93



Figure 4.14 The extra electronics fo r the intermediate mass feedback loop. 
The output from circuit Figure 4.9 is input to this circuit. The signal obtained 
is then applied to the coils controlling the position o f the intermediate mass.



* (A) without R= 100K 

H (B) with R=100K 

(C) without R=100K

■ ■
ae
*3
W
a
5-J•sa>O.
O

Frequency (Hz)

Figure 4.15 Open-loop gain data fo r  the "Type I I "  split-feedback 

scheme. Measurements (A) and (C) were taken without the R-100K  

feedback resistor in the circuit (see Figure 4.17). The electronic gain 

setting was slightly higher for measurement (C). The theoretical curve 

corresponding to measurement (A) is superimposed for comparison. 

The theoretically predicted open-loop gain at D.C. i s -  9 * 1010.

The open-loop transfer function for the Type II split-feedback system was 

modelled using m a t l a b . The calibration for the photodiode here was

*V/ax ~ 2.3 x 104 v /mm (a more powerful laser was being used compared to Section 4.4). 
The calibrations for the displacement of the test mass per volt across the test/intermediate

mass feedback coils were Ax/ a v  ~ 0 .2  mnVv and A x/ a v  ~ 0 .1  mnyv  respectively. The Bode 

magnitude plot obtained is superimposed in Figure 4.15 for comparison. The agreement 

is reasonably good. Recall from Section 4.5.2 that the shadow sensor loops used to

94



damp the reaction stage to the ground would cause the natural frequency of the reaction 

stage to be forced to a higher frequency depending on the gain used in these loops. If this 

reaction pendulum was forced upwards in frequency in this way the new upper resonant 

frequency of the nested pendulum would correspond closely to this new frequency. From 

Figure 4.15 one can see that the upper resonance of the pendulum is at ~1.3Hz as 

predicted by the model which does not take account of this effect. This strongly suggests 

that the effect of the shadow sensor loops on the resonant frequency of the reaction 
pendulum was indeed small.

The model was used to predict the approximate cross-over frequency of the two 

feedback loops (defined here as the frequency up to which the open-loop gain is 

increased by the additional feedback to the intermediate mass) and to assess the relative 

stability of the combined loop. The modelled Bode magnitude plots for the separate 

feedback loops are shown in Figure 4.16. Notice that the loop gain in the intermediate 

mass feedback loop dominates at the very low frequencies. Figure 4.17 shows the 

corresponding Bode magnitude plot for the combined loop. Superimposed on this is the 

plot for the test mass feedback loop alone (//;=0). From this one can see that, according 

to the model, the open-loop gain up to about 0.2Hz is enhanced by the additional 

feedback to the intermediate mass. This was confirmed experimentally by measuring the 

open-loop gain of the test mass feedback loop alone in this frequency region. The 

behaviour of the split-feedback open-loop gain curve above the resonances is identical to 

that of the test mass feedback loop. However notice that by applying feedback to the 

intermediate mass, the exact pole-zero cancellations of the 1st and 3rd resonances which 

usually occur when the test mass feedback loop is operating alone do not occur (see 

Figure 4.15). This pole-zero cancellation is in fact compromised to such an extent that the 

split-feedback loop is theoretically unstable. The system was observed to be stable in 

practice probably due to the presence of 'natural' damping of the pendulum in the 

longitudinal test direction {e.g. brought about by the presence of the tilt damping oil pots 

incorporated in Section 4.5.2 or friction at the suspension breakaway points).

The model predicted the open-loop gain of the working split-feedback loop at zero 

frequency to be ~9 x 1010. Assuming that the natural damping was maintaining stability at 

lower frequencies, the unity gain frequency of the working split-feedback loop was 

predicted to be ( O ^  gain~4 * 103 rads' 1 (f~640Hz) with a corresponding gain margin 

of .~2 and phase margin -18°. Note that the natural damping present in the pendulum 

might increase these margins in practice. If the overall gain in the split-feedback loop was
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Figure 4.16 Bode magnitude plots o f  H iG i and H2G 2 fo r  the Type II  

split-feedback system.
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Figure 4.17 Bode magnitude plot o f  (H iG i + H 2G 2) fo r  the Type I I  
split-feedback system. Superimposed is the corresponding plot for 

H2G2 (test mass feedback loop alone). From this one can see that the 

intermediate feedback loop increases the open-loop gain at frequencies 

below ~03Hz.



turned too high the closed-loop system was observed to oscillate at ~790Hz (the unity 
gain frequency). This is consistent with the model.

The oil pots for damping the tilting motions of the intermediate and reaction masses 

were removed since these were probably giving rise to significant damping of the 

pendulum in the horizontal test direction. With the split-feedback loop closed a large peak 

at ~1.30Hz (corresponding to the upper pendulum resonance) with a smaller peak at 

~0.66Hz (corresponding to the lower pendulum resonance) (see Figure 4.5) were present 

in the residual fringe signal implying that the system was verging on instability. These 

pendulum resonances, excited by the feedback to the intermediate mass, could not be 

controlled by the test mass feedback loop which was the dominant control loop in this 
frequency region.

4 .6 .3  Effect of Varying the Cross-Over Frequency

The effect of increasing the feedback cross-over frequency of the split-feedback loop was 

investigated. This was done by decreasing the values of the integration capacitors in the 

extra amplifier stages to the intermediate mass (see Figure 4.14) so that the first two 

integration comer frequencies in H1 occurred at slightly higher frequencies. With the 

two capacitor values decreased from C=10pF to C=4.7|iF the system was observed to 

oscillate at tu^S.Srads' 1 (or/~1.32Hz, the upper pendulum resonance) and eventually 

become unstable. A smaller peak was also observed in the residual fringe signal at 

m ^ .l r a d s ' 1 (or/~0.66Hz, the lower pendulum resonance). In this case the gain in the 
intermediate mass feedback loop was too large in the region of the resonances and 

stability could not be maintained despite the natural damping present in the pendulum. 

Figures 4.18 and 4.19 show the Bode magnitude and phase plots for this system. The 

magnitude plot in Figure 4.18 clearly exhibits the three pendulum resonance peaks. From 

the phase plot of Figure 4.19 one can see that the phase 'jumps' discontinuously between 

the resonances because the test mass feedback loop temporarily dominates at the 

intermediate resonance cô . At frequencies above the upper resonance at (Ojj the test 

mass feedback loop again dominates. The Nyquist plot for this split-feedback loop was 

sketched and is shown in Figure 4.20. This complicated plot shows that the loop is 

indeed unstable since the point (-1,0) lies to the right hand side of the contour 

marked 'A'.
The cross-over frequency of the split-feedback loop was then systematically
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Figures 4.18 & 4.19
Bode magnitude and phase plots o f ( H f i ; + /72G 2) fo r  Type II  split- 
feedback with a relatively 'h igh* frequency cross-over between the two 
feedback loops (see text). Three peaks corresponding to the three coupled 
pendulum resonances are clearly visible in the magnitude plot. From the phase plot one 
can see that the phase jumps discontinuously between the resonances since the test mass 
feedback loop temporarily dominates at the intermediate resonance. At frequencies above 
the upper resonance the test mass feedback bop again dominates.
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Figure 4.20 Sketch o f the Nyquist plot fo r  the Type I I  split-feedback 
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reduced. This was done by increasing the values of the integration capacitors in the extra 

amplifier stages to the intermediate mass (see Figure 4.14) so that the first two integration 

comer frequencies in H j occurred at slightly lower frequencies. The system was 

observed to become more stable, the stability increasing as the cross-over frequency 

decreased. For instance, with two integration capacitors of values C=20p.F the split- 

feedback loop is theoretically stable even for a pendulum with infinitely high Q stages. 

In this situation the cross-over frequency (frequency up to which the gain is increased by 

the extra feedback to the intermediate mass) between the two loops is at -0.1 Hz. 

Figures 4.21 and 4.22 show the Bode magnitude and phase plots for this system. From 

these Bode plots one can see that the lower and upper resonances are almost exactly 

cancelled by the zeros which exist in the test mass feedback loop. In actual fact the 

influence of the intermediate mass feedback loop is so small over the region of the 

resonances that the system behaviour is virtually identical to that for the test mass 

feedback loop operating alone. Figure 4.23 shows a sketch of the Nyquist plot for this 

stable system.

Since it is desirable to use very high Q pendulums (Q ~107 or 108 

[Hough et. al. 1989]) in interferometric detectors, it seems likely that this type of split- 

feedback system for the position control of a test mass would have to be operated with 

the cross-over frequency well below the frequency of the lower pendulum resonance in 

order to maintain stability.

4 .6 .4  Electronic Damping of the Intermediate Mass to Ground

By electronically damping the intermediate mass to ground it was hoped that the lower 

(g>i ) and upper pendulum (o)y) resonances could be sufficiently well damped that 

stability could be achieved with a Type II split-feedback loop having a higher cross-over 

(i.e. >0.1Hz).
Root-locus analysis similar to that of Section 3.3 was performed to see how well 

the two resonances could be damped simultaneously by applying feedback signals to the 

intermediate mass. For simplicity the nested system was modelled as a double pendulum 

whose lower mass was given the combined mass of the test and reaction masses of the 

nested system. The closed-loop transfer function was derived for the situation where a 

feedback force of the form F \ —b (xj - xo) was applied to the intermediate mass, where 

b is an 'electronic' damping co-efficient (see Figure 2.2). Here the pendulum is damped
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Figures 4.21 & 4.22

Bode magnitude and phase plots o f ( H f i 2 + H 2G 2) fo r  Type II  split- 
feedback with a relatively 'low' frequency cross-over between the two 

feedback loops (see text). Three peaks corresponding to the three coupled 

pendulum resonances are clearly visible in the magnitude plot. Note however that the 

lower and upper peaks are very close infrequency to zeros. From the phase plot one can 

see that the phase changes due to the lower and upper resonances are cancelled by the 

phase changes due to the zeros. Therefore the behaviour from a frequency just below the 

first resonance onwards is identical to that of the test mass feedback loop (H2G2) (see 

text).
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with respect to the ground, and not inertially as it was in the case considered in 

Section 3.3. However the open-loop transfer function (closed-loop pole behaviour) is 
identical in the two cases.

The pole positions were studied as a function of b (which is determined by both 

the value of damping capacitor used in the feedback electronics and the gain in the 

feedback loop (see Section 2.6.2)). A root-locus plot similar to that of Figure 3.10 was 

obtained where the upper mode at Cfy-S.Srads-1 could be critically damped and the lower 

mode at tu ^ . l r a d s ' 1 (which tended towards the open-loop zero at cox =fi)J~4.7rads-1 

with increasing gain) could be damped to an optimally high level.

Two shadow sensor devices (horizontally displaced along the y-axis) were used to 

sense the position of the intermediate mass (see Figure 4.1). In order to avoid locking the 

position of the intermediate mass to the ground the feedback circuits used were A.C. 

coupled as shown in Figure 4.24. In each damping loop the photodiode calibration was

av /a *  ~ 3.3 v /mm and the coil/magnet transducer calibration was Ax/ a v  ~ 4.5 * 10'2 '""Vv- 
The analysis showed that to achieve optimum damping of the two modes a value of

C~0.3|iF should be used in each circuit giving QL~1 and Qu~0.7.

When the two shadow sensor loops were closed a rotational mode of the pendulum 

about the z-axis at ~1.2Hz (see Figure 4.1) appeared to be excited by the feedback rather 

than damped. If only one loop was closed this resonance could be damped stably. The 

reason why this particular resonance could not be damped by the combined action of the 

two feedback loops is not obvious. It is possible that poor alignment and gain imbalance 

of the shadow sensors caused this instability. However attempts were made to ensure that 

good alignment and balance were achieved. To circumvent this problem the signals from 

the two shadow sensors were summed as shown in Figure 4.24 and the derived signal 

applied to the coils connected in series. By independently varying the gain in each loop 

the peak at ~1.2Hz could be removed from the sensed signal. Figure 4.25 shows the 

output signal from the summed circuit of Figure 4.24 with the loop open and closed. The 

two pendulum resonances at ~0.66Hz and ~1.32Hz are damped to the predicted levels. 

The peak at ~1.4Hz is a coupled "stirring" mode of the pendulum about the z-axis. This 

was damped adequately by the feedback. The amplitude of this resonance could also be 

suppressed by placing constraining wires on the intermediate mass in the y-direction.
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Figure 4.24 The circuit fo r the shadow sensor servos for damping the intermediate 
mass to ground. The boxed areas show how the signals from two such circuits are 
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Figure 4.25 Output signal from  the summed circuit in Figure 4.24 with 

the coils connected and disconnected. The upper trace (open- 

loop) shows the peaks at 0.66Hz (1st pendulum resonance), 132Hz 

(3rd pendulum resonance) and 1.4Hz (coupled "stirring" resonance). 

The lower trace (closed-loop) shows how these peaks are damped by 

the feedback (see text).

The Type II split-feedback was tested once more with the integration capacitors 

having values of C=4.7pF (demonstrated previously to be experimentally unstable). 

With the intermediate mass damped to the ground in the way described above this split- 

feedback system could maintain lock. However if the gain was turned too high the 

closed-loop system was observed to oscillate at the first pendulum resonance 

(<oL~4.1rads1 o r/L~0.66Hz) since this mode could not be critically damped by the 

shadow sensor transducers damping the intermediate mass. The additional position 

control feedback to the intermediate mass in this case increases the open-loop gain up to a 

frequency somewhere in the region of the pendulum resonances (though it is difficult to 

define a cross-over frequency precisely). When the electronic damping was removed the 

Type II control loop was observed to become unstable as demonstrated previously.
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4 .6 .5  Conclusions

The Type II split-feedback system was demonstrated to operate satisfactorily if the cross­

over frequency between the two feedback loops (the frequency up to which the 

intermediate mass feedback loop increases the overall open-loop gain) is at a frequency 

much lower than the first pendulum resonance e.g. -0.1 Hz. A higher cross-over 

frequency can be achieved by electronically damping the intermediate mass to the ground 

using shadow sensor devices. However it seems unlikely that this type of split-feedback 

system could ever be operated with a cross-over frequency any higher than the frequency 

of the lowest pendulum resonance. Nevertheless since the transfer function of the 

pendulum is unity below the first pendulum resonance and seismic noise is larger at the 

low frequencies (see Chapter 2), the largest feedback signals will be associated with 

correcting for these low frequency motions. By feeding back these low frequency 

position control signals to the intermediate mass, the potential for introducing higher 

frequency displacement noise to the test mass due to non-linear conversion in the 

feedback electronics or tranducers is reduced.
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Chapter 5

Finite Element Analysis of the 
Nested Double Pendulum

5.1 Introduction

The degree of seismic isolation obtainable using the prototype nested double pendulum 

system described in Chapter 4 can be predicted using simple theory. However only an 

approximate estimate of the transmissibility could be made by multiplying the 

transmissibilities of the individual components. The precise figure could not be evaluated 

since cross-coupling between the different directions will inevitably take place and 

vibrations can be transmitted to the test mass via several routes. This effect is very 

important and has the consequence that in addition to a high level of isolation in the 

horizontal direction a high level of isolation in the vertical direction is likely to be 

required. Furthermore there could be some non-linear coupling between the various 

components of the system. The effects of the coupling of internal and external structural 

resonances to the test mass may also be significant.

A more realistic assessment of the passive isolation achievable with the nested 

double pendulum suspension system can be made using the finite element method of 

structural analysis. This yields information on the effects of internal structural resonances 

and illustrates the methods by which the various modes could couple giving a better 

understanding of the system behaviour.
The finite element program MSC/NASTRAN was used to determine the eigenvalues 

of the nested double pendulum and to predict the levels of horizontal and vertical isolation 

achievable. The horizontal transmissibility was then measured experimentally to compare 

with the theoretical prediction.
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5.2 The Finite Element Method

This is a method of structural analysis in which a mathematical model of a real world 
structure is generated by dividing the structure into a finite number of small regions called 

elements. Grid points are generated to connect each element to its surrounding 

neighbours at a finite number of locations. Interactions between the neighbouring 

elements are then earned out by the forces exerted at the common grid points. In 

NASTRAN each grid point is assigned six degrees of freedom (3 translations and 3 

rotations). The analyst defines constraints on the degrees of freedom of the various grid 

points as required. The manuals [Msc/Nastran 1983] and [Msc/Nastran 1985] contain 
further information.

5.3 Model Description

A schematic diagram of the nested pendulum is shown in Chapter 4, Figure 4.1. The 

finite element mesh generated to represent the system is shown in Figure 5.1. The 

positions of the suspension wires have been superimposed here by hand (dotted lines). In 

order to generate the mesh of grid points a reference origin was chosen at the intersection 

of the vertical symmetry axis of the pendulum with the rectangular support plate. This 

origin was in fact slightly offset in the y-direction from the centre of mass of the support 

plate. Plate elements were used throughout the model to represent the aluminium top 

support plate, the intermediate, test and surrounding reaction (box-shaped) mass. Two- 

dimensional elements were used since this reduces the complexity involved in the model 

generation and in the interpretation of the results obtained. The bar shaped intermediate 

mass and test mass were modelled as plates of identical cross-sectional area in the x-y 

plane and identical mass to their real-life counterparts. Triangular plate elements (in the y- 

z plane) were connected to the sides of the box-shaped reaction mass to represent the 

triangular platelets used to mount the wire breakaway points for the reaction mass 

suspension (see Figure 5.1).
Typically high Q test masses are used in interferometric detectors (internal Q~106 

or higher) [Hough et. al. 1989]. However the support structure (e.g. the top support 

plate) would be designed to have low internal Q to reduce the amplitude of its resonant 

motions since these motions might couple to the suspended masses. Each of the masses 

in the model were assigned an internal Q of 20 since this would be sufficiently large to
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Figure 5.1 Finite element mesh fo r  the nested double pendulum. The  

horizontal test direction is along the x-axis. The positions of the 

suspension wires have been superimposed (dotted lines) and the wire 

breakaway points have been circled. The intermediate mass is suspended 

with double-loops (marked I); the box-shaped reaction mass with 

double-loops (marked R), and the enclosed test mass with a single-loop 

(marked T).

enable observation of any coupling effects which took place.

