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SUMMARY

Automatic flight control systems of modern aircraft, whether fixed wing or rotorcraft, 

have become increasingly complex and often involve the use of control activity which 

goes beyond the levels normally associated with human pilot operation. The 

sophisticated control laws employed frequently utilise the complete state vector, 

however, in practice not every state variable is available, either owing to the failure 

of its sensor or because it is impracticable to measure. The most feasible solution to 

the problem is therefore to use an estimate of the state vector produced from an 

observer.

This thesis is concerned with the application of deterministic, continuous— time, 

linear, time— invariant system theory in the design of 'Luenberger' state observers for 

state estimation in the flight control systems of the single rotor helicopter. Observer 

design and system simulation were facilitated by using a complicated mathematical 

model of the helicopter. This model, which was provided by the Royal Aerospace 

Establishment, Bedford, is examined in detail and its limitations are discussed.

Observer design methods are reviewed and two approaches, a method proposed by 

Gopinath and an observable canonical form method, are examined in detail. Due to 

numerical problems the Gopinath method is shown to be unsuitable, however it is 

demonstrated that the observable canonical form method is capable of producing 

accurate designs. Details of the software implementation of the canonical form 

technique are given and the results obtained and problems encountered, are analysed.

Using this software, full and reduced order observers are designed for both eighth 

and fourteenth order system models. The performance of these observers are 

thoroughly assessed and it is shown that good estimates can be produced if the 

system states are 'clean1, but that noise corrupted states result in poor estimates. To 

solve this problem a new form of observer — the twin observer — is introduced 

and it is demonstrated that with a precise model of the system, the twin observer 

can produce accurate, relatively noise free estimates of the system state.

A review of instrument fault detection techniques is given and an observer based 

scheme, known as the Dedicated Observer Scheme, is selected for analysis with the 

twin observer and a fourth order, longitudinal system model. The advantages and 

disadvantages of this scheme are examined and possible solutions to some of the 

problems are proposed.
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CHAPTER ONE 

INTRODUCTION

2



1.1 HISTORY OF HELICOPTER DEVELOPMENT

The principles of helicopter flight have been known for many centuries: some 

aviation historians have even claimed to have traced experiments with rotary wing 

models back to the fourth Century S O  in China. What is certain, however, is that 

in 1490, after having spent some years trying to develop flying machines, Leonardo 

da Vinci designed a lifting screw made of starched linen. After this there was a gap 

of almost three hundred years until early flight pioneers, such as Sir George Cayley, 

started to design and construct helicopter models. Despite this, it was not until 1907 

that the first helicopter capable of carrying a p ActT was built and flown by Paul

Cornu of France, although only for a few seconds and to a maximum height of 
$ C tk '

In the following thirty years many of the problems were overcome. In 1922, Juan 

de la Cierva, who perhaps influenced the progress of helicopters more than any 

other man, solved the problem of asymmetry of f lc ^  This is the rolling couple 

which occurs when a rotary wing aircraft moves forward: the advancing blade has 

more airspeed than the retreating blade and hence gains more lift. His solution, 

which is still in use today, was to use flapping hinges which allow each rotor blade 

to flap up and down. mWcAjuu.iL in. H o if}

Using this system, the advancing blade will, with increased airflow, lift itself up 

about the flapping hinge, thereby decreasing its angle of attack, while the retreating

blade will flap down, thereby increasing its angle of attack; thus the net lifting

effect on each blade is the same. De la Cierva was also responsible for the

introduction of the lead/lag hinge which is used to alleviate bending moments caused 

by the tendency of each individual blade to move to and fro in the horizontal plane 

in relation to the hub or the other blades.

In 1939 Igor Sikorsky (who had previously built two unsuccessful helicopters in 1910) 

flew his VS— 300, which was unique because not only was it the first aircraft using 

the main/tail rotor configuration to fly successfully, but in 1942 its production 

version, the R.4, marked the commencement of the helicopter industry in the USA.

Since then helicopter development has continued, but has always lagged behind that 

of the conventional aircraft due to frequent insurmountable stability and engineering 

problems. For example, the first helicopter crossing of the English Channel did not 

occur until 1945 — compare this with the performance and range of fixed— wing 

aircraft at that time. To understand these problems it is necessary to first consider 

the principles of helicopter control.
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1.2 PRINCIPLES OF HELICOPTER CONTROL

Conventional helicopters are controlled in flight by feathering  the blades: constantly 

adjusting the pitch angle (ie. the angle of the leading edge with respect to the 

horizontal plane of the rotor system) as the blades revolve. This feathering pattern, 

the cyclic p itch , varies sinusoidally and compensates for the sinusoidal variation in 

apparent airflow induced by the combination of rotor revolution and forward flight. 

In addition, momentarily changing the cyclic pitch causes the helicopter to change

direction and speed, or both. This is because the craft will tilt and accelerate until 

its new speed and heading match the new amplitude and phase of the cyclic pitch. 

The average value of the cyclic pitch, the collective pitch, determines the average 

lift of the rotor and hence whether the helicopter moves vertically or hovers.

The pilot, therefore, has three sets of controls: the collective lever (or stick), the 

cyclic stick and two rudder pedals. Movement of the rudder pedals changes the 

collective pitch of the tail rotor blades, thus increasing/decreasing tail rotor thrust 

and causing the helicopter to rotate about a vertical axis for heading control in 

hover and low speed flight. As their names suggest, the collective lever alters the

collective pitch of the main rotor and the cyclic stick varies the cyclic pitch; the 

variations in pitch being transmitted to the blades via a mechanism called a swash 

plate.

The cyclic stick can be moved fore and aft and sideways, or any combination of the 

two and the rotor will be tilted in the direction it is moved. When the stick is 

pushed forward, the helicopter will move forward, or, if already doing so, will 

accelerate. Similarly, if the stick is moved backwards or sideways the helicopter will 

proceed in these directions. The stick works in a natural sense and the degree of

tilt of the rotor in relationship to the drive shaft depends mainly on the degree of

stick movement.

At first sight these controls appear relatively straightforward, but compared to fixed 

wing aircraft, the flight controls of a helicopter interact in strange ways. For 

example, to ascend at an angle requires a certain collective and cyclic pitch setting; 

but as the craft gathers speed, the rotor lift increases, thereby requiring less 

collective pitch which in turn reduces the necessary engine power. This then requires 

less compensating thrust from the tail rotor. Learning these complex control 

interactions is not easy and executing flight manoeuvres requires the pilot's constant 

attention. In addition, helicopters are at best only neutrally stable, and usually 

unstable in at least one axis, even though the frequencies involved are fairly low. 

For these reasons an autostabilizer function is looked upon as essential.
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1.3 AUTOMATIC FLIGHT CONTROL SYSTEMS

Automatic stabilisation equipment was developed in the 1950's and with this the 

helicopter can be flown without the pilot touching the controls, but he can use the 

controls at any time to carry out manoeuvres. In control terms, these stability 

augmentation systems are relatively simple and generally involve three separate 

functions corresponding to the three axes.

In the pitch axis the primary requirement is for stabilising attitude and therefore

most systems are based on a pilot's stick position change demanding an attitude

change. The operation of the roll axis autostabilisation function is substantially the 

same as the pitch axis, with a combination of roll attitude and roll rate feedback 

required for stabilisation. Similarly the yaw axis autostabiliser utilises yaw attitude and 

yaw rate, but in addition usually incorporates a heading hold facility.

Design of manual flight control systems for high performance helicopters such as the 

Lynx has also shown that it is possible to obtain alleviation of failure effects in the 

pitch channel and improved stability in normal operation by the inclusion of a

vertical autostabiliser based upon feedback of normal acceleration to normal pitch.

Initially these systems were implemented using electromechanical devices, however 

with the advent of digital computers there has been an ever increasing use of digital 

control. This has led to the use of more sophisticated control laws and the 

proliferation of Automatic Flight Control Systems (AFCS). In these systems, flight 

control computers transmit cyclic and collective pitch commands to actuators mounted 

on the swash plate via electronic or optical cable instead of the present metal rods.

The control signals may be electronic signals transmitted via copper cable

( f l y —by—wire) or optical signals transmitted by fibre optic cable ( f l y —by—light). 

Existing helicopters with such systems include the DFVLR BO— 105, MD LHX 

Apache, Bell Arti AH—1 and Boeing ADOCS.

Most recently, research has concentrated on Active Control Technology (ACT), which 

is defined as a full— authority manoeuvre demand flight control system, or, in other 

words, a full authority AFCS.

The specification for a military ACT helicopter system (which is necessarily more 

stringent than that for a civil helicopter) can be summarised as,
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♦ A control system which provides decoupled, stable and rapidly acting vehicle

response to command inputs, enabling safe flight to the extremes of the flight

envelope.

♦ Ability to fly in bad weather, at night, low level (nap— of— the— earth, NOE) 

and at high speeds.

♦ Reduced pilot workload level so that he can concentrate on the primary 

mission and not on piloting the helicopter.

♦ Integrity of the system to failures and damage.

♦ Immunity from failures caused by electromagnetic radiations or electromagnetic

pulse (eg. a lightning strike).

♦ Catastrophic failure rate of less than 1 0 —7 per flight hour. (10 - 9  for the 

civil case).

These requirements can basically be divided into two subjects: control system design 

and failure detection/accommodation of faults in the control system and associated 

hardware, eg. communication lines, actuators, sensors.

ACT CONTROL SYSTEMS

ACT control system design involves two related areas of research — the elimination 

of adverse rotor effects and the improvement of handling qualities. In investigations 

of rotor effects the application of ACT has shown promise in reducing response to 

atmospheric turbulence, retreating blade stall, vibration suppression, blade—fuselage 

interference and flap— lag modal damping analysis.

All these applications use the method of active pitch control to produce 

counteracting aerodynamic forces on the rotor blades, however the method of control 

actuation can be divided into two fundamentally different approaches: Higher

Harmonic Control (HHC) and Individual Blade Control (IBC). HHC has mainly 

been used for vibration reduction (eg. Wood, 1983; Shaw and Albion, 1980), where 

rotor rotational frequency is used to generate pitch commands that approximately 

cancel the harmonics of vibration passed down from the rotor to the fuselage.
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IBC is a more sophisticated approach since it involves the use of actuators and 

sensors on each blade to control the pitch individually in the rotating frame of 

reference (eg. McKillip. J r, 1985; Ham, 1983; Ham and McKillip. J r, 1980 and 

Kretz, 1976). In addition, because this method is essentially a 'broad band' control 

of the rotor blade dynamics, in contrast to the HHC limitation of discrete frequency 

disturbance suppression, it is capable of modifying each blades aeroelastic stability, 

modal damping and modal frequencies.

The criteria used to assess rotor effects are relatively easy to define since they can 

be judged in purely analytical terms, but the task of defining handling quality 

criterion is altogether more esoteric and ultimately the final judgement rests upon 

the subjective interpretation of the pilot (see Padfield, 1988 for an overview of the 

problem). This has not, however, had any effect on the amount of research in this 

area, eg. Wyatt, 1984; Winter, Padfield and Buckingham, 1984; Tischler, 1987; 

Charlton and Houston, 1988; Charlton, Padfield and Horton, 1987.

In developing control laws to meet these handling qualities there are many issues to

be faced by the control law designer. A summary of these are given by Padfield,

1988,

♦ Relationship of control law design to handling criteria

♦ Suitability of various optimisation schemes, eg. Linear Quadratic Gaussian 

(LQG), H -In fin ity  (H00)

♦ Blending of response types throughout the flight envelope

♦ Robustness to changes in operating conditions and dynamic uncertainties 

. Development of tuning algorithms

♦ Impact of system constraints

. Requirements for degraded reversionary modes

It will require considerable effort before these functional design issues can be

considered as a mature design methodology.

In this quest for improved handling qualities the ergonomics of the pilot's controls

have also been considered. One idea, now being explored by several helicopter
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makers, is to replace the conventional controls with a joystick on the pilot's armrest 

— sidearm control (Baillie, 1988, for example). A four—axis stick controls roll, 

pitch, vertical motion and yaw, by sideways, forward— backward, up— down and 

twisting movements, respectively.

The position of the stick is monitored, through pressure sensitive or displacement 

sensitive transducers, by a computer which determines the appropriate main and tail 

rotor pitch settings, which are then transmitted to the actuators at the rotor head. A 

three— axis control stick, which would replace the cyclic and collective sticks, but 

leave the floor pedals in place, has also been investigated. In both cases pilot 

reaction was reported to be favourable.

An essential feature of all these control systems is that their control laws invariably 

utilise the complete state vector. In practice, however, not every state variable is 

available, either owing to the failure of its sensor or because it cannot be measured. 

The most practicable solution to the problem is therefore to use an estimate of the 

state vector produced from an observer.

An observer is a dynamic element that produces an estimate of the system state 

vector based on information received from the measurement of the input and the 

output of the system, and was first proposed by Luenberger in 1964. Its main 

element is an accurate model of the system being observed. This is driven by the 

system control input and an error term derived from the difference between the 

system output and the output of the observer.

Provided that the model is accurate and the inputs and the outputs are the same as 

those of the system, then the intermediate state variables must also be the same. 

Furthermore, the eigenvalues of the observer (ie. the error dynamics) can be 

arbitrarily assigned and are independent of the eigenvalues of the controlled system. 

Consequently, the design of a state feedback controller and the design of a state 

estimator can be carried out independently of each other.

In stochastic systems, an alternative form of estimator is often employed — the 

Kalman Filter. This has the same basic configuration as the Luenberger observer, but 

it also uses knowledge of the structure of the noise corrupting the measurements in 

order to reduce the effects of noise on the estimate of the state. The Kalman Filter 

was not investigated for three reasons. Firstly, a— priori information about the noise 

is not always available; secondly, it introduces additional constraints and problems; 

and thirdly because a method of adapting the Luenberger observer to provide noise 

free estimates from noise corrupted inputs, was developed.

8



FAULT DETECTION

The use of high gain, high bandwidth, active control systems with control activity 

which goes beyond the levels normally associated with human pilot operation, offers 

many benefits, but it also results in higher risks for mission completion and flight 

safety due to flight control component failure. In recognition of these higher risks a 

proliferation of redundant components has evolved; namely sensors, computers and 

servo— actuation systems.

These Hardware Redundancy systems are generally four lane (Quadruplex) or triple 

lane (Triplex) with self monitoring, the redundant components being dispersed around 

the aircraft for additional safety. This provides a precise and robust method: failures 

being identified by some form of majority vote logic system, but has the 

disadvantages of increased cost and weight and the utilisation of valuable space.

In recent years attention has therefore concentrated on analytical techniques, or 

Softw are Redundancy, the advantages of which lie in the trade— off of redundant

hardware against computer processing of signals from dissimilar (non— redundant) 

sensors. In other words, the redundant information required to identify a fault, is 

generated by software rather than duplicated hardware.

There are two fundamentally different approaches to software redundancy — time 

series analysis, which, due to long delays between the occurrence and detection of a 

fault, is impracticable for most aerospace applications; and state estimation which can 

detect even small faults almost instantaneously.

The state estimation approach can be divided into four methods: the Dedicated 

Observer Scheme, the Failure Detection Filter, the Unknown Input Observer and the 

Disturbance Rejection Filter, all of which rely on the same basic principle. Only 

one set of sensors is required and each sensor is used to drive an observer

especially designed for that sensor.

With the dedicated observer scheme, if each sensor is perfect and the dynamic

parameters of the system are known exactly, then the estimated state vectors will all 

be identical. However, if one of the sensors develops a fault, then the estimate

produced by that sensors observer will be in error and so a comparison between the 

estimated states will identify the faulty sensor. With the other three methods it is 

not the state vector, but rather the magnitude or direction of the error vector, 

which is monitored.

9



With the advancing complexity of AFCS and the use of techniques such as ACT and 

fault detection/accommodation, there has been increasing concern in the inability to 

guarantee the absence of common—mode latent faults in systems which utilise 

identical subsystems, eg. context dependent software errors and hardware deficiencies 

which are triggered by environmental changes (lightning strikes, power transients, 

etc).

Both Wyatt, 1984 and R ic h a rd s^ S ^  for example, recommend complete dissimilarity 

in processing, including software and the software design tools — assemblers, 

compilers, etc. With a system based on hardware redundancy, each flight control 

computer would be designed, developed and tested by separate teams of engineers 

working in isolation and employing different methodologies and components.

However, even then there could still be problems since each flight control computer 

would be designed to a common control law specification, would have common 

timing requirements and would operate in a common dynamic system environment. 

With software redundancy techniques the problems are very similar except that the 

main area of concern is the fidelity of the software.

The best solution to these problems would appear to be a balanced approach, with 

extreme care being taken to ensure simplicity, clarity and correctness of those high 

level requirements and designs which are common to each hardware/software 

sub— system.

1.4 OBJECTIVES

The main objective of this research was to investigate the application of 

deterministic, continuous—time, linear, time—invariant system theory in the design of
(rvcUA

'Luenberger' state observers for state estimation in the singleArotor helicopter. The 

use of Luenberger state observers in this harsh environment (sources of noise include 

such things as electromagnetic pick— up, inadequate power supply filtering and in 

particular, mechanical vibration from the main and tail rotors resulting in electrical 

disturbances) is unusual, since in stochastic systems an alternative form of estimator 

is usually employed — the Kalman filter.

This has the same basic configuration as the Luenberger observer, but it also uses 

knowledge of the structure of the noise corrupting the measurements in order to 

reduce the effects of noise on the estimate of the state. The Kalman filter was not 

investigated for three reasons. Firstly, a—priori information about the noise is not 

always available; secondly, it introduces additional constraints and problems; and
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thirdly, because a major objective was to determine whether a method of adapting 

the Luenberger observer to provide noise free estimates from noise corrupted inputs, 

could be developed.

As indicated in the previous section an observer requires an accurate model of the 

system that is being observed and therefore the first objective was to select and 

evaluate an appropriate mathematical model. The model selected was developed at 

the Royal Aircraft Establishment, Bedford, for use in the prediction of rigid body, 

fuselage dynamic motions throughout the flight envelope, and is described in detail 

in Chapter two.

Once the model had been chosen the next step was to evaluate existing observer 

design techniques. The necessary theory is contained in Chapter three and a review 

of the literature is presented in Chapter four. Two design methods were initially 

selected for consideration : a method proposed by Gopinath and an observable 

canonical form method. After consideration of basic observer performance, the 

Gopinath method is shown to be unsuitable for the design of helicopter state 

observers.

In chapter five the computer implementation of the canonical form method is 

described. This consists of an observability test, transformation of the system state 

space equation to observable canonical form and the determination of the elements 

of the observer matrix. It is demonstrated that this is a robust and accurate method 

and an observer is designed and successfully tested with a feedback controller. The 

use of flight data is explained and an analytical method of evaluating observer 

performance is defined.

The next objective was to investigate the performance of observable canonical form 

observers, and this is covered in Chapter six. Observer performance with eighth and 

fourteenth order system models is considered and several numerical problems are 

examined. It is shown that canonical form observers can produce accurate estimates 

if the system states are 'clean', but that noise corrupted states result in noise 

corrupted estimates. To solve this problem a new form of observer — the twin 

observer — is introduced and it is demonstrated that with an accurate model of the 

system, the twin observer can produce accurate, relatively noise free estimates of the 

system state.

The final objective of this research was to determine whether the twin observer was 

suitable for use in an instrument fault detection scheme. This question is considered 

in Chapter seven, which begins with a literature review of fault detection techniques.

11



From this review it is apparent that the most appropriate technique to use with the 
twin observer is the dedicated observer scheme. The advantages and disadvantages of 
this method are examined using a longitudinal model of the system and possible 

solutions to some of the problems are proposed.

Finally, Chapter eight summarises the main findings of the thesis and makes 
suggestions for further research.

1.5 STATEMENT OF ORIGINALITY

In general it is thought that an extensive investigation of the 'Luenberger' form of 

observer, for use in helicopter flight control systems, is original work. In particular 

the 'Twin observer' developed in chapter six is believed to be new and presents a 
possible solution to the problem of noise corrupted states.

The analysis of an observer based instrument fault detection scheme : the Dedicated 

Observer Scheme, using this form of observer, is also considered to be original 
work.
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CHAPTER TWO 

HELISTAB 

A MATHEMATICAL MODEL 

OF THE 

SINGLE ROTOR HELICOPTER
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2.1 INTRODUCTION

The heart of an observer is an accurate model of the system that is being observed 

and therefore the first requirement when considering the use of observers for state 

estimation and/or sensor fault detection, is the selection of a suitable mathematical 

model. Fundamental concepts required to establish the model are considered in 

sections 2.2 to 2.4 and include the basic aerodynamics of the helicopter rotor, axes 

systems and transformations, the fundamental equations of motion and procedures for 

linearizing non— linear equations about a steady state operating point. (The equations 

of motion are explicitly linearized in Appendix 1). Mathematical models in general, 

are discussed in section 2.5 and the reasons for using the model chosen for this 

research are given.

The ability to vary the order of the system is discussed and the choice of relevant 

axes for analysis of the external forces and moments is examined. External forces 

and moments are established in section 2.6 and the individual components from the 

main rotor (section 2.6.1), fuselage, empennage and tail rotor (section 2.6.2) are 

then derived.

Limitations of the model are discussed in section 2.7 and the use of the model to 

produce linearized equations of motion at any particular flight condition (section 2.8) 

and to produce time— responses of the system when subjected to control inputs 

(section 2.9), are considered.
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2.2 BASIC CONCEPTS

There are four major forces acting on any aircraft, namely l i f t ,  drag, thrust and 

gravity (f i g  2.1). Lift is the force which in general counteracts gravity. It is the

useful reaction obtained from the flow of air over an aerofoil and acts from the

aerodynamic centre (or centre o f  pressure) and perpendicular to the relative wind.

The aerodynamic centre is that point on an aerofoil section through which all

aerodynamic forces may be considered as acting and about which the aerodynamic

moments are substantially constant. The relative wind is the oncoming air flowing 

parallel and opposite to the flight path of the aircraft.

Drag is the force which tends to retard or resist the forward motion of a body 

through the air and acts from the aerodynamic centre and is parallel to the relative 

wind. The force which overcomes drag and propels the aircraft forward or, as in

the case of the helicopter, in any direction, is called thrust.

Any part of an aircraft designed to produce lift may be called an aerofoil. In a

fixed— wing aircraft the wings and tailplane act as aerofoils, but in a helicopter lift

is generated by the rotor. A rotor generates lift by accelerating a mass of air

downwards through its blades and is proportional to the downwash mass and velocity. 

In flight, the blades bend upwards until gravity, lift and centrifugal force balance : a 

process called coning (f i g  2.2). There is a fourth force acting on the blades —

drag, and this is overcome by the torque from the engine.

In forward flight, blades advancing to the nose will encounter faster apparent

airflow  (the vector sum of forward, translational velocity of the helicopter and the 

rotational velocity of the rotor) than blades retreating towards the tail. As a result, 

advancing blades will generate greater lift than retreating blades, unbalancing the 

aircraft unless compensating measures are taken.

To assure stability, most helicopters employ two such measures : flapping  and

feathering. With flapping (f ig  2.3), the blades respond to increased lift on the 

advancing side of the rotor by rising to a maximum angle over the nose, while 

falling to a minimum angle over the tail. This changes the apparent angle that the 

blades attack the air, thereby compensating for the airflow variations.

With feathering, the pitch of the rotor blades is varied sinusoidally as the rotor 

spins to compensate for the sinusoidal airflow variations. These pitch variations are 

transmitted from the pilot's control inputs to the individual blades via a device called 

a swashplate.
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FIG 2 .1  BALANCE OF FOUR FORCES DURING STEADY FLIGHT
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FIG 2 . 2  ROTOR BLADE CONING
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FIG 2 . 4  LEAD/LAG NOTIONS OF A ROTOR BLADE
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To allow flapping and feathering, blades are typically hinged or made flexible at the 

hub. If there are also hinges to permit lead and lag motions induced by drag

variations {f ig 2.4), then the rotor is said to be fu lly  articulated.

In addition to stabilizing the helicopter, cyclic pitch variations are used for control

purposes. The average value of the cyclic pitch, the collective pitch, determines the 

average lift of the rotor blades. Varying the collective pitch can thus be used to

make the helicopter ascend, descend or hover. Direction of travel is primarily

controlled by cyclic pitch — changing the amplitude and phase of the pitch cycle

temporarily unbalances the rotor, causing it to tilt in a specific direction. The 

helicopter then accelerates in that direction, until it regains a stable position 

corresponding to the new velocity.

The control motions are transmitted by the pilot via two sticks : a collective stick

which pushes the swashplate up and down on the rotor mast, thereby changing the 

collective pitch; and a cyclic stick that tilts the swashplate, thereby changing the

amplitude and phase of the cyclic pitch (fig 2.5).

2.3 AXES SYSTEMS AND TRANSFORMATIONS

In order to analyse an aircraft in flight it is necessary to first define a set of axes 

which will act as a reference frame around which the relevant equations of motion 

may be developed. Since the aircraft is a free body in space, its position and flight

path may be defined with respect to a set of earth fix e d  axes, which remain fixed

relative to the earth. These earth axes assume a flat, non— rotating earth and

arbitrary origin, with the x—axis pointing Northward, y—axis Eastward and the 

z—axis pointing down to the centre of the earth {f ig 2.6b).

However, this axis system is inconvenient for some analyses and therefore a set of 

axes which remain fixed relative to the airframe can be used. This axis set is called 

the body fix e d  axes and the origin is located at the aircraft's centre of gravity with 

the x— axis pointing forward, y— axis to starboard and z— axis downwards (Duncan, 

1952). It is conventional to define the nomenclature associated with the body fixed 

axis system in a standard form and this is summarised in table 2.1 and f ig  2.6a.

The body fixed axis system may be related to the earth fixed axis system by a

series of rotations. Consider f ig  2.7a where OXg, OYg, O Z g is the earth fixed 

axis system and OXj, OYj, OZj is an intermediate axis system, initially coincident 

with OXg, OYg, O Zg.
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FIG 2 .6  BODY AND EARTH AXES SYSTEMS 
Both systems a re  o r th o g o n a l  
n g h l - h a n d e d  t r i a d s
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AXIS OX OY oz

NAME LONGITUDINAL LATERAL NORMAL

LINEAR
DISPLACEMENT (m) X y z

STEADY STATE 
VELOCITY (m s"1) U V W

INCREMENTAL 
VELOCITY (m s"1) u V w

FORCE COMPONENT (N) X Y Z

ROLLING VELOCITY 
COMPONENT ( ra d s  s - 1 )

ROLL
P

PITCH
q

YAW
r

ANGULAR
DISPLACEMENT ( r a d s ) <P e

ROLLING MOMENT (Nm) L M N

NOTES

(1) Linear displacements, velocities and forces are positive in the direction of the 
axis.

(2) Aguiar displacements, rolling velocities and moments are positive in the 
clockwise sense, looking along the axis from the origin.

TABLE 2.1 : BODY AXES DEFINITIONS
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( a )  EARTH AXES ( b )  ROTATION OF V  ABOUT ZE

X,

( c )  ROTATION OF 0 ABOUT Yt ( d )  ROTATION OF (p ABOUT XB

FIG 2 .7  TRANSFORMATION BETWEEN EARTH AND BODY AXES
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The orientation of OXg, OYg, O Z g with respect to O X g, OYg, O Z g can then be 

determined as follows.

(1) Rotate OXj, OYj, OZj about the OZj axis by angle \p, f ig  2.7b

(2) Rotate OXj, OYj, OZj about the OYj axis by angle 0, f i g  2.7c

(3) Rotate OXj, OYj, OZj about the OXj axis by angle <p, f ig  2.7d

OXj, OYj, OZj are now coincident with OXg, OYg, O Z g and the helicopter's

attitude, ie. the orientation of its body fixed axes with respect to the earth fixed 

axes, is defined by the Euler angles \p, 8 and <p.

If each of the above rotations are considered separately, it is possible to derive a 

transformation matrix T, called the direction cosine matrix (Hopkin, 1966). For 

example, body axes velocities are found from earth axes velocities by,

u b * 1 1  * 1 2 * 1 3 u e

v b =
* 2 1  * 2 2  * 2 3 v e

w b  . * 3 1  * 3 2  * 3 3 . w e  .

w h e r e

1 1 2 — c o s 0cosi/' 

t 12 -  c o s 0s in ^  

t 13 -  - s i n 0

t 21 — s i n < p s i n 0 c o s i / '  -  c o s y j s i n ^  

t 22  -  s i  n i p s  i n  0 s  i n i / '  +  cos<pcosip 

t 23  -  s i n y ? c o s 0

t 31 = cosy?sin0c o s 0  + s in ^ js in ^  

1 3 2 — cosy?sin0s im /’ -  sin^»cos0 

t 33 — c o s p c o s 0

The transformation matrix is orthogonal and therefore its transpose is equivalent to 

its inverse, and can be used to transform a set of variables from body axes to earth 

axes.
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Accelerations can be provided by differentiating equation 2.1,

**b * 11 * 1 2 * 1 3 **e

V b - * 2 1 * 2 2 * 2 3 +

W b * 3 1 * 3 2 * 3 3 w e

* 1 1  * 1 2 * 1 3

* 2 1  * 2 2  * 2 3

* 3 1  * 3 2  * 3 3

"

ue

v e

we
( 2 . 2 )

Where

i i  -  0 t 1 3 c o s i £  -  i - t 12  

1 2 "  i 3s ini£ +  i ^ t , ,

1 3 =- -dCOSd

2 1 = ^*3 1 + ^*2 3COS1A ” ^*2 2

22 “  ^*32 + ^*23s i n ^ + ^*21

2 3  ~  ^ * 3 3  +  ^ * i 3 S i n ^

3 1 “  ~<pt 2 1 +  0 t 3 3 C O S ^  -  l / ' t  3 2

3 2  "  " ^ * 2 2  +  * * 3 3 S i n ^  +  ^ * 3 1  

3 3 “  " P *  2 3 +  ^ * 1 3 C 0 S ^

The velocity components of the body fixed axis system, u, v and w, can be resolved 

into a single total velocity vector V,

V — ( u 2 + v 2 + w2) i (2 .3 )

and the aircraft's angles of sides  Up (3, and incidence a , are as shown in f ig  2.8, 

and are defined as:

a  =» t a n  1 (w /u) 

(3 = s i n -1 (v/V )

(2 .4 )

(2 .5 )
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2.4 FUNDAMENTAL EQUATIONS OF MOTION

The next step in the development of the dynamics of the aircraft is to consider the 

aerodynamic forces and moments which act on the airframe and result in changes in 

the aircraft's body velocities and accelerations. These may then be translated to 

earth fixed axes using equations 2.1 and 2.2 and the resulting dynamic behaviour of 

the aircraft deduced.

In standard form (eg. Duncan, 1952) the fundamental equations of translational and

rotational motion and the Euler angle rates can be written as,

Translational Motion

u =■= (v r  -  wq) + *  -m gs i n 0

v  — (wp -  u r ) + i  +m gcosflsiny? ( 2 . 6 )

w =* (uq -  vp) + ?  +m gCOS0COS^J

R o ta t io n a l  M otion

*XXP = ( Iy y  ” ^zz^ + 1 xz (** + pq) + L

*yyq ~  ^ I z z  ” xx x ) r P + 1x z ( r 2 "  P 2) + M (2 .7 )

* Z Z r  ”  ( I X X  “ Jyy)pq +  ! x z ( p  -  q r > +  N

E u le r  A nele R a te s

“ P + qsinptanfl + rcos^tanfl 

8 = qcosy? -  rsin<p 

ip = qsin^?sec0 + r c o s p s e c d

( 2 . 8 )

inhere Ixx, Iyy, Izz and Ixz are the moments and product of inertia and m is the 

mass of the aircraft. The external forces (X,Y,Z) and moments (L,M,N) are 

considered to be the sum of contributions from all dynamic and aerodynamic 

sources. The importance of the above Euler equations, which are derived from a 

consideration of Newton's second law of motion, is that they allow the body 

velocities and accelerations to be defined in terms of the forces and moments acting 

on the aircraft.
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In order to solve the fundamental equations of motion it is necessary to first select 

a set of axes. As discussed in the previous section there are two main axis sets: 

body fixed axes and earth fixed axes. The disadvantage of body fixed axes is that 

they produce a rotating frame of reference with the result that expressions for 

translational accelerations include angular velocity terms eg. equations 2 .6 .

However, by a suitable choice of axes, it is possible to uncouple translational motion 

from rotational motion. Since rotational motion is more rapid than translational, 

solution of the rotational equations can then be executed more frequently than the 

translational equations, thus resulting in a more efficient (and simpler) computer 

implementation. For solution of rotational equations, body— fixed axes are chosen and 

have the advantage of constant moments of inertia. Earth— based axes are used for 

the translational equations of motion.

To simplify the analysis of the main rotor a further three further axes systems are 

employed. The blade system (subscript B) is fixed in the flapping blade whilst the

hub system (subscript H) is aligned along the shaft and centred at the rotor hub.

The hub/ wind system  (subscript Hw) has the hub x— axis aligned with the resultant 

aircraft velocity in the hub xy—plane. Details of the transformation matrices between 

these systems and between these and body axes are derived and stated by Padfield, 

1981.

The fundamental equations of motion are non— linear since superposition, the 

fundamental property of linear systems (and the property on which they may be 

defined) does not hold. However, it is often advantageous to represent the dynamic 

behaviour of a system by linear equations, perhaps the most important benefit being 

that the solution of linear equations is, in most cases, compar&.kto.^ simple. Also, 

and of particular relevance to this thesis, it facilitates the use of linear matrix 

algebra which has many advantages in the study of control systems.

In general, there are very few real linear systems, and taken to the limits of their

performance, it is probably true to say that there are no real full— range linear 

systems. However, in most cases, and provided the system is stable, when inputs are

limited the system at least approximates to linear behaviour. In such cases it is 

possible to consider deviations about some desired set of steady— operating conditions. 

A change in input, desired or otherwise, then causes a change in output. Thus it is 

obvious that zero change in input will produce no change in output and that the 

initial steady operating conditions are zero. This process is known as linearization 

( f i g 2.9, page 25). The general procedure for linearizing a system is outlined next, 

whilst the linearization of the Euler equations is presented in section 2.8.

27



The starting point for the linearization is to consider that any variable is composed 

of two distinct parts. Firstly, a component which constitutes an average steady— state 

or trimmed condition and secondly, a perturbation component about this nominal 

operating point, eg.

u = ULo + u X = X0 + X

where the subscript 'o ' denotes the steady—state condition. The relevant dynamic 

equations of motion due to small perturbations can then be formulated by evaluating 

the trimmed equations and the perturbed equations independently, then subtracting 

the trimmed from the perturbed. In doing so, products of perturbations are neglected 

and small angle assumptions (ie. for general small angle T, cos f=  1 ; sinT= f) are 

made.

Finally, the external forces and moments can be expanded as a standard Taylor 

series, neglecting second order and higher derivatives since these will be negligible 

for small perturbations, eg.

a x  ax  axX = Xn + u + w + -c— q + , u au  aw aq  ^

Note that the equations derived are only valid for small excursions from the 

operating point and if a different operating point is used then the above process 

must be applied to the new operating point to produce a different set of linear 

equations.

2.5 MATHEMATICAL MODELS

To study the dynamics and control of a helicopter, or any system, it is necessary to 

establish a mathematical model which comprises (non— linear) differential (ordinary or 

partial) equations. If these equations have, or can be suitably reduced to, a linear

form then the Laplace Transform or linear matrix algebra or a combination of both 

can be used in solving these equations and hence assisting in the determination of 

controllers and/or observers for the system.

The nature of the model depends largely on the use for which it is required and 

the complexity of the system being modelled. It may be a very detailed

representation or it may be very simple, indicating approximate behaviour or

behaviour within a limited operating condition. In many cases, either through

necessity or for simplicity, and particularly in large, complex systems, the model will
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be based on both theoretical and empirical knowledge. The advantages of a fully 

theoretical model are its reliability and flexibility in allowing for major changes in 

system and control, and its ability to predict behaviour in a wide operating range. 

However, this ideal situation is rarely achieved due to a lack of precise knowledge 

about the system and the need to make assumptions which require verification.

Although empirical results are essential for confirming basic theory, indicating 

deviations due to omitted or unknown factors and for determining parts of the model 

on a black box basis, it is important to remember the method has limitations. The 

relationships established are particular to the unit under test, will generally only be 

valid in a narrow operating range and require good test techniques and facilities. 

Nonetheless, in the absence of other knowledge or for a system which is difficult to 

define, this method is normally the most practical choice (See for example, Astrom 

and Eykhoff, 1971).

Once the model has been designed and 'created', it is crucial that it is verified : 

this is usually accomplished by a comparison of simulation results and empirical data 

from the actual system, and will indicate any deficiences in the model. This 

development cycle of adjustment and testing continues until the desired degree of 

correlation between the model and the system is achieved.

For this research the choice of mathematical model was influenced by the basic 

premis«, according to the literature, that an accurate model is required for 

satisfactory observer performance. The model selected was developed by the Royal 

Aerospace Establishment (RAE) at Bedford, for general use in the prediction of the 

important, rigid body, fuselage dynamic motions, throughout the flight envelope. In 

order to obtain satisfactory simulation results, the model is extensive and 

complicated. This is because of the number of degrees of freedom required, the 

complexity of the rotor wake and its interference effects, and the non— linearities 

present.

Despite this, the model has proved to be accurate for limited manoeuvres associated 

with procedural or navigational flying tasks and although it is not yet able to portray 

the full character of stability, response and handling characteristics during the applied 

flying involved in nap— of— the— earth operations, it is still of immense use in the 

study of helicopter control system design.

