

https://theses.gla.ac.uk/

Theses Digitisation:

https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/

This is a digitised version of the original print thesis.

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study, without prior permission or charge

This work cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given

Enlighten: Theses <u>https://theses.gla.ac.uk/</u> research-enlighten@glasgow.ac.uk

EQUINE WELFARE: A STUDY OF DERMATOPHILOSIS AND THE MANAGEMENT OF DATA RELEVANT TO THE HEALTH AND WELLBEING OF HORSES

By

Pauline J. Mollison, BVMS, MRCVS

Thesis submitted for the Degree of Doctor of Philosophy in the Faculty of Veterinary Medicine, University of Glasgow

November 1990

ProQuest Number: 11007581

All rights reserved

INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 11007581

Published by ProQuest LLC (2018). Copyright of the Dissertation is held by the Author.

All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

> ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106 – 1346

ACKNOWLEDGEMENTS

Without the help and advice of a great number of people, this thesis would never have come to fruition. In this respect I wish to thank my colleagues in the University of Glasgow Veterinary School, particularly those in the Department of Veterinary Medicine. Professor Max Murray supervised the work presented in the thesis, and I thank him for his guidance and inspiration.

The microbiological aspect of the work was performed in the Department of Pathology under the supervision of Dr Andy Rycroft and with technical assistance from Carole MacLay. Dr Chris Hunter gave help and advice on the protease work. Arlene Macrae, Linda Forrest, Brian Wright and John Armstrong gave extensive, cheerful technical support in numerous aspects of the work within the Department of Veterinary Medicine. I acknowledge the work of the Departments of Pathology and of Clinical Biochemistry in the thousands of haematological and clinical biochemical examinations which were carried out during the studies.

Dr George Gettinby of the Department of Statistics and Modelling Science in the University of Strathclyde was a guiding light, as the areas of computing and data handling and analysis were for me a trip into the great unknown. I also thank Dr Gettinby's family for making me welcome when work was taken home. I acknowledge the assistance of Dr Jim Thorpe from the Department of Chemistry in the University of Strathclyde, who designed the database.

None of the clinical studies could have been initiated had it not been for the generous cooperation of the owners of the horse farms, Virginia Lucy and her family. Virginia and her farm staff could not have been more obliging, particularly in the day-to-day supplementation of the animals with "the capsules", and in the arduous collection of data, whilst considerable pressure of work existed elsewhere. Mr Ben Mitchell was the Home Office Veterinary Inspector when the work on repeated bleeding in the horses was carried out, and I appreciate his comments on the work.

Efamol Marine and placebo treatments were supplied by Efamol Vet,

ii

the veterinary division of Scotia Pharmaceuticals. Essential fatty acid (EFA) estimations were performed in the Efamol Research Institute in Nova Scotia.

The work presented in this thesis was made possible by an equine welfare grant from The Home of Rest for Horses. This grant was awarded to evaluate the use of EFAs in the treatment of dermatophilosis in horses.

INTRODUCTION	Page	No 1
MATERIALS AND METHODS		71
RESULTS SECTION 1. THE USE OF ESSENTIAL FATTY ACIDS (EFAs) IN THE MANAGEMENT OF DERMATOPHILOSIS IN HORSES		85
SECTION 2. CHARACTERISTICS OF <i>DERMATOPHILOSIS CONGOLENS</i> IN RELATION TO SITE AND SEVERITY OF LESIONS LEADING TO INVESTIGATION OF AN EXTRACELLULAR PROTEASE	IS THE	135
SECTION 3. THE CLINICAL AND HAEMATOLOGICAL CONSEQUENCES BLEEDING HORSES AT REGULAR INTERVALS	OF J	175
SECTION 4. THE CREATION OF A MANAGEMENT EQUINE DATABASE]	195
GENERAL DISCUSSION AND CONCLUSIONS	2	213
REFERENCES	2	220
APPENDICES		

.

	Page No
INTRODUCTION	1
BACKGROUND	2
SKIN DISEASE IN THE HORSE	3
Parasitic Skin Disease	4
Bacterial Skin Disease	9
Fungal Skin Disease	10
Neoplastic Skin Disease	13
Allergic and Immune-Mediated Skin Disease	18
Miscellaneous Skin Disease	23
Environmental Skin Disease	26
Congenital Skin Disease	28
Conclusion	30
A PERSPECTIVE OF DERMATOPHILOSIS IN THE HORSE	31
The Organism	33
The Disease	34
Pathology and Pathogenesis	42
Diagnosis	45
Management	46
Conclusion	51

T0
52
52
60
64
69
70

	Page No
MATERIALS AND METHODS	71
Horses and Site	72
Blood Harvesting Procedures	72
Management of Horses	74
Veterinary Attention	74
Parameters Assessed in the Current Study	79
Clinical Monitoring	79
Haematology and Clinical Biochemistry	81
EFA Estimations	81
Data Collected by the Farm Owner	82
Statistical Analyses	82

RESULTS	84
SECTION 1. THE USE OF ESSENTIAL FATTY ACIDS (EFAs) IN THE MANAGEMENT OF DERMATOPHILOSIS IN HORSES	85
Background	86
The Pharmacokinetics of EFAs in Horses	90
Introduction	90
Materials and Methods	90
Results	91
Discussion	103

The Use of EFAs in the Treatment of Dermatophilosis in Horses

Introduction	106
Materials and Methods	107
Results	109
Discussion	123

The Use of EFAs in the Prophylaxis of Dermatophilosis in Horses

Introduction	125
Materials and Methods	125
Results	126
Discussion	131

SECTION 2. CHARACTERISTICS OF DERMATOPHILUS CONGOLENSIS IN	
RELATION TO SITE AND SEVERITY OF LESIONS, LEADING TO INVEST	IGATION
OF AN EXTRACELLULAR PROTEASE	135
Introduction	136
Materials and Methods	139
Results and Discussion	148
Conclusion	174
SECTION 3. THE CLINICAL AND HAEMATOLOGICAL CONSEQUENCES OF	
BLEEDING HORSES AT REGULAR INTERVALS	175
Introduction	176
Materials and Methods	177
Results	
Experiment 1. Monitoring Over Five Harvest Cycles	178
Experiment 2. Monitoring Between Two Harvest Points	183
Discussion	191
SECTION 4. THE CREATION OF A MANAGEMENT EQUINE DATABASE	195
Introduction	106
Materials and Methods	200
	203
Discussion	210
	210
GENERAL DISCUSSION AND CONCLUSIONS	213
REFERENCES	220
APPENDICES	

LIST OF APPENDICES

Р	'age No
APPENDIX I	
TABLES OF RESULTS OF THE STUDY ON THE PHARMACOKINETICS OF	EFAs IN
HORSES	1
Clinical Indices	2
Haematological Parameters	6
Biochemical Parameters	14
APPENDIX II	
TABLES OF RESULTS OF THE STUDY ON THE USE OF EFAS IN THE T	REATMENT
OF DERMATOPHILOSIS IN HORSES	
Clinical Indices	30
Haematological Parameters	38
Biochemical Parameters	46
APPENDIX III	
TABLES OF RESULTS OF THE STUDY ON THE USE OF EFAS IN THE	
PROPHYLAXIS OF DERMATOPHILOSIS IN HORSES	
Clinical Indices	63
Haematological Parameters	67
Biochemical Parameters	71
APPENDIX IV	
NORMAL RANGES FOR HAEMATOLOGICAL AND BIOCHEMICAL PARAMETER	S AND
UNITS USED IN THEIR MEASUREMENT	79
APPENDIX V	
TABLES DETAILING STATISTICAL ANALYSES PERFORMED IN THE STU	DY ON
THE PHARMACOKINETICS OF EFAS IN HORSES	
Clinical Indices	83
Haematological Parameters	85
Biochemical Parameters	89
EFA Estimations	97

LIST OF APPENDICES

APPENDIX VI

TABLES DETAILING STATISTICAL ANALYSES PERFORMED IN THE	STUDY ON
THE USE OF EFAS IN THE TREATMENT OF DERMATOPHILOSIS IN	HORSES
Clinical Indices	106
Haematological Parameters	110
Biochemical Parameters	114
EFA Estimations	122

APPENDIX VII

TABLES DETAILING STATISTICAL ANALYSES PERFORMED IN TH	HE STUDY ON
THE USE OF EFAS IN THE PROPHYLAXIS OF DERMATOPHILOSIS	IN HORSES
Clinical Indices	129
Haematological Parameters	131
Biochemical Parameters	135
EFA Estimations	143

LIST OF ACRONYMS

AA	Arachidonic acid
ALA	Alpha linolenic acid
CHD	Coronary heart disease
DGLA	Dihomogammalinolenic acid
EFAs	Essential fatty acids
EPA	Eicosapentanoic acid
EPO	Evening primrose oil
GLA	Gamma-linolenic acid
Hb	Haemoglobin
Ig	Immunoglobulin
LA	Linoleic acid
MCH	Mean cell haemoglobin
MCHC	Mean cell haemoglobin concentration
MCV	Mean cell volume
PCV	Packed cell volume
PG	Prostaglandin
P1	Platelets
PUFAs	Polyunsaturated fatty acids
RCC	Red blood cell count
WCC	White blood cell count

SUMMARY

This thesis considers aspects of equine welfare which have received little attention in the U.K.

Skin disease, particularly bacterial skin disease, was highlighted as an area giving rise to concern with respect to equine welfare. Dermatophilosis was examined in detail as one of the commoner bacterial skin conditions responsible for animal suffering, and one for which management is often difficult.

Essential fatty acids (EFAs) were evaluated as a dietary supplement in an alternative approach to the management of equine dermatophilosis. The pharmacokinetics of EFAs in the horse were investigated, with EFAs supplemented as evening primrose oil (EPO), containing linoleic acid (LA) and gamma-linolenic acid (GLA). A very slow conversion of LA to its active metabolites was found in the horse compared to other species. A daily dose regime of 20g of 80% EPO and 20% fish oil and vitamin E was adopted for the consequent treatment and prophylactic studies.

In a placebo-controlled, double blind treatment study no significant effect was seen on severity or extent of distribution of lesions of dermatophilosis when horses received EFAs orally. When EFAs were supplemented over the traditional autumn high dermatophilosis risk period in a controlled prophylactic study, they did not prevent development of lesions or reduce incidence of infection. No significant improvement was afforded by EFAs on the condition of the coat, mane, tail or hooves, nor on general body condition. EFAs were not harmful and exerted no effect, adverse or beneficial, on haematological or biochemical parameters.

The characteristics of *D. congolensis* were examined in relation to the site and severity of lesions of dermatophilosis, but no correlation was found. All isolates were different when examined by differential bacteriological growth characteristics and sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). Proteolytic enzyme production by *D. congolensis* was investigated with regard to the virulence of the organism, and several isolates

xii

demonstrated extracellular protease activity.

The clinical and haematological consequences of bleeding horses at regular intervals were monitored in a group of animals maintained for commercial blood production. No adverse effect was recorded on clinical, protein or haematological profiles when 8 litres of blood were removed every three weeks. Thoroughbred animals supported regular bleeding better than non-Thoroughbred animals.

A relational database system was created as a management tool for the manager of the horse herd. The information contained within the system, regarding horse details, bloodroom records and farm laboratory records, could be constantly updated. Rapid detection of poor performers or anaemic animals could permit prompt instigation of corrective action, avoiding undue animal distress.

It is hoped that some of the work within this thesis has made a worthwhile contribution to the extension of knowledge concerning the welfare of horses in the U.K.

INTRODUCTION

BACKGROUND

SKIN DISEASE IN THE HORSE

A PERSPECTIVE OF DERMATOPHILOSIS IN THE HORSE

ESSENTIAL FATTY ACIDS (EFAS): THE RATIONALE FOR POSSIBLE USE TO MANAGE EQUINE DERMATOPHILOSIS

BACKGROUND

This thesis considers aspects of welfare of horses which to date have been given little attention in the United Kingdom. Skin disease. and in particular dermatophilosis, is a common. debilitating problem in horses, and a new approach to management of the condition using essential fatty acids was investigated. In order to put the condition into perspective the problem of skin disease in the horse as a whole is reviewed prior to а more detailed consideration of dermatophilosis in subsequent chapters. In addition, the characteristics of Dermatophilus congolensis were examined in relation to the site and severity of lesions, leading to an investigation of an extracellular protease.

The horses under study were being kept for commercial blood production and as such were subjected to regular, repeated blood harvest, thus presenting an unique opportunity to assess the welfare consequences of such a procedure. To aid and improve the management of the large numbers of horses encountered in the work of this thesis, an equine management database was created.

SKIN DISEASE IN THE HORSE

The horse's skin is the largest organ in its body (Scott, 1988) and it is the point of contact between internal and external environments. The skin is a good indicator of general health and it performs the important functions of protection from trauma and prevention of invasion by micro-organisms or chemical compounds and it allows sensation of external stimuli such as temperature, touch, itch, pain and pressure. Skin pigmentation protects against solar radiation and vitamin synthesis occurs in the skin in response to solar radiation. Temperature regulation in the body is provided by evaporation of sweat from the skin.

Disease of the skin is readily noticed and is frustrating for the animal, the owner and the veterinary surgeon as it often causes discomfort, disfigurement and may preclude use for work, showing or riding (Fadok and Mullowney, 1983).

The horse's comfort is grossly affected for example by generalised pruritus and self inflicted trauma and excoriation resulting from allergic reactions to foods, drugs, insects, plants and numerous inhaled allergens. Localised pruritus can be inflicted by a range of ectoparasites, such as mane and tail infestation by lice or Culicoides, tail region affected by Oxyuris equi, extremities by harvest mites. and localised areas affected by ringworm. Discomfort to the extent of hyperaesthesia and pain, with secondary bacterial infection, can be a consequence of dermatophilosis, folliculitis and furunculosis, fly infestations, contact dermatitis, or ulceration of the surface of cutaneous neoplasms.

The appearance of the horse, and consequently its use as a show animal, can be drastically affected by self-inflicted trauma after pruritic episodes, by the alopecia and crusting after ectoparasite or ringworm infection, and permanent scarring may result from folliculitis, furunculosis or dermatophilosis. Cutaneous neoplasms: sarcoids, papillomas, melanomas and squamous cell carcinomas; nodular skin disease; environmental diseases such as

photosensitisation; seborrhoea; purpura haemorrhagica vasculitis and *Streptococcus equi* infection can all render an animal unsightly.

A horse's use as a riding or working animal is affected by conditions such as ringworm, dermatophilosis, contact dermatitis, nodular skin disease and sarcoids, as they can prohibit the use of tack, depending on site of lesions.

Skin conditions that can be transferred to other animals or to man prevent useful work, e.g., a horse suffering from zoonotic ringworm infection may be prohibited from racing and from shows (Thomsett, 1979). Dermatophilosis can be spread from horse to horse where there is close contact, and is also a zoonosis. *S. equi* infection, "strangles", is highly contagious to other horses and systemic involvement precludes useful work.

Skin conditions of very different aetiologies may have a similar clinical appearance (Evans and Stannard, 1986). Also, the skin has limited responses to external and internal challenge and the development of secondary lesions which often accompany chronic skin disease tend to complicate diagnosis (August, 1986). Early recognition and instigation of therapy in equine skin disease is thus highly important (Thomsett, 1979).

Specific equine dermatoses can be bacterial, parasitic, viral, fungal, neoplastic, allergic or immune-mediated, miscellaneous, environmental or congenital. The commoner conditions from each category are now reviewed.

Parasitic Skin Disease

Ectoparasitic infections of the skin are the most common skin diseases of large animals, including the horse (Scott, 1988). There is often a great degree of suffering by annoyance, irritation, itch, disfigurement, secondary infection and fly strike. Concentration loss owing to discomfort may preclude the horse's use for work and weight loss can result from lowered food

intake. Viruses, bacteria, fungi, helminths and protozoa may be transmitted by ectoparasites (Scott, 1988). As with endoparasite infection, ectoparasitic infection is a group problem, rather than one of individual animals. Healthy, properly fed, well-managed resistance to animals have increased the invasion and establishment of parasites. Improper feeding and grazing. insanitary conditions and poor attention to illness overstocking. in their early stages all favour ectoparasitic infection (Naviaux, 1985).

Some of the commoner parasitic skin conditions encountered in the U.K. include lice, *Culicoides spp.* hypersensitivity ("sweet itch"), fly infestations, harvest mites, and *Oxyuris equi* infection.

Biting (Damalinia equi) and sucking (Haematopinus asini) lice cause clinical signs which are more obvious during the winter when animals gather for warmth, when the haircoats are longer and when animals are stressed by the cold (Fadok and Mullowney, 1983: In southern regions of the U.K. infestations can Fadok. 1987). occur at any time of year. The presenting sign is pruritus seen as self-inflicted trauma, erythema and hair loss (Pascoe, 1973), and the coat is frequently dull with scales present. Affected animals are often restless and weight loss may result as appetite can be poor. D. equi, the biting louse, is small in size and pale brown in colour and prefers the dorsolateral trunk (Scott, 1988). Heavy infestations by the blue-grey coloured sucking louse, H. asini, may cause anaemia. Sucking lice tend to prefer the fetlocks and the mane and tail (Scott, 1988).

Nits, the eggs, are cemented to the host's hair by the adult females and hatch to nymphs. Lice spend their entire life on the host and are extremely host specific. Infection is by close contact with other infested animals or via infested boxes, tack, blankets and grooming kit, as the adults can live off the host for up to two weeks (Soulsby, 1982).

Culicoides hypersensitivity, or "sweet itch" is a common, well-recognised clinical condition which occurs all over the world

as well as in the U.K.. The incidence varies within countries and between geographical locations (Fadok, 1987; McCaig, 1973). It is a recurring seasonal dermatitis of individual horses and ponies during the warmer times of the year (Soulsby, 1982).

Affected animals develop allergic reactions to the bites of *Culicoides* species, biting midges (Baker and Quinn, 1978; Mellor. 1974; Pascoe, 1973). The individual species of *Culicoides* which feed on horses causing the pruritic condition have been identified and correlated with the site and seasonal occurrence of lesions, and geographical location. In the U.K. there are over 20 species of *Culicoides*, according to Baker & Quinn (1978), each with a characteristic habitat and preferred host for blood meals. Generally, *Culicoides* breed in still or slowly running water, typically lakes, marshy areas and small pools of water. The insects inhabit decaying plant material and manure (McMullan, 1982), particularly on sandy or alkaline soils (Fadok & Mullowney, 1983).

A British Equine Veterinary Association survey carried out between 1962 and 1963 placed the U.K. incidence at 2%, while McCaig (1973) found it to be 2.79% in ponies. McCaig (1973) reported regional variations in incidence with few cases in regions over 1000 feet.

Typically there is localised pruritus characterised by rubbing of the mane and tail. Excoriations, crusts, scaling, alopecia and erythema are seen on the forehead, withers, shoulders, rump and tailbase regions (Fadok & Mullowney, 1983). Mane and tail hairs are often broken and matted as a result of self-inflicted trauma. Severity of the disease varies between horses, and worsens with age. The condition has been seen in one and two year olds, but most ponies were noted by McCaig (1973) to show signs of the condition during their third or fourth summer.

A complex hypersensitivity to bites of dorsally feeding *Culicoides spp.* is the pathogenesis of the condition (Pascoe, 1973; Mellor, 1974; Baker and Quinn, 1978). There is an hereditary predisposition (Fadok and Mullowney, 1983). Initially the condition coincides with the fly season, usually between April and November in the U.K., with peaks in May and November in Southern regions (McCaig, 1973).

Affected horses spend a large proportion of their time rubbing against stationary objects. Some horses show involvement of the entire dorsal midline, and cases involving pruritus of the ventral midline, pectoral and inguinal regions and lower limbs have been reported. When the condition becomes chronic, lesions involve larger body areas. Initially hyperaesthesia is marked, hair becomes tufted and papules are seen. Lesions heal and hair grows back the first winter, however the papules and pruritus return with warmer weather (McMullan, 1982). Characteristically, with recurrent attacks affected areas become alopecic with transverse ridging of the skin, hyperkeratinisation, marked acanthosis and diffuse scaliness. The proximal third of the tail and the mane are often denuded. According to Baker and Quinn (1978) the disease should be regarded as an unsoundness, as animals suffering from severe infections cannot be worked.

Many different flies attack horses, often leading to irritation, especially in young horses which may take fright and cause themselves injury (Naviaux, 1985; Pascoe, 1973). There is reduced concentration for work as a consequence of irritation, and bites, often painful, tend to induce allergic reactions (Fadok, 1987). When flies are present in large numbers they can cause significant blood loss (Naviaux, 1985).

Bite lesions are most often seen during the summer and are usually pruritic (Rollins, 1981) and result in self-inflicted trauma evidenced by alopecia, excoriation and lichenification. Bites from stable flies, *Stomoxys calcitrans*, are painful, reflecting the vicious mouthparts of the species (Pascoe, 1973); and robust horse flies, *Tabanids* and *Hybometra*, and deer flies, *Chrysops*, also inflict painful bites which develop into large wheals (Fadok, 1987). Horn flies, *Haematoba irritans*, cause the focal ventral midline dermatitis syndrome in the horse, characterised by alopecia, erythema, depigmentation, scaling, serous oozing crusting and excoriation which is localised to the umbilical

region (Rollins, 1981). Simulium, or black flies, attack other sparsely-haired ear, intermandibular, pectoral and inguinal regions; and Habronema microstoma larvae, which cause cutaneous habronemiasis or "summer sores", use stable flies as an intermediate host (Fadok, 1987).

Harvest mite infestations, or trombiculiasis, coincide with the late summer and autumn harvest season (Fadok and Mullowney, 1983; Soulsby, 1982) and are seen mainly in horses kept at pasture or exercised through infested fields and woods, particularly on chalky soils (Thomsett, 1979). Papular lesions become crusted and tend to occur on areas in contact with vegetation, typically on the extremities, face, neck and sometimes the thorax. Lesions may be very itchy. *Neotrombicula autumnalis* larvae parasitize small rodents while nymphs and adults are free-living (Soulsby, 1982). Larvae attach to the horse and salivary components hydrolyse the epidermis allowing tissue fluid extraction (Soulsby, 1982). Larvae hatch to adults off the host. According to Thomsett (1979), thin-skinned breeds and types are at highest risk of infection.

Oxyuriasis infection tends to be seen only amongst young horses on a poor anthelmintic programme (Foreman, 1987). Dermatological signs secondary to anal pruritus are caused by infection by the nematode parasite, *Oxyuris equi*, commonly known as the pinworm. Adult female worms reside in the caecum and colon and feed on intestinal contents, migrating out of the anus to deposit eggs in the perineal region. There is rapid development of the eggs, within three to five days, and pruritus is the result of skin irritation initiated by the gelatinous material which encases the eggs. Infection is by ingestion of infective eggs in contaminated feed or bedding (Soulsby, 1982).

Constant rubbing of the tail base lead to broken, matted tail hairs, erosions and ulcers, producing a "rat tail" appearance in severely affected animals (Fadok and Mullowney, 1983).

Bacterial Skin Disease

In the absence of agents or disease causing suppression of the immune system, and when no defect occurs in the protective barrier, the skin of healthy animals is not normally susceptible to infection by the extensive range of micro-organisms with which it contacts daily (Scott, 1988). Organisms may penetrate through damaged skin via hair follicles or sweat or sebaceous gland ducts, or they may reach the skin by haematogenous or lymphatic routes (Kral, 1962).

The main bacterial infections of skin in horses in the U.K. are dermatophilosis, folliculitis and furunculosis, and S. equi infection, "strangles" (Thomsett, 1979). While it is generally considered that these are less common than parasitic disease, they are an increasing welfare problem because they are seen more commonly under poorer management systems and can be difficult to in particular dermatophilosis. treat and manage, As dermatophilosis is a major component of this thesis it is dealt with only briefly as part of bacterial skin disease and is reviewed at length in a later section of this introduction.

Dermatophilosis is an infection of the epidermis which results in exudative epidermitis with scab formation (Van Saceghem, 1915). It is worldwide in distribution and clinical infection is most severe in tropical climates, but it is also a major problem in more temperate regions, particularly where rainfall is high (Stewart, 1972a).

Suppurative inflammation of the hair follicles is known as folliculitis and when the suppurative process extends into the surrounding dermis and subcutis the condition is referred to as furunculosis (Dietz and Wiesner, 1984). Bacterial folliculitis and furunculosis are often caused by bacteria, most commonly D. congolensis and Staphylococcus aureus (Dietz and Wiesner, 1984); Pascoe (1984) reported involvement of Corynebacterium but pseudotuberculosis, Rodococcus equi and Bacillus spp. and S. hyicus has also been isolated from such lesions (Devriese, Vlaminck, Nuytten and De Keersmaecker, 1983). Fungi and parasites

can also be causative agents. Mechanical trauma, resulting from biting insects and tack, warmth, moisture and unhygienic environmental conditions predispose animals to folliculitis and furunculosis.

Bacterial folliculitis and furunculosis is most frequently encountered in spring and summer, and is also referred to as acne, heat rash or summer rash (Mullowney and Fadok, 1984a). Infection is seen commonly in children's ponies which are not carefully tended, and where tack is badly maintained, and tends to be more severe and widespread in horses that have a long or poorly groomed haircoat (Pascoe, 1973). Once infection becomes established in a stable, well attended horses are also susceptible. Furunculoses can be very resistant to treatment, and healing may take weeks or months, and recurrences and reinfections are likely (Dietz and Wiesner, 1984).

Pascoe (1984) found single abscesses at the commissures of the lips and on the cheeks, but reported multiple lesions affecting the saddle, loin and chest areas as common. The area between the hindlegs may also be involved (Kral, 1962). Initial lesions are small, painful papules, enlarging over a couple of days to 5 or 10 mm diameter with serum exudation and scab formation. Although sometimes there is significant oedema which can lead to larger, painful swellings, little pus is reported (Pascoe, 1984). Owing to acute pain, the affected animal is often unfit for ridden work (Pascoe, 1973; Roberts, 1967a).

Streptococcus equi infection, or "strangles", although not a true skin infection, can cause submaxillary and pharyngeal lymph node abscesses. There may be thinning and loss of hair, focal necrosis, and subsequent rupture of lymph nodes to discharge thick, creamy pus through the skin (Thomsett, 1979).

Fungal Skin Disease

Infection of keratinised tissue, nail, hair or stratum corneum by a fungal species, such as *Microsporum* or *Trichophyton*, is known as dermatophytosis (Kral, 1962). Dermatophytes are believed to be localised to keratinised tissues owing to lack of available iron elsewhere (Biberstein, 1990). Fortunately, of the vast numbers of fungi present in the horse's environment, few are pathogenic (Scott, 1988). Diagnosis of fungal skin infection is hampered by the huge variation in clinical manifestation.

Fungal infections can be transmitted between animals, from animals to humans, and from humans to animals. The progression of infection by zoophilic, or animal-related fungi, such as *Trichophyton equinum*, *T. mentagrophytes*, or *Microsporum equinum*, is often prevented by an acute inflammatory reaction in a human host. In the animal host, however, the fungus exists in harmony with its host and inflammation is rare (Scott, 1988).

Ringworm is one of the most common skin conditions (Saunders, 1981) and is one of the most important infectious diseases of the in the U.K. (Thomsett, 1979). It is also an important horse Infection often precludes useful work as the animal may zoonosis. be prohibited from racing, from shows and from sale rings (Thomsett, 1979). Outbreaks in riding and racing stables are common and most cases occur in autumn and winter, often where the environment is unhygienic, overcrowded, warm, damp, and where is little sunshine (Pascoe, 1984). Once infection is there established in a stable it can be very difficult to manage. Zoophilic species, such as T. equinum and T. mentagrophytes, are most frequently diagnosed, accounting for over half of equine ringworm cases, but T. verrucosum, M. equinum and M.gypseum may be involved (Johnston, 1986; Mullowney and Fadok, 1984b; Pascoe and Connole, 1974).

Fungal spores germinate near a follicular orifice, and hyphal strands grow into hair follicles along the outer root sheaths and invade growing hairs near the living root cells (Biberstein, 1990). Hyphae grow within the hair cortex. Colonisation may cause hypertrophy of the stratum corneum, resulting in accelerated keratinisation and exfoliation, producing a scurfy appearance and hair loss (Biberstein, 1990). It is usually by the second week that inflammation begins, at the margin of the parasitised area,

with manifestations ranging from erythema to vesiculopustular reactions and suppuration.

Abrasion by tack, especially by girths in the racing world, facilitate fungal invasion. The incubation period is normally between four and 30 days (Pascoe, 1979), and hair loss occurs after three to 10 days (Johnston, 1986).

Clinical appearance of the condition varies according to the response by the host as well as to the causative fungal species, as antibody- and cell-mediated hypersensitivities occur in the course of infection (Biberstein, 1990).

Transmission of *T. mentagrophytes* involves rodents (Kral 1962). Lesion distribution is mainly on the head, neck, tail base and extremities. Lesions are alopecic with heavy grey crusting (Kral, 1962). Hair regrowth begins in the lesion centre, and active papules, vesicles and pustules are seen peripherally. The degree of pruritus varies, but is less than that associated with *T. equinum* or "girth itch" lesions, which are intensely pruritic (Kral, 1962). *T. equinum* lesions range in diameter from 0.5 to 2 cm, and are alopecic and scaly. Vesicles are palpable at the edge of lesions.

T. verrucosum lesions are similar to those of T. equinum and are commonly seen in horses grazed with, or which have had access to buildings which housed, ringworm infected cattle (Johnston, 1986).

M. gypseum lesions are commonly found on the dorsal body areas, and tend to be associated with damp surroundings and biting insects (Pascoe and Connole, 1974). Inflammation around lesions is greater than for ringworm induced by other species, and crusting is heavy and grey. On removal of crust there is a moist, reddish ulcer (Johnston, 1986).

Lesions induced by *M. canis* often respond poorly to therapy and heal when the weather is warmer and sunnier (Kral, 1962). Areas under tack are those most commonly affected.

Ringworm infection may be directly or indirectly transmitted (Pascoe, 1973), as fungi may persist on tack, grooming kit, clippers and infected stalls and trailers or on human clothing (Kral, 1962). Lack of previous infection predisposes younger animals to infection, and age resistance develops so that although adults may suffer reinfection, infections are milder (Scott, 1983).

Neoplastic Skin Disease

Cutaneous tumours are the most common form of neoplasm in the horse, and there are only a limited number of important cutaneous neoplasms in the horse (Thomsett, 1979). In other species, skin tumours are associated with increasing age but this is not true for the horse (Scott, 1988). Sex and breed predilections exist, e.g., mastocytoma in male horses (Altera and Clark, 1970), and melanoma in Arabs and Percherons (Scott, 1988). Sarcoids, followed by papillomas, squamous cell carcinomas and then melanomas are the most frequently encountered cutaneous neoplasms in the horse (Pascoe, 1973; Pascoe and Summers, 1981).

equine sarcoid is a locally aggressive fibroblastic tumour, The and is the commonest tumour of the horse (Pascoe, 1973; Pascoe and Summers, 1981; Ragland, Keown and Spencer, 1968; Tarwid, Fretz and Clark, 1985), the donkey and the mule (Pascoe, 1984). Sundberg, Burnstein, Page, Kirkham and Robinson (1977) reported the tumour to account for over 43% of all equine neoplasms. In a 21-year survey of equine tumours (Pascoe and Summers, 1981), 142 out of 409 tumours were sarcoids. Sarcoids accounted for 55.6% of a]] in horses and ponies in another survey over a 10-year neoplasms (Strafuss, Smith, Dennis and Anthony, 1973). No period predilection exists for breed, sex, coat colour or season of the year, but there is a definite tendency for the tumour to be encountered in younger horses (six years old or less) compared to other malignancies that occur in horses (Tarwid, Fretz and Clark, 1985). The tumour has epithelial and fibroblastic components (Mullowney and Fadok, 1984a).

Aetiology is not certain but is considered to be viral (Tarwid. Fretz and Clark, 1985). Recent hybridization work confirms that the sarcoid contains papillomaviral DNA. Studies carried out on donkey derived sarcoid tumours have resulted in the identification two types of viral DNA, one which is of similar to bovine papillomavirus type 1 (BPV-1), and another similar to BPV-2 (Reid, unpublished data). The strongest evidence of papillomaviruses in the aetiology of the disease is the unique isolation of papillomaviral-like virions from an equine sarcoid. Although retroviral elements have been identified in a sarcoid derived cell line, the significance is unclear and the retrovirus is presumed to be endogenous (Reid, unpublished data). Familial tendencies have been observed (Strafuss, Smith, Dennis and Anthony, 1973) and equine leucocyte antigen (ELA) studies suggest connection of the predisposition to sarcoid with the major histocompatibility complex (Scott, 1988).

A horse can have a solitary sarcoid, but between one third and one half (Pascoe, 1984; Mullowney and Fadok, 1984a) up to over 80% Fretz and Clark, 1985) of cases have multiple lesions. (Tarwid. The most common locations are the extremities; the head. particularly periocularly, on the pinnae and on the commissures of the lips; and the ventral abdomen, on the prepuce and inner thighs (Strafuss, Smith, Dennis and Anthony, 1973). These areas are often subjected to trauma, and the tumour commonly occurs at scar sites (Mullowney and Fadok, 1984a; Tarwid, Fretz and Clark, 1985). Sarcoids do not metastasise but may spread by biting or rubbing of the lesion by the horse (Wyman, Rings, Tarr and Alden, 1977). Transmission is believed to be by contaminated tack, grooming equipment and surgical instruments, and epizootic forms have been seen within herds (Ragland, Keown and Spencer, 1968).

There are four gross types of equine sarcoid: the verrucous or warty type (type I); the fibroblastic or proud flesh-like type (type II); the mixed verrucous and fibroblastic (Type III), and the flat or occult type (type IV), (Pascoe and Summers, 1981; Tarwid, Fretz and Clark, 1985). Verrucous sarcoids are small, sessile or pedunculated, with a dry, horny cauliflower-like surface which frequently resembles a papilloma (Tarwid, Fretz and

Clark, 1985). The appearance of the fibroblastic sarcoid varies more, with some lesions circumscribed and nodular, occurring in the dermis and subcutis, while others may be over 25 cm in diameter with ulcerated, easily-traumatised surfaces. Occult sarcoids are found most often around the head, especially the ears and eyelids (Tarwid, Fretz and Clark, 1985). They may remain static for extended periods as circular, alopecic areas with scaling and crusting, then papules and nodules may develop within the hairless regions (Pascoe and Summers, 1981). Surgical intervention results in rapid transformation to the fibroblastic type of sarcoid (Tarwid, Fretz and Clark, 1985).

equine sarcoid is notoriously difficult to treat The (Murphy. Severin, Lavach, Hepler and Lueker, 1979): spontaneous regression is rare, and there is a very high recurrence rate following total surgical excision, radiation treatment and cryosurgery. Success of autogenous and heterologous vaccines has been of a varying degree (Wyman *et a*7., 1977). Reticuloendothelial stimulation using Bacille Calmette-Guerin (BCG), is a popular and effective treatment (Rebhun, 1987). When BCG is inoculated into the lesion the regression of tumour cells is dependent on the ability of the host to develop a delayed type hypersensitivity. This involves the stimulation of normal T and B lymphocytes and the generation of a population of activated macrophages with a potent cytolytic activity against sarcoid cells (Howarth, 1990). Unfortunately the treatment leads to intense inflammation, and it has caused anaphylactic deaths (Rebhun, 1987).

Papillomatosis, warts or infectious verrucae, caused by a host-specific DNA papovavirus (Scott, 1988), is primarily a condition of young horses (Duhaime, 1981), predominantly one and two year old animals (Fadok and Mullowney, 1984a; Pascoe and Summers, 1981), although older horses may be affected (Pascoe, 1984) and a congenital form has also been reported (Garma-Avina, Valli and Lumsden, 1981). A higher incidence of papillomatosis was reported when numbers of young stock were increased on brood mare farms during the breeding season and prior to sales (Pascoe, 1984).

Multiple lesions, often over 100 warts, are commonest, but single lesions may be seen. Transmission is via fomites and the virus, which is relatively resistant, uses skin abrasions and wounds as portals of entry (Fadok and Mullowney, 1984a). The primary site of lesions is the muzzle (Duhaime, 1981; Pascoe, 1984), followed by the legs, prepuce and ventral body wall. Involvement of the nose, eyelids, jowl and neck were reported by Pascoe (1984). Pascoe (1973) reported that warts usually appear suddenly, in small numbers which soon multiply rapidly to cover most of the nasal area. Warts that persist as multiple lesions on the inner surface of the ears and the legs and on the ventral body wall and prepuce may be a consequence of transfer of virus by grooming equipment or by rubbing of the face on the legs (Fadok and Mullowney, 1984a).

Thomsett (1979) described lesions beginning as raised, dome-like epidermal areas, single or in clusters, then proliferating to (1984) spherical masses up to 2 cm diameter. According to Pascoe they are grey with fibrous stalks. Surface of lesions may be rough, wrinkled or smooth, and grey red in colour (Fadok and Mullowney, 1984a). Papillomatous scratches may be a consequence of chronic inflammation initiated by mechanical or chemical irritants. Pascoe (1984) believed that maturation occurred over a three to four month period, with associated change in colour to pink, and that lesions regressed and sloughed three or four weeks later. Spontaneous regression of lesions tends to occur from the muzzle of young horses two to three months after appearance is first recorded (Duhaime, 1981; Pascoe and Summers, 1981).

A 60 to 90 day incubation period was reported during experimental infection by Fadok and Mullowney (1984a) with regression in most cases after 60 days. The solid immunity resulting after natural infection is not always induced by experimental infection.

Small raised areas of depigmented papillomatous skin are commonly seen in the ears of horses, of all breeds and of both sexes, causing no disturbance. They are seldom seen in horses under a year old (Stannard, 1972) and although aetiology is unconfirmed (Thomsett, 1979), papilloma virus has been isolated.

The greyish plaque-like lesions may coalesce from several mm diameter to cover a large proportion of the inner pinnal surface, and are easily dislodged. These plaques have never been proven to contribute to the head shaking syndrome, and although they tend to persist indefinitely, they are unimportant. Similar lesions have been found in the anal and vulval regions (Stannard, 1972).

Squamous cell carcinoma accounted for 20% of all equine neoplasms in one survey (Strafuss, 1976). Forty-three percent occurred on the head, eye and ocular adnexa, 45% were on the external male genitalia, and 12% were in the female perineal region. Pascoe and Summers (1981) found that squamous cell carcinoma accounted for 55 out of 409 equine tumours over a 21 year survey. Of these 55 lesions, 35 involved ocular tissues, and 16 were recorded on the external genitalia. It is the commonest penile tumour of the horse (Stafuss, 1976).

Predisposing factors are unpigmented skin (McMullan, 1982), and. when the tumour is located around the eye, chronic exudate from a weeping eye (Foreman, 1987). The cornea and sclera are less frequently affected than the eyelid, and there is often aggressive spread to the maxillary sinuses or lacrimal duct from the third Development is usually at mucocutaneous junctions evelid. (McMullan, 1982) and areas such as the nasal cavity, tongue, stomach, maxillary sinus, tail, limbs, anal sphincter, hard palate, peritoneum, lips and nose have been invaded (Mullowney, 1985a). Carcinomas of the vulva and clitoris occur more frequently in older than in young mares (Pascoe and Summers, 1981).

appearance varies from papillomatous to ulcerated, Clinical cauliflower-like tumours, and growth rate is variable. Metastasis is rare but local invasion can be aggressive. The mean age affected is 12 years (Mullowney, 1985a; Strafuss, 1976; Sundberg al., 1977). Foreman (1987) reported a predisposition in et Appaloosas, usually in horses over five years, and commonest in unpigmented areas.

Murray, Ladds and Campbell (1978) recorded a 6.7% incidence of squamous cell carcinoma, while Mullowney (1985a) found it to be

16.4% (329 of 2005 skin tumours) and Sundberg et a (1977) described it as higher, at 24.6%.

Melanomas are common, easily-recognised neoplasms. Although encountered most frequently in greys, melanomas have been reported in horses of other colours, bays for example (Foreman, 1987; Pascoe and Summers, 1981). They are rare in animals under six years old, although congenital melanoma has been reported (Hamilton and Byerly, 1974). The high incidence of the tumour in Arabs and Percherons may be due to the high numbers of greys within these breeds. No sex predisposition occurs. Although melanomas are seen on the legs, neck, eyelids, ears and vulva, the primary sites are the parotid gland area and the perineum and underside of the tail (Dietz and Wiesner, 1984; Pascoe and Summers, 1981).

Melanomas may remain benign, growing very slowly, for as long as 20 years, but prognosis is hopeless once there is involvement of internal organs (McMullan 1982). Dystokia and problems in defaecation are likely consequences (Pascoe, 1984).

Sundberg *et al.* (1977) reported melanoma to account for 3.8% of all equine neoplasms diagnosed, with an age range of two to 20 years, and mean of just over eight years. Incidence of melanomas was 2% of all granulomatous and neoplastic lesions in equine skin in a survey by Murray, Ladds and Campbell (1978) and Mullowney (1985a) found an incidence of 5.3% (106 of 2005 skin tumours).

Allergic and Immune-Mediated Skin Disease

When an adaptive immune response occurs in an exaggerated or inappropriate form resulting in tissue damage, the term hypersensitivity is applied (Roitt, Brostoff and Male, 1989). Hypersensitivity is a characteristic of the individual and is expressed on second contact with the specific antigen inducing hypersensitivity. Allergic or hypersensitivity reactions have been classified into four types on an immunopathological basis by Gell and Coombs (1975): type I or immediate hypersensitivity, type

antibody-dependent hypersensitivity, type II or III or complex-mediated hypersensitivity, and type IV or delayed hypersensitivity. In practice these types do not always occur in isolation from each other (Roitt, Brostoff and Male, 1989). These reactions are simply manifestations of the beneficial immune responses causing inflammatory reactions and tissue damage expressions. Allergic or hypersensitivity reactions are often seen in the skin of the horse.

Allergic skin disease is a common, frustrating problem of individual horses, which can occur all year round, but during the summer months insect hypersensitivities are extremely prevalent.

Allergic contact dermatitis in the horse involves delayed, or type IV hypersensitivity (Tizard, 1987). The causative agents, which must contact the skin directly, range from drugs and chemicals, insecticide, heavy metal, soap or fly spray, for example; to blankets or wool bedding, and plants such as poison ivy (Tizard, 1987). These agents normally act as haptens which bind with skin protein to become complete antigens (Manning and Sweeney, 1986). The agent may have been present in the environment for years before allergic contact dermatitis develops (Stannard, 1972; Manning and Sweeney, 1986). After an incubation period of one to four weeks, hypersensitivity develops and persists indefinitely, with the result that inflammation will be seen within one to three days if the allergen is contacted (Mullowney, 1985b).

The lesions of allergic contact dermatitis vary greatly in severity, ranging from mild erythema to severe, erythematous vesiculation (Tizard, 1987). Erythematous, vesicular, plaque-like swellings are seen on the skin in early stages and if there is allergen exposure alopecia, desquamation and persistent lichenification result, usually confined to the epidermal and dermal areas (Manning and Sweeney, 1986). Because of the intense self-trauma, excoriation, ulceration and secondary pruritus, pyoderma often mask the true nature of the lesion (Tizard, 1987). Distribution of the dermatitis depends on the site of contact of allergens, but the head, extremities, ventral body surfaces and areas are frequently affected. Genetic predisposition, the tail

nature of the allergen, damage to the skin and mechanical factors, site on the body, sweat and sebaceous gland function, skin pH, and immunological competence are all believed by Mullowney (1985b) to be involved in the likelihood of a horse developing hypersensitivity reactions.

Acute but transient localised or generalised formation of wheals or plaques are characteristic of urticaria (Dietz and Wiesner, 1984). The nose, lips, neck and trunk are usually involved. Chemical mediators are produced as mast cells degranulate in response to this immediate or type I hypersensitivity reaction. Areas of dermal oedema are produced due to altered capillary permeability and pit on digital pressure.

Immunological, pharmacological, psychological and physical urticarias are recognised in the horse by Manning and Sweeney (1986). Immunological urticaria can then be subgrouped as reagin mediated (type I), cytotoxic antibody (type II) and immune complex (type III). The urticarial syndrome is a common problem but the responsible agent is often undetermined. Lesions are extremely irritating because of the histamine released and consequently the true nature of the lesion may be masked by scratching (Tizard, 1987). Urticaria is not always allergic, and when it is allergic it is not always IgE mediated (Manning and Sweeney, 1986).

such as glucocorticoids (Dietz and Wiesner, 1984), Drugs and streptomycin (Kral, 1962), tetracycline, and penicillin. pethidine (Pascoe, 1984); vaccines such as influenza and tetanus antitoxin (Pascoe, 1984); foods; additives; infections by bacteria (S.eaui). fungi (*T. equinum*) and parasites (Onchocerca cervicalis) (Kral, 1962); bites; stings; inhaled allergens (Evans, 1987), and systemic disease such as purpura haemorrhagica (Manning Sweeney, 1986), have all caused urticarial reactions in and horses.

The most efficient reaginic or homocytotropic antibodies, responsible for type I hypersensitivity, belong to the IgE immunoglobulin class (Roitt, 1984). However recent studies in the horse demonstrate that certain IgG subclasses also fit this

description (Manning and Sweeney, 1986). IgE has been described specifically in the horse, but although experiments in cutaneous anaphylaxis have demonstrated the presence of reaginic antibody in horses, the immunoglobulin class has not been characterised (Manning and Sweeney, 1986).

Small. pruritic lumps predominantly affecting the thorax, but sometimes extending to the head and neck are often attributed to food allergy, and these signs may be accompanied by severe tail rubbing (Pascoe, 1973). Self inflicted trauma and secondary bacterial infection are possible consequences. Ingestion of excessively high protein diet (Pascoe, 1973), or of potatoes. distillery wastes, malt, beet pulp, clover, St. John's wort. glucose, wheat, oats, barley, bran and chicory (Mullowney, 1985b) often lead to urticarial reaction .

The mucous membranes of the nose, mouth, anus and vulva may become involved in urticarial lesions, and infrequently the pharynx and larynx are affected, with impaired swallowing and breathing (Thomsett, 1979).

Vasculitis may occur at any location in the body and is commonly a secondary sign of a disorder elsewhere (Morris, 1987). The most commonly diagnosed cutaneous vasculitic syndrome in the horse is purpura haemorrhagica (Morris, 1987). It is an uncommon sequel to S. equi or S. zooepidemicus infection (Manning and Sweeney, 1986), characterised by extensive oedematous and haemorrhagic swellings subcutaneous tissues, accompanied by haemorrhages the in in mucosae and viscera (Blood and Radostits, 1989a). It has classically been described as a nonthrombocytopaenic purpura, as platelet counts are normal in affected horses (Reef, 1987). Ιt typically occurs between two and four weeks after respiratory infection of streptococcal origin, but may be associated with beta-haemolytic streptococcal and/or concurrent previous infection, influenza, or to drug-induced allergies (Reef, 1987). The condition is considered to be a significant problem although incidence is low (<10% of streptococcal respiratory infections and <1% of influenza cases)(Manning and Sweeney, 1986). Incidence is reported to be highest in large groups of horses used for military
purposes, or during and after shipment (Blood and Radostits, 1989a).

Clearly circumscribed oedematous areas of the dermis and subcutis are seen about the face and muzzle but are often present on other parts of the body and are not necessarily symmetrical in distribution (Blood and Radostits, 1989a). Cutaneous infarction, necrosis and serum exudation are likely consequences. At this point, the condition may increase in severity, or may resolve in a Great variation thus exists in the severity of purpura week. haemorrhagica (Manning and Sweeney, 1986). One or more legs may be affected, and the prepuce and ventral abdomen are other common sites. Progression of lesions and mortality rate are variable, with mild lesions healing in seven to 10 days, but recovery may extend to a week in severe cases, and to two or three months where skin necrosis occurs. Blood and Radostits (1989a) reported that most severely affected animals die of the disease.

Morris (1987) studied 19 horses showing cutaneous vasculitic syndrome and noted that almost three-quarters of cases were between three and 10 years old, and Reef (1987) also reported the condition as primarily one of young adults. Three-quarters of the cases studied by Morris (1987) were female. Just over one third of the cases had a history of *S. equi* infection, but for another third there was no history involving any of the generally accepted predisposing causes.

Although allergic reaction to antigens of streptococcal or viral origin is believed to cause purpura haemorrhagica, this has not been proven. Antigen-antibody complexes containing *S. equi* M protein and IgA have been identified in affected animals (Blood and Radostits, 1989a; Tizard, 1987). Some authors suspect involvement of a type II or cytotoxic hypersensitivity in addition to immediate, or type I, and immune complex, or type III, hypersensitivities (Manning and Sweeney, 1986).

Miscellaneous Skin Disease

Many skin conditions exist for which the cause and pathogenesis are complex or poorly defined. The most important of these is equine nodular skin disease, nodules being the most frequently encountered skin lesion of the species (Scott, 1987). Skin biopsy is the only definitive diagnostic method, and treatment of the condition may be problematic. Similarly, seborrhoea is another condition of uncertain and multifactorial aetiology where management can prove extremely difficult (Dietz and Wiesner, 1984).

Nodular collagenous granuloma or nodular necrobiosis, axillary nodular necrosis, unilateral papular dermatosis, sterile nodular panniculitis, mastocytoma and cutaneous amyloidosis are collectively classified as "nodular skin disease" (Scott, 1987).

Nodules are clearly demarcated, firm, normally spherical structures and are larger than a centimetre in diameter; that may appear raised or may be contained in the dermis or the subcutis. They may be a result of hyperplastic reaction by the dermis or epidermis, or they may be composed of inflammatory or neoplastic infiltrates or lipid (Scott, 1987). Although hypersensitivity to biting insects or migrating nematode larvae, and mechanical trauma by tack have been incriminated, aetiology is uncertain (McMullan, 1982).

Nodular necrobiosis or collagenolytic or eosinophilic granuloma tends to be seen most often in riding horses and ponies (Mullowney, 1985a), usually developing first in warmer weather (McMullan, 1982). Nodules begin as oedematous areas of the dermis in the upper thoracic and saddle regions, with possible extension to the neck, shoulder, flank, proximal hindlimbs and croup areas. The skin overlying the painless, freely-moveable nodules, often several cm in diameter, is normal and there is no itch (Scott, 1987).

Axillary nodular necrosis is a rare condition of unknown cause and pathogenesis (Scott, 1987), which comprises one or two clearly

demarcated, firm, painless nodules that are situated in the girth and axillary areas.

Unilateral papular dermatosis is another uncommon nodular condition which develops in warmer months, featuring multiple, 30 to 300, papules and nodules which affect only one side of the trunk (McMullan, 1982)

An uncommon, complex inflammatory condition of subcutaneous fat is known as sterile nodular panniculitis (Scott, 1987). Injury to the sensitive lipocytes induces release of lipid which is hydrolysed to fatty acids, which are powerful inflammatory agents. The nodules are deep-seated and they vary in appearance and consistency. They occur either singly or in groups in the region of the chest, the axillae and the shoulders. Systemic involvement, such as inappetence, dullness, lethargy and pyrexia, has been reported (Scott, 1987).

Mastocytoma is a misnomer because although the cause of the condition is unknown, a reactive, hyperplastic rather than a neoplastic pathogenesis is suspected (Altera and Clark, 1970). Transmission between horses has been unsuccessful (Scott, 1987).

Mastocytoma is nearly five times as likely to occur in male animals than in females (Altera and Clark, 1970), but no age or breed predilection is found (Scott, 1987).

Most cases exhibit single lesions, two to 20 cm in diameter, developing on the limbs and on the head (Altera and Clark, 1970). Head lesions tend to be clearly demarcated and soft, in contrast to the firm, poorly-defined forms seen on the limbs. Hair loss may occur over the nodules, which may be painful and pruritic. Nodules are self-limiting and are reported not to metastasise (McMullan, 1982).

The cause of equine mastocytoma is unknown, but has been suggested to be chronic inflammation, parasitic infestation or local antigen-antibody reaction (Nyrop, Coffman and Johnston, 1986).

Wheals which show temporary response to therapy then develop into nodules are typical of cutaneous amyloidosis (Mullowney, 1985a). The aetiology of the nodules, which contain granulomatous material interspersed with the fibrillar protein, amyloid, is not well understood (Scott, 1988).

Although it may occur as a primary atypical form, the condition is more commonly a secondary consequence of chronic purulent inflammation such as tuberculosis, "strangles", chronic gastroenteritis, or it may follow vaccination (Mullowney, 1985a).

The condition is slowly progressive, with the appearance of firm, painless nodules varying from 2 to over 10 cm diameter in the skin over the pectoral areas and the head and neck. Internal organs are not involved in the primary form of the condition (Scott, 1988).

Seborrhoea is hypersecretion of sebaceous secretion or sebum. Sebum is necessary to prevent cutaneous dehydration and to maintain skin softness (Mullowney, 1985a). It permeates over hair shafts from the sebaceous glands of the hair follicles and gives the coat its shine. Ectoparasites, systemic disorders. (Mullowney, 1985a) environmental. climatic nutritional or (Carpenter, 1981) factors may lead to a higher than normal level of sebum production, which may be localised or generalised, and may be manifest as crusting or as oily exudate. The which aetiology of seborrhoea is unknown, but genetic predisposition may be involved (Dietz and Wiesner, 1984).

Seborrhoea is not uncommon, and is an important condition in the horse (Carpenter, 1981). Most cases of equine seborrhoea are generalised (Kral, 1962), with a crusted rather than an oily appearance to the coat (Stannard, 1972). Foul-smelling, powdery greasy bran-like flakes are seen in the coat and the skin below is reddened, sometimes lichenified, and folded. Secondary bacterial infection may be caused by the build-up of sweat and keratinous material. In rare cases, seborrhoeic skin lesions are confined to the mane and tail (Kral, 1962).

The prognosis for the condition is guarded as the disease is

chronic in character and usually persists for life (Dietz and Wiesner, 1984). The horse gradually loses condition (Dietz and Wiesner, 1984; Kral, 1962) and is less capable of work. Response to treatment is generally poor and euthanasia often results (Dietz and Wiesner, 1984).

Environmental Skin Disease

Environmental skin conditions are often encountered among large animals including the horse (Scott, 1988). The clinical manifestations produced in cases of chemical and hepatic plant toxicities are often spectacular.

Photosensitisation is an aberrant reaction within the skin in response to ultraviolet (UV) light (Stannard, 1972). The pathogenesis of the syndrome is variable, but all types of photosensitisation have common features: the presence of a photodynamic agent in the skin concomitant with exposure to UV light of the A range (320 to 400 nm), the absorption of which is facilitated by deficiency of melanin pigment in the skin and haircoat (White, 1987).

Photodynamic agents (PDAs) are activated by a specific wavelength of light and transmit radiation to adjacent cells (Kral, 1962), causing inflammation and eruption of unpigmented skin, accompanied by oedema, congestion, necrosis, cracking and sloughing (Pascoe, 1973). There may be superimposed secondary bacterial infection in severe cases (Stannard, 1972).

PDAs can occur outwith or within the animals's body (Kral, 1962). Ingested feeds, components within plants such as St. John's wort, and drugs such as phenothiazines, tetracyclines and sulphonamides (McMullan, 1982) are the commonest exogenous agents; while phylloerythrin is the predominant endogenous PDA (Kral, 1962; White, 1987). In secondary or hepatogenous photosensitisation, the PDA phylloerythrin is formed when chlorophyll is degraded by intestinal bacteria. Excretion of phylloerythrin is greatly reduced where there is hepatic compromise, and it accumulates in

tissues and may reach levels in the skin which cause the skin to become light sensitive (Dietz and Wiesner, 1984). Approximately a quarter of horses suffering from liver disease have excessively high levels of phlloerythrin circulating to the cutaneous level. Ingestion of plants, such as ragwort, groundsel, tar- or rattle-weeds, which contain pyrrolizidine alkaloids, is one of the commonest causes of hepatic dysfunction with resultant accumulation of phylloerythrin, but hepatotoxic drugs and obstructive biliary diseases are other possibilities (White, 1987).

Rape, alfalfa and leguminous plants, particularly lucerne and aslike clover, have been connected with photosensitivity, but the PDA responsible and the pathogenesis are unclear (Dietz and Wiesner, 1984).

When skin is exposed to sunlight of the UV B range, 290 to 320 nm, excessively, the normal response is sunburn. Sunburn is normally seen only in white or lightly-pigmented horses, and depends on the length of time spent in the sun and on the level of melanin in the skin and haircoat (White, 1987).

The irritant form of contact dermatitis is seen more often than allergic form of the condition (Stannard, 1972; Mullowney, the 1985a). Despite similarity in clinical appearance, pathogenesis of the two forms of contact dermatitis is very different. There is no involvement of the immune mechanism in irritant contact dermatitis (Scott, 1988), rather the direct action of the irritant. The irritant may be a body secretion, a wound excretion, a strong acid or alkali, a plant such as the nettle, a topical drug such as mercury compounds used in blisters, or it may be crude oil, diesel, turpentine, or leather preservative (Scott, 1988). The head, extremities, ventral body surfaces and areas under tack are those most commonly affected (Mullowney, 1985a).

The skin becomes reddened and pruritic, with oozing or vesiculation, and crusting. Hair may be lost due to self mutilation or damage to hair follicles, and depigmentation of hair and skin may persist indefinitely (Mullowney, 1985a).

When the epidermal barrier is compromised by moisture there is greater contact between the irritant and the skin, so where horses experience muddy conditions underfoot there is increased risk of dermatitis of the feet. Previous skin damage, length of time of contact and the concentration of the irritant dose all influence the development of contact dermatitis (Scott, 1988).

Skin related toxicities have been reported after ingestion of excessive amounts of compounds such as selenium, mercury and pentachlorophenol (Mullowney, 1985a; Pascoe, 1973; Scott, 1988). Lesions of the skin and the hair are often the presenting signs, in the form of extensive hair loss from the mane and the tail, and in some cases, progressive generalised alopecia (Scott, 1988). of systemic and gastrointestinal involvement are usually Sians also seen, and in chronic selenium toxicity or alkali disease there is lameness; in severe cases the hooves may slough (Blood and Radostits, 1989b; Pascoe, 1973). Acute selenium toxicity may result in death (Mullowney, 1985a).

Ingestion of cereals grown on seleniferous soils, or of selenium-accumulating plants such as Morinda, Astralqus or *Xylorrhiza spp* are causes of selenium toxicity (Blood and Radostits, 1989b). Mercurial poisoning is usually a consequence of accidental feeding of cereal treated with antifungal organic 1973). although overdosing of mercurials (Pascoe, mercury-containing medicaments and percutaneous absorption from skin dressings and blisters have been known (Blood and Radostits, 1989b; Pascoe, 1973; Scott, 1988). Pentachlorophenols are used as fungicides, molluscicides, wood preservatives, and are components of waste motor oil. Signs of toxicity followed the use of waste to settle dust in a riding arena (Mullowney, 1985a). The oil similar to contact dermatitis and resulting dermatitis was involved the mucous membranes of the lips, mouth and nasal passages, resembling a chronic respiratory infection.

Congenital Skin Disease

Although congenital abnormalities involving the skin of the horse

are rare, they are striking and are often disfiguring, precluding use as show animals.

Albinism refers to a congenital absence of melanin that also affects the hooves and the eyes. The occurrence of true equine albinism is disputed (Dietz and Wiesner, 1984), and partial albinism only is seen, as most horses have pigmented irides, although the coat is white. The condition is believed to be related to an autosomal dominant gene (Scott, 1988).

Angiomatosis or verrucous haemangioma, which is similar to the "strawberry birthmark" of humans, is an easily traumatised lesion which bleeds profusely if damaged. It is an alopecic, usually solitary lesion, tending to occur on an extremity. In contrast to the human lesion, regression is unlikely (Mullowney, 1985a).

Firm, clearly-demarcated painless nodular lesions up to 12 cm in diameter are occasionally found in the subcutis adjacent to joints or tendon sheaths, commonly lateral to the stifle joint (McMullan, 1982; Scott, 1988). These are known as calcinosis circumscripta or tumoural calcinosis. They are calcified deposits which induce a fibrous granuloma and are normally seen in animals younger than four years old. Aetiology is suggested to be repeated trauma (McMullan, 1982), or an autosomal recessively transmitted defect of phosphorous metabolism (Mullowney, 1985a).

Congenital and hereditary cysts of the skin have been reported in the horse (Scott, 1988). These include epidermoid or epithelial cysts, and dermoid cysts, which are clinically similar. Both are characterised by an epithelial wall and keratinous contents. Neither type of cyst is thought to be neoplastic or preneoplastic (Mullowney, 1985a). In one survey (Pascoe and Summers, 1981), all cases were Thoroughbreds, but there is no age predilection (Scott, 1988).

Epidermoid or epithelial cysts result from first branchial cleft abnormality (Mullowney, 1985a), in the form of unilateral pouch-like outgrowths which contain embryonic teeth, hair, keratin and hair and sebaceous and sweat gland secretions. Epithelium

becomes aberrantly situated, either by congenital ectopic development or by traumatic implantation or hair follicle occlusion (Pascoe, 1973). The size of the cyst increases as keratinous material builds up inside it. They are situated at the ear base, firmly adherent to underlying bone or cartilage, and tend to become fistulous (Mullowney, 1985a).

Dermoid cysts occur along the dorsal midline between the withers and the rump (Pascoe and Summers, 1981). The cysts are characterised histologically by an epidermal lining that contains adnexa (Scott, 1988).

Conclusion

Even today skin disease in the horse is poorly diagnosed and frequently mistreated, resulting in undue suffering. As a consequence skin disease must be considered a major welfare problem in the horse.

Skin disease in the horse was reviewed in this chapter. It was seen as a significant, common complaint which often precludes use of the animal for the purpose for which it is kept. Various causes of skin disorders have been considered, and attempt was made to highlight the most important conditions, although information regarding the relative incidences of the equine skin disorders is not readily available. Bacterial skin disease was shown to be common in the horse and dermatophilosis has been put into perspective as one of the most frequently encountered equine bacterial skin infections.

A PERSPECTIVE OF DERMATOPHILOSIS IN THE HORSE

Skin disease, and in particular bacterial skin disease, was shown in the preceding chapter to be an increasing equine welfare problem. Many cases result from poor management, unhygienic living conditions, dirty tack and lack of close attention, particularly if animals are housed outside for most of the year.

Dermatophilosis is one of the commonest bacterial skin conditions of the horse, and is encountered most often in horses and ponies, of all types and of all breeds, which are outwintered. These animals are exposed to prolonged, excessive wetting, particularly in the West of Scotland, conditions which are known to predispose to dermatophilosis infection. Under these circumstances of outwintering close inspection may be infrequent, and early cases of dermatophilosis, where the coat simply appears soaked, are often missed or overlooked. Infection is likely to be advanced before it gives cause for concern.

By the time the severity of the condition is appreciated lesions may be extremely painful, and there may be complicating secondary bacterial infection, particularly where lesions of the lower limbs are involved and where the horses are constantly standing in damp, muddy conditions underfoot. This obviously leads to concern for the welfare of such animals. Housing, which, as described in the following chapter, often leads to spontaneous healing of the lesions, is not always possible. The site of the lesions, with the typical dorsal distribution where the coat is wettest, and their painful nature, often prohibits the use of a saddle and so the horse can not be used for ridden work.

This chapter describes equine dermatophilosis in more detail and the features of the condition in the horse are compared to those found in other species. Consideration is then given to the nature and the efficacy of the regimes which are currently practised in treatment, control and prophylaxis of the disease.

The clinical manifestations of Dermatophilosis congolensis infection vary greatly in the wide range of species which the organism infects (Stewart, 1972a). There are few veterinary pathogens which are encountered quite as universally or where infection advances as imperceptibly as D. congolensis. Dermatophilosis was thought for decades to be a condition of horses, cattle, sheep and goats, found only in the tropics. Reports frequently originate from the African continent, but the disease is much more common than originally thought in more temperate regions such as the U.K., Europe, Eire, Australia, New Zealand and North and South America. The disease is worldwide in distribution, although the intensity of clinical infection tends to be most severe in countries with a less temperate climate (Stewart, 1972a).

Dermatophilosis is a major, debilitating problem that is difficult to manage in the horse. Although the mortality is low, morbidity high as 80%, particularly under crowded stable may be as conditions (Ford, Cairns and Short, 1974). Considerable weight losses have been recorded, and even death has been reported which was attributed to widespread alopecia and epithelial destruction subsequent to the infection (Ford, Cairns and Short, 1974). The disease is also of enormous economic importance in countries where raising livestock is a primary industry, e.g. ovine infection in countries such as Australia. Downgrading of fleeces, particularly in fine-wooled breeds is a major loss of revenue (Austwick and 1958). Bovine dermatophilosis, although worldwide in Davies. distribution, is of greatest importance economically in tropical regions, especially Madagascar and Central and Western Africa, where huge deficits are incurred each year owing to damaged hides, chronic illthrift, reduced production, increased culling and mortality (Lloyd, 1976; Bida, unpublished data). In Nigeria, it was estimated that, annually, around 11 per cent of a total cattle population of 11 million (Food and Agriculture Organisation, 1973) were clinically affected during the rainy season and approximately five per cent during the dry season (Oduye, 1975; Lloyd, 1976). The economic losses from spoilage of leather from cattle, sheep, swine and goats is in the region of \$ 37.4 million per annum in Nigeria (Arowolo, Amakiri and Nwufoh, 1987). According to Macadam

(1964b), during the rains morbidity reached 50 per cent and the mortality five per cent. Bovine dermatophilosis has also become more important in recent years due to its disastrous effect on imported, high producing breeds. It drastically hinders selective crossbreeding and improvement of indigenous cattle under intensive systems of management (Ilemobade, Gyang, Bida & Addo, 1979).

The spectacular lesions of bovine dermatophilosis first drew the attention of clinicians (Stewart, 1972a). D. congolensis infection was initially described in cattle in the then Belgian Congo, now Zaire, by Van Saceghem (1915). He reported an exudative dermatitis with small raised scabs containing embedded hair, epidermal cells, leucocytes and coagulated serum. Removal of these crusts revealed a concave pus-filled area beneath the scab. These crusts and the pus harboured the organisms which appeared as branching mycelial elements. Hyphae divided in a transverse fashion without separating, to form coccoid elements. As the filament widened, longitudinal and transverse divisions were seen, often up to eight cocci across. Thompson (1954), cited by Stewart (1972b), reported formation of motile spores from these cocci. Broth culture growths showed initial hyphal formation, with later growth predominantly coccoid in form. D. congolensis was established as aerobic, gram-positive, and non-acid fast, and was found to possess limited capacity to ferment sugars (Thompson, 1954).

The Organism

of the organism is: Schizomycetes Classification Class: (Cruickshank, 1955); Order: Actinomycetales (Austwick, 1958, by Stewart, 1972b); Family: Dermatophilaceae (Austwick, cited cited by Stewart, 1972b); Genus: Dermatophilus (Van 1958, Saceghem, 1915); Species: Congolensis (Gordon, 1964; Roberts, and Gordon (1962), carried Edwards out electron 1965). microscopical studies which showed that the Actinomycetales have no structural relationship with the Eumycetes, or true fungi, and that they show similarities to the Eubacteriales.

Scanning electron microscopy (SEM) studies by Abu-Samra and Walton (1977) indicated that germinating zoospores developed within certain hyphae and were subsequently released, whilst the coccoid forms were produced by budding from a different type of hyphae. Colonies were found to have both vegetative and aerial hyphae. The various patterns of mycelial activity and structure that were seen raised serious doubts about the earlier ideas on the method of growth and therefore the classification of *Dermatophilus* within the *Actinomycetales* (Abu-Samra and Walton, 1977).