The model was constrained to move only in two dimensions (the x-z plane) since 

we are primarily concerned with the level of isolation obtained in the horizontal test 

direction along the x-axis (see Figure 5.1).
Horizontal spring elements were used in the model to represent the horizontal 

restoring forces acting on the suspended masses when they are displaced sideways from 

their equilibrium positions. These were connected between the upper and lower
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breakaway points of each suspension wire. The restoring forces acting in the vertical 

direction due to the stiffness of the suspension wires were modelled similarly using 

vertical spring elements connecting the breakaway points. Damping elements were 

connected in parallel with each of these horizontal and vertical spring elements to give 

each stage of pendulum suspension a Note that in representing the suspension

wires in this way the presence of the wire violin resonances were not accounted for. The 

effect that such resonances have on the isolation properties of a pendulum was discussed 
in Section 2.3.3.

In the model the test mass was constrained in rotations about the y-axis since the 

two breakaway points of the single loop suspension wire were collinear with the centre of 

mass of the test mass in the model and therefore there was no restoring force in this 

degree of freedom. In the real system a small vertical offset of the breakaway points and 

centre of mass would give rise to the restoring force. In the nested pendulum the tilting 

motion of the test mass is damped electronically using shadow sensor feedback systems 

(see Chapter 4).

5.4 Modes of the Suspension System

Real eigenvalue analysis [Msc/Nastran 1983] was carried out to compute the natural 

resonant frequencies of the modelled system. To enable identification, the mode shapes 

were viewed using the graphics package FEMVIEW.

The lowest frequency modes of the system were the three fundamental horizontal 

pendulum modes at 0.64Hz, 0.73Hz and 1.32Hz. These compare well with the values 

derived from the equations of motion i.e. 0.65Hz, 0.75Hz and 1.32Hz (Section 4.3, 

Figure 4.5). Three normal modes involving vertical motion of the suspended masses 

were observed at 14.3Hz, 21.4Hz and 33.5Hz. However only two normal modes were 

observed for rotation of the masses about the y -axis (18.6Hz and 32.2Hz) since the test 

mass was constrained in this degree of freedom in the model. Similarly only two normal 

modes involving rotation of the masses about the x-axis were observed (24.6Hz and 

40.5Hz). This was a consequence of the side plates of the box in the x-z plane being 

constrained not to move in the y-direction. No information on the modes involving 

rotational motions of the masses about the z-axis was obtained since the model was 

constrained only to move in the x-z plane.
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Internal resonances of the top support plate were observed at higher frequencies. 

The first few of these were the drum-like modes involving flexing of the plate in the 

vertical direction (z-axis) e.g. the first drum mode was at 256Hz. The first shear mode 

of the top plate (in the x-y plane) was at a much higher frequency i.e. 2120Hz.

The lowest frequency mode of the box-shaped reaction mass occurred at 1490Hz 

and involved oscillation of the opposite sides of the box in phase. Note however that in 

the real system there was a plate across the top of the box on which the tilt control coils 

were mounted. This was not included in the model. In reality this mode would occur at a 

slightly different frequency than the model suggests. A whole series of modes involving 

complicated motions of the box sides were observed at higher frequencies.

5.5 Frequency Response Analyses

The response of the pendulum to horizontal and vertical excitation at the comers of the 

top support plate (see Figure 5.1) was analysed to predict the level of isolation achievable 

in each dimension.

5.5 .1  Horizontal Frequency Response

Figure 5.2 shows the transmissibility curves to the centres of mass of the intermediate 

and test masses in the horizontal direction (x-axis). Above the resonances the horizontal 

transmissibility to the intermediate mass decreases as 12dB/octave or ^ 2 as one would 

expect for one stage of high Q pendulum suspension. Above the resonances the 

horizontal transmissibility to the test mass decreases as 24dB/octave or ^  as one would 

predict for a high Q double pendulum suspension.
The transfer function from motion of the suspension point to motion of the test 

mass can be approximated to that of a simple "two-stage" double pendulum (see 

equation (2.18)). Substituting for the natural frequency of the upper stage (f;=0.94Hz 

or fi)7=5.9rads_1) and lower stage (^=0.75Hz or o ^ ^ r a d s '1) (see Section 4.3) and 

using ntj=llK g (the intermediate mass) and m2=5.6Kg (the combined mass of the test 

and reaction mass) (see Figure 4.1) this formula yielded a value for the transmissibility at 

100Hz of T-7.4 x 10'9. This is in fact identical to the value derived in the finite element 

analysis.
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Figure 5.2 Horizontal transmissibility curves from the support plate to 

the centres o f mass o f the intermediate and test masses. The 

shear modes of the support plate give rise to peaks in both curves.

Notice however that at higher frequencies the isolation at both stages of the 

pendulum is degraded by coupling of the shear resonances of the support plate in the x-y 

plane. Figure 5.3 is a table summarising the first few modes giving rise to peaks in the 

horizontal transmissibility curve for the test mass. Sketches of the shear modes of the 

plate which couple to the pendulum are given in this table. The first of these shear modes 

is at a frequency of -2.1 kHz. Note that the second shear mode at ~4.3kHz gives rise to a 

relatively small peak in the transmissibility curve. The coupling of this mode directly to 

the horizontal direction could probably be avoided if the intermediate mass was 

suspended directly below the centre of mass of the support plate.
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frequency (Hz) brief description

0.64 1st horizontal pendulum mode (see Figure 4.5)

0.73 2nd horizontal pendulum mode (see Figure 4.5)

1.32 3rd horizontal pendulum mode (see Figure 4.5)

2120 1st shear mode of support plate y|__x Q

4310 2nd shear mode of support plate y|_x

5930 3rd shear mode of support plate y|_x

Figure 5.3 The firs t few  modes giving rise to peaks in the horizontal 

transmissibility curve for the test mass. Rough sketches of the 

shear modes of the plate in the x-y plane are shown.

In Figure 5.2 it is interesting to see that the gradients of the transmissibility curves 

appear to increase above the shear resonances indicating that the plate is providing some 

extra horizontal isolation above its resonant frequencies. However these resonance peaks 

occur in an important frequency region for the detection of gravitational waves and to 

avoid such large motions of the test mass at these frequencies the support plate for the 

pendulum should be critically damped.

5.5 .2  Vertical Frequency Response

Figure 5.4 shows the transmissibility curves to the centre of mass of the test and 

intermediate masses in the vertical direction (z-axis). Above the resonances the vertical 

transmissibility to the intermediate mass decreases at 12dB/octave or ^2 as expected for 

a single pendulum. The vertical transmissibility to the test mass decreases as 24dB/octave 

or above the pendulum resonances as one would expect for a double pendulum 

suspension.
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Figure 5.4 Vertical transmissibility curves from the support plate to the 

centres o f mass o f the intermediate and test masses. The drum 

modes of the support plate give rise to peaks in both curves.

Considering the system to be a simple two-stage double pendulum the vertical 

transmissibility to the test mass is approximately given by:

where f j , f 2 are the natural vertical frequencies of the upper and lower (test mass) 

stages respectively. These were calculated to be /)=22.3Hz (or cfy=140rads_1) and 

/ 2=16.8Hz (or fi)2=105rads'1) giving 7-1.4 xlO'3 at 100Hz. The finite element 

analysis yielded a value of 7=1.8 * 10'3. The slight discrepancy is probably due to the 

fact that the reaction stage has a slightly different natural frequency from the test stage 

since the loading conditions on the suspension wires are different in each case.
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From Figure 5.4 one can see that the isolation of both masses at higher frequencies 

is degraded by coupling of the drum modes of the support plate, the lowest of these 

occurring at ~260Hz. Notice that the gradients of the transmissibility curves appear to 

increase above each resonance indicating that the plate is providing some extra vertical 

isolation above its drum resonant frequencies. However these resonance peaks occur in 

an important frequency region for the detection of gravitational waves. Since it is possible 

that vertical motion of the test mass can cross-couple to horizontal motion it is desirable to 

avoid such large motions of the test mass at these frequencies. The support plate for the 

pendulum should therefore be critically damped if possible.

Figure 5.5 is a table summarising the first few modes giving rise to large vertical 

motions of the centre of mass of the test mass.

frequency (Hz) brief description

14.3 1st vertical pendulum mode

21.4 2nd vertical pendulum mode

33.5 3rd vertical pendulum mode

256 1st drum mode of support plate y | _ x

812 3rd dram mode of support plate y | _ x Q

1580 5th dram mode of support plate y |_  ̂ ^

Figure 5.5 The first few modes giving rise to peaks in the vertical 
transmissibility curve for the test mass. Rough sketches of the 

drum modes of the plate in the x-y plane are shown.

5 .5 .5  Conclusions

At 100Hz, the isolation level in both dimensions appears to be as simple theory would 

suggest. However at higher frequencies this analysis has shown that the internal modes 

of the support plate can couple to motions of the centre of mass of the test mass.
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If the pendulum were suspended directly below the centre of mass of the support 
plate one could probably remove the direct coupling of certain shear modes to the 

horizontal direction (and certain drum modes to the vertical direction). However these 

shear modes would give rise to rotational motions of the mass about the z-axis which can 

non-linearly convert to horizontal motion at the mirrored surface of the test mass. The 

effects of coupling can be reduced if the support plate for the pendulum system is damped 

to a high level or is designed such that its lowest internal resonant frequency lies outwith 
the detection frequency range (say f int ~ 5kHz or more).

The box shaped reaction mass in this system has a whole series of complicated 

internal modes at frequencies above about 1.5kHz. These modes could couple 

displacement noise to the test mass via the coil/magnet transducers if the unity gain 

frequency of the position control feedback loop were at a frequency approaching this 

lowest modal frequency. This problem could be alleviated by reinforcing the plates 

making up the reaction mass so that the lowest mode lay at a frequency outwith the 

frequency range of interest.

The isolation system used in an interferometric gravitational wave detector should 

be efficient enough to allow the photon noise limited design sensitivity for burst sources 

i.e. a limit to the sensitivity due to seismic noise of /z~10'23, or better, for pulses at 

100Hz [Hough et. al. 1989]. It was shown in Chapter 2 that the seismic displacement 

spectrum is approximately described by 1̂ -  "/VhT in both the horizontal and vertical 

directions in a bandwidth from about 10Hz to a kilohertz [Hough et. al. 1986]. Using 

the horizontal transmissibility value given in Figure 5.2 for the double pendulum 

considered here, it can be shown that the resulting horizontal motion of the test mass in a 

bandwidth of f/2 at 100Hz will be dx~ 1.1 * 10'18m. Assuming that the motions of the 

test masses in the detector are uncorrelated, the limiting gravitational wave amplitude 

from the residual horizontal motion (with a detector arm length of L=3km) is given by

h ~ 2dx „ 7 3 x IQ-22. (5.2)
L

This is approaching the limit required.
Vertical motions transmitted to the test mass due to vertical seismic motions can 

cross-couple to the horizontal direction. Del Fabbro and colleagues have suggested a 

figure of 1% for this conversion based on experimental investigations earned out on their
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•super-attenuator1 [Del Fabbro et. u/.1988b]. Using the vertical transmissibility value 

given in Figure 5.4 for the double pendulum considered here, it can be shown that the 

resulting vertical motion of the test mass in a bandwidth of //2 at 100Hz will be 

dz~ 2.6 x 10 m. Taking 1% of this value, the limiting gravitational wave amplitude 
from the residual vertical motion (with a detector arm length of 3km) is

. 2 (O.Olxfife)h~  -----^-1.7x10-18 (5.3)

(assuming that the motions of the test masses in the detector are uncorrelated). This value 

is more than a factor of 105 worse than the design sensitivity.

To meet the desired isolation requirements it is proposed to use five-layer vibration 

isolation stacks in conjunction with the two-stage pendulum suspensions for the test 

masses in the proposed 3km (GEO) detector [Hough et. al. 1989]. Chapter 6 presents 

some theoretical investigations carried out on the limitations to the performance of such 

multi-layer stacks. Air springs will also be used in the 3km detector to connect the stacks 

to the ground (these give an attenuation of -IO2 in each dimension at frequencies above 

~50Hz).

There are obvious limitations to the conclusions which can be drawn from these 

analyses. Since the resulting displacements of the centres of mass of the suspended 

masses were observed and the pendulum was modelled in such a way that each mass was 

suspended symmetrically about its centre of mass, the effects of the coupling of rotational 

modes of the pendulum were not apparent here. For instance, rotational motions of the 

test mass about the z-axis can give rise horizontal displacements at the mirrored surface 

leading to a reduction in the detector sensitivity. However the rotational motions of the 

test mass about the z and y-axes can be damped and controlled using feedback loops such 

as those described in Chapter 4. Cross-coupling effects (both linear and non-linear) due 

to asymmetries of the system have not been investigated fully here and these need to be 

taken into account. The effects of the internal resonances of the pendulum masses and the 

violin resonances of the suspension wires have not been accounted for in this model. The 

effects of the coupling of ground tilting motions to the pendulum have not been 

investigated here. In reality these might couple strongly to horizontal motion of the test 

mass if the intermediate mass is suspended using double wire loops as is the case for the 

nested pendulum system.
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5.6 Experimentally Measured Horizontal Response

The horizontal frequency response of the pendulum was measured to compare it with the 

predicted response. The support plate (which was connected to the support frame via 

isolation stacks) was driven in the horizontal (x) direction (see Figure 5.1) over a range 

of frequencies using two high power loudspeaker cones mounted rigidly on an adjacent 

pillar. The loudspeakers were enclosed by a lead/rubber foam box to provide acoustic 

shielding. The displacement of the driven plate was evaluated at the various frequencies 

using the value of acceleration measured with a commercial accelerometer mounted on the 

edge of the plate. The corresponding displacement of the suspended test mass was 

monitored using the position control feedback loop described in previous chapters (see 

Section 2.6). The feedback loop was used to lock the position of the test mass to the 

reference mirror of the Michelson interferometer (see Figure 2.7). The residual 

displacement of the test mass at a given frequency was evaluated by observing the 

feedback signal to the coils (the coil calibration in terms of force per volt was

~ 1.7 x 1 O'2 N/v). It was assumed that the reference mirror of the interferometer was 
relatively stationary over the range of frequencies considered. Note that the shadow 

sensor loops for damping the test mass in tilt and rotation and the loops for damping the 

reaction mass to the ground were disconnected whilst these measurements were made.

Figure 5.6 is a graph showing the measured horizontal response compared to that 

predicted using the finite element model. The isolation of the test mass above a few hertz 

appears to be much worse than predicted though it does appear to improve towards 

higher frequencies. The oil pots for damping the tilting motions of the support plate, 

intermediate and reaction masses were removed to see if motions of the support 

framework were coupling to the pendulum masses via the damping pots. However no 

improvement in the isolation was observed.
To test whether the sensitivity of the interferometer was being limited by acoustic or 

mechanical pick-up from the driving signal a test mirror was mounted on the rigid base of 

the interferometer in front of the suspended test mass. The auxiliary feedback loop (refer 

to Section 2.6) was then used to lock the position of the reference mirror to the new test 

mirror. By observation of the feedback signal to the PZT and the acceleration of the 

driven plate, the overall magnitude of the transfer function from the driven plate to the 

interferometer (via all possible routes) could be calculated. At 115Hz the magnitude of
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the transfer function was measured to be of the order of ~ 5 * IO'3. It was also measured 

using an accelerometer mounted on the rigid base of the interferometer and found to be

~ 2 * 10 ~85Hz. Note that these values are of similar magnitude to those shown in
Figure 5.6 for the measured transfer function from the driven plate to the suspended test 

mass. This means that the sensitivity of the interferometer was indeed being 

compromised by mechanical or acoustical coupling to the driving signal and the results 

shown in Figure 5.6 are therefore not a measurement of the transfer function of the 

pendulum via the suspension wires. Acoustic coupling of the drive signal to the 

interferometer was possible since the system was not under vacuum. Mechanical 

coupling between the driven plate and the interferometer was possible since both the 

support framework and the interferometer were mounted on the same bench.

An alternative set of frequency response measurements was made using an 

accelerometer to monitor the residual displacement of the reaction mass (the test mass was 

inaccessible due to the presence of the surrounding reaction mass). Both of the 

accelerometers used here were coated in lead/rubber foam to provide some acoustic 

isolation. Figure 5.7 shows the transmissibility curve measured in air. The curve is 

similar in magnitude to that obtained using the interferometer.

It was suspected that the vibrations of the support frame induced by the driven 

support plate might have been coupling either mechanically (via the thin coiled wires 

supplying current to the control coils which were connected to the reaction mass via the 

intermediate mass) or acoustically to the suspended masses reducing the isolation. Since 

it would have been impractical to place the whole system under vacuum, a polythene tent 

was constructed around the system and filled with helium gas (which has a lower density 

than air), Whilst the tent was being filled with helium gas the test signal from a 

loudspeaker was monitored using a microphone. The test signal measured by the 

microphone was observed to decrease by a factor of ~2.2 at ~90Hz in the helium 

environment.
The horizontal response curve measured in helium is shown in Figure 5.7. The 

isolation appears to have improved by a factor of a few up to about 60Hz. This suggests 

that acoustic coupling of some sort was indeed taking place in this frequency region. It is 

possible that mechanical resonances of the support frame were acoustically coupling to 

the pendulum masses in this frequency region. From about 60Hz to about 100Hz there is 

no obvious difference between the measurements taken in air and in helium. This
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suggests that a negligibly small level of acoustic coupling was taking place in this 

frequency region. Note that this is the frequency region where the isolation appears to 
have begun to improve. This is consistent with the deduction that no acoustic coupling 

was taking place in this region. Both curves shown in Figure 5.7 tend to flatten at about 

100Hz with peaks appearing at various higher frequencies (possibly due to wire violin 

resonances). This flattening is probably due to direct acoustic coupling between the 

loudspeaker drivers and the pendulum masses/accelerometers. The helium data may be of 

a slightly lower magnitude than the air data in this region but there is not a very 

significant difference.

It is interesting to note that some of the peaks observed in the transmissibility 

curves shown in Figures 5.6 and 5.7 are at the same frequencies as those at which the 

type I split feedback system was found to become unstable (e.g. at ~12Hz, ~24Hz and 

~45Hz). This suggests that the peaks in the transmissibility curves were due to the 

coupling of resonances of the stacks or support frame to the pendulum in some way.