The model is implemented as a digital computer program, written in Fortran, and 

contained within a software package known as HELISTAB (Padfield, 1981; Smith, 

1984), which can be run with solutions, updated every 50mS, generated by a fourth
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order Runge— Kutta numerical integration algorithm. The elements of the model : 

fuselage, a main and tail rotor, tailplane, fin and pilot controls are shown 

diagramatically in f ig  2.10. It is a n o n -lin ear model and the system order is user 

selectable : eighth—order (six degrees of freedom), eleventh—order (nine degrees of 

freedom) or fourteenth—order (twelve degrees of freedom). The differences are a 

function of the modelling of the main rotor only.

In the eighth order model the rotor is assumed to have quasi— steady flapping and 

coning i.e the coning angle and the longitudinal and lateral flapping angles are

determined purely through algebraic relationships. If the coning angle, longitudinal 

and lateral flapping angles are considered as degrees of freedom then the system 

becomes eleventh order, whilst the fourteenth order model also includes the 

derivatives of the coning and flapping angles as degrees of freedom.

Three other types of model were considered, but rejected. Reduced order dynamic 

models have the problem of inadequate prediction of coupling effects when simulating 

hingeless rotor helicopters and in severe manoeuvres, coupling between rotor 

collective pitch and fuselage pitch attitude can be excessive. The limitations of 

kinematic models, as shown by Curtiss and Price (1984), are insufficient prediction 

of dynamic behaviour at low speed, and since the rotor is not modelled, the 

significant aerodynamic effects of the rotor and its down wash are not considered.

Linearized models are also of limited use since they only predict the helicopter's

flight state for small perturbations from its trim condition.

In the interests of simplicity and illustration, the remaining sections of this chapter 

deal with the eighth order model only, however the relevant order— reducing

assumptions are clearly stated in section 2 .6 .1 , which discusses the modelling of the 

main rotor. For a full discourse on the derivation of the model, the reader is 

refered to the documentation on HELISTAB.
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2.6 EXTERNAL FORCES AND MOMENTS

To solve the nine differential equations 2.6, 2.7 and 2.8 it is necessary to first 

determine the external forces (X,Y,Z) and moments (L,M,N). These are considered 

to be a sum of the contributions from the main rotor (suffix R), tail rotor (suffix 

T), tailplane (suffix TP), fin (suffix FN) and fuselage (suffix F). Thus the forces 

and moments can be written as,

X =» Xp + Xj + X jp + Xpjj + Xp

Y -  YR + YT + YTP + Yfn  + YF

Z = Zp + Zy + Zyp + Zppj + Zp

(2 .9 )

L = Lp + Ly + Lyp + Lppj + Lp

M = Mp + My + Myp + Mppj + Mp

N = Np + Ny + Nyp + Nppj + Np

( 2 . 10)

For a full account of the derivations of forces and moments used in this model the 

reader is refered to the documentation for HELISTAB (Padfield, 1981; Smith, 1984), 

however a brief description is given here, and should be read in conjunction with 

f ig  2.11, which defines the forces and moment arms, and f ig  2.12 which is a block 

diagram of the complete helicopter flight dynamic simulation model. Expressions 

stated assume an anti—clockwise rotating rotor (as viewed from above), with î =0  at 

the back of the disc and (3 positive up. Symbols used are defined in Appendix four.

2.6.1 FORCES AND MOMENTS OF THE MAIN ROTOR

The main rotor consists of rigid, constant chord blades, hinged with stiffness in flap 

at the centre of rotation. Linearly varying twist, can be defined and the pitch

of the blades can be altered collectively and cyclically, once per revolution of the 

rotor. The lag degree of freedom is not included. A constant main rotor speed is 

assumed and therefore expressions for engine torque, Q g , and main rotor speed, fl, 

can be written as,

Qe = Or + gtrQtr

fi = + 0,
3

( 2 . 11)
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Analysis of the rotor can be divided into three, related categories: kinematics, 

dynamics and aerodynamics, and these are examined below.

BLADE KINEMATICS

Inertial components of velocity and acceleration of a blade element are derived using 

several assumptions. Flapping angles are assumed to be small so that linearity 

assumptions can be invoked and the overall acceleration of the fuselage and blade

weight— effects are neglected. Furthermore, yaw and sideslip rates are assumed to be 

small in comparison with the rotor angular rate fi. Rotor rotation relative to the 

fuselage, and pitch, roll and yaw rates are, of course, superimposed on this basic

flapping.

BLADE AERODYNAMICS

A number of assumptions are made to make it possible to integrate the aerodynamic 

loading analytically and hence produce closed form expressions for the rotor forces 

and moments. These are,

♦ A constant, two— dimensional, lift curve slope is assumed in calculating the 

lift of a blade, and its profile drag, 5, is found from a quadratic function of 

rotor— thrust coefficient.

♦ The local airflow is assumed to be steady and incompressible.

♦ Stall and reversed flow effects are ignored.

♦ The induced velocity distribution, normal to the rotor disc, includes linear

lateral and longitudinal variations, the value at the centre satisfying simple 

momentum considerations.

The induced flow through the rotor is approximated by a simple, uniform

distribution with a longitudinal variation produced by the rotor wake. The uniform 

component, normal to the rotor disc is given, from momentum theory, by the 

expression:

CT
X „  ----------------------------   (2.12)

2 ( / i *  +  ( n z  -  X 0 ) 2 ) i
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which is solved for X0 (the non-dim ensional downwash at the rotor centre) by an 

iterative process. However, it should be noted that this expression is not valid when 

the rotor is in the vortex ring state. This is the intermediate region between 

helicopter and windmill modes, where a ring of air is formed round the rotor 

blades. The helicopter will encounter turbulence and the pilot will experience 

vibration, a high rate of sink and some partial loss of control due to the fact that 

the helicopter is descending into its own slipstream ( f i g 2.13).

BLADE DYNAMICS

System order, as mentioned in section 2.5, is dependent on the modelling of the 

main rotor dynamics. In the eighth order, six degrees of freedom model, the 

important assumption is that quasi— steady flapping and coning are used in the 

derivation of the reaction forces and moments on the fuselage. This means that 

interaction of disc tilt modes with fuselage modes is neglected and the coning angle 

(/30), longitudinal flapping angle (j3lC) and lateral flapping angle ((3 1S) are 

determined solely through algebraic relationships.

The justification for this simplification is that blade flapping dynamics have a 

negligible effect on stability, control and handling qualities since the frequency 

separation between the rotor modes and overall fuselage rigid body modes is high 

and that the coupling between them is small.

For an eleventh order model, /30, 0 1C and /31S are retained as degrees of freedom 

while the fourteenth order model also includes their derivatives |30, |S1C and 0 1S as 

degrees of freedom. The other two main assumptions used in modelling the blade 

dynamics are that coupling effects from blade pitch and lag dynamics into flapping 

motion are neglected and that blade flapping is simulated by using a centre— spring 

equivalent rotor with flapping stiffness spring constant K^, the value of which is 

chosen to give the same rotating and non— rotating flapping frequencies as those of 

the true blade.

In Padfield, 1981, the validity of this centre—spring approximation for articulated 

and hingeless rotors is discussed and it is established that an equivalent 

centre— spring model can be defined for both types of rotor through stiffness and 

inertia matching.

These assumptions, along with those for blade kinematics and aerodynamics, facilitate 

expressions to be formulated for the main rotor forces and moments which can be 

stated as:
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FIG 2 . 1 3  AIRFLOW PATTERN IN VORTEX RING STATE
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Xr c o s 7 s  0 - s i n 7 s i PT R * (n R )2 a 0s [  ]

Yr - 0 1 0 i pirR 2 ( f iR )= a 0 s [  |& £  ]

Zr s i n 7 s  0 c o s 7 s ip * R 2 ( n R ) * a 0 s [  ]

where the first matrix on the righ t-hand  side of the equation is a transformation 

matrix which transforms the rotor forces from shaft— hub axes to body axes.

LR =  " 7  K0 0 i s  + hRYR

mR -----  7  K0 0 i c  +  x c g z R “ hRx R

nr -  g  + ( ]S ’ ] -  XcgY]

Where fi' = and 7  = ijj

( 2 .1 4 )

2 . 6 . 2  FORCES AND MOMENTS OF FUSELAGE. EMPENNAGE AND TAIL ROTOR

Due to the interaction of the main rotor wake with the fuselage, fin and tailplane 

and the complex flow patterns around them, it proved difficult to formulate analytic 

expressions for force and moment contributions from these elements. For these 

reasons, empirical wind tunnel data has been used to formulate piece— wise, linear 

relationships between aerodynamic coefficients and angles of attack and sideslip.

Fuselage aerodynamic force functions C yfn (0F N )»  ^X F (°F )»  C z f ( ° F )  anc* fuselage 
aerodynamic moment functions Cjsjp^C/Sp), C^ppC/Sp), C ^pC ap) are shown in f ig  

2.12 in the top—left hand corner and the bottom—right hand corner, respectively, 

op and (3p are the fuselage angles of incidence and sideslip and /Sppj is the fin 

sideslip angle. The segmented appearance of these is due, in general, to distinct 

changes in the character of the flow field, eg. 'lift' forces associated with attached 

flow at low incidence producing destabilising moments followed by flow breakdown 

and sepcu'tiJUoft at moderate incidences with stabilising moments.
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FUSELAGE FORCES AND MOMENTS

Force and moment coefficients of the fuselage are referred to rotor disc area and 

radius, whilst those of the fin and tailplane are referred to their respective areas, 

S jp  and Spjsj, and their distances to the centre of gravity : Ot F 4- xcg) anc*

(lpN+ xcg) • The fuselage rolling moment Lp, is assumed to be zero.

Xp = ip(fiR ) 2SpVp2[Cxp(o:p) ]

YF -  ip (f!R )2Ss V c Y S ^

ZF = i p ( flR) 2s pVp2[CZp ( a p ) ]

(2 .1 5 )

Lp = 0

Mp -  ip (^ R ) 2S p lFVp2[CMp(Q!p) ]

%  = ip(OR) 2Ss lpV p2[C jqp(% ) ]

(2 .1 6 )

where, in the expression for Np, C n F A (^ f)  *s usec* f°r forward flight and 

C n f b ( ^ f )  ls usec* f°r rearward flight.

TAILPLANE FORCES AND MOMENTS

The tailplane is assumed to contribute a normal force along the body z— axis only, 

therefore the external forces are,

Z jp  -  Jp(flR) 2V j2S jp [C Zjp(Q!'i'p) ] (2 .1 7 )

and

X jp Yyp =■ 0 (2 .1 8 )

where the coefficient CZ’j’p ( a r p )  is effectively a function of the lift curve slope 

and the effect of the main rotor wake impinging on the tailplane is incorporated in 

terms V-p and cq-p.
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The moment produced by force Zrpp is,

MTP -  (1TP + x Cg)Zpp (2 .1 9 )

and

L tp  ~ N^p =■ 0 ( 2 . 2 0 )

FIN FORCES AND MOMENTS

A normal force only along the body y—axis is assumed and can be written as,

yfn " ip(fiR) 2Vfn2sfn[cyfn(^fn) ] ( 2 . 21)

and

XFN = ZFN = 0 ( 2 . 22)

The moments produced by force Y p^ are given by,

lFN " hFNYFN

Mf n  = 0

nFN ---(]FN + xcg)yFN

(2 .2 3 )

TAIL ROTOR FORCES AND MOMENTS

The thrust of the tail rotor is calculated in a similar manner to the main rotor, but 

without the inclusion of flapping terms, since rotor thrust is assumed to be 

independent of blade flapping. It is also small compared to the thrust produced by 

the main rotor and therefore drag and siAeforce from the tail rotor blades is 

neglected.

The induced downwash at the tail rotor from the main rotor is taken to be the 

uniform induced velocity, \ 0, multiplied by a set factor K ^ .  An empirical fin 

blockage factor, F'p, is included to account for the presence of the fin and results 

in a decrease in the achieved tail rotor thrust. Reduction in tail rotor collective 

pitch due to coning is also modelled.
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A sideforce on the helicopter is produced by the tail rotor thrust, and is given by,

Yt  -  £ p ( f ly R y ) 2a 0ySyirR y2 [ ] FT ( 2 . 2 4 )

and this produces two moments,

Ly =■ h fY j

NT =  - ( 1 T +  x c g )YT

( 2 .25 )

A l l  o t h e r  t a i l  r o t o r  f o r c e s  and moments a r e  assumed t o  be z e r o :

Xy = Zy «  0 (2 .26 )

My = 0 (2 .27 )

2.6.3 EXTERNAL FORCES AND MOMENTS USED BY HELISTAB

From the above analysis of the external forces (X,Y,Z) and moments (L,M,N) of the 

main rotor (R), tail totor (T), tailplane (TP), fin (FN) and fuselage (F), it is 

obvious that equations 2.9 and 2.10 can be rewritten to take account of the forces 

and moments which are assumed to be zero. Thus,

X = XR +  XF

Y  -  Y R  +  Y y  +  Y f n  +  Y f  r ( 2 . 2 8 )

Z  =* Z R  +  Z y p  +  Z jr

L  =  l r  +  L y  +  l f n

M =* Mr  + Myp + Mf

N — NR + Ny + Nffl + Np

( 2 .2 9 )
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2.7 MODEL LIMITATIONS

The theoretical model contained within the software package HELISTAB was derived 

for flight mechanics studies, and in particular, for the investigation of handling 

qualities using a real— time, piloted, ground based simulator. Although confidence in 

the model, over a range of flight conditions, has been encouraged by comparison 

with actual flight data, limitations have been identified: notably in the deficient 

modelling of hingeless rotors, and fuselage and empennage aerodynamic 

characteristics.

Aerodynamic force and moment coefficients of the fuselage are given as empirical 

functions of the incidence angles and are determined from wind tunnel data, whilst 

those of the tailplane and fin are derived using two— dimensional aerodynamic 

theory. In both these cases the coefficients are only accurate over a limited range :

- 2 0 °  <  ot, (3 < +20°

Outside these limits the functions increase or decrease rapidly — behaviour which is 

not consistent with a real helicopter where the flow would be expected to separate 

from the fuselage. The flow pattern in these circumstances is obviously extremely 

difficult to predict due to the down wash from the main rotor. The fin and tailplane 

coefficients are also likely to be inaccurate outside the above limits since their 

surfaces will probably have entered the stall region. In addition, the down wash 

effects on the tailplane from the main rotor are not modelled and this leads to poor 

prediction of the tailplane pitching moment and thus inaccuracies in the calculation 

of the pitch attitude.

Other factors requiring attention include,

♦ Inability to model vortex ring conditions at low speed and steep descent 

angles: an area of the flight envelope in which all types of helicopter could 

potentially be very effective.

. Effects of non— uniform inflow, derived from momentum theory, on rotor 

moment derivatives.

♦ Local non— linear aerodynamics determined on individual blades eg. blade stall 

effects, more complex representation of blade dynamics and improved 

modelling of the rotor wake and flow around the fuselage and empennage.

♦ Influence of engine/rotor dynamic couplings on flying qualities.
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At present the model is being continually improved as studies of the aerodynamics 

and dynamics reveals new information which leads to a greater insight into the 

problems involved. In particular work by Black, Murray—Smith and Padfield, 1986; 

Black, 1987 and Black and Murray—Smith, 1989, into frequency domain parameter 

identification techniques has produced promising results. Fig 2.14, for example, gives 

a comparison of measured and predicted time responses for a pedal doublet input to 

the Puma at 100 Knots.

However, despite these improvements many problems remain which, as will be 

discussed in later chapters, causes serious problems in the application of observers 

for estimation and sensor fault detection. Nevertheless it has still proved invaluable 

in the course of this research.

2.8 LINEARIZING THE EQUATIONS OF MOTION

In order to apply the theory of chapter three it is first necessary to obtain the

linearized state— space matrices A and B for any desired flight condition. The section

of HELISTAB used for this purpose is the routine for calculating the helicopter's 

trim state. This routine calculates the trim attitude and rotor conditions for a given 

steady flight state by setting the acceleration terms in the equations of motion (2.6 

and 2.7) to zero and solving the resultant six non— linear equations.

As discussed in section 2.4 the first step in the linearization process is the definition 

of a reference trim state and it is the rectilinear flight state (denoted by the 

subscript 'o') which is selected. Since the trimmed condition implies zero

translational and rotational accelerations this gives —

(2 .30)

u =* 0 = XQ -  mgsin0.

v = 0 = Y0 + mgcos0osin^>o

w -  0 — Z0 + mgcos0oc o s ^ o

L0 -  M0 -  N0 -  0

(2 .3 1 )
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The non— linear equations of motion (2.6, 2.7 and 2.8) can then be linearized as 

follows,

(1) Replace total values by a nominal value (subscript 'o ' since this is the

rectilinear trim state) plus a perturbation, eg

u = u 0 + u  X = X Q + X

(2) Expand resulting equations making small angle assumptions (ie. for general

small angle £, cos£= 1 ; sin£= £) and neglecting products of perturbations.

(3) Express the external forces and moments as a standard Taylor series, eg.

Appendix 1 contains full details of this linearization process which results in the A 

and B state matrices shown at the end of this chapter.

If the state variables are then redefined as the perturbations from the reference 

state, then the linearized equations of motion can be written in the form,

and substitute using equations 2.31

x -  Ax + Bu

where

u

w

q 
e

X u
V

p

r

A : System Matrix 

B : Control Matrix
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In Helistab the partial derivatives are calculated by numerical differentiation which 

has the added advantage of simplifying the task of changing the model since only 

the expressions for forces and moments require alteration.

2.9 TIME RESPONSES

HELISTAB enables the user to define a control input from which it will determine 

the helicopter's time response. This is accomplished as follows,

(1) Pilot control inputs 0oe, 0 lS, 0 lC and 0 ot are defined as functions of

time.

(2) External forces and moments and the gravitational force components are 

calculated at time t.

(3) The resulting nine simultaneous non— linear, ordinary, differential equations 

(2.6, 2.7 and 2.8) are solved from time t to t+  6, to obtain the

helicopter's body axis, translational and rotational velocities and attitude

[ u w q 0 v p < £ r i / '  ]T

(4) Component velocities in earth— fixed axes can then be determined by

transformation through the Euler angles.

(5) Finally position in earth— fixed axes are calculated by integration of the 

earth—axis velocities.
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CHAPTER THREE 

THEORY
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3.1 MULTIVARIABLE STATE SPACE DESCRIPTION

In keeping with modern control theory, time— domain techniques provide one widely 

used approach to the analysis and design of helicopter flight control systems since 

they may be utilised for non— linear, time varying, multivariable systems. In standard 

form, the linearised, dynamic equation for the helicopter is of the form,

x = Ax + Bu ( 3 .1 )

where A is the system matrix and of dimension (nxn); B the distribution matrix

(nxm); x the state vector (nxi)  and u (mxi)  the input vector. For the time 

invariant case the solution of the state equation is (see for example CHEN, 1984)

x ( t )  = eAtx (o )  + I t eA( t - T )Bu(T) dr  ( 3 .2 )
~  J  o ~

t h e  t r a n s i t i o n  m a t r i x  eAt b e i n g  g i v e n  by

eAt = L- 1 [ ( s i  _ a ) - t ] ( 3 .3 )

where L i s  t h e  Lap lace  o p e r a t o r ;  and hence x ( t )  c a n  be w r i t t e n  as

x ( t ) = L“ 1 [ ( s i  -  A) -1 x( o) ] + L-1 [ ( s i  -  A) -1 Bu(s )  ] ( 3 .4 )

The dynamics of the system, ie the eigenvalues, are therefore determined by the 

roots of the characteristic equation of matrix A,

| XI -  A | -  0 (3 .5 )

eigenvalues with negative real parts giving rise to stable systems, whilst those with

positive real parts lead to instability.

The output equation for the system of equation 3.1 can be defined as

y -  Cx ( 3 .6 )

where C is the output matrix of dimension (pxn) and y is the output vector of

dimension (pXi). The resulting system is shown diagramatically in f ig  3.1.
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FIG 3 .1  MULTIVARIABLE STATE SPACE DESCRIPTION

FIG 3 . 2  ADDITION OF FEEDBACK CONTROL LAW, K

NOTATION

X -  STATE VECTOR nx1

A -  SYSTEM MATRIX nxn

B -  DISTRIBUTION MATRIX nxm

u -  INPUT/CONTROL VECTOR mx1

y -  OUTPUT VECTOR px1

c -  OUTPUT MATRIX pxn

K -  CONTROL MATRIX m x p
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3.2 WHY USE OBSERVERS ?

If a feedback control law K (mxn) is being used for an automatic flight control 

system (AFCS), then this may be represented by

u = -Kx (3 .7 )

however x is not normally directly available and consequently the practical synthesis 

of the control law requires the use of ( f i g  3.2),

u =T-Ky =£-KCx (3 .8 )

Thus the entire state vector is usually required if the deduced control law is to be 

implemented. In practice however, not every state variable is accessible, either owing 

to failure of its sensor or because it cannot be measured. This is often the case in 

multi— lane systems where physical constraints often mean that it is not possible to 

have the same number of sensors as channels.

There are two possible solutions to the problem : use a control law design method 

which directly accounts for the unavailability of certain states or, more simply, to 

use an estimate of the state vector. A subsystem performing such observation of the

state vector based on information received from the measurement of the input and

the output of the system, is called a state observer or a state estimator and was

first proposed by Luenberger, 1964 for deterministic systems; and by Kalman, 1960 

for stochastic systems. (See also, for example, Aoki and Huddle, 1967; Newmann, 

1970).

This thesis is concerned with the application of deterministic, continuous— time, 

linear, time— invariant system theory in the design of state observers and sensor fault

detectors for a stochastic, non— linear, time— varying system: namely, the single rotor

helicopter.

3.3 OBSERVABILITY OF LINEAR DYNAMICAL EQUATIONS

Rigid definitions for observability and controllability (which is the dual of

observability), are comparatively recent, eg. Kalman, 1963; Gilbert, 1963. Simply 

stated a system is said to be observable if every state x(T) can be determined 

exactly from measurements of the outputs y(t), over a finite interval of time 0<t<T. 

The conditions for full observability may be stated mathematically as (Chen, 1984),
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The n—dimensional linear, time invariant, dynamical equations of 3.1 and 3.6 are 

observable if and only if any of the following equivalent conditions is satisfied:

(1) All columns of C e^t are linearly independent on [o,«>) over C, the field of

complex numbers.

All columns of C (sl — A )-  1 are linearly independent over C.

(2) The observability grammian

Wot = J \A * T C*CeAT dT

where ' * ' indicates the complex conjugate transpose; is non— singular for ai| 

t > 0 .

(3) The (npxn) observability matrix

V2 -  [ C CA CA2 .......... CA0 " 1 ]T (3 .9 )

has rank n.

(4) For every eigenvalue X of A (and consequently for every X in C ), the

(n+ pxn) complex matrix

XI -A 
C

has rank n, or equivalently, (si— A) and C are right coprime.

The observability test given by (3) is the most common form and was the one used

for this thesis. It is also used as a basis for canonical transformations as can be

seen in section 3.7.

An important property of the observability and controllability of a linear, time 

invariant, dynamical equation is that they are invariant under any equivalence 

transformation.
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3.3.1 OBSERVABILITY INDICES

Consider the observability matrix V 2, given by 3.9,

C

CA

CAn “ 1

C, A 

C2A

CpA

c lAn - 1

C2An_1

CpAn “ 1
(3 .1 0 )

Working from top to bottom, determine the linearly independent rows of V 2; that 

is, if a row can be written as a linear combination of the rows above it, the row is 

linearly dependent; otherwise, it is linearly independent. These independent rows are 

then arranged as,

[ C1 Ct A . . .  C^ 1" 1 C2 C2A . . .  C/ ^ ' 1 . . .  Cp . . .  CpA^P 1 ]T (3 .1 1 )

The integer /q is the number of linearly independent rows associated with Cj, or the 

length of the chain associated with Cj. The observability index ft, of the pair [A,C] 

is then,

fi -  max { , n 2 , . . . , fip } (3 .1 2 )

and

/ î -t* fi2 . . .  ■+■ fip ^ n (3 .1 3 )

where the equality holds if pair [A,C] is observable. The set {/* ■,,/*.,,...,/*p} are 

called the observability indices of [A,C] and their significance can be seen in section 

3.7.
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3.4 THE FULL ORDER OBSERVER

As shown by Luenberger, 1971, almost any system can be considered as an observer.

If the available outputs of a free system S I , say, are used as inputs to drive

another system S2, then the second system will almost always serve as an observer

of the first system in the sense that its state will tend to track a linear

transformation of the state of SI. This result forms the basis of observer theory and 

explains why there is a great deal of freedom in the design of an observer.

The heart of the observer is an accurate model of the system around which a 

feedback loop is added ( f i g 3.3). The aim is to subject this model to the same 

input as the plant and to make the model's output accurately follow the measured 

output of the plant. If,

. the model is accurate

♦ the inputs are the same, and

♦ the outputs are the same

then the intermediate state variables must also be the same.

Consider the system to be observed is in the form of linear equations 3.1 and 3.6,

x = Ax + Bu (3 .1 )

y -  Cx (3 .6 )

where the system matrix A, distribution matrix B, output matrix C, input vector u, 

state vector x and output vector y, are of dimensions (nxn), (nxm), (pxn), (m xi), 

(nx i) and (pXi), respectively. The equation governing the observer can then be 

written as:

x -  Ax + Bu + HC(x -  x) (3 .1 4 )

where x is the state of the observer and hence the estimate of the system state x, 

and H is the (nxp) observer matrix. Define the error vector between the estimate of 

the state x, and the true state x, as

e = x -  x (3 .1 5 )
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FIG 3 . 3  OBSERVER CONNECTED TO SYSTEM
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and therefore the rate of change of this error is

e = x -  i  (3 .1 6 )

Combining the system state equation 3.1, with the observer equation 3.14, yields,

x -  x = Ax + Bu -  Ax -  Bu -  HC(x -  x)

= (A -  HC) (x -  x)

o r

e -  (A -  HC)e (3 .17 )

This equation expresses the error dynamics e, of the estimate in terms of the system 

matrix A, the output matrix C and the observer matrix H only, ie. the error 

dynamics are independent of the state x and the input u.

Design of the observer therefore reduces to the problem of determining the matrix 

H, such that the composite matrix (A—HC) has some prescribed eigenvalues. 

Fortunately, as shown by O'Reilly, 1983, for example, given that [A,C] is observable 

the eigenvalues of (A—HC) can be arbitrarily assigned, provided complex conjugate 

eigenvalues appear in pairs.

Obviously the selection of H will be made such that the eigenvalues of the observer

will be more negative than those of the system, so that the state of the observer

will converge rapidly to the state of the observed system. Consequently, even if

there is a large error between x(t q) and x(t ^ at initial time t g, the vector x will 

approach x rapidly.

Theoretically the eigenvalues can be moved arbitrarily towards minus infinity, yielding 

extremely rapid convergence, but in practice this tends to make the observer act like 

a differentiator and thereby become highly sensitive to noise, and to introduce other 

difficulties.
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3.5 CLOSED LOOP PROPERTIES -  USING A FEEDBACK CONTROLLER

Whatever the type of control employed, as far as the feedback of a measureable 

state vector is concerned, the closed loop properties of the system can be 

investigated, with particular emphasis on stability. However, if an observer is 

employed in order to obtain an estimate of the state vector, then the closed loop 

system is no longer dependent on the true state vector, but rather obtains 

characteristics from its estimated version (f i g  3.4).

This raises three questions —

(1) In the state feedback u= r+  Kx, the eigenvalues of the resulting equation are 

given by the eigenvalues of (A-+- B K ). In the estimated state feedback 

u== r+  Kx, are the eigenvalues the same?

(2) Will the eigenvalues of the state estimator be affected by the feedback 

u = r+ K x?

(3) What is the effect of the estimator on the transfer function matrix from r to

To answer these questions consider the following system, with a controller using an 

observer to obtain an estimate of the state vector,

C o n tro l Law : u = r  + Kx (3 .1 8 )

System  : x = Ax + Bu (3 .1 )

y = Cx (3 .6 )

O b se rv e r  : x — Ax + Bu + HC(x -  x) (3 .1 9 )

Thus the closed loop system that results from the interconnection of the dynamic 

observer—based controller 3.18 and 3.19 to the open—loop system of 3.1 and 3.6, is 

described by the composite system

x -  Ax + BKx + Br (3 .2 0 )

x = HCx + (A -  HC + BK)x + Br (3 .2 1 )
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FIG 3 .4  OBSERVER USED TO PROVIDE ESTIMATE OF 
STATE x FOR FEEDBACK CONTROL
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o r  in  m a tr ix  form ,

X

SB

A
X
~

A BK

HC A -  HC + BK

■

X B

+A
X B
~ (3 .2 2 )

By u s in g  th e  t r a n s fo r m a t io n

I 0 X

AI - I X

(3 .2 3 )

th e  sy stem  o f  3 .2 2  may be tra n s fo rm e d  to  th e  co m p o site  sy stem

X A + BK -BK X B
= +

e 0 A -  HC e 0
~ (3 .2 4 )

The t r a n s f o r m a t io n  betw een

■ ■
X X

A and
X e
~ ~

is linear and non— singular so that the characteristic equation of the composite 

system 3.22, is exactly the same as that of 3.24, which is:

d e t ( XI -  A -  BK) X  d e t(X I -  A + HC) (3 .2 5 )

Thus the eigenvalues of the total system 3.18, 3.1, 3.6 and 3.19 are the union of 

those of (A ■+■ BK) and those of (A — H C ). The eigenvalues of the state are not 

affected by the feedback and, as far as the eigenvalues are concerned, there is no 

difference in state feedback from the estimated state x or from the actual state x.

Consequently, the design of a state feedback controller and the design of a state 

estimator can be carried out independently, the eigenvalues of the complete system 

being the union of those of state feedback and those of the state estimator. This is 

known as the separation property.
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Finally, as shown by Chen, 1984, the transfer function matrix of the complete 

system is

G (s) = C (s l  -  A -  BK)“ 1B (3 .2 6 )

which is the transfer function matrix of state feedback without the use of a state 

estimator. In other words, the estimator is completely cancelled and does not appear 

in the transfer function matrix from r to y.

3.6 THE REDUCED ORDER OBSERVER

Section 3.4 dealt with observers of order n, ie of the same order as the system, 

however if C is assumed to be of full rank (this does not give any loss of 

generality) then it is clear that knowledge of Cx gives measurements on part of the 

state immediately; since

gives the projection of x on the row space of C. Hence it is possible to find the 

other component in the complement of the row space of C by making use of an 

observer of order (n—p). This was first proved by Luenberger, 1964, and has been 

much published since, eg. Luenberger, 1971; Gopinath, 1971; O'Reilly, 1983.

Starting from the usual system equations

x = Ax + Bu (3 .1 )

a change of basis is made (q =  Rx), such that C is of full rank and of the form

y = Cx (3 .6 )

(3 .6 )

C = CR” 1 = [0  I p ] (3 .2 7 )

In the literature, the transformation is such that C is of the form

e  -  [ I p  0 ] (3 .2 8 )

However, if the canonical transformation of section 3.7.2 is used in designing an 

observer then the form of 3.27 is required. To obtain 3.28 Arbel and Tse, 1979 

suggest the use of,



*n-p (3 .2 9 )

where C ,,  C 2, 0 and In_ p are (pxp), (pxn—p), (n -p x p )  and (n—pxn—p) 

matrices, respectively. It is a simple matter to demonstrate that the R matrix 

required to obtain 3.27 is,

R = • 
o I*An -p

C1 C2 (3 .3 0 )

where the dimensions of C , , C 2 and 0 are as above and 1^—p is the (n—pxn—p) 

matrix which has unity elements on the diagonal running from the bottom left— hand 

comer (n—p ,i)  to the top righ t-hand  corner ( i ,n — p), and all other elements zero. 

I*, ie the 1X1 matrix, is [ 1].

The change of basis giving 3.27, transforms 3.1 and 3.6 to,

q = Aq + Bu (3 .3 1 )

2  = CS

where q , A and B a r e  p a r t i t i o n e d  as

(3 .3 2 )

Ei B,a “ n -p x i B = RB -
32

pXl (3 .3 3 ) . B* .

n-pXm

pXm (3 .3 4 )

n-pX n-p

RAR-

n -p x p

A ,, A1 2

> N) CNCN
<

pXn-p pxp (3 .3 5 )
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Equation 3 .31  can then be w r i t t e n  in  the  form

51 “  Ai 1S 1 + Ai 2S 2 + BiS

5 2 A2 lS l A22S2 B2S
(3 .36 )

A 2 1 S 1 == S 2 A 2 2 S 2 ”  ® 2 H (3 .37 )

D e f in in g  th e  o b s e rv e r  e q u a t io n  a s

z  = A1 2q 2 + A ^ z  + BjU + H A j ^ q ,  -  z) (3 .38 )

and  th e  e r r o r  te rm

£ = Si " 5 (3 .39 )

th e n

e = ( A , , -  HA21)e (3 .4 0 )

Thus by choosing H appropriately, e will rapidly tend to zero (c.f equation 3.17). 

The ability to arbitrarily place the eigenvalues is ensured by the observability of the 

pair [A 11,A 21] since the pair [A,C] is observable if and only if [A 11,A 21] is 

observable (Luenberger, 1971).

Now in equation 3.38, the term (g —̂ z) is not directly available and thus 3.37 is 

used and H q 2 is subsequently replaced with [ A1 HA 2 JH q  2 to obtain the final 

reduced order observer equations (shown diagramatically in f ig  3.5):

z = [ A1, -HA 21 ]z + [A 12-HA22 + ( A , , -HA2, )H ]q 2 + [ B n-HB2 ]u (3 .41 )

q , -  z  + Hq2 (3 .42 )

A
Si

M2
(3 .4 3 ) x -  R-1 q (3 .4 4 )
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A ,2 HA;

*> q.

FIG 3 .5  THE REDUCED ORDER OBSERVER
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For instrument fault detection (chapter 7), the most frequently used C matrix is the 

row vector of dimension n, with only one non— zero (usually unity) element. 

However, in general, the transformation matrices given by 3.29 and 3.30 are singular 

for this form of C matrix. Fortunately, by a process of E duction , it was possible to 

deduce a relatively simple algorithm which produces transformation matrices R and 

R“  1 for any C matrix which is a row vector of order n, ie. not just the specific 

case of only one non— zero element. This algorithm is given in Appendix 2 in the 

form of a FORTRAN computer program.

3.7 CANONICAL FORMS

Canonical forms for multivariable systems are, in general, not unique, but their 

structure can be controlled to some extent by their designer. There are many papers 

dealing with the problem of obtaining particular canonical forms (eg Luenberger, 

1967; Jordan and Sridhar, 1973; Aplevich, 1974; Tuel, Chidambara, Rane, Mufti and 

Johnson, 1966), but the treatment given here deals with observable canonical form s  

(Chen, 1984; O ’Reilly, 1983).

It was shown in section 3.3 that the observability of a system could be determined 

from the rank of

The dimensions of V 2 and V are (npxn) and (nxnp) and should be of rank n for 

observability.

Controllability of a system is dual to observability and a system is said to be 

controllable if either of the following two composite matrices are of rank n:

V2 -  [ C CA . . .  CAn“ 1 ]T (3 .9 )

E q u iv a le n t ly ,  i t  can  a ls o  be d e te rm in e d  from

V -  [ CT ATCT . . .  (AT) n “ 1CT ] (3 .4 5 )

Q -  [ B AB . . .  An_1B ] (3 .4 6 )

Q2 -  [ Bt  Bt At  . . .  BT(AT) n_1 ]T (3 .4 7 )

Where Q and Q 2 have dimensions (nxnm) and (nmxn).

65



3.7.1 SELECTION OF LINEARLY INDEPENDENT VECTORS

The first step in the development of a canonical form of the class required is the

selection of n linearly independent (LIN) vectors from the rows or columns of the

defined observability (or controllability) matrices. The n LIN vectors chosen will form 

rows (V 2 and Q 2) or columns (V and Q) of a matrix P of form (stated here for

V 2)

P - [ C , , C , A ...........C 1a ' ‘ ' - ' , C 2 , C 2A .............C 2A ^ 2_1 , C 3 ........... CpA^P- 1 ]T ( 3 . 4 8 )

where the /q's are the observability indices defined in section 3.3.1

The essential restriction is that no vector of the form CjA^ is selected unless all 

lower powers of A, multiplied by Cj are also selected, since if CqAm is linearly 

dependent then so are all vectors of form CiAm + a , for [ a  =  1 ,2 ,3 . . . ] .  For the

sake of simplicity and illustration, the following analysis assumes the use of

observability matrix V 2.

Two methods of selection are of interest here,

(1) Select in the sequence

C 1f C 1A, C 1A 2 , . . .

where Cj is the i^1 row of C; until either C^A11- 1 is obtained, in which case 

the system is completely observable from the first output alone, or until a 

dependency arises. If more independent vectors are required then select from:

C 2 , C 2A, C 2A2 , . . .

until a dependency arises. The procedure continues in this manner until a set 

of n LIN vectors are obtained, and the tendency is to develop a few long 

chains.

(2) Select in the sequence

C, ,  c 2 , . . .  Cp , C,A,  C2A, . . .  CpA, CnA2 ................ CpAn ~i

The tendency with this method is to produce several chains of nearly equal 

length.
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There are numerous other methods of selecting n LIN vectors, which is why 

canonical forms are not unique, but the above procedures are sufficient to produce 

two interesting and very useful forms, these are:

Observable Canonical Form

A = SAS'

C -  CS

0 0 . . .  X X

1 0 . . .  X X

0 1 . . .  X X

0 . . . I X X

( / i j X / ^ )  X 0 0 . . .  X
X 1 0 . . .  X
X 0 1 . . .  X

X 0 . . . 1 X

( / £ 2 X/J,2 )

X X

X X

X X

X X

0 . . .  1 0 . . .  0
0 X 0 . . .  1

0 . . .  X 0 . . .  X

o o

( ̂ pX/^p )
(3 .4 9 )

(3 .5 0 )

B =  SB and has no special form.

The x's denote any number and in some circumstances are all zero.