The Disease

Although much of the literature records cases in cattle and sheep, the infection has been described in the horse from the earliest of reports. The disease was first reported in horses and cattle by Van Saceghem (1915); then in sheep in South Africa (Bekker, 1928) and in Australia (Bull, 1929; Seddon, 1929, cited by Austwick and In the U.K. the first report in sheep was from Davies, 1958). by Harriss (1948). Beaton (1928), cited by Stewart, Scotland 1972a, described the condition in goats. Cases are recorded in a wide variety of domestic animals and wildlife species. Doas (Chastian, Carithers, Hogle, Abou-Gabal, Graham and Branstetter, 1976) and a cat (Carakostas, Miller and Woodward, 1984) have been infected, and Lomax and Cole (1983) reported the condition in Wildlife species infected include, deer (Salkin, Gordon and piqs. Stone, 1975); owl monkeys (Fox, Campbell, Reed, Snyder and Soave, 1973); titi monkeys (Migaki & Seibold, 1976, Washington); rabbits (Shotts and Kistner, 1970); hares, hedgehogs and qerbils (Kusel'tan, 1967); chamois (Nicolet, Klinger and Fey, 1967, Switzerland); Australian bearded lizards (Montali, Smith, Davenport and Bush, 1975, Washington); polar bears (Newman, Cook, Appelhof and Kitchen, 1975, Detroit); wild raccoons (Salkin, Gordon and Stone, 1976, New York), and camels have been experimentally infected (Abu-Samra, Imbabi and Mahgoub, 1976). The domestic fowl, on the other hand, appears to be completely resistant to dermatophilosis infection (Abu-Samra, Imbabi and Mahgoub, 1976).

Man has also been infected, from infected deer (Dean, Gordon, Severinghaus, Kroll and Reilly, 1961, cited by Stewart, 1972a); experimentally, from cultures (Memery and Thiery, 1960, cited by Stewart, 1972a) and from experimental exposure to infected horses (Ford, Cairns and Short, 1974).

Van Saceghem (1915) first identified the disease in horses in Hudson (1937) observed lesions in the horse similar to Africa. those in cattle, again in Africa, and the disease was reported in the U.K. in the same year by Stableforth (1937). Since then, there have been many reports of the disease affecting eauines. Scarnell (1961) again drew attention to the condition in British transmitted the condition to other horses and horses. Dermatophilosis was identified among mares and foals in Australia by Edgar and Keast (1940) while on the North American continent Bentinck-Smith, Fox and Baker (1961) and Searcy and Hulland (1968) Canada, diagnosed disease in horses in America and the respectively. Green (1960) identified lesions seen on donkey and zebra skins in Kenya, and Lloyd (1971) made clinical observations on streptothricosis in the domestic donkey in Nigeria. The disease was reported for the first time in East or South East Asia in horses in Hong Kong by Munro (1977). Bussieras, Chermette and Marchand recorded the disease in horses in France in 1978.

Stableforth (1937) described lesions which developed over the rump and hindouarters as "paintbrush" formations of matted hairs with scab formation and large cornified areas. In a review of 10 natural and 48 experimental cases, Scarnell (1961) noted acute and chronic forms of the disease. In the acute form lesions often went unnoticed for long periods, particularly in pastured horses. Small lesions developed and there was insidious spread over the body until the coat looked soaked. Crusty lesions could be palpated below the haircoat. Scabs thicker than 0.5 cm and over 2.5 cm in diameter were noted. These were frequently grey, sometimes confluent, with tufts of protruding hair. The underside of the scab was typically concave with protruberant hairs and a club-shaped hair root. Bilaterally symmetrical lesions were seen most often on the dorsal surfaces of the body, from the poll to the tail root. The limbs, particularly the distal areas, were also

affected. The muzzle and face were affected by the non-pruritic lesions (Edgar and Keast, 1940; Macadam, 1964c), and the underside of the abdomen was involved in some cases (Macadam, 1964c). Bentinck-Smith, Fox and Baker (1961) described lesions as an exudative dermatitis with hyperaesthesia, affecting the back and croup, and also noted the absence of pruritus.

The chronic form of the condition consisted mainly of plaque-like hard lesions of raised hair and flaking skin. Scarnell (1961) suggested that these reduced skin elasticity and contributed to "cracked heels". Chronic lesions were common over the saddle area on the pasterns. He believed there was connection with and "mud fever". McCaig (1967) also described the localised form of the horses. Lesions affected the lower limbs up to disease in the region of the fetlock, in particular the front legs in hunters. The lesions were more noticeable where there was white hair. In severe cases the area under the body, where mud splashed, was also affected. Lameness may be the presenting sign in "mud rash", owing to deep fissures and heavy scabbing of skin around the coronet, heels and pastern, as a consequence of the inflammation. Oedema. which was very slow to resolve, was reported by Bentinck-Smith, Fox and Baker (1961).

The lesions described by Scarnell (1961) began to develop after persistent wet weather and the acute form resembled "rain scald". Pascoe (1971) also noted the major contributing cause to the severity of dermatophilosis in horses to be excessive wet, cloudy weather (Pascoe, 1971) and the condition occurs most commonly in horses and ponies kept outdoors. In the U.K. the largest number of cases are seen in autumn and winter (Mullowney and Fadok, 1984a).

Untreated horses have become anorexic and debilitated, and have lost as much as 130 kg in weight (Ford, Cairns and Short, 1974). Approximately 60 per cent of the horses studied by the same authors developed dermatophilosis during outbreaks in two successive years. The latter authors state that there is potential for annual outbreaks within large horse groups which are stabled.

Lesions in untreated horses can persist for up to six months or

longer, depending on the severity (Ford, Cairns and Short, 1974). According to Lloyd (1971), lesions in the donkey are similar, involving very thick scabs that are firmly adherent to the mane and tail. Pinnal margins and the muzzle are often affected.

congolensis infection in cattle is seen mainly on the African D. continent where it is of major importance (Stewart, 1972a). The West African N'dama and Muturu are believed to be highly resistant to infection (Coleman, 1967; Macadam, 1970; 1976) whereas European breeds are particularly susceptible (Lloyd, 1976). Jersey cattle imported to Africa are very susceptible and, if tick infested, readily die (Stewart, 1972a). Up to 70 per cent of a herd can be The resistance of Brahman cattle was affected (Stewart, 1972a). compared with that of African Zebus and their crosses, and it was shown that Brahmans were highly susceptible, and that Brahman bulls transferred varying susceptibility to their progeny (Dumas, Lhoste, Chabeuf and Blancou, 1971). An hereditary predisposition has been suggested to exist among Shorthorns (Stewart, 1972a).

Cattle of all ages are affected, but great variability exists within infected herds (Stewart, 1972a). The characteristic lesion is an exudative epidermitis which causes crust formation. Lesions alopecic and are often so thick that they resemble horn. become This typical scab formation was described by Zlotnik (1955) as "crocodile skin". Lesions are papular and pustular initially, and later coalesce to form extensive scabs. Four forms of bovine lesion were described by Mornet and Thiery (1955). The ichthyotic form is the commonly seen scab-like lesion; while the nodular form with concurrent Demodex bovis is invariably associated infestation, and nodules may be as large as 12 cm and 2 cm thick. A tumourous form, originating from histioma development around a hair follicle bulb is described, and a leproid form exists where dermal infiltration by inflammatory cells, with folliculitis, is seen. Tongue lesions, hyperplastic lymph nodes, toxic hepatitis and nephritis have been recorded in cattle by Mornet and Thiery (1955). Considerable loss of condition is often reported as а consequence of reduced mobility in severe cases, and of difficulty in prehension of food owing to lesions involving the lips and muzzle (Plowright, 1956). Weight gains in recovered animals are

often very poor (Macadam, 1970).

Lesions of dermatophilosis typically affect the dorsal surfaces: along the neck, the back, and the hindquarters, and there is often chest and flank involvement. This distribution reflects the range of environmental skin insults which facilitate permeability by the organism. Lesions coincide with tick predilection sites, sites damaged by vegetation, maceration, and biting flies (Scott, 1988). Transmission of infection has occurred by biting and non-biting flies (Richard and Pier, 1966) and has been associated with ticks (Macadam, 1962; Plowright, 1956).

In Africa, bovine lesions may persist for many months and may carry over to the next rainy season (Macadam, 1964a). In the U.K. lesions in cattle lasted eight months (Roberts and Vallely, 1962).

In sheep, although most breeds seem to be susceptible, fine wooled breeds are more severely affected (Smith and Austwick, 1975; Hart, 1976). In Australia, Merino-cross lambs suffer severely and there may be high mortality (Stewart, 1972a). Dermatophilosis is not always readily detected: in one report in the U.K. (Austwick and Davies, 1958), nearly 80 per cent of one flock of ewes was affected, and the owners of 30 affected flocks were unaware of the existence of the disease.

Lesions in sheep are variable, and depend largely on the geographical location, climatic factors, pathogenicity of the strain of the organism and the exact part of the animal affected. Three forms of the condition are seen: lesions on the wool-covered parts, mainly the back, body sides and neck regions are known as "mycotic dermatitis" (Seddon, 1929, cited by Austwick and Davies, 1958), synonymous with "lumpy wool" (Bekker, 1928). Lesions may also occur on the hair-covered areas of the head, especially the ears, commissures of the lips and the hair over the nasal bones, and in rams there may be scrotal involvement. Alternatively, if lesions are associated with the hair of the legs from the coronet or hock joints the condition is known as "strawberry foot rot" (SFR), first described by Harriss (1948).

The lesions of these forms are basically the same. but the appearance is altered by the degree of covering of hair or wool (Stewart, 1972a). Lesions begin as small, hyperaemic areas of up to two weeks duration (Seddon, 1929, cited by Austwick and Davies, which progress to result in exudation and encrustation. 1958), Exudation is continued by lateral extension of the lesion. cornification takes place and scab material separates from the underlying epidermis. Re-infection occurs in the newly-formed epidermal layer and the process is perpetuated. In chronic cases the crust detaches from the skin and is held in the adjacent fleece as a conical mass. Sometimes wool fibres will break off revealing alopecic areas with black pigmentation of the skin. In affected animals there is frequently a dry, white appearance to the fleece. and disordered wool fibres are seen around lesions (Austwick and Davies, 1958).

Lesions of the haired areas are flatter than fleece lesions and develop from amber-coloured scabs. They are thickened, alopecic regions of skin, with greasy appearance to the surface. These lesions are often seen in lambs of a few days old (Hudson 1937), where secondary bacterial invasion may follow and death may result.

In "strawberry foot rot" (SFR), described by Harriss (1948), all four leas may be affected simultaneously. The typical small, thick scab develops and extends to form a rough, verrucous growth, which eventually extends over the entire leg. Further exudation forms a firm casing which can lead to swelling and inflammation of the coronet. If scabs are removed shallow, haemorrhagic ulcers which resemble strawberries are seen. Pruritus and lameness are present only if secondary bacterial infection develops. In the absence of secondary infection there is no pruritus and no lameness. Sheep of ages were affected (Harriss, 1948). In pasture where there all no abrasive whins, Harriss (1948) found SFR to be were nonexistent.

SFR lesions are clinically similar to the lesions of contagious pustular dermatitis (CPD) or orf (Harriss, 1948). Severe lesions similar to field SFR infections were produced when lambs were

experimentally infected simultaneously with orf virus and *D.* congolensis. These lesions were not seen, however, when only one organism was inoculated, suggesting that in field circumstances, *D.* congolensis acts synergistically with other organisms to produce severe generalised lesions (Abu-Samra and Walton, 1981).

In natural dermatophilosis cases in sheep, duration of lesions has varied from one week to over two months before the "lumpy wool" scabs have lifted off (Austwick and Davies, 1958). Harriss (1948) stated that the duration of SFR cases was up to 25 weeks, with most lesions healing in five to six weeks.

In caprine infections, lesions in kids may be seen as early as four to five days after birth, as scabs which are detected on the inner surface of the pinna, or as crusty lesions on the smooth skin on the ventral aspect of the tail (Munro, 1978). Lesions enlarge to two or three centimetres in diameter and reach approximately one millimetre thick. Scabs, which are readily removed to reveal smooth light coloured areas, are dark in colour and may resemble warts (Munro, 1978).

Adult goats may have lesions on their ears, similar to those seen in kids, and adherent scabs are found on the nose. Removal of scabs causes discomfort and leaves a raw, bleeding surface (Munro, 1978).

Two three week old piglets presented with multiple to confluent yellow crusts and scabs on the ears, face and over the dorsum (Lomax and Cole, 1983). S. hyicus and D. congolensis organisms were identified from the lesions. The piglets were housed with their dams in farrowing crates in a concrete-floored farrowing house, and the moist and disrupted epidermal surface was thought to have provided a sufficiently favourable environment for secondary infection with D. congolensis (Lomax and Cole, 1983).

Natural infection (Chastain, Carithers, Hogle, Abou-Gabal, Graham and Branstetter, 1976) and experimental infection (Richard, Pier and Cysewski, 1973) in the dog have resulted in similar lesions: erythematous, suppurative ulceration, which was encrusted. Of the

natural infections, one dog demonstrated posterior dorsal midline lesions which had been present for two months (Chastain et al., 1976). The dog was anorexic, depressed and had become progressively emaciated over a six month period. Another dog suffering from natural infection presented with a history of patches of alopecia and skin encrustation (Chastain et al., 1976). The lateral femoral and dorsal scapular regions were involved and appeared as thick, hard, encrusted lesions up to four lesions centimetres in diameter. No sign of systemic illness was evident. In neither case was the source of infection traced.

Mild focal pruritus was reported in the experimental dermatophilosis infections (Richard *et al.*, 1973), and although no systemic signs of infection were seen, there were deaths following progressive emaciation.

Contamination of injuries or inoculation by an infected claw was assumed to be the origin of infection in a case of subcutaneous dermatophilosis in a cat (Carakostas, Miller and Woodward, 1984). The cat presented with two draining, firm, subcutaneous masses, in the phalanx and popliteal lymph node regions, respectively. Thick, grey, purulent material drained through tracts which extended to the skin surface. The surrounding areas were hairless.

Raised, golden-brown cutaneous nodules were described on the heads, bodies and extremities of three Australian bearded lizards on arrival at a Washington zoo after a lengthy journey (Montali, Smith, Davenport and Bush, 1975). Lesions were up to five millimetres in diameter, although several were larger and confluent, particularly at pressure points on the limbs. *D. congolensis* organisms were isolated. The generalised nature of the infection was believed to be associated with stress prior to arrival at the zoo (Montali *et al.*, 1975).

In a study by Ford, Cairns and Short (1974), four people were experimentally exposed to active lesions of infected horses, while four control persons were exposed to skin and hair of non-infected horses. Within 36 to 48 hours after exposure, the four people exposed to active lesions developed discrete, erythematous,

pruritic pustules, from which *D. congolensis* was isolated. Lesions persisted from two weeks to two months. One case of natural transmission occurred from horse to man over the two-year study: numerous discrete pustules developed over the handler's forearm 48 hours after handling a severely infected horse.

Ford *et al.* (1974) obtained biopsies from human and equine infections. Lesions in both hosts were consistent with a mixed nonspecific epidermitis; the dermis was only superficially involved.

After scarification of the skin, *D. congolensis* culture was applied to the skin of the forearm by Memery and Thiery (1960), cited by Stewart (1972a), and pustules appeared in two days. Scab formation was then seen, and after eight days antibiotics were administered.

Two men who had dressed an infected deer carcase, and two others who had handled it, developed furunculosis of the dorsal surfaces of the hands (Dean et al., 1961, cited by Stewart, 1972a). Incubation ranged from two to seven days, and lesions began as multiple, non-painful white pimples or pustules up to 0.5 CM with a serous, yellowish exudate. Pustules diameter were surrounded by a hyperaemic zone and later ruptured leaving a red crater-like cavity. There was no spread or coalescence, as seen in animals. After three to 14 days lesions healed spontaneously. No systemic illness was recorded, nor was the condition contagious to human in-contacts.

Pathology and Pathogenesis

According to Lloyd (1984), natural immunity to dermatophilosis exists in varying degrees in domestic animals, and is a heritable characteristic. Variability in resistance has been recorded within a species, between breeds. N'dama and Muturu cattle, for example, are believed to be highly resistant to infection (Coleman, 1967), whereas Jersey cattle (Stewart, 1972a) and Brahman cattle were found to be highly susceptible, and susceptibility was transferred from Brahman bulls to their progeny (Dumas, Lhoste, Chabeuf and Blancou, 1971). Species resistance is believed to exist: the domestic fowl is believed to be completely resistant to dermatophilosis (Abu-Samra, Imbabi and Mahgoub, 1976).

The nature of the haircoat, the structure of the skin, and the inherent ability of the host animal to mount a rapid immune response following infection, are factors determining natural immunity to dermatophilosis (Lloyd, 1984). When D. congolensis is inoculated into the epidermis the main barrier to infection is the outer stratum corneum and the sebaceous lipid which permeates it (Roberts, 1967a; Lloyd and Jenkinson, 1980). Dermatophilus is believed not to be a commensal bacterium (Macadam, 1970) and it cannot penetrate intact corneocytes and films of sebum (Roberts, 1967a). Although sebaceous lipid from sheep is toxic to D. congolensis in vitro, the protective effect of the lipid was shown physical (Roberts, 1967a). Recent work in to be cattle demonstrated that this protection was very superficial and possibly associated with changes in the nature of the lipid when it reached the skin surface (Lloyd and Jenkinson, 1980). Barrier function may be compromised by trauma, ectoparasites, prolonged wetting and heavy rain or sprays (Macadam, 1970). Alterations in atmospheric temperature and humidity do not directly influence skin resistance (Lloyd and Jenkinson, 1980).

"Mycotic dermatitis" and "cutaneous streptothricosis" are misnomers as the causal agent is bacterial, not fungal, in origin (Roberts, 1967a). D. congolensis penetrates the stratum corneum and invades living epidermis causing an acute inflammatory reaction with neutrophil accumulation, accelerated keratinisation epidermal proliferation immediately below the infected area and (Roberts, 1965). The penetration of epidermal cells was believed Roberts (1967a) to be due to mechanical force, and to be by independent of known haemolysin, protease and phospholipase; he believed that no toxin was produced by the organism. The accumulated neutrophils act to prevent invasion by Dermatophilus in the initial infection stages the organism colonises the but newly-formed epidermis by lateral extension from infected sites. The organism multiplies in and destroys the hair follicle sheaths

(Abu-Samra, Imbabi and Mahgoub, 1976) resulting in infiltration of the dermis by lymphocytes, macrophages, proliferating fibroblasts and connective tissue formation. Delayed hypersensitivity reactions to experimental inoculation of *D. congolensis* have been recorded in domestic animals and in the rabbit (Roberts, 1966; Makinde and Wilkie, 1979; Abu-Samra, Imbabi and Mahgoud, 1976). However, skin lesions are concluded to be the consequence of nonspecific inflammation, resulting from the products of cellular damage diffusing from the infected epidermis (Roberts, 1967a).

Flagellar and somatic agglutinins are produced in response to *Dermatophilus*; precipitins are only present after repeated or prolonged infection or vaccination (Roberts, 1967b). Antibody has been identified on the skin surface in cattle after intradermal vaccination (Lloyd and Jenkinson, 1981) and has also been demonstrated in the milk of infected cows (Makinde, 1981). Repeated infection or vaccination stimulates an anamnestic response (Makinde and Ezeh, 1981).

High serum antibody titre does not confer immunity to natural dermatophilosis (Perreau and Chambron, 1966) and although zoospores are agglutinated and immobilised *in vitro* by such antibody, it does not kill them (Roberts, 1964). Zoospore destruction following neutrophil phagocytosis is enhanced by the presence of high titre specific antibody in sheep and guinea pigs (Roberts, 1966) and the specific antibody greatly increases resistance to experimental infection of scarified skin where there is contact between inoculum and invading leucocytes.

Recent studies following the dose-response of rabbits to *D. congolensis* infection (How and Lloyd, 1990) indicate a degree of strain-specificity in immunity. Further work is needed examine the antigenic variability of isolates and to determine strain-specific antigens. To date (1990) there is no recognised method for serological or biochemical classification of *D.* congolensis isolates. Cross-reacting antibody between two strains following vaccination was demonstrated by enzyme-linked immunosorbent assay (ELISA) of serum (How and Lloyd, 1990) but no direct evidence exists that antibody is protective.

Diagnosis

Clinical lesions are quite distinctive in all species. In the horse no other organism induces the classic "paintbrush lesions". The distribution of lesions, coinciding with the areas most in contact with rain, is equally distinctive.

Diagnosis is usually based upon the identification of characteristic morphological elements in Giemsa stained smears from crusts and scabs, and growth of bacteria with the cultural features of *D. congolensis*. Direct smear is made from pus on the underside of scabs, or from serous exudate after scab removal, or from dried crusts emulsified in physiological saline or distilled water. Gram-positive hyphal elements, which branch transversely and longitudinally, are seen, and consist of up to eight rows of cocci (Roberts, 1961). Organisms are often described as "railroad tracks" on smear.

If the organism is demonstrated in smears, it can usually be cultured. Grinding and powdering of scab material prior to culture is reported to improve isolation of *D. congolensis*, by allowing the release of the organism from between the layers of hard scab before inoculation on to culture medium (Abu-Samra and Walton, 1977). Selective medium containing polymixin B sulphate reduces contamination from field samples but does not completely eliminate it (Abu-Samra and Walton, 1977). Pre-incubation with CO_2 was not found to be essential for growth. The optimal temperature for growth was $37^{\circ}C$ (Edgar and Keast, 1940).

The use of fluorescent antibody techniques has greatly facilitated the detection of *D. congolensis* in suspensions of exudate (Pier, Richard and Farrell, 1964).

Serum antibody titres to *D. congolensis* were demonstrated by ELISA in cattle in the west of Scotland (Lloyd, 1981) allowing screening of sera for exposure to infection which may have otherwise gone unnoticed.

When counterimmunoelectrophoresis, passive haemagglutination, and

agar gel diffusion were compared, counterimmunoelectrophoresis, which is specific and sensitive, was found to be the most satisfactory method of screening large numbers of serum samples, with an antibody detection rate of over 80 per cent (Makinde and Majiyagbe, 1982). Cellular antigens, particularly cell wall extract, were more successful than extracellular antigen in antibody detection in sera.

A monoclonal antibody, produced from murine hybridoma cultures, was used to demonstrate *D. congolensis* in clinical material from confirmed bovine and ovine cases of dermatophilosis by indirect immunofluorescent staining (How, Lloyd and Lida, 1988).

Management

put Two points cited by Stewart (1972b), treatment of dermatophilosis into perspective. In severe cases the thickness of the crusts is too great, and active hyphae are embedded too deep the follicle sheaths, for topical treatment in to be either practical or effective (Roberts, 1967b); and to allow topical treatment to penetrate even to the superficial of the areas lesion, scabs should be removed, and wholesale removal too is harsh, very painful and inhumane (Coleman, 1967).

Roberts (1967b) stated that rational treatment should be large doses of antibiotic to which the organism is sensitive, remembering that many cases heal spontaneously. Dermatophilosis is reported, however, by some authors (Mullowney and Fadok, 1984a) to be highly sensitive to most antibacterial agents, and in mild cases to require only topical antiseptic therapy.

In the horse, Searcy and Hulland (1968) used topical application of iodine solution in addition to parenteral penicillin-streptomycin combination treatment, and recovery was recorded within three weeks. Animals recovered but comparison to untreated cases made assessment of the efficacy of treatments difficult. Horses were treated topically with 0.1% solution of chlorhexidine digluconate with good results (Dykstra and Osinga,

1969). Only partial response was recorded, however, to spraying of lesions with magnesium fluosilicate in 70 severely affected equine cases (Pascoe, 1971). Parenteral penicillin-streptomycin gave best results as judged by hair regrowth and loss of irritation in affected areas. In a further outbreak involving 278 horses, Pascoe (1972) reported that recovery of most cases occurred within seven days, whether treated with systemic or locally applied antibiotics, particularly 0.5 % chloramphenicol used topically. Resistant cases were described as showing a better response to an oily preparation of chloramphenicol, and parenteral antibiotics (Pascoe, 1972).

Ford, Cairns and Short (1974) studied a herd of over a hundred pleasure horses over a two year period, and recorded regression of active lesions within four days of first treatment after cleansing of infected skin using povidone-iodine solution or commercial shampoo. Copper sulphate was an effective topical (Watson and Walton, 1973), when used after daily currying and washing with water. Horses were treated once weekly for two weeks. Iodophors, 0.5% zinc sulphate, 0.2% copper sulphate and 1% potassium aluminium sulphate (alum) are commonly used topical solutions (Scott, 1988). Solutions are applied as total body washes, sprays or dips for three to five days and are then continued weekly until healing occurs.

Infections of unpigmented areas such as the muzzle or lower extremities commonly crack or fissure, resulting in cellulitis causing severe pain or lameness in the horse. These respond best to combined antibiotic-steroid ointments (Scheidt and Lloyd, 1987), but astringents such as white lotion (20 g zinc sulphate and 30 g lead acetate in 50 ml water) applied daily for five days secondary swelling and inflammation of the reduce lower extremities (McCaig, 1967). McCaig (1967) also recommended acetonide and halquinol in a cream base triamcinolone in treatment, and the application of emolient cream or Vaseline to the legs prior to riding. He recorded efficacy of antihistamines in cases where there was severe inflammation of the lower limbs.

For severe generalised infections, parenteral antibiotics are

required, such as procaine penicillin G (22,000 IU/kg) and streptomycin (11 mg/kg) intramuscularly twice daily for seven days (Scott, 1988), although some authors find a three to five day course to be adequate (Scheidt and Lloyd, 1987).

Successful therapy in horses depends also on removal predisposing factors (Scheidt and Lloyd, 1987): affected animals should be confined to dry places, kept stabled, out of rain and wet pastures, or at least rugged. If the rainy season is not prolonged then the disease is self limiting. Chronically affected animals are the primary source of infection (Roberts, 1967a; Mullowney and Fadok, 1984a), and mechanical transmission of the disease occurs by both biting and non-biting flies (Macadam, 1964a. 1964b: Richard and Pier, 1966), ticks (Macadam, 1961), and fomites such as grooming equipment and electric clippers. Softening with soaks or chlorhexidine solution facilitates povidone-iodine removal of the painful scabs which, along with crust and hair, be eliminated from disinfected premises should to reduce environmental contamination and therefore reduce the source of re-infection (Scheidt and Lloyd, 1987). Other recommendations for control of dermatophilosis include improved hygiene, nutritional and management practices; insect and arthropod control; isolation culling of infected animals, and evasion of mechanical or cutaneous trauma (Scott, 1988).

The earliest recorded topical treatments for dermatophilosis in cattle include 3% sodium arsenite solution (Van Saceghem, 1915), and that prescribed by Armfield (1918), who claimed "moderate success for the following treatment in some cases: moisten crusts with soft soap and warm water. Then mix the following: quick lime, 1 lb; sulphur 2 lb; and water, 2 gallons. Simmer over a slow fire for three hours and apply to the skin while warm". This treatment was to no avail in advanced cases. The use of dressings was decried, as they spread the disease from one part of the skin to another, and rather removing scabs and painting of the underlying areas with one per cent picric acid was recommended (Armfield, 1918).

More recently, a single dose of antibiotics has proved effective

in treatment of the bovine condition, 75,000 IU/kg penicillin and 75 mg/kg streptomycin (Blancou, 1969). Recoveries of over 80 per cent with treatment, but only 14 per cent without, have been recorded. In Africa a single intramuscular injection of long-acting oxytetracycline (20 mg/kg) was reported to be curative in over 90 per cent of animals treated (Ilemobade, Gyang, Bida and Addo, 1979; Gyang, Ilemobade and Shannon, 1980). Control measures. such as six week quarantine of new animals; isolation of affected animals and slaughter if there is no response after the animal has been housed for six weeks, as the animal is likely to be a permanent reservoir of infection; dehorning; avoidance of skin branding; and segregation from sheep and horse; and ectoparasite control, were recommended in tropical countries by Macadam (1970). However, the traditional migration patterns and nomadic management of cattle in countries like Nigeria render measures such as isolation and ectoparasite control virtually impossible (Macadam, 1970). The discordant results obtained for single and combination systemic treatments lead to a situation which calls for a scientific search for better drugs (Arowolo, Amakiri and Nwufoh. 1987). Other methods of control or prevention are obviously desperately needed.

In problem flocks of sheep where elimination of dermatophilosis is impractical, routine summer and autumn protection dips with 0.5% zinc sulphate or 1% potassium aluminium sulphate are reported to be effective (Lofstedt, 1983; Martin, 1983). Resistant cases were treated with either a single parenteral dose of 70,000 IU procaine penicillin G/kg and 70 mg/kg streptomycin, or five days treatment at 5,000 IU procaine penicillin G and 5mg/kg streptomycin daily (Lofstedt, 1983).

Dermatophilosis is a disease which can be controlled by the consistent use of effective husbandry practices. However, where improvement of management is impractical or impossible, a situation which may be relatively common in poorly managed horses which are permanently at pasture, prophylaxis in the form of vaccination would be a very desirable method of control.

Also, for domestic animals kept in large numbers such as large

cattle herds in the tropics and large flocks of sheep in countries such as Australia and New Zealand, and where losses of productivity is of major economic importance, and where control of transmission factors is impossible, vaccination is the only realistic hope of disease control (Lloyd, 1984).

Blancou (1976), cited by Lloyd (1984), evaluated the use of live intradermal vaccines in a herd of Brahman and Brahman-cross cattle, comparing matched experimental and control groups, and concluded that whilst this approach reduced the disease severity, it had minimal effect on the incidence of infection. There have been no reports indicating the successful use vaccine of this type since then.

It is uncertain whether superficial epidermal defences or deeper secondary immune responses are more influential in the prevention of clinical dermatophilosis. Following intradermal vaccination specific antibodies to *D. congolensis* are secreted into the stratum corneum and protection may be mediated partly by the immobilisation of infective zoospores by flagellar agglutinin (Lloyd and Jenkinson, 1981). Local cutaneous humoral immune mechanisms may therefore be important and might explain the superior results obtained after intradermal vaccination. Flagellar antigen variability between strains of D. congolensis may therefore be significant (Roberts, 1964). Live intradermal vaccination stimulates considerable flagellar agglutinin production (Lloyd, Jenkinson, Nimmo and Mackie, unpublished observations). Therefore the antigenic composition of vaccinal strains may require to be tailored to predominant strains in a specific area. If it is crucial that superficial defences should be avoided by vaccination through the stratum corneum, then other may be more important in the stimulation of antigens an appropriate immune response (Lloyd, 1984).

The promise of live intradermal vaccination as an effective prophylactic have not then been fulfilled (Arowolo, Amakiri, and Nwufoh, 1987; Lloyd, 1984), and the need for a new approach to management of dermatophilosis is greater than ever.

Conclusion

Dermatophilosis is now a significant welfare problem in the horse in the U.K. It is seen most commonly where horses are exposed to the elements, without provision for shelter. It tends therefore to be a disease of the poorly managed horse. Debility and considerable weight loss often accompany generalised cases of dermatophilosis.

Owing to the insidious onset of infection in horses kept at pasture, cases are often advanced before detection, and are particularly refractive to treatment. Spontaneous recovery can occur in horses on housing, but this is often impossible. Although numerous therapies exist, response varies, particularly to topical treatment. Application of such treatments, especially washes, can be difficult and time consuming and, where the weather inclement or when large numbers of animals are involved in is an outbreak, it can be impractical. Treatments are often required for prolonged periods during which zoonotic infection may occur, and the recovery period for dermatophilosis in horses is often protracted.

The fact that live intradermal vaccination has not proved to be an effective means of prophylaxis, the potential for annual outbreaks within a stable, and the possibility of transmission of infection to humans and to domestic pets further strengthen the need for of investigation of alternative methods of management dermatophilosis in horses, a need which was addressed in this thesis.

ESSENTIAL FATTY ACIDS (EFAs): THE RATIONALE FOR POSSIBLE USE TO MANAGE EQUINE DERMATOPHILOSIS

Background

Essential fatty acids (EFAs), in particular gamma linolenic acid (GLA), are becoming increasingly widely used in clinical medicine, including treatment and management of skin disorders in man and in domestic animals. The metabolism and functions of EFAs, and their current relevance in medicine, with are reviewed in this chapter. Emphasis is placed on their role in the skin and in dermatological disorders, as an introduction to the justification for use as an alternative approach to management of dermatophilosis in horses.

EFAs are dietary factors which like vitamins or essential amino acids cannot be manufactured by the mammalian host but must be ingested with food (Horrobin, 1990a and 1990b). They are polyunsaturated fats, which means that they contain at least two double bonds. All EFAs are polyunsaturated fatty acids (PUFAs) but many PUFAs are not EFAs, and those which are not may have adverse effects (Horrobin, 1990b). There are two series of EFAs, the n-6 series derived from linoleic acid (LA), and the n-3 series derived from alpha-linoleic acid (ALA). LA, 18:2n-6, is present in most seed oils, sunflower oil for example contains over 50% of fatty acids as LA; and ALA, 18:3n-3, is the main fatty acid in leaves, grass contains 64% of fatty acids in this form. The nomenclature of EFAs is given in shorthand, e.g. LA is 18:2n-6. The first number, 18, is the number of carbon atoms in the molecule, and the number after the colon is the number of double bonds in the molecule. The last n-3 or n-6 defines whether the fatty acid is from the n-3 or n-6 series, indicating the position of the first double bond from the methyl end of the molecule: this is between the 3rd and 4th carbon atoms in the n-3 series and between the 6th and 7th carbon atoms in the n-6 series (Horrobin, 1990b).

The n-6 series seems to be considerably more important, as when n-6 and n-3 EFAs are deficient, abnormalities are quickly

corrected by n-6 EFAs alone, however the supplementation of n-3 EFAs correct none of the abnormalities, and make several worse (Ziboh and Chapkin, 1987). In the zebra, whose EFA intake is almost all n-3 ALA from grass, the ratio of n-6 to n-3 EFAs in tissues is between 3 and 9:1. Although the metabolic enzymes appear to be very similar, the n-3 and the n-6 series EFAs are not interchangeable.

LA and ALA have no biological activity beyond oxidation to provide and most EFA function requires their metabolism by energy, alternating slow desaturation and rapid elongation steps, shown in Figure 1, resulting in the formation of active metabolites. The limited effects of LA and ALA are shown by the stunted growth of animals fed large amounts of LA and ALA. If the rate-limiting step of 6-desaturation is bypassed by dietary supplementation with n-6 gamma-linolenic acid (GLA) and n-3 eicosapentanoic acid (EPA) then growth is again observed. The principal functions of LA normal itself are maintenance of the integrity of the impermeable barrier formed by the epidermis to water, as well as an anti-thrombotic effect of endothelium (Horrobin, 1990b).

Considerable species variation exists in EFA metabolism. In particular, the regulation of the first, rate limiting desaturation step by delta-6-desaturase enzyme activity varies in rate from one species to another, as indicated by the ratio of LA to its metabolites in body tissues (Horrobin and Manku, 1990).

The 6-desaturation reaction is most rapid in the rat, and slowest in the rabbit and in the guinea-pig (Horrobin and Manku, 1990). In cats, the 6-desaturation is either absent or exceedingly slow (Frankel & Rivers, 1978). In humans the rate of LA conversion is closest to rabbits and guinea-pigs (Horrobin, Huang, Cunnane and Manku, 1984; Sinclair, 1985). As far as can be determined, no information is available on EFA metabolism in the horse.

Figure 1. Pathways of metabolism of the n-6 and n-3 essential fatty acids (EFAs)

Functions of EFAs

Primary EFA functions relate to their roles in membrane structure and in biosynthesis of short lived derivatives which regulate cellular activity (Sinclair, 1990).

Owing to their unsaturation EFAs confer fluidity, flexibility, and permeability on all membranes in the body. EFA deficiency has, for example, led to reduced oxygenation of tissues due to failure of inflexible red blood cells to pass through capillaries (Simpson, 1988). EFAs modulate the function of membrane-bound proteins such as receptors, ATPases and ion channels and in EFA deficiency exaggerated effects are seen when normal concentrations of ligands such as oestrogens and progestins, angiotensin or opioids bind to receptor sites in membranes (Horrobin, 1990b).

The EFAs are the precursors for short lived regulatory molecules, known as the eicosanoids, which are derived from 20 carbon EFAs, namely arachidonic acid (AA) and DGLA of the n-6 series, and eicosapentanoic acid (EPA) of the n-3 series (Sinclair, 1990). These eicosanoids include prostaglandins (PGs), leukotrienes (LTs), and hydroxy-acids, which are all produced and destroyed locally, according to tissue requirements, and are involved in regulation of calcium contractions within cells, in smooth muscle contraction and relaxation, in control of chemotaxis and in modulation of cytokine production. The pathway for AA metabolism is shown in Figure 2.

The main enzymes involved in the metabolism of the EFAs to eicosanoids are the cyclo-oxygenase and related systems, which give rise to prostaglandins and thromboxanes; and the 5-, 12- and 15-lipoxygenases, which give rise to a variety of oxygenated metabolites including the leukotrienes (Horrobin and Manku, 1990). AA derivatives formed by cyclo-oxygenase and by 5- and 12-lipoxygenases are believed to be of particular importance in inflammation.

Figure 2. Pathway showing the formation of prostaglandins and leukotrienes from arachidonic acid

PGE₁, which is derived from DGLA, has a wide range of desirable effects includina inhibition of platelet aggregation and inflammation, vasodilatation, reduction of blood pressure. elevation of cyclic AMP levels, and inhibition of phospholipases. 15-OH-DGLA, also derived from DGLA. inhibits 5and 12-lipoxygenases and therefore the formation of proinflammatory metabolites from AA (Horrobin and Manku, 1990).

AA derivative PGl_2 (prostacyclin) and EPA derivative PGl_3 both have effects similar to those of PGE_1 . AA derivative thromboxane A_2 , a potent proaggregatory and vasoconstrictive agent is rapidly converted to a relatively inert metabolite, thromboxane $(Tx)B_2$ (Horrobin and Manku, 1990). Leukotrienes from AA, which contract smooth muscle are strongly proinflammatory.

The n-6 EFAs are required for maintenance of the integrity of the impermeable barrier to water which the skin provides. LA and GLA are the only EFAs capable of this, probably by metabolism to 13-hydroxy derivatives, which may also regulate permeability of other barriers throughout the body (Horrobin, 1990b). The skin is permeable to the passage of water and the transport of many other substances, and when there are insufficient EFAs present water quickly leaks through the skin, and the skin becomes waterlogged by osmosis when surrounded by water (Horrobin and Manku, 1990).

EFAs are involved in the transport and metabolism of cholesterol, which is moved around the body predominantly as fatty acid esters (Horrobin, 1990b). EFA esters are more soluble and more easily dispersed than unsaturated fatty acid. EFAs of the n-6 series consistently lower plasma cholesterol, probably with effect mediated by LA metabolites (Horrobin, 1990b).

It is evident, thus, that the detrimental effects of EFA deficiency are likely to manifest in all body tissues (Horrobin, 1990b).

EFA Deficiency in Animals

Poor growth, unlike that seen in other deficiencies, was observed in the rat as one of the initial manifestations of EFA deficiency
(Sinclair, 1952). When pair-fed rats were studied after weaning onto a fat-free diet, male rats grew virtually normally for the first five weeks post weaning, and females for the first 10 weeks. After a plateau at 13 weeks, the stunted rats survived for long periods but showed increased susceptibility to infections. Hyperkeratosis and acanthosis of the epidermis were seen, with hypertrophy and atrophy of the sebaceous glands. The lesions in transitional epidermal layers led to increased water permeability, with transepidermal water loss and scaliness shown to result from lesion (Sinclair, 1990). The signs were reversed by the same topical application of AA or LA.

Renal dysfunction has been observed in EFA deficiency in animals, and renal tubule calcification, with haematuria induced by deficiency (Sinclair, 1990). prostanoid Connective tissue involvement has been noted, cartilage was greatly altered and osteoporosis was seen, and erythrocyte fragility was increased, along with capillary permeability. Oxidative and phosphorylative reactions were uncoupled. Recent work has demonstrated a definite requirement of animals and humans for the n-3 ALA series FFAs: abnormalities have been demonstrated in retinal and brain function growth arising from n-3 deficiency only (Neuringer, and in Anderson and Connor, 1988).

EFA Deficiency in Man

It was first proven that EFAs were required by humans when oils were used in the treatment of infantile eczema (Hansen, Adam & 1958). The rarity of EFA deficiency in humans has Wiese. frequently been confirmed. Relative EFA deficiency, a low ratio of EFAs to antagonistic long-chain saturated fatty acids and trans has been suggested by Sinclair (1990) to account for isomers. heart disease such as coronary and Western diseases atherosclerosis, producing a different syndrome than absolute deficiency: for example, elevated plasma cholesterol levels are recorded in relative, but not absolute deficiency.

Rationale for Administration of GLA

Three main reasons exist for GLA supplementation (Horrobin, 1990b); in summary, if there is inadequate LA intake, or

inadequate rate of GLA formation, rate of GLA formation from LA may be insufficient to supply enough GLA and further metabolites. Excessive consumption of LA metabolites may occur, for example adequate oxygen and inadequate anti-oxidants result in EFA consumption and conversion to lipid peroxides; and where there is excessive inflammation AA is converted to PGs and LTs at an abnormally high rate. If cell division is rapid EFA provision may be inadequate to match the requirements of dividing cells. The rate of loss may be greater than the rate of LA metabolism (Horrobin, 1990b).

In addition, at least two GLA metabolites have desirable actions. These are prostaglandin E_1 (PGE₁), formed by cyclo-oxygenase from DGLA, and 15-OH-DGLA, formed by 15-hydroxylation of DGLA. PGE₁ inhibits inflammation, regulates the immune system, causes vasodilatation and lowers blood pressure, fluidises red cell membranes, causes induction of insulin receptors and inhibits platelet aggregation and thrombosis. 15-OH-DGLA inhibits 5- and 12- lipoxygenases, which lead to pro-inflammatory metabolites from AA (Horrobin, 1990b).

Forms of GLA Administration

GLA can be administered as triglycerides either derived from natural oils or artificially manufactured as free fatty acids, ethyl or methyl esters or as phospholipids (Horrobin, 1990b). The nature of other fatty acids present, and the exact nature of the molecule into which the fatty acids are incorporated can both have important effects on biological activity (Lawson and Hughes, 1988). Triglyceride structure is important in determining biological activity.

Evening primrose oil is a particularly desirable source of GLA: 7 to 10% of its fatty acids consist of GLA, and is more effective than other oils at increasing production of desirable PGE_1 and prostacyclin. EPO is unique in containing no n-3 fatty acids and almost no saturated fatty acids, both of which interfere with n-6 EFA metabolism and biological activity.

Methyl and ethyl esters are thought to be less effectively

absorbed than triglycerides or free fatty acids (Horrobin, 1990b).

The Use of EFAs in Treatment of Skin Conditions in Man and in Companion Animals

The use of EFAs in the management of skin conditions is better documented for humans than for our animals. The dermatological changes observed in atopic eczema bear a superficial resemblance n-6 EFA deficiency (Wright, 1990); there is inherited slow to 6-desaturation rate, with low levels of LA and ALA metabolites in umbilical cord blood, red cells and plasma, milk. and adipose tissue (Horrobin, 1990b). There is no evidence of reduced intake, absorption, or plasma levels of LA in atopic eczema, rather LA levels are often elevated (Horrobin, 1990b). In cord blood, the severity of the LA abnormality is positively correlated with the degree of elevation of IgE, which indicates risk of development of atopy (Horrobin, 1990b). The fundamental aetiology of atopy may be defective EFA metabolism, exerting different influences on the development of the disorder.

Prophylactic measures, by ensuring adequate intake of pre 6-desaturated EFAs by infants at risk from atopy, by adding GLA to artificial infant milks, already practised in Japan, or by increasing consumption of GLA as EPO by the breast-feeding mother, are proposed (Horrobin, 1990b).

IgE production is controlled by T-lymphocytes (Wright, 1990). Deficiency of 6-desaturated EFAs, as seen in atopy, may lead to an upset in the T-helper to T-suppressor cell ratio, because this balance is normally regulated by these EFAs. The T-suppressor to T-helper ratio is increased in atopic patients, usually due to low total T-lymphocyte numbers (Wright, 1990). In combination with abnormal permeability of the skin and the gut, T-cell imbalance will result in the adverse response by atopic patients to antigens which cause no response in normal individuals (Wright, 1990).

Atopic manifestations may therefore be associated directly with 6-desaturated EFA deficiency on skin, membranes and smooth muscle, and indirectly with the induction of abnormal immune response consequent of EFA deficiency.

In treatment of atopic eczema using EPO, the mode of action is (Burton, 1990), but improvement is thought to be due uncertain partly to lowered production of the pro-inflammatory 2 series PGs, and also lineolate forms an integral part of the ceramide molecule, essential for the epidermal permeability barrier which is defective in atopic eczema (Burton, 1990). The increased transepidermal water loss in atopic eczema, and consequent drying of the skin, may be due to defective epidermal ceramides. EFAs might also modulate inflammation by an effect on the cell-signalling system (Burton, 1990).

Evening primrose oil (Epogam or Efamol, Scotia Pharmaceuticals) has recently received a product licence in the U.K. for the treatment of atopic eczema. In randomised double-blind placebo controlled trials to ameliorate all features of the disease, especially itch, and to reduce skin roughness, and to allow substantial reduction in topical steroids, and oral steroids. antihistamines and antibiotics in some patients (Schalin-Karrila, Mattila, Jansen and Uotila, 1987). The treatment is very safe conventional parenteral treatments compared to such as azathioprine (Burton, 1990). prednisolone or Preliminary investigations using Efamol Marine, a combination of n-6 and n-3 EFAs, 80% EPO and 20% fish oil, have shown better results than n-6 EPO alone (Horrobin, 1990b).

Abnormal keratinisation, classical of EFA deficiency, along with inflammation are seen in acne and psoriasis, two very common, but clinically diverse skin conditions (Allen, 1990).

Acne vulgaris, inflammation of the cutaneous pilosebaceous unit, has a complex aetiology, with active sebum production and abnormal duct keratinisation as prerequisites (Allen, 1990). There may be absolute, relative, or local EFA deficiency, and as precursors of the proinflammatory leukotrienes and prostaglandins, specific manipulation of EFAs may modify inflammation (Allen, 1990).

Aetiology of psoriasis is uncertain, but evidence exists that AA metabolism is upset, with elevated free AA and LT levels (Allen, 1990). GLA, supplemented in the diet or applied topically, might lead to amelioration by cyclo-oxygenase activity inhibition, or PGE1 or 15-OH-DGLA mediated specific anti-inflammatory effect (Allen, 1990).

EFAs can improve skin texture (Marshall and Evans, 1990). Thirty patients with atopic eczema were recruited into seven а randomized, double-blind, parallel trial to investigate the improvement of skin roughness, using Efamol EPO compared to a placebo. Patients received EPO daily for three months and were assessed monthly. Thirty one patients completed the trial. Objective measurements to assess skin smoothness showed marked, thereafter consistent improvement, within one month and maintained throughout the trial, in patients receiving Efamol treatment (Marshall & Evans, 1990).

EFAs have been found to be helpful in the management of anhidrosis in horses. Anhidrosis is related to the inability to sweat in response to an adequate stimulus (Correa and Calderin, 1966). It is encountered most frequently in hot, humid tropical climates such as Puerto Rico, Australia and New Zealand, Panama, South America and Hong Kong (Correa and Calderin, 1966).

Sweating is the major method of thermoregulation in the horse, and 75 per cent of body heat is lost in this way. In anhidrotic horses the body temperature may rise to 107 or 108°F (42°C), and animals may collapse following exercise. Prevalances of up to 20 per cent in Thoroughbred horses in some areas render the condition economically significant (Mullowney, 1985b). Although several theories have been postulated regarding aetiology, this is uncertain and treatment gives variable results. Treatments for the condition include sodium or potassium iodides, iodinated casein or thyroid hormone, oral vitamin E, minimising concentrates in the adrenocorticotrophic hormone (ACTH) injections. and diet. Provision of a cooler environment with reduced humidity eases the distress, and soaking the horse to allow cooling by evaporation, and restriction of exercise to the cooler times of the day are all

beneficial (Mullowney, 1985b).

However, in Florida three chronically anhidrotic horses were supplemented with EPO and safflower oil, at daily doses of 8g and 2 oz. respectively. All three horses had raised temperatures at rest. The owners of the horses reported greatly improved sweating ability. and also noted improved condition of hair and skin throughout the late summer, autumn and winter (Mayhew, 1985. personal communication).

Scurviness of the skin, a dry, dull coat, and loss of hair are seen when dogs are deprived of fats. Skin then becomes itchy, oily and susceptible to infection. The epidermis peels, there is otitis externa, exudation between the digits, and skin becomes thickened (Hansen and Wiese, 1951). Cats show similar signs (Frankel and Rivers. 1978). The signs resemble skin disorders in the dog and the cat, but EFA deficiency is uncommon in these species. If there inadequate antioxidant in dried food, or high fatty is acid oxidation after prolonged storage or accidental exposure to high temperatures, the EFA supply in commercial pet foods which is may be depleted (Lloyd. usually ample 1990). Intestinal malabsorption and hepatic disorders may also lead to EFA deficiency. Low levels of cofactors in EFA metabolism, vitamin E clinical can induce signs similar to or zinc. experimentally-induced EFA deficiency (Scott and Sheffy, 1987).

Cats lack 6-desaturase enzyme, and are therefore more dependent than the dog on GLA and its metabolites. Contrary to expectation, EFA deficiency is extremely uncommon in the domestic cat, and skin disease in the domestic cat is rarer than in the dog (Muller, Kirk and Scott, 1983).

Results of EFA supplementation in human atopic eczema have stimulated studies into the use of EFAs in treatment of skin disorders in companion animals. Allergic skin disease and dogs and cats have been treated seborrhoea in by EFA supplementation, and EPO, cold water marine fish oil and EPO/fish oil combinations have improved allergic skin disease in open studies in dogs (Scott & Buerger, 1988). EPO was shown to be

effective against atopy in dogs in a double-blind, placebo-controlled, crossover study (Scarff & Lloyd, 1989, in preparation).

Results of a study to investigate the efficacy of EP0 supplementation in a multi-centre placebo controlled study in general practice (Scarff, Harvey and McEwan, in preparation) mirrored extensive human studies in that initial improvements in canine atopic dermatitis, for example improvements in scaling, pruritus, erythema, oedema, coat and overall condition, on high dose EPO therapy were substantial but tend to plateau by 12 weeks. thought likely that maintenance of the plateau might It was be achieved by lower dose long-term therapy.

EFA supplements containing mineral and vitamin cofactors such as zinc, magnesium, niacin, and vitamins A and C, have also proved beneficial in the treatment of pruritic and seborrhoeic conditions in clinical practice (Lloyd, 1990). Although anecdotal reports indicate efficacy of EFAs in seborrhoea and miliary eczema, studies in cats have been limited (Lloyd, 1990).

Other Clinical Uses of EFAs

Cardiovascular Disease

Elevated cholesterol levels, elevated triglyceride levels, hypertension and platelet aggregation are associated with increased risk of coronary heart disease (CHD) and peripheral vascular disease, and diabetes enhances risks at lower levels of these factors (Rosgengren, Welin, Tsipogianni and Wilhelmsen, 1989).

Abnormal EFA intake and metabolism may be equally or more important than these risk factors, because low intake and low plasma and adipose tissue concentrations of LA have been associated with high CHD risk (Oliver, Riemersma, Thomson, Fulton, Abraham and Wood, 1990). There may be more direct involvement of LA metabolites than of LA itself, as low plasma and adipose DGLA and AA levels are strong markers of CHD. EFA levels were lower in

patients who developed CHD, although no differences were seen in cholesterol, triglyceride or blood pressure (Wood, Butler, Riemersma *et al.* 1984).

The current EFA hypothesis of CHD is that the primary disorder is an inadequate, imbalanced n-6 EFA source (Horrobin, 1990b). Consequently there is increased cholesterol and triglyceride increased platelet aggregation, biosynthesis. raised blood pressure and reduced coronary stability with a higher risk of arrhythmia, with possible spasm of the coronary vessels. These factors are consequent of abnormal EFA metabolism and result in a higher risk of death from coronary failure. Supplementation of 6-desaturated n-6 and n-3 EFAs might correct the primary problem, whereas single factor therapies will be only moderately effective (Horrobin, 1990b).

Rheumatoid Arthritis

Elevated PG and LT levels found in cells and inflammatory exudates in rheumatological disorders suggests that inhibition of their synthesis might ameliorate the signs and symptoms of these disorders (Belch, 1990). PGs and LTs can be inhibited at numerous stages of AA metabolism. A diet rich in AA leads to the formation of the 2 series PGs and 4 series LTs with proinflammatory effects, and EFA manipulation in the diet can modify some of these effects (Belch, 1990). Evening primrose oil (EPO), a source of GLA, will elevate DGLA levels, resulting in increased production of the 1 PGs, including PGE_1 , which has been shown to inhibit AA series mobilisation, to inhibit chemotaxis, to enhance T lymphocyte function, and consequently to suppress inflammation in a variety of animal models (Horrobin, 1990b).

In a prolonged EPO study in humans (Belch, Ansell, Madhock, O'Dowd & Sturrock, 1988) a proportion of patients were able to reduce or stop adjunctive non-steroidal anti-inflammatory (NSAI) therapy after three months, and after a double blind phase for 12 months there was significant difference between placebo and EPO or EPO and fish oil treated groups: in active treatment groups 90 per cent of patients reported improvement compared to only 30 per cent in the placebo group.

The use of GLA and EPA to inhibit AA metabolites thus enabled many patients to appreciate subjective improvement while simultaneously reducing NSAID dose, particularly important where there is renal compromise or gastric irritation.

Psychiatric Disorders and Neuropathies

The EFAs comprise approximately one fifth of the dry weight of the brain and peripheral nerves, and in contrast to other tissues, all of the EFAs present in nerve tissue are 6-desaturated almost 1990a). The EFAs and their eicosanoid derivatives (Horrobin. modulate nerve conduction, transmitter release, transmitter and post synaptic transmitter effects, reuptake, and varying abnormalities of EFA metabolism in blood and other tissues have been recorded in alcoholism, schizophrenia, depression and hyperactivity (Horrobin, 1990a). Particularly in alcoholism, and childhood depression schizophrenia, and hyperactivity, attempts to modulate EFA levels have produced very mixed results. A preparation containing zinc, pyridoxine, niacin and vitamin C, co-factors known to be important in EFA metabolism, in supplement EFAs, produced marked increase in n-6 and n-3 incorporation to into red cell membranes, producing significant clinical improvements in memory and schizophrenic symptoms (Vaddadi, Gilleard, Courtney and Horrobin, 1990).

In diabetes mellitus, hepatic cirrhosis, and alcoholism, where there is abnormal EFA metabolism peripheral neuropathies are common, and some neurological damage may be a consequence of abnormal EFA biochemistry. Strong evidence exists, for example, of acquired reduction in EFA 6- and 5- desaturation in diabetes, and reduced 6-desaturated EFA flow has been proposed to account for many long term adverse diabetic consequences (Horrobin, 1990b).

Cancer

Marked consistency now exists in work on the effects of 6-desaturated EFAs on cancer (Horrobin, 1990a). They have been demonstrated to kill human and animal cancer cells *in vitro* at concentrations safe to normal cells, and can control the growth of animal cancers (Horrobin, 1990a). Growth of human cancers implanted into nude mice can be regulated by EFAs which may kill primary and metastatic cancer cells, or may inhibit the development of metastases, or enhance the efficacy of radiation and drugs (Pritchard and Mansel, 1990).

In order to monitor the effects of dietary lipids on growth of human tumour xenografts athymic mice were studied (Pritchard and Mansel, 1990). A diet high in fat (20% corn oil) enhanced growth of breast tumours compared with control diets of 5% and 10% corn Both n-6 and n-3 series EFAs were supplemented as EPO and oil. fish oil in the diet and tumour growth was significantly inhibited. The growth of human melanoma in mice was prevented by EPO and 5% fish oil 5% dietary supplement. Human tumours are thus reported to be sensitive to lipids and nutritional manipulation may influence the management of some human malignancies (Pritchard & Mansel, 1990).

Renal Disease

The renal medulla is especially rich in the E series PG precursor, DGLA (Nissen and Bojesen, 1969), which is thought to play an important role in the maintenance of high blood flow in the kidney. Failure of this control may result from PG inhibition by long term administration of analgesics (Horrobin, 1990b). Toxic, cyclosporin-associated renal damage appears to be related to excess thromboxane A_2 production without E series PG balance (Elzinga, Kelley, Houghton and Bennet, 1987).

EFA deficiency consistently leads to urinary tract tumour development (Monis and Eynard, 1980). GLA, administered to enhance PGE₁ synthesis has prevented or attenuated renal damage in animal models, and EPA in fish oil has reduced cyclosporin induced renal damage (Elzinga, Kelley, Houghton and Bennet, 1987).

Hepatic Disease

In patients suffering from hepatic disease it is not surprising that LA concentration is significantly elevated whilst LA metabolite levels are reduced, because the largest amount of 6-desaturase in the body is found in the liver (Horrobin, 1990b). Hepatic compromise would be expected to lower total body 6-desaturase activity (Biagi, Hrelia, Stafanini, Zurarelli and

Bordoni, 1990).

GLA metabolite PGE_1 is being used increasingly in treatment of liver transplant patients and to promote the ability of the liver to eliminate viral infections (Horrobin, 1990b). Additional GLA would lengthen the duration of these beneficial effects.

EPO (Efamol) inhibited hepatic fatty change following carbon tetrachloride administration (Cunnane and Horrobin, 1983). and plasma liver enzyme levels were normalised more rapidly in alcoholics following Efamol administration compared to controls. Pruritus was significantly reduced in primary biliary cirrhosis, and reduced n-6 EFA concentrations seen in plasma phospholipids and triglycerides in these patients were restored to normal by administration of Efamol (Triger, 1990).

Premenstrual Syndrome, Mastalgia (Breast Pain) and Prostatic Hypertrophy

Although the premenstrual syndrome (PMS), mastalgia and prostatic hypertrophy are only observed in the presence of gonadal hormones, abnormalities have not been recorded, and there is thought to be end organ sensitivity to normal excessive hormone levels (Horrobin. 1990b). High absolute or high saturated fat intake relative to EFAs may be relevant in pathogenesis (Horrobin, 1990b). Esterification of steroid hormones to fatty acids occurs target tissues, and saturated fatty esters are more in potent oestrogens than EFA esters, so if lipids in target tissue have high saturated fat to EFA ratio, normal circulating oestrogen levels will have exaggerated actions (Larner, Eisenfeld and Hochberg, 1985). Saturated fats have higher receptor affinity than unsaturated fats, so in membranes where steroid receptors are EFA receptors bind steroid more deficient. avidly, again with exaggerated effects despite levels being normal. In DGLA or PGE1 deficiency, actions of prolactin, trophic for the breast and the prostate, are not modulated and normal levels have excessive effects (Horrobin, 1990b).

The pattern seen for these conditions is similar to that of atopic eczema, and epidemiological association exists between atopic

disorders and atopic eczema. In placebo controlled studies physical and psychological aspects of PMS improved for patients receiving GLA (Puolakka, Makarainen, Viinikka and Ylikorkala, 1985).

Viral Infections and Post-Viral Fatigue Syndrome Viral infections are associated with low levels of LA and impaired desaturation (Horrobin, 1990b). Reduced DGLA and AA formation result in reduced ability of interferon to exert anti-viral EFAs also have direct virucidal actions, particularly effects. against lipid envelopes. Supplementation of 6-desaturated EFAs may therefore assist response to viral infections (Horrobin, 1990b). Red cell membrane levels of n-3 and n-6 EFAs were found to be lowered. whereas elevated levels of saturated and monounsaturated fats were recorded in post-viral fatigue syndrome (PVFS) patients. Symptoms of muscle weakness, aches, pains, loss of memory and concentration, exhaustion, depression, dizziness and vertigo were reported to improve when patients received 80% EPO and 20% fish oil (Efamol Marine), compared to placebo (Behan and Behan, 1990). showed normalisation of saturated and monounsaturated Patients fats and n-6 EFAs in red cell membranes, and elevation of n-3 EFAs to levels above normal. GLA and EPA may thus be valuable adjuncts to anti-viral therapy (Horrobin, 1990b).

Adverse Events and Toxicology

Animal toxicity studies on Efamol EPO at doses of up to 10 ml/kg/day have covered reproductive performance, teratogenicity, carcinogenicity and long term toxicology in dogs, rats, mice and 1990b). No toxic effects attributable to rabbits (Horrobin, EPO found. and in particular there was no evidence of were carcinogenicity (Everett, Bayliss, 1988). In Perry and placebo-controlled studies involving over 3,000 patients receiving Efamol for three months or more, no specific adverse event can be attributed with any confidence to Efamol (Scotia Pharmaceuticals, 1990, data on file).

Conclusion

This review details the rationale for the use of EFAs the in management of skin disorders such as atopic eczema, which probably defect common to that which occurs in involves a equine dermatophilosis, namely, impaired epidermal barrier function. LA GLA are required for the maintenance of the integrity of and the by the skin to water: impermeable barrier formed GLA and metabolites inhibit inflammation, regulate the immune system, and inhibit the formation of pro-inflammatory metabolites from AA. Favourable results have been obtained using oral supplementation of n-3 and n-6 EFAs in the treatment of the condition in man and in the dog. At the same time, improvement occurred in condition of the coat of horses which received EPO (containing LA and GLA) for the management of anhidrosis. EFAs have been shown to be non-toxic and non-carcinogenic, and free from adverse events. On the basis of the foregoing evidence an investigation was carried out on the effects of the use of EFAs, as a supplement to normal dietary intake, on the management of dermatophilosis in horses.

MATERIALS AND METHODS

.

Horses and Site

The horses used in this thesis were part of a herd of around 200 mature horses kept at two farms situated in the West of Scotland. Horses have been managed by the owner at Gartmorn Hill Farm, which spans 195 acres close to Dollar, since 1978, and at Burnhouse Farm which covers 125 acres near Bonnybridge, since 1981. Figure 3 shows Burnhouse Farm. Both farms are within an hour's drive of the University of Glasgow Veterinary School.

The horses are in good health, but are unsound or retired. Most of the horses belong to the owner of the farms, but some are loaned for temporary periods from other horse owners around the country. The owner of the farm uses several of the mares in the herd as brood mares. Most animals are Thoroughbred or Thoroughbred crosses, but there are also cobs and heavier types of animal. The horses are mature and are over 14.2 hands in height. The herd comprises approximately equal numbers of mares and geldings. The age ranges from four to over 20 years.

Blood Harvesting Procedures

The horses are kept for commercial blood production. Most of the blood is dispensed in the form of defibrinated whole blood, for incorporation into microbiological culture media. Serum is also used for the production of media. The customers for blood products are hospital laboratories and public health and private clinical laboratories also have a requirement for blood for diagnostic purposes.

is harvested every three weeks. Individuals Blood donate approximately 8 litres of blood at each harvest. This is around 20% of blood volume for a 500kg horse (Schalm, 1986). Blood is collected via the jugular vein in the mid third region of the neck. Alternate jugulars are used at each harvest. Prior to anaesthetic is infiltrated around the of harvest local point insertion of the harvest needle. The harvest volume is drawn into a sterile collection vessel and defibrination is performed.

Figure 3. Burnhouse Farm, by Bonnybridge, the home of part of the horse herd

The horses are tethered quietly and allowed to eat concentrates in a stall in the blood collection room throughout the harvest. Immediately after blood collection a loose cotton wool dressing or antiseptic spray is applied over the jugular area and the animals are tethered in an adjacent collection paddock to recover before returning to the covered yard or to pasture.

In 1987 both farms were licensed by the Home Office, permitting blood harvest by the owner of the herd, and by several of the grooms. Each time blood is collected, the procedure is overseen by the local veterinary surgeon. All premises are regularly examined by a Home Office Veterinary Inspector.

Management of Horses

The horses are managed together in groups of 30 to 40 animals, housed in large, covered sheds at Burnhouse Farm as routine during the winter, usually between September or October and March or April, depending on the weather. There are several loose boxes for new horses and for animals requiring special attention. While inside, animals are bedded on deep litter straw, and were fed top quality round baled silage daily on an *ad lib*. basis, and some hay and quality feeding straw. Figures 4, 5, 6 and 7 illustrate this group management system under conditions of housing.

During the summer months the horses are grazed together in groups of 20 to 30 on a pasture rotation system over the combined 320 acres of the farms. Figure 8 shows part of the Burnhouse herd at grass, and one of the brood mares is photographed with her foal in Figure 9.

Veterinary Attention

Veterinary attention for the treatment of disease and injury, and vaccination of the herd against tetanus, is provided by the local veterinary surgeons, who visit the farm several times each week. Individual health record cards are kept for each horse.

Figures 4 and 5 show the group management system of the horse herd during housing at Burnhouse Farm

Figures 6 and 7 show the group management system of the horse herd at housing, with the deep litter bedding and silage and hay feeding

Figure 8. Part of the Burnhouse horse herd at grazing during the summer

Figure 9. One of the Burnhouse Farm brood mares at grass with her foal

An anthelmintic programme has been designed, and is monitored, by the Department of Parasitology in the University of Glasgow Veterinary School.

Parameters Assessed in the Current Study

Values for all clinical, haematological and biochemical parameters, and for all EFA estimations are presented with standard deviations and means for each time point, and group means, in the appendices described in the text.

Clinical Monitoring

The condition of the coat, the mane, the tail and the hooves was recorded using subjective 1 to 10 numerical scales, with 1 being the poorest condition, and 10 being optimal condition. General body condition score was also monitored, on a 1 to 5 scale (Henneke, 1985). Assessment was based on palpation of the fat covering of the lower neck, thoracic and tailhead regions, similar to condition scoring in cattle. Optimal condition score was 3 to 3.5, with 1 being an emaciated animal, 2 a thin animal, 3 indicating moderate condition, 4 a fleshy animal, and 5 indicating obesity.

appropriate, the severity and distribution Where of dermatophilosis lesions were regularly recorded by means of a profile mapping system, as shown in Figure 10. A dermatophilosis index was designated, on a 0 to 10 numerical scale, calculated by recording the presence in each case of features typical of dermatophilosis: "paintbrush" lesions, scabs, hyperaesthesia, secondary bacterial infection, oedema and cellulitis. pain. Severity of lesions then was graded from 0 to 10, a score of 0 indicated absence of infection, and a score of 10 indicated the most severe infection. The distribution of lesions was recorded on the profile, using a grid to give crude percentage of body surface area affected, from 0 to 100 per cent. The dorsum: withers, saddle area and the rump, and the dorsal surfaces of the hindlimb pasterns were the areas most likely to be invaded by D. congolensis. The presence of any incidental skin lesions was

Figure 10. The horse profile mapping system used in clinical assessment

noted, such as those caused by trauma, external parasites, fungi, viruses or other bacteria.

All the clinical measurements were made by the same clinical assessor, to minimise variation in results.

Haematology and Clinical Biochemistry

Peripheral blood samples were routinely collected by the farm owner from all horses on the farms for monitoring of values for packed cell volume. In the present studies these blood samples were examined by additional haematological test and biochemically, and were used for EFA analyses.

Peripheral blood samples, 5 ml volume, were collected from the jugular vein, without the use of a tourniquet, via 20 g needles into EDTA Vacutainer tubes. Routine haematological examination was performed on the blood in the University of Glasgow Veterinary School Haematology Laboratory. Analyses performed were total red cell count (RCC), haemoglobin (Hb), packed cell volume (PCV), mean cell volume (MCV), mean cell haemoglobin concentration (MCHC), platelet count (P1) and total white cell count (WCC).

