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" I hope you don’t think that I have been speaking too long about
astronomical matters, for there is one other important thing connected
with astronomy that I must speak of. You see, I have had almost
nothing practically to do with astronomy, and hence I have a strong
interest in the subject. It is very curious, but quite true, that men
practically engaged In any pursuit are almost unable to see the
romance of it. This is what the imaginative outsider sees. But the
overworked astronomer has a different point of view. As soon as it
becomes one’s every-day work, the thing loses a great deal of its

interest”.

Spinning Tops and Gyroscopic Motion

By John Perry, 1957 (Dover),



Summary

Following the discovery of the spectral variability in a number of
emission line B type stars (so called Be stars) at around the turn of
this century, extensive theoretical and observational campaigns have
since been an ongoing process in an attempt to understand the
controlling physics of the star ana its environment. Although it is now
known that wvariability occurs on all time scales the mechanisms
responsible for the variability are still not well understood. The
consensus is that the stars are rapidly rotating (approximately up to
80% of the critical rotational velocity) which appears to have a major
influence upon the characteristics of the star and its environment as
is inferred by the observed spectral variability.

The observed high intrinsic polarisation of Be stars also implies
that the rapidly rotating star rotationally distorts the surrounding
circumstellar envelope. This suggests that by wusing current
geometrical model envelopes together with polarisation theory,
constraints upon the distribution of scattering material, the geometry
and mass of the scattering envelope could be inferred from
polarimetric observations.

In this thesis the theory of optically thin, Thomson (or Rayleigh)
scattering polarisation from stellar envelopes for both single and

binary star systems (Brown and McLean, 1977; Brown et al., 1978) are

considéredﬁ aﬂd extehdt;d to include finite light sources in order to
provide more stringent constraints upon Be star envelopes and also to
enable inferences to be made as to the density structure of regular

polarimetric variations in single and binary star systems.
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The spectral variability characterising the Be star phenonena is
reviewed in chapter 1 with particular reference to y Cas. Current
spectroscopic geometric models are also discussed in some detail.
Following this, the polarimetric theory and observations related to Be
stars are discussed which also includes a brief section on binary
diagnostics as Be stars are frequently observed in binary systems and
a qualitative account of the observational consequences of scatterer
occultation in binary systems is also included.

Continuing with polarimetric variability in binary systems, in
chapter 2 the polarimetric variability of the Be/X-ray transient
A0538-66 is investigated with a view to understanding the mass
transfer from the primary (Be) star disc envelope to the secondary
(neutron) star. This chapter is in a slightly different vein to the
remainder of the thesis in that the scattering material is assumed not
to be occulted (in fact due to the scanty data set this question cannot
even be asked). It is included here partially because Be stars in
binary systems seem to exhibit spectral behaviour similar to that of
gingle stars and hence this may throw some light upon possible
underlying mechanisms and also as an example of how the density
structure within a binary system can be inferred from the polarimetric
data which is one of the questions addressed in this thesis.

In chapters 3 - 5 the effects of incorporating a finite size
(spherical) light source into the optically thin, single Thomson
scattering polarimetric theory is developed for various geometrical
models with particular reference to understanding what constraints are
needed to be imposed upon Be star models in order to produce the
necessary degree of observed intrinsic polarisation. Also addressed is

the question to what extent the density structure can be inferred
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from the polarimetric variability of a system when there is only one
important light source. This may be considered as a density
perturbation in a stellar envelope around a single star or a binary
system in which the secondary is important as a light source (eg. a
neutron star).

In chapter 6 the effects of occultation in obliquely rotating
envelopes are discussed and the error in inferring the inclination and
obliquity angle by Fourier analysing the polarimetric data of such
systems is assessed when no account of occultation is made but is
present within the data.

Finally in chapter 7 a brief summary of the conclusions of this
thesis is made and suggestions are put forward for future work with
particular reference to the application of polarisation theory, as an
independent method, to understanding the underlying structure of UV

discrete absorption line components is discussed .
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Preface

This thesis is primarily concerned with the consequences of
incorporating finite light sources into the Thomson (or Rayleigh)
scattering polarisation in an optically thin media. The effects are two
fold. First, account must be made of the fact that each scatterer sees
a finite light source, the effect being a range of permissible scattering
angles through which light from the source may be scattered towards
the observer (Cassinelli et al., 1987; Carlow, 1988). Second, there exists
the possibility of scatterer occultation i.e. there exists scatterers that
are not visible to the observer (Milgrom, 1978). Both contributions are
considered and their combined effects are investigated for wvarious
geometries, progressing from a planar distribution (chapters 3 and 4)
to generalised axisymmetric envelqpes in chapter 5.

The modified . polarimetric theory is then used to answer two
questions. First, what is the permissible parameter space for each of
the geometrical models representing Be stars in order to account for
the observed intrinsic polarisation ? Second, from the observed
polarimetric variation from single and binary star systems, to what
extent can the geometry of the envelope be inferred and can the
inclination of the system be determined ?

In chapter 6 the occultation of obliquely rotating envelopes (ORE)
is considered. The treatment is by no means rigorous, but is intended
to examine with what certainty the inclination and obliquity angle of
an ORE can be estimated using the point light source treatment of
Brown et al. (1978) (cf. McGale, 1988).

The work of chapter 2 was carried out in cooperation with Dr. G.C.
Clayton, Prof. J.C. Brown and Dr. I.B. Thompson at Wisconsin

University (Madison) during October 1987 and is published in Mon.
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Not. Roy. A.str. Soc. (236, 901). Whilst in Wisconsin chapter 3 was
formulated by Prof. J.C. Brown and myself and is now published in Ap.
J. (347, 468). Chapters 4 and 5 are intended to be submitted to Ap. J.
as continuation papers of chapter 3.

The work of this thesis began in the Astronomy Department of
Glasgow and continued through the merger of the Natural Philosophy
and Astronomy Departments to form the Department of Physics and
Astronomy.

I am grateful that I have been able to carry out this research
under the supervision of Prof. John C. Brown who, amongst his many
talents, has a world wide reputation for the development of
polarimetric theory that began during the late seventies.

I would like to thank the astronomers at Wisconsin who made my
stay there a warm and welcome one, particularly Prof. Joe Cassinelli,
Dr. Geoff Clayton, Dr. Jason Cardelli and Dr. Regina Schulte-Ladbeck.

I would also like to thank the Amsterdam Astronomy institute for
their kind hospitality during my visit in April 1989. Particularly I
would like to thank Dr. Huib Henrichs and his wife Beb for her
cooking, Lex Kaper and Dr. Rens Waters.

I would like to thank the following visiting astronomers to Glasgow;
Dr. George Collins II, for his useful critisisms of chapter 1 and Bert
van den Oord for some fruitful discussions.

I would like to acknowledge the SERC for three years postgraduate
support and Glasgow Computing Services for the use of their
computing facilities.

Finally my most sincere thank you’s go to all the members of the
Astronomy group, both past and present, who have been a great

pleasure to have known. Particularly I must thank Mrs Margaret
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Waterson and Mrs Margaret Morris for making such an excellent job of
the diagrams within this thesis, Fraser Gordon who has (apparently)
willingly put up with me for in excess of three years and Alec
McKinnon who, apart from the numerous scientific discussions, together
with Fraser Gordon, introduced me to the Aragon (public house) where
the staff (Mary, Steve, Debbie, Jeanette and Jayne) have always made
me feel most welcome.

I would like to dedicate this thesis, if I may, to my mother (Sandra
Gibson), father (Kenneth Fox) and especially to my step-mother and

dearest friend (Yvonne Fox).
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Chapter 1.

Observations and Theory Relevant to Understanding the

Underlying Structure of Be star Circumstellar Envelopes.

1.1 Introduction.

Be stars exhibit temporal spectroscopic variations on all time-scales.
These variations are generally irregular and often extreme with the
possibility of spectral lines alternating from emission to absorption
lines over a period of years (Baldwin, 1941). Be stars have also been
observed polarimetrically (Shakovskoi, 1963, 1965; Coyne and Gehrels,
1967). It has been found that these stars can exhibit high degrees of
polarisation (up to 1.5% for EW Lac, Poeckert and Marlborough, 1976).
The very fact that these stars are intrinsically polarised implies that
the envelope, which gives rise to the polafisation, is asymmeﬁrigﬁ with
respect to the observer, contrary to standard wind model calculations
(Castor Abbot and Klein, 1975; henceforth CAK; see also Hearn, 1988 for

a recent review) which assume spherical envelopes.

1.2 Be Star Phenomena.

Examples of anomalous emission lines from stars can be found
throughout the HR diagram. Stars are only noted for their emission
characteristics if, in the visible wavelengths, emission lines are
observed when the classical theory of stellar atmospheres instead
predicts absorption lines, implying the presence of some {hot) matter
beyond the normal atmosphere.

Be stars are of particular interest because they are the most
frequently observed emission stars, with observations spanning over a

century from the first observations of the Be star y Cas in 1866 by
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Secchi (1867). Today over 3000 Be stars are known (Wackerling, 1970),
making up about 20% of the total B star population. From such a large
sample of stars and observations it should be possible to construct
models representing the physical conditions witﬁin the envelope. The
resulting models should also be applicable to rapidly rotating emission

line stars of higher (Oe) and lower (Ae, Fe) temperatures.

1.2.1 The Definition of a Be Star.

According to Collins (1987) Be stars are defined as B stars of
luminosity classes III-IV (non supergiants) whose spectra have, or
have had at one time, one or more Balmer lines in emission superposed
on the normal B spectra. (Luminosity classes I and II are excluded as
Balmer emission lines are considered to be a normal characteristic of B
supergiants). This definition is somewhat ambiguous in that it depends
upon (i) the instrument being used (i.e. whether or not the instrument
is sensitive enough to detect emission); (ii) how well the observer can
identify possible weak emission and (iii) the epoch at which the
observations are made, as most emission features are relatively short
lived phenomena. On consideration of the ambiguity in the definition,
the 20% value quoted for the Be/B star ratio must be considered as an
underestimate.

Be stars are subdivided according to their {(high resolution)
spectra :

(i) Be spectrum; emission lines showing either no reversal or more
or less central reversal (Underhill and Doazan, 1982, p. 280). These
stars are often referred to as "Classical"” Be stars. They are known to
be fast rotators (Slettebak, 1976) and often exhibit Fe II in emission

(Slettebak, 1982). In addition there is also a subgroup which also show
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many forbidden lines in emission (eg. O I, Fe II, N II, S II and Fe III)

and are designated Bep or B[e].

(ii) Be shell spectrum; Hydrogen Balmer lines exhibit sharp, very
deep absorption cores (generally bordered by emission wings) and
ionised metal lines (eg. Fe II, Ti II, Cr II) appear as sharp absorption
lines with (or without) emission wings (see Fig. 1.1 for a comparision
of line profiles).

This definition for the "shell" spectrum is relatively new.
Historically the term shell was reserved for Be stars exhibiting the
most pronbunced absorption features (e.g. Plieone, 48 Lib) indicating

that they are being observed equatorially (Slettebak, 1988).

1.2.2 Variability.

Spectroscopic observations of Be stars have shown that at any
given time a star classed as Be may exhibit B or Be/shell spectra and
indeed some stars (eg. ¥ Cas; Cowley et al.,, 1976: Pleione; Gulliver,
number of decades (non-periodic). It seems almost certain now that
since such extreme spectral variability exists, that the spectral types
(Be, Be/shell) are merely different aspects of a single phenomenon
(Underhill and Doazan, 1982, p. 286) - so called phase changes -
rather than representing intinsically different kinds of objects or
different stages of evolution (i.e. phase change time scales are much
shorter than evolutionary time-scales).

Associated with these spectral variations in any particular star are
changes in magnitude, colour temperature, radial velocities of lines,
the V/R (violet to red) and E/C (emission to continuum) ratios for

example. How these changes are related to each other depends upon
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the individual star.

The spectral phase changes (and associated changes) are
particularly well illustrated in the case of ¥ Cas (Baldwin, 1940;
Edwards, 1956; Cowley and Marlborough, 1968; Underhill and Doazan,
1982, p. 326 et seq).

From the first spectral observations of ¥ Cas in 1866 and until
1915, the star was seen to be in a quiescent Be phase exhibiting
emission in the Balmer series up to H 8 and the He I(Dg) line.
Thereafter small variations were noticed in the V/R of Hy, and only
minute variations in the wvisual magnitude (mean 2.2) were recorded
until 1932 when suddenly large wvariations in the V/R of the Balmer
emission lines were observed, indicating that the rotating extended
atmosphere was expanding (V/R > 1 - expanding; V)R < 1 -
contracting). The emission lines became increasingly strong and the
two emission peaks (observable only in high resolution spectrometry)
became narrow and closer together until the appeared only as a single
line. Emission reached a maximum in 1934, by which time there was
emission in the Balmer series up to H 18 (with the emission widths
greatest for the lowest members) and also strong emission in Fe II, He
I, Mg 1II, Si II and Ca II. Whilst emission had increased, the
photospheric absorption lines had weakened due to veiling (line
infilling) from the continuum.

By 1935 a dramatic decrease in emission occurred, leaving only the
lowest Balmer lines in emission and the whole process was reversed
with the V/R ratio and the visual magnitude decreasing. The ‘single
line’ appearance of the emission lines transformed into two emission
peaks and the photospheric lines strengthened. Thereafter He I (388.9

nm) appeared as a sharp absorption core line which was followed by



developing deep absorption cores in the Balmer and the helium
emigsion lines. By mid 1936 ¥ Cas had lost all traces of photospheric
veiling and exhibited a fully developed shell spectrum. Three months
later, however, this spectrum had completely disappeared and the
spectral variations observed from 1933 - 1936 were then immediately
repeated but with much greater intensity, such that the visual
magnitude increased to a maximum of 1.7 whilst the colour temperature
reddened to 8x10% K. (The reddening is due to an excess radiation in
the Paschen continuum caused by free-free, free-bound emission from
an ionised gas that is optically thin in the continuum.) At the time of
maximum emission the Balmer lines were in emission up to H 32 and
many ionised metals were also seen in emission.

Following this emission phase a further shell episode occurred
reaching a maximum in 1940 whereby the visual magnitude had
decreased to 3.3 and the colour temperature had become bluest
(3x10*K). By 1942 the shell spectrum had completely disappeared
leaving a normal B spectrum star (with slight emission in Hg).

Perhaps the most important (and somewhat overlooked) feature
during these spectral changes is the variation associated with the
photospheric line profiles because these lines essentially affect the
determination of spectral classification, the effective gravity and Vsini.
Since it is assumed that the photospheric lines are not modified by
the presence of the envelope, standard model atmospheres of normal B
stars can be applied to Be stars.

To date, the value of Vsini (for any star) has not been calculated
during all its various phases but its variation with time has been
observered in some Be stars, particularly during maximum emission,

(e.g. B! Mon; Cowley and Gugula, 1973). Such a variation, however, is
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in contradiction to the method of construction of empirical models for
Be stars, whereby the emission width is fixed by Vsini. Furthermore,
neither the rotational speed (V) nor the inclination (i) can reasonably
be expected to change rapidly as either implies the application of a
huge torque to the star. The very fact that the photospheric line
profiles do change would indicate that, in the absence of detailed
atmospheric models, very little meaning can be attached to the Doppler
half width of these lines which is interpreted as Vsini. The possible
variation of Vsini (with time) would explain, to some extent, why there
appears little correlation of (the mean) Vsini value with certain
parameters when a strong correlation might be expected (e.g.
Polarisation versus Vsini - Poeckert and Marlborough, 1977, McLean
and Brown, 1978). However it must be borne in mind that accurate
determination of Vsini is a difficult one (Slettebak, 1976) and during
times of veiling it may not be possible to determine the wvalue of Vsini
with any certainty.

Spectral variability is also observed on shorter time scales of
months to minutes, most of which is chaotic in nature and on the
shorter time-scales may in fact be unreal (Clarke and Wyllie, 1977). In
particular, small rapid profile variations on time scales of the order of
minutes have been observed across Hg (Hutchings, 1976) and Hy
(Slettebak and Snow, 1978) for several stars. The variations on these
short time-scales are weak and in general irregular. They are
impossible to observe without good spectral and time resolution and
merely affect the structure of the line rather than the total line
intensity.

The most frequently observed variations are of the order of a

day. They can be non—periodic, such ‘as those observed in the radial



velocities of some lines, which have been explained in terms of
expansion and contraction in the envelope of the star - mass ejection
followed by fallback - (Doazan, 1965; Doazan and Peton, 1970) and by
the rotation of an object with triaxial deformations (Chandrasekhar,
1969; Bossi et al., 1982). However most variations are strictly periodic
and have been attributed to various mechanisms. Baade (1982, 1984a)
found regular spectroscopic variations in 28 CMa with a period of 1.37
day which he attributes to non-radial pulsations (NRP). Stagg (1987)
has confirmed this period photometrically (during 1983-4). However
Balona and Engelbrecht (1986, 1987) were unable to find such a
periodicity photometrically during 1985-6. NRP have been suggested
for the short regular wvariations in many Be stars eg. A Eri (Bolton,
1982; Baade, 1984a), ® Cen and U Cen (Baade, 1984b). It is as yet
unknown what role NRP play in Be stars, they may be either an
underlying cause or an effect of the Be phenomena (or they may in
fact be superfluous to the Be phenomena; for a recent review of NRP
see Baade, 1987).

Periodic spectral and/or photometric variations however can
usually be explained in terms of spot features or rotational modulation
(see discussion at the end of Baade, 1987; Balona and Englebrecht,
1986; Sareyan et al., 1987), binary motion or magnetic effects (see
review article by Barker, 1987). In particular, for a small number of
Be stars, which exhibit amomalously strong helium abundences, it is
becoming evident that the magnetic field of the star can play an
important role in determining the structure of the stellar wind. These
helium strong stars have dipolar kiloGauss fields in which the
observed longitudinal magnetic field varies strictly with the rotation of

the star (e.g. Landstreet and Borra, 1978; Barker et al., 1982). For one
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star (HD 37776) Thompson and Landstreet (1985) have found evidence

for a quadrupole field. The prototype star, o Ori E, has also been
observed photo-polarimetrically by Kemp and Herman (1977) and
interpreted by Clarke and McGale (1988 b) as an off-centre obliquely

rotating magnetic dipole with a polar field strength of ~12 + 1 kG.

1.3 The Modelling of Stellar Envelopes.

In order to explain the visual spectral observations of Be stars,
Struve (1931) suggested that because large Vsini values (close to the
theoretical critical velocity) are observed, then the escape velocity at
the surface of the star would be least at the equator and greatest at
the poles. This led him to the conclusion that preferential equatorial
mass loss enhancement would occur.

Struve’s geometrical model has since been elaborated upon by many
authors (see Sec. 1.3.1 below) all of which assume equatorial enhanced
mass loss.

These ad hoc geometrical models are able to explain the visual and
IR spectrometry and the degree of polarisation observed from Be stars
but generally fail to explain the V/R variations and high energy
spectrum.

An alternative method to modelling stellar atmospheres is to
consider the possible physical mechanisms that dominate the (global)
structure of the wind (for a review of wind mechanisms see Holtzer,

1988).

In the particular case of hot stars CAK modelled radiatively driven

winds in O stars by considering the basic hydrodynamic equations.
They assume that the radiative force, resulting from a mixture of

optically thick and thin absorbing lines, is proportional to the velocity
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gradient raised to some power [(dv/dr)* , where « is a free parameter
(0 ¢ @ <1)] that is fixed by observations. They also assume that the
Sobolev approximation (Sobolev, 1960; i.e. probability of a photon being
absorbed is proportional to the reciprocal of the velocity gradient of
the wind) to be wvalid throughout the wind. Their theory predicts a
simple velocity distribution for the wind, viz

vZ = v§ + (Ve - vx)2 (1 - Ry/r) (1.1)
where v, vy, vx are the radial ouflow velocities at r , infinity and at
the surface of the star respectively. Since vy, >> vy then

V T Ve (1 = Ry/r)¥ (1.2)

where vy = (1/x - 1)~% Vesc .

In the interpretations of observations, the velocity distribution (eq.
1.2) is usuallly parameterised by setting the power of the distance
function equal to B. Therefore in the CAK theory B = 0.5 in agreement
with observations. Using a large number of UV line data (250,000 lines)
they predict that « ~ 0.7 and thus ve/vege ~ 1.5. Observations,
however, (e.g. Abbot, 1982) indicate a value between 2 and 4.

Pauldrach et al. (1986) and Poe and Friend (1986) found that the
inclusion of a finite size star correction into the basic CAK theory
agrees well with observations. By incorporating magnetic fields and
7t:otation (f‘riend and McGregor, 1984; McGregor and Friend, 1987) it has
also been possible to account for the observed dispersion in the
estimates of mass loss and v, for O stars.

Further investigations of the effects of rotation and magnetic
fields has shown that a two component wind may in fact exist (Poe et
al., 1988; Maheswaren and Cassinelli, 1988) with anenhancement of mass

loss (and lower terminal velocity) from the equatorial region compared

to the polar regions.
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There are, however, several problems thaf arise when applying
these standard wmodels to Be stars. A primary objection is that the
models assume that mass loss is spherically symmetric whereas
polarimetric and TR observations show unequivocally that Be winds are
highly non-spherical (Dachs et al, 1986; Waters, 1986; McLean and
Brown, 1978). A second objection arises in the wvalidity of applying
radiative driven winds to Be stars because such a mechanism is not
self-initiating for Be stars which would indicate that there are other
mechanisms at work (Hearn, 1988; Holtzer, 1988).

We shall now discuss in more detail Struve’s rotational model
(because of its historical importance and simplicity) and two current
competing geometric models of Be envelopes, namely the Marlborough
et al. (1978) rotationally enhanced mass loss model and the Doazan and

Thomas (1982) spheroidal/ellipsoidal mass loss model.

1.3.1 The Rotational Model.

Struve, Shajn and Elvey had by 1930 (Shajn and Struve, 1929;
Elvey, 1930; Struve, 1930) established that the broadening of spectral
lines in many hot stars are due to Doppler broadening produced by
rotation of the star and its envelope. By considering these
observations and conclusions Struve suggested (Struve, 1931) that
rapidly rotating stars will be oblate spheraids (or in his words "lens
shaped bodies") which eject matter preferentially at the equator (his

.original idea being that this was a one-time ejection) forming an

equatorial ring, or disc, that is responsible for the observed emission
lines. Variation in the observed inclination of such systems would then
give rise to the range of widths in the emission lines (Fig. 1.2)

observed in these emission stars.
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Figure 1.2

Sketch of Struve’s Rotational model. The different types of profiles,

A, B and C, are interpreted

rotation axis.

in terms of the line of sight on the
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The shell absorption line spectra are explained within the
framework of this model by the fact that these (shell) stars (eg.
Pleione) show the largest line broadening (largest Vsini) and therefore
presumably viewed equatorially. Such shell lines exhibit narrow
absorption cores, indicating that the envelope disc is optically thick
across that line. Struve’s model has since been elaborated upon by
Limber and Huang.

Limber (1964, 1967, 1969) considered mass loss through rotationally
forced ejection of matter consequent to structural changes in the body
of the star (eg. stellar contraction). From such modelling Limber was
able to reproduce the radial velocity wvariations of the Balmer H 5, H
15 and H 25 shell lines in addition to the variation of the line
intensities with time for Pleione’s shell episode (1838 - 1954). Apparao
et al. (1987) have suggested that such forced ejections are due to the
transport of angular momentum from the core of the star to the
surface layers which are confined by the magnetic field of the star.
They suggest that the star differential!y rotates, which twists the
magnetic field and the resulting force enables the angular momentum
to be transported to the surface. In doing so, the outer layers of the
star expand due to the additional centrifugal force. Eventually the
surface layers become unstable and results in episodic mass loss
from the star. They estimate the frequency of such events to be of
the order of decades in agreement with the observed Be phase change
time-scale.

Huang (1972, 1973, 1977) considered variable (and continuous) mass
ejections from the equatorial regions of the star which result in a
rotating elliptical ring of material that is quasi-stable. This gave a

natural explanation to the quasi-periodic phase changes of Be stars as



well as the periodic variations observed in the V/R ratio.

1.3.2 Rotational Model of Marlborough, Snow and Slettebak (1978)

Their model is the latest generation of Struve’s original rotational
model and is based on a previous geometric model by Poeckert and
Marlborough (1978a) which was constructed in order to explain the
variation of polarisation across the Hy and Hp lines for ¥ Cas.
Marlborough et al. (1978; henceforth MSS) extended the model to
explain the high energy spectra (UV lines and xrays) from Y Cas.
Although their model 1is specifically intended to explain the
observations related to ¥ Cas, their model should, at least in general
terms, be able to reproduce the main features of the Be star
phenomena (values quoted are those used by MSS for ¥ Cas).

MSS envisage a cool (T ~ 10% K) equatorially enhanced envelope,
with a high density (ng ~10® -10!® cm~3) and low outflow velocity (V.
< 20 kms™!) extending to a radius of 3 - 15 Ry in the equatorial plane
(Fig. 1.3). The envelope increases in geometrical thickness with
increasing radius to a height of ~+ 5 Rg. This region is responsible
for the shell lines and Balmer emission, for the IR excess and (due to
the asymmetry of the envelope) the intrinsic polarisation.

The inner part of this envelope rotates rapidly and differentially
which causes turbulence that is supersonic along the disc edge (where
the density falls rapidly)} and shocks form. (It is assumed by MSS that
Be star discs can be considered as analogous to accretion discs.) The
shocks result in the nonthermal heating of the outer edge of the disc
(called the transition zone).

Out of the disc a corona exists (Icke, 1976) with a high temperature

(T ~ 10 K), high outflow velocities (V. < 1000 kms~1) and a low
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density (ng ~ 10 cm~3). Within the corona highly ionised species (NS5%,
0%*%) are produced by collisional ionisation giving rise to the observed
UV line spectra (Marlborough, 1977a).

In their model, MSS speculate that the x-ray emission is produced
via mass accretion on to a neutron star and it is through this mass
flow that the variable V/R ratio is explained. In the context of a
generalised model, however, we must account for the x-ray emission
observed from Be stars (Peters, 1982) in another way. Marlborough
(1977b) showed that the x-ray flux produced in an optically thin
Maxwellian plasma surrounding the star (a corona) composed of
completely ionised hydrogen would require a temperatue of T ~ 107 K
and a density ng < 101'cm~2 (again the calculations are for y Cas). To
date, however, it is unknown where the x-ray emission is produced
within the envelope (Vaiana and Sciortino, 1988). Current theories
concerning x-ray emission include a coronal origin (Hearn, 1975;
Waldron, 1984) and shock structures via density perturbations
throughout the wind (Lucy, 1982).

The V/R ratio has been observed for some Be stars over a long
period of time and has been found to be quasi-periodic. (The same
phenomenon has also been observed in other emission stars, notably T
Tau stars [e.g. DR Tau, Krautter and Bastien, 1980] and so there may
possibly exist a single physical mechanism for the V/R variation.) The
V/R ratio indicates that the envelope expands (V/R > 1) and contracts
(V/R < 1) with time. In the present MSS model the stellar envelope is
in dynamic equilibrium and so no time dependent phenomena occur .

Their ad hoc model is able to explain all the main observed features
of Be stars (including the observing angle dependency, Poeckert and

Marlborough, 1976, 1978b). Their model implicitly assumes, via the
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geometry adopted for the envelope, that all Be stars are rapidly
rotating, as inferred from observational data (Slettebak, 1976; Warren,
1976). Since the model is static it cannot explain any of the time
dependent phenomena associated with Be star such as V/R changes or
the so-called phase changes i.e Be ~ Be/shell - B (and not necessarily
in that order). On a more basic level, as the authors admit, their
model is primarily geometrical in construction and has not been tested
for physical self-consistency.

Recent spectral observations (Dachs et al.,, 1986; Waters, 1986)
support this cool Hy emitting disc envelope scenerio of MSS and
interferometric observations of ¥ Cas (Granes et al., 1987) indicate that

the Hy envelope extends to ~7 Ry consistent with the MSS model.

1.3.3 Spheroidal/Ellipsoidal Model of Doazan and Thomas (1982).

Doazan and Thomas (1982; henceforth DT) initally assume a
spherically symmetric solar-like extended stellar atmosphere. By using
the conservation laws of mass, momentum and energy together with
spectral observations they construct an empirical model which they
claim is thermodynamically and hydrodynamically self-consistent (for
the mathematical details see Doazan and Thomas, 1982, Ch.13 and for a
complete review of the model see Doazan, 1987). In actuality they write
down the conservation laws in their most general form and then define
regions in which certain physical mechanisms dominate (eg.
radiative/thermal equilibrium). They then estimate (order of
magnitude), using the detailed numerical results of Mihalas (1972), how
the density varies (i.e. r~2, by the conservation of mass) throughout
the atmosphere and give typical values for the density, temperature

and outflow velocity in each region. They do not solve the equations



governing the physics of the atmosphere.

In their analysis, they break down the atmosphere into several
physically different regions (Fig. 1.4) of which the exact size and
observed phenomena in any region at any epoch will depend not only
upon each other region but also upon previous epochs.

The model atmosphere consists of a photosphere, which is in both
radiative and thermal equilibrium (Tph ~ 30,000 K , outflow velocity =~
Ims™! and nyg ~ 10'%cm~3). They suggest that within this photosphere
the characteristic shell spectra is produced by enhanced mass outflow
{Doazan et al., 1986). However, no radiative transfer modelling is
carried out to prove this and furthermore spectral observations show
that the shell spectra cannot be produced in this region by the line
widths (Collins, 1989; Private communication).

The photosphere is followed by a chrqmosphere where thermal
equilibrium holds but radiative equilibrium does not. Energy is
conserved by the dissipation of mechanical energy (eg. acoustic noise)
which heats up the chromosphere to a temperature of T.j,. ~ 80,000 K.
(In the sun the chromosphere is believed to be heated by acoustic
noise that has its origin in the convective zone [Durrant, 1988]. In
stellar evolution modelling it has become apparent that such a
convective zone also exists in B stars [Hofmeister et al.,, 1964].)
Throughout the chromosphere (which extends to ~1.01 Rg) the density
(varying as r~2) decreases (ng ~ 10! cm~3 and the radial outflow
velocity increses to V, ~ 10 kms~1.

Beyond the chromosphere lies the lower corona (T, ~ 5x10% K,
outflow velocity V, > 100kms™! and np ~ 10%cm~!) where non radiative
and non-hydrodynamic equilibrium exists and the outflow is transsonic.

* Within this region superionised species exist and nonthermal x-ray
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emission occurs. The lower corona ends where the ouflow velocity
becomes supersonic (called the upper corona) and is terminated when
non-radiative energy dissipation becomes insignificant.

From the photosphere to the upper corona, the flow is accelerated.
Beyond the corona the flow cools (no radiative heating) but it can still
be  accelerated by the radiation field arising from the
chromosphere-coronal region. Thereafter shocks form and the density
increases to ng ~ 101%m™® and the flow decelerates. Beyond this
region lies a cool, low velocity envelope where Hy, emission and the
colour excess originate. The location of this envelope is such that the
outflow velocity is close to the escape speed (V, ~ 100kms~!). The
amount of momentum that is transferred from the shock forming region
to the Hy emitting envelope will be variable (because mass loss from
the star is variable) and thus at some epochs the transferred
momentum will be sufficient to drive the material up to escape speed
and thus mass loss will occur (V. > Vgg.). At other epochs, however,
there will be insufficient momentum to drive the material up to escape
speed (i.e insufficient momentum to overcome gravity) and so the
envelope will act as a 'storage balloon’ that will expand (V/R > 1) and
contract (V/R < 1) with time (Doazan et al., 1985). DT invoke such a
mechanism in order to explain the observational fact that the inferred
mass loss rates in the UV and Hy are not the same. However, since the
mass loss rates for the UV and Hy depend on a knowledge of the exact
ionisation balance and composition of the wind, one cannot expect
agreement (see Snow, 1982 for a discussion of the problems concerning
the interpretations of mass loss).

DT suggest that the shell lines are formed in the photosphere of

the star. However, observations show (cf. Sec. 1.2) that the shell
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episodes are characterised by a developing narrow absorpion line
(centrally) superposed upon the emission line and would therefore
indicate that the shell lines are produced in a region close to the Hy
emitting region, which in the DT model is likely to be the shock
forming region because it is here that it is possible for a wvelocity
plateau to exist (Mullan, 1984) and thus the velocity gradient across
this region becomes small. For such a region the opacity of a line
increases (Sobolev, 1960; the opacity of a line is inversely proportional
to the velocity gradient) and therefore the neutral hydrogen in this
region will appear as deep narrow absorption lines, giving rise to the
observed shell spectra. If, once the shell spectra appear, increased
mass loss occurs from the star, the shocks within the shock forming
region will become stronger and result in the heating of the neutral
hydrogen gas to higher excited states which will result in emission.
Therefore, once emission begins, the Balmer lines will steadily change
from a shell line to an emission line. Observations in the UV and
visible spectral regions for 59 Cyg (Snow and Marlborough, 1980;
Doazan et al.,, 1980a, b; Barker, 1979) indicate that during the shell
phase of 59 Cyg (~ 1974) the expansion velocity of the shell lines were
greatest (~ 50 kms™!) when the UV absorption lines of highly ionised
species were Jleast (~ 180 kms~! for N V) and weakest. The onset of

Balmer emission was characterised by an increased displacement and

strength of the UV absorption lines (Doazan et al., 1985) which infers
an enhanced mass loss from the star. The increased mass flux then
produces a stronger shock when it reaches the cool envelope
boundary which heats the gas and results in Balmer emission. In
addition, UV observations also indicate that the expansion velocity is

variable and thus one can expect that the wvelocity plateau in the
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shock forming region may not be established and so the opacity of the
line decreases (i.e. a velocity gradient exits in the shock forming
region).

The model of DT does not require a fast rotating star, but in order
that some asymmetry is present the star must indeed rotate. The
effect of rotation will be to cause an asymmetry in the photospheric
mass outflow with the total velocity at the equator being greater than
that at the poles and so shock interactions will also be stronger at
the equator and this region, together with the cool envelope, will be
ellipsoidal in shape which they claim will give rise to the observed net
degree of polarisation.