Controllable Canonical Form

If the observable canonical form is denoted by the subscript ’o ', then the 

controllable canonical form can be stated as,

^  !F B “  [ CQ C has no s p e c ia l  form

It is the observable canonical form which is most useful in the design of observers 

(see chapter 5) and the following algorithm was determined to produce this form 

from any observable pair [A,C].
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3.7.2 ALGORITHM FOR OBSERVABLE CANONICAL FORM

(1) Select the n LIN vectors using method (2): this tends to produce several chains

of nearly equal length. It also has the advantage (numerically) that it will

involve smaller powers of A.

(2) Arrange these n LIN vectors to form the matrix P (equation 3.48). The

observability indices /*j, give the dimensions of the blocks on the main diagonal

of the transformed A matrix.

2 > ' •

(3 ) In v e r t  P to  o b ta in  P- 1 .

(4 ) C o n s id e r  th e  n colum ns o f  P-1 a s  th e  n colum n v e c to r s

P" 1 = [ e 1 1 > £ l 2>  £ l  H , ’ ® 2 1 > £22* • • •  £2  [ l 2 > £ 3 1 ’ ~p^p 3

Only the last columns of each of the p blocks are required : thus let

£ i ™ £ i / i i

(5 ) C o n s tru c t  m a tr ix  S" 1 a s

( 6 ) In v e r t  S 1 to  o b ta in  S

(7) C a lc u la te  A, B and C

3 .7 .3  NOTES ON OBSERVABLE CANONICAL FORM

(1) Each b lo c k  o f  A i s  a ls o  in  o b s e rv a b le  c a n o n ic a l  form .

(2) A b lo c k  o f  d im ension  1X1 i s  [ x ] .



(3) The characteristic polynomial of

0 0 0 .
1 0  0 . 
0 1 0 .

0 0 0

. - a ,
• -O'-
. - a .

1 “« n - i

is

Sn + + . . . + a-jS + a , (3 .5 1 )

Thus, if Ajj is an observable canonical form block, as above and

11
2 2

TP

th e n  th e  c h a r a c t e r i s t i c  p o lynom ial o f  A, A (s) i s

A (s) -  A ^ s )  X A22 ( s )  X   X A pp(s) (3 .5 2 )

(4 ) The form  o f  C depends on th e  o b s e r v a b i l i t y  in d ic e s :

(a) The number of blocks in A is p, the number of rows of C

(b) Working from left to right, top to bottom in A, the last column

(column j of A) of block i (i= i..p ), corresponds to a 1 at position (i,j)

in C. If ipip then the remaining elements of column j of C are given

by,

^ i+ k . j  “  0 i f  A*i < /*i+k 

-  x i f  m  > /ti+k

f o r  k — i , 2 , . . . p - i ; a l l  o th e r  e le m e n ts  o f  C a re  z e ro
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For example,

■
0 0 X X X X
1 0 X X X X

0 1 X X X X

X 0 0 X X X
X 1 0 X X X
X 0 1 X X X

X X 0 X X
X X 1 X X

X X X 0 X
X X X 1 X

0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 X 0 0 X 0 1 0 0
0 0 X 0 0 X 0 0 0 1

(5) From (4), if /*.,=/i2=  . . . = /ip. C will only have p unity elements. Otherwise C 

will be of form,

0 . . 1 0 . . 0 0 . . o • . . • 0 . . 0
0 . . X 0 . . 1 0 . . o • . . • 0 . . 0
0 . . X 0 . . X 0 . . 1 • . . • 0 . . 0

0 . . X 0 . . X 0 . . x  • . . . • 0 . . 1

(3 .5 3 )

where at least one x is any number other than zero.

If F is defined as the (pxp) matrix constructed from the non— zero columns of 
C,

1 0 0 0

X 1 0 0

X X 1 0

X X X 1

and CQ as
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th e n  i t  fo llo w s  th a t

. o

. o

. i

. o

0 .
0 .

0 .

. 0

. 0

. 0

(3 .5 5 )

C -  FC0 <=» CQ -  F- 1C (3 .5 6 )

and furthermore, due to its form, F is always non— singular.

3.7.4 MORE CANONICAL FORMS

In determining an algorithm for the observable canonical form of 3.49 and 3.50, 

other possible algorithms, using V, V 2, Q and Q 2 as starting points, were 

investigated. Table 3.1 summarises the results.

3.8 EFFECT OF CANONICAL TRANSFORMATIONS ON OBSERVER EQUATIONS

If the state of the system

x =* Ax + Bu (3 .1 )

y -  Cx (3 .6 )

b e in g  o b se rv e d  by an o b s e rv e r  o f  form

x -  Ax + Bu + HC(x -  x) (3 .1 4 )

is transformed to the observable canonical form (or any other canonical form)

z =» Az + Bu (3 .5 7 )

y = Cz (3 .5 8 )
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SOURCE LAST ROW LAST COL OBS CON c B s R" 1

V * * *

V * * *

V* v 2 * [i o. . . o] *

V2 * * *

V2 * * [0.  . . 01 ] *

Q * [ 1 o . . o ] T *

Q * * O O “h *

Q * * *

q 2 * * *

Q? * * *

TABLE 3.1 CANONICAL TRANSFORMATIONS

Notes

(1) LAST ROW/LAST COL — In the algorithm for observable canonical form the 

(nxn) matrix P— 1 was considered to be formed from n column vectors divided 

into p blocks. The LAST COLumn of each block was then used to construct 

S— 1. Alternatively it is possible to consider P— 1 as being n row vectors and 

selecting the LAST ROW of each of the p blocks. First rows and columns were 

also tried and gave an A in observable or controllable canonical form, but no 

special forms for B or C.

(2) OBS/CON — A matrix in OBServable or CONtrollable canonical form.

(3) C/B — C or B in canonical forms of 3.49, 3.50, with unity elements in either 

the first or last columns (for C) or rows (for B). No entry indicates no special 

form is produced.

(4) S/S”  1 — Matrix produced from the ej's (step 5, section 3.7.2) assumed to be 

either S or S“  1.

(5) V*/Q* — Miss out steps 3,4 and 5 and let V 2 or Q 2 be S or S“  1
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w ith

A = SAS-1 C -  CS-

B -  SB z  -  Sx

(3 .5 9 )

then the observer equation of 3.14 must be changed to

z = Az + Bu + HC(z -  z ) (3 .6 0 )

Furthermore, if C (3.53) is transformed to CG (3.55) using matrix F (3.54) and 

equation 3.56, then the last term of 3.60 becomes,

HF“ 1C (z -  z) = HCq (z  -  z )  (3 .6 1 )

This is effectively applying a transformation to the outputs of both system and 

observer. Now since the term CQz is not directly available, F ~  nCx is used since,

F- 1 Cz =■ F" 1 (CS- 1 ) (Sx) -  F” 1 Cx (3 .6 2 )

Thus the final observer equation can be stated as,

z = Az + Bu + H[F“ 1(Cx) -  CQz ] (3 .6 3 )

and the error dynamics can easily be shown to be given by

e -  (A -  HC0 )e  (3 .6 4 )

The observable canonical form observer is shown in f i g  3.6 and should be compared 

to the untransformed observer of f ig  3.3.
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FIG 3 . 6  OBSERVABLE CANONICAL FORM OBSERVER
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3.9 PARTITIONING OF SYSTEM IN OBSERVABLE CANONICAL FORM

As shown by Fortmann and Williamson, 1972, a system in observable canonical form 

can be considered as a set of subsystems, each being coupled to each other only 

through their outputs ( f i g 3.7).

For example, consider the following system in observable canonical form with n = 8 , 

p = 3 , m = 2  and observability indices /x1 =  3, fi2— 3, fi3= 2.

Z 1 0 0 X X X Z 1 X X

± 2 1 0 X X X Z 2 X X

Z 3 0 1 X X X Z  3 X X

Z 4 X 0 0 X X Z 4 +
X X

Z S X 1 0 X X Z 5 X X

± 6 X 0 1 X X Z  6 X X

* 7 X X 0 X Z  7 X X

N*
CO

X X 1 X N
CO

X X

yi

y 2

y 3

0 0 1

o o 1

o i

(3 .6 5 )

Re— writing as,

9 i A, 1 A, 2 A, 3 9 i B ,

92 - A21 a 22 a 23 92 + B 2

93 ^ 3 1  ^ 3 2  ^ 3 3 9 a B a

? 1 c ,  0  ° 9 i

y 2 - 0  £ 2  0 92
y 3 0 0 in CO 9 a

(3 .6 6 )
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Then

Q l  ”  A 1 l 9 l  +  ^ 1 2 ^ 2  +  A 1 39 3  +

-  An 9 i  +  Ai 2 y 2 +  Ai 3y 3 +  b i H

y^ -  9 i9 i  -  z 3

Q2 “  A2292 **" A2 l 9 l  A2 393 B 2H

— a 22q 2 + A2 iy i + A23y 3 + B2^

y 2 “  ^292  = z s

9 3 = A 3 39 3  A 3 19 l A 3 2 9 2  "** B 3U

“  A3 39 3 +  A3 i y i  ^ 2 2 ^ 2  +  B 3H

y 3 “  9 s9 s  = z 8

(3 .6 7 )

(3 .6 8 )

(3 .6 9 )

Now consider sub—system S t on its own, the output coupling between other 

subsystems being represented by a term D v

9i ” Aii9i + biH + Pi 

= 9i9i
(3 .7 0 )

or more e x p l i c i t y ,

4 1 0 0 X q i X X X

q 2 - 1 0 X q 2 + X X u + X

^ 3  .
0 1 X

. q 3 .
X

►
X X

yi -  [ 0 0 1 q 2

q 3 ( 3 . 7 1 )

77



If a reduced order observer is to be designed for this sub— system and the others, it 

is necessary to first consider the effect term D , has on the reduced order observer 

equations:

q -  Aq + Bu + D1

y  = Cq
( 3 . 7 2 )

The analysis is the same as that for the normal reduced order observer, except for 

the addition of term D , (/x,x 1), which is partitioned as,

Si
- 1X1

1x 1 ( 3 . 7 3 )

The modified reduced order observer equations are thus,

2 ”  [ a i i _ h a 2 ) ] z  +  [ A i 2 _ H A 2 2  +  (A, , - H A , , ) H ] q 2 + [B , -HB2 ]u

+  [ d ,  '  H d 2 ]  ( 3 . 7 4 )

and

q, -  z  + Hq. ( 3 . 4 2 )

A
Si

x -  R_1q

( 3 . 4 3 )

( 3 . 4 4 )

e — [ A1 1 -  HA 21 ]e ( 3 . 4 0 )

as before.

An observable canonical form block or sub—system of dimension ( 1 X 1) does not 

require an observer.
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3.10 SIMULATION

Computer simulation of helicopter motion and the response to control inputs was

carried out using TSIM (Winter, Corbin and Murphy, 1983) which is a high level,

interactive, computer— aided simulation package, originally written at the Royal

Aerospace Establishment, fro-rnWn>u<|l for use in flight control systems, but now 

available as a commercial software package. It incorporates facilities of particular 

relevance to the needs of the flight control systems engineer and was considered to 

be particularly suitable for this reason.

Within TSIM the system, in state— space form, is written as a set of differential 

equations and the time response of the system, plus any additional controller and/or 

observer scheme, when subjected to a control input, can then be generated by

fourth— order Runge— Kutta numerical integration.

The package also includes a graphics facility so that the time response can be 

plotted to a graphics device (eg. screen, plotter), but for greater flexibility it can be 

written to a data file for future analysis/plotting.

DEFINITIONS AND NOMENCLATURE

The state vector x of the full, fourteenth order, state space description, is defined 

as:

u x—a x is  v e l o c i t y m /sec

w z—a x i s  v e l o c i t y m /sec

q p i t c h  r a t e d e g s /s e c

e p i t c h  a t t i t u d e degs

V y—a x i s  v e l o c i t y m /sec

p r o l l  r a t e d e g s /s e c

<p r o l l  a t t i t u d e degs

r yaw r a t e d e g s /s e c

00 c on i ng  ang l e degs

01 c l o n g i t u d i n a l  f l a p p i n g d e g s /s e c

01 s l a t e r a l  f l a p p i n g d e g s /s e c

00 d e r i v a t i v e  o f  (30 d e g s /s e c

01 c d e r i v a t i v e  o f  0 1C d e g s /s e c 2

01 s d e r i v a t i v e  o f  /31S d e g s /s e c 2

LONGITUDINAL
DYNAMICS

LATERAL
DYNAMICS

ROTOR
DYNAMICS
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and since the model is often partitioned into longitudinal, lateral and rotor dynamics, 

it is shown in that form. The units stated are those which are used in this thesis. 

In addition to the eighth order (longitudinal / lateral dynamics) and fourteenth order 

(longitudinal / lateral / rotor dynamics) models which have already been discussed, 

two fourth order models were utilized. These were longitudinal dynamics and lateral 

dynamics models and were obtained by extracting the relevant portions of the 

appropiately partitioned A and B matrices and the input vector u.

The input or control vector u is given by,

® oe Main R o to r  c o l l e c t i v e LONGITUDINAL

* 1 S l o n g i t u d in a l  c y c l i c

 ̂1 c
— l a t e r a l  c y c l i c LATERAL

. 0ot . t a i l  r o t o r  c o l l e c t i v e

and the units are radians at the rotor head. Stick/pedal sign conventions for these

inputs are given in Table 3.2 below

Pilot control inputs obtained from flight data were expressed as percentage stick

positions, and therefore had to be converted to angles at the rotor head before

being used for simulation.

+VE INPUT ON EFFECT STICK/PEDAL

^oe ASCENDING COLLECTIVE STICK UP

^ 1  s NOSE UP CYCLIC STICK AFT

^1C ROLL TO RIGHT CYCLIC STICK RIGHT

*ot YAW TO RIGHT LEFT PEDAL

TABLE 3 .2  : STICK/PEDAL SIGN CONVENTIONS
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NOMENCLATURE FOR THE C MATRIX

In multivariable, state space form, the output vector y is related to the state of the 

system x, through the output (or measurement) matrix C by:

y  =  Cx  ( 3 . 6 )

Ideally the states chosen for the state space form will all be readily available for 

independent measurement and this results in an (nxn) C matrix with only one 

non— zero element in each row. If, as is frequently the case in many systems, not 

all n states are accessible, then C will be of order (pxn); whilst any state which is 

not independently measurable will result in the corresponding row of C having more 

than one non— zero element. In this latter case the determinable sub— set of the 

state can be reconstructed from the output y by premultiplying y by C — 1 (for C 

(nxn)) or the pseudoinverse of C (for C (pxn)).

For the purposes of this thesis it was assumed that the states q, 0, p, <p and r are 

monitored directly while u, w and v are derived from other measurements. It was 

also assumed that there are no sensors for the rotor states. Thus C was effectively 

an (8x8) Identity matrix for either the eighth or fourteenth order models; or a (4x4) 

Identity matrix for the longitudinal or lateral models.

However, in most cases only a small number of states (or even just a single state)

were required to design an observer and therefore, in general, p^n. To avoid 

explicitly stating the C matrices, the following notation was used,

0 (0; , ,  a 2 , . . . ,  Op) where e { 1 , 2 , . . . , n }

The cq's denote which column has a unity element for each of the p rows. Thus, 

with n= 8  for example,

C ( 3 , l )  =  f 0 0 1 0 0 0 0 0 IL i  o o o o o o o J

C ( 2 ) = [ 0 1 0 0 0 0 0 0 ]

The above notation for C matrices is used throughout this thesis.
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STANDARD CONTROL INPUTS

In the testing and development of helicopter flight control systems, three inputs

which are relatively easily produced and replicated by the pilot, have evolved as 

being standard references. These are the step, doublet and 3—2—1—1, and are

defined as,

STEP : f ig  3.8a — Magnitude K, starting at time T 1.

Expressed as K= , t= T 1

DOUBLET: f ig  3.8b — Pulse of magnitude K, duration (T 2— T 1), followed 

by a pulse of magnitude — K, of the same duration. Normally

T =  TA 2 x  3’
Expressed as K= , t=  T 1/T 2/T 3/T 4

3—2—1—1 : f ig  3.8c — Four pulses of magnitude K, — K, K, — K and 

durations in the ratio 3 : 2 : 1 : 1, respectively. Typically

T 2= T 3, T 4= T 5 and T S= T ?.

Expressed as K= , t=  T , /T 2/T 3/T 4/T g/T 6/T ?/T 8
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K

( a )  STEP

K

i

-K

V  V  , t

T, T2

( b )  DOUBLET

K

-K

T3 t 4

Tt T2 T5Te
T ? T ^ t

( c )  3 -2 -1 -1

FIG 3 .8  STANDARD CONTROL INPUTS
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CHAPTER FOUR 

OBSERVER DESIGN METHODS 

AND BASIC PERFORMANCE
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4.1 OBSERVER DESIGN METHODS

The possibility of a full order state reconstructor without feedback from the 

measurements was noted as early as 1958 by Kalman and Bertram. Subsequently 

Kalman, 1960b, developed a full order device which used measurement feedback for 

exactly reconstructing the state of a discrete— time system in a finite number of 

steps. However, it was the two seminal papers of Luenberger (1964, 1966) which 

marked the beginning of a fertile area of research.

Several fundamental results are established in these two papers; perhaps the most 

important being the ability to arbitrarily adjust the dynamics (i.e the eigenvalues) of 

the state reconstruction process: a central result in linear system theory. The

separation principle describing the separation of controller and observer design is 

given and the closed— loop stability properties in linear or non— linear feedback 

designs are shown to be unaffected by the inclusion of an observer.

The 1966 paper also includes a lucid explanation of minimal (or reduced) order state 

observers (i.e of order (n— p)) for linear, time— invariant, continuous— time systems, 

where it is assumed that the A and D matrices have no common eigenvalues, thus 

assuring a unique T satisfying the equation TA—D T=EC . See also Luenberger, 1965. 

This restriction is removed in the time—invariant case by Newmann, 1970b, and in 

the time—variant case by Yuksel and Bongiorno, 1971, (see also Tse and Athans, 

1970; Tse, 1973 and O'Reilly, 1983, for example^

4.1.1 TRANSFORMATIONS AND THE MULTIVARIABLE CANONICAL FORM

The advantages of transforming a linear system (by means of a similarity 

transformation) into a structurally simpler form has been reported by many authors. 

For example, see Dellon and Sarachik, 1968; Cumming, 1969; Newmann, 1969 and 

Gopinath, 1971. Transformation of the system into a more convenient form allows 

the minimal order state observer to be defined by a single explicit gain matrix 

(Dellon and Sarachik, 1968). Similar results are obtained by Cumming, 1969; 

Newmann, 1969 and Gopinath, 1971, for linear time—invariant systems.

More recently, an equivalent observer construction, based on the generalized matrix 

inverse, was introduced by Das and Ghoshal, 1981. The time—varying case for 

minimal order state observers, designed using a canonical transformation, is dealt 

with by Johnson, 1969; Yuksel and Bongiorno, 1971 and O'Reilly and Newmann, 

1975, for example.
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Since its introduction by Luenberger in 1966 (see also Luenberger, 1967), the 

multivariable canonical fo rm  has been widely used in observer design, system

identification and realization theory because of the structural simplification it affords, 

eg. Wolovich, 1974; Chen, 1984; Munro, 1973. In this form the system effectively 

decomposes into p single output sub— systems for each of which a sub— observer may 

be designed. The composite observer is of dimension (n—p), as previously, but the 

observer eigenvalues may only be arbitrarily assigned within each of the p lower 

dimensional sub— observers.

Many so— called canonical forms are in fact not canonical in the strict mathematical 

sense; for a precise definition of canonical form see Wang and Davison, 1976.

Wolovich, 1968, extends the theory of minimal order state observer design using the 

Luenberger companion form to time— varying systems and a time— varying 

generalization of the Tuel companion form is given by Yuksel and Bongiorno, 1971.

4.1.2 POLE PLACEMENT AND EIGENSTRUCTURE ASSIGNMENT

During these years of research into the various aspects and types of observers 

consideration has also been given to the dual problem of pole placement in the 

feedback equation, ie. the determination of a feedback gain matrix K, such that 

[A-+- BK] has a prescribed set of eigenvalues, and the subject is pertinent to the

design of observers since the determination of K in [A+ BK] is dual to the 

determination of H in [A—HC].

Modal control was first discussed by Rosenbrock, 1962, who considered the case 

where both matrices B and K in equations 3.1/3.7 could be chosen. Extension to the 

system where B is the defined vector b and K is the vector k to be chosen, was 

considered by Ellis and White, 1965, who describe a method for altering one 

eigenvalue at a time. In 1967, Wonham was the first to prove that if the state

vector x is perfectly accessible then the pair [A,B] is controllable if, and only if, K 

can be chosen to give [A+ BK] any desired set of eigenvalues.

Since then literally hundreds of papers dealing with pole placement have appeared 

and it is still an active area of research. See for example: Retallack and McFarlane, 

1970; Porter and Crossley, 1972; Munro and Vardulakis, 1973; Davison and Wang, 

1975; Djaferis, 1983 and Morse, Wolovich and Anderson, 1983.

Recently, attention has also been given to the problem of eigenstructure assignment, 

(or modal control when used to design feedback controllers), ie the selection of both
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eigenvalues and eigenvectors. The choice of each closed— loop eigenvalue/eigenvector 

pair is not an arbitrary one since each eigenvector is limited to a subspace of the 

system subspace, but this still gives enough freedom to make suitable choices of 

those pairs.

A literature review of pole assignment and the broader question of eigenstructure 

assignment is given by Andry Jr, Shapiro and Chung, 1983. See also, for example, 

Moore, 1976; Klein and Moore, 1977; Srinathkumar, 1978; Shapiro and Chung, 1981 

and Parry and Murray—Smith, 1985.

4.1.3 OTHER FORMS OF OBSERVER

The fundamental property of one system observing another can be applied in a 

reverse direction to obtain a special type of controller called a dual observer which 

can be thought of as supplying an approximation to the desired inputs. Since the 

notion of a dual observer was introduced by Brasch and subsequently discussed by 

Luenberger, 1971, it has been c o m p a iu h ^ ^  little studied, but see for example 

Blanvillian and Johnson, 1978.

As has been demonstrated already, reconstruction of the complete state vector of a 

linear system can be accomplished, regardless of the actual design method, by an 

observer of order (n— p) with arbitrary, stable dynamics. Frequently, however, only 

some linear function of the system state, usually a linear feedback control law of the 

form Kx, is required to be estimated. This can be realized using an observer of 

further reduced dimension.

This type of observer was first explored by Bass and Gura, 1965 and Luenberger, 

1966. Alternative design procedures for observing a scalar linear function  of the 

state of a multiple—output system are presented in Wonham and Morse, 1972; 

Moore, 1972; Roman, Jones and Bullock, 1973 and Jameson and Rothschild, 1971.

Due to the greater complexities involved, progress on the general problem of 

reconstructing vector linear functions of the state has been relatively slow. The first 

significant contribution was due to Fortmann and Williamson, 1972, who obtain 

sufficient and necessary conditions for an observer of minimal order to reconstruct a 

vector linear function of the state for single— output systems. Subsequently, the 

multiple output case has been considered by Roman and Bullock, 1975; Moore and 

Ledwich, 1975; Sirisena, 1979 and Fairman and Gupta, 1980.

87



4.2 NUMERICAL CONSIDERATIONS

Despite the conceptual simplicity of the observer, the numerical problems associated 

with its design can be extremely demanding: particularly when dealing with a 

large— scale system. For an n— dimensional linear system, with p observation 

channels, the observer equation involves solving an (n— pxn) matrix equation. For a 

large n and small to moderate p, a solution to the observer equation requires an 

immense amount of computational effort, eg. if n=100 and p= 50, there are a set 

of 5000 linear equations to be solved.

There have been some interesting attempts at reducing the complexity of the 

problem — for instance, Arbel and Tse, 1979, suggest an algorithm which, for a 

system with p< n/2 , reduces the observer design to the solution of an (n— 2pxn— p) 

matrix equation. However this constrains the eigenvalues since p eigenvalues must be 

placed together at a selected point while the remaining (n— 2p) can be arbitrarily 

placed.

Consideration has also been given to the problems caused by the use of computers, 

and in particular the difficulties associated with their finite precision. In most cases, 

in dealing with matrices and matrix operations, the technique best suited for the

development of ideas and concepts is not that best suited for digital computer 

implementation. In fact, efficient computer— based algorithms seldom lend themselves 

well to conceptual understanding of the principles involved. Also, once a controller 

or observer has been synthesized, there remains the task of implementation.

Today the trend is towards digital implementation of control logic, principally

through the use of microprocessors in one form or another. These processors make 

possible the realization of complex control logic, but the use of all— digital control 

logic introduces new concerns regarding precision, computational capability, interface 

speed and memory requirements, all of which must be established in the design

process.

Many papers now give algorithms which are ideally suited for computer 

implementation: eg. Miminis and Paige, 1982, give a numerically stable algorithm for 

pole assignment in a single— input system. Goknar and Dervisoglu, 1977, give one 

for the determination of controllability and observability of linear, time— invariant 

systems using elementary row operations and similarly Aplevich, 1974, uses 

elementary matrix operations to compute canonical forms for linear systems. Jordan 

and Sridhar, 1973, achieve the same using an algorithm involving Gaussian 

techniques and Munro, 1971 / 1973, gives a procedure for reduced order observers.

88



4.3 THE GOPINATH METHOD

In this thesis two observer design methods were initially selected and examined in 

detail. The first of these is the method given by Gopinath, 1971, which avoids the 

use of complicated canonical forms and is applicable to the design of both 

controllers and observers (of full or reduced order).

Consider the system under consideration to have the characteristic equation given by,

;n + .Z  afS H -i =
1 = 1  1 O (4 .1 )

and the desired characteristic equation of the observer (determined from the required 

eigenvalues) to be

[A -  HC]s -  Sn +1I t T1S"-< 

p roven  t h a t

(4 .2 )

tr(HC) 

tr(AHC) 

t r ( A 2HC)

t r ( A n -1 HC)

= F" 1(2  -  a) (4 .3 )

Where 't r ' denotes the trace of a matrix (ie. the sum of the elements on the main 

diagonal); H is dyadic, i.e of rank one (to satisfy the derivation) and y, a and F 

are the vectors and matrix given by,

7i a i

2  = a =

. . . a n  .

i 0 0 0

a T 1 0 •

F = a 2 a 1 1 •

0

an - i a 1

(4 .4 )

( 4 . 5 )
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Now any (nxp) H matrix which satisfies equation 4.3 will suffice and therefore the 

H matrix with p identical, non— zero columns (and hence of rank one) was selected 

for simplicity. Representing the H matrix as,

H

h , h , . . h ,

i2 h 2

kn kn • • kn (4 .6 )

equation 4 .3  can be re -w r itten  as

d11 . • dm e i

. dni • • dnn . hn . . ®n . (4 .7 )

where e is the (n x i) vector produced from F 1(7“  a) and d jj are the elements of 

the (nxn) matrix defined by,

Vn
di j  ”k= iakj Ck

where

akj is  an element o f m atrix A1-1 (4 .8 )

= I Fl= ii s ^ l k

is  an element o f m atrix C

Equation 4.7 is in the form of a set of linear equations A x=b and can thus be 

solved by numerical methods (eg. NAG routines [N4]) to give the required elements 

for the H matrix. Numerical problems with this method are discussed in section 4.6 

and design results are presented in section 4.7.
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4.4 CANONICAL FORM METHOD

In chapter three (section 3.6) it was shown that the system of equations 3.1/3.6 ,

x — Ax + Bu

I  "  c *
(4 .9 )

can be transformed by a similarity transformation to the system of 3.31/3.32,

q — Aq + Bu 

y  =  Cq
(4 .1 0 )

where A and C are in the observable canonical form of equations 3.49/3.55,

0 0 . . .  X X

1 0 . . .  X X

0 1 . . .  X X

0 . . . I X X

( ^ X |i , )  x 0 0 . . .  X

X 1 0 . . .  X

X 0 1 . . .  X

X 0 . . . 1 X

. ( n 2X(i2) .

X X

X X

X X

X X

0 . . .  1 0 . . .  0 ;

0 0 0 . . .  1 •

0 . . .  0 0 . . .  0 •

o . . .  i x 
(/*px Pp>

(4 .1 1 )

(4 .1 2 )

With the system in the above canonical form there are four different types of 

observer which can be designed, depending on whether the system is treated as a 

whole, or as a set of subsystems: each being coupled to each other only through
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their outputs (section 3.9).

If the system is considered as one entity then either a full order observer of order 

n or a reduced order observer of order n— 1 can be designed. When it is regarded 

as a set of subsyste-m^ then for each subsystem a full order (/^) or reduced order 

(^l_  ,) observer can be designed. Thus in either case a total of n eigenvalues will 

be required for a full order observer design, but only n— p for a reduced order 

scheme.

In the case of the full order observer there is no advantage in the observer

functioning as a set of subsystems since the elements of the separate H matrices, if 

taken together, would form the H matrix required for the full system. In fact it 

would actually be a retrograde measure in that the complexity of the observer would

increase with the introduction of the cross— coupling terms. A full order observer

will therefore henceforth refer to one which is designed from the full system in

observable canonical form.

The situation with the reduced order observer is different because in its partitioned 

form the C matrices are in the required form to compute the necessary reduced

order observers directly, whereas if the system is considered as a whole a further 

similarity transformation would be required to obtain the C matrix in the desired

form, ie. C =  [ Ipxp I 0 ]• Thus henceforth a reduced order observer will refer

to one which functions as a set of subobservers.

The simplicity of these designs is easily demonstrated by considering a sixth order A 

matrix with three ( 2 X2) canonical blocks and a requirement for a full order observer 

with eigenvalues at:

[ -5 , - 5 ,  - 6 , -7 , - 8 , -8  ]

then using note 3 of section 3.7.3 the required form for [A —H C ] will be,

0 - 2  5

1 -1 0

0 

1

■42 

■1 3

- 6 4  

- 1  6 (4 .1 3 )
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since

(S + 5 )(S + 5 )  =  S 2 +  10S +  25

(S + 6 )(S + 7 )  =  S 2 +  13S +  42

(S + 8 ) ( S + 8 ) =  S 2 +  16S +  64

If [ A— HC ] is written out as,

0 a i 2 0 a i 4 0 CO

cd 0
h 1 1

0 h 1 2 0 3
1 a  2 2 0 a  2 4 0 a  2 6 0 h 2 1 0 h 2 2 0 ^2  3
0 a 3 2 0 a 34 0 a  3 6 0 ^3  1 0 ^3 2 0 ^3 3
0 a 42 1 a 44 0 a 4 6 0 h 4 1 0 h 42 0 ^43
0 a  5 2 0 a 54 0 a 56 0 ^6 1 0 ^5 2 0 ^5  3
0 a  6 2 0 a  8 4 1 a 6 6 0 h  7 1 0 ^6 2 0 ^83

Then by equating 4.13 and 4.14 the elements of the (6x3) H matrix can be 

determined as,

h 11 a i 2 + 2 5 h 1 2 a i 4 3 = a i 6

CM
•C - a  2 2 + 1 0 ^2 2 - a 24 ^2 3 = a 2 6

nr CO = a 3 2 ^3 2 - a 34 + 4 2 ^3 3 = a 3 6

h 4 1 - a 42 h 42 = a 44 + 1 3 ^43 - a 46

h 5 1 - a 5 2 ^52 - a 5 4 ^5 3 - a 56 + 64

h 6 1 =- a 6 2 ^6 2 = a 6 4 ^6 3 = a 6 6 + 1 6

If a reduced order observer was to be designed from the partitioned system then, 

since the system can be considered as consisting of three second order systems, the 

task is to determine a reduced order observer for each of the second order systems 

and the output coupling terms between them (Section 3.9).

The major computational process using this method is therefore in determining the 

similarity transformation required to obtain the system in observable canonical form, 

since in this form the determination of the required H matrix (or matrices), and the 

reduced order cross— coupling terms, is just simple arithmetic.
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4.5 BASIC OBSERVER PERFORMANCE

Assuming an accurate model of the system which, as was discussed in chapter two, 
is not usually the case, observer performance is fundamentally determined by the two 

major design parameters: which system state variable(s) are used to reconstruct an 
estimate of the remaining state variables (ie. the choice of observer C matrix); and 

the selection of observer eigenvalues. For the eigenvalues, the larger the magnitudes 
of the negative real parts, the faster the estimate x(t) approaches the system state
x(t).

However, these larger eigenvalues will cause larger gains in H and generate larger 
magnitudes in transient — as is the case for feedback control. As the eigenvalues 
tend towards minus infinity, the observer will act as a differentiator and will 
therefore be susceptible to noise.

Hence there is no simple answer to the question of what are the ideal eigenvalues, 
but the literature suggests that the negative real parts of the eigenvalues of [A— HC] 
be chosen to be two or three times faster than those of [A+BK]. Richards,
1979, advocates that they be an order of magnitude faster.

To illustrate the basic properties of observer performance, first consider the following

second order system.

= -3 1 B = 0 C -  [ 1 0 ]
0 -1 1 (4.15)

Therefore, n= 2 , m= 1 , p= 1 and the eigenvalues of the A matrix are X — 3 , 
X2= — 1 . ie. the system is stable. For a full order observer, the H matrix will be of 
form,

h 2

and the characteristic equation of [A— HC] is,

I XI -  [A -  HC ] | = X2 + (4+h1)X + (3+h1+h2) (4.16)
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Thus for observer eigenvalues of X.,= X2=  —15 and X,= — 6 , X2=  —6.12, the

observers are given by,

O b serv er 1 O b se rv er  2

*1 - -15 H - 2 6 *1 " ' 6 H — 8. 12

X 2 ” -15 1 9 6
X 2 “ - 6 .1 2 2 5 . 6

F i n a l l y  d e f in e  two in p u ts :

U, : S te p , K -  0 .1 ,  t  -  0

U2 : D o u b le t, K -  0 .1 ,  t  = 0 /2 /2 /4

4.5.1 INITIAL STATES

Firstly consider the situation where the observer and the system have identical states,

ie. the observer estimate equals the state of the system. Now since the observer is

governed by equation 3.14:

x = Ax + Bu + HC(x -  x) (4 .1 7 )

and x =  x, the response of the observer will be identical to the response of the

system. The state variable time— response of system and observer are shown in f ig  

4.1a (Observer—1 and step input U J ,  f ig  4.2a (Observer—1 and doublet input U 2) 

and f ig  4.3a (Observer—2 and U 2).

When the observer and system have different states then x ^ x and the term 

H C (x -x )  is no longer zero. The error dynamics of the observer, given by equation 

3.17,

e = (A -  HC)e (4 .1 8 )

will now act to reduce the error between system and observer state and the speed 

with which the error will reduce to zero, will be determined by the eigenvalues of 

(A—HC). Figs 4.1b, 4.2b and 4.3b demonstrate this for observer—1 with input U 1; 

observer—1 with input U 2; and observer—2 with input U 2, respectively, for an 

initial observer error of 0.1
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If the initial estimate of the system state is x 0 , then for an estimate — x 0 , the 

error dynamics of the observer, given by the time—response of e ( = x —x [eq 3.15]), 

will be the negative of those due to estimate x 0. Figs 4.1c, 4.2c and 4.3c give the 

state variable time—responses with x 0 =  —0 .1 , whilst a comparison of the error 

dynamics of observer—1 / U 2 for x Q =  0.1 and x 0 =  —0.1 is shown in f ig  4.4. 

It can clearly be seen that the two time—responses are 'mirror images' of one 

another.

4.5.2 EFFECTS OF VARYING OBSERVER EIGENVALUES

As mentioned earlier there are three main consequences in increasing the magnitudes 

of the negative real parts of the observer eigenvalues: larger gains in H, larger 

magnitudes in transient and an increased susceptibility to noise. The latter will be 

dealt with in section 4.5.3.

Table 4.1, below, shows the values of the elements of the H matrix, h , and h 2, 

for required observer eigenvalues of —1 to —10. It is apparent that the value of h 2 

rises as the square of the eigenvalues (plus one), whilst h 1 rises linearly.

EIGENVALUES h 1 h 2

2 (§ - l + JO -2 0

2 (a -2 + j0 0 1

2 (a -3 + jO 2 4

2 (§ -4 + jO 4 9

2 @ -5 + jO 6 16

2 @ -6 + jO 8 25

2 (a -7 + JO 10 36

2 <a -8 + JO 12 49

2 (a -9 + JO 14 64

2 (a -10 + JO 16 81

TABLE 4 .1

VALUES OF h , AND h 2 

FOR DIFFERENT OBSERVER 

EIGENVALUES

In general, for a (nxp) H matrix observing an n^1 order system, several of the 

elements of H will tend to increase in proportion to the n ^  power as the negative 

real parts of the required eigenvalues are increased.
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This has obvious implications on the numerical stability of design procedures and on 

the transient behaviour of the observer. The effect on the transient performance can 

clearly be seen in f igs  4.5a and 4.5b, which show the difference between 

observer—1 and observer—2 when subjected to input U 2. The larger eigenvalues of 

observer— 1 have resulted in a faster response time (the time it takes the observer 

estimate x to converge to the true state x or, alternatively, the error to reduce to 

zero), but the penalty is a greatly increased overshoot due to the larger gains.

4.5.3 EFFECTS OF NOISE

In a general sense, noise consists of any unwanted signals, random or deterministic, 

which interfere with the faithful reproduction of a desired signal in a system. 

Sources of interference (noise) include such things as electromagnetic pick— up, 

inadequate power supply filtering and, particularly in a helicopter, mechanical 

vibration (from the main and tail rotors) resulting in electrical disturbances. What 

effect does this noise have on the observer?

Consider the signals supplied to observer— 1 to be as shown in f ig  4.6a. These were 

generated by adding noise obtained from flight data, to the time— responses 

generated by TSIM for the doublet input U 2. The process and validity of adding 

noise obtained from flight data is examined in Section 5.2.5.