In conclusion, it appears that resonances of the support system (i.e. support frame 

or stacks) were coupling either acoustically directly through the air (or helium) to the 

pendulum or mechanically to the pendulum and limiting the isolation obtained. In order to 

properly assess the isolation performance of the pendulum the measurements should be 

made under vacuum. It would also be better to use a more massive structure to support 

the pendulum to reduce the possibility of coupling of the resonances of the structure to 

the pendulum.
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Chapter 6

An Investigation of the Performance 
of Vibration Isolation Stacks Using 
the Finite Element Method

6.1 Introduction

In Earth-bome laser interferometric gravitational wave detectors the continuous 

background of seismic motions at the Earth’s surface can lead to displacement noise of 

the test masses and other optical components. The magnitude of this noise can be reduced 

to such a level that it does not limit the sensitivity of the detector if a vibration isolation 

system of high enough performance is used to connect the test masses and other vital 

components to the Earth.

It is particularly important that the designed isolation system can provide a high 

degree of horizontal isolation. However the seismic background against which we are 

trying to provide isolation produces not only horizontal motions of the Earth's surface but 

also vertical and rotational motions. These rotational motions can be categorized as those 

involving rotation about an axis perpendicular to the Earth's surface and those involving 

rotation about axes coplanar with the Earth's surface (more commonly referred to as 

ground tilts). Therefore the isolation system must also provide adequate isolation to 

vertical and rotational ground motions since cross-coupling effects of a significant 

magnitude will possibly take place.
Vibration isolation stacks are widely used as part of the isolation systems for 

gravitational wave detectors. These multiple stacked arrangements consisting of 

alternating layers of a heavy metal and an elastic material such as rubber provide isolation 

from horizontal, vertical and rotational motions. They are most commonly used in 

conjunction with pendulum suspensions for the test masses and are placed somewhere 

between the ground and the top of the pendulum.
Using simple dynamical theory the transmissibility of unidirectional motion at the
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base of a stack to the corresponding displacement at the centre of mass of the top plate of 

the stack as a function of frequency can be readily estimated (refer to Section 2.3.4). 

However this type of analysis where the stack system is treated as a simple system of 

point masses connected with damped springs does not account for the possibility of 

cross-coupling effects in the three dimensions. It is therefore important to gain some 

insight into the magnitude of cross-coupling of vertical and rotational motion to horizontal 

motion in vibration isolation stacks by some other means. This would enable a realistic 

assessment of the magnitude of horizontal noise at the top of any pendulum system 

suspended from the top of the stack. Furthermore, information on the resulting rotation 

of the top plate of the stack about its centre of mass induced by ground tilts or other 

means is important for any situation where the pendulum suspension point is not 

positioned exactly at the centre of mass of the plate. It is also of interest to investigate the 

ramifications of these rotational, horizontal and vertical ground motions for the situation 

where there is an imbalance in the stiffness of the rubber on each side of the stack.

In order to investigate some of these effects a finite element model representing an 

aluminium plate supported by four rubber comer pieces was generated and the finite 

element program MSC/NASTRAN was used to carry out various analyses. For a 

description of the finite element method refer to Section 5.2. The model was based on the 

design of the suspension support plate of the nested double pendulum suspension system 

discussed in Chapter 4. By choosing these particular dimensions the information obtained 

here could then be used to infer any isolation degradation which might occur in the nested 

pendulum system due to both cross-coupling mechanisms in the stack system and internal 

resonances in the plate.
A series of initial investigations were conducted using a one-layer stack model, both 

with homogeneous rubber elements and with a 10% imbalance between the stiffness of 

the rubber on either side of the stack. The first of these were eigenvalue analyses of the 

free undamped vibrations of the stack to predict the eigenfrequencies and mode shapes 

(Section 6.4). The next stage was to look at the transmissibility of horizontal motion at 

the base of the stack to horizontal motion at the centre of mass of the supported plate, and 

similarly for vertical and tilting motion (Direct Transmissibility Investigations, 

Section 6.5). Finally coupled transmission effects were investigated where the base of 

the stack was driven in the horizontal, vertical or rotational (tilting) sense and the 

resulting motions of the centre of mass of the plate were observed in the complementary 

senses (Indirect Transmissibility Investigations, Section 6.6).
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Additionally the effects of varying the intrinsic quality factor of the supported plate 

were investigated in each of the above analyses to observe any reduction in the isolation 

achieved at frequencies on and above the resonant frequencies of the plate. Furthermore 

since stacks are seldom used in one layer form in gravitational wave detectors the above 

analyses were extended to a two layer stack system (Sections 6.7 and 6.8). Information 

could then be gained on the critical transmission mechanisms between neighbouring 

layers of stack and the effects of excitation and cross-coupling of the various stack modes 

could be observed. From the information obtained in these analyses one could then infer 

the consequences for a five-layer stack system which is typically the size used in laser 
interferometric gravitational radiation detectors (refer to Section 6.9).

6.2 Generation of the Finite Element Model

It was decided to represent the three-dimensional system with what was essentially a 

'two-dimensional' cross-sectional slice through it in the x-z plane (see Figure 6.1). This 

was done since using only two dimensional finite elements (where the third dimension is 

compressed) in general reduces the overall complexity involved in the model generation 

and in the interpretation of the results obtained. In modelling the stack in this way, the 

investigations involving rotational motion were restricted to those where the axis of 

rotation was parallel to the y-axis (tilting motions).

One way of modelling the isolation stack would be to use the simple spring/damper 

model shown in Figure 6.2. However in order to reproduce the physical system more 

accurately the rubber supports were instead modelled as extended rubber meshes. The 

structure was discretized by generating a mesh of grid points (nodes) and then by 

connecting these nodes with quadrilateral elements having the desired physical properties 

(see Figure 6.3). Some of the physical properties of the materials used in the model had 

to be scaled so that the two dimensional finite element model exhibited behaviour 

analogous to its three dimensional counterpart.
'Neoprene' is a synthetic rubber used extensively in the ten metre prototype 

gravitational radiation detector at Glasgow University (refer to Chapter 1) as well as in 

the prototype nested double pendulum isolation system (refer to Chapter 4). The 

horizontal and vertical resonant frequencies (fh and f v) of the plate (mass m) on four 

pieces of 'neoprene' rubber were determined experimentally. Corresponding quality
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Figure 6.1 Two-dimensional representation o f a three-dimensional 
stack. The model is constrained to move only in the x-z plane.

spring and damping elements

aluminium plate

ground

Figure 6.2 Spring/damper model fo r  vibration isolation stack. The plate 
is connected to the ground via horizontal and vertical spring/damping 
elements.



factors (Qh and Q v) were assumed * The value of f h was used to calculate the 
horizontal stiffness (k$  of the loaded rubber using the equation

kh =m (2nfh)2 . (6 .1 )

Since the finite element model is a thin slice through the real system, a fictitious density 

had to be assigned to the supported aluminium plate to give the correct loading conditions 

per unit area of rubber support. Accordingly the shear modulus (G) and the Young's 

modulus (E) of the aluminium had to be scaled up by the same factor as the density in 

order to maintain the stiffness properties of the plate. The damping of the internal modes 

of the plate was controlled using a 'structural element damping coefficient' facility in the 

NASTRAN package [MSC/Nastran 1983].

In a similar way since one slice-like rubber support in the model represents two 

block-like supports in the real system it was necessary to scale the moduli of the rubber to 

give the stack realistic stiffness properties. The shear modulus of the rubber was 

determined using the equation

h = height of the rubber supports 

A = total top surface area of the rubber

and was scaled appropriately.
There is approximately no volume change when rubber undergoes tension or 

compression [Snowdon 1979] hence

This is the largest value for v  that is allowable in the n a stra n  data card describing the 

material properties of the rubber, since any value larger than 0.5 implies that the material 

has increased in volume under compression. Consequently the value of the Young s 

modulus for the rubber was calculated by the finite element program according to the

relationship [Snowdon 1979]:

(6.2)

where,

Poissoris ratio v  = wrfactflejtrain _ 0 5 
linear strain

(6.3)

£  = 2G (l + v) (6.4)

Refer to Chapter 2, Section 2.3.4.
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giving £  = 3G (6.5)

and hence f v = ^ f h - (6.6)

It is important to note that the ratio between the vertical and horizontal resonant 

frequencies of stacks is typically larger than V3 as a consequence of the effects of loading 

on the rubber e.g. a ratio of -2.4 was observed experimentally. When loaded, the 

stiffness in each dimension increases by a varying amount depending on the load applied 

and the composition and shape of the rubber supports. This illustrates one of the 

disadvantages of using meshes to represent the rubber supports since the upper limit to 

the size of f v was predetermined by the maximum allowed value of v. By the same 

argument the modelled frequency of the tilting resonance will also be lower by the same 
factor.

A structural damping coefficient was assigned to the rubber so that the internal 

modes of the rubber supports were damped to give an internal Q of ~ 5 , this being a 

typical value [Greenhalgh 1989]. However this internal damping did not provide the 

viscous damping for the fundamental stack resonances. This was implemented by 

connecting the nodes at the bases and tops of the rubber supports with orthogonally 

connected^ damping elements in the horizontal and vertical directions (see Figure 6.4).

The size of the damping factor b/, was established using knowledge of the quality 

factor Qh of the resonance peak (angular frequency and the equation

The size of the damping factor b v was calculated in a similar way using the 

corresponding values for Qv and (Dv. Note that the value of bv for the vertically 

connected damping elements (see Figure 6.4) determines the amount of damping for both 

the vertical and the tilting modes of the stack. It can be shown by deriving the rotational

t  The horizontal and vertical damping elements were connected orthogonally using a massless 'fictitious 
node'. Using 'multipoint constraints' this node was instructed to follow the vertical motions of the 
horizontal element and the horizontal motions of the vertical element. In this way the levels of damping 
in the two directions are independently defined (refer to Appendix B).

(6.7)
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aluminium plate

X

rubber supports

Figure 6.3 Finite element mesh model o f vibration isolation stack. The 
model is divided into a number of elements having the prescribed 
physical properties.

node

vertical damping element

rubbei support

fictitious node

base nodeshorizontal damping element

Figure 6.4 Damping elements connected across rubber supports. A
fictitious node is used to connect the two damping elements 
orthogonally. These provide damping of the supported plate to the 
ground in both the horizontal and vertical directions.



equation of motion for the one-layer stack system modelled here that:

bt ~ 3 bv (6.8)

For reference a summary of the physical properties of the modelled system is shown in 
Figure 6.5.

Despite the approximate nature of this model it incorporates the essential properties 

of the observed one-layer system and should give a reasonable indication of the cross- 
coupling mechanisms which take place in vibration isolation stacks.

6.3 Methods of Analysis

Eigenvalue analyses were carried out on the various models described in Section 6.1 to 

compute the free vibrational modes in each case. These analyses not only eased the 

interpretation of the frequency response analyses that followed but also provided a way 

of choosing the frequencies of interest at which to sample, and checking that the mesh 

had been correctly generated. The various models studied are illustrated in Figure 6.6.

The horizontal to horizontal frequency response analyses for each model were 

executed by driving the base nodes of the rubber supports (see Figure 6.4) sinusoidally 

in the horizontal direction with unit amplitude displacement at all frequencies in the range 

considered. Similarly in the vertical to vertical frequency response analyses the base 

nodes were driven with unit vertical input. In each case the resulting amplitude of motion 

of the centre of masses of the supported plates in the appropriate directions were 

observed. When investigating the rotational isolation behaviour however the base nodes 

were driven in a stepped manner with reference to a unit vertical input at the end nodes of 

the base of the rubber supports and with consecutively decreasing displacement drive 

towards the centre of the plate as illustrated in Figure 6.7. For each plate the relative 

vertical displacement of an end node and the centre of mass node was observed. This 

value was then compared to the unit amplitude displacement of the driven end nodes at 

the base of the rubber supports to give a value for the transmissibility. In evaluating the 

transmissibility in this way it was assumed that the plates were perfectly rigid at the 

frequencies considered. This assumption becomes invalid at the modal frequencies of the 

plates. However the eigenvalue analyses conducted prior to this yield information on the

frequencies at which these modes occur.
Investigations into the cross-coupling of tilting ground motion to horizontal and

120



THREE-DIMENSIONAL
STACK

23.9cm

67567.5cn^^

2.54cm

0-635cm

1cm / r  1cm

TWO-DIMENSIONAL
MODEL

0.1cm (other dimensions as before)

° ^ t3!

aluminium plate

mass (m) = ll.IK g mass (m) = ll.IK g

density (p)=2.7xl03Kgnr3 density (p')=1.8xl06Kgm-3

shear modulus (G)=2.8xl010Nnr2 shear modulus (G')=1.9xl013Nnr2

Young's modulus (£)=7.0xl010Nnr2 Young's modulus (£')=4.7xl013Nnr2

Poisson's ratio ( V) = 0.27 Poisson's ratio ( v) = 0.27

internal Q = 0.5 or 20 internal Q = 0.5 or 20

rubber supports

density (p)=l.l xl03Kgnr3 t density (p)=l.l xl03Kgnr3

shear modulus (G)=3.6xl05Nnr2 shear modulus (G')=7.3xl06Nnr2

♦Young's modulus (E)=l.l xl06Nnr2 * Young's modulus (£')=2.2xl07Nnr2

Poisson's ratio ( v) = 0.5 Poisson's ratio ( v) = 0.5

internal Q = 5 internal Q = 5

KEY

t  this parameter was unsealed (see text Section 6.4)

* determined using the value of the shear modulus and the Poisson ratio (see Section 6.2)

Figure 6.5 Summary table o f the parameters used in the model 
compared to the three-dimensional system.



ONE-LAYER STACK MODEL

balanced rubber imbalanced rubber

TWO-LAYER STACK MODEL

balanced rubber symmetrically imbalanced rubber

10% less stiff than

asymmetrically imbalanced rubber

Figure 6.6 The various stack systems investigated.



vertical motion of the centres of mass of the plates were carried out using the same 

stepped driving mechanism described above. The amplitude of the horizontal or vertical 

motion of the centres of mass of the plates were compared to the unit amplitude 

displacement of the driven end nodes to give a value for the transmissibility in each case.

In the analyses of the remaining cross-coupling effects, unit vertical or horizontal 

input at the driven base nodes was used and the orthogonal directional components at the 

centre of mass nodes of the plates were observed. The amplitude of rotational motion of 

the plates about their centres of mass were also evaluated in each case by observing the 
vertical displacements of the end and centre nodes of the plates.

Since the rotational (tilting) motions were measured in this way, the transmissibility 

graphs for cross-couplings involving rotational motion are presented in terms of a 

dimensionless transmissibility. These figures can be easily converted to units of or

^/m where appropriate using the conversion factors which are given beside the relevant 
graphs.

Appendix B gives an example of an input data deck for the horizontal to horizontal 

frequency response analysis of the one layer stack with imbalanced rubber stiffness 

properties.

6.4 Eigenvalue Analyses

The one-layer stack model was constrained to move in the x-z plane. Therefore only two 

of the three possible translational degrees of freedom were accounted for. Similarly only 

one rotational degree of freedom remained unconstrained, this being rotation about the y- 

axis (tilt) (refer to Figure 6.1). As a consequence of these constraints the modelled stack 

had only three fundamental modes of oscillation, namely the horizontal, vertical and 

tilting modes. With rubber of identical stiffness properties on each side of the stack the 

observed fundamental frequencies were at/),~6.7Hz,/y''T3.4Hz and7^22.1 Hz. These 

values agreed reasonably well with those predicted using simple theory (see Figure 6.8).

With the introduction of a second layer the number of eigenvalues increased by a 

factor of two since the number of degrees of freedom of the system increased by a factor 

of two. (It follows that an n-layer stack modelled in this way would have 3n 

eigenvalues). The normal modes of the two-layer stack occurred in pairs of symmetric 

and anti-symmetric modes corresponding to the oscillations in the separate layers being in 

or out of phase with each other.
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nodes at base of 
rubber supports

F ig u re  6 .7  S tepped  driving m echanism  fo r  investigations o f  isolation  
fro m  ground tilt. The nodes are driven with increasing amplitude 
as one moves further out from the position directly below the centre o f  
mass o f the plate. Unit amplitude vertical drive is applied to the end 
nodes. This is used as a reference value fo r  the evaluation o f  
transmissibilities involving rotational input (refer to Section 63).

horizontal mode

ĥoriz ~2G AI h

w h o r i z 2 ~  I G A I m h

vertical mode tilting mode

k y g r f - l E A l  h & ~ 6 E A O I m h

coveri' ~ 2 E A I  m h  ®tiit2 ~ 6 E A / m h

where
k = stiffness of the loaded rubber in the defined direction
G = scaled shear modulus
E  = scaled Young's modulus
A  = area of one rubber surface in the model
h = height of rubber supports
m  = mass of supported plate
O  = angle the plate makes relative to the horizontal

giving
fhoriz  ~  7.3Hz fvert ~ 12.6Hz ftiir  21.7Hz

F ig u re  6.8 The three fundam en ta l modes o f  oscillation o f  a one-layer 
stack. Simple theory is used to predict the frequency at which each 
mode occurs (assuming massless springs and point masses - except 
fo r  the tilting mode where the mass distribution is approximated to 

that o f  a rod).