On the basis of spectral observations alone it is not possible to
distinguish between the MSS and the DT models because they use
these observations as a basis for their models and thus observations
other than spectral observations must be wused. Polarimetry is
particularly useful in this case as it enables (from polarimetric theory
and observations) important inferences to be drawn regarding the
geometry and mass of the scattering envelope. In particular, given a
specific geometrical shaped envelope (eg. an equatorial disc or an
ellipsoid) then by comparing the theoretical variation of polarisation
with certain stellar parameters to observations (McLean and Brown,
1978) it is possible to infer the typical mass and oblateness of the
envelope required which may then be tested against model predictions

(see Section 5.4 for a comparision of the MSS model to DT model

predictions).
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1.4 Polarised Radiation.

In order to calculate the theoretical intrinsic polarisation from a
circumstellar envelope one has to solve the equations of radiative
transfer through the envelope (Chandrasekhar, 1950). The solutions
are found numerically (Hummer et al, 1973; Poeckert and Marlborough,
1977; Kalkofen, 1987). This particular method of solution is model
dependent and requires extensive computing time. The results,
however, simplify in the case of optically thick and thin limits. In the
optically thin limit (which we shall concern ourselves with), when the
optical depth is so small that single scattering is an adequate
approximation, the equations of radiative transfer are minimised as it
is then not necessary to consider the scattering of polarised radiation
(provided that the light source is unpolarised) and absorption may
also be neglected.

Brown and McLean (1977) first generalised the theory of optically
thin scattering (with a point light source). They found that for
Thompson scaltering in an axisymmetric envelope the net polarisation
depends on the inclination of the system and the envelope geometry in
a very simple way, viz

P = T(1 - 3y)sin?i (1.3)
where i is the inclination (defined as the angle between the observer
and the rotation axié of the star), T is a measure of the optical depth
(averaged over the entire envelope) and ¥ is a shape factor that
depends on the envelope geometry. Other authors (e.g Dolginov and
Silant’ev, 1974; Shakovskoi, 1965, Poeckert and Marlborough, 1977) had
previously obtained similar results for specific geometries but had

then not generalised their results.

Brown et al. (1978; henceforth BME) generalised the theory to
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general envelope distributions and multiple (point) light sources. They

found that for a rotating system the normalised Stokes parameters
could be written as a Fourier (time) series {up to the second
harmonics) which has enabled important conclusions to be drawn from
the polarimetric data (see Sec. 1.4.2).

The analysis of Brown amd McLean (1977) neglects absorption in the
envelope and therefore, their results are only applic.able to broad
band photometry. Haisch and Cassinelli (1976) investigated the
theoretical wavelength dependence of the polarisation across the
continuum for a distorted, extended electron scattering envelope that
produces the observed polarisation. The polarisation is modified by an
absorptive opacity due to bound-free and free-free absorption, which
reduces the degree of polarisation by the absorption of polarised light
and subsequent thermal emission of unpolarised light. They numerically
calculated the radiative transfer of polarised flux through model
atmospheres and found that for disc models a maximum polarisation of
~ 1.2% is predicted shortward of 500 nm which is significantly less
than is sometimes observed. McLean (1979) considered the wavelength
dependence of polarisation for both the continuum and across spectral
lines using the analysis of Brown and McLean (1977). In this way he
was able to determine the wavelength dependence for any axisfmmetric
envelope by including optically thin absorption and envelope emission.
His results agreed with those of Haisch and Cassinelli (1976) and also
with observations. By investigating the change in polarisation across
emission lines he found that the polarisation decreases from the wings
to the line centre where a possible increase may occur. Furthermore,
he predicted that the change in position angle could be ~ 5°, agreeing

with the observations of Poeckert and Marlborough (1977) for the Hgy



25

emission line in ¥ Cas.

In general it is impossible to separate the inclination dependence
from the polarimetric observations. Cassinelli et al. (1987), however,
have suggested a novel way of analysing the polarimetric
behaviour with wavelength, independent of the inclination and
geometrical factors by analysing the ‘Colour’ polarisation, viz

C(xgs A2) = {P(ry) - P(X)1/P(y) (1.4)

which depends on the wavelenth and the electron density structure.
This has the rather interesting result that in the continuum if
scattering within the envelope is due entirely to Thomson scattering
then C(Xy,2;) = 0 whilst for Rayleigh scattering C(A;,2,) = 1 = (A, /A,)4

Simmons (1982, 1983) generalised the work of Brown and McLean
(1977) and Brown et al. (1978) to arbitrary scattering mechanisms
(provided that the density and scattering matrix are smoothly varying
functions). He found that under certain conditions the St.okes
parameters (to a first approximation) are equivalent to the results of
Brown and McLean (1977) with Rayleigh scattering.

Complex numerical studies, involving multiple scattering and
absorption (Daniel, 1980; Dolan, 1984; Poeckert and Marlborough, 1976;
Haisch and Cassinelli, 1976) have verified that the single scattering ( T
< 1, no absorption) approximation correctly predicts thg polarimetric
dependence on certain parameters (eg. time, wavelength, envelope
shape) only the predicted absolute polarisation is overestimated (in the
optically thin approximation).

One inadequacy of the single scattering, optically thin treatment
(Brown and Mclean, 1977; BME), however, is the assumption of a point
light source. Cassinelli et al. (1987), using radiative transfer

techniques, found that for a finite spherical isotropic light source the
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polarisation from each electrén is reduced compared to that for a point
light source because with the inclusion of a finite light source there
now exists a range of possible scattering angles through which a ray
leaving the surface of the star may be directed towards the observer
and thus net polarisation (summing over all possible rays) will be
reduced. This depolarisation factor depends solely on the radial
distance from the star, varying from 0 at the surface of the star
(totally unpolarised light) to 1 at infinity where the scatterer sees a
point light source.

BME obtained general expressions for the polarisation expected
from an envelope illuminated by any number of point light sources. In
principle, at least, it is therefore possible to calculate the polarisation
from an envelope with an extended light source from their results by
suming over all points on the light source. Carlaw (1988), however,
reformulated their work to explicitly include any arbitrarily shaped
light source. She was able, from these general results, to obtain
explicitly not only the depolarisation factor for the second Stokes
parameter but also an intensity modification factor for the direct
scattered light (I;), equivalent to the depolarisation factor, for a
spherical and a disc light source assuming that the polarisation was
due to Thomson or Rayleigh scattering (see Brown et al., 1989, for a

discussion of depolarisation factors for non Rayleigh scattering

mechanisms).

1.4.1 Statistical Studies.

McLean and Brown (1978) investigated the statistics of intrinsic
circumstellar polarisation with apparent rotation speeds (Vsini) for 67

Be stars. Their analysis of the rotational speeds agree with previous
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investigations (Chandrasekhar and Minch, 1950; Slettlebak, 1976) - see
below. By subdividing their polarimetric data into two spectral regions
(06 - B4 and B5 - A0) McLean and Brown (1978) found that the
polarisation histograms are only slightly different from each other, but
they note that in the spectral group B5 - A0 no star with a
polarisation greater than 1.2% exists. The Vsini histograms for the two
groups showed no significant differences, however, (Slettebak, 1976)
and both histograms exibited a maximum Vsini at 300 kms—1. Assuming
that the rotation velocity in someway determines the geometry of
the stellar envelope (MSS, DT), then since there appears to be no
significant differences between the distribution of Vsini for the early
(06 - B4) and the later stars (B5 - A0), the lower observed
polarisation for the later stars has been explained as a consequencé of
the fact that the later stellar envelopes are cooler and consequently
will have a lower free elctron density and increased absorption
(McLean and Brown, 1978).

McLean and Brown (1978) plot the intrinsic polarisation against
Vsini for their program stars (their Fig. 2, see Fig. 1.5). With
reference to this figure, one can see that stars with low Vsini values
consistently exhibit a low degree of polarisation whereas for high Vsini
the intrinsic polarisation is on the whole higher than compared to
stars of low Vsini, but show a greater scatter. For any given Vsini
there appears to be a maximum intrinsic polarisation given
approximately by

P ~ 0.008 Vsini (%) (1.5)

max

(with Vsini measured in kms™!) which would indicate that the maximum

observed polarisation would be Pyax ~ 2.5% (for Vsini ~ 400 kms™1).

Another interesting feature of Fig. 1.5 is that there appears to be
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a lower limit cut-off for stars with Vsini > 320 kms~!. The gradient of
this line is the same as that for Phaxs thus

Piow ~ 0.006 (Vsini - 320) (%) (Vsini > 320 kms-1) (1.6)
This lower exclusion zone may just be an artifact of the limited sample
of data available. If real, however, it may in someway be related to the
Be phenonena.

One test for any model stellar atmosphere is thus to explain Fig.
1.5 . We reconsider therefore the modeis of MSS and of DT in the light
of these data.

The Doazan and Thomas model explains the statistical polarimetric
data of McLean and Brown (1978) by considering a complete (but
otherwise unspecified) distribution of rotational velocities for Be stars
that will give rise to a certain degree of envelope asymmetry
(depending on the rotational wvelocity and also the inclination). Stars
with low values of V., will exhibit little polarisation even at high
inclinations because the envelope will be approximately spherical. Stars
with high V,.,4, on the other hand, will have highly distorted
envelopes and will exhibit a large variation in the degree of
polarisation depending on the inclination and the density. The result
would qualitatively be a Polarisation against Vsini plot as observed
(fig. 1.5).

The disc model of Marlborough et al. explains the statistical
polarimetric data somewhat differently. It assumes that all Be stars
rotate close to the critical rotational velocity (Vpot ~ 400 kms™1). Now
such a high degree of asymmetry means that at high inclination these
stars will exhibit a high degree of polarisation and there will exist a
scatter in the polarisation due to differences in the envelope densities.

At low inclination (low Vsini) the degree of polarisation will also be low
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(P « sin®i). The variation in the degree of polarisation for a given
Vsini can be explained in the degree of flattening and density of the
envelope. One would therefore expect that for high Vsini (ie. viewed
equatorially) there shall be no stars exhibiting low degrees of
polarisation - as observed. Essentially the only difference between the
two explanations is that in the DT model the geometry of the envelope
is allowed to vary (from spherical to planar) whereas in MSS the
geometry is fixed as near planar.
Cote and Waters (1987) presented a plot of intrinsic polarisation
(%, X = 425 nm) against 12U colour excess (their Fig. 4, see Fig. 1.6)
for 46 of the Be stars considered by McLean and Brown (1978). They
find that for any given 124 excess there is a large scatter in the
intrinsic polarisation and a well defined upper limit exists for the
intrinsic polarisation given by
Pnax ~ 0.83 CE(V, [12]) (%) (1.7)

Both the intrinsic polarisation and colour excess depend on the
inclination of the system, the geometry and density of the envelope.
The Py,gx cut-off line represents the optically thin scattering limit (T
~ 1). For optically thick envelopes (T > 1) multiple scattering and
absorption become important and the net polarisation is reduced.

The colour excess is defined as

CE(V, [12]) = CE(V, [12))opg - CE(V, [12D)x (1.8)

= (mx=0,425u - myop)obs — (MA=0,425u - my o) %

where CE(V, [12]),pg is the observed colour excess and CE(V, [12])4
is the photospheric colour excess estimated from the observations of
"hormal” OBA stars. Waters et al. (1987) found that

(4.22 % 0.1)(B-V), + (0.22 + 0.04), (B - V), < -0.09

CE(V, [12])
(2.35 + 0.09)(B-V), + (0.07 % 0.01), (B - V), > -0.09.

CE(V, [12])
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Figure 1.6

Plot of polarisation versus colour excess CE(V,[12]). (From Coté and

Waters, 1987: Fig. 6).
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In obtaining these results they exclude all supergiants, peculiar and
emission line stars and all stars with [12] - [25] > 0.25 mag. Their
definition of a "normal" star is, therefore, one that radiates (at least
approximately) a single temperature blackbody spectrum. In the visual
wavelength region, Be star spectra are affected by the presence of
ionised circumstellar material emitting free - bound radiation (Schild,
1978; Slettebak, 1985). They estimate that for early type stars (BO -
B3) the IR excess may be underestimated by up to 0.45 mag . For late
type stars however it is negligible (Schild, 1978). Also at 12u there is
a hydrogen transition line in the Humphrey series (n = 6 < 7) that, if
present, will affect the magnitude estimate at 12u.

Collins (1987) has challenged the whole meaning of such plots (both
McLean and Brown as well as Coté and Waters) because for rapidly
rotating emission line stars (i.e Be stars) the definition of Vsini and (B
- V), are somewhat ambiguous. In particular Vsini is strictly the
Doppler half width of a broadened sharp line and is measured as a
velocity only because Struve’s rotational model predicts that the half
width is proportional to Vsini. For rapidly rotating emission stars
(rotation speeds greater than 80% critical velocity) the surface
distribution of temperature, luminosity, gravity etc. vary with the
colatitude of the star due to rotation (either differential or rigid
body) which will affect the Dopper widths of lines (Collins, 1987) and
hence the Doppler width will no longer be proportional to Vsini. In the
case of Be stars, which are believed to be rotating in excess of 50%
critical velocity, there will be some Be stars in which the Doppler
widths will be affected by the rotation of the star. The statisical
analysis of McLean and Brown (1978) will, therefore, need to be

re-examined in the light of a possible different dependence of the half
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width with inclination (i.e not « sini).

Collins (1987) has also demonstrated that the observed (B-V),o
depends on the inclination of the star for rapidly rotating stars and
so there exists no intrinsic value of (B-V), for the star. Since (B-V),
may not be physically interpreted in the same way as for slowly
rotating stars, then the corrections (equation 1.7) that Cote and

Waters make to the colour excesses are dubious.

1.4.2 Binary Systems.

Out to a distance of 20pc approximately 50% of all stars are known
to be components of binary or multiple systems (Voigt, 1974). It is
therefore of great importance to be able to determine the orbital
parameters of such systems in order to understand the physical
nature of the system.

The most simple (easiest) method by which the orbital elements of
binary systems are established is to observe the motion of the stars
visually. Unfortunately only about 700 such visual systems are known
(Finsen and Worley, 1970) because the components must be widely
separated and hence must be long period binaries and/or close to the
observer. Long term observations of such visual systems allow
accurate and unique determination of all the orbital elements (except
for the sign of the inclination of the orbit, i.e. cannot distinguish
between retrograde and prograde motion).

In generai , however, the components are too close to be resolved
visually and so the orbital elements are determined spectroscopically
by measuring the radial velocity of the stars which, with sufficient
observations, allows the orbit of one or both components about the

centre of mass to be determined. By analysing the variation of radial
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velocity with time it is only possible to determine four of the orbital
elements namely, the period, the eccentricity (e), the time of
periastron passage and the periastron longitude (w). The inclination of
the orbit together with the semi-major axes of the orbits (and hence
the masses of the stars) are left unknown (Heintz, 1978; p- 85 et seq.).

In order to establish reliable orbital element values, the radial
velocity variation must be greater than the error in the measurements
and so typically the orbital period of a spectroscopic binary is
between 1 and 100 days (note that detection also relies on the binary
being viewed at relatively high inclinations).

Many spectroscopic variable stars are single-lined (Heintz, 1978; p.
78 et seq.) which may indicate that the magnitude difference between
the components is greater than ~1 mag. such that the secondary lines
are - swamped by the primary and consequently double-lined
spectroscopic binaries have components of approximately the same
mass. Historically, the single-line variability of radial pulsators
(eg. ® Cep, RR Lyr) were interpreted as binary systems, giving certain
characteristic W and e values (so-called Barr effect; Barr, 1908). It is

now know that such an interpretation is wrong because Ryrpital < Ry.

For a 4minorityrof systems the light curve wvaries with time,
indicating the eclipsing of one (or both) of the components and hence
i ~ 90°. For double-lined spectroscopic binaries this enables both the
masses and radii of the binary components to be reliably estimated.
(The study of photometric binary analysis is a lengthy and complex
one and cannot be discussed here. The interested reader is referred
to the treatise by Kopal, 1959.)

Shakhovskoi (1965) carried out polarimetric observations of the

known eclipsing binary systems B Lyr and RY Per and found that the
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normalised Stokes parameters exhibited phase-locked variations. Similar
variations were later observed in AO Cas and u Her by Rudy and
Kemp (1976, 1977). By considering the theoretical polarimetric
variations arising from a general binary system in which extra-stellar
clouds display mirror symmetry throughout the orbital period (i.e
corotating envelope) BME were able to show, assuming point light
sources and optically thin circumstellar material, that the polarimetric
variations from such a binary system ére strictly periodic and may be
expressed as a terminating (second order) Fourier (time) series. By
taking the ratios of the first and/or second order harmonic
coefficients they (BME) were able to show that it is possible to
directly obtain the inclination of the system. Rudy and Kemp (1978)
came to the same conclusion even when the assumptions of BME were
relaxed by including finite size light sources with limb darkening laws.

The analysis of BME (and Rudy and Kemp, 1978) has since been
elaborated upon to include eccentric orbits (Brown et al.,, 1982) which
allows the determination of the orbital elements. These canonical models
have been successfully applied to data in order to determine the
inclination of many binary systems (e.g. St.-Louis et al., 1988; Dolan
and Tapia, 1984; Huovelin et al., 1987).

Despite the successful use of the canonical models, it has been
found that for some binary systems the canonical polarimetric
variations disagree with observations. In particular the synchronous
polarimetric variations of Cyg X-1 with its 5.6d rotational period (Kemp
et al., 1978) have been analysed by many authors using the canonical
models (BME, Kemp et al., 1978, 1979; Dolan and Tapia, 1989) and they
all reach the same conclusion that the polarimetric variations are not

consistent with the canonical models. The inconsistency between theory
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and observation has been attributed to the occultation of part of the
circumstellar envelope by the stars as they rotate (Milgrom, 1978)
which is not accounted for by the canonical models. Such occultation
effects can lead to temporal enhancemets/reductions in the polarisation
compared to the predicted values, the exact change depending upon
the distribution of material. The overall effect of including occultation
(which the canonical models neglect) is that the canonical results no
longer hold and so the orbital parameters are not correctly inferred
from the data.

By considering a binary system with a primary and secondary of
luminosity L,;, L, and a radius of R;, R, respectively, in circular
orbits, the effects of occultation can be analysed qualitatively by
assuming that the observer lies in the plane of the orbit (i = 90) and
that the circumstellar envelope corotates with the stars. It is apparent
(Fig. 1.7) that there are two sets of regions that are of interest (by
virtue that the stars are of finite size) which are neglected by the
canonical models. The first consequence of including finite size stars
is that there will be regions A, and A, which receive a reduced flux
compared to considering point light sources. That is, region A,
reccives a reduced flux from the primary due to eclipsing of the
primary by the secondary and similarly A, reccives a reduced flux
from the secondary due to eclipsing of the secondary by the primary.
Such phenomena are well known and most commonly observed during
solar and lunar eclipses (see for example Green, 1985, Ch 12). In the
point source treatment the Stokes parameters for a binary system are
given by BME (their eq. 5 - 7) with

L

- j = 2 (1.9)
=g v, i=h
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Observer

Figure 1.7

Schematic view of a binary system (looking down into the orbital
plane) with a primary (radius R,) and secondary (radius R,) separated
by a distance d from their centres, with an observer (E) in the
equatorial plane.

The occulted regions (A, A, By, B,) are indicated. A; is a region
receiving a reduced flux from the primary. A, is a region receiving a
reduced flux from the secondary. B, and B, are regions of the
circumstellar envelope not visible to the observer due to the
occultation of the envelope by the primary and secondary

respectively.
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To include the effcts of reduced flux in A; and A, (neglecting
depolarisation, Cassinelli et al.,, 1987) we may introduce a general
function Cj(rj,ej,cbj) which represents the fraction by which the flux
from the jth star at a general point (rj,ej,tbj) is reduced by (compared
to the point light source treatment). The function Cj(rj,ej,cbj) =1
outside the region Aj and varies between 0 and 1 inside Aj. We may

then replace eq. (1.9) by

f5 = 1 +J ,03(r5:05:%;5) (1.10)

Since eq. (1.10) is still independent of time (independent of )\) then
only the magnitude of the polarisation will be changed and not the
variation of polarisation with time. Therefore, the canonical results still
hold and the number density in BME may be replaced by an equivalent
effective number density without any loss of generality.

The other two regions of interest (B; and B,) are the regions of
the envelope not visible to the observer (and consequently observer
dependent) due to the occultation of material by the two stars. The
effects upon the net polarisation (at any given time) depends explicitly
upon the distribution of material. For example, in the scengrio of Fig
1.7 (i = 90°) if all the material lies out of the orbital plane then no
occultation effects will be observed. On the other hand, if the
scattering material can be considered as a localised globule in the
plane of the orbit then the polarisation variation will be as in the
canonical prediction except at those phases when occultation occurs
and the observed polarisation will be zero for the duration of the
occultation (i.e. effectively a step function). In general, however, the

material will be continuously distributed throughout space and thus
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occultation will occur continuously such that higher than predicted
orders of variation (i.e. greater than second order by the BME
analysis) will be observed.

In the scenario depicted in Fig. 1.7, for a general scattering
envelope, a rapid increase in the observed polarisation will occur
during times of mutual stellar eclipsing. The change in polarisation
during these times will be of the order of a factor ~ (L, + Lz)/Lj
larger than the pre- and post-eclipse values due to a rapid decline of
the direct (unscattered) light (Pfeiffer and Koch, 1988) and the fact
that the regions Aj, B, and B, will coincide so minimising any
occultation effects. (In the foregoing chapters discussions concering
the occultation effects in binary systems will be confined to those
systems in which the secondary is dimensionally small and unimportant
as a light source, compared to the primary, such that regions A;, A,

and B, can be neglected.)

1.5 Discussion.

Spectral and photometric observations of Be stars have shown that
variablit y occurs on all time scales (seconds to decades). The short
time scale variability is in general periodic and s attributed to
surface features of the star, such as global oscillations (Baade, 1987),
localised spots (Harmanec, 1989), or structural changes in the stellar
wind (Prinja and Howarth, 1988; Bates and Halliwell, 1986). The longer
time-scales on the other hand are non-periodic and indicate a long
term variable mass loss from the star (Limber, 1967).

Polarimetric studies have so far investigated only the short term
variability of Be stars (Clarke and Brooks, 1983; Clarke and McGale

1988a, b; Clarke, 1989). The indications are that the polarimetric
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variability is consistent with corotating spot features.

Coordinated spectropolarimetric observations are potentially the
best method for understanding the physical changes within stellar
envelopes. (This is because spectrometry on the one hand observes
photons passing through material along the line of sight whilst
polarimetry, on the other hand, detects photons that are scattered into
the line of sight.) There are two methods in which this may be done.
One may either study the continuum polarisation with spectral changes
(Sonneborn et al.,, 1988) which enables the global structure of the
envelope to be studied (Brown and Henrichs, 1987) or the polarimetric
changes across spectral lines may be investigated (Poeckert and
Marlborough, 1977; McLean, 1979). This allows, to some extent, the local
structure of the envelope to be studied since the wvariation of
polarisation across a line will depend on the abundance and ionisation
fraction of that species.

The mass loss mechanism for Be stars is still somewhat unknown.
Observations of Be stars in binary sytems have been found to exhibit
variability similar to single Be stars. This has been interpreted as
meaning that all Be stars are members of binary systems (Kriz and
Harmanec, 1975). This hypothesis has since been rejected (Harmanec,
1989).

In Be binary star systems mass transfer is believed to occur in
some preferred plane (cf. Chapter 2). Since the Be phenomenon is
similar for both single and binary Be stars this has led to the
conclusion that such a preferred plane may also exist in single star
stellar winds (eg. equatorial mass enhancements: MSS; Apparao et al.,

1987; Maheswaren and Cassinelli, 1988).
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Chapter 2

Polarimetric Analysis of Mass Transfer

in the X-ray Transient A0538-66

2.1 Introduction

The X-ray transient A0538-66, more properly known as 0535-668
(Hutchings et _al., 1985) in the Large Magellanic Cloud has been
observed extensively since its discovery in 1977 (White and Carpenter,
1978; Johnston et al., 1979), largely due to its well established optical
counterpart and the 16.65 day regularity of its outbursts when in the
‘on’ state. These outbursts, with an X-ray luminosity approaching 103°
erg/sec and a brightening of 2 mag or more in the V-band, are well
fitted with the ephemeris of Skinner (1981),

N = (JD - 2443423.46)/16.6515 .

Physically these observations are interpreted in terms of a neutron
star in a highly eccentric orbit about a B star primary, the outbursts
occurring near periaétron as the neutron star skims the outer layers
of the B star (Charles et al., 1983; Skinner et al., 1982). However, the
system sometimes turns into an ‘off’ state showing no outbursts for
several years. This may be interpreted in terms of small readjustments
in the primary radius corresponding (for small values of the
atmospheric scale height as a fraction of radius) to large changes in
the primary atmospheric density at the periastron point (Brown and
Boyle, 1984). Analysis of the optical and near-UV data (Charles et al.,
1983; Densham et al., 1983) suggest that the primary increases
considerably in effective size during outburst and remains large well

after periastron passage. Analysis of the X-ray light curve, and in
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particular its asymmetry about periastron, has led Apparao (1985) to
propose a model in which the neutron star orbits a B star with a
characteristic equatorial disc but with the orbit highly inclined to the
disc plane (cf. Johnston et al., 1979). However it is not clear that an
inclined orbit is necessary to produce asymmetry in the X-ray light
curve when account is taken of the differing radial velocities pre- and
post-periastron and of the fact that accreted matter must have a finite
residence time in the accretion disc so that i‘x « Mx is not
proportional to - Mprimary at each instant (Brown and Boyle, 1984), as
assumed by Apparao (1985). Such conclusions about the system
(Densham et al., 1983; Apparao, 1985) rest to some extent on ad hoc
assumptions about the geometric interpretation of the
spectrophotometric data. In principle, however, more direct information
about the geometry of the system is obtainable . by means of
polarimetric observations (Brown et al.,, 1982; Boyle, 1984).

Clayton and Thompson (1982; hereafter CT) reported variable linear
polarisation coincident with the optical outburst. They found that the
broad-band optical polarisation rose from near zero to almost 2% near
phase 0.0 of the outburst of March 10 1981 [outburst no. 75 according
to the ephemeris of Skinner, (1981)]. The polarisation subsequently
decayed but more gradually than the optical brightness, being still
over 1% when the system had returned to near its pre-outburst
brightness. CT also noted that the position angle of the polarisation
varied during the outburst. They suggested an electron scattering
model for their polarisation data in which most of the excess light
occurs near periastron, when the compact companion in a highly
inclined orbit intersects a gaseous disc surrounding the B star,

accounting for the sudden onset of the polarisation increase. An



43
enhanced mass loss to the disc from the B star was proposed to
account qualitatively for the sustained polarisation enhancement.
Changing scattering geometry, due to orbital motion of the secondary
and shifting of the main centre of the light emission from the primary
to the secondary and back, were suggested as sources of variation in
the polarisation direction.

Simmons and Boyle (1984; hereafter referred to as SB) gave an
alternative interpretation of the CT ‘data in which the variable degree
of polarisation was shown to be interpretable entirely in terms of the
variable scattering geometry of the system, as the companion swung
rapidly through periastron, without any change in the physical amount
or distribution of scattering matter. The SB analysis ignored changes
in polarimetric position angle and required a periastron longitude )‘p
gatisfying 270° < )‘p € 360" or 90" ( )‘p £ 180", and the occurrence of
an optical light maximum substantially before periastron (phase % 0.86).

Since the CT data and SB analysis, we have obtained polarimetric
data during a further outburst of A0538-66 and there have been two
further attempts at determining the spectrophotometric orbital elements
(Corbet et al., 1984; Hutchings et al., 1985). It is the purpose of this
chapter to reconsider the CT and SB interpretations of the polarimetry

of this system in the light of these new data and orbital elements.

2.2 New Observations.

Further polarimetric observations were obtained in April 1982 on
the 2.5m Dupont telescope at Las Campanas Observatory. The
Univerisity of Western Ontario’s two-channel photoelectric Pockels cell
polarimeter (Angel and Landstreet, 1970) was used to measure linear

polarisation. The observations were unfiltered so the bandpass
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(320-860 nm) was determined by the atmospheric transmission and
response of the GaAs photomultipliers (RCA 31034A). The observations
were corrected for instrumental efficiency and sky polarisation.
Observations of the interstellar polarisation and null standards
(Serkowski, 1973; Serkowski et al.,, 1975) were used to reduce the
position angle to the standard equatorial system and to check for
instrumental polarisation, respectively. The errors reported below are
linear error estimates for photon count;ing statistics only. Uncertainties
in the sky correction, interstellar polarisation, and rapid stochastic
variations in the source itself (cf. Simmons and Stewart, 1985) will
increase these errors substantially at times of low polarised flux prior
to the outbursts. Galactic foreground polarisation was determined
through observations of Dachs No. 20, a star lying only 2 arcmin from
the A0538-66 line-of-sight. An average of four observations of this
star gives p = 0.24 + 0.04%, ¢ = 7.1" + 4.4° . This is very close to the
foreground value used by CT.

The observations corrected for foreground are given in Table 2.1.
Observations made while the moon was up, which are considered
somewhat uncertain, are marked with a colon in Table 2.1. Figs 2.1 and
2.2 show, respectively, the values of p, ¢, Q and U (in the equatorial
system) plotted against binary phase (using the Skinner ephemeris) in
which the CT observations (filled squares) are from outburst 75, while
the new data (open squares) are from outburst 99. In Fig. 2.3, we
show the corresponding photometric variations during outbursts 75
and 99. The relative ‘photometry’ from CT has been re-plotted. These
observations have now been scaled using some coincident B-band
photometry  (Tuohy, 1981, private communication). Differential

photometry between A0538-66 and Dachs No. 20 was obtained coincident
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Figure 2.1

A plot of the magnitude and position angle of polarisation for both
outbursts plotted against phase using the ephemeris of Skinner (1981).
The filled squares represent observations from outburst 75 (CT) and
the open squares represent the new data reported here from outburst

99. The error bars plotted here represent 1 o©. The plotted

observations are corrected for foreground interstellar polarisation (see

text).
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Figure 2.2

A plot of Q and U against phase for the same observations

specified in Fig. 2.1. The symbols are the same as in Fig. 2.1
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Photometry of A0538-66 taken during outbursts 75 and 99. The

filled squares are magnitudes derived from polarimetric count rates

from the observations of outburst 75 (see text). The triangles are

B-band photometry taken during the same outburst (Tuohy,

1981

Private comm.). The open squares are differential photometry taken

along with the polarimetry of ouburst 99.
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with the new observations using a 10.4 arcsec aperture and the
polarimeter count rates. The peak magnitude agrees well with the V =
13.1 * 0.2 reported by van Paradijs et al. (1984). To assist in the
interpretation, we show in Fig. 2.4 a plot of the data for the two
outburst in terms of the locus desribed in the (Q,U) plane.

Reference to Fig. 2.1 shows that in both outbursts the main
feature is a rapid rise in the degree of polarisation in the phase
range 0.00 - 0.05 followed (after phase 0.1) by a comparatively slow
decline on a time-scale considerably longer than that for the
brightness of the system to decline (see Fig. 2.3). There is some
indication that the polarisation rise in outburst 99 occurs at a later
phase and has more prolonged light maximum than outburst 75, but
the phase sampling of the data is too sparse to quantify these
differences. Note that the quiescent brightness of the A0538-66 system
differs by more than 1 mag between outbursts 75 and 99.

Fig. 2.1 suggests an apparently discrepant behaviour in the
position angle between the two outbursts. However, the pre-outburst
position angles in outburst 75 are rather poorly determined (noted by
CT and SB) as can be seen from the (underestimated) formal errors in
Fig. 2.1 at those phases. Therefore, we will henceforth discount these
data for position angle interpretation. (If the pre-outburst ¢ values
were truly different the implications would be fascinating but
problematic. They would imply a 90° rotation on the sky of the
principal scattering plane in the non-outburst system, which would be
normally taken as the plane of a Be star disc. Such a rotation might
be attributed to major disruption of the disc in a preceding outburst
by the action of a companion in an orbit highly inclined to the

preceding disc plane. It is hard however, to see why repetition of
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Figure 2.4

A (Q,U) diagram showing the same observations as plotted in Fig.
2.2. The symbols are the same. To follow the polarisation evolution with
time of the two oubursts, the points are connected by short dashes
(outburst 75) and long dashes (outburst 99). Also plotted, are the Qg
and U, axes representing the natural axes of the A0538-66 system.

They are rotatedby 12° on the sky and 24’ in the (Q,U) plane.
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such disturbances would not have quickly led to alignment of the disc
and orbital axes). Then the main feature in the behaviour of ¢ with
phase is a possible slight increase just before phase 0.0, followed by a
rapid rotation through about -90° at phase 0.00-0.05, and then by a
slow recovery. In terms of the Q-U plane in Fig. 2.4, this can be seen
in the form of a rapid near-linear transformation, mainly in the -Q
direction, changing Q from positive to hegative values (180° rotation in
the (Q,U) plane = 90° in ¢) followed by a trend at about right angles
to this line ( i.e. roughly in the -U direction), with @ moving back to
less-negative values. Again the data are too undersampled to see
detailed behaviour near phase zero or to see detailed differences
between outbursts. In Fig. 2.4, we also show a set of axes (Qp,Up),
used later, which are rotated by 12° from (Qp,U) on the sky [24° in

the (Q,U) plane] so that rapid changes in p lies along the Qq axis.

2.3 Qualitative Interpretation.

As is the case with spectrophotometry, the polarimetric light-curve
modelling of an eccentric binary is a multi-parameter problem,
demanding intensive observational coverage for an unambiguous
solution. Thus, even with the improved spectrophotometric data and
analysis of recent years (Hutchings et al., 1985, Corbet et al., 1984)
there remains considerable doubt about the values of the orbital
elements, some of the elements calculated by the two groups not
agreeing at all, though a large eccentricity seems to be unanimously
required. Because of the active nature of the A0538-66 system, the
presence of small amounts of emission may affect the radial velocity
measurements. In particular, Hutchings et al. (1985) comment that the

mean spectrum of Corbet et al. (1984) contains blueshifted emission at
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Hp, indicating that the star still had significant emission when their
observations were made. Smale et al. (1984) reported similar problems
with spectroscopic data they obtained around the same time. The
Hutchings et al. data may be less affected, as the data were taken
later when the system may have been more deeply in the ‘off’ state.
The Hutchings et al. and Corbet et al. orbital elements are summarised
in Table 2.2.