When the initial observer state x 0 is equal to the system state x, the time— response 

is as shown in f ig  4.6b. When x Q ^ x (x 0 =  0.1) the response is that of f ig  

4.6c. Clearly the observer is still following the state of the system, but the observer 

estimates are now corrupted by the noise on the inputs.

The effect of changing the eigenvalues can be seen from f ig  4.7  which shows a 

small section of the time— responses obtained from observer— 1 and observer— 2. The 

larger eigenvalues of observer— 1 have resulted in the noise being amplified to a 

greater extent due to the faster dynamics. Thus as the system stands, when designing 

an observer it would be necessary to compromise between the speed of response and 

the level of acceptable noise on the estimates.
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4.5.4 UNSTABLE SYSTEMS

When the system being observed is unstable, ie. has eigenvalues with positive real 

parts, the observer will still follow the state. This is easily demonstrated by altering 

the A matrix to:

- 3

0 *  ■ r a
= t > .3 .

which gives system eigenvalues of X ^  —3, X2=  +  l .  An H matrix can then be 

determined as previously and for a pair of eigenvalues at —15 this is given by,

The time— responses of the system and observer when subjected to the doublet input 

( U 2), and with the initial observer state x 0 ^ x (x Q =  —1), are shown in f ig  4.8.

4.5.5 EFFECTS OF DIFFERENT C MATRICES

To examine the effects of changing the C matrix, in other words the system state(s) 

used in the estimation process, consider a fourth order longitudinal model of the 

Puma helicopter at 100 Knots, level flight. For this flight condition, the A and B 

matrices given by HELISTAB are,

- o 0 2 7 0 004 4 6 5 3 -3  2 1 83 -  7 8 1 8 - 3 0 . 9 3 8

- o 0 3 0 - 0 8 5 7 1 6 8 2 2 0 0 46 6 - 3  7 7. 6 9 3 - 1 3  0 . 7 7 5
A =

0 0 0 2 - 0 0 0 8 -0 8 0 1 0 0 0 0
B =

2 1 3 9 6 . 3 8 6

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0.000

and the eigenvalues of A are complex conjugate pairs:

- 0 .8 3  ± jl .12 

- 0.02 ± j0.18

Flight data time— histories were used for inputs on ^oe and 0 lS, the manoeuvre 

being a doublet on 0 1S. These input time—histories are shown in Appendix six. A
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full order, observable canonical form observer, with eigenvalues at

[ - 3 .3 1 , -3 .3 8 , -3 .4 4 , -3 .5 1  ]

was used and initial errors were introduced into the observer estimate. TSIM 

simulations were run for the following ten C matrices,

C( l ) C ( 1 ,2) C ( 2 ,3) C ( 3 ,4)

C(2) C ( 1 ,3) C(2 ,4)

C(3) C ( l , 4 )

C(4)

and a comparison of their respective error time—responses, for forward velocity (u), 

are shown in f ig  4.9.

It is immediately evident that the choice of C matrix has a very strong influence on 

the transient behaviour of the observer (overshoots vary by as much as two to three 

orders of magnitude) and this can be explained using the Modal Expansion Theorem 

[Andry J r, Shapiro and Chung, 1983]. This demonstrates that every solution 

representing a free response of:

x ( t )  -  A x ( t ) x (0 )  = x q ( 4 . 19)

depends on three quantities —

(1) eigenvalues, which determine the decay f growth rate of the response,

(2) eigenvectors, which determine the shape of the response, and

(3) the initial condition, which determines the degree to which each mode will 

participate in the free response.

For the forced system of equation 4.9, there is a fourth quantity: namely the input 

vector u, however for two similar observers (ie. with the same eigenvalues and 

initial conditions, but different C matrices) it is the difference in eigenvectors which 

causes the dissimilar transient behaviour.
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4.6 NUMERICAL PROBLEMS WITH THE GOPINATH METHOD

In any discussion of numerical problems it is important to understand the following 

terms,

♦ A problem is said to be ill-conditioned  if small changes in data will lead to

large changes in solutions; otherwise it is well—conditioned.

. A procedure for solving a problem is said to be numerically stable if

numerical errors inside the procedure will not be amplified; otherwise the 

algorithm is numerically unstable.

The condition of a problem and the numerical stability of an algorithm are two

independent concepts and clearly, whenever possible, a numerically stable method 

should be used to solve a problem. If a numerically stable method is used to solve 

a well—conditioned problem then the result will generally be good; however if the 

problem is ill— conditioned, even if a stable algorithm is used, there is no guarantee 

that the result will be correct.

With the Gopinath method the fundamental equation to be solved is that of equation

4.3 which, as was shown in section 4.3, requires to be manipulated into the form of

equation 4.7 for a solution to be obtained. Although the solution of linear equations

Ax = b (4 .2 0 )

can be written as

A -!b  (4 .2 1 )

the solution should never be computed by first inverting A and then computing 

A-  1b, since this is numerically unstable.

NAG routine F04ATF [N4] calculates the accurate solution of a set of real linear 

equations with a single right hand side by the numerically stable method of Crouts 

Factorisation (the solution is to full machine accuracy : Real*8 arithmetic on the 

VAX—11/750 NAG implementation) and was therefore used to obtain the elements 

of H from equation 4.7. Unfortunately, in obtaining equation 4.7 there are several 

stages at which errors can be introduced.
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One of these is in determining the coefficients of the characteristic equation of A 

(equation 4.1). To do this it is necessary to first determine the eigenvalues of A or, 

in other words, the roots of the characteristic equation. This is achieved by using a 

series of NAG routines [N4] in order to optimize the accuracy of the procedure. 

These are F01ATF which balances the matrix (the Euclidean norm of the matrix is 

reduced since most eigenvalue programs produce results with errors proportional to 

the Euclidean norm of the matrix), F01AKF which then reduces it to upper 

Hessenberg form and finally F02APF which calculates the eigenvalues using Francis' 

economical method for performing the QR algorithm without using complex 

arithmetic.

The first two routines are extremely accurate, however, although the QR algorithm 

is very stable, the accuracy of the eigenvalues determined by routine F02APF 

depends on how well— conditioned the original matrix is. An interesting example of 

the problem is given by Chen, 1984, where it is shown how two of the eigenvalues 

of the matrix:

O f  = 7 .8  x lO - 14 1 0 .5 + JO
O f  = 1 0 - 1 0 1 0 .5 + J2 .7 3

a = 1 0 "5 10 .5 + J8 .0 5

a  = 1 10 .5 + j 16 .26

2

a  1

change as the value of a  (the element at the [ 20, 1] ^  position) varies. See also 

Crossley and Porter, 1969, who consider the more general problem of eigenvalue 

and eigenvector sensitivities.

Having determined the eigenvalues of A, or once the prescribed eigenvalues have 

been selected for the observer, the next task is to calculate the coefficients aj and 

7 i of the respective characteristic equations (equations 4.1 and 4.2). The algorithm 

used is given as a FORTRAN computer program in Appendix 3 and only involves 

the operations of addition and multiplication. Thus the sole source of errors at this 

stage would be through the introduction and propagation of round— off errors.

The final step is to form equation 4.7 using equations 4.3 to 4.6, inclusive. All 

operations, except in determining the inverse of F, involve only addition and 

multiplication, however the A matrix in particular is not usually well— conditioned 

since the elements tend to have large variations in magnitude. NAG routine F04AEF
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[N4] is used to calculate the inverse of F and the solution is accurate to full 

machine accuracy.

The need to calculate the inverse of F can be eliminated by pre— multiplying both 

sides of equation 4.3 by F and therefore modifying equation 4.7 to,

FDh = 7  -  a (4 .2 2 )

where D is defined, as previously, by equation 4.8.

Finally note the range of magnitude of the numbers involved since a wide range 

tends to produce an ill— conditioned problem. This is particularly the case when an 

operation involves numbers at opposite ends of the range, eg. adding a small 

number to a large number. For instance, in an eighth order model requiring eight 

observer eigenvalues at —20 , the coefficients of the characteristic equation would be:

a ,  -  1 .6 x l O 2 a 5 = 1 .792 XlO8

a 2 = 1 .12 x l O 4 Q6 = 1 .792 XlO9

a 3 = 4 .4 8 XlO s = 1 .024 XlO1 0

ola -  1 .12 XlO 7 «8 = 2 .56 XlO1 0

For a fourteenth order model the range would be from a ,=  2.8x102 to 

a , 4= 1.6384x101 4. Similar differences in magnitude can be observed in the D 
matrix.

4 .7  OBSERVER DESIGN RESULTS OBTAINED USING THE GOPINATH METHOD

The model used to test the FORTRAN computer program was of a Lynx helicopter 

at eighty knots level flight. The A and B matrices obtained from HELISTAB are 

shown in Appendix five and the eigenvalues of the A matrix are

-1 0 .5 4 5  0 .1 3 4  ± j0 .3 7 6

-3 .1 9 9  -0 .4 0 6

-0 .6 5 4  ± j 2 .255 -0 .0 3 1

The required eigenvalues for the full order observer were arbitrarily stipulated to be:

[ -20 , -2 0 ,  -18 , -17 , -16 , -15 , -1 5 ,  -12 ]

113



and two C matrices of dimensions (1x8) and (2x8) were used,

C1 “ [ 0 0 1 0 0 0 0 0 ] C2 — [ 1 1 0 1 1 0 1 1 ]
L 0 1 1 0 1 1 0 1 J

Four versions of the program were tested and the differences between them were as 

follows,

(1) Real*8 arithmetic and equations 4.3/4.7, ie. the inverse of F is used on

the right hand side of the equation.

(2) Real*16 arithmetic and equations 4.3/4.7 (Nb. NAG routines still in 

Real*8).

(3) Real*8 arithmetic and equation 4.22, ie. inverse of F not required.

(4) Real* 16 arithmetic and equation 4.22.

The results obtained, in terms of the eigenvalues, are shown in Tables 4.2 and 4.3 

for C , and C 2 respectively. For each of the eight required eigenvalues, the 

minimum, percentage magnitude error is indicated by a '* '. It should be noted that 

the previous comments concerning the accuracy of eigenvalues detremined by NAG 

routine F02APF, apply equally to the determination of the eigenvalues of [A—HC].

The obvious difference between the two sets of results is that those obtained from

using C 1 are much more accurate than those obtained from C 2. This loss of

accuracy is due to the increase in the number of calculations involved and hence an 

increased opportunity for errors to be introduced, accumulate and propagate. For 

example, with p= 1: C is of dimension (1x8) and H is (8X1). Therefore the 64

elements of the product HC will each be produced by a single multiplication. 

However, when p = 2 : the product of H (8x2) and C (2x8) will require the addition

of two multiplications for each of the 64 elements, eg.

H C „  = H . / C , ,  +  H 12*C 21

The second point that can be deduced, is that the best results are achieved using 

version four of the program. Unfortunately with C 2 the designs still contain 

unacceptable deviations from the required eigenvalues. Several other flight conditions 

were also examined and the same pattern of C., giving superior results to C 2 and 

version four of the program giving the fewest errors, was repeated.
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Ĥ tH VO vo CM CM VO VO CO COWm
uj 1 1 1 1 1 1

CM CM rH tH tH rH tH rH tH rH O tH rH rH rH o
+ + + + + + + + + + + 1 + + + +< UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJUJ CM CO CO CM CM CTv CM CM VO VO CO rH CM CM VO

04 i—l rH CO <t
1

CO
1

CO
1 1

tH
1

<f <t OV
1

CO
1

CM
1

CM
1 1

O o 00 00 tH tH tH tH Ov OV I""- r-"CO O rH tH 00 00 CO CO Ml" in in CO CO- O O • O o> JS rH tH VO VO CM CM VO vo CO COUJ >“ l tH rH
Q

1 1 1 1 1 i
UJ
z
u CM i—1 rH a\ o\ r̂ - tH tH rH tH r-. CM CM VOi-5 r—1 CO CO r- o 00 CO VO VO o o 00 OO inCO < .
UJ UJ CM rH tH CM CM tH o o <J- <f CM CM CM tHQ 04 CO

1 CM1 CM1
tH
1

tH
1

tH
1

tH
1

rH
1

CM1 CM1
rH
1

tH
1

tH
1

tH
1

tH
1

tH
1

a- CO O o 00 VO m in CM O O OO VO in m CM
O' — CM CM rH tH tH tH rH tH CM CM tH tH rH rH rH tHUJ > 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
04 UJ

CO
04
UJ OO
>

* *
U CM t—1 OV CTv iH CO o O in VO CM CO CT\ VO< o O OV OV OV Ov tH tH CM CM o ov t—1 r- 00 tH

CO CO tH r-- Ov OO o P'- r-~ tH vo Ov CO VO££ in m CM rH CM rH CO CO tH t—i CM

tH tH CM CM tH tH o o i—1 tH tH tH rH !-1 rH tH
c/a o + + + + + + + + + + + + + + + +04 < UJ UJ UJ u UJ UJ u UJ UJ UJ UJ UJ UJ UJ UJ UJO Z CM CM O o CM CM vO vo o o CTv cn o o
i 1—1 av CT\ tH tH Mj- I''- r-« vo vo 00 CO CO CO rH tH
MuUJ i 1 1 1 1 1 1 1

tH tH tH rH rH tH tH tH tH tH tH o tH tH rH o-J + + + + + + + + + + + + + + + +
< UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ
UJ CM CM VO vo 00 00 CM CM vO VO oo oo 00
04 CTV OV CM

1

rH
1

•J-

1

CO
1 1

tH
1

vo VO tH
1

vo
1

CO
i

CM
I

CO
1 l

oo 00 OV CTv -cf CM CM OO 00 CO CO CO CO CM CMc/a CJ tH t—1 CT\ CT\ r- C'- m in o o OV av O O- < .
> Z cn OV CTv OV -J- O o vo VO oo oo CO co rH rHUJ 1 1 1 1 i 1 i 1
r~iIH
UJ
z r^- 00 OO in m vo vo <r CM CM CO CO CM CMo rH tH CO CO tH tH r- vo vo co CO CO CO CM CMI— <CO UJ OV OV in in tH tH o o vO VO vo VO CM CM rH tHUJa 04 CM1 CM1

tH
1

tH
1 tH1 rH1

tH1
rH
1 CM1 CM1 tH

1
tH
1 rH1 tH

1 rH1 tH1

a- CO o o 00 r-'. VO in in CM o O 00 VO in in CM
O ' CM CM rH tH tH rH tH tH CM CM tH tH tH tH rH rH
UJ > 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
04 UJ

CO
04
UJ rH CM
>

116

TA
BL

E 
4.

3 
: 

ER
RO

R 
AN

AL
YS

IS
 

FO
R 

OB
SE

RV
ER

S 
DE

SI
GN

ED
 

WI
TH

 
C2



4.8 CONCLUSIONS

From the above results, which demonstrate the difficulties in accurately designing an 

observer with a desired set of eigenvalues, it is apparent that the dyadic observer 

design algorithm proposed by Gopinath is unsuitable for systems of this order. The 

reasons for this are twofold. Firstly the system (A), distribution (B) and output (C) 

matrices are usually ill— conditioned, or tend to produce an ill— conditioned problem, 

and secondly the digital computer implementation of the algorithm is numerically

unstable.

Fortunately, an alternative method was established in section 4.4 where it was shown

that the determination of the observer matrix, H, was a trivial calculation once the

system had been transformed into observable canonical form. An important 

consequence of this transformation is that it allows the system to be treated as a set 

of coupled subsystems, each of which is  of lower order than the complete system.

For example, with n= 8 and p= 2, the subsystems are of order four and therefore 

two full order observers (with n= 4) or two reduced order observers (n= 3) are

required. This is a numerically simpler task than determining an observer for the full 

order, untransformed system.

For these reasons, it was thus decided to reject the Gopinath design method and to 

continue investigation of the canonical form method.
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CHAPTER FIVE

THE DESIGN OF AN OBSERVABLE CANONICAL FORM OBSERVER 

AND ITS USE WITH A FEEDBACK CONTROLLER
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5.1 INTRODUCTION

In chapter four it was demonstrated that the design method of Gopinath, 1971), 

which avoids the use of canonical forms and is applicable to the design of both 

controllers and observers, was unsuitable for systems of this order. This was due to 

the fact that when the algorithm was implemented on a digital computer it tended 

to produce the undesirable combination of an ill— conditioned problem with an 

unstable algorithm.

It was also established that if the system is transformed to observable canonical form 

(ie. equations 4.11/4.12) then the determination of the observer matrix H becomes 

trivial. This transformation can be accomplished using the algorithm given in section

3.7.2 and its effect on the observer equations was detailed in section 3.8.

An important consequence of the system being transformed into observable canonical 

form is that in this form it can be considered as a set of subsystems, each being 

coupled to each other only through their outputs. This leads to further modifications 

of the observer equations and the particulars of these are given in section 3.9.

This chapter covers the software implementation of full and reduced order observable 

canonical form observers, for both eighth and fourteenth order system models. 

Consideration is given to the selection of observer eigenvalues with respect to the

accuracy of the design. The use of flight data is examined and the method for

obtaining noise from the state variables, for use in simulations, is given. A method 

of evaluating observer performance by correlation methods is described and the use 

of an observer in a feedback control system is demonstrated. It is shown that the

observer provides an estimate of the state x without altering the dynamics of the

controller. The system plus controller is then used to illustrate some further 

properties of observers: the effects of varying individual observer eigenvalues or of 

varying p; and the effect different sensor faults have on the state estimates.

5.2 COMPUTER IMPLEMENTATION OF THE DESIGN PROCEDURE

The transformation of a multivariable state space description of a system into 

observable canonical form by hand is, at best, a time— consuming, laborious, 

error— prone process. For large order systems it approaches the impossible. 

Fortunately, the use of modern digital computers and numerical methods makes the 

procedure a simple one although, as will be seen in chapter six, not

without its own associated (numerical) problems.
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During the course of the research a Fortran program was developed which

automated the observer design procedure. The program was written such that it 

could be resident within a Tsim  executable file and thus allowed design and

simulation to be generated from a single program. The various sections of the 

program: observability test, transformation to observable canonical form, observer 

design and addition of noise, are dealt with in the following sections. Any, or all,

of the subroutines can be run in batch mode.

5.2.1 THE OBSERVABILITY TEST

The first step in designing any observer, irrespective of the subsequent design

algorithm, is to ascertain whether the pair [A,C] is observable. Four equivalent

conditions for observability are stated in section 3.3 and the method selected was,

If the (npxn) observability matrix

V2 -  [ C CA . . .  CAn “ 1 ]T ( 5 . 1 )

is of full column rank n, the the pair [A,C] is observable

An equivalent statement,  as shown in  s e c t io n  3. 7,  i s

If the (nxnp) observability matrix

V = [ CT AtCt . . .  (AT) n - 1CT ] ( 5 . 2 )

is of full row rank n, then the pair [A,C] is observable

Now since the algorithm given in section 3.7.2 to transform a system into observable

canonical form involves the selection of n linearly independent (LIN) vectors in the 

sequence,

C , ,  C2 , . . .  Cp , C,A,  C2A, . . .  CpA, C^A2 , . . . .  CpA""1 ( 5 . 3 )

it is logical to use the form of equation 5.1 for the observability test. The reason

for this follows directly from the definition of the rank of a matrix :

The rank o f  a matrix A, is the number o f  L IN  rows (and columns) in A.
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The rank is also equal to the order of the largest non— zero minor of A (a minor 

is the determinant of any square submatrix of A) or to the number of non— zero 

rows when the matrix is transformed into row echelon fo rm  (a matrix with an 

ever-increasing number of zeros in its rows until, possibly, all elements are zero).

To first evaluate V 2 and then calculate the rank would be improvident, since the 

composite matrix has n*p rows, but there can at most be only n linearly

independent rows. It is more judicious to determine the m (0<m<n) linearly 

independent rows by examining V 2 in the sequence given by 5.3. Often the first n 

rows are linearly independent and therefore much computation is saved and the 

accuracy improved since lower powers of A are involved. If a row of form CjA^ is 

found to be linearly dependent then all rows of form CjA^-1- a, for [o== 1,2,3,...], 

are also linearly dependent and need not be examined (section 3.7.1). Thus it is 

obvious that an initial requirement is that C has linearly independent rows.

In order to determine whether the rows of a matrix are linearly independent, NAG  

routine F04JDF, [N4], is used. This routine returns the rank of a matrix by

evaluating its singular value decomposition (the rank is equal to the number of

singular values).

Therefore, to calculate the rank of V 2 a new matrix is formed from the p linearly 

independent rows of C and hence initially has rank equal to p. If the next row

from sequence 5.3 is added to this matrix it will then have p + 1 rows: if the rank 

of the matrix is now p-+-1 , then these p+ 1 rows are linearly independent and the 

new row is retained. However, if the rank is still equal to p, the new row is

linearly dependent and is rejected.

This procedure continues until n rows have been obtained, in which case V 2 is of 

rank n; or until the last row has been examined and rejected, in which case m < n  

and the pair [A,C] is unobservable. This is a valid method for calculating the rank

of V 2 due to the above and because i f  a set o f  vectors is linearly dependent, then

any larger set, containing this set, is also linearly dependent (Bronson, 1969). The 

observability of pair [A,C] ensures the observability of pair [A 11,A 21] and hence the 

ability to construct a reduced order observer (section 3.6).

The observability test took approximately fifteen to thirty seconds of central

processing unit (CPU) time for an eighth order system and approximately sixty to 

ninety seconds for a fourteenth order system: the minimum times occurring when the 

first n vectors are linearly independent.
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If the complete system is unobservable with V 2 having rank m (m < n) as determined 

above, then there exists an equivalence transformation, z= Px that transforms the 

system into,

± o _ Ao 0 Z0 + B0

. ±  ° . A21 A^ . z 0 . . Bo .

y -  [ C0 o ] z ( 
. Z"3

( 5 . 4 )

( 5 . 5 )

where the subscripts 'o ' and 'o ' signify observable and unobservable, respectively, 

and the m— dimensional subequation of the above,

z 0 = A0z 0 + B0u

y -  c oz o
( 5 . 6 )

is observable (the observability and controllability of a linear, time— invariant, 

dynamical equation are invariant under any equivalence transformation) and has the 

same transfer—function matrix as the original system. For a proof see Chen, 1984.

5.2.2 THE TRANSFORMATION TO OBSERVABLE CANONICAL FORM

From the previous section, if the pair [A,C] is observable then there will be n 

linearly independent vectors which can be arranged in the form of (3.11),

[ C, C,A . . .  C,A^ 1~ 1 C2 C2A . . .  C2A^2_1 . . .  Cp . . .  CpA^P-1 ]T

to determine the observability indices { t̂1 , ^ 2 , . . . , / i p } .  These are the dimensions of the 

blocks on the main diagonal of the transformed matrix A or, in other words, the 

orders of the sub systems for which full order (^ )  or reduced order (jq— 1) 

observers can be designed.

Steps (3) to (7) of the transformation algorithm (section 3.7.2) were relatively 

straightforward to program, the inverses being determined by NAG  routine F04AEF, 

[N4] and the solutions being to full machine accuracy. All calculations are executed 

in Real*16 arithmetic, except for NAG  routines which operate in Real*8 arithmetic. 

Due to the finite precision of the computer the elements of A and C which should,
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from theory, be zero or unity were, in general, not exact. Therefore a short routine

converted elements (i,j) into integers if they met the following criterion,

( i , j )  < 1 X 10- 1 0 Then ( i , j )  = 0

| l - ( i , j ) I  < 1 X 10-8 Then ( i ) j )  = I

The transformation to observable canonical form takes approximately one minute

CPU time for an eighth order system and approximately three minutes CPU for a

fourteenth order system. Because the processing times for the observability test and 

canonical transformation are relatively long, particularly in a multi— user computer 

system where the CPU times translate into much longer real times, the program was 

written such that the observability tests and canonical transformations could be 

carried out as batch jobs. Thus any number of flight conditions (ie. different A and 

B matrices) and C matrix combinations can be tested for observability, converted 

into observable canonical form and written to data files, without user intervention. 

When an observer is subsequently required, it is a simple matter to read the relative 

data file into the program.

S.2.3 DESIGNING THE OBSERVER

Once the system has been transformed into observable canonical form, there are two 

types of observer to be considered: full order or reduced order observer. The full 

order observer uses p out of n states to estimate the n states, whilst the reduced

order observer uses p states to estimate the remaining (n— p) states. The question is

which should be used?

As might be expected form the previous chapter, this depends to a large extent on 

numerical considerations. There are two aspects to this: firstly, the accuracy of the 

design in terms of the stipulated eigenvalues, and secondly, the fidelity of the 

designed observer's state estimation. The latter will be dealt with in chapter six.

The answer to the first question is easily addressed by using the program to design 

the two different types of observer for various eigenvalues and flight conditions. 

Extensive tests were carried out and from these it could clearly be seen that 

transforming the system into observable canonical form had resulted in a substantial 

increase in accuracy. Thus unless otherwise stated, all subsequent observer designs 

(whether reduced order or full order) are based on the system in this form.
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It was also discovered that there are four major factors affecting the accuracy of a 

design. These can be stated as,

The accuracy of the design will be increased by,

♦ using a reduced order observer rather than a full order observer

♦ increasing p, ie. increasing the number of subsystems

♦ having well distributed, distinct observer eigenvalues

♦ positioning the observer eigenvalues with the largest magnitudes into the

smallest blocks, and vice— versa.

In addition, for a fixed set of eigenvalues, C matrix and reduced or full order

observer, the accuracy will vary with flight condition.

To illustrate the above points, consider the following observers. First examine Table

5.1 (page 127) which shows, for a full order observer, the effect of increasing p.

The designs were for a Lynx at eighty knots level and the C matrices were,

C, = C ( l )  C2 -  C ( l , 2 ) C3 = C ( 1 , 2 , 3 )  C4 -  c d . 2 , 3 , 4 )

It is immediately apparent that as p increases, the errors reduce until, at p= 4, the 

errors are zero; clearly demonstrating the numerical advantages of considering the 

system in canonical form. The reason for the reduction in errors as p increases is 

straightforward: the magnitude of the canonical blocks is decreasing and hence the 

order of the characteristic polynomials Ajj (Section 3.7.3, Note 3) are also

decreasing. This gives numbers of smaller magnitude and variation which, as was 

noted in Chapter Four, leads to greater numerical accuracy.

Thus as p increases, and assuming no linear dependencies, the polynomials involved 

are,

p =  1 One 8^  order

p =  2 Two 4 ^  order

P =  3 Two 3r<* order and one 2nc* order

p =  4 Four 2nc* order
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Table 5.2 gives details of the equivalent reduced order observers for this flight 

condition. Again it can be seen that as p increases the errors reduce; however the 

errors now reduce to zero with p = 3 , where the design consists of one 1st order and 

two 2n£* order observers. Comparing Tables 5 .1 /5 .2  demonstrates that reduced order 

observers are more accurate than full order observers since they involve lower order 

polynomials and hence the design involves numbers of smaller magnitude.

Now consider Table 5.3 which shows, for the same flight condition, the effect of 

using distinct, well spaced out eigenvalues. The observers were full order and in 

each case the C matrix was C(l) and should therefore be compared with C 1 in 

Tables 5.1 and 5.2. It is evident that spacing out the eigenvalues reduces the errors, 

and that increasing the spacing further reduces the errors — contrast version— 3 

(spacing =  one) with version—4 (spacing = two). However, at some point the trend 

is reversed as the effect of their magnitudes on accuracy becomes more significant 

than the rewards of spacing. The benefits of distinct eigenvalues is discernible from 

a comparison of versions—2 and 3: although the spacing is greater in version—2, the 

distinct eigenvalues of version— 3 has produced the more accurate result.

Tables 5.4 and 5.5 indicate the consequences of placing the largest observer 

eigenvalues in the smallest blocks and the smallest eigenvalues in the largest blocks. 

The observers were designed for a fourteenth order model of the Lynx at eighty 

knots and the C matrix used was C(l,2,3,4) which gives blocks of size 4,4,3,3. 

Table 5.4 is for full order observers and Table 5.5 is for reduced order observers. 

In each table, version— 1 is the observer where the largest eigenvalues are in the 

largest blocks, whilst version— 2 is the observer with the largest eigenvalues in the 

smallest blocks.

Clearly, in each table, version—2 is the more accurate design and from a 

comparison of the two tables, the benefit of reduced order over full order is again 

apparent. The reason for the reduction in errors is simply that the magnitude of the 

polynomial coefficients in the largest blocks is reduced. For example, consider the 

difference in coefficients in each of the four blocks, between versions— 1 and 2 , for 

the reduced order observer:

VERS ION-1 VERS ION-2

S3 S 2 S 1 S° S 3 S2 S 1 S

1 : 1 120 4 ,800 64 ,000 1 75 1 ,800 14 ,000

2 : 1 110 4,025 49 ,000 1 105 3,675 42,875

3 : 1 70 1,225 1 80 1,600

4 : 1 40 400 1 80 1,600
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Finally, look at Table 5.6 which has the results for two full order observers, 

designed using C(l,7) and two different flight conditions, for a fourteenth order 

Puma model. Version—1 is one hundred knots with a descent angle of minus nine 

degrees and version— 2 is for one hundred knots level. As expected, the accuracy of 

the design differs between the two flight conditions, due to the difference in the 

system A matrices.

Since the program gives the user the option of designing a full or reduced order 

observer the only error reducing feature from the above that could be built in, was 

the allocation of the largest eigenvalues to the smallest blocks (and vice-versa). 

Thus in all subsequent designs, unless otherwise stated, this procedure was carried 

out automatically by the program. The algorithm to achieve this was relatively 

straightforward, but allowance had to be made for the possibility of complex 

conjugate observer eigenvalues being stipulated.

For example, consider a design where the smallest block is of order three and, in 

descending order of magnitude, the first five observer eigenvalues are: — 10±j2 , 

— 9±j2, —8 . Since the first two largest eigenvalues are — 10±j2, they will be 

allocated to the block first, leaving space for one more eigenvalue. The next largest 

eigenvalue is — 9 + j2 (or — 9—j2), but because eigenvalues must appear as complex 

conjugate pairs it is the next largest real eigenvalue which is used, ie. —8 . — 9±j2 

is then the first choice for the next block.

The subroutine to input the observer eigenvalues informs the user of the maximum 

number of permissible complex conjugate pairs (calculated from the block sizes for 

any given flight condition/C matrix combination) and prompts the user to reenter 

different eigenvalues if this number has been exceeded.
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5.2.4 THE USE OF FLIGHT DATA

The Helistab software package has facilities to produce linear and non— linear time 

histories from an initial flight condition and input u. For example, consider f ig  5.1 

which shows the linear and non— linear time responses of a Puma at one hundred 

knots, for a doublet input on 0 lS (k=0.1, t= 0/2/2/4). There is good agreement 

between the time responses and, in general, this is true for the majority of 'easy' 

manoeuvres; but for more severe manoeuvres, the differences can be substantial, 

particularly in the lateral states. However, since this research concentrated on flight 

conditions and manoeuvres well within the flight envelope, the linear model was 

considered to be a satisfactory model for initial investigation into the feasibility of 

state estimation and instrument fault detection, in the single rotor helicopter.

As discussed in chapter two, Helistab will produce a linearized state— space 

description, for any given flight condition, in the form of a system matrix A and a 

distribution matrix B. If the model is perfect, then for any given control input 

vector u, the Tsim  simulation of the state time histories should be identical

to the actual response of the helicopter. Naturally, since it is a linearized model of 

a highly unlinear system, this only applies at reasonable excursions from the nominal 

point.

Unfortunately the model has many limitations (see section 2.7) and therefore cannot 

be considered as accurately portraying the true response. To illustrate this, first 

consider f ig s  5.2 and 5.3 which are the pilot control inputs and state time histories, 

respectively, for a Puma initially at one hundred knots. The test input applied by 

the pilot is a doublet on 01S, after which no inputs are applied until corrective 

action is required. Note the degree to which the measurements of both control 

inputs and system states are corrupted by noise. The sampling rate is 1 /64^ 

(0.015625) of a second.

Now in order to provide realistic control inputs for the simulation model and to 

facilitate the comparison of state time responses, it is necessary to trim  the flight 

data: ie. the initial values of u and x should be zero. This is because the model is

produced by a linearization about a nominal point and therefore the simulation deals

with perturbations from this point.

To trim the data the user inspects the time histories and selects a period of time,

before the test input, over which the values of u and x are relatively constant. The 

values over this range are averaged to give a set of trims which are then subtracted 

from each value in the time histories. Finally, the user selects the time period
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required ( t 1 to t 2): normally the beginning of the test input is selected as ^ = 0 , 

and t 2 is taken to be several seconds after the input has been removed. Figs 5.4 

and 5.5 show the trimmed inputs and states. Once trimmed they can be used for 

simulation or stored in data files for future use.

The trimmed control vector u was applied to the model and the subsequent state 

time response was plotted with the trimmed flight data state time history: f ig  5.6. 

Estimates of states w, q and 6 are reasonably accurate over the first four seconds 

and u exhibits the correct trend, but the estimates of the lateral states are very 

poorly correlated.

Now one major prerequisite for accurate state estimation is that the observer should 

be based on a precise model of the system: which, as can be seen from the above, 

Helistab does not provide. However, if the A and B matrices obtained from 

Helistab are used to model the system, as well as for designing an observer, then 

the state vector x of this model can be used as input to the observer, whilst both 

system and observer are driven by the control vector u attained from flight data. 

This effectively gives a perfect model and was used to investigate the various aspects 

of observer design and performance, and the feasibility of sensor fault detection 

schemes.

If the performance proves satisfactory under these 'ideal conditions' then the 

simulation can be made more realistic by firstly corrupting the system state vector x 

by noise, and secondly, by varying the elements of the A and B matrices so that 

the observer is no longer a precise model of the system.

5.2.5 ADDITION OF NOISE TO SIGNALS

Since the noise on the signals is not white and therefore could not be easily 

simulated, it was decided to filter the noise from the flight data and then add this 

noise to the state vector x going to the observer: f ig  5.7.

A simple first order High Pass or Lead filter of form

Y(s) s
W ( s ) --------------------------  (5 .7 )

u ( s )  1 + s r

was used to filter off the noise and the c u t - o f f  frequency was set at sixteen hertz 

(T =0.01). As s (ie. j co) increases, the magnitude of the transfer function tends
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towards 1 /r (=100) and therefore the amplitude of the noise must be restored to its 

original levels before being used in a simulation. To accomplish this it was necessary 

to first determine the Noise Power Pn of the original signals, where Pn is given by,

N

N
(5 .8 )

and f(i) is the value of noise at point i, in the finite time interval of N points. 

Therefore in order to establish f(i), the value of the signal x(i) must be known. 

However the true value of x(i) is not available and therefore must be estimated by 

using a curve fitting numerical method.

The NAG  routines used were E02BAF and E02BBF, [N4], which calculate the value 

of a function at point i by computing a weighted least— squares approximation to an 

arbitrary set of data points, by a cubic spline with user prescribed knots. Since the 

noise was observed to be independent of signal amplitude the weights were all set to 

unity and the knots (the number of which determine the number of coefficients in 

the spline and hence the degree to which the spline 'follows' the data) were chosen 

by 'trial and error'. Knots were initially evenly spaced and the results examined 

graphically. Where the fit was poor extra knots were added — and this continued 

until a satisfactory fit was achieved. Fig 5.8 gives the eight state variables computed 

using four knots — compare this f ig  5.9 which shows the results with sixteen knots: 

this was taken to be the best fit. Thus the noise is given by,

f ( i )  -  xn ( i )  -  x ( i )  (5 .9 )

where xn(i) is the noisy flight data and x(i) is the cubic spline estimation of the 

true state.

The noise power was then calculated and Table 5.7 (overleaf) gives the values of Pn 

as the number of knots used for the cubic spline increases. As expected, Pn 

decreases as the number of knots increase. The values obtained with sixteen knots 

will be referred to as fu ll noise power.

Finally, Pn was determined (using equation 5.8) for the noise filtered from xn and 

then the noise was scaled down to unity noise power by multiplying each point by 

1/Pn . The filtered and normalized noise noise is shown in f ig  5.10. To obtain a 

given noise power each point is multiplied by that power. Thus the power of the
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FIG 5.10 NOISE FILTERED FROM FLIGHT DATA AND NORMALISED
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STATE

NUMBER OF KNOTS

4 8 16

u 1.16472 0.80084 0.53630

w 1.04035 0.91727 0.88705

q 0.02120 0.01469 0.01461

0 0.00257 0 .00124 0.00086

V 1.26718 1.24790 1.24242

P 0.01270 0.01239 0.01238

V 0.00233 0.00149 0.00083

r 0.00538 0.00422 0.00399

TABLE 5 .7

VARIATION OF NOISE POWER

WITH THE NUMBER OF KNOTS

USED FOR THE CUBIC SPLINE

noise can easily be altered to investigate the effect it has on observer performance. 

The program contains a subroutine which allows the normalized noise to be read in 

from a data file and the selection of the required noise power for each state. Fig 

5.11 shows the noise (at full noise power) added to the simulation generated states.

5.2.6 CORRELATION OF SIMULATION RESULTS

If the method of section 5.2.4 is used, whereby the system is modelled by the A 

and B matrices produced by Helistab, then the exact value of the state x, which 

the observer has to estimate, is known. Thus the time history of the estimated state 

vector x, derived by an observer, can be correlated with the known time history of 

the state vector x, to produce n correlation coefficients  (one per state) as a 

quantitative measure of observer performance.