At much higher frequencies a series of internal modes of the stack components 

occurred, i.e. transverse modes of the aluminium plates or rubber supports. The first 

plate mode observed here (at a frequency of ~ 2.2kHz) was the transverse (bending) 

mode of the plate in the z-direction. With increasing frequency there followed a whole 

series of higher order transverse plate modes. As shown in Section 5.5.2, the presence of 

these transverse plate modes are significant in causing a reduction in the vertical isolation 

of any pendulum suspension supported by the plate. However it should be emphasized 

here that since this is only a two-dimensional model, the observed modes of the plate will 

not be identical to the modes occurring in the real three-dimensional system. The analysis 

of the nested double pendulum system in Chapter 5 yielded more accurate information on 

the first few modes occurring in such a plate (refer to Section 5.4). In this case the first 

mode of the plate was in fact the fundamental drum-like resonance where the centre of the 

plate moved in the vertical direction relative to the comers of the plate. This occurred at 

the much lower frequency of ~260Hz. Using the same philosophy, the computed internal 

modes of the rubber supports would not be identical to those of the real three-dimensional 

system. Furthermore, the density of the rubber in the model was not scaled up to 

compensate for the conversion from three dimensions to two dimensions (a factor of 20 

necessary) and this introduced further discrepancy between the observed modal 

frequencies and the true modal frequencies. In the model the first internal mode for the 

rubber supports was the shear mode in the x-direction. This was at a frequency of 

~6.1kHz. (With the rubber density scaled up it is predicted that this mode would in fact 

lie at a lower frequency of ~1.4kHz.) However, despite the fact that the internal modal 

frequencies of the components of the stack in the model are not identical to those which 

would occur in the real three-dimensional system, it is still reasonable to observe their 

effects on the isolation properties of the stack system with confidence.
To illustrate some of the concepts introduced here the first eight normal modes 

present in the two layer stack with balanced rubber properties are shown in Figure 6.9. 

The dotted lines represent the undisturbed position of the mesh for reference. These 

diagrams were generated using the MSC/NASTRAN graphics facility f e m v ie w .

With a 10% reduction in the stiffness of the rubber on one side of the stack, the 

computed fundamental stack frequencies were slightly lower in value as one would 

expect and the mode shapes were asymmetrical about the y-z plane.
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Symmetric Horizontal Mode 4.1Hz Antisymmetric Horizontal Mode 10.8Hz

J]

W

Symmetric Vertical Mode 8.3Hz Antisymmetric Vertical Mode 21.7Hz

I

p 1
Symmetric Tilting Mode 13.9Hz Antisymmetric Tilting Mode 35.6Hz

Symmetric Bending Mode 2.21kHz Antisymmetric Bending Mode 2.21kHz

Figure 6.9 Modes present in the two-layer stack with balanced rubber 
properties. The modes occur in pairs corresponding to the 
oscillations in the two layers being in or out of phase with each other.



A complete summary of the fundamental frequencies obtained for the various stack 
models analysed is given in Figure 6.10.

6.5 Direct Transmissibility Investigations in a 
One-Layer Stack

Horizontal to Horizontal Transmissibility

The horizontal to horizontal frequency response was analysed in the way described in 

Section 6.3. The base of the stack was driven sinusoidally with unit amplitude and the 

resulting amplitude of horizontal motion of the centre of mass of the plate was observed. 

Figure 6.11 shows the transmissibility curve obtained for the case where the rubber on 

each side of the stack had identical stiffness properties.

Below the horizontal resonant frequency the transmissibility is unity i.e. no 

isolation of the supported plate is achieved. The low Q peak (Q^~ 5) corresponding to 

this resonance is seen clearly at//j~ 6.7Hz. At frequencies higher than this isolation 

begins to take place. The curve initially falls at ~12dB/octave as one would predict from 

simple dynamical analysis (refer to Chapter 2, Section 2.3.4). At the comer frequency 

fhc where

She ~Sh Qh <6-9 )

the effects of the damping of this resonance become apparent and the gradient of the 

curve reduces to ~6dB/octave.
The transverse resonances of the plate had no observed adverse effect on the 

horizontal isolation characteristics of the stack. However, since this is only a two- 

dimensional representation of a three-dimensional system one must adopt a degree of 

caution when interpreting the results obtained here. Since the model is constrained to the 

x-z plane no account is taken of the shear modes of the plate in the x-y plane. In a real 

three-dimensional system these would give rise to peaks in the horizontal transmissibility 

curve if there was insufficient internal damping in the plate. This concept has already 

been illustrated in Chapter 5 when considering the effect of the shear modes of the top 

support plate of the nested double pendulum system (refer to Section 5.5.1).

When a 10% reduction of the stiffness of the rubber was introduced on one side of 

the stack, the form of the curve was not altered in any unexpected way except that the
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O N E  - L A Y E R  ST A C K

M O D E L fh fv f t

balanced 6.7 13.4 22.1

imbalanced 6.6 13.1 21.5

T W O  - L A Y E R  ST A C K

M O D E L fh fh fvS fv ft* f t a

balanced 4.1 10.8 8.3 21.7 13.9 35.6

symmetrically
imbalanced

4 .0 10.5 8.1 21.1 13.6 34.7

asymmetrically
imbalanced

4.0 10.5 8.1 21.2 13.5 34.7

N O TE S
All frequencies given in hertz.
Superscripts denote whether symmetric or antisymmetric mode. 
Imbalanced figures given for a 10% reduction in the rubber stiffness.

Figure 6.10 Summary o f the fundamental resonant frequencies fo r  the 
various stack systems investigated (see Figure 6.6 and 
Figure 6.9).



resonant and comer frequencies were shifted to slightly lower values as one would 
predict.

In conclusion, the observed behaviour agreed well with that predicted using simple 
dynamical theory.

Vertical to Vertical Transmissibility

The vertical to vertical frequency response of the one-layer stack was analysed in a 

similar way to the horizontal response. Figure 6.12 shows the transmissibility curves 

obtained with identical rubber stiffness properties at each end of the stack for the two 

cases where the top plate had an internal Q of 20 and 0.5 (critical damping). Both curves 

exhibit the same general behaviour as described for the horizontal to horizontal 

transmissibility. However since we are now dealing with vertical excitation, the 

resonance peak is at f v ~  13.4Hz and the comer frequency is s t f v c  =  f v Q v ~  200Hz 

corresponding to a vertical quality factor of QV~15.

It is interesting to note the reduction in isolation that occurs when the top plate is not 

critically damped (refer to Q- 20 curve in Figure 6.12). The first bending resonance of 

the plate clearly gives rise to a large peak in the transmissibility curve at about 2.2kHz 

with a resulting reduction in isolation at and above this frequency. A whole family of 

these peaks would occur at higher frequencies corresponding to the higher order modes 

which have an antinode at the centre of mass of the plate.

As in the case of the horizontal transmissibility, the presence of a 10% stiffness 

imbalance in the rubber did not alter the form of the curves in any unexpected way except 

for shifting the resonant and comer frequencies to slightly lower values.

In conclusion the observed behaviour agreed well with that predicted using simple 

dynamical theory at frequencies below the first transverse resonance of the plate. If the 

plate was not critically damped significant isolation degradation occurred at frequencies 

on and above the first transverse resonant frequency of the plate. This problem can be 

alleviated by careful design of the plate to attempt to ensure that these modes lie at 

frequencies high enough that the isolation degradation which occurs is relatively 

insignificant. Alternatively some form of damping compound can be used to critically 

damp the oscillations.
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Rotational to Rotational Transmissibility

The rotational to rotational transmissibility was investigated using the stepped driving 

mechanism described in Section 6.3 (see Figure 6.7). The curves obtained for the various 

cases examined with a top plate Q = 0.5 exhibited behaviour similar to those obtained in 

the other direct transmissibility investigations already discussed in this section. For the 

case with identical rubber stiffness properties at each end of the stack the tilting resonance 

peak was observed at/f ~ 22.1Hz. The comer frequency at which the gradient reduced 

from ~12dB/octave to ~6dB/octave was observed at ftc ~ 190Hz corresponding to a Qt 

~ 9. In the cases examined where the top plate was less than critically damped the 

measured rotation figures were invalid at the transverse modal frequencies of the plate.

In conclusion the observed behaviour in each case agreed well with that predicted 

using simple dynamical theory if the components of the stack had sufficient internal 

damping. It was also shown here that the presence of a stiffness imbalance does not 

affect the direct transmissibility characteristics of the one-layer stack in any unexpected 

way.

6.6 Indirect Transmissibility Investigations in a 
One-Layer Stack

This section examines the cross-coupling mechanisms which take place in a one-layer 

stack. For convenience these have been divided into two categories; those mechanisms 

which do not depend on the presence of a stiffness variation between the rubber at 

opposite ends of the stack (Section 6.6.1) and those mechanisms which arise only if a 

variation in the rubber stiffness is present (Section 6.6.2).

6.6 .1  Indirect Transmissions Independent of the Presence of a 
Stiffness Variation in the Rubber

The transmission routes observed to be in this category were those of horizontal to 

rotational motion and conversely of rotational to horizontal motion. These coupling 

mechanisms can be visualized by considerations of the geometry of the system. 

Furthermore, in each case, the magnitude of the variation in coupling due to the presence 

of a stiffness variation between the rubber at either end of the stack is relatively

125



insignificant.

Horizontal to Rotational Transmissibility

Figure 6.13 shows the horizontal to rotational transmissibility curve for the one-layer 

stack system with identical rubber stiffness properties. The base of the stack was driven 

with unit amplitude in the horizontal direction and the resulting rotation of the plate about 

its centre of mass was observed in the manner described in Section 6.3. The curve rises 

at ~12dB/octave at low frequency. This can be explained by referring to Figure 6.14. 

The system is essentially rigid at low frequencies. One can see from this diagram that the 

plate is subject to torques which force the plate to undergo rotation about its centre of 

mass. Now since the base is driven in such a way as to give unit displacement of the base 

nodes at all frequencies, the driving force must increase with angular frequency (co) 
squared according to the equation

IFl=mfi^bd (6.10)
where,

IF1 = magnitude of the driving force

m = the sum of the masses assigned to the nodes being driven t

bd = magnitude of the displacement = 1.

Since the couple has the same frequency dependence as the driving force this means that 

the resulting rotation increases with the frequency squared at frequencies below the 

horizontal resonance.
Two resonance peaks are visible on the curve at and f t. The higher frequency 

isolation characteristics are those of a one resonance system with the curve initially falling 

at ~12dB/octave and eventually tending to ~6dB/octave. The tilting resonance is directly 

excited by the applied torque. Above this frequency isolation takes place. A peak occurs 

at because the horizontal motion of the plate becomes large at this frequency and this 

effectively increases the torque. It is important to note that if there were no vertical offset 

between the centre of mass of the supported plate and the centres of the rubber supports 

then the mechanism for cross-coupling of this type would no longer exist.

^ A fictitious mass is assigned to any driven node. This mass is usually of the order of 10̂  or 10 times 

the mass of the whole system [MSC/Nastran 1983].
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Rotational to Horizontal Transmissibility

Figure 6.15 shows the rotational to horizontal transmissibility curve obtained. In 

comparison with the above case, the transmissibility at low frequencies has a constant 

value the magnitude of which depends directly on the physical dimensions of the stack. 

The system is essentially rigid at low frequencies and rotation at the base converts linearly 

to horizontal motion of the centre of mass of the plate since the axis of rotation is 

vertically offset from the centre of mass. This is illustrated in Figure 6.16. Hence the 

centre of mass is effectively driven at the same frequency in the horizontal direction with 

constant amplitude at low frequencies giving a flat response curve. Both the horizontal 

and tilting modes are excited directly by the rotational drive at the base giving rise to 

peaks at and f t. At higher frequency the motion of the plate is complicated with 

components in both the rotational and horizontal senses. The two motions are coupled 

together and therefore the transmissibility curve initially falls at ~24dB/octave tending to 

~12dB/octave at higher frequencies.

6.6 .2  Indirect Transmissions Dependent on the Presence of a 
Stiffness Variation in the Rubber

The transmission routes observed to be in this category include rotational to vertical 

transmissibility, vertical to rotational and horizontal transmissibility and horizontal to 

vertical transmissibility. The coupling mechanisms involved here originate due to the 

presence of a stiffness variation between the rubber supports at either end of the stack. 

Further, the magnitude of the cross-coupling effects were observed to scale linearly with 

the percentage stiffness imbalance.

Rotational to Vertical Transmissibility
At low frequency, rotational motion at the base of the stack converts to vertical motion of 

the centre of mass of the plate. However this is a non-linear conversion with the induced 

vertical motion occurring at twice the driving frequency. Since n a s t r a n  does not 

account for such non-linear effects there was no observed vertical motion for the case 

where the rubber stiffness at either end of the stack was identical. However, as described 

in Section 6.5, rotational drive will give rise to rotational motion of the plate. In the 

presence of a vertical stiffness imbalance between the rubber supports at either end of the 

stack the axis of the induced rotation will not be about the centre of mass of the plate.
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This gives rise to some component of vertical motion at the centre of mass of the plate. 

Figure 6.17 shows the response curve obtained. The curve rises at ~12dB/octave since 

the effective torque increases as the frequency squared (see equation (6.10)). The vertical 

and tilting modes are coupled and hence the transmissibility falls at a rate of ~12dB/octave 
at higher frequencies.

Vertical to Rotational Transmissibility

When applying a displacement vertically in the presence of a vertical stiffness imbalance 

the plate will tend to rotate since it is effectively subject to a torque. The curve for vertical 

to rotational transmissibility is shown in Figure 6.18. This curve rises at ~12dB/octave 

since the effective torque increases as the frequency squared (see equation (6.10)). The 

vertical and tilting modes are coupled and hence the curve tends to fall-off at 

~12dB/octave at higher frequencies. The flattening of the curve at frequencies above a 

few hundred hertz is believed to be due to computational rounding errors.

Vertical to Horizontal Transmissibility
As discussed in the previous example, if a vertical stiffness imbalance exists between the 

rubber at opposite ends of the stack, when the plate is driven in the vertical sense it will 

tend to rotate. Since in the one-layer stack there is horizontally stiff rubber along the 

lower surface of the supported plate but not along the upper surface, the induced rotation 

will not be about the centre of mass of the plate. This results in some horizontal 

component of motion of the centre of mass. The transmissibility curve obtained in this 

case is shown in Figure 6.19. The curve rises at ~12dB/octave since the base is being 

driven with unit vertical displacement and this is equivalent to a frequency dependent 

torque being applied (see equation (6.10)). Three peaks corresponding to the fundamental 

stack resonances are observed in the curve. These resonances are coupled and hence the 

curve tends to fall at ~18dB/octave at higher frequencies. Again the curve flattens off at a 

few hundred hertz due to computational rounding errors.

Horizontal to Vertical Transmissibility
If no stiffness variation were present, horizontal motion at the base of the stack would not 

linearly convert to vertical motion of the centre of mass of the supported plate. Some 

non-linear conversion would probably take place. However as mentioned earlier 

NASTRAN cannot account for such non-linear effects.
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It has already been shown in Section 6.6.1 that if the base is driven horizontally 

some rotational motion of the plate about its centre of mass will be induced (refer to 

Figure 6.14). As a consequence of the presence of a vertical stiffness imbalance between 

the rubbers at opposite ends of the stack the axis of this induced rotation will not be at the 

centre of mass of the plate. This results in the centre of mass of the plate having some 

vertical component of motion. The response curve is shown in Figure 6.20. At low 

frequency the curve rises at a rate of ~12dB/octave since the induced rotation rises with 

frequency squared (see equation (6.10)). Three resonance peaks are observed at the three 

fundamental stack resonances. The gradient of the curve tends to ~18dB/octave at high 

frequency since these three resonances are coupled. At a few hundred hertz the curve is 

seen to dip slightly and then flatten. Again this is believed to be due to rounding errors in 

the calculations performed by the computer.

In conclusion, the four types of cross-couplings described here originate due to the 

presence of a stiffness variation in the rubber properties across the stack. Furthermore,
ft 15 •H'tOugUt fKat

for vertical to horizontal and horizontal to vertical coupling to take plac^there must also
cen tres

be a vertical offset between the centre of mass of the supported plate and the A of the 

rubber supports.
For convenience a summary table of the transmissibility values (both direct and 

indirect) obtained for the one-layer stack at a frequency of 100Hz is given in Figure 6.21.

6.7 Direct Transmissibility Investigations in a 
Two-Layer Stack

Each of the direct transmissibility investigations with the various combinations of 

parameters discussed in Section 6.3 were repeated for the case of a two-layer stack.

Horizontal to Horizontal Transmissibility
The horizontal to horizontal transmissibility curves for the transmission of motion at the 

base of the stack to the centre of mass of each plate in the stack with the plates critically 

damped and identical rubber stiffness properties is shown in Figure 6.22. The curve 

obtained for layer one is almost identical to that shown in Figure 6.11 for the one layer 

stack model except that in this case there are two fundamental horizontal resonant 

frequencies of the stack as shown in Figure 6.9. Two peaks are therefore present in the
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HORIZONTAL VERTICAL ROTATIONAL

HORIZONTAL -1.6 x 10-2 -5.0 x 10'6 -4.4 X 10‘2

VERTICAL -5.1 x 10-6 -2.3 x 10-2 -2.3 X 10’2 n4m

ROTATIONAL -2.1 x IQ'5 - l^ x lO -4 ”/ ^ -6.4 x 10‘2

| | | Independent of a stiffness variation in the rubber across the stack.
• *

l & s j s w i l  Dependent on the presence of a stiffness variation in the rubber. 
L : :: J  Values given for the case of a 10% variation.

Figure 6.21 Summary table of the transmissibility values for the one- 
layer stack at 100Hz.
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curve as opposed to one. However the isolation characteristics of layer one are the same 

as for the one-layer model. The second layer has improved isolation above the second 

horizontal resonant frequency of the stack with the curve initially falling at ~24dB/octave 
and reducing to ~12dB/octave above the new comer frequency.

Vertical to Vertical & Rotational to Rotational Transmissibility 

The vertical to vertical and rotational to rotational transmissibility curves exhibited similar 

general characteristics to the horizontal to horizontal curves with improved isolation at the 

second layer at frequencies above the second coupled resonance peak.

In conclusion, improved isolation is obtained with an increasing number of layers 

in terms of direct transmissibility. The observed isolation agrees well with that predicted 

using simple dynamical theory if the components of the stack have sufficient internal 

damping. Furthermore it was observed that the presence of a stiffness imbalance in the 

rubber whether it is symmetrical or asymmetrical about the y-z plane (see Figure 6.6) 

does not affect the direct transmissibility characteristics of the two-layer stack in any 

unexpected way.

6.8 Indirect Transmissibility Investigations in a 
Two-Layer Stack

These mechanisms occur in a similar way to those described for the one-layer stack 

system in Section 6.6. However there are some interesting results as a consequence of 

the presence of more than one layer.