Peripheral venous samples were collected for clinical biochemistry as for haematology, into 10 ml volume Lithium heparinised Vacutainer tubes. Routine assays, performed in the University of Glasgow Veterinary School Department of Biochemistry, were urea, sodium, potassium, calcium, chloride, magnesium, inorganic phosphate (i.phosphate), alkaline phosphatase (AP), aspartate aminotransaminase (AST), bilirubin, total plasma proteins (TPP), albumin and globulins. Gamma glutamyl transpeptidase (GGT), triglycerides (TG) and cholesterol were also assayed.

EFA Estimations

On return to the Veterinary School blood samples were centrifuged at 2500 rpm for 20 min at $4\circ$ C, and plasma removed. Red cells were then washed in equal volume 0.9% saline and centrifuged at 2500 rpm at $4\circ$ C, and saline wash and buffy coat discarded. Plasma and red cells were stored separately at -20°C and sent as batches at the conclusion of the studies to the Efamol Research Institute in

Nova Scotia, Canada, for measurement of fatty acids in plasma phospholipids and in red cell membrane phospholipids. The fatty acid composition of plasma triglycerides and cholesterol esters was also determined. Samples were sent for analysis uncoded with regard to controls and to baseline samples.

Lipids were extracted from plasma and red cells, and phospholipid and other lipid fractions were separated by thin layer chromatography, then fractions methylated and prepared by gas chromatography. Sampling was fully automated. The amount of each fatty acid present was calculated and printed out by computer, and transcribed on to standard data forms and returned to the clinical investigator.

Data Collected by the Farm Owner

Each horse is identified to the farm owner by name, and by number: most horses are freeze-branded. Details of individual horses are recorded, including the sex, age, breed or type, height, date and source of acquisition, and any relevant information on health or temperament.

At each blood harvest, PCV and the volume of blood collected are recorded, and any relevant comments, e.g., the demeanour of the animal during the harvest, and the appearance of the blood collected, are noted. The volume of blood dispensed from the farm laboratory after each harvest, and the percentage of blood lost during clotting, the waste, are recorded for each individual. The average weekly PCV is calculated for the herd as a whole, to allow weekly and monthly comparisons to be drawn for herd production from year to year.

Statistical Analyses

A repeated measures analysis of variance design was undertaken on the clinical indices, on haematological and biochemical parameters, and on results of EFA estimations. The design provided tests for differences between treatment groups, differences between times and interaction between treatment and time (Ott, 1988). Significance levels of 5% were used unless otherwise indicated.

RESULTS

SECTION 1. THE USE OF ESSENTIAL FATTY ACIDS (EFAs) IN THE MANAGEMENT OF DERMATOPHILOSIS IN HORSES

SECTION 2. CHARACTERISTICS OF *DERMATOPHILOSIS CONGOLENSIS* IN RELATION TO SITE AND SEVERITY OF LESIONS, LEADING TO INVESTIGATION OF AN EXTRACELLULAR PROTEASE

SECTION 3. THE CLINICAL AND HAEMATOLOGICAL CONSEQUENCES OF BLEEDING HORSES AT REGULAR INTERVALS

SECTION 4. THE CREATION OF A MANAGEMENT EQUINE DATABASE

SECTION 1. THE USE OF ESSENTIAL FATTY ACIDS (EFAs) IN THE MANAGEMENT OF DERMATOPHILOSIS IN HORSES

Background

As reviewed in the introduction, essential fatty acids (EFAs) are dietary factors which like vitamins and essential amino acids cannot be made by the mammalian host but must be ingested with food. As essential constituents of all membranes in all body tissues, including the skin, they are vital in the determination of biological properties of these membranes. EFA deficiency leads to profound disturbances in all tissues, and it is known that EFAs important in maintaining healthy skin and coat are in several mammalian species including the horse, the dog and the cat. laboratory animals and man, as detailed in the introduction.

Lipids and EFAs play an essential role in the maintenance of the epidermal barrier (Elias, 1981). Lamellar bodies are ovoid organelles, synthesised in the stratum spinosum and stratum granulosum, which contain a variety of materials including lipids. One of their most important functions appears to be the deposition of lipid-rich intercellular materials, such as ceramide, necessary for maintenance of the epidermal permeability barrier (Burton, 1990). By providing the lipids that impede the outward movement of water and water soluble components (Elias, 1981), lamellar bodies greatly to the regulation contribute of skin therefore In EFA deficiency, detailed in the introduction, permeability. lamellar bodies are secreted in normal quantities but are largely devoid of lipid (Elias and Brown, 1978), and consequently the intercellular spaces of the stratum granulosum are porous and allow the passage of water soluble material.

dermatoses, such as atopic eczema, the epidermal In many permeability barrier function has been shown to be defective 1990), and the integrity of this barrier has been shown (Burton, be dependent upon the availability of EFAs, particularly to and gamma-linolenic acids (Burton, 1990; Elias, 1981; linoleic Wright, 1990). Fatty acids also play an Elias and Brown, 1978; important role in host defence mechanisms in that they are known to be toxic to many pathogenic microorganisms that come in contact with the skin (Biberstein, 1990).

It is possible that the excessive wetting and humidity predisposing to dermatophilosis in horses could lead to a deficiency of skin lipids and resultant defective barrier function. By correction of this deficiency it might be possible to restore skin integrity, normalise barrier function and prevent establishment of *D. congolensis* infection.

PGE₁ derived from DGLA inhibits inflammation, and PGI₂, derived from AA, and EPA derivative PGI_3 , have similar effects to PGE_1 . 15-OH-DGLA, formed by 15-hydroxlation of DGLA, inhibits 5- and 12-lipoxygenases, which lead to pro-inflammatory metabolites from AA. These mechanisms are shown in Figures 1 and 2 of the introductory section on EFAs. Thus, supplementation of GLA in the form of EPO, with fish oil and vitamin E (Efamol Marine, Scotia Pharmaceuticals), may cause inhibition of the local inflammation in dermatophilosis lesions by supplementing levels involved of DGLA and by preventing the formation of proinflammatory mediators from AA. As the lesions of dermatophilosis are believed to be the result of a nonspecific inflammatory response to D. conaolensis epidermis traumatised. organisms. once the is the anti-inflammatory effects of EFAs may be particularly relevant in treatment of the condition.

EFA supplementation reduced pruritus, scaling, erythema, oedema improved coat condition when used to treat canine atopic and dermatitis (Scarff, Harvey and McEwan, unpublished data). When were used to treat anhidrotic horses in **EFAs** California. improvement was also recorded in the condition of skin and of the haircoat (Mayhew, 1985, personal communication). In humans and in better results have been obtained when EFAs of the n-3 animals. n-6 series have been used in combination, as Efamol Marine, and 80% EPO and 20% fish oil and vitamin E, than when EPO is used alone (Horrobin, 1990b).

The foregoing evidence would appear to justify an investigation on the effects of the use of EFAs, as a supplement to normal dietary intake, on the management of dermatophilosis in horses. Also, as discussed in the introductory section, EFAs have been shown to be non-toxic and non-carcinogenic, and free from adverse events

(Scotia Pharmaceuticals, data on file).

located approximately 30 miles northeast of On two farms the University of Glasgow Veterinary School there are around 200 horses, of all types and ages. Regular examination of these horses identified the prevalence and relative importance of naturally-occurring skin disorders. During the autumn and winter of 1986 the prevalence of Dermatophilus congolensis infection was approximately 60 per cent on these two farms. In around one third of these cases the infection was severe, affecting the dorsum and the lower limbs in particular.

The high prevalence of *D. congolensis* infection occurred even though the rainfall during the summer and autumn period of 1986 was not above average for the West of Scotland. The summer and autumn of 1985, however, was one of the wettest in the recorded history of Scotland and the owner of the two farms stated that the prevalence and severity of dermatophilosis in the horses was even more severe than in 1986.

During the survey animals of all ages were affected with dermatophilosis, and the condition was seen to recur, with individual horses appearing to be particularly susceptible. Moreover, although the infection was most severe during the autumn and winter periods, lesions due to D. congolensis were recognised at throughout the year. The horses on both farms are pasture during the summer and early autumn, but are housed in groups of 30 to 40 in large covered yards during late autumn and the winter months.

Around 200 outwintered ponies in the same region were studied during the same period and were found to have dermatophilosis during the winter of 1986. Many horses and most ponies in Scotland are kept unstabled during the winter.

It was thought that if the use of EFAs could prevent the establishment or even reduce the severity of infection, the welfare of the horse population in the West of Scotland and subsequently throughout Britain would be greatly improved.

Several studies were designed, therefore, with the initial aim of establishing baseline information concerning EFA metabolism in the horse, and comparing it to that in other species. The effects of EFAs, in the form of Efamol Marine (80% EPO and 20% fish oil and vitamin E), were studied first as a treatment and then as a prophylactic approach to the management of dermatophilosis in horses.

The size of the horse herd, at around 200, and the system of group management of the horses, along with the history of a recurrently high prevalence of dermatophilosis, were thought to provide a unique opportunity for a series of studies of this type.

The Pharmacokinetics of Essential Fatty Acids (EFAs) in Horses

Introduction

the literature which was reviewed in the introductory section In of this thesis it was revealed that linoleic acid (LA) must be converted to its metabolites to exert the full range of biological actions of essential fatty acids (EFAs) (Horrobin, 1990b). The first step in EFA metabolism is the 6-desaturation of LA, which is and is controlled by the 6-desaturase enzyme. rate limiting. The rate of this reaction is known to vary between species as indicated by the ratio of LA to its metabolites. Of the species which have been studied, the reaction rate is known to be fastest and the guinea in the rat. and slowest in the rabbit Dia (Horrobin, 1990b). As far as can be determined, there is no information available regarding EFA metabolism in the horse. The reaction rate of 6-desaturation, for example, is unknown. This study was designed to ascertain the basal levels of EFAs in the horse, to investigate the ratio of LA to its active metabolites, dihomogammalinolenic (DGLA) and arachidonic acids (AA), and thus to estimate the 6-desaturase conversion rate in the horse. The objective of the study was to determine a suitable dose rate for subsequent investigation into the use of EFAs in the management of dermatophilosis in horses.

Materials and Methods

Method of Administration of EFAs

EFAs and placebo treatments were formulated as gelatin capsules, of 5 g weight. As the capsules were not readily tolerated by the horses without food, they were cut open and the contents disguised in a handful of coarse mix. This proved an acceptable method of supplementation to the animals, and each individual was fed the treatment and coarse mix from a hand-held scoop to ensure that the full EFA or placebo dose was received. EFA treatment capsules contained 80% evening primrose oil (EPO) and 20% fish oil and vitamin E (Efamol Marine, Scotia Pharmaceuticals). Efamol Marine contains EFAs of both series: n-6linoleic acid (LA) and gamma-linolenic acid (GLA) in the EPO, and n-3 eicosapentanoic acid (EPA) in the fish oil.

Experimental Design

Forty-eight horses were randomly assigned to four groups of 12 animals, each receiving a different dose or dose regimen of EFAs. One group received 5g EPO and 15g olive oil daily (olive oil was used to conserve equal dose volumes between groups); a second group received 10g EPO and 10g olive oil every other day; a third group received 20g EPO daily and a fourth group received 40g EPO every other day. The supplementation period spanned six weeks, from June through to July, while the horses were at grass. Horses did not receive any form of topical or systemic medication throughout the study.

Parameters Monitored

Clinical indices including the condition of the coat, mane, tail and hooves, haematological and biochemical changes, and EFA estimations, were recorded at weeks 0, 3 and 6. Details are contained in the general Materials and Methods section. Details of statistical analyses performed on the parameters are given in the general Materials and Methods section.

Results

Clinical Indices

Improvement of condition of the coat, mane, tail and hooves, was seen over the period of study, as indices increased. Means for the indices assigned at weeks 0, 3 and 6 are shown in Table 1. It is evident that most values for each of the indices fell between 5 and 6 on the 1 to 10 numerical scale, indicating average or above average condition, and that only very small variations were seen between groups. Table 1. Mean values for clinical indices of condition of coat, mane, tail and hooves at weeks 0, 3 and 6 of four groups of 12 horses receiving different oral doses of n-3 and n-6 EFAs

Clinical index		coat			mane		
		C	onditi	on	condition		
Week		0	3	6	0	3	6
Hors	se group						
5g	daily	5.0	5.8	7.0	4.7	5.9	6.0
10g	EOD	5.3	5.5	5.5	5.2	6.1	6.4
20g	daily	4.9	5.8	6.6	4.8	5.9	6.3
40g	EOD	4.4	6.4	6.9	4.4	5.7	6.4

Clinical index	tail condition			hoof condition		
Week	0	3	6	0	3	6
Horse group						
5g daily	4.8	5.8	6.7	4.6	5.4	6.7
10g EOD	5.2	6.3	6.8	4.8	6.3	7.1
20g daily	4.8	5.9	6.8	4.4	5.4	6.6
40g EOD	4.5	6.2	6.9	4.7	5.8	6.7

A full set of clinical results, with standard deviations indicated, is found in Tables I to IV in Appendix I.

The improvements recorded over time for condition of the coat, mane, tail and hooves were statistically significant.

The improvement of the coat condition was significantly less, however, for the lOg EPO alternate day group than for the other treatment groups. Analysis of variance (ANOVA) tables used in statistical analyses of the clinical parameters are given in Appendix V.

Haematology

Although differences were found for over time, and between the different EFA dose rate groups over time, for some haematological parameters, these changes were very small. Mean values for haematological parameters for the four treatment groups at weeks 0, 3 and 6 are given in Table 2. Values were within normal ranges with the exception of several elevated white cell counts, recorded for one horse in the 5g EPO daily group at week 3, three horses in the 10g EPO alternate day therapy group at week 0.

The values for red cell counts, haemoglobin and packed cell volumes for the horses receiving 40g EPO increased between week 0 and week 6, whereas the values for other groups dipped at week 3. This difference for time patterns between groups was statistically significant.

Values for mean cell volume and mean cell haemoglobin for a]] over time, and these time differences aroups fell were statistically significant. Mean cell haemoglobin concentration increased slightly at week 3, then dropped by week 6. values Statistical analysis showed values for white cell counts to be significantly higher for the group of animals receiving EP0 10q than for the other groups. Platelet values fell over time for animals receiving log and 20g doses of EPO; and values for the 5g group dipped at week 3 then rose towards week 6, while those for the 40g group peaked at week 3 then fell towards week 6.

ANOVA tables used in statistical analyses of haematological values are shown in Appendix V.
Table 2. Mean values of haematological parameters of red cell count (RCC), haemoglobin (Hb), packed cell volume (PCV), mean cell volume (MCV), mean cell haemoglobin (MCH), mean cell haemoglobin concentration (MCHC), platelets and white cell count (WCC), at weeks 0, 3 and 6, of four groups of 12 horses receiving different oral doses of n-3 and n-6 EFAs

Para	ameter		RCC			Hb	
Weel	ĸ	0	3	6	0	3	6
5g	daily	6.82	6.43	7.46	12.87	12.16	12.68
10g	EOD	7.28	6.47	8.07	13.31	11.76	13.12
20g	daily	6.95	6.40	7.58	12.75	11.72	12.48
40g	EOD	6.11	6.77	7.77	11.45	12.52	13.00
Para	ameter		PCV			MCV	
Weel	ĸ	0	3	6	0	3	6
5g	daily	0.377	0.354	0.381	53.34	55.13	51.17
10g	EOD	0.392	0.342	0.401	53.94	53.00	49.80
20g	daily	0.375	0.343	0.379	54.03	53.76	50.16
40g	EOD	0.336	0.365	0.394	55.17	54.17	50.52
Para	ameter		MCH			мснс	
Weel	ĸ	0	3	6	0	3	6
5g	daily	18.92	18.93	17.04	34.15	34.33	33.32
10g	EOD	18.31	18.22	16.33	33.98	34.38	32.81
20g	daily	18.49	18.38	16.68	34.03	34.14	33.01
40g	EOD	18.78	18.58	16.70	34.05	34.29	33.08
Para	ameter	P	latelets	5		WCC	
Weel	ĸ	0	3	6	0	3	6
5g	daily	162.3	157.7	165.3	8.43	9.65	8.45
10g	EOD	176.5	175.8	158.8	10.65	12.69	9.86
20g	daily	172.8	160.8	138.1	9.40	9.15	9.83
40g	EOD	166.0	172.5	149.3	9.53	10.28	8.40

A full set of haematological results is found in Tables V to XII in Appendix I. Normal ranges and units of measurement for haematological parameters are given in Appendix IV.

Biochemistry

As for the haematological parameters, small changes were recorded over time and between groups over time, for some biochemical parameters. Minor deviations from normal ranges were recorded for several biochemical parameters. Mean values at weeks 0, 3 and 6 for biochemical parameters are shown in Table 3.

Several sodium values were marginally low: at week 0, two horses in the 40g group (127 and 129 mmol/l); at week 3 two horses in each in the 5g and 10g groups (both 128 mmol/1); and at week 6 one horse from the lOg (131 mmol/l), and two horses from the 20g groups (131 and 129 mmol/1) and one from the 40g group (128 mmol/1). Magnesium values were low for several animals: at week 3, the value for one horse in the 5g group, and one horse in the 10g group at 0.49 mmol/l were marginally below the lower normal limit. Group means for triglyceride values were all elevated above the **normal** range of between 0.12 and 0.35 mmol/l. High alkaline phosphatase values were recorded for several horses in each of the at each time point, but group means were within normal groups ranges. Total plasma proteins were elevated for three animals in the 40g group at week 0 (103, 100 and 87 q/l); for four animals in the 5g group (102, 91, 85 and 90 g/l), five animals in the 10qgroup (85, 89, 93, 96 and 90 g/l), one in the 20g group (91g/l) and two in the 40g group at week 3 (90 and 117 g/l); and for two horses in the 5g group (98 and 102 g/1) and three in the 10g group (87, 95 and 89 g/l) at week 6. These results reflected increased globulin values.

Differences were found in the pattern over time between groups for values for urea, magnesium, inorganic phosphate, AST, globulins and cholesterol. These changes were statistically significant. The 40g dose of EFAs on alternate days led to increase in urea, magnesium, inorganic phosphate and cholesterol values over time. The urea values for each group dropped between week 0 and week 3, and increased again towards week 6, and the 40 g group showed a sharper incline to week 6 than the other groups. A similar trend was seen for magnesium values, with decreases for the 5g, 10g, and 20g groups, whereas the 40g group showed a pattern of increase between week 0 and week 6. Values for the 40g group for inorganic

Table 3. Means values of biochemical parameters of urea, sodium, potassium, calcium, chloride, magnesium, inorganic phosphate, alkaline phosphatase, aspartate aminotransaminase, bilirubin, total plasma proteins, albumin, globulins, triglycerides and cholesterol, at weeks 0, 3 and 6, of four group of 12 horses receiving different oral doses of n-3 and n-6 EFAs

Parameter	•	urea	a		sodium		
Week	0	3	6	0	3	6	
Horse gro	pup						
5g daily	6.3	6 4.6	8 5.84	136.8	135.3	135.9	
10g EOD	5.8	9 4.0	3 5.84	135.8	134.3	133.8	
20g daily	/ 6.5	7 4.6	9 6.37	135.6	135.4	133.6	
40g EOD	6.1	7 5.9	1 7.10	134.8	137.2	133.5	
Parameter	•	potass	ium		calciu	m	
Week	0	3	6	0	3	6	
Horse gr	oup						
5g dail	4.7	2 3.9	3 3.68	3.00	2.87	2.94	
10g EOD	4.4	8 3.9	9 3.59	2.95	2.88	2.99	
20g dail	, 4.7	1 4.2	3 3.72	2.95	2.90	2.94	
40g EOD	4.4	4 4.1	4 3.81	2.93	2.89	3.05	
Parameter	n	chlor	ide	n	magnesium		
Week	0	3	6	0	3	6	
Horse gro	oup						
5g daily	<i>y</i> 97.	3 95.7	7 96.3	0.63	0.60	0.67	
10g EOD	96.	1 93.3	7 94.6	0.62	0.58	0.70	
20g dail	, 96.	8 95.2	2 94.4	0.62	0.62	0.68	
40g EOD	94.	7 96.	5 95.1	0.61	0.67	0.71	
Parameter	•	i.phosj	ohate		AP		
Week	0	3	6	0	3	6	
Horse gr	oup						
5g dail	, 1.1	2 1.1	l 0.97	383.3	327.8	329.4	
10g EOD	1.1	5 1.18	3 0.95	343.3	329.8	355.3	
20g dail	, 1.1	9 1.16	5 0.88	370.1	349.6	336.5	

Table 3 (continued)

Para	ameter		AST			biliru	bin
Weel	k	0	3	6	0	3	6
Hor	se group						
5g	daily	296.4	299.3	270.0	8.9	14.0	9.7
10g	EOD	337.1	246.2	251.9	13.3	14.8	10.9
20g	daily	300.3	320.3	282.3	8.6	12.1	10.3
40g	EOD	265.0	328.4	300.9	9.2	9.6	11.9
Para	ameter		ТРР			albumi	n
Weel	k	0	3	6	0	3	6
Hor	se group						
5g	daily	70.2	78.0	74.4	31.6	31.9	29.8
10g	EOD	71.3	83.3	79.1	31.1	30.8	28.8
20g	daily	69.6	76.3	69.8	31.1	30.0	29.8
40g	EOD	77.8	78.3	72.1	29.8	31.6	33.3
Parameter		9	globuli	ns		TG	
Weel	k	0	3	6	0	3	6
Hors	se group						
5g	daily	38.6	44.5	44.6	0.46	0.31	0.39
10g	EOD	40.3	52.5	50.3	0.41	0.32	0.42
20g	daily	38.5	45.4	39.3	0.43	0.47	0.36
40g	EOD	48.0	46.7	38.8	0.37	0.34	0.33
Para	ameter	ct	noleste	rol			
Weel	K	0	3	6			
Hors	se group						
5g	daily	2.41	2.50	2.33			
10g	EOD	2.11	1.97	1.86			
20g	daily	2.33	2.40	2.22			
40g	EOD	1.97	2.14	2.40			

A full set of biochemical results is found in Tables XIII to XXVII in Appendix I. Normal ranges and units of measurement for biochemical parameters are given in Appendix IV. phosphate showed a different pattern to other groups once more: values rose, while they fell for other groups. Aspartate aminotransaminase values increased between week 0 and week 3, then fell between weeks 3 and 6 for the 5g, 20g, and 40g dose groups; in contrast, the 10g group values fell between week 0 and week 3, then rose between week 3 and week 6. Globulin values for the 5g group remained static between week 3 and week 6, whereas values fell between these time points for the other groups. Cholesterol values fell over time for the 10g group, but increased over time for the 40g group.

Differences were found between EFA treatment groups for values of and cholesterol. Values for the group receiving 10g were urea lower than for other groups for both parameters, as seen by the group means: for 10g group the cholesterol value in mmol/1 was 1.979, compared to 2.415, 2.315 and 2.171 of the 5g, 20g and 40g treatment groups, respectively. Similarly, urea values were lower for this group, with a group mean of 5.25 mmol/l as compared to 5.63 for the 5g group, 5.88 for the 20g group, and 6.39 for the These differences proved to be 40g group. statistically significant.

significant differences were seen for chloride, bilirubin. No albumin, or triglyceride levels. Significant differences over time for all groups for the other parameters: sodium, were seen alkaline phosphatase, inorganic phosphate, potassium. calcium. plasma proteins, globulins, urea and magnesium. For a11 total groups total protein values rose at week 3, then fell back at week Inorganic phosphate values for the 40g group dipped at week 3, 6. and increased at week 6, whereas values for other groups fell over time. Although changes over time for sodium, globulins and phosphatase values were statistically significant, no alkaline trends were seen. The drop which was recorded in specific potassium values for all groups over time was statistically significant.

Results of statistical analyses of biochemical parameters are recorded in ANOVA tables in Appendix V.

EFA Estimations

The different dose rates of EFAs were not influential on LA, AA or EPA values in circulatory fractions. DGLA values, however, were significantly lower when horses received lOg EFAs on alternate days than when the dose was 5g or 20g daily, or 40g on alternate days.

The mean values for LA, DGLA, AA and EPA at weeks 0, 3 and 6, in red blood cell phospholipids, plasma phospholipids, and plasma cholesteryl esters are given for the different dose rate groups in Tables 4, 5 and 6, respectively.

From the results of EFA estimations of red blood cell phospholipids, presented in Table 4, increases in values between week 0 and week 3, then again between week 3 and week 6, were found for all groups for LA, DGLA, AA and EPA.

Assays of plasma phospholipids in Table 5 reveal that there were increases for LA between week 0 and week 6 for all groups. DGLA values increased over this time span for the 5g, 20g and 40g groups. Horses in the 5g, 10g and 20g groups showed increases in AA values between week 0 and week 6, but values for the 40g group dropped over the six weeks. A pattern of decrease over time was found for EPA values for horses receiving 5g and 10g EPO, but there was no definite trend for the 20g and 40g groups.

In plasma cholesteryl esters increases in LA values between were recorded for all the groups between week 0 and week 6, shown in Table 6. The groups of horses which received 10g, 20g and 40g of EFAs showed increases in DGLA levels between week 0 and week 6. Values for AA for the same groups also rose over this period. Elevation of EPA values for the 5g, 10g and 40g groups were recorded between weeks 0 and 6.

Statistical analyses of these results revealed, however, that none of the differences which occurred in LA, AA or EPA values either between groups between week 0 and week 3, or between week 0 and week 6, were significant. Similarly, no significant differences were found between groups for the values for DGLA

Table 4. Mean values for linoleic acid (LA), dihomogammalinolenic acid (DGLA), arachidonic acid (AA) and eicosapentanoic acid (EPA) in red blood cell phospholipids at weeks 0, 3 and 6, of four group of 12 horses receiving different oral doses of n-3 and n-6 EFAs

Parameter		LA		DGLA					
Week	0	3	6	0	3	6			
Horse group									
5g daily	13.33	26.38	34.48	0.00	0.08	0.12			
	(10.80)	(7.86)	(3.86)	(0.00)	(0.08)	(0.11)			
10g EOD	12.48	18.27	33.85	0.00	0.00	0.09			
	(8.58)	(7.33)	(5.57)	(0.00)	(0.00)	(0.09)			
20g daily	15.03	24.92	34.48	0.01	0.08	0.17			
	(11.41)	(11.49)	(4.65)	(0.03)	(0.07)	(0.06)			
40g EOD	19.29	25.88	35.93	0.00	0.05	0.10			
	(15.09)	(11.30)	(4.59)	(0.00)	(0.09)	(0.13)			
Parameter		AA			EPA				
Week	0	3	6	0	3	6			
Horse group									
5g daily	0.73	0.94	1.30	0.36	0.39	0.97			
-	(0.44)	(0.25)	(0.36)	(0.43)	(0.22)	(1.27)			
10g EOD	0.73	0.79	1.33	0.35	0.30	0.43			
	(0.34)	(0.31)	(0.59)	(0.25)	(0.17)	(0.34)			
20g daily	0.81	0.99	1.45	0.43	0.37	0.64			
	(0.44)	(0.30)	(0.23)	(0.27)	(0.22)	(0.14)			
40g EOD	0.49	1.16	0.98	0.16	0.23	0.35			
-	(0.58)	(0.62)	(0.74)	(0.24)	(0.29)	(0.33)			

Table 5. Mean values for linoleic acid (LA), dihomogammalinolenic acid (DGLA), arachidonic acid (AA) and eicosapentanoic acid (EPA) in plasma phospholipids at weeks 0, 3 and 6, of four group of 12 horses receiving different oral doses of n-3 and n-6 EFAs

Parameter		LA		DGLA				
Week	0	3	6	0	3	6		
Horse group								
5g daily	37.03	42.37	42.13	0.33	0.41	0.41		
	(2.72)	(5.83)	(6.23)	(0.05)	(0.06)	(0.08)		
10g EOD	40.54	46.75	44.70	0.35	0.42	0.29		
	(4.92)	(4.90)	(7.35)	(0.13)	(0.06)	(0.14)		
20g EOD	46.24	53.75	52.47	0.35	0.45	0.42		
	(4.19)	(3.92)	(3.40)	(0.07)	(0.09)	(0.14)		
40g daily	41.17	45.64	45.16	0.32	0.46	0.47		
	(6.76)	(5.88)	(6.93)	(0.12)	(0.07)	(0.07)		
Parameter		AA			EPA			
Week	0	3	6	0	3	6		
Horse group								
5g daily	1.43	1.57	1.57	0.54	0.51	0.44		
	(0.51)	(0.71)	(0.61)	(0.09)	(0.08)	(0.11)		
10g EOD	1.86	1.86	1.91	0.64	0.60	0.58		
	(0.75)	(0.52)	(0.67)	(0.16)	(0.16)	(0.10)		
20g daily	1.56	1.67	1.69	0.75	0.76	0.75		
-	(0.33)	(0.47)	(0.26)	(0.13)	(0.21)	(0.15)		
40g EOD	1.98	1.87	1.85	0.69	0.74	0.62		
-	(0.60)	(0.44)	(0.42)	(0.34)	(0.14)	(0.24)		

Table 6. Mean values for linoleic acid (LA), dihomogammalinolenic acid (DGLA), arachidonic acid (AA) and eicosapentanoic acid (EPA) in plasma cholesteryl esters at weeks 0, 3 and 6, of four group of 12 horses receiving different oral doses of n-3 and n-6 EFAs

Para	ameter		LA		DGLA					
Weel	k	0	3	6	0	3	6			
Hor	se group									
5g	daily	43.69	50.51	52.45	0.14	0.03	0.04			
		(9.05)	(10.95)	(13.01)	(0.33)	(0.07)	(0.15)			
10g	EOD	41.36	48.83	45.95	0.10	0.11	0.14			
		(10.00)	(11.44)	(10.55)	(0.27)	(0.27)	(0.23)			
20g	daily	45.93	44.51	46.96	0.12	0.16	0.18			
		(9.72)	(16.24)	(8.06)	(0.13)	(0.21)	(0.21)			
40g	EOD	44.64	52.30	53.95	0.05	0.14	0.20			
		(13.63)	(10.18)	(14.76)	(0.12)	(0.27)	(0.33)			
Para	ameter		AA			EPA				
Weel	k	0	3	6	0	3	6			
Hor	se group									
5g	daily	6.62	6.42	6.55	0.18	0.10	0.25			
		(2.32)	(3.65)	(2.85)	(0.17)	(0.10)	(0.55)			
10g	EOD	7.48	8.29	7.77	0.00	0.00	0.03			
		(2.41)	(2.61)	(2.96)	(0.00)	(0.00)	(0.10)			
20g	daily	4.73	3.96	5.60	0.08	0.04	0.02			
		(1.65)	(2.05)	(2.26)	(0.08)	(0.07)	(0.06)			
40g	EOD	3.78	3.53	4.49	0.13	0.21	0.19			
		(3.60)	(2.70)	(7.13)	(0.14)	(0.10)	(0.16)			

between weeks 0 and 3. Multiple range analysis revealed that between weeks 0 and 6, the DGLA values were significantly lower for the 10g group than for the other groups.

Results of statistical analyses of EFA values are presented in Appendix V.

The basal levels of LA, and its metabolites DGLA and AA in plasma phospholipids in the horse are illustrated in Figure 11. Comparative levels in the dog, the cat and in man are shown.

Discussion

levels of EFAs were established for the horse, Basal and the metabolism of EFAs was found to be different in the horse to that in other species. The percentage of total EFAs comprised by LA in the horse is more than twice the percentage in the dog, the cat and in man. In contrast, the percentages of total EFAs of LA metabolites, DGLA and AA, in the horse are very much lower than in other species. The percentage of total EFAs formed by DGLA is approximately one fifteenth of that in man; and the percentage of comprised by AA is less than one tenth of the EFAs total percentage found in the dog.

The ratio of LA to its metabolites was examined for the horse, and was found to be very much lower than the ratio found in the dog, the cat, or in man. It was considered likely that the low ratio in this species was due to slow 6-desaturation of LA by the 6-desaturase enzyme. The rate of the 6-desaturation reaction was slower, for example, in the horse than in man; and the ratio in man is closer to that of herbivores such as the rabbit and guinea pig, than it is to that of the rat. The conversion rate of LA to its biologically active metabolites for the horse was therefore found to be similar to the conversion rate for other herbivores.

Although the improvements recorded in the condition of the coat, mane, tail or hooves of the horses were statistically significant with respect to time, no significant difference was found for time

Dihomogammalinolenic Acid Levels in Plasma Phospholipids of Normal Animals

Figure 11. Basal levels of linoleic acid (LA), and its metabolites dihomogammalinolenic acid (DGLA) and arachidonic acid (AA) in the horse, with comparison to levels in other species. All values are given as % of total EFAs.

pattern between groups. As this was a titration study, a control group was not used, and it could not therefore be assumed that these changes over time for clinical parameters were attributable to the EFA treatments. Moreover, it is likely that the improvement in these clinical parameters was attributed to the improving plane of nutrition of the grazing between June and July when the study was performed, rather than to the EFA treatments.

Fluctuations over time were seen for haematological and biochemical parameters within groups and between groups during the study. Despite the fact that statistical analyses revealed several of these changes to be significant, no distinct patterns were found which were considered relevant to, or attributable to, the EFA treatments. Fluctuations in these parameters were thought to reflect nutritional factors. Thus, no harmful effect was evident either haematological or biochemical parameters at any of the on EFA dose rates studied.

Statistical analyses of results of EFA estimations indicated that no particular dose regimen was significantly more efficacious than another. In order to ensure maximum opportunity for uptake, it was decided that the dose level of 20 g of Efamol Marine daily should be administered. The Use of Essential Fatty Acids (EFAs) in the Treatment of Dermatophilosis in Horses

Introduction

The need for an alternative approach to the treatment of dermatophilosis in the horse was emphasised in the introductory chapters. Evening primrose oil (EPO) with added fish oil and vitamin E, formulated as Efamol Marine (Scotia Pharmaceuticals), was used to try to treat dermatophilosis in horses. EPO is a rich source of linoleic acid (LA) and gamma-linolenic acid (GLA), the EFAs which are vital to the maintenance of the epidermal barrier Fish oil contains n-3 eicosapentanoic acid to water. (EPA). derivatives of which inhibit inflammation; and vitamin E blocks conversion of arachidonic acid (AA) to the pro-inflammatory leukotrienes.

Active EFA treatment was to be compared to placebo, which was hydrogenated coconut oil with added vitamin E. EFA and placebo treatments were to be administered at the period when prevalence of dermatophilosis infection was found to be highest, in late and early winter. This study followed the autumn period autumn rainfall recorded in the West of Scotland is when the traditionally highest. The dose rate for EFA supplementation to ensure maximum opportunity for uptake was determined a in pharmacokinetic study, detailed in this section. Improvement in the severity of lesions of dermatophilosis was sought, and lesion material was to examined microscopically to determine the activity of such lesions. The condition of the haircoat, the mane, tail and hooves and general body condition were to be monitored. There were reports of improvement of these parameters when EFAs were used to treat anhidrotic horses, described in the EFA review. It was hoped these findings could be substantiated by the use of EFAs in that this study. Haematological and biochemical parameters were also to be monitored for any systemic effect or adverse event.

Materials and Methods

Method of Administration of EFAs The method of administration of treatments, and details of the EFA treatment capsules, Efamol Marine, are described in the Materials and Methods for the pharmacokinetic study in this section of the results. Placebo capsules contained hydrogenated coconut oil and vitamin E.

Experimental Design

A group of randomly selected horses received active, EFA supplementation, and were compared to placebo and control groups. Three groups of 12 animals were randomly identified. One group received 20 g of a combination of n-3 and n-6 EFAs (Efamol Marine) daily, the dose rate which was found in the pharmacokinetic study to allow maximum opportunity for uptake; and a second group received 20g placebo daily. The third group, the control animals, received no treatment.

The supplementation period spanned 16 weeks, from early November to late February, during which the horses were housed, but were most likely to be infected by *D. congolensis*, based on the experience of previous years on the two farms, and on the typical disease pattern in the West of Scotland. The trial was run double-blind, the investigator was unaware of which horses received which, if any, treatment.

Parameters Monitored

Dermatophilosis lesions

The severity and the extent of distribution of the lesions of dermatophilosis were recorded at weeks 0, 2, 4, 6, 8, 10, 12, 14, and 16 during the study. Details are provided in the general Materials and Methods section.

Bacteriology

Where present, paintbrush lesions and scab material from *D.* congolensis infected horses were subjected to bacteriological examination at regular intervals during the study. Material was collected into sterile bijoux, and where secondary bacterial

infection was evident, lesions were swabbed and material transferred in Ames transport medium (Transwab, The Medical Wire and Equipment Company) to the laboratory. Paintbrush lesions and scabs were soaked overnight in sterile physiological saline to soften them and to allow release of zoospores, and stored at 4°C to reduce the risk of contamination. Thick impression smears were made from soaked scabs, then methanol fixed and stained by Giemsa. Material were cultured on sheep blood agar and MacConkey's agar. and on mannitol salt agar to screen for Staphylococci. Culture was also made on medium selective for *D. congolensis*, containing polymixin B sulphate at a concentration of 1000 IU/ml (160 mg/ml) in blood agar base No.2 (Oxoid), supplemented with 5% sheep blood, according to the method of Abu-Samra (1977). Cultures were incubated at 37°C for 48 h.

D. congolensis and any other significant bacteria were sought. Giemsa stained smears were examined under oil immersion at x100 for the presence of Gram-positive cocci magnification and filamentous hyphal growths showing the transverse and longitudinal divisions, the "railroad tracks" considered characteristic of D. congolensis. Smears were graded in severity: + was mild infection, ++ was moderate, and +++ was severe infection, as judged by the density of organisms seen. Cultures considered positive for D. congolensis were dry, beta-haemolytic, grey-yellow coloured, sized colonies which were embedded in the agar. pinprick Bacteriological examination was performed at week 0, before EFA supplementation was begun; at week 10, during supplementation, and at week 16, when supplementation was stopped.

Clinical monitoring system

Clinical indices of condition of the coat, mane, tail and hooves, and general body condition were recorded at weeks 0, 2, 4, 6, 8, 10, 12, 14 and 16 during the study. Details of the measurement of these parameters are provided in the general Materials and Methods section.

Haematological and biochemical parameters were examined, and EFA estimations were performed, at weeks 0, 4, 8, 12 and 16. Details of these measurements are provided in the general Materials and

Methods section.

Statistical analyses were undertaken on the clinical indices, on haematological and biochemical parameters, and on EFA estimations using a repeated measures design, which is described in the general Materials and Methods section.

Results

The Effect of EFAs on the Lesions of Dermatophilosis Dermatophilosis lesions became less severe for all the groups, indicated by the drop in the dermatophilosis index in most cases; and the distribution of dorsum and hindlimb lesions became less widespread with time. Lesions were more severe and more widespread on horses in the placebo and EFA groups than for the controls. Most of the horses showed mild infections. with low dermatophilosis indices, group means of less then 3, but each group did contain severely affected animals. In the control group one horse scored 8, and another 7 for severity of lesions; in the placebo group one scored 8 and another 7; and in the EFA group one horse scored 9, the most severe infection in the study. The most widespread distribution occurred for the horse which had scored 9 on the dermatophilosis index, Henry, in the EFA group: at week O lesions affected 60% of his body, and 60% of his hindlimbs. It is seen from the values presented in Table 7 that lesions affected а far lesser area of the body and hindlimbs than this in most horses.

An example of the typical "paintbrush" dermatophilosis lesions, of matted exudate in the haircoat, is shown in Figure 12. These lesions were situated on the rump region of this particular Figure 13 illustrates the painful scab lesions animal. of dermatophilosis on the dorsum of one of the study horses. pus is seen on the undersides of the uplifted scabs, Grey-green are ulcer-like raw areas below the scabs. The scab and there lesions found on the lower hindlimbs of infected horses are seen in Figure 14. These "mud fever" lesions were identified on the dorsal pasterns, and around the fetlock and coronary band regions.

Table 7. Mean indices at weeks 0, 8 and 16 for the severity and the extent of distribution of dermatophilosis lesions on the dorsum and on the hindlimbs of three groups of horses in a treatment study. Eleven horses received no treatment, 12 received 20g daily placebo of hydrogenated coconut oil and vitamin E, and 12 animals received 20g of n-3 and n-6 EFAs daily.

Clinical index	dermatophilosis						
	index						
Week	0	8	16				
Horse group							
Controls	3.2	1.3	1.1				
Placebo	4.2	2.1	1.7				
EFAs	4.3	2.9	1.5				

Clinical index	(dorsum	h	hindlimb distribution			
	di	stribu	di				
Week	0	8	16	0	8	16	
Horse group							
Controls	18.1	7.1	2.5	17.5	2.1	2.5	
Placebo	19.8	9.4	5.5	25.0	4.2	8.5	
EFAs	20.5	8.6	6.8	19.0	5.3	2.8	

A full set of results of severity and distribution of lesions of dermatophilosis is found in Tables I to III in Appendix II.

Figure 12. The typical "paintbrush" lesions of dermatophilosis seen on the dorsum of a horse during the EFA treatment study

Figure 13. Painful scab lesions of dermatophilosis found on the dorsum of a horse during the EFA treatment study

Figure 14. Dermatophilosis lesions involving the lower hindlimbs of a horse during the EFA treatment study

The reduction in dermatophilosis lesion severity and in the distribution of dorsum and hindlimb lesions were statistically significant. These improvements occurred, however, for all groups: improvement was not statistically greater for the treatment than for placebo or for untreated groups.

Bacteriology

Although *D. congolensis* organisms were isolated from over 60% of lesions examined, they were more difficult to culture. Throughout the study the prevalence of dermatophilosis infection, according to clinical observation, Giemsa smears, and cultures, was not significantly lower for the animals which received EFA than for those which received placebo, or were untreated.

Of the 65 clinical dorsum lesions sampled over the duration of the study, 48 (73.8%) proved positive on Giemsa smear, and 27 (41.5%) were confirmed positive on culture. Of 56 clinical lesions of the lower hindlimbs which were sampled, 36 (64.3%) were positive on Giemsa smear and 7 (12.5%) were positive on culture. Where secondary infection and pus were present on dorsum lesions, swabs were taken. Seven of the 10 (70%) of the lesions swabbed proved on culture for D. congolensis. The results positive of bacteriological findings are summarised in Table 8. Each entry in the table for each horse shows results of detection of clinical and of detection of D. congolensis on smear and on lesions, culture.

One horse from the control group and one from the EFA group, both of which were negative for clinical lesions at the study onset, developed dorsum lesions which were confirmed positive on culture during the trial. Three horses, one each from control, placebo and EFA groups, and having no lesions at the study onset, developed lower hindlimb lesions. Two of these were positive for *D. congolensis* organisms by Giemsa smear, although none could be cultured.

Pathogenic *Staphylococci* were isolated from one of the EFA group horses at the onset of the study, and from two animals in the placebo group at the end of the study. The organism was recovered

from lesions involving the lower hindlimbs in each case.

These organisms were confirmed to be pathogenic by subculture from mannitol salt agar to DNase medium. Other incidental findings were that two animals had lice infestations at the conclusion of the trial, one control and one EFA group animal. One of the placebo group horses showed evidence of a mite infection of the fetlocks during the trial, but a species could not be identified. Owing to the fact that the horses were run together in large groups, most animals showed minor skin trauma at some point during the trial due to kicking and biting.

Chi-square analyses were undertaken on the prevalence of dermatophilosis in different treatment groups as determined according to observation on each of clinical lesions, Giemsa smears and cultures. Results are presented in Table 8. In each was undertaken on pre-treatment (Week analysis case 0), mid-treatment (Week 10) and post-treatment (Week 16) points in time. No significant differences between groups were detected, with exception of clinical hindlimb lesions the lower post-treatment. Only two out of 10 horses in the control group had lesions, whereas six out of eight and six out of 10 in the placebo and EFA groups, respectively, had lesions.

Clinical Indices

For most animals in all the groups the indices for coat, tail and hooves increased over time, i.e. the condition improved. Although body condition scores fluctuated, no definite upward or downward trends were identified. Mean values, at weeks 0, 8, and 16, for the clinical indices of coat condition, mane condition, tail condition, hoof condition, and body condition are contained in Table 9.

From the results, condition indices for coat, mane, tail and hooves around the middle of the scale, 5 or 6, average condition, were found at the study onset, whilst by the end of the study values were moving toward the upper end of the scale, at 7 or 8. Values showed particularly marked improvement for all groups for coat and tail condition. Very small differences between group

Table 8. Bacteriological results, comparing results of clinical examination, Giemsa smears and cultures for detection of Dermatophilus congolensis organisms.

Clinical	dor	sum	les	ion	S									
	Bef	ore	tre	atm	ent	D	uring t	treatmen	t	Aft	er t	rea	tme	nt
	pre	sen	t	abs	ent	p	resent	absent		pre	sent	a	bse	nt
Group														
Controls		7			4		4	7			6			4
Placebo		7			4		6	6			4			4
EFAs		7			4		7	4			7			3
Total Ch	isqu	are	s:	0.	00			1.64					0.7	5
Results		NS			NS		NS	NS			NS		N	S
Clinical	low	er I	nind	lim	b le	sio	ns							
I	Befo	re [·]	trea	tme	nt	Du	ring ti	reatment		Afte	r tr	eat	men	t
I	pres	ent	а	bse	nt	pr	esent	absent	1	pres	ent	ab	sen	t
Group														
Controls		9			2		3	8			2		8	8
Placebo		9			2		5	7			6		:	2
EFAs		8			3		8	3			6		4	4
Total Ch	isqu	are	s:	0.	36			4.78				l	5.00	0
Results		NS			NS		NS	NS			NS		Sig	g
Giemsa Sı	mear	of	Inf	ect	ive	Mate	erial							
Dorsum 1	esio	ns					Lo	ower hin	dliı	nb 10	esio	ns		
	Bef	ore	Dur	ing	Aft	er			Be	fore	Dur	ing	Af	ter
	+	-	+	-	+	-			+	-	+	-	+	-
Group							Gr	roup						
Controls	5	6	3	9	4	6	Cc	ontrols	5	6	1	10	2	8
Placebo	6	5	6	6	4	4	P1	acebo	6	5	4	8	3	5
EFAs	6	5	6	5	6	4	EF	As	7	4	5	6	3	7
Total Ch	i-													
squares:	0.	24	2.	43	N	ТΡ			0	.73	3.	64	0.	.68
Results	Ν	S	N	S					1	1S	l	NS		NS

Table 8 (continued)

Culture of Infective Material

Dorsum 1	esio	ons					Lower him	lesi	ons			
	Be	fore	Du	ring	Af	ter	E	Sefore	Dur	ing	Af	ter
	+	-	+	-	+	-		+ -	+	-	+	-
Group							Group					
Controls	0	11	2	9	4	6	Controls	1 10	0	11	1	9
Placebo	1	10	3	9	2	6	P1acebo	0 11	1	11	1	7
EFAs	2	9	3	8	3	7	EFAs	0 11	2	9	1	9
Total Ch	i -											
squares:	2	.20	0.	27	0.	49		NTP	N	ТР	N	ΓP
Results	I	NS	N	S	N	IS						

Key:

Before, during and after indicate before, during and after supplementation with active treatments.

+ indicates the presence of D. congolensis organisms

- indicates the absence of *D. congolensis* organisms

NTP indicates no test possible, as numbers were too small

NS indicates result was not significant

Table 9. Mean values at weeks 0, 8 and 16 for clinical indices of condition of coat, mane, tail and hooves, and of general body condition of three groups of horses during a treatment study. Eleven horses received no treatment, 12 received 20g daily placebo of hydrogenated coconut oil and vitamin E, and 12 animals received 20g of n-3 and n-6 EFAs daily

Clinical index		coat	mane				
	C	onditi	condition				
Week	0	8	16	0	8	16	
Horse group							
Controls	5.3	6.9	7.3	5.6	6.9	7.7	
Placebo	5.4	7.3	6.9	5.1	7.3	7.9	
EFAs	5.5	7.0	7.2	5.5	6.8	7.7	
Clinical index		táil		hoof			
	C	onditi	on	condition			
Week	0	8	16	0	8	16	
Horse group							
Controls	5.4	7.1	6.8	6.7	7.3	7.1	
Placebo	5.3	7.3	7.9	6.4	7.3	7.1	
EFAs	5.6	7.0	7.5	6.5	6.9	6.9	

body						
C	onditio	on				
0	8	16				
3.1	3.2	3.0				
3.0	3.3	3.1				
3.1	3.3	3.1				
	0 3.1 3.0 3.1	body condition 0 8 3.1 3.2 3.0 3.3 3.1 3.3				

A full set of clinical results is found in Tables IV to VIII in Appendix II.

means were seen for coat, mane, tail and hoof condition.

The improvements recorded for coat, tail and hoof condition were all statistically significant. These improvements occurred, however, for all groups: improvement was not statistically greater for EFA treatment than for placebo or for untreated groups.

Haematology

The pattern for animal groups for haematological parameters in this treatment study resembled that of the groups in the pharmacokinetic study, in that values fluctuated over time. The values for all haematological parameters dropped for the three groups over time, and the reductions were statistically significant.

The administration of EFA and placebo treatments was not influential on the haematological parameters, and no adverse effect was found. There were no statistically significant differences for time patterns for the parameters between EFA, placebo and control groups.

The values for haematological parameters for each horse are given in Tables IX to XVI of Appendix II. Values were within normal ranges for haematological parameters with the exception of several low platelet counts, for three horses in the placebo group and for two in the EFA group. Normal ranges for hot and cold blooded animals, Thoroughbreds and ponies, and the units used in measurement of each parameter are indicated in Appendix IV.

Biochemistry

As for haematological parameters, differences in time patterns were recorded for biochemical parameters which were found to be statistically significant. Examination of these differences failed to reveal specific trends for parameters over time. Values were within normal ranges for biochemical parameters. Although a statistically significant difference between groups was recorded for the time pattern for magnesium values, no definite upward or downward trends were found for the values. For all other biochemical parameters, there were no significant differences for

time patterns between groups.

EFA and placebo treatments caused no harmful effect on biochemical parameters. Tables XVII to XXXII of Appendix II show values for biochemical parameters. Normal ranges and the units used in measurement of each parameter are indicated in Appendix IV.

EFA Estimations

No pattern of increase over time for any EFA measured in circulatory fractions was found for the group of horses which received oral n-3 and n-6 EFAs compared to placebo or control groups.

Group means at weeks 0, 8 and 16 for n-6 series EFA, LA, and its and n-3 series metabolites DGLA and AA; EPA in plasma cholesteryl cell phospholipids, plasma esters and red phospholipids are contained in Tables 10, 11 and 12, respectively.

Results of statistical analyses of EFAs indicated significant differences over time for LA, AA and EPA values in red cell phospholipids. For all groups LA values dropped markedly between weeks 0 and 8, and were at the lower value at week 16. AA and EPA values increased over time for all groups.

In plasma phospholipids and in plasma cholesteryl esters there were statistically significant differences over time for LA, DGLA and AA values. No definite trends could be detected, however, for changes in EFAs in plasma phospholipids over time. In plasma cholesteryl esters no trend was detected for LA values over time, but AA values increased over time for all groups. No significant difference was recorded for EPA values in plasma cholesteryl Statistical analyses revealed that mean EPA values esters. in plasma phospholipids for the EFA group were significantly higher, with group mean of 0.721, than for the control or placebo groups, of group means 0.610 and 0.573,

Table 10. Mean values at weeks 0, 8 and 16 for linoleic acid (LA), dihomogammalinolenic acid (DGLA), arachidonic acid (AA) and eicosapentanoic acid (EPA) in red cell phospholipids of three groups of horses during a treatment study. Twelve animals received no treatment, 12 received 20g coconut oil and vitamin E placebo daily, and 11 received 20g n-3 and n-6 EFAs daily.

		LA			DGLA	
Week	0	8	16	0	8	16
Horse group						
Control	14.98	4.85	5.02	0	0.01	0
	(7.03)	(1.09)	(1.34)	(0)	(0.02)	0
Placebo	12.83	5.12	5.26	0	0.03	0
	(4.84)	(2.07)	(1.35)	(0)	(0.05)	(0)
EFAs	12.65	5.11	5.13	0.43	0.05	0
	(8.40)	(1.14)	(0.68)	(0.96)	(0.09)	(0)
		AA			EPA	
Week	0	8	16	0	8	16
Horse group						
Control	0.40	1.09	1.33	0.16	0.68	0.73
	(0.31)	(0.45)	(0.27)	(0.33)	(0.51)	(0.32)
Placebo	0.52	1.11	1.41	0.25	0.54	1.20
	(0.34)	(0.53)	(0.18)	(0.29)	(0.31)	(0.94)
EFAs	0.65	0.97	1.27	0.26	0.65	0.86
	(0.49)	(0.49)	(0.55)	(0.24)	(0.26)	(0.55)

Table 11. Mean values at weeks 0, 8 and 16 for linoleic acid (LA), dihomogammalinolenic acid (DGLA), arachidonic acid (AA) and eicosapentanoic acid (EPA) in plasma phospholipids of three groups of horses during a treatment study. Twelve animals received no treatment, 12 received 20g coconut oil and vitamin E placebo daily, and 11 received 20g n-3 and n-6 EFAs daily.

		LA			DGLA	
Week	0	8	16	0	8	16
Horse group						
Control	48.74	46.79	48.08	0.55	0.54	0.39
	(13.90)	(3.29)	(5.43)	(0.35)	(0.13)	(0.14)
Placebo	51.74	48.46	51.15	0.38	0.60	0.44
	(4.67)	(3.03)	(2.43)	(0.25)	(0.17)	(0.09)
EFAs	54.05	48.45	50.94	0.31	0.70	0.59
	(3.98)	(2.40)	(3.37)	(0.30)	(0.15)	(0.12)
		AA			EPA	
Week	0	8	16	0	8	16
Horse group						
Control	2.25	2.08	1.94	0.83	0.54	0.57
	(0.38)	(0.35)	(0.36)	(0.32)	(0.14)	(0.21)
Placebo	2.24	2.02	1.80	0.86	0.53	0.54
	(0.37)	(0.40)	(0.32)	(0.33)	(0.13)	(0.12)
EFAs	1.94	2.08	1.97	0.78	0.71	0.69
	(0.66)	(0.24)	(0.29)	(0.40)	(0.14)	(0.18)

Table 12. Mean values at week 0, 8 and 16 for linoleic acid (LA), dihomogammalinolenic acid (DGLA), arachidonic acid (AA) and eicosapentanoic acid (EPA) in plasma cholesteryl esters of three groups of horses during a treatment study. Twelve animals received no treatment, 12 received 20g coconut oil and vitamin E placebo daily, and 11 received 20g n-3 and n-6 EFAs daily.

		LA			DGLA	
Week	0	8	16	0	8	16
Horse group						
Control	68.28	68.14	59.39	0	0.01	0
	(5.67)	(5.37)	(9.86)	(0)	(0.02)	(0)
Placebo	67.72	68.15	66.06	0	0.03	0
	(4.10)	(3.47)	(4.29)	(0)	(0.05)	(0)
EFAs	69.65	70.46	63.06	0.43	0.05	0
	(5.33)	(3.50)	(5.76)	(0.96)	(0.09)	(0)
		AA			EPA	
Week	0	8	16	0	8	16
Horse group						
Control	0.40	1.09	1.33	0.16	0.68	0.73
	(0.31)	(0.45)	(0.27)	(0.33)	(0.51)	(0.32)
Placebo	0.52	1.11	1.41	0.25	0.54	1.20
	(0.34)	(0.53)	(0.18)	(0.29)	(0.31)	(0.94)
EFAs	0.65	0.97	1.27	0.26	0.65	0.86
	(0.49)	(0.49)	(0.55)	(0.24)	(0.26)	(0.55)

respectively. No difference found between groups over time was statistically significant for values for any EFA in any blood fraction.

Statistical Analyses

The tables detailing statistical analyses by analysis of variance (ANOVA) for dermatophilosis indices, clinical condition indices, haematological and biochemical parameters, and individual EFAs in the different circulatory fractions are given in Appendix VI.

Exclusions

The horse named Sandy Lad, (EFA treatment group) was removed from the trial before the midway point, owing to generalised debility. Data were not included in statistical analysis. Natasha, (placebo group) left the farm at week 12. Horses named Temple, (control); Jack, (placebo); Big Ben, (placebo); Rainbeam, (placebo); Officer, (placebo) and Heidi, (EFA) were removed from the trial at week 14, for commercial reasons. Data from these animals were included in statistical analyses.

Discussion

In this controlled study the oral administration of 20g daily of n-3 and n-6 series EFAs had no clinical or bacteriological effect severity or on the distribution of lesions of on the dermatophilosis. The progression of infection was not influenced by 80% EPO and 20% fish oil and vitamin E (Efamol Marine) or by hydrogenated coconut oil and vitamin E placebo, when comparison made to untreated controls. At the same time, EFAs did not was significant improvement in the condition of the haircoat. cause mane, tail or hooves of the general body condition. Although values for haematological and biochemical parameters fluctuated, these changes were attributed to other factors, such as changing nutrition, and not to EFAs. No adverse effect was recorded during the study, and EFAs were not therefore found to be harmful. The fall over time for haematological parameters over this period, just before winter housing of the horses, may reflect the fall in the nutritional value of grazing at this time. The PCV values are

observed by the farm owner to drop every year at this time.

Oral supplementation of n-3 or n-6 EFAs did not lead to significant increases in levels of these EFAs in circulatory fractions when treated animals were compared to placebo and control groups.

The reason for the failure of EFAs to produce significant clinical effects, either on the severity and distribution of the lesions of dermatophilosis or on the condition of the haircoat, mane, tail or hooves was unclear. The EFA dose rate may have been incorrect, but the adopted 20g daily dose was selected on the results of the pharmacokinetic study to allow maximum opportunity for EFA uptake. Any higher a dose would not have been practical from the point of view of administration or of cost.

It was considered that the failure of EFAs in respect of treatment of dermatophilosis was possibly due in part to the fact that dermatophilosis lesions were already established prior to the initiation of EFA supplementation. The epidermis would already have been disrupted, facilitating invasion by *D. congolensis* and the subsequent development of lesions. The start of treatment may thus have been too late. The Use of Essential Fatty Acids (EFAs) in the Prophylaxis of Dermatophilosis in Horses

Introduction

In the previous study, oral supplementation of EFAs at the 20q daily dose rate determined in the pharmacokinetic study was not effective in the treatment of dermatophilosis in horses. No reduction in the severity nor in the extent of distribution of lesions of dermatophilosis was afforded by the treatment regime used. The failure of significant effect may have been due to the fact that lesions were already established prior to initiation of EFA supplementation, and so the epidermis was already traumatised allowing invasion of D. congolensis organisms and development of lesions.

The aim of this study was to supplement EFAs in a prophylactic approach to management of dermatophilosis in the horse. EFAs were administered in the same form, at the same 20g daily dose rate, and supplementation was started before the period of highest infection risk. In this way, it was hoped to combat infection before any lesions were established, when the epidermis was still intact.

In reviewing accepted treatments and control measures in dermatophilosis in horses in the introductory section it was evident that no effective prophylactic exists at present, as vaccination is not commercially available. The use of EFAs was thought to provide a possible new prophylactic for the management of equine dermatophilosis.

Materials and Methods

Method and Administration of EFAs The method of administration and the details of the EFA supplementation are provided in the Materials and Methods of the pharmacokinetic study in this section.

Experimental Design

groups of 12 animals were randomly selected. One group Two received 20 g of a combination of n-3 and n-6 EFAs (Efamol Marine) daily, and the control group received treatment. no Supplementation spanned 16 weeks when the horses were believed to be at highest risk of dermatophilosis, beginning in September when the horses were still at pasture, and continuing through to January, by which time they had been housed for several months. The animals were monitored clinically, haematologically and biochemically for 8 weeks following supplementation, and EFA estimations were made 8 weeks after the end of supplementation, in an attempt to determine the persistence, if any, of the effects of EFAs in the horse beyond the end of supplementation.

Parameters Monitored

The severity and distribution of dermatophilosis lesions, were recorded repeatedly, at weeks 0, 3, 6, 9, 12, 15, 20 and 24 of the study. The indices of the condition of the coat, the mane, the tail, the hooves, and general body condition were also monitored at these times. Haematological and biochemical parameters were recorded at weeks 0, 8 and 16 of the study. EFA estimations were made at weeks 0, 8, 16 and 24. Details of measurement of parameters are detailed in the general Materials and Methods section. Values for all clinical, haematological and biochemical parameters, and EFAs, were statistically analysed using a repeated measures analysis of variance design, described in the general Materials and Methods section.

Results

Clinical Indices

The mean values for dermatophilosis index, and the dorsal and hindlimb distribution indices for lesions are very low, indicating mild, localised infections. Very few horses in either treatment or control groups were infected. The mean values for indices denoting dermatophilosis lesion severity, and dorsal and hindlimb lesion distributions at weeks 0, 9, 15 and 24 are presented in Table 13. One horse in each group developed dorsal lesions during the study; Table 13. Mean values at weeks 0, 9, 15 and 24 weeks for the severity and extent of distribution of dermatophilosis lesions on the dorsum and on the hindlimbs of two groups of horses in a prophylactic study; 12 animals received no treatment, and 11 animals received 20g of n-3 and n-6 EFAs

Parameter	dermatophilosis						
	index						
Week	0		15	24			
Horse group							
Controls	0.1	0.2	0.1	0.1			
EFAs	0.2	0.5	0.0	0.0			

Parameter	dorsum				hindlimb			
	distribution				distribution			
Week	0	9	15	24	0	9	15	24
Horse group								
Controls	0	0	1.3	1.3	0.2	0.3	0	0
EFAs	0	0.2	0	0	1.0	0.7	0	0

A full set of measurements of dermatophilosis indices is found in Tables I to III in Appendix III.

one horse in the control group had hindlimb lesions at week 0, and another two animals later developed lesions. In the EFA group, hindlimb lesions were noticed on two horses at the beginning of the study and on a further four animals later in the study. No significant differences were detected between groups for severity or distribution of dermatophilosis lesions. Examination of the data revealed no differences in the severity or the extent of distribution of dermatophilosis lesions between EFA and control groups.

The horses were in good body condition, and the coat, mane, tail and hoof conditions were above average. The indices were not significantly higher, however, for the EFA group than for the The clinical indices of coat condition, mane condition, controls. tail condition, hoof condition, and body condition score, are presented in Table 14. For coat, mane, tail and hoof condition, the majority of scores fell within the upper half of the 10 point index scale for both groups, they were above 5, or above average Most animals were awarded condition scores of 3 condition. or most animals showed optimal condition score, above, that is, or tended towards the fat end of the scale.

There were statistically significant time differences for mane, tail and body condition: fluctuations were small, and values for the mane and tail condition improved over the latter half of the study. No definite pattern was detected for body condition score values.

Although differences in time pattern for mane condition values between the two groups was significantly different, no definite pattern was established for either group. No statistically significant difference occurred between groups over time for any of the other parameters.

The tables of statistical analyses by analysis of variance are given in Appendix VII.

Haematology With the exception of several low platelet counts, three control

Table 14. Mean values at weeks 0, 9, 15 and 24 weeks for clinical parameters of condition of the coat, mane, tail and hooves, general body condition, dermatophilosis index, dorsal and hindlimb lesion distribution for two groups of horses in a prophylactic study; 12 animals received no treatment, and 11 animals received 20g of n-3 and n-6 EFAs daily

Parameter		coa	t			ma	ne	
	condition				condition			
Week	0	9	15	24	0	9	15	24
Horse group								
Controls	7.0	6.8	7.0	7.0	6.8	7.0	7.1	7.8
EFAs	6.8	6.4	7.0	6.9	7.1	6.6	7.2	6.9
Parameter		tai	1			ho	of	
		condi	tion			cond	ition	l
Week	0	9	15	24	0	9	15	24
Horse group								
Controls	7.3	7.2	7.1	7.5	6.8	6.9	7.0	7.1
FFAs	73	6 /	72	7 2	7 2	70	73	72

Parameter	body						
	condition						
Week	0		15	24			
Horse group							
Controls	3.4	3.5	3.3	3.4			
EFAs	3.3	3.4	3.1	3.2			

A full set of clinical results is found in Tables IV to VIII in Appendix III.
values, and seven values for EFA treated horses, values for haematological parameters were within normal ranges. Tables IX to XVI of Appendix III show the values for haematological parameters. Normal ranges for hot and cold blooded animals, Thoroughbreds and ponies, and the units used in measurement of each parameter are indicated in Appendix IV.

Although a statistically significant difference between groups for time pattern was recorded for mean cell haemoglobin values, trends were not marked. No statistically significant differences in time patterns were found between groups for the other haematological parameters. The tables of statistical analyses by analysis of variance are given in Appendix VII.

Biochemistry

Most values were within normal ranges for biochemical parameters, although a large proportion of animals in both groups showed AP values above the normal ranges at each time point. AST values for two animals in each group were elevated. At the week 3 time point four control animals and three treated animals demonstrated reduced triglyceride values. Elevated triglycerides values were for one control and three treated horses at week 0; for two controls and one treated horse at week 8; and for two controls and one treated horse at week 16.

Tables XVII to XXXII of Appendix III show values for biochemical parameters. Normal ranges and the units used in measurement of each parameter are indicated in Appendix IV.

No significant difference existed between groups over time for any statistically significant Although biochemical parameter. over time were recorded for several parameters, differences both treated and untreated animals behaved in the same way, so these patterns of change could not be attributed to EFAs. Calcium, magnesium and AST values, increased over time for both groups; and potassium and AP values fell over time for both groups. The tables of statistical analyses by analysis of variance are given in Appendix VII.

EFA Estimations

There were no significant increases in EFA values in circulatory fractions over time for horses which received n-3 and n-6 EFAs as compared to the control, untreated animals. Means values at weeks 0, 8, 16 and 24 for n-6 EFAs LA, and its metabolites DGLA and AA, and n-3 EPA in red cell phospholipids and plasma phospholipids are contained in Tables 15 and 16, respectively.

Although statistically significant differences were seen over time for LA, AA and EPA values in red cell phospholipids, definite trends for values for AA and EPA were not seen. LA values for both groups showed a pattern of increase between week 0 and week 8, then fell towards week 24. A statistically different pattern over time was recorded between groups for AA values, but trends were not marked for either group. Values for DGLA were too low for analyses to be performed.

No definite trends over time were found for LA, AA or EPA values in plasma phospholipids, although the difference was statistically significant. Examination of the time difference for DGLA revealed that values increased for both groups between weeks 0 and 16, then values dropped until week 24. There was a statistically significant difference between groups over time for AA values, but once again, no definite trends were seen for either group.

ANOVA tables used in statistical analyses are demonstrated in Appendix VII.