The correlation method used was Pearson (zero—order) Product—Moment correlation 

and was provided by NAG routine G02BAF, [N4]. The correlation coefficient varies 

from —1.0 to +  1.0. A coefficient of zero indicates that no linear relationship exists; 

a + 1 .0  coefficient implies a 'perfect' positive relationship (ie. an increase in one 

variable is always associated with a corresponding increase in the other variable); and 

a coefficient of — 1.0 indicates a 'perfect' negative relationship (ie. an increase in 

one variable is always associated with a corresponding decrease in the other 

variable).
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A program was written to calculate the correlation coefficients at the end of a 

simulation. The time histories are examined in two halves and the lower value of 

correlation coefficient is used to decide whether the estimate of each state is a 
'pass' or 'fail': the pass criterion being,

correlation ) 0.995

This value was determined by plotting one hundred time histories and visually 

deciding what was an acceptable estimate and what was not. The correlation 

coefficients of the 'fails' were then determined and the lowest value used to set the 

pass criterion. Fig 5.12 shows examples of passes whilst f ig  5.13 gives examples of 

failures. The correlation coefficients are displayed for each plot.

5.3 STATE ESTIMATION WITH A FEEDBACK CONTROLLER

The most common application of a state estimator is to facilitate the provision of 

the complete state vector x for use in a feedback control law. In the particular case 

of the helicopter, x may not be completely accessible for a number of reasons: 

physical constraints may limit the number of sensors; sensors may fail 'naturally' or 

through damage sustained during combat; or some of the states may simply not be 

measurable. If an automatic flight control system (AFCS) or Active Control 

Technology (ACT) is being employed then the consequences of the sudden loss of 

the complete state vector could be catastrophic.

To investigate the use of a state estimator in a feedback control system it was 

necessary to select a pertinent design philosophy for the control system. 

Conveniently, previous research at Glasgow University had dealt with the design of 

automatic flight control systems, using Modal Control Theory, for the single rotor 

helicopter (Parry and Murray—Smith, 1985), and therefore this was the obvious 

choice.

The form of Modal control used by Parry and Murray—Smith utilizes principal 

angles (ie. angles between subspaces) in the design method to allow the selection of 

both the closed— loop eigenvalues and the corresponding eigenvectors (ie. 

eigenstructure assignment), and is a fast and visible method which can meet practical 

handling quality criteria. The allowance for selection of eigenvectors in addition to 

eigenvalues permits the decoupling of control inputs which result in a reduction in 

pilot workload, whilst still allowing fast responses to pilot demands. This is desirable 

because the inherent cross- coupling effects between pilot control inputs can cause
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handling difficulties, and can limit the desired flight path.

In Parry and Murray—Smith's 1985 paper a controller is designed for a Lynx at 

eighty knots and is based on a Helistab generated, eighth order model. The A and 

B matrices are given in Appendix five and the eigenvalues of A (the open— loop 

dynamics) consist of three longitudinal and three lateral modes, namely

The design criteria for the controller are given in Table 5.8 and the desired 

eigenvector or eigenvector subspace for each mode are shown in Table 5.9. Thus w 

is associated with fast pitch, <p with spiral, and so on. The paper gives the details 

of the design procedure and the resulting closed—loop eigenvalue/eigenvector pairs — 

these are shown in Table 5.10, but does not give the feedback matrix K. This was 

determined from the authors to be,

0 . 7 i e - 2  - 0 . 8 8 e - 2  - 0 . 4 4  - 0 . 2 8  - 0 . 4 9 e - 4  0 . 4 7 e - 3  - 0 . 3 3 e - 2  - 0 . 3 5 e - 3

- 0 . 2 7 e - 1  0 . 1 9 e - 2  0 . 3 6  0 . 1 i e + 1  0 . 3 8 e - 3  0 . 1 3 e - 1  0 . 2 2 e - 2  0 . 14e - 2

0 . 5 9 e - 2  - 0 . 2 6 e - 2  - 0 . 1  4 - 0 . 2 4  0 . 1  O e - 3  - 0 . 6 2 e - 2  - 0 . 2 8 e - 2  0 . 6  6 e - 2

0 . 7 0 e - 2  - 0 . 3 3 e - 2  - 0 . 2 4  - 0 . 2 7  0 . 1 7e-1 0 . 1 2  0 . 1 5  - 0 . 5 7

Fig 5.14 shows the connection of the controller to the system: there are two 

additional elements when compared to the controller of f ig  3.2. These are an 

actuator and P, the precompensator matrix. P (order (mxm) and of full rank, so as

not to alter the orientation of the assignable subspaces) is designed to reduce the

coupling effext of the input matrix B, and is derived in two steps,

(1) Form matrix T from the rows of matrix B:

LONGITUDINAL LATERAL

F a s t  P i t c h  = -3 .199  

Slow p i t c h  = -0 .406

Phugoid  = 0 .134  ± j0 .3 7 6
S p i r a l  -  -0 .0 3  

Dutch Roll  -----0 .654  ± j2 .2 5 5

R o l l  10 .544

Row 2

T 1
6
5

(2) P =  T“  1
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STATE TIME CONSTANT CROSS COUPLING

VERTICAL VELOCITY w < 0 . 2 5  SECS < 1 %

LONGITUDINAL VELOCITY u < 1 . 0 0 < 10

ROLL RATE p < 0 . 1 0 < 5

LATERAL VELOCITY v < 0 . 2 0 < 5

TABLE 5 .8  : DESIGN CRITERIA FOR CONTROLLER

FAST
PITCH

SLOW PITCH 
& PHUGOID

ROLL SPIRAL DUTCH
ROLL

u 0

w i

q 0

e 0

V 0

p 0

9 0

r 0
.

TABLE 5 .9  :

• ■

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 1 0

1 0 0 0

0 1 0 0

0 0 0 1

TABLE 5 .9  : DESIRED EIGENVECTOR SUBSPACE FOR EACH MODE
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LONGITUDINAL MODES

FAST PITCH SLOW PITCH PHUGOID

(-4 ) ( -2 ) ( - 3 ± j l .73)

u -0 .0031 0.9963 0 .982 5 ± j0 .0 0 0 1
w 0.9999 0.0000 0 .0 0 0 0 ± j0 .0 0 0 0

q -0 .0146 -0 .0768 -0 .1 4 0 4 + j O .1107
e 0.0037 0.0384 0 . 0511±jO.0074
V 0.0000 0.0000 0 .0 0 0 1 ± j0 .0 0 0 0

p 0.0000 -0 .0002 -0 .0 0 0 1 + j O .0003

9 0.0000 0.0001 0 .000 1 ± j0 .0 0 0 1
r 0.0001 -0 .0 0 2 4 0 .0042+ j O .0040

LATERAL MODES

ROLL SPIRAL DUTCH ROLL

(-1 1 )  (0) ( - 6 ± j3 .5 )

u 0.0015 0.0000 -0 .0 0 0 1 ± j0 .0 0 0 1
w -0 .0001 -0 .0011 0 . 0000±jO.0000

q -0 .0011 -0 .0076 - 0 . 0004±jO.0000
e -0 .0002 0.0008 - 0 . 0002±jO.0000
V 0.9960 -0 .0032 0 . 9986±jO.0001

p 0.0034 -0 .0050 0 .0 0 0 0 ± j0 .0 0 0 0

<P -0 .0005 0.9728 - 0 . 0002±jO.0000

r 0.0892 0.2316 0 . 0451±jO.0289

TABLE 5 .10  : CLOSED-LOOP EIGENVALUE/EIGENVECTOR PAIRS

PILOT INPUT STATE EFFECTED

COLLECTIVE STICK 0oe NORM' VELOCITY w

LONG' CYCLIC STICK 01S LONG' VELOCITY u

LAT' CYCLIC STICK 01C ROLL RATE p

PEDAL 80t LAT' VELOCITY v

TABLE 5 .11  : RELATIONSHIP BETWEEN PILOT INPUT AND STATE VARIABLES
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Corresponding rows of the modified input matrix Bc , where

Bc -  B*P (5 .10 )

will then approximate the identity matrix, yielding the relationships between pilot 

inputs and state variables given in Table 5.11. The m actuators are modelled as 

f ir s t  order lags of form,

Y ( s )  1

W ( s ) --------------------------  (5 .1 1 )
U ( s )  1  +  ST

with a time constant of r=50m S, and since the use of a state observer is assumed, 

C is taken to be the identity matrix and therefore not shown on f ig  5.14.

For the above flight condition and controller a full order observer was designed with 

eight eigenvalues at — 20 (the design of an observer can be carried out 

independently of the design of a controller: separation property — section 3.5) and 

the observer C matrix was C(l,2,3,4). The simulation was first run without the 

observer in the feedback loop, ie. x was obtained directly from the controlled 

system. Figs 5.15 — 5.18 show the state time responses for a doublet input of 

K= 0.1 rads, t=  0.0/2.5/3.5/6.0, applied to each of the four inputs: 0 oe, 0 1S, 0 1C 

and 0ot; whilst f ig  5.19 shows the time response of the uncontrolled (open—loop) 

system with the doublet applied to 0oe. Nb. angles and rates are shown in degrees 

and degrees/second, respectively.

It is evident from the time responses that modal control has resulted in a stable 

system with minimal interaction between the four controlled inputs w, u, p and v, 

and that the longitudinal and lateral dynamics are highly decoupled. Compare this to 

the open—loop system: f ig  5.19.

Next, the simulation was run with the controller using the state vector x, ie. the 

observer estimate of x. Visually, the time responses appear identical, however f ig  

5.20 demonstrates that there are very small differences between x and x, but this is 

only due to numerical errors in the estimation process and therefore there is no 

difference in state feedback from the estimated state x or the actual state x: as 

predicted in section 3.5. The simulations were repeated using a reduced order 

observer with four eigenvalues at — 20 and the results achieved were very similar to 

the full order case: ie. no practical difference between using x or x.

158



0 -0 7 3

0 -0 2 3

-0.025

0.075

0.023

-0.075- 0.075

FIG 5.15  CLOSED-LOOP RESPONSE TO A DOUBLET ON 6 Qe
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5.4 FURTHER OBSERVER CHARACTERISTICS

Now having demonstrated that using an observer in a state feedback control system 

does not alter the dynamics of the controller, the above combination of system and 

controller were used to demonstrate a further two characteristics of observers, 

namely: the effect changing individual observer eigenvalues has on the state estimates 

and the increase in magnitude of overshoots as p is decreased.

EFFECT OF CHANGING INDIVIDUAL OBSERVER EIGENVALUES

Much has already been said about the selection of suitable eigenvalues for the 

observer: both in terms of design accuracy and observer performance, but what 

effect does changing individual eigenvalues have on the state estimates? To answer 

this question each of the eight eigenvalues were individually changed to — 40 and the 

simulation run for a doublet input on 0oe and initial estimation errors introduced on 

each state. The time responses were then examined to see which state estimates had 

been effected.

Figs 5.21 and 5.22 show the observer error time histories for changing eigenvalues 

one and six respectively. It can be seen that not all the states are affected by a 

change in eigenvalue (eg, w, q and 0 in f ig  5.21) and that different states are 

effected by different eigenvalues (eg. q). The effect of changing any particular 

eigenvalue is difficult to forecast since the eigenvectors are also altered: it would 

require an observer design method which allowed the allocation of both eigenvalues 

and eigenvectors, analogous to the above modal control procedure. Fortunately, the 

ability to assign a set of eigenvalues without any knowledge of their associated 

eigenvectors, is adequate in the vast majority of practical applications, and providing 

the eigenvalues are all sufficiently fast, their individual contributions are irrelevant.

EFFECT OF VARYING p

The effect of varying p. ie. the number of rows in C, with respect to the accuracy 

of a design, was discussed in section 5.2.3; but it also has a significant effect on 

the magnitudes of overshoots during the state estimation process. Three observers 

were designed using C(l), C(1,2) and C(l,2,3), and each had eigenvalues at - 2 0 ,  

- 2 1 ,  ..., - 2 7 .  Simulations were run for each observer with a step input on 0 1S 

(K= 0.1 rads, t=0.0) and a scale factor fault of 0.9 applied to the sensor measuring 

u, between three and four seconds. Fig 5.23 demonstrates the dramatic differences
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in magnitude of overshoot — as p decreases, the magnitude of overshoot increases.

An explanation for this behaviour can be deduced from Chen, 1984, who states that 

for state feedback using a canonical form of order n and distinct eigenvalues, the 

largest magnitude in transient is approximately proportional to,

where | Xmax | is the largest eigenvalue in magnitude and pt\ the order of the block. 

The magnitude of feedback gains is also proportional to n. Thus small feedback 

gains and small transients are achieved by the largest observable canonical form 

block being kept as small as possible.
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CHAPTER 6 

EVALUATION OF THE PERFORMANCE OF 

OBSERVABLE CANONICAL FORM OBSERVERS
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6.1 INTRODUCTION

In the previous chapter the software implementation of the design of observable 

canonical form observers, including the observability test, transformation to canonical 

form, choice of full or reduced order observer, selection of eigenvalues and the 

choice of treating the system as one entity or as a set of p subsystems, was 

discussed. Observer accuracy was considered only in terms of the eigenvalues: how 

close were the eigenvalues of the designed observer to those requested.

This chapter examines observer accuracy in terms of performance: how faithful is 

the estimated state x to the actual state x. A quantitative measure of performance is 

provided by the correlation test described in section 5.2.6. Numerical problems with 

the observability test and the canonical transformation (and hence with observer 

performance) are investigated, and in particular the importance of the choice of C 

matrix (in other words, which system state variable(s) are used to reconstruct an 

estimate of the remaining state variables) is examined in detail.

Differences between eighth and fourteenth order models, and between reduced order 

and full order observers, are examined and the choice of suitable eigenvalues for the 

observer is appraised with regard to performance. Finally a new form of observer is 

developed: the Twin Observer, which provides a simple, but effective method of 

alleviating the problem of noise corrupted states.

6.2 OBSERVER PERFORMANCE WITH A 14th ORDER MODEL

The fourteenth order (eleven degrees of freedom) model can be partitioned into 

longitudinal, lateral and rotor dynamics; the rotor dynamics consisting of coning 

angle (|30), longitudinal and lateral flapping (|31C and |31S) and the derivatives /30, 

/31C and /31S (section 3.10). These six rotor states have much faster dynamics than 

the eight fuselage states (ie. longitudinal and lateral states). For example, consider 

the eigenvalues of a Puma at one hundred knots,

F u se lag e R otor

-1 .0 5  ± j l .03 

-0 .0 6  ± j0 .9 4  

-0 .0 1  ± jO .20 

- 0.12

-2 .1 7 -1 2 .4  ± J5 1 .1  

-1 2 .6  ± j 2 4 .3 

-1 1 .4  ± j  3 .7
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It can be seen that even the smallest rotor eigenvalue is more than five times the 

magnitude of the largest fuselage eigenvalue. This creates difficulties in selecting 

suitable observer eigenvalues since appropriate eigenvalues for the rotor states (say 

approximately — 25 in the above example) would be unsuitable for the fuselage states 

(for which —5 would be more applicable). The problem arises because the observer 

tends to act like a differentiator as the eigenvalues are increased towards minus 

infinity, and as such becomes highly sensitive to noise.

To illustrate this consider f ig  6.1 which shows two different reduced order observers 

designed for the Puma at one hundred knots. The control input was a doublet on 

01S (Appendix six), observer C matrix C(3,6) and the observer in f ig  6.1a had 

eigenvalues placed for the rotor states whilst the observer in f ig  6.1b had them 

placed for the fuselage states.

It is apparent that with 'rotor eigenvalues' the observer follows the rotor states, but 

has excessive noise on the fuselage states due to the fast eigenvalues. Conversely, 

with 'fuselage eigenvalues' the observer accurately estimates the fuselage states, but 

no longer follows the rotor states since the observer dynamics are now slower than 

the rotor dynamics.

The probable solution to this problem would therefore involve two sets of observers: 

one set for the fuselage states and a second set for the rotor states, each set having 

appropriate eigenvalues. However this was not investigated further since, at that 

time, there were no plans for the rotor states to be utilised or controlled by an 

automatic flight control system. Consequently further analysis of the fourteenth order 

model only considered the fidelity of the eight fuselage states and the eigenvalues 

were selected accordingly.

Nevertheless, it should be noted that the design of observers for estimating rotor 

state variables is currently a topic of active research. See, for example, McKillip, Jr, 

1984,85,86; DuVal, 1980; Fuller, 1981; Hall, Gupta and Hansen, 1980 and Molusis, 

Warmbrodt and Bar—Shalom, 1983.

Most of these designs use a Kalman filter type structure, although a full Kalman 

filter is rarely used as it requires an a—priori knowledge of the random processes 

perturbing the rotor system, a knowledge of the structure of the noise corrupting the 

measurements and an exact model of the plant dynamics. Given the complex 

dynamic and aerodynamic environment of most helicopter rotors, this proves to be 

too great a demand on mathematical modelling ability.
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6.2.1 EFFECTS OF DIFFERENT C MATRICES

In section 4.5.5 it was demonstrated that different C matrices produced large

variations in the transient response of the observer and in section 5.2.3 it was shown 

that the accuracy of the observer design increases as p (ie. the number of rows of 

C) increases. It is therefore not surprising to discover that observer performance is

also affected by the choice of C matrix. With p= 1 the fourteenth order system was

unobservable and therefore only C matrices with p^2 were considered.

To illustrate the effect of different C matrices, consider Table 6.1 which gives the 

results obtained for a doublet input on 01S (Appendix six) to the Puma at one

hundred knots. For each of the fifty six permutations of C matrix a reduced order 

observer was designed, with the two subobservers having eigenvalues of [ —4, —3.8, 

- 3 .6 ,  - 3 .4 ,  - 3 .2 ,  - 3  ].

The eight— second time histories of the state estimates were evaluated using the 

correlation program: an 'x ' indicates that all failed (eg. C(l,3) has an 'x ' in the

lateral column, thus the estimates of the lateral states v, p, <p and r were

unsatisfactory); and numbers indicate the only satisfactory estimates (eg. C(5,7) has

2,3 in the longitudinal column and therefore the estimates of states two and three

(w and q) were acceptable, whilst the estimates of states one and four (u and 8) 

were unacceptable). Note that estimates of the rotor states are still generated, but 

they are not inspected for the reasons given in the previous section.

The first thing to notice is that the results for C(i,j) are identical to those for

C(j,i). In general, this was found to be true, but from examination of how the 

observer is designed through the selection of linearly independent vectors (section 

3.7), it is obvious that this cannot be guaranteed. However, since it was true in 

most cases, and in order to reduce the amount of data to be analysed, it was

decided to subsequently only consider the twenty eight C(i,j) matrices indicated by a 

in Table 6.1.

The second feature which is apparent is that all the fails occur when the observer is 

being driven by two lateral or two longitudinal states. There are no fails involving

one lateral / one longitudinal state. It is also noticeable that there are fewer fails in

the half (ie. longitudinal or lateral) driving the observer. For example C(7,5) uses 

the lateral states v and <p to estimate the remaining two lateral states p and r (one 

fail: p) and the longitudinal states u, w, q and 8 (two fails: u and 8). This was

generally found to be the case: using longitudinal/lateral states to drive the observer 

gave better estimates of longitudinal/lateral states.
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c MATRIX LONG LAT

5 1

5 2

5 3

5 4

*
5 6

*
5 7 2 ,3 8

*
5 8

6 1

6 2

6 3

6 4

6 5

*
6 7

*
6 8

7 1

7 2

7 3

7 4

7 5 2 ,3 8

7 6
*

7 8

8 1

8 2

8 3

8 4

8 5

8 6

8 7

C MATRIX LONG LAT
*

1 2 8
*

1 3 X X
*

1 4 5 , 6 , 8
*

1 5
*

1 6
*

1 7
*

1 8

2 1 8
*

2 3
*

2 4
*

2 5
*

2 6
*

2 7
*

2 8

3 1 X X

3 2
*

3 4 2 8
*

3 5
*

3 6
*

3 7
*

3 8

4 1 5 , 6 , 8

4 2

4 3 2 8
*

4 5
*

4 6
*

4 7
*

4 8

TABLE 6.1 EFFECT OF C MATRIX ON OBSERVER PERFORMANCE

178



6.2.2 OTHER FACTORS AFFECTING OBSERVER PERFORMANCE

In the above example, each of the fifty six C matrices passed the observability test 

(as described in sections 3.3 and 5.2.1) and thus should have provided perfect 

estimates. Obviously this is not the case and therefore either the observability test, 

the design of the observer, or some other factor, is at fault.

In order to examine the effect of different eigenvalues, two of the problem cases

were selected for further investigation. These were C(l,2) which failed on lateral 

states only and C(1,3) which failed on both longitudinal and lateral states. Now the 

largest system eigenvalue is —2.17, so the smallest observer eigenvalue was varied 

from —2.17 to —6.51 (ie. l x  to 3x) in steps of 0.1 X. At each step the remaining 

observer eigenvalues were separated by 10% of the smallest eigenvalue. Thus the last 

set of the twenty one sets of eigenvalues tested was,

[ - 6 . 5 1 ,  - 7 . 1 6 ,  - 7 . 8 1 ,  - 8 . 4 6 ,  - 9 . 1 1 ,  - 9 . 7 6  ]

No improvement was noted and from the correlation results it was apparent that as 

the eigenvalues increased in magnitude, the correlation decreased. This was because 

the larger eigenvalues made the observer more susceptible to noise.

The next area to be investigated was the effect of different control inputs and as a 

first step the test of section 6.2.1 was repeated using a 3—2—1—1 input on 0 1S 

(Appendix six). This produced identical results, in so far as the same C matrices 

failed on the same states, which indicates that the fo rm  of input is not significant.

In order to examine the effect of noisy control inputs the four control inputs which 

form the doublet sequence (ie. doublet on 0 lS plus the simultaneous inputs on 0 oe, 

01C and 0ot) were approximated by a series of steps (f i g  6.2a) and a series of 

ramps (f i g  6.2b). The state response of the system to the noisy input was compared 

to that obtained using the series of ramps and, apart from small variations in the 

shape, there were no discernible differences.

The single case of a reduced order observer designed using C(1,2) and the same

eigenvalues as previously (ie. [ —4, —3.8, —3.6, —3.4, —3.2, —3 ] was used for 

the test. In addition to exploring the consequences of noisy inputs, the test was 

devised to determine whether the minor control inputs had an influence on the

observer^ performance. This was accomplished by stimulating the system and observer 

with a subset of the control vector. The combinations used for the test are shown in 

Table 6.2.
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^oe *1S *1C *ot

X X X X

X

X X

X X

X X

X X X

X X X

X X X

TABLE 6 .2

CONTROL INPUT COMBINATIONS

Each of the eight combinations were formed from each of the three forms of 

control vector: normal, steps or ramps, giving a total of twenty four different input 

vectors. Every run produced identical results to the original test: the longitudinal 

states were being estimated accurately whereas the lateral states were not. The test 

was repeated using a full order observer (the additional eigenvalue being placed at 

— 3.5) with the same results. Thus it was concluded that neither noisy control inputs 

or the combination of inputs has any significant effect on observer performance.

6 .3  CAN PERFORMANCE PROBLEMS BE IDENTIFIED AT THE DESIGN PHASE?

It is possible that for any given flight condition there will be several C matrices (or, 

in other words, combinations of sensors) which produce observers that cannot 

accurately follow the state of the system. It would clearly be advantageous to be 

able to identify and discard such cases at the observer design phase rather than 

having to conduct tests to eliminate them.

Since the tests of the preceding sections had failed to produce any indication of a 

deficient design procedure and had shown that the input was not significant, it was 

decided to examine the observability test. The principU. of the observability test was 

introduced in section 3.3 and its computer implementation was discussed in section 

5.2.1.

The crucial step in the determination of observability is the calculation of the rank 

of a matrix by NAG routine F04JDF, [N4]. The rank is determined by factorising
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the real mxn (m<n) matrix A (nb. not the system matrix) as the singular value 

decomposition (SVD),

A = Q [ D | 0 ] PT ( 6 . 1 )

where Q is an mxm orthogonal matrix, P is an nxn orthogonal matrix and D is the

mxm diagonal matrix,

D -  d i a g  ( s v , ,  s v 2 , . . .  , s vm ) ( 6 . 2 )

with

SV, ^ s v 2 ^ . . . ^ SVm ^0

these being the singular values of A. If the singular values s v ^  , , . . .  ,svm are 

negligible, but sv^ is not negligible, relative to the data errors in A, then the rank 

of A is taken to be k. In practice, due to rounding and/or experimental errors, it is 

often difficult to decide what constitutes a negligible value and hence which singular 

values should be considered zero. To illustrate this consider the following two

examples taken from the NAG manual.

In exact arithmetic, the rank of the (5x8) matrix

22 14 -1 -3 9 9 2 4

10 7 13 -2 8 1 -6 5

2 10 -1 13 1 -7 6 0

3 0 -11 -2 -2 5 5 -2

7 8 3 4 4 -1 1 2

is three. On a computer with seven decimal digits of precision the computed 

singular values would be,

3 .5  X l0 1 2 .0  x l O1 2 . 0  x l O 1 1 . 3  X lO"6 5 .5  XlO"7

and the rank would be correctly taken to be three. However, the (7x7) Hilbert 

m atrix , where ay =  l / ( i + j — 1) has singular values of
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1 .7  XlO0 2 .7  XlO-1 2 .1  XlO"2 1 .0  XlO"3

2 .9  X lO -5 4 .9  X lO"7 3 .5  XlO-9

and there is no clear cut— off between small and large values. In exact 

arithmetic the matrix is known to have full rank and none of its singular values 

are zero (with seven digit precision it would be taken to be singular). A further 

complication is that rank determination can be sensitive to the scaling of the 

matrix.

It is thus impossible to give a perfect rule, but in general the rank can reasonably 

be assumed to be the number of singular values which are neither zero nor very 

small compared with other singular values.

The NAG routine requires a user supplied relative tolerance (TOL) which is used to 

determine which singular values are insignificant. This is done by defining the rank 

of A (ie. k) to be the largest integer such that

Alternatively, if sv1 is the largest singular value then any singular value svj is taken 

to be zero if

The recommended value for TOL is given as approximately the largest relative error 

in the elements of A, eg. if the elements of A are correct to four significant figures 

then TOL should be set to about 5X10“  A. The default value, which was being used, 

is eps, the machine accuracy (ie. the smallest value the computer holds such that 

l + e p s = l ;  on the V A X -750, eps= 0.27755576e-16).

Table 6.3 shows the singular values returned by the NAG routine for the Puma at 

one hundred knots, with three different C matrices: C(6,2) which produced good

estimates, C(l,2) which only produced good longitudinal estimates and C(l,3) which 

failed on both longitudinal and lateral estimates. These values are independent of

TOL — it is the choice of TOL which determines which, if any, of these singular 

values should be considered to be zero.

It can be seen that there are no obvious differences between the good and bad

cases and that the largest decrease in magnitude, between one singular value and the 

next, is of the order of 102. If TOL was increased then at TOL =  s v14 / s v1

s v ^  > TOL * sv ( 6 .3 )

s v j  < TOL * sv (6 .4 )
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sv C( 6 , 2 ) C ( 1 ,2) C ( 1 ,3)

1 0 .366  E+10 0 . 367  E+10 0 . 365  E+10

2 0 . 328  E+09 0.219 E+10 0 . 671  E+08

3 0 . 133  E+08 0.322 E+07 0 . 17 4  E+06

4 0.201 E+06 0.132  E+05 0 . 649  E+03

5 0.119  E+05 0.145 E+04 0 . 536  E+02

6 0.237  E+04 0.385 E+03 0 . 452  E+02

7 0.317 E+03 0.257 E+03 0 . 318  E+02

8 0 . 168 E+03 0.115 E+03 0 . 905 E+01

9 0 . 829 E+01 0.321 E+02 0 . 216 E+01

10 0 . 200  E+01 0 . 472 E+01 0 . 100  E+01

11 0.996 E+00 0 . 100 E+01 0 . 484  E+00

12 0 . 160 E+00 0.997 E+00 0 . 620  E-02

13 0 . 214  E-01 0.977 E-01 0 . 501  E-03

14 0.761 E-02 0.449 E-03 0 . 105  E-03

e p s ^s v , 0 .102  E-06 0 . 102 E-06 0 . 101 E-06

TABLE 6 .3  

SINGULAR VALUES 

PRODUCED BY 

OBSERVABILITY TEST 

FOR THREE

DIFFERENT C MATRICES

C 1 2 3 4 5 6 7 8

1 + + + * * * *

2 + - - * * * *

3 + - + * - * *

4 + - + * * * *

5 * * * - - + -

6 * * - - - - *

7 * * * * + - *

8 * * * * - * *

* P a ss  /  Good 

-  F a i l  /  Good 

+ F a i 1 /  Bad 

TOL -  0 .2 7  X 1 0 " 1 2

TABLE 6 .4

OBSERVABILITY TEST RESULTS
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(=2.079X10 12 for C(6,2), for example), sv14, the smallest singular value, would

be treated as zero and the [A,C] pair would be defined as unobservable.

The value of TOL at which all the known bad cases would fail the observability test

was determined to be 0.27X10— 1 2. Using this value, the observability test was run

on all fifty six C matrices and the results are summarized in Table 6.4. The entry

in row i and column j is the result for C(i,j). A indicates that the [A,C] pair 

passed the observability test and that the designed observer produced acceptable 

estimates. Similarly a 1 or a 1 indicates that the observability test was failed, 

and that the estimates were good or bad, respectively.

Clearly setting TOL at a value which fails the known bad combinations has also 

caused several of the good cases to fail and, except for two entries, C(4,5)/C(5,4); 

C(4,6)/C(6,4), there is perfect symmetry about the main diagonal. Thus if these two 

entries are ignored, the remaining unique combinations are,

C ( l , 5 ) C ( 2 ,5) C ( 3 ,5) C( 4 , 7 ) C ( 6 ,8) C ( 7 ,8)

C ( 1 ,6) C( 2 , 6 ) C ( 3 ,7) C( 4 , 6 )

C ( l , 7 ) C( 2 , 7 ) C ( 3 ,8)

C ( 1 ,8) C ( 2 ,8)

This provides sufficient redundancy for estimation purposes, but does it provide 

enough information for a sensor fault detection, logic scheme? This question is dealt 

with in chapter seven which considers the design and implementation of

observer— based sensor fault detection schemes.

6.3.1 FURTHER INVESTIGATION OF THE OBSERVABILITY TEST

The observability tests in the preceding sections have all involved C matrices whose 

non— zero elements are unity. The effect of using values other than unity can be 

seen from Table 6.5. In all cases TOL =  0.27 x 10“  12 and C , and C 2 refer to 

the non— zero element in rows one and two of C, respectively. A pass is indicated

by a and the ratio C, : C 2 is indicated.

Several effects are apparent: firstly for a given ratio C , : C 2, the results are the

same, regardless of the magnitudes of C 1 and C 2. This was found to be the case

with each combination of the magnitudes considered (.01, .1, 1, 10, 100, 1000) and

is illustrated by the case C 1 : C 2 =  1 : 1. Secondly, as the ratio increases the

number of passes decreases and thirdly, for given magnitudes x and y, (C .,= x,
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C 2=y} gives different results than for {C ,=  y, C 2=x}. Thus the initial arbitrary 

choice of unity, non— zero elements was extremely fortunate.

It is evident that there are numerical problems involved with this form of 

observability test and the fundamental reasons for this can be explained as follows 

(this analysis follows from Chen, 1984, who develops a similar argument for the

controllability test, which as indicated in section 3.3, is dual to the observability

test).

The computation of the (npxn) observability matrix (section 3.3)

V2 -  [ C CA CA2 . . . CAn " 1 ]T ( 6 . 5 )

is a relatively simple task. As discussed in section 5.2.1 there can be at most n

linearly independent vectors (rows) in V 2 and therefore the complete matrix may not

have to be evaluated. Furthermore, in order to minimize the powers of A involved, 

V 2 is examined row by row in the sequence,

C ,, c 2 , . . .  , Cp , C,A,  c 2A, . . .  , CpA, C1A2 , . . .  .CpA ""1 ( 6 . 6 )

As each row is added the linear independence of the rows is determined by 

calculating the rank of the composite matrix using NAG routine F04JDF, [N4], 

which is a numerically stable method. However, if the dimension n of the equation 

is large, CAJ must be evaluated for large j, and in general this tends to transform 

the problem into a less well conditioned one.

A quantitative explanation for this can be determined by considering the condition

numbers of matrices AJ, where the condition number of a matrix A is defined as,

Cond(A) S (6 .7 )
S vs

svj and svs are the largest and smallest singular values and it can be shown that 

they are related to the eigenvalues by,

s v s « IXn I < I X1 | < SVJ (6 .8 )

Therefore, if |Xn | > | A1 | , Cond(A) is a very large number and in terms of

computer computation, the multiplication of a matrix with a large condition number 

will introduce large computational errors and should thus be avoided if possible. 

Looking back to Table 6.3 the condition numbers of the composite matrix are
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4.81X1011 for C(6,2); 8.17XL012 for C (l,2) and 3.48X1013 for C (l,3). It is 

interesting to note that the performance of these three observers was good, bad and 

very bad, respectively: ie. performance decreased as condition number increased.

To illustrate the rapid increase in Cond(AJ) as j increases, consider Table 6.6 which 

gives X1f Xn and X/Xn (^Cond(A), from equation 6.8) for AJ, where j = l + 6 .  If the 

eigenvalues of A are { X,, X2, .., Xn } then the eigenvalues of AJ are { ( X,)J, 

(X2)J, .., (Xn)J }. From the sequence of 6.6, and with n= 14  and p= 2, it is clear 

that the smallest power of A would be at least A 6 since rows thirteen and fourteen 

would be C ^ A 6 and C 2A 6, respectively.

AJ Xi /Xn

A 1 . 4 4  E-02 5.26 E+01 3 . 65  E+03

A2 2 . 07  E-04 2.76 E+03 1 . 33  E+07

A3 2 . 99  E-06 1.45 E+05 4 . 8 5  E+10

A4 4 . 3 0  E-08 7 . 64  E+06 1 . 78  E+14

A5 6 . 19  E-10 4 . 02  E+08 6 . 49  E+17

A6 8 . 9 2  E-12 2.11 E+10 2.37  E+21

TABLE 6 .6  

EIGENVALUES OF AJ

6 .4  OBSERVABILITY TEST AND OBSERVER PERFORMANCE AT DIFFERENT FLIGHT 

CONDITIONS

So far only the one flight condition has been considered: the Puma at one hundred 

knots level flight, and from the preceding sections it is apparent that there are 

problems with both the observability test and the performance of some of the 

designed observers. In order to determine whether these problems occur at other 

flight conditions a further eleven flight conditions of the Puma were examined.

These were 40, 60, 80, 120, 140 and 160 knots and 40 knots with descent angles of 

— 3°, —6°,  —9°,  —12° and —15°. The A and B matrices and the system

eigenvalues are shown in Appendix five. For each flight condition the twenty eight C 

matrices were tested for observability (with TOL= 0.27X10— 12) and then used to 

design reduced and full order observers. The reduced order observers consisted of 

two subobservers with eigenvalues of [—4, —3.8, —3.6, —3.4, —3.2, —3] and the 

full order observers had the additional eigenvalue at — 3.5. The performance of each 

was then evaluated for a doublet input on 0 1S (Appendix six). The results of the 

observability tests are shown in Table 6.7 (with respect to the reduced order results)
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40 60 80 100 120 140 160 40
-3°

40
-6°

40
-9°

40
-12°

40
-15°

1 ,2 X 0 0 0 X 0 0 0 0 0 0 0

1 ,3 X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0

1 ,4 X 0 X 0 X 0 X 0 X 0 X 0 0 X 0 X 0 X 0 X 0 X 0

1 ,5

1 ,6

1 ,7 X 0

1 ,8 X 0

2 ,3 X 0 X 0 X X 0

2 ,4 X 0 0 0 0 0 0 0 0

2 ,5 X 0

2 ,6

2 ,7

2 ,8

3 ,4 X 0 X 0 X 0 X 0 X 0 X 0 0 0 X 0 0

3 ,5

3 ,6

3 ,7

3 ,8

4 ,5

4 ,6 X 0

4 ,7 X 0

4 ,8 0 X 0

5 ,6 X X X X X

5 ,7 X X

5 ,8

6 ,7 0 0 X 0

6 ,8

7 ,8

TABLE 6.8 OBSERVER PERFORMANCE 0 - FULL ORDER, X - REDUCED ORDER
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and the performance of the observers are summarized in Table 6.8.

It is clear that the problems with the observability test and observer performance are 

discernible at each flight condition, the main difficulty being the inability to identify 

which C matrices produce unacceptable estimates. The question remains as to 

whether the problem is with the observability test, the design of the observer, or 

both.

Considering the observer design procedure it is feasible that a particular [A,C] pair 

could be 'just' observable (ie. a small percentage change to one (or more) elements 

in either matrix would make the pair unobservable) and that the small numerical 

errors introduced by the design procedure and the simulation of the system/observer, 

were sufficient to produce an effectively unstable observer. (Note that it is not 

possible to design an observer to estimate the full state of an unobservable system 

since the design procedure requires n linearly independent vectors (section 5.2.1)). 

Similarly, particular combinations, although observable, may produce observers which 

are very sensitive to the numerical errors inherent in the computer simulation of the 

system.

With the observability test, the inability to categorically determine which singular

values are zero (section 6.3.1) means that the results obtained by this particular

method will always be suspect.

Comparing the full order results with those for reduced order it can be seen that

except for at forty and one hundred knots, the performance of the reduced order

observer was the same or superior to that of the full order observer, though the

differences are slight. For example, the greatest difference is at 40 knots —15°, 

where there are three fails with the reduced order observer and six fails with the 

full order observer. The reason for the generally better performance by the reduced 

order observer is the reduction in computation and magnitude of numbers involved. 

Also, in its computer implementation the reduced order observer requires fewer

integrators.