6.8 .1  Indirect Transmissions Independent of the Presence of a 
Stiffness Variation in the Rubber

Horizontal to Rotational Transmissibility
The curves obtained for the two-layer stack are shown in Figure 6.23. The general shape 

of the curve for layer one has already been explained in Section 6.6.1. A damped null is 

observed between the two tilting resonances (labelled no.5). This occurs due to the phase 

change in the motion of the plate with respect to the driving force which takes place 

between the symmetric and antisymmetric tilting resonances. Layer two exhibits similar

130



low frequency behaviour with essentially the same magnitude of transmission because the 

rotational motions induced at layer one have unit transfer to layer two at these low 

frequencies. However layer two has improved isolation at higher frequencies above the 

various resonances. Horizontal motion at the base is converted to rotational motion at 

layer two mainly via induced rotational and horizontal motions at layer one. Thus the 
principal transmission routes at 100Hz are:

horizontal ̂  - rotational c o m l - rotational c o m2 giving T~  2.8 x 10'3 /m 
and

horizontalbase- horizontalcoml - rotationalC0m2 giving T~  -7.0 x 10*4 ^ / m.

The subscripts describe the position at which the motion is taking placet. The 

transmissibility (T) in each case was evaluated by taking the product of the relevant 

transmissibility values obtained from the one-layer analyses as given in Figure 6.21. The 

curve initially falls at about 24dB/octave tending to ~12dB/octave at higher frequencies. 

In conclusion horizontal motion at the base of the stack converts to rotational motion at 

the top of the stack mainly via rotational motion induced at the intermediate stage.

Rotational to Horizontal Transmissibility
Figure 6.24 shows the transmissibility curves from the rotationally driven base to the 

horizontal motions of the centres of mass of the two plates. At low frequencies there is 

greater transmission to layer two than to layer one. This is understandable since the stack 

behaves rigidly at low frequencies and layer two has a larger vertical offset from the axis 

of rotation. Figure 6.16 illustrates this idea. Both curves fall at approximately 

12dB/octave at high frequency; the isolation at layer two not much improved over that at 

layer one. This is a surprising result since it somewhat disagrees with what one would 

intuitively think. One might assume that the rotational motion at the base would be 

converted to horizontal motion at layer two either via rotational or horizontal motion at 

layer one. Using these assumptions one would then predict the transmissibility at layer 

two, at say 100Hz, to be the product of the two transmissibility figures obtained from the 

one-layer case (refer to Figure 6.21) i.e.

base = the ground surface on which the base nodes lie
c.o.m.l = centre of mass of plate one
c.o.m.2 = centre of mass of plate two
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rotational base - rotational comj - horizontal C0m2  giving T ~ 1.3 x 10*6 "Y^ 
or

rotational base - horizontal comj - horizontal c o m 2  giving T ~ 3.4 x 10'^ "Ynd-

However neither of these factors account for the large magnitude of transmissibility 

observed at layer two. The solution to this puzzle lies in the fact that since the 

intermediate plate in the stack has a finite thickness and the rubber supports for layer two 

are connected to the plate in layer one along its top surface, there exists a vertical offset 

between the bases of the rubber supports and the centre of mass of the underlying plate. 

Therefore any rotation of the plate in layer one about its centre of mass gives rise to an 

effective horizontal motion at the top surface of this plate. Hence the bases of the rubber 

supports for layer two are subject to a horizontal motion which is much larger than the 

horizontal motion observed directly at the centre of mass of the underlying plate. 

Therefore the principal transmission route is in fact

rotational base - (rotational co m j - horizontal ^ j )  - horizontal c o m 2

giving T  ~ 1.3 x 10'5 "Ymd at 100Hz.

Again the subscripts describe the position at which the motion is taking place t. Note that 

the size of the bracketed term is directly proportional to the size of the vertical offset. This 

bracketed term which describes intra-plate conversion of rotational to horizontal motion is 

responsible for the isolation at layer two being much poorer than expected.

In conclusion the vertical offset between the centre of mass of plate one and the 

base level of the rubber supports in layer two determines the extent to which ground tilts 

couple to horizontal motion at the top plate of the two-layer stack.

6 .8 .2  Indirect Transmissions Dependent on the Presence of a 
Stiffness Variation in the Rubber

Rotational to Vertical Transmissibility
The curves obtained for the transmission to the plates in the two layers are shown in

topi = top surface of plate one (equivalent to base line of rubber supports for layer two).
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Figure 6.25. As one might expect, improved isolation is observed at layer two, the 

transmission curve falling at ~18dB/octave at high frequency. There are two principal 
transmission routes to the second layer at 100Hz i.e.

rotational ^ g  - rotational c o m j - vertical c o m2  giving T ~ 7.7 x 10’6
and

rotational ^ g  - vertical c o m j - vertical c o m2  giving T ~ 2.8 x 10*6

Vertical to Rotational Transmissibility

Figure 6.26 shows the curves obtained for the vertical to rotational transmissibility at 

each layer. Improved isolation is observed at layer two, the transmission curve falling at 

~18dB/octave at high frequency. Again the principal transmission route to layer two at 
100Hz is via rotation at the intermediate layer i.e.

vertical base - rotational c o m l - rotational c o m2 giving T~  1.5 x 10’3

Vertical to Horizontal Transmissibility

Figure 6.27 shows the transmissibility curves obtained for this case. The isolation at 

layer two is poorer than at layer one at frequencies above the resonances. The larger than 

expected transmission to layer two can again be explained via rotation at layer one being 

introduced and intra-plate conversion of rotational to horizontal motion taking place. The 

principal transmission route to layer two is:

vertical ^  - (rotational c o m j - horizontal topj ) - horizontal CX)m2  

giving T  ~ 4.7 x 10*6 at 100Hz.

Perhaps of even greater interest is the form of the curve for layer one of this two- 

layer model. The curve falls at ~30dB/octave and flattens off at high frequencies due to 

computational rounding errors. In Section 6.6.2 it was shown that the corresponding 

transmissibility curve for the one-layer model had a gradient of ~ 18dB/octave (refer to 

Figure 6.19). In other words, it appears that the presence of the overlying layer has 

reduced the coupling of vertical ground motion to horizontal motion at layer one. This 

effect can be explained by considering the changes in the dynamics of layer one which
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have been brought about by the presence of the overlying layer. Recall from 

Section 6.6.2 that the transmission of vertical to horizontal motion in the one-layer stack 

only takes place because the induced rotations of the plate are subject to a horizontal 

restoring force along the lower surface of the plate which is larger than those along the 

upper surface. If however the restoring forces at the upper and lower surfaces of the plate 

are balanced, the induced rotation will be symmetrical and there will be no component of 

horizontal motion at the centre of mass of the plate. This is the situation for the two-layer 

stack where plate one is sandwiched by rubber along both its lower and upper surfaces. 

Furthermore the same effect is observed whether the two-layer stack is symmetrically or 

asymmetrically imbalanced (see Figure 6.6). This is because in both cases the net 

horizontal stiffness at the upper and lower surfaces of plate one are equal.

However there is some horizontal motion observed at plate one due to a downwaid 

transmission from layer two. The various induced motions at plate two drive plate one 

horizontally. Having effectively undergone three stages of isolation these are of relatively 

small magnitude as shown in Figure 6.27.

In conclusion the conversion of vertical ground motion to horizontal motion is 

much worse at layer two of the stack than at layer one. The magnitude of the 

transmissibility at layer two depends crucially on the vertical offset between the centre of 

mass of plate one and the base level of the rubber supports for layer two. Note that if this 

vertical offset were zero the most significant transmission route to layer two would be:

vertical - rotational Cj0Mj  - horizontal c om2  giving T~  4.8 x 10'7 at 100Hz.

Furthermore, the isolation at layer one is improved with the presence of layer two since 

the mechanism whereby vertical ground motions directly drive layer one horizontally is 

removed.

Horizontal to Vertical Transmissibility
The curves obtained for the transmission to the plates in the two layers are shown in 

Figure 6.28. Both curves tend to fall at ~18dB/octave at high frequency. The layer one 

curve dips and flattens at high frequencies due to computational rounding errors. The 

isolation at layer two at high frequencies is only marginally better than at layer one. This 

unexpected result can be explained by the fact that the principal transmission route to 

layer two of the stack is via rotation at layer one i.e.
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with a 10% stiffness variation.



horizontal ^  - rotationalcoml - vertical com2 giving 7 ~  5.3 x 1 0 at 100Hz.

Since horizontal to rotational transmissibility tends to ~6dB/octave and rotational to 

vertical to ~12dB/octave in a one-layer stack, this means that the horizontal to vertical 

transmissibility curve for the two-layer stack falls as ~18dB/octave at high frequency.

However in contrast to the previous example of vertical to horizontal coupling, the 

isolation observed at layer one does in this case depend on whether the imbalance in the 

rubber stiffness of the two-layer stack is symmetrical or asymmetrical (see Figure 6.6). 

The curve shown in Figure 6.28 is for the case of symmetrically imbalanced rubber. In 

this situation there is no reduction in the transmissibility to layer one due to the presence 

of layer two. This is because even with the presence of the overlying layer there remains 

a difference in the vertical stiffness at each end of plate one. Its induced rotational motion 

will therefore remain asymmetrical with respect to its centre of mass. However, if the 

stiffness imbalance is changed in polarity (giving the asymmetrically imbalanced stack 

shown in Figure 6.6), then a reduction in the transfer to layer one is indeed observed, the 

curve falling at ~30dB/octave. In this situation the net vertical stiffness which plate one is 

subject to is identical at each end. Therefore the induced rotation is symmetrical about its 

centre of mass and no vertical motion occurs by this mechanism. However, in a similar 

way to the previous example described in this section, there will be some vertical motion 

induced at plate one via downward transmission from plate two.

In conclusion, the coupling of horizontal ground motions to vertical motions at 

layer two of the two-layer stack are at least comparable in size to those at layer one. 

Reduced coupling can be achieved at layer one if the imbalance in rubber stiffness 

properties of layer two are of the opposite polarity.

6.9 Implications for a Five-Layer Vibration 
Isolation Stack

6.9.1 Introduction

As mentioned in Section 6.1 the stacks used in gravitational radiation detectors are 

commonly of multi-layer form. It has been suggested that five-layer isolation stacks are 

used as part of the isolation system for test masses in the proposed 3km German-Bntish 

gravitational radiation detector (GEO) [Hough et. al. 1989]. This isolation system
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contains various components, the five-layer stacks playing a crucial role in attaining the 
desired isolation level. It is proposed that double pendulum suspensions for the test 

masses will be attached to the top of the stack systems. In choosing this number of layers 

for the stack it was assumed that the principal transmission routes resulting in horizontal 

and vertical motions at the top of the stack were the direct transmissions described below:

horiz. ■ horiz. c o m ! - honz. c o m 2 - horiz. c o mJ - horiz. cgm4 - horiz. c o m 5 
and

v e r L  b a s e  " v e r t * c . o . m . 1  '  v e r t ' c . o . m 2  ’  v e r t ‘ c . o . m . 3  '  vert• c . o . m . 4  '  vert• c . o . m . 5  •

In series with the isolation provided by the double pendulums and the air springs 

connecting the stacks to ground this provided, in theory, more than adequate isolation in 

both the horizontal and the vertical directions [Hough et. al. 1989]. However it has 

already been shown in this chapter that alternative indirect transmission routes of a 

significant magnitude can exist in a two-layer stack system. This strongly suggests that 

significant alternative routes may exist in a five-layer stack system also.

Using the information obtained in the two-layer analyses discussed in Sections 6.7 

and 6.8, the implications for a five-layer stack with components of the same dimensions 

have been assessed. Here the principal transmission routes resulting in horizontal, 

vertical and rotational (tilting) motion at the top of the stack and the conditions under 

which they occur are described and transmissibility figures for each case quoted. These 

calculations are based on the values for the various transmissibilities in a one-layer stack 

given in Figure 6.21. Obviously the absolute displacement at the top plate of the stack in 

the respective directions will depend critically on the magnitude of the input motion at the 

base of the stack. Therefore typical magnitudes for horizontal, vertical and rotational 

(tilting) seismic motion have been presented here also. Finally an evaluation has been 

made of the resulting horizontal motion at the top of a pendulum suspension attached to 

the top plate of the stack for the various situations discussed.

6.9 .2  Horizontal Motion at the Top of a Five-Layer Stack

Direct horizontal transmission up the stack as shown by the route described below.

h o r i z - b a s e  * ^ n’z- c . o . m . l  '  h o r i z ' c . o . m l  '  h o r l Z ' c . o . m 3  '  h o r i Z ' c . o . m . 4  '  h o n z ' c . o . m 3
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gives a value of transmissibility T -  1.0 x 10-9 at 100Hz. This is independent of the 

presence of a stiffness variation. If one assumes a horizontal seismic noise spectrum of 

1 x 10 ^If ̂  "Tvhz [Hough et. al. 1986], then at 100Hz this would give a horizontal 

displacement amplitude of dx~ 1.0 x 10 m "/fit at the top of the stack/pendulum 

suspension. However the analyses earned out previously on the two-layer stack have 
indicated that the principal transmission mechanism will in fact be:

r o t n . b a s e  ‘ r o t n ' c . o . m . l  '  r o t n ' c . o . m . 2  '  r o t n ' c . o . m . 3  '  ( r o t n ' c . o . m . 4  ‘ h o r i z - t o p 4 ^  '  

h o r i z - c . o . m . 5

which gives a transmissibility of

T ~ 3 . 5 » \ 0 * x  [ l i ^ ]  ^

at 100Hz independent of a stiffness variation being present. As shown in Figure 6.29, a 

is the vertical offset between the centre of mass of layer four and the base level of the 

rubber supports for layer five. From the experimental ground tilt data in Appendix C 

(refer to Figure C.4), the ground tilt at 100Hz is &~2  x 10-11 This will be valid 

over a length of where A. is the wavelength of a surface seismic wave giving rise to 

the tilts i.e. Rayleigh waves. Assuming a lower limit to the velocity of Rayleigh waves

in the surface sediments of v^~500ms‘1 then at 100Hz the half-wavelength V2 will be at 

least ~ 2.5m which is much greater than the length of the stack (~0.24m). Hence the 

resulting horizontal motion at the top of the pendulum via this route would be

dx ~ 7.0 xlO*20 x [  i jx io  ^m ]  " f e ­

lt should be noted that the conversion of rotational motion about the centre of mass of any 

given layer to horizontal motion at the bases of the rubbers in a layer immediately above 

can occur at various stages up the stack. For instance, if one considers the conversion 

taking place at one stage lower than in the previous example i.e. at layer three

r o t n - b a s e  ■ r o t n - c . 0 . m . l  '  r o t n - c . o . m . 2  '  <r o t n  c . o . m . 3  '  h o r l z - t o p 4 >  '  h o n z  c . o . m . 4  '  

h o r i z - c . o . m . 5
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a = the vertical offset between the centre of mass of some intermediate plate and the 
base level of the overlying rubber supports

Figure 6.29 Portion o f the multi-layer stack showing the parameter 'a'.
Intra-plate conversion of rotational to horizontal motion can occur 
giving rise to unexpectedly large horizontal motion at the overlying 
layer as detailed in Sections 6.8 and 6.9. Ifa=0 this conversion will not 
take place.



then the transmissibility at 100Hz is

r - 8-7 * 10-10* [ l i f e ]  ■*-

independent of a stiffness variation being present. Again assuming that the length of the 

stack is much shorter than the half-wavelength of the surface waves, this would result in 
a horizontal motion at the top of the pendulum of magnitude

dx ~ 1.7 xlO*20 x [  i 3x10- ^  ]  "/yife.

Note that this value of horizontal motion is still comparable with the reference value 

derived via the direct conversion of horizontal motion at the base to horizontal motion at 

the top stage {dx ~ 1.0 x 10-20 ”1 ^ ) .  Going one step further, if the same calculation is 

performed with the conversion taking place at layer two then the corresponding horizontal 

motion is

dx ~ 4.4xlO-21 x [  13x10^  ]  TV

which is more than a factor of two smaller than the directly transmitted horizontal motion. 

Hence for a stack of these particular dimensions this is the critical level at which this type 

of cross-coupling becomes less significant than the direct coupling of horizontal to 

horizontal motion.
Another significant route whereby horizontal motion at the base of the stack couples 

to horizontal motion at the top layer is:

h o r i z  . b a s e  '  r o t n - c . o . m . l  '  r o t n  c . o . m . 2  '  r o t n  c . o . m . 3  '  <r o t n ' c . o . m . 4  '  h o n z - t o p 4 >  '  

h o r i z - c . o . m . S

which gives a transmissibility of

r - 2.4x10-’ x [  ]

at 100Hz. This route does not depend on the presence of a stiffness variation. However it
does depend on the presence of the offset between the a of the rubber supports and

A c e n t r e s
VCrf\cal
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centre of mass of the plate in layer one. Using the figure for the horizontal seismic noise

spectrum of 1 x 1 0 ”/viu [Hough et. al. 1986] then at 100Hz this would give a 
horizontal displacement amplitude of

dx ~ 2.4 x 10-20 x [ 1.3xl0r2m

If the conversion of rotational to horizontal motion takes place at one stage lower i.e.

Hence for a stack of these particular dimensions this is the critical level at which this type 

of cross-coupling becomes less significant than the direct coupling of horizontal to 

horizontal motion.
Furthermore if a stiffness variation exists in the rubber in the stack then vertical 

motion at the base couples to horizontal motion at the top of the stack via the route:

For instance, with a 10% reduction in the stiffness of the rubber on one side of the stack,

this gives a transmissibility of

T ~ 6.0 xlO '10 x [ 1.3x10'^
a_ ]

at 100Hz. This would give a horizontal displacement amplitude of

this gives a transmissibility of

1.3x10*^
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at 100Hz. Again assuming a vertical seismic noise spectrum of 1 x 10'1/ f 2nl ^  

[Hough et. al. 1986] then at 100Hz this would give a horizontal displacement amplitude 
of:

dx ~ 1.3 X 10-20 x " f e .