In the case of polarimetry, the problem will involve not only the
geometrical effects related to the orbital elements (cf. Brown et al.,
1982) but also the wvariable relative contributions of the two light
sources (cf. CT, SB) and the variable amount and spatial distribution
of the scattering material, which has not been considered
quantitatively in any of the previous analyses. Given, therefore, the
limited polarimetric coverage of A0538-66 even with our new data, a
variety of possible interpretations is to be expected.

Our aim here, however, is to show that the available data are
adequate to rule out certain interpretations, regardless of the orbital
elements adopted, and to put some limits on the parameters of one
possible interpretation. Specifically, we will restrict ourselves to an
interpretation in which the system comprises a Be star primary
surrounded by a disc accompanied by a neutron star, in a coplanar
orbit, which disturbs and captures gas from the disc during close
passage at periastron. While other interpretations would undoubtedly
be possible, we will show that no more elaborate model is demanded by
currently available data. Scattering of Be light from the disc is taken
to be responsible for the polarisation outburst, the direction of this
polarisation defining the projection of the system axis on the sky.

Variations in the extent of the quiescent disc, which appear to be a



Table 2.2 Orbital elements.

Corbet et al.
. . 40.04
Eccentricity (e) 0.96_0‘23
. . .+30°
Longitude of periastron 330 -60°
Mass function 4.7x10"7 Mg

Orbital elements of A0538-66 calculated with

days.
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Hutchings et al.

0.8210.04

222" +21°

0.027 Mg

assumed period of 16.6515
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common Be phenomenon (Coyne, 1976; Hayes and Guinan, 1984), will
cause variations in the quiescent polarisation (such are seen in Fig.
2.1). Disc variations will also cause considerable variation in the size
and properties of different outbursts, since the mass transfer and loss
at periastron passage is very sensitive to the size of the primary
envelope (Brown and Boyle, 1984; Boyle and Walker, 1986). Indeed such
variations may be responsible for the ‘on-off’ states in A0538-66
outburst behaviour (Brown and Boyle, 1984). Major enhancement of the
disc by the disruptive effect of the periastron passage may contribute
to the apparent enlargement of the optical primary at outburst
(Charles et al., 1983; Densham et al.,, 1983) and to the amount of mass
captured by the neutron star leading to the X-ray outburst.

One specific elaboration of the above model, proposed by CT and
Apparao (1985) is that the orbit is highly inclined to the disc plane.
CT proposed this as an explanation for the sudden onset of the
polarisation as the neutron star enters the plane of the disc while
Apparao claims the inclined orbit is necessary to explain the
assymmetry of the X-ray and optical light curves near periastron.
However, the steep radial density gradient in the disc and the
rapidity of secondary approach alone will guarantee a steep rise in
the light curves and polarisation, even for a coplanar orbit. Secondly,
Apparao’s argument rests on the assumption that the X-ray luminosity
is a function only of secondary location, which is symmetric about
periastron in the coplanar case. In reality, the mass accretion rate on
to the neutron star (and hence the X-ray luminosity) is asymmetric
about periastron because it is also affected by the sign of the radial
velocity and by the storage time of the captured matter in the

transient accretion disc (Brown and Boyle, 1984).
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Quantitatively, the possible contributions to the polarisation are
scattering of light from:

(i) the primary, X,;

(ii) the secondary, X,;

(iii) a disc, Sy, around X,;

(iv) accreting gas, S,, around X,, and

(v) any additional gas, S3) torn from X, and S; during periastron
passage.

For reasons of symmetry, light from X, scattered around X,, and
light from X, scattered around Xy show identical polarisation
variations when the number of scatterers does not change with time.
However, the net observed polarisation depends on the relative
contributions, as a function of time, of the two sources of diluting
unpolarised starlight (SB). Using only the earlier data (CT), SB argued
that the observed variation in the degree of polarisation could be
explained purely geometrically in terms of scattering in a fixed mass
around X, of light L; and L,, from both X; and X,. Both L, and the
position of X, vary rapidly through periastron, with L,; fixed. This
model is unrealistic in that it disregards the envelope redistribution
which is bound to accompany the outburst. Furthermore, due to the
high eccenticity, the light sources recede very rapidly from the
scatterers around the other object so that the polarisation can only be
sustained for very specific scattering-angle geometries soon after
periastron, i.e. for very specific w values for which SB also predict
the position angle variation expected in their model. We show below
that the more complete observational material now available do not

agree with these SB predictions; see Fig. 2.6.

We have therefore considered a wide variety of light
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source/scatterer geometries, including variation in the amount of
scattering material to see what kind of coplanar situations can fit the
observations. In doing 8o, we have assumed that the scattering
polarisation can be adequately described by the single scattering
treatment of Brown et al. (1978), corrected by the depolarisation factor
required because of the large size of the primary (Cassinelli et al.,
1987). Daniel (1980) and Dolan (1984) have shown that even multiple
scattering situations are quite accurately described by this simpler
treatment. (We have neglected, however, any effects of variable
occultation or eclipsing by the large primary. If these were important
they should also have shown up in the X-ray and optical light curves.
Moreover, the polarimetric data u~ too scanty and noisy for occultation
effects to be observed or studied.) In disqussing the predictions of
various models, we will refer the polarisation to the natural axis of the
system i.e. the projection of the orbital/disc normal on to the sky.
This is of course unknown a priori and in trying to fit the various
models we have taken the system orientation on the sky to be a free
parameter. We have done likewise with the system inclination i, but
found model predictions to be insensitive over a wide range of i.
Quantitative results are therefore given only for i = 60'. In the
following, all of the conclusions hold for any orbit with large
eccentricity, regardless of the other orbital elements.

The simple situation we considered was one in which all of the
light variation was attributed to changes in the luminosity L, in the
neighbourhood of X, and all of the polarimetric variations due to
changes in the total number N; of scatterers in the disc S;. Such a
description could for suitable Ny(t), reasonably describe the rise and

fall of the degree of polarisation. However the position angle of the
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polarisation should never change from that of the pre-outburst Be
star/disc system, in contradiction to the observations (Fig. 2.1).

Secondly, we tried attributing the light enhancement entirely to the
changing luminosity L, of X, and the polarimetric changes to
scattering of L, on N, electrons in S, around X,. This does give rise
to changes in position angle (though more rapid than those observed).
However the extra light L, must decline on the short decay time-scale
of the optical light curve so that L, will again predominate and will
dilute the polarisation of L, scattered on N, faster than the degree of
polarisation is observed to decay (cf. Figs 2.1 and 2.3). Similarly, the
position angle does not return to its pre-outburst value on this time
scale (Fig. 2.1).

Therefore, we conclude that the polarisation cannot be described in
terms of the predominance of L; on '81 nor of L, on S, Next we
consider the contribution of L; scattered on N, and of L, on N;. One
can at once conclude that the latter connot be predominant for the
same reason as above i.e. the decline of L, demanded by the light
curve would cause the polarisation to decline and the position angle to
revert back to its pre-outburst value much faster than is observed.
The scattering of L; on S, does not suffer from the same objection
since the decline of the light curve does not change the polarisation
as the polarised flux and the depolarising flux (both « L,;) decline
together. The problem with this option is that the distance and angle
Xy and S, around X, change so quickly in a highly eccentric orbit.
The consequences of this are best seen in the quantitative treatment

below where we take L, to predominate throughout.
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2.4 Quantitative interpretation with primary light source dominant.

In view of the problems posed by alternative interpretations, we
consider here the possiblity of explaining the polarimetric data when
the primary luminosity L,(t) is predominant throughout. In this model,
the polarisation arises from scattering in the neighbouring disc
material S; (which may be enlarged during outburst), and from some
additional scattering material S;. This material S; may, but need not,
be identical with S, accreting on to X, so that the last scenario
described in Section 2.3 i8 included in this analysis.

The analysis of Brown et al. (1978) in fact shows that the Stokes
parameters of any electron distribution near the orbital plane may be
described by those of an equivalent idealised scatterer at an
appropiate site. Our procedure will be to consider the polarisation
expected from an ‘equivalent scattering volume’ S containing N
electrons and located at a distance R from X, at an angle (longitude) A
in the orbital plane from the plane X,EZ containing the Earth E and
the orbital axis Z (see Fig. 2.5). the parameters N, R and A will be
allowed to vary with time and, will identify the ‘scattering centroid’
properties when matched to the observations. These properties will
therefore represent the sum of the contributions from S,;, S, and Sj.

A cloud of N electrons (R, A) in the orbital plane illuminated
dominantly by X; with luminosity L;, will result in the Stokes
parameters Qg, and Ug, with Qg measured along the projection of X,Z

on the sky, given by,

B .

Qo = p cos2¢y = c—’ﬁ-’; [ 1 - g—; ] (sin2A - cos2i cos?A) (2.1)
] ..

Uo = p sin2¢y = 9§¥ [ 1 —g ] cosi sin2A (2.2)
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Figure 2.5

Two schematic views of the A0538-66 orbit. The positions of the
primary, the secondary and periastron are given by X,;, X, and P
respectively. The large double arrow shows the polarisation of the
‘equivalent scattering volume’ S containing N electrons and located in
the orbital plane at a distance R from X; and at an angle (longitude) A
from the plane X,EZ containing the earth E and the orbital axis Z. The
line X,;AX is the projection of X,E in the orbital plane. The scattering
angle is given by X. The position of the secondary is r, V in orbital

polar coordinates. The longitude of periastron is W and the true

anomaly is A,
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where ¢, is the position angle in this system, 0p = (3/16m)oy with op

the Thomson cross-section, and Ry is the stelllar radius which arises
in the depolarisation factor, D = (1 - R§/R2)*% (Cassinelli et al., 1987).

Equations (2.1) and (2.2) can be used to predict the Qy and U,
from a model where N, R and A are given (or from a sum of such
contributions) for comparison with data, or to deduce the conbination
of N, R and A needed from the data. We have used the equations both
ways and we present here the results where the observed @ and U of
Figs 2.2 and 2.4 have been rotated through A® = 12° on the
assumption that the pre-outburst position angle indeed indicates the
direction of the natural system Q, axis, i.e. that pre-outburst
polarisation is the result of L, scattering from S, which can be
considered a Be star disc in the orbital plane. In fact we have
experimented with A® as a free parameter and found that none of the
conclusions stated below are modified, i.e. the A¢ value adopted gives
the most self-consistent interpretation.

First we used (2.1) and (2.2) to examine the physically plausible
hypothesis that the variable polarisation arises from the scattering of
L; on both S; and S,, containing N, and N, electrons, respectively.
Both the disc and the cloud scattering mass can be replaced by an
equivalent uniform ring of N, electrons at radius R; and by averaging
(1.2) and (2.2) over A,. The scattering accretion cloud of N, electrons
must have R, # r, A, = UV + W where r and v are the orbital polar
coordinates of the secondary at a time t (see Fig. 2.5). The total

predicted polarisation is then given by,
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Q(t) = %58 [ 1 - g%]” sin2i
(2.3)
N
+OQ;§ [ 1 - 3 ]%[sinz(v + W) - cos?i cos2(v + w)]
Up(t)= 9?%‘-2 [ 1 - l:‘ ]% cosi sin[2(v + w)], (2.4)

where r = a(l - e2?)/(1 + e cosv). If we express a, Ry, and R, in units

of the primary star radius Ry, then for any given set of orbital
elements the only unknown functions of time on the right sides of
(2.3) and (2.4) are Vv, = opN,/R§ and V, = OoN,/R§ , With fixed V, and
V, this is essentially the model discussed by SB. Thus for a given set
of data, Qg(t), Uy(t) and an assumed orbit, the equations (2.3) and
(2.4) can be solved for N;(t) and N,(t) for a given orbit, and given
values of Ry/a and R;/Rx. In principle, this solution could yield
valuable information on the redistribution of gas during the accretion
outburst.

We have carried out this solution of the data in Table 2.1 for a
variety of values of A¢, i, Ry/a and R;/Ry using both Corbet et al.
(1984) and Hutchings et al. (1985) orbital elements. We use these for
illustration of the procedure only. They are so different that neither
can yet be taken seriously. On the other hand, the fact that
conclusions below are the same in both cases shows them to be very
insensitive to the orbital elements apart from high eccentricity. We
found it impossible to obtain a physically acceptable solution, i.e. Ny(t)
and N,(t) both positive at all times. In those solutions with Ny, N, » 0
for as many points as possible (namely with A¢ = 12°), we found that

following periastron N,(t) became much larger (by 2 orders) than N,
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and continued to increase with phase. Such behaviour seems
unphysical since N, presumably is drawn from N; and the transfer
should decline rapidly as r/a increases. The negative N values in fact
arise because of the incompatibility of predictions (2.3) and (2.4) with
the observed position-angle changes. This is most clearly seen by
considering the contributions of Q,, and U, in (2.3) and (2.4) which
would arise from N, alone if this were fixed in time, as follows. (These
conclusions are unchanged for other w values.) In Fig. 2.6 we show
plotted against phase the observed polarisation, p, and the rotated
position angle ®5. Superposed are the (arbitrarily scaled) p and ¢
predicted for an accretion cloud of fixed N, around X, (SB), for the
orbital elements of both Corbet et al. (1984) and Hutchings et al.
(1985). In both of the predicted curves, we have used the largest
value of Rg/a(l - e2) (namely 0.5) compatible with the absence of
eclipses for i = 60° (cf. Hutchings et al.,, 1985). This has the effect of
maximising the reduction of the sharp peak in p(t) due to finite
source depolarisation. Despite the error bars and undersampling of the
data, it is clear that a fixed N, in orbit with X, cannot possibly
explain the observations for either orbit, or indeed for any
high-eccentricity orbit. The reason, as can be seen in (2.3) and (2.4),
is simply that high eccentricity implies a more rapid variation in &g
than observed because of the (VU + w) factors and a much more rapid
decline in p than is observed of the 1/r? factor. To offset the 1/r?
variation in p(t) would demand a correspondingly large rise in N, as
found above.

We conclude therfore that N, and N, alone cannot explain our
observations for any orbit. The only remaining way to interpret the

sustained p(t) well beyond periastron and the near constancy of ¢4 at
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A plot similar to Fig. 2.1, rotated into the natural system of
A0538-66 shown in Fig. 2.4. In this frame of reference, p is unchanged
and the position angle, ¢, = ¢ + 12°. Only the points from both
outburste occuring near phase 0.0 are plotted. The predictions of the
Simmons and Boyle model for the orbital elements of Hutchings et al.

(1985) (solid line) and Corbet et al. (1984) (dashed line) are also

shown.
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that time is to invoke a third scattering region S, the location of
which changes only gradually. It should be noted that this conclusion
does not conflict with the massive accretion cloud S, around X,, as
found in simulations (e.g. Boyle and Walker, 1986) and needed to
explain the X-ray light curve. Rather it just means that this S,
recedes from X,; so quickly that it soon makes a negligible
contribution to p compared to a persistent (possibly less massive)
cloud that is located much nearer the light source.

To estimate the location and mass of S5, we return to equations

(2.1) and (2.2) and invert them to give,

_ . [_cos20q + 1 :
tanA = 0031[ Sin2o, ] (2.5)
_ OpN R2 14
o= [1-57) (2.6)

where py is given by either (2.1) or (2.2) once A is obtained from
(2.5).

We have used equations (2.5) and (2.6) to infer the longitude A
and the quantity N of the ‘effective scattering centroid’ needed to fit
the (rotated) data of Table 2.1 with well-defined ®p. The results for

i = 60° are shown in Table 2.3. The number of scatterers, N, has been

shown in the scaled form,

24
fN = 120 Po = 1.5x104%® p, (per cent) (electrons) (2.7)

where the factor,

- O - B




Table 2.3 Effective Scattering Centroid.
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JD Cycle Phase P o INx1046) A A+180°
4668.58 74 0.745 039 - 1169 2.05 345.8 165.8
4670.57 74 0.865 0.28 80.4 1.67 4.6 184.6
4671.62 74 0.928 0.21 100.0 1.30 355.3 175.3
4672.62 74 0.988 0.64 85.1 3.79 2.4 182.4
4673.52 75 0.042 1.84 88.9 11.03 0.5 180.5
4673.76 75 0.056 1.41 89.4 8.54 0.2 180.2
4674.52 75 0.102 168  103.8 9.73 353.1 173.1
467472 15 0.114 1.83 1034 10.61 353.2 173.2
4675.69 75 0.172 1.46  108.3 820 . 350.6 170.6
4676.68 75 0.232 1.18 1045 6.83 352.7 172.7
4677.59 75 0.286 1.14 1051 6.47 352.4 172.4
5062.5 98 0.402 035  166.9 0.60 295.0 115.0
5063.49 98 0.462 049  148.4 1.33 320.9 140.9
5070.48 98 0.881 052  139.6 1.76 329.6 149.6
5071.5 98 0.943 0.50  158.8 1.05 307.8 127.8
5072.48 99 0.001 0.51 175.5 0.78 278.9 98.9
5072.5 99 0.002 0.30  184.0 0.46 82.0 262.0
5073.5 99 0.062 0.44 89.3 2.66 0.3 180.3
5073.52 99 0.063 0.53 97.9 3.13 356.0 176.0
5074.5 99 0.123 1.33 92.2 7.96 358.9 178.9
5074.52 99 0.124 1.28 90.5 7.70 359.7 179.7
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which reflects the fact that an N value at one R vglue, is
polarimetrically equivalent to a different N at a different R. The
maximum possible value of f is 0.38 (1012/R4)2 attained when R*= 1.5R%
so that N must take a value greater then those shown in Table 2.3 by
a factor ~ 3(Rx/1012)2 | The absolute values of N cannot be determined
by the polarimetry since R is unknown (and may vary with time) but
the numbers in Table 2.3 imply a value of N, near the polarisation
peak, exceeding 3x1047 electrons.: For ionised hydrogen this
corresponds to a scattering mass of 5x1023 g, If a comparable mass is
accreted by a neutron star (X,) of 2Mg the resulting X-ray outburst
should contain about 104% erg or a peak luminosity of about 103®® erg
s~! over an X-ray burst peak of one day, closely comparable to that
observed (Skinner 1980). Our data imply that comparable fractions of
the material drawn from the Be star and its disc are accreted by X,
and remain in the vicinity of X;, though the relative proportions may
vary greatly from one periastron passage to the next. Careful
polarimetric monitoring with simultaneous X-ray coverage could thus
reveal the variability of this episodic mass-loss fraction.

As far as the angular location of the scattering centroid is
concerned, this is most readily seen from Fig. 2.7(a) and (b) which
portray in polar coordinates the polar angle A of the scatterers, and a
radial cordinate measuring the amount of scattering material (in terms
of 10~48fN) for those points in Table 2.3 where it is adequately
determined. Of course every point can take the value A or A + 7, but
in plotting them we have adopted solutions in the same quadrant on
the grounds of continuity. The loci of two sets of solution points are
shown in Fig. 2.7(a) an (b) for the data in Table 2.3 in which A is

adequately determined. For both outbursts, phase points are marked
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Figure 2.7a

The curves in the upper part of the figure are the polar plots of
the properties of the ‘effective scattering centroid’ inferred from the
data. The radial coordinate here is fN(x1074€), a measure of the
number of scatterers, and the polar angle A, their longitude,for the
Hutchings et al. orbit. While this cannot show where the scatterers are
located, increased distance from the origin in this plot indicates an
increase in the optical depth of the scattering centroid while A
indicates its angular location. The filled circles derive from the
obgervations of outbursts 75 and 99 at the following phase points
corresponding to the adjacent labels. (the first three observations
which have the largest errors have not been included).
Phase Points Outburst 75

a = 0.987, b = 0.056, ¢ = 0.101, d = 0.114, e = 0.172, f = 0.232,
g = 0.286
Phase Points Outburst 99

1 = 0.40, 2 = 0.46, 3 = 0.88, 4 = 0.94, 5 = 0.001, 6 = 0.002
7 = 0.062, 8 = 0.063, 9 = 0.122, 10 = 0.124
The ellipse in the lower half of the figure is a polar (r,\) plot of the
A0538-66 orbit using the Hutchings et al. parameters with the location
of the secondary marked for each data point. Peiastron lies near the
marked number 6. Comparison of the upper and lower panels point by
point enables comparison of the evolution of thescatterer location and

effective mass with the orbital motion of the neutron star.
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Figure 2.7a

Scattering Centroid
arameters
P FNx|0-48




Figure 2.7b

The same as Fig.2.7a but for the elements of Corbet et al.
(periastron lies between the points marked a and 5 in the lower
panel). In this case the orbital ellipse is in the upper part of the
diagram and the alternative scatterer longitudes A (shifted by 180°)
have been adopted so that the ‘scattering centroid locus lies in the

lower part of the figure.
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on the loci. Also éhown are the phased positions of X, around its orbit
for both Corbet et al. and Hutchings et al. parameters.

Assuming on physical grounds that the scattering material emerges
near the periastron rather than the apastron longitude, we interpret
the results as meaning that the scattering mass is either ejected
around A = 180" close to the encounter w value of Hutchings et al.
(Fig. 2.7a) or around A = 0° close to the w value of Corbet et al.
(Fig. 2.7b). Prior to outburst 99, the A value is in the neighbourhood
of 90" (or 270°) which is that of a point-scattering equivalent to a
disc. This is not confirmatory of the model proposed, but only
automatically consistent with it by our original choice of the ¢, axis.
Thereafter the small pre-outburst (disc) polarisation is rapidly
swamped by the large polarisation associated with the large
enhancement of scatterers Nj; near the periastron point. It is also .
worth noting that the pre-outburst value of fN = 104% implies there
are ~ 1047 electrons in the quiescent disc (again taking f ¢ 0.3 and
allowing for the factor of 1/, depolarisation due to the averaging of
scattering angles around a flat disc (cf. Brown and McLean, 1977). If
these disc electrons are spread throughout a volume of order R§ the
implied disc electron density is ng(cm™3) = 1011(1012/Ry4)3, typical of
Be star disc density estimates (Poeckert and Marlborough, 1978a). At
the phase points well after periastron in outburst 75, Fig. 2.7 shows a
decline in N back toward the origin, presumably indicating that the
circumstellar material is settling back toward its quiescent state. In
the pre-periastron points of outburst 99, there may also be an
indication that the circumstellar material is still reverting to its
pre-outburst state after outburst 98 of the previous orbit, by

redistribution in both longitude and radius.
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The major features of physical interest in these results is the
remarkable persistance of the mass and the direction A of the
scattering centroid material. Thus, although X, presumably carries off
and accretes a large mass which rapidly becomes polarimetrically
negligible as already discussed, a comparable mass enhancement has to
persist near the Be star, close to the periastron position for a long
time (compared to the decay time of the photometric light curve). This
time is longer than the orbital time for material close to the Be star
and therefore longer than the inner Be star disc Keplerian rotation
time-scale, and more comparable to the time-scale of the hydrodynamic
travel across the disc = Ry/vg = 10 days for a temperature of 10* K.
Finally, it would be entirely consistent with the data if the scattering
cloud were not a single material entity but rather a localised
disc-density enhancement sustained by non-radial oscillations in and
mass loss from, the stellar envelope set up by its distortion at
periastron. The resulting outflow speed would have to be well above
the escape speed so that rotation would not deflect the ejecta greatly.
Secondly, the impulse delivered to the material in the disc and the
star near the periastron point, during the rapid flyby of the neutron
star, will be essentially radial and along the periastron line. thus the
velocity field set up in the Be star matter will, at least initially, be in

the direction of the enhancement required polarimetrically.

2.5 Discussion and Conclusions.

Whilst the data presented here are clearly undersampled compared
to the rapidity with which the 8ystem geometry changes near
periastron, our analysis shows the value of even limited polarimetric

data as a diagnostic of recurrent transient mass distribution. The
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analysis used here can be re-applied when more definitive orbital
elements and better polarimetric data are obtained for this system.
Clearly, frequent monitoring through the critical periastron encounter
could be much more informative still, possibly containing the signature
of the rapidly moving material accreted by the neutron star. Whatever
this may reveal, we have established the necessity for there to be an
additional major gas outflow from the Be star region near the
periastron point and persisting there long after the neutron star has
moved away. This result is strongly suggestive that mass loss and
transfer in a highly eccentric binary must be treated in terms of tidal
stripping rather than as a quasi-steady Roche lobe overflow or wind
accretion phenomenon as suggested by some authors (Brown and Boyle,
1984; Apparao, 1985). An important theoretical question is whether the
tidally stripped cloud producing the polarisation could also be hot
enough to contribute significantly to the X-ray emission? Clearly the
value of polarimetric coverage would also be greatly enhanced if good
simultaneous optical and X-ray photometry were achieved.

It is unfortunate that our pre-outburst data are so scanty and, in
the case of outburst 75, of low precision. Better coverage of this
phase would test our interpretation that the pre-outburst polarisation
is that of the normal Be star disc, and elucidate how fixed the plane
of the disc is, and how variable it is in extent. The well known
variability of single Be star discs inferred from polarimetric monitoring
could well play a key role in determining the ‘on-off’ behaviour of
outbursts in A0538-66 by presenting very different gas configurations
to the neutron star at its periastron passages. Indeed a period of
rising polarisation in the quiescent state could well presage a return

of the system to its ‘on’ state.
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Chapter 3
Stellar Occultation of Polarised Light

from Circumstellar Electrons:

I. Flat Envelopes Viewed Edge On.

3.1 Introduction.

Over the past decade there has been extensive use of light
scattering off of circumstellar electrons as a diagnostic of geometric
and physical conditions at the source. Applications (Poeckert and
Marlborough, 1977; Brown et al.,, 1978; Dolan and Tapia, 1984, 1989;
Drissen et al., 1986a, b; Huovelin et al.,, 1987; Brown and Henrichs,
1987) have been largely based on the point source/single scattering
analytic treatment formulated by Brown and Mec.Lean (1977), Brown et
al. (1978) and by Rudy and Kemp (1978). It has been shown by
detailed numerical simulations that the results of this simplified
treatment remain reasonably accurate even where multiple scattering
and finite size light source effects are included (Daniel, 1980; Dolan,
1984) and even, in some cases, for non-Rayleigh scattering functions
(Simmons, 1982, 1983). Most recently Cassinelli et al. (1987) have shown
how a simple analytic depo]arisétion correction can be made to the
point source results for a finite light source (cf. more general
discussion by Brown, 1989).

Thus far almost no attention has been paid to the second effect of
a finite stellar light source, namely its occultation of some of the
scattering region, though Milgrom (1978) drew attention to its potential
importance in complicating the interpretation of polarimetric variations
by considering one special geometry and applying it to Cygnus X-1.

In this chapter we present the results of the first stage of a
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general study of scatterer-occultation effects, examining the special
case of oscillators confined close to the plane containing the observer.
We will assume throughout that the light source is unpolarised
(Collins, 1983) and that the envelope is purely a scattering one.

From previous analyses of polarimetric observations (Brown et al.,
1978; Simmons et al.,, 1980; Drissen et al.,, 1986a, b) it appears that
scatterers are distributed quite symmetrically about the orbital plane
in a number of binaries. Indeed, physically we expect scatterers to be
concentrated close to the orbital plane, in such cases as accretion
discs, accretion streams, accretion wakes and focussed stellar winds.
In the case of single stars (particularly Be stars) joint spectral and
polarimetric analysis (Poeckert and Marlborough, 1977, 1978a; Brown
and Henrichs, 1987) also point to almost planar disc distributions of
circumstellar gas. We therefore believe that a theoretical study of the
polarimetric effect of occultation of scatterers confined to a plane is a
sound starting point. Clearly the results of such a study will depend
on the observers direction. Our adoption in this chapter of a 90°
inclination (i) - i.e. observer in the plane of the scattering material -
is based on a desire to see what are the maximal effects of occultation
and to obtain analytical simplification to reveal the primary features of
occultation effects before proceeding to a more general analysis for
arbitary inclination (chapter 4) and general axisymmetric envelopes
(chapter 5). In an actual case of i = 90° in an arbitrary system,
there will inevitably also be the possibly important effects of stellar
eclipses and scatterer occultation by both stars (even if the companion
is faint and unimportant as a light source - cf. Sec. 1.4.2). Our
analysis therefore, is to be understood as applying directly to those

binary orbital phases when stellar eclipsing and secondary scatterer
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occultation are not important.

After a general formulation of the problem (section 3.2) we will
investigate (section 3.3) how Be star polarisation is affected when we
include stellar occultation of a uniform disc scattering region, and how
binary polarimetric variations could be used to infer properties of the
radial and azimuthal scatterer distributions in the case of a one
dimensional (plume like) scattering region (section 3.4) and a two

dimensional (general planar) scattering region (section 3.5).

3.2 Polarisation of an Occulted Plane Electron Distribution.

Consider a near plane distribution of electron (or Rayleigh)
scatterers of surface density Q(x,0) (cm"z) at polar coordinates (r,®)
(r = xRyx) centred on a uniform spherical star of radius Ry and
. luminosity Li. By symmetry, all polarisation vectors are normal to the
plane of @ when the system is observed in this plane. An elementary
area dA = rdrde at (r,0) in the single Thomgon scattering limit,

contributes a polarised flux at the earth, distance d, of

dF = %%g a(x,8) D}‘(x’ cos2e dxde (3.1)
_ (x2-1)% )
D(x) = —-—;—" ’ Op = :—13%%— (3.2)

where D(x) is the depolarisation factor to allow for a finite range of
incident light directions from the star (Cassinelli et al., 1987), and o7
ies the Thomson cross section.

The direct flux of unpolarised starlight is Fy = Ly/4nd2, which
will much exceed the total scattered flux in the single scattering limit,

so that the net polarisation observed will be
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NN YA
R

r=xRy,

Figure 3.1

The coordinates (x,8) are centered on the star, at O, of radius Ry,
The observer is at E (along the x-axis) in the plane of the disc. The
disc extends from the stellar surface to a finite radius, which is taken
as oRy. © is measured anticlockwise from the y-axis. The occulted

region is the hatched area.
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_F
PP (3.3)
i.e. Pz co”A-D;c‘El a(x,8)cos2e dedx (3.4)

where A = total area of @ seen by observer.

Inspection of Fig. 3.1 shows that this can be written as

© 27
P = %0"100[ [ ] ™2 £(x,0)(1 + cosze) deax
1 (o}
(3.5)
©  7-sec”1lx
- [ B¥ex,0)(1 + cosze) dedx]

1 sec~1x

where f(x,8) = Q(x,8)/Q,, measures  in units of a convenient (e.g.

mean) surface density Q,. The outer upper integral limit has been set
at «. In practice this is to be understood to mean either the finite
disc radius or the maximum distance to which single scattering still
applies - photons multiply scattered along large optical depths will

contribute little to the polarisation.

3.3 Polarisation from a Single Be Star Disc with = Q(x).

Be star envelopes have been modelled in terms of equatorial discs
of matter (Poeckert and Marlborough, 1976; Rudy and Kemp, 1978;
Kemp, 1980; Poeckert, 1982; Waters, 1986 and Dachs et al.,, 1986), which
were initially proposed by Struve (1931), and sometimes in terms of
approximately spherically symmetric shells (c.f. Doazan and Thomas,
1982; Doazan, 1987). In the latter case it is claimed that little deviation

from spherical is needed to explain the observed polarisations of ~ 2%
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for Be stars. This was similarly claimed by McLean and Brown (1978),
who concluded from the statistics of the observed polarisations that
extremely oblate envelopes presumably do not exist. We wish to
emphasise that this is not correct for all stars. For a disc with a
point source illumination from its centre, the highest (theoretical)
polarisation achievable is ~14% before multiple scattering begins to
reduce the polarisation (see Sec. 3.3.3). Since most of the scattering
occurs near the star, however,- the effects of finite source
depolarisation and of scatterer occultation will both be substantial, and
this 14% figure is a gross over estimate.

Here we will examine these two effects quantitatively and show
that indeed flat discs are essential to obtain the observed degree of
polarisation (c.f. Cassinelli, 1987).

We take the envelope to be axisymmetric with f(x,8) = F(x) and to
have an outer boundary at x = « Then the integration of the occulted

region (see Fig. 3.1) can be written explicitly as

x T-sec~1lx

RN

Aoccc 1 sec”x

Then,
&
P = Mo -ll‘l‘l-g-(—’ﬂ[% + 2 [sed'x + (—x}%—‘ll% } ] dx  (3.7)

1

For comparison purposes we note that when no account is taken of

depolarisation or occultation, the polarisation is,
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o
F
Py = noOQOJ —T(}(l dx (3.8)
1

When account is taken of depolarisation, but not occultation it is,

[0 ¢4
P, = noonoj F-(’%ll‘l‘l dx (3.9)
1

and when account is taken of occultation but not depolarisation it is,

[+ 4
P, = nooaoj Ef—‘l[% + oedlx + <X_2;21_)”}] dx (3.10)

1

Inspection of (3.7)-(3.10) shows that P,, P, and P are always
smaller than P, whatever F(x) is. We now calculate how large -the

reduction is for two special cases of interest.

3.3.1 Uniform Finite Disc.

We set F(x) =1 for 1 ¢ x { « and zero otherwise.
Then for equations (3.7)-(3.10) we obtain the following,
(i) point source with no occultation,

Py = MO8, lnx (3.11)

(o)

(ii) Extended source with no occultation,
_ (x2 - 1)
P, = ncoao[ln(« + (a2 - 1 -2 1) (3.12)

(iii) Point source with occultation,

«
-1
_ 1 1 -1 (2 - 1)%¥ 1 sec'x ]
P, = noono[zlno: + ghsec &« - ome2 v 3 ” dx (3.13)




Figure 3,2
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(iv) Extended source with occultation.

P = mo %,

1 a2 - 1)¥
P = WOOQO[ i{ln(a + («2 - 1)%) - (__OT____) }
* ¥
12, 1 1), 1f (x2 - 1)% 1
+TT[3 +—-—'§3« —a] +‘EJ. —?—S%de] (3.14)
i

In Fig. 3.2, we show the values of P, P;, P, compared to P, as a
function of « It is clear that even when a disc has uniform density
over a considerable range (x ~ 2) the real polarisation is a factor of
~2 less than obtained by a point light source approximation. As
approaches 1, the polarisation P, ~ P,/2 when only occultation is
considered (because precisely half of the scatterers are hidden) and
tends to zero (i.e. P,, P —> 0) when depolarisation is included, as

expected for material very close to the stellar surface.