Discussion

EFAs were not found to be an effective prophylactic in equine dermatophilosis in this study. There was an unusually low incidence of dermatophilosis infection in the horse herd at the time of the study owing to a very dry autumn prior to the study. Nevetheless, the supplementation of horses with 20g daily of 80% EPO and 20% fish oil and vitamin E (Efamol Marine) did not prevent development of dermatophilosis lesions, nor did it reduce the severity or extent of distribution of lesions in this Table 15. Mean values at weeks 0, 8, 16 and 24 for linoleic acid (LA), dihomogammalinolenic acid (DGLA), arachidonic acid (AA) and eicosapentanoic acid (EPA) in red cell phospholipids of two groups of horses during a study of the prophylaxis of EFAs in dermatophilosis. Twelve animals received no treatment and 11 received 20g n-3 and n-6 EFAs daily

			LA	
Week	0	8	16	24
Control	9.09	10.17	6.61	6.29
	(2.16)	(1.89)	(2.06)	(4.45)
EFAs	10.06	10.45	6.19	5.54
	(1.20)	(2.17)	(1.49)	(1.27)
		D	GLA	
Week	0	8	16	24
Control	0.01	0	0	0.01
	(0)	(0)	(0)	(0.03)
EFAs	0	0	0	0
	(0)	(0)	(0)	(0)
		A	A	
Week	0	8	16	24
Control	0.62	0.64	0.63	0.52
	(0.25)	(0.25)	(0.27)	(0.33)
EFAs	0.62	0.44	0.82	0.67
	(0.26)	(0.41)	(0.12)	(0.14)
		E	PA	
Week	0	8	16	24
Control	0.09	0.02	0.02	0.03
	(0.11)	(0.06)	(0.06)	(0.06)
EFAs	0.14	0	0.02	0

Values are given as % of total EFAs Values in brackets are standard deviations

(0.01) (0)

(0)

0.05

Table 16. Mean values at weeks 0, 8, 16 and 24 for linoleic acid (LA), dihomogammalinolenic acid (DGLA), arachidonic acid (AA) and eicosapentanoic acid (EPA) in plasma phospholipids of two groups of horses during a study of prophylaxis of EFAs in dermatophilosis. Twelve animals received no treatment and 11 received 20g n-3 and n-6 EFAs daily

		L	A		
Week	0	8	16	24	
Control	47.79	47.55	45.71	46.42	
	(4.93)	(4.71)	(2.86)	(4.30)	
EFAs	49.45	49.20	44.71	47.64	
	(3.39)	(2.37)	(3.48)	(4.64)	
		DG	LA		
Week	0	8	16	24	
Control	0.56	0.82	0.87	0.67	
	(0.14)	(0.10)	(0.10)	(0.06)	
EFAs	0.55	0.64	0.78	0.55	
	(0.08)	(0.06)	(0.07)	(0.10)	
		A	A		
Week	0	8	16	24	
Control	1.61	1.89	1.95	1.88	
	(0.30)	(0.32)	(0.29)	(0.30)	
EFAs	1.81	2.04	1.93	1.72	
	(0.31)	(0.37)	(0.36)	(0.32)	
		EI	PA		
Week	0	8	16	24	

Control	0.49	0.60	0.60	0.52
	(0.19)	(0.13)	(0.31)	(0.16)
EFAs	0.56	0.60	0.55	0.56
	(0.15)	(0.17)	(0.21)	(0.15)

Values are given as % of total EFAs Values in brackets are standard deviations controlled study. EFAs were administered over a time period when the risk of dermatophilosis infection was highest, prior to the wet autumn months in the West of Scotland. As in the previous studies, no significant improvement in the condition of the haircoat, mane, tail or hooves was recorded for horses which received n-3 and n-6 EFAs as compared to untreated controls. Changes in haematological or biochemical parameters were attributed to factors such as nutrition rather than to EFA treatment. EFAs were not harmful to these parameters.

EFA values in circulatory fractions of animals which received EFA supplementation did not increase significantly more during the study than those values for animals which received no treatment. Statistically significant differences were recorded over time and between groups for EFAs in red cell phospholipids and in plasma phospholipids. Examination of these differences, however, revealed no specific trends for EFA values between treated and control groups. SECTION 2. THE CHARACTERISTICS OF DERMATOPHILUS CONGOLENSIS IN RELATION TO SITE AND SEVERITY OF LESIONS, LEADING TO INVESTIGATION OF AN EXTRACELLULAR PROTEASE

Introduction

The lifecycle of *Dermatophilus congolensis* begins when a motile zoospore which germinates, settles, loses motility, then swells to form several germ tubes which in turn elongate to form hyphae (Roberts, 1961). As elongation progresses, transverse divisions are established in the oldest part of the hyphae, and there is branching growth. Consequently, areas are divided by new septae, then hyphae divide into cubic arrangements of cocci, often eight cocci wide, by development of longitudinal septae in vertical and horizontal directions. The cocci are thought to move off from the hyphae to form new hyphae or zoospores.

Scanning electron microscopy (SEM) studies of individual colonies of D. congolensis isolated from different animal species revealed that more than one form of the organism could be present in any one colony after 48h culture (Abu-Samra, 1977). Germinating were developed within certain hyphae zoospores and were subsequently released, whilst coccoid forms were produced by budding action from a different type of hyphae. Variation in temperature, nutrition or air supply did not influence germination of coccoid forms, contrary to earlier beliefs. No evidence was found that the coccoid form itself could germinate.

Little is currently known regarding the characteristics of D. congolensis which are relevant to the production and severity of skin lesion in the horse or in other species. A close relationship was found to exist for example amongst equine and bovine isolates culture characteristics, morphology and with regard to but experimental lesions induced in fermentation reactions; rabbits were found to differ (Stableforth, 1937). Dermatophilus lesions in the horse have been considered merely to be of acute or chronic type and of varying severity (Scarnell, 1961).

Serological classification, antibiotic profile and biochemical typing of bovine isolates has proven difficult or impractical (El-Nageh, 1971). Biochemical characters of bovine and donkey strains and their antibiotic sensitivities showed little or no variation (El-Nageh, 1971; Lloyd and Ojo, 1975); and between

fifty-three strains, isolated from lesions in cattle, sheep, goats and horses, only trivial variations were discovered, and these were confined to fermentation tests (Abu-Samra, 1977). In another variability existed in colonial morphology, and within a study. strain variations were evident which were independent of the original host (Gordon, 1964). Antigenic relationship has been proven in bovine strains by direct tube agglutination and bv fluorescent antibody test (El-Nageh, 1971) and clear antigenic differences were recorded between strains infecting the domestic donkey: five different serological groups were identified (Lloyd and Ojo, 1975). The most obvious variations between D. congolensis strains have been claimed to occur in pigmentation of colonies and proteolytic ability, but these differences could not in be correlated with host species and were sometimes noted among variants of a given isolate (Gordon, 1964).

The subtyping of strains using molecular techniques such as investigation of protein profiles by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) has not, as far as be determined, been attempted for *D. congolensis*. It was can thought that such techniques might allow discrimination between isolated from separate lesions on the same or different strains animals. By application of these methods, correlation was thought possible between subgroups of D. congolensis with size, type, severity, distribution and persistence of lesions in the horse.

The bacterial characteristics of *D. congolensis* relating to virulence are not currently understood, and the factors underlying severity of infection in certain regions are particularly obscure (Davis, 1984).

Similarly, the properties of *D. congolensis* responsible for invasion of the epidermis are not known. Penetration of the stratum corneum and epidermal invasion by the organism induces an acute inflammatory response, considered by some to be nonspecific (Roberts, 1965), with neutrophil accumulation, accelerated keratinisation and epidermal proliferation immediately below the inflamed region. *Dermatophilus* is not considered likely to penetrate the barrier formed by neutrophils but, in the early

stages of infection the newly formed epidermis is colonised by extension from adjacent infected sites. Repetition of the process results in the formation of a laminated scab composed of alternate layers of infected epidermis and cellular exudate (Roberts, 1965; Oduye, 1976). Invasion stops and healing commences over a varying time span, which is dependent on previous exposure to Dermatophilus (Roberts, 1966). It has been hypothesised that D. congolensis can be eliminated from normal skin but if the elimination processes are inhibited, then the lesion becomes chronic (Davis and Philpott, 1980). Elimination of D. congolensis from skin may, for example, be inhibited at the site of a delayed hypersensitivity reaction, type induced by hapten either introduced in arthropod saliva at the site of an insect or tick bite or by experimental application of contact sensitizing agents. Moisture and skin injuries have been proposed to predispose to dermatophilosis (Roberts, 1967a), but the severe, generalised field condition has not been produced experimentally, even by introducing large inocula and causing simultaneous mechanical skin damage. This is thought by some authors to indicate the secondary importance of transmission and inoculation factors (Lloyd, 1984). to highlight the importance of factors that reduce skin and resistance or augment infective challenge in pathogenesis of the disease (Davis, 1984).

Few microorganisms are able to penetrate the intact epidermal barrier. The virulence of those that are capable of invading the skin, the dermatophyte fungi, is influenced by the production of proteolytic enzymes, keratinase, collagenase and elastase (Biberstein, 1990). Most D. congolensis isolates from cattle were found to be strongly proteolytic in vitro, with proteolytic properties varying between strains (Gordon, 1964). Intense necrosis of the skin, induced when rabbits were experimentally infected with D. congolensis (Makinde, 1979), suggested the presence of a responsible factor contained intracellularly and/or within crude whole cell fractions of the organism. The presence of such a factor, if it exists, would contest previous belief that D. congolensis produces no toxin (Roberts, 1967a), and that the inflammatory response was a consequence of products of cellular damage diffusing from the infected epidermis (Roberts, 1967a).

The production of such a factor, toxin or enzyme would be of great importance to the understanding of pathogenesis of the disease. Purification of the various antigenic components of D. congolensis was described as the method most likely to extend knowledge of immune responses to the crude *D. congolensis* antigens and would contribute to the understanding of the pathogenesis and control of the disease in horses and in other species. It might also highlight the most appropriate direction for diagnostic serology for herds and for vaccination (Makinde and Wilkie, 1979). Failure to demonstrate such a factor would be an equally significant finding, as it would suggest that the disease is seen as a result of host reaction, such as hypersensitivity or inflammation, to the presence of the bacterium itself.

In the present study, *D. congolensis* lesions in the horse were examined clinically and bacteriologically. The characteristics of the lesions were recorded, together with bacteriological characters of the strain isolated. Bacteria were examined using SDS-PAGE. The results of clinical examination were correlated with the analytical data in an effort to determine whether different strains were responsible for different types of lesion.

In addition to differentiation of *D. congolensis* isolates, the other aim of the study was to examine *D. congolensis* for production of keratinase and other protease activity which may be involved in the determination of virulence of the organism.

Materials and Methods

Isolation and Growth of Bacteria

Scab material from clinical lesions of *D. congolensis* was soaked in physiological saline overnight at $4\circ$ C and inoculated on to selective medium, composed of blood agar base No.2 (Oxoid) with 7% horse blood and 1,000 IU/ml polymixin B sulphate added, according to the method of Abu-Samra (1977), and incubated aerobically for 48h at 37°C. Individual colonies of isolates were subcultured from selective agar onto 5% sheep blood agar and incubated aerobically for 48h at 37°C. Isolates were preserved by freeze-drying, by inoculation onto Dorset Egg slopes, and by weekly subculture on sheep blood agar. Confirmation of the organism's presence was by examination of smears of soaked scab or paintbrush lesions stained by Giemsa. Subcultured colonies were suspended in saline and stained by the method of Gram for examination.

Preparation of Culture Supernatant

A single colony of *D. congolensis* was inoculated from sheep blood agar into 5 ml Brain Heart Infusion (BHI) broth (Oxoid) in a culture tube. Broths were slope incubated aerobically at $37 \circ C$ in a Gallenkamp Orbital Incubator at 150 r.p.m. for 48h, centrifuged in a microfuge (3 x 10 sec spins) at high speed, rotating between spins to ensure complete pelletisation, and supernatant drawn off.

Determination and correlation of clinical and bacteriological characteristics of *D. congolensis* isolates obtained from field material

Scab and paintbrush lesion material was collected from field cases of D. congolensis infection. Where lesions were swabbed, material was collected in Ames Transport medium. D. congolensis organisms were isolated as described above. A clinical index was assigned to each infected animal on a 0 to 10 scale, detailed in the general Materials and Methods section. The index described the severity of the dermatophilosis lesions. A score of 0 indicated the absence of infection and a score of 10 indicated the most severe infection. Bacteriological characteristics of growth of polymixin B sulphate selective medium, sheep blood isolates on (5%) agar, horse blood (5%) agar, chocolate agar and in BHI broth, including presence of haemolysis and pitting of agar by colonies, were recorded after standard incubation for 48h at 37°C.

Enzyme Assays Using Protein Substrates

Keratinase

Keratin degradation was assayed initially by the method of Das and Banerjee (1982). The reaction mixture contained 0.056 M phosphate buffer, pH 7.2, 2.6 ml; hair fragments, 10 mg; and culture filtrate, 0.4 ml. It was incubated at $37\circ$ C for 1h and the reaction terminated by the addition of 3 ml of 0.612 M trichloroacetic acid

(TCA) and immediate chilling to $0 \circ C$ for 30 mins. The solution was then filtered using Whatman filter paper (size 3, 9 cm). The optical density of the clear filtrate was measured at 280 nm, against water as the colorimetric blank, on a Beckman DU-64 spectrophotometer. For the reaction blank, TCA was added before the enzyme source. The assay was run in duplicate, and each absorbance measurement was the average of three readings.

Keratin degradation was then assayed by an alternative method (Apodaca and McKerrow, 1990) using keratin azure (Sigma), a dyed wool product, as substrate. 900 μ l purified culture supernatant [prepared by polyethylene glycol (PEG) (20,000 Carbowax) concentration followed by ion exchange chromatography as described below] were incubated with 5 mg of keratin azure in 100 μ] of 1 M glycine-NaOH, pH 7.0, 10 mM CaCl₂ buffer for 48 h at 37°C. Final reaction volume was 1 ml. A duplicate set of samples were prepared, with 5 mM mercaptoethanol added as a reducing agent. Following incubation the reaction was spun in a microfuge for 5 minutes. The degradation of keratin azure by enzyme present in measured culture supernatant was by determining, by spectrophotometer, the change in A_{595} of the supernatant pre- and post-incubation. Results were compared to controls, containing uninoculated broth.

Collagenase, Elastase, Gelatinase and Caseinase Assays were performed by the method of Conlan, Baskerville and Ashworth (1986). Collagenase and elastase activities were assayed by incubation at 37°C of 100 μ l test solution with 20 mg of the appropriate dye-impregnated substrate in 5 ml 0.05 M-phosphate Azocoll (Sigma) was used as substrate for buffer pH 7.0. collagenase and Elastin-Congo Red (Sigma) was used for elastase activity. Gelatinase activity was detected using gelatin incorporated into agar [0.25% (w/v) gelatin (Difco), 1.0% (w/v) agar, 0.001% NaN₃ in 0.2 M-Tris/HCl pH 7.2]. Molten gelatin-agar was poured into 12 cm Petri dishes, test materials (50 μ l volumes) were placed in wells (7 mm diameter) cut in the solidified medium and the dishes were incubated for 16 h at 37°C. The gels were then treated with a solution of 15% (w/v) ${\rm HgCl}_2$ in 2 M-HCl, causing the gelatin-agar to become milky white except for clear zones where

proteolysis had occurred. Caseinate-precipitating activity (caseinase) was measured by a similar method using a medium containing 1.0% sodium caseinate (Difco), 1.0% agar and 0.001% NaN₃ in 50 mM-phosphate buffer pH 6.2. 40 μ l of culture supernatant was inoculated into each test well. After incubation caseinase activity, evident as a zone of precipitate around positive wells without any treatment of the medium, was quantified by measuring the precipitation zone area in mm².

Stability of Protease to Heat and Cold

Aliquots of *D. congolensis* broth culture supernatants, 0.5ml volume, were held at 56°C in a waterbath, at 100°C in a steamer, and at 0°C on ice for 15 mins. 0.5ml aliquots of broth culture supernatants were stored at 4°C for one month and at -20°C for 3 months.

Neutralisation of Protease Activity

Broth culture supernatants from *D. congolensis* isolates were incubated with one tenth volume of test serum (180 μ l supernatant and 20 μ l serum) and held on ice at 0°C for lh. Test sera were obtained from a calf showing very severe, generalised dermatophilosis of dermatophilosis index (DI) of 10; and from two *Dermatophilus* infected horses, DI of 4. Sera were diluted by two-fold serial dilution to 1:256. Caseinase activity was examined immediately after incubation and compared to control neonatal calf serum.

The IgG fraction of serum from *Dermatophilus* infected animals was separated by the method of Harlow and Lane (1988). One volume of serum was diluted in 2 volumes 0.06M sodium acetate buffer, pH 4.0, and mixed vigorously. 7.5ml N-octanoic acid (BDH 41021) were added per 100ml serum volume slowly and left to mix for 30 mins at room temperature, then filtered through grade 4 filter paper and dialysed overnight against 0.154M NaCl.

Sodium dodecyl sulphate (SDS) polyacrylamide gel electrophoresis (PAGE)

Preparation of Samples One ml aliquots of broth culture were centrifuged to provide pellets. Ten mg lysozyme were mixed with 1 ml 100 mM Tris-HCl buffer, pH 8.0, and a 1:10 dilution made. 2.5 μ l of this solution was mixed with pellet resuspended in 100 μ l 100 mM Tris-HCl buffer, pH 8.0, and incubated at room temperature for 15 mins. One half volume sample buffer was added and the mixture was heated to 100°C for 15 mins prior to examination by SDS-PAGE.

SDS-PAGE

SDS-Page was performed using the BRL V16 Vertical Gel Electrophoresis Apparatus for discontinuous buffer system, by the method of Rycroft and Taylor (1987). The separating gel consisted 12.5% (w/v) acrylamide (acrylamide/bisacrylamide ratio, 75:1) of in 0.37 M Tris hydrochloride (pH 8.7), 0.1% w/v SDS. The stacking gel consisted of 5% w/v acrylamide (acrylamide/bisacrylamide 36:1) in 125 mM Tris hydrochloride (pH 6.9), 0.1% SDS. ratio. Supernatant was added to one half volume sample buffer, which was 60 mM Tris hydrochloride, 10% v/v glycerol, 2% w/v SDS, 5% v/v mercaptoethanol and electrophoresed at 25 mA for approx. 200 mins 25 mM Tris-192 mM glycine (pH 8.3). 35 μ l samples of culture in supernatant were loaded per well.

Proteins were visualised by fixing and staining with 0.25% w/v Coomassie Brilliant Blue stain (Sigma) in 50% water-40% methanol-10% acetic acid overnight at 37°C followed by destaining in the same solvent for 24h at 37°C, or overnight, agitated, at 4°C.

Molecular Weight Markers

High molecular weight markers (Sigma) were dissolved in 192 mM Tris Glycine buffer, pH 8.3, according to the manufacturer's instructions. One ul lysozyme (5 mg/ml) and 4 μ l trypsin inhibitor (5 mg/ml) were added to 5 μ l markers to increase the range of the markers. The marker mixture was then dissolved in sample buffer to 30 μ l volume.

SDS-Gelatin PAGE

Preparation of Samples

One ml aliquots of *D.congolensis* broth culture fluid were centrifuged to provide pellets, which were subjected to 3

freeze-thaw cycles at -70°C, and mixed with 100 μ l sample buffer [1.8 ml 1 M Tris-HCl buffer pH 6.8; 3 ml 20% SDS; 3 ml glycerol; 1.5 ml mercaptoethanol; 0.001% BP; 0.7 ml water]. Culture supernatants were mixed with half volume (200 μ l supernatant: 100 μ l sample buffer) sample buffer.

SDS-PAGE

For separation and analysis of gelatinase activity two systems were used, the BioRad Minigel Electrophoresis Apparatus and BRL V16 Vertical Gel Electrophoresis Apparatus for discontinuous buffer system.

Minigel Apparatus

Electrophoresis when using the Minigel apparatus was performed by the method of Hames (1981). Stacking gel consisted of 2.5% (w/v) acrylamide, (acrylamide-bisacrylamide ratio, 30:0.8) in 0.5 M Tris-HCl buffer, pH 6.8, 5 ml stacking gel buffer stock; 0.2 ml 10% SDS; 1 ml 1.5% ammonium persulphate; 11.3 ml distilled water; 0.015 m] TEMED. Separating gel consisted of 7.5% (w/v) acrylamide, (acrylamide-bisacrylamide ratio, 30:0.8) in 3 M Tris-HCl buffer, 3.75 ml resolving gel buffer stock; 0.3 ml 10% SDS; pH 8.8. 1.5 m] 1.5% ammonium persulphate; 13.95 m] distilled water; 3 m] 2% gelatin solution and 0.015 ml TEMED. Culture supernatant was added to one half volume sample buffer and electrophoresis was performed at 150 V for 45 mins in 0.25 M Tris, 1.92 M glycine buffer, pH 8.3, with 1% SDS added.

V16 Vertical Gel Electrophoresis Apparatus When using BRL V16 apparatus SDS-PAGE was performed as described above with modification in the form of 10% separating gel with incorporation of 2% gelatin.

After SDS-gelatin PAGE, gels were washed in 2.5% Triton X-100 solution in 0.1M Tris-HCl buffer, pH 7.0, for 1h at $37\circ$ C in a waterbath, then incubated for 1h at $37\circ$ C in 0.1M sodium acetate buffer, pH 6.0. Proteins were visualised by staining as previously described.

SDS-PAGE Analysis of Caseinase Activity

Culture supernatant of D. congolensis isolate, Dc1. was concentrated, by dialysis against polyethylene glycol (PEG) (20,000 Carbowax) for 6h at 4°C, and purified by DEAE-Sepharose ion exchange chromatography (detailed below). Eluted caseinase-active fractions were separated by SDS-gelatin PAGE and compared to unconcentrated samples of culture supernatant of the same isolate. Samples were not heated prior to SDS-PAGE. The resultant gel was washed in 0.1M phosphate buffer, pH 6.0, for 30 mins, agitated, and overlaid with 100ml of test caseinate agar and incubated overnight at 37°C.

Western or Immunoblotting

Immunoblotting was carried out by the method of Rycroft and Taylor (1987).Gels were washed in 25 mM Tris, 192 mM glycine, pH 8.3. for 20 mins at room temperature. Proteins were transferred to nitrocellulose membrane in a Trans Blot apparatus (Bio-Rad) in 25 mM Tris, 192 mM glycine overnight at 0.15A, 22V at 4°C. Membrane then agitated gently in 10% skimmed milk powder and 0.02% was sodium azide in TNT buffer: 10mM Tris-HCl; 0.15M NaCl; 0.05% Tween pH 8.0, for 1h at 4°C. Washing (3 x 5 mins) in TNT buffer was 20. carried out before detection of antigen by incubation with 1:200 dilution of serum from a Dermatophilus infected calf in TNT buffer with 5% skimmed milk powder overnight at $4\circ$ C. The membrane was then washed (3 x 5 mins in TNT buffer) before antigen was detected by enzyme linked immunosorbent assay (ELISA) involving incubation 1h at 4°C with 1:2000 solution of rabbit anti-bovine IgG for horseradish peroxidase conjugate (HRP), (Sigma), in TNT buffer with 5% skimmed milk powder added. Washing (5 mins in TNT buffer, 5 mins in TNT buffer without Tween 20) preceded then 2 x localization and visualization of bound conjugate using 0.05% w/v 4-chloro-1-naphthol, 4.4 mM H₂O₂ in 16% methanol, 10 mM Tris hydrochloride (pH 8.0), 150 mM NaCl.

The procedure was repeated using a 1:100 dilution of serum from a *Dermatophilus* infected horse and detection of antigen was by a 1:100 solution of rabbit anti-horse IgG horseradish peroxidase (Sigma). The gel was blotted at 100V for 90 mins at 4°C.

Protease Inhibition Experiments

The following inhibitors were used at concentrations given below.

Antipain (Sigma); stock solution 10 mM in water; effective concentration 100 μ M.

Bestatin (Sigma); stock solution 1 mM in methanol; effective concentration 10 μ M.

Chymostatin (Sigma); stock solution 10 mM in dimethyl sulphoxide (DMSO); effective concentration 100 μ M.

3,4-dichloroisocoumarin (3,4-DCI), (Sigma); stock solution 10 mM in DMSO; effective concentration 100 μ M.

Ethylenediaminetetraacetic acid (EDTA); stock solution 0.5 M in water, effective concentration 10 mM solution made up in 0.1 M phosphate buffer, pH 7.0.

Iodoacetic Acid (IAA) (Sigma); Stock solution 10 mM in water; effective concentration 100 uM in 0.1 M phosphate buffer, pH 7.0.

Leupeptin (Sigma); Stock solution 10 mM in water; effective concentration 100 μ M in 0.1 M phosphate buffer, pH 7.0.

Pepstatin A (Sigma); stock solution 1 mM in methanol; effective concentration 1 μ M solution made up in 0.1 M phosphate buffer, pH 7.0.

1,10-Phenanthroline (Sigma); stock solution 200 mM in methanol; effective concentration 10 mM.

Phenylmethanesulphonyl fluoride (PMSF), (Sigma); stock solution 200 mM in methanol; effective concentration 1 mM.

Tosyl lysyl chloromethyl ketone (TLCK), (Sigma); stock solution 10 mM in 1 mM HCl, pH 3.0. Effective concentration 100 μ M.

Tosyl phenylalanyl chloromethyl ketone (TPCK), (Sigma); stock

solution 10 mM in methanol, effective concentration 100 μ M.

Control was equivalent volume of the respective solvent, e.g. water, methanol or DMSO, without inhibitor added. Stock solutions were made up according to the method of Beynon and Salvesen (1989).

SDS-gelatin PAGE was routinely performed using the Minigel apparatus. A pooled sample of *D. congolensis* isolate culture pellets was examined. The gel was washed in 2.5% Triton X-100 solution in 0.1 M Tris-glycine buffer, pH 7.0, for 1h, then cut into five identical sections, each incubated with a specific protease inhibitor for 4h in a waterbath at 37°C alongside a control, containing no inhibitor. Gel sections were stained and destained as previously described. Gel sections treated with inhibitors were compared to the untreated control. Positive inhibition was indicated by loss of the negatively-staining band of gelatinase activity as compared to the untreated control. Dithiothreitol (DTT), a reducing agent which activates cysteine proteases, was added to inhibitors at 1mM concentration in one experiment.

Inhibitors above were added to culture supernatants of *D.* congolensis at working concentrations according to Beynon and Salvesen (1989). Duplicate experiments were performed, one where the supernatant-inhibitor solution was loaded into wells in caseinase test agar incubated to 37° C, and a second where the agar was at room temperature. 40 μ l of sample were loaded into each well. Controls contained equivalent volume of appropriate inhibitor solvent, with no inhibitor present.

Molecular Exclusion Chromatography

D. congolensis culture fluid was centrifuged at 12,000 rpm for 20 mins using a JA 20 rotor, and supernatant filtered (0.45 μ m filter, Sartorius). Approx. 75 ml culture filtrate was transferred into visking tubing and dialysed against PEG. A Sephacryl S300 column (16mm internal diameter, 40 cm long) was poured and equilibrated with Tris:NaCl:EDTA buffer, (10:150:0.1), pH 7.2. One ml concentrated supernatant was loaded onto the column and eluted

with the same buffer, and one ml fractions were collected.

Ion Exchange Chromatography

A DEAE-Sepharose CL6B (Pharmacia) column (16mm internal diameter, 20cm long) was poured and equilibrated with Tris-EDTA buffer (10mM:1mM), pH 7.2. The sample was loaded on to the column in Tris-EDTA buffer and was eluted with 40 ml of a 0 to 500 mM NaCl linear gradient using a BRL Gradient Former GA 1080.

Results and Discussion

Isolation of Bacteria

D. congolensis isolates were identified on selective polymixin B medium after 48h aerobic incubation at sulphate 37°C as approximately 2 mm diameter, beta-haemolytic, grey-white to colonies which often embedded deeply into the vellowish agar. Colonial morphology varied between isolates, as described by other authors (Gordon, 1964; El-Nageh, 1971; Lloyd and Ojo, 1975: Abu-Samra, 1977). The appearance of successive colonies altered. After repeated subculture on solid medium the colonies became smoother and smoother, confirming previous work (Gordon, 1964). Diverse forms of the organism had also been reported on different media, under varying conditions, and from one time to another, and even on the same agar plate (Gordon, 1964). Growth was evident after inoculation from selective medium on to sheep blood agar as beta-haemolytic grey-fawn coloured colonies approx. 2mm diameter, after 48h aerobic incubation at 37°C. In contrast to results of Abu-Samra (1977), greater expression of haemolysis was seen on sheep blood agar than on horse blood agar, so this medium was adopted for subcultures.

Optimisation of Growth Conditions

Optimal liquid medium for growth; optimal incubation type, static or orbiting, which provided aeration; and optimal length of incubation were sought for *D. congolensis* isolates. The isolates examined in this area part of the study and their sources are

described in Table 15. Isolates examined were isolate 2, which originated from a swab of a dorsal lesion; isolate 15, which originated from a dorsal scab lesion; and isolate Dur, recovered from a paintbrush lesion of the lower hindlimbs. Three months after isolate 15 was found, isolate Dur was identified from a lesion at a different site on the same horse.

Growth characters of isolates were recorded in broths of varying nutrition, which in general order of increasing nutritional value were L-broth (SOB); Nutrient Broth (MIB); Tryptone Soya Broth (TSB); Blood Agar Broth (BAB) and Brain Heart Infusion (BHI) Broth. Characters were recorded at different stages in the growth cycle, at 3.5h, 20h and 44h.

No visible growth, turbidity of the broth or enlargement of inoculated colonies, were found for any isolate after 3.5 h static or orbiting incubation in any medium. Growth was evident after 20 h for isolate 15 but was sparse for isolate Dur and isolate 2. Most profuse growth was seen for each isolate after 44h, and growth was not affected by aeration.

The type of medium affected growth of isolates. Poor growth for a]] isolates on nutrient broth, was discovered in contrast to findings of Abu-Samra (1977), but confirmed those of Roberts (1961). The latter author believed that in nutritionally poor medium zoospores did not germinate or that mycelia failed to complete the lengthy, complex growth cycle, and died before new zoospores were produced. No growth of any isolate was seen on TSB at 20 h, and colonies which grew by 44 h were hard and leathery, as found by Abu-Samra (1977). Growth was more prolific in SOB and and was optimal in BHI broth. Isolate 15 grew more profusely BAB. than other isolates, while growth of isolate 2 was sparse, and adherent to the inoculated colony.

Table 15. Clinical details of dermatophilosis lesions and differential bacteriological growth characteristics of D. congolensis isolates

solate	Animal	Species	Derm Index	Lesion site	Cl inical description	Growth in BHI broth	Haem PM	ol ys'	is Bar	pl i t CA	Pa Ba	s8 SB	₽ ₩
ć1	Pollux	ш	-	н	Paintbrush	T,F	+	+		•	+	+	+
22	Elspeth	w	-	Н	Scab	T,F	+	+	,	•	+	+	+
	Jili	ш	~	٥	Scab, pus	. 	1	t	ŧ	•	•	•	•
	Jill	w	~	(MS) (Scab, pus	T,F	+	t	,	•	+	+	+
	Lily	ш	~	0	Scab, pus		+	t	,	+	+	+	+
	Lily	ш	2	(MS) (Scab, pus	Τ, F	+	t		•	+	+	+
2	Durando	ш	4	a	Scab, pus, pain	T,F	+	+	,	•	+	+	+
6	Durando	ш	4	н	Scab	Ŀ	•	+		,	•		+
4	Choppy	ш	-	٩	Paintbrush	+ +	•	,	,	•	+	+	+
<u>o</u> .	Jeeves	ш	-	۵	Paintbrush	++1	+			•	+	Ŧ	+
0	fella	ш	-	٩	Paintbrush	ŧ	•			ŧ	₽	4	+
3	Rose	ш	-	Ŧ	Scab	-	+	±	ŧ	‡	+	+	+
10578	Equine	ш	-	土	Paintbrush	Τ, Ε	•				•	•	+
'n	Durando	w	-	HL	Paintbrush	Т, F	‡			+	+	+	+
10058	Calf	8	10	5	Scab, pain, cellulitis	۲	+	t		•	÷	₽	+

E = Equine HL = Lower Hindlimb (sw) = swab Derm Index = dermatophilosis index
B = Bovine D = Dorsum G = generalised PM = Polymixin B sulphate selective medium
HB = Horse blood agar SB = Sheep blood agar CA = Chocolate agar
T = Turbid growth F = Flocular growth I,F = Turbid growth with flocules
t = Mild ++ = Moderate +++ = Strong P = Piling of colonies on agar. Key:

· 1. 小小小 一般的个情绪。

Differential Characteristics of *D. congolensis* Isolates Obtained From Field Material

Infective material was collected from field cases of *D.* congolensis infection. The severity of infection varied from animal to animal, and several cases were sampled from different sites on the body. Correlation of bacteriological and clinical characteristics of isolates with site and pathogenicity of lesions was attempted; a bovine isolate was compared to 14 equine isolates. Relationships between protein profiles of isolates, obtained by SDS-PAGE, were sought.

The presence of D. congolensis isolates in infective material was confirmed by fixing smears of saline-soaked scab or paintbrush material and staining by Giemsa. Characteristic "railroad tracks" were seen in positive smears, budding hyphal forms and packets of Gram-positive cocci, often 4 to 6 wide, dividing transversely and longitudinally. Subcultured colonies were confirmed positive by the of budding hyphae presence and transverselyand longitudinally-dividing groups of cocci, visualised by Gram stain. Correlation between clinical dermatophilosis indices and differential bacteriological growth characters of isolates was attempted. It was seen from the results presented in Table 15 that field isolates showed identical bacteriological no two although clinical lesions characteristics. were similar. Differential bacterial growth characters of isolates were not species-specific. Clinical severity of infection could not be correlated with bacteriological growth characteristics.

Protein profiles of *D. congolensis* whole solubilised bacteria by SDS-PAGE were found to be very diverse, Figure 15. Although relationships could be detected between isolates, definite correlations could not be made.

Search for Protease Activity in D. congolensis Isolates

D. congolensis strains examined by Gordon (1964) were found to be strongly proteolytic *in vitro*, and proteolytic properties varied among strains and could not be correlated with host species. In this study protease activity, in the forms of keratinase, collagenase, elastase, caseinase and gelatinase, was sought.

Figure 15. Whole cell protein profiles of *D. congolensis* by SDS-PAGE. From left to right, isolates 1, 8, 24, 29, 30, 34, 110058 (bovine isolate), 110578, S1 and S2 (molecular weight standards)

Culture supernatants of isolates Dur and Dc2 were examined for ability to degrade keratin, using hair fragments as substrate. Keratinase activity was measured by recording absorbance at 280 nm before and after incubation of culture supernatant with hair. Background absorbance at 280 nm, which was initially too high to allow interpretation of results, originated from 280 nm absorbing components in the BHI broth.

In an attempt to reduce this background absorbance, isolates were inoculated onto synthetic medium, M9, with casamino acids incorporated, but failed to grow. Cell free culture supernatants of isolates were then concentrated by dialysis against PEG, and by Lyphogel (Gelman), (polyacrylamide beads used to concentrate high molecular weight components of solutions) to remove low molecular weight 280 nm absorbing material. Supernatants were then fractionated by Sephadex chromatography. Eluted fractions were examined for caseinase activity and caseinase-positive fractions were assayed for keratinase activity; results are presented in
 Table
 16.
 Although reduction in background absorbance at 280
 nm was achieved, allowing distinction of samples from controls, absorbance readings did not increase measureably after incubation with substrate.

Hair substrate was washed six times in acetone prior to the assay in order to remove lipids. Washing in detergent, and a combination of washing in detergent followed by washing in acetone was also tried, but the method of treatment of hair did not influence results.

Different buffers were tried for the assay, 75 mM sodium acetate buffer, pH 4.0; and 50 mM Tris buffer, pH 7.2, were substituted for phosphate buffer, but buffer type did not influence results.

When this initial assay and attempted modifications failed to detect keratinase activity, isolates Dur and Dcl were examined by an alternative method, using keratin azure as substrate. The effect of the presence of the reducing agent mercaptoethanol, included to facilitate hydrolysis of disulphide bonds, was also

Table 16. Change in absorbance values at 280 nm of culture supernatants of *D. congolensis* isolates after incubation with hair substrate in a search for keratinase activity.

Absorbance at 280 nm

Stage of ex	periment	to	t ₆₀	t_{TCA}	Change	
Sample						
Isolate Dur	PEG	0.129	0.1	132	0.130	0.001
	Lyphogel	0.099	0.1	12	0.147	0.048
Isolate Dc2	PEG	0.171	0.1	79	0.171	0
	Lyphoge1	0.110	0.1	08	0.139	0.029
Control		0.068	0.0)69	0.079	0.011

Key:

 $t_0 = \text{preincubation}$ $t_{60} = \text{after 1h incubation with substrate}$ $t_{TCA} = \text{termination of experiment by trichloroacetic acid}$ PEG = Culture supernatant concentrated by polyethylene glycol Lyphogel = Culture supernatant concentrated by LyphogelControl contained no enzyme source investigated. Results of absorbance readings, at 595nm, of reaction mixtures, pre- and post-incubation, are presented in Table 17.

Post incubation absorbance values were not significantly higher than pre-incubation values for either isolate when compared with control which contained no enzyme source. The presence of mercaptoethanol did not influence results.

When keratinase activity was not detected, alternative protease assays were attempted. No collagenase or elastase activity was detected for the isolates examined.

The rate of gelatin liquefaction varied among isolates, as found in previous work by Gordon (1964). Liquefaction was seen after 2 days for isolate F2, after 5 days for isolates 15, Dc1, Dc2, F1 and F2, after 7 days for isolates Dur and 7915; and gelatin was not liquefied by isolate 5175.

Expression of caseinase and gelatinase activity was investigated after growth of isolates in different media. The caseinateprecipitating activity detected by the test caseinate agar was equated with, and is therefore described as, caseinase in this work. Caseinase activity was greater when isolates were grown in broth, than when grown in BAB or SOB; BHI and no caseinase activity was detected after growth in TSB. Activity was greater after 44 h than after 20 h. Static and orbiting (aerated) incubation of isolates led to production of similar amounts of caseinase activity. No caseinase activity was detected for isolate and no gelatinase activity was detected for any isolate. The 2, caseinase assay is shown in Figure 16.

D. congolensis isolate cultures were monitored over a period of 8 days as they were incubating. Culture fluid was repeatedly examined microscopically, and at each time point was tested for caseinase production. Similar patterns of growth were found for the isolates examined. Growth of isolates was first detected in culture fluid after 4 h incubation, as ensheathed cocci, and caseinase activity was first detected from isolates after hyphal

Table 17. Change in absorbance values at 595nm of culture supernatants of *D. congolensis* isolates after incubation with keratin azure substrate in a search for keratinase activity.

Absorbance at 595 nm

Stage of experiment	to	t _{24h}	change
Sample			
Dur	0.176	0.887	0.711
Dc1	0.266	0.545	0.284
Control	0.110	0.574	0.464
Dur + M	0.188	0.548	0.360
Dcl + M	0.194	0.408	0.214
Control + M	0.080	0.749	0.669

Key: t_0 = preincubation t_{24h} = post 24-hour incubation with substrate Control = uninoculated BHI broth, buffer and substrate M = 5 mM mercaptoethanol present in sample

Samples contained 900 μ l culture supernatant, 100 μ l 1 M glycine-NaOH buffer, pH 9.0, and 10 mM CaCl₂, and 5 mg keratin azure substrate

Figure 16. The caseinase assay, with demonstration of positive activity, a milky zone of caseinate precipitation around the test well, e.g., well C, upper right of centre.

elements were seen in the culture fluid, at 22 h. Caseinase production did not intensify beyond 46h for isolate Dur or beyond day 4 for isolate 15.

In a previous study (Lloyd and Ojo, 1975), an equine *D.* congolensis isolate, five bovine isolates, an ovine isolate, and seven donkey isolates, all from Nigeria, decomposed casein, when tested on casein agar. Gordon (1964) examined 17 strains of *D.* congolensis originating in skin lesions of cattle, sheep, horses, deer and man, and found that only two strains failed to hydrolyze casein, all others cleared casein agar.

No correlation existed between lesion severity and the amount of caseinase activity produced by the causative organism, as the results in Table 18 demonstrate. Isolates recovered from animals with the highest dermatophilosis indices, i.e., the most severe infections, did not produce the greatest caseinate precipitation zone areas. Isolates Dc2 and 15, for example, produced identical precipitation zones, but clinical dermatophilosis indices of the animals of origin were very different, 1 and 4, respectively.

Characterisation of Caseinase Activity of *D. congolensis* Culture Supernatants

Quantification of Protease in Culture Supernatant Culture supernatants of *D. congolensis* isolates were diluted using two-fold serial dilutions and caseinase activity of the dilutions was measured. An inverse relationship was found to exist between caseinase activity (measured by area of the zone of caseinase precipitation in the test agar) and dilution of supernatant. This allowed relation of precipitation zone size to the quantity of the protease enzyme.

Stability of the Protease to Heat and Cold The stability of caseinase activity of *D. congolensis* isolates was investigated under conditions of extreme heat and cold. Determination of the protease stability was thought necessary to ensure that enzyme activity was not lost under laboratory conditions.

Table 18. Comparison of clinical dermatophilosis index with ability of the causative isolate to produce caseinase activity *in vitro*

Isolate	Date of isolation	Clinical description of lesion of origin	Derm Index	Caseinase Activity
Lower h	indlimb lesi	ons		
Dc1	5.9.88	Paintbrush lesions	2	67
Dc2	5.9.88	Paintbrush lesions	1	149
Dorsum	lesions			
2	23.2.89	Swab of dorsum lesion Scabs, pus	2	-
15	23.2.89	Scab from dorsum lesion	4	149
		Scabs, pus, pain		
Dur	15.5.89	Scab from dorsum lesion	1	67
		Paintbrush lesions		
F1	20.11.89	Scab from dorsum lesion	3	105

		Scab, paintbrushes, pain		
F2	20.11.89	Scab from dorsum lesion	3	105
		Scab, paintbrushes, pain		

Key:

Derm Index = Clinical Dermatophilosis Index, on a 0 to 10 scale, based on assessment of the severity and extent of distribution of lesions of dermatophilosis. 0 denotes absence of infection, and 10 is the most severe infection

Caseinase activity is given as the area, in mm^2 , of caseinate precipitation

Results shown in Table 19 show that the protease was stable to heating of culture supernatant to $56\circ$ C for 15 mins, but was destroyed by heating culture supernatant to $100\circ$ C for 15 mins. Excepting isolate F2, where activity was reduced, activity was preserved after storage of culture supernatant at $4\circ$ C for one month. All isolates except isolate 15 appeared to show increased caseinase activity after storage at $-20\circ$ C for 3 months.

Search for Antibody to Protease Activity in Serum from D. congolensis Infected Animals

Serum from *D. congolensis* infected animals was examined for the presence of antibody to the caseinase activity found in several *D. congolensis* culture supernatants. Neutralisation of caseinase activity was attempted by incubation of serum from a *Dermatophilus* infected calf and from two infected horses with *D. congolensis* culture supernatant, and comparison of caseinase activity to a control, serum from a newborn calf (Gibco BRL), not exposed to *D. congolensis* infection. Sera from the infected animals reduced the caseinase activity of culture supernatant, but this effect was also seen for the control.

As neutralisation of caseinase activity may have been due to non-specific effects of serum, the experiment was repeated, incubating culture supernatant with IgG fraction of serum from a *Dermatophilus* infected calf, and results were compared to a control which was incubated with neonatal calf serum. Although incubation with the IgG serum fraction did reduce caseinase activity, whole serum and control neonatal serum also had the same effect.

Inactivation of serum from *Dermatophilus* infected animals, by heat treatment of culture supernatant to 56°C for 15 mins, did not alter the ability of serum to reduce caseinase production.

Serum was thus found to have a neutralising effect on the caseinase activity, but this effect was not confined to serum from *D. congolensis* infected animals. These findings were supported by later work in this study, when immunoblotting using serum from *Dermatophilus* infected animals failed to detect specific

Table 19. Effect of heat and cold treatment of culture supernatants on ability of D. congolensis isolates to produce caseinase activity in vitro.

Prior to 4°C -20°C storage 1 week 1 month 1 week 1 month ដ Caseinase activity (area of zone of precipitation in \mathfrak{mr}^2) Ē **Treatment Treatment** absent absent absent absent absent absent < Prior to treatment Equine field isolates Dur Dc2 Dc1 Ξ

,

Notes:

Treatment B = Heating of supernatant to 100°C for 15 minutes Treatment A = Heating of supernatant to 56° C for 15 minutes

antibodies to the protease.

Investigation of Gelatinase Activity of *D. congolensis* by SDS Gelatin-PAGE

In this study, field equine *D. congolensis* isolates 2, 15, Dur, Dcl, Dc2, F1 and F2 previously showed caseinase activity *in vitro*. Isolates 2, and NCTC laboratory isolates 5175 (equine) and 7915 (ovine), had repeatedly failed to demonstrate this activity. Supernatant and solubilised whole cell fractions of isolates were examined for gelatinase activity using SDS gelatin-PAGE, and bands of gelatinase activity of whole cell and supernatant fractions were visualised as negatively-staining areas on the gel, illustrated in Figures 17 and 18.

Gelatinase activity was developed at varying pH: 0.1M sodium acetate buffer of pH 4.0 and of pH 6.0, and 0.1M Tris-HCl buffer of pH 8.0 were used with equally good results. The pH of development buffer was not therefore influential on protein visualisation, and 0.1M sodium acetate buffer of pH 6.0 was adopted for further work.

In Figures 17 and 18 no gelatinase band was seen for isolate 2 or for NCTC equine isolate, 5175, or ovine isolate, 7915. Several bands were seen in whole cell fractions, but the most distinct one corresponded to that of the supernatant fraction. Where the band was detected, its position was identical for each isolate, at approximately 110 kD when compared to molecular weight markers on a standard SDS-PAGE gel.

Purification, Separation and Identification of the Protease congolensis culture supernatants were concentrated by PEG D. and fractionated by Sephacryl chromatography. Eluted dialysis fractions were tested for caseinase activity, and active fractions were examined by SDS-PAGE, and compared to molecular weight was inadequate resolution of proteins by markers. There and no specific polypeptide band could electrophoresis be correlated to caseinase activity.

Ion exchange chromatography was used in a further attempt to

Figure 17. SDS gelatin-PAGE of culture supernatant fractions of *D. congolensis*. From left to right, culture supernatants of isolates 2, 15, Dur, Dcl, Dc2, Fl, and F2.

Dur (W) Dur (S) Dc1(W) Dc1(S) 5175 (W) 5175 (S) 5175 (S) Dc2 (W) Dc2 (S) F1(W) F1(S) F1(S) F2 (S) 7915 (S)

Figure 18. SDS gelatin-PAGE of supernatant and whole cell fractions of *D. congolensis*. From left to right, isolate Dur(W), Dur(S), Dc1(W), Dc1(S), 5175(W), 5175(S), Dc2(W), Dc2(S), F1(W), F1(S), F2(W), F2(S), 7915(W), 7915(S). (W) denotes whole cell fraction, and (S) denotes supernatant fraction.

fractionate and identify the protease. Isolate Dur culture supernatant was again separated by molecular exclusion chromatography, and caseinase-producing fractions were pooled and concentrated prior to ion exchange chromatography. Eluted fractions were assayed for caseinase activity, which was found in fractions 20. 21, 22, 23 and 24, with a peak (measured by the area of caseinate precipitation zone) seen in fraction 22. Fractions 20 to 24 were then examined by SDS-PAGE, and compared to the pooled, concentrated sample prior to ion exchange fractionation. Results are shown in Figure 19.

In Figure 19 two distinct, but very faintly-staining polypeptide bands were separated by ion exchange chromatography: one at approximately 55 kD, in fractions 18, 19, 20, 21, 22, 23, 24 and 25; and the other at around 28 kD, evident in fractions 21, 22 and 23.

The same caseinase-active fractions were also examined for gelatinase activity by SDS gelatin-PAGE, shown in Figure 20. A pooled sample of all caseinase-active chromatography fractions was run alongside the individual fractions.

Figure 20 shows the single, distinct band of gelatinase activity present in fractions 20, 21, 22, 23 and 24, and in the pooled sample. The peak of gelatinase activity, the brightest band on the gel, in fraction 22, corresponded with peak caseinase activity. No protein of 110 kD could be found in the ion exchange fractions.

Protease Inhibition Experiments

Protease activity had been detected for several *D. congolensis* isolates. In order to equate gelatinase and caseinase activities, the gelatinase band of approximately 110 kD was cut out of the gel and implanted into caseinate test agar. Caseinase activity was detected.

Figure 19. SDS-PAGE of caseinase-active fractions obtained by ion exchange fractionation of *D. congolensis* culture supernatant. From left to right, concentrated supernatant prior to ion exchange chromatography, (C); fraction number 18; 19; 20; 21; 22; 23; 24; 25; 26; 27; 28; 29; 30; molecular weight marker, (M).

Figure 20. SDS gelatin-PAGE of caseinase-active fractions obtained by ion exchange fractionation of *D. congolensis* culture supernatant. From left to right, fraction number 18; 19; 20; 21; 22; 23; 24; 25; 26; and a pooled, concentrated sample of caseinase-active fractions, (P). In general, classification of protease activity is made on the basis of the amino acid type involved in the active site of the enzyme. Proteases fall into four mechanistic families: the serine, cysteine, aspartic and metallo proteases (Neurath, 1989). Classification has been based on susceptibility to a group of inhibitors; and a recommended set for the initial classification of a newly discovered protease (Dunn, 1989) was employed to try to categorise the protease activity of *D. congolensis*.

Inhibition of Gelatinase Activity on Polyacrylamide Gels Initially, Pepstatin A which inhibits aspartic proteases; EDTA, which inhibits metallo proteases; iodoacetic acid (cysteine proteases) and leupeptin (specific for serine and cysteine proteases), were each incubated with a pooled sample of whole, solubilised bacteria. No inhibition of gelatinase occurred with inhibitors at standard concentrations.

The experiment was repeated using sonicated culture fluid (3 \times 20 sec periods of ultrasound) to further solubilise protein material, and reducing agent dithiothreitol (DTT), an activator of cysteine proteases, was added to reaction mixtures. Still no inhibition occurred.

Inhibition of Caseinase Activity

Protease inhibitors, EDTA, iodoacetic acid, leupeptin and Pepstatin A, and antipain, specific for trypsin-like serine and some cysteine proteases; bestatin, specific for aminopeptidases; chymostatin, specific for chymotrypsin-like serine proteases and some cysteine proteases; 3,4-dichloroisocoumarin (3,4-DCI) (serine 1,10-Phenanthroline (metallo-proteases, proteases); metal-activated proteases); phenylmethanesulphonyl fluoride (PMSF) (all serine proteases); tosyl lysyl chloromethyl ketone (TLCK) proteases) and tosyl phenylalanyl serine (trypsin-like chloromethyl ketone (TPCK) (chymotrypsin-like serine proteases) were incubated with supernatants of isolates Dur, 15 and Dcl. The influence of temperature on the reaction was investigated. Results Table 20 show that no inhibition of protease presented in occurred for any isolate with antipain, bestatin, chymostatin,

Table 20. Inhibition of caseinase production by *D. congolensis* isolates using specific protease inhibitors

% of control area of caseinate precipitation

	Isolate Dur		Isolate 15		Isolate Dcl	
	RT	37°C	RT	37ºC	RT	37ºC
Inhibitor						
Antipain	100	100	100	100	100	100
Bestatin	100	100	100	100	100	100
Chymostatin	100	100	100	100	100	100
3,4-DCI	0	0	81	67	60	0
EDTA	100	100	100	100	100	100
IAA	100	100	100	100	100	100
Leupeptin	100	100	100	100	100	100
Pepstatin	100	100	100	100	100	100
1,10 Phe	100	100	100	100	100	100
PMSF	0	0	40	53	0	0
TLCK	100	100	100	100	100	100
ТРСК	100	100	100	100	100	100

Key:

3,4-DCI = 3,4-dichloroisocoumarin EDTA = Ethylenediaminetetraacetic acid IAA = Iodoacetic acid 1,10-Phe = 1,10-Phenanthroline PMSF = Phenylmethanesulphonyl fluoride TLCK = Tosyl lysyl chloromethyl ketone TPCK = Tosyl phenylalanyl chloromethyl ketone EDTA, IAA, leupeptin, pepstatin A, 1,10-Phenanthroline, TLCK or TPCK. 3,4-DCI inhibited protease activity of isolate Dur at both temperatures, and of isolate Dcl at 37°C only. Reduction of caseinase activity of isolate Dcl by 3,4-DCI occurred at room temperature, and isolate 15 activity was reduced though not abolished at both temperatures. Activity of isolates Dur and Dcl were inhibited by PMSF; and activity of isolate 15 was reduced. Temperature did not influence results significantly.

It was concluded from these results that the protease activity was of the serine classification. The serine proteases form covalent enzyme complexes, and are the most thoroughly studied class of protease enzymes (Dunn, 1989). Examples include pancreatic trypsin, chymotrypsin, elastase and kallikrein (Neurath, 1989).

SDS-PAGE Analysis of Caseinase Activity

PEG concentrated, unheated, culture supernatant of *D. congolensis* isolate, Dcl, was fractionated by ion exchange chromatography. The caseinase-active fractions obtained were examined by SDS-PAGE alongside unconcentrated culture supernatant. The SDS-PAGE gel was run and overlaid with test caseinate agar. Two distinct zones of caseinase protease activity were found on the gel. The larger, predominant zone of activity was seen between approximately 70 and 120 kD. The second, less active zone was easily detected between 20 and 40 kD for the concentrated sample, and was just visible in this position for the unconcentrated sample. These zones of caseinase precipitation are demonstrated on the gel in Figure 21.

Two proteases which showed caseinase activity were thus thought to be produced by *D. congolensis*. One protease, of approximately 110 kD, also demonstrated gelatinase activity. The second caseinase producing protease was of lower molecular weight.

The finding of two zones of caseinase precipitation by SDS-PAGE was thought to invalidate the earlier protease inhibition results, because if two proteases were present, one could mask specific inhibition of the other.

Dc1 Conc

Figure 21. SDS-PAGE analysis of caseinase activity of *D.* congolensis. On the left hand side, concentrated culture supernatant of isolate Dcl, (Dcl Conc); on the right hand side, unconcentrated culture supernatant of isolate Dcl, (Dcl). Immunoblotting Using Serum From D.congolensis Infected Animals

Equine field isolates 2, 15, Dur, Dc1, Dc2, F1 and F2 and laboratory isolates 5175 (equine) and 7915 (ovine) were immunoblotted using serum from a calf suffering from a very generalised dermatophilosis infection, of dermatophilosis severe. index 10. Neonata] calf serum was used as a control. The isolates examined produced similar patterns, with numerous protein bands detected for whole solubilised bacteria and supernatant Blotting with serum from infected animals failed to fractions. highlight particular bands of activity for fractions of isolates examined.

The experiment was modified by PEG concentration and ion exchange fractionation of supernatants of overnight culture of isolates Dur and Dc1 prior to blotting. Eluted fractions were examined for caseinase activity, and the peak fraction for each isolate was selected for immunoblotting: fraction 25 for Dur and fraction 30 for Dc1. The fractions were divided into two aliquots, one was heated to $100 \circ C$ for 5 minutes, and the other was untreated. Overnight broth culture supernatants were used as positive controls. The gel was loaded in duplicate, and each identical half was blotted using serum from a Dermatophilus infected horse. The were both suffering from moderate dermatophilosis horses infections, of dermatophilosis index of 4 in each case. Results of blotting were similar for the isolates examined, no particular band of activity was visualised by the addition of the serum from the infected horses. One of these immunoblots is shown in Figure 22.

Antibody to the protease was not detected in serum from either infected horse in this study. This result was in agreement with earlier work in this study, where it was found that although serum had a neutralising effect on the protease activity, this effect was not specific for serum from *Dermatophilus* infected animals.

Dc1 (H) Dc1 30 (H) Dc1 30 Dur (H) Dur 25 (H) Dur 25

Figure 22. Immunoblot of concentrated supernatant from *D. congolensis* isolates using serum from a *Dermatophilus* infected horse. From left to right, isolate Dc1 [heated to 100°C for 5 mins before loading,(H)], Dc1 30 (H), Dc1 30, Dur (H), Dur 25 (H), Dur 25.

Conclusion

No two D. congolensis isolates examined showed identical characteristics although lesions induced bacteriological by a]] isolates were similar. Clinical severity of lesions could not be correlated with bacteriological growth characteristics of the causative isolate. Similarities were detected between SDS-PAGE protein profiles of seven equine isolates and one bovine isolate. but definite correlations could not be made.

Several but not all of the equine D. congolensis isolates examined produced extracellular protease activity. One protein estimated to approximately 110 kD by SDS-PAGE produced caseinase be and qelatinase activities, and a second, of lower molecular weight. showed caseinase activity. The caseinase activity was stable to cold. The activity was non-specifically inhibited, by serum from Dermatophilus infected horses, and by serum from an infected calf. Immunoblotting studies failed to demonstrate antibody to anv protein species in serum from infected animals.

No keratinase activity was detected using hair or keratin azure as substrate, and no collagenase or elastase production was discovered.

In summary, although similarites existed between the *D.* congolensis isolates examined in this thesis, with regard to differential bacteriological growth characteristics and SDS-PAGE protein profiles, the isolates were all different. Protease activity was produced by some but not all of the isolates, but could not be used as a marker of virulence.

SECTION 3. THE CLINICAL AND HAEMATOLOGICAL CONSEQUENCES OF BLEEDING HORSES AT REGULAR INTERVALS

Introduction

The consequences of bleeding horses in terms of frequency and quantity are a major animal welfare consideration. A situation which offers the opportunity to address this question is where are managed for production of blood products. horses Such an opportunity arose on a farm in the West of Scotland where 200 horses of different breeds were maintained mature and bled at recorded regular intervals thus creating a major database for evaluating the management of this operation in terms of clinical condition, as well as haematological consequences.

The practice of regular, repeated blood harvest arises in horses managed for blood production in a commercial situation. It is therefore not surprising that examination of current and historic literature reveals that details of current practices, and figures regarding incidence and extent to which horses are managed for regular, repeated blood harvest for blood products in the U.K. and Blood harvesting has elsewhere are difficult to obtain. probably. undertaken "in house" been in research institutes and in Universities, Veterinary Investigation Centres and for microbiological culture material for their own use (Home Office Veterinary Inspector, personal communication). Prior to the new Animals (Scientific Procedures) Act of 1986 there was no national requirement to disclose such activities.

As far as can be determined, substantiated guidelines for harvest procedures do not exist, and so the area was considered worthy of detailed monitoring studies. Clinical and haematological data were collected and analysed in an attempt to provide background for guidelines for Home Office regulations on regular, repeated blood collection in horses.

An initial study was designed to obtain an overview of the clinical and haematological effects of repeated, regular blood harvest on a group of animals in the herd, under the existing management regime. This was to be followed by a shorter, more detailed haematological investigation using a smaller number of the horse group. Blood samples were to be collected between two

harvest points in order to follow more closely the recovery pattern of the haematological parameters of these animals. Influence of sex, breed and the length of time in blood production on the recovery pattern were to be monitored.

Materials and Methods

Horses

For the purpose of the initial study a group of 48 horses was monitored. The group comprised 21 mares and 27 geldings. Eighteen animals were Thoroughbreds, 13 were cobs or heavy types, and 17 were crosses of the two, i.e., 30 animals were non-Thoroughbreds. The age of the group ranged from six to 22 years old. Twelve animals were younger than 10 years, 27 were between 10 and 15 years old, and nine were over 15 years of age. Height of animals varied from 15 to 17 hands. Twenty horses were between 15 and 15.3 hands, 21 were between 16 and 16.3 hands, and two animals stood 17 hands tall.

For the subsequent study, 10 of the horses were randomly selected from the group above. Four mares and six geldings were involved, and three animals were Thoroughbreds. Age ranged from nine to 20 years of age. Two animals were younger then 10 years, six were between 10 and 15 years, and two were older than 20 years.

Details of the management of the group, including the harvesting procedure, are provided in the general Materials and Methods section.

Experimental Designs

Experiment 1

initial study regular clinical and haematological In the monitoring was carried out over a period of 16 weeks, which spanned five harvest cycles. Clinically, body condition was assessed, as detailed in general Materials and Methods, at monthly the first study. Blood was collected and intervals in examinations were performed according to haematological the details given in the general Materials and Methods section. Total

estimation and electrophoresis of proteins was performed at these times using a Beckman Appraise Junior Densitometer in the Medicine Laboratory of the University of Glasgow Veterinary School. Full haematological examination was carried out at weekly intervals for each horse during the first study. On harvest days, samples were collected immediately prior to harvest.

Experiment 2

Haematological monitoring was performed in this study over a 21 day period, between two harvest points. Blood samples were collected and full haematological examination was performed as described in the general Materials and Methods section on samples collected immediately prior to harvest, t0, and at 30 mins, 60 90 mins, 2 h, 6h, 12h and 24h after harvest. Thereafter, mins. samples were collected daily until day 21 of the cycle, before the next harvest took place. The aim was to investigate the recovery pattern for the haematological parameters between harvests.

Statistical analyses were undertaken in both studies, to examine influence of sex, breed and the length of time in blood production, on the haematological parameters of packed cell volume (PCV), red cell count (RCC) and haemoglobin (Hb). Influence of body condition was also evaluated in the initial overview study. Details of statistical analyses are provided in the general Materials and Methods section.

Results

Experiment 1. Monitoring over Five Harvest Cycles

Body Condition

There was no evidence that body condition was affected by the five harvest cycles. Body condition scores are presented in Figure 23. Animals were scored on a 1 to 5 point scale, with 0.5 point increments. The horses were in good body condition at each of the monthly measurements, most animals scored 2.5 or above, indicating moderate to good condition. Changes in body condition scores are demonstrated in Figure 24. In the period April to May 87.5% of the

horses either maintained or gained condition. In the period May to June this percentage increased to 89.4% of the horses. Over the duration of the study, between April and June, 39 of the 48 horses (81.3%) maintained or gained condition.

Haematology

Figures 25, 26, and 27 illustrate the values for group mean PCV, RCC and Hb values, respectively. Normal ranges and units used in measurement of haematological parameters in the horse are given in Appendix IV.

A cyclic pattern was found for the group mean PCV values, shown in Figure 25. Values fell to their lowest point the first week post harvest, with gradual restoration over the second and third weeks post harvest. This pattern was repeated uniformly for the five harvest cycles studied. Values were within normal ranges at all points recorded.

Group mean RCC values, demonstrated in Figure 26, showed a similar cyclic pattern to PCV in Figure 25. Values were lowest one week post harvest, and showed gradual increase over the second and third weeks, and peaked temporarily before the next harvest. As with PCV, mean values for RCC were within normal ranges throughout the 16 week study.

The group mean Hb pattern of Figure 27 followed closely the cyclical trends for PCV and RCC. Values lay within normal ranges throughout.

Protein Profiles

Protein profiles, illustrated in Figure 28, include values for mean total plasma proteins, which were within normal range at the three time points monitored. Mean albumin to globulin ratios were above the normal value of 1 at each time point studied. Profiles demonstrate the relative percentages of albumin, alpha 1-, alpha 2-, beta- and gamma- globulins.

Statistical Analyses

In the statistical analyses the performance of geldings was compared to mares, Thoroughbreds to non-Thoroughbreds (halfbreds and heavier types), and the performance of animals used for less than 5 years was compared to those used for longer than 5 years. Thin animals (condition score of 2.5 points or less) were compared to those of moderate condition (condition score of 3 to 3.5 points) and those which were fat (condition score of 4 points or more). Analyses of group mean PCV, RCC and Hb are presented in Table 21.

Results indicated no significant influence of condition score, sex or length of time in blood production on any of the parameters. Significant differences existed between breeds for PCV, RCC and Hb. Values were always higher for Thoroughbreds than for non-Thoroughbreds.

Experiment 2. Monitoring Between Two Harvest Points

Values for the haematological parameters were maintained within normal ranges for the 21 day period between the two harvest points. Normal ranges and units used in measurement of haematological parameters are given in Appendix IV.

For the mean values for PCV, illustrated in Figure 29, a sharp drop in values was evident 30 mins post harvest, then the value rose again at 1 h post harvest and remained relatively constant between 90 mins and 12 h post harvest. PCV was lowest at 4 days post harvest, after which time there was an increase over the remainder of the cycle, but it did not, however, attain the preharvest value.

The pattern for mean red cell count, Figure 30, followed the PCV pattern: a sharp fall was seen 30 mins post harvest, with a further drop for 1 h more then the value rose slightly and remained constant till 12 h post harvest, when there was a decline

Table 21. Influence of body condition, sex, breed and the length of time regular bleeding has occurred, on the group mean values for packed cell volume (PCV), red cell count (RCC) and haemoglobin (Hb) of horses bled regularly, in a study which monitored five harvest cycles

Body Condition

	Poor	Good	Fat
	(score<3)	(score 3-3.5)	(score>3.5)
Mean PCV	0.427	0.409	0.387
Mean RCC	8.25	7.99	7.21
Mean Hb	14.58	14.31	13.64
Number of horses	6	31	11

Sex

Geldings	Mares
0.392	0.418
7.70	8.03
13.93	14.53
27	21
	Geldings 0.392 7.70 13.93 27

Breed

	Thoroughbreds	Non-Thoroughbreds
Mean PCV	0.431	0.374 *
Mean RCC	8.49	7.03 *
Mean Hb	14.88	13.07 *
Number of horse	s 13	13

Length of time regular bleeding has occurred

	>5 years	<5 years
Mean PCV	0.387	0.399
Mean RCC	7.39	7.57
Mean Hb	13.60	13.90
Number of horses	12	12

* indicates a significant difference

FIGURE 29. GROUP MEAN PCV OF HORSES BETWEEN TWO HARVESTS

to a trough at 4 days post harvest. RCC climbed over the remainder of the cycle but, as for PCV, it never reached the preharvest figure.

The pattern for mean haemoglobin values, Figure 31, echoed closely those of PCV and RCC. The value preharvest was not attained during the cycle.

Minimal fluctuations were seen in the results for group mean for mean cell volume, Figure 32. The value remained static towards the upper limit of normal range. Very little change was evident in mean cell haemoglobin values until after day 7. MCH had risen again by day 21. Figure 33 illustrates that mean values never regained the preharvest figure. As for MCV, values tended towards the upper limit of normal range. This pattern was followed by group mean values for mean cell haemoglobin concentration, shown in Figure 34.

The pattern which was seen for values of group mean for platelet counts in Figure 35 resembles the pattern shown in Figures 29 to 31: a sharp fall by 30 mins post harvest, temporary recovery then decline by 2 h, a second temporary recovery then further decline by 4 days post harvest. The preharvest value was gradually reached by day 21 post harvest.

Group means for WCC in Figure 36 showed a slight decline for 90 mins after harvest, then an increase was seen until 12 h post harvest, after which values returned to the preharvest level by 4 days, and remained static thereafter.

Statistical analysis of PCV, RCC and Hb, presented in Table 22, indicated no significant difference between the groups for sex, breed or the length of time in blood production.

FIGURE 31. GROUP MEAN HB OF HORSES BETWEEN TWO HARVESTS

Table 22. Influence of sex, breed and the length of time regular bleeding has occurred on the pattern of recovery between two harvest points of group means for packed cell volume (PCV), red cell count (RCC) and haemoglobin (Hb) of horses bled regularly

Sex		
	Geldings	Mares
Mean PCV	0.363	0.371
Mean RCC	6.77	6.81
Mean Hb	12.48	12.73
Number of hor	rses 7	3

Breed

	Thoroughbreds	Non-Thoroughbreds
Mean PCV	0.383	0.363
Mean RCC	7.12	6.64
Mean Hb	13.08	12.34
Number of horses	; 3	7

Length of time regular	bleeding has	occurred
	> 5 years	< 5 years
Mean PCV	0.312	0.370
Mean RCC	6.69	6.85
Mean Hb	12.55	12.57
Number of horses	6	4

No significant difference was recorded for any parameter

Discussion

The observation that body condition scores were generally good, most horses maintained or gained condition over the period of study, probably reflected the improving plane of nutrition of the horses with seasonal improvement of pasture during the studies, between April and June. The good dietary management and parasite control programme in operation under the current management on this farm support the consistently good body condition scores in the horses.