However, in terms of noise rejection it is the full order observer which should

theoretically give superior performance. This can be explained by reference to f ig

3.3 (full order) and f ig  3.5 (reduced order). In the case of the reduced order 

observer q 2 (a partition of y) is fed through the constant gain matrix H to the 

output of the estimator. Hence if q is corrupted by noise, the noise will appear in 

the output of the observer. In the full order observer y is integrated (or filtered) 

and thus high frequency noise in y will be suppressed.
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6.5 THREE INSTRUMENTS PER OBSERVER

In an effort to determine the effect of using three instruments per observer (ie. 

p=3) ,  and in particular to ascertain whether the problems encountered with certain 

C matrices could be rectified by the use of more than two instruments, the following 

two tests were conducted.

The first test looked specifically at the C matrix C (l,3) which, as can be seen from 

Table 6.8, gave a fail for each of the flight conditions examined. One flight 

condition was considered: 40 knots —15°, and the designed reduced order observers 

consisted of three subobservers with eigenvalues at [ —4, —3.6, —3.3, —3 ] and [ 

— 4, —3.5, —3 ] (ie. n—p =  11; n 1 =  n 2 =  4, n 3=3) .  Thirty six observers (one 

for each of the combinations of instruments 1, 3 and j) were evaluated for the 

doublet input on 01S and the results are shown in Table 6.9. A indicates a pass.

It can be seen that the addition of a third instrument made an improvement in

twenty four cases: fourteen of which pass on both longitudinal and lateral states. 

Note that the cases (1,3, j) and (3,1 ,j) produced no improvement or less

improvement than the other four permutations. A possible explanation for this can 

be found by considering the sequence in which n linearly independent rows of V 2 

are selected (Equation 6.6).

If the first fourteen vectors of the sequence are linearly independent then vectors 

thirteen and fourteen will be C , A 5 and C 2A 5. In the above two cases these will 

therefore be C(1)A5 and C(3)A5, whereas the other four permutations will only 

involve C(1)A5 or C(3)A5. However, the reason(s) why this produces differences in 

performance is unclear. From earlier work it would be reasonable to suggest that

any improvement in performance must be due, at least in part, to the reduction in

order of the canonical blocks, ie. 4,4,3 instead of 6,6.

The second test considered every possible combination of three instruments, rather 

than just those involving one and three. This gave a total of 336 permutations — 56 

combinations of 3—out—of—8: each of which can be ordered in six different ways. 

The flight condition examined was the Puma at one hundred knots, with the same 

control input and observer eigenvalues as in the first test. Results are tabulated in 

Table 6.10, the passes being underlined.

It is apparent that for any given pair of instruments the effect of adding a third is 

unpredictable. The first experiment showed that one particular bad combination may 

be improved by a third instrument and this can be seen to be generally true from
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the results of the second test, eg. compare the results of C(5,7) with those of Table 

6.8. Unfortunately the contrary is also true: good pairs may fail when a third 

instrument is added. For example, consider C (l,5): when C(3) is added two 

permutations fail and when C(2) is added four permutations fail.

The explanation for this is relatively simple — adding a third instrument can result 

in a previously determined bad combination, eg. if C(3) is added to C (l,5) then two 

of the permutations are C(l,3,5) and C (3,l,5) which, as demonstrated by test one, 

will produce bad results. Thus it would appear that there is no major advantage to 

be gained by using three instruments per observer and therefore this line of 

investigation was not pursued any further.

C MATRIX LON LAT

2 , 1 , 3 *

4 , 1 , 3 *

5 , 1 , 3 * *

6 , 1 , 3 * *

7 , 1 , 3 * *

8 , 1 , 3 *

i—i 
CM

 

CO *

3 , 4 , 1 *

3 , 5 , 1 * *

3 , 6 , 1 * *

3 , 7 , 1 * *

3 , 8 , 1 * *

2 , 3 , 1 *

4 , 3 , 1 *

5 , 3 , 1 * *

6 , 3 , 1 * *

7 , 3 , 1 * *

8 , 3 , 1 * *

C MATRIX LON LAT

1 , 3 , 2

1 , 3 , 4

1 , 3 , 5

1 , 3 , 6

1 , 3 , 7

1 , 3 , 8

1 , 2 , 3 *

1 , 4 , 3 *

1 , 5 , 3 * *

1 , 6 , 3 * *

1 , 7 , 3 * *

1 , 8 , 3 *

3 , 1 , 2

3 , 1 , 4

3 , 1 , 5

3 , 1 , 6

3 , 1 , 7

3 , 1 , 8

!

TABLE 6 .9  THREE INSTRUMENTS (INCLUDING 1 AND 3) PER OBSERVER
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1 2, 3 1 3 2 2 1 3 2 3 1 3 1 2 3 , 2 1
1 2 4 1 4 2 2 1 4 2 4 1 4 1 2 4 , 2 1
1 2 5 1 5 2 2 1 5 2 5 1 5 1 2 5 , 2 1
1 2 6 1 6 2 2 1 6 2 6 1 6 I 2 6 , 2 1
1 2 7 1 7 2 2 1 7 2 7 1 7 1 2 7 , 2 1
1 2 8 1 8 2 2 1 8 2 8 1 8 1 2 8 , 2 1
1 3 4 1 4 3 3 1 4 3 4 1 4 1 3 4 , 3 1
1 3 5 1 5 3 3 1 5 3 5 1 5 1 3 5 . 3 1
1 3 6 1 6 3 3 1 6 3 6 1 6 1 3 6 . 3 1
1 3 7 1 7 3 3 1 7 3 7 1 7 1 3 7 . 3 1
1 3 8 1 8 3 3 1 8 3 8 1 8 1 3 8 , 3 1
1 4 5 1 5 4 4 1 5 4 5 1 5 1 4 5 , 4 1
1 4 6 1 6 4 4 1 6 4 6 1 6 1 4 6 , 4 1
1 4 7 1 7 4 4 1 7 4 7 1 7 1 4 7 , 4 1
1 4 8 1 8 4 4 1 8 4 8 1 8 1 4 8 , 4 1
1 5 6 1 6 5 5 1 6 5 6 1 6 1 5 6 , 5 1
1 5 7 1 7 5 5 1 7 5 7 1 7 1 5 7 . 5 1
1 5 8 1 8 5 5 1 8 5 8 1 8 1 5 8 . 5 1
1 6 7 1 7 6 6 1 7 6 7 1 7 1 6 7 , 6 1
1 6 8 1 8 6 6 1 8 6 8 1 8 1 6 8 . 6 1
1 7 8 1 8 7 7 1 8 7 8 1 8 J 7 8 , 7 1
2 3 4 2 4 3 3 2 4 3 4 2 4 2 3 4 , 3 2
2 3 5 2 5 3 3 2 5 3 5 2 5 2 3 5 . 3 2
2 3 6 2 6 3 3 2 6 3 6 2 6 2 3 6 . 3 2
2 3 7 2 7 3 3 2 7 3 7 2 7 2 3 7 , 3 2
2 3 8 2 8 3 3 2 8* 3 8 2 8 2 3 8 . 3 2
2 4 5 2 5 4 4 2 5 4 5 2 5 2 4 SLA. 2
2 4 6 2 6 4 4 2 6 4 6 2 6 2 4 6 . 4 2
2 4 7 2 7 4 4 2 7 4 7 2 7 2 4 1 .Ur 2
2 4 8 2 8 4 4 2 8 4 8 2 8 2 4 CO 2
2 5 6 2 6 5 5 2 6 5 6 2 6 2 5 6 . 5 2
2 5 7 2 7 5 5 2 7 5 7 2 7 2 5 7 , 5 2
2 5 8 2 8 5 5 2 8 5 8 2 8 2 5 8 . 5 2
2 6 7 2 7 6 6 2 7 6 7 2 7 2 6 7 . 6 2
2 6 8 2 8 6 6 2 8 6 8 2 8 2 6 8 . 6 2
2 7 8 2 8 7 7 2 8 7 8 2 8 2 7 00 2
3 4 5 3 5 4 4 3 5 4 5 3 5 3 4 5 , 4 3
3 4 6 3 6 4 4 3 6 4 6 3 6 3 4 6 , 4 3
3 4 7 3 7 4 4 3 7 4 7 3 7 3 4 7 , 4 3
3 4 8 3 8 4 4 3 8 4 8 3 8 3 4 8 . 4 3
3 5 6 3 6 5 5 3 6 5 6 3 6 3 5 6 , 5 3
3 5 7 3 7 5 5 3 7 5 7 3 7 3 5 7 . 5 3
3 5 8 3 8 5 5 3 8 5 8 3 8 3 5 8 . 5 3
3 6 7 3 7 6 6 3 7 6 7 3 7 3 6 7 , 6 3
3 6 3 3 8 6 6 3 8 6 8 3 8 3 $ 8 . 6 3
3 7 8 3 8 7 7 3 8 7 8 3 8 3 7 8 , 7 3
4 5 6 4 6 5 5 4 6 5 6 4 6 4 5 6 . 5 4
4 5 7 4 7 5 5 4 7 5 7 4 7 4 5 7 , 5 4
4 5 8 4 8 5 5 4 8 5 8 4 8 4 5 8 . 5 4
4 6 7 4 7 6 6 4 7 6 7 4 7 4 6 7.,,6. 4
4 6 8 4 8 6 6 4 8 6 8 4 8 4 6 8 .6 4
4 7 8 4 8 7 7 4 8 7 8 4 8 4 7 r''00 4
5 6 7 5 7 6 6 5 7 6 7 5 7 5 6 7 ,6 5
5 6 8 5 8 6 6 5 8 6 8 5 8 5 6 8 .6 5
5 7 8 5 8 7 7 5 8 7 8 5 8 5 7 00 '■

J 5
6 7 8 6 8 7 7 6 8 7 8 6 8 6 7 00 '-

J 6

TABLE 6.10 THREE INSTRUMENTS PER OBSERVER - EVERY PERMUTATION
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6.6 OBSERVER PERFORMANCE WITH AN 8th  ORDER MODEL

From the previous sections it is evident that there are rr\cur\t^_ problems 

involved in designing a fourteenth order observer which has the desired eigenvalues 

and performance. It was shown that even although an observer had the required 

eigenvalues and that the [A,C] pair used to construct the observer had passed the 

observability test, there was no guarantee that the observer estimate would be of the 

required degree of fidelity.

It was also noted that the rotor states are not presently measured or necessary for 

control purposes and therefore do not require to be estimated. Thus the next step 

was to consider the eighth order model: do the same design and performance 

problems arise and is the model sufficiently accurate to produce a faithful estimate 

of the state?

The assumptions used to derive the eighth order model were established in section 

2.6.1: the main premiss being that quasi— steady flapping and coning are used in the 

derivation of the reaction forces and moments on the fuselage. Consequently 

interaction of disc tilt modes with fuselage modes is neglected and (3 0, (31S and |3lC 

are determined solely through algebraic relationships. To illustrate the differences 

between the fourteenth and eighth order models consider f i g  6.3 which shows the 

response of eighth and fourteenth order models to the doublet input on d , s 

(Appendix six), at two different flight conditions.

The longitudinal responses are very similar: only minor differences between them, 

but there are significant differences in p and <p at 40 knots, —3°. However, the 

fourteenth order model contains many approximations and is therefore not accurate 

over the whole flight envelope (see chapter 2) and it is thus unwise to use it as a 

reference against which the eighth order model is judged. Both models should only 

be assessed against flight data.

6.6.1 RESULTS

Twelve flight conditions were considered: 20, 40, 60, 80, 100, 120 and 140 knots 

and 40 knots with descent angles of —3°, —6°, —9°, —12° and —15°. A and B 

matrices and system eigenvalues are given in Appendix five. For each flight 

condition eight reduced order and eight full order observers were designed. Since 

p= 2 the reduced order observers consisted of two subobservers, each of which were 

assigned eigenvalues of [—4, —3.5, —3]. The full order observers had eigenvalues of
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[ - 4 ,  - 3 . 6 ,  - 3 . 3 ,  - 3 ]  for each of the two canonical blocks. The largest system 

eigenvalue at any of the flight conditions was —2.35. A doublet on 0 lS (Appendix 

six) was used as the control input. The results, in terms of the fails, are shown in 

Table 6.11.

20 40 60 140 40
-9

40
-15

1 ,3 X O

1 ,4 X X 0

1 ,6 X 0

1 ,8 0

2 ,4 X O

3 ,4 X 0

4 ,6 X 0

4 ,7 0

5 ,8 X

TABLE 6 .1 1  

FAILS WITH TWO 

INSTRUMENTS PER OBSERVER 

0 -  FULL ORDER 

X -  REDUCED ORDER

Comparing these results with those for the fourteenth order model (Table 6.8) it is 

obvious that the eighth order model gives superior results. For example, there are 

only eight reduced order fails with the eighth order model against fifty one with the 

fourteenth order model. This allows a greater degree of freedom in designing a logic 

scheme for sensor fault detection. The reduction in fails can be accounted for by 

the decrease in observer order: fourteen to eight for the full order case and six to 

three for the reduced order. Note that the order of the reduced order observer has 

decreased by 50%, whereas the figure for the full order observer is only 43%.

Having determined that good results could be obtained by using eighth order, two 

instrument observers, the next stage was to determine the maximum size of 

eigenvalues which could be used. In order to qouujje, the range over which fails 

started to occur the initial test covered four flight conditions in detail: 100 and 120 

knots, and 40 knots with descent angles of —9° and —12°.

At each flight condition the eigenvalues were based on a percentage of the largest 

system eigenvalue: the smallest observer eigenvalue was increased from 0% to 200% 

in 10% steps, whilst at each step the remaining eigenvalues were in steps of 2% of 

this smallest eigenvalue, eg. if the largest system eigenvalue was —2, then at 100%
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the full order observer eigenvalues would be [—4.0, —4.08, —4.16 ,..., —4.56]. The 

fails, and the percentage eigenvalues at which they failed, are shown in Table 6.12. 

All other C matrices passed with each set of eigenvalues. It would appear that a fail 

will occur almost immediately (eg. C(4,6), 40 knots, —12°) or in the range 150% to 

200%. Those which still pass at 200% will fail at some greater value, but this was 

not investigated because eigenvalues greater than 200% were not considered 

necessary.

100 120 40
-9

40
-12

1 ,2 150 170

1 ,3 150

1 ,4 160 150

1 ,6 0 190

1 ,8 10

2 ,4 200 200 190 150

4 ,6 150 10

6 ,7 120 130

TABLE 6 .1 2

% EIGENVALUES AT WHICH 

FAILS OCCUR

To illustrate the difference in error responses between eigenvalues of 100% and 

200%, consider f i g  6.4 which demonstrates this for the 100 knots flight condition 

with C (l,7) and a scale factor fault of 0.8 on instrument seven from 0.5 to 1.5 

seconds. Naturally the larger eigenvalues result in greatly increased overshoots and a 

faster return to zero error, but the smaller eigenvalues have the advantage of 

smaller overshoots which means that the error is less until approximately the last 

25% of the respective responses. At this point the error is negligible. For these 

reasons it was decided to subsequently consider observer eigenvalues of approximately 

100%: ie. two times faster than those of the system being observed.

The full set of twelve flight conditions were then tested with eigenvalues of 90%, 

100% and 110%. Eigenvalues at ±10% of 100% were considered because from the 

previous experiment it was noted that occasionally a pass at x% failed at (x±10%). 

The C matrix was considered to fail if any of the three failed. Fails are shown in 

Table 6.13. Thus, even over this broad range of flight conditions, there is sufficient 

freedom of choice to allow the design of a state estimator / instrument fault 

detection scheme.
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20 40 60 80 140 40
-3

40
-6

40
-9°

40
-12

40
-15

1 ,2 X X X

1 ,3 X X

1 ,4 X X X X

1 ,6 X X X

1 ,8 X

2 ,4 X X

3 ,4 X

4 ,6 X X

5 ,8 X

6 ,7 X

TABLE 6 .1 3  FAILS WITH EIGENVALUES OF 100%

6 .7  VARIATION OF OBSERVER PARAMETERS WITH C MATRIX AND FLIGHT CONDITION

It has been demonstrated that by using two instruments per observer and eigenvalues 

twice as fast as those of the system, it is possible to determine an adequate number 

of observers to accurately estimate the system. However, with either the eighth or 

fourteenth order models the observability test was not able to accurately predict 

which observers do not meet the required performance criteria. In an effort to 

determine the reasons why some observers (ie. combinations of instruments perform 

so badly, it was decided to look at whether there was a correlation between the 

variation in observer parameters and the C matrices which failed).

The flight conditions examined were 80, 90, 100, 110 and 120 knots, and 100 knots 

with descent angles of —9°,  —6°,  — 3 0, + 3 ° ,  + 6 °  and +  9 0. A and B matrices 

and system eigenvalues are given in Appendix five. An eighth order model was used 

and both reduced order and full order observers were considered. With the full 

order observer the H matrix is of dimension (8x2), but as shown in section 3.9, the 

reduced order observer consists of two reduced order subobservers, with equation 

(3.74),
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z - [A,,-HA21]z + [ A , 2-HA 2 2 + (A , ,-HA 21)H]q 2 + [B,-HB2]u 
+ [d, - Hd2] (6 .9 )

which, to simplify, can be written as

z = T nz + T 2q 2 + T 3U + A i j  (6 .1 0 )

The H matrix and T 1 are constant due to the partitioned form of A (ie. in

observable canonical form), but the remaining three terms are variable. Eigenvalues 

for the full order observer were [—3.5, —3.45, —3.4, —3.35, —3.3, —3.25, —3.2,

— 3.15] whilst the reduced order subobservers each had eigenvalues of [—3.4, —3.35,

— 3.3]. The control input was a doublet on 01S (Appendix six).

At each flight condition twenty eight reduced order and twenty eight full order

observers were designed. The elements of each H matrix (for the full order

observer) and matrices T 2, T 3 and Ajj (for the reduced order observer) were stored 

in data files for comparison and the performance of each observer was ascertained 

in order to determine which C matrices failed. To facilitate the evaluation of the 

elements of the matrices, they are visually presented in an isometric form: the base 

axes are flight condition and C matrix and the vertical axis is the value of the

element.

First consider f i g  6.5 (a) to (d), which are the results for four of the elements of 

the full order H matrix in the range 80 to 120 knots. The performance results 

indicated that the only fail was with C(6,7) at 80 knots and looking at f i g  6.5 (a) 

and (b) this corresponds to a very large peak. In f i g  6.5 (c), C(l,3) is highlighted 

(which didn't fail) although to a much lesser extent than C(6,7) in (a) and (b). 

However, if the performance results are examined more closely a correlation can be 

seen. For example, the correlation figures for state <p are,

80 .99949

90 .99809

100 .99641

110 .99828

120 .99776

Thus as the peak increases, the correlation decreases. Finally study f i g  6.5(d) where 

the elements show a fair amount of variation with no apparent correlation to the 

performance results. In fact this was the case with the majority of the elements. 

However, for each case examined there were three elements which always indicated
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FIG 6.5A COMPARISON OF MAGNITUDE OF ELEMENI_H(1.1 )  AS FLIGHT

CONDITION AND C MATRIX VARY
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FIG 6.5C COMPARISON OF MAGNITUDE OF ELEMENT H (2 .2)  AS FLIGHT

CONDITION AND C MATRIX VARY

206



FIG 6.5D COMPARISON OF MAGNITUDE OF ELEMENT H(6 . 2 )  AS FLIGHT

CONDITION AND C MATRIX VARY
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at least some of the fails: these were H( l , l ) ,  H (3,l) and H(2,2). Fig 6.6(a) is a 

particularly good example: performance results indicated C (l,3) failing at —6°,  —3° 

and + 9 ° .  In some cases H(4,2), H(6,2) and H(8,2) also gave strong indications of 

possible fails. Note that it is not only a greatly increased magnitude which can 

indicate problems, but also a substantial reduction eg. C(3,4) in f i g  6.6(b).

With the reduced order observer only three elements gave a good correlation in 

every instance: T 2(l),  T 2(2) and T 2(3). For example, see f i g  6.7(a) where C(l,3) 

failed at —6°,  —3° and + 9 ° ;  C(6,7) failed every case and C(7,8) failed at + 9 ° .  It 

was also noted that many interesting 'patterns' were evident with elements T 3(i,j), 

eg. f i g  6.7(b).

6.8 OBSERVER PERFORMANCE WITH NOISY STATES

From the preceding sections it is apparent that at any given flight condition in a 

noise free system it is possible, despite the problems in identifying which observers 

produce accurate estimates, to produce a sufficient number of observers to provide 

redundancy in state estimation and adequate freedom in the design of sensor fault 

detection logic. Unfortunately the helicopter is an extremely noisy environment, 

particularly due to mechanical vibration from the main and tail rotors resulting in 

electrical disturbances.

The classic solution to such noise corrupted measurements is to employ a Kalman 

filter (Kalman, 1960; Kalman and Bucy, 1961) which provides optimal noise 

rejection, but has the disadvantages of requiring a— priori information about the 

structure of the noise and a filter of the same order as the system being observed. 

The utilisation of the observable canonical form of the system, and hence the ability 

to treat the system as a set of subsystems, would alleviate the second problem, but 

this still leaves the complication of obtaining knowledge of the noise.

Because of this, and because the application of the Kalman filter in a noisy 

environment is well documented, whereas the Luenberger observer is not (since it is 

generally thought to be unsuitable for such applications), it was felt that it would be 

worthwhile to investigate whether or not the Luenberger observer could be adapted 

to provide noise free estimates.

A fourth order longitudinal model of the Puma at 100 Knots, level was used: the A 

and B matrices being,
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FIG 6.6A COMPARISON OF MAGNITUDE OF ELEMENT H(2.2^ AS FLIGHT
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E1C-6.6B COMPARISON OF MAGNITUDE OF ELEMENT H(3 . 1 )  AS FLIGHT

CONDITION AND C MATRIX VARY
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FIG 6.7A COMPARISON OF MAGNITUDE OF ELEMENT T 2 m  AS FLIGHT
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FIG 6.TB COMPARISON OF MAGNITUDE OF ELEMENT T 3 ( 1 .4 )  AS FLIGHT
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- 0 . 0 2 7 0 0 0 4 4 6 5 3 - 3  2 1 8 3 - 7 . 8 1  8 - 3 0 9 3 8

- 0 . 0 3 0 -0 8 5  7 1 6 8 2 2 0 0 4 6 6 - 3  7 7 . 6 9 3 - 1 3 0 7 7 5

0 . 002 -0 0 0 8 -0 8 0  1 0 000
B -

2 1 3 9 6 3 8 6

0. 000 0 000 1 000 0 000 0 000 0 000

and the eigenvalues of A are complex conjugate pairs:

-0 .8 3  ± jl .12 

-0 .0 2  ± j0.18

Two sets of observer eigenvalues were initially used for comparison: 2x and 4x the 

largest system eigenvalue with 2% steps, ie.

EV1 : [ - 1 . 6 6 ,  - 1 . 6 9 ,  - 1 . 7 2 ,  - 1 . 7 6  ]

EV2 : [ - 3 . 3 1 ,  - 3 . 3 8 ,  - 3 . 4 4 ,  - 3 . 5 1  ]

and noise obtained from the flight data states (see Section 5.2.5) was added to the 

model generated states at full noise power. Each experiment was carried out with 

ten C matrices,

C ( l )  C ( 1 ,2)  C ( 2 ,3)  C ( 3 ,4)

C(2)  C ( 1 ,3)  C ( 2 ,4)

C(3)  C ( 1 ,4)

C(4)

but the results are illustrated by considering only two of these: C(l,4) and C(3,4). 
Initial errors in the observer estimates are introduced by setting the observer states 

to non— zero values at t= 0, specifically,

u(t0) = - 1  q(t0) = 0.0165

w(t q) = 1 3(t0) = 0.001125

The control input was a doublet on 0lS (Appendix six).
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6.8.1 RESULTS

The first experiment was simply to establish the response of the observer in the

absence of noise and the results are shown in f i g  6.8. Two characteristics, which

have been previously discussed, are immediately apparent — the faster reduction in 

error with larger eigenvalues coupled (in most, but not all instances) with an 

increased overshoot: eg. compare w in f ig s  (a) and (b)\ and the difference in 

estimates between the two C matrices: C (l,4) being more 'sensitive' than C(3,4).

When noise is added to the states, f i g  6.9, the responses of the two observers are 

markedly different, f i g  6.10. The estimates produced from C(3,4) are the same as 

previously, but with the addition of noise, whereas the greater 'sensitivity' of the

observer using C(l,4) has resulted in poorly correlated results. Also, the use of 

larger eigenvalues increases the amount of noise appearing on the estimates from

C(3,4) and exacerbates the problems with C (l,4). Ignoring the noise content of the 

estimates, out of the ten C matrices examined, only C(l) and C(l,4) didn't

accurately follow the system state.

The next step was to determine whether a simple filter could be used to provide

signals clean enough to allow the observer to produce a noise free estimate of the 

state. A basic first order Low Pass (or Lag) filter was used,

Y (s) 1
W(s)  -----------------------  (6 .1 1 )

u ( s )  1 + S T

and its effect on the noisy states (f i g  6.9) can be seen in f i g  6.11. A diagram of 

the system, with noise being added to x: giving noise corrupted state Xjj and a low 

pass filter on the output of the system: giving filtered output yf, is shown in f i g  

6.12.

Two tests were then conducted — no noise added to the system state ( f i g 6.13) and 

noise added ( f i g 6.14). Both cases were with t = 0 . 2  and observer eigenvalues EV2.

Considering the 'no—noise' case first, it is clear that the filter has introduced three

effects: the magnitude of the overshoots have increased (eg. compare u in f i g  6.13b 

with u in f i g  6.8d)\ the number of overshoots has increased (eg. compare w in f i g  

6.13a with w in f i g  6.8b) and the observer estimate 'lags' the system state (eg. q 

and d in f i g  6.13b).

When noise is added, the response of C(3,4) is virtually identical to the no—noise, 

filtered responses, ie. the noise on the observer output has been reduced to a
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negligible level. Compare u in f i g  6.10d with f i g  6.13b and f i g  6.14b, for 

example. With C (l,4), the addition of noise has again resulted in poor results, 

however they are an improvement over the 'no filter' case, eg. compare f i g  6.10b 

with f i g  6.14a. As previously, the only unacceptable estimates were produced using

C(l) and C (l,4); all other C matrices produced clean, lagged inputs.

Thus, despite its simplicity, these tests have demonstrated that a low pass filter Cojf\ 

output signals clean enough to allow a virtually noise free estimate of the state. 

However, this estimate lags the system state and as the value of r  increases, the lag 

increases. Obviously, unless this lag can be eliminated, the estimates will be 

inadequate for control purposes, although possibly sufficient for instrument fault

detection.

The first attempt at solving the problem was to add an identical low pass filter in 

the feedback loop of the observer: f i g  6.15, in order to lag the feedback of the

observer state z by an identical amount. For each C matrix, four cases were run:

t=  0.1 and 0.2 for observer eigenvalues EV1 and EV2. No noise was added to the 

states.

The results are tabulated in Table 6.14 and f i g  6.16 gives four examples from three 

of the four categories: good, minor, oscillatory and unstable. Fig 6.16a illustrates the 

'm inor' category, with one estimate (u) being more oscillatory than in the no—filter 

case; (b) and (c) are both examples of the oscillatory category: the larger

eigenvalues resulting in less damping; and (d) shows an unstable estimate.

The reasons for the differences can be seen from examining the eigenvalues of the 

complete system — ie. observed system, observer and the two low pass filters. For

example, consider the system which includes an observer designed with C(l,4) and

EV2. The eigenvalues of this composite system, without filters, are,

SYSTEM -0 .8 2 8  ± j l .1 1 8 5  $ -0 ,5 9 5

-0 .0 1 5  ± jO .1797 $ -0 ,0 8 3

OBSERVER -3 .5 1 0

-3 .4 4 4  

-3 .3 7 8  

-3 .3 1 2

where $ is the Damping Factor. As was shown in section 3.5, the eigenvalues are 

the union of those of the system and those of the state estimator (Separation
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EV1 EV2

C MTX 7 §
8

mln
osc

un
?

§
a

m
in

osc
un
?

C( l )
0 . 1 * *

0 . 2 * *

C(2)
0 . 1 * *

0 . 2 * *

C(3)
0 . 1 * *

0 . 2 * *

C(4)
0 . 1 * *

0 . 2 * *

C ( 1 ,2)
0 . 1 * *

0 . 2 * *

C ( l , 3 )
0 . 1 * *

0 . 2 * *

C ( 1 ,4)
0 . 1 * *

0 . 2 * *

C( 2 , 3 )
0 . 1 . * *

0 . 2 * *

C ( 2 ,4)
0 . 1 * *

0 . 2 * *

C ( 3 ,4)
0 . 1 * *

0 . 2 * *

GOOD -  E s t i m a t e s  a lmos t  i d e n t i c a l  t o  n o - f i l t e r  c a se

MINOR -  At l e a s t  one e s t i m a t e  more o s c i l l a t o r y  th a n  n o - f i l t e r

ca se

OSCILLATORY - Hi gh l y  o s c i l l a t o r y  e s t i m a t e ,  bu t  s t i l l  s t a b l e

UNSTABLE -  E s t i m a t e  u n s t a b l e

TABLE 6 . 14  RESULTS WITH FILTERED STATES AND FILTER IN FEEDBACK LOOP
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Property). Using a low pass filter on the output of the system adds four eigenvalues 

at —10 with r= 0 .1  or four eigenvalues at —5 with r= 0 .2 , but the system and 

observer eigenvalues are unaltered. Unfortunately this is not the case when a low 

pass filter is also used in the feedback loop of the observer. With both filters having 

7=  0.1 or 7= 0.2, the eigenvalues are,

J L 1 0 .2

SYSTEM -0.828 ± j l . 1 1 8  $ -0 ,5 9 5
-0 .015  ± jO .180 $ -0 ,0 8 3

-0 .828  ± j l . 1 1 8  
-0 .015  ± jO .180

$ -0 ,5 9 5
$ -0 ,0 8 3

O/P FILTER - 1 0 .0  - 5 .0
- 1 0 .0  - 5 .0
- 1 0 .0  - 5 .0
- 1 0 .0  - 5 .0

F/B FILTER -1 0 .3 6 4  
- 10 . 0  
- 10 . 0  
-  5 .071

-5 .1 1 2  ± j 2 .550  $ -0 ,8 9 5
- 5 .0
- 5 .0

OBSERVER -3 .0 4 0  -2 .9 1 3
-1 .1 5 7  ± j 9 .649 $ -0 ,1 1 9  -0 .5 7 8
-0 .8 9 6  + 1 .015  ± j 7 .776 $— 0,129

and clearly the eigenvalues of the observer and the filter are not independent — the 

addition of the filter has altered the observer eigenvalues and also the eigenvalues of 

the filter itself. With 7= 0.2 the result is an unstable estimate due to the positive 

complex conjugate eigenvalue, whilst with 7= 0.1 the estimate is underdamped with 

$=0,119.

When noise is added to the states, those observers which provided good estimates in 

the absence of noise, produced almost identical estimates (eg. f i g  6.17a: C(3,4), 

EV2, 7= 0 .2), whereas if the estimate was originally poor, the addition of noise 

aggravated the problem (eg. f i g  6.17b: C (l,4), EV2, 7= 0.1). Thus, although

adequate, relatively noise free estimates can be produced by this method, it is 

unacceptable because the observer and filter eigenvalues are altered. It is of course 

feasible that an observer design method could be developed to allow the independent 

selection of observer and filter eigenvalues, however this was not investigated since a 

simpler solution was discovered.
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6.9 TH E TWIN OBSERVER

The system and observer are both linear and thus the outputs of the following are 

identical, ie. Xf =  x'.

u X

SYSTEM ■ — ) FILTER
* f

SYSTEMFILTER

Therefore instead of having the filter in the feedback loop of the observer (f i g  

6.15), it was used to filter the input ( f i g  6.18). With this filter, but no filter on 

the system output, the observer estimate lags the system state. With a filter added 

to the system output the result is the same, but the observer estimate x and the 

filtered output of the system, Xf, are in phase.

The importance of this is that the error term is therefore zero, whereas when only 

one filter is used (either on the observer input or the system output) the error term 

is non— zero due to the lag introduced by the filter. It is the lag on this non— zero 

error vector which causes the observer estimate to lag the state of the system.

The solution is simple, but effective: use the in—phase error term produced by an 

observer using two filters, to drive a second observer with no filters, f i g  6.19. The 

equations of the system and observers are thus,

x — Ax + Bu (6 .1 2 )

z 1 ”  Az, + Buf + H(F-1 Cxn -  CqZ,) (6 .1 3 )

z 2 -  Az2 + Bu + e Z1 (6 .1 4 )

Where ez i , the error term driving observer 1, is,

e z i  -  H(F_1Cxn -  C0z , )  (6 .1 5 )

and the estimate of the system state x is obtained from observer 2,

x -  S~1z 2 (6 .1 6 )
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6.9.1 RESULTS

The simulations were run using the same flight condition and input as in the

previous cases and the observer eigenvalues were EV2. Both low pass filters had the 

same value of r and this was varied from 0.2 to 1.6 in steps of 0.2. At every step

a simulation was run for each of the ten C matrices.

Fig 6.20 shows the results for r= 0 .2 , 0.8 and 1.6 for C(3,4) and C (l,4). It can be

seen that the observer estimate and system state are in phase and that any noise on

the estimates is reduced as r increases. Fig 6.20(g) demonstrates the reduction in

error as r increases, in the estimation of state q produced from C (l,4). Also note 

that as r  increases any overshoots remain the same. With r=  1.6 the only observer 

estimate which would fail the correlation test was that produced by C (l,4).

The test was repeated with a fourth order lateral model of the Puma at 100 Knots,

level, for which the A and B matrices and system eigenvalues are,

-0 1 5 8 - 4 6 5 0 3 2 1 72 - 1 6  7 8 04 3 1 6 73 1 6 1 5 7

- o 0 2 1 -1 6 3 6 0 000 0 355 2 5 349 5 3 2 9
= 0 0 0 0 1 0 0 0 0 0 0 0 -0 1 45

B = 0 0 0 0 0 000

0 0 0 6 -0 0 2 8 0 0 0 0 -0 6 3 7 0 5 1 6 - 9 542

- 1.86

-0 .2 1  ± j l . l  

- 0 . 1 6

Observer eigenvalues of 2X and 4X the largest system eigenvalue, with 2% steps, 

were thus,

EV3 : [ - 3 .7 2 ,  - 3 .7 9 ,  - 3 .8 7 ,  - 3 .9 4  ]

EV4 : [ - 7 .4 4 ,  - 7 .5 9 ,  - 7 .7 4 ,  -7 .8 9  ]

The control input was a doublet on 6 ot (Appendix six) and initial errors in the 

observer estimates were established by setting

v ( t 0) -  2 .0  £ ( t 0) -  0 .0 4

p(t0) - 0.02 r(t0) - -0.015
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Noise was added to the model generated states at full noise power (f i g  6.21). Each 

experiment was carried out with ten C matrices,

C(5) C( 5 , 6 ) C( 6 ,7) C( 7 , 8 )

C(6) C ( 5 ,7) C ( 6 ,8)

C(7) C ( 5 ,8)

C(8)

The results were very similar to those obtained with the longitudinal model, but with 

one important exception. With the longitudinal model there was no apparent 

difference in performance between the use of one or two instruments, ie. C(i) or 

C(i,j), however with the lateral model the use of two instruments generally provided 

the better performance.

For example, consider f i g  6.22 which gives the results obtained for C(5), C(7) and 

C(5,7), with t = 0 . 2  and observer eigenvalues EV4. It can clearly be seen that by 

combining the two instruments both the noise content and magnitude of overshoot 

have been significantly reduced.

Thus with either a longitudinal or a lateral model, the use of the twin observer has 

alleviated the problem of noise on the instrument signals. Time did not permit 

further investigation of this solution, however the obvious areas for further research 

are the evaluation of a more sophisticated filter and the implementation of the twin 

observer on an eighth or fourteenth order model.
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CHAPTER SEVEN 

INSTRUMENT FAULT DETECTION
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7.1 INSTRUMENT FAULT DETECTION TECHNIQUES

The idea that an instrument failure in a dynamical system can be identified from 

the readings of other, dissimilar, instruments in the same system is as old as the art

of flying aircraft 'by instruments'. However, the idea of so detecting instrument

failures in automatic control systems, on line, so that corrective action can be taken 

in time to prevent loss of control, is relatively recent and mainly due to the 

introduction of Active Control Technology systems (ACT), eg. Wyatt, 1984; Richards. 

W; Winter, Padfield and Buckingham, 1984). Failure of these systems, particularly in 

aerospace applications, may have catastrophic consequences and therefore the problem 

of failure detection and accommodation has become of critical concern.

Hardware is often the main problem: processors may compute erroneous results or 

stop altogether, memory and sensors may return incorrect values; communication 

lines may corrupt information or lose it and actuators may stop working or become 

inaccurate. A single component might fail or an entire computer with its memory 

and communication lines might be disabled, as in an onboard fire or a strike by 

anti— aircraft guns, shrapnel, etc. Even if the computing system itself is flawless, it 

may still fail because of environmental effects such as power fluctuations or excessive 

heat.

If a system is to be reliable, it should therefore tolerate the faults that still arise in

spite of all efforts to eliminate them. Redundancy in many forms is the means of

keeping such faults from interfering with the systems planned reliability. Initially 

Hardware Redundancy was used on fixed— wing aircraft with f l y —by—wire (FBW) 

systems: usually four lane (Quadruplex), eg. Korte, 1984, or three lane (Triplex) 

with self—monitoring, eg. Wyatt, 1984.

This provides an accurate and robust method: failure detection being decided by a 

simple majority vote logic system, but has the disadvantages of increased weight 

(with obvious impact on performance), utilisation of valuable space, increase in 

electromagnetic radiation and, perhaps most importantly, increased expense due to 

the high cost of avionics.