3.3.2 Infinite Disc with F(x) ~ x™D,

In a real stellar mass loss situation the scattering density will
fall off with distance from the star (faster than r—2 for an accelerated
wind in three dimensions - Waters, 1986).

Here we will examine the effects of depolarisation and occultation
on such a structure in two dimensions, parameterising the density
profiles as ~r 1, that is we adopt

F(x) = x™n (3.15)
where @, is now the surface density at the stellar boundary. We
then obtain for,
(i) point source with no occultation,

Po= MO 0R,/n (3.186)
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Figure 3.3
A plot of the polarisation values P, Py, P, compared to P, as a

function of power index n, for an infinite axisymmetric disc.




84

(ii) Extended source with no occultation, (setting x = secf)

1
(iii) Point source with occultation,

P, = ncoao[%a + oB((0+1)/,,17,) 4+ B((n+1)/,,3/,) ] (3.18)

(iv) Extended source with occultation,

P = oG [3B(N/2,2/2) + HhoB((141) /1)

(3.19)
m/2
2 .1 +1
* D) (o8 T nﬂj € cosh™€ df ]
0

~ where B is the beta function.
In Fig. 3.3 we show the values of P, P,, P, compared to P, as
functions of n. As anticipated on the basis of Sec. 3.3.1 the effect of
depolarisation is to greatly reduce the polarisation relative to the

point source case, increasingly so as n increases.

3.3.3 Implications for the Shape of Single Star Envelopes.

The results of Cassinelli et al. (1987) and of the above sections,
show that the combined effect of finite light source size and of
envelope occultation is to reduce the scattering polarisation, in fact by
a factor of about 2 for any realistic radial distribution of density.
This means that the degree of envelope flattening needed to produce
observed polarisations (for a given optical depth) is increased
compared to estimates based on point star models. Since the necessary
degree of flattening of circumstellar envelopes is controversial (cf.
Doazan and Thomas, 1982; Cassinelli, 1987; Slettebak, 1988). We examine

here the implications of these new results for the issue, assuming that




85

a similar factor of 2 reduction applies to envelopes which deviate from
the plane (see chapter 5).
According to Brown and McLean (1977) the degree of polarisation

in the optically thin scattering regime and for a point light source is

1 o

P, < %TJ [ nrma - ae) ar au (3.20)

-1 0

(equality applying for inclination i = 90') where n(r,u) is the density
at radial distance r and colatitude cos™lu. The polarisation cannot be
increased arbitrarily by increasing n because the onset of substantial
optical depth reduces the polarisation by multiple scattering (Daniel,
1980). To model this approximately we assume that n(r) is uniform in
latitude over an equatorial wedge of half angle sin'1u0 ‘for which

equation (3.20) becomes

Po ¢ 3 Txko(1 - 48 ) (3.21)

o0
where Ty = OTJ n dr is the scattering optical depth.
o _
Requiring roughly that T¢ ¢ 1 to avoid multiple scattering along any

light path and maximising the right hand side of equation (3.21) over

o, we find that the maximum P, is,

Po € Z,l,g = 14% (3.22)

occurring for a wedge of half angle sin~(!/vs) = 35° (for an
optically thick disc, a maximum theoretical value of 11.7% was obtained

by Bochkarev and Karitskaya, 1983). When account is taken of the
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reduction in polarisation for a finite stellar light source this gives
P 7% (3.23)
The intrinsic polarisations of B stars with P Cygni winds has
been reported to be as high as 5% (Swings, 1981) and so these would
appear, on the basis of equation (3.23), to require concentration of the
wind into an equatorial sector as described above. On the other hand,
most Be stars have polarisations ¢ 2% and so, on the strength of the
argument above it might be believ‘ed that these could be consistent
polarimetrically with envelopes either non-planar or more spherical
than needed in the extreme P Cygni case. To probe this point further,
it is necessary to consider a self consistent treatment in which the
influence of geometry on the depolarising effect of multiple scattering
is explicitly included. Such a treatment has not been carried out.
However, we can obtain a fair first estimate by utilising the results of
Daniel (1980) who has obtained contours of constant polarisation in the
plane of equatorial optical depth and envelope oblateness, using a
thick oblate ellipsoid as the envelope model. Here we will suppose
Daniels’ results apply when finite star effects are included by
recalibrating the wvalues of his isopolarisation contours downward by a
factor of 2. Then from Daniel (1980, figure 5) we find that P Cygni
polarisations of 5% (10% on his curves) can only be achieved, with
optimised optical depth T, for flattening factors E (polar/equatorial
radius) ¢ /7 while for more normal Be star polarisations of 2% (4% on
Daniels’ curves) flattening factors of ¢ 1/3 are needed.
Given that envelope geometries and densities are hardly likely to
conspire to provide the most optimal combination of E and T and that
most stars will not be seen at i = 90°, it is therefore clear that the

polarisations of Be stars do demand highly equatorially flattened
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envelopes. This conclusion will be further strengkhened when

absorption effects are included.

3.4 Variable Occultation as a Diagnostic of Scatterer Distribution

in a Corotating System.

3.41 General Principle.

As is clear from section 3.3 (and from Brown and McLean, 1977)
polarimetry of a single axisymmetric source yields essentially only one
number describing the scattering envelope (the polarimetric position
angle determining the orientation of the symmetry axis on the éky).
Further, this number permits a multiplicity of interpretations
depending on three distinct factors - envelope shape, density and
inclination (Brown and McLean, 1977).

In systems where the envelope is non-axisymmetric and revolves
about the light source, due to binary orbital motion or accretion disc
precession for example, the situation is better because the variable
scattering geometry in the observer’s frame essentially enables an
éngular scan to be made over the envelope geometry and some of its
parameters to be derived (Brown et al., 1978; Rudy and Kemp, 1978;
Karitskya and Bochkarev, 1983; Carlaw and Brown, 1989). However only
a rather small number of integral moments (or series expansion
coefficients) can be derived from observations in this case. This is
essentially because the Thomson scattering function which acts as the
kernel of an integral equation relating the envelope angular
distribution to the Stokes parameter variation (cf. Simmons, 1982, 1983)
is slowly varying and of separable form (cf. Craig and Brown, 1986)

such that all high spatial frequency components of the envelope
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distribution are absent from the polarisation (cf. Brown, 1989).
However when we include scatterer occultation effects, we may
anticipate that the situation may be further improved because the
sharp boundary of the occulting star will scan across the scattering
distribution as it rotates, so providing a one dimensional "narrow
band" spatial filter with which to study the structure. It is also clear
that the case of a flat distribution seen edge on is the easiest to treat
theoretically in this problem and we illustrate the potential of the
technique, starting with a one dimensional scatterer distribution which
permits a unique inversion of the problem (section 3.4.2), and then
proceeding to restricted and general two dimensional distributions

{(Appendix A).

3.4.2 Structure of One Dimensional (Plume Like) Envelope.

In the case of a mass-transferring binary, the circumstellar matter
may, in some cases, approximate quite closely to an axisymmetric
distribution of mass lost from the primary light source with a
superposed one dimensional plume like structure. Such would be the
case for example for accretion via a focussed stellar wind (Friend and
Cassinelli, 1986) or a Roche lobe overflow accretion stream (Haisch
and Cassinelli, 1976), or for stellar jets (e.g. Carlaw and Brown, 1989).

In the i = 90° case we are considering, the axisymmetric disc
component will provide a constant polarisation (cf. section 3.3) which
we will denote by Pp, provided occultation effects by the secondary
are small (if not then a generalisation of the analysis in appendix A to
the case of two occulters would be necessary).

The one dimensional plume we will represent in terms of a linear

density A(x) (cm™1) of electrons per unit radial length (i.e. A(x)Rgydx =
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number of electrons in dx) giving rise to a time dependent polarisation
Py, (t). If time t is chosen such that the plume is at € = 0 at time t = 0
(cf. later discussion) and rotates uniformly in period T (cf. fig. 3.1),
then in (3.4) we must let

Q(x,8)Rgxdxde —> A(x)S(e-wt)Rydxdse ,

where w = 2n/T and § is the delta fuction.

In this instance (3.4) becomes at phase angle 6 = wt

' j G(x) dx  m< e < 2m (3.24)
_ ALO,(1 + cos2e) !
| I Gx) dx 0<e<m (3.25)
| sece|

Alx)(x2 - 1)%

where G(x) = RyAx
o)

and Ay = A(1) (3.26)

Observations of such a system should therefore exhibit pure
second-harmonic (cos26) phase variations, typical of an unocculted
binary (Brown et al., 1978) on top of a constant contribution,

©0

Pp + 5 A% Glx) dx (3.27)
1

during half the rotation period (7 < e < 2m), and more complex
variations [depénding on G(x)] during the other half as the value of
sec® in the integral limit of (3.25) changes. Given any model of A(x),
P(t) can be computed throughout period T by means of (3.24) - (3.26).
It is also possible however, to invert this problem explicitly,

thereby allowing inference of A(x) from the data on P(t) as follows.
The time at which P(t) start_s to exhibit variations other than on

period T/2 identifies the time of zero phase. Once this is known we
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can construct from the data, P(t), the function 2P(t)/(1 + cos26) and

on differentiation of (3.25) we get,

A(x)on x2__ [ -d [ 2P(e)
Ry - (x2 = 1)[ T 1T cotzs) ] 0cecm  (3.28)

e=cos~1(1/x)
Once the function A(x)/Ryx is found it can be integrated to give

o0

/_\_39_0 I G(x) dx , and hence the disc polarisation contribution Pp,
) ,

In order to illustrate the potential of this inversion method, we
shall construct a simple model calculation by considering an infinitely
thin plume with effectively infinite radial extent (r > 60Rg¢ in our
numerical simulation),

We let the plume density vary as x~2 and let the disc polarisation

Pp = 1.0% . Then the total polarisation may be written as

L m<e <2
i6

P(t) = 0.01 +ﬁoi%o(—1——i-‘z3°—sz‘?—) (3.29)
-1—[11—26+§—ig4—e] 0<ce<m
16 2

We set Ao(1)0,/Ry = 0.001 and so the polarimetric variation due to the
plume is ~ % 2x10~* (or 0.02%). We then evaluated P(t) for every
1756t of the phase (Fig. 3.4a).

Utilising (3.28) and making the approximation

df(e) . f(e + h) - f(e - h)
de 2h

y with h = "/18 (3.30)

we obtain A(x)o,/Ryx as a function of x (Fig. 3.4b). In this particular

case we need only apply (3.28) for 0 < & < "/, - due to symmetry.
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A plot of the variation of polarisation (%) with phase for a
corotating plume with occultation included (solid line) and with

occultation neglected (dashed line).
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From Fig. 3.4b we see that the method recovers a discrete form of
A(x) (dashed curve) close to the true x~2 distribution and with
A(1)o,/Rx = 9.75x10"*, very close to the correct value. Finally we find
the disc polarisation to be Pp = 0.10 (1.00%).

In this particular example we have neglected noise and thus our
inversion results are in excellent agreement with the input model. In
practice problems may arise due to data noise, particularly if an
attempt is made to push the discrete recovered solution toward the
continuous limit (h —> 0), since then the approximation (3.30) to df/de
may become swamped by changes in Af due to noise rather than real
changes. (On the other hand, too large a sampling interval, h, gives a
poor recovery because of coarse discretisation errors). In such cases
it will be necessary to apply a smoothness constraint on the solution
to stabilize the inversion (differentiation) procedure against the

effects of noise, as discussed by Craig and Brown (1986).

3.5 Conclusions.

We have shown in our analysis that the neglect of the finite size
of the light source leads to a gross overestimate of the polarisation
for a given disc geometry. By including occultation and depolarisation
we found that B star envelopes are necessarily highly flattened disc
type structures.

For a disc viewed edge on we find that the effect of occultation
reduces the polarisation more than the inclusion of the depolarisation
factor alone. This however is due to the fact that we have maximised
the occulted region and one can expect that for a general inclination
angle, the depolarisation factor will have the same reducing effect

upon the observed polarisation, whereas occultation will become



94

decreasingly important as i decreases.

The analysis of a one dimensional plume led to a powerful
technique that allows one to explicitly obtain the electron density
distribution from the polarimetric data. Although we only inverted the
problem for an infinite plume, it is a trivial matter to carry out a
similar analysis for a finite plume (use of our formulation would just
give A(x) = 0 for x > o in such a case).

The application of our present analysis is restricted to high
inclination sources only. For Be stars therefore, such analysis will be
limited to those stars with the largest apparent rotational velocities

(Vsini ~ 400 kms™1) .,
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Chapter 4

II. Flat Envelopes Viewed at Arbitrary Inclination.

4.1 Introduction.

In Chapter 3, we considéred only the effect of scatterer
occultation on circumstellar scattering polarisation for the case of an
equatorial envelope seen at an inclination of 90°. In this chapter we
generalise this problem to arbitrary inclination while retaining the
other assumptions adopted and discussed in Chapter 3, namely

(i) Optically thin, single electron scattering envelope with no
absorption.

(ii) A finite size, spherical light source that is unpolarised with
constant intensity over its surface.

(iii) In a binary situation we assume the secondary is unimportant as
a light source and we consider only those phases of the orbit when
the secondary neither occults part of the scattering region, nor
eclipses the primary.

The limitations of these assumptions will be discussed in Sec. 4.6.
After a general formulation of the problem we shall obtain
expressions for the polarisation expected from the specific types of

electron distributions considered in Chapter 3.

4.2 General Theory.

Consider (Fig. 4.1) a near plane distribution of electrons of surface
density Q(x,¢) (cm~2?) at polar coordinates (r,$) (where r = xRy)
centred on a uniform spherical star of radius Ry and luminosity L.

Let the observer (E) have an inclination i between the line of sight
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Figure 4.1

A star, centered at 0, with a radius Ry rotates uniformly about the
Z axis. A near plane distribution of electrons lie in the stars’
equatorial (XY) plane. The electron distribution extends to a radius
oRy.

An observer (E) is inclined at an angle i to the rotation (Z) axis
of the star. The observer-sky (x,y,E) axes (also centred on O0) are
oriented | such that the y-axis coincides with the Y-axis of the stellar
reference frame.

According to the observer, material directly behind the star is
occulted. This occulted region (shaded area) is a half ellipse with a
semimajor axis = Rgseci and a semiminor axis = Ry.

An electron at position P is described in spherical polar

coordinates in the stellar frame by (r,"/,,4) and in the observer frame

by (I‘,X,'*P).
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and the normal to the plane containing @ (Z axis).
In the frame of the observer, with associated spherical polar
coordinates (r,X,¥), we can write the contribution to the Stokes fluxes

at the earth associated with a scattering area dA, at a distance d

8in?x cos2y

- :}-%gg? a(x,s) dA (4.1)
dry 8in?x sin2y

dFq

We transform from the (X,) observer oriented coordinates, to the (8,9)
star centred coordinates which allows derivation of the polarisation
from a general planar distribution of electrons.

The appropiate transformations are (Fig. 4.2)

cosX = -sini sin®

sinxX cosy = cos¢ (4.2)

sinX siny = cosi sin®
The direct flux of unpolarised starlight is Fy = Ly/4nd? at the Earth
so that the observed normalised Stokes parameters are Q = Fg/Fy and
U = Fy/Fx

which may conveniently be written as,

Q = Tgsin?i + T.(1 + cos?i) (4.3)
U = 2T,cosi (4.4)
where,

7o = 2°[[ atx,0) 2L qodx (4.5)
Ha,

T, = %0“ Q(x,O)D}(cx) cos2¢ dodx (4.6)
Ha,

12 = 3°[[ a0, )22 sino dedx (4.7)

Na,



98

«

Figure 4.2
Spherical triangle from Fig. 4.1 for the transformation from (r,x,¥)

to (r,"/,,4) coordinates.
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with D(x) = (1 - x~2)¥% and Og = % .

or is the Thomson electron cross-section, D(x) is the depolarisation
factor (Cassinelli et al., 1987) and Ay is the observed (unocculted) area
of the electron distribution.

The integrals T, T;, T, are analogous to the integral moments T,
ToY3r ToY4 Of Brown et al. (1978). In this case T, measures the
effective scattering depth. T; and T, are measures of the rotational
symmetry and antisymmetry (respectively) of the scattering material in
the stars’ reference frame, thus if the material is rotationally
symmetric T, = 0.

The area A, is the total area of the disc minus the occulted region.

From Fig. 4.1 and Fig. 4.2 this may be written as

« 27 B m-¢(x)

=11 -1

Ag 10 1 &(x)

B = seci for « » seci
B = x for « < seci
with the radius of the disc being « (in units of stellar radii)

(- x-Z)”}

and o(x) = sin"{ <ini
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4.3 Axisymmetric Disc.

Recent observations (Dachs et al.,, 1986 and Waters, 1986) suggest
that B type stars have extended, highly flattened circumstellar
envelopes. In general such envelopes will be non-axisymmetric and
thus give rise to polarimetric variations during the rotation of the
system (see section 4.4).

In this section, however, we are concerned only with average
polarisation expected from such a di'sc rather than its variation with
phase and 8o we may write Q(x,0) = Q(x). In this restricted case we
have U = 0 and so we may directly write P = Q. Using equations (4.3)
- (4.8) we can obtain the expression for the polarisation of an
axisymmetric disc, viz

P = Tosin?i + T4(1 + cos?i) (4.9)

with T, = 0 and

« 21 B m-¢(x)

7o = 90 [ [ 002X doax - [ [ 0P doax | (4.10)
10 1 &(x)
« 2m B m-0(x)

T, = §0[ I j 22X cos20 dodx - f j 0 ()2 cosz0 d¢dX] (4.11)
10 1 ¢(x)

Note that in equation (4.9) the T, term vanishes if occultation is

ignored, recovering the P « sin?i result of Brown and McLean (1977).
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4.31 Uniform Finite Disc.

We set Q(x) = 0, for 1 { x { «
= 0 otherwise,
and substitute into equations (4.9) - (4.11) to obtain the following
expressions for the polarisation,
(i) Point source with no occultation,
Py = TMO,R,8in?%i Inx (4.12)

(ii) Extended source with no occultation',

Y
P, = MoGfgsin?i{ln{x + (o2~ 1)¥%) - L“Z-&-l—’—-} (4.13)

(iii) Point source with occultation,

2_
P, = ncono{sinzi[lnx - %1,15 + %J ain-1 [{XE= 1)) dx ]

X sini X
1
(4.14)
. : 2 2\ ¥
2:y [_cosi _l_J' 2_ 1\% (sec?i - x%)
+ (1 + cos?i) [-g2o5r] 2] (x2- 1% 1290 X gy |
1
(iv) Extended source with occultation,
2_ 3
P= ﬂcono{sinzi[ln{« + (x2- 1)¥%) - Lo_:_«_l_) - %ln{B + (B2- 1)¥%)
2 % £ 2 ¥ (x2 )
(B2- 1) 1f (x2- 1)% . [{x?-1 ]
P AR 2 B gine () ax (4.15)
1
B 2 _ 1)
. cosi 1 2: _ o2 3% (x -
+ (1 + 00821)[—;51?{]5,[ (sec?i - x?) —a dx }

1

In Fig. 4.3 P, P;, P,, P are plotted as functions of inclination for
varioues disc radii ().
In general, it is found that for low inclination, occultation enhances

the observed polarisation (P, > P, , P > Py) and for high inclination
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Figure 4.3

The variation of polarisation with inclination for a disc with uniform

density @, (cm~2) and of finite radial extent (aRg). The definitions of
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the polarisation is reduced (P, < P, , P < Py). For « > 2 it is found
that the "cross-over points" (i.e. when P, = P, , Py = P) occur at a
constant inclination independent of disc size, namely i ~ 58° for point
light source calculations and i ~ 63" for extended light source
calculations (we shall refer to the inclination at which this cross over
occurs as the ‘null’ inclination).The explanation of this phenomenon
results from the vector nature of polarisation and can understood
geometrically.

Consider an equatorial disc of material viewed by a distant
observer at an inclination i. At low inclinations the integrated
polarisation of the whole disc will be near to zero, with the
polarisation vector lying in a plane parallel to the system axis
projected on the sky (see Brown, 1989; Poeckert and Marlborough,
1978a, their Fig. 13) whilst the occulted part of the disc will be
polarised perpendicular to the projection axis. So when this is
substracted from the net polarisation of the whole disc, the observable
polarisation is enhanced and lies along the projected axis.

At high inclinations the plane of polarisation of the occulted region
will be in the same plane as that of the disc as a whole (parallel to
the projection axis) and so the net observed polarisation will be
reduced.

There will be an inclination, therefore, when the plane of
polarisation for the occulted region will switch orientation and at this
inclination (the null inclination) the net polarisation of the occulted
region will be zero, thus P = P;, Py = P, It is clear that for a
sufficiently large disc radius the null inclination will be independent
of the disc size because the occulted region (a half ellipse with a

semi-major axis of Rgseci) will be filled with scattering material (if the
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radius of the disc is greater than Rgseci). In the point light source
treatment this null inclination is 58° (from Fig. 4.3). Thus for a disc
radius r > 1.9Ryx the null inclination will be always 58'. In the case of
an extended light source treatment the emitted flux will be depolarised
and thus in order for the polarisation of the occulted region to be
zero this region will need to be larger than in the point light source
approximation and therefore the null inclination will also be larger (i ~

63° and so the semi-major axis of the occulted region will be 2.2Ry).

4.32 Infinite Disc with Q(x) ~ x™1,

In a real stellar mass loss situation the scattering density will fall
off with distance from the star.

We set Q(x) = Q@ x71,
where @, is the surface density at the stellar boundary and in this
instance « = ® and B = seci. Substituting into equations (4.9) - (4.11)
we then obtain,
(i) Point source with no occultation,

P,

5 = MO R,sin?i/n (4.16)

(ii) Extended source with no occultation,
P, = MO,Qysin?i B(/,,3/,)/2 (4.17)

(iii) Point source with occultation,

seci
. ».[ 1  costi . 1f . _ (x2—1)*]1
| P, = noono{ 51n21[§1-;l + 55—+ EJ- sin 1[—————x ~Tni ;ﬁ-ﬂdx
1
(4.18)
seci , y
. i1 . x%- 1)
+ (1 + Coszl)[_z—gzili]ﬁ[ (sec?i - x2)% -—-—q:r( S dx }
1
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(iv) Extended source with occultation,

seci
.1 2- 1)#
P= noono{ Slnzl[ -Z-B(n/z,a/z) - %I (_x);ﬁT%'l dx
1

seci
¢ 3f ainmt (S 02 D" ax | (4.19)
1
seci
+ (1 + coszi)[—-gfi’—rs-l%—i]%J (sec?i - x2)¥ %‘-F} dx }

1

where B is the beta function.

In Fig. 4.4 the polarisation values P, P,, P,, P are plotted as a
function of inclination for power indices n = 1, 2 and 4 .

In general it is again found that at low inclination the net
polarisation is enhanced by including occultation, whilst at high
inclination the net polarisation i8 reduced when occultation is included.

For any given power index, the null inclination for a point light
source (i.e. P, = P,) is always leas than the corresponding null point
for the extended source case (i.e P = P,). This is again due to the
depolarisation of the occulted region by the extended source which
thus requires a greater inclination (i.e. a larger occulting region) than
that of the point light source treatment in order for the net
polarisation of the occulted region to be zero.

It should also be noted that as the power index increases the null
“inclination decreases. This can be physically explained by considering
a star with most of the scattering material lying near the stellar
boundary. Since most of the polarisation will arise near the star, it is

reasonable to expect that the occulted region need only be small to
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make a significant contribution to the polarisation. So the greater
the concentration of the material about the star, the smaller the
occulted region needed, and hence the smaller the null inclination for

increasing power index.

4.4 One Dimensional (Plume Like) Density Structure.

We consider the phase variations of a rotating plume-like
structure (e.g. accretion stream) superposed upon an axisymmetric
disc.

Consider a plume in the equatorial plane of the star which rotates
at a uniform angular frequency, w. If the plume has linear density
A(x), then we must let

Q(x,9)Rgxdxdd —> A(x)S(® - wt)Rydxde.
At phase angle ® = wt an electron is just occulted at a distance

(r = xRg) where

_ 1
X T /1 - sinfisin?e (4.20)

Note that electrons at a distance x > seci are never occulted, and for
a plume of total length less than seci total occultation will occur

through some phase of the orbit.

In general at phase ¢ = wt = 2mt/T (where T is the orbital period) we

have for the plume

[ 00
jc(x) dx , m<o<2m  (4.21)

1

Q= -;oo/\o(sinzi + (1 + cos2i)cos2¢) .
G(x) dx , 0< @& <m  (4.22)

| I x(0)
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j G(x) dx , m < & < 2 (4.23)
1
U = 0A,(cosi sin2¢)
G(x)dx , 0<d<m (4.24)
x(®)

Alx) (x2 - 1)*%

where x(¢) = (1 - sin?i sin2¢)~¥ and G(x) = A =3
0 ¥X

(4.25).

Equations (4.22) and (4.24) can be inverted to obtain A(x) and i, viz

OOAQ(X) _ X2 ~d ZQO
Ry T o(x%- 1)(1 - choszi)”[m{sinzi + (1 + coszi)cosztb}]cbgi;zm
O<o <
SoAu(x) . x? d[ U,
§ Ry ~ (x*- 1)(1 - xzcoszi)”[ d(blcosi.sinZQa}l( ) (4.27)

where Q,, U, are the observed polarimetric data

- =2
and o¢(x) = sin‘i[(ig—.—lﬁi—-)—

Equations (4.26) and (4.27) give two solutions for A(x) for any
chosen value of i. The general method of solution will be to seek
simultaneous solutions of (4.26) and (4.27) in terms of A(x) to noisy
data, with i as an adjustable parameter with a range constrained by
the condition that only solutions A(x) » 0 for all x are acceptable.

If there is sufficient coverage over the phase in which no
occultation occurs, then it is possible to find the inclination of the
system by use of equations (4.21) and (4.23) and therefore this will
limit the parameter search required in (4.26) and (4.27). For Ilow
inclination systems it is apparent that the inversion procedure will not
benefit us in any way as the density distribution will be determined
over only a very short range. In fact in order to find the distribution

to 1Ry beyond the stellar surface an inclination of 60’ is required.
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When noisy data is being inverted there is a limit (oversampling) to
the number of data points that may be used to obtain meaningful
results (Craig and Brown, 1986). In general the time lapse between any
two measurements must be sufficiently large that they are significantly
different (i.e. Q(t + ®t) - Q(t) » 28Q). This condition will depend upon
both the inclination and the phase of the orbit. However it does mean
that one cannot hope to obtain arbitrarily more information as to the
density structure by increasing the data set. On the other hand,
however, if the data are significantly undersampled or unevenly
distributed throughout the period, then the density structure may be
poorly inferred (undersampling) - that is, a wide range of density
structures may have significant fits to the data.

We now illustrate the use of this inversion procedure by
constructing noigsy data for a plume viewed at an inclination i = 70°,
with a density distribution of the form A(x) = Ag(1)x™@ with A(1)0y/Rx
= 032/m and n = 2.0. We will assume, for simplicity, that the data is
equally spaced (in time) in which case equations (4.21) and (4.23) can
be manipulated so that the inclination of the system is obtained by
calculating differences, thereby removing all constant polarimetric

contributions, viz

Q(t + T/4) - Q(t) _ 1 + cos?i

U(t + T/4) —U(t) - oosi  cotan(2e) ™y ey oam/z (4.28)

In equations (4.26) and (4.27) we make the approximation

df , f(x +h) - f(x - h) (4.29)
dx 2h

Thus once the inclination has been found from equation (4.28), the
density functions OOAQ(x)/R* and O Ay(x)/Rx can be simultaneously

obtained from equations (4.26) and (4.27).
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In practice it has been found that the use of equation (4.29)
makes equations (4.26) and (4.27) sensitive to the absolute value of the
polarisation and so all constant contributions should be removed from
the data before utilising this procedure (effectively the equations
become dominated by the constant contributions). This is achieved by
reconstructing the polarimetric data during out-of-occultation periods
via (4.21) and (4.23) so that one is able to obtain the constant
polarimetric contributions (Qg, Uy = 0) due to the disc.

We wish then to find what is the single best fit density function

of the form (CpAg(1)/Rg).x™® for the data. We do this by varying

OgMo(1)/Ry and n, in order to minimise X2 (Simmons et al., 1980) where

J
x2 = [%:]z ) (—A“*"'a%—'\l"ﬁz (4.30)
j=1 '

where AT, j = /\(1)){3‘n is the theoretical density distribution with free
parameters A(l) and n , Ao,j is the binned average density of Aq(x),
A,(x) and S; is the standard deviation of the binned data. (In our
particular case there are two sets of Aq and A, in each bin because
the data is symmetric about phase 0.25.)

In Fig. 4.5 we show the polarimetric variations, due to the plume
(in the absence of noise), presented in the (Q,U) plane. The diagram
bears much resemblance to those of Brown et al.,, (1978; their Figs 5
and 6). The general form will always be one ellipse totally enclosed
within a second ellipse. The outer ellipse describes the polarimetric
variation of the plume during phase 0.5 - 1.0 when no occultation

occurs. The inner ellipse, however, is for phase period 0.0 - 0.5
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The variation of the Normalised Stokes parameters with phase for a
plume of material viewed at i = 70° with a linear density distribution
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during which occultation of the plume does occur. The polarimetric
difference between the outer and inner ellipse is therefore the
polarimetric contribution of the occulted part of the plume. The
deviation between the two ellipses will depend upon the inclination and
the density structure of the plume.

In Table 4.1 we present the results for i = 70° with a noise level of
8Q = 0.001% and 8Q = 0.01% (%Q = 8U) with 180 data points

In both cases we have neglected data collected around phase 0.0
(1.0) because at this particular phase there is no measurable
difference between Q(t + T/2) and Q(t) (and similarly for U) due to
the error in the measurements and/or a negligible amount of material
is being occulted. We have also neglected data collected at phase ~0.25
when the secondary may be occulted and at ~ 0.75 when the secondary
may also play an important role in occulting some of the plume, or in
eclipsing the primary.

We have purposely used oversampled data, i.e. 180 data points, to
emphasise the fact that there is a limit to the number of data points
that maybe meaningfully inverted. In the case of $Q = 0.001% we found
it was possible f;o invert the data only if every other data point was
neglected through the scanned phases. We can see (table 4.1 and Fig.
4.6a) that the density distribution is recovered very well with only
significant deviation in the recovered data occurring near bhase 0.25.
By increasing the noise level to $Q ~ 0.01% we found that the step
length had to be doubled and the sampling phase reduced near phase
0.25 as some of the /\q(x) were negative. This is due to the fact that
the Q data around phase 0.25 are approximately zero (therefore
sensitive to any error present) and, coupled with the approximation of

(29) can result in A(x) ¢ 0. Fig. 4.6b shows the recovered density
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Recovery of the input parameters with noisy data.
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distribution for the plume with a noise level of 8Q ~ 0.01%. In this
case there is a marked increase in the scatter of the recovered

density distribution compared to Fig. 4.6a.

4.5 The Structure of Two Dimensional Envelopes.

We now reconsider equations (4.3) - (4.8) and permit Q(x,0) =
Q.f,(x,¢) to be distributed in & as well as x, and maintain the
corotation condition f,(x,0,t) = f,(x,0-wt), where fo(x,0) is Q(x,05)/9,
with @, measured in a frame rotating with the envelope from a
reference axis which coincides with that of ¢ when t = 0.

We consider the extent to which properties of f, can be obtained

from the observations of Q(t), U(t) (c.f. Chapter 3).

4.51 f (x,0) Seperable With Known x -~ Dependence.

In this case we suppose
fo(x,0) = g£5(x)hg(dy) (4.32)
where gq(x) is known but h,(d,) is not.
We proceed in this case by the Fourier analysis of hg(®,) (c.f.
Chapter 3), viz
“ 0 .
ho(®g) = xg + £ {xicosj¢° + yJ-sttbo} (4.33)
J=1
and obtain after some reduction, a Fourier series for Q and U as a

function of wt, viz

0

Q =po +L { pjcosjwt + qjsinJWt } (4.34)
J=1
(- -]

U=zu, + L { uJ-cosjwt + VJsinjurt } (4.35)

j=1



with,

Po = 8o[(nI - C)sin?i + A,(1 + cos?i)]

F—
Q2 g
NN
et
n

{gj} = {_gg}[Ajsinzi +
{gg}: - {:g}[Bjsinzi +
ljo - 0
[::} - {::}(WI - C - A,)cosi
(03} = {e3jeomt
53} - (3ghuons
where,
aj = GOQOXJ ’
[ ]

{_gz}[Azsinzi +

2_ 1\¥%
1= | 2o () X1 ax

1

seci

A‘j=Jgo
1

2_ ¥
(x) 1)

Z(ML = C + A(1 + cos?i)] j = 2
J3(1 + cos?i)] £ i (ju2
5 0s2i)] for even j (j#2)

%4(1 + cos?i)] for odd j

for j = 2
for even j (j#2)

for odd j

bj = OOQOYJ

S%§X) dx

—=== dx

seci % i
(x32- 1)”% Ti(x)
Bj = J go(x) 3
1
seci

c =j%u)ﬁi%ﬁF—

1

X 2

- 2_ 1\¥%
sin1 15-—714—]] dx
x sini
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(4.36)

(4.37)

(4.38)

(4.39)

(4.40)

(4.41)

(4.42)

(4.43)

(4.44)

(4.45)

(4.46)

(4.47)

(4.48)
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JJ‘ = AJ‘+2 + AJ'_Z

KJ' = BJ'+2 + Bj__z
(4.49)

Mj = Aj2 — Ajs2

Nj = Bj—2 - Bjs2

and

i e[ =t (x2- 1) )

SJ(x) = 31n{,331n [————x ol } ‘ (4.50)

; L Tir(x2- 1)

i - AXT— )7

TJ(X) = cos{asan [x Sini } (4.51)

where S%(x) ’ T‘jj(x) are the congruous related Chebyshev polynomials.