Total plasma protein values, which were all within normal ranges here, reflect plasma water balance more accurately than do PCV, as the normal TPP range is narrower than that of PCV and is not influenced by pain, fear or excitement (Becht, 1986). The fact that these values are within normal ranges indicates adequate hydration and assures that regular, repeated bleeding in this herd does not induce chronic protein loss. This is not surprising if one considers that it has been calculated, using radioisotope studies, that in a normal 500kg horse of the type in this herd, one litre of plasma is lost into the gut daily (Love, 1990).

The haematological parameters studied remained within the normal ranges during the five harvest cycles studied. The herd comprises Thoroughbreds and Thoroughbred predominantly types, which statistics indicate to have significantly higher erythrocyte-related parameters than heavier, halfbred types. These Thoroughbred types are less influenced by the current harvesting regime than are non-Thoroughbreds. This is not unexpected if one considers the published data which show Thoroughbreds to have higher blood volumes (88-110 ml/kg) than cold blooded or heavier, cob and pony type (62 - 66 ml/kg) animals (Schalm, 1986).

Several of the unique aspects of blood volume and erythropoiesis of horses are exemplified in the studies. Up to half of the red cell volume in the horse may be stored in the spleen; an important adaptive process for exercise which results in a very unstable circulating blood volume (Becht, 1986; Jeffcott, 1977). Splenic

contraction is a normal haematological response, specific to the horse, which is stimulated within seconds in response to haemorrhage, as well as to exercise or excitation. In these studies this response was observed repeatedly, as red cell counts did not fall dramatically even after repeated, sizeable haemorrhage. In healthy Thoroughbreds, splenic contraction can increase PCV by up to 50% above resting levels (Jeffcott, 1977).

According to Torten and Schalm (1964), PCV and other red cell parameters may rise owing to splenic contraction, making determination of the magnitude of blood loss during the first 4 or 5 h after haemorrhage almost impossible. The degree of blood loss become clinically evident until up to 48 h not after mav the initiation of haemorrhage, owing to shifts of fluid and the capacity of the spleen (Lumsden, Valli and McSherry, 1975). The results of this study supported this: lowest values for PCV, RCC and Hb were not recorded until 7 days after harvest. Jeffcott (1977) believes that reduction in red cell parameters or anaemia is appreciated by 12 to 24 hours after acute blood loss.

Acute haemorrhage, of up to one-third of circulating blood volume (around 12 litres in a 500kg animal), can be withstood by the horse without exhibition of serious distress (Jeffcott, 1977). Under this management system approximately 8 litres of blood were collected at any one harvest from animals of around 500kg. This blood collection is equivalent to less than one fifth of total blood volume for horses of the Thoroughbred type involved in this herd. Under the current management system, horses on occasion simply appear drowsy for the first hour or so after harvest.

Approximately four days are reported to be required after the onset of haemorrhage for the bone marrow to release increased numbers of mature red blood cells into the circulation in the horse and other animals (Valli, Lumsden, Carter and McSherry, 1975, cited by Becht, 1986). Results obtained in this study revealed that for these horses after day 4 post harvest group means for PCV, RCC and Hb and, to a lesser extent, platelets and WCC showed gradual increases towards the original, preharvest values.

Eight out of the 10 horses monitored during the interharvest study never regained preharvest values for PCV, RCC or Hb prior to the subsequent harvest. Values for these parameters were, however, maintained within normal ranges. It was thought that the PCV and RCC values would probably be elevated for these horses at the harvest point owing to splenic contraction as a result of and apprehension. PCV is the parameter currently excitement monitored at harvest under the routine management system. It must borne in mind that any excitement prior to or during be blood harvest will influence red blood cell parameters, and low values could easily be masked. Ideally, therefore, a full haematological examination would be carried out, but at present only PCV is measured, as this can be quickly performed in the farm laboratory. Adequate haematological monitoring is being provided by PCV assessment under the current management.

has been reported that between 30 and 60 days are often It required after severe anaemia from blood loss for red cell parameters to return to normal in the horse (Becht, 1986). For these horses the degree of blood loss which occurs regularly does not appear to induce anaemia. Fluctuations were small for the red blood cell indices: MCV, MCH and MCHC over the 21 days, but these are claimed to be of little value in equine clinical medicine (Becht, 1986). Values for MCV lay towards the upper range of suggesting immaturity of red blood cells, normal values. although these values did not give grounds for concern.

Sex, breed and length of time in blood production did not influence patterns of recovery between the two harvest points for PCV, RCC or Hb.

In summary, the studies have been reassuring in that the clinical condition of these animals, which are managed for regular, repeated blood harvest, is consistently good. The haematological profiles show regular, cyclic changes between harvest points, but these fluctuations are safely within normal ranges for all haematological parameters when one considers the range of types of horse within the herd. The collection of 8 litres of blood from these horses on a regular three week cycle did not therefore

adversely affect their welfare, clinically or haematologically. It was evident from statistical analyses of values for PCV, RCC and Hb over a period of five harvest cycles, however, that values were consistently higher for the Thoroughbred animals in the herd than for non-Thoroughbreds.

The recovery patterns found for PCV, RCC and Hb over five harvest and the statistically significant influence of breed on cvcles. these patterns, provided valuable guidelines for commercial blood production. It was thought that 8 litres of blood could probably be removed on a more frequent basis from the Thoroughbred animals without adverse clinical or haematological effect, perhaps every two weeks rather than every three weeks. Taking into account the RCC and Hb recovery patterns, and the literature PCV. on differences in blood volume between breeds, the possibility of increased frequency of regular blood harvest was not considered for the non-Thoroughbred horses. The results of the studies therefore also supported the belief of the farm owner that. in general, the Thoroughbred animal is more suited to commercial blood production than are the heavier types of horses in the herd.

SECTION 4. THE CREATION OF A MANAGEMENT EQUINE DATABASE

Introduction

The Requirement for a Database

This group of horses is surely unusual for several reasons. It is uncommon in the U.K., and especially in Scotland, to encounter a herd of this size; and less common still to discover horses managed as a group throughout grazing and housing periods, as are these animals. The feeding and the stabling regimes are atypical of the way horses and ponies are generally kept in Britain, thev more resemble the routines employed for cattle. Equally, the purpose for which these animals are managed, that is for the production of blood products, is not a common industry. We are unaware of any other commercial blood producers in Scotland, and there are but a few in the U.K. as a whole (personal communication from the owner of the herd).

The management of a horse group of this size is a daunting task, from the point of view of the herd size, but perhaps even more so from a welfare point of view. The business of production of blood products is reliant on a source of horses for purchase, but also on the loaning of horses from the public. The people relies involved, the owner and the staff on the farms, are aware of the necessity of efficient management to protect the health and wellbeing of the horses. The premises are licensed by the Home Office and are regularly visited by appointed Veterinary Inspectors.

The volume of data which requires to be collected to monitor a group of animals of this size is enormous. Approximately 45 to 50 horses are harvested every week, and so large amounts of information are generated very quickly. Reference to historic data can be very time-consuming under these circumstances, and space for storage may become problematic.

In order to monitor the efficiency of blood production there must be regular accurate recording of information for individuals. This is essential, to build up a picture for the herd as a whole. Effective collection and storage of such information aids the selection of animals for the herd, and it identifies which animals

are performing best. It also identifies early those horses which are not suited to the group system of management and to the practice of regular, repeated blood harvest.

The owner of the herd required a simple, efficient system for storage of data and one which would allow analyses of information to further improve the existing management system. The aim was thus to create an equine management database, which was to be tailored to the needs of the herd and the owner, and which took into account the unique features of the existing operations.

It was intended to reach a point where, by collecting specific information for each horse regularly, data for that individual could then be extracted and analysed to provide a performance profile which could be compared to profiles of others in the herd. Groupings for performance could then be made, and management tailored accordingly.

Analyses were then planned on collected data to investigate influence, of breed or type, sex, age and length of time in blood production, for examples, on the performance figures. Seasonal and dietary influences were to be examined; as well as the farm on which the horse was grazed, and where it was harvested were to be compared.

Established Databases

A database is a computerized record-keeping system, the purpose of which is to maintain information and to make it available on request (Date, 1986). Databases may be designed to provide in-depth examination of data, and to facilitate updating when more information is collected (Kock, Clark and Jessup, 1989). The system user may add new data to, or retrieve data from, existing and data may be updated or deleted in existing files. files; New be added to the system and existing files may be files can permanently removed. The components of a database system are the data, the hardware, the software and the users. Advantages of such a system are compactness, speed, reduction in drudgery, and 1986). The operation of databases by menu allows currency (Date, rapid access to data without the need for extensive computer

knowledge or experience (Kock, Clark and Jessup, 1989). Microcomputer spreadsheet packages can be utilised to allow analysis and graphics programs allow visual display of data (Kock, Clark and Jessup, 1989).

Databases are employed in several aspects of veterinary medicine. They have been used, for instance, to develop animal disease data banks (Jamaluddin, Chang, Johar and Yaacob, 1988). The CONSULTANT database, for example, contains information on over 6,000 diseases of dogs, cats, horses, cattle, sheep, goats and swine; and is used by hundreds of veterinary practices and institutions across North America (White, 1988).

Databases also allow interpretation of biological data from wildlife (Kock, Clark and Jessup, 1989). Provision of sources of information in the fields of animal health and production have been achieved (Giovannetti and Meissonnier, 1987). Systematic data storage and retrieval programmes were developed for toxicological and hazardous material case information (Hyde, Schlotfeldt, Schmidt and Stahr, 1983); and a food-animal residue avoidance databank (FARAD) was created by research workers at five U.S. veterinary schools in 1986.

BOVID, Bovine Information and Diagnosis System, is a veterinary computer program which is designed to help the practising (Blood. veterinary surgeon in the diagnosis of diseases of cattle Brightling and Larcombe, 1989). A collection of possible diagnoses are produced in response to the input by the vet of clinical findings. epidemiological patterns and clinico-pathological findings in individuals or in groups of cattle. The diagnoses are listed in order of diagnostic probability, with a numerical probability estimated for each. The primary advantages are that information provided is current and comprehensive, the based on Australian data, but there are future plans to include inputs from the United Kingdom and North America (Blood, Brightling and Larcombe, 1989).

The BENCHMARK database system was developed as the result of a three year study designed to monitor the health and production of

the beef cow industry in Ontario, as a component of efficient food production in Canada (Martin, Lissemore and Kelton, 1990). The system involved cooperation of farmers, private veterinarians, government personnel and university veterinarians. The Veterinary Services of the United States Department of Agriculture's Animal Plant Health Inspection Service (APHIS) created the National and Animal Health Monitoring System (NAHMS). This database is founded on the collection of data and biological specimens, from a statistical sample of United States herds and animals, by government veterinarians and animal health technicians (Pointon and Hueston, 1990). The aim of the system is to protect and improve animal and human health, while guaranteeing guality and quantity of animal-derived food and fibre, and making the U.S. agriculture more competitive (Pointon and Hueston, 1990).

A clinical database was constructed as a consequence of a nationwide survey carried out by the British Cattle Veterinary Association (BCVA) to investigate the circumstances under which Caesarian sections were performed on cattle (Gettinby, Thorpe and Anderson, 1989). The database was developed from two sections of a questionnaire. one section involved basic animal details and details of the operation, including outcome; while the second concerned subsequent fertility. Analyses are underway on the information contained in this database (Gettinby, Thorpe and Anderson, 1989).

Examples of management databases include COSREEL (Computer system for Recording Events affecting Economically important Livestock) in the U.K., which has been designed for the management of cattle, sheep and pigs at the Agricultural Research Council Institute for Animal Diseases (Russell and Rowlands, 1983). In Research on International Livestock Centre for Africa (ILCA) Africa. the developed, between 1984 and 1986, the ILCA Data Entry and Analysis System (IDEAS) to record and analyse all the important performance traits for a wide range of livestock species, and store information on health, nutrition, climate and management aspects (Wissocg, Durkin, Trail, Gettinby, Bell, Berhane and Light, 1989). Equine management databases in the literature are concerned with stud work. The use of a microcomputer was tested for improving the

stud management and raising conception rates by Rohn and Reinhard (1985). The microcomputer evaluated the management and calculated target dates for mating or insemination, for teasing and gynaecological examination. Plans overviewed the stallions and mares with their relations, and dates of each mare, plan of foaling, overview of pregnant mares and plans for various vaccinations. Conception rate increased by 28% over two years of operation of the database system (Rohn and Reinhard, 1985).

The Benefits of Management Databases

The benefits of using management databases are diverse. Relationships between variables that affect performance and results are identified, and variables can be made and monitored on a continuous basis (Bywater and Goodger, 1985). The use of such systems may make the manager into a data user, rather than a data recorder, and the focus of management could be changed. Interest relating control variables to production will probably in increase; and the facility for calculation may provide qualitative answers to performance questions, rather than generalisations. A multidisciplinary approach to management and decision-making may be promoted by the use of a database (Bywater and Goodger, 1985).

Materials and Methods

Herd Details

The horses are part of a large herd, of between 150 and 200 animals, which is managed for blood products in the West of Scotland. The animals are harvested on a regular cycle, of three weeks duration. The details of the horses and their management system are given in the general Materials and Methods section.

Data Currently Recorded

At present on the farm there is a microcomputer, situated at Burnhouse Farm. Data recorded for general management include the name and identification number of each horse, its age, breed, sex, and height. The source of acquisition of the animals are stored on file, along with record of whether the horse is on loan from a member of the horse owning public, or whether it has been

purchased by the owner of the farms. Any other relevant details of health or temperament of horses are noted.

With respect to management for blood products, at each harvest point the PCV for each individual is recorded, in addition to the volume of blood collected, the percentage lost in clotting (waste), and the volume dispensed from each harvest. The average packed cell volume (PCV) for the herd for the week is recorded to allow monthly and annual production figures to be calculated. The date on which the next harvest is due for each horse is projected.

Recording System and Analyses Performed

The details for each horse were stored in the microcomputer using a simple database system. Several simple calculations were undertaken longhand by the owner, for example weekly and monthly blood volumes for the herd as a whole; and retrospective comparisons were made of these totals to totals for previous years.

Details taken at the time of blood harvests were collected in a notebook, and preprinted daily sheets were used to record information once the blood was transferred to the dispensing laboratory.

Databases

A database is a structured collection of data, stored in a consistent fashion within records which have a common format (Gettinby, Thorpe and Anderson, 1989). In a relational database the data are contained in two-dimensional tables, in which entries are not repeated and must all be of the same form, with every column and row in the table being unique (Thrusfield, 1986). Relationships between the records are not determined until they become operational, and so they may be constantly altered, which makes this type of database very simple and flexible (Thrusfield, 1986).

Several important features are afforded by an electronic database, namely the facilities of range checks, lookup, query and transaction (Gettinby, Thorpe and Anderson, 1989). Normal ranges
for values for PCV were built into this database, to emphasise any abnormality to the manager, and to ensure accuracy of information.

The lookup facility ensures that the data entry is valid by comparing it to a limited collection of legal entries. Mistakes and errors in typing, which could result in the failure of accurate extraction of information, are thus prevented. Lookup was used in the static records within this database, for example, in the field for gender, where only f, or female, and g, or gelding, were legal; and in the breed field, where cob, TB (Thoroughbred) and mid (crosses between cobs and Thoroughbreds) were acceptable entries.

The query facility allows rapid, accurate extraction of data using a query language, and is the most valuable asset of the database. The query command [gender] = f and [height] > 16.0 hands could be entered, for example, in this database to identify all the female horses over 16.0 hands in height.

Different databases may share information within a relational database, and the transaction facility permits linkage of information by a common field. In this database the common field was the animal identification number, which allowed the manager to move between the three databases, the static records, the bloodroom records and the laboratory records.

Software Tools

There are several proprietary software packages available which provide data management options to simplify the construction and analysis of electronic databases (Gettinby, Thorpe and Anderson, 1989). The software package used for the database in this thesis was the Smart system, Version 3.1 from Informix Software, which was selected because it is integrated to allow the use of spreadsheet, wordprocessing and graphics facilities. The earliest packages, such as dBASE by Ashton Tate, for example, do not offer this integration.

Results

Overall Structure of the Equine Management Database The equine management database was designed so that information was initially entered into one of three databases. Horse identification details were entered into the Static Record in the first database. Each horse was treated as a separate record, and each record consisted of nine fields. These fields were horse number and name; its gender (female/gelding); its age, in years; its type, which was subdivided into cob, Thoroughbred, or crosses between the two (cob/TB/mid); whether it was on loan or purchased (O/P); its colour; its height, in hands (< 15h/ 15 - 15.3h / >16h), and the date on which it was acquired.

The second database contained information from the blood harvest room, with eight fields, with one each for the animal number and name; on which farm blood was harvested from the animal (Burnhouse Gartmorn Hill Farms; B/G); the date of blood harvest; the or taken; the flow of the blood during harvest volume (qood/poor); and the fraction of blood to be dispensed (defibrinated blood, D, or serum, S). There was also a field for comments, such as the appearance of the blood, or the temperament of the horse during the harvest.

Information from the farm laboratory was collected in the third database. The eight fields contained within this database took account of the laboratory batch number; animal number and name; the volume of blood collected (in litres); the volume of blood dispensed (in litres); the PCV of the blood (as %); and the date of the end of the week of the blood collection. The amount of blood which was lost during clotting (% waste) for each animal was automatically calculated by the computer, from the fields for volume of blood collected and the volume dispensed.

The screen layouts, containing sample data, for the static record, bloodroom and laboratory databases are shown in Figures 37, 38 and 39, respectively. STATIC RECORD Animal Number : 194 Name : Crest Description Gender : f Age : 15 Breed : Cob On loan or purchased : O Colour : Palomino Height : 15.0 Date of acquisition : 01.01.84

Figure 37. Screen layout for the static record database

BLOODROOM RECORD Animal number : 194 Name : Crest Bleeding Details 13.09.89 Bled at G on Flow : Good Blood for : D Volume taken : 7.6 litres **Comments** : Horse excitable

Figure 38. The screen layout for the bloodroom record database

LABORATORY RECORD

Batch number : 1389 Animal number : 194 Name : Crest Volume of blood collected : 7.6 litres Volume of blood dispensed : 6.6 litres With a PCV of 41 % Waste : 13 % Collected during the week ending 15.09.89

Figure 39. The screen layout for the laboratory record database

The database was operated by a menu system which allowed rapid access to the information without great knowledge or experience of the computer. When the database program was loaded, the operator used the "EXECUTE" command, then was given the options of "ENTER", to add, modify or delete records; or "ANALYSE", which allowed analysis of the information contained within the databases. The third option was the "FINISH" command, which was used to escape from the program.

On selection of either the "ENTER" or "ANALYSE" commands, the user was then asked to select which of the three databases were required: "STATIC" for the animal details; "BLOODROOM" for the bloodroom record database; or "LABORATORY", to access the laboratory record database.

There were two options available within the analysis facility of this database. In the menu the operator was offered the option of analysing "STOCK", the data for the herd as a whole, or analysing "ANIMAL", the analysis of data for a particular animal which was selected by the input of its animal number. The information displayed on the screen in response to the "STOCK" and "ANIMAL" commands are demonstrated in Figures 40 and 41, respectively.

The stock balance analysis record produces three fields of data output for the horse herd as a whole, namely the total volume of blood collected to date, the total volume dispensed to date, and the average waste.

The fields for total volume of blood collected, total volume dispensed, and average waste are also produced in response to the "ANIMAL" analysis command, and in addition, the number of blood collections made and the number of quality control failures are calculated for the individual horse.

The overall structure of the equine management database is presented diagrammatically in Figure 42.

Figure 40. The screen display obtained by selecting the "STOCK" command in analysis within the equine management database

SUMMARY FOR ANIMAL NUMBER 194

Volume Collected : 53 litres Volume Dispensed : 45.8 litres Average Waste : 13.5 % This was from 7 collections There were 0 Quality Control Failures

Figure 41. The screen display obtained in response to selection of the "ANIMAL" command in analysis within the equine management database

Status Implemented

At the time of writing this thesis, the database contains 1272 records. The data from all blood harvests on the two farms between July, 1989, when the farm laboratory was set up, and April 1990, are recorded.

After entering information into the database for several months, and as a result of discussion with the manager of the farms during this time, a requirement for several working modifications was The aim was to keep the system as simple as possible, identified. and it was thought that the bloodroom and laboratory records could be combined. The modified database was to contain the fields of the laboratory record, namely laboratory batch number, animal name and number, volume of blood collected, volume dispensed, PCV, and waste; and fields for the location of blood harvest, flow of blood at harvest, and blood fraction dispensed, were to be added. The format of the date of harvest was to be altered, from the day. month and year layout currently adopted to the week number, from one to 52, with week one as the first week in January. This aimed to make the comparison of modification was performance figures within the database to those of previous years easier for the manager. Weeks had been numbered in this fashion, from one to 52, to record information collected in previous years.

The lookup facility had been introduced for the breed and height fields on the static records as a modification of an earlier database, to simplify entry of these data. Similarly, the addition of a field for animal name as well as for animal number was the result of modification of an earlier record. The change was instigated because the farm staff found identification of the animal in the blood harvest room easier by horse name than bv number. In the original static record there were fields for horse and for the source and reason for acquisition. The weight weight, field was considered unnecessary and was therefore abandoned. The manager prefers to record the information on acquisition of animals in a separate logbook, because the information is often required at locations where there is no microcomputer terminal. These fields were also deleted.

The recording of information for the database by the manager is consistent now that the records have been tailored to her needs, and any irrelevant fields on records have been removed. The data recording is thus kept brief and simple, which is essential in this farm situation, as different members of staff will be involved in recording and in the input of information to the database.

Discussion

The database as developed is a management tool. It was not specifically for scientific investigation designed although suitable information is contained within the database. After consideration of analysis it has become clear that there is a need for a new way of linking or transacting the records. In analysis of performance data, the fields of breed, blood volumes collected and dispensed, and PCV, should be recorded within the same record to allow statistical correlation using the spreadsheet within the Smart software package. At the moment, while the animal number is the only field which permits transaction, this is not possible. field for breed must be incorporated into the combined The bloodroom/laboratory record, also become a linking field for these analyses to become possible.

The manager of the horses has identified several areas for future development of the database. An additional "out-of-circulation temporarily" record is requested. This would contain data for young or brood animals, animals which are used for riding or driving, and horses which are temporarily on loan from the farm for any reason. Information from these horses, which would be removed temporarily from the blood producing herd, could then be kept separate from that for the blood horses.

A facility for slotting individual animals into established seven, 14 or 21 day patterns for bleeding is required by the manager.

Ideally, summary herd statistics and summary animal statistics would be able to be called up in different ways for analyses. At present, summary herd data analyses are calculated using every entry in the database. Subsequently there is no facility to extract and analyse data for a particular week, or for a particular month for the herd. If information could be analysed according to week number, then comparisons could be drawn between herd performance in successive weeks, months, or between housing and grazing. Performance might be assessed on volume of blood collected and dispensed, or on the percentage average waste recorded. Targets might then be introduced for these parameters, to attempt to improve herd production.

If data could be extracted and analysed for individuals according to key fields, then widespread statistical examinations would be possible within the herd. The influence of breed, sex, age. and length of time in blood production on performance could be investigated, for instance. It would be interesting to compare blood volumes collected over a period of two months, or over six collections, from geldings and from mares. The percentage waste from animals which had been bled for less than five years might be analysed, in contrast to waste from those which had been used for commercial blood production for longer than five years. Volumes of blood collected from horses grazing at Burnhouse Farm over the summer months might be analysed to see if they were more or less productive than those which were at grass at Gartmorn Hill Farm. The permutations for analyses would be numerous.

It might be possible to use results of summary animal data to modify herd management. The herd could perhaps be divided into smaller groups, according to level of performance. Bracketing average blood collection volumes as high, medium or low would permit subgrouping of the herd; and the feeding regime, for example, might be altered to supplement those animals for which poor collection volumes were recorded.

Horses which are consistently performing poorly under this management system might be readily identified using the range check facility within this database system. Limits for action could be decided by the manager and inbuilt into the system for parameters such as volume of blood collected, or PCV value. If

values for an individual for these parameters were repeatedly below this limit, then corrective action would be required. The horse might have to be removed from the harvest group and rested for several weeks, for example.

In this respect the database system could be regarded as a tool to address any queries regarding the welfare of this herd, in addition to being a management tool.

GENERAL DISCUSSION AND CONCLUSIONS

and in particular bacterial skin disease, was Skin disease. highlighted in this thesis as an area which has received little attention in recent years. As such, it gives grounds for concern with respect to the welfare of horses in the U.K.. Bacterial skin disease is often misdiagnosed and difficult to manage, resulting in undue animal suffering and the prevention of useful work. Attention was focused on dermatophilosis, which is one of the commoner bacterial skin conditions of horses and ponjes in the West of Scotland. It is a condition to which outwintered animals, therefore the majority of the equine population in Scotland, are particularly vulnerable. Prolonged exposure to excessive wetting predisposes to infection, which may then be manifest in recurrent annual outbreaks and which may be transmitted to other animals and These circumstances warranted investigation of to man. an alternative approach to management of dermatophilosis in horses.

Essential fatty acids (EFAs) were investigated in this respect. The role of EFAs, in the form of evening primrose oil (EPO) which contains n-6 series linoleic acid (LA) and gamma-linolenic acid (GLA), with added fish oil containing n-3 series eicosapentanoic acid (EPA) and vitamin E, and the success of their use in the management of skin disorders in man and in companion animals were reviewed in this thesis. LA and GLA are known to be essential in the maintenance of the integrity of the impermeability barrier formed by the skin to water. EFAs also modulate the immune and the supplementation of LA and GLA increases response. formation of anti-inflammatory metabolites while inhibiting the formation of pro-inflammatory metabolites. EFAs have been shown to be free from adverse events, and are non-carcinogenic. The pharmacokinetics of EFAs were studied in the horse for the first and the possible role of EFAs in the management of equine time. dermatophilosis was investigated.

Baseline information on the metabolism of EFAs in horses was obtained in a pharmacokinetic study. LA must be converted to its metabolites to exert the full range of biological actions of EFAs (Horrobin, 1990b). The conversion of LA to GLA is the first and the rate limiting step in the EFA metabolic cascade, and is controlled by the 6-desaturase enzyme. Considerable species

variation is known to exist in the rate of this conversion, as indicated by the ration of LA to its metabolites. The reaction rate is known to be fastest in the rat, and slowest in the rabbit and the guinea pig (Horrobin, 1990b). It was found in the horse to be very slow, comparable to that in other herbivores such as the rabbit or guinea pig, and was very much slower than the reaction in dogs, cats or in man. This was attributed to slow 6-desaturation of the LA by the 6-desaturase enzyme.

A daily dose regime of 20g of 80% EPO and 20% fish oil and vitamin E (Efamol Marine), providing n-6 and n-3 series EFAs, was adopted from the results of the pharmacokinetic study, to allow maximum opportunity for EFA uptake. This dose was used in consequent controlled studies to investigate the use of EFAs in the treatment, then in the prophylaxis, of dermatophilosis in horses.

During the pharmacokinetic study no influence was recorded on the condition of the coat, mane, tail or hooves, or on general body condition which could be attributed to EFA treatments. No adverse influence was recorded on haematological and biochemical parameters by the various doses of n-6 and n-3 EFAs administered to the horses.

In a placebo-controlled, double blind treatment study no significant effect was seen on the severity or on the extent of distribution of lesions of dermatophilosis when horses received 20g oral n-3 and n-6 EFAs daily. No significant improvement was afforded by EFAs on the condition of the coat, mane, tail or hooves, nor on general body condition. No influence, adverse or beneficial, was exerted by EFAs on haematological or biochemical parameters.

When the use of EFAs in treatment of dermatophilosis in horses was found to be unsuccessful, a controlled experiment was designed to investigate the role of EFAs in the prophylaxis of the disease. The study spanned the period of high rainfall in the autumn and winter months when the risk of developing the disease is highest in horses in the U.K.. The period of supplementation of EFAs was begun before the horses were exposed to the prolonged wetting

which is thought to damage the epidermis, predisposing to dermatophilosis. The treatment was thus provided before dermatophilosis lesions developed, while the epidermis was intact. EFAs did not prevent the development of lesions, nor did thev reduce the incidence of infection. As in the pharmacokinetic and treatment studies, no improvement in the condition of the coat, mane, tail and hooves or general body condition was seen; and no significant influence was exerted on haematological or biochemical parameters by EFAs.

Two possibilities were considered to account for the failure of EFAs in the management of equine dermatophilosis, and the failure to improve clinical condition in the horse. Firstly, the dose rate may not have been sufficient. A higher dose rate, however, would be impractical to administer orally and would prove a very expensive treatment. The horses which are at greatest risk from dermatophilosis infection are usually those which are poorly managed, and where little financial consideration is given to the animals. Under these circumstances expensive treatment is unlikely to be viable.

Alternatively, EFAs may not be as important in the horse as they have been shown to be in other species. It may be that this is reflected by the slow 6-desaturase reaction rate found in this species.

EFAs were not found to be harmful in the horse. No adverse effect was recorded on any parameter for any horse by EFA or placebo treatments administered during the studies. Although no influence was believed to be exerted on haematological or biochemical parameters by EFAs during the studies, the monitoring of such parameters has provided a useful database of haematological and biochemical information for healthy horses.

The characteristics of *D. congolensis* were examined in relation to the site and severity of lesions of dermatophilosis. No correlation was found in this respect. Although similarities between isolates were identified, by examination of differential bacteriological growth characteristics and by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE), all the isolates of *D. congolensis* investigated were different.

Proteolytic enzyme production by D. congolensis was investigated regard to the virulence of the organism. No keratinase, with collagenase or elastase activities were detected. Several isolates however, demonstrate extracellular protease activity. did. The results of the study suggested that two proteases were produced. **One, estimated** to be of 110 kD, demonstrated caseinase activity which was evidenced as precipitation of caseinate on agar, and gelatinase activity, detected using SDS gelatin-PAGE. The other, a protease of lower molecular weight, demonstrated caseinase activity. In this work, the production of protease activity could be used as a marker of virulence because it was not not produced clinical isolate which induced lesions bν everv of dermatophilosis. Further investigation is required into the possible implication of protease activity in the disease process of dermatophilosis.

The horses under study in this thesis were kept for commercial blood production and as such were subjected to regular, repeated blood harvest. The clinical and haematological consequences of the practice of bleeding horses regularly have been particularly neglected and this herd provided an unique opportunity to monitor the welfare of animals which are involved in such practices. The protein and haematological profiles of a group of clinical. animals within the herd were followed over five harvest cycles. to a more detailed analysis of haematological data leading smaller number of horses between two harvest obtained from a Cyclic patterns of recovery were established for points. parameters, but values remained within normal haematological ranges at all times. The animals were carefully attended and well fed, and consequently the horses were in excellent body condition. effect was recorded on clinical, protein No adverse or haematological profiles when 8 litres of blood were removed from the horses every three weeks. Reassurance was thus provided that there were no adverse clinical and haematological consequences of regular, repeated bleeding in these horses under their current management system.

Statistical analyses revealed that Thoroughbred animals, which have higher blood volumes, supported repeated bleeding better than non-Thoroughbred animals: red cell parameters were always significantly higher. Based on this information, and the recovery patterns for the haematological parameters, it was thought that 8 litres of blood could be removed from Thoroughbreds more frequently without adverse effect. A harvest frequency of two weeks was therefore suggested for the Thoroughbreds under this management system, but not for the other animals in the herd.

A relational management database system was created for a microcomputer, as a management tool for the manager of the horse herd. An integrated computer software package provided the facilities of spreadsheet, wordprocessor and graphics.

The overall structure of the system comprised three databases which contained information on horse details, bloodroom records and laboratory records, respectively. The manager was afforded flexibility to move between these databases, which were linked by the animal identification number. Information contained within the fields of these records could be constantly updated, and there was provision for analyses of data, either for the horse herd as a group, or for an individual animal.

At the time of writing the database contained 1272 records, and analyses of these data had begun. In working with the system, areas which required modification were identified and relevant alterations were made. The database as developed is a management tool. It was not designed for scientific investigation although within it suitable information is contained for such examinations.

The potential merits of the database as a management tool are highlighted for this horse herd. The widespread benefits afforded by such a system could be appreciated by others, as the database may be adapted to numerous aspects of the management of groups of horses. From the welfare aspect, the database could be adapted to detect quickly any animals which were performing poorly and any which became anaemic. This would allow corrective action to be instigated promptly, thus avoiding any undue animal suffering.

While a cure was not found for dermatophilosis, it is hoped that by highlighting the problem and developing management tools for monitoring equine health and wellbeing that this thesis has contributed to the welfare of horses in the U.K..

REFERENCES

Abu-Samra, M.T. (1977) Studies on *Dermatophilus congolensis*. PhD Thesis. University of Liverpool. Morphological, Cultural and Biochemical Characteristics of D. congolensis. 34-79.

Abu-Samra, M.T.; Imbabi, S.E. and Mahgoub, E.S. (1976) Experimental Infection of Domesticated Animals and the Fowl with *Dermatophilus congolensis*. Journal of Comparative Pathology. **86**. 157-172.

Abu-Samra, M.T. and Walton, G.S. (1977) Morphology of Colony Variants of the Rough Form of *Dermatophilus* spp. Sabouraudia. **15**. 11-15.

Abu-Samra, M.T. and Walton, G.S. (1981) The Inoculation of Rabbits with *Dermatophilus congolensis* and the Simultaneous Infection of Sheep with *D. congolensis* and Orf Virus. Journal of Comparative Pathology. **91**. 317-329.

Allen, B.R. (1990) Essential Fatty Acids of the n-6 Series in Acne and Psoriasis. In Horrobin, D.F. (Ed) Omega-6 Essential Fatty Acids: Pathophysiology and Roles in Clinical Medicine. Alan R. Liss, Inc. New York. 75-80.

Altera, K. and Clark, L. (1970) Equine Cutaneous Mastocytosis. Pathologia Veterinaria. 7. 43-55.

Apodaca, G. and McKerrow, J.H. (1990) Expression of Proteolytic Activity by Cultures of *Trichophyton rubrum*. Journal of Medical and Veterinary Mycology. **28**. 159-171.

Armfield, J.M. (1918) Skin Diseases. An Unclassified Disease of Cattle. The Veterinary Record. 30. 274.

Arowolo, R.O.A.; Amakiri, S.F. and Nwufoh, K.J. (1987) Chemotherapeutic Agents used in the Treatment of Dermatophilosis: A Review. Bulletin of Animal Health and Production in Africa. **35**. 5-10.

August, J.R. (1986) Taking a Dermatologic History. Compendium of

Continuing Education for Practising Veterinarians. 8. 510-518.

Austwick, P.C.K. and Davies, E.T. (1958) Mycotic Dermatitis in Great Britain. The Veterinary Record. 70. 1081-1086.

Baker, K.P. and Quinn, P.J. (1978) A Report on Clinical Aspects and Histopathology of "Sweet Itch". Equine Veterinary Journal. 10. 243-248.

Becht, J.L. (1986) Interpretation of Erythrocytes and Leukocyte Responses, Dynamics of Plasma Proteins and Assessment of Fibrinogen. Proceedings of the 32nd Annual Convention of the American Society of Equine Practitioners. November to December. 605-612.

Behan, P.O. and Behan, W.M.H. (1990) Essential Fatty Acids in the treatment of post-viral fatigue syndrome. In Horrobin, D.F. (Ed) Omega-6-Essential Fatty Acids: Pathophysiology and Roles in Clinical Medicine. Alan R. Liss, Inc., New York. 275-282.

Bekker, J.G. (1928) Undescribed Skin Diseases of Sheep in South Africa. Journal of the South African Veterinary Medical Association. 1. 51-57.

Belch, J.J.F. (1990) Essential Fatty Acids and Rheumatoid Arthritis. In Horrobin, D.H. (Ed) Omega-6 Essential Fatty Acids: Pathophysiology and Roles in Clinical Medicine. Alan R. Liss, Inc., New York. 223-237.

Belch, J.J.; Ansell, D.; Madhock, R.; O'Dowd, A. and Sturrock, R.D. (1988) The Effects of Altering Dietary Essential Fatty Acids on Requirements for Non-steroidal Anti-inflammatory Drugs in Patients with Rheumatoid Arthritis. Annals of the Rheumatic Diseases. **47**. 96-104

Bentinck-Smith, J; Fox, F.H and Baker, D.W. (1961) Equine Dermatitis (Cutaneous Streptothricosis) Infection with Dermatophilus in the United States. Cornell Veterinarian. 51. 334-349.

Beynon, R.J. and Salvesen, G. (1989) In Beynon, R.J. and Bond, J.S. (Eds) Proteolytic Enzymes: A Practical Approach. IRL Press at Oxford University Press.

Biagi, P.L.; Hrelia, S.; Stafanini, G.F.; Zurarelli, P. and Bordoni, A. (1990) Delta-6-desaturase Activity of Human Liver Microsomes From Patients with Different Types of Liver Injury. In press.

Biberstein, E.L. (1990) In Review of Veterinary Microbiology. Blackwell Scientific Publications Inc. Boston, Oxford, London, Edinburgh and Melbourne. Chapter 38. Dermatophytes. 272-279.

Blancou, J.M. (1969) Revue d'Elevage et de Medecine Veterinaire des pays Tropicaux. 22. 35.

Blancou, J.M. (1976) In Dermatophilosis Infection in Animals and Man, Lloyd, D.H. and K.C. Sellers (Eds). Academic Press, London. 246.

Blood, D.C.; Brightling, P. and Larcombe, M.T. (1989) BOVID Bovine Information and Diagnosis System. ISBN 0 7316 5394 7

Blood, D.C. and Radostits, O.M. (1989) In Veterinary Medicine. 7th
Edition. Bailliere and Tindall. W.B. Saunders Company, London.
a) Diseases Caused by Allergy. 1359-1369.
b) Diseases Caused by Chemical Agents I. 1241-1257.

Brobst, D.F. and Parry, B.W. (1987) In Robinson, N.E. (Ed) Current Therapy in Equine Medicine, 2nd Edition. W.B. Saunders Company, Philadelphia. Normal Clinical Pathology Data. 725-729.

Bull, L.B. (1929). Dermatomycosis of the Sheep (Lumpy or Matted Wool) Due to Actinomyces dermatonomus (New Species). Australian Journal of Experimental Biology and Medical Science. 6. 301-314.

Burton, J.L. (1990) In Horrobin, D.F. (Ed) Omega-6 Essential Fatty Acids: Pathophysiology and Roles in Clinical Medicine. Alan R. Liss Inc., New York. Essential Fatty Acids in Atopic Eczema: Clinical Studies. 67-73.

Bussieras, J; Chermette, R. and Marchand, A. (1978) Un Cas de Dermatophilose Equine en France. Revue d'Elevage et de Medecine Veterinaire des Pays Tropicaux. 154. 27-30.

Bywater, A.C. and Goodger, W.J. (1985) Potential Impact of On-farm Microcomputers on Livestock Management and Veterinary Practice. Journal of the American Veterinary Medical Association. 186. 240-244.

Carakostas, M.C.; Miller, R.I., and Woodward, M.G. (1984) Subcutaneous Dermatophilosis in a Cat. Journal of the American Veterinary Medical Association. 185. 675-676.

Carpenter, W.D. (1981) Seborrhoea. Modern Veterinary Practice. 62. 75.

Chastain, C.B.; Carithers, R.W.; Hogle, R.M.; Abou-Gabal, M.; Graham, C.L. and Branstetter, D. (1976) Dermatophilosis in Two Dogs. Journal of the American Veterinary Medical Association. 169. 1079-1080.

Coleman, C.H. (1967) Cutaneous Streptothricosis of Cattle in West Africa. The Veterinary Record. 81. 251-254.

Conlan, J.W.; Baskerville, A. and Ashworth, L.A.E. (1986) Separation of *Legionella pneumophilia* Proteases and Purification of a Protease Which Produces Lesions Like Those of Legionnaires' Disease in Guinea Pig Lung. Journal of General Microbiology. **132**. 1565-1574.

Correa, J.E. and Calderin, G.C. (1966) Anhidrosis, Dry-Coat Syndrome in the Thoroughbred. Journal of the American Veterinary Medical Association. 149. 1556-1560.

Cruickshank, R. (1955) (Ed) Medical Microbiology. 11th Edition. E. & S. Livingstone, London. Cunnane, S.C. and Horrobin, D.F. (1983) Essential Fatty Acids Protect Against Carbon Tetrachloride-induced Liver Damage in the Rat. Journal of the American Oil Chemical Society. 60. 749.

Das, S.K. and Banerjee, A.B. (1982) Effect of Undecanoic Acid on the Production of Extracellular Lipolytic and Keratinolytic Enzymes by Undecanoic Acid-sensitive and -resistant Strains of Trichophyton rubrum. Sabouraudia. 20. 179-184.

Date, C.J. (1986) In An Introduction to Database Systems. 4th Edition. Addison-Wesley Publishing Company, U.S.A.

Davis, D. (1984) infection with *Dermatophilus congolensis* at a Contact Hypersensitivity Sire and its Relevance to Chronic Streptohtricosis Lesions in the Cattle of West Africa. Journal of Comparative Pathology. 94. 25-32.

Davis, D. and Philpott, M. (1980) Experimental Chronic Dermatophilosis. Proceedings of the Royal Society of Edinburgh. 79B. 47-53.

Dean, D.J.; Gordon, M.A.; Severinghaus, C.W; Kroll, E.T. and Reilly, J.R. (1961) Streptothricosis: A New Zoonotic Disease. New York State Journal of Medicine. 61. 1283-1287.

Devriese, L.A.; Vlaminck, K.; Nuytten, J. and De Keersmaecker, P. (1983) *Staphylococcus hyicus* in Skin Lesions of Horses. Equine Veterinary Journal. **15**. 263-265.

Dietz, O. and Wiesner, E. (1984) In Diseases of the Horse. A Handbook For Science and Practice. Karger, Basel and New York. Part 2.1. Diseases of the Skin. 1-39.

Duhaime, R.R. (1981) Warts. Modern Veterinary Practice. 62. 76.

Dumas, R.; Lhoste, P.; Chabeuf, N. and Blancou, J. (1971) Note sur la sensibilite hereditaire des bovins a la streptothricose. Revue d'Elevage et de Medecine Veterinaire des Pays Tropicaux. **24**. 349-353.

Dunn, B.M. (1989) In Beynon, R.J. and Bond, J.S. Proteolytic Enzymes: A Practical Approach. IRL Press at Oxford University Press.

Dystra, R.G. and Osinga, A. (1969) Tijdschr Diergeneesk, 94. 966.

Edgar, G. and Keast, J.G. (1940) A Note on the Susceptibility of Horses and Cattle to Infection with Mycotic Dermatitis caused by *Actinomyces dermatonomus*. Australian Veterinary Journal. **16**. 120.

Edwards, M.R. and Gordon, M.A. (1962) Annual Report of the New York State Department Health Division Laboratory Research. 1961. 84.

Elias, P.M. (1981) Review: Lipids and the Epidermal Permeability Barrier. Archives of Dermatological Research. **270**. 95-117.

Elias, P.M. and Brown, B.E. (1978) The Mammalian Cutaneous Permeability Barrier: Defective Barrier Function in Essential Fatty Acid Deficiency Correlates with Abnormal Intercellular Lipid Deposition. Laboratory Investigation. **39.** 574-583.

El-Nageh, M.M. (1971) Comparison of Strains of *Dermatophilus congolensis* Van Saceghem 1915 Isolated from Different Species of Animals. Annales de la Societe Belge de Medecine Tropicale. **51**. 239-246.

Elzinga, L.; Kelley, V.E.; Houghton, D.C. and Bennet, W.M. (1987) Modification of Experimental Nephrotoxicity with Fish Oil on the Vehicle for Cyclosporine. Transplantation. 43. 271-274.

Evans, A.G. (1987) In Robinson, N.E. (Ed) Current Therapy in Equine Medicine, 2nd Edition. W.B. Saunders Company, Philadelphia. Recurrent Urticaria Due to Inhaled Allergens. 619-621.

Evans, A.G. and Stannard, A.A. (1986) Diagnostic Approach to Equine Skin Disease. Compendium of Continuing Education for the Practising Veterinarian. 8. 625-660. Everett, D.J.; Perry, C.J. and Bayliss, P. (1988) Carcinogenicity Studies of Efamol Evening Primrose Oil in Rats and Mice. Medical Science Research. 16. 863-866.

Fadok, V.A. (1987) In Robinson, N.E. (Ed) Current Therapy in Equine Medicine, 2nd edition. W.B. Saunders Company, Philadelphia. Skin Diseases. 622.

Fadok, V.A. and Mullowney, P.C. (1983) Dermatological Diseases of Horses. Part I. Parasitic Dermatoses of the Horse. Compendium of Continuing Education for the Practising Veterinarian. 5. S615-622.

Food and Agriculture Organisation (1973) Production Yearbook 1972, Rome.

Ford, R.B.; Cairns, R.A. and Short, C.D. (1974) Equine Dermatophilosis: A Two-year Clinico-pathological Study. Veterinary Medicine & Small Animal Clinician. December. 1557-1561.

Foreman, J.H. (1987) Equine Dermatology VCM 364. University of Illinois at Urbana-Champaign. Oct 5th -6th, 1987.

Fox, J.G.; Campbell, L.H.; Reed, C.; Snyder, S.B. and Soave, O.A. (1973). Dermatophilosis (Cutaneous Streptothricosis) in Owl Monkeys. Journal of the American Veterinary Medical Association. 163. 642-644.

Frankel, T. and Rivers, J.P.W. (1978) The Nutritional and Metabolic Impact of Gamma-linolenic Acid on Cats Deprived of Animal Lipid. British Journal of Nutrition. **39**. 227-231.

Garma-Avina, A.; Valli, V.E. and Lumsden, J.H. (1981) Equine Congenital Cutaneous Papillomatosis: A Report of 5 Cases. Equine Veterinary Journal. 13. 59-61.

Gell, P.G.H. and Coombs, R.R.A. (1975) In Clinical Aspects of Immunology, 3rd Edition. Blackwell Scientific Publications, Oxford.

Gettinby, G.; Thorpe, J. and Anderson, D. (1989) Construction and Use of a Clinical Database. Meeting of the British Cattle Veterinary Association, Cirencester, 4th to 5th April. In Press.

Giovannetti, J.F. and Meissonnier, E. (1987) Sources of Information in the Fields of Animal Production and Animal Health. II. Secondary Information, Data Bases and Data Banks. Revue Scientifique et Technique Office International des Epizooties. **6**. 27-39.

Gordon, M.A. (1964) The Genus *Dermatophilus*. Journal of Bacteriology. 88. 509-522.

Green, H.F. (1960). Streptothricosis in Zebra and Donkeys and Demodectic Mange in Eland in Kenya. The Veterinary Record. 72. 1098.

Gyang, E.O.; Ilemobade, A.A. and Shannon, D. (1980) Treatment of Ovine Dermatophilosis with Long-acting Oxytetracycline. The Veterinary Record. 106. 106.

Hames, B.D. (1981) In Hames, B.D. and Rickwood, D. (Eds) Gel Electrophoresis: A Practical Approach. An Introduction to Polyacrylamide Gel Electrophoresis. IRL Press, Oxford. 1-91.

Hamilton, D.P. and Byerly, C.S. (1974) Congenital Malignant Melanoma in a Foal. Journal of the American Veterinary Medical Association. 164. 1040-1041.

Hansen, A.E. and Wiese, H.F. (1951) Fat in Relation to Nutrition of the Dog. I. Characteristic Appearance and Changes of Animals Fed Diets with and without Fat. Texas Reports in Biology and Medicine. 9. 491-515.

Hansen A.E.; Adam, D.J.D. and Wiese, H.F. (1958) In Sinclair, H.M. (Ed) Essential Fatty Acids. Heinemann, London. Essential Fatty Acid deficiency in infants. 216-220.

Harlow, E. and Lane, D. (1988) In Antibodies: A Laboratory Manual.

Cold Spring Laboratory, Cold Spring Horbor, New York.

Harriss, S.T. (1948) Proliferative Dermatitis of the Legs ("Strawberry Foot Rot") in Sheep. Journal of Comparative Pathology and Therapeutics. **58**. 314-328.

Hart, C.B. (1976) In Lloyd, D.H. and Sellers, K.C. (Eds) Dermatophilus Infections in Animals and Man. Academic Press, London. Dermatophilus infection in the United Kingdom. 77-86.

Henneke, D.R. (1985) A Condition Score System for Horses. Equine Practice. 7. 13-15.

The Henston Veterinary Vade Mecum (1985-86) Part I: Large Animals. Haematological Data, Representative Ranges. 237.

Horrobin, D.F. (1990a) (Ed) In Omega-6 Essential Fatty Acids: Pathophysiology and Roles in Clinical Medicine. Alan R. Liss Inc., New York.

Horrobin, D.F. (1990b) Gamma Linolenic Acid: An Intermediate in Essential Fatty Acid Metabolism with Potential as an Ethical Pharmaceutical and as a Food. Reviews in Contemporary Pharmacotherapy. 1. 1-41.

Horrobin, D.F.; Huang, Y.S.; Cunnane, S.C. and Manku, M.S. (1984) Essential Fatty Acids in Plasma, Red Blood Cells and Liver Phospholipids in Common Laboratory Animals as Compared to Humans. Lipids. 19. 806-811.

Horrobin, D.F. and Manku, M.S. (1990) In Horrobin, D.F. (Ed) In Omega-6 Essential Fatty Acids: Pathophysiology and Roles in Clinical Medicine. Alan R. Liss Inc., New York.

How, S.J.; Lloyd, D.H. and Lida, J. (1988) Use of a Monoclonal Antibody in the Diagnosis of Infection by *Dermatophilus congolensis*. Research in Veterinary Science. **45**. 416-417.

How, S.J. and Lloyd, D.H. (1990) The Effect of Recent Vaccination

on the Dose-response to Experimental *Dermatophilus congolensis* Infection in Rabbits. Journal of Comparative Pathology. **102**. 157-163.

Howarth, S. (1990) in Grunsell, C.S.G. and Raw, M.E. (Eds) The Veterinary Annual, 30th Issue. Butterworth and Company Limited, London. Sarcoids: The Story So Far. 145-154.

Hudson, J.R. (1937) Cutaneous Streptothricosis. Proceedings of the Royal Society of Medicine. 30. 1457.

Hyde, W.; Schlotfeldt, R.L.; Schmidt, M. and Stahr, H.M. (1983). A Systematic data Storage and Retrieval Program for Toxicological and Hazardous Material Case Information. Proceedings of the Third International Symposium of the World Association of Veterinary Laboratory Diagnosticians. June 13-15. Ames, Iowa. 69-74.

Ilemobade, A.A.; Gyang, E.O.; Bida, S.A. and Addo, P.B. (1979) Cure of *Dermatophilosis congolensis* Infection in Cattle by Long-acting Oxytetracycline. Research in Veterinary Science. **27**. 302-305.

Jamaluddin, A.A.; Chang, K.W.; Johar, M.S. and Yaacob, H. (1988) Development of Animal Disease data Bank in Malaysia. Acta Veterinaria Scandinavica. Supplement 84. 194-196.

Jeffcott, L.B. (1977) In Archer, R.K. and Jeffcott, L.B. (Eds) Comparative Clinical Haematology. Blackwell Scientific Publications, Oxford. Clinical Haematology of the Horse. 161-213.

Jenkins, D.K.; Mitchell, J.C.; Manku, M.S. and Horrobin, D.F. (1988) Effects of Different Sources of Gamma-linolenic Acid on the Formation of Essential Fatty Acid and Prostanoid Metabolites. Medical Scientific Research. 16. 525-526.

Johnston, A.M. (1986) In Equine Medical Disorders. Blackwell Scientific Publications. Oxford, London and Edinburgh. Skin Diseases. 97-114.

Kock, M.D.; Clark, R.K. and Jessup, D.A. (1989) Creation of a Biological Database using a Microcomputer Spreadsheet Package. Preventive Veterinary Medicine. 7. 137-147.

Kral, F. (1962) Skin Diseases. Advances in Veterinary Science and Comparative Medicine. 7. 183-224.

Kusel'tan, I.V. (1967) Nocardiosis of Lambs in the Tadzhik SSR. Veterinary Bulletin 30 590 Weybridge (1968) abstract 3512.

Larner, J.M.; Eisenfeld, A.J. and Hochberg, R.G. (1985) Synthesis of Oestradiol Fatty Acid Esters by Human Breast Tumours: Fatty Acid Composition and Comparison to Oestrogen and Progesterone Receptor Content. Journal of Steroid Biochemistry. 23. 637-641.

Lawson, L.D. and Hughes, B.G. (1988) Human Absorption of Fish Oil Fatty Acids as Triacylglycerols, Free Fatty Acids, or Ethyl Esters. Biochemistry and Biophysiological Research Communications. 152. 328-335.

Lloyd, D.H. (1971) Streptothricosis in the Domestic Donkey (*Equus* asinus asinus) I. Clinical Observations and Clinical Pathology. British Veterinary Journal. **127**. 572-581.

Lloyd, D.H. (1976) In Lloyd, D.H. and Sellers K.C. (Eds), *Dermatophilus* Infection in Animals and Man. Academic Press, London. The Economic Effects of Bovine Streptothricosis. 274-291.

Lloyd, D.H. (1981) Measurement of Antibody to *Dermatophilus congolensis* in Sera from Cattle in the West of Scotland by Enzyme-linked Immunosorbent Assay. The Veterinary Record. 109. 426-427.

Lloyd, D.H. (1984) Immunology of Dermatophilosis: Recent Developments and Prospects for Control. Preventive Veterinary Medicine. 2. 93-102.

Lloyd, D.H. (1990) Essential Fatty Acids in Dermatological Disorders of Dogs and Cats. In Horrobin, D.H. (Ed) Omega-6 Essential Fatty Acids: Pathophysiology and Roles in Clinical Medicine. Alan R. Liss, Inc, New York. 113-120.

Lloyd, D.H. and Jenkinson, D.M. (1980) The Effect of Climate on Experimental Infection of Bovine Skin with *Dermatophilus* congolensis. British Veterinary Journal. **136**. 122-134.

Lloyd, D.H. and Jenkinson, D.M. (1981) Serum and Skin Surface Antibody Responses to Intradermal Vaccination of Cattle with *Dermatophilus congolensis*. British Veterinary Journal. 137. 601-607.

Lloyd, D.H. and Ojo, M.O. (1975) Streptothricosis in the Domestic Donkey (*Equus asinus asinus*) II. Bacteriological and Immunological Relationships of the Strains of *Dermatophilus congolensis* Isolated. British Veterinary Journal. 131. 108-113.

Lofstedt, J. (1983) Dermatologic Diseases of Sheep. Veterinary Clinics of North America: Large Animal Practice. 5. 427-448.

Lomax, L.G. and Cole, J.R. (1983) Porcine Epidermitis and Dermatitis Associated with *Staphylococcus hyicus* and *Dermatophilus congolensis* Infections. Journal of the American Veterinary Medical Association. **183**. 1091-1092.

Love, S. (1990) Studies on the Pathogenesis of Cyathostome Infections in the Horse. PhD Thesis. University of Glasgow.

Lumsden, J.H.; Valli, V.E.O. and McSherry, B.J. (1975) The Haematologic Response to Haemorrhagic Anaemia in the Standardbred Horse. Proceedings of the First International Symposium on Equine Haematology. 365

McCaig, J. (1967) Mud Fever in Horses. The Veterinary Record. 81. 173.

McCaig, J. (1973) A Survey to Establish the Incidence of Sweet Itch in Ponies in the United Kingdom. The Veterinary Record. **93**. 444-446.

McMullan, W.C. (1982) In Mansmann, R.A. and McAllister, E.S. (Eds) Equine Medicine and Surgery. American Veterinary Publications Inc., Santa Barbara, California. The Skin. 789-843.

Macadam, I. (1961) The Effects of Humidity on the Lesions of Streptothricosis. The Veterinary Record. **73**. 1039-1041.

Macadam, I. (1962) Bovine Streptothricosis: Production of Lesions by the Bites of the Tick *Amblyomma variegatum*. The Veterinary Record. **74**. 643-646.

Macadam, I. (1964a) Observations on the Effects of Flies and Humidity on the Natural Lesions of Streptothricosis. The Veterinary Record. 76. 194-198.

Macadam, I. (1964b) The Effects of Ectoparasites and Humidity on Natural Lesions of Streptothricosis. The Veterinary Record. 76. 354.

Macadam, I. (1964c) Streptothricosis in Nigerian Horses. The Veterinary Record. 76. 420-422.

Macadam, I. (1970) Some Observations on Bovine Cutaneous Streptothricosis in Northern Nigeria. Tropical Animal Health and Production. 2. 131-138.

Macadam, I. (1976) In Lloyd, D.H. and Sellers, K.C. (Eds). *Dermatophilus* infection in Animals and Man. Academic Press, London. Some Observations on *Dermatophilus congolensis* Infection in the Gambia with Particular Reference to the Disease in Sheep. 33-40.

Makinde, A.A. (1979) Necrotizing Properties of Some Crude
Fractions of Dermatophilus congolensis - A Preliminary Report.
Bulletin of Animal Health and Production in Africa. 27. 159-162.

Makinde, A.A. (1981) Detection of *Dermatophilus congolensis* Antibody in the Milk of Streptothricosis Infected Cows. Research in Veterinary Science. 30. 374-375.

Makinde, A.A. and Ezeh, A.O. (1981) Primary and Secondary Humoral Immune Responses in Cattle Infected with *Dermatophilus congolensis*. Bulletin of Animal Health and Production in Africa. 29. 19-23.

Makinde, A.A. and Majiyagbe, K.A. (1982) Serodiagnosis of *Dermatophilus congolensis* Infection by Counterimmunoelectrophoresis. Research in Veterinary Science. **33**. 265-269.

Makinde, A.A. and Wilkie, B.N. (1979) Humoral and Cell-mediated Immune Responses to Crude Antigens of *Dermatophilus congolensis* During Experimental Infection of Rabbits. Canadian Journal of Comparative Medicine. 43. 68-77.

Manning, T.O. and Sweeney, C.S. (1986) Immune-Mediated Equine Skin Diseases. Compendium of Continuing Education for the Practising Veterinarian - Compendium Equine. 8. 979-986.

Marshall, R.J. and Evans, R.W. (1990) In Horrobin, D.F. (Ed) Omega-6 Essential Fatty Acids: Pathophysiology and Roles in Clinical Medicine. Alan R. Liss, Inc., New York. Measurement of the Effects of Essential Fatty Acids on Human Skin Smoothness. 81-98.

Martin, W.B. (1983) Diseases of Sheep. Blackwell Scientific Publications Inc., Oxford.

Martin, W.; Lissemore, K. and Kelton, D. (1990) Databases Systems for Disease Recording: Animal Health Monitoring Systems in Canada. In Thrushfield, M.V. (Ed) Proceedings of a meeting of the Society for Veterinary Epidemiology and Preventive Medicine, Queen's University of Belfast, 4th to 6th April.

Mayhew, I.G. (1985) Summary of trial of evening primrose oil in equine anhidrosis. University of Florida School of Veterinary Medicine, March 20.

Mellor, P.S. (1974) The Probable Cause of "Sweet Itch" in England.

The Veterinary Record. 95. 411-415.

Memery, G. and Thiery, G. (1960) Revue d'Elevage et de Medecine Veterinaire des Pays Tropicaux. 13. 123.

Migaki, G, and Seibold, H.R. (1976) Dermatophilosis in a Titi Monkey (*Callicebus moloch*) American Journal of Veterinary Research. **37**. 1225-1226.

Monis, B. and Eynard, A.R. (1982) Abnormal Cell Proliferation and Differentiation and Urothelial Tumorigenesis in Essential Fatty Acid Deficient Rats. Progress in Lipid Research. 20. 691-703.

Montali, R.J.; Smith, E.E.; Davenport, M. and Bush, M. (1975) Dermatophilosis in Australian Bearded Lizards. Journal of the American Veterinary Medical Association. 167. 553-555.

Mornet, P. and Thiery, G. (1955) Streptothricose Cutanee des Bovins. Bulletin of Epizootic Diseases of Africa. **3**. 302-322.

Morris, D.D. (1987) Cutaneous Vasculitis in Horses: 19 Cases (1978-1985). Journal of the American Veterinary Medical Association. 191. 460-464.

Muller, G.H.; Kirk, R.R.W. and Scott, D.W. (1983) In Small Animal Dermatology. 3rd Edition. W.B. Saunders Company. Philadelphia.

Mullowney, P.C. (1985a) Dermatologic Diseases of Horses. Part IV. Environmental, Congenital, and Neoplastic Diseases. Compendium of Continuing Education for the Practising Veterinarian. **7**. S22-S33.

P.C. (1985b) Dermatologic Diseases of Horses. Mullowney, Part V. Immune-Mediated, and Miscellaneous Skin Allergic, Diseases. Compendium of Continuing Education for the Practising Veterinarian. 7. S217-S228.

Mullowney, P.C. and Fadok, V.A. (1984a) Dermatologic Diseases of Horses. Part II. Bacterial and Viral Skin Diseases. Compendium of Continuing Education for the Practising Veterinarian. 6. S16-S22. Mullowney, P.C. and Fadok, V.A. (1984b) Dermatologic Diseases of Horses. Part III. Fungal Skin Diseases. Compendium of Continuing Education for the Practising Veterinarian. 6. S324-S331.

Munro, R. (1977) Equine *Dermatophilus* infection in Hong Kong. Tropical Animal Health and Production. 9. 92.

Munro, R. (1978) Caprine Dermatophilosis in Fiji. Tropical Animal Health and Production. 10. 221-222.

Murphy, J.M.; Severin, G.A.; Lavach, J.D.; Hepler, D.I. and Lueker, D.C. (1979) Immunotherapy in Ocular Equine Sarcoid. Journal of the American Veterinary Medical Association. 174. 269-272.

Murray, D.R.; Ladds, P.W. and Campbell, R.S.F. (1978) Granulomatous and Neoplastic Diseases of the Skin of Horses. Australian Veterinary Journal. 54. 338-341.

Naviaux, J.L. (1985) In Horses in Health and Disease. 2nd Edition. Lea and Febiger, Philadelphia. Part III. Parasites. 186-208.

Neurath, H. (1989) In Beynon, R.J. and Bond, J.S. (Eds) Proteolytic Enzymes: A Practical Approach. IRL Press at Oxford University Press.

Neuringer, M.; Anderson, G.J. and Connor, W.E. (1988) The Essentiality of n-3 Fatty Acids for the Development and Function of the Retina and the Brain. Annual Review of Nutrition. 8. 517-541.

Newman, M.S.; Cook, R.W.; Appelhof, W.K. and Kitchen, H. (1975) Dermatophilosis in Two Polar Bears. Journal of the American Veterinary Medical Association. 167. 561-564.

Nicolet, J.; Klinger, K. and Fey, H. (1967) *Dermatophilus congolensis* agent de la streptothrichose du chamois. Pathologia Microbiologica. 30. 831.

Nissen, H. and Bojesen, I. (1969) On Lipid Droplets in Renal Interstitial Cells. Z. Zellforsch Mikrosk Anat. 97. 274-284.

Nyrop, K.A.; Coffman, J.R. and Johnston, J.W. (1986) Equine Cutaneous Mastocytoma. Compendium of Continuing Education for the Practising Veterinarian - Compendium Equine. 8. 757, 761.

Oduye, O.O. (1975) Effects of Various Induced Local Environmental Conditions and Histopathological Studies in *Dermatophilus congolensis* Infection on the Bovine Skin. Research in Veterinary Science. **19**. 245-252.

Oduye, O.O. (1976) In Lloyd, D.H. and Sellers, K.C. (Eds) Dermatophilus Infection of Animals and Man. Academic Press, London. Bovine Streptothricosis in Nigeria. 2-16.

Oliver, M.F.; Riemersma, R.A.; Thomson, M.; Fulton, M.; Abraham, R.A. and Wood, D.A. (1990) In Horrobin, D.F. (Ed) Omega-6 essential Fatty Acids: Pathophysiology and Roles in Clinical Medicine. Alan R. Liss, Inc., New York. 121-126.

Ott, L. (1988) In An Introduction to Statistical Methods and Data Analysis. 3rd Edition. PWS-KENT Publishing Company, Boston.

Pascoe, R.R. (1971) An Outbreak of Mycotic Dermatitis in Horses in South-Eastern Queensland. Australian Veterinary Journal. 47. 112-115.

Pascoe, R.R. (1972) Further Observations on *Dermatophilus* Infections in Horses. Australian Veterinary Journal. 48. 32-34.

Pascoe, R.R. (1973) The Nature and Treatment of Skin Conditions Observed in Horses in Queensland. Australian Veterinary Journal. **49.** 35-40.

Pascoe, R.R. (1979) The Epidemiology of Ringworm in Racehorses Caused by *Trichophyton equinum var. autotrophicum.* Australian Veterinary Journal. **55**. 403-407.
Pascoe, R.R. (1984) Infectious Skin Diseases of Horses. Veterinary Clinics of North America: Large Animal Practice. 6. 27-46.

Pascoe, R.R. and Connole, M.D. (1974) Dermatomycosis Due to *Microsporum gypseum* in Horses. Australian Veterinary Journal. **50**. 380-383.

Pascoe, R.R. and Summers, P.M. (1981) Clinical Survey of Tumours and Tumour-like Lesions in Horses in South East Queensland. Equine Veterinary Journal. 13. 235-239.

Perreau, P. and Chambron, J. (1966) Immunologie de la streptothricose cutanee des bovins. Essai de vaccination. Revue d'Elevage et de Medecine Veterinaire des Pays Tropicaux. 19. 263-274.

Pier, A.C.; Richard, J.L. and Farrell, E.F. (1964) Fluorescent Antibody and Cultural Techniques in Cutaneous Streptothricosis. American Journal of Veterinary Research. **25**. 1014-1019.

Plowright, W. (1956) Cutaneous Streptothricosis of Cattle. I. Introduction and Epizootiological Features in Nigeria. The Veterinary Record. 68. 350-355.

Pointon, A. and Hueston, W.D. (1990) Database Systems for Disease Recording: The National Animal Health Monitoring System (NAHMS): Evolution of an Animal Health Information Database System in the U.S.A.. In Thrushfield, M.V. (Ed) Proceedings of a meeting of the Society for Veterinary Epidemiology and Preventive Medicine, Queen's University of Belfast, 4th to 6th April.

Pritchard, G.A. and Mansel, R.E. (1990) Effects of Essential fatty acids on the Growth of Breast Cancer and Melanoma. In Omega-6 Essential Fatty Acids: Pathophysiology and Roles in Clinical Medicine. Alan R. Liss Inc. New York. 379-390.

Puolakka, J; Makarainen, L; Viinikka, L. and Ylikorkala, O. (1985) Biochemical and Clinical Effects of Treating the Premenstrual Syndrome with Prostaglandin Synthese Precursors. Journal of Reproductive Medicine. 30. 149-153.

Ragland, W.L.; Keown, G.H. and Spencer, G.R. (1970) Equine Sarcoid. Equine Veterinary Journal. 2. 2-11.

Rebhun, W.C. (1987) In Current Therapy in Equine Medicine, 2nd Edition. Robinson, N.E. (Ed) W.B. Saunders Company, Philadelphia. Immunotherapy for Sarcoids. 637-639.

Reef, V.B. (1987) In Current Therapy in Equine Medicine, 2nd Edition. Robinson, N.E. (Ed) W.B. Saunders Company, Philadelphia. Vasculitis. 312-314.

Richard, J.L. and Pier, A.C. (1966) Transmission of *Dermatophilus* congolensis by Stomoxys calcitrans and Musca domestica. American Journal of Veterinary Research. 27. 419-423.

Richard, J.L.; Pier, A.C. and Cysewski, S.J. (1973) Experimentally Induced Canine Dermatophilosis. American Journal of Veterinary Research. 34. 797-799.

Ricketts, S.W. (1987) The Laboratory as an Aid to Clinical Diagnosis. The Veterinary Clinics of North America: Equine Practice. 445-460.