6.9.3 Vertical Motion at the Top of a Five-Layer Stack

Direct vertical transmission up the stack where vertical motion at the base of the stack 
couples directly through from layer to layer i.e.

vert• b a s e  ‘ vert. c . o . m . l  " v e r i ‘ c . o . m . 2  '  vert• c .o .m .3  '  v e r t ’ c . o . m . 4  '  vert• c . o . m . 5

gives T ~ 6.4 x lfr9 at 100Hz independent of the presence of a stiffness variation in 

the rubber in the stack. If one assumes the vertical seismic displacement spectrum to have 

an amplitude of 1 x 10'1/ / 2 [Hough et. al. 1986] then at 100Hz this would give 

a vertical displacement amplitude of dz ~ 6.4 x lfr20 at the top of the pendulum.

In the presence of a 10% stiffness variation in the rubber then rotational motion at the 

base couples to vertical motion at the top via the route

rotn. base - rotn. c o m j - rotn. C0M2  ’ rotn. c o mj  - rotn. c o m 4 - vert. c o m y

This gives a transmissibility of T ~ 2.0 x 10~9 "fjad at 100Hz. Again using the figure for 

the ground tilt at 100Hz of <P~2 x 10-11 (Appendix C, Figure C.4) and assuming 

that the half-wavelength of the surface waves is much longer than the length of the stack, 

this would give rise to a vertical displacement of the centre of mass of the top plate of the 

stack of dz ~ 4.0 x 10-20 This is smaller than the value obtained by the direct 

coupling of vertical ground motions as described above. It is important to note here that 

vertical motion at the top of a stack system supporting a pendulum may give rise to 

horizontal motion at the bottom of the pendulum via cross-coupling. The magnitude of 

the cross coupling of vertical to horizontal motion in a pendulum is not easily predictable 

since it will vary from system to system depending on how much care was taken in the 

pendulum design and construction to minimise the magnitude of such effects. However a
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figure of -1%  of the vertical to vertical transmissibility has been predicted based on 

experimental evidence obtained using a seven-stage pendulum [Del Fabbro et. al. 1988b],

6.9.4 Rotational Motion at the Top of a Five-Layer Stack

Direct transmission of rotational motion up the stuck where rotational motion at the base 
of the stack couples directly through from layer to layer i.e.

r°tn. basg - rotn. c o m j  - rotn. c o m 2 - rotn. c o m $ - rotn. c o m 4 - rotn. c o m 5

gives T  ~ 1.1 x 10'6 at 100Hz. This is the principal transmission route resulting in 

rotational motion at the top of the stack independent of whether or not there is a stiffness 

variation present.

Consider the situation where the pendulum suspension point is vertically offset 

from the centre of mass of the top plate of the stack by a distance z. This can be 

described by the route:

rotn. base - rotn. c o m I - rotn. c o m 2 - rotn. c o m 3 ■ rotn. c o m 4 - (rotn. c o m 5- 

horizsmp.pt)

The rotation of the top plate about its centre of mass will linearly convert to horizontal 

motion at the suspension point. For instance, if the offset is z = 1 x 10'3 m then the 

resulting horizontal motion of the suspension point at 100Hz, using a ground tilt value of 

~ 2 x lO-11 (Appendix C, Figure C.4) is then

dx ~ 2.2 x 10*20 x £  ixlO'3m ]  *

This value is greater than the corresponding figure obtained in Section 6.9.2 for the case 

where horizontal ground motion coupled directly to horizontal motion at the top of the 

stack. Recall that this gave an amplitude of horizontal motion of dx ~ 1.0 x 10 "/vife 

at 100Hz.
Another route giving rise to significant rotational motion of the top plate of the stack 

resulting in horizontal motion of the suspension point is described by.
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horiz. base " ro^- c.o.m.l " ro n̂' c.o.m.2 ~ ro n̂' c.o.m.3 ' rot*- c.o.m.4 ' (rot»• c.o.m.5'
ho™2'sm p.p t)

Assuming a horizontal seismic displacement spectmm of 1 x 10-7/ /2 " /y^  [Hough et. 

al. 1986] and a vertical offset of the suspension point with respect to the centre of mass 

of the top plate of z — 1 x 103 m, then the resulting horizontal motion of the suspension 
point at 100Hz is given by:

This value is comparable to the value derived via the direct conversion of horizontal 

motion at the base to horizontal motion at the top plate (dx ~ 1.0 x 10'20 " /y^  ). Note 

however that the conversion of horizontal to rotational motion at the first stage would

reduce to zero if there were no vertical offset between the v of the rubber supports and 

the centre of mass of the plate in layer one.

In a similar way vertical ground motion can lead to horizontal motion of the 

suspension point in the presence of a vertical positioning error of the suspension point. 

However this route described by:

depends on the presence of a stiffness variation between the rubber supports in the first 

stage of the stack. Assuming a vertical seismic displacement spectrum of 

1 x 10-7/ / 2 "/yife [Hough et. al. 1986] and a vertical positioning error of the 

suspension point of z = 1 x 10'3 m, then the resulting horizontal motion of the 

suspension point at 100Hz is given by:

This value is more than a factor of two smaller than the reference value derived via the 

direct conversion of horizontal motion at the base to horizontal motion at the top plate

(dx ~ 1.0 x 10-20 "/yjfe ).

susp.pt.
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6.10 Conclusions

It has been shown in this chapter that the frequency response characteristics of isolation 

stacks are much more complicated than one would initially predict using simple 

dynamical theory. In Section 6.5 it was shown that simple theory is fairly accurate in 

predicting the degree of attenuation which unidirectional motion at the base of a one-layer 

stack undergoes in its passage up the stack. However this is true only if the components 

of the stack are adequately damped. In reality the internal resonances of the components 

can lead to a reduction in the predicted isolation at frequencies on and above the 

frequencies at which these modes occur. For instance Figure 6.12 illustrates how the 

underdamped transverse resonances (0=20) of the supported plate can significantly 

reduce the vertical isolation achieved. It was also shown in Section 6.5 that the presence 

of an asymmetry in the stiffness properties of the rubber across the stack did not affect 

the direct transmission characteristics of the stack in any unpredictable way.

These analyses were extended to a two-layer stack system in Section 6.7. It was 

shown here that improved isolation was obtained at layer two of the stack in each of the 

direct transmissibility cases investigated. The observed isolation agreed well with that 

predicted using simple theory if the components of the stack were sufficiently well 

damped. Furthermore, the presence of a stiffness variation in the rubber, whether it was 

symmetrically or asymmetrical imbalanced (refer to Figure 6.6), did not affect the direct 

transmissibility characteristics of the two-layer stack in any unexpected way.

The cross-coupling mechanisms which occur in a one-layer stack were examined in 

Section 6.6. Some of these were observed to originate due to the extended geometry of 

the system, other mechanisms took place only in the presence of an asymmetry in the 

stiffness properties of the rubber across the stack. Furthermore, the magnitudes of the 

cross-couplings of this type were directly proportional to the percentage stiffness 

imbalance between the rubber at either end of the stack. It was interesting to note here that
/i lb 15 be-!ie\/e<?/ . . . .  . ,
the coupling of vertical to horizontal and horizontal to vertical motion m a one-layer stack 

can only occur if there is both a stiffness variation present and a vertical offset between 

the iy) id level of the rubber supports and the centre of mass of the supported plate.

The cross-coupling mechanisms in a two-layer stack were investigated in 

Section 6.8. Some interesting results were observed here as a consequence of the 

presence of an intermediate plate in the stack. In Section 6.8.1 it was shown that ground 

tilt can couple very strongly to horizontal motions at the second layer of the stack via
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rotational motions induced at the intermediate layer. If the bases of the rubber supports 

for the second layer were vertically offset from the centre of mass of the intermediate 

plate (see Figure 6.29) then intra-plate convention of rotational to horizontal motion took 

place leading to an unexpectedly high magnitude of horizontal motion at the top of the 
stack.

Horizontal and rotational (tilting) motions at the base of the stack can give rise to 

rotational motions at the intermediate plate leading to significant vertical motions at the top 

of the stack if a stiffness imbalance exists in the rubber across the stack. This effect was 

discussed in Section 6.8.2. Similarly vertical motions at the base can couple to rotational 

motions at the top via rotations being induced at the intermediate stage.

When examining the coupling of vertical to horizontal motion in the two-layer stack 

(in the presence of a stiffness imbalance in the rubber across the stack) it was shown that 

the isolation at layer two was much worse than one would have initially predicted. Again 

this was due to intra-plate conversion of rotational to horizontal motion at the intermediate 

stage (layer one). However of even greater interest was the observed reduction in the 

transmission of vertical to horizontal motion at layer one with the presence of a second 

layer in the stack. The presence of the over-lying layer removed the mechanism by which 

this type of coupling could take place between the ground and layer one of the stack.

Using the information obtained from the two-layer analyses the implications for a 

five-layer stack were then assessed, this being the typical order of stack in the vibration 

isolation systems used for laser interferometric gravitational wave detectors. In 

Section 6.9 the principal transmission mechanisms leading to horizontal, vertical and 

rotational (tilting) motions at the top of a five-layer stack of the prescribed dimensions 

were discussed. The resulting amplitude of motion at the top of the stack under various 

conditions in each case was evaluated at a frequency of 100Hz using typical magnitudes 

for the various components of seismic motion at that frequency. For reference 

Figure 6.30 shows a table summarising the main routes leading to horizontal motion at 

the top of a five-layer stack. The resulting amplitude of horizontal motion at the top of a 

pendulum suspension system connected to the top plate of the stack is also given in each 

case. It should be noted here that it is more common for a heavier metal such as lead to be 

used as the plate material in such stack systems. This would result in relatively lower 

resonant frequencies //,,/y  and f t  (f°r die same stiffness of rubber) and improved 

isolation properties in each direction. However since it is the relative isolation level in 

each direction which is important, the conclusions which are drawn here will apply in a
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similar way to such lead/rubber stack systems.

Referring to Figure 6.30, transmission route 1 describes the direct coupling of 

horizontal motion at the base of the stack to horizontal motion at the top plate of the stack 

giving a resulting horizontal motion of dx ~ 1.0 x lO’20" / ^  at 100Hz. The 

corresponding values for dx produced by the remaining routes (2 to 6) given in 

Figure 6.30 should be compared to this reference value in order to assess the relative 
isolation degradation which is taking place in this particular stack.

Potentially the most significant transmission route for introducing excess noise at 

the top of a pendulum suspended from the stack is route 6 where the direct transmission 

of ground tilt results in rotational motion of the top plate about its centre of mass (as 

discussed in Section 6.9.4). If any vertical offset exists between the centre of mass of the 

top plate and the breakaway point of the pendulum suspension wire then rotational 

motion of the plate linearly converts to horizontal motion of the suspension point 

(basically the same effect as the intra-plate conversion of rotational to horizontal motions 

already discussed). Using the values shown in Figure 6.30 the critical offset at which this 

mechanism degrades the anticipated horizontal isolation (as shown in route 1) is 

z > ~ 5 x l(Hm . Positioning of the suspension point to this high degree of accuracy 

would be difficult to achieve in practice and hence the coupling of ground tilts to 

horizontal motion in this way might be a severe limitation to the isolation achievable in 

such a multi-component system. Further, one should be aware that the magnitude of this 

problem depends on both the relative magnitudes of horizontal and tilting seismic motions 

and also the relative isolation obtained in the horizontal and rotational (tilting) senses. It 

should be noted here that in the modelled stack the degree of isolation to ground tilts 

relative to the horizontal isolation is much better than is typical of most stack systems. 

This is due to the fact that the ratio of f t to //, is*3 in the model and in a typical stack 

system this factor is larger (see Section 6.2). Therefore relatively speaking the isolation 

degradation which occurs in this way might be even more severe in a real system. One 

possible way of alleviating this problem is to ensure that the foundation on which the 

isolation system is mounted is particularly quiet with respect to seismic tilting motions. 

This can be attempted using an active tilt isolation platform as the first stage of the test 

mass isolation system placing less stringent constraints on the positioning error of the

pendulum suspension point at the top of the stack.
Another mechanism by which the coupling of ground tilt can reduce the horizontal 

isolation achieved is a consequence of intra-plate conversion of rotational to horizontal
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motion taking place. Routes 2 and 3 show this type of cross-coupling with the intra­

plate conversion taking place at consecutively lower stages of the stack. The 

transmissibility is largest with the intra-plate conversion at layer four of this stack since 

rotational to rotational coupling is more efficient than horizontal to horizontal coupling 

between contiguous layers (this is a direct consequence of the fact that f h<ft in a 

stack). The further down the stack the intra-plate conversion takes place the less 

significant this route becomes. An obvious way of avoiding this problem is to design the 

stack with the rubber supports embedded in the plates ensuring that the bases of

the rubber supports are collinear with the plate centres of mass.

The number of stages down the stack at which this action is necessary will depend on the 

particular stack system in question as well as the relative size of the seismic tilting motion 
compared to the horizontal motion.

Since horizontal motion at the base of a one-layer stack can couple to rotational 

motion of the supported plate, this gives rise to another route whereby horizontal motion 

is induced at the top of the five-layer stack via rotations being introduced at intermediate 

layers (as shown by route 4). This route is similar to routes 2 and 3 except that 

horizontal motion is input at the base and not rotational motion. This route can be 

removed by ensuring that there is no vertical offset between the m4  level of the rubber 

supports and the centre of mass of the supported plate in layer one, or by removing the 

mechanism by which intra-plate conversion of rotational to horizontal motion at layer four 

takes place. The latter effect can be achieved by ensuring that there is no vertical offset 

between the base level of the rubber supports for layer five and the centre of mass of the 

plate in layer four. This route would then no longer be the principal route for the coupling 

of horizontal ground motions to horizontal motion at the top plate of the stack.

If a stiffness variation exists between the rubber on either side of the stack then 

vertical motion may lead to significant horizontal motion at the top of the stack via 

rotational motions being introduced at intermediate layers (as shown in route 5). The 

magnitude of the cross-coupling of vertical to rotational motion at the first layer will vary 

linearly with the percentage stiffness imbalance between the rubber supports. The 

horizontal motion induced at the top of the stack via this type of route again depends on 

intra-plate conversion occurring and therefore can be avoided by careful design.

Furthermore as stated previously, vertical motion of the top of a stack may lead to 

horizontal motion of a test mass suspended from the top plate via cross-coupling taking 

place in the pendulum. Two significant routes resulting in vertical motion at the top plate
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of the stack were discussed in Section 6.9.3. The magnitude of the direct coupling of 

vertical seismic motion to vertical motion at the top of the stack is easily predictable from 

simple theory. The second route involves the coupling of ground tilt to vertical motion at 

the top via rotations induced in the intermediate layers. However the cross-coupling of 

rotational to vertical motion between layers four and five depends on the presence of a 

stiffness imbalance in the rubber in the stack. Again the effect this has on the horizontal 

isolation of the test mass will depend on the magnitude of cross-coupling of vertical to 

horizontal motion in the pendulum as well as the relative magnitude of ground tilt at the 
Earth's surface.

It should be emphasized that all of the calculations performed here were at a 

frequency of 100Hz, this being the lower limit of detection frequency initially aimed for 

in the proposed 3km detector (GEO). The relative significance of each of the transmission 

mechanisms discussed here may change at higher frequencies depending on the 

frequency characteristics of both the various seismic spectra involved and the 

transmission mechanisms occurring. It is commonly assumed that the seismic 

displacement spectra in the horizontal and vertical directions have similar magnitude and 

frequency characteristics, falling at ~12dB/octave in the region of 100Hz 

[Robertson N.A. 1991]. The seismic tilt spectrum however appears to fall somewhere 

between ~12dB/octave and ~18dB/octave (Appendix C). This suggests that the horizontal 

isolation degradation in stacks which transpires due to ground tilting motions may 

become relatively less significant at higher frequencies. The frequency characteristics of 

the relevant transmission mechanisms described in routes 1-4 and route 6 are roughly 

similar, each curve falling at ~12dB/octave initially and tending to ~6dB/octave at higher 

frequencies. However in the case of route 5, vertical to rotational coupling falls at 

~12dB/octave and therefore this route might become less important at higher frequencies.

In conclusion the analyses carried here have shown that various cross-coupling 

effects in multi-layer vibration isolation stacks can degrade the predicted horizontal 

isolation of any test mass suspended from the top of the stack. These cross-coupling 

effects can be minimised if great care is taken when designing and constructing the stack. 

Care must be taken that the rubber used throughout the stack has uniform stiffness
properties since it̂ haŝ '̂been ,shown .here fhat mech^sms ^pr .crpss-coupling can be

i  ‘ ' ■ ‘‘V C ." * •. A . ,o.- • -s'- i  The magnitude

unimportant whether this stiffness^variation Is syirflnaiedtical dr asymmetrical
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vertical symmetry axis of the stack. However by far the most important criterion for good 

stack design is to ensure that the rubber supports in each layer of stack are positioned so 

that the base u  « 1s are collinear with the centres of mass of the under 

-lying plates. Otherwise the introduction of horizontal motion via the cross-coupling 

of rotations introduced via ground tilts or other means can limit the horizontal isolation 

obtained. Further having taken care to design a high performance stack system, it is 

essential that the breakaway point for any pendulum suspension supported by the stack is 

coincident with the centre of mass of the top plate of the stack to a fairly high degree of 
accuracy.

It should be emphasized here that there are limitations in the conclusions which can 

be drawn from these analyses. For instance, the finite element program used here did not 

account for the possibility of non-linear cross-coupling mechanisms which in reality will 

be very important in determining the overall isolation achievable in stack systems. 

Consider as an example the case where a horizontal offset exists (along the x-axis) 

between the centre of mass of the top plate of the stack and the pendulum suspension 

point (see Figure 6.1). Rotational (tilting) motion of the plate will then non-linearly 

convert to horizontal motion at the top of the pendulum, the induced motion occurring at 

twice the frequency of the rotational motion. However if one is aware of the possibilities 

of such non-linear couplings the effects can be kept to a minimum by careful design.

In reality the cross-coupling effects which occur in three-dimensional stack systems 

will be more complicated. Using this model it was not possible to investigate the isolation 

properties of the stack to rotational motions about the z-axis (see Figure 6.1). For 

instance, if a horizontal offset exists (along the y-axis) between the suspension point and 

centre of mass of the top plate of the stack, induced rotational motions will result in 

horizontal motion of the suspension point. Also if a stiffness variation exists between the 

rubber on either side of the first layer of stack, such rotational ground motions will 

possibly induce horizontal motions of the supported plate. The possibility of these effects 

occurring should be taken into consideration when designing the stack system.