In order to find the coefficients aj, bj we need to know the
inclination of the system. We can obtain the inclination by taking the
ratios of the Fourier coefficients of the data (Brown et al., 1978;

Simmons, 1983), viz

_P2 . _ 92 . [2A;8in%i - (71 - C + A )(1 +coszi)] .
G2 V2 B Uz - [ 2(mI - C - A4)cosj_ J =2 (4.52)

. . sn23 23 s
. -Pi-_9j- [ZAés_unl +Jj(1 + cos 1)] for even j
Gj Vi uj 2Mjcosi (J = 2) (4.53)
ez Pi= - 9§ = [ZBJ-sinzi + Ki(1 + coszi)] for odd j (4.54)
J vj uj ZNJ-cosi :

Since qj/Vj ’ pj/uj and the form of g,(x) are known then the
functions G,, Gj and Hj will uniquely determine the inclination of the
system. Once the inclination has been found the Fourier coefficients
(aj, bj) of the ¢, distribution are then obtained.

In Figs 4.7Ta-h we show as examples G,, Gj, H; for the first eight

harmonics with g,(x) ~ xn , for n = 2.0 - 4.0 . We show up to the

eighth harmonic only because according to the Riemann - Lebesque
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Lemma the integrals Aj, Bj —5 0 as j => « (see Sneddon, 1972) and
this, coupled with the fact that we have a finite data set means that
the best we can hope to achieve will be typically the harmonics up to
j~ 8.

In Fig. 4.7f we see that Gg (for n = 3.5 and 4.0) becomes infinite
around i ¥ 60°. This is due to the fact that Mg ~ 0 at this inclination
and so [from equation (4.53)] Gg becomes infinite (this may be verified
analytically for n = 4.0 , where Mg = 0 "at sin?i = 13/,,),

In Fig. 4.7¢ the curve of H, (n = 2) has been excluded because
this function is of indeterminate form (i.e 0/0) for all i and is due to
the fact that Bj = 0 for j » 5 [gee equation (4.54)]. In fact for n = 2.0,
Hj = 0/0 for j » 7, whilst for n = 4, Hj = 0/0 for j % 9.

With the exception of these singular cases, the Fourier coefficient
ratios (Gj, Hj) are insensitive to the power law index, except for the
high order ratios at high inclinations.

We present now some model calculations with noisy data using 64
data points for a disc with a power index n = 2.0 and with cofficients
ag = 1, a;= bj= j~2 (for j » 1) viewed at an inclination i = 70°.

In order to find the Fourier coefficients Pj» Qj Uj vj we make

use of the approximation (Champeney, 1985)

N-1

{52} - % El{gﬁ} | (4.55)
n=
N-1 )

{53} - %n21{32} Cos[z%n‘l] (4.56)
N-1 )

{33} = %nzi{?;‘;} sin[ £ (4.57)
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(for more complicated transforms see for example Press et al., 1986 and
references therein).

Using equations (4.55) - (4.57) with 64 data points it is possible to
obtain (with any certainty) the Fourier coefficients up to j = 8. From
these coefficients the Fourier ratios are then obtained. Table 4.2 shows
the ratios for wvarious amounts of noise. It can be seen (and is
intuitively obvious) that as the noise increase the high order Fourier
ratios become increasingly uncertain (i.e. pj/vJ- * - Clj/uj)

When the Fourier ratios have been calculated it is then possible
(by using Figs 4.7a - h) to find the inclination of the system, which
we show in table 4.3 where we have calculated the average inclination
for each available power index in order to illustrate how sensitive the
choice of the power index is in determining the inclination. As can be
seen from Table 4.3, the inferred inclination is consistant with the
input value of i = 70’ and is quite insensitive to the particular choice
of the power index.

Once the inclination of the system has been established, it is then
possible to obtain the Fourier coefficients of the envelope distribution
(i.e aj, bj) via equations (4.36) - (4.43). The results are presented in
Table 4.4 for n = 2.0 and n = 4.0 and are compared with the true
values. We also show the error (super- and subscript values)
introduced by taking the upper and lower limit of the inclination (as
obtained in Table 4.1). One can see that, independent of the power
index or the error in the data, the low j value coefficients are most
gensitive to the value of the inclination. One can see that the errors
associated with the coefficients for the power index n = 4.0 are
greater than those for n = 2.0 which would indicate that we are tz.‘y*ing

to force a fit in the case of n = 4.0 . Since H, = 0/0, it is not possible
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Fourier ratio values obtained from data with varying amounts of

noise.

Fourier
Ratio

8Q = 0.001%
oo
J J
1.90  1.90
1.22  1.22
2.03  2.03
2.80 2.80
-0.61 -0.61
0.77  0.77
1.63  1.63
0/0' " 0/0

Error

8Q = 0.01%
Pj _ 9
vj uj
1.90 1.90
1.21 1.22
2.48 1.71
2.29 1.85

-0.61 -0.61
0.77 0.77
1.65 1.67
0/0 0/0

8Q = 0.1%
it
J J
1.90 1.90
1.21  1.26
-6.55 0.30
0.79 0.93
-0.61 -0.61
0.78 0.75
1.83 2.11
0/0 0/0
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Table 4.3

Inferred inclination from Figs 4.7 using the Fourier ratios of Table

4'20
Error
Index %Q = 0.001% %Q = 0.01% %Q = 0.1%
2.0 68" % 6° 67 £ 9° 70 = T
2.5 67" = T° 66° %+ 5° 68' + 5°
3.0 65" + 8° 64° = T° 70° % 6°
3.5 63° + 10° 62° + 8° 65" + 6°

4.0 61" + 11° 60" = 10° 64" + 7°
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Table 4.4

The resultant Fourier coefficients (a;, bj) of the envelope density

2.0, n = 4.0 .

distribution for power indices n

$00° 0+

n.
1000405070
200° 0+
PPN
100°0-51070
<
<
323 Y9
ao.Oom. ¢
zro- .
toro-21'0
€00’ 0-
0r
s10-0482070
$00°0-_ .
muo.ovaxo n
00" 0-
160°
1100424070
00" 0~
rene
2107046070
800" 0- e1vn
zzovos! €
800°0-_ |
zzo 0473170
czro- .,
PRSP LA
nn.Onnn.o
Zvto+
9r €~
-7
aa.ouan.
Zr0e- .
6s-0-07"2
Tzro- .
sor0s" 0t
$-u

200° 0~

r00.860°0
oo an160%0

:

B
e orEE0°0
o iart10°0
o0 ann
o
000 o
o0 o
o
ol
o
oo
wwunuoc. |
o
o

72 =u

oo otri0%0
wmunnuo.o.o
:

corovbz 0~
cou81°0-
270+04080°0
o0 o080 0
0o g
00 % 00
jpsgbeC IR
a3t 0
oo
o
e
e
T

t=zu

%I0°0

e ovtz0®0
roo.or210°0
.
Mmm“wnwuw.o
o or970°0
o tor00
o0 o000
oo 00
o0 %1000
o e cor
reia.5010
oo
ooz
“””M“oq._
”uuwuc—._
ot
N = u

oo0-orE600°0  groc.oi5E100
SooiarEB00°0  oooo o*e510%0
- <

o170 = T200 01012070
Srearl0 - T00.010:20°0
T70-0a180°0 OO0 0L06L0"0
200.00180°0  ceoo-0s06E0°0
ro-ar360°0 500 01190°0
3000019600 ho0.0p190°0
corost10 roroall'0
potteU N B TR
ORI ootz
JORNTR Coontze0
”..“MH.».wN “MHMH:N._
“”uwmw.cw “M”MHDN.—
wnmum.n Mwnmuno.~

r=zu z2=u

%0°0 =03

9410°0

9€10°0

0709

0c0°0

8120°0

812070

oto°o

010°0

§290°0

529070

[RRY)

110

arndu

ni

€e

Te

Ou

ST §Ja0)



132
to calculate the values for a, and b, The fact that H, = O/O [see
equation (4.54)], however, implies either a, = b, = 0 or that the power
index i8 n = 2.0 . As there is no reason to presume that a, = b, = 0
then n = 2.0. This inference is supported by the fact that the errors
associated with the Fourier coefficients (Table 4.4) are least for n =

2.0 .

4.6 Discussion and Conclusions.

In our analysis we have made certain simplifying assumptions about
the the light source and the scattering material in order to analyse
the effects of occultation alone.

We have considered the light source to be spherically symmetric
despite the fact that Be stars are believed to be fast rotators and
thus likely to be ellipsoidal in shape. This would primarily modify the
geometrical factors of the problem, namely the depolarisation factor
and the occulted region, making the calculations difficult but not
changing the quantative results . A secondary effect however will be
that the star itself will be intrinsically polarised (with the net
polarisation vector lying in a direction parallel to the equatorial plane
- Cassinelli, 1987). By confining our analysis to early type stars,
however, photospheric polarisation can be neglected in the visible
region (see Collins, 1989).

The effect of limb darkening is to decrease the effective stellar
angular radius and thus increase the net polarisation, and although we
have neglected limb darkening it can be incorporated into the theory
(Brown, Carlaw and Cassinelli, 1989).

The circumstellar material is considered to be optically thin and

thus absorption effects may be neglected. If absorption within the
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envelope were to be included the problem would become wavelength
dependent (e.g. Mcl.ean, 1978; Haisch and Cassinelli, 1976) and so our
analysis is applicable to broad band photopolarimetry only.

Our results show that for an axisymmetric disc occultation enhances
the net polarisation (compared to when occultation is neglected) at low
inclination, whereas at high inclination occultation reduces the net
polarisation.

In the case when a mass transferring binary can be approximated
to an axisymmetric disc with a superposed one dimensional plume, it is
then possible to obtain the inclination of the system, the polarisation
of the disc and (for sufficiently high inclination) the density structure
of the plume from the polarimetric data.

In general a circumstellar disc will be asymmetric and we have
found that by Fourier analysing the data it is possible, when the
radial structure of the disc is of of a presumed form, to obtain the
inclination of the system and thereby obtain the Fourier expansion for

the density distribution.
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Chapter 5.

III. General Axisymmetric Envelopes.

5.1 Introduction.

So far, the effects of occultation upon the scattering of light from
circumstellar envelopes has been restricted to envelopes that are
confined to the equatorial plane of the star (i.e. planar distributions).
It has been found that when occultation and the finite size of the star
are incorporated into the single scattering treatment of Brown and
McLean (1977; henceforth BM) the net theoretical polarisation is
reduced by up to a factor of two compared to the point light source
treatment.

It can be anticipated that for general scattering envelope
distributions the net polarisation will again, in general, be reduced.
The amount of reduction will depend upon the envelope shape, the
density distribution and also the inclination of the system.

In the following Sections the normalised Stokes parameters are
obtained for a general envelope distribution with the inclusion of
depolarisation and occultation (Sec. 5.2). We then consider three
specific (axisymmetric) distributions (Sec. 5.3) and investigate what the
effects of occultation and depolarisation are upon the observed

polarisation compared to the point light source treatment of BM.

5.2 The General Theory.

Consider a star (radius Ry, luminosity, Lyx) centred at O (Fig. 5.1)
surrounded by an extended envelope of scattering material with a

number density n(r). In the fixed stellar frame (X,Y,Z) the Z-axis
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Figure 5.1

A star centred at O with a radius Ry (not shown) rotates uniformly
about the Z-axis. An observer (E) is inclined at an angle i to the
rotation (Z) axis of the star.

A general scattering point, P, at a distance r from the centre of the
star, has position (r,x,¥), in spherical polars, in the observer-sky
(A,B,E) frame and has position (r,8,0) in the stellar frame. The
observer-sky axes are orientated such that the A-axis coincides with

the X-axis of the stellar frame.
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defines the rotation axis of the star. An observer (E) is inclined to
the rotation axis of the star by an angle i (the inclination) and the
observer-sky frame (A,B,E) is oriented such that the Z-axis lies in the
EB plane.

A general scattering point, P, at a distance r from 0O, in spherical
polars has position (r,e,6) in the stellar frame and (r,x,%) in the
observer-sky frame.

In the frame of the observer, the normalised Stokes parameters can

be written as

o
u"

OOJVD(r)n(r,x,W) sin?X cos2y %Vz- (5.1)

o
{

- oojvn(r)n(r,x,w)sinzx sin2v 5 (5.2)

where D(r) = (1 - Ri/rz)’2 is the depolarisation factor for a finite
spherical light source (Cassinelli et al.,, 1987) and o, = 3op/16m , op is
the Thomson scattering cross-section.

Equations (5.1) and (5.2) are integrated over the observed scattering
volume (Fig. 5.2), which is the total volume of the scattering region
minus the occulted region that lies behind the star, according to an
external observer. In the observer’s frame the normalised Stokes

parameters are

2 7 - sin™!(Rg/r)
Q-=o, I J j D(r) n(r,X,¥) sin2X cos2y f—%’ (5.3)
0 Rx 0
$ r X
2m o n - sin~1(Ry/r)
o . o dV
U = o, I J J D(r) n(r,x,¥) sin?x sin2y = (56.4)
l‘I"() I‘R* xO

In the polarimetric modelling of stellar winds the density is generally
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Figure 5.2

Occulting cylinder in the observer’s frame.
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of some presumed form in the stellar frame and it is, therefore, more

convenient to transform from the observer's frame to the stellar

(natural) frame via the following relations (Fig 5.3)

cosX = cosé

sinX siny

sinX cosy

cosi - sin® sini sing

cos® sini + s8in® cosi sing

s8iné cose¢

(5.5)

Substituting equations (5.5) into (5.1) and (5.2), we obtain

Q =
U =
where
To= %QIVD(r)
ToYo = %ojvp(r)
ToY1 = %ijp(r)
ToYs = %njvn(r)
ToYs = %QJVD(I‘)
ToYe = gDJVD(r)

2(Tory8ini + TyY4cosi)

n(r,e,e)
n(r,e,d:)»
n(r,e,¢)
n(r,e,o)
n(r,e,%)

n(r,e,o)

and %‘5’ = sinedededr .

In the stellar frame the density distribution

(To = 3ToYo)sin?i - ToY,8in2i + ToYz(l + cos?i)

dav

r?
dv

2

cos®e -z
sin26 cos¢ g
. . \'J
sinZ2é sind —=

sin?e cos2¢ %Z_V

sin?e sin2¢ ?2/

(5.6)

(5.7)

(5.8)

(5.9)

(5.10)

(5.11)

(5.12)

(56.13)

is simplified at the

expense of complicating the integral limits. The volume integral can be

expressed as three seperate volume integrals, viz
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Figure 5.3

Spherical triangle from Fig. 5.1 for the tranformation from (r,x,%) to

(r,8,0) coordinates.
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e
i
N O—— 8
® O —
8 00— N

Ry/sini  2m ]

ool

C——y
1]

0 Ry o e(s,r)
r ¢ -]
1
0, Ry/sini n-(i+g) ¢&(e,r)
r -] ¢
2
with G = sin™1(Ry/r)

cose cosi + cosé
sin® sini (56.14)

¢(e,r) = sin~! [

- -1
®(¢,r)= cos [ s8in®i cos®¢ - 1

cosi cos§ - sini sin¢® (sin?C - sin?i cosztb)’*]
J

The first volume integral (f7) is the total volume of the envelope. The
second volume intergal (fp;) represents the volume enclosed by the
occulting cylinder out to a radius Rgcoseci (Fig. 5.4) which is the
outermost radius to which the rotation axis of the star passes through
the occulting cylinder. The third integral (fp,) is the volume of the

occulting cylinder beyond r = Rgcoseci.
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Figure 5.4

In the stellar frame, the occulting cylinder is indicated at three
different radii by the projection of the stellar disc (as viewed from E
- see Fig. 5.2) on to the hemispherical surfaces.

The total volume of the occulting cylinder in the stellar frame is most
conveniently considered as two separate volumes (see text). The first
volume is that in which the stellar rotation axis of the star cuts
through the occulting cylinder (i.e. out to a radius Rgcoseci. The
integral limits are indicated with a subscript 1), The second volume is
then that in which the stellar rotation axis does not cut through the

occulting cylinder. (Integral limits are indicated by a subscript 2.)
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5.3 Axisymmetric Distributions.

Polarimetric observations of Be stars (Clarke and McGale 1988a, b;
Clarke, 1990) have shown that the intrinsic polarisation of Be stars is
variable and fluctuates about some mean value. This indicates that
there exists an underlying axisymmetric envelope surrounding the star
(which gives rise to the mean observed polarisation) that is subject to
temporal density enhancements. These enhancements may be stochastic
(Clarke and McGale, 1986, 1987) or periodic (Clarke and McGale, 1988a,
b) in nature.

In Sec. 5.6 we shall investigate the variability of polarisation due
to some density pertubation. Here, however, we wish to consider the
time average polarisation from an axisymmetric envelope.

For an axisymmetric distribution [n(r) = n(r,e)] the polarisation lies
in a plane parallel to the axis of symmetry (i.e. the rotation axis). The

net polarisation is therefore P = Q (U = 0) and hence

P=Q = (T - 3TyYo)sin?i - To¥,8in2i + Toyg(1l + cos?i) (5.15)

The theoretical dependence of polarisation with certain
observational parameters can be used to infer the geometry of the
envelope (McLean and Brown, 1978) or to test the validity of envelope
models (such as those of Doazan and Thomas, 1982; Marlborough et al.,
1978) by constraining the parameter space (e.g. envelope shape and
mass) to agree with polarimetric observations. Once the constraints of
the model are established, it is then possible to decide whether the
model is to be rejected or not. For example, if a model proposes that
the scattering envelope is almost spherical, then for Be stars the
model has to be rejected on the grounds that the mass of the

envelope required is too large (compared to the inferred mass from
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spectral observations). The polarimetric validation of envelope models
is most easily achieved using the single scattering, point light source
treatment of BM. It has been shown (Ch. 3 and 4) that the BM analysis
overestimates the polarisation compared to when occultation and
depolarisation are included and therefore the BM analysis permits a
greater (and possibly different) range in the parameter space than
when depolarisation and occultation are taken into account.

In order to illustrate the effects of occultation and depolarisation
upon the polarisation from circumstellar envelopes (compared to the BM
treatment) three geometries, similar to those of BM are considered.
These are:

(i) A spherical shell with a surface density that depends on the
colatitude, viz
Q = Q, 8(r - R) exp-B|cosel.
;«rhere Q, is the equatorial surface density, R is the radius of the shell
and B is a free parameter ( —» < B < ®) that describes the variation of
the scattering material over the surface.

(ii) An oblate spheroidal shell with uniform density,

R

1 R, + hRy
v 1+ (A - 1) cos<e

J T+ (AZ - 1) oosZs (@) =

r «

1
o]
0

1"
o

otherwise n(r,8)

where A > 1 (for an oblate spheroid) and R, is the equatorial radius
of the envelope. In addition (for the puposes of integration) we will
assume that the shell is thin, h << 1.

(iii) A wedge shaped equatorial disc (cylindrical sector geometry) of
infinite extent with a radial power law distribution, n = ng(r/Ry)™M and

a half opening angle &, where ngy is the electron number density at
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thr surface of the star [ny = n(r = Rg) and n is the power index.

5.3.1 Axisymmetric Envelopes View in the Equatorial Plane (i = 90).

Before proceeding to the general inclination case, it is instructive
to compare the point light source polarisation with that when
depolarisation and occultation are included for envelopes viewed in the

equatorial plane.

5.3.2 Spherical shell.

(a) Point light source.

From the BM analysis the polarisation is,

Po = Z%fa[(1 - o B) - 3( Ly - eB[1 4 24 5]} ] (5.16)

(b) Extended light source without occultation.
For this particular geometry depolarisation is taken into account by
multiplying P, by the depolarisation factor which is uniform over the

shell, viz

P, = (1 - X~2)% p, (5.17)

where X = R/Ry and R is the radius of the shell.

(c) Extended light source with occultation.

In Fig. 5.5 the occulted region of the shell is shown as the hatched
area. This is the projection of the stellar disc (as seen from E) upon

the surface of the shell (see also Fig. 5.4). The polarisation is then,

Py = (To = 3To¥o) + To¥s (5.18)

where,
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Figure 5.5
Schematic diagram of a spherical shell (radius R) surrounding a star
(radius Ry) with an observer (E) in the equatorial plane. The hatched

area is the occulted region of the envelope (as seen at E).
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1/X
2100 ~B/X
TO=WZQQ(1_X—2)%{%_e—B+§ +§IG—B¢(u)du
o

e~B/X [1 2 2 ]

_ 2o _ 1 - 2 2

T s T (1-xi [ m - e 1o ) 1 et Rt R

1/X
+§[ w2 e PH o) du
(o]
1/X
2 0

Tors = Togte (1 - x2 { B[ (1 - 42) ePH sin(2o(u)) du

[o]
(1 -3%x2
and () = [T:—u:-z—] U = cos®

The variation of P; and P, (compared to Py) are shown in Fig. 5.6
and 5.7 as functions of B and the radius of the shell (X = R/Ryg)
respectively It can be seen that occultation is unimportant when the
shell is either distant from the star (X > 3) or when the scattering
material is concentrated towards the poles of the star (B < 0) because
in both cases very little material is being occulted and thus the
polarisation 1is adequately approximated by the inclusion of the
depolarisation factor alone (i.e. P, ~ P;). Moreover at large distances
the point light source analysis is valid (P, ~ Pg). From Fig. 5.6 it
appears that occultation is unimportant compared to the correction for
depolarisation. However, for relatively close shells (X < 2) with
equatorially concentrated scattering distributions (B > 0) the
polarisation is overestimated by ~20% (at X ~ 1.2) when depolarisation

is included but occultation is not.
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Plot of polarisation values P; and P, compared to P, as a function of

B for spherical shells of fixed radii (X).
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Plot of polarisation values P, and P, compared to P, as a function of

radius (X) for spherical shells with fixed B.
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6.3.3 Oblate Spheroid.

(a) Point light source.

From the analysis of BM,

1
Py = 2ﬂoonohR*{ Az - % 1n|A+ (A2 - 1)¥%]

(56.19)
3 1 %
RS T|A - e A+ (47 - 0#1])
(b) Extended Light source without occultation.
1 Xz(u)
P, = 2mogngRs | [ (1 - x2)% (1 - 32) axau (5.20)
0 x4 (M)

where x; >(4) are given below.

(c) Extended light source with occultation.

In Fig. 5.8 the occulted region of the spheroid/ellipsoid is shown as
the hatched area, which is the projection of the stellar disc upon the
surface of the shell. Notice that the region is elongated towards the
poles as the polar regions are closer to the star than the equatorial

region. The polarisation is found to be (with the aid of Fig. 5.3)

Py = (Tg = 3ToYo) + To¥3 (5.21)
where
1 Xz(“)
To — 3ToYo = 2MOngRx [ I I (1 - x~2)% (1 - 3u2) dxdu
0 x4 (M)
uo x2 (u)

_ _2_?1.[ J. (1 - X—Z)% (1 - 3“2) {m - 2¢(u)} dXdU]
0 x4 (M)
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R,Z ‘éjz:
X
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R1/A

Figure 5.8

Schematic diagram of an ellipsoidal shell (equatorial radius R,,
oblateness A) surrounding a star (radius Rg) with an observer (E) in
the equatorial plane. The hatched area is the occulted region of the

surface (as seen from E).
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) Mo Xz(“)
ToYs = 2MOngRy [Eﬁ I f (1 - x~2)% (1 - 42) sin2¢(u) dxdu]
0 x4 (u)

with x = r/Ry and

_ R, /Ry - R,/Rxy + h
= Trar-n@ 0 W s g arone

o(u) = sin-i[ gi& [(RifR*z"l’ = L;); (A2 —l)uzl”] (h << 1)

Lo = [(Ry/Rx)2 - (A2 - 1)]%  (h << 1)

We take h << 1 (i.e. an ellipsoid of finite thickness but comparatively
thin compared to its equatorial or polar radii) in order to simplify the
complexity of the problem. The problem is further simplified as the
inner intergral may then be approximated by' a Taylor expansion.

The variations of P; and P, (compared to Pgy) are shown in Figs 5.9
and 5.10 as functions of the oblateness (A) and the equatorial radius
(X; = Ry/Ry) respectively. The most striking thing to notice is that
contrary to what would be expected, the inclusion of "depolarisation”
actually enhances the polarisation by almost a factor of two compared
to when depolarisation is neglected. This phenomenon is due to the
vector nature of polarised light. Consider the case when an ellipsoidal
envelope touches the poles of the star (cf. Fig. 5.8). In the point light
source case, scatterers that lie in the equatorial plane will produce
polarised light that is parallel to the rotation axis, whilst scatterers at
the poles will produce polarised light that is perpendicular to this
plane. Since these regions produce oppositely polarised light partial
cancellation occurs. Since more scatterers lie in the equatorial plane

the net polarisation will lie in a plane parallel to the rotation axis and



153

Wttt
P1(X1=1'S)
e +
led J-»
v | £ 3 -
=
et
2. INT -
5 Py (X=2-5)
o% P1(X1=30) 1
P4(Xq4=35)
‘1“
Pa(X1=35)
LY —+- } + $ + -+ } - 4 5 5 mmmnn o
L K2 L LE O A0 A2 A4 26 20 AP B2 RE A6 3% AD
Oblateness, A
Figure 5.9

Plot of polarisation values P, and P, compared to P, as a function

of oblateness (A) for ellipsoids of fixed equatorial radii (X).
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Plot of polarisation values P; and P, compared to P, as a function of

equatorial radius (X,) for ellipsoids with fixed oblateness (A).
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will be reduced compared to the polarisation from the equatorial region
alone. For a finite light source material closest to the star (i.e. the
poles) will be most affected by depolarisation whilst scattering material
in the equatorial plane will essentially see a point light source and
therefore will not be much reduced (compared to the point light
source calculations). The net polarisation of the whole ellipsoid will
then be approximately equal to that of the equatorial regions because
there is little or no contribution from the poles (i.e little cancellation)
and consequently the polarisation will be enhanced (compared to the
point light source approximation) and lies in a plane parallel to the
rotation axis.

The effect of occultation is to reduce the polarisation (compared
with P,) but this is a rather minor correction and only significant
when the envelope is oblate and the equatorial radius is small (X; < 4)

such that a significant number of scatterers are occulted.

5.3.4 Wedge Shaped Disc.

(a) Point light source.

From the analysis of BM the polarisation is

s 2
Py = 2mOgnoRy _5_52_‘:\_‘%9?_“ (6.22)

(b) Extended light source without occultation.

p, = M- pni)y,, 2/ B (5.23)

where B is the beta function.
(c) Extended light source with occultation.
In Fig. 5.11 the occulted region of the disc is shown. The polarisation

arising from the volume V, is zero because, according to an observer
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Figure 5.11

Cross-section through a wedge shaped disc (opening angle «)
surrounding a star (Radius Ry) with the observer (E) in the equatorial
plane. The hatched region is the total occulted volume (V,; + V). Since
V, is rotationally symmetric, according to the observer, the net
polarisation of V, is zero and then the only contributing volume to the

polarisation in the occulted region is V;.
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at E, the region is rotationally symmetric about the line of sight. The

net polarisation is then,

Py = (Tg = 3ToYo) + ToYs (5.24)
where

To = 3ToY0 = 2MOgn Ry [% B((M*1)/2,3/,) sin?2a cosx

1 sinx _

-w [ Ja-yar - we) o - 2e(uy)) awy |
sinx o ‘
1 sinx
- 1 2% -2 g
To’a = 2MOgngRy [ 5 I I (1 - y2)* y'=2 8in2¢(u,y) dudy]
sinx ©

o(H,y) = sin"[ [i—:—ﬁ;]%] » ¥ = Ry/r

The variation of P; and P, (compared to Py) are shown is Figs 5.12
and 5.13 as functions of opening angle (x) and power index (n). For a
disc of infinite extent, in order that the mass of the envelope is finite
the power index must be n > 3 (see section 5.4).

It can be seen that the effect of occultation is to reduce the
observed polarisation (compared to P; and Pgy) and is most significant
for small opening angle and high values of n since then volume V,
contains a significant number of scatterers. By increasing the opening
angle the occulting volume V; becomes insignificant and occultation
effects are then negligible (i.e P, —> 151 as « —> 90 ). Similarly as n —>
3, the scattering distribution is less concentrated near the star and so

the volume V, is less significant.
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5.4 Absolute Polarisation.

Be stars are observed to be highly intrinsically polarised early
type stars exhibiting polarisations of up to 2% (c.f. Sec. 1.5). In order
to observe such a high degree of polarisation the scattering envelope
surrounding the star must be highly asymmetric as viewed by an
observer. To account for such a high degree of polarisation the
scattering envelope has been modelled by some authors as an
equatorial mass enhancement (Marlborough et al.,, 1978; Dachs et al.,
1986; Waters, 1986) whilst others haAve interpreted the envelope to be
ellipsoidal (Doazan and Thomas, 1982; McLean and Brown, 1978).

In our modelling of scattering envelopes we have implicitly

assumed through out that the envelope is optically thin, ie. T < 1

where T = gﬁ’ge (5.25)

and N, is the total number of scattering electrons. For T ~ 1 we may
put an upper limit on the mass of the enveiope to be Mgpy ~ 107® Mg
(assuming the envelope to be purely 100% ionised 'hydrogen).
Spectroscopic observations of Be stars suggest a mass loss value of
typically 10 - 10710 Mg/yr from UV observations (Snow and
Marlborough, 1976; Lamers and Rogerson, 1978) whilst IR observations
indicate mass loss rates systematically a factor of 10 - 102 higher
{(Waters et al., 1988). The inferred mass loss rates, thepefore, indicate
an envelope lifetime of typically of the order of decades. This is
consistent with the observed timescale of Be star phase changes
(Underhill and Doazan, 1982 p. 317) and theoretical estimates (Apparao
et al., 1987) which suggest a short period of enhanced mass loss from

the star followed by a slower steady mass loss of the resulting
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envelope which re-occurs on timescales of approximately a decade.

A useful quantity with which to compare these geometries with
each other is the polarisation per unit mass (P2/Mgnv). This can be
considered as a measure of how efficiently an envelope of given mass
will produce a net polarisation. If we consider a star with a
polarisation of 2% (i.e the maximum polarisation of a Be star) then

P, = 2% = 0.02.

Menv = mpNe (kg) so substituing for N from eq. (5.25) we have

Menv = mpRi‘r/oo (kg)
and hence P,/Mgp,y ~ 0.04 (oo/ZmpRﬁ) kg~ for T ~ 1.

For a shell of radius X (= R/Rg) the mass of the envelope is given

by

Menv = 4 mREX2(1 - e7B)/B  (kg) (5.26)
In Fig. 5.14 the variation of the function P,/Mg,, is shown as a
function of the shell radius. The curve represents the observed
polarisation from a shell of constant mass (and B) expanding out from
the star. As the envelope expands, the polarisation increases and
reaches a maximum at X ~ 1.2 (due to a trade-off between
depolarisation and the inverse square law) and thereafter decreases,
falling off as X~2, The distance at which P,/Mg,y reaches a maximum
can be found by differentiating P,/Mg,y with respect to X and setting

i) =% w2 (2 - %)
so d—?([l\!;z;;] =0 when X =3/, ~1.2

Polarimetric observations of w Ori (Sonneborn et al.,, 1988, Brown
and Henrichs, 1987) shows that the star exhibits temporal variations

gimiliar to those of Fig. 5.14. This would suggest that the temporal
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polarimetric variations of w Ori may be interpreted as an expanding
shell of material (for a full discussion concerning the interpretation of
the polarimetric variations see Brown and Henrichs, 1987). In this
interpretation, the peak in the polarimetric data occurs because the
shell has expanded to a radius of ~ 1.2Rg. It is possible, from this, to
estimate the expansion velocity of such an envelope (assuming the
envelope is ‘lifted off’ from the stellar surface and expands at a
uniform rate) via
v ~ L2Rx/tpax (5.27)

where Ry ~ 10Rp and tg g,y ~ 1x10%s (time taken for polarisation to
change from the quiescent to maximum value, Sonneborn et al., 1988)
and hence v ~ 8.4 kms™1, which is approximately the thermal (sound)
speed of the cool wind (v ~ 10 kms™! at 10* K). The polarimetric
variations occurring within the wind of w Ori would therefore appear to
be associated with a low velocity component of the wind, whereas the
UV spectroscopic variations are asscciated with a high velocity
component (typically vy, ~ 100 kms~1). This would suggest (but not
prove - see Brown and Henrichs, 1987) that the polarisation arises
from a region different from that of the UV line variations

Fig. 5.15 shows the variation of P,/Mg,y as a function of B. Note
that for B = 0 the net polarisation is zero because the envelope is
spherically symmetric. When B < 0, the scattering material is
concentrated towards the polar regions, the polarisation vector lies in
a plane perpendicular to the rotation axis and hence the polarisation
is negative in sign (by definition). From Figs 5.14 and 5.15 it can be
seen that in order to produce a maximum polarisation of 2% the radius
of the shell must lie between ~ 1.1 and 4.0 (Rg¢) and the material must

be concentrated towards the polar or equatorial regions (i.e. |B| > 5).
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For a geometrically thin (h << 1) oblate ellipsoid of equatorial

radius X; (= R;/Ry) and oblateness A, the mass of the envelope is

given by

Menv = 4mnom RhXE/A  (ke) (5.27)

In Fig. 5.16 the variation of the P,/Mg,, is shown as a function of
the equatorial radius (X;). The curves can be considered as envelopes
(with constant oblateness) uniformly expanding away from the star and
in doing so the polarisation ' monotonically decreases, falling
approximately as X72. In Fig. 5.17 the variation of P,/Menv a8 a
function of oblateness is shown. Here the curves indicate the variation
of polarisation for envelopes with a fixed equatorial radius expanding
in the polar directions (decreasing A). As the polar radius increases
the envelope becomes increasingly spherical (A => 1) and hence the
polarisation tends to zero. It is apparent (from Figs 5.16 and 5.17)
that in order to produce a maximum polarisation of 2% the envelope
must be very oblate for a given equatorial radius (i.e. envelope must
be touching, or almost touching, the stellar surface at the poles) and
yet the equatorial envelope cannot be too large (i.e the absolute value
of the oblateness cannot be too great). In essence our results agree
with the conclusions of Doazan and Thomas (1982) and McLean and
Brown (1978) who suggest that extremely oblate envelopes are not
necessary in order to explain the observed polarisation of Be stars. In
fact extremely oblate envelopes (approximately A > 5) are unable to
produce a polarisation of 2%. It must be remembered, however, that
although the absolute value of the oblateness may not be large, in
order to produce a polarisation of 2%, the envelope must be near its

maximum oblateness (i.e. the envelope almost touching the stellar

surface at the poles).
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In Sec. 5.3.3 it was shown (for an ellipsoid) that the effect of

including occultation was a negligible correction compared to including
depolarisation into the BM treatment. One could envisage that this
would also be the case for a geometrically thick (h > 1) ellipsoid. For
such an ellipsoid (in the point light source treatment) the polarisation
is still given by eq.(5.19) whilst the mass of the envelope is given

(exactly) by

2
Menv = 4TngmoREXE %[1 + §1+ %‘-g-f] (kg) (5.28)

Therefore, assuming that for a geometrically thick ellipsoid, occultation
effects are still negligible, then the fuction P,/Mg,, will be
correspondingly smaller than shown in Figs 5.16 and 5.17 by a factor

(1 + h/X; + h2?/3Xf). Hence a geometrically thick ellipsoid is unlikely,
for any values of X; and A, to be able to produce a polarisation of up
to 2%.