Roberts, D.S. (1961) The Life Cycle of *Dermatophilus dermatonomus*, the Causative Agent of Ovine Mycotic Dermatitis. Australian Journal of Experimental Biology. **39**. 463-476.

Roberts, D.S. (1964) The Host Parasite Relationship in Infection with *Dermatophilus congolensis*. PhD Thesis. University of London.

Roberts, D.S. (1965) The Histopathology of Epidermal Infection with the Actinomycete Dermatophilus congolensis Journal of Pathology and Bacteriology. 90. 213-216.

Roberts, D.S. (1966) The Phagocytic Basis of Acquired Resistance to Infection with *Dermatophilus congolensis*. British Journal of Experimental Pathology. **47**. 372-382. Roberts, D.S. (1967a) *Dermatophilus* Infection. Veterinary Bulletin. **37**. 513-521.

Roberts, D.S. (1967b) Chemotherapy of Epidermal Infection with *Dermatophilus congolensis*. Journal of Comparative Pathology. **77**. 129-136.

Roberts, J.E. and Vallely, T.F. (1962) Streptothricosis in Cattle. The Veterinary Record. 74. 693-696.

Rohn, K and Reinhard, H.J. (1985) Use of a Microcomputer for Data Processing. Deutsche Tierarzthiche Wochenschrift. 92. 40-44.

Roitt, I. (1984) In Essential Immunology, 5th Edition. Blackwell Scientific Publications, Oxford. Hypersensitivity. 233-267.

Roitt, I.; Brostoff, J. and Male, D. (1989) Immunology. 2nd Edition. Gower Medical Publishing, London.

Rollins, J.B. (1981) Fly-bite Dermatitis. Modern Veterinary Practice. 62. 75.

Rosgengren, A.; Welin, L.; Tsipogianni, A. and Wilhelmsen, L. (1989) Impact of Cardiovascular Risk Factors on Coronary Heart Disease and Mortality Among Middle Aged Diabetic Men: A General Population Study. British Medical Journal. 299. 1127-1131.

Russell, A.M. and Rowlands, G.J. (1983) COSREEL: Computerised Recording System for Herd Health Information Management. The Veterinary Record. 112. 189-193.

Rycroft, A.N. and Taylor D. (1987) Preparation and Characterisation of Outer Membrane Proteins of *Haemophilus pleuropneumonia*. Veterinary Microbiology. **15**. 303-314.

Salkin, I. F.; Gordon, M.A. and Stone, W.B. (1975) Dual Infection of a White-Tailed Deer by *Dermatophilus congolensis* and *Alternaria alternata*. Journal of the American Veterinary Medical Association. 167. 571-573.

Salkin, I.F., Gordon, M.A. and Stone, W.B. (1976) Dermatophilosis Among Wild Raccoons in New York State. Journal of the American Veterinary Medical Association. 169. 949-951.

Saunders, D.E. (1981) Dermatomycosis. Modern Veterinary Practice. 62. 75-76.

Scarnell, J. (1961) Clinical Observations on Dermatitis of the Horse Caused by *Dermatophilus sp*. The Veterinary Record. **73**. 795-797.

Schalin-Karrila, M.; Mattila, L.; Jansen, C.T. and Uotila, P. (1987) Evening Primrose Oil in the Treatment of Atopic Eczema: Effect on Clinical Status, Plasma Phospholipid Fatty Acids and Circulating Blood Prostaglandins. British Journal of Dermatology. 117. 11-19.

Schalm, O.W. (1986) In Veterinary Haematology, 4th Edition. Lea and Febiger, Philadelphia. Normal Haematology with Comments on Response to Disease. 140-177.

Scheidt, V.J. and Lloyd, D.H. (1987) In Robertson, N.E. (Ed) Current Therapy in Equine Medicine, 2nd Edition. W.B. Saunders Company, Philadelphia. Dermatophilosis. 630-632.

Scott, D.W. (1983) In Robinson, N.E. (Ed) Current Therapy in Equine Medicine. W.B. Saunders Company, Philadelphia. Folliculitis and Furunculosis. 542-545.

Scott, D.W. (1987) In Robinson, N.E. (Ed) Current Therapy in Equine Medicine. 2nd Edition. W.B. Saunders Company, Philadelphia. Nodular Skin Disease. 634-637.

Scott, D.W. (1988) In Large Animal Dermatology. W.B. Saunders Company, Philadelphia.

Scott, D.W. and Buerger, R.G. (1988) Non-steroidal Anti-inflammatory Agents in the Management of Canine Pruritus. Journal of American Animal Hospital Association. 24. 425-428.

Scott, D.W. and Sheffy, B.E. (1987) Dermatosis in Dogs caused by Vitamin E Deficiency. Companion Animal Practice. 1. 42-46.

Searcy, G.P. and Hulland, T.J. (1968) *Dermatophilus* Dermatitis (Streptotrichosis) in Ontario. I. Clinical Observations. Canadian Veterinary Journal. 9. 7-15.

Seddon, H.R. (1929) Mycotic dermatitis of Sheep. Veterinary Research Reprints of New South Wales. 1927-28. 10.

Shotts, E.B. and Kistner, T.P. (1970) Naturally Occurring Cutaneous Streptothricosis in a Cottontail Rabbit. Journal of American Veterinary Medical Association. 157. 667-670.

Simpson, L.O. (1988) Altered Blood Rheology in the Pathogenesis of Diabetic and Other Neuropathies. Muscle Nerve. 11. 725-744.

Sinclair, A.J. (1985) Essential Fatty Acid Requirements of Different Species. Proceedings of the Nutritional Society of Australia. 10. 41-48.

Sinclair, H.M. (1990) In Horrobin, D.F. (Ed) Omega-6 Essential Fatty Acids: Pathophysiology and Roles in Clinical Medicine. Alan Liss, New York. History of Essential Fatty Acids. 1-21.

Sinclair, H.M. (1952) Essential Fatty Acids and Their Relation to Pyridoxine. Biochemistry Society Symposium. 9. 80-99.

Smith, L.P. and Austwick, P.C.K. (1975) Effect of Weather on the Quality of Wool in Great Britain. The Veterinary Record. 96. 246-248.

Soulsby, E.J.L. (1982) Helminths, Arthropods, and Protozoa of Domesticated Animals, 7th Edition. The Williams and Wilkins Company, Baltimore.

Stableforth, A.W. (1937) Cutaneous Streptothricosis: A Case in Great Britain. Proceedings of the Royal Society of Medicine. **30**. 1455.

Stannard, A.A. (1972) Some Important Dermatoses in the Horse. Modern Veterinary Practice. August edition. 31-36.

Stewart, G.H. (1972a) Dermatophilosis: A Skin Disease of Animals and Man. Part I. The Veterinary Record. 91. 537-544.

Stewart, G.H. (1972b) Dermatophilosis: A Skin Disease of Animals and Man. Part II. The Veterinary Record. 91. 555-561.

Strafuss, A.C. (1976) Squamous Cell Carcinoma. Journal of the American Veterinary Medical Association. 168. 61-62.

Strafuss, A.C.; Smith, J.E.; Dennis, S.M. and Anthony, H.D. (1973) Sarcoid in Horses. Veterinary Medicine and Small Animal Clinician, November Issue. 1246-1247.

Sundberg, J.P.; Burnstein, T; Page, E.H.; Kirkham, W.W. and Robinson, F.R. (1977) Neoplasms of Equidae. Journal of the American Veterinary Medical Association. **170**. 150-152.

Tarwid, J.N.; Fretz, P.B. and Clark, E.G. (1985) Equine Sarcoids: A Study with Emphasis on Pathologic Diagnosis. Compendium of Continuing Education for the Practising Veterinarian. 7. S293-S300.

Thompson, R.E.M. (1954) A Species of *Rhizobium* Isolated from Strawberry Foot Rot in the Sheep. Journal of Pathology and Bacteriology. 68. 445

Thomsett, L.R. (1979) Skin diseases of the horse. In Practice. 1. 15-26.

Thrusfield, M. (1986) In Veterinary Epidemiology. Butterworths, London. Data Storage and Retrieval. 121-131.

Tizard, I. (1987) In Veterinary Immunology, 3rd Edition. W.B. Saunders Company, Philadelphia. Hypersensitivity and Inflammation. 267-327.

Torten, M. and Schalm, O.W. (1964) Influence of the Equine Spleen and Rapid Changes in Concentration of Erythrocytes in Peripheral Blood. American Journal of Veterinary Research. 25. 500-503.

Triger, D. R. (1990) Essential Fatty Acids in Primary Biliary Cirrhosis. In Omega-6 Essential Fatty Acids: Pathophysiology and Roles in Clinical Medicine. Alan R. Liss, Inc. New York. 437-446.

Van Saceghem, R. (1915) Dermatose Contagieuse (*Impetigo contagieux*) Bulletin de la Societe de Pathologie Exotique et de ses Filiales. 8. 354-359.

Vigier, M. and Balis, J. (1967) Variabilite et Antigenicite de *Dermatophilus congolensis*. Revue d'Elevage et de Medecine Veterinaire des Pays Tropicaux. 20. 67-76.

Watson, D.R. and Walton, A.M. (1973) Equine Dermatophilosis in Southwestern Virginia. Veterinary Medicine & Small Animal Clinician. 68. 844-846.

White, M.E. (1988) Diagnosis, Information Management, Teaching, and Record Coding Using the CONSULTANT Database. Canadian Veterinary Journal. 29. 271-274.

White, S.D. (1987) In Robinson, N.E. (Ed) Current Therapy in Equine Medicine, 2nd edition. W.B. Saunders Company, Philadelphia. Photosensitivity. 632-633.

Wissocq, N.M.; Durkin, J.W.; Trail, J.C.M.; Gettinby, G.; Bell, R.J.; Berhane, H. and Light, D.E. (1989) Uptake of a Microcomputer Database Package on Livestock Management Decisions in Africa. Computers and Electronics in Agriculture. **4.** 157-168

Wood, D.A.; Butler, S.; Riemersma, R.A. et al, (1984) Adipose Tissue and Platelet Fatty Acids and Coronary Heart Disease in Scottish Men. Lancet. 2. 117-121.

Wright, S. (1990) In Horrobin, D.F. (Ed) Omega-6 Essential Fatty Acids: Pathophysiology and Roles in Clinical Medicine. Alan R. Liss Inc., New York. Essential Fatty Acids and Atopic Eczema: Biochemical and Immunological Studies. 55-65.

Wyman, M.; Rings, M.D.; Tarr, M.J. and Alden, C.L. (1977) Immunotherapy in Equine Sarcoid: A Report of Two Cases. Journal of the American Veterinary Medical Association. 171. 449-451.

Ziboh, V.A. and Chapkin, R.S. (1987) Biologic Significance of Polyunsaturated Fatty Acids in the Skin. Archives of Dermatology. 123. 1686a-1690a.

Zlotnik, I. (1955) Cutaneous Streptothricosis in Cattle. The Veterinary Record. 67. 613-614.

APPENDIX I

TABLES OF RESULTS OF THE STUDY ON THE PHARMACOKINETICS OF EFAs IN HORSES

Clinical Indices, Haematological and Biochemical Parameters

Table I						
Coat condi	tion sco	res				
Scored on	a 1 to 10) scale,	1 is	s poor	est, 10	is optimal
Horse		Week O	3	6		
5g EPO dai Annabelle Donald Myrtle Calumn Giraffe Gunsmoke Soyereign Orlando Jack Nicholas Suzie Hermione	ly Mean S.D.	74467345644603 51.3	76684446854785 51	76686777886809	Group mean 5.9	
10g EPO al Charlotte Marigold Jasper Ding Dong Flora Chocolate Goldie Durando BeBe Samyel Jordan Dick	Mean S.D.	day 56564546655638	56564546656851	56564546656851	Group mean 5.4	
20g EPO da Foxy Gold Loch Bonny Skippy Flynn Rocky Charlie Geno Biggles Smiler Aird	Mean S.D.	35546556554699 40	55557477755781 51	68667676776767 60	Group mean 5.8	
40g EPO a Karlops Big Ben Walter Poilux Armpit Sandy Lad Sabrian Ollie Poppett Tessa Alfred Darkie	Mean S.D.	day 45554464355349	87865677556741 61.	87876687657890 61.	Group mean 5.9	

Table II								
Mane cond	ition sco	ores						
Scored on	a 1 to 1	lO scale,	1	is poor	rest,	10	is	optimal
Horse		Week 0	3	6				
5g EPO d a Annabelle Donald Myrtle Calumn Giraffe Gunsmoke Sovereign Orlando Jack Nicholas Suzie Hermione	ily Mean S.D.	6554444555545 40. 77	6777466666646 90 51	666756667647 09 60	Gro mea 5	oup an		
10g EPO a Charlotte Marigold Jasper Ding Dong Flora Chocolate Goldie Durando BeBe Samuel Jordan Dick	lternate Mean S.D.	day 565645556555.26	6666746667667 60 60	7766666666768.47 60.	Grou mean 5	ւթ .9		
20g EPO d Foxy Wallace Gold Loch Bonny Skippy Flynn Rocky Charlie Geno Biggles Smiler Aird	aily Mean S.D.	5353555555556 40	98 	676767666576.36 60	Gro mea 5	oup an .6		
40g EPO a Karlops Big Ben Walter Pollux Armpit Sapdy Lad Sabrian Ollie Poppett Tessa Alfred Darkie	Mean S.D.	day 5554435535544.4 4.8	667544674667.72 51.2	7677656866667.48	Gro mea 5	oup an		

Table III							
Tail condition	on scores	5					
Scored on a 2	l to 10 s	scale,	, 1 i	s poor	est, 1	0 is	optimal
Horse		Week 0	3	6			
5g EPO daily Annabelle Donald Myrtle Calumn Giraffe Gunsmoke Sovereign Orlando Jack Nicholas Suzie Hermione	Mean S.D.	6555444555545 40	667746467656.80 51.	7677677757 60.7	Grou mean 5.8	p	
10g EPO alter Charlotte Marigold Jasper Ding Dong Flora Chocolate Goldie Durando BeBe Samyel Jordan Dick	mate da Mean S.D.	5656455565555.26 50	666776667667 60	776677777688.6 60.	Group mean 6.1		
20g EPO dail Foxy Wallace Gold Loch Bonny Skippy Flynn Rocky Charlie Geno Biggles Smiler Aird	y Mean S.D.	535355555556 89 40	655675677566 •• 50	786777677676 60	Grou mean 5.8	p	
40g EPO alter Karlops Big Ben Walter Pollux Armpit Sandy Lad Sabrian Ollie Poppett Tessa Alfred Darkie	rnate da Mean S.D.	y 55555435535554 58	77864467567723 61.3	878765786777 99	Group mean 5.9		

Table IV						
Hoof cond	ition sco	res				
Scored on	a 1 to 10) scale	, 1 i	s poor	rest, 10	is optimal
Horse		Week 0	3	6		
5g EPO d at Annabelle Donald Myrtle Calumn Giraffe Gunsmoke Soyereign Orlando Jack Nicholas Suzie Hermione	Mean S.D.	54 35555546454 68 40	6656575474555.40 51	6668777687557.9 60	Group mean 5.6	
10g EPO a Charlotte Marigold Jasper Ding Dong Flora Chocolate Goldie Durando BeBe Samyel Jordan Dick	Mean S.D.	day 4656455445545 4.58 0.8	6777666665668 60	77868868676819 70.9	Group mean 6.1	
20g EPO da Foxy Gold Loch Bonny Skippy Flynn Rocky Charlie Geno Biggles Smiler Aird	aily Mean S.D.	4442545555456 40	655454676557 40 51	576668787667.69 60	Group mean 5.5	
40g EPO a Karlops Big Ben Walter Pollux Armpit Sandy Lad Sabrian Ollie Poppett Tessa Alfred Darkie	Mean S.D.	day 645354655554479	766646775555.80	8776666776767 60.70	Group mean 5.7	

Table V					
Red cell c	ounts	Values	x1012/1		
Horse	Week O	Week 3	Week	6	
5g EPO dai Annabelle Donald Myrtle Calumn Giraffe Gunsmoke Sovereign Orlando Jack Nicholas Suzie Hermione	ly 7.6649 66.49 56.7 56.7 867.7 867.6 76.9	7666675666666	268202610680	776677788787 	Group mean
Mean S.D.	6.82 0.85	6.4 0.5	13	7.46 0.60	6.90
10g EPO al Charlotte Marigold Jasper Ding Dong Flora Chocolate Goldie Durando BeBe Samuel Jordan Dick	ternate day 7.2 6.88 7.6 7.6 7.6 7.6 5.0 7.4 8.9	565587655758	4443355214998	506396438239 888698876869	Group mean
Mean S.D.	7.28 0.90	6.4 1.3	7 31	8.07 1.21	7.27
20g EPO da Foxy Wallace Gold Loch Bonny Skippy Flynn Rocky Charlie Geno Biggles Smiler Aird	ily 7.5 7.0 7.3 7.0 6.5 6.3 7.5 6.2	6666656655777	645469133953	87777576986955 877775767787	Group mean
Mean S.D.	6.95 0.68	6.4 0.6	10	7.58 0.70	6.98
40g EPO al Karlops Big Ben Walter Pollux Armpit Sandy Lad Sabrian Ollie Poppett Tessa Alfred Darkie	ternate day 7.2 6.4 5.4 5.9 5.9 5.7 4.6 7.4 6.2 5.7	866568668656	115593361198	877779779687	Group mean
Mean S.D.	6.1 <u>1</u> 0.87	6.7 0.9	7 93	7.77 0.82	6.88

Table VI				
Haemoglobin	values	Values	in g/dl	
Horse	Week O	Week 3	Week 6	
5g EPO dail Annabelle Donald Myrtle Calumn Giraffe Gunsmoke Sovereign Orlando Jack Nicholas Suzie Hermione	15.3 13.07 12.77 12.30 12.30 12.30 14.99 11.50 14.97 13.0	14. 12. 12. 11. 11. 11. 12. 12. 12. 12. 12	0 123-17343860 123-17345860 123-173458000000000000000000000000000000000000	Group mean
Mean S.D.	$\substack{12.87\\1.55}$	$\begin{array}{c} 12.1\\ 1.1\end{array}$	6 12.68 5 0.79	12.57
10g EPO alte Charlotte Marigold Jasper Ding Dong Flora Chocolate Goldie Durando BeBe Samuel Jordan Dick	ernate day 13.37 12.2 12.4 13.5 14.7 15.0 10.6 13.0 14.6 16.6	9. 12. 10. 13. 12. 14. 10. 14. 11. 16.	3 13.3.3.4 1332.3.4 120.1.2 100 153.90 1332.0.0 122.0.5 1332.0.0 122.0.5 1332.0 122.0 1332.0 122.0 1332.0 122.0 131.0 122.0 131.0 120.0 <	Group mean
S.D.	1.72	2.3	¹³ 1.77	12.75
20g EPO dail Foxy Wallace Gold Loch Bonny Skippy Flynn Rocky Charlie Geno Biggles Smiler Aird	y 12.554 1340 142.034 142.034 122.566 10.6	11. 12. 12. 12. 12. 12. 10. 11. 10. 12. 10. 12.	83 13.1 83 122.5 103.1 103.4 103.1 103.4 103.1 103.4 103.1 103.4 103.1 103.4 103.1 103.4 103.1 103.4 103.1 103.4 103.1 103.4 103.1 103.4 103.2 103.4 103.3 103.4 103.4 <td>Group mean</td>	Group mean
Mean S.D.	$\substack{12.75\\1.19}$	11.7 0.8	2 12.48 88 1.16	12.32
40g EPO alte Karlops Big Ben Walter Pollux Armpit Sandy Lad Sabrian Ollie Poppett Tessa Alfred Darkie	ernate day 12.68 10.3 9.6 12.3 10.6 8.4 12.8 13.1 11.9 12.1 10.9	14. 12. 10. 14. 12. 14. 14. 11. 14. 11. 13.	3 14.01 143.23 123.24 123.24 123.24 123.1 123.1 123.1 123.1 123.1 123.1 123.1 123.1 123.1 123.1 123.1 123.1 113.1 113.1 113.1 113.1 113.1 113.1	Group mean
Mean S.D.	$\substack{11.45\\1.48}$	$12.5 \\ 1.3$	2 13.00 0 1.00	12.32

Table VII

Packed celi	l volumes	Values in	1/1	
Horse	Week O	Week 3	Week 6	
5g EPO dai Annabelle Donald Myrtle Calumn Giraffe Gunsmoke Sovereign Orlando Jack Nicholas Suzie Hermione	ly 0.440 0.379 0.367 0.336 0.371 0.364 0.297 0.430 0.430 0.343 0.401 0.358	0.408 0.376 0.3880 0.3270 0.3270 0.3316 0.3156 0.314	0.373 0.388 0.350 0.360 0.377 0.375 0.4128 0.425 0.425 0.379 0.341	Group mean
Mean S.D.	0.3767 0.0432	0.3544 0.0327	0.3810 0.0273	0.3707
10g EPO alf Charlotte Marigold Jasper Ding Dong Flora Chocolate Goldie Durando BeBe Samuel Jordan Dick	ternate day 0.390 0.376 0.339 0.339 0.339 0.434 0.353 0.434 0.353 0.314 0.374 0.425 0.491	0.289 0.348 0.258 0.2813 0.3477 0.343 0.369 0.301 0.411 0.331 0.477	0.432 0.403 0.3805 0.466 0.431 0.3665 0.3393 0.3329 0.537	Group mean
Mean S.D.	0.3923 0.0496	0.3420 0.0670	0.4009 0.0621	0.3784
20g EPO da Foxy Wallace Gold Loch Bonny Skippy Flynn Rocky Charlie Geno Biggles Smiler Aird	ily 0.362 0.391 0.429 0.347 0.329 0.347 0.325 0.354 0.354 0.325	$\begin{array}{c} 0.333\\ 0.3554\\ 0.3823\\ 0.3239\\ 0.3239\\ 0.3343\\ 0.33496\\ 0.3842\\ 0.3882\\ 0.3882\end{array}$	0.391 0.397 0.367 0.447 0.367 0.307 0.357 0.398 0.359 0.359	Group mean
Mean S.D.	0.3746 0.0351	$\begin{array}{c} 0.3433 \\ 0.0280 \end{array}$	0.3786 0.0345	0.3655
40g EPO al Karlops Big Ben Walter Pollux Armpit Sabrian Ollie Poppett Tessa Alfred Darkie	ternate day 0.369 0.296 0.288 0.370 0.288 0.372 0.309 0.367 0.394 0.353 0.353 0.353	0.415 0.354 0.346 0.365 0.441 0.3364 0.441 0.3364 0.418 0.341 0.3373	0.425 0.387 0.360 0.388 0.447 0.321 0.423 0.423 0.423 0.423 0.423	Group mean
mean S.D.	0.0445	0.0407	0.0385	0.3033

Mean cell volume values, in fl Horse Week 0 Week 3 Week 6 **5g EPO daily** Annabelle Donald Myrtle Calumn Giraffe Gunsmoke Sovereign Orlando Jack Nicholas Suzie Hermione 51861222615 5555554518678 Group mean 55.34 2.06 55.13 51.17 Mean S.D. 53.88 10g EPO alternate day
Charlotte54.2
S4.2Marigold52.6
JasperJasper49.8
Ding DongDing Dong54.3
S1.6Chocolate51.8
S6.3Durando53.5
BeBeBeBe57.1
SamuelJordan57.5
Dick 51.0866036052228 5544877.605228 Group mean 49.80 2.81 53.94 53.00 2.59 Mean S.D. 52.25 20g EPO daily Foxy Wallace Gold Loch Bonny Skippy Flynn Rocky Charlie Geno Biggles Smiler Aird 498368922724 45531.68922724 45556455563122 438890862551 45454555555488 Group mean 50.16 3.51 54.03 3.42 53.76 52.65 Mean S.D. 40g EPO alternate day
Karlops51.3
S1.3Big Ben57.8
S7.8Walter54.8
PolluxPollux56.4
S.9Sandy Lad54.2
SabrianOllie55.7
PoppettTessa57.0
S7.0
AlfredDarkie56.5 **45491.9992661 45491.9992661 45491.9992661 100** Group mean 50.52 55.17 54.17 2.03 53.28 Mean S.D.

Table VIII

Mean cell haemoglobin values, in pg Horse Week 0 Week 3 Week 6 **5g EPO daily** Annabelle Donald Myrtle Calumn Giraffe Gunsmoke Sovereign Orlando Jack Nicholas Suzie Hermione 209.74902228 199.8874902228 77786676 .04.08 <u>6</u> Group 6 Ă 5 mean 18.92 18.93 0.76 17.04 Mean S.D. 18.29 10g EPO alternate day
Charlotte18.5
MarigoldMarigold17.8
JasperJasper16.5
Ding DongDing Dong18.2
FloraFlora17.5
ChocolateOldie19.6
DurandoDurando18.2
BeBeJordan19.3
SamuelJordan19.7
Dick 17.295972044059119.199.59 373624636559 Group 16 mean 16.330.95Mean S.D. $18.31 \\ 0.98$ 18.22 17.62 20g EPO daily Foxy Wallace Gold Loch 16.83.4.61 98..61 198..61 198..54 198..54 198..21 198. 5768577 6328550 Bonny Skippy Flynn Rocky Charlie .1 Geno Biggles Smiler 6 5 Group Ăird 16 mean $18.40 \\ 1.16$ 18.38 $16.68 \\ 0.98$ 17.82 Mean S.D. 40g EPO alternate day
Karlops17.5Big Ben20.0Walter19.1Pollux18.8Armpit17.8Sandy Lad18.6Sabrian18.7Ollie19.4Poppett17.7Tessa19.2Alfred19.5Darkie19.1 17.7 19.7 18.3 19.6 18.0 18.0 18.0 6867656657 158439055455 18.9 17.3 19.2 19.0 19.1 Poppett Tessa Alfred Darkie Group 16 mean $16.70 \\ 0.85$ $18.58 \\ 0.77$ 18.02 $18.78 \\ 0.77$ Mean S.D.

Table IX

Table X				
Mean cell	haemoglobin	concentrat	tion values	s, in g/dl
Horse	Week O	Week 3	Week 6	
5g EPO d ai Annabelle Donald Myrtle Calumn Giraffe Gunsmoke Sovereign Orlando Jack Nicholas Suzie Hermione	ily 34.8 34.3 34.6 33.7 33.7 33.7 33.7 34.1 34.7 34.1 34.6 33.5	313866709358 334444433544443 33444443333344443 333444433333333	0.27291 33224 33224 3324 3324 3321 3321 3321 3	Group mean
Mean S.D.	34.15 0.50	34.33 0.52	33.32 0.93	33.93
10g EPO al Charlotte Marigold Jasper Ding Dong Flora Chocolate Goldie Durando BeBe Samyel Jordan Dick	ternate day 34.7 33.9 33.1 33.6 34.0 33.8 34.0 33.8 34.0 33.8 34.3 34.8 34.3 33.8	185863409678 3344334409678 3344433444 3344433454444 33454444 33333333	9911455339445 122422032431 3333333333333333333333333333333333	Group mean
Mean S.D.	33.98 0.60	34.38 0.81	32.81 0.87	33.72
20g EPO da Foxy Wallace Gold Loch Bonny Skippy Flynn Rocky Charlie Geno Biggles Smiler Aird	aily 34.5 34.5 34.6 34.6 34.4 34.4 34.1 33.6 34.5 34.5 34.5 34.5 34.5 34.5 34.5	35.463877552235 3443344334 33344334433 3344334 3333 334333 3333 3333 33333 33333 33333 333333	55558765557404 34321.33322223 33333333333222223 3333333333	Group mean
Mean S.D.	34.03 0.60	34.14 0.61	33.01 0.79	33.73
40g EPO al Karlops Big Ben Walter Pollux Armpit Sandy Lad Sabrian Ollie Poppett Tessa Alfred Darkie	Iternate day 34.1 34.8 33.4 33.1 34.3 34.3 34.3 34.3 33.3 33.3	503628335308 4345434435408 333333333344334444 33333333333333333	9922500716190 23433222115333 3333333333333333333333333333	Group mean
Mean S.D.	34.05 0.58	34.29 0.53	33.08 1.14	33.81

Table XI				
Platelet val	lues	Values x1	109/1	
Horse	Week O	Week 3	Week 6	
5g EPO daily Annabelle Donald Myrtle Calumn Giraffe Gunsmoke Sovereign Orlando Jack Nicholas Suzie Hermione	y 180 180 170 198 240 130 150 170 130 170	210 130 140 130 190 170 220 150 170	183 113 169 233 219 128 174 160 240	Group mean
Mean S.D.	$^{162.3}_{37.3}$	$157.5 \\ 43.9$	$165.3 \\ 58.0$	161.7
10g EPO alte Charlotte Marigold Jasper Ding Dong Flora Chocolate Goldie Durando BeBe Samuel Jordan Dick	ernate day 210 200 160 210 180 200 120 210 170 120 150 188	180 160 170 200 210 210 210 220 190 120 150	222 240 198 103 167 183 204 114 117 96	Group mean
Mean S.D.	$\substack{176.5\\33.1}$	$\substack{175.8\\33.4}$	$\substack{158.8\\51.8}$	170.4
20g EPO dai Foxy Wallace Gold Loch Bonny Skippy Flynn Rocky Charlie Geno Biggles Smiler Aird	l y 185 250 219 140 160 170 180 180 160 120	190 110 210 160 190 180 140 190 200 130 110	181 1382 1223 1237 1574 1058 180 131 54	Group mean
Mean S.D.	172.8 34.7	160.8 37.0	138.1 42.6	157.3
40g EPO alte Karlops Big Ben Walter Pollux Armpit Sandy Lad Sabrian Ollie Poppett Tessa Alfred Darkie	ernate day 210 170 210 180 150 150 150 140 140 170 112	220 180 160 160 110 260 140 120 170 150	207 1928 1127 1684 1882 1427 1915 126	Group mean
Mean S.D.	$^{166.0}_{31.7}$	172.5 42.7	$149.3 \\ 38.3$	162.6

Table	XII								
White	cell	counts		Valu	ues	x10 ⁹	/1		
Horse		Week	0	Week	3	We	ek	6	
5g EP(Annale Donale Myrtle Calumr Giraff Gunsmo Sovere Orlanc Jack Nichol Suzie Hermic) dai elle fe bke eign lo las	ly	205985992346 218667668988		14. 10. 75. 85. 14. 12. 11.	325356619251		9.1.7.8.7.62.87.3.04 117.8.7.66.7.9.9.1.6 116	Group mean
Mean S.D.			8.43 1.71		9.6 3.0	55)7		8.45 1.76	8.84
10g El Charlo Jasper Ding I Flora Goldie Duranc BeBe Samue Jordar Dick	PO al otte old Dong late do l	ternate (lay 2 10.5 9.0 18.37 88.37 9.0 17.1 15.1		15. 19. 14. 10. 17. 14. 17. 14. 11.	383854922108		11.2.5671881881 124.885.671.8881.81 156.7.9.69	Group mean
Mean S.D.		:	10.65 3.89		12.6	59 58		9.86 2.75	11.07
20g El Foxy Wallac Gold Bonny Flockippy Flockippy Geno Geno Biggle Smilei Aird	PO da Ce Loch Y ie es	ily	9.29 1053.39 138.97 138.97 98.97 138 97.13 98.97 138 97.13 98.97 139 149 149 149 149 149 149 149 149 149 14		9.7.2.9.7.8.6.6.9.4.9.8. 14.9.8	369042994255		8.04755333245 136.89833332455 1382.87	Group mean
Mean S.D.			9.40 2.06		9.1 2.2	5 27		9.83 2.47	9.46
40g El Karlog Big Bo Walten Pompiy Arandy Sabli Sollie Possa Alfred Darkie	PO al' os c t Lad an tt	ternate (lay.0.3 9.3.1 16.3.0 113.0 113.0 7.8 7.8 7.8 7.8 7.8 7.5		11.7.12.7.13.10.11.9.14.	185975008073		846591741319 10978788	Group mean
Mean S.D.			9.53 2.89		10.2 2.4	28 1		8.40 1.05	9.40

Table XIII				
Urea values	Values ir	n mmol/l		
Horse	Week O	Week 3	Week 6	
5g EPO daily Annabelle Donald Myrtle Calumn Giraffe Gunsmoke Sovereign Orlando Jack Nicholas Suzie Hermione	817257937815	2050321155553 645626642534	727199581237	Group mean
Mean S.D.	6.36 0.61	4.68 1.43	5.84 1.27	5.63
10g EPO alte Charlotte Marigold Jasper Ding Dong Flora Chocolate Goldie Durando BeBe Samuel Jordan Dick	rnate day 7.1 7.1 4.2 6.2 7.2 8 7.2 8 7.2 8 7.2 8 7.2 8 7.2 8 7.2 8 7.2 8 7.2 8 7.2 8 7.2 8 7.2 8 7.2 8 7.2 8 7.2 8 7.2 8 7.1 8 7.2 7.2 8 7.2 7 7.2 8 7.2 8 7.2 8 7.2 8 7.2 8 7.2 8 7.2 8 7.2 8 7.2 8 7.2 8 7.2 8 7.2 8 8 7.2 8 9 6 .0 8 9 6 .0 8 9 6 .0 8 9 6 .0 8 9 6 .0 8 9 6 .0 8 9 6 .0 8 9 6 .0 8 9 6 .0 8 9 6 .0 8 9 6 .0 8 8 9 6 .0 8 8 9 6 .0 8 8 8 9 6 .0 8 8 8 9 8 8 9 8 9 8 9 8 9 8 9 8 9 8 9	928203185951	534989009743	Group mean
Mean S.D.	5.89 1.32	4.03 1.49	5.84 1.27	5.25
20g EPO dail Foxy Wallace Gold Loch Bonny Skippy Flynn Rocky Charlie Geno Biggles Smiler Aird	y 7.1863 5.0362 88876 6668876	606950885989 342556444255	450217077128	Group mean
Mean S.D.	6.57 0.93	4.69 1.20	6.37 1.02	5.88
40g EPO alte Karlops Big Ben Walter Pollux Armpit Sandy Lad Sabrian Ollie Poppett Tessa Alfred Darkie	rnate da 7.62 7.62 7.63 7.63 7.63 7.63 7.63 7.63 7.63 7.63	665656664754 	766858666876 	Group mean
Mean S.D.	6.17 1.28	$5.91 \\ 0.88$	7.10 0.91	6.39

_

Table XIV				
Sodium valu	es	Values i	n mmo1/1	
Horse	Week O	Week 3	Week 6	
5g EPO dail Annabelle Donald Myrtle Calumn Giraffe Gunsmoke Sovereign Orlando Jack Nicholas Suzie Hermione	y 140 1366 1387 1367 1367 1368 1375 1368 1385 137	138 138 138 135 127 138 135 135 135 135 138 138	1364 1335 1335 1335 1335 1335 1335 1335 133	Group mean
Mean S.D.	136.8 1.4	135.3 4.2	135.9 1.8	136.0
10g EPO alt Charlotte Marigold Jasper Ding Dong Flora Chocolate Goldie Durando BeBe Samuel Jordan Dick	ernate day 138 135 138 136 132 137 136 137 136 133 139 136	1329 1329 1347 1377 1337 1337 1337 1337 1337 1337	1334 13335 13324 13324 13324 13324 13324 1335 13324 1335	Group mean
Mean S.D.	135.8 2.1	134.3 3.9	$\begin{array}{r}133.8\\1.5\end{array}$	134.7
20g EPO dai Foxy Wallace Gold Loch Bonny Skippy Flynn Rocky Charlie Geno Biggles Smiler Aird	ly 136 1356 1388 1383 1335 1355 1366 1336 1336	133 1380 1369 1387 1374 1374 138 138 138	137 1374 1334 1336 1336 1332 1332 1332 1322 1322	Group mean
Mean S.D.	135.6 1.6	135.4 2.9	133.6 2.3	134 .9
40g EPO alt Karlops Big Ben Walter Pollux Armpit Sandy Lad Sabrian Ollie Poppett Tessa Alfred Darkie	ernate day 138 137 130 134 135 136 131 138 136 131 138 136 134 133	137 138 1389 1362 1355 1384 137	133 1355 1334 1338 1338 1338 1338 1338 1335 133	Group mean
Mean S.D.	134.8 2.6	$137.2 \\ 5.5$	$\overset{133.5}{2.0}$	135.2

Table XV				
Potassium	values	Values i	n mmo1/1	
Horse	Week O	Week 3	Week 6	
5g EPO dai Annabelle Donald Myrtle Calumn Giraffe Gunsmoke Sovereign Orlando Jack Nicholas Suzie Hermione	1y 4.79 4.8 5.3 5.1 4.6 5.0 4.6 5.0 4.3 5.0 4.3	0200988299886 444433334339986	576828827459	Group mean
Mean S.D.	4./2 0.38	3.93 0.17	3.68 0.26	4.11
10g EPO al Charlotte Marigold Jasper Ding Dong Flora Chocolate Goldie Durando BeBe Samuel Jordan Dick	ternate day 4.5 6.0 4.7 4.2 4.2 4.8 4.8 4.8 4.5 3.8 4.5 3.8 4.7	782425565519	875448047626	Group mean
Mean S.D.	4.48	3.99 0.60	3.59	4.02
20g EPO da Foxy Wallace Gold Loch Bonny Skippy Flynn Rocky Charlie Geno Biggles Smiler Aird	4.1 4.2 4.7 4.2 5.4 5.4 5.4 5.5 4.9 5.8 3.8	3.82 4.00 4.7 4.4 4.4 4.4 3.9 4.18 3.9 13.8	525537586523	Group mean
Mean S.D.	4.71 0.56	4.23 0.35	3.72 0.49	4.22
40g EPO al Karlops Big Ben Walter Pollux Armpit Sapdy Lad Sabrian Ollie Poppett Tessa Alfred Darkie	ternate day 3.6 4.4 4.2 4.7 4.7 4.7 5.2 4.5 5.1 4.4	977157 977157 4444433 3344 44433 334 44433 334 4 4433334	8029224358886 34334434358886	Group mean
Mean S.D.	4.55 0.42	4.14 0.39	3.81 0.34	4.17

-

Table XVI

Calcium va	alues	Values in	mmo1/1	
Horse	Week O	Week 3	Week 6	
5g EPO d ai Annabelle Donald Myrtle Calumn Giraffe Gunsmoke Sovereign Orlando Jack Nicholas Suzie Hermione	ily 2.94 2.96 3.03 3.03 2.85 3.02 2.938 3.02 3.02 3.07 3.02	22222222222222222222222222222222222222	82267 3222223289942213 2222223223222222222222222222222222	Group mean
Mean S.D.	2.995 0.067	2.874 0.136	2.942 0.144	2.937
10g EPO al Charlotte Marigold Jasper Ding Dong Flora Chocolate Goldie Durando BeBe Samuel Jordan Dick	ternate day 3.05 2.96 3.08 2.96 3.04 3.05 3.10 2.72 2.89 2.87	22322222222222222222222222222222222222	2.064992 2.0089928667 2.0099967 2.009967 2.009967 2.00007 2.00007 2.0007 2.00007 2.0000000000	Group mean
Mean S.D.	2.951 0.135	2.881 0.118	2.988 0.140	2.940
20g EPO da Foxy Wallace Gold Loch Bonny Skippy Flynn Rocky Charlie Geno Biggles Smiler Aird	aily 3.10 3.05 3.03 2.63 2.91 3.03 3.06 2.93 2.99 2.99 2.90	2.825 2.779 2.222 2.837 2.990 2.01	232322273223232323232323232323232323232	Group mean
Mean S.D.	2.953 0.127	2.898 0.115	2.944 0.133	2.931
40g EPO a Karlops Big Ben Walter Pollux Armpit Sapdy Lad Saprian Ollie Poppett Tessa Alfred Darkie	Iternate day 2.76 2.77 2.76 3.09 3.08 3.02 2.81 3.00 2.94 3.00 2.99 2.90	2223322322222 222332223222222222222222	3.997 3.9977 3.9977 3.9977 3.9977 3.99777 3.99777 3.997777 3.997777777777	Group mean
Mean S.D.	2.927 0.124	2.888 0.169	$3.051 \\ 0.094$	2.955

Table XVII				
Chloride va	lues	Values in	n mmo1/1	
Horse	Week O	Week 3	Week 6	
5g EPO dail Annabelle Donald Myrtle Calumn Giraffe Gunsmoke Sovereign Orlando Jack Nicholas Suzie Hermione	y 100 97 95 96 100 98 98 98 98 98 98 98	97 961 994 994 1007 992 992 95	9667 9997 9997 9997 9999 9999 99999 99999	Group mean
Mean S.D.	97.3 1.9	95.7 3.3	96.3 1.3	96.4
10g EPO alto Charlotte Marigold Jasper Ding Dong Flora Chocolate Goldie Durando BeBe Samuel Jordan Dick	ernate day 985 94 98 99 99 99 99 97 97 99 99 99 99 99 99 99	564363024795 998999999999999999	754365217627 99999999999999999999999999999999999	Group mean
Mean S.D.	96.1 2.4	93.7 3.9	94.6 2.2	94.8
20g EPO dai Foxy Wallace Gold Loch Bonny Skippy Flynn Rocky Charlie Geno Biggles Smiler Aird	l y 95 96 97 97 99 95 98 98 98 98 98 96 102 97 92	94 918 979 999 999 994 998 998 998 998 993	924 998522 1097463 999998 109998	Group mean
Mean S.D.	96.8 2.4	95.2 3.4	94.4 3.7	95.5
40g EPO alt Karlops Big Ben Walter Pollux Armpit Sandy Lad Sabrian Ollie Poppett Tessa Alfred Darkie	ernate day 94 93 96 92 100 94 99 94 94 94	97 1032 9979 995 995 995 995 997 997	99999999999999999999999999999999999999	Group mean
Mean S.D.	94.7 2.6	96.5 3.5	95.1 1.6	95.4

Table XVIII

Magnesium	values	Valu	les in	mmo1/1	
Horse	Week O	Week	3	Week 6	
5g EPO d ai Annabelle Donald Myrtle Calumn Giraffe Gunsmoke Sovereign Orlando Jack Nicholas Suzie Hermione	ily 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	6559630632530	00000000000000000000000000000000000000	0.73 0.555 0.660 0.6666 0.71 0.61	Group mean
Mean S.D.	0.6 0.0	29 0 36 0	.598	0.668 0.062	0.632
10g EPO al Charlotte Marigold Jasper Ding Dong Flora Chocolate Goldie Durando BeBe Samuel Jordan Dick	lternate d 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	x634508979282	00000000000000000000000000000000000000	0.68 0.665 0.665 0.665 0.665 0.749 0.663 0.775 0.663 0.775 0.775 0.77	Group mean
Mean S.D.	0.6 0.0	19 0 59 0	.575 .091	0.703 0.041	0.633
20g EPO da Foxy Wallace Gold Loch Bonny Skippy Flynn Rocky Charlie Geno Biggles Smiler Aird	aily 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	626576666076	0.5235 0.5539 0.55639 0.5709 0.6689 0.667 0.667	0.72 0.237 0.677 0.79 0.74 0.71 0.781 0.781 0.781 0.65	Group mean
Mean S.D.	0.6 0.1	22 0 31 0	.618 .132	0.678 0.149	0.639
40g EPO al Karlops Big Ben Walter Pollux Armpit Sandy Lad Sabrian Ollie Poppett Tessa Alfred Darkie	lternate d 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	a6650210333593	0.727 7.677 00.557 00.644 0.6657 0.6657 0.6657 0.72	0.79 0.68 0.682 0.6889 0.6689 0.6693 0.6736 0.78 0.78	Group mean
Mean S.D.	0.6 0.0	08 0 49 0	.674 .048	$0.710 \\ 0.040$	0.664

Table XIX				
Inorganic	phosphate va	alues, in m	nmo1/1	
Horse	Week O	Week 3	Week 6	
5g EPO dai Annabelle Donald Myrtle Calumn Giraffe Gunsmoke Sovereign Orlando Jack Nicholas Suzie Hermione	1y 1.16 1.10 1.30 1.14 1.02 0.84 1.17 1.21 1.26 1.07 1.13 1.00	0.72 1.47 1.48 1.32 0.68 1.18 1.33 1.09 1.91	0.95 0.96 1.97 0.7888 1.87 0.99 1.09 1.16	Group mean
Mean S.D.	$1.117 \\ 0.124$	$ \begin{array}{c} 1.112 \\ 0.262 \end{array} $	$0.968 \\ 0.118$	1.065
10g EPO al Charlotte Marigold Jasper Ding Dong Flora Chocolate Goldie Durando BeBe Samuel Jordan Dick	ternate day 1.06 1.11 1.60 1.13 1.05 1.10 1.31 1.09 0.81 1.17 1.17 1.14	1.03 1.11 1.22 1.22 1.309 1.27 1.20 1.27 1.21 1.11	0.84550 1.801 0.9999 1.801 0.9991 0.819 0.9991 0.81900000000000000000000000000000000000	Group mean
Mean S.D.	$ \begin{array}{c} 1.145 \\ 0.184 \end{array} $	$1.177 \\ 0.175$	0.953 0.229	1.091
20g EPO da Foxy Wallace Gold Loch Bonny Skippy Flynn Rocky Charlie Geno Biggles Smiler Aird	aily 1.33 1.20 1.17 1.18 1.03 1.07 1.37 1.12 1.23 1.04 1.06 1.45	1.41 1.248 1.317 1.022 1.220 1.220 1.120 1.942 0.82	0.8425 0.82855 0.8777 0.88886 0.88868 0.88868 0.98868 0.98868 0.98868 0.988688 0.9986888 0.998688 0.9986888 0.9986888 0.9986888 0.9986888 0.9986888 0.9986888 0.9986888 0.9986888 0.9986888 0.99868888888 0.99986888 0.99986888888888 0.9986888 0.99868888888888 0.99868888888888888888888888888888888888	Group mean
Mean S.D.	1.188 0.137	$1.158 \\ 0.166$	0.883 0.120	1.076
40g EPO al Karlops Big Ben Walter Pollux Armpit Sandy Lad Sabrian Ollie Poppett Tessa Alfred Darkie	ternate day 1.51 1.33 0.98 1.00 1.03 1.05 1.18 0.99 1.05 0.95 0.89 1.31	1.04 1.22 0.77 1.43 0.86 0.91 0.70 0.80 0.80 0.80 1.08	1.18 0.814 0.990 0.995 0.996 1.13 1.722 0.93	Group mean
Mean S.D.	1.106 0.187	$0.931 \\ 0.220$	$1.039 \\ 0.249$	1.025

Table XX				
Alkaline phos	phatase val	ues, in I.	υ.	
Horse W	eek0We	ek 3 We	ek 6	
5g EPO daily Annabelle Donald Myrtle Calumn Giraffe Gunsmoke Sovereign Orlando Jack Nicholas Suzie Hermione	4 52 4 52 5 50 1 46 5 7 4 5 5 33 5 33 5 332 5 332 5 332 5 332 5 332 5 332 5 332 5 332 5 332 5 332 5 332 5 332 5 332 5 332 5 32 5	432334842569 338244469 3382332332332332332332332332332332332332	359 4883 3046 3249 43688 2419 32289 Gr 219 me	oup an
Mean S.D.	383.3 86.0	327.8 72.4	329.4 74.9	346.9
10g EPO alter Charlotte Marigold Jasper Ding Dong Flora Chocolate Goldie Durando BeBe Samyel Jordan Dick	nate day 32415 32537 32671 32671 32671 32897 297	302 3246 3246 315 89 316 346 346 346 30 346 30 346 30 346 30 346 30 346 30 346 30 346 30 32 32 32 32 32 32 32 32 32 32 32 32 32	302 1986 3877 3354 50551 33995 3321 me	oup an
Mean S.D.	343.3 91.7	329.8 85.4	355.3 86.3	342.8
20g EPO daily Foxy Wallace Gold Loch Bonny Skippy Flynn Rocky Charlie Geno Biggles Smiler Aird	3583 22247 43889 32698 32698 418	230 2268 22109 22109 2209 2350 239 250 239 250 239 24 29 26 24 29 26 24 29 26 20 20 26 20 20 20 20 20 20 20 20 20 20 20 20 20	274 268 310 408 340 287 387 387 387 358 515 me	oup an
Mean S.D.	370.1 78.6	349.6 118.2	336.5 73.4	352.1
40g EPO alter Karlops Big Ben Walter Pollux Armpit Sandy Lad Sabrian Ollie Poppett Tessa Alfred Darkie	nate day 343 328 2409 444 273 263 3829 3263 3829 3223 303	406 4050 3228 4252 3228 32546 3397 3397 3327	330 322 314 329 362 279 310 369 374 329 me	oup an
Mean	344.3	354.7	323.2	340.7

Table XXI				
Aspartate	aminotransam	ninas <mark>e va</mark> lu	ues, in I.l	J.
Horse	Week O	Week 3	Week 6	
5g EPO dai Annabelle Donald Myrtle Calumn Giraffe Gunsmoke Sovereign Orlando Jack Nicholas Suzie Hermione	ly 265 383 263 341 267 305 278 299 248 274 253	383 370 3671 3162 1713 360 1885 31865 2853 2853 2853	339 398 307 307 307 307 201 201 201 198	Group mean
Mean S.D.	296.4 48.1	299.3 70.5	270.0 81.4	288.6
10g EPO al Charlotte Marigold Jasper Ding Dong Flora Chocolate Goldie Durando BeBe Samyel Jordan Dick	ternate day 257 207 283 307 369 265 331 280 907 314 241 284	219 249 25552 286 20 28 28 20 20 20 20 20 20 20 20 20 20 20 20 20	238207 238207 23232 19252 234959 234959 32319 32319 32319 32319	Group mean
Mean S.D.	337.1 184.4	246.2 39.6	251.9 54.8	278.4
20g EPO da Foxy Wallace Gold Loch Bonny Skippy Flynn Rocky Charlie Geno Biggles Smiler Aird	305 2855 279 348 321 262 315 267 289 337 220	23198 31985 232657 33657 33792 23794 314	252 3012 3124 3214 3217 3368 242 306 306	Group mean
Mean S.D.	300.3 43.1	320.3 51.2	282.3 45.7	300.9
40g EPO al Karlops Big Ben Walter Pollux Armpit Sandy Lad Sabrian Ollie Poppett Tessa Alfred Darkie	ternate day 263 412 115 266 2866 1866 124 4206 337 396 169	3844 38255 382554 22284 22556 436 2674	3242 334780 2282450 226296 32845 326296 3423 226296 3423 226296 3423 226296 3423 226296 22843 226296 22843 226296 22843 226296 22824 22760 22824 226296 22824 22760 22824 22760 22824 22760 22824 22760 22824 22760 22760 22760 22760 22760 22760 22760 22760 22760 22760 22760 22760 22760 20000000000	Group mean
Mean S.D.	265.0 108.6	328.4 87.8	300.9 54.5	298.1

Table XXII				
Bilirubin	values	Values in	n umo1/1	
Horse	Week O	Week 3	Week 6	
5g EPO dai Annabelle Donald Myrtle Calumn Giraffe Gunsmoke Sovereign Orlando Jack Nicholas Suzie Hermione	1y 5 20 10 13 98 78 97 6	62 11 52 11 52 11 19 26 10	99 129 120 10 10 10 10 10 10 7 7	Group mean
Mean S.D.	8.9 4.1	14.0 13.6	9.7 1.9	10.9
10g EPO al Charlotte Marigold Jasper Ding Dong Flora Chocolate Goldie Durando BeBe Samuel Jordan Dick Mean	ternate day 10 8 44 7 7 6 19 25 4 14 14	19 102 3 23 19 15 7 88 6 14.8	13 120 120 120 168 91 11 11 13 10.9	Group mean 13.0
S.D.	11.4	8.3	2.5	
20g EPO da Foxy Wallace Gold Loch Bonny Skippy Flynn Rocky Charlie Geno Biggles Smiler Aird	10 10 10 15 6 8 5 7 12 7	159 256 87 10 98 77	13 9 11 12 8 9 12 8 10 10 13	Group mean
Mean S.D.	8.6 2.8	12.1 9.8	10.3 1.8	10.3
40g EPO al Karlops Big Ben Walter Pollux Armpit Sandy Lad Saprian Ollie Poppett Tessa Alfred Darkie	ternate day 10 8 6 11 9 15 9 8 5 6 14	10 10 57 14 97 76 77 16 77	9 10 10 14 11 10 10 10 26	Group mean
Mean S.D.	9.2 3.0	9.6 4.0	11.9 5.4	10.2

Table XXIII Total plasma protein values Values in g/l Horse Week O Week 3 Week 6 **5g EPO daily** Annabelle Donald Myrtle Calumn Giraffe Gunsmoke Sovereign Orlando Jack Nicholas Suzie Hermione 69 70 76 74 66 74 02 74 777767670943 1 60 76 91 85 90 70 102 77 Group mean 68 70.2 74.4 Mean S.D. 78.0 74.2 10g EPO alternate day
Charlotte66Marigold74Jasper71Ding Dong66Flora77Chocolate63Goldie73Durando65BeBe79Samuel81Jordan68Dick73 8788999978778 78899978778 7898778876677 Group mean 71.3 83.3 79.1 77.9 Mean S.D. 20g EPO daily Foxy Wallace Gold Loch Bonny Skippy Elynn 766876666776 9698766667877 y'nn Rocky Charlie Geno Biggles Smiler Aird Group **6**6 mean 69.8 5.6 71.9 69.6 4.8 76.3 Mean S.D. 40g EPO alternate day
Karlops65Big Ben65Walter103Pollux66Armpit68Sandy Lad71Sabrian100Ollie74Poppett87Tessa79Alfred72Darkie84 7776877767777 74 74 78 69 Õ /1 100 74 87 79 72 84 1 71 75 70 75 80 Group mean 77.8 13.2 72.1 76.1 Mean S.D. 78.3 13.7

Table XXIV

Albumin val	ues	Values in	n g/1	
Horse	Week O	Week 3	Week 6	
5g EPO dail Annabelle Donald Myrtle Calumn Giraffe Gunsmoke Sovereign Orlando Jack Nicholas Suzie Hermione	y 314 331 330 283 335 335 335 335 335 335 335 335 335 3	33347-5399559964 3392232932332955964	33591-16907 3323232323 32323232323	Group mean
Mean S.D.	31.6 2.2	31.9 3.5	29.8 5.2	31.1
10g EPO alt Charlotte Marigold Jasper Ding Dong Flora Chocolate Goldie Durando BeBe Samuel Jordan Dick	ernate day 30 31 332 333 333 333 331 331 331 27 28	33354319812228 33354319812228	32985122509 22322509 32232323233	Group mean
Mean S.D.	31.1 2.0	30.8 3.3	28.8 3.2	30.2
20g EPO dai Foxy Wallace Gold Loch Bonny Skippy Flynn Rocky Charlie Geno Biggles Smiler Aird	1y 336 331 291 331 331 331 331 332 27	47966666023 222233 3223347	286 331 301 288 327 223 223 327 302 32	Group mean
Mean S.D.	31.1 2.3	30.0 5.1	29.8 3.3	30.3
40g EPO alt Karlops Big Ben Walter Pollux Armpit Sandy Lad Sabrian Ollie Poppett Tessa Alfred Darkie	ernate day 28 29 24 33 30 326 330 325 330 327	775387285971 3323322332233 3223322332223	36425230 3333330 33359 3359	Group mean
Mean S.D.	29.8 3.2	3 <u>1</u> .6 5.6	33.3 2.3	31.6

Table XXV

Globulin va	lues	Values in	n g/1	
Horse	Week O	Week 3	Week 6	
5g EPO dail Annabelle Donald Myrtle Calumn Giraffe Gunsmoke Sovereign Orlando Jack Nicholas Suzie Hermione	y 44 39 40 37 47 357 357 339 40 30	4127771 331166644 35553	3752 3429 340 340 4400 41	Group mean
Mean S.D.	38.6 4.4	44.5 14.3	44.6 14.2	42.6
10g EPO alt Charlotte Marigold Jasper Ding Dong Flora Chocolate Goldie Durando BeBe Samuel Jordan Dick	ernate day 35 40 33 45 30 40 32 48 50 41 45	5214 5500 7651 7651 7643 53	4387 5677 5474 547 654 336 336	Group mean
Mean S.D.	40.3 6.5	52.5 8.9	50.3 10.6	47.7
20g EPO dai Foxy Gold Loch Bonny Skippy Flynn Rocky Charlie Geno Biggles Smiler Aird	1 y 39 333 34 50 47 354 334 334 40 41 42	67190 65188851 2251393 43	4129 334334 351224 352 334 35224 334	Group mean
Mean S.D.	38.5 5.7	45.4 15.5	39.3 8.9	41.1
40g EPO alt Karlops Big Ben Walter Pollux Armpit Sandy Lad Sabrian Ollie Poppett Tessa Alfred Darkie	ernate day 37 36 79 33 35 41 39 57 48 40 57	377 3568 2835 30 418 49	368 344 308 440 444 333 339 37 41	Group mean
Mean S.D.	48.0 15.5	46.7 18.0	38.8 5.1	44.5

Table XXVI Triglyceride values Values in mmol/l Week 3 Horse Week O Week 6 **5g EPO daily** Annabelle Donald Myrtle Calumn Giraffe Gunsmoke Sovereign Orlando Jack $\begin{array}{c} 0.685\\ 0.1476\\ 0.5331\\ 0.5331\\ 0.5534\\ 1.55334\\ 0.5542\\ 0.5542\\$ $\begin{array}{c} 0.375\\ 0.6225\\ 0.125\\ 0.125\\ 0.145\\ 0.325\\ 0.145\\ 0.335\\ 0.525\\ 0$ Jack Nicholas Suzie Hermione Group mean 0.313 0.122 0.388 Mean S.D. 0.461 0.137 0.387 10g EPO alternate day
Charlotte0.49
MarigoldMarigold0.51
JasperJasper0.47
Ding DongDing Dong0.31
FloraChocolate0.38
GoldieGoldie0.57
DurandoBeBe0.24
SamuelJordan0.55
Dick $\begin{array}{c} 0.21\\ 0.33\\ 0.13\\ 0.52\\ 0.22\\ 0.22\\ 0.22\\ 0.33\\ 0.22\\ 0.23\\ 0.22\\ 0.33\\ 0.33\\$ $\begin{array}{c} 0.50\\ 0.31\\ 0.31\\ 0.42\\ 885\\ 0.35\\ 0.35\\ 1.47\\ 0.51\\$ Group mean 0.410 0.315 0.128 0.420 0.127 Mean S.D. 0.382 20g EPO daily Foxy Wallace Gold Loch $\begin{array}{c} 0.21\\ 0.23\\ 0.23\\ 0.35\\ 0.35\\ 0.32\\ 73\\ 0.23\\ 0.35\\ 0$ $\begin{array}{c} .395\\ 0.325\\ .336\\ 0.229\\ .257\\ .258\\ .257\\ .258\\ .25$ $\begin{array}{c} 0.53\\ 0.53\\ 0.33\\ 0.337\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.51\\ 0.51\\ \end{array}$ Gold Lo Bonny Skippy Flynn Rocky Charlie Geno Biggles Smiler Aird Group mean 0.360 0.465 0.419 0.433 0.115 Mean S.D. 40g EPO alternate day
Karlops0.24Big Ben0.25Walter0.40Pollux0.34Armpit0.28Sandy Lad0.46Ollie0.50Poppett0.37Tessa0.29Alfred0.51Darkie0.32 **7543474997**10 $\begin{array}{c} 0.4880\\ 0.22582\\ 0.321\\ 0.321\\ 0.329\\ 0.329\\ 0.329\\ 0.331\\ 0.331\\ \end{array}$ Group mean 0.340 0.333 0.090 0.368 0.347 Mean S.D.

Table XXVII				
Cholesterol	values	Values i	n mmo1/1	
Horse	Week O	Week 3	Week 6	
5g EPO daily Annabelle Donald Myrtle Calumn Giraffe Gunsmoke Sovereign Orlando Jack Nicholas Suzie Hermione	3.03 1.657 2.577 2.882 2.721 2.68 2.68	5346610 296629466 292221222222 122222222222222222222222	3.0408 3.04687 2.04687 2.04687 2.04687 3.04677 3.046777 3.046777777777777777777777777777777777777	Group mean
Mean S.D.	2.413 0.433	2.502 0.352	$2.331 \\ 0.533$	2.415
10g EPO alte Charlotte Marigold Jasper Ding Dong Flora Chocolate Goldie Durando BeBe Samuel Jordan Dick	ernate day 2.229 2.12 1.96 2.04 2.081 2.29 1.99 2.14 1.72 1.64	2.286592 2.286592 1.1955685 1.57682 1.782 1.782 1.782 1.782 1.782 1.782 1.782 1.782 1.782 1.782 1.782 1.782 1.782 1.782 1.782 1.782 1.782 1.782 1.785 1.782 1.785 1.782 1.795 1.782 1.795	1.39 1.747 1.557 1.593 1.444 2.343 2.44 2.38	Group mean
Mean S.D.	2.108 0.301	1.967 0.254	1.861 0.376	1.979
20g EPO dail Foxy Wallace Gold Loch Bonny Skippy Flynn Rocky Charlie Geno Biggles Smiler Aird	y 2.57995947722.222.45607722222.156	2.34 2.33 2.379 2.790 2.790 2.790 2.790 2.339 2.331 2.331 2.331	1.95 2.87 2.88 2.88 2.88 2.88 2.88 2.17 2.70 2.70 2.70 2.78	Group mean
Mean S.D.	2.333 0.373	2.396 0.321	2.21 5 0.462	2.315
40g EPO alte Karlops Big Ben Walter Pollux Armpit Sandy Lad Sabrian Ollie Poppett Tessa Alfred Darkie	ernate day 1.42 2.49 1.44 2.49 2.14 1.59 1.91 2.24 1.82 2.27 1.62	2.04 2.04 1.55 2.177 1.838 2.177 1.838 2.157 2.48 2.18	2.054 3.2459 1.122222 2.661 2.2222 2.619 933 2.619 933	Group mean
Mean S.D.	1.973 0.392	2.139 0.318	2.402 0.404	2.171
APPENDIX II

TABLES OF RESULTS OF THE STUDY ON THE USE OF EFAs IN THE TREATMENT OF DERMATOPHILOSIS IN HORSES

Clinical Indices, Haematological and Biochemical Parameters

Clinical Indices

Table I

Indices of dermatophilosis lesion severity Scored on a 1 to 10 scale, 0 is absence of infection, 10 is most severe infection

Horse	Week 0	2	4	6	8	10	12	14	16	
Controls										
Felfit Jill Fred Delta Beau Fella Sprig Dick Noddy Durando Natasha	181123510547	060304400436	062201400444	051110210333	030000200334	040000200343	031110200253	020110100331	120 110 110 110 14 1 Gro	up
Mean S.D.	3.2 2.6	2.5 2.4	2.3 2.1	1.7 1.6	$1.3 \\ 1.6$	$\begin{array}{c}1.3\\1.7\end{array}$	1.5 1.6	1.0 1.1	1.1^{110}	:8
Placebo										
Charlotte Charlie Jack Rose North Star Lord Muckle Big Ben Mike Rainbeam Choppy Spring Officer	302478564606	200468042806	300268042406	201144022206	201244032304	100235022304	200134021305	102122232202	10115221221 Gro	up
Mean S.D.	4.2 2.6	$3.3 \\ 3.1$	2.9 2.7	2.0 1.9	2.1 1.6	$\substack{1.8\\1.7}$	1.8 1.7	1.6 0.9	1.7 ¹¹² 1.2	.4
EFAs										
Veronica Dolly Danny Prudence Jeeves Heidi Elspeth Anne Lily Polly Henry	51516364439	62616342560 10	64405352869	61213233647	41314212527	21303201335	40202121436	31203111425	20201112225 Gro	up
Mean S.D.	4.3 2.3	4.6 2.6	4.7 2.6	$3.5 \\ 2.1$	2.9 1.9	$2.1 \\ 1.5$	2.3 1.8	$2.1 \\ 1.5$	1.5 ¹¹ 3 1.4	.1

Table II

Extent of distribution of dorsal dermatophilosis lesions Scored by % of body surface area affected

Horse	Week O	2	4	6	8	10	12	14	16	
Controls										
Felfit Jill Fred Temple Delta Beau Fella Sprig Dick Noddy Durando Natasha	$\begin{array}{c} 5.5\\ 5.5\\ 0.00\\ 50.00\\ 200.00\\ 0.00$	00005000000000000000000000000000000000	0.00 30.00 00.00 30.00 00.00 00 00 00 00 00 00 00 00 00 00	$\begin{array}{c} 0.0\\ 20.0\\ 0.0\\ 0.0\\ 0.0\\ 20.0\\ 0.0\\ 30.0\\ 15.0\\ 25.0 \end{array}$	$\begin{array}{c} 0.0\\ 10.0\\ 0.0\\ 0.0\\ 0.0\\ 25.0\\ 0.0\\ 10.0\\ 10.0\\ 30.0 \end{array}$	$\begin{array}{c} 0.0\\ 10.0\\ 0.0\\ 0.0\\ 0.0\\ 15.0\\ 10.0\\ 10.0\\ 15.0\\ 15.0\\ \end{array}$	0.0 1.00 1.00 20.00 20.00 10.00 20.00 10.00 20.00	0.00 3.00 20000 105.06	1.05050000 1000000000 100000000000000000	Group
Mean S.D.	18.1 19.7	13.5 16.8	10.4 13.2	9.2 11.8	$\begin{smallmatrix}7.1\\10.5\end{smallmatrix}$	5.0 6.4	4.8 7.7	3.6 6.0	2.5 3.7	8.2

Placebo

Charlotte Charlie Jack Rose North Star Lord Muckle Big Ben Mike Rainbeam Choppy Spring Officer	005000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0.00 1.00 300.00 300.00 300.00 305.00 20 25.00 25.00	0.0550 20.00 100.00 200.00000000	0.00 00.00 200.00000000	0.00 00.00 15.00 150.00 200.00 200.00 25.00 25.00 25.00	$\begin{array}{c} 0.0\\ 0.3\\ 0.3\\ 0.0\\ 15.0\\ 15.0\\ 10.$	005000909009	Group
Mean S.D.	19.8 19.3	19.2 21.7	15.4 16.8	11.8 12.8	9.4 10.5	10.4 11.8	9.2 10.2	7.3 6.5	5.5 5.3	12.0
EFAs Veronica	20.0	20.0	20.0	15.0	10.0	10.0	20.0	20.0	2.5	

Dolly Danny Prudence Jeeves Heidi Elspeth Anne Lily Polly Henry	25000 30000 25000 25000 25000 25000 25000	25000500000 25000500000 250000000 3355.000000	25.00 20.00 5.00 15.00 15.00 15.00 15.00 15.00	20.00 20.00 20.00 20.00 15.00 30.00 40.0	10.00 20.00 5.00 0.00 10.00 20.00 10.00 30.00	15.0 15.0 10.0 0.0 0.0 10.0 10.0 25.0	10.00 5.00 1.00 1.00 1.00 1.00 1.00 1.00	10.00 10.00 1.20 1.00 10.00 10.00 10.00 220.0	05000200000 151000000 105500 105500 105500 105500	Group
Mean	20.5	19.5	14.8	13.2	8.6	8.7	9.6	8.4	6.8	12.2
S.D.	17.7	18.2	14.9	13.6	10.5	9.7	11.2	9.4	10.5	

Table III

Extent of distribution of hindlimb dermatophilosis lesions Scored by % of body surface area affected

Horse	Week 0	2	4	6	8	10	12	14	16
Controls									
Felfit Jill Fred Delta Beau Fella Sprig Dick Noddy Durando Natasha	0.0 40.0 20.0 20.0 20.0 15.0 50.0 20.0	$\begin{array}{c} 0.0\\ 40.0\\ 20.0\\ 20.0\\ 10.0\\ 0.0\\ 2$	$\begin{array}{c} 0.0\\ 50.0\\ 10.0\\ 2.5\\ 15.0\\ 0.0\\ 35.0\\ 0.0\\ 35.0\\ 10.0\\ 10.0\\ \end{array}$	0.00 15.00 1.00 1.00 1.00 1.00 1.00 1.00	0.0 10.00 0.00 0.00 0.00 0.00 0.00 0.00	0.0 10.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 1.00 1.00 0.00 0.00 0.00 1.00 0.000000	0.0 1.0 0.4 0.0 0.0 0.0 0.0 1.0 0.4	0.05 0.7 0.0 10.0 10.0 0.0 10.0 10.0 10.0 10
Mean S.D.	17.50 15.59	11.25 12.81	$10.63 \\ 16.03$	3.88 6.52	2.08 3.82	$1.25 \\ 2.92$	0.75 0.94	0.40 0.47	2.49 3.67
							Group	mean 5	5.58
Placebo									
Charlotte Charlie Jack Rose North Star Lord Muckle Big Ben Mike Rainbeam Choppy Spring Officer	$10.0 \\ 0.0 \\ 60.0 \\ 630.0 \\ 360.5 \\ 25.0 \\ 30.0 \\ 30.0 \\ 40.0 \\ 40.0 \\$	$\begin{array}{c} 25.0\\ 0.0\\ 15.0\\ 20.0\\ 0.0\\ 20.0\\ 20.0\\ 20.0\\ 30.0\\ 30.0\\ \end{array}$	20.0 0.0 10.0 30.0 60.0 0.0 0.0 20.0 40.0	$10.0 \\ 0.0 \\ 10.0 \\ 50.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 2.5 \\ 0.0 \\ 30.0 $	5.00 0.00 200.00000000	5.0 0.00 20.00 40.00 20.0 20.0 20.0 20.0	$ \begin{array}{c} 10.0\\ 0.0\\ 20.0\\ 50.0\\ 0.0\\ 0.0\\ 0.0\\ 2.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0$	5.0600 2000 36200 36200 36200 106	1.0 08.0 20.0 39.0 9.0 9.0 9.0 10.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0
Mean S.D.	25.04 21.01	15.83 17.94	15.00 19:77	$8.54 \\ 15.76$	4.17 7.56	$\begin{smallmatrix}5.83\\12.17\end{smallmatrix}$	$7.08 \\ 14.80$	6.56 9.30	8.48 9.01
							Group	mean 1	0.73
EFAs									
Veronica Dolly Danny Prudence Jeeves Heidi Elspeth Anne Lily Polly Henry	20.0 20.0 10.0 20.0 40.0 30.0 30.0 60.0	20.0 30.0 20.0 45.0 20.0 25.0 20.0 25.0 20.0 25.0 20.0	10.0 10.0 20.0 20.0 40.05 20.0 20.0 15.0 30.0	20.0 0.0 2.50 30.55 10.55 10.50 10.50	10.055550555500 22.22.22.22.200 10.0000 10.00000000	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	5.00 000000 2012220 202220 202220	5.0000705000 10051025000	2.0000905055 0000000205055 2222
Mean S.D.	19.00 17.37	19.50 15.23	$15.75 \\ 11.56$	7.35 9.54	$5.25 \\ 7.17$	$2.75 \\ 7.83$	3.85 7.47	$\overset{2.12}{\overset{2.21}{}}$	2.84 5.82
							Group	mean 8	.70

Table IV

Coat condition scores Scored on a 1 to 10 scale, 1 is poorest, 10 is optimal Week Horse 2 4 8 12 6 10 14 16 Controls Felfit Jill Fred Temple Delta Beau Fella Sprig Dick Noddy Durand 878888778788 878788678767 554667566455 545546447544 757746547454 768878668666 858878678675 868868668775 868878778785 Durando Natasha Group mean 6.5 .9 .2 6.9 1.1 7.3 7.3 4.8 $5.4 \\ 1.3$ 7 0 .6 Mean S.D. 5.3 6.8 0.9 6 1 **Placebo** Charlotte Charlie Jack Rose North Star Lord Muckle Big Ben Mike Rainbeam Choppy Spring Officer 887665777977 767553647463 878667787756 665563554568 667452645543 888875788777 888755878776 8887778888786 787687777877 Group mean 6.5 7.2 6. 1: 9 1 $5.3 \\ 1.5$ 6.8 0.9 7.3 7.0 7.5 4.8 5.4 Mean S.D. **EFAs** Veronica Dolly Danny Prudence Jeeves Heidi Elspeth Anne Lily Polly Henry 46664546556 78778887677 56665656654 78787787676 77678787776 87877877686 78878888767 46665456443 67778667667 Group mean 6.4 7.1 0.7 7.0 7.2 0.8 7. 0: 7.2 0.6 5.5 0.7 4 5.2 0.9 6.6 0.7 47 .8 Mean S.D.