As described in Section 6.2, the effects of loading on the relative horizontal and 

vertical stiffness of the rubber have not been incorporated in the model. Also in such a 

multi-layer stack, since these loading effects will be larger at the bottom of the stack, the 

behaviour of contiguous layers will not be identical as suggested for the model.

However, despite these limitations, the analyses carried out here have provided 

valuable information giving insight to the detailed dynamical behaviour of vibration
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isolation stacks. As illustrated here for a five-layer stack system, this information is 

essential in order to attempt to accurately predict the main transmission routes giving rise 

to horizontal displacement noise at the top of multi-layer stacks. Various design criteria to 

achieve high vibration isolation performance have been established as a consequence of 
these investigations.
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Chapter 7

Conclusions and Future Prospects

The potential wide bandwidth operation of an Earth-borne laser interferometric 

gravitational radiation detector could be severely compromised at low frequencies unless 

adequate isolation is provided from the effects of seismic noise. To achieve the required 

level of seismic isolation in the proposed 3km interferometric detector (GEO) we aim to 

use double pendulum suspensions for the test masses in conjunction with five-layer 
vibration isolation stacks and air mounts.

In addition to providing a high level of seismic isolation, it is also necessary to 

control the position and orientation of each test mass in an interferometric detector to a 

high degree of accuracy using feedback control. Various theoretical and experimental 

investigations into the feedback control of a test mass suspended as a double pendulum 

have been described in this thesis. It has been shown that it is possible to control the 

position of a test mass suspended as a double pendulum over a relatively large bandwidth 

(up to about a kilohertz or more) by sensing the position of, and applying feedback 

signals directly to, the test mass. The large motions of the test mass at the pendulum 

resonant frequencies can also be electronically damped to a low level using feedback 

signals applied to both masses of the pendulum simultaneously.

A novel design of double pendulum system for the vibration isolation and feedback 

control of a test mass has been developed. This nested double pendulum system was 

designed specifically in such a way as to attempt to reduce the level of any displacement 

noise re-introduced to the test mass due to the application of feedback control and 

damping signals.
To reduce the possibility of re-introducing displacement noise to an isolated test 

mass it would be desirable to avoid applying any position control signals directly to the 

mass. However it seems that it would not be possible in practice to control the position of 

the lower mass of a double pendulum system over a large enough bandwidth by applying 

feedback signals solely to the intermediate mass. A reasonable compromise is to consider 

a split-feedback loop arrangement where the low frequency position control is earned out
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by feeding signals to the intermediate mass with the higher frequency signals being 

applied to the test mass. Such an arrangement should significantly reduce the potential for 

re-introducing displacement noise to the test mass since the largest control signals are 

associated with correcting for the large low frequency excursions of the test mass. This is 

due to a combination of the fact that seismic noise is larger at low frequencies and passive 
isolation is poorer.

Two split-feedback systems (which involved different feedback bandwidths to the 

two masses) were designed for application to the nested double pendulum system. The 

first of these systems was designed so that the motions of the test mass up to about 30Hz 

were controlled by feeding signals to the intermediate mass. Unfortunately it was not 

possible to demonstrate the operation of this split-feedback system experimentally due to 

practical difficulties which were encountered (i.e. the unanticipated excitation of 

mechanical resonances which were not accounted for in the feedback loop design). The 

performance of this type of split-feedback control system requires further experimental 

investigation since it is believed that the difficulties encountered were not intrinsically 

related to the designed feedback system. The second design of split-feedback system was 

less ambitious in that the cross-over frequency between the two feedback loops was 

chosen to occur at a much lower frequency (below the first pendulum resonant 

frequency). This system was demonstrated to operate well with very high gain at low 

frequency achieved.
Using the finite element method it has also been shown in this thesis that the 

frequency response characteristics of multi-layer stacks are much more complicated than 

one would initially have predicted using simple dynamical theory. Cross-coupling effects 

can take place between contiguous layers of the stack and consequently the horizontal 

isolation obtained at the top of such a multi-layer stack may not be as high as one might 

expect. However it is believed that these cross-coupling effects can be reduced if care is 

taken over the design and construction of the stacks. Various design criteria for multi­

layer stacks which increase the likelihood of achieving high vibration isolation 

performance have been established as a consequence of the investigations earned out 

here.
The required level of seismic isolation for the test masses in an interferometric 

detector (at frequencies above ~100Hz) should be obtainable using passive isolation e.g. 

double pendulum suspensions in series with multi-layer stacks and air mounts. However 

it is possible that cross-coupling effects might take place within the isolation system and
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these might lead to a reduction in the level of isolation achieved. Furthermore when 

implementing feedback control of the test masses one must be aware that it is possible 

that the resonances of the isolation system and support structure connecting the pendulum 

to the ground might be excited and that this may jeopardise the stability of the control 

loop. However both of these effects can be avoided if care is taken when designing and 
constructing the multi-component isolation system.

The development of interferometric detectors with high enough sensitivity to detect 

the levels of gravitational radiation predicted to be generated by astrophysical sources 

presents many demanding scientific and technical challenges. However these challenges 

are surmountable and it is believed that the first generation long-baseline detectors which 

have recently been designed and await construction will have sensitivity levels 

approaching those required. The scientific community involved in research and 

development towards the detection of gravitational waves is optimistic that by the year 

2000 a worldwide network of three or more long-baseline interferometric detectors will 

be successfully operating. It is hoped these detectors will observe the gravitational waves 

from stellar collapses, coalescing compact binary systems and other types of interesting 

astrophysical sources some of which we may never have imagined.
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Appendix A 

Unwanted Magnetic Damping of a 
Pendulum Suspension

If coil/magnet transducers are used to control the position and orientation of a test 

mass it is possible that motions of the magnets in the region of the feedback coils will 

induce currents which might damp the quality factor of a test mass suspension to an 

undesirably low level. A simple calculation was performed to quantify this effect.

Consider the magnet to be a dipole of moment P which is aligned with the axis of a 

feedback coil of N  turns, radius a and of negligible length, similar to that shown in 

Figure 3.14. Recall from Section 3.5.3 (equation (3.17)) that the magnetic field 

produced along the axis of the coil as a function of the current /  passing through the coil 

is given by

The force on the dipole (magnet) at a distance r along the axis of die coil will then be

Now, motions of the magnet (dipole) in the region of the coil will induce a voltage 

(e.m.f.) in the coil giving rise to a force which will oppose the motion. The induced 

e.m.f. (£) will be equal to the rate of change of magnetic flux (0) through the coil as

(A.2)

Substituting equation (A.1) gives

3 fi0NP a2r I 

2(02+7#
(A.3)

shown below
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e - ’ (w ' (A.4)

If the coil has cross-sectional area A(= no2) then equation (A.4) can be re-written as

dt
which gives

e = - NA 1 ^ 1  ( a .5)

e m ' N A  (A-6)

f f ) v  (A.7)e = -N A  *dB

or

where Bm is the magnetic field of the dipole (magnet) along the axis of the coil and v  is 

the relative velocity of the coil and magnet.

Now for a dipole of moment P, the magnetic field at a distance r  along the axis is 

given by

= (A.8)
2 n r3

and hence

= (A.9)
' d r /  2 nr*

Therefore from equation (A.7) the e.m.f. (e) induced in the coil due to motion of the 

magnet will be

e -  3 Mon p a  Z. (A.10)
l i t r 4

Assuming that the coil has inductance L and is connected in series with a voltage source 

of high output impedance R (where R » r Coii) dien die induced current / in the coil will 

be
/=  (A .ll)

R + sL

where s is the complex frequency (i.e. s=jfi>). Therefore from equation (A. 10) the 

current induced in the coil will be

SUqN P A v (A12)
2 nr4 ( R^s l )
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Substituting this into equation (A.3) gives the force between the coil and the magnet as a 

function of the relative velocity v (with the cross-sectional area of the coil A=ko*)

p  = 9 ( n 0N P f g < y  

4 r3 (a2 + r2f 2 (R + sL)
(A.13)

the real part of which is equivalent to the damping force

F = -bv.  (A. 14)

The damping coefficient b is therefore given by

b =  9 ( n 0N P ? a 4 R  (A 15)
4 r3 (a2 + r2y 2 (r 2 + co? L2)

If the magnet is mounted on a mass m suspended as a simple pendulum of natural 

resonant angular frequency co0, then the Q factor of the pendulum will be (assuming 

that the pendulum has negligible natural damping)

0  = (A. 16)

where b is evaluated at the angular frequency (O q . 

Substituting equation (A.15) into equation (A.16) gives

__ 4 ojq m r3 (a2 + r2f 2 (/?2 + (0p L2) (A. 17)
9(lL0N P f d 4 R

Now using typical values for the various parameters e.g.

a = 1 cm \h -  4ti x 10’7

r = 0.5 cm NP = 140 Am2

(O0 = 6 rads*1 R = lM fl

= 3 Kg L = 10 mH
m

155



yields a value for the quality factor of the pendulum of Q~ 6 x io5.

Since very high Q's of the order of 107 or 10* [Hough et. al. 1989] are required 

for the pendulum suspensions used in interferometric detectors, it appears that this 
magnetic damping effect might reduce the Q of the pendulum suspension to an 

unacceptably low level. Note however from equation (A.17) that the magnitude of this 

effect can be reduced if R is increased i.e. if a very large output impedance driving 

amplifier is used for the coil. The effect can also be reduced by decreasing the coil/magnet 

coupling e.g. by reducing the number of turns N of the coil and/or reducing the strength 
of the magnets used i.e. making P smaller.

Obviously it is necessary to use more than one coil/magnet transducer to control 

both the position and orientation a test mass. Therefore the resulting Q might be even 

lower than this simple calculation suggests. However, if the coil/magnet transducers for 

the orientation control of the test mass are placed with their axes perpendicular to the 

horizontal test direction (as for the nested pendulum of Chapter 4), the flux-linkage will 

be effectively reduced and the damping effect in the test direction will be minimised.

This calculation is only approximate since it was assumed that the magnet was a 

point sized dipole, producing uniform flux through the coil (which was assumed to be of 

negligible length). Subsequent to this, a more detailed calculation has been performed 

where the finite dimensions of the coil were taken into account and the magnetic flux 

from a dipole source was integrated over the area of the coil [Logan 1990]. The Q 

formula obtained in this case reduced to the simplified version of equation (A.17) in the 

limit where the dimensions of the coil were assumed to be small compared to the 

coil/magnet separation. Using the typical values already defined, with a coil length of

0.5cm, this more rigorous formula yields a Q value of Qr 2 x 107 which is much higher 

than the value obtained using equation (A.17). However the true Q value due to this 

effect probably lies somewhere between these two estimates since the bar magnets used 

in these feedback transducers are usually of similar cross-sectional area to the coils. In 

this situation the dipole approximation breaks down and it would be more accurate to take 

account of the finite dimensions of the magnet also.
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Appendix B 

Example of an MSC/Nastran Input 
Data Deck for Frequency Response 
Analysis

Horizontal Frequency Response Analysis of a One-Layer 
Vibration Isolation Stack

Introductory Notes

This appendix gives an example of an MSC/n a stra n  data deck used for the 

horizontal frequency response analysis of the one-layer vibration isolation stack described 

in Chapter 6. The example shown is for the case where the rubber stiffness has been 

reduced by 10% on one side of the stack. The contents of the deck can be fairly easily 

modified to perform the vertical and rotational frequency response analyses as well as the 

eigenvalue analysis [MSC/Nastran 1983].

Brief comments incorporated in the data deck have a $ sign preceding them (this 

ensures that they are invisible to the program) and are shown in italicized letters. 

Supplementary comments given in bold italicized letters have been added for the 

information of the reader. Further information on the various cards used in the deck can 

be obtained in the various users manuals e.g. [MSC/Nastran 1985] and 

[MSC/Nastran 1983]. The data deck is constructed in the following order:

E X E C U T I V E  C O N T R O L  D E C K  Identifies the job, the type of solution to be performed

and the general conditions under which the job is to be 

executed e .g . the maximum time allowed for the job.

C A S E  C O N T R O L  D E C K  Defines the output requests. Also the boundary conditions

and loading cases are selected v i a  key words in the case 

control deck.

B U L K  D A T A  D E C K  Contains the data necessary to describe the structural model,

its constraint conditions and loading conditions.
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Example:

NASTRAN DATA DECK

E X E C U T I V E  C O N T R O L  D E C K  
id cantley, horizontal transmissibility with top plate critically damped 
sol 26 T h e  s o l u t i o n  s e q u e n c e  f o r  p e r f o r m i n g  t h e
time 1000 f r e q u e n c y  r e s p o n s e  a n a l y s i s .
$
cend C A S E  C O N T R O L  D E C K
title=frequency response with top plate (Q=0.5) supported by rubber with stiffness imbalance
subtitle=log h0012

label=rubber supports represented by meshed rubber plates
echo=unsort 
set 999=1,25,62,72,82 
disp(sort2,print,phase)=999 
spc=100  

mpc=400 
method=1500 
fieq=99 
dload=88 

$
begin bulk 
3j f r e q u e n c y  s e t  
ffeq2,99,0.05,10000.0,100 
$
rload2,88,44,,,66  

$
darea,44,21,1,1.0,22,1,1.0 
darea,44,23,1,1.0,24,1,1.0 
darea,44,25,1,1.0,1,1,1.0 
darea,44,2,1,1.0,3,1,1.0 
darea,44,4,1,1.0,5,1,1.0 
$
tabled4,66,0.0,1.0,0.05,10000.0, 
0.0,0.0,4.37e8,endt 
$

S u s e d  i n  f r e q u e n c y  r e s p o n s e  a n a l y s i s  
eigr, 1500,inv,0.05,10000.0,8,,,,+eig 
+eig,max

R e f e r s  t o  f o r m a t  o f  e c h o  o f  d a t a  d e c k  i n  t h e  o u t p u t  f i l e .  
S e l e c t e d  n o d e s  f o r  w h i c h  o u t p u t  d a t a  a r e  r e q u e s t e d .
T h e  t y p e  o f  o u t p u t  d a t a  r e q u e s t e d .
I d e n t i f i c a t i o n  n u m b e r  f o r  s i n g l e  p o i n t  c o n s t r a i n t  s e t .  
I d e n t i f i c a t i o n  n u m b e r  f o r  m u l t i  -  p o i n t  c o n s t r a i n t  s e t .
S e t  i d e n t i f i c a t i o n  n u m b e r  f o r  f r e q u e n c y  r e s p o n s e  a n a l y s i s .  
F r e q u e n c y  s e t  i d e n t i f i c a t i o n  n u m b e r .
D y n a m i c  l o a d  s e t  i d e n t i f i c a t i o n  n u m b e r .

B U L K  D A T A  D E C K
D e f i n e s  a  s e t  o f  e x c i t a t i o n  f r e q u e n c i e s  t o  b e  u s e d  b y  
s p e c i f i c a t i o n  o f  a  s t a r t i n g  f r e q u e n c y ,  f i n a l  f r e q u e n c y  
a n d  n o .  o f  l o g a r i t h m i c  i n c r e m e n t s  d e s i r e d .
D e f i n e s  a  f r e q u e n c y  d e p e n d e n t  d y n a m i c  l o a d .

D e f i n e s  t h e  n o d e s  a t  w h i c h  a  d y n a m i c  l o a d  i s  
t o  b e  a p p l i e d ,  t h e  d i r e c t i o n  a n d  t h e  s c a l e  f a c t o r  
e . g .  n o d e  2 1  i n  t h e  x - d i r e c t i o n  w i t h  a  s c a l e  f a c t o r  o f  1 . 0 .

D e f i n e s  t h e  c o e f f i c i e n t s  o f  a  p o w e r  
s e r i e s  f o r  u s e  i n  g e n e r a t i n g  a  f r e q u e n c y  
d e p e n d e n t  d y n a m i c  l o a d .