The mass of a wedge shaped disc is given by

Meny = 4mgmpR} S0 (5.29)
and therefore in order that the envelope has finite mass n > 3 (n £ 3
is permitted only when the disc has a finite radius; see Waters, 1986).

In fig. 5.18 the variation of P,/Mgy,y is shown as a function of the
half opening angle (x). As is intuitively obvious, as « increases the
polarisation decreases because the envelope becomes less oblate. The
polarisation is zero when « = 90° as the envelope is spherically
symmetric. It is also apparent that for small « the polarisation (for
constant mass and power index) is approximately independent of the
half opening angle which would suggest that the envelope could be
approximated by a planar distribution such as that considered in Ch. 3

and Ch. 4. Notice also that the function P,/Mgn, is a monotonically
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decreasing function function of «. At first sight this would appear to '
be at variance with the analysis of Sec. 3.3.3 where it was claimed
that the maximum polarisation of a disc is achieved for « = 35°.
However, it must be borne in mind that in the latter case the density
of the envelope was assumed to be constant whereas we are now
considering the mass of the envelope to be a constant. The results
shown in Fig. 5.18 (and 5.19) are, however, consistent with our
previous results of Sec. 3.3.3. This can be demonstrated by finding
the maximum polarisation at o« = 35°, giving Py oy ~ 6.5%, consistent
with the inequality of eq.(3.23).

In Fig. 5.19 the variation of P,/Mg,y is shown as a function of the
power index. It can be seen that the function P,/Mg,. increases with
increasing power index. This may be interpreted in two equivalent
ways. One could consider an envelope of constant mass, whereby
il-qcreasing the power index of the envelope results in an increased
number of scatterers close to the star (e.g 28% of all scatterers are
contained within a radius of 5Rg, for n = 3.2, whereas for n = 4.0 this
figure is 80%) and hence there are more scatterers that contribute
strongly to the net observed polarisation. Alternatively, one could
consider the mass of the envelope required to produce a given
polarisation. Then, by the same argument as before, higher power
indices result in a greater concentration of scatterers close to the
star which are the main contributors to the polarisation. Hence By
increasing the power index the evelope will need to be less massive
(compared to low power indices) in order to produce the same
polarisation and therefore the function P,/Mg,y Wwill increase with

increasing power index.

In order to produce a polarisation of 2% it can be seen (Figs 5.18
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and 5.19) that there is little restriction upon the choice of parameters.

For example, « may be as much as 60° for high density power indices
(n > 3.6) i.e. material highly concentrated towards the surface of the
star. Even for low power indices (n ~ 3.2) half opening angles of up to
30° are permiss)ble.

On the basis of these results it would appear that either a
spherical shell with a polar/equatorial concentration or an equatorial
disc are likely to be responsible for producing the intrinsic
polarisation of Be stars rather than van ellipsoidal shell (particularly if

T < 1 or the envelope is geometrically thick).

5.5 Axisymmetric Envelopes Viewed at Arbitrary Inclination.

We now consider the polarisation from an envelope viewed at
arbitrary inclination. For both the point light source (Py) and
extended light source without occultation (P;) cases the results of Sec.
5.3 are simply multiplied by sin?i. For an extended light source with
occultation the net polarisation (at arbitrary inclination) is not so
easily found but may be written in the general form of

P, = (Tg - 3ToYo)sin?i - ToY,8in2i + (1 + cos?i)Tyr; (5.30)
where the weighted integral moments are given in eq. (5.8 - 5.13) and
are calculated in appendix B for the three geometries under
consideration.

In Figs 5.20 - 5.23 the function P,/Mg,y is shown as a function of
inclination for the three geometries. Also show is the function
(Pz/MenV)/sinzi which is a measure of the importance of occultation. If
occultation is unimportant then (Pz/Menv)/sinzi will be independent of
inclination such that the BM result (P = constant.sin?i) will be wvalid

and the polarisation of the envelope can be adequately approximated
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by incorporating depolarisation into the BM analysis.

For a spherical shell it can be seen (Fig. 5.20) that for polar
concentrated distributions (B < 0) occultation is important at low
inclinations where a significant number of scatterers are occulted (i.e.
polar region occulted). For equatorial concentrated distributions (B >
0) occultation is important at high inclinations where a significant
number of scatterers are occulted. This is particularly examplified for
the curve of B = 100, which can be considered to be an equatorial
ring of material. In this case occultation does not occur until i >
cos™!(!/4) and hence the variation of the polarisation with inclination
goes as sin®i (dotted curve) until i ~ 48° when occultation of part of
the ring occurs and the BM result no longer holds. Notice that
occultation is unimportant for electron distributions with |B] < 10 and
so the ©polarisation of such distributions may adequately be
approximated by the BM analysis when depolarisation is inciuded.

For a geometrically thin ellipsoid (h < 1) it can be seen (Fig. 5.21)
that the effects of occultation can in general be neglected. It is only
when the envelope is touching (or almost touching) the stellar surface
and the equatorial radius of the envelope is small that at high
inclinations occultation effects are noticeable. Even in this case the
effect is small and negligible (as found in Sec. 5.3.3). Therefore, the
polarisation of an ellipsoid can be accurately approximated by
incorporating depolarisation into the BM analysis.

It can be seen (Fig. 5.22) that for a wedge shaped disc occultation
is important at all inclinations. As the half opening angle increases
occultation effects become less significant but cannot be neglected and
therefore the BM analysis cannot be used to describe the variation of

polarisation with inclination for a disc. It may also be seen that the
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maximum polarisatién occurs at i ~ 85" and not at 90° as would be
expected. The fact that this ‘anomaly’ occurs only when occultation is
included suggests that the enhancement arises due to the .suppresion
of polarisation that is oppositely polarised to that of the whole disc.
That is, the occulted region is oppositely polarised to that of the
whole disc and by suppressing this polarimetric contribution leads to
a suppression of cancellation that in the absence of occultation would

not occur.

5.6 The Structure of General Three dimensional Envelopes.

Whilst for single stars it is reasonable to assume that the stellar
envelope is axisymmetric, it may often in reality not be true. Such
would be the case for instance if the envelope is gravitationally
perturbed by an unseen companion (eg. a neutron star) or corotating
wind structures (eg. corotating interacting regions - Mullan, 1984). In
such cases the stellar envelope may be modelled as an axisymmetric
envelope with a perturbation term that depends upon the rotation
rate. this may be modelled by representing the number density

function of the envelope by a Fourier series, viz

(-]
n{r,e,o) = n(r,e)[ } xJ-cos,j¢O + yjsinjd’o ] (5.31)
; 50 -
where
w is the rate of rotation, t is the time from t, when ¢, = ¢. By

substiuting eq. (5.31) into eq.(5.5) we may Fourier analyse the

polarimetric data via
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(o] 53 {03} cosjut + {1} sinjut  (5.32)
j=o J J

In order to simplify the problem we consider only sufficiently high
inclination systems such that the volume integral (eq. 5.14) Jo1 may be
neglected compared to the other volumes. At high inclinations this is
Justified because the volume Oy (cf. eq. 5.14) is geometrically small
compared to the other regions and also it is highly depolarised (as it
contains material that lies close to the star). At low inclinations, on
the other hand, the absolute value of the polarisation will be small (P
« sin2?i). Moreover at low inclinations the volume integral 0, will
appear to be almost rotationally symmetric and thus again only the
regions O, and T will contribute significantly to the polarisation
(depending somewhat upon the envelope distribution) By substituting
(5.31) into (5.6), integrating with respect to ¢ and equating to (5.32)

we find the Fourier coefficients to be

Po = 8o[(MA - B)sin?i + Gisin2i + X,(1 + cos?i)] j =0 (5.33)

[P} = —{bi}[cisinzi + %(NE - F)sin2i + %Y, (1 + cos2i)] (5.34)
d; a,

{P2} = [ 22}(D,sin2i - #K,sin2i + %(mM - N)(1 + cos?i)] (5.35)
92 -b,

Pj] - _[Pi)c.sin?i + M .sin2i . 25)7 ©3dJ .
{qj} = -{ «;}[0331n i+ 5ﬂ_.J31n21 + %YJ(l + cos4i)] (.j 571) (5.36)

t—

a8

[—
n

a; Y i . 2. even Jj
{—bj}[Dj81n21 - léKJsunZl + %ZJ(l + cos®i)] (> 2) (5.37)

u, = 0 (5.38)
{3;} = {_gi][(nE - F)sini + Y,cosi] (5.39)
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u b . . ] :
{Vi} = -{ai}[K281n1 - (7 - N)cosi] (5.40)
{33} = {_;};}[Ljsini + Yjco8i] odd § (> 1) (5.41)
u b .. - . .
{Vj] = -—[aj} [KJ‘Slnl - ZJ‘COSI] even Jj (J > 2) (5.42)
where
8j = OghgXj , by = OgoYj ‘ (5.43)
A = | ngpe(r,8)(1 - 3cos?e) sine dedr (5.44)
I
3 m
B = | nepe(r,e)(1 - 3o032e)[-2- - Q(r,e)] sine dedr (5.45)
Uoz
Cj: neff(r,0)(1 - 3cos?e) %i sine dedr (5.46)
o,
Dj= | nepr(r,®)(1 - 3cos?e) %4 sine dedr (5.47)
~02
E = | ngep(r,0)sin2é sine dedr (5.48)
g\
[ . n S .
F = | ngee(r,8)sin2e [§ - ¢(r,8) + —%] 8in6 dedr (5.49)
'102
- . n S,) .
F = | nope(r,e)sinze 5 - o(r,e) - 22] sine dear (5.50)
2
652 [ nerg(r,e)sinze -334 sine dedr (5.51)
~02
Hj= [ nepp(r,e)sinze 34 sine dedr (5.52)
lo, J
K‘ = G"_l + G'+1
o J } (5.53)
Kj = Gj-1 - Gj4s
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Lj = Hj—l + Hj-!-l
_ (5.54)
Lj = Hjy = Hjpy
M= f nepp(r,8)sin2e sine dedr (5.55)
T
N = joneff(r,e)sinze['—z'- - o(,0) + 3] sine dedr (5.56)
2
N = | nepr(r,0)sin?e [3 - o(r,0) - 24] sine dedr (5.57)
NOZ -
Wj= | nepp(r,e)sin?e %i sine dedr (5.58)
lo, 4
Xj= | neee(r,0)sin?e 3 sine dedr (5.59)
Jo,
Yj = Wiz = Wiz ‘
Zj = Xj—z + Xj+2 ] (5.61)
Zj = Xj-2 - Xjsz
ners(r,8) = n(r,8)(1 - R§/r2)%/n, (5.62)
§j = sin{j¢(r,0)}
} (5.63)
Tj = cos{jé(r,e)}
and
_ s —4[ cose cosi + (1 - R§/r?)
¢(r,8) = sin [ oine =ind (5.64)

By taking ratios of the observed Fourier coefficients the envelope

Fourier coefficients may be eliminated, viz

rj = Bj-_-9 for all j > O (5.65)
Vi Yj
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For distributions in which occultation is unimportant the volume

integral fg, may be neglected and

r. = 1 + cos?i
2 2cosi

[y = cosi,
agreeing with the results of Brown et al.(1978) and Simmons (1983).

The Fourier coefficient ratios 'y and [, are shown as functions of
inclination in Figs 5.23(a-c) and 5.24(a-c) respectively. In each case
the BME results are shown for comparision.

In Fig. 5.23a it can be see that for a si)herical shell deviation from
the BME result ([; = cosi) is significant for all values of B at
moderate-low inclination (i < 60°). Interpreting the observed [; in
terms of the BME analysis would result in a systematically higher
inferred inclination than is actually the case. At higher inclinations (i
> 60°) the converse is true for equa'torially concentrated distributions
(B >0) whilst for B < 0 the curves follow the BME result, which is
expected from the analysis of Sec. 5.5 where it was found that
occultation is unimportant at high inclinations for polar concentrated
distributions. For B = 100 (effectively B = =) for a given observed I'; a
multiplicity of inclinations is possible (i.e a maximum of four equally
valid inclinations are possible). For an ellipsoid (Fig. 5.23b) it can be
seen that the Fourier ratio I'; follows closely the predicted curve of
BME agreeing with the previous sections’ findings whereby occultation
was found to be negligible. When the envelope is a wedge shaped disc
it is found (Fig. 5.23c) that the observed values of I'; are always
systematically larger for a given inclination than the corresponding
BME result (i.e. if the observed I, is interpreted as being equal to
cosi the inferred inclination would be systematically lower than the

real inclination of the system). For envelopes with small half opening
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angles it can be seen that the inclination dependence of [, is
definitely not varying as cosi. For example for « =20° Ty isl practically
independent of inclination, whilst for smaller opening angles still r, >
1 and can only be interpreted by the canonical models in terms of an
eccentric binary orbit (Brown et al.,1982).

The variation of T,, unlike the variation of I,, for each of the
geometries (Figs 5.24a-c) shows a remarkable agreement with that of
the BME result (except for a shell viewed at low inclinations are there
any problems in interpreting the the value of T,). This would indicate
therefore that I, is a reliable indicator for the inclination of the
system independent of geometry unlike Iy which depends significantly
upon the density distribution.

In Sec. 4.5 it was shown that it is possible by use of higher
Fourier coefficient ratios (I"j) to obtain the inclination, the envelope
Fourier harmonic coefficients and the radial envelope density
distribution of the system. This was made possible only because the
envelope was of a presumed known structure. In the absence of such
knowledge the best that one may achieve is the inclination of the
gsystem. In order to infer the envelope density structure, short of
constructing high order Fourier coefficient (Fj) curves for various
envelope geometries (cf. Sec. 4.5) one could generalise the density
distribution as an expansion of Legendre polynomials (Simmons, 1982,
1983). The general method would be to plot the curves of [j up to the
sixth order, say for the lowest order Legendre polynomials and then
by finding the wvarious Fourier coefficent ratios (Fj) to obtain a best
fit, i.e to obtain consistent inclination values and thereby, at least to
some extent, inferring the distribution of material with in the envelope

(eg. polar or equatorial enhancements) which cannot be inferred by
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the canonical analysis.

5.7 Discussion and Conclusions.

The general combined effect of incorporating both occultation and
depolarisation into the single scattering polarimetric theory of Brown
and McLean (1977) has been found to reduce the net polarisation by
up to a factor of two (compared to point light source calculations),
except for ellipsoidal envelope geometries where the net polarisation is
found to be increased by a similar factor.

One important feature of incorporating occultation into the
polarisation theory of BM is that the wvariation of polarisation with
inclination is no longer P « sin?i (this is still correct if depolarisation
alone is included), but instead is more complicated [cf. eq. (5.15)]
where apart from the explicit complexity of the inclination dependence
there is also an implicit dependence arising from the weighted
integrals as they too are inclination dependent. The exact variation of
polarisation with inclination therefore becomes model dependent (much
in the same way as full radiative transfer treatments are model
dependent).

By using geometrical models to represent the envelopes of Be stars,
it was found that an equatorial enhanced density distribution (i.e. an
equatorial disc or a shell with B > 5) or a polar enhanced distribution
(shell with B < -5) are able to produce polarisations in excess of the
observed maximum polarisation of Be stars (2%). Ellipsoidal envelopes,
on the other hand, were unable to produce such a high degree of
polarisation. It would appear, therefore, that the geometrical model of
Marlborough et al. (1978) is,polarimetrically, an acceptable model for Be
star envelopes, whereas the Doazan and Thomas (1982) model is not.

One somewhat overlooked geometrical model capable of producing
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polarisations in excess of 2% is a polar enhaced density distribution.
In Be stars such a scenerio is possible by the fact that these stars
are rapidly rotating. The rapid rotation of the star leads to a lower
local surface gravity at the equator than at the poles (cf. Sec. 1.3.1)
and hence one anticipates equatorial enhanced mass loss. However, it
must be borne in mind that the equatorial regions will consequently
have a lower local temperature compared to the polar regions. It is
conceivable that the higher temperature at the poles could lead to a
reduction in the local gravity such that mass loss from the polar
regions becomes more probable.

By considering corotating density perturbations within a
circumstellar envelope it has been found that by Fourier (time)
analysing the polarimetric wvariability .+ with occultation
effects included, the inclination of the system can be reliably
estimated by using the ratio of the second harmonic coefficients. In
single stars this has the imporant consequence of establishing the
equatorial velocity of the star from knowing the apparent rotational

velocity (Vsini) which cannot be otherwise established.
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CHAPTER 6

Obliquely Rotating Envelopes of Single Stars.

6.1 Introduction.

Regular polarimetric (and photometric) variations of stars are
generally interpreted as arising due to binary motion despite the fact
that in some cases the binary nature does not reveal itself in
spectroscopic analysis. A recent alternative explanation for the regular
variations has been given by Harmanec (1984) who suggested that the
variations arise from an obliquely rotating envelope (ORE) about the
star. The mechanism giving rise to an ORE is presumed to be be due
to the magnetic field of the star whose rotation axis is not aligned
with the magnetic field axis. Indeed Clarke and McGale (1988a, b:
henceforth CM) have successfully interpreted polarimetric data in this
way for ¢ Ori E and X Per by considering two localised spots of
scattering material placed at the poles of an obliquely rotating
magnetic dipole field.

In a binary system the external torque required to drive and
maintain an ORE is provided by tidal forces when the orbital plane of
the secondary does not lie in a plane perpendicular to the rotation
axis of the primary with the extended envelope. Such a scenerio has
been suggested by Apparao (1985) for the X-ray transient AO538-66 in
which the primary star has an extended disc-like envelope and the
companion -a neutron star- orbits the primary out of the plane of the
disc. This model, however, has been found unnecessary in the

interpetation of the polarimetric data for A0538-66 (but not excluded)

in Chapter 2.
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Karitskaya (1981) has considered, for Cyg. X-1, an oblique ‘and
precessing accretion disc around a neutron star orbiting the luminous
primary and finds that the predicted polarimetric variations are
inconsistent with the data of Kemp et al. (1978) and Kemp et al. (1979).
However, it is possible in Karitskaya’s model for there to be
complicated occultation effects because as the disc precesses a
variable amount of the disc will be occulted by the primary (with
respect to the observer) which was neglected in the analysis. Brown
et al. (1978: henceforth BME) have also analysed the polarimetric
variations of Cyg. X-1 and they too find that the polarimetric
variations are inconsistent with their model. Milgrom (1978) suggested
that such occultation of scatterers would lead to inconsistences when
the polarimetric data is interpretated in terms of the canonical models
(which has been verified - cf. Sec. 5.8).

In this chapter we wish to analyse how significant the effects of
occultation are upon the interpretation of polarimetric data when the
point light source analysis of BME is used (cf. McGale, 1988) but
occultation is present within the data.

First, we extend the single scattering, point light source
approximation for ORE to include envelopes that exhibit some symmetry
such that the envelope appears stationary in the obliquely corotating
stellar frame and is a previously unpublished result. Following this,
envelopes with axisymmetry in the obliquely rotating frame are
considered.

We then consider the effects of including occultation and finite
light sources upon the the observed polarimetric variability. Because
the variablity depends upon the envelope geometry (cf. Ch. 5) we

consider only two specific geometries and assess how reliable previous
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point light source treatments (eg. CM) have inferred the inclination
and obliquity angles of ORE when occultation is neglécted but its
effect are present in the polarimetric data.

Finally, we consider to what extent spectroscopic variability could

be used to differentiate between envelope geometries.

6.2 General Envelopes.

Consider a point light source at O (Fig. 6.1). Let the star have
some fixed cartesian coordinate system (X,Y,Z) such that the Z axis
defines the rotation axis of the star. An observer at E with coordinate
system (A,B,E) is defined such that th X-axis lies in the plane AE and
the angle between 0OZ and OA is i, the inclination of the star. The
scattering envelope is stationary in a frame (x,y,z) where the z axis is
some symmetry axis (e.g the magnetic axis) and shall be referred to as
the principal obliquity axis and the angle (20Z) between the principal
obliquity axis and the stellar rotation axis is the angle of obliquity
(€). We shall assume that the envelope rotates uniformly about the
rotation axis of the star, at a rate w :1'“7T, where T is the orbital
period and » = «wt with t being the time after which the y-axis lay in
the XZ-plane.

In the observer’s frame the position of a general scattering point,
P, in spherical polars is given by (r,Xx,¥), whilst in the star frame it
will have position (r,e,6) and (r,x,B) in the corotating (oblique) frame.
For an ensemble of such scatterers, with number density n(r), the

Stokes Flux parameters in the observer’s frame are given by
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The scattering geometry for a general point, P, at a distance r
from O. In the obliquely rotating frame (x,y,z) the scattering point (in
spherical polars) has position (r,x,B). In the fixed stellar (X,Y,Z) frame,
P is given (r,0,0). The Z-axis defines the rotation axis of the star, the
2-axis is the principal obliquity axis and the angle zOZ (€) is the

angle of obliquity.
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- dv
Fy = kt?.gmd Jr{l](z) (L + cos*x) = r
Fq = 2258 [n(x) sin? a9
Q= mg 3 r) sin®X cos2y Tz (6.1)

LyO . .
Fy = ;—#c—lg Js(g) sin2x sin2¢y %g

where 0Oy = 30p/16m, oOp is the Thomson electron scattering
cross-section, Ly is the luminosity of the star, d is the distance
between the observer and the star and dV = r2sinx dxdydr.

It is, however, more convenient to transform from the observer to
the corotating envelope frame (x,y,z) by changing the dependent
coordinates (in spherical polars) from (X,¥) to (x,B) via (e,6) by use of
Fig. 6.2.

The relevant tranforms from (Xx,%) to (e,¢) are

cosX = cos® cosi - siné sini sing
sinX cosy = 8in® cosod (6.2)
sinX siny = cos® sini + sin6 cosi sing.

The transformations required for (e,¢) to (x,B) are found from Fig. 6.1

and Fig. 6.2 in the form of a rotation matrix, viz

sinB cos¢ sinx cos€ cosi sin€ cosX sinx cosB
sin® sing| = ~COSA cos€ sinh  sin€ sinx sinx sinfB (6.3)
cose 0 -sin€ cos€ cosx
Substituting the relevant transformations into equation (6.1) we

obtain after some manipulation,
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Figure 6.2
The spherical triangle from Fig. 6.1 for the transformation of (r,x,B),

(r,8,¢6) to (r,X,¥) coordinates.
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P
Fy = 55 { 2(75 + To%0) (30828 - 1)
+HTg - 3T0Yo)[sinzi (3c0s2€ + 1) + sin2i sin2€ sin
+ 8in?i sin2€ cosZX]

+ ZToyl[sinZi cos€ cos) - sin?i sing SinZX]
+ Toyz[(SSinzi - 2) sin2€ - 2sin2i cos2E sin

- sin?i sin2g coszx] (6.4)
+ T073[(3Sinzi - 2) sin®€ - sin2i 8in2€ sin)

+ sin?i (1 + cos?2€) cosZk]

- 2T°y4[sin2i 8in€ cosXA + sin?i cos€ sinZk] }

q= gl {(To - 37070)[sin2i (3cos2€ - 1) + sin2i sin2€ sinx
- (1 + cos?i) sin2?€ cosZk]
+ 2T071[sin21 cos€ cosh + (1 + cos?i) sin€ sinzx]
+ Toyz[SsinZi sin2€ - 28in2i cos2€ sinx (6.5)
+ (1 + cos?i) sin2€ 0032)]
+ T073{3Sinzi 8in?€ - gin2i sin2€ sin:

- (1 + cos?i) (1 + cos2€) 0032)]

- 27074[sin21 sin€ cosh - (1 + cos?i) cos€ sinZk] ]
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Fy = F*{ (1o - 3‘roy0)[sini 8in2€ cosX + cosi sin?€ sin2>\]
+ 27>,y [sini cos€ sin\ - cosi sin€ 0032)\]
+ ToYo [Zsini cos2€ cosh + cosi sin2€ sinZ)\] (6.6)
+ ToYs [sini sin2€ cos: - cosi (1 + cos2€g) sin2)\]

+ 2TV, [sini sin€ sinX + cosi cos€ COSZX] }

where the weighted integral moments Ty, Ty Y5, ToYys ToY2r ToYs and
ToY4 are given in Chapter 5 [D(r) = 1], Fx = Lg/41d2 with d being the
distance between the source and the earth.

It is evident that in the point light source approximation the
polarimetric variations for a general envelope are represented by a
Fourier series up to 2X as in the case of BME. This means that
polarimetrically it is not possible to distinguish between orbital and
rotational motion. In order to make such a distinction will require the

aid of spectral analysis.

6.3 Axisymmetric Distributions.

Here we shall concern ourselves with the polarimetric variations of
an ORE with density distributions that are axisymmetric about an axis
oblique to the rotation axis. For any such axisymmetric distribution,
n{r) = n(r,x). In the (BME) point light source approximation the only
non-vanishing integral moments are Ty and pYo and the normalised

Stokes parameters (Q = Fg/Fy, U = Fu/Fx) simplify to

(To -‘STOVO)[sinzi (3cos?€ - 1) + sin2i sin2€ sin)

D=

Q=

- (1 + cos?i) sin?g cosZk] (6.7)
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U= - (T4 - 3T070)[sini 8in2€ cos\ + cosi sin2?g sin)\] (6.8)

In Fig 6.3 (Q,U) loci are shown for various values of i and & It can
be seen that that the loci vary in shape from a double looped ellipse,
for high values of €, to a renal shape and finally to a point lying on
the Q-axis for € ~ 0 (i.e the polarisation is independent of time). The
geometrical factors are contained within the expression (T, - ToYs) and
acts as a scaling factor (cf. Brown and McLean, 1977) that does not
alter the shape of the (Q,U) loci for a given i and &.

By Fourier analysing the polarimetric data it is possible from

equation (6.7) to find the values of i, € and (T, - 3TyY,), Viz

2
{3} = {Eg} + } {Eg}cosj) + {3§}sinjk (6.9)
Jj =

where the only non-zero coefficients are,

Po = 3(To - 37o%0) sin?i (3cos?€ - 1)

qy = %(To - 3TyY,) sin2i sin2€
P2 = - 3(To = 3Tg¥) (1 + cos?i) sine , (6.10)
uy = =(Tg - 3TyY,) sini sin2€
vy = =(Tg - 3ToY,) cosi sin?€ J
If i = 0° then only second-order harmonics exist and € and (T, -

3ToY,) cannot be determined. If p, # 0 but q; = u; = 0 then € = 0" or
90°. In general, however, it will be possible to determine i, € and (To

- 3TyY,) by taking ratios of the Fourier coefficients, viz
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Obliquity Angle, &
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D D- &)
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(Q,U) loci for any axisymmetric envelope for the values of inclination
(i) and obliquity angle (€) indicated.

The loci vary in shape according to the value of & As € varies from
high values (~90°) to low values (~10°) the loci change gradually from
an ellipse to a double loop ellipse through to renal shapes and finally,

for € ~ 0°, a point (i.e. the polarisation is a constant and lies along

the Q-axis)
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81- = -cosi (6.11)
1
Pa - [ 1 - 300828] [sinzi] 6.12
vy sin®g cosi (6.12)
. 2
And finally (7o - 3To¥o) = - (73 co§51)51n22 (6.13)

It is instructive to establish how reliable this Fourier analysis is in
returning the values of the inclination and obliquity angles and in
order to do so polarimetric data were constructed for various values
of inclination and obliquity angles (which shall be referred to as the
real values) using 64 equally spaced (in time) data point. The
polarimetric data were then Fourier analysed to obtain the inclination
and the obliquity angles (which shall be referred to as the inferred
values). It was found that, in the absence of noise, the inferred
values of inclination and obliquity are consistent with the real (input)
values (i.e. €, i.gq1 = € iipnferred):

Stars exhibiting polarimetric wvariations consistent with ORE have
also been interpreted in terms of binary systems, e.g. o Ori E (BME).
It is possible now to see why, polarimetrically at least, that the
variationgs of an ORE are consistent with binary variations by
comparing the results of BME with those of equations (6.7) and (6.8).

In BME we set

Xy = -/, 2 = Oorm

G = sin28€ , H = sin?€ , A = ¥tan€
and substitute our ¥(T, - ToYo) and 3cos?€ - 1 for their T, and (T,
- ToYo) respectively. The very fact that binary motion and ORE are
polarimetrically equivalent means that rotation produces the same

effect whether it is due to rotation about a body axis or an orbital
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axis.

For the particular case of 6 Ori E both CM and BME used the data
of Harman (1977). CM, wusing their ‘method of moments’ for the
polarimetric analysis, find that i * 80° and € = 85' gives the best fit.
BME, using Fourier analysis, find a best fit for i * 76° and A > 2,
implying € > 76°. Both models are thus consistent with each other
within the accuracy of the available data.

CM, using their value for the inclination, infer from magnetographic
data an obliquity angle of the magnetic axis to the rotation axis of ~
50°. Now previously they had obtained from the polarimetric data an
angle of € ~ 85°. This angle refers to an axis that exhibits rotational
symmetry with respect to the scattering envelope and therefore it
appears that the scattering envelope is not connected with the
magnetic axis of the star. Indeed, if one interprets the scattering
envelope to be two diametrically opposite spots (as in CM) then the
polarimetric data are consistent with two spots rotating about the
equator of the star (i.e. € = 90°). It must be stressed however that in

the point light source approximation such an interpretafion re%grding

the envelope geometry is unjustified from the polarimetric data alone.

6.4 Extended Sources and Occultation.

It has been shown that in the point light source approximation it is
not possible to say anything about the geometry of the scattering
material (i.e. one cannot distinguish between different geometries as T,
- 3T,Yo is a number thus allowing a multiplicity of interpretations).
However, by allowing the light source to be of finite extent then some
of the scattering material at any given time may be occulted by the

star thus allowing some probing of the envelqpe rgeometry as it
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rotates. The occultation of optically thin, Thomson scattering,
envelopes has been investigated in Chapters 3 - 5. In the case of an
ORE the occulted scattering material will change with time and in
general the problem is a complex one so only two specific geometries
are considered to illustrate the effects of occultation namely localised

polar spots and a near planar, equatorial disc.

6.4.1 Polar Spots.

Stellar spots are a common phenomena to stars of all spectral
classes. For stars of spectral classes G - M it is believed that stellar
spots are connected with convection cells that have their origin deep
within the convection zone of the star. The spots appear to be of
various sizes, which in later type stars (eg. RS CVn types) may cover
a large portion of the stellar disc. Attempts have been made at
modelling such phenomena (Strassmeier, 1988) however the recovery of
such surface features from the photometric wvariability is a difficult
one.

For early type stars (which we shall consider) the mechanism
producing spot features is unknown. It is thought unlikely to be
caused by a convection zone as this has been found to be negligible
in size compared to late type stars (Hofmeister et al., 1964). Instead
dipole magnetic fields are often invoked (Underhill and Fehey, 1984)
but this appears to be unnecessary (cf. above and CM). Whatever the
mechanism, observations have shown that regular photometric
variability can be interpreted in terms of localised stellar spots
(Balona and Englebrecht, 1986).

For one particularly well observed star, o Ori E, spectroscopic

(Bolton et al.,, 1987), radial velocity (Groote and _Hunrger, 1982) and
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Radial Distance (X)
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(Q,U) loci for a finite spherical light source with two localised polar
spots at a distance x from the centre of the star, with the values of
x, i and € indicated. As x increases, the period through which

occultation occurs decreases.
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photometric variations (Landstreet and Borra, 1978) indicate that two
localised, diametrically opposite, spots are corotating with the star. In
the light of such observations we consider two localised scattering
regions (in the obliquely rotating frame) placed at « = 0 and « = 7. We
will assume that they have the same number of scatterers (ny) and are
at the same distance r = xRy (Ryx being the radius of the star).

For a point source the polarimetric variations will be as in
equations (6.7) and (6.8) with (T, - 3T,¥,) = -No,/(xR¢)2 and N = 2n,.

For an extended source we have

(To = 3Tg¥s) = = Nog(l - x72)/(xR¢)2 and N = 2n, except when one of

the spots is occulted, viz

cosi cos€ - sini sin€ sink ¢ - (1 - x~2)# 02 gm
(6.14)

or cosi cos€ - sini sin€ sim\ » (1 - x~2)¥% m {2

then N = ng.

The resulting Q,U variations are shown in Fig. 6.4 for various i, €
and distance x (= r/Ryx) It can be seen that the period through which
a spot is occulted decreases with increasing distance. For spots very
close to the stellar surface it is possible that each of fhe spots may
undergo occultation through some part of the period. In reality the
spots will be spatially extended and so occultation will be a gradual
process rather than being discontinuous as shown in Fig. 6.4.

It is obvious that by Fourier analysing polarimetric data in which
occultation is evident, but no account is made of it, will result in
incorrectly inferred diagnostics. In order to illustrate this,
polarimetric data were constructed using equally spaced data (every

1/64th phase) with occultation present for spots located at a radial
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The Fourier inferred inclination plotted against the real inclination

for spots at a radial distance x = 1.1, 1.5 and 2.0 and § = 45°
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The Fourier inferred obliquity plotted against the real obliquity for

spots at a radial distance x = 1.1, 1.5 and 2.0 and i = 45°
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distance of x = 1.1, 1.5 and 2.0 for fixed obliquity (€ = 45°) and
variable inclination. The resulting data were then Fourier analysed
(using the method of Sec. 6.3). The resulting inferred inclination is
shown in Fig. 6.5a against the actual (input) value. A similar plot is
shown in Fig. 6.5b for variable obliquity angle with fixed inclination (i
= 45°).