In recent years attention has therefore concentrated on Software Redundancy, which 

has been given many different names: Functional Redundancy, Analytical

Redundancy, Inherent Redundancy and A rtific ia l Redundancy, being the most 

common. The advantages of software redundancy lie in the trade— off of redundant 

hardware against computer processing of signals from dissimilar (non— redundant) 

sensors.
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The techniques of software redundancy can be divided into two categories — time 

series analysis and state estimation. With time series analysis (see for example,

Willsky and Jones, 1976; Madiwale and Friedland, 1983; Bonnice, Motyka, Wagner 

and Hall, 1976) the length of time sequence required for analysis results in large 

delays between the occurrence and detection of a fault and is therefore impracticable 

for the majority of aerospace applications. State estimation on the other hand, allows 

detection of even small faults, almost instantaneously.

Under the heading of state estimation four main methods of instrument fault 

detection have emerged: the Dedicated Observer Scheme (DOS), the Failure

Detection Filter, the Unknown Input Observer and the Disturbance Rejection Filter. 

These are described below.

An unusual method involving the use of observer theory and predictive techniques is 

presented by McLean and Al—Khatib, 1984. This method uses a prediction technique

based on information received from state measurements to provide the necessary

analytical redundancy for the failure detection scheme.

THE DEDICATED OBSERVER SCHEME

The dedicated observer scheme was introduced by Clark, Fosth and Walton, 1975 

and is the simplest of the four instrument fault detection methods. A DOS requires 

only one set of instruments, since the redundancy provided by multiple sets of 

instruments in the traditional scheme is provided, artificially, in the control 

computer, by a subsystem of multiple observers.

Assuming that the single set of instruments consists of three or more individual 

sensors, the output signal from each sensor is used to drive an observer which is

especially designed for that sensor. Since each observer estimates the state vector of 

the system, there is redundancy in state vector estimates and these can be compared 

in a logical voting manner. If all the sensors are perfect, and if the dynamic 

parameters of the system are known exactly, then all the estimated state vectors will 

converge quickly to the real state.

However, if one of the sensors is in error, then the state vector estimated by its 

observer will also be in error, and so a comparison among the estimated states will 

identify the faulty sensor. A fault is indicated when the difference between two 

estimates exceeds some predetermined, non— zero, threshold value.
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Since 1975 Clark has published a number of papers describing his DOS and its 

applications: a hydrofoil boat ( [C5]— [C7], [C9] ), inverted pendulum ( [CIO] ), an 

A7 jet aircraft ( [C ll] ) and a Boeing 737 ( [Cl 2] ). In [C5] a simple majority 

voting scheme was used to identify any single fault. A simplified version of this, in 

which only one observer is required, is investigated in [C6]. In this scheme detection 

of a failure is accomplished by a logic circuit which simply compares the estimated 

instrument outputs to the actual instrument outputs.

In [Cl 3] this scheme is expanded to include a random disturbance entering as an 

additive augmentation to the control inputs. In addition, a Kalman filter (driven by a 

single instrument) is used as the dedicated observer. A dedicated observer scheme 

using multiple Kalman filters was successfully tested on an altimeter in [Cl 2]. 

Similarly, Kitamura, 1980, used Kalman filters for an instrument fault detection 

scheme in a nuclear plant.

More recently, Frank et al have expanded the basic dedicated observer scheme in an 

effort to reduce the detrimental effects of parameter variations and noisy inputs, 

whilst maximising the sensitivity to instrument faults. For example, in Frank and 

Keller, 1980, duplication of observers allows distinction between parameter variations 

and instrument faults. The first observer of the pair is designed to be insensitive to 

parameter variations and instrument faults, whereas the second one is made 

insensitive to parameter variations only, but sensitive to instrument failures.

Thus the difference of the outputs of the two observers is only sensitive to 

instrument faults. The observer designs are optimised for their specific purpose by 

the use of quadratic cost functionals and it is shown that this form of scheme can 

deal with parameter variations of up to 50%. Robustness tests carried out by Clark 

in [C5] and [C6], indicate that the 'standard' dedicated observer scheme can only 

accommodate parameter changes of up to 10%. Other papers by Frank on this topic 

are: Frank, 1986; Hengy and Frank; Wunnenberg and Frank; and Madbouly and 

Frank.

THE FAILURE DETECTION FILTER AND THE UNKNOWN INPUT OBSERVER

Failure detection filters were first developed by Beard, 1971 and Jones, 1973. They 

have an identical structure to the Luenberger observer and in the absence of faults 

the estimation error vector will reduce to zero. This difference between this type of 

observer and the Luenberger observer is in the behaviour of the estimation error 

vector in the presence of a fault.
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With the Luenberger observer the error vector will have some unpredictable 

direction, however in the failure detection filter the error vector is fixed for a

particular sensor fault. Thus by examination of the direction of the estimation error 

vector, the faulty sensor can be identified. The association between the direction of 

the error vector and the corresponding faulty sensor is fixed during the design of 

the observer gain matrix, H, and is accomplished using complex eigenstructure 

assignment (see Section 4.1.2).

Another technique proposed recently is that of the unknown input observer 

(Wunnenberg and Frank). The fundamental concept behind this form of observer is 

that the estimation error vector should be independent of the effects due to 

parameter variations and disturbance inputs. In the design of the observer the

disturbances acting on the system need not be modelled, however a well defined

disturbance distribution matrix must be established. Unfortunately, for most real 

systems this constraint makes the unknown input observer extremely difficult, if not 

impossible, to design and implement.

THE DISTURBANCE REJECTION FILTER

The major problem with the above state estimation techniques for instrument fault 

detection, is that they all require an accurate linear model of the system for their 

correct operation. It is also assumed that system disturbances are well modelled or 

else have an insignificant effect on plant parameter variations.

When these assumptions are not valid, which is the case in most real applications, 

the observer error vectors will be non— zero, even in the absence of a fault, and

this may result in false triggering of alarms. The fault detection logic which

processes the redundant state estimate vectors must therefore allow for this and the 

solution is often to simply increase and/or vary the threshold value.

However, a new robust approach — the Disturbance Rejection Filter — has recently

been advanced by Patton, Willcox and Winter, 1987 and Willcox, 1988, which

utilises the fact that in the non— ideal situation, the observer error signal contains all 

the information about parameter variations and disturbance inputs. Thus, by using a 

weighting of the observer error as a parity signal, it is possible to identify faults

without the need to generate the complete state vector.

The Parity Space approach has previously been used by other authors, eg. Beard, 

1971; Deckert, Desai, Deyst and Willsky, 1977; Chow and Willsky, 1984, but with
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this method two new features have been developed. These are the application of the 

Output Zeroing problem (McFarlane and Karcanias, 1976; El—Ghezawi, Billings and 

Zinober, 1983) to the estimation error space (ie. the eigenstructure of each observer

is designed such that a weighted combination of the error signals of each observer

gives a 'null signal' in the no— fault condition) and the consideration of frequency

domain parameter sensitivity to construct frequency discriminating properties into the 

observer error space dynamics.

In many applications the required frequency domain information about parameter 

variations and disturbance inputs is already available. Alternatively, the information 

may be obtained from the desired control characteristics and/or from frequency 

domain identification techniques, eg. Andry, Shapiro and Chung, 1984; Juang and

Suzuki, 1986; Black, Murray—Smith and Padfield, 1986.

In Willcox 1988, the disturbance rejection filter was successfully tested on an

inverted pendulum servo mechanism and an unmanned aircraft. It was shown that

the robustness of the design allowed low threshold values to be used and

consequently the rapid detection of faults.

7.2 THE DEDICATED OBSERVER SCHEME

In chapter six a new form of observer — the twin observer — was developed and 

successfully tested. It was demonstrated that with an accurate model of the system, 

the twin observer could produce an accurate relatively noise free estimate of the 

system state, even when the inputs to the observer were corrupted by noise. The

next step was therefore to determine whether this form of observer was suitable for 

instrument fault detection. From section 7.1 it is apparent that the only applicable 

technique is that of the dedicated observer scheme, since the other three methods all 

involve specific observer designs.

The dedicated observer scheme (f i g  7.1) only requires a single set of instruments, 

each of which drives an observer specifically designed for that instrument. Since each 

observer estimates the complete state vector there is redundancy in the state vector 

estimates and these are processed by a logic scheme to allow detection of instrument 

faults. The logic scheme proposed by Clark is relatively simple and best illustrated 

by example.

Consider a fourth order, noise free, longitudinal model being monitored by four 

instruments, each of which drives an observer. There are therefore four estimates of

261



Y

U

OBSERVER

U

Y- OBSERVER
2

r ,

u
OBSERVER

P

/S
x

A

X-
£ >

A

X,
C >

L O G IC
TO

P R O C E S S
T H E
p n

R E D U N D A N T
S IG N A L S

7 \

2

P

r
m

FIG 7 .1  THE DEDICATED OBSERVER SCHEME

262

o
)H

7
0

>
r'

>



the system state: x v  x 7 x 3 and x 4 ; where each x j =  [u , w, q, 8 ] T If six 

difference equations, aj, are defined as,

£ 1 -  I
A
2i "

A
22 I i

p £ II 1 A 1 ^2 A 1
" 23 1

£ 2 = I
A
2i ’

A
23 I 2s = . A 1 X2 A . -  24 1 (7 .1 )

23 -  I
A
2 i "

A
24 I 26 “ A23 A . -  X4 1

-

then in the absence of a fault all aj's will be zero. However, if one, or two,

instruments develop a fault then several of the a j’s will become non—zero: Table

7.1. Note that the non—zero aj's for two faults is simply the union of those for the 

individual faults.

NON-ZERO a j ' s

FAULT 1 2 3 4 5 6

1 X X X

2 X X X

3 X X X

4 X X X

1 ,2 X X X X X

1 ,3 X X X X X

1 ,4 X X X X X

2 ,3 X X X X X

2 ,4 X X X X X

3 ,4 X X X X X

TABLE 7 .1  

NON-ZERO a j ' s  FOR 

FAULTS ON ONE OR TWO 

INSTRUMENTS

If the four products, bs, are defined as,

5 i “  2 i *22*23

~2 “  £ l *^4-^5 b „  “  a ~  . a , - . a «4 “ 3 “ 5 “ 6

(7 .2 )
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then the non— zero bj's will indicate a fault on the corresponding instruments. This 

logic will identify a simultaneous fault on two instruments, but cannot accommodate 

three simultaneous faults.

When noise exists on the instrument signals and when small errors are present in 

the model and introduced in the design of the observer, the aj's, and hence the 

bj's, will all be non— zero in the absence of a fault. Consequently the resolution of 

an instrument fault will not be perfectly sharp. In particular, all bj's will increase 

for a fault on any instrument, although the bj's corresponding to the faulty 

instruments should increase the most.

For this reason and since all pertinent information can be obtained directly from the 

aj’s, the four products, bj's, were not used. Specific details of the implementation of 

a logic scheme using the six difference equations, aj's, are given in section 7.4.

7.3 SIMULATION OF INSTRUMENT FAULTS

In order to investigate and assess observer performance in the presence of one or 

more instrument faults, and to subsequently evaluate instrument fault detection logic 

schemes, it was necessary to simulate various types of instrument fault. Four 

categories of fault were selected: scale factor, scale factor ramp, threshold or 

dead—zone and bias. These are explained below.

m  SCALE FACTOR

Scale factor faults (f i g  7.2a) were implemented as an (nxn) matrix Ksf with scale 

factor coefficients K^(t) on the main diagonal.

K, ( t )

Ks f ( t ) K- ( t )

M O ( 7 .3 )

If the instrument vector is defined as Yj(t) then

Y i ( t )  -  Ks f ( t ) * Y ( t )  ( 7 .4 )

The coefficients have a nominal value of 1.0 and therefore a fault on instrument i 

between time t ,  and t 2 can be simulated by setting KjCt ,->t 2) to a value other than
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1.0. This value is a constant between t 1 and t 2. An instrument failing completely 

can be simulated by setting Ki(t.,-»t2) =  0.

(2) SCALE FACTOR RAMP

Identical to scale factor except that between time t , and 12 the value of Kj 

increases/decreases linearly from 1.0 to the specified fault level (f i g  7.2b). This 

allows the simulation of an instrument which is gradually deteriorating.

^ i ( t )  -  Ks f r ( t ) * Y ( t )  ( 7 . 5 )

(3) THRESHOLD/DEAD- ZONE

Dead— zone element of gradient= 1 ( f i g  7.2c) inserted in series with the scale factor 

coefficients in each instrument channel.

Y ^ t )  -  Y ( t )

Yj ( t ) -  0

Y i ( t )  =  Y ( t )

Y ( t ) < -w 

-w < Y ( t ) < w 

Y ( t ) > w

( 7 .6 )

(4) BIAS

Bias errors are introduced additively and take the form of a vector b, with default 

value for element b p  0.

b , ( t )

(7 .7 )

A bias of constant value can thus be applied between times t 1 and t 2.

Y j ( t )  -  Y ( t ) + b ( t )  ( 7 .8 )

The software implementation of the various faults (f i g  7.2d) allows complete 

freedom of selection: faults can occur simultaneously, overlap, on any instrument, at 

any time and for any duration.
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7.4 INITIAL CONSIDERATIONS

In the preceding chapters the problem of observer design and their performance in 

noise free and noise corrupted systems, were examined and the twin observer was 

proposed as a solution to noise corrupted signals. The selection of eigenvalues and a 

value for r  were evaluated with respect to state estimation criteria, ie. rapid 

convergence to the system state and the fidelity of the estimate; the question is 

whether these criteria are compatible with instrument fault detection.

To investigate this question the fourth order longitudinal model of the Puma at 100

Knots was used (section 6.8) with observer eigenvalues EV1 and EV2: 2x and 4x

the largest system eigenvalue with 2% steps. The observers were designed with C(3) 

and a temporary total failure of instrument three was simulated by a scale factor

fault of 0 from 2 to 3 seconds. The control input was a doublet input on 0 1S 

(Appendix six) and noise was added at full noise power.

The first parameter to be examined was the eigenvalues: f ig  7.3 shows the observer 

response for EV1 and EV2. As would be expected from the no— fault case, the 

larger eigenvalues have resulted in an increase in the magnitude of error and the

noise appearing on the estimate; and a reduction in the damping and the time to 

'zero ' error after the fault is removed. Note also, that in both cases, and for each 

of the four states, the initial overshoot at the time of application of the fault is 

much smaller than the subsequent overshoot. Furthermore, the removal of the fault 

can give rise to a larger error than the fault itself, eg. the error in w.

Next for consideration was the filter parameter r and time histories were recorded 

for 7= 0.2, 0.4 and 0.8. These are plotted together in f i g  7.4. It is apparent that 

the effect of an increase in r is the opposite to that of an increase in eigenvalues: 

in other words a decrease in the magnitude of error and noise and an increase in 

the damping and the time to zero error.

The final variable to be assessed was the order of the low pass filters. So far a first 

order low pass filter has been employed,

Y (s) .
---------------- !------ ( 7 .9 )
U ( s )  1  +  ST

which has a slope of 20db/decade on a magnitude/frequency Bode plot. A second 

order low pass filter
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Y(s)  |
----------------------------- (7 .1 0 )
U(s)  (1 + S T ) 2

has a slope of 40db/decade and therefore for a given value of r  will reduce noise 

more effectively than the first order filter. This is clearly demonstrated in f ig  7.5

which compares the error responses of two observers designed with EV1 and 7= 0.2 :

one with first order filters and the other with second order filters. Their responses 

to the fault are plotted in f ig  7.6 and it is evident that increasing the order of the 

filters has an identical effect to increasing the value of r .

Having now determined the effects of varying the eigenvalues, r  and the order of 

the filters, the question is what are the optimum values of these parameters for 

instrument fault detection. To answer this it is first necessary to reconsider the 

proposed logic for the dedicated observer scheme.

It was demonstrated in section 7.2 that an instrument fault, or two simultaneous 

faults, could be identified from the six difference equations, aj's (equations 7.1, 

Table 7.1). Since there is noise on the instrument signals these will be non—zero 

even when there is no fault and therefore some threshold value must be set for 

each a.j. To avoid false triggering these thresholds must be sufficiently above the

no— fault level.

Now the values of each aj depend on the estimates x j and hence on the three

parameters investigated above: eigenvalues, r  and filter order. In the case where 

there are no instrument faults, increasing r or the order of the filters will decrease 

the noise on the estimates and therefore decrease the magnitudes of the aj's. 

Increasing the eigenvalues has the opposite effect — noise increases on the estimates 

and consequently the aj's increase in magnitude.

When an instrument develops a fault the errors, and hence aj's, will increase with 

increasing eigenvalues and decrease with increasing r or system order. Thus by 

increasing t  or the system order a lower threshold can be set, but the rate the aj's 

increase will be reduced. Conversely, increasing the eigenvalues will result in a 

higher threshold and an increased rate.

In order to evaluate the effect of these factors on the time to detect an instrument 

fault, a series of tests were conducted with the logic scheme introduced earlier. Each 

of the six aj's (equations 7.1) are of form,

a j  = I x j  -  x k I (7 .1 1 )
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where xj and =  [ u, w, q, 6 ]T  Thus each a j consists of four elements

which will be referred to as aju , ajw, ajq and a ^ ;  each of which require a different 

threshold.

The logic scheme used for these tests therefore consisted of thirty logic flags: Aj

(i=l-»6) and Ay (i=l->6; j=  u, w, q ,  0). If a j u , ajw, a*q or exceed their 

threshold then the corresponding logic flag Ay is latched true. In an attempt to

prevent false alarms, but also to make allowance for the fact that the four ay's

have different sensitivities to different types of faults and to faults occurring at 

different times, Aj is only set true when two or more of the four Aij are true.

For the first test the threshold for each of the twenty four ay 's  was simply set at

20% above the maximum value of ay recorded with no fa u lt present, whilst for the

second test the thresholds were set as follows.

It was shown earlier that the value of ay is dependent on the filter order, the

eigenvalues and r .  Consequently the percentage increase in ay,

[Max a j  | d u r i n g  f a u l t ]  -  [Max a j  j w i t h  no f a u l t ]
------------ -------------------------------------------- ----------------------------  * 100% (7 .12 )

[ Max a j j  w i t h  no f a u l t ]

will also vary with these three parameters. This relationship is illustrated by Table

7.2 which gives the values of equation 7.12 for a zero scale factor fault on 

instrument one from 2 to 3 seconds. The longitudinal model was again used and the 

eigenvalues: EV1, EV2 and EV3 were 2x, 4x and 8x the largest system eigenvalue, 

respectively. Results are shown for a i u , a iw, a ^  and a 1 q for the three observers 

previously considered: no filters and first and second order filters.

It can be seen that as r or the order of the filters increases the percentage 

increases, whereas an increase in the eigenvalues results in a decrease in the 

percentage. The explanation for this is that increasing eigenvalues or decreasing the

filter order and r ,  results in increasing noise on the estimates and hence a reduction

in the resolution of a fault. Thus for the second test the threshold values were 

determined as,

Max no f a u l t  a j j  + 0. 2*[ Max f a u l t  a j j  -  Max no f a u l t  a j  j  ] ( 7 .13 )

For each test the longitudinal model was used and a zero scale factor fault was 

applied to each instrument in turn, between two and three seconds. The parameters 

varied were the filters: no filters, first order, second order; the eigenvalues: EV1,
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EV2, EV3; and where filters were used, r was varied from 0.2 to 2.0 in steps of 

0.2. Thus a total of sixty three combinations of parameters were tested for each of 

the four faults.

a i u a i w a i q a i e

EV1

NO FILTER 251 344 385 290

1

CMo

624 684 736 586

2 .0 501 1117 1039 791

2

CMO

636 816 823 700

2 .0 548 1096 1009 624

EV2

NO FILTER 40 250 208 172

1
0 .2 269 518 432 349

2 .0 433 711 529 542

2
0 .2 401 684 643 484

2 .0 496 1117 960 785

EV3

NO FILTER - 3 .9 61 101 1 .7

1
0 .2 66 189 242 170

2 .0 187 256 285 163

2
0 .2 199 181 309 429

2 .0 542 593 446 670

TABLE 7 .2

VALUES OF EQUATION 7 .12  

FOR A ZERO SCALE FACTOR 

FAULT ON INSTRUMENT ONE 

FROM TWO TO THREE SECONDS

It should be noted that these tests represent the 'ideal' case since the thresholds are 

calculated using the time history of the fault to be detected. In addition the same 

noise is added to both the time histories, ie. fault/no fault time histories. A 

summary of results is given in Table 7.3 — only the results for r = 0 . 2  and r = 2 .0  

are shown. The first row of each pair are the results obtained with the thresholds 

set 20% above the no fault level whilst the second row are the results obtained with 

the thresholds set as per equation 7.13.

The first thing to be learned from these results is that identical fault times can be 

the product of different intermediate times. For example, the results for the first 

order filter with C(l) and EV3 are identical: 2.086 seconds, however the complete 

sequence of times given in Table 7.4 reveals the variations.
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a u w q e Ai

1 2.523 2.062 2 .086 2.062 2.062

2 2.703 2.086 2 .086 2 .164 2.086

3 2 .484 2.062 2 .086 2.086 2 .086

4 0 .0 00 0 .000 0 .0 0 0 0 .000 0 .000

5 0 .000 0.000 0 .000 0 .000 0 .000

6 0 .0 00 0.000 0 .000 0 .000 0 .000

1 2.523 2.086 2.086 2.125 2.086

2 2.703 2.086 2 .086 2.102 2.086

3 2.406 2.086 2 .086 2.102 2.086

4 0 .000 0 .000 0 .000 0 .000 0 .000

5 0 .0 00 0 .000 0 .000 0 .000 0 .000

6 0 .000 0 .000 0 .000 0 .000 0 .000

1 2.406 2.062 2 .086 2.062 2 .062

2 2.703 2.062 2.086 2 .164 2.086

3 2.461 2.062 2.086 2.086 2.086

4 0 .000 0.000 0 .000 0 .000 0 .000

5 0 .000 0.000 0 .000 0 .000 0 .000

6 0 .000 0 .000 0 .000 0 .000 0 .000

1 2.523 2.086 2.086 2.125 2.086

2 2.641 2.086 2.086 2.102 2.086

3 2.406 2.086 2.086 2.086 2.086

4 0 .0 00 0.000 0 .000 0 .000 0 .000

5 0 .000 0.000 0 .000 0 .000 0 .000

6 0 .000 0 .000 0 .000 0 .000 0 .0 00

TABLE 7 .4  INDIVIDUAL LOGIC FLAG TIMES

276

METHOD 1 

r -  0 . 2

METHOD 1 

r -  2 . 0

METHOD 2

t  =» 0 . 2

METHOD 2 

r -  2 . 0



The second point is that for a fixed method of setting the thresholds, the time to 

detect a fault increases as the filter order and r  increases or as the eigenvalues 

decrease. Thirdly, the second method of setting the thresholds (ie. equation 7.13), 

except for the two cases with no filters, increased the time to detect a fault. This is 

simply because the second method results in higher thresholds.

Finally, consider fig s  7.7a—c, which are the time histories of the fault/no fault a 2j's 

for no filters, EV1 (f i g  7.7a)\ first order filters, t —  0.2, EV1 { f i g 7.7b) and first 

order filters, r = 0 .2 ,  EV3 {f ig 7.7c). Undoubtedly of these three the best resolution 

of the fault is produced with first order filters, 7=0 .2  and EV1.

After consideration of these results the decision was made to select this combination 

for further evaluation. The reason this combination was selected was because it was 

felt that this provided the best compromise between the need to prevent false alarms 

and the speed at which a fault can be identified.

7.5 THE EFFECT OF VARIATIONS IN FAULT PARAMETERS

Before investigating the selection of suitable thresholds it is necessary to first

examine the effects of variations in the

♦ Type of fault

♦ Magnitude of fault

♦ Instrument with fault

♦ Time of fault

♦ Simultaneous faults 

. Manoeuvre

Once again the longitudinal model of the Puma was used with a doublet input on

6 1 s and noise added to the states at full noise power. The noise corrupted state 

time history is shown in f ig  7.8. Faults were applied to instrument two (w) and

instrument four (0), which were chosen to allow comparison between a very noisy 

state (w) and a state relatively unaffected by noise (0). In addition w will be 

affected by a dead— zone fault.
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TYPES OF FAULT

A comparison of observer error responses for the four different types of fault 

described in section 7.3 (scale factor, SF; scale factor ramp, SFR; bias, B and 

dead— zone, DZ) is shown in f ig  7.9. The faults were applied from two to four 

seconds and each was of magnitude 0.8. The major difference between the responses 

is their magnitudes and this is easily explained by reference to the equations

describing the four faults (equations 7.3—7.8).

Clearly the actual magnitude of the fault varies with the type of fault, eg. the 

magnitude of a scale factor fault will depend on the value of the state whereas a 

bias fault is independent of the state. Note also that during the period of the fault 

the observer attempts to drive the error term to zero — this is best illustrated by 

the response to the bias fault — and that after the fault is removed the errors take 

a finite time to return to zero, the length of time being determined by the

dynamics of the observer.

MAGNITUDE AND INSTRUMENT

Consider f ig  7.10 which gives the error responses for scale factor faults of 0.7, 0.8,

1.2 and 1.3 on instrument four, between two and four seconds. Since the observer is 

linear an increase in the magnitude of the fault results in a corresponding increase 

in the error. Similarly the response for a fault of magnitude x, is the negative of 

that for a fault of magnitude — x, eg. the responses for 1.2 (+0.20)  and 0.8

( -0 .20 ) .

In earlier chapters it was demonstrated that different C matrices effect the accuracy 

of observer design and the fidelity of the estimate. The variations in observer 

response were explained by the modal expansion theory (section 4.5.5), which can

also be used to interpret the differences between the responses shown in f ig  7.11. 

This shows the error responses for scale factor faults of 1.1 on instruments two and 

four, from two to four seconds and as expected there are substantial differences in 

magnitude and shape between the the responses of the two observers.

TIME OF FAULT AND MANOEUVRE

The response of an observer to the time, or in other words the magnitude of the 

state, at which a fault occurs, varies with the type of fault. With a bias fault 

(equations 7.7/7.8) the error (ie. x—x) is a constant and therefore there are only 

very minor differences due to the variation in magnitude of observer error at the
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time the fault occurs. Fig 7.12a illustrates this for a bias fault of 1.0 on instrument

two, with the time of fault varied from 0— 1 to 7— 8 seconds.

A dead—zone fault (equation 7.6) only occurs when the signal is within the limits of 

the dead— zone and therefore the time of fault will obviously determine whether or 

not the instrument output is zero. If the signal is within the dead— zone then the 

magnitude of the error will vary with the magnitude of the signal, the maximum

error occurring at the limits of the dead— zone and zero error at y= 0. Thus the 

observer response will vary, but the magnitude of the errors are constrained by the 

dead— zone limits.

With a scale factor or scale factor ramp fault (equations 7.3/7.4 and 7.5) the time 

of fault has a major influence on the observer response. Consider f i g  7.12b which 

shows the variation in errors for a scale factor fault of 0.8 on instrument two at 

fault times between 0 and 8 seconds. It is clear that the magnitude of the error 

varies with the magnitude and sign of the signal (f i g  7.8). In particular, between 

0— 1 and 5— 7 seconds where the signal is close to zero the fault is almost 

imperceptible.

Finally since different manoeuvres result in different state time histories, the

manoeuvre being flown at the time the fault occurs will also have an effect on the 

observer estimation error.

SIMULTANEOUS FAULTS

It was shown earlier that the proposed logic scheme was capable of detecting two 

simultaneous faults. To check this tests were conducted for all possible combinations 

of fault type and at varying fault times, two examples of which are given here.

First examine f i g  7.13a which shows the fault/no fault ay 's for a scale factor fault 

of 0.8 on instrument two and a bias fault of 0.8 on instrument four, both faults 

occurring between two and four seconds. From Table 7.1 the ajj's changing for a 

fault on instrument two are a 1 j, a 4j and a gj and for a fault on instrument four — 

a 3j ,  a 5j and a 6j ; a 2j does not change and is therefore not shown. With the 

exception of a ,q  and a 1w, the resolution of the two faults is clear, although the 

immediate effect of the faults does not always result in an increase in all the ajj's, 

eg. a ^  initially decreases to almost zero.

If two faults occur at different, but overlapping time intervals the faults are still 

distinct. Fig7.13b illustrates this for bias faults of 0.8 on instrument two from one
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to four seconds and 0.013 on instrument two from two to five seconds, a.,j, a 4j and 

a 5j increase at t=  1 seconds to indicate a fault on instrument two and a 3j, ( a 5j) 

and a 6j at t=  2 seconds to indicate a fault on instrument four.

One last point to note is the variations in sensitivities of the ajj's. A good example 

of this can be seen with a 6j in f i g  7.13b, where a 6U, a 6W and a 6q patently signal

a fault whilst a 6 # shows comparably little change over the no fault case. However,

since the fault detection logic only requires two out of four Ay's to be set true, this 

would not cause a problem.

7.6 SELECTION OF FAULT DETECTION THRESHOLDS

The simplest way to determine appropriate thresholds for each ajj would be to select 

the worst possible case and set the thresholds accordingly. This would obviously 

minimise false alarms, but it would also increase the time to detect a fault and may 

result in less severe faults being missed. A more sophisticated method, considered by 

Clark, 1984, which takes account of the relationship between the magnitude of the 

states and the magnitude of observer errors, is to use thresholds which vary in 

proportion to the value of input and state. A simple realisation of this is,

L ( t ) -  Ls s  + W,x(t)  + W ^ t )  (7 .1 3 )

where L(t) is the time varying threshold, is the steady state threshold, x(t) and 

u(t) are perturbations from their trim values and W 1 and W 2 are weightings for the 

state and control variations, respectively. A more elaborate approach for L(t) could 

be a non— linear function of the states and inputs, eg.

L ( t )  -  Ls s  + W1f 1( x ( t ) ) +  W2f 2( u ( t ) )  ( 7 .1 4 )

With simple functions such as ex, L(t) could be made relatively constant for small 

perturbations of the state, whilst larger variations would result in increasingly higher 

thresholds.

If the fault detection logic is based on the observer error signals e (note, not x— x), 

instead of the state estimates x, then the problem is further complicated by the 

differences in magnitude of e between observers. For example, f i g  7.14 shows e 1 

for two observers, C(l) and C(4), during the same manoeuvre. Although both 

produce an accurate, relatively noise free estimate of the state, the difference in 

magnitude between their error signals is approximately 103. Thus before comparing
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error signals it would be essential to normalise them, but this is not easy due to the 

signals being extremely sensitive to noise.

When state estimates are compared, it was found that normalising and squaring the 

ay 's resulted in an improvement in the speed of detection of a fault. This is

accomplished by first determining, as previously, the maximum no fault ay. Then,

on subsequent tests with a fault introduced, each ay is initially normalised with 

respect to its corresponding maximum no fault value before being squared and 

compared to its fault threshold. The advantage of this method is that it increases

the resolution of a fault since (ay )2 <  ay for ay <  1.0..

This improvement in detection rate can be seen in Table 7.5 which compares the 

detection times of the two logic schemes (ie. one as before, one with normalised 

and squared ay's) for faults occurring at 1.0 and 7.0 seconds. At 1.0 second the 

improvement is 12.5% whilst at 7.0 seconds the figure is 27.7%.

In the above, and in the analysis of state estimation in earlier chapters, it has been 

assumed that the observer designs were based on an accurate linear model of the

system. This was achieved by using the same A and B matrices produced by the

mathematical model, Helistab, for both system and observer. Helistab, however, does 

not yet completely portray the helicopter's dynamic and aerodynamic characteristics 

and therefore in a real application parameter variations must be assumed.

With the observer designs considered in this thesis, these parameter variations will 

result in inaccurate estimates of the system state. This is obviously unacceptable for 

flight control system purposes, but is this also the case with instrument fault

detection? Providing each observer produced the same wrong estimate then they 

could still be compared to detect faults.

Several tests were therefore run with a longitudinal system model of the Puma at 

100 knots and observers designed with flight conditions of 80, 90, 110 and 120 

knots, and 100 knots with descent angles of —6°, —3°, + 3 °  and + 6 ° .  For each 

flight condition four observers were designed: C(l), C(2), C(3) and C(4), and the 

time response of the system and observers to a doublet input on 0 1S (Appendix six)

was recorded. Typical results are shown in f i g  7.15. Results for u and q are

comparable to those for 6 and w, respectively.

The reasonable agreement between observers, of the estimates for q and w, would 

perhaps allow their use in a fault detection scheme, but unfortunately the estimates 

of u are too dissimilar. With 6 it would be possible to use the estimates generated
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a u w q e Ai

1 1 .141 1 .867 1 .500 1 .188 1 .1 8 8

2 0 .000 0 .000 0 .000 0 .000 0 .0 0 0

3 0 .000 0 .000 0 .000 0 .000 0 .0 0 0

4 1 .125 1 .086 1 .102 1 .1 6 4 1 .1 0 2

5 1.102 1.062 1.086 1.141 1 .086

6 0 .000 0 .000 0 .000 0 .000 0 .0 0 0

1 1.125 1.727 1.422 1 .164 1 .164

2 0 .000 0 .000 0 .000 0 .000 0 .0 0 0

3 0 .000 0 .000 0 .000 0 .000 0 .0 0 0

4 1 .102 1.086 1.086 1.125 1 .086

5 1.086 1.062 1.086 1.125 1 .086

6 0 .000 0 .000 0 .000 0 .000 0 .000

1 7 .266 0 .000 0 .000 7.367 7 .367

2 0 .000 0 .000 0 .000 0 .000 0 .000

3 0 .000 0 .000 0 .000 0 .000 0 .000

4 7.242 7 .164 7.227 7.383 7 .227

5 7 .188 7 .164 7 .188 7.266 7 .188

6 0 .000 0 .000 0.000 0 .000 0 .000

1 7.203 0 .000 0 .000 7.266 7.266

2 0 .000 0 .000 0 .000 0 .000 0 .000

3 0 .000 0 .000 0 .000 0 .000 0 .0 0 0

4 7.203 7.141 7.188 7 .3 2 0 7 . 1 8 8

5 7 .164 7 .164 7 .164 7.227 7 . 1 6 4

6 0 .000 0 .000 0 .000 0 .000 0 .0 0 0

TABLE 7.5 COMPARISON OF LOGIC SCHEMES

FAULT AT 1.0 SECOND

FAULT AT 1 .0  SECOND 

NORMALISED/SOUARED

FAULT AT 7 .0  SECOND

FAULT AT 7 .0  SECOND 

NORMALISED/SOUARED
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by C(l) and C(4), but not those from C(2) and C(3). An improvement in the 

correlation of estimates between observers might be achieved by designing the 

observers using eigenstructure assignment such that each observer had common 

eigenvectors as well as common eigenvalues. The benefit of this is that each 

observer response should then have the same decay rate (due to the eigenvalues) and 

the same shape (due to the eigenvectors). Thus even although the estimates would 

not be suitable for control use, they would be sufficient for instrument fault 

detection.

Unfortunately time precluded any further investigation of instrument fault detection 

and therefore the problems and possible solutions discussed in this chapter remain 

subjects for future work.
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CHAPTER EIGHT 

CONCLUSIONS AND FUTURE WORK
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8.1 SUMMARY AND CONCLUSIONS

In general terms, the work described in this thesis demonstrates that deterministic, 

continuous— time, linear, time— invariant system theory can be used to design 

'Luenberger' state observers for state estimation and instrument fault detection in the 

single rotor helicopter.

For accurate state estimation a precise linear model of the system is required. 

Unfortunately, the only available mathematical model was not capable of fully 

portraying the helicopter's aerodynamic and dynamic characteristics over the complete 

flight envelope. A detailed description of the model, its limitations and work 

currently being carried out on improvements was given in Chapter two. It was also 

shown that an exact model of the system could be simulated by using the same A 

and B matrices produced by the mathematical model, for computer simulation of 

both system and observer.

In Chapter three observer theory was presented for the observability test, full order 

and reduced order observers and in particular, an algorithm for the transformation of 

the system into observable canonical form. An important consequence of this 

transformation is that the transformed system can be considered as a set of 

subsystems, each being coupled to each other only through their outputs. It was 

shown that this was a relatively simple procedure and the resulting changes to the 

observer equations were explained.

A review of observer design techniques were given in Chapter four and two design 

methods were initially selected for consideration : a method proposed by Gopinath 

and an observable canonical form method. From the tests conducted it was apparent 

that the Gopinath dyadic observer design algorithm was unsuitable for the order of 

system under consideration (ie. n= 8 and n=14).

The reasons for this were twofold. Firstly the system (A), distribution (B) and output 

(C) matrices were often ill-conditioned, or tended to produce an ill-conditioned 

problem; and secondly the digital computer implementation of the algorithm was 

numerically unstable. This method was therefore rejected.

The canonical form method involves the use of the observable canonical 

transformation defined in Chapter three and it was demonstrated that with the 

system in this form the determination of the observer matrix, H, is a trivial 

calculation. In Chapter five, the computer implementation of this algorithm was 

described and the significant numerical benefits illustrated.

307



The main advantage of the method is that it allows observers to be designed for 

each subsystem rather than for the whole system. Since the number of subsystems is 

determined by the dimensions of the output matrix, the accuracy of the observer 

design can be improved by increasing the magnitude of p. An observer designed 

using the canonical transformation was successfully tested with a feedback controller 

utilising modal control.

Observer performance with eighth and fourteenth order system models was considered 

in Chapter six and several numerical problems were examined. In particular, it 

proved extremely difficult to predict which combinations of system and output matrix 

give a satisfactory estimate. In an attempt to solve this problem the numerical

methods used in the observability test were examined, but unfortunately this did not 

produce any answers.

It was shown that canonical form observers can produce accurate estimates if the

system states are 'clean', but that noise corrupted states (achieved by adding noise 

obtained from flight data to the model generated states) result in noise corrupted 

estimates. To solve this problem a new form of observer — the twin observer — 

was introduced and it was demonstrated that with a good model of the system the 

twin observer can produce accurate, relatively noise free estimates of the system

state.