D e f i n e s  d a t a  n e e d e d  t o  p e r f o r m  t h e  r e a l  
e i g e n v a l u e  a n a l y s i s .
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$ c o o r d i n a t e s  o f  n o d e s  f o r  l e f t  h a n d  r u b b e r  s u p p o r t  
grid, 1„0 .0 ,0 .0 ,0.0  

grid, 2„0.0025,0.0,0.0 
grid, 3„0.005,0.0,0.0 
grid,4„0.0075,0.0,0.0 
grid,5„0.01,0 .0 ,0.0  

grid,6„0.0,0.0,0.00159 
grid,7„0.0025,0.0,0.00159 
grid,8„0.005,0.0,0.00159 
grid,9„0.0075,0.0,0.00159 
grid, 10„0.01,0.0,0.00159 
grid,ll„0.0,0.0,0.00318 
grid, 12„0.0025,0.0,0.00318 
grid, 13„0.005,0.0,0.00318 
grid, 14„0.0075,0.0,0.00318 
grid, 15„0.01,0.0,0.00318 
grid, 16„0.0,0.0,0.00476 
grid, 17„0.0025,0.0,0.00476 
grid, 18„0.005,0.0,0.00476 
grid, 19„0.0075,0.0,0.00476 
grid,20„0.01,0.0,0.00476 
$
$ c o o r d i n a t e s  o f  n o d e s  f o r  r i g h t  h a n d  r u b b e r  s u p p o r t
grid, 21„0.229,0.0,0.0
grid,22„0.2315,0.0,0.0
grid,23..0.234,0.0,0.0
grid,24„0.2365,0.0,0.0
grid,25„0.239,0.0,0.0
grid,26„0.229,0.0,0.00159
grid,27„0.2315,0.0,0.00159
grid,28„0.234,0.0,0.00159
grid,29„0.2365,0.0,0.00159
grid,30„0.239,0.0,0.00159
grid,31„0.229,0.0,0.00318
grid,32„0.2315,0.0,0.00318
grid,33„0.234,0.0,0.00318
grid,34„0.2365,0.0,0.00318
grid,35„0.239,0.0,0.00318
grid,36„0.229,0.0,0.00476
grid,37„0.2315,0.0,0.00476
grid,38„0.234,0.0,0.00476

D e f i n e s  t h e  l o c a t i o n  o f  a  n o d e  ( r e f e r  t o  
F i g u r e  B . l )  e . g .  n o d e  n u m b e r  7 a t  
c o o r d i n a t e s  ( 0 . 0 0 2 5 , 0 . 0 , 0 . 0 0 1 5 9 ) .
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grid,39„0.2365,0.0,0.00476 
grid.40,,0.239,0.0,0.00476 
$
$ c o o r d i n a t e s  o f  n o d e s  f o r  s u p p o r t e d  p l a t e  
grid,41,,0.0,0.0,0.00635 
grid,42„0.0025,0.0,0.00635 
grid,43„0.005,0.0,0.00635 
grid,44„0.0075,0.0,0.00635 
grid,45„0.01,0.0,0.00635 
grid,46„0.03,0.0,0.00635 
grid,47„0.05,0.0,0.00635 
grid,48„0.07,0.0,0.00635 
grid,49„0.09,0.0,0.00635 
grid,50„0.11,0.0,0.00635 
grid,51„0.1195,0.0,0.00635 
grid,52„0.129,0.0,0.00635 
grid,53„0.149,0.0,0.00635 
grid,54„0.169,0.0,0.00635 
grid,55„0.189,0.0,0.00635 
grid,56„0.209,0.0,0.00635 
grid,57„0.229,0.0,0.00635 
grid,58„0.2315,0.0,0.00635 
grid,59„0.234,0.0,0.00635 
grid,60„0.2365,0.0,0.00635 
grid,61„0.239,0.0,0.00635 
grid,62,,0.0,0.0,0.01905 
grid,63„0.0025,0.0,0.01905 
grid,64„0.005,0.0,0.01905

e t c

grid,100„0.2315,0.0,0.03175 
grid, 101„0.234,0.0,0.03175 
grid, 102..0.2365,0.0,0.03175 
grid,103„0.239,0.0,0.03175 
$
S q u a d r i l a t e r a l  e l e m e n t s  f o r  l e f t  h a n d  r u b b e r  s u p p o r t
cquad4,l,l,6,7,2,l
cquad4,2,l,7,8,3,2
cquad4,3,l,8,9,4,3
cquad4,4,1,9,10,5,4

e t c

D e f i n e s  a  q u a d r i l a t e r a l  p l a t e  e l e m e n t  
c o n n e c t i o n  e . g .  e l e m e n t  n u m b e r  1  o f  
m a t e r i a l  1  w i t h  c o r n e r  n o d e s  6 , 7 , 2 , 1  

( r e f e r  t o  F i g u r e  B . l ) .
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cquad4,15,1,43,44,19,18 
cquad4,16,1,44,45,20,19 
$
$quadrilateral elements for right hand rubber supports 
cquad4,17,3,26,27,22,21 
cquad4,18,3,27,28,23,22 
cquad4,19,3,28,29,24,23 
cquad4,20,3,29,30,25,24

e t c

cquad4,30,3,58,59,38,37 
cquad4,31,3,59,60,39,38 
cquad4,32,3,60,61,40,39 
$
$ q u a d r i l a t e r a l  e l e m e n t s  f o r  s u p p o r t e d  p l a t e  
cquad4,33,2,62,63,42,41 
cquad4,34,2,63,64,43,42 
cquad4,35,2,64,65,44,43 
cquad4,36,2,65,66,45,44

e t c

cquad4,70,2,100,101,80,79 
cquad4,71,2,101,102,81,80 
cquad4,72,2,102,103,82,81 
$

S d i m e n s i o n s  a n d  m a t e r i a l  p r o p e r t i e s  o f  l e f t  h a n d  r u b b e r  e le m e n ts  
pshell,1,1,0.001,1 S h e l l  e l e m e n t  p r o p e r t y .
m atl,l„7.29e6,0.5,1100.0,,,0.2 D e f i n e s  t h e  m a t e r i a l  p r o p e r t i e s .
$
^ d i m e n s i o n s  a n d  m a t e r i a l  p r o p e r t i e s  o f  s u p p o r t e d  p l a t e  e le m e n ts  
pshell,2 ,2 ,0 .001,2  

mat 1,2,4.7e 13„0.27,1.81 e6,„2.0 
$
^ d i m e n s i o n s  a n d  m a t e r i a l  p r o p e r t i e s  o f  r i g h t  h a n d  r u b b e r  e le m e n ts
pshell,3,3,0 .001 ,3 
matl,3„6.561e6,0.5,1100.0,,, 0.2 

$
S c o n s  t r a i n  a l l  r e m a i n i n g  n o d e s  in  y - d i r e c t i o n  a n d  r o t a t i o n  a b o u t  y  
spcl,100,25,1,thru,103
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D e f i n e s  c o o r d i n a t e s  a t  w h i c h  t h e  u s e r  
d e s i r e s  d e t e r m i n a t e  r e a c t i o n s  t o  b e  
a p p l i e d  t o  a  f r e e  b o d y  d u r i n g  a n a l y s i s  
e . g .  n o d e  2 1  i n  t h e  x - d i r e c t i o n .

S c a l a r  m a s s  p r o p e r t y  a n d  c o n n e c t i o n .

$
S c o n s t r a i n  d r i v e n  b a s e  n o d e s  i n  z  d i r e c t i o n  
spcl, 100,3,21, thru, 25 
spcl,100,3,l,thru,5 

$
S f i c t i t i o u s  s u p p o r t s  f o r  b a s e  n o d e s  b e in g  d r i v e n  
suport,21,1,22,1,23,1,24,1 
suport,25,1,1,1,2,1,3,1 
suport,4,l,5,l 
$
S s c a l a r  m a s s  p r o p e r t y  a t  b a s e  n o d e s  b e in g  d r i v e n  
cmass2,33, 1.1 le7,21,1 
cmass2,34,1.11 e7,22,1 
cmass2,35,l.lle7,23,l 
cmass2,36,l.l le7f24,l 
cmass2,37,l.l le7,25,l 
cm ass2,38,l.lle7,l,l 
cmass2,39,l.lle7,2,l 
cmass2,40,l .1 le7,3.1 
cmass2,41,1.11 e7,4,1 
cmass2,42, l.lle7 ,5 ,l 
$
$ f i c t i t i o u s  n o d e s  f o r  c o n n e c t i n g  d a m p i n g  e l e m e n t s  a c r o s s  r u b b e r  s u p p o r t s
grid,290..0.0,0.0,0.0 F i c t i t i o u s  n o d e s  u s e d  t o  c o n n e c t
grid,291,,0.0025,0.0,0.0 o r t h o g o n a l  d a m p i n g  e l e m e n t s .
grid,292„0.005,0.0,0.0 
grid,293„0.0075,0.0,0.0 
grid,294„0.01,0.0,0.0 
grid,295„0.229,0.0,0.0 
grid,296„0.2315,0.0,0.0 
grid,297„0.234,0.0,0.0 
grid,298„0.2365,0.0,0.0 
grid,299„0.239,0.0,0.0 
$
S m u l t i p o i n t  c o n s t r a i n t s  f o r  f i c t i t i o u s  n o d e s  
mpc,400,41,1,1.0,290,1,-1.0 
mpc,400,290,3,1.0,1,3,-1.0 
mpc,400,42,1,1.0,291,1,-1.0 
mpc,400,291,3,1.0,2,3,-1.0 
mpc,400,43,1,1.0,292,1,-1.0 
mpc,400,292,3,1.0,3,3,-1.0 
mpc,400,44,1,1.0,293,1,-1.0 
mpc,400,293,3,1.0,4,3,-1.0
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mpc,400,45,1,1.0,294,1,-1.0 
mpc,400,294,3,1.0,5,3,-1.0 
mpc,400,57,1,1.0,295,1,-1.0 
mpc,400,295,3,1.0,21,3,-1.0 
mpc,400,58,1,1.0,296,1,-1.0 
mpc,400,296,3,1.0,22,3,-1.0 
mpc,400,59,1,1.0,297,1,-1.0 
mpc,400,297,3,1.0,23,3,-1.0 
mpc,400,60,1,1.0,298,1,-1.0 
mpc,400,298,3,1.0,24,3,-1.0 
mpc,400,61,1,1.0,299,1,-1.0 
mpc,400,299,3,1.0,25,3,-1.0 
$
Sensures fictitious nodes constrained in remaining degrees of freedom 

spcl,100,2456,290,thru,299 
$
$damping of node 290 to node 1 in the horizontal

cdamp2,45,9.35,290,1,1,1 D e f i n e s  a  s c a l a r  d a m p i n g
$ e l e m e n t .
Sdamping of node 41 to node 290 in the vertical 
cdamp2,46,6.23,41,3,290,3 
$
Sdamping of node 291 to node 2 in the horizontal 

cdamp2,47,9.35,291,1,2,1 
$
Sdamping of node 42 to node 291 in the vertical 

cdamp2,48,6.23,42,3,291,3 
$
Sdamping of node 292 to node 3 in the horizontal 

cdamp2,49,9.35,292,1,3,1 
$
Sdamping of node 43 to node 292 in the vertical 

cdamp2,50,6.23,43,3,292,3 
$
Sdamping of node 293to node 4 in the horizontal 

cdamp2,51,9.35,293,1,4,1 
$
Sdamping o f node 44 to node 293 in the vertical 

cdamp2,52,6.23,44,3,293,3 
$
Sdamping of node 294 to node 5 in the horizontal 

cdamp2,53,9.35,294,1,5,1
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$
S d a m p i n g  o f  n o d e  4 5  t o  n o d e  2 9 4  in  th e  v e r t i c a l  
cdamp2,54,6.23,45,3,294,3 
$
S d a m p i n g  o f  n o d e  2 9 5  t o  n o d e  2 1  i n  th e  h o r i z o n t a l  
cdamp2,55,9.35,295,1,21,1 
$
S d a m p i n g  o f  n o d e  5 7  t o  n o d e  2 9 5  i n  th e  v e r t i c a l
cdamp2,56,6.23,57,3,295,3
$
Sdamping of node 296 to node 22 in the horizontal 
cdamp2,57,9.35,296,1,22,1 
$
Sdamping of node 58 to node 296 in the vertical
cdamp2,58,6.23,58,3,296,3
$
Sdamping of node 297 to node 23 in the horizontal 
cdamp2,59,9.35,297,1,23,1 
$
Sdamping of node 59 to node 297 in the vertical 

cdamp2,60,6.23,59,3,297,3 
$
Sdamping of node 298 to node 24 in the horizontal 

cdamp2,61,9.35,298,1,24,1 
$
Sdamping o f node 60 to node 298 in the vertical 

cdamp2,62,6.23,60,3,298,3 
$
Sdamping o f node 299 to node 25 in the horizontal 

cdamp2,63,9.35,299,1,25,1 
$
Sdamping of node 61 to node 299 in the vertical

cdamp2,64,6.23,61,3,299,3
$
enddata S i g n i f i e s  t h e  e n d  o f  t h e  d a t a  d e c k .
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Appendix C

The Ground Tilt Spectrum in an 
Urban Environment

Introduction

It was shown in Chapter 6 that ground tilting motions might couple strongly to 

horizontal motion at the top of the vibration isolation stacks used in gravitational radiation 

detectors. Since relatively little information on the magnitude of ground tilt at the Earth's 

surface is available it seemed important to make a measurement of the ground tilt 

spectrum at a typical detector site.

A series of measurements of the ground tilt spectrum were made at an outdoor site a 

few tens of metres from the 10m prototype detector which is based on campus at 

Glasgow University. Measurements were also taken indoors in the laboratory containing 

the prototype detector. Two different methods were used. The first set of measurements 

were taken using two horizontally sensitive accelerometers mounted at different heights 

on a 'rigid* pole which was embedded in the ground to a depth of ~0.5m. The second set 

of measurements were taken using two vertically sensitive accelerometers which were 

separated horizontally and rigidly mounted on the ground surface.

Determination of the Ground Tilt Spectrum Using Horizontal 
Accelerometers

Consider two accelerometers rigidly mounted on a pole at different heights hj and /12 

above the Earth's surface as shown in Figure C.l. It is assumed that the axis of rotation 

lies coplanar with the surface and is directly below the pole (here shown as the y-axis). 

Furthermore it is assumed that the pole has no internal resonances in the frequency range

considered.
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'rigid' pole accelerometers

\0

. . a l l S !ground surrscc — ^

■y

Figure C .l Arrangement for measuring the ground tilt spectrum using 
horizontal accelerometers.

By deriving the equations of motion of the accelerometers (in the frequency 

domain), the acceleration outputs ctj and (*2 are found to be [Reichle and 

Bradner 1972] :

dj = s2x + (s*hi + g)& 

012 = s2x + (s2h2 +g)0

(C.l)

(C.2)

where

s = jco
and g = acceleration due to gravity

Solving these equations for gives:
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( a i - a 2) 
s2ihi - h2) (C.3)

Therefore if the outputs from the two accelerometers are subtracted and recorded, the 

ground tilt & can be measured as a function of frequency.

The outputs from two such accelerometers mounted on a rigid pole (as shown in 

Figure C .l) at the outdoor site were differentially amplified and several spectra were 

recorded both with the accelerometers vertically separated by lm and with them placed at 

the same height above the ground. This enabled a check to be made on whether the 

observed tilt signal was above the noise signal. Since the measurements were taken out of 

doors direct coupling of the wind noise to the measuring instruments was a problem, in 

particular the movement induced in the connecting cables. To minimise this effect care 

was taken to shield the connecting cables as much as possible and the readings were 

taken when the wind was subdued.

Figure C.2 shows four sets of data of the measured ground tilt as a function of 

frequency. The ground tilt appears to fall at ~12dB/octave at frequencies below about 

20Hz or 30Hz, tending to a gradient of ~18dB/octave at higher frequencies.

Superimposed on this graph is the ground tilt spectrum estimated by Weinstock 

from consideration of the vertical acceleration spectrum in a laboratory environment 

assuming an elastic surface wave model [Weinstock 1966]. The magnitude of the ground 

tilt at 10Hz measured in a laboratory environment by Speake and Newell [Speake and 

Newell 1990] is also shown on Figure C.2. At 10Hz the experimental data obtained with 

the accelerometers on the pole lie between these two reference values.

It should be noted however that the pole had two internal resonances at ~30Hz and 

at ~110Hz (<2's ~ 5). These resonances undoubtedly played some role in determining 

the shape of the measured spectrum above about 30Hz. However it would be difficult to 

predict their precise effects. Nevertheless it is interesting to note that the general shape of 

the measured spectrum is similar to that predicted by Weinstock.
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Figure C.2 Apparent ground tilt spectrum measured with horizontal 

accelerometers compared with quoted values (the sources are 

as detailed in the text).

Determination of the Ground Tilt Spectrum Using Vertical 
Accelerometers

Since the results shown in Figure C.2 were perhaps unreliable above about 30Hz due to 

the presence of internal resonances of the pole, an alternative method of measuring the 

ground tilt was used.
Consider two vertically sensitive accelerometers mounted rigidly on the ground 

surface and placed a distance d apart as shown in Figure C.3.
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accelerometers

ground surface

■y d

Figure C.3 Arrangement fo r  measuring the ground tilt spectrum using 

vertical accelerometers.

It is assumed here that the axis of rotation is coplanar with the ground surface and lies 

between the two accelerometers (the y-axis here). By deriving the equations of motion of 

the accelerometers (in the frequency domain), the acceleration outputs ctj and (X2 are 

found to be:

a ^ s h j  (C.4)

a2 = s2z2

Note that the accelerometers are not sensitive to the constant gravitational acceleration g 

and so this term is not included in these equations. Using the small angle approximation 

and solving these for #  = (Z/_Z2^  gives:

(«; : og) (C.6)
s U
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So if the accelerometer outputs are subtracted and recorded, the ground tilt 0  as a 
function of frequency can be evaluated.

In the laboratory containing the prototype gravitational wave detector each 

accelerometer was magnetically clamped to a heavy iron block. The two accelerometers 

were then arranged as shown in Figure C.3 and the outputs differentially amplified. 

Several spectra were recorded both with the accelerometers separated by lm and with the 

accelerometers coincident. This enabled a check to be made on whether the observed tilt 
signal was larger than the noise signal.

The experiment was repeated at the outdoor site with the accelerometers separated 

by a distance of d ~ 0.2m. Graphs of the ground tilt 0  versus frequency for the two 

sites are shown in Figure C.4.

10

0 indoor test site 
0 outdoor test site

10‘10

! mean level from S  
■ horizontal measurements

Frequency (Hz)

Figure C.4 Ground tilt spectra measured with vertical accelerometers.

The mean level at 100Hz from the horizontal accelerometer 

measurements (Figure C2) is superimposed for comparison.

The curves have similar shapes with a gradient of ~18dB/octave above about 100Hz. The 

indoor measurements have slightly larger magnitude and this may have been due to the
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vacuum pumps and other equipment operating at the time of measurement. It is 

interesting to note that the magnitude and gradient of the spectrum above about 100Hz is 
similar to that obtained using the pole method.

Conclusions

The ground tilt spectrum measured on the lm pole structure gave a value for the tilt at 

10Hz of about 5 * 10'9 It is encouraging to see that this value lies between the

value predicted by Weinstock [Weinstock 1966] and that measured by Speake and 

Newell [Speake and Newell 1990]. However the data shown in Figure C.2 are not a 

reliable measure of the true tilt at the Earth’s surface at frequencies above about 30Hz 

since the pole had an internal resonance at this frequency and one also at about 110Hz. 

The precise effect that these resonances had on the measured tilt is difficult to predict. 

Nevertheless it is interesting to note that the ground tilt spectrum in Figure C.2 has a 

similar shape to that predicted by Weinstock.

The ground tilt spectrum measured using vertically sensitive accelerometers is a 

more reliable indication of the true tilt of the ground surface. From Figure C.4 the ground 

tilt spectrum has a value of ~2 x 10*11 "fynT at 100Hz and falls at ~18dB/octave above 

this frequency. It is interesting to notice that the magnitude of the tilt at 100Hz is 

approximately the same as that measured using the horizontal accelerometers on the pole. 

This perhaps suggests that the internal resonances of the pole were having very little 

effect on the measurements shown in Figure C.2.
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