It can be seen that for spots distant from the star (x > 2) the
inferred values of inclination and obliquity are consistent with the real
(input) wvalues, implying that occultation is negligible as shown
previously (Fig. 6.4). For small radial distances. the inclination or
obliquity angle cannot be determined for stars with small inclinations
or spots with small obliquity angles [i.e. inferred Fourier ratios are
inconsistent with eqs (6.11)-(6.13)]. For large wvalues of the inferred
inclination (obliquity) angle the inferred value is consistent with the
real (input) value to within an error of #5°. In the presence of noise,
however, this uncertainty will be increased. It should be noted that
the curves of Figs 6.5a and b vary smoothly except at certain well
defined points which are a reflection of the inclination and obliquity
angles required in satisfying the conditions of eq.(6.14) i.e. the wvalues
of i and € at which there is a change-over in the number of spots

being occulted during one rotational period.

6.4.2 Precessing Disc.

In binary systems where the primary is surrounded by an
enhanced (circumstellar) density region caused (for example) by the
tidal pull of the secondary (cf. Chapter 2), the enhanced density
region may be modelled as a disc-like structure. Alternatively, a

disc-like structure may arise from mass acretion on to a star. In
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systems such that the rotation axis of tﬁe star (with the disc
envelope) is not aligned with the orbital rotation axis, the envelope
(confined to the orbital plane) will appear to rotate (or precess) about
an axis oblique to the stellar rotation axis. Clearly such a scenario will
be applicable to young systems such that the orbital and rotational
axes have not yet had time to align.

In single stars obliquely rotating disk-like structures may occur by
the confinement of material to the equatorial region of a magnetic field
rotating obliquely to the stellar rotation axis.

We shall consider such an envelope and assume that the envelope is
a near planar distribution of material in the ORE frame with surface
density of the form A(r) = A 8S(x - "/2)/xj -cf. Sec.4.3- extending to
infinity, where x = r/ Ry, j is the power index and A, is the surface
density at the stellar surface. Further, we shall assume that in a
binary situation the only important light source is the one surrounded
by the disc. The normalised Stokes parameters are given by eqs (6.7)
and (6.8). For a point light source T, = 6 A 7/j and all other weighted
integrals are zero. For an extended light source occultation will give
rise to more complicated expressions for Q and U with additional
integral moments arising because of the variable occultation (hence the

general eqs 6.5 and 6.6 are employed). The weighted integrals are

given by
e ) 21(71 2)% dpdx e BﬂX) 2)% gpdx
(o) - X~ - X~
To = 5 [J xJ X _J xJ X ] (6.15)
1 0 1 B1(x)
xq Ba(x) Ny

1 Bl(x)
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The rotated observer frame (A’,B',E) shown in relation to the
observer (A,B,E) and oblique frame (x,y,z). The B’-axis is parallel to

the projection of the principal obliquity axis on the sky.
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Figure 6.7
The spherical triangle for the transformation of the Stokes
parameters from the privileged observer frame to the sky-observer

frame.
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a B 4x) y
- =2
ToYe = ——D—ﬂf I (1 L= 2" sin2s ot (6.17)
1 Bi(x)
ToYo = Te¥y = Tog¥2 = 0, (6.18)
where xg = 1 (6.19)
|cosi cos€ - sini sin€ sin)| :
The functions B, (x) ,B,(x) are found from
(1 - x2)% = ginB(sin€ cosi + sini cos€ sinX) - cosB sini cosh
hence
- - x—2)¥% 2 2 -2 _ 1%
cosB(x) = A(l - x™<)2 1+ |B] (A% + B2 + x 1) (6.20)

(A< + B?)

where A = sini cos)

and B

s8ini cos€ sin» + sin€ cosi

In practice B;(x) and B,(x) are not easily determined from eq. (6.20).
Since, however, we are only interested here in determining the
variations of the Stokes parameters it is easier to determine the
observed polarisation of the envelope in a privileged observer rotated
(A’,B",E) frame (Fig. 6.6) suc.h that the plane of polarisation lies in the
plane containing EB’ and then to transform the observed Stokes
parameters back to the observer (A,B,E) frame, via

[Q(t) - [co§2n sinZT\] Q(t) (6.21)
u(t) (A,B,E) -gin2n cos2n) WU =0 (A’,B’,E)
where n is the (time dependent) angle BOB’, measured anticlockwise
from B’E to BE (Fig. 6.6) given by (Fig. 6.7)
sinn = cosix sin€/sinV (6.21)

cosn = (cos€ - cosV cosi)/(sinV sini) (6.22)
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the data of Fig. 6.8. The diagonal line indicates perfect agreement.
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The polarisation in the frame (A’,B’,E) is calculated using the analysis
of Chapter 4 with a time dependent inclination, V, given by (Fig. 6.7)
cosV = cosi cos€ - sini sinf sin) (6.23)
The resulting (Q,U) loci for varius i, € (with the power index j =
2.5) are shown in Fig. 6.8.

Comparing Fig. 6.8 to Fig. 6.3 it is not visually obvious that there
are any perceptable changes in the loci due to occultation, unlike the
diametrically opposite spots, in which aiscontinuities were evident.

In order to assess the error involved in inferring the inclination
and obliquity angle from polarimetric variations due to an obliquely
rotating disc, equally (time) spaced polarimetric data were constructed
from the data of Fig. 6.8 for every 1/64th phase and then Fourier
analysed using the analysis of Sec. 6.3 (the restricted number of
permutations for i and € were considered in the analysis to save on
computer time). The inferred values of the inclination and obliquity
angles are plotted against the real (input) values in Fig. 6.9a and b
respectively. It can be seen that in general the inferred wvalues (for
both i and €) are consistent with the real values to within +5° (similar
to the error found in Sec. 6.4.1). If a higher power index (j) had been
chosen one could expect- that the Figs 6.8, 6.9a and b would be
qualitatively similar except for large values of i and &, where an
increase in the discrepancy between the inferred and real wvalues
could be expected due to the fact that by increasing j more material

will be occulted (as more material lies closer to the stellar surface).

6.5 Spectroscopic Variations.

Apart from the polarimetric variations arising from an ORE there

will also be the ©possibility of observing such an envelope
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spectroscopically.

Spectral lines arising from polar spots will have a very complicated
but characteristic signature. In general there will be a blue~sghifted
emission line (arising from a spot approaching the observer) and a
red-shifted emission line (due to a spot receding from the observer).
The relative shifts of these two lines from the rest wavelength will
vary (periodically) with time. If one of the spots passes across the
disc of the star the line will initially appear as a blue-shifted
absorption line which will become increasingly red-shifted as the spot
crosses the disc of the star. Whilst one spot appears as an absorption
feature the other spot will be occulted (assuming that the spots are
equidistant from the centre of the star) and so only one (absorption)
line will be observed. Once this absorption phase passes, the
absorption line will appear as a red-shifted emission line and the
occulted spot will appear as a blue-shifted emission line (neglecting
light travel time effects).

The spectral variability of such spot features will only be made
possible if they are sufficiently massive and have a small range in
velocities (i.e. no turbulence). Observations of Be stars have indeed
shown such discrete moving absorption lines (see Sec. 7.2) but
features changing from absorption to emission has only been observed
in one star, 4 Cen (Baade, 1984b). The overall lack of observability of
spots as emission features is probably due to technical/observational
difficulties rather than due to a genuine lack of such features.

In the case of an obliquely rotating disc the angle between the
normal of the disc and the observer will vary with time and therefore
according to the analysis of Struve (1930), the Doppler broadened

emission width of the disc will vary with phase. In Struve’s analysis
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his definition of i (the inclination) will be replaced by the time
dependent inclination, V, of equation (6.24). In Fig. 6.10 the variation
of sin V (which is proportional to the emission width) with phase is
shown for various values of i and € It can be seen that large
variations in the emission width can occur, especially for large values
of i and € As € tends to zero (no obliquity) the emission tends to a
constant value (i.e. as € => 0, V —> i). Provided that the amplitude of
the wvariation is measurable and that the rotation period is much
greater than the observation time, then such wvariability, if present,
will be detectable. Indeed, such variability has been reported for « Eri
(Balona et al.,, 1986) where in their Fig. 5c it can be seen that the
equivalent width of the Mg II (448.1 nm) line varies in a periodic
manner. The data are somewhat noisy, particularly at around phase
0.25 where it appears that there are two "peaks" in the data
simultaneously (one peak occuring at ~ 0.004nm, the. other at 0.007 nm)
suggesting possibly that large structural changes within the envelope
have occurred during the interval between observational sessions.
However, pencilling in a rough curve to the data a sinusoid can be
fitted that resembles the curves of Fig. 6.10c. This suggests that i ~
90°, agreeing with their conclusions. The data are too noisy to attempt
further analysis but it does suggest that the equivalent width, with

careful analysis, could be a useful diagnostic tool.

6.6 Discussion and Conclusions.

It has been shown that the point light source treatment of an ORE
cannot distinguish between different envelope geometries (Brown and
McLean, 1977) and that an ORE is polarimetrically equivalent to a

binary system with a special choice of parameters. By incorporating an
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extended light source and occultation into the analysis, it is then
possible to show that observable differences can exist for different
geometries in the (Q,U) plane compared to the point light source
predictions. In the case of polar spots the differences are readily
apparent due to the discontinuous nature of the problem. For an
obliquely rotating disc, however, the differences are not so apparent
because the occulted region varies smoothly with time. In fact we can
anticipate that for any ORE with a continuous spatial distribution the
(Q,U) loci will vary smoothly such that only when the data is Fourier
analysed will deviations from the point light source analysis be
evident (i.e harmonics greater than second order will exist cf. Sec.
4.5).

In addition to an ORE producing polarimetric variations,
spectroscopic variations may also be observable and hence if joint
spectroscopic and polarimetric observations are made, it may be
possible to infer something about the geometry of the system in

addition to the determination of the inclination and obliquity angle.
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Chapter 7

Future Work.

7.1 Introduction.

The inclusion of occultation and depolarisation into the single
scattering theory of Brown and McLean (1977) enables a greater
understanding of the temporal changes within - stellar envelopes, by
the virtue that a greater number of constraints are imposed upon the
interpretation of the data. In section 7.2 we wish to outline the
possible application of the previous chapters to the interpretation of
polarimetric data from stellar winds that exhibit UV discrete absorption
lines, subject to models that prepose to explain the spectroscopic
observations. Following this the main conclusions of the previous
chapters are recounted and further suggestions for future work are

outlined.

7.2 Discrete Absorption Lines.

Theoretical modelling of stellar winds usually assume that the wind
structure is time independent (see Section 1.3). Much data has been
collected, however, which shows that this is not the case. In particular
the Copernicus and IUE satellites have shown that the structure of
stellar winds vary on time scales of % hr (approximately the flow time
~ Ry/Ve) to months (Henrichs, 1988).

It has been found that for hot stars certain lines, such as O VI
(103.2 nm, 103.8 nm), N V (123.9nm, 124.3nm) resonance lines and C III
(117.6 nm) non-resonance lines, often exhibit blue shifted narrow
absorption lines superposed upon the broad underlying P Cygni

profile. Such lines are referred to as narrow discrete absorption lines
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and typically have blue shifted velocities of up to 1000 l.wtms'1 in O
stars (Morton, 1976; Smith, 1972; Underhill, 1975) and also in Be stars,
such as ¥y Cas (Hammerschlag-Hensberge, 1979) and 59 Cyg. (Doazan et
al.,, 1980b; Doazan et al., 1985). In the case of Be stars these narrow
absorption features are superposed upon the asymmetric absorption
wings of the superionised line. The strength and velocity of these
discrete absorption features changes over periods of time. This has
been particularly observed by Henrichs et al. (1980), Henrichs (1982)
in which there appears to be a correlation between the velocity and
the strength of the absorption in the lines namely, the weaker the
absorption the higher the wvelocity. Henrichs (1988) also found that
even following a period of no narrow absorption features, when they
did return the correlation was the same (Henrichs calls this the
"memory" of the star and may last up to 5 yrs.).

Statistical studies (Henrichs, 1988) show that the narrow
absorption lines are more likely to be observed in the most luminous
of stars (Mpg] < 7). There is, however, a lack of correlation with any
other physical aspect of the star, such as Vsini, x-ray emission,
binary motion etc. The lack of correlation with Vsini in particular
would indicate that these UV absorption components occur throughout
the wind rather than in some preferred plane. The only stars to
exhibit absorption components with My, > -7 are Be stars and
therefore the discrete absorption components would appear to be
another feature and indicator of the Be phenomenon (see Barker and
Marlborough, 1985).

The narrow absorption lines of superionised species indicate one

of several possiblities;

(a) The existence of a velocity plateau in which the escape
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probability (SoBolev, 1960) of a photon is constant over a large
distance. This results in an increased path length of absorbing ions
(as seen by the photon) and hence a deep narrow absorption line
forms.

(b) Superionised species may exist at a preferred velocity due to
ionisation effects which favour the observed ionisation fraction at that
velocity, i.e. a density enhancement of supkerionised species at a
preferred velocity.

(c) A non-monotonic velocity law caused by shocks occuring
within the wind and thereby enabling velocity plateau to exist
{Barker, 1987).

Models so far suggested in explaining the UV absorption
components have included corotating interacting regions (Mullan, 1984;
Bates and Halliwell, 1986; Prinja and Howarth; 1988), ejected parcels of
material (Underhill and Fahey, 1984) and envelope ejection (Brown and
Henrichs, 1987). Thus far the modelling of the UV absorption
components has been primarily based upon the UV spectra alone.
However, much more could be said of the envelope geometry (and
structure) by including the polarimetric variations predicted by the
models {(Brown and Henrichs, 1987). The main reason for the neglect of
polarimetric considerations has been the lack of simultaneous UV and
polarimetric observations. However, with the forthcoming Astro Mission
this situation will change (WUPPE Guest Observer Manual, 1985). I wish
here, therefore, to make an exploratory investigation of the
polarimetric variations predicted by the models of Underhill and Fahey
(1984) and Mullan (1984) in order to determine what may be expected

from the polarimetric variations of these models.
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7.21 Corotating Interacting Regions.

Mullan (1984) suggested that a velocity plateau, used to explain the
UV absorption lines, can exist when two gas streams, with different
initial speeds, are ejected from the surface of a star and interact to
form a shock region that results in a single velocity flow by the
redistribution of momentum. Such phenonena has been observed in the
solar wind from the Mariner 2 probe (Neugebauer and Snyder, 1967)
and are believed to be controlled by the solar magnetic field.
Numerical studies (Hundhausen, 1973, Suess et al., 1975; Pizzo, 1978,
1980, 1982) and analytical investigations (Carovillano and Siscoe, 1969;
Suess, 1972; Siscoe and Finley, 1970) have attempted to quantify and
explain the corotating interacting regions (CIR) in the solar wind. The
analytical treatments consider the hydrodynamic equations for a
non-rotating star and then include rotation as a perturbation. By
considering only those perturbations that corotate with the sun, the
velocity field and the density distribution for the CIR are obtained.

Mullan (1984) considers only CIR that are formed in the equatorial
plane of the star. The CIR forms at some distance from the star (called
the radius of interaction, r;) and spiral outwards into the interstellar
medium. As the CIR passes between an observer’s line of sight and the
disc of the star a deep absorption line forms which shifts_ in
wavelength in accordance with the motion of the CIR (Prinja and
Howarth, 1988).

In order to probe the geometry of the wind via the polarimetric
occultation analysis of the foregoing chapters, the CIR must be
occulted by the disc of the star according to an external observer.
Since the CIR exist at some finite distance from the stars, only

observers at sufficiently high inclinations will observe any occultation
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effects.

According to Mullan, an approximation to the upper limit for the

beginning of the interaction is given by

=i+ [—‘—]H:Jﬂ 7.1
Ry Vro ( )

where V., is the average speed of the wind near the suface of the
star, V,,t is the equatorial velocity of the star and Ry is the stellar
radius. |

The inclination at which occultation effects will be observable is
given by

sec i > ri/Rg (7.2).

Typically for Be stars V.4 ~ 400 kms™1, Vw ~ 40 kms™! and thus i
> 40" for the occultation of CIRs to occur.

Quantitatively eq. (7.1) states that the greater the initial wind

speed is compared to the rotation of the star, the greater the distance

t ’

that CIR are formed (i.e radially fast moving particles will ‘see’ a
stationary star and will therefore not deviate from the initial radial
trajectory). For Be stars the outflow velocity of the wind is
comparitatively large compared to stars of later spectral classes. This
large outflow velocity is, however, off-set by the rapid rotation of
these stars.

In order to calculate the polarimetric variations from a CIR we need
to know the density distribution. In the solar wind the iso-densities
for the CIRs are Archimedian spirals. We shall assume that this is the
case for Be stars and that they are confined to the equatorial plane of
the star. In this case we may use the functional form for the density

from the analysis of Carvillano and Siscoe (1969). The exact expression

obtained by them cannot be used because the physics of Be star
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winds are different from that of the sun (i.e. the rotation of the star
cannot be considered as a perturbation). However, by using the
functional form for the density we are in fact merely representing the

density pertubation by Archimedian spirals. The density of the CIR is

then,
Q(r,o) = Q.g(r) silrl‘j[-?-\i/-B + ¢ - )\] r>r;
W
(7.3)
Q(r,») = 0 r <rj

where j is the number of streams, w is the rotation rate of the star,
Q(r,») is the number density of electrons at a general point (r,0) in
the CIR, g(r) is the (assumed known) radial density distribution and A
is the longitude of the footpoint of the stream at r; (Fig. 7.1). The
form of eq. (7.3) is analogous to the density perturbation considered
in Sec. 4.5 and this therefore suggests that the polarimetric data from
a suspected CIR star should be Fourier (time) analysed. If the
polarimetric variations are indeed due to CIRs, then only one set of
Fourier harmonics will exist, i.e. the j th harmonic (note that a zero
order term will also exist which results from the constant polarisation
term of the wind). By following the analysis of Sec. 4.5 with the
density distribution as given by eq. (7.3) the coefficients aj bj will

be

. r w]
aj = Q5 s:m\)[——‘—vw
(7.4)
. = LL_.""]
bJ = Ouf, cosa[ vV

By Fourier (time) analysing the observed polarimetric data (cf. Sec.

4.5) of a CIR we may obtain the jth harmonic Fourier coefficients (pj,
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Obser'veer<

Figure 7.1

A CIR as observed in the equatorial plane of the star, viewed above
the stellar rotation axis (Star rotating anticlockwise).

The CIR is an Archimedian spiral. The foot point of the CIR is at
position (rj,A) and is the point of interaction. A general point P on the

CIR has position (r,).
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ajs 'uj, vj). In order to do this however requires knowledge of the
rotation period. This is gained by taking a power spectrum of the
polarimetric data (see Press et al.,, 1986 for details). For a CIR with j
streams, after a time P = T/j (T being the rotation period of the star)
the CIR will look identical to that at time t = 0 (cf. Harmanec, 1989; his
fig. 13) and hence duplicity occurs with a period P. The power
spectrum of the polarimetric data will therefore consist of equally
spaced peaks, separated by a period P. Without knowledge of T or j
the only period known will be P. For a CIR we know that only the jth
harmonics exist and therefore in order t‘,o find the jth coefficients we
may (for convenience) set j = 1 and find the first order coefficients
(pyy qyy vy, vy) over the time interval t = 0, P. (If we chose j
arbitrarily then we would find the jth harmonics but the data would
be analysed over the time interval t = 0, jP and hence the coefficients
would be the same.) Once the coefficients p;, q4, u; and v,; are
established it is possible, by determining the ratios p;/q; (Epj/qj) and

vy/uy (EVj/Uj) to estimate the ratio V,,/V,.,t from Sec. 4.5, viz

Hjasle ) - el
Rewriting

rijw _rj Vrot
Vi Ry Vyu

then from eq. (7.3) we have the inequality

riw . Veot 4 g ' (7.6)
Vi Vi .
Therefore
Yeot ¢ 5 [eams 3|2+ [} ] (7.7)
Vi < Jj tan { 2[ aj uj }

and hence the inclination of the system may be inferred from eqs
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(7.1) and (7.2). Since j has not been determined then we may obtain
upper limits to Vieot/Vyw and the inclination by setting j = 1 in eq.
(7.7). The rotation period of Be stars is typically of the order of 1
day (Vpot ~ 400 kms™, Ry ~ 10Rg) and therefore the value of j maybe
guessed at by j ~ Int(1/P) with P measured in days.

If, in addition to the polarimetric variations UV absorption line
variations are also observed then since we have assumed that the CIR
are confined to the equatorial plane, then the star is being viewed
equatorially.

UV observations of Be stars show that narrow absorption lines are
observed in stars with Vsini > 150 kms~! and therefore some stars are
clearly not being viewed equatorially. This would indicate that either
CIR form throughout the wind (this is a difficult problem and has yet

to be done) or some other explanation is required.

7.22 Ejected Parcels of Material.

Underhill and Fehey (1984; henceforth UF) considered the ejection
of a parcel of material high above the photosphere (~ 2Ryx) of early
type stars and suggested that such ejections may occur via localised
magnetic dipole regions. Once the parcels are ejected, by considering
the conservation of angular momentum, the trajectories can be followed
(once a velocity law is prescribed). Parcels passing through the
observer’s line of sight and the disc of the star will appear as
discrete absorption components. Parcel ejection has been criticized by
Henrichs (1988) on the grounds that a parcel is required to be
released at privileged times and places for the theory to correspond
to observations (see Henrichs, 1988; his fig. 4.47) because for a

general parcel its flightpath will be such that it will appear as a UV
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discrete absorption component for only a short period of time whereas

observations show them to be long lived features and as a
consequence Henrichs (1988) claims the UF model to be an unlikely
mechanism on the grounds that so many stars exhibit UV discrete
absorption components.

According to the UF model, initially a parcel has a fixed position
above the photosphere of the star (latitude 8y, say). Polarimetrically,
as the star rotates, the resulting (Q,U) loci prescribed will be the
same as for an oblique rotator, with obliquity angle 6, (Ch. 6). Once
the parcel is released the polarised flux will decrease as the parcel
moves away from the star (x r~2 for r >> Rg) and consequently the
(Q,U) locus will spiral into the origin. The exact way in which the
(Q,U) loci will change with time will depend upon the trajectory of the
parcel. Now according to the UF model, a single parcel produces the
UV absorption line, consequently the pércel lies directly between the
observer and the stellar disc and therefore (with a scattering angle,
Xy ~ 0) the net observed polarisation of the parcel will be zero. That
is there should be a lack of polarisation variability during times when
UV discrete absorption components are observed and similarly a lack
of UV discrete absorption when polarimetric variability is observed. To
test this prediction we refer to the one and only set of polarimetric
and UV correlated observations (Sonneborn et al.,, 1988) which has
already been polarimetrically analysed by Brown and Henrichs (1987).
With reference to Fig. 1 and Table 1 of Sonneborn et al. (1988) one
can see that around JD 2,405,335 rapid changes in the Si IV line
occured without any change in the degree of polarisation. At around
JD 2,405,355 substantial polarimetric variations were observed but this

time no UV changes were recorded (however, the UV data for this
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period is rather sparce). The anticorrelation of these observations are
exactly as predicted by the UF model. The anticorrelation of the
polarimetric and UV data has also been interpreted in a different way
by Brown and Henrichs (1987).

Looking more closely at the polarimetric data for w Ori (Table 1,
Sonneborn et al.) it can be seen that the polarisation is enhanced,
which in order to agree with the UF model requires that the parcel is
released close to the star such that initially the parcel is depolarised
[P « (1 - R§/R2)¥/R2] and as it initially moves away from the star the
polarisation will increase to a maximum (at around R = 1.2Ry, cf. Sec.
5.4). At these close distances the speed of the parcel is Vp ~ 0.01V,
(UF) and hence Vp ~ 10 kms~! agreeing with the value given in Sec.
5.4 (eq. 5.27). Beyond this distance the polarisation begins to decrease
(¢ 1/R? as the parcel begins to effectively see a point light source).
During the period of polarimetric variation, the position angle changes
by Ae ~ 20° consistent with the variation in position angle for parcel
ejection (Bates and Halliwell, 1986) over this range in distance. Notice
that prior to the polarimetric outburst the polarimetric variations do
not appear to vary as one would anticipate for an obliquely rotating
envelope. This is due to the fact that the data are too widely spread
in time for this to be studied. To date the short term polarimetric
variations (with a period of ~1 day) of w Ori have not been studied
but would clearly be of great importance for validating this

interpretation of the w Ori polarimetric data.

7.3 Conclusions.

In this thesis we have shown that the polarimetry of the X-ray

transient A0538-66 indicates that when the secondary passes through
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periastron the quiescent envelope around the primary is tidally
disturbed. This is contrary to the Roche lobe overflow or wind
accretion models that have been previously suggested (Brown and
Boyle, 1984; Apparao, 1985). The spectral variability of A0538-66 during
its ‘on’ state is similar to that of single Be stars which suggests that
some mechanism akin to tidal stripping may also be working in single
Be stars (Apparao et al.,, 1987).

It has been shown that the effects of incorporating both
depolarisation and occultation into the optically thin, single (Thomson)
scattering polarisation theory reduces the net theoretical polarisation
by up to a factor of two compared to the point light source analysis
of Brown and McLean (1977) for axisymmetric ernvelopes. Furthermore,
the simple dependence of polarisation with inclination from the point
light source treatment is found to be no longer valid when occultation
is included into the scattering theory.

In order to account for the observed maximum polarisation of Be
stars (~2%) it is possible, by considering geometrical models applicable
to Be stars, to gain more stringent constraints upon the permitted
parameter space by incorporating finite light source effects into the
polarimetric theory than is possible by using the analysis of Brown
and McLean (1977).

In systems in which regular polarimetric variations can be modelled
in terms of a corotating density perturbation with one {predominant)
light source, it has been found that by Fourier analysing the
polarimetric variations the inclination of the system can be inferred
from the second order harmonics and is consistent with the results of
Brown et al. (1978) and Simmons (1983) even when occultation is

included. This has important consequences in single stars where
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knowledge of the inclination enables the equatorial rotational velocity
to be estimated from the apparent rotational velocity which cannot be
otherwise inferred.

We have throughout this thesis concerned ourselves with spherical
light sources, which when incorporated into the single scattering
theory was found to be a more important correction than occultation,
though occultation itself was found not to be unimportant. For rapidly
rotaling stars, however, a spherical light source is only a first
approximation to the shape of the stellar surface and obviously the
next step would be to incorporate oblate spheriodal light sources into
the analysis in order to estimate how oblate the star is required to be
before the spherical light source approximation becomes inadequate. It
is not at all clear what the net effect would be because the
depolarisation factor will now depend on the latitude of the electron as
well as its radial distance from the source. Moreover, the flux from the
star itself, for an external observer, will also depend on the
inclination and so the problem will become a complex one, particularly
if occultation is also included.

We have illustrated to some extent the necessity for correlated
spectr‘oscopic and continuum observations in order to help distingush
between different geometrical structures possible within stellar
envelopes (cf. Sec. 6.5 and 7.2). Apart from joint continuum
polarisation and spectral variations one could also use
spectropolarimetry to study envelope geometries and geometrical
changes occuring within the wind. So far, however, few such
observations exist (Poeckert and Marlborough, 1978; McLean, 1979;
Clarke and Brookes, 1983, 1984) and as yet no long term study has

been made for any star. The lack of any such study can be attributed
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to the fact that no simple theory for the theoretical wavelength
dependence of polarisation across spectral lines exists. McLean (1979)
attempted the problem to some extent and was able, in a qualitative
way, to account for the change in polarisation (and position angle)
across spectral lines. The problem could be advanced further by
incorporating the Sobolev approximation (Sobolev, 1960) into McLean’s
analysis. The polarisation at a wavlength A\ from the line centre would
then reduce to calculating the polarisation from a surface of constant
apparent radial velocity., For a rotating star these surfaces are
unfortunately complex (Poeckert and Marlborough, 1978; Mazzali, 1988)
but it is precisely this non-spherical structure that gives rise to the
observed polarisation. Such spectroscopic studies would then enable
the mass flow in the stellar wind to be studied on a local scale.

One importanmt application of spectropolarimetry could be the study
of Be stars that undergo phase changes (eg. ¥ Cas, 88 Her, Pleione, 59
Cyg: cf Ch. 1). This would obviously need to be a long term study,
but such observations could possibly pin down the changes in the

density structure which appear to occur (Kogure, 1990).



238

References.

Abbot, D.C.: 1982, Ap. J., 259, 282

Angel, J.R.P., Landstreet, J.D.: 1970, Ap. J., 160, L47

Apparao, K.M.V.: 1985, Ap. J., 292, 257

Apparao, K.V., Antia, H.M., Chitre, S.M.:1987, Astron. Astrophys.,
177, 198

Baade, D.: 1982, Astron. Astrophys., 105, 65

Baade, D.: 1984a, Astron. Astrophys., 134, 105

Baade, D.: 1984b, Astron. Astrophys., 135, 101

Baade, D.: 1987, Physics of Be Stars, IAU Coll. 92, p. 361
Ed. A, Slettebak and T.P. Snow (C.U.P.)

Baldwin, R.B.: 1940, Ap. J., 92, 82

Baldwin, R.B.: 1941, Ap. J., 94, 283

Balona, L.A., Englebrecht, C.A.: 1986, Mon. Not. Roy. Astr. Soc.,
219, 131

Balona, L.A., Englebrecht, C.A.: 1987, Physics of Be Stars,
IAU Coll. 92, p. 87. Ed. A. Slettebak and T.P. Snow (C.U.P.)

Balona, L.A., Englebrecht, C.A., Morang, F.: 1987, Mon. Not. Roy.
Astro. Soc., 227, 123

Barker, P.K.: 1979, Ph.D Thesis (U. Colorado, Boulder). Cited
within Underhill and Doazan (1982)

Barker, P.K., Brown, D.N., Bolton, C.T., Landstreet, J.D.: 1982,
NASA Conf. Publ. CP-2238, p. 589

Barker, P.K., Marlborough, J.M.: 1985, Ap. J., 283, 329

Barker, P.K.: 1987, Physics of Be Stars, IAU Coll. 92, p. 38

Ed. A. Slettebak and T.P. Snow (C.U.P.)