Table V

Mane condition scores Scored on a 1 to 10 scale, 1 is poorest, 10 is optimal Week Horse 2 4 6 8 10 12 14 16 Controls Felfit Jill Fred Delta Beau Fella Sprig Dick Noddy Durando Natasha 657667556464 556665467554 656666667465 6777786677776 878778678575 888878778886 8888787888887 8788886888888 Group mean 6.8 6.9 1.1 7.8 .0 .0 7.7 0.6 Mean S.D. 5.6 5.3 $5.8 \\ 0.8$ $6.8 \\ 0.6$ 7.6 8 0 **Placebo** Charlotte Charlie Jack Rose North Star Lord Muckle Big Ben Mike Rainbeam Choppy Spring Officer 888776877886 565565544565 567564554664 6666556666667 878667776766 787777787887 8887878888887 8888887888988 Group mean 6.8 7.9 0.3 7.9 0.4 6.8 7.3 7.3 7.8 Mean S.D. 5.1 0.7 5.3 5.6 **EFAs** Veronica Dolly Danny Prudence Jeeves Heidi Elspeth Anne Lily Polly Henry 56665656655 66665566556 46665656556 77778677767 78786776766 77787886677 87878877788 78888888787878 7888888778888 Group mean 6.7 6.8 7.5 .7 7.7 6.9 7.1 0.7 5.5 0.7 70 Mean S.D. 5.5 5.6 0.5

Table VI

Tail conditi Scored on a	i <mark>on s</mark> o 1 to	core:	s scale	e. 1	is	noore	est.	10	is ont	imal
Horse	Week	2	4	6	8	10	12	14	16	, inter
Controls										
Felfit Jill Fred Delta Beau Fella Sprig Dick Noddy Durando Natasha	655667556464	556665467565	656666667666	77778768776	878877678676	888877778787	888878788787	8888887788888	878787770887 Gr	oup
Mean S.D.	5.4 0.9	5.5 0.8	6.0 0.4	7.0 0.6	7.1 0.8	7.5 0.5	7.7 0.5	7.8 0.4	6.8 2.2	an 6.8
Placebo										
Charlotte Charlie Jack Rose North Star Lord Muckle Big Ben Mike Rainbeam Choppy Spring Officer	©~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	567564656665	667666646666	877667887866	78787777877	888776878877	8888778888877	88878888888888	888887 8888 97 8 8 97 8	oup
Mean S.D.	5.3 0.8	5.6 0.8	5.9 0.7	7.0 0.9	7.3 0.5	7.4 0.7	7.7 0.5	7.9 0.3	7.9 0.5	an' 6.9
EFAs										
Veronica Dolly Danny Prudence Jeeves Heidi Elspeth Anne Lily Polly Henry	66665756465	66665566556	40000050550	77778777767	78787777667	77787787677	87878877788	888888888878	877 878 7888 7888 787 87 87 87 87 87 87	oup
Mean S.D.	5.6 0.8	5.6 0.5	5.5 0.7	7.0 0.4	7.0 0.6	$\begin{array}{c} 7.1\\ 0.5 \end{array}$	7.5 0.5	7.9 0.3	7.5 ^{"""}	ð.8

Table VII

Hoof condition scores Scored on a 1 to 10 scale, 1 is poorest, 10 is optimal Week Horse 2 4 8 12 6 10 14 16 **Controls** Felfit Jill Fred Delta Beau Fella Sprig Dick Noddy Durand 878778778777 767767677677 667667667677 777777767767 878777778778 878778778778 7777786787777 777768778777 757768668667 Durando Natasha Group mean' 7.0 7.3 7.3 7.4 7.1 7.1 Mean S.D. 6.4 6.8 0.4 6.7 6.6 Placebo Char]otte Charlie Jack Rose North Star Lord Muckle Big Ben Mike Rainbeam Choppy Spring Officer 7776656667777 77877777877 7776777878777 77866666667777 77766666776666 76757667776 878777778787 878776788887 777686767877 Group 6 mean 6.9 7.3 0.5 7.2 7.4 60 .9 7.1 6.6 6.4 6.4 Mean S.D. 6.4 **EFAs** Veronica Dolly Danny Prudence Jeeves Heidi Elspeth Anne Lily Polly Henry 76777677767 77776778767 767777777777777 45766667666 867777777767 76777778777 65777767667 666766666766 16777778777 Group mean 6.7 6.2 6.5 0.7 5.9 6.7 6.9 7.0 $6.9\\0.5$ 7: 0 4 6 0 .9

Mean S.D.

Table VIII

Body condition scores

cored on a 1 to 5 scale, 1 is emaciated, 5 is obese.										
Horse	Week 0	2	4	6	8	10	12	14	16	
Controls										
Felfit Jill Fred Delta Beau Fella Sprig Dick Noddy Durando Natasha	000500050000 	00000000000000000000000000000000000000	00000000000000000000000000000000000000	00000000000000000000000000000000000000	3.3.3.3.3.4.3.3.3.4.3.3.3.3.4.3.3.3.3.4.3.3.3.3.4.3.3.3.3.3.4.3	00050000000000000000000000000000000000	000500050000 33333333333333333333333333	0005000500000 	0005000000000 	Group mean
Mean	3.08	3.04	3.04	3.04	3.17	3.04	3.08	3.08	3.04	3.07
S.D.	0.19	0.14	0.14	0.14	0.33	0.14	0.19	0.19	0.14	
Placebo										
Charlotte Charlie Jack Rose North Star L.Muckle Big Ben Mike Rainbeam Choppy Spring Officer	0000005000000 34777720000000 r	050505500005	00000000000000000000000000000000000000	550505550050 377777777777777777777777777	50055555000050 347722275555	50000000000000000000000000000000000000	500505500550 3433323333333333	0005055000000 4477772055000000	443331-333333 	Group mean
Mean	3.04	3.04	3.04	3.13	3.17	3.17	3.25	3.21	3.13	3.13
S.D.	0.45	0.54	0.45	0.38	0.44	0.44	0.40	0.45	0.64	
EFAs										
Veronica Dolly Danny Prudence Jeeves Heidi Elspeth Anne Lily Polly Henry	050500000055 377777777777777777777777777	050500000055 33333333333333333333333333	05000500050 37734737373732	555000000055 2334333333332	3434333333333 343433333333333333333333	05000500555 333343333333332	0000005000005 343433333333333 2	05000500000 3334333333332	3434333333333 343433333333333333333333	Group mean
Mean	3.09	3.00	3.14	3.14	3.32	3.23	3.18	3.09	3.14	3.15
S.D.	0.30	0.55	0.50	0.45	0.46	0.41	0.46	0.49	0.45	

Haematological Parameters

Table IX

Red cell cou	unts	Valu	ues x			
Horse	Week 0	4	8	12	16	
Controls						
Felfit Jill Fred Delta Beau Fella Sprig Dick Noddy Durando Natasha	975930448416	776657876567	8652522784980	765657776657	023341418913 	Group
Mean S.D.	6.93 0.90	6.85 0.77	6.73 0.88	6.41 0.66	6.33 0.82	6.65
Placebo						
Charlotte Charlie Jack Rose North Star Lord Muckle Big Ben Mike Rainbeam Choppy Spring Officer	76876766810	667568667867	767566566866	830958747670 	656667656866	Group
Mean S.D.	6.97 0.56	6.84 0.77	6.47 0.91	6.87 0.81	6.62 0.73	6.7 5
EFAs						
Veronica Dolly Danny Prudence Jeeves Heidi Elspeth Anne Lily Polly Henry	47724397276 667567666777	55766658676	46912277138	40606852626	76756656576	Group
Mean S.D.	$\substack{\textbf{6.80}\\\textbf{0.76}}$	$\substack{\textbf{6.51}\\\textbf{0.98}}$	6.36 1.32	6.41 0.76	$\substack{\textbf{6.39}\\\textbf{0.70}}$	6.49

Table X

Haemoglobin	values	s Val	ues g	iven in	n g/d1	
Horse	Week 0	4	8	12	16	
Controls						
Felfit Jill Fred Delta Beau Fella Sprig Dick Noddy Durando Natasha	105777389923557 11111111111111111111111111111111111	936442134702 1110243247024	15.50 91.2 12.1 12.1 12.4 12.4 112.4 112.4 112.5 1112.5 112.	12.57 10.99 112.339 122.99 122.99 122.99 122.99 122.99 11.3	10.25 10.4 10.60 10.4 10.60	Group
Mean S.D.	12.86 1.28	12.29 1.20	12.03 1.55	11.44 1.01	11.17 1.48	11.96
Placebo						
Charlotte Charlie Jack Rose North Star Lord Muckle Big Ben Mike Rainbeam Choppy Spring Officer	$\begin{array}{c} 13.39\\ 143.58\\ 122.20\\ 122.04\\ $	11.792921102.921132.77054	12.5 126 10.9 10.1 10.1 10.1 10.1 11.3 11.0	$\begin{array}{c} 12.3\\ 126\\ 126\\ 12\\ 12\\ 12\\ 12\\ 11\\ 14\\ 12.$	$11.43\\101.64\\121.06\\112.63\\112.63\\110.61\\101.61\\1$	Group
Mean S.D.	12.46 0.94	12.07 0.96	11.54 1.44	12.08 1.05	11.62 1.01	11.95
EFAs						
Veronica Dolly Danny Prudence Jeeves Heidi Elspeth Anne Lily Polly Henry	1223009883789 113221443	10.82 103.28 103.27 10 103.27 10 103.27 10 10 10 10 10 10 10 10 10 10 10 10 10	12.0 12.0 17.8 9.8 10.7 11.8 11.8 11.8 9.7 11.8 9.7 11.9	11.896 141.023759 102200 1022159 100211 1111111111111111111111111111111	144 1122 1122 1115 1115 1026 1116	Group
Mean S.D.	12.78 1.32	11.95 1.73	11.66 2.23	11.85 1.27	11.73 1.20	ÏĨ . 99

Table XI

Packed cell	volume	es Valu	les give	en as 1/	']	
Horse	Week 0	4	8	12	16	
Controls						
Felfit Jill Fred Delta Beau Fella Sprig Dick Noddy Durando Natasha	$\begin{array}{c} \textbf{0.472}\\ \textbf{0.404}\\ \textbf{0.383}\\ \textbf{0.386}\\ \textbf{0.3350}\\ \textbf{0.377}\\ \textbf{0.375}\\ \textbf{0.375}\\ \textbf{0.3588}\\ \textbf{0.368}\\ \textbf{0.368}\\ \textbf{0.360}\\ \textbf{0.360} \end{array}$	$\begin{array}{c} 0.392\\ 0.372\\ 0.3548\\ 0.3548\\ 0.3412\\ 0.367\\ 0.3411\\ 0.3762\\ 0.3376\\ 0.3346\\ 0.3346\\ 0.3346\\ 0.414\end{array}$	$\begin{array}{c} 0.460\\ 0.3283\\ 0.32832\\ 0.3363\\ 0.3379\\ 0.3379\\ 0.3379\\ 0.3329\\ 0.3329\\ 0.3398\\ 0.3388\\ 0.3398\\ 0.3398\\ 0.3388\\ 0.3398\\ 0.3388\\ 0.3398\\ 0.3388\\$	0.371 0.3293 0.33993 0.3364 0.3364 0.3364 0.3364 0.33694 0.33694 0.33694 0.337	$\begin{array}{c} 0.309\\ 0.3281\\ 0.3313\\ 0.3313\\ 0.3361\\ 0.374\\ 0.309\\ 0.329\\ 0.3212\\ 0.331\\ 0.3313\\ 0.3323\\ 0.3323\\ 0.3334\\ 0.33$	Group
Mean S.D.	0.3710 0.0446	0.3674 0.0310	0.3611	0.3418	0.3338	0.3548
Placebo						
Charlotte Charlie Jack Rose North Star Lord Muckle Big Ben Mike Rajnbeam Lily Spring Officer	0.393 0.34193 0.334395 0.33518 0.33551 0.33551 0.33551 0.33551 0.33524 0.33524 0.33524 0.33524 0.33524	$\begin{array}{c} 0.358\\ 0.377\\ 0.3377\\ 0.3330\\ 0.3380\\ 0.3621\\ 0.3621\\ 0.3353\\ 0.33544\\ 0.375\end{array}$	$\begin{array}{c} 0.382\\ 0.378\\ 0.378\\ 0.300\\ 0.300\\ 0.3300\\ 0.3300\\ 0.3370\\ 0.3353\\ 0.3353\\ 0.3328\\ 0.337\end{array}$	0.370 0.3365 0.3361 0.33726 0.33726 0.335568 0.35568 0.3568 0.3568 0.3568 0.3568 0.3568 0.3568 0.3568 0.3568 0.3366 0.3366 0.3366 0.3356 0.3356 0.3376 0.3776 0.337	$\begin{array}{c} 0.343\\ 0.310\\ 0.300\\ 0.351\\ 0.358\\ 0.345\\ 0.345\\ 0.344\\ 0.325\\ 0.344\\ 0.325\\ 0.344\\ 0.325\\ 0.345\\ 0.334\\ 0.$	Group
Mean S.D.	0.3649 0.0254	0.3590 0.0223	0.3371 0.0290	0.3560 0.0195	0.3101 0.0994	0.3454
EFAs Veronica Dolly Danny Prudence Jeeves Heidi Elspeth Anne Lily Polly Henry	0.360 0.3707 0.4293 0.4097 0.3522 0.3551 0.3551 0.407	0.328 0.3415 0.3341 0.3341 0.33689 0.33685 0.33885 0.3395 0.3397 0.3397 0.3397	0.3564 0.352985 0.352945 0.35294889 0.335536 0.3355365 0.332865	0.35385 0.434868 0.33770 0.33727 0.336352 0.33552	0.411 0.340 0.370 0.339 0.351 0.351 0.364 0.374 0.351	Group mean
Mean S.D.	0.3746 0.367	0.3602	0.3500	0.3508	0.3484	0.3568

Table XII

Mean cell v	olumes	Valu	ues giv	/en in	fl	
Horse	Week 0	4	8	12	16	
Controls Fe]fit Jill Fred Temple Delta Beau Fella Sprig Dick Noddy Durando Natasha	4635549750555	388387775275 2055571044614 20555555555555555555555555555555555555	515268642812 314481044515 5555555555555555555555555555555555	393882677453 204371033514 20437555555555555555555555555555555555555	590909662729 103280033512	Group
Mean S.D.	53.65 2.06	53.83 2.33	53.75 2.32	53.29 2.11	52.87 2.19	53.48
Placebo						
Charlotte Charlie Jack Rose North Star Lord Muckle Big Ben Mike Rainbeam Choppy Spring Officer	163439409015 342529852132	471808862671 3534287533132	525465202087 5555554555555555555555555555555555555	452487035410 442307952042	447790444984 5555554555455	Group
Mean S.D.	53.59 2.20	53.48 2.33	53.38 2.48	53.03 2.84	52.70 2.04	mean 53.24
EFAs						
Veronica Dolly Danny Prudence Jeeves Heidi Elspeth Anne Lily Polly Henry	35921 07569 6	55555555555555555555555555555555555555	55555555555555555555555555555555555555	55555555555555555555555555555555555555	59186078142 555555555555555555555555555555555555	Group
Mean S.D.	$\substack{55.21\\1.43}$	55.48 1.51	55.19 1.86	54.80 1.57	54.65 1.70	55.07

Table XIII

Mean cell haemoglobin values in pg									
Horse	Week 0	4	8	12	16				
Controls									
Felfit Jill Fred Delta Beau Fella Sprig Dick Noddy Durando Natasha	17 17 1880 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 1217 11 1111111111111	17.284 188.1324 197.7.470 197.197 188.197 188.197 188.197 188.197 188.197 188.197 188.197 188.197 188.197 197	1867.0529 58631	17.624261127502 177.88.197.127502	176779678786596 11111111111111111111111111111111111	Group			
Mean S.D.	18.29 0.92	17.98 0.73	$\substack{17.88\\0.76}$	17.90 0.77	$\begin{smallmatrix}17.63\\0.80\end{smallmatrix}$	17.94			
Placebo Charlotte Charlie Jack Rose North Star Lord Muckle Big Ben Mike Rainbeam Choppy Spring Officer Mean S.D.	18.0 187.0 17.0 188.2 17.0 188.2 17.0 17.3 17.3 17.61	17.52 178.22 178.25 178.20 178.20 178.20 17.00 17.86 17.86	17.9 187.5 178.5 17.4 17.4 17.4 17.4 17.2 17.9 17.9 17.9 17.9 17.6 7	18.1 178.8 17.0 17.0 19.3 17.0 17.6 17.6 17.6 17.6 17.6 0.80	18.1 177.60 177.60 177.91 176.91 17.68.09 17.63 17.63 0.57	Group mean 17.76			
EFAs Veronica Dolly Danny Prudence Jeeves Heidi Elspeth Anne Lily Polly Henry	1998964923 1988964923	18.62 18.7 170.4 197.9 18.9 18.9 18.9 18.3 18.7	18.20 188.02 189.4 188.67 188.67 188.67 188.55	18.66 187.66 187.66 189.66 189.66 189.66 187.66 187.66 187.66 187.66 187.66 187.66 187.66 187.66 187.66 187.66 187.66 187.66 188.66 197	19.27 177.56 188.40 188.40 198.6 198.6	Group mean_			
Mean S.D.	18.83 0.49	18.38 0.82	18.39 0.54	18.52 0.80	18.38 0.69	18.50			

Table XIV

Mean cell ha	aemoglo	obin co	oncentr	ration	values	s (g/dl)
Horse	Week 0	4	8	12	16	
Controls						
Felfit Jill Fred Delta Beau Fella Sprig Dick Noddy Durando Natasha	932272035313 3333354443445 333335544433445	9207732320763 233323324432244 3333333333334432244	715232 319499 333233333342332	7888804889306 333333433332330 33333334333332330 3333333333	035452751204 33333333333433333	Group
Mean S.D.	34.08 0.78	33.42 0.74	33.29 0.45	33.58 0.35	33.40 0.41	33.55
Placebo						
Charlotte Charlie Jack Rose North Star Lord Muckle Big Ben Mike Rainbeam Choppy Spring Officer	8593279647.99 33334433334332 3333344333343332	764715742151 33333333333333333333333333333333333	853208673886 2333355223432 23333355223432	305366715762		Group
Mean S.D.	33.77 0.42	33.08 0.47	33.53 0.93	33.39 0.51	33. 43 0.37	33.44
EFAs Veronica Dolly Danny Prudence Jeeves Heidi Elspeth Anne Lily Polly Henry	28167493341 53433434344 33333333333333333333333	95397129238 22341423332 333333333333333333333333333	70090065796	40664794430 34353333333343 33333333333333333333	63590610180 3333333334443 3333333333344433	Group
Mean S.D.	34.07 0.51	$33.16 \\ 0.90$	33.32 0.59	33.79 0.70	33.6 3 0.75	33.59

43

Table XV

Platelet cou	unts	Val	ues x1	l 0º/1		
Horse	Week 0	4	8	12	16	
Controls						
Felfit Jill Fred Delta Beau Fella Sprig Dick Noddy Durando Natasha	150 1300 1200 1600 1900 1600 1400 1800 210	130 140 160 150 130 130 130 130 200	140 1500 1330 1230 1500 1500 1500 1400 1400 220	150 1300 1600 1200 1600 1600 1600 1600 190	130 170 145 200 160 150 150 130 145	Group
Mean S.D.	$165.0 \\ 31.8$	139.2 29.4	158.3 33.8	148.3 23.7	145.0 23.8	151.2
Placebo Charlotte Charlie Jack Rose North Star Lord Muckle Big Ben Mike Rainbeam Choppy Spring Officer Mean S.D.	170 146 190 110 200 146 60 130 130 150 170 148.5 38.5	130 122 180 30 140 80 140 130 140 130 140 125.2 45.6	140 130 150 60 170 150 130 130 130 130.8 32.6	170 100 170 180 30 200 140 60 120 110 180 125.8 57.0	140 142 240 142 142 142 142 142 142 142 142 145.7 31.6	Group mean 135.2
EFAs						
Veronica Dolly Danny Prudence Jeeves Heidi Elspeth Anne Lily Polly Henry	160 120 170 160 10 230 170 130 220 160	120 140 1200 152 150 1200 1200 1200 1400 1500	120 160 200 120 158 210 150 130 170	100 120 170 180 120 210 150 150 160	100 80 140 140 141 180 170 130 130	Group
Mean S.D.	159.1 61.1	148.4 30.3	157.1 29.7	141.8 35.2	137.4 31.7	148.7

Table XVI

White cell o	counts	5	Valu	ies x	10º/1	
Horse	Week 0	4	8	12	16	
Controls						
Felfit Jill Fred Delta Beau Fella Sprig Dick Noddy Durando Natasha	575679427000 	914412583951	212707618225	694676465548	316860246048 575566565645	Group
Mean S.D.	7.31 1.59	6.10 1.04	6.11 1.42	6.25 1.42	5.82 0.70	6.32
Placebo						
Charlotte Charlie Jack Rose North Star Lord Muckle Big Ben Mike Rainbeam Choppy Spring Officer	830400164203 	657658556645	765470 	656587455847 	756679646736	Group
Mean S.D.	6.68 1.28	6.18 1.13	6.94 2.99	6.29 1.48	6.43 1.42	6.51
EFAs						
Veronica Dolly Danny Prudence Jeeves Heidi Elspeth Anne Lily Polly Henry	11.90 8.1935824 7689686	7.596555516666	42469483022 868555557655	75767697747	98697532676 95745668555	Group mean_
Mean S.D.	7.85 1.63	6.68 1.61	6.31 1.19	6.85 1.24	0.53 1.47	6.84

Biochemical Parameters

Table XVII

Ure a values		Valu	ues in	n mmo ⁻	1/1	
Horse Horse	Week 0	4	8	12	16	
Controls						
Felfit Jill Ered Delta Beau Fella Sprig Dick Noddy Durando Natasha	676642578833 556465545445	508179306990	435444434444	766849017256	465441704444	Group
Mean S.D.	5.38 0.71	5.31 0.67	4.48 0.53	4.84 0.61	5.14 0.45	mean 5.03
Placebo						
Charlotte Charlie Jack Rose North Star Lord Muckle Big Ben Mike Rainbeam Choppy Spring Officer	933637243992 	494264949465	205524472524	334927529902	544547545435	Group
Mean S.D.	5.08	5.22	4.43	4.88	4.98	mean 4.92
EFAs						
Veronica Dolly Danny Prudence Jeeves Heidi Elspeth Anne Lily Polly Henry	645554465555	97865065918 	64454434445 	045554455463	54545435545	Group
Mean S.D.	5.49 0.51	$5.40 \\ 0.65$	4.73 0.71	$5.05 \\ 0.57$	$5.05 \\ 0.56$	5.14

Table XVIII

Sodium value	es Val	ues ir	n mmol/	/1		
Horse	Week 0	4	8	12	16	
Controls						
Felfit Jill Fred Delta Beau Fella Sprig Dick Noddy Durando Natasha	1376677 13333779 13333333333 1133333333 113333333 1133333 1133333 1133333 1133333 113333 113333 1133333 11333333	1436695566677737 1111111111111111111111111111111	11111111111111111111111111111111111111	13568 133386 133388 133388 133388 13338 13338 138 1	13374 13374 13335 13335 13336 13337 13336 13337 13336 13337 13337 133577 133577 13357777777777	Group
Mean S.D.	137.3	137.3	135.5 2.3	$135.0 \\ 3.0$	134.6 1.8	135.9
Placebo Charlotte Charlie Rose North Star Lord Muckle Big Ben Mike Rainbeam Choppy Spring Officer Mean	136 14389 13348 133889 133889 1339 137,9	139 1437 1337 1338 1338 1338 1338 1338 1338 13	1333351 1333351 11333351 11333567 1133567 134.6	13388 133886 111111111111111111111111111	133851 133851 133855 11385635 111385 134.8	Group mean 136.0
S.D.	2.1	2.6	1.8	2.8	2.1	100.0
EFAs Veronica Dolly Danny Prudence Jeeves Heidi Elspeth Anne Lily Polly Henry	136 1388 141 1381 148 148 148 148 148 148 148 148 148 1	1369 13440 1440 1430 1430 14389 14389 14389 14389 146	1336 13337 133339 13336 13336 13336 13336 13336 13336 13336 13335	131 343 1334 1333 1333 11 1333 11 1333 11 1333 11 1333 11 11	133366 133336 133336 111111111111111111	Group
Mean S.D.	138.6 1.9	139.6 2.9	136.3 1.9	134.3 3.0	135.1 1.9	136.8

Table XIX

Horse Week 0 4 8 12 16 Controls Felfit 4.2 4.5 2.7 3.9 3.9 Fred 4.6 4.5 4.3 4.6 3.5 5 Fred 4.6 4.4 2.7 4.0 3.8 3.6 4.6 3.5 Deita 4.4 4.4 4.5 4.2 3.3 3.8 3.6 4.6 3.7 4.2 Deita 4.4 4.4 4.5 4.2 3.3 3.8 3.6 4.0 3.7 Sprig 5.0 4.5 3.6 4.0 2.5 5 3.6 4.0 2.5 5 9 4.2 4.7 4.4 3.9 4.0 4.0 Noddy 3.7 3.1 3.8 3.7 4.2 5 4.3 3.8 3.9 4.2 Natasha 4.2 4.7 4.5 4.3 3.8 3.78 4.02 Mean 4.30 4.07 3.94 4.01 3.78 4.02 Mean <th< th=""><th></th></th<>	
Controls Felfit 4.2 4.5 2.7 3.9 3.9 Jill 4.2 4.8 4.3 4.6 3.5 Fred 4.6 4.5 4.3 4.0 3.7 Temple 4.6 4.4 2.7 4.0 3.8 Delta 4.4 4.4 4.5 4.2 3.3 Beau 3.8 2.6 4.1 3.9 4.3 Fella 3.4 3.6 3.7 4.2 Sprig 5.0 4.5 3.6 4.0 2.5 Dick 5.2 4.7 4.4 3.9 4.0 Noddy 3.7 3.1 3.8 3.7 4.2 Durando 4.3 3.0 3.8 3.9 4.2 Natasha 4.2 4.7 4.5 4.3 3.8 Group Mean 4.30 4.07 3.94 4.01 3.78 4.02	
Felfit 4.2 4.5 2.7 3.9 3.9 Jill 4.2 4.8 4.3 4.6 3.5 Fred 4.6 4.5 4.3 4.0 3.7 Temple 4.6 4.4 2.7 4.0 3.8 Deita 4.4 4.4 4.5 4.2 3.3 Beau 3.8 2.6 4.1 3.9 4.3 Fella 3.4 3.6 4.6 3.7 4.2 Sprig 5.0 4.5 3.6 4.0 2.5 Dick 5.2 4.7 4.4 3.9 4.2 Noddy 3.7 3.1 3.8 3.7 4.2 Durando 4.3 3.0 3.8 3.9 4.2 Natasha 4.2 4.7 4.5 4.3 3.8 GroupMean 4.30 4.07 3.94 4.01 3.78 4.02	
Mean 4.30 4.07 3.94 4.01 3.78 4.02 S.D. 0.52 0.77 0.66 0.25 0.51	1p
	12
PlaceboCharlotte 5.9 3.7 4.2 4.3 5.4 Charlie 4.7 4.2 4.0 3.7 3.9 Jack 4.1 3.7 2.8 4.1 3.0 Rose 3.8 3.3 4.3 4.1 4.3 North Star 4.3 3.2 4.3 3.0 4.5 Lord Muckle 4.0 4.4 3.0 4.1 4.3 Big Ben 3.8 3.8 3.5 3.7 4.0 Mike 4.0 3.9 4.5 4.0 3.8 Rainbeam 3.0 4.2 4.5 4.2 4.0 Choppy 3.7 3.7 4.0 4.4 3.9 Spring 3.6 4.2 4.1 4.2 3.6 Officer 3.7 2.5 4.2 3.1 4.4 Mean 4.05 3.73 3.95 3.91 4.09 S.D. 0.71 0.53 0.56 0.45 0.58	1p 15
EFAs Veronica 3.2 3.9 3.3 3.1 4.0 Dolly 5.5 3.8 3.9 3.9 4.0 Danny 5.0 3.4 4.7 4.0 4.1 Prudence 3.7 3.1 2.6 5.7 3.4 Jeeves 4.5 3.4 4.1 2.6 3.7 Heidi 3.9 4.8 3.8 3.9 3.9 Elspeth 3.7 3.2 3.6 3.7 3.5 Anne 4.1 4.3 2.1 3.9 4.1 Lily 4.2 4.0 3.4 3.3 3.6 Polly 5.2 3.7 3.8 3.6 4.0 Henry 3.5 4.6 3.5 3.2 3.9 Group Mean 4.23 3.84 3.53 3.72 3.84 3.83	

Table XX

Calcium valu	les	Va	lues in	n mmol,	/1	
Horse	Week 0	4	8	12	16	
Controls						
Felfit Jill Fred Delta Beau Fella Sprig Dick Noddy Durando Natasha	323333332332332332332332332332332332332	3.35 .17 .800 .121 .800 .121 .800 .121 .800 .121 .800 .121 .800 .121 .800 .121 .800 .121 .800 .121 .800 .121 .800 .121 .800 .121 .800 .121 .800 .121 .800 .121 .800 .121 .800 .121 .800 .123 .800 .123 .127 .127 .127 .127 .127 .127 .127 .127	22222233222322 	23222333333232 .9106 .9733 .110 .971 .971 .971 .971 .971	7999395468703 22222232222232	Group
Mean S.D.	3.099 0.109	3.096 0.133	$2.914 \\ 0.175$	2.996 0.109	2.931 0.076	3.007
Placebo Charlotte Charlie Jack Rose North Star Lord Muckle Big Ben Mike Rainbeam Choppy Spring Officer Mean S.D.	3.15 .16 .090 .13 .090 .13 .090 .14 .00 .100 .00 .00 .00 .00 .00 .00 .00 .0	3.10 3.20 1.15 1.15 1.19 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10	22322222222222222222222222222222222222	3222222322333 .0753995996779097 .0990770044 .0997 .0997	2233223232222 .999 .000 .933 .907 .996 .978 .041	Group mean 2.997
EFAs Veronica Dolly Danny Prudence Jeeves Heidi Elspeth Anne Lily Polly Henry	2332 233 23 2	3333333 .016 .09 .09 .09 .09 .09 .00 .09 .00 .00 .00	22323232323232323232323232323232323232	223232333223333 	232233333333 .0007 .0007 .0007 .005 .002	Group mean
Mean S.D.	$3.068 \\ 0.100$	3.094 0.109	2.925 0.126	2.972 0.182	2.998 0.126	3.011

Table XXI

Chloride val	ues	Valu	ues ir	n mmo]	1/1	
Horse	Week 0	4	8	12	16	
Controls						
Felfit Jill Fred Delta Beau Fella Sprig Dick Noddy Durando Natasha	103 102 102 104 102 100 105 997 101	102 97 98 100 98 97 97 99 101 101	99999999999999999999999999999999999999	995 995 1006 970 1007 999 1000	99999999999999999999999999999999999999	Group
Mean S.D.	100.8 2.9	99.2 1.8	94.9 1.9	98.4 2.0	95.8 1.6	97.8
Placebo						
Charlotte Charlie Jack Rose North Star Lord Muckle Big Ben Mike Rainbeam Choppy Spring Officer	102 101 101 101 101 101 100 100 100 102 99	99 100 99 100 98 98 99 97 100 98 100	99999999999999999999999999999999999999	991 105 102 1019 997 101 100 103	999977206066676 1999999999999999999999999999999999	Group
Mean S.D.	100.3	98.6 1.5	95.9 1.7	99.5 2.3	96.1 1.8	meah 98.1
EFAs						
Veronica Dolly Jack Danny Prudence Jeeves Heidi Elspeth Anne Polly Henry	95 102 101 100 102 102 108 103 97 101	96 101 97 100 997 100 999 97 986	99999 8499955 99999999999999999999999999999999	997571 999971 10029979 10029979	37557 754233 99999999999999999999999999999999999	Group
Mean S.D.	$\begin{array}{c}101.0\\3.3\end{array}$	98.5 2.0	95.3 2.3	98.8 2.3	94.6 1.8	97.7

Table XXII

Magnesium va	alues	Va	lues in	n mmol,	/1	
Horse	Week 0	4	8	12	16	
Controls						
Felfit Jill Fred Delta Beau Fella Sprig Dick Noddy Durando Natasha	$\begin{array}{c} 0.71\\ 0.70\\ 0.781\\ 0.72\\ 0.68\\ 0.72\\ 0.68\\ 0.73\\ 0.66\\ 0.73\\ 0.66\\ 0.73\end{array}$	0.617 0.6979220 0.855556694 0.5557549	$\begin{array}{c} 0.63\\ 0.782\\ 0.863\\ 0.782\\ 0.863\\ 0.71\\ 0.772\\ 0.776\\ 0.771\\ 0.75\\ 0.72\end{array}$	0.80 0.995 0.784 0.830 0.785 0.785 0.72	0.74 0.884 0.74 0.79 0.75 0.75 0.76 0.76 0.76	Group
Mean S.D.	$0.718 \\ 0.046$	$0.657 \\ 0.143$	$\begin{array}{c} 0.731 \\ 0.065 \end{array}$	$0.830 \\ 0.064$	0.75 7 0.06 6	0.738
Placebo Charlotte Charlie Jack Rose North Star Lord Muckle Big Ben Mike Rainbeam Choppy Spring Officer Mean S.D.	0.71 0.867 0.867 0.571 0.571 0.7705 0.775 0.705 0.700 0.708	0.76 0.666 0.6764 0.7929 0.8713 0.782 0.783 0.753 0.087	0.74 0.75 0.75 0.77 0.770 0.770 0.760 0.770 0.788 0.683 0.683 0.65 0.727 0.064	0.84 0.890 0.889 0.889 0.889 0.884 0.991 0.872 0.872 0.72 0.831 0.070	0.70 0.81 0.71 0.74 0.74 0.74 0.768 0.758 0.753 0.74 0.724 0.724	Group mean 0.747
EFAs Veronica Dolly Danny Prudence Jeves Heidi Elspeth Anne Lily Polly Henry	0.67 0.866 0.579 0.775 0.781 0.60 0.60	0.61 0.64 0.68 0.557 0.68 0.557 0.68 0.61	0.67 0.766 0.7664 0.683 0.683 0.683 0.683 0.683 0.79	0.61 0.668 0.795 0.755 0.755 0.754 0.775 0.77	0.60 0.888 0.688 0.78 0.74 0.74 0.76 0.80	Group
Mean S.D.	0.720 0.084	0.645 0.087	0.739 0.067	0.745 0.087	0.727 0.076	0.715

Table XXIII

Inorganic ph	nosphat	e valu	ies Va	lues i	in mmol	/1
Horse	Week 0	4	8	12	16	
Controls						
Felfit Jill Fred Delta Beau Fella Sprig Dick Noddy Durando Natasha	0.92 1.78 0.82 1.97 0.82 0.97 0.835 0.835 0.835 0.835 0.835 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.9	$\begin{array}{c} 0.78\\ 1.38\\ 0.88\\ 0.88\\ 1.23\\ 0.689\\ 1.23\\ 0.689\\ 1.23\\ 0.689\\ 1.23\\ 0.88\\ 1.23\\ 0.88\\ 1.23\\ 0.88\\ 1.25\\ 0.88\\ 1.25\\ 0.885\\ 1.25\\ 0.885$	$\begin{array}{c} 1.12\\ 1.08\\ 0.69\\ 0.71\\ 1.07\\ 0.95\\ 0.78\\ 0.95\\ 0.78\\ 0.95\\ 0.78\\ 0.76\\ 1.03\end{array}$	$1.05 \\ 1.04 \\ 0.96 \\ 1.39 \\ 0.796 \\ 0.796 \\ 0.796 \\ 0.796 \\ 0.97 \\ 0.9$	$\begin{array}{c} 0.82\\ 0.64\\ 1.14\\ 0.73\\ 1.68\\ 0.59\\ 0.59\\ 0.84\\ 1.08\\ 0.84\\ 0.84\\ 0.84\\ \end{array}$	Group
Mean S.D.	0.879 0.112	0.975 0.253	0.913 0.150	0.950 0.162	0.836 0.177	0.911
Placebo						
Charlotte Charlie Jack Rose North Star Lord Muckle Big Ben Mike Rainbeam Choppy Spring Officer	$\begin{array}{c} 0.92\\ 0.77\\ 0.96\\ 0.75\\ 0.88\\ 0.99\\ 0.88\\ 0.99\\ 0.99\\ 1.19\\ 0.91\\ 0.91\\ 0.91 \end{array}$	$\begin{array}{c} 0.97\\ 0.97\\ 0.697\\ 0.683\\ 0.683\\ 0.736\\ 0.94\\ 0.705\\ 0.75\\ 0.875\\ 1.157\\ 1.15\end{array}$	$\begin{array}{c} 0.92\\ 0.889\\ 0.898\\ 1.04\\ 0.54\\ 0.77\\ 0.84\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.60\end{array}$	$\begin{array}{c} 1.04\\ 0.03\\ 1.080\\ 1.080\\ 0.805\\ 0.73\\ 0.73\\ 1.04\\ 1.04\\ 1.22\\ 0.73\end{array}$	0.72 1.98 0.76 0.76 0.70 0.88 1.08 0.92	Group
Mean S.D.	0.914 0.114	0.902 0.194	0.880 0.182	0.947 0.152	0.87 3 0.11 2	0.903
EFAs				1 05	0 70	
Veronica Dolly Danny Prudence Jeeves Heidi Elspeth Anne Lily Polly Henry	0.88 0.96 0.79 1.01 1.04 0.882 0.882 0.887	0.96 0.91 0.92 0.96 1.18 0.76 1.12 0.68	U.689 0.991 0.991 0.991 0.789 0.789 0.779 0.772 1.06	1.05 1.31 0.90 1.075 0.81 1.08 0.88 0.886 1.386	U.79 .79 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20	Group mean
Mean S.D.	0.887 0.087	0.953 0.178	0.945 0.182	1.009 0.179	0.989 0.177	0.957

Table XXIV

Alkaline phosphatase values, in I.U.

Horse	Week 0	4	8	12	16	
Controls						
Felfit Jill Fred Delta Beau Fella Sprig Dick Noddy Durando Natasha	141 3716 22409 23232 3207 3257 3257 262	134 23062 12860 124852 12541 2220 1215	133 2291 1562 1263 1263 12689 12689 12895 12895 12899 1200	117 2267 151 128 151 128 151 126 121 2129 121 191	14562 219500 12000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 1000000	Group
Mean S.D.	252.0 70.7	200.0 40.2	189.2 40.4	191.4 49.3	196.3 56.3	205.8
Placebo						
Charlotte Charlie Jack Rose North Star Lord Muckle Big Ben Mike Choppy Rainbeam Spring Officer	211 218 226 275 227 227 227 222 222 222 222 222 222	222123541335896 222212221222352	19 9 1239 1239 12219 12219 1222 195 277 1222 1227 1222 1227 1222 1222 1222	1795 1811 229894 18869 1221 18869 1222 1221 22122 1222 1222 1222 1222 1	187 232 245 201 2201 201 2401 2401 201 201	Group
Mean S.D.	248.8 50.0	216.3 24.8	199.1 27.6	203.9 36.0	208.0 29.1	215.2
EFAs	050	005	102	105	202	
veronica Dolly Danny Prudence Jeeves Heidi Elspeth Anne Lily Polly Henry	22323232323233 223232323233 2232323233 22323233 222333 222333 222333 222333	21654 2161428993558331 22245831 1251 251 251 251 251 251	19299 122377 124377 18447 16289 1849	1853 2211 2207 1823 163 2650 279	203 1586 2024 2024 2025 174 2025 1855 2453 2194	Group
Mean S.D.	278.5 63.3	209.4 30.5	200.4 32.3	193.7 24.3	194.3 28.0	215.2

Table XXV

Aspartate aminotransaminase values, in I.U.

Horse	Week 0	4	8	12	16	
Controls						
Felfit Jill Fred Delta Beau Fella Sprig Dick Noddy Durando Natasha	22222322222222222222222222222222222222	33333222253933 3327334922539933 2273222222222222222222222222222222	261 22766 2352 2352 2222 2352 2222 2352 2222 232 232 232 232 232 232 232 232 232 232 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	22222326047753336 2222232232222233	287 33530 3387 33377 33377 22588 22222 2310	Group
Mean S.D.	278.0 48.1	$\frac{316.0}{37.5}$	269.8 38.8	277.8 42.0	310.1 44.2	290.3
5.0.	1011	07.0	00.0	1210		
Placebo						
Charlotte Charlie Jack Rose North Star Lord Muckle Big Ben Mike Rainbeam Choppy Spring Officer	222222273 33324 2222223 22227 22227 2227	3332332 3434 3434 35 16 59 23 36 59 23 66 5 33 23 33 34 36 5 5 33 34 36 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	226 2359 12884 22884 22884 22818 3403 3303 283	2222323333332 222232333333332 2323333333	2334 233367 233232 23251 23212 23212 23212 23212 23212 23212 23212 23212 23212 23212 23212 23212 23212 23212 23212 23212 23212 23212 232 2322 232 232 232 232 232 232 232 232 232 2 232 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Group
Mean S.D.	313.5 64.0	346.3 43.2	289.8 55.1	304.0 53.7	342.8 143.2	319.3
EFAs Veronica Dolly Danny Prudence Jeeves Heidi	306 3559 2822 3258 3258 3258 319	324 3564 3533 303 303 303 303	304 2919 3255 266	291 373 3285 274 317	3322 33035 3355 3256 3256	
Elspeth Anne Lily Polly Henry	283 279 272 332 376	308 341 286 313 393	272 276 251 266 368	285 271 264 253 361	305 252 270 250 369	Group
Mean S.D.	308.5 37.2	330.2 30.2	289.2 34.6	300.2 39.6	301.5 39.7	305.9

Table XXVI

Bilirubin values, in umol/l									
Horse	Week 0	4	8	12	16				
Controls									
Felfit Jill Fred Delta Beau Fella Sprig Dick Noddy Durando Natasha	46947 1777767	136 115 139 1989 11 112 11	270 119 149 1480 1480 1681 221	15086555795576 1122576	1296604223 111222916	Group			
Mean S.D.	16.0 2.1	14.7 4.8	$\substack{19.5\\6.3}$	$\substack{18.2\\3.6}$	$\substack{15.6\\4.4}$	16.8			
Placebo Charlotte Charlie Jack Rose North Star Lord Muckle Big Ben Mike Rainbeam Choppy Spring Officer Mean	17 121 27 129 160 1223 16 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	17 120 122 124 120 14 120 15 14 120 15 15 15 15 15 14	173805596336086 64	17550415630667 63	171 222 222 173 222 173 142 2 7 9 2 0	Group mean 19.1			
5.0.	0.5	т.Ј	10.4	15.5	0.2				
EFAs									
Veronica Dolly Danny Prudence Jeeves Heidi Elspeth Lily Anne Polly Henry	1387 1223 2531 4 2121 212	1359 519 1481 72	134 19 1184 17 184 131 31	13 14 106 136 23 11 32	13115 14246232	Group			
Mean S.D.	16.4 4.8	19.9 19.8	16.9 6.3	25.6 29.0	19.1 15.2	19.6			

Table XXVII

Total plasma	a prot	tein v	values	s, in	g/1	
Horse	Week	4	8	12	16	
Controls						
Felfit Jill Fred Delta Beau Fella Sprig Dick Noddy Durando Natasha	66666666766666	66783806221049	859707770115 66556666666666666666666666666666666	56655666666666666666666666666666666666	55531895531721 5666655576566	Group
Mean S.D.	64.8 4.2	66.6 6.2	60.6 3.4	60.8 3.7	60.8 4.9	62.7
Placebo Charlotte Charlie Jack Rose North Star Lord Muckle Big Ben Mike Rainbeam Choppy Spring Officer	666676666246 66667666246	66666666666666666666666666666666666666	66387777058509 665566665665	6579177159123 6666665766	6666666666656 6666666666656	Group
Mean S.D.	65.2 4.7	66.1 2.8	62.1 3.8	63.1 4.1	63.3 3.i	64.0
EFAs Veronica Dolly Danny Prudence Jeeves Heidi Elspeth Anne Lily Polly Henry	6677666667676	6676677766678	65765766666666666666666666666666666666	66666566666666666666666666666666666666	666656665566	Group mean
Mean S.D.	66.5 3.3	$\frac{68.0}{5.8}$	62.5 4.4	63.4 2.6	62.8 4.9	ĕ4.7

Table XXVIII

Albumin values, in g/1

Horse	Week 0	4	8	12	16	
Controls						
Felfit Jill Fred Temple Delta Beau Fella Sprig Dick Noddy Durando Natasha	74 37374533316	29 334 337 338 337 338 3333 3333 33333 4	5381143322221 3322333333322221	2200053422221	441314066323 333333333333333333333333333333333	Group
Mean S.D.	34.4 2.0	35.3 3.1	32.1 1.8	31.9 1.6	33.1 1.9	33.4
Placebo						
Charlotte Charlie Jack Rose North Star Lord Muckle Big Ben Mike Officer Rainbeam Spring Officer	596326554194 39933999554194	33333334154964	014724050150 3332233333333333333333333333333333333	419842253153 33323333333333333333333333333333	183731343333	Group
Mean S.D.	34.9 2.4	34.0 2.0	31.6 2.5	33.1 2.7	32.7 2.5	33.3
EFAs						
Veronica Dolly Danny Prudence Jeeves Heidi Elspeth Anne Lily Polly Henry	2692 6946539	46556299495 3333 33333333333333333333333333333333	333743154527	35325434635 333337777777777777777777777777777777	11255344215 3333333344215	Group
Mean S.D.	35.5 2.7	34.9 2.8	34.1 1.9	33.9 1.2	33.0 1.7	34.3

Table XXIX

Globulin values, in g/l

Horse	Week 0	4	8	12	16	
Controls						
Felfit Jill Fred Delta Beau Fella Sprig Dick Noddy Durando Natasha	45790 4197478	33422716843719 334222233242	321693448994 23322222322223	2333675830181 233322223332181	23322225575408 233222232232232	Group
Mean S.D.	30.4 4.9	31.3 6.5	28.5 3.9	28.9 3.5	27.8 4.3	29.4
Placebo						
Charlotte Charlie Jack Rose North Star Lord Muckle Big Ben Mike Rainbeam Choppy Spring Officer	381205955852	33333449977361	624053007059 332233333332222	3222333590837 2322333223232323232323232323232323232	3127826090540 322333332332332332332332332332332332332	Group
Mean S.D.	30.3 5.1	32.1 2.9	30.1 3.6	29.6 4.1	30.3 4.7	30.5
EFAs	33	30	29	28	31	
Veronica Donny Prudence Jeeves Heidi Elspeth Anne Lily Polly Henry	39297901678 3233223322332232	06044922133 324323333334	2232222322910	232993139010	33212334713	Group
Mean S.D.	$\substack{\texttt{31.0}\\\texttt{4.0}}$	33.1 5.8	28.5 3.0	29.5 2.5	29.5 5.2	30.3

Table XXX

Gamma glutan	nyl tr	anspe	eptida	ase va	alues	, in I.U./1
Horse	Week 0	4	8	12	16	
Controls						
Felfit Jill Fred Delta Beau Fella Sprig Dick Noddy Durando Natasha	1985723774454 1222223774454	1835398861879 112218861879	16 23 16 12 12 10 12 10 20 11 20 11 20 11 20	118115557 11231566	22 10 19 19 19 23 29 9 19	Group
Mean S.D.	22.9 5.7	20.4 7.3	$19.7 \\ 6.6$	$\frac{16.8}{5.3}$	$19.0 \\ 6.6$	19.8
	•••					
Placebo						
Charlotte Charlie Jack Rose North Star Lord Muckle Big Ben Mike Rainbeam Choppy Spring Officer	306023515871	222222221222232	231125694038 231212121321	2218955134610 22333	121178737507 121213217	Group
Mean	25.1	25.1	22.0	22 <u>,</u> 6	19.5	mean 22.9
EFAs	11	17	16	23	7	
Dolly Danny Prudence Jeeves Heidi Elspeth Anne Lily Polly Henry	122222312233	10878 1219 131229 131227 131222	2989011607161 21160761	22162389482 12189482	1572178116 118120	Group mean
Mean S.D.	24.9 6.2	22.0 7.5	20.3 6.4	20.4 4.4	14.8 4.8	20.5

Table XXXI

Triglyceride	e value	es, in	mmol/1	l	
Horse	Week 0	8	12	16	
Controls					
Felfit Jill Fred Temple Delta Beau Fella Sprig Dick Noddy Durando Natasha	0.29 0.127 0.127 0.127 0.127 0.147 0	0.08 0.48 0.48 0.45 0.15 0.15 0.15 0.0 0.15 0.0 0.44 0.15 0.0 0.44 0.15 0.0 0.44 0.15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	$\begin{array}{c} .13\\ 0.140\\ 0.279\\ 0.321\\ 0.321\\ 0.325\\ 0.125\\ 0.00\\ $	$\begin{array}{c} .11\\ 0.13\\ 0.14\\ 0.12\\ 0.124\\ 9.23\\ 1.23\\ 0.31\\ 0.125\\ 0.1$	Group
Mean S.D.	0.263 0.125	$\substack{0.311\\0.175}$	0.280 0.108	0.206 0.105	0.265
Charlotte Charlie Jack Rose North Star Lord Muckle Big Ben Mike Rainbeam Choppy Spring Officer	00000000000000000000000000000000000000	00000000000000000000000000000000000000	$\begin{array}{c} 286\\ 22237\\ 0000\\$	$\begin{array}{c} 0.28\\ 0.43\\ 0.243\\ 0.128\\ 0.128\\ 0.228\\ 0.2188\\$	Group
Mean S.D.	$\substack{0.251\\0.085}$	0.421 0.127	$\substack{\textbf{0.266}\\\textbf{0.104}}$	0.266 0.113	0.301
EFAs					
Veronica Dolly Danny Prudence Jeeves Heidi Elspeth Anne Lily Polly Henry	0.14 0.31 0.47 0.543 0.38 0.133 0.133 0.129 0.39 0.317	0.343 0.2546 0.449 0.4444 0.444 0.4444 0.4444 0.4444 0.4444 0.4444 0.4444 0.4444 0.4444 0.4444 0.4444 0.4444 0.4444 0.4444 0.4444 0.44444 0.44444 0.44444 0.444444 0.44444444	0.164 0.238552 0.2188552 0.21247 0.2127 0.2127 0.270 0.270	0.220 2.3229 2.5294 2.54944 2.54944 2.54944 2.54944 2.54944 2.54954 2.54954 2.54954 2.	Group mean O ano
mean S.D.	0.140	0.140	0.118	0.119	0.309

Table XXXII

Cholesterol	values	s, in r	nmo1/1		
Horse	Week 0	8	12	16	
Controls					
Felfit Jill Fred Delta Beau Fella Sprig Dick Noddy Durando Natasha	$1.90 \\ 1.42 \\ 2.44 \\ 2.07 \\ 3.19 \\ 1.61 \\ 1.84 \\ 1.91 \\ $	2212223222212 	221.992 12.992 12.990 12.990 12.990 12.990 12.990 12.990 1.0300 1.03000 1.03000 1.03000 1.03000 1.03000 1.030000 1.030000000000	221212321212 	Group
Mean S.D.	2.026 0.451	2.449 0.518	2.403 0.530	2.219 0.417	2.274
Placebo					
Charlotte Charlie Jack Rose North Star Lord Muckle Big Ben Mike Rainbeam Choppy Spring Officer	$1.76 \\ 22.305 \\ 1.33$	2.179 1.5712 1.078 1.078 1.078 1.078 1.078 1.078 1.078 1.078 1.078 1.078 1.0799 1.0799 1.0799 1.0799 1.0799 1.0799 1.0799 1.0799 1.0799 1.	22222113222233 	22222212222122212221222	Group
Mean S.D.	1.713 0.592	2.365 0.347	2.482 0.449	2.178 0.317	2.184
EFAs					
Veronica Dolly Danny Prudence Jeeves Heidi Elspeth Anne Lily Polly Henry	1.2221.22911.066006	22232122222 1222321222222	1.92 940 	232322221122 232322221122	Group
Mean S.D.	2.043 0.273	$2.534 \\ 0.435$	$2.565 \\ 0.658$	$2.480 \\ 0.466$	2.405

APPENDIX III

TABLES OF RESULTS OF THE STUDY ON THE USE OF EFAs IN THE PROPHYLAXIS OF DERMATOPHILOSIS IN HORSES Clinical Indices, Haematological and Biochemical Parameters

Table	I.	Indices	of	dermatophilosis	lesion	severity	
-------	----	---------	----	-----------------	--------	----------	--

Scored on a	1 to 10	scale	, 1 is	milde	est, 10	is mo	ost sev	vere
Horse	Week	3	6	Q	12	15	20	21
Controls Polly Lily Sprig Danny Dolly Jeeves Charlie Smiler Elspeth Sean Bliss LP	0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0000000000000000000000000000000000000	0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00	0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Mean S.D.	$\substack{0.1\\0.3}$	0.2 0.4	0.2 0.4	$0.2 \\ 0.4$	0.2 0.4	$\begin{smallmatrix}0.1\\0.3\end{smallmatrix}$	$\substack{0.1\\0.3}$	0.1 0.1 0.3
EFAs Fella Spring Beau Mike Dick Durando Henry Jill Fred R. Bridge John	$\begin{array}{c} 0.0\\ 0.0\\ 1.0\\ 0.0\\ 1.0\\ 0.0\\ 0.0\\ 0.0\\$		$\begin{array}{c} 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 1.0\\ 0.0\\ 1.0\\ 0.0\\ 0$	$\begin{array}{c} 0.0\\ 0.0\\ 0.0\\ 1.0\\ 1.0\\ 0.0\\ 1.0\\ 0.0\\ 2.0\\ \end{array}$	$\begin{array}{c} 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0$			0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Mean S.D.	0.2 0.4	0.1 0.3	0.3 0.5	0.5 0.7	$\begin{array}{c} 0.1\\ 0.3 \end{array}$	$0.0 \\ 0.0$	$0.0 \\ 0.0$	$0.0 \ 0.1 \\ 0.0$

Table II. Extent of distribution of dorsal dermatophilosis lesions % of dorsal body surface area affected by dermatophilosis lesions

Horse	Week	3	6	q	12	15	20	24	
Controls Polly Sprig Danny Dolly Jeeves Charlie Smiler Elspeth Sean Bliss LP					25.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	15.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	15.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	15.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Group mean
Mean S.D.	$\begin{array}{c} 0.0\\ 0.0\end{array}$	$\begin{array}{c} 0.0\\ 0.0\\ 0.0 \end{array}$	$\begin{array}{c} 0.0\\ 0.0\end{array}$	$\begin{array}{c} 0.0\\ 0.0\end{array}$	$\frac{2}{7}$	$1.3 \\ 4.3$	$1.3 \\ 4.3$	$1.3 \\ 4.3$	0.7
EFAs Fella Spring Beau Mike Dick Durando Henry Jill Fred R. Bridge John				0.0000000000000000000000000000000000000					Group mean
Mean S.D.	$\begin{array}{c} 0.0\\ 0.0\end{array}$	$\begin{array}{c} 0.0\\ 0.0\end{array}$	$\begin{array}{c} 0.0\\ 0.0\end{array}$	0.2 0.8	$\begin{smallmatrix}0.0\\0.0\end{smallmatrix}$	$\begin{array}{c} 0.0\\ 0.0\\ 0.0\end{array}$	$\begin{smallmatrix}0.0\\0.0\end{smallmatrix}$	$\begin{array}{c} 0.0\\ 0.0\end{array}$	0.0

Table III. Extent of distribution of hindlimb dermatophilosis lesions

% of dorsal pastern surface area affected

norse	week		۲ F	5 Q	12	15	20	24	1
Controls Polly Sprig Danny Dolly Jeeves Charlie Smiler Elspeth Sean Bliss LP	0.5000000000000000000000000000000000000			0 0.0 1.00 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0	0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0)))))))) Group)) mean
Mean S.D.	0.2 0.7	0.4 1.0	0.2 0.4	2 0.3 1 0.8	$\begin{smallmatrix}0.1\\0.3\end{smallmatrix}$	0.0 0.0	0.0 0.0	0.0 0.0	0.1
EFAs Fella Spring Beau Mike Dick Durando Henry Jill Fred R. Bridge John	$\begin{array}{c} 0.0\\ 0.0\\ 0.0\\ 1.0\\ 0.0\\ 0.0\\ 10.0\\ 0.0\\ $				0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0))))))) Group)) mean
Mean S.D.	$ \begin{array}{c} 1.0 \\ 3.0 \end{array} $	0.3	8 0.5 8 1.0	5 0.7 0 1.2	0.2 0.8	$\begin{array}{c} 0.0\\ 0.0\end{array}$	0.0 0.0	0.0 0.0) 0.3
Table IV.	Coat co	nditio	on scor	res					
Scored on	a 1 to	10 sca	ale, l	is poo	rest,	10 is (optima	1	
Horse	Week	3	6	Q	12	15	20	24	
Controls Polly Lily Sprig Danny Dolly Jeeves Charlie Smiler Elspeth Sean Bliss LP	6.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00	6.00 77.00 77.00 77.00 77.00 77.00 9.00 77.00 9.00 7.00	6687778789777	8.000000000000000000000000000000000000	7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00	7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00	67.00 77.7788767.00 767.67.00	8.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7	Group
Mean S.D.	7.00 0.74	7.00 0.74	7.25 0.87	6.75 0.75	6.83 0.58	7.00 0.43	6.83 0.72	7.00 0.60	6.96
EFAs Fella Spring Beau Dick Durando Henry Jill Fred R. Bridge John	7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00	7.00 77.00 77.00 77.00 7.00 7.00 7.00 7	67778866766 	767770000000	7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00	7.00 0000000000000000000000000000000000	6.00 78.00 77.00 77.00 7.00 7.00 7.00 7.0	5000 6887 87667 667 667 667 667 667 667 667	aroup lean
Mean S.D.	6.82 0.75	7.00 0.45	6.73 0.79	6.36 0.67	6.82 0.60	7.00 0.77	6.91 0.54	6.91 0.80	6.82
Table V. Mane condition scores

Scored on	a l to	10 sc	ale, 1	is po	orest,	10 is	optim	al	
Horse	Week	3	6	q	12	15	20	24	
Controls Polly Lily Sprig Danny Dolly Jeeves Charlie Smiler Elspeth Sean Bliss LP	600 600 700 600 700 600 600 700 600 7000 70000 70000 70000 70000 70000 70000 70000 70000 70000 700000 700000 700000000	7.00 77.00 77.00 77.00 7.00 7.00 7.00 7	6.00 77.00 7	8.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00	7.00 7.00 7.00 7.00 7.00 7.00 8.00 7.00 8.00 6.00 6.00	7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00	7.00 7.00 7.00 8.00 8.00 8.00 8.00 8.00	88877788888888888888888888888888888888	Group mean
Mean S.D.	6.83 0.83	7.08 0.67	7.33 0.78	7.00 0.60	6.92 0.67	7.08 0.29	7.75 0.45	7.83 0.39	7.23
EFAs Fella Spring Beau Mike Dick Durando Henry Jill Fred R. Bridge John	6.0 7.0 8.0 7.0 8.0 7.0 7.0 7.0 6.0	7.00 887.00 7.00 7.00 7.00 7.00 7.00 7.0	58788866766	677877766666 0000000000000000000000000000	7.00 7.00 888667.00 67.00	67.888.777768.	6.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00	68878776766	Group mean
Mean	7.09	6.82	6.82	6.64	7.00	7.18	6.91	6.91	6.92
			1.00	0.07	0.77	0.70	0.01	0.00	
Table VI.			on scoi	res		10 10		• 1	
Scorea on	a I to	IU SC	ale, I	is po	orest,	10 15	optim	aı	
Controls	Week 0	3	6	9	12	15	20	24	
Polly Sprig Danny Dolly Jeeves Charlie Smiler Elspeth Sean Bliss LP	7.000000000000000000000000000000000000	7.0 8.0 7.0 7.0 7.0 7.0 7.0 7.0 9.0 7.0 8.0	6.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00	8.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7	7.00 7.00 66.00 7.00 68.00 7.00 88.00 7.00 88.00 7.00	7.000000000000000000000000000000000000	7.00 7.00 7.00 7.00 7.00 7.00 88 7.00 7.00	878777887887 87777887887887	Group mean
Mean S.D.	7.33 0.98	7.33 0.65	7.42 0.79	7.17 0.39	6.92 0.67	7.08 0.29	7.27 0.47	7.50 0.52	7.25
EFAs Fella Spring Beau Mike Dick Durando Henry Jill Fred R. Bridge John	7.0 7.0 8.0 7.0 8.0 7.0 7.0 7.0 7.0 7.0	7.0 8.0 7.0 7.0 7.0 7.0 7.0 8.0 7.0 7.0	6877.00 77877.00 767.00 767.00	6666777766666 	76788866767 00000000	777788777768	7.00 8.00 8.00 7.00 7.00 7.00 7.00 7.00	778788767777	Group mean
Mean S.D.	7.27 0.47	7.18 0.40	6.91 0.70	$6.36 \\ 0.50$	6.91 0.83	$7.18 \\ 0.60$	7.18 0.60	$7.18 \\ 0.60$	7.02