Having thus established that it is possible to use a Luenberger observer to estimate 

the state of a stochastic system the final objective was to determine whether the

twin observer was suitable for use in an observer based instrument fault detection

scheme. This question was considered in Chapter seven, which included a literature

review of current fault detection techniques. From this review it was apparent that 

the most appropriate technique to use with the twin observer was a software

redundancy method known as the dedicated observer scheme.

The advantages of software redundancy lie in the trade— off of redundant hardware

against computer processing of signals from dissimilar (non— redundant) sensors,

however designing a reliable, robust scheme is extremely difficult. The problems with 

this method were examined in detail, particularly the problem of selecting suitable 

threshold values for the fault detection logic.

It was shown that with this type of observer an inaccurate model of the system has 

severe implications for the viability of a fault detection scheme. This was because

different observers produced differing (wrong) estimates of the state. A possible

solution to the problem would be to design the observer using eigenstructure
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assignment (such that each observer had common eigenvectors as well as common

eigenvalues) then each observer response should have the same decay rate and

shape. Thus even although the estimates would not be suitable for control use, they

could be compared by a logic scheme to detect faults.

8.2 FUTURE WORK

Throughout this thesis it has clearly been stated and proved that a precise, linear

model of the system is required for accurate state estimation with the 'Luenberger'

form of observer. The present work on improvements to the model is therefore of

vital importance if state observer techniques are to be used for helicopter flight 

control.

However, due to the complexity of the dynamic and aerodynamic effects, it is

reasonable to assume that the model will never be 100% accurate and therefore any 

future work must consider techniques of designing observers to be insensitive (or

robust) to parameter variations. Robust observer design methods have already been

published and thus the first step would be to review these and determine whether 

the techniques are compatible with the observable canonical form method. If they 

were not, then techniques of making the canonical form method robust should be 

investigated and a comparison made to decide which method produced the best

results.

Further investigation of the twin observer is required, in particular the use of a 

more sophisticated filter and the implementation with an eighth and fourteenth order 

model. Note that since this form of observer is basically two observers connected 

together, any technique to improve the robustness of the standard observer will be 

applicable to the twin observer.

The utilization of the twin observer in a dedicated observer scheme and other 

observer— based fault detection schemes also requires attention. From the work 

carried out so far, it would appear that observer design criterion for fault detection 

are incompatible with those for state estimation and therefore the methods should be 

considered independently.

A good example of this is the suggestion in the previous section that eigenstructure

assignment could be used to design observers for fault detection; the idea being that

each observer would produce the same estimate, even when the model was 

inaccurate. An investigation of this is obviously a priority. An examination of
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different logic schemes and variable thresholds should also prove beneficial. It is also

suggested that a more theoretical consideration should be given to the numerical

methods used for the observability test and the transformation of the system state

equation to observable canonical form, in an effort to predict the 'sensitivity' and 

performance of different combinations of A and C matrices.

Finally, since the observers are based on linear models it would be necessary to 

employ some form of scheduling to ensure that the correct observers are used

throughout the flight envelope.
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APPENDIX 1 LINEARIZING THE EQUATIONS O F MOTION

X(1) u -  v r  -  wq -  g s in 0  + —

R e p la ce  t o t a l  v a l u e s  by t r i m  v a l u e ,  s u b s c r i p t  ' o ' ,  p l u s  a  p e r t u r b a t i o n

X(u  + U 0 )  = (v  + V 0 ) r  -  (w + W 0 ) q  -  g s i n ( 0  + 0O) + -

u 0 -  0 by d e f i n i t i o n  and d i s c a r d  p r o d u c t s  i n v o l v i n g  p e r t u r b a t i o n s

Xu -  v Qr  -  w 0 q  -  g ( s i n 0 c o s 0 Q + c o s 0 s i n 0 o) + —

Expand as Taylor s e r i e s  and make small  angle  assumptions

u = v 0r -  w0q -  g 0 c o s 0 o -  g s i n 0 o + 1

but

X

ax
L ° + 3u u + •••  ™ ot

0 = - g s i n 0 n + — 0 m

hence

axaxax 
“ * I U +

ax ax -  geos 0w +

axax ax
oe

1 coe

where a l l  p a r t i a l  d e r i v a t i v e s  are m u l t i p l i e d  by the f a c t o r  :

Y( 2 ) v - w p - u r  + gsiny?cos0 + —

by ana logy  wi th  (1)

Yv  -  WqP -  u 0r + g s i n ( ^ 0 + ^ ) c o s ( 0 o + 0) + -m

v = w0p -  u 0r + g(sin<,(90cosv9 + c o s p 0s in p )  ( c o s 0 ocos0  -  s i n 0 os in 0 )  + 

Taylor expans ion  -

v = WqP -  u 0r + g(sin<£0 + ^ c os^ 0) ( c o s 0 o -  0 s i n 0 o)

k  [ Y° + 5S u + + l ? ot9ot
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b u t

0 -  gsiny?oc o s0 o + jJ-

hence

ay ay ay
V  =  ^ — u  +  -^— W +  rr—  q  +au aw aq ^

ay
-  g s i i V 0 s i n 9 0 j f l  +  5 ^  -

1 r av 1 ay
+ g c o s p oc o s 0 o J p  + [ 5 P  -  U0J r  +  0

ay

+
ay ay
5p + w° p +

. bp oe

ay ay ay
+ ^ s * 1S + ^ 7c 01C + ^ / ot

where a l l  p a r t ia l d e r iv a tiv e s  are m u lt ip lie d  by the fa c to r  : m

( 3 ) w - u q - v p  + gcos<pcos0 + —

by analogy w ith (1) and (2)

w =- uQq -  v 0p + gcos(v?0 + p) c o s (0 o + 0)

w = u 0q -  v 0p + g(cos^>0cosip -  siny90siny?) (c o s0 ocos0 -  s in 0 osin 0 ) + 

Taylor expansion -

w -  u0q -  v 0p + g(cos^>0 -  ^sin^J0) (c o s0 Q -  0 s in 0 o)

+ -  m

but

0 -  gcos<^oco s0 o + —°-m

hence

az az az az -  gcosy?os in 0 o I 0w —

dZ • o 1 J. dZJ -  -  g s i n ^ oc o s 0 o J<P + ^az
av

az

az az az az
oeoe

where a l l  p a r tia l d e r iv a tiv e s  are m u ltip lie d  by the fa cto r  : m
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(4 )  p -  qr

(5 )  r -  pq

!yy '  ‘zz 1 + (pq + r ) i * Z  +
L Axx  J Ax x  Axx

*xx  _  *yy  ] +
1 J

(p - rq)^Z + J L
1z z  1z z

p 0 -  q 0 -  r 0 and expand as  a T a y lo r  s e r i e s

p _  r t * 2  + r -
1XX 1 XX

p j “  +  f1z z  1z z

For t r im  L0 -  N0 -  0

dL
L ° + 5 7  u +

dN
N" + 5 7  u +

= _xz.
*XX

1

p f 2 +  r -1z z  1z z

XX

3N
du

aL .

u +

aL— U. + . . .  + — i/ n
d u  d 0 Q t o t

+  d L  «
0t

*  1

f t . ' -  1 1

hence

dL
au

z z
XZ

aL .aN
+ l v -

aL , .aN

aL  . aN
d#0e ^ o e oe +

aL

where
I z z

and by a n a lo g y  w i t h  p

X X*ZZ XZ

ap

+ 1 5 7  + J5 7  ] r + [
aN . .aL aN

ae

aN .aL
aq + Jaq

aN .aL
d<p

«18

<p

oe oe-

aN .aL
a 81c

w h e r e  j = —&£• 
I xx

1 c + aN
de +

ot J § U ' ot ]
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(6) q -  prf ' z z , '  - XX 1 + ( r 2 -  p 2)j*Z  + ^
1 *yy 1 *yy *yy

L i n e a r i z a t i o n  f o l l o w s  im m e d ia te ly

M
dw d vyy

dM_
^ o e

aMdM aM
oe

(7 )  <p -  p + ( r c o s p  + qsin<p)tan0

(<P0 + <p) = P + [ rcos(<£>0 + p)  + q sin (y?0 + p)  ] t a n ( 0 o + 0) 

p  = p + ( r c o s p 0 -  ^rsin^J0 + q s i n p 0 + ^ q c o s p o) t a n 0 o

p  = p + rcos^»ot a n 0 o + qsin<pot a n 0 o

(8 )  0 -  qcos^j -  rsin^j

( 0 O + 0) -  q c o s ( p 0 + p )  -  r s i n ( p 0 + p)  

0 =* qcos^>0 -  yjsiny?0 -  rsin^>0 -  ^ r c o s ^ 0

0 — qcosy?0 -  rsin</?0

(9 )  ip -  r c o s p s e c 0  + qsin<psec0

Wo + -  [ r c o s ( p 0 + ^) + q s i n ( ^ 0 + y?) ] /  c o s ( 0 o + 0)

\f/ — (rcosy?0 -  y3rsin^0 + qsin^>0 + y?qcosp0) /  c o s 0 o

\p = r c o s p Qs e c d  Q + qsin^)os e c 0 o
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APPENDIX 2

ALGORITHM TO CALCULATE TRANSFORMATION MATRICES R AND R ~1

CALCULATION OF R

DO 100 J = 1 , N
IF(C(1 ,J ) .NE.O.0)GOTO 10 

100 CONTINUE

10 K-N-J 
L—l

DO 110 J - 1 , N  
R ( N , J ) —C ( 1 , J )

110 CONTINUE

DO 130 I=N-1 , 1 , - 1
I F ( I . EQ.K)THEN L-L+l  
DO 120 J —1 , N

IF(J.EQ.L)THEN 
R ( I , J ) - 1 . 0

ELSE
R ( I , J ) —0 . 0  

END IF 
120 CONTINUE 

L-L+l  
130 CONTINUE

CALCULATION OF R"1

K—N-K 
L=N-1

C
DO 150 I - 1 , N

I F ( I.EQ.K)GOTO 160 
DO 140 J —1 , N

IF(J.EQ.L)THEN
RINV(I , J ) = l .0

ELSE
RINV(I , J ) = 0 .0 

END IF 
140 CONTINUE

C
L - L - l

C
150 CONTINUE

C
RINV(K,N)=1.0/C(1,K)

C
L—l

C
DO 160 I -N -1 ,1

I F ( I . EQ. N-K)THEN L-L+l  
RINV(K,I) —C ( 1 , L)*(-RINV(K,N))
L-L+l  

160 CONTINUE
C

STOP
END
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APPENDIX 3

ALGORITHM TO CALCULATE A POLYNOMIAL FROM ITS ROOTS

Real  and  Imag p a r t s  o f  t h e  N e i g e n v a l u e s  p a s s e d  i n  t h r o u g h  AREAL and 
AIMAG. C o e f f i c i e n t s  ( a j )  o f  t h e  po lynom ia l  p a s s e d  ou t  a s  COF(i)

SUBROUTINE CHAREQ(AREAL,AIMAG,COF,N)
IMPLICIT REAL*16(A-H,0-U)
IMPLICIT COMPLEX*16(W,X,Y,Z)
DIMENSION AIMAC(20),AREAL( 2 0 ) ,C O F ( 2 0 ) ,W ( 2 0 ) ,X (2 0 ) ,Y ( 2 0 ) ,Z (2 0 )  
REAL*8 V(20)

DO 100 I - 1 , N
W( I ) —DCMPLX( -AREAL( I ) ,AIMAG(I>) 

CONTINUE

X ( 1 ) = ( 0 . 0 , 0 . 0 )  
X (2 ) -W ( l )  
X ( 3 ) - ( l . 0 , 0 . 0 )  
X ( 4 ) - ( 0 . 0 , 0 . 0 )

DO 130 I - 1 ,N - 1

DO 110 J = 2 ,1+3
Y(J -1 )=X(J)*W (I+1)
Z ( J - 1 ) » X ( J - 1 )

110 CONTINUE

DO 120 J « 2 , I + 3
X ( J ) —Y ( J - l ) + Z ( J - l )  

120 CONTINUE

X ( I + 4 ) - ( 0 . 0 , 0 . 0 )  

130 CONTINUE

DO 140 I—1 , N
V ( I ) —DREAL(X(1+1)) 
COF(N+l-I)-QEXTD(V(I))  

140 CONTINUE

RETURN
END
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APPENDIX 4 LIST OF SYMBOLS

The symbols listed below are those which appear in this thesis. Additional symbols 

which appear in f ig  2.12 can be obtained from Padfield, [PI].

Main Rotor

a Q Blade l i f t  curve s lop e

c Blade chord

hp N egative z coord inate o f  rotor hub 

Blade flap p in g  moment o f  in e r t ia  
Kg Blade flap p in g  s t i f f n e s s  -  spring constant 
R Blade radius
s Rotor s o l id i t y  (-bc/irR)
xCg Centre o f  g r a v ity  lo c a tio n  forward o f  fu se la g e  referen ce  p o in t. 

A irca r ft z a x is  a lig n ed  along sh a ft;  hence CG at sh a ft base.
Ys Rotor sh a ft forward t i l t
0tw Linear blade tw ist

T a il Rotor

a 0j  Blade l i f t  curve slop e

Fj Fin blockage fa cto r

h j N egative z coord inate o f  hub

k^j Main rotor downwash fa c to r

l j  T ail rotor lo c a tio n  a ft  o f  fu se la g e  referen ce  poin t
Ry Blade radius
sy T ail rotor s o l id i t y

T a iln lan e

ljp  L ocation  a ft  o f  fu se la g e  referen ce point 
Syp T ailp lan e area

Fin

hpN N egative z component o f  f in  cen tre o f  pressure  

lpjj L ocation  a ft o f fu se la g e  referen ce point 

Spuj Fin area
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F u s e l a g e

CYS Aerodynamic s id e fo r c e  c o e f f ic ie n t  

lp  Fuselage referen ce  length

Sp Fuselage p lan area

Ss Fuselage s id e  area

Engi ne

GyR T ail rotor gearing

I r  Moment o f in e r t ia  o f  rotor and tran sm ission  system  

K3 O verall engine torq u e/ro torsp eed  ga in  

fij Id lin g  rotorspeed

H elicop ter  In e r tia s

Ixx R oll moment o f  in e r t ia
Iyy P itch  moment o f  in e r t ia

Izz  Yaw moment o f  in e r t ia
Ixz Product o f  in e r t ia
m A ircra ft mass

Mi scellaneous

CMF Fuselage p itch in g  moment fu n ctio n

*-NF> ^NFA» ^NFB Fuselage yawing moment fu n ction s
Cq Main rotor torque c o e f f ic ie n t
Cy Main rotor thrust c o e f f ic ie n t
Cyy T a il rotor thrust c o e f f ic ie n t
C^, Cy, Main rotor force c o e f f i c ie n t s  in  sh a ft a x is

^XF» ^ZF Fuselage force fu n ction s
CypN Fin s i  deforce fu n ction

CZTP Ta ilp la n e  force c o e f f ic ie n t
g G rav ita tion a l constant
L, M, N O verall a ir c r a ft  r o l l in g ,  p itc h in g , yawing moments
Lp, Mp, Np Fuselage aerodynamic r o l l in g ,  p itc h in g , yawing moments

Lpjj, MpN, Npjj Fin aerodynamic r o l l in g ,  p itc h in g , yawing moments
L r, Mr, Nr Rotor moments in  body referen ce  a x is

Lpp, Mpp, Nyp T ailp lan e moments

Ly, My, Ny T ail rotor moments
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p, q, r A ircra ft r o l l ,  p itc h , yaw ra te s  about body referen ce  axes
Qp Engine torque
Qr Main rotor torque

Qjr  T a il rotor torque
u, v , w A ircra ft v e lo c ity  components at CG

UA» VA» WA A ircra ft aerodynam ic  v e l o c i t i e s  at CG
Vjr Fuselage to ta l v e lo c i t y

VFN F in  to ta l v e lo c i t y
Vp T ailp lan e to ta l v e lo c i t y

X, Y, Z O verall a ir c r a ft  force  components

Xp, Yp, Zp Fuselage aerodynamic fo rce s

XpN> ^FN’ ^FN F*n aerodynamic fo rces
XR, YR, ZR Rotor forces in body referen ce  axes
Xpp, Yjp, Zpp T a ilp lan e forces

*T» T̂> T ail rotor forces
ap Fuselage incidence angle
Qijp T ailp lan e incidence angle

|3p Fuselage s id e s l ip  angle
/SpN Fin s id e s l ip  angle

(3q , (81C, /31S Harmonics o f  flap p in g
XQ Rotor downwash component
fi Normalized rotor v e lo c i t y  in  xy plane
I , fly, fiz  Normalized rotor v e lo c i t y  components
0, 8, <p Euler angles

£2 Rotor speed

£]p T ail rotor speed
b Number o f  main rotor b lades
7  Blade lock number
p Air d en s ity
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APPENDIX 5 -  MATRICES AND EIGENVALUES

The following pages list the eighth and fourteenth order system (A) and distribution 

(B) matrices and the system eigenvalues, for each flight condition examined during 
the course of this research.
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<Ĵ (*J O V ^  o  
« * v o c p o « H c o o c g o o o i n r H i o  
O O i n O P - ^ ’ OONOOOVO^ ON 
o o ^ ^ o m o o o o o O r H ^ o
o v r H e v o v m o e g o o o o o m  

OV o 
VO ON

o o o o ^ O t H O o o o ^ v n v o

-H -H +1 -H -H -H

mi n » r v o r - e g r - o
OVOVVPr-^rVDOm
m o m o r H H O o

O O r H O * H O O O

o v o n r o v r - o o
M ' l V O ^ ' h O C l

o *r

ovoegovoooeg
• HOOOVDOr - f O

o  OP O 
VO O UN 
rH O O

o o o

OOH T O r H o v o o o o o r ^ o
o o v o r - o a v o o o ^ r o

r -VDl OOOVegOr HOOOOVOV
v o v o ^ o r - ^ o p - o o o m o v
a v ^ r H o v o r ^ o o o o o r H o
o c o o o p * o v o r o o o o o v r -
O O O O O O O O O O O ^ T f - H
O O O O r H O O O O O O O O

o o o o o o o o o o o o o

OOOOOVDlOOVO

r* o o o o

vo o o o o o  

o  o  o  o  o  o

o o o o

o o o o r H r H o m o o o o o o
o o o o o v m o r n o o o o o o
o o o o r H i n o a v o o o o o o
O O O O ^ r V O V O O O O O O O
O O O O V P O l o m O Q O O O O
O O O O O C O O O O O O O O O
O O O O r H O O ^ - O O O O O O
o o o o o r *  o o v o o o o o o

O O O O V C N O P - O O O O O O  
rH I

p o v O H r o m r ^ o o
u i ^ H o n r ' O o
vnOOrHOrHOOrH
O O O O i O O O O
O O O O r H O O O

o o o o o o o o
I I

ov o  o  r- o  o  o

o o o o o o o

o o o o

o o o o

o o o o
o o r» o 

o o o o eg o

v o v o ^ r c n o o o v o
OOOOOrHCOOOOOOfO
m p ^ e g m v o v o o o o c o
C J O N H U i e o O O N
r OVOmc g mOOOOVO
^ • o v o o o m o o o m
* r o v o o o o o o o * r
n o v o o o o o o o c g
o o o o o o o o o o

o  vfl r* o v p o o o o m o
o  o  o  
o o o o o o o o o  
o o o o o o o o o  
o o o o o o o o o  
o o o o o o o o o

o  oo o
O rH O

o  o  o  m o  

o o o o o o o o o o o o n o

(VIOVOf l Vr t r t ON
cgc-'Ovavovcgocg
coovooa vavooom

V D r H O O O O O O

ov o 
»h o eg o 
rO O VO O

o  O 00 o  ov

o  co o  

iH o  o  o

o  eg o  
cn o
rH O
vo o  eg 

m o  eg

o c n o m o v o c n o o o ^ r r - e g
ov o  ro o  p- O HP O O O
M r o H o v r e o ^ o o o v p e

OOOr Hf OOVOOOOr HOO 
i H O C o r * O r H O O o e g o

o p - o o o o o o o o o

O O O O O O O O O O O

o v ^ r r o o ^ r r o o r o o o o e g r g v p

o  o  o  vo ro vo
ov o « HO< \ i r - o o v  
r ' v o r - o v o v o o v o  
v r ^ v o o o v m o r ^ o o o ^ r o v o

V rH o  o  o  o  o

o  rH vo o  oo
o  ov m o  r-
O rH rH O O

Of OO O e g r HO r H
O P ^ O O O O O O

O O O O O O O O

rH o  m ov o
«h o  eg r** o
eg o  vo o

vo o  o  rH 

vo o  eg eg

ro o  o  o  o  
o  o  o  r- eg

vo m co o  o  o  
p- m p~ o  eg vo o  
r * * r H « * > o r * o o o o o o o  
o v c o c o o e g r H o v p o o o  
v c o * H o o v r o o r - o o o  
t n r o o O r H O o o o o o  
r n e g o o o o o o o o o  
O O O O O O O O O O O

O O O O O O O O O O O

vp o vo o
r- vo r- o o  o  o  o  eg i

^ r v o a v o o o v p c o v p

o m o o o v r - o m
r - mv P o r ^ f Ho r * *
v P r H o o o « r m o c o
n c o r H o e g c o o f n
v o o v o v o e o i n
c o m e g o m < H o e g
c g o g o o o o o o
o o o o o o o o

I i

ov m 5* o  5* eg o
h  g1 e  o  N vo o
co *h o  o  co m o
OV VP rH o  ov r* o

II
H

PQ

II
00

II
oo

PQ

358



o o o o m m o r H o o o o o ^ o o  
o o o o f o v o o i n o o o i O r - H f n  
O O O O m i—I O CFV O O O O VD 
O O O O r H O O O O O O r H O V * « r
o o o o o o o o o o o < N O > r -
O O O O O O O O O O O r H t t V V D
O O O O O O O O O O O m O V i n
O O O O O O O O O O O O N O S C v J

o o o o o o o o o o r H m m m

o o o o m t n o r n o o o o c o
o o o o t n v o o m o o o o c o
o o o o m r H o a v o o o o v

o o o o o o o o o o o o ?

g g g g g g g g g g g g g
o o o o o o o o o o o o o o

O O O O O O O O O r H O O l O

rH o  o  o  a>O O O O l O m O r H
o o o o n s D o m o o o t n o m
o o o o m r H o ^ o o o ^ o o o
O O O O r H O O O O O O ^ O  00 

g o O O O O O O O O O V D O r H

O O O O O O O O

i i i i s i i p i i i i s s
o o o o m v D o o o o o o m ^ r

g g g g S S g ? g g g g 2 3
g g g g g f f g s g g g g s s

M O f t O H O O O  
r n o m o p - r - o c g

" g g g g g g n g g g g
e g o t o o o c g o e o o o o o m t n

s  |  g  1 1  s  |  £  §  §  1 1 2  s

g s
3

o  o  o  o  r~

O'
at
a

M
0

io■H
H
0
«

>1
■P
■H
a0
H
!>

t
1 
0 fa

0
rH

a
-p
a0aa0
a

s s
o o o o o o « 3« o r )  
o o o o a v o o m o o o c o  
o o o o m m o f * -  
o o o o r » 0vovD

o  oo o  o  o  o  <H
O O O O O VD <H

O O O O rH
O O O O VD fO

g g g g g o  o  o  o  o  o  
o  o  o

o  o  o

• 3 °
o o o t t a t o c n o o o o o o o o
o o o c g v D c o ^ v o o o o o o o
o o o m o i H r - c o o o o o o o

O O O r H L O O O r H O O O O O O O
O O O ( * ) 0 H O O < * ) O O O O O O O

O O O O ^ f r H O t O O O O O O O

o  o  o  o  o  o

i i s i i i i i i i i i
i i i i i i i i i i i i
o o m o o o o o o o o o

OO !h O VD in O

S  S\ £  g  £  ® g
rH r- p- o  en o\ o
2 2 S g g g g

7 ?

o  o  o  r*

? g g g S £
o  o  o  o  o  o
*r o  o  o  **
•h o  o  o  r** r-
vo o  o  o  rH cr»
rH o  o  o  r-

o  o  o  o  m m

o  r* oo oOO O O' ^  o00 o  o  <*> o
r» o  h  c\ o
r* o  r- m

s s g g s
m r> o  
m o o

o  o  o  
ht o  o  o  v  r>

S g g g p g
oo o  o  o  m oo .
rH O O O *3* m rH
o  o  o  o  m to 
o  o  o  o  o  tn

7 7 o o o o o 7 7 ?

VD 00 O  O  rH O  O
r- <n o  o  o  o  o

£ £ g g o  g g00 m o  o  oo o  os s g g g
o  o  o  o  o  o  

o o o o

o  o  o  o  o  o
o  o  o  o  o  o
o  o  o  o  o  o
o  o  o  o  o  o
o  o  o  o  o  o
o  o  o  o  o  o
o  o  o  o  o  o
o  o  o  o  o  o

o  o  o  o  o  o

S S S  S 5 S

mvDOVr Hcommn
v o o o o e g c g c g o r -
m o g v o ^ c o o o o H

o  «r
CO O VD

O O O O O
o o o o o  

o o o o r - m o c g o o o o o o  
o o o o c g ^ o m o o o o o o  
o o o o c o . - H o r * o o o o o o  
o o o o v o o o o o o o o o o o o
o o o o m r - O r H o o o o o o000000000^*000000
o o o o ^ r o o o o o o o o o o

v r ^ N o o o i o o  
t n c g r * - o m ^ * o ^  
- q - c s i o v o ^ - c o ^  
r - o \ m o c o v o o v D  
c g r - c o o r g r - o v D  
( M t n o o m a o o c g  

N O 7  01 O N

O O rH rH <

S £ S g ^ S g $
OVDOOVDVDO01 
l/l rl H O 51 rH O O

g g g g s s g g
o o o o o o o o  

o

g:
m a v o o o o o o
c o m o o c g o o o
c o r - o o m o o o
V D V D O O m O O O
r H O O O O O O O

C O r H O O O O O O

3 S 3

OOIVD^ 
VD 00 CO O  
tO O  CO O
CO rH O  OI I I

o o o o ^ * a > o « 3 *
o o o o r - c o o v D
o o o o r - m o e g
o o o o t N ^ r o n

o  o  VD 
o  o  m

s s i s H s !

S S S S S g S
00 m try Oi o  o o

r.- «  O 3  3  o  O

s s s g s s
0  0  i/) O Ol m

S S S g S S
X S S g S S
o P* O O O o

r** o  o  o
rH O O O 
O O O O

3 S

o o o o

g £
o  o  r» co

O 00 O o  O VD O
o  m o  o  o  m
o  o  o  o  o  ov o
o  r- o  o  o  ro o>

?? o o o o

o o o o

o o o o

o o a o m m o r H o o o o o o
o o o o m v D o m o o o o o o o
O O O O L O r H O O V O O O O V D O
O O O O r H O O O O O O O r H O
O O O O O O O O O O O O C O O

o  o  o  m o

o o o o o

o o m c g o m r ^ o o o o o o v D V D ^ j *  
r - u - > c r \ o o o r H o v o o o m < j * a v  
* * VD« r 0 VD< N0 r H0 0 0 D\ t - ‘ 0  
V D r o c N o o a v o r o o o o o v m r H  
v o o o r g o r - m o m o o o e g o v e g  

o  o  o  t n r -  vd
VD o  VD

n  co o  m r>
o> o  ro o  o  o

3 S S 2 3 S S S
o i f lK J io io q 'H in; s  sto o> tn 
vd o m 
o\ mmmr *r HO<Ti  
VDmCTVOVOVCOOrO

° 3 ? °  °  °
eg

v o v r i 0 o o i ^ o < q <
o c o o o o r ^ o m
h o o v d o o o v d o o
rH<NJrHOr«mOfO
r H o o m o c g o o o m
r ' r HVDOr HOVOO
OVDOOCJ r HOr H
o r - o o o o o o  

o  oO O O O O

« T O V O O ' 3* m O r H
r - o r - o t n c o o o
v D O c o o o m o r H
m o e g o ^ r - o c o
^ o o o m c g o r - *
r HOO O mV DO r H
c ^ o r - o c o c g o t n
c o o r o o v o v o o c g

r HOOOr Hl OOCg
I ro eg

3 S S g S S g 2
OVDrHOl OrHOVD
p * * t o c g o v D O > o c o
S S ? g £ 3 g ?
0 0 0 1 0 0 7 0 0 1

ro r* 0  o  to to o

? 3 3 § 3 3 §
g 5\ o  g o  to o
oo o  o  o  eg o  o
»h eg o  o  o  o  o
o  o  o  o  o  o  o

o o o c i o

o  o  o  eg eg
o  a  o  r- ro
o  o  o  ov VD

o  o  o  o  to 
o o o o

o o o o

o  o  o  eg

??

r-^j’ a v o r H o o o o o o o o C ' t o m
^ • o o v o r - u v o v D o o o r ^ ^ r * * *
r H c o e g o o o * r o 0> o o o c o ( o o

f o e g r H O f O r H o o o o o o m o v t o

S 3 S g S 3 g 3
S S S g S S g g
v D O ^ r o m v D o s r
o o e g o r O r H o e g
t o c g o o o o o o
o o o o o o o o

o o o o o o o o

0>«rmOrHrHO«g*
^•or*ocor**oav
0 0 0 0 7 0 0 0
vo o o c o o r Hc o o r -
<r ><*mOr Hmor n
Or Hr HOmVDOr *
r Hr o ^ r o m< x \ o r »
r i 7 0 O 0 7 o n
v o e g m o o o v o ^ r
rH m rH | |
I m i

CQ

II
00

PQ

359



N o c i o o o H i n c o
o  o  o  r-* .-h co
o  o  o  eg vd *»•
o  o  o  eg ov <*•
o o o o v  ov r-
o  o  o  

o o o o

o  o  o  o  n  
o o o o m m o o v  
O O O O r H O O O O O O  
O O O O O O O O O O O  
O O O O O O O O O O O O V O V V O
o o o o o  
o o o o o

eg

o o o o c o m o e g o o o o c o « - H  
o o o o

o o o o o o o o o o o o e - o v
O O O O O O O O O O O O V D O V
O O O O O O O O O O
o o o o o o o o o o o o c g o v

o o o o o o o o o r H o o m m

o o o o m o o v o o o ^ o r -  
o o o o r H O o o o o o ^ o e g  
o o o o o o o o o o o r g o ®  
o o o o o o o o o o o v o o ®
O O O O O ' O O O O

o o o o o o o c g o m

o o o o o o o o

o o o o e g ® o v D o o o o c o r -

o o o o O O O O (O VD

co
co o  co o  r*

o m o o o o ^ r m  
o v o o o o o r - c g  

o c o o o c g o ^ o o o o o v o  
r H O r H o m m o v D o o o o e g v D  
o o ® o o ® o o o o o o r - r -  
e g o r - o o ^ o m o o o o v o r H  
r - o c o o o o v o c o o o o o r n o v  
r H o n o o e j o e g o o o o v D ^ r

e g o v o o o o o v o o o o o r - v o  
co l i co eg

I VD

CO O'
+> 0
fa Q

3 o O
3 CO
Pi rH

>i
■p
•H
O 0
0 •H

»H O'U 0 C
0
■P

> <

o o o o * 3 > c g o * r o o o r * ® o
o o o o m v o o o v o o o ® c g o
o o o o ^ r ^ r o m o o o ® e g o
o o o o v o m o ^ o o o ® ® ©
o o o o c o ^ r o c n o o o o o o
o o o o e g o o r H o o o V D w o

O O O O O O O O O O O V D V D O  
I VD VD

r» co 
l I

o o o o o ^ r e g v o o o o o o o
o o o t o r o e g e g e g o o o o o o
o o o o v c g ® 5 r c o o o o o o o
OOOOVr HCVJ VDVDOOOOOO
O O O V D V D O c n O O O O O O O
o o o o e g e g v D o o o o o o o
o o o ^ m r ^ ^ r o o o o o o o
O O O O O r H O i D O O O O O O

O O O O O N O O O O O O O O O

o  o  o  ov eg ®
O O O O V r H C N J V D V D
O O O V D V D O C O O
o o o o e g e g v o ®
o o o * a * m r - * * o
o o o o o

o e g o o o o o o o o o o o
o o o o o o o o o o o o  

o r - o o ^ o o o o o o o o o  
o o o o o  
o o o o o  

o o o o o t n o o o o o o o o o  
o  o  o  o  eg o  
O CO O O rH O

O r H O o e g o o o o o o o o o

o c g o o c o o o o
o m o o o o o o
o r - o o o o o o
O V D O O V O O O O

O r H o o e g o o o

r H i n o ^ i n o ^ r o o o n r H  
t n v W O ^ m O r H O O O r H t n

^ r o m o o o o ^ ro  ov o  ^. . _ 
p  7 o  0 e  o  w ww- ^ .

e g o o r - o o o r -
o  o  o  o  eg o

0  0  O O Ol 0  O
V D r O C N O O i O O w u u w w v w  
r n v o o o p - o o r H O O o e g o v v o

o n o o e g o r H O o o o v o m m  
I «-h i i to eg

I l I

•O' OV^' OVDr-OVDOOOVOcOrH 
VD CO VD O m OV O —i «/-<(-> ai <n
r* 7  7  O N

VOrHPgOrHOVOOOOOVDCMOV
r H i n o © c o o o « - H O O O o r - r -  
o  co o  o  r* ~
O O O O rH

O O O O O O O O O O O

vd ro eg ov

rH rH rH | |

o c o o o o v ^ r o e g
o v o e g o o o v o e g

r HCOOOmr Hr HO

rH OV VD O
vo co m o  
eg 7  vo o  

m o  o  
vDr Hoor *»vDo^* 
s r m » H o r ~ e g o r o  
o c o o o o e g o o
O O O O r H O O O

o o o o o o o o

(0 0(0 

o  o  o

o o o c o o o o o o o o o o
• H O O V D O O O O O O O O O
O O O O V O O O O O O O O O
o o o o p - o o o o o o o o o

e g « H o o o o o o o o o o o o

o o o o c v r - o r - o o o o o o
o o o o ^ m o r - o o o o o o
o o o o r g v o o m o o o o o o
o o o o e g o o ® o o o o o o
o o o o ® « ? 0 ' r o o o o o o
o o o o m e g o ® o o o o o o
o o o o ® r o o ® o o o o o o
o o o o v d o o ® o o o o o o

o o o o m c o o ® o o o o o o

OVr HOOVOOOO
® O O O 0 V O O O
m ® o o r - o o o
OVVOOOVDOOO
r H O O O O O O O
m o v o o v o o o o
r H ^ r o o o o o o

e g « - H o o o o o o

o o o o  
o  o  o  o  eg o  
o  o  o  o  ® 
o o o o  
o o o o

rH O O O VO OV OV 
oeg^*rHr »*3, ® o o o o ^ , fovD 
7 0 i / i e 0 H » H o o o f g f l i f l i  
i \ O H H i / i H 0 7 O O O 0 p g i n  
N 0 H f f l ( N O H e O O O O 7 ( O
^ • i n v o v o o o o o o o v o o v r -
l O O ' Q ' O V O O O O O O O ^ ' V D i n

e g o v o o o o o o o o o o m m

o o o o

o c o o o o o e g o  
o e g o o o o m o
O O V O O O O V D O
o o o o o o r o o

O O O O O O O O O O O O O O
o o o o o o o o o o o o e g o
o o o o o o o o o o o o r - o
0 0 0 0 0 0 0 0 0 0 0 0 ( 0 0

o o o o o o o o o o o o r - o  
I co

m ro 
oo o  
ov eg eg

o  vd ov vd eg
ov r- m eg
co o  0  o

r- vd co cd o
o o o r » r H V D o ® o
C O O V o O V V D c O r H O V
m m r H O v v o o o r -
o o o o v o v ® o o

m o v r H o o o o o

eg

V D o m o o v o v o m
o o o o o v m o ®
o o r - o c o c o o v o
r H 0 P * 0 ® 0 0 r H
® o c o o r o m o r o
m o o v o o r - O r - H
N o e o 0 e o 0
OVOcOO®VDOr H

c o w o v o e g f o o v o o o o o v o r -
m c o p - o o w o c ^ o o o r H O V ®
CNr HOVOCg c OOr - OOOOr HO
e g e g e g o o r HOr Ho o o o c o e g

o  co vd o  eg

r-» r- o  co
CO 7  O  Is
® rH O O

O P- O O O O O

O O O O O O O

O O O O
O O O ® 
O O O ® 
o  o  o  OV

o  o  o  m

e g ® o v o ® o O r H
mcOVDOOVVDOO
( Oc HCg Ot t OOr H
o e g v o o o v r H o e g
o v p * o v o 0 e o H
r * * « v DOr HOo o v
o ® o o e g e g o o
o r - o o o o o o

o o o o o o o o

ov eg o  ov ov o
rH rH O o  m O
rH o  O VD OV O

o o c o o c o e g o o o  
o\ o  o  ‘
® o  o

Oc O OV O o v DO r H OO o e g v D r o

O O O O O O O C O r H
z> o  o  m vo co
3 O O O O CM

O O O O O O O O

VD
O VD VD O VD O O 

7* O O 
VD O O

v D e g o ^ r o o o o v  
r H r H e g o p g ^ o v o o o o r H  
( o e g m o ® r H o v D o o o ^ r  
r H O O O V D O O r H O O O P -  
( \ 7 7 O U \ I O O 0 O O O 0

r - v D e g o c o e g o o o o o ®
H r  I rH ®

CO » VD

OV o  o  
ov o  eg 
® o  o  
^  o  ^  
rH o  eg 

c o e g o o o o o o  
o o o o o o o o

o o o o o o o o

rH ov o  ®
eg vd o  m 
o  m o  vd

II
rH

< PQ PQ

360



APPENDIX 6 -  CONTROL INPUTS

This appendix shows the standard control inputs used throughout this thesis. They 

were obtained from flight data of the Lynx and are shown trimmed with a truncated 

time interval. This is the form in which they were used.
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