239

Barr, J.M.: 1908, J. Roy. Astr. Soc. Can., 2, 70
Bates, B., Halliwell, H.R.: 1986, Mon. Not. Roy. Astr. Soc., 223, 673
Bocharev, N.G., Karitskaya, E.A.: 1983, Sov. Astron. Lett., 9(1), 6
Bolton, C.T.: 1982, Be Stars, IAU Symp. 98, p. 181
Ed. M. Jaschek and H. -G. Groth (Reidel: Dordrecht)
Bolton, C.T., Fullerton, A.W., Bohlender, D., Landstr:eet, J.D.,
Geis, D.R: 1987, Physics ofBe Stars, IAU Coll. 92, p. 82
Ed. A. Slettebak and T.P. Snow (C.U.P.)
Bossi, M., Guerrero, G., Mantegazza, L.: 1982, Be Stars,
IAU Symp. 98, p. 185, Ed. M. Jaschek and H. -G. Groth.
(Reidel: Dordrecht)
Boyle, C.B.: 1984, Ph.D Thesis, University of Glasgow
Boyle, C.B., Walker, 1.W.: 1986, Mon. Not. Roy. Astr. Soc., 222, 559
Brown, J.C., McLean, 1.S.: 1977, Astron. Astrophys., 57, 141 (BM)
Brown, J.C., McLean, I.S., Emslie, A.G.: 1978, Astron. Astrophys.,
68, 415 (BME)
Brown, J.C., Aspin, C., Simmons, J.F.L., McLean, I.S.: 1982,
Mon. Not. Roy. Astr. Soc., 198, 787
Brown, J.C., Boyle, C.B.: 1984, Astron. Astrophys., 141, 369
Brown, J.C., Henrichs, H.F.: 1987, Astron. Astrophys., 182, 107
Brown, J.C., Carlaw, V.A., Cassinelli, J.P.: 1989, Ap. J., 344, 341
Brown, J.C., Fox, G.K.: 1989, To appear in Ap. J.
Brown, J.C.: 1989, To appear in Stellar Polarisation.
Ed. K. Nordsieck (U. Wisconsin Press)
Carlaw, V.A.: 1988, Ph.D Thesis (Glasgow)
Carlaw, V.A., Brown, J.C.: 1988 preprint

Carovillano, R.L., Siscoe, G.L.: 1969, Solar Physics, 8, 401



240

Cassinelli, J.P.: 1987, Physics of Be Stars. IAU Coll. 92., p 106
Ed. A. Slettlebak and T.P. Snow. (C.U.P.))
Cassinelli, J.P., Nordsieck, K.H., Murison, M.A.: 1987, Ap. J., 315, 290
Castor, J.I., Abbot, D.C., Klein, R.I.: 1975, Ap. J., 195, 157 (CAK)
Champeney, D.C.: 1985, Fourier Transforms in Physics.
(Adam Hilger)
Chandrasekhar, S.: 1950, Radiative Transfer (Dover)
Chandrasekhar, S., Minch, G.: 1950, Ap. J., 72, 887
Chandrasekhar, S.: 1969, Ellipsoidal Figures of Equilibrium (Dover)
Charles, P.A., Booth, L., Densham, R.H., Bath, G.T.,
Thorstensen, J.R., Howarth, I1.D., Willis, A.J., Skinner, G.K.
Olszewski, E.: 1983, Mon. Not. Roy. Astr. Soc., 202, 657
Clarke, D., Wyllie, T.H.A.: 1977, Observatory, 97, No. 1016, p. 21
Clarke, D., Brookes, A.: 1983, Mon. Not. Roy. Astr. Soc., 205, 9p
Clarke, D., Brookes, A.: 1984, Mon. Not. Roy. Astr. Soc., 211, 737
Clarke, D., McGale, P.A.: 1986, Astron. Astrophys., 169, 251
Clarke, D., McGale, P.A.: 1987, Astron. Astrophys., 178, 294
Clarke, D., McGale, P.A.: 1988a, Astron. Astrophys., 190, 93
Clarke, D., McGale, P.A.: 1988b, Astron. Astrophys., 205, 207
Clarke, D.: 1990 To appear in Astron. Astrophys.
Clayton, G.C., Thompson, I.B.: 1982, Ap. J., 254, L7 (CT)
Collins, G.W.: 1987, Physics of Be Stars. IAU Coll. 92, p 3
Ed. A. Slettebak and T.P. Snow (C.U.P.)
Collins, G.W.: 1989, To appear in Stellar Polarisation.
Ed. K. Nordsieck (U. Wisconsin Press)
Corbet, R.H.D., Mason, K.O., Cordova, F.A., Branduardi-Raymont, G.
Parmer, A.N.: 1984, Mon. Not. Roy. Astr. Soc., 212, 565

Coté, J., Waters, L.B.F.M.: 1987, Astron. Astrophys., 176, 93



241

Cowley, A.P., Marlborough, J.M.: 1968, Publ. Astron. Soc. Pac.,
80, 42
Cowley, A.P., Gugula, R.: 1973, Astron. Astrophys., 22, 203
Cowley, A.P., Rogers, L., Hutchings, J.B.: 1976, Publ. Astron.
Soc. Pac., 88, 911
Coyne, G.V., Gehrels, T.: 1967, Astron. J., 72, 887
Coyne, G.V.: 1976, Be and Shell Stars, IAU Symp. 70, p. 233
Ed. A. Slettebak (Reidel: Dordrecht)
Craig, 1.J.D., Brown, J.C.: 1986, Inverse Problems in Astronomy.
(Adam Hilger).
Dachs, J, Hanuschik, R., Kaiser, D., Rohe, D.: 19886,
Astron. Astrophys. 159, 276
Daniel, J.Y.: 1980, Astron. Astrophys., 86, 198
Densham, R.H., Charles, P.A., Menzies, J.W., van der Klis, M.
van Paradijs, J.: 1983, Mon. Not. Roy. Astr. Soc., 205, 1117
Doazan, V.: 1965, Ann. Astrophys., 28, 1
Doazan, V., Peton, A.: 1970, Astron. Astrophys., 9, 245
Doazan, V., Kuhi, L.V., Thomas, R.N.: 1980a, Ap. J., 235, L20
Doazan, V., Kuhi, L.V., Marlborough, J.M., Snow, T.P., Thomas, R.N.:
1980b, 2nd jAy European Conference, p. 151. ESA-SP157
Doazan, V., Thomas, R.N.: 1982, B Stars with and without Emission
Lines, Ch. 13. Ed. A. Underhill and V. Doazan (DT)
Doazan, V., Grady, C., Snow, T.P., Peters, G.J., Marlborough, J.M.,
Barker, P.K., Bolton, C.T., Bourdonneau, B., Kuhi, L.V.,
Lyons, R.N., Polidan, P.S., Stalio, R., Thomas, R.N.: 1985
Astron. Astrophys., 152, 182

Doazan, V., Thomas, R.N., Barylak, M.: 1986, Astron. Astrophys.,

159, 75



242

Doazan, V.: 1987, Physics of Be Stars, IAU Coll. 92, p. 384
Ed. A. Slettebak and T.P. Snow (C.U.P.)
Dolan, J.F.: 1984, Astron. Astrophys., 138, 1
Dolan, J.F., Tapia, S.: 1984, Astron. Astrophys., 139, 249
Dolan, J.F., Tapia, S.: 1989, Ap. J., 334, 830
Dolginov, A.Z., Silant’ev, N.A.: 1974, Soviet. Astron., 18(3), 289
Drissen, L., Lamontagne, R., Moffat, A.F.J., Bastien, P., Seguin, M.:
1986a, Ap. J., 304, 188
Drissen, L., Moffat, A.F.J., Bastien, P., Lamontagne, R.:
1886b, Ap. J., 306, 215
Durrant, C.J.: 1988, The Atmosphere of the Sun (C.U.P)
Edwards, D.L.: 1956, Vistas in Astronomy, 2, 1470
Elvey, C.T.: 1930, Ap. J. , T1, 221
Finsen, W.S., Worley, C.E.: 1970, Repub]ic Obs. Johannesburg Circ.
129(7), 203
Friend, D.B., McGregor, K.B.: 1984, Ap. J., 282, 591
Friend, D.B., Cassinelli, J.P.: 1986, Ap. J., 303, 292
Granes, P., Thom, C. Vakali, F.: 1987, Physics of Be Stars,
IAU Coll. 92, p. 66. Ed. A. Slettebak T.P. Snow (C.U.P.)
Green, R.M.: 1985, Spherical Astronomy (C.U.P.)
Groote, D., Hunger, K.: 1982, Astron. Astrophys., 116, 64
Gulliver, A.F.: 1977, Ap. J. Suppl.,, 35, 441
Harmanec, P.: 1984, Bull. Astron. Inst. Czech., 35, 193
Harmanec, P.: 1989, Bull. Astron. Inst. Czech., 40, 201
Haisch, B.M., Cassinelli, J.P.: 1976, Ap. J., 208, 253
Hammerschlag-Hensberge, G.: 1979, IAU Circ., 3391. Cited within
Henrichs, 1988

Hayes, D.P., Guinan, E.F.: 1984, Ap. J., 279, 721



243

Hearn, A.G.: 1975, Astron. Astrophys., 40, 355
Hearn, A.G. : 1988, Circumstellar Matter, IAU Symp. 122, p. 395
Ed. 1. Appenzeller and C. Jordan (Reidel: Dordrecht)
Heintz, W.D.: 1978, Double Stars (Reidel: Dordrecht)
Henrichs, H.F., Hammerschlag-Hensberge, G., Lamers, H.J.G.L.M.:
1980, 22d European Conference, p. 147. ESA-SP157
Henrichs, H.F.: 1982, Be Stars, p. 431. Ed. M. Jaschek
and H. -G. Groth (Reidel: Dordrecht)
Henrichs, H.F.: 1988, O Stars and Wolf-Rayet Stars, Sec. 4.5.
Ed. P.S. Conti and A.B. Underhill, NASA SP-497
Hofmeister, E., Kippenhahn, R., Weigert, A.: 1964, Z. Astrophys,
59, 242

Holtzer, T.E.: 1988, Circumstellar Matter, IAU Symp. 122, p. 289
Ed. I. Appenzeller and C. Jordan (Reidel: Dordrecht)

Huang, S.S.: 1972, Ap. J., 171, 549

Huang, S.S.: 1973, Ap. J., 183, 541

Huang, S.S.: 1977, Ap. J., 212, 123

Hummer, D.G., Kunasz, C.V., Kunasz, P.B.: 1973, Computer Physics
Communications, 6, 38

Hundhausen, A.J.: 1973, J. Geophys. Res., 18, 1528

Huovelin, J., Piirola, V., Vilho, O., Efimov, Y.S., Shakovskoy, N.M.:
1987, Astron. Astrophys., 176, 83

Hutchings, J.B.: 1976, Be and Shell Stars, IAU Symp. 70, p. 13
Ed. A. Slettebak (Reidel: Dordrecht)

Hutchings, J.B., Crampton, D., Cowley, A.P., Olszewski, E.,
Thompson, I.B., Suntzeff, N.: 1985, Pub. Astr. Soc. Pac.,

94, 417



244
Icke, V.: 1976, Structure and Evolution of Close Binary Stars,
IAU Symp. 73, p. 267. Ed. P. Eggleton, S. Mitten
and J. Whelan (Reidel: Dordrecht)
Johnston, M.D., Bradt, H.V, Doxsey, R.E., Griffiths, R.E.,

Schwartz, D.A., Schwartz, J.: 1979, Ap. J., 230, L11
Kalkofen, W.: 1987, Numerical Radiative Transfer (C.U.P.)
Karitskaya, E.A.: 1981, Sov. Astron., 25, 8
Karitskaya, E.A., Bocharev, N.G.: 1983, Sov. Astron., 27, 546
Kemp, J.C., Herman, L.C.: 1977, Ap. J., 218, 770
Kemp, J.C., Barbour, M.S., Herman, L.C., Rudy, R.J.: 1978,

Ap. J., 220, L123
Kemp, J.C., Barbour, M.S., Parker, T.E., Herman, L.C.: 1979,

Ap. J., 228, L23
Kemp, J.C.: 1980, Ap. J., 253, 592
Kopal, Z.: 1959, Close Binary Systems (Chapman and Hall: London)
Kogure, T.: 1990, Astrophys. Space Sci., 163, 7
Krautter, J., Bastian, U.: 1980, Astron. Astrophys., 88, L6
K{iz, S., Harmanec, P.: 1975, Bull. A. Inst. Czech., 26, 65
Lacy, C.H.: 1976, Ap. J., 212, 132
Lamers, H., J., G., L., M., Rogerson, J.B.: 1978, Astron. Astrophys.

66, 417
Landstreet, J.D., Borra, E.F.: 1978, Ap. J., 224, L5
Limber, D.N.: 1964, Ap. J., 140, 139
Limber, D.N.: 1967, Ap. J., 148, 141
Limber, D.N.: 1969, Ap. J., 167, 785
Lucy, L.B.: 1982, Ap. J., 255, 286
Maheswaren, M., Cassinelli, J.P.: 1988, Ap. J., 335, 931

Marlborough, J.M.: 1977a, Ap. J., 216, 446



245

Marlborough, J.M.: 1977b, Publ. Astron. Soc. Pac., 89, 122

Marlborough, J.M., Snow, T.P., Slettebak, A.: 1978, Ap. J., 224, 157

Mazzali,P.A.: 1088, 10th TUE Meeting GSFC, Greenbelt

McGale, P.A.: 1988, Ph.D Thesis (Glasgow)

McGregor, K.B., Friend, D.B.: 1987, Ap. J., 312, 659

McLean, I.S., Brown, J.C.,: 1978, Astron. Astrophys., 69, 291

McLean, 1.S.: 1979, Mon. Not. Roy. Astr. Soc., 186, 265

Mihalas, D.: 1972, Non- LTE Model Atmospheres for B and O stars.
NCAR -TN/STR-76

Milgrom, M.: 1978, Astron. Astropyhs., 65, L1

Morton, D.C.: 1976, Ap. J., 203, 386

Mullan, D.J.: 1984, Ap. J., 283, 303

Neugebauer, M., Snyder, C.W.: 1967, J. Geophys. Res., 72, 1823

Pauldrach, A., Puls, J., Kudritzki, R.P.: 1986, Astron, Astrophys.,
164, 86

Persi, P., Ferrari-Toniolo, M.: 1982, Be stars, IAU Symp. 98, p. 247
Ed. M. Jaschek and H.-G. Groth (Reidel: Dordrecht)

Peters, G.J.: 1982, Be Stars, IAU Symp. 98, p. 353,
Ed. M. Jaschek and H.-G. Groth (Reidel: Dordrecht)

Pfeiffer, R.J., Koch, R.H.: 1988, Astron. J., 94, 484

Pizzo, V.: 1978, J. Geophys. Res., 83, 5563

Pizzo, V.. 1980, J. Geophys. Res., 85, 727

Pizzo, V.: 1982, J. Geophys. Res., 87, 4374

Poe, C.H., Friend, D.B., Cassinelli, J.P.: 1988, preprint

Poe, C.H., Friend, D.B.: 1986, Ap. J., 311, 591

Poeckert, R., Marlborough, J.M.: 1976, Ap. J., 206, 182

Poeckert, R., Marlborough, J.M.: 1977, Ap. J., 218, 220

Poeckert, R., Marlborough, J.M.: 1978a, Ap. J., 220, 940



246

Poeckert, R., Marlborough, J.M.: 1978b, Ap. J. Suppl.,, 38, 229

Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: 1986,
Numerical Recipes, (C.U.P.)

Prinja, R.K., Howarth, I.D.: 1988, Mon. Roy. Astr. Soc., 233, 123

Rudy, R.J., Kemp, J.C.: 1976, Ap. J., 207, L125

Rudy, R.J., Kemp, J.C.: 1977, Ap. J., 216, 767

Rudy, R.J., Kemp, J.C.: 1978, Ap. J., 221, 220

st. Louis, N., Moffat, A.F.J., Drissen, L., Bastien, P.,
Robert, C.: 1988, Ap. J., 330, 286

Sareyan, J.P., Alvarez, M., Chauville, J., Le Contel, J.M., Michel, R.
Ballereau, D.: 1987, Physics of Be Stars, IAU Coll. 92, p.78
Ed. A. Slettebak and T.P. Snow (C.U.P.)

Schild, R.: 1978, Ap. J. Suppl., 37, 77

Schild, R.: 1983, Astron. Astrophys. 120, 22

Secchi, A.: 1867, Astron. Nachr., 68, 63

Serkowski, K.: 1973, Methods of Experimental Physics, Vol. 12:
Astrophysics, Part A. Eds M.L. Meeks and N.P Carleton
(Academic Press, New York)

Serkowski, K., Mathewson, D.S., Ford, V.L.: 1975, Astron. Astrophys.
134, 368

Shajn, G., Struve, 0O.: 1929, Mon. Not. Roy. Astro. Soc., 89, 222

Shakhovskoi, N.M.: 1963, Soviet Astron., AJ T, 806

Shakhovskoi, N.M.: 1965, Soviet Astron., AJ 8, 833

Simmons, J.F.L., Aspin, C., Brown, J.C.: 1980, Astron. Astrophys.,
91, 97

Simmons, J.F.L.: 1982, Mon. Not. Roy. Astr. Soc., 200, 91

Simmons, J.F.L.: 1983, Mon. Not. Roy. Astr. Soc., 205, 153

Simmons, J.F.L., Boyle, C.B.: 1984, Astron. Astrophys., 134, 368 (SB)



247

Simmons, J.F.L., Stewart, B.G.: 1985, Astron. Astrophys., 142, 100
Siscoe, G.L., Finley, L.T.: 1970, J. Geophys. Res., 75, 1817
Skinner, G.K.: 1980, Nature, 288, 141
Skinner, G.K.: 1981, Space Sci. Rev., 30, 441
Skinner, G.K., Bedford, D.K., Elsner, R.F., Leahy, D.,
Weisskopf, M.C., Grindlay, J.: 1982, Nature, 297, 568
Smale, A.P., Charles, P.A., Densham, R.H., Bath., G.T.,
van Paradijis, J., Menzies, J.W., Skinner, G.K.,1984,
Mon. Not. Roy. Astr. Soc., 210, 855
Slettebak, A.: 1976, Be and Shell Stars, IAU Symp. 70, p 123
Ed. A. Slettebak (Reidel: Dordrecht)
Slettebak, A., Snow, T.P.: 1978, Ap. J. (Letters), 224, 1. 127
Slettebak, A.: 1982, Be Stars, IAU Symp. 98, p. 109
Ed. M. Jaschek and H. -G. Groth (Reidel: Dordrecht)
Slettebak, A.: 1985, Ap. J. Suppl., 59, 769
Slettebak, A., 1988, Pub. Astron. Pac. Soc., 100, 770
Smale, A.P., Charles, P.A., Densham, R.H., Bath., G.T.,
van Paradijis, J., Menzies, J.W., Skinner, G.K.,1984,
Mon. Not. Roy. Astr. Soc., 210, 855
Smith, AM.: 1972, Ap. J., 176, 405
Sneddon, I.N.: 1972, The Use of Integral Transforms. (McGraw-Hill)
Snow, T.P., Marlborough, J.M.: 1976, Ap. J., 203, L87
Snow, T.P., Marlborough, J.M.: 1980, Ap. J., 235, 269
Snow, T.P.: 1982, Be Stars, IAU Symp. 98, p. 109
Ed. M. Jaschek and H. -G. Groth (Reidel: Dordrecht)
Sobolev, V.V.: 1960, Moving Envelopes of Stars;
Translated by S. Goposchkin (Cambridge, Mass. U. Press)

Sonneborn, G., Grady, C.A., Wu, Ch.-Ch., Hayes, D.P., Guinan, E.F.,



248

Barker, P.K., Henrichs, H.F.: 1988, Ap. J., 328, 784

Stagg, C.R., 1987, Physics of Be Stars, IAU Coll. 92, p. 91
Ed. A. Slettebak and T.P Snow (C.U.P.)

Strassmeier, K.G.: 1988, Astrophys. Space Sci., 140, 223

Struve, O.: 1930, Ap. J,, 72, 1

Struve, O.: 1931, Ap. J.,, 73, 94

Struve, O.: 1942, Ap. J., 95, 134

Suess, S.T.: 1972, J. Geophys. Res., 17, 567

Suess, S.T., Hundhausen, A.J., Pizzo, V.: 1975, J Geophys. Res.,
80, 2023

Swings, J.P.: 1981, Ap. J., 98, 112

Thompson, I.B., Landstreet, J.D.: 1985, Ap. J. (Letters), 289, 19

Underhill, A.B.: 1975, Ap. J., 199, 691

Underhill, A.B., Doazan, V. (Eds.): 1982, B Stars with and without
Emission Lines, NASA SP-456

Underhill, A.B., Fehey, R.P.: 1984, Ap. J., 280, 712 (UF)

Vaiana, G.S., Sciortino, S.: 1987, Circumstellar Matter,
JAU Symp. 122, p. 333. Ed. I. Appenzeller and C. Jordan
(Reidel: Dordrecht)

Van Paradijs, J., van Amerongen, S., de Kool, M., Deul, E.R.,
Lub, J., Greve, A.: 1984, Mon. Not. Roy. Astr. Soc., 210, 863

Voigt, H.H.: 1974, Outline in Astronomy, Vol. 2 (Noordhoff: Leyden)

Wakerling, L.R.: 1970, Mem. Roy. Astron. Soc., 73, 153 (cited within
Underhill and Doazan, 1982)

Waldron, W.L.: 1984, Ap. J., 282, 256

Warren, W.H.: 1976, Mon. Not. Roy. Astr. Soc., 174, 111

Waters, L.B.F.M.: 1986, Astron. Astrophys., 162, 121

Waters, L.B.F.M.: 1987, Ph.D Thesis (Utrecht) Ch 7



248a

Waters, L.B.F.M., Coté, J., Aumann, H.H.: 1987, Astron. Astroph)}s.,
172, 225

White, N.E., Carpenter, G.F.: 1978, Mon. Not. Roy. Astr. Soc., 183, 11



249

Appendix A,

A.1 Structure of Two Dimensional Envelopes.

By use of equation (3.4) we permit @ = Q,f(x,6) to be distributed in
8 as well as x, but we still adopt the corotation condition f(x,8,t) =
fo(x,0-wt), where fo(x,0,) is Q(x,8,)/Q, with 8, measured in a frame
rotating with the envelope from a reference axis which coincides with
that of ® when t = 0. We consider the extent to which properties of f,
can be obtained from observations of P(t), but we shall defer model

calculations to a subsequent paper.

A.1(a) f,(x,8) Separable with Known x-Dependence.

In this restricted case we suppose

fo(x,85) = hy(85)gq(%) (A1)
where g,(x) is known but hg(8y) is not. This would be the case for
example for a corotating equatorial wind of known velocity profile, the
same in all directions but the wind density (~h,) varying with
direction.

We proceed in this case by Fourier analysis of hg(8,) via

[+
ho(85) = a5 + L { ajcosje, + bjsinje, } (A2)
J=1

and writing cosjé,= cosjé cosjwt + sinje sinjwt etc.
Then inserting (A1) with (A2) into (38.5) and using the

orthogonality conditions,

2T
I cosje coske d8 = 0 wunless j=k
(o]
(A3)
217
J cosj6 sinke de = 0 for all j and k
[o]
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we obtain after some reduction, a Fourier series for P as a function of

(-]
e . .
ZQPg L - Po + L { pjcosje + qjsinje} (A4)
oo j=1
with
Po = apl2nl - Jo) - (Ab)
pz = 8.2(171 - Jz)
(A6)
qz = _bz(nI - Jz)
p« = _a-J.
g } for even j (j#2) (A7)
4 = byl
pi = -biK:
J I } for odd j (A8)
45 = 2K
where
e 2 _ 1\¥%
I= J go(x) X5 1% ax (A9)
1
o T-sec™ix .
(x2 - 1)% : 10
Jj = Eo(x) —a (1 + cos2e) cosje de dx (A10)

1 sec1x

o f-sec”1x
(2~ 1) inj Al1)
Kj = j J go(x) X5=(1 + cos2e) sinje de dx (

1 sec”lx

J;5 and Kj can be simplified by integrating with respect to ©, viz
2 _ -
J, = 7l - j gox) P52 2003 (1/%) + 5,(1/%)} ax (A12)

1
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-]

- 1Y% - ’
J, = —j go(x) E{_z;z_l) {cosi(l/x) - g + S,(1/x) + is—-‘*—(—i-éx—)} dx (Al13)
1
- (x2 - 1#(28;(1/%) |, S3op(1/%) , Sjsp(1/x)
3 = j | ALK Sj=2Ufe) | Sianl] } ax (1)
1 . for even j
(J=2)
Jj=0 for odd j (A15)
0
2 _ 1)¥r2T (1 T; (1 o (1
Ky = [ go(x) Dm (2L Ta Ul Tiaa U/} g (ate)
1 for odd j
KJ' =0 for even j (A17)

where Tj(l/x) = oos(jcogi(l/x)) are the Chebychev polynomials
and Sj(1/x) = sin(jcos (1/x)) .

Equations (A5)-(A8) can be inverted explicitly to obtain the Fourier
coefficients of the envelope 6, distribution in terms of the Fourier

coefficients of the observed polarisation P(8) viz

a5 = po/(ZWI - Jo) (A18)
(A19)

b2 = —qz/(WI - Jz)
a; = -pi/J;
2T } for even j (j¥2) (A20)
b.j = qj/Jj
a: = _q-/Ku
J Y } for odd j (A21)
bj = ~Pj/K;

1, JJ- and Kj are computed from (A9)-(All) (or from (A9) and

(A12)-(A17)) for the known function g,(x). As examples we show in Fig.

A.1a, b these integrals as functions of n for the form g,(x) = x™2 used
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-0-2 ! I L 1 | ! ! |
-0 15 20 25 30 35 40 45 50 55

Power Index (n)

Figure A.la

Integral moments I and Jj (for the first eight harmonics) shown as

functions of the power index (n).
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-0-2 | | 1 1 ] 1 | |
0 I'5 20 25 30 35 40 45 50

Power Index (n)

Figure A.1b
Integral moments I and Kj (for the first eight harmonics) shown as

functions of the power index (n).
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earlier for the first eight harmonics, which is above the maximum
likely to be achievable in a meaningful fit to any polarimetric data. (In
fact for integer n these integrals can be expressed in analytic form
but are cumbersome and direct numerical computation is as

convenient),

A.1(b) General £.(x,8,).

In this case we again Fourier analyse f,(x,6,) over 6, but at
each x, i.e
(-]
fo(x,8,) = a5 + L { aj(x)oos,jeo + bj(x)sinjeo } (A22)
j=1
where a3, bj now depend on x. Following the same proceedure as in
case 4.3(a) we derive relations between aj, bj and the Fourier
coefficients Pj 4qj of P(e). This time however, these relations only

enable us to derive a set of weighted integral moments of the aj(x),

bj(x) functions from their relations to pj,q; namely

Po = ZWIao - A, (A23)
p = ml - A

2 a, 2 } (A24)
qQ,; = -1y, + B,

2

Pj = -Aj

J J } for even j (j#2) . (A25)
aj = BJ

Pj = -Bj

T } for odd j (A26)
9 = A

Again we have integrated the moment integrals with respect to © to

obtain,
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00

_ (x2 - 1)%
I, = Jiaj(x) b D ax (A27)
% 2 _ 1\¥%
- J b;(x) if—gg—l’ dx (A28)
1
% 2 _ 1\% -
A, = I, - J as(x) E—;z—-l-) {Zcosi(l/x) + Sz(l/x)} dx (A29)
o 1
00 _ % _
By = 1y = [ o) b 2 1) {2005 (1/%) + 8,(1/0)} ax (A30)
o 1

2 _ 1y
Az = - agt0) g D eos (1/x) - § + sa1/m) + 380X (a3

), 2
® 2 _ 1\¥
B, = [ by(x) E 51 {cod® (17x) - J + 8,175 + —Aillil} dx  (A32)
1
o (x2 - 1)%{25;(1/ (1 iaa(1 :
Aj = -] mjlx) g E 3 2y 2(2/X) +3iz/X)} dx

Y1
(A33)

2 _ 1)%{28j§1/x) + Sj- 2(1/x) 1+2(1/x)} dx

) (x
Bj = ’Iibj(x) x2 j-2 42

for even j (j#2)

Aj =0

} for odd j (A34)
Bj =0
Y [y (2= DH2T3(1/%) | Typ(1/x) | Tyap(l/x) '
Aj = Ilaa(x) ) { S5+ 9 H2 s } dx

(A35)
~ (x2 - 1)%(2T:(1/x) . T »(1/x) . Tisnl(l/x)
Bj = Iibj<x) 2 (V5L e S SRl ax
for odd j

‘ZJ' =0
~ } for even j (A36)
Bj =0

Thus Aj, Bj, Aj and Bj can again be found directly from Pj and qj -
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Appendix B.

B.1.1 Spherical Shell of Arbitrary Density.

In order to calculate the net polarisation for a shell it is easier to
calculate the weighted integral moments in two different regimes
(a) X  coseci (polar region of the shell is occulted) then the integral

moments are

21
B 1
2"00903 (1 - X—2)*% [1 -3 - Tﬁj exp{-BuU,(o)} do ] (B1)
o]
-B
ToYo = 2170090% (1 - x—2)% [%2 - % [1 + % + %2]
(B2)
277
- %;f exp{-Bly(®)} [l.% —5°+ = ]d@]
[o]
2m 1
ToYs Z2MO R0 (1 - x-Z)%[ I Iu (1 - 12)exp{-Blu]} sin® dudcb]
(o] I.lo
(B3)
27

ToY3 = 270 Q (1 - X"Z)”[ JeXp{ Bl-lo(¢)}[uo + “0+ B2 1]COSZ¢ dd)]
° (B4)
where

_ (1 - X-2)*%cosi - sini sind(1 - X~2 - sin?i cos2¢)¥
Ho = 1 - sin®i cos<®
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(b) X » coseci (polar region of shell not occulted), then

Hp
To = 2M0oL(1 - x-z)%[1 - e B - £ [ expt-aluly (o - Zo(u))d.u] (B5)
Ha

ToYo = 2"0090%(1 - X‘Z)”[%z - e‘B[l +2,2 ]

B~ B2
(B6)
- Z‘rér‘ J K2 exp(-Blu]} (m - 2¢(u))d.u]
Mg
1 )
ToY2 = 21100903(1 - X—Z)%[ g _[ u(1 - p2)exp{-Blu|} cos¢(u)du] (B7)
Hg,
ToYs = choﬁo%(l - X‘Z)”[ Zg I (1 - u?) exp{-Blul} sin2¢(u)du ] (BS)
Hg
where
Mg = - cos(i - sec™1X)
My, = - cos(i + sec™1X)
and ¢ = sin—i{u cosi - (1 - X-z)%}
B sini (1 - )%

B.1.2 Ellipsoidal shell.

We again consider a thin ellipsoidal shell such that the geometrical
thickness of the shell is much less than the radius of the star (which
allows the approximations of Sec. 5.33 to be carried over to the
general inclination case). As in the previous example of the shell it is
eagier to calculate the weighted integral moments in two different

regimes. The net polarisation at a given inclination is then given by



eq. (5.25) and the wighted integral moments are

(a) Polar radius of ellipsoid { coseci

1 2T 1
T = ZnoonohR*[ [ ne au- 55| [ ) agao ]
o o E&(¢)
1 2m 1
ToYo = ZnoonohR*[ [Nz au- [ [ ne)ez deao ]
o o €(9)
27 1
T2 = 2ognohRy| 3= [ [ N(E) &(1 - €)% sine dgdo ]
o €(¢)
2m 1
T = [ 1 2
o’s = 2o nchRy| - T f I N(€) (1 - €2) cos2¢d€de ]
o €(¢)
Xz(“)
where N(u) = N(8) = ¢ [ (1 -x2)%ax

X1(U)

with Xl(“) = (1 + (i% _ 1)“2)%

_ Xy, +h
Xz(U) SO+ (AZ _ 1)“2)”

X, is the equatorial radius, M = cos® and § = -U

and

Edb + 2c2 - 2¢c(c? + ab - a2)7¥

€(e) B2 ¥ 402

where

a=1-X72 - sin?i sin?¢

on
i

(A%Z - 1)/X% + cos?i - sin?i sin®¢

c = cosi sini sin®
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(B9)

(B10)

(B11)

(B12)

(B13)
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(b) Polar ellipsoidal radius } coseci

1 Hy Hy
To = 210gnohRy| [ N du + oo [ NG au - § [ Nwew au] 1)
o Hz Mz
1 Hy Hy
Toro® mognghRe| [ NGw2 au + 3= [ Nz au - 1 [ Nwwze(n) au |
° Ha Hz (B15)
My
To72 = mMognghRy [ 5[ N(Wu (1 - w2)% cose(u) au | (B16)
M2
My
ToYs = 2nconohR*[ -4% N(u)u (1 - 12) sin2é(u) du] (B17)
M2
where
. - X"2 _ 2(A2 - 1)/X2)% 4 i
o(u) = 31n'1{(1 X :iéi 1 _)Z§)£ = COSI}
- [ab + 202 - 2c(c? +ab -32)'1]54
My = - b2 + 4c?
and
_ ab + 2c? + 2c(c? +ab —az)kj%
Hz = = [ b2 + 4c2
with

'a=1-X72 - sin?i
b = (A2 - 1)/X% + cos?i - sin?i

c = cosi sini
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B.1.3 Wedge Shaped Disc.

For a disc the net polarisation at a given inclination is again given
by eq.(5.29). The weighted integrals are most conveniently calculated

by considering three separate regimes, viz

(a) i1 ¢ «
2m 1
To = 2noonoR*[ sin«x B((f\+1)/2,3/2) - SZ? I I(l _ yz)}é y\-2 dyde
o y(¢)
(B18)
2m 1
1 J' 1 - y2)¥ ynN-2
- = (1 - ¥2)% y'=2 cose(e,y) dydo |
o y(®)
5 2m 1
ToYo = 2MognoRy [5“‘ X p((1)7,,37,) - X[ [(1 - y2)% y-2 dyde
o y(o)
(B19)
21T 1
S [ ] - v e we,y) avae |
o y(4)
2m 1
ToY2 = 2noondR*[ I I(l - y2)% y"-2 coso [1 -p2(,y)]1° dydo
o y(o)
(B20)
21 1

- &8 OCJ j (1 - y2)¥ y\-2 coso dyd¢]
o y(¢)
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27 1
1 .
ToYs = z"conoR*[ Iom I I(l - y2)% yN=2 5in2¢ 13(0,y) dyde
o y(o)
2m 1
1 .
T Im I I (1 - y2)% y~2 sin20 u(e,y) dyde  (B21)
o y(s)
27 1
. . 2
, sinxfsinZx 1] I I(l - y2)% N2 gin%e dydm]
4n 3
o y(o)
where
u(o,y) = — cosi (1 - y2)¥ + sini sin® (y2 - sin?i cos2¢)%
v = (1 - sin?i cos2¢)
- and

yv(®) = (1 - {sinx cosi + cosx sini sin¢}2)¥

b) «<i<T/, -«

1 &€ (y)
o = 2mogngRa[ ZHE B(IW)/5,3,5) - = [ [(1 - y2)¥ y-2 deay
vz &2(y)
(B22)
1 g (y)
v 32 [ ] - y% vz eiy,e) asay ]
y2 €2(y)
1 g (y)
To”o = 2170onoR*[ S B((N*1)/,,8/,) - 3 I J(l - y2)% yN-2 g2 dedy
y2 €2(y)
(B23)
1 €,(y)

1211 f f (1 - y2)% y"-2 €2 o(y,€) d&dy]
Y2 22(}’)
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1 g, (y)
ToY2 = z""o"oRa:[ ;1,' I J(l - y2)% y-2 g(1 - €2)% coso(y,8) dEdy]
Y2 gz(Y) (B24)
1 E4(y)
ToYs = 2"°onoRx[ %ﬁj I (1 - y2)% y"=2 (1 - €2) sin2¢(y,E) d&dy]
v2 €2(¥) (B25)

where

(1 - y2) - € cosi
sini (1 - QZ)H—}

¢(y,8) = sin‘i{

Y» = cos(i + «)

€,(y) = sinx and €, = cos(i +sin~ly)

1

To = ZnoonoR*[ S B((n#1)/,,3,) - 225 [ -y gy
Y1
. M Yi
- szna I (1 - y2)% y"=2 gy + % I (1 - y2)¥ yN-2 cog(i + sin~ly) dy
Y2 Y2
(B26)
1 sinx
+ % f I (1 - y2)% y1-2 o(y,u) dudy
Yy ©
y1 Ha(y)

+ %ﬁj J (1 - y2)% 32 o(y,u) dudy]
Yo My (y)
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1

. . 3
ToYo = 2MognoRy| SR (), 3, - S0 [ -2tz gy
¥
- Y1 Y1
- 5= f (1 - y2)% y"-2 gy + %ﬁ I (1 - y2)% yN=2 cog3(i + sin—ly) dy
Y2 Y2
(B27)
1 sinx
+ % I I (1 - y2)% y'=2 o(y,u) w2 dudy
Y1 ©
¥y Ha(y)
+ é—nf J (1 - y2)% y2 o(y,u) 12 dudy]
¥2 Hy(¥)
1 sinx
T2 = 2"°onoR*[' % J I (1 - y2)¥% yn=2 (1 - u2)*% c_osd:(y,u) dudy
Y1 ©
(B28)
Y1 uz(Y)
-1 ] - v anez wat - w2)% cosely,m) dudy |
Y2 My (y)
1 sinx »
T oys = 2 L 1 - y2)% yN=2 (1 - 42) sin2e(y,u) dudy
0”3 = 2MOoncRy| o= ( vty u Y,
y1 ©
(B29)
Y1 Uz(}’) .
v ] -y (- ) sinze(y,u) dudy |
V2 My (y)
where y; = cos(x - i), y, = ~cos(x + i)
My = -sinx, M, = -cos(i + sin~ly)
. g f(1 - v2)% + U cosi
and ¢ = sin"t{ (1 - 12)% sini J