Table VII. Hoof condition scores

Scored on a 1 to 10 scale, 1 is poorest, 10 is optimal

Horse	Week 0	3	6	9	12	15	20	24	
Controls Polly Sprig Danny Dolly Jeeves Charlie Smiler Elspeth Sean Bliss LP	67.00 77.00 68.00 68.00 68.00 78.00 88.00 88.00 88.00	7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00	7.0 7.0 7.0 7.0 6.0 7.0 7.0 7.0 7.0 7.0 7.0	7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00	Group mean
Mean S.D.	6.83 0.83	7.08 0.51	7.08 0.67	6.92 0.29	6.92 0.29	7.00 0.00	7.08 0.29	7.08 0.29	7.00
EFAs Fella Spring Beau Mike Dick Durando Henry Jill Fred R. Bridge John	7.0 8.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00	7.0 7.0 8.0 7.0 8.0 7.0 7.0 7.0 7.0 8.0	7.0 7.0 8.0 7.0 7.0 7.0 7.0 7.0 7.0	7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00	Group mean
Mean S.D.	7.18 0.40	7.09 0.30	7.00 0.00	7.00 0.00	6.82 0.40	7.27 0.47	7.18 0.40	7.18 0.40	7.09
Table VIII	[. Body	condi	tion s	cores					
Scored on	a 1 to	5 sca	le, l	is ema	ciated	, 5 is	obese	•	
Horse									
	Week	3	6	9	12	15	20	24	
Controls Polly Lily Sprig Danny Dolly Jeeves Charlie Smiler Elspeth Sean Bliss LP	Week 3355505055000 33334223550000	3 434443433333333	6 00555005000000 43334343333333	9 0 - - - - - - - - - - - - -	12 3333434355000000 4334333333	15 333334342050000 4342233333	20 55555555000005 33333434333334	2 0555505000000 33333434333334	Group mean
Controls Polly Lily Sprig Danny Dolly Jeeves Charlie Smiler Elspeth Sean Bliss LP Mean S.D.	Week 0 3.5555050555000 33334342433333 3333434233333 333434233333 333434233333 333434233333 333434233333 33434233333 33434233333 33434233333 33434233333 33434233333 33434233333 33434233333 33434233333 33434233333 33434233333 33434233333 334434433333 334434433333 3344344433333 334434444444444	3 4 4 4 4 4 4 4 4	6 4333343434333333 5 30 30	9 4 3 4 3 5 4 3 3 5 4 3 5 4 3 5 4 3 5 4 3 5 5 5 5 5 5 5 5 5 5 5 5 5	12 3.5505055000000 3.434333333 30.488	15 3.005505050 350500000 3 3055	20 555555555000005 33333434333334 560 30.	24 333335050000000 422 30 30	Group mean 3.43
Controls Polly Lily Sprig Danny Dolly Jeeves Charlie Smiler Elspeth Sean Bliss LP Mean S.D. EFAs Fella Spring Beau Mike Dick Durando Henry Jill Fred R. Bridge John	We 33334742335000 83 50505555505 	3 4.5000555000000 4.3444334333333 555 	6 0055500500000 889 00005505550 4777747474777777777777777777	9 05555555505050 433333334333333 4333333433333 0 0 0 0 0 0 0 0 0 0 0 0 0	12 550505500000 888 00500505505 	15 0055505050000 55 0500055050505 05	20 555555555000005 80 005500500005 56 	4 05555050000000 NV 3777777777777777777777777777777777777	Group mean 3.43 Group mean

Table IX.	Red cell c	counts Values	are x1	1012/1
Horse	Week	8	16	
Controls Polly Lily Sprig Danny Dolly Jeeves Charlie Smiler Elspeth Sean Bliss LP	7.064591284315 7.0746657866	7.91312805185 7.9.1312805185	748693114636	Group mean
Mean S.D.	6.65 0.94	6.81 0.62	6.82 0.53	6.76
EFAs Fella Spring Beau Mike Dick Durando Henry Jill Fred R.Bridge John	96119791906 868755677776	35724305234	04983502529	Group mean
Mean S.D.	7.07 0.94	6.71 0.80	7.06 0.82	6.95

Table X. Haemoglobin values Values are given in g/dl

Horse	Week	8	16	
Controls Polly Lily Sprig Danny Dolly Jeeves Charlie Smiler Elspeth Sean Bliss LP	13.5 14.9 12.1 13.4 9.45 11.5 11.7 14.9 10.5 11.6	14.09 14.09 14.07 1134 126 1126	14.1 12.07 13.77 11.7 1137 1146 14.55 10.7 14.1	Group mean
Mean S.D.	$\substack{12.29\\1.71}$	$12.42 \\ 1.12$	$\substack{12.59\\1.30}$	12.43
EFAs Fella Spring Beau Mike Dick Durando Henry Jill Fred R.Bridge John	230950960 122.0950960 112.00 112.12 1	14.04 122.45 111.495 12.9.1 12.9.1 11.8	8694237521 133.2137521 133.2137521 13320.18	Group mean
Mean S.D.	$\substack{12.47\\1.53}$	$\substack{12.04\\1.34}$	$\substack{12.59\\1.26}$	12.37

Table XI. Packed cell volumes Values are given as 1/1

Horse	Week	Q	16	
Controls Polly Lily Sprig Danny Dolly Jeeves Charlie Smiler Elspeth Sean Bliss LP	0.356 0.401 0.3308 0.2315 0.3289 0.32894 0.3299 0.3299 0.3299 0.3299	0.383 0.307 0.415 0.364 0.315 0.315 0.354 0.354 0.354 0.354 0.327 0.348 0.327 0.328	0.391 0.330 0.315 0.324 0.326 0.3320 0.357 0.3254 0.3320 0.3597 0.312 0.307 0.307 0.389	Group mean
Mean S.D.	0.337 0.043	0.348 0.030	0.345 0.033	0.343
EFAs Fella Spring Beau Mike Dick Durando Henry Jill Fred R.Bridge John	0.414 0.3385 0.32980 0.228289 0.3378 0.3378 0.3329 0.3329 0.3329	0.395 0.338 0.3371 0.3312 0.3356 0.3562 0.3268 0.3268 0.324	0.384 0.379 0.352 0.3162 0.3366 0.3375 0.3382 0.3382 0.3355	Group mean
Mean S.D.	0.344 0.039	$0.337 \\ 0.034$	0.349 0.031	0.344

Table XII. Mean cell volumes Values given in fl

Horse	Week	8	16	
Controls Polly Lily Sprig Danny Dolly Jeeves Charlie Smiler Elspeth Sean Bliss LP	98507 5521.0.7 5931.2933666 45355483 45480.0	552928264 552928264 555594 5554 554 554 554 554 554 554 55	50.869 50.04 50.04 532.04 532.04 532.04 532.04 532.04 532.04 532.04 54 51.04 5	Group mean
Mean S.D.	50.81 2.30	$\overset{51.15}{2.10}$	50.92 1.87	50.96
EFAs Fella Spring Beau Mike Dick Durando Henry Jill Fred R.Bridge John	465 477 500 509 4796 479 49 49 49 49	472011190831607 455545583607	40.06 458.02 458.02 459.02 447.02 447.02 551.02 555	Group mean
Mean S.D.	48.72 1.77	$50.36\\1.40$	49.63 1.83	49.57

Table XIII. Mean cell haemoglobin values Values in pg

Horse	Week	0	16	
Controls Polly Sprig Danny Dolly Jeeves Charlie Smiler Elspeth Sean Bliss LP	0 6699929745 1987.988.89 1988.99 1988.89 1987.1 1988.1 1987.28 1987.28 1987.28 1987.28 1987.28 1987.28 1987.28 1987.28 1987.28 1987.28 1987.28 1987.28 1987.28 1987.28 1987.29 1977.28 1977.28 1977.20 1007.20 1000.20 1000.20 1000.20 100000000000	8 95382227 18887.0 198827 19887.0 1967.0 1967.0 17.8	10 18.38 18.88.67 19.36 19.67 19.67 17.06 17.06	Group mean
Mean S.D.	$\substack{18.45\\0.90}$	$18.20 \\ 0.82$	$\substack{18.33\\0.81}$	18.33
EFAs Fella Spring Beau Dick Durando Henry Jill Fred R.Bridge John	1632 187.2852 187.177.165 177.168 188.177.168	17.66996 187.60 188.60 177.23 177.8 177.8 177.8 177.8 18.64 18.64	17.24 187.28 187.28 177.14 177.14 177.14 187.79 187.79 187.79 187.79 187.79 187.79 187.79 187.79 187.79 187.79 187.79 187.79 187.79 187.79 187.79 197.70 197.70 197.70 197.70 197.70 197.70 197.70 197.70 197.70 197.70 197.70 197.70 197.70 197.70 100 100 100 100 100 100 100 100 100 1	Group mean
Mean S.D.	$17.65 \\ 0.61$	17.95 0.47	$17.85 \\ 0.52$	17.82

Table XIV. Mean cell haemoglobin concentration

Values are given in g/dl

Horse	Week	8	16	
Controls Polly Lily Sprig Danny Dolly Jeeves Charlie Smiler Elspeth Sean Bliss LP	3376655655743 3333333333333333333333333333333333	657749736173 655555555556555 655555555555555555555	3339 3365 3365 3365 3365 3365 3365 3355 3366 3355 3366 3355 3366 3355 3356 3356 3356 3356 3356 3356 3356 3356 3356 3356 3356 3356 3355 3356 33555 33555 33555 33555 33555 33555 335555 335555 3355555 3555555	Group mean
Mean S.D.	36.31 0.61	$\substack{35.71\\0.37}$	35.94 0.50	35.99
EFAs Fella Spring Charlotte Beau Mike Dick Durando Henry Jill Fred R.Bridge John	735481 6655655566767 333333336767 333333333333	085619596424 75345645545556 75345645545556	9307277740361 3333335556 3333333333333333333333333	Group mean
Mean S.D.	$36.18 \\ 0.64$	35.57 0.69	$35.91 \\ 0.57$	35.89

Table XV.	Platelet co	unts Val	ues x109/1	
Horse	Week	8	16	
Controls Polly Lily Sprig Danny Dolly Jeeves Charlie Smiler Elspeth Sean Bliss LP	$\begin{array}{c} 170.0\\ 120.0\\ 180.0\\ 150.0\\ 100.0\\ 160.0\\ 210.0\\ 140.0\\ 210.0\\ 130.0\\ 170.0\\ 90.0 \end{array}$	140.0 120.0 140.0 140.0 130.0 127.0 127.0 120.0 127.0 130.0 127.0 90.0	140.0 110.0 122.0 122.0 122.0 120.0 130.0 130.0 130.0	Group mean
Mean S.D.	$152.50 \\ 38.64$	$127.00 \\ 31.35$	$^{122.00}_{16.95}$	133.83
EFAs Fella Spring Beau Mike Dick Durando Henry Jill Fred R.Bridge John	140.090.0140.0130.0130.0120.0120.0170.0130.0130.020.0	140.0 110.0 120.0 120.0 120.0 120.0 130.0 130.0 130.0 130.0 20.0	120.0 130.0 120.0 120.0 130.0 130.0 120.0 120.0 120.0 120.0	Group mean
Mean S.D.	$\substack{118.18\\45.35}$	116.36 42.73	$120.00 \\ 11.83$	118.18
Table XVI	. White cell	counts	Values x10)9/]
		countro		•
Horse	Week	8	16	
Horse Controls Polly Lily Sprig Danny Dolly Jeeves Charlie Smiler Elspeth Sean Bliss LP	Week 0 6.66 7.3 7.4 8.5 7.4 8.5 7.7 7.7 5.9 6.3 5.8	8 62887 666628 5566628	16 6.14859 55.6594657 46657 46.7746	Group mean
Horse Controls Polly Lily Sprig Danny Dolly Jeeves Charlie Smiler Elspeth Sean Bliss LP Mean S.D.	Week 0 6.6 6.6 7.3 7.4 8.5 5.7 8.5 7.7 8.2 7.7 5.3 5.8 6.98 0.96	8 62887 66662887 5566288 756628 655 655	16 6.1 559 559 4.5 565 7.4.6 58 6 7.4.5 58 55 58 58 58 58 55 5.	Group mean 6.38
Horse Controls Polly Lily Sprig Danny Dolly Jeeves Charlie Smiler Esmiler Esmiler Esmiler Bliss LP Mean S.D. EFAs Fella Spring Beau Mike Dick Durando Henry Jill Fred R. Bridge	Week 0 6.66 77.4 5.72 77.5 5.8 6.99 6.996 6.996 6.996 6.10 6.10 77.5 7.5 7.5 7.6 6.996 6.10 6.10 77.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.	8 3028872556628 35 66666555667565 25 7555455566496738	16 148594657345 6 5	Group mean 6.38 Group mean

Table XVII	. Urea values	Values	are given in mmol/	1
Horse	Week O	8	16	
Controls Polly Sprig Danny Dolly Jeeves Charlie Smiler Elspeth Sean Bliss LP	5070598111646	435656378696 54333333333333	5.449553655555555555645564 Group 6.00 6.00 6.00 6.00	
Mean S.D.	5.43 0.92	3.90 0.60	5.71 5.01 0.58	
EFAs Fella Spring Beau Mike Dick Durando Henry Jill Fred R. Bridge John	06945494146	41344571712	5.57 5.74 4.55 5.1 5.55 6.1 6 5.1 6 5.1 6 5.1 6 5.1 6 7.2 7.2	
Mean S.D.	5.56 1.08	3.89 0.89	5.49 4.98 0.99	

Table XVIII. Sodium values Values are given in mmol/l

Horse	Week 0	8	16	
Controls Polly Lily Sprig Danny Dolly Jeeves Charlie Smiler Elspeth Sean Bliss LP	140.0 136.0 137.0 137.0 137.0 138.0 132.0 132.0 139.0 138.0 141.0 140.0	136.0 137.0 138.0 139.0 141.0 137.0 138.0 138.0 138.0 139.0 140.0 140.0	136.0 135.0 135.0 135.0 138.0 138.0 137.0 137.0 137.0 136.0 136.0 136.0	Group mean
Mean S.D.	$\begin{array}{r}137.50\\2.43\end{array}$	$\substack{138.58\\1.51}$	136.50 1.00	137.53
EFAs Fella Spring Beau Mike Dick Durando Henry Jill Fred R. Bridge John	139.0 139.0 139.0 139.0 1395.0 1350.0 136.0 136.0 136.0 136.0	137.0 139.0 139.0 139.0 139.0 140.0 140.0 140.0 140.0 139.0	134.0 135.0 135.0 135.0 139.0 139.0 137.0 137.0 138.0 135.0	Group mean
Mean S.D.	137.64 1.69	$138.91 \\ 0.94$	$\substack{136.45\\1.81}$	137.67

Table XIX.	. Potassium	values \	lalues are	given in mmol/l
Horse	Week	ß	16	
Controls Polly Lily Sprig Danny Dolly Jeeves Charlie Smiler Elspeth Sean Bliss LP	3.09 3.09 4.09 4.1 4.4 4.3 4 4.4 4.3 4 4.4 4 4.2	o 0716560991874 3333234343874	10 1.50 1.50 1.30 2.14 620 1.50 1.30 2.14 1.50 2.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1	Group mean
Mean S.D.	3.99 0.56	3.45 0.57	3.36 0.54	3.60
EFAs Fella Spring Beau Mike Dick Durando Henry Jill Fred R. Bridge John	4.04 4.80 4.18 4.18 4.00 4.18 4.00 4.1	96414146244 3.3.3.3.3.4.3.4.3.4.3.4.3.4.3.4.3.4.3	945788816907 33333233232 3232232	Group mean
Mean S.D.	4.21 0.31	3.59 0.42	3.31 0.43	3.70
Table XX.	Calcium va	lues Valu	ies are giv	/en in mmol/l
Table XX. Horse	Calcium va Week	lues Valu 8	ies are giv 16	/en in mmol/l
Table XX. Horse Controls Polly Lily Sprig Danny Dolly Jeeves Charlie Smiler Elspeth Sean Bliss LP	Calcium va Week 0 3.11 2.96 3.12 2.94 2.92 3.17 2.94 2.92 3.17 2.94 2.94 2.94 2.95 2.98 2.92	lues Valu 8 2.87 3.01 3.07 2.87 3.81 2.90 3.00 3.00 2.93 2.95 3.01 2.92	tes are giv 16 3.06 3.13 3.20 3.03 3.17 3.03 3.03 3.03 3.15 3.08 3.15 2.97 3.12 3.24	/en in mmol/l Group mean
Table XX. Horse Controls Polly Lily Sprig Danny Dolly Jeeves Charlie Smiler Elspeth Sean Bliss LP Mean S.D.	Calcium va Week 0 3.11 2.96 3.12 2.94 2.92 3.17 2.94 2.92 3.17 2.94 2.94 2.95 2.98 2.92 2.989 0.090	lues Valu 8 2.87 3.01 3.07 2.87 3.81 2.90 3.00 3.00 2.93 2.95 3.01 2.92 3.028 0.250	tes are giv 16 3.06 3.13 3.20 3.03 3.17 3.10 3.08 3.15 2.97 3.12 3.24 3.108 0.080	ven in mmol/l Group mean 3.042
Table XX. Horse Controls Polly Lily Sprig Danny Dolly Jeeves Charlie Smiler Elspeth Sean Bliss LP Mean S.D. EFAS Fella Spring Beau Mike Dick Durando Henry Jill Fred R. Bridge John	Calcium va Week 0 3.11 2.96 3.12 2.94 2.92 3.17 2.94 2.94 2.95 2.98 2.92 2.989 0.090 3.05 2.881 3.01 3.01 3.05 2.881 3.01 3.05 2.881 3.01 3.05 2.881 3.01 3.05 2.887 3.10	lues Valu 8 2.87 3.01 3.07 2.87 3.07 2.92 3.0250 3.0250 3.169 3.0250 3.169 3.0250 3.169 3.0250 2.992 3.0250 3.0700 3.0700 3.0700 3.0700 3.0700 3.0700 3.0700 3.0700 3.0700 3.0700 3.0700 3.07000 3.0700 3.07000 3.07000 3.07000 3.07000 3.07000 3.07000 3.07000 3.07000 3.07000 3.070000 3.0700000000000000000000000000000000000	les are giv 16 3.06 3.13 3.20 3.13 3.13 3.10 3.03 3.17 3.104 3.08 3.08 0.080 3.24 3.108 0.080 3.28 3.16 3.095 3.16 3.095 3.16 3.095 3.16 3.095 3.16 3.080 3.16 3.16 3.12	Group mean 3.042 Group mean

Table	XXI.	Chloride	values	Values	are	given	in	mmo1/1	

Horse	Week	0	16	
Controls Polly Spring Danny Dolly Jeeves Charlie Smiler Elspeth Sean Bliss LP	96.0 995.0 97.0 101.0 98.0 98.0 98.0 98.0 98.0 98.0 999.0	8 97.0 98.0 100.0 95.0 101.0 97.0 97.0 97.0 100.0 98.0 95.0 99.0	97.0 97.0 98.0 96.0 102.0 100.0 100.0 95.0 95.0 97.0 96.0	Group mean
Mean S.D.	97.92 1.56	98.00 1.91	97.67 2.19	97.86
EFAs Fella Spring Beau Mike Dick Durando Henry Jill Fred R. Bridge John	97.0 996.0 995.0 955.0 995.0 995.0 997.0 97.0	101.0 99.0 96.0 100.0 95.0 97.0 100.0 97.0 100.0 94.0 96.0	97.0 98.0 97.0 98.0 100.0 99.0 95.0 98.0 98.0 98.0 97.0	Group mean
Mean S.D.	97.00 1.55	97.73 2.37	97.64 1.29	97.45

Table XXII. Magnesium values Values are given in mmol/l

Horse	Week	8	16	
Controls Polly Lily Sprig Danny Dolly Jeeves Charlie Smiler Elspeth Sean Bliss LP	0.669 0.699 0.685 0.665 0.665 0.661 0.661 0.773 0.61	0.69 0.738 0.7571 0.668 0.766 0.766 0.668 0.669 0.661	0.62 0.78 0.63 0.679 0.77 0.772 0.755 0.755 0.78	Group mean
Mean S.D.	0.665 0.040	0.672 0.040	0.716 0.080	0.684
EFAs Fella Spring Beau Mike Dick Durando Henry Jill Fred R. Bridge John	0.74 0.667 0.663 0.669 0.669 0.669 0.680 0.685 0.685 0.68	0.74 0.67 0.67 0.63 0.770 0.773 0.773 0.70 0.70	0.81 0.745 0.775 0.776 0.722 0.883 0.72 0.883 0.72	Group mean
Mean S.D.	$0.669 \\ 0.060$	0.703 0.050	0.748 0.070	0.707

Table XXIII. Inorganic phosphate values

Values are given in mmol/l

Horse	Week	Q	16	
Controls Polly Lily Sprig Danny Dolly Jeeves Charlie Smiler Elspeth Sean Bliss LP	0.88 0.885 0.988 1.13 0.844 1.08 0.990 1.125 1.15	o 1.505 1.505 1.14 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.25 1.14 1.25 1.14 1.25 1.25 1.15 1.14 1.25 1	0.79 1.02 0.888 0.986 1.17 0.93 0.69 1.11 1.03	Group mean
Mean S.D.	0.982 0.130	$1.191 \\ 0.140$	0.968 0.150	1.047
EFAs Fella Spring Beau Dick Dick Durando Henry Jill Fred R. Bridge John	1.00 1.37 0.988 0.75 1.13 0.78 1.20 1.21 0.84 0.62	1.23 1.04 1.03 1.22 1.22 1.22 1.22 1.22 1.22 1.23 1.23	0.81 1.82 0.82 0.93 1.15 1.065 1.096 1.96	Group mean
Mean S.D.	0.965 0.220	1.232 0.190	0.983 0.120	1.060

Table XXIV. Alkaline phosphatase values

Values are given in IU/1

Horse	Week	8	16	
Controls Polly Lily Sprig Danny Dolly Jeeves Charlie Smiler Elspeth Sean Bliss LP	469.0 248.0 2246.0 286.0 286.0 2888.0 4310.0 2123.0 2255.0	382.0 233.0 390.0 294.0 279.0 360.0 450.0 289.0 231.0 255.0	234.0 199.0 251.0 203.0 228.0 248.0 301.0 169.0 169.0 186.0 205.0	Group mean
Mean S.D.	327.58 92.86	296.67 79.90	215.83 38.90	280.03
EFAs Fella Spring Beau Mike Dick Durando Henry Jill Fred R.Bridge John	347.0 263.0 265.0 2924.0 2924.0 4265.0 274.0 4288.0 239.0 309.0	292.0 237.0 378.0 379.0 218.0 375.0 467.0 193.0 220.0	208.0 174.0 275.0 330.0 210.0 178.0 253.0 296.0 171.0 239.0 215.0	Group mean
Mean S.D.	316.91 69.23	303.18 87.05	$231.73 \\ 52.33$	283.96

Table XXV. Aspartate aminotransaminase values Values are given in IU/1

Horse	Week			
Controls Polly Sprig Danny Dolly Jeeves Charlie Smiler Elspeth Sean Bliss LP	0 278.0 230.0 254.0 249.0 249.0 249.0 290.0 217.0 262.0 262.0 262.0 262.0 309.0	8 436.00 23572.00 235728.00 235963.00 235963.00 235963.00 23595.00000000000000000000000000000000000	16 280.0 304.0 328.0 421.0 293.0 393.0 393.0 347.0 347.0 347.0 347.0 347.0 366.0	Group mean
Mean S.D.	260.58 29.15	$\substack{310.00\\66.63}$	335.67 41.74	302.08
EFAs Fella Spring Beau Dick Durando Henry Jill Fred R.Bridge John	271.0 3235.0 2378.0 245.0 245.0 245.0 263.0 274.0 268.0	361.0 405.0 3299.0 3270.0 357.0 2837.0 2837.0 2837.0 2444.0	349.00 5195.00 23195.00 329142.00 32109.00 327528.00 327528.00 33456.0	Group mean
Mean S.D.	255.64 32.92	330.18 60.21	348.27 73.96	311.36

Table XXVI. Bilirubin values Values are given in umol/l

Horse	Week	8	16	
Controls Polly Lily Sprig Danny Dolly Jeeves Charlie Smiler Elspeth Sean Bliss LP	85.0 16.0 27.0 12.0 24.0 10.0 10.0 26.0 37.0	79.0 17.00 20.00 14.00 13.00 13.00 28.00 33.00 37.0	108.0 20.0 19.0 28.0 13.0 13.0 13.0 13.0 13.0 13.0 14.0 23.0	Group mean
Mean S.D.	23.00 21.68	25.25 18.77	27.08 26.40	25.11
EFAs Fella Spring Beau Dick Durando Henry Jill Fred R. Bridge John	13.0 96.0 26.0 15.0 13.0 13.0 35.0 35.0	29.0 14.0 13.0 11.0 21.0 21.0 23.0 19.0 18.0 28.0	17.0 19.0 31.0 25.0 23.0 23.0 23.0 23.0 23.0 24.0	Group mean
Mean S.D.	17.91 9.20	$19.82 \\ 5.72$	21.00 4.69	19.58

75

Table XXVII. Total plasma protein values

Values ar	e given in	g/1		
Horse	Week	8	16	
Controls Polly Lily Sprig Danny Dolly Jeeves Charlie Smiler Elspeth Sean Bliss LP	70.0 66.0 76.0 70.0 62.0 77.0 77.0 74.0 67.0 68.0	73.0 71.0 78.0 65.0 608.0 608.0 67.0 67.0 67.0 67.0 67.0 67.0 68.0	68.0 62.0 73.0 69.0 73.0 64.0 68.0 73.0 68.0 73.0 68.0 73.0 68.0 72.0	Group mean
Mean S.D.	69.83 5.56	68.00 4.65	68.67 3.60	68.83
EFAs Fella Spring Beau Mike Dick Durando Henry Jill Fred R.Bridge John	69.0 66.0 65.0 69.0 698.0 71.0 68.0 73.0 70.0	66.0 67.0 73.0 72.0 72.0 67.0 67.0 61.0 62.0	63.0 722.0 628.0 628.0 64.0 71.0 64.0	Group mean
Mean S.D.	67.91 3.27	4.09	67.18 3.71	6/.6/
Table XXV	III. Albumi	in values \	lalues are	given in g/l
Table XXV Horse	III. Albumi Week O	in values \ 8	alues are 16	given in g/l
Table XXV Horse Controls Polly Lily Sprig Danny Dolly Jeeves Charlie Smiler Elspeth Sean Bliss LP	III. Album ¹ Week 0 33.0 34.0 37.0 37.0 37.0 37.0 37.0 37.0 37.0 37	in values \ 8 33.0 30.0 36.0 37.0 31.0 35.0 35.0 35.0 35.0 35.0 35.0 35.0 36.0 36.0 36.0	Values are 16 35.0 37.0 32.0 31.0 40.0 36.0 32.0 31.0 32.0 31.0 32.0 36.0 35.0	given in g/l Group mean
Table XXV Horse Controls Polly Sprig Danny Dolly Jeeves Charlie Smiler Elspeth Sean Bliss LP Mean S.D.	III. Album ⁴ Week 0 33.0 34.0 37.0 37.0 37.0 37.0 32.0 35.0 36.0 33.0 36.0 35.17 3.10	in values \ 33.0 30.0 36.0 37.0 35.0 35.0 35.0 35.0 35.0 35.0 36.0 36.0 34.42 2.19	Values are 16 35.0 37.0 32.0 31.0 40.0 36.0 32.0 31.0 32.0 36.0 35.0 34.42 2.81	given in g/l Group mean 34.67
Table XXV Horse Controls Polly Sprig Danny Dolly Jeeves Charlier Elspeth Sean Bliss LP Mean S.D. EFAS Fella Spring Beau Mike Dick Durando Henry Jill Fred R.Bridge John	III. Album ⁴ Week 0 33.0 34.0 37.0 37.0 37.0 32.0 35.0 36.0 35.0 36.0 35.17 3.10 36.0 35.17 3.10 36.0 35.0 36.0 35.0 36.0 37.0 36.0 37.0 36.0 36.0 37.0 36.0 37.0 36.0 37.0 36.0 37.0 36.0 37.0 36.0 37.0 36.0 37.0 36.0 37.0 36.0 37.0 36.0 37.0 36.0 36.0 37.0 37.0 36.0 37.0 37.0 37.0 36.0 37.0 37.0 37.0 37.0 37.0 37.0 37.0 37	in values 8 33.0 30.0 37.0 35.0 35.0 35.0 35.0 35.0 36.0 34.42 2.19 34.0 34.0 35.0 36.0 34.42 2.19 34.0 35.0 36.0 36.0 36.0 36.0 36.0 36.0 36.0 36.0 36.0 37.0 35.0 36.0 37.0 37.0 36.0 37.0 36.0 37.0 37.0 36.0 37.0 3	Alues are 16 35.0 37.0 31.0 40.0 36.0 32.0 36.0 37.0 36.0 36.0 36.0 37.0 36.0 36.0 37.0 36.0 37.0 36.0 37.0 36.0 37.0 36.0 37.0 36.0 37.0 36.0 37.0 36.0 37.	given in g/l Group mean 34.67 Group mean

Table XXIX. Globulin value Values are given in g/l

Horse	Week	Q	16	
Controls Polly Lily Sprig Danny Dolly Jeeves Charlie Smiler Elspeth Sean Bliss LP	37.00 37.00 339.00 339.00 332.00 332.00 347.00 347.00 31.00 332.00	40.00 4412.00 3452.00 3351.00 3351.00 332.00 331.00 332.00 32.000	33.0 325.0 41.0 338.0 338.0 335.0 335.0 335.0 341.0 322.0 337.0	Group mean
Mean S.D.	34.67 5.31	$\substack{33.58\\5.16}$	34.25 4.81	34.17
EFAs Fella Spring Beau Mike Dick Durando Henry Jill Fred R.Bridge John	33.0 228.0 288.0 37.0 381.0 344.0 29.0 31.0	32.0 321.0 331.0 338.0 388.0 300.0 333.0 335.0	29.0 30.0 30.0 329.0 318.0 332.0 332.0 332.0 335.0 31.0 31.0	Group mean
Mean S.D.	31.64 5.52	33.00 2.97	32.91	32.52

Table XXX. Gamma glutamyl transpeptidase values

Values are given in IU/1

Horse	Week	8	16	
Controls Polly Lily Sprig Danny Dolly Jeeves Charlie Smiler Elspeth Sean Bliss LP	31.00 322.00 322.00 322.00 322.00 322.00 322.00 322.00 322.00 322.00 37.00 37.00	39.0 24.0 30.0 28.0 28.0 40.0 19.0 19.0 14.0 37.0	36.0 222.0 20.0 280.0 333.0 16.0 21.0 24.0 20.0	Group mean
Mean S.D.	27.75 6.52	26.08 8.93	23.75 6.76	25.86
EFAs Fella Spring Beau Mike Dick Durando Henry Jill Fred R. Bridge John	33.0 30.0 213.0 223.0 221.0 221.0 31.0 31.0 21.0 31.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 2	22.0 37.00 28.00 24.00 20.00 20.00 14.0 18.0	267.00 267.00 267.00 267.00 227.00 2268.00 2283.00 2283.00 2283.00 2283.00	Group mean
Mean S.D.	$25.55 \\ 5.48$	22.27 6.39	28.36 9.87	25.39

Table XXXI. Triglyceride values Values are given in mmol/l

Horse	Week	Q	16	
Controls Polly Sprig Danny Dolly Jeeves Charlie Smiler Elspeth Sean Bliss LP	0.16 0.24 0.38 0.24 0.23 0.24 0.23 0.24 0.23 0.26 0.26 0.14	0.33 0.41 0.27 0.23 0.24 0.13 0.44 0.06 0.03 0.04 0.14	0.42 0.225 0.3225 0.3225 0.3561 0.19 0.350 0.18	Group mean
Mean S.D.	$0.231 \\ 0.070$	0.194 0.150	0.295 0.110	0.240
EFAs Fella Spring Beau Mike Dick Durando Henry Jill Fred R. Bridge John Mean	0.25 0.229 0.45 0.27 0.27 0.27 0.362 0.28 0.15	0.22 0.41 0.059 0.23 0.15 0.338 0.28 0.23 0.24 0.23	0.20 0.228 0.229 0.229 0.229 0.229 0.229 0.336 0.336 0.34 0.278	Group mean 0 247
S.D.	0.160	0.120	0.050	0.247

Table XXXII. Cholesterol values Values are given in mmol/l

Horse Controls Polly Lily Sprig Danny Dolly Jeeves Charlie Smiler Elspeth Sean Bliss LP Mean	Week 0 2.29 1.60 1.99 2.56 2.46 2.17 1.66 2.12 2.46 1.66 2.12 2.094	8 2.11 12.293 2.5015 1.223 2.0057 2.221 2.221 2.12 2.061 2.300	16 2.58299 2.3899 2.38372 2.09480 2.15 2.15 2.2880 2.15 2.2880	Group mean 2.148
S.D. EFAs Fella Spring Beau Mike Dick Durando Henry Jill Fred R. Bridge John Mean	4.14 2.33 2.282 1.90 1.355 2.29 2.31 2.21 2.21 2.2990	4.15 2.51 2.586 1.888 2.337 1.57 2.00 2.324 2.324	3.99 2.41 2.54 1.807 1.73 2.73 2.11 2.65 2.11 2.640	Group mean 2.295

APPENDIX IV NORMAL RANGES FOR HAEMATOLOGICAL AND BIOCHEMICAL PARAMETERS AND UNITS USED IN THEIR MEASUREMENT

NORMAL RANGES FOR HAEMATOLOGICAL AND BIOCHEMICAL PARAMETERS

Normal Ranges for Haematological Parameters

Parameter		Ho	orse type			
	A11	Hot E	looded	Cold B	old Blooded	
	(Ref 1)	(Ref 2)	(Ref 3)	(Ref 2)	(Ref 3)	
RBC	7-14	6-12	6.8-12.9	5.5-9.5	5.5-9.5	
Hb	10-16.9	11-19	11-19	8-14	8-14	
PCV	0.29-0.47	0.32-0.52	0.32-0.53	0.24-0.44	0.24-0.44	
MCV	31-43.2	34-58	37-58.5	40-48	-	
MCH	12-19.2	-	12.3-19.7	-	-	
MCHC	32-36	32-38	31-38.6	32-38	-	
PL	120-360	100-350	-	100-350	-	
WBC	4.1-10.1	5.5-12.5	5.4-14.3	6-12	6-12	

	Horse	type	Units
	ТВ	Ponies	
	(Ref	4)	
RBC	8.8+/-1.09	7.39+/-1.07	x1012/1
Hb	14.6+/-1.61	12.81+/-1.65	g/dl
PCV	0.398+/-0.047	0.32+/-0.011	1/1
MCV	45.5+/-2.56	48.2+/-4.0	fl
МСН	16.6+/-0.96	17.4+/-1.3	pg
мснс	36.5+/-1.36	36.2+/-1.1	
PL	132-226	223-276	x10º/1
WBC	9.54+/-1.83	8.44+/-1.46	x10º/1

Normal Ranges for Biochemical Parameters

Parameter	Ref 1	Ref 2	Ref 4	Ref 5
Urea	2.5-7.0	3.6-8.6	4.48+/-0.83	3.5-8.0
Sodium	134-150	132-146	144+/-5	134-143
Potassium	2.7-5.5	2.4-4.7	4.2+/-0.6	3.3-5.3
Calcium	2.6-3.3	2.7-3.2	2.95+/-0.08	2.9-3.9
Chloride	98-109	99-109	96+/-3	89-106
Magnesium	0.7-1.2	0.53-1.02	0.79+/-0.08	0.6-0.9
Phosphate	0.8-1.8	0.52-1.45	1.25+/-0.2	0.5-1.6
Alk. Phos.	<131	83-283	80+/-283	50-250
AST	45-150	153-411	107+/-20	60-230
Bilirubin	17-34	1.7-42.8	28.1+/-8.55	13-39
ТРР	60-73	59-84	64.6	46-70
Albumin	25-38	28-32	37.4	17-37
Globulins	30-48	31-52	27.2	21-41
GGT	-	11-44	-	10-40
Triglycerides	-	-	-	0.12-0.35
Cholesterol	-	0.8-2.2	3.16+/-0.47	2.4-3.7

Ref 1 (Henston, 1985-86); Ref 2 (Brobst and Parry, 1987); Ref 3 (Schalm, 1986); Ref 4 (Jeffcott, 1977); Ref 5 (Ricketts, 1987)

Parameter	Units	Parameter	Units
Urea	mmo1/1	AST	IU/1
Sodium	mmol/l	Bilirubin	umol/l
Potassium	mmo1/1	ТРР	g/1
Calcium	mmo1/1	Albumin	g/1
Chloride	mmo]/]	Globulins	g/1
Magnesium	mmol/l	GGT	IU/1
Phosphate	mmo1/1	Triglycerides	mmo1/1
Alk.Phos	IU/1	Cholesterol	mmol/l

APPENDIX V

TABLES DETAILING STATISTICAL ANALYSES PERFORMED IN THE STUDY OF THE PHARMACOKINETICS OF EFAs IN HORSES Clinical Indices, Haematological and Biochemical Parameters and EFA Estimations **Clinical Indices**

Coat condition

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	6.00	3	2.00	0.88
Error	100.33	44	2.28	
Time	62.54	2	31.27	58.55
Group*Time	21.13	6	3.52	6.59
Error	47.00	88	0.53	

Significant differences over time, and between groups over time

Mane condition

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	3.39	3	1.13	0.98
Error	50.50	44	1.15	
Time	60.26	2	30.13	72.65
Group*Time	2.57	6	0.43	1.03
Error	36.50	88	0.41	

Tail condition

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	2.30	3	0.77	0.66
Error	51.44	44	1.17	
Time	98.00	2	49.00	135.93
Group*Time	2.28	6	0.38	1.05
Error	31.72	88	0.36	

Significant difference over time

Hoof condition

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	7.17	3	2.39	1.69
Error	62.06	44	1.41	
Time	110.60	2	55.30	119.83
Group*Time	2.12	6	0.35	0.77
Error	40.61	88	0.46	

Haematological Parameters

Red cell count

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	3.55	3	1.18	0.74
Error	70.06	44	1.59	
Time	38.22	2	19.11	59.55
Group*Time	8.82	6	1.47	4.58
Error	28.24	88	0.32	

Significant differences over time, and between groups over time

Haemoglobin

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	4.34	3	1.45	0.37
Error	173.89	44	3.95	
Time	15.58	2	7.79	7.36
Group*Time	26.80	6	4.47	4.22
Error	93.18	88	1.06	

Significant differences over time, and between groups over time

Packed cell volume

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	0.00	3	0.00	0.36
Error	0.17	44	0.00	
Time	0.00	2	0.00	17.55
Group*Time	0.02	6	0.00	4.27
Error	0.08	88	0.00	

Significant differences over time, and between groups over time

Mean cell volume

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	55.59	3	18.53	1.06
Error	772.50	44	17.56	
Time	497.41	2	248.70	243.94
Group*Time	4.59	6	0.77	0.75
Error	89.72	88	1.02	

Mean cell haemoglobin

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	9.08	3	3.03	1.28
Error	103.98	44	2.36	
Time	113.02	2	56.51	548.73
Group*Time	0.48	6	0.08	0.78
Error	9.06	88	0.10	

Significant difference over time

Mean cell haemoglobin concentration

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	1.09	3	0.36	0.51
Error	31.64	44	0.72	
Time	41.27	2	20.63	46.24
Group*Time	1.02	6	0.17	0.38
Error	39.27	88	0.45	

Platelets

Source of	Sum of	d.f	. Mean	F-ratio
Variation	Squares		Square	
Group	3208.75	3	1069.58	0.34
Error	137008.00	44	3113.82	
Time	7583.00	2	3791.50	3.89
Group*Time	6143.75	6	1023.96	1.05
Error	85880.50	88	975.91	

Significant difference over time

White cell count

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	100.28	3	33.43	3.32
Error	443.01	44	10.07	
Time	50.96	2	25.48	5.11
Group*Time	33.66	6	5.61	1.13
Error	438.44	88	4.98	

Significant differences between groups, and over time

Biochemical Parameters

Urea

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	24.63	3	8.21	3.76
Error	96.18	44	2.19	
Time	66.36	2	33.18	35.67
Group*Time	13.32	6	2.22	2.39
Error	81.86	88	0.93	

Significant differences between groups, over time, and between groups over time

Sodium

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	35.75	3	11.92	1.40
Error	373.50	44	8.49	
Time	67.00	2	33.50	3.93
Group*Time	84.75	6	14.13	1.66
Error	751.00	88	8.53	

Potassium

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	0.78	3	0.26	1.17
Error	9.75	44	0.22	
Time	20.30	2	10.15	67.33
Group*Time	0.70	6	0.12	0.78
Error	13.27	88	0.15	

Significant differences over time

Calcium

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	0.01	3	0.00	0.15
Error	1.13	44	0.03	
Time	0.24	2	0.12	10.33
Group*Time	0.12	6	0.02	1.67
Error	1.01	88	0.01	

Chloride

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	47.50	3	15.83	1.71
Error	407.88	44	9.27	
Time	35.38	2	17.69	2.48
Group*Time	74.63	6	12.44	1.74
Error	628.63	88	7.14	

No significant difference was seen

Magnesium

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	0.02	3	0.00	0.49
Error	0.73	44	0.02	
Time	0.17	2	0.08	34.02
Group*Time	0.06	6	0.00	3.81
Error	0.21	88	0.00	

Significant difference over time, and between groups over time

Inorganic phosphate

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	0.09	3	0.03	0.59
Error	2.13	44	0.05	
Time	0.83	2	0.41	14.56
Group*Time	0.56	6	0.09	3.31
Error	2.50	88	0.03	

Significant difference over time, and between groups over time

Alkaline phosphatase

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	2706.00	3	902.00	0.06
Error	624870.00	44	14201.59	
Time	15900.00	2	7950.00	3.51
Group*Time	e 25048.00	6	4174.67	1.84
Error	199126.00	88	2262.80	

Aspartate aminotransaminase

Source of	Sum of	d.f	. Mean	F-ratio
Variation	Squares		Square	
Group	11278.00	3	3759.33	0.28
Error	586815.00	44	13336.70	
Time	16746.00	2	8373.00	2.38
Group*Time	e 84674.00	6	14112.33	4.00
Error	310195.00	88	3524.94	

Significant difference over time, and between groups over time

Bilirubin

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	177.14	3	59.05	1.18
Error	2203.50	44	50.08	
Time	176.26	2	88.13	1.89
Group*Time	220.23	6	36.71	0.79
Error	4105.50	88	46.65	

No significant difference was seen

Total plasma proteins

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	712.31	3	237.44	1.71
Error	6116.00	44	139.00	
Time	1175.75	2	587.88	9.64
Group*Time	698.81	6	116.47	1.91
Error	5366.13	88	60.98	

Significant difference over time

Albumin

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	48.58	3	16.19	0.97
Error	733.84	44	16.68	
Time	10.80	2	5.40	0.47
Group*Time	143.05	6	23.84	2.09
Error	1005.48	88	11.43	

No significant difference was seen

Globulins

Source of	Sum of	d.f.	. Mean	F-ratio
Variation	Squares		Square	
Group	886.16	3	295.39	1.38
Error	9394.06	44	213.50	
Time	882.94	2	441.47	4.73
Group*Time	1372.63	6	228.77	2.45
Error	8217.78	88	93.38	

Significant difference over time, and between groups over time

Triglycerides

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	0.09	3	0.03	0.89
Error	1.54	44	0.03	
Time	0.09	2	0.05	1.86
Group*Time	0.20	6	0.03	1.36
Error	2.15	88	0.02	

No significant difference was seen

Cholesterol

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	3.88	3	1.29	5.52
Error	10.31	44	0.23	
Time	0.07	2	0.03	0.33
Group*Time	1.80	6	0.30	2.89
Error	9.11	88	0.10	

Significant differences between groups, and between groups over time

EFA Estimations

Table of Means and One Way Analysis of Variance for Linoleic Acid (LA) Values, Comparing Week O to Week 3

Means by Group

Level	Count	Average	Stnd.Error	95% Con	fidence level
5g daily	12	5.35	1.11	2.91	7.78
10g eod	12	6.21	1.24	3.77	8.64
20g daily	12	7.50	1.17	5.07	9.94
40g eod	12	4.47	1.58	2.03	6.90

Analysis of Variance

Source of	Sum of	d.f.	Mean	F-ratio	Sig.level
Variation	Squares		Square		
Between groups	60.35	3	20.12	1.01	0.376
Within groups	876.88	44	19.93		

٠

No significant differences were evident

97

Table of Means and One Way Analysis of Variance for Linoleic Acid (LA) Values, Comparing Week O to Week 6

Means by Group

Leve]	Count	Average	Stnd.Error	95% Con	fidence Level
5g daily	12	5.10	1.54	1.83	8.38
10g eod	12	4.16	2.11	0.89	7.43
20g daily	12	6.22	1.35	2.95	9.49
40g eod	12	3.99	1.84	0.71	7.26

Analysis of Variance

Source of	Sum of	d.f.	Mean	F-ratio	Sig.level
Variation	Squares		Square		
Between groups	37.95	3	12.65	0.35	0.79
Within groups	1586.89	44	36.07		

No significant differences were evident

98

Table of Means and One Way Analysis of Variance for Dihomo-gamma-linolenic Acid (DGLA) Values, Comparing Week 0 to Week 6

Means by Group

Level	Count	Average	Stnd.Error	95% Con ⁻	fidence Leve	1.
5g daily	12	0.08	0.02	0.03	0.12	
10g eod	11	0.04	0.02	-0.01	0.09	
20g daily	12	0.11	0.04	0.06	0.15	
40g eod	11	0.11	0.02	0.06	0.16	

Analysis of Variance

Source of	Sum of	d.f.	Mean	F-ratio	Sig.level
Variation	Squares		Square		
Between groups	0.04	3	0.01	1.63	0.20
Within groups	0.30	42	0.01		

No significant differences were evident

Table of Means, One Way Analysis of Variance and Multiple Range Test for Dihomo-gamma-linolenic Acid (DGLA) Values, Comparing Week O to Week 6

Means by Group

Level	Count	Average	Stnd.Error	95% Con	fidence Level
5g daily	12	0.08	0.02	0.03	0.12
10g eod	9	0.04	0.03	-0.09	0.01
20g daily	11	0.11	0.02	0.07	0.16
40g eod	11	0.11	0.02	0.07	0.16

Analysis of Variance

Source of	Sum of	d.f.	Mean	F-ratio	Sig.level
Variation	Squares		Square		
Between groups	0.16	3	0.05	8.40	0.00
Within groups	0.25	39	0.01		

Significant difference was seen between groups

Multiple range analysis revealed significantly lower value for 10g eod than for 5g daily, 20g daily and 40g eod
Table of Means and One Way Analysis of Variance for Arachidonic Acid (AA) Values, Comparing Week 0 to Week 3

Means by Group

Level	Count	Average	Stnd.Error	95% Cont	fidence Level
5g daily	12	0.18	0.08	-0.07	0.42
10g eod	12	0.00	0.11	-0.24	0.25
20g daily	12	0.11	0.15	-0.14	0.36
40g eod	12	-0.11	0.17	-0.36	0.14

Analysis of Variance

Source of	Sum of	d.f.	Mean	F-ratio	Sig.level
Variation	Squares		Square		
Between groups	0.57	3	0.19	0.93	0.44
Within groups	9.03	44	0.21		

Table of Means and One Way Analysis of Variance for Arachidonic Acid (AA) Values, Comparing Week 0 to Week 6

Means by Group

Leve]	Count	Average	Stnd.Error	95% Cont	fidence Level
5g daily	12	0.18	0.13	-0.08	0.43
10g eod	12	0.05	0.16	-0.20	0.31
20g daily	12	0.13	0.07	-0.12	0.39
40g eod	12	-0.13	0.16	-0.38	0.13

Analysis of Variance

Source of	Sum of	d.f.	Mean	F-ratio	Sig.level
Variation	Squares		Square	a.	
Between groups	0.65	3	0.22	1.00	0.40
Within groups	9.62	44	0.22		

Table of Means and One Way Analysis of Variance for Eicosapentanoic Acid (EPA) Values, Comparing Week O to Week 3

Means by Group

Level	Count	Average	Stnd.Error	95% Cont	fidence Level
5g daily	12	-0.03	0.02	-0.12	0.05
10g eod	12	-0.04	0.02	-0.12	0.05
20g daily	12	0.01	0.06	-0.08	0.09
40g eod	11	0.00	0.07	-0.09	0.09

Analysis of Variance

Source of	Sum of	d.f.	Mean	F-ratio	Sig.level
Variation	Squares		Square		
Between groups	0.02	3	0.01	0.22	0.88
Within groups	1.06	43	0.02		

Table of Means and One Way Analysis of Variance for Eicosapentanoic Acid (EPA) Values, Comparing Week 0 to Week 6

Means by Group

Level	Count	Average	verage Stnd.Error		95% Confidence Leve		
5g daily	12	-0.12	0.03	-0.20	-0.02		
10g eod	12	-0.06	0.03	-0.15	0.03		
20g daily	12	0.00	0.03	-0.09	0.09		
40g eod	11	-0.12	0.09	-0.21	-0.02		

Analysis of Variance

Source of	Sum of	d.f.	Mean	F-ratio	Sig.level
Variation	Squares		Square		
Between groups	0.10	3	0.03	1.22	0.32
Within groups	1.14	42	0.03		

APPENDIX VI

TABLES DETAILING STATISTICAL ANALYSES PERFORMED IN THE STUDY ON THE USE OF EFAS IN THE TREATMENT OF DERMATOPHILOSIS IN HORSES Clinical Indices, Haematological and Biochemical Parameters and EFA Estimations

Clinical Indices

Dermatophilosis Index - Lesion severity

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		square	
Group	96.02	2	48.01	1.82
Error	842.03	32	26.31	
Time	228.45	8	28.50	27.15
Group*Time	30.11	16	1.80	1.78
Error	269.23	256	1.00	

Significant difference over time

Dorsal Distribution of Dermatophilosis Lesions

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	1064.98	2	532.49	0.46
Error	36278.35	32	1133.69	
Time	7088.11	8	886.01	18.81
Group*Time	e 156.80	16	9.80	0.20
Error	12057.80	256	47.10	

Hindlimb Distribution of Dermatophilosis Lesions

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	1665.63	2	832.81	1.10
Error	24180.29	32	755.63	
Time	13101.24	8	1637.65	26.86
Group*Time	e 755.32	16	47.20	0.77
Error	15607.78	256	60.96	

Significant difference over time

Coat Condition

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	0.06	2	0.00	0.01
Error	120.33	32	3.76	
Time	290.46	8	36.31	65. 76
Group*Time	4.32	16	0.27	0.48
Error	141.32	256	0.55	

Mane Condition

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	1.81	2	0.91	0.78
Error	37.16	32	1.16	
Time	0.96	7	0.14	0.91
Group*Time	22.42	14	1.60	1.06
Error	338.11	224	1.51	

No significant difference was seen

Tail Condition

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	1.12	2	0.56	0.60
Error	29.84	32	0.93	
Time	243.24	8	30.40	60.22
Group*Time	9.72	16	0.61	1.20
Error	129.25	256	0.50	

Hoof Condition

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	4.96	2	2.48	1.90
Error	41.83	32	1.30	
Time	37.62	8	4.70	24.51
Group*Time	4.93	16	0.30	1.60
Error	49.12	256	0.19	

:

Significant difference over time

Body condition score

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	0.34	2	0.17	0.16
Error	34.54	32	1.08	
Time	0.90	8	0.11	2.86
Group*Time	0.54	16	0.03	0.86
Error	10.06	256	0.04	

Haematological Parameters

Red Cell Count

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	1.91	2	0.96	0.46
Error	67.29	32	2.10	
Time	4.68	4	1.17	3.38
Group*Time	2.17	8	0.27	0.78
Error	44.35	128	0.35	

:

Significant difference over time

Haemoglobin

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	0.06	2	0.03	0.01
Error	128.15	32	4.00	
Time	29.90	4	7.48	5.94
Group*Time	7.80	8	0.97	0.77
Error	161.12	128	1.26	

Packed Cell Volume

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	43.38	2	21.69	0.75
Error	919.83	32	28.74	
Time	321.50	4	80.38	4.55
Group*Time	102.40	8	12.81	0.72
Error	2262.90	128	17.68	

Significant difference over time

Mean Cell Volume

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	115.40	2	57.70	2.83
Error	651.30	32	20.35	
Time	17.40	4	4.36	8.87
Group*Time	0.30	8	0.04	0.09
Error	62.94	128	0.49	

Mean Cell Haemoglobin

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	16.88	2	8.44	3.86
Error	69.99	32	2.19	
Time	3.99	4	0.99	7.89
Group*Time	1.25	8	0.16	1.24
Error	16.12	128	0.12	

Significant differences between groups and over time

Mean Cell Haemoglobin Concentration

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	0.78	2	0.39	0.53
Error	23.44	32	0.73	
Time	11.05	4	2.76	9.38
Group*Time	2.38	8	0.29	1.01
Error	37.70	128	0.29	

White Cell Count

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	8.07	2	4.04	0.56
Error	229.82	32	7.19	
Time	23.40	4	5.85	5.36
Group*Time	12.60	8	1.57	1.44
Error	139.57	128	1.09	

Significant difference over time

Platelets

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	8814.50	2	4407.25	0.97
Error	145647.00	32	4551.46	
Time	9597.00	4	2399.25	4.09
Group*Tim	e 5421.00	8	677.63	1.15
Error	75139.50	128	587.03	

Biochemical Parameters

Urea

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	37.32	2	18.66	1.86
Error	320.25	32	10.00	
Time	177.23	4	44.30	11.70
Group*Time	44.23	8	5.52	1.46
Error	484.53	128	3.78	

:

Significant difference over time

Sodium

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	45.25	2	22.62	3.32
Error	217.75	32	6.80	
Time	420.50	4	105.12	21.19
Group*Time	46.75	8	5.84	1.17
Error	634.75	128	4.95	

Significant difference between groups, and over time

Potassium

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	1.05	2	0.53	1.46
Error	11.58	32	0.36	
Time	3.04	4	0.76	2.18
Group*Time	2.49	8	0.31	0.89
Error	44.67	128	0.35	

:

No significant difference was seen

Calcium

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	0.01	2	0.00	0.17
Error	0.53	32	0.02	
Time	0.89	4	0.22	16.63
Group*Time	0.05	8	0.01	0.50
Error	1.72	128	0.01	

Chloride

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	5.38	2	2.69	0.33
Error	262.00	32	8.19	
Time	762.38	4	190.59	55.58
Group*Time	26.75	8	3.34	0.97
Error	438.88	128	3.42	

:

Significant difference over time

Magnesium

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	0.03	2	0.01	1.49
Error	0.32	32	0.01	
Time	0.27	4	0.07	12.37
Group*Time	0.12	8	0.01	2.76
Error	0.69	128	0.00	

Significant differences over time, and between groups over time

Inorganic Phosphate

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	0.09	2	0.05	1.15
Error	1.31	32	0.04	
Time	0.14	4	0.04	1.47
Group*Time	0.14	8	0.02	0.74
Error	3.08	128	0.02	

No significant difference was seen

Alkaline Phosphatase

Source of	Sum of	d.f	. Mean	F-ratio
Variatior	Squares		Square	
Group	3523.00	2	1761.50	0.30
Error	186970.50	32	5842.80	
Time	1145.50	4	25286.30	30.74
Group*Tin	ne 7304.00	8	913.00	1.11
Error	105274.50	128	822.40	

Aspartate Aminotransaminase

Source of	f Sum of	d.f	. Mean	F-ratio
Variatior	n Squares		Square	
Group	25190.00	2	12595.00	1.30
Error	310968.00	32	9717.70	
Time	52610.00	4	13152.50	8.00
Group*Tim	ne 8045.00	8	1005.60	0.61
Error	210225.00	128	1642.30	

.

Significant difference over time

Bilirubin

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	258.70	2	129.30	0.35
Error	11750.80	32	367.20	
Time	718.80	4	179.70	2.11
Group*Time	e 516.60	8	64.50	0.75
Error	10898.00	128	85.10	

No significant difference was seen

Total Plasma Proteins

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	109.30	2	54.68	1.10
Error	1590.20	32	49.69	
Time	724.30	4	181.07	1 7.70
Group*Time	43.10	8	5.39	0.53
Error	1303.30	128	10.18	

Significant difference over time

Albumin

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	37.32	2	18.66	1.86
Error	320.25	32	10.00	
Time	177.23	4	44.30	11.70
Group*Time	44.23	8	5.52	1.46
Error	484.53	128	3.78	

Globulins

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	40.78	2	20.39	0.40
Error	1627.65	32	50.86	
Time	242.54	4	60.63	5.26
Group*Time	45.79	8	5.72	0.49
Error	1472.85	128	11.50	

÷

Significant difference over time

Gamma Glutamyl Transpeptidase

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	311.54	2	155.77	2.04
Error	2433.68	32	76.05	
Time	848.89	4	212.20	8.44
Group*Time	244.06	8	30.50	1.21
Error	3215.50	128	25.12	

Triglycerides

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	0.05	2	0.03	0.82
Error	0.93	32	0.03	
Time	0.32	3	0.10	9.91
Group*Time	0.08	6	0.01	1.27
Error	1.02	96	0.01	

Significant difference over time

Cholesterol

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	1.13	2	0.56	0.91
Error	19.85	32	0.62	
Time	6.83	3	2.28	27.37
Group*Time	0.61	6	0.10	1.21
Error	7.98	96	0.08	

EFA Estimations

Red Cell Phospholipids

Linoleic acid (18:2n6)

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	4.44	2	2.22	0.13
Error	570.30	33	17.28	
Time	2089.30	4	522.32	44.40
Group*Time	51.27	8	6.41	0.54
Error	1552.71	132	11.76	

Significant difference over time

Arachidonic acid (20:4n6)

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	0.57	2	0.28	1.39
Error	6.72	33	0.20	
Time	24.83	4	6.21	32.82
Group*Time	1.89	8	0.24	1.25
Error	24.96	132	0.19	

Eicosapentanoic acid (20:5n3)

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	0.22	2	0.11	0.38
Error	9.80	33	0.30	
Time	16.99	4	4.25	14.50
Group*Time	2.66	8	0.33	1.14
Error	38.69	132	0.29	

Significant difference over time

Plasma Phospholipids

Linoleic acid (18:2n6)

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	244.53	2	122.27	2.90
Error	1393.56	33	42.23	
Time	1491.38	4	372.84	16.02
Group*Time	80.75	8	10.09	0.43
Error	3072.59	132	23.28	

Dihomogammalinolenic acid (20:3n6)

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	0.15	2	0.08	1.26
Error	2.02	33	0.06	
Time	2.00	4	0.50	11.34
Group*Time	0.77	8	0.10	2.18
Error	5.83	132	0.04	

•

.

Significant difference over time

Arachidonic acid (20:4n6)

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	0.78	2	0.39	0.66
Error	19.68	33	0.60	
Time	17.39	4	4.35	16.60
Group*Time	1.23	8	0.15	0.59
Error	34.57	132	0.26	

Eicosapentanoic acid (20:5n3)

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	0.71	2	0.36	3.54
Error	3.33	33	0.10	
Time	1.67	4	0.42	5.10
Group*Time	0.94	8	0.12	1.44
Error	10.79	132	0.08	

.

Significant difference between groups, and over time

Plasma Cholesteryl Esters

Linoleic acid (18:2n6)

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	87.38	2	43.69	1.43
Error	1006.94	33	30.51	
Time	1134.56	4	283.64	8.55
Group*Time	287.88	8	35.98	1.08
Error	4378.38	132	33.17	

Dihomogammalinolenic acid (20:3n6)

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	0.14	2	0.07	0.22
Error	10.24	33	0.31	
Time	8.97	4	2.24	8.85
Group*Time	0.88	8	0.11	0.44
Error	33.46	132	0.25	

Significant time difference

Arachidonic acid (20:4n6)

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	1.77	2	0.88	1.48
Error	19.68	33	0.60	
Time	9.65	4	2.41	3.47
Group*Time	2.44	8	0.31	0.44
Error	91.77	132	0.70	

Eicosapentanoic acid (20:5n3)

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	0.11	2	0.05	1.05
Error	1.69	33	0.05	
Time	0.54	4	0.13	2.25
Group*Time	0.35	8	0.04	0.74
Error	7.86	132	0.06	

No significant difference was seen

APPENDIX VII

TABLES DETAILING STATISTICAL ANALYSES PERFORMED IN THE STUDY ON THE USE OF EFAS IN THE PROPHYLAXIS OF DERMATOPHILOSIS IN HORSES Clinical Indices, Haematological and Biochemical Parameters and EFA Estimations

Clinical Indices

Coat condition

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	0.90	1	0.90	0.62
Error	30.74	21	1.46	
Time	3.48	7	0.50	1.51
Group*Time	1.79	7	0.26	0.78
Error	48.42	147	0.33	

:

No significant differences were seen

Mane condition

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	4.38	1	4.38	2.40
Error	38.28	21	1.82	
Time	6.48	7	0.92	3.03
Group*Time	7.75	7	1.11	3.62
Error	44.90	147	0.31	

Significant differences over time, and between groups over time

Tail condition

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	2.37	1	2.37	2.27
Error	21.96	21	1.04	
Time	6.24	7	0.89	3.11
Group*Time	3.62	7	0.52	1.81
Error	42.14	147	0.29	

Significant difference over time

Hoof condition

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	0.38	1	0.38	0.93
Error	8.52	21	0.41	
Time	1.48	7	0.21	1.53
Group*Time	0.99	7	0.14	1.03
Error	20.28	147	0.14	

Body condition score

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	1.01	1	1.01	0.73
Error	29.07	21	1.38	
Time	1.52	7	0.22	3.58
Group*Time	0.40	7	0.06	0.94
Error	8.93	147	0.06	

Significant difference over time

Haematological Parameters

Red cell count

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	0.52	1	0.52	0.56
Error	20.25	22	0.92	
Time	0.32	2	0.16	0.37
Group*Time	0.70	2	0.35	0.81
Error	18.99	44	0.43	

Haemoglobin

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	0.20	1	0.20	0.07
Error	61.91	22	2.81	
Time	1.42	2	0.71	0.51
Group*Time	0.85	2	0.42	0.31
Error	60.54	44	1.38	

No significant differences were seen

Packed cell volume

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	0.00	1	0.00	0.00
Error	0.04	22	0.00	
Time	0.00	2	0.00	0.27
Group*Time	0.00	2	0.00	0.48
Error	0.04	44	0.00	

Mean cell volume

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	30.13	1	30.13	3.44
Error	192.89	22	8.77	
Time	10.23	2	5.12	5.34
Group*Time	4.08	2	2.04	2.13
Error	42.19	44	0.96	

Significant difference over time

Mean cell haemoglobin

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	4.72	1	4.71	3.62
Error	28.68	22	1.30	
Time	0.03	2	0.01	0.16
Group*Time	0.70	2	0.35	4.19
Error	3.67	44	0.08	

Significant difference between groups over time

Mean cell haemoglobin concentration

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	0.17	1	0.17	0.35
Error	10.81	22	0.49	
Time	4.38	2	2.19	9.00
Group*Time	0.03	2	0.02	0.06
Error	10.70	44	0.24	

Significant difference over time

White cell count

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	2.53	1	2.53	2.64
Error	21.13	22	0.96	
Time	12.87	2	6.44	14.36
Group*Time	0.27	2	0.14	0.30
Error	19.72	44	0.45	

Platelets

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	2485	1	2485	1.02
Error	53818.5	22	2446.30	
Time	3282.25	2	1641.13	3.16
Group*Time	3227.38	2	1613.69	3.11
Error	22875.75	44	519.49	

No significant differences were seen

Biochemical Parameters

Urea

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	0.03	1	0.03	0.02
Error	27.52	22	1.25	
Time	43.72	2	21.86	50.21
Group*Time	0.55	2	0.27	0.63
Error	19.16	44	0.44	

Sodium

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	0.75	1	0.75	0.22
Error	76.50	22	3.48	
Time	58.88	2	29.44	12.70
Group*Time	0.50	2	0.25	0.11
Error	102.00	44	2.32	

Significant difference over time

Potassium

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	0.19	1	0.19	0.77
Error	5.42	22	0.25	
Time	7.53	2	3.77	17.05
Group*Time	0.16	2	0.08	0.37
Error	9.72	44	0.22	
Calcium

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	0.00	1	0.00	0.04
Error	1.34	22	0.06	
Time	0.20	2	0.10	3.46
Group*Time	0.01	2	0.00	0.21
Error	1.27	44	0.03	

Significant difference over time

Chloride

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	3.56	1	3.56	0.89
Error	87.75	22	3.99	
Time	1.69	2	0.84	0.29
Group*Time	2.19	2	1.09	0.37
Error	129.44	44	2.94	

Magnesium

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	0.00	1	0.00	1.23
Error	0.12	22	0.00	
Time	0.05	2	0.02	9.81
Group*Time	0.00	2	0.00	0.53
Error	0.11	44	0.00	

Significant difference over time

Inorganic phosphate

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	0.01	1	0.01	0.31
Error	0.82	22	0.04	
Time	0.92	2	0.46	22.43
Group*Time	0.02	2	0.00	0.40
Error	0.90	44	0.02	

Alkaline phosphatase

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	1458	1	1458	0.12
Error	265439.5	22	12065.43	
Time	120162	2	60081	32.03
Group*Time	2908.50	2	1454.25	0.78
Error	82532	44	1875.73	

.

Significant difference over time

Aspartate aminotransaminase

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	760.50	1	760.50	0.15
Error	109581	22	4980 .9 6	
Time	83008	2	41504	23.88
Group*Time	1189.50	2	594.75	0.34
Error	76481	44	1738.21	

Bilirubin

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	0.17	1	0.17	0.00
Error	2207.66	21	105.13	
Time	108.20	2	54.10	1.56
Group*Time	6.93	2	3.47	0.10
Error	1456.20	42	34.67	

No significant differences were seen

Total plasma proteins

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	20.06	1	20.06	0.85
Error	521.88	22	23.72	
Time	17.44	2	8.72	0.62
Group*Time	7.44	2	3.72	0.26
Error	622.47	44	14.15	

Albumin

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	5.01	1	5.01	0.43
Error	253.65	22	11.53	
Time	20.53	2	10.27	0.92
Group*Time	3.03	2	1.52	0.14
Error	490.44	44	11.15	

No significant differences were seen

Globulins

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	43.55	1	43.55	1.32
Error	724.89	22	32.95	
Time	2.19	2	1.10	0.07
Group*Time	11.86	2	5.93	0.37
Error	708.61	44	16.10	

Gamma glutamyl transpeptidase

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	1.13	1	1.13	0.01
Error	2460.86	22	111.86	
Time	83.44	2	41.72	1.66
Group*Time	220.34	2	110.17	4.39
Error	1104.22	44	25.10	

Significant difference between groups over time

Triglycerides

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	0.00	1	0.00	0.22
Error	0.50	22	0.02	
Time	0.09	2	0.05	5.14
Group*Time	0.00	2	0.00	0.48
Error	0.40	44	0.00	

Cholesterol

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	0.22	1	0.22	0.31
Error	15.67	22	0.71	
Time	0.11	2	0.06	0.93
Group*Time	0.27	2	0.13	2.22
Error	2.63	44	0.06	

No significant differences were seen

EFA Estimations

Red Cell Phospholipids

Linoleic acid (18:2n6)

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	0.01	1	0.01	0.00
Error	68.43	21	3.26	
Time	333.33	3	111.11	17.94
Group*Time	10.00	3	3.33	0.54
Error	390.25	63	6.19	

Arachidonic acid (20:4n6)

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	0.02	1	0.02	0.24
Error	2.10	21	0.10	
Time	0.37	3	0.12	1.99
Group*Time	0.54	3	0.18	2.91
Error	3.92	63	0.06	

Significant difference between groups over time

Eicosapentanoic acid (20:5n3)

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	0.00	1	0.00	0.01
Error	0.12	21	0.00	
Time	0.18	3	0.06	15.51
Group*Time	0.03	3	0.00	2.17
Error	0.24	63	0.00	

Plasma Phospholipids

Linoleic acid (18:2n6)

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	19.88	1	19.88	0.74
Error	560.33	21	26.69	
Time	158.30	3	52.77	4.42
Group*Time	30.02	3	10.00	0.84
Error	751.58	63	11.93	

Significant difference over time

Dihomogammalinolenic acid (20:3n6)

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	0.25	1	0.25	3.73
Error	1.42	21	0.07	
Time	1.00	3	0.33	6.04
Group*Time	0.08	3	0.03	0.48
Error	3.48	63	0.05	

Arachidonic acid (20:4n6)

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	0.04	1	0.04	0.14
Error	5.71	21	0.27	
Time	0.99	3	0.33	7.12
Group*Time	0.45	3	0.15	3.26
Error	2.93	63	0.05	

Significant difference over time, and between groups over time

Eicosapentanoic acid (20:5n3)

Source of	Sum of	d.f.	Mean	F-ratio
Variation	Squares		Square	
Group	0.00	1	0.00	0.10
Error	1.02	21	0.05	
Time	0.09	3	0.03	1.02
Group*Time	0.04	3	0.01	0.44
Error	1.88	63	0.03	

