

https://theses.gla.ac.uk/

Theses Digitisation:

https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/

This is a digitised version of the original print thesis.

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study,

without prior permission or charge

This work cannot be reproduced or quoted extensively from without first

obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any

format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author,

title, awarding institution and date of the thesis must be given

Enlighten: Theses

https://theses.gla.ac.uk/

research-enlighten@glasgow.ac.uk

http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk

Projection Factorisations
in

Partial Evaluation

John Launclibuiy, M.A. (Oxon), M.Sc.

A Thesis
Submitted for the Degree of

Doctor of Philosophy
at the Department of Computing,

University of Glasgow
November 1989

0 . J o l m I . a m i c h h u r y 10 S 0

ProQuest Number: 11007334

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 11007334

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

A b stra ct

Par t ia l eva luat ion is becoming ever more promising as a p ro gr am ming tool. Parly

par t ia l evaluators dep ended over much on the source pro gr am being wri t ten in a

par t ic ula r style, an d needed certain ad hoc op t imisa t ions to produce good results.

T h e pract ice of pa r t i a l evaluation is now fairly well developed but the theoret ical

underp inn ings are not equally well unders tood.

A par t ia l eva lua to r takes a program, together with some of the input to the program,

and produces a new program. This new, or residual, p ro gr am is an opt imised version

of the old, having taken the input d a t a into account. Work under ta ken at D1KU in

C openhagen has shown the impor tan ce of prior analysis of the program. Thi s binding-

t imc analysis discovers which values wi thin the pro gram may bo com pu ted dur ing

par t ia l eva lua t ion— called s ta t ic values and which values may not the dynamic

values.

In this thesis we propose using domain projec t ions in b inding- t ime analysis. This

allows a greate r level of d a t a separa t ion than before because values are no longer

t r ea ted atomical ly. In par t icular , we are able to p inpoint s ta t ic values wi th in d a t a

s t ructu re s conta in ing b o th s tat ic and dynamic par ts . An interest ing consequence of

using domain projec t ions is t h a t we are able to d em o n s t r a t e an in t im at e re la t ionship

between b inding- t ime analysis and s tr ic tness analysis.

De pen den t sum and produc t are familiar from const ruct ive type theory. Wo give a.

less familiar domain - theore t ic definition and show how projections de te rm ine pa r t i c

ular d ep enden t sums. T h e pract ical appl ica tion of this result is to gene ra te residual

functions whose types depend on the s tat ic values from which they wore produced.

Cer ta in op t imis ing techniques , such as t ag removal and ar ity raising, arise as a direct,

consequence.

We extend the use of projec t ions to polymorph ic programs, giving a pract ical a p

plicat ion of developments in the theory of polymorph ism. Polymorphic functions

are regarded as na tu ra l t rans fo rmat ions betwc'en ap p r o p r ia te functors. Thi s leads to

three benefits: polymorph ic functions are analysed once and the result reused; the

s ta t ic inpu t to polymorphic functions is described by polymorphic projec t ions, which

reduces tin' search space of th(' analysis; and polymorphic functions are specialised

to po lymorphic values, leading to polymorphic residual functions.

P reface

This thesis is su b m i t t ed in par t ial fulfillment of the requirements for a. Doc tor of

Ph i losophy Degree a t Glasgow University. It comprises a s tudy of par t ia l evaluat ion,

wi th the thesis t h a t domain projec t ions provide an i m p o r t a n t theoret ical and pract ical

tool for its development .

O ur aim, therefore, is not so much to describe a s t ronger or more robust par tial

eva lua to r t h a n has been achieved hi ther to , bu t to improve our u n d er s ta nd in g of the

par t ia l eva luat ion process. Because of this much of the thesis is theoret ical . However,

to d e m o n s t r a t e t h a t the ideas are also pract ical , they have been implemen ted. As a

result , the chap ter s tend to a l ternate betwevn theory and practice. In C h a p te r 1 we

explore the principles of par t ial evaluat ion and in C h a p te r 2 we s tudy the a lgor i thms

and techniques used. In C hap ter s 3 and 4 we address the issue of b inding- t ime a n a l

ysis. C h a p t e r 3 conta ins theory, including the re la t ionship between congruence in

b inding- t ime analysis an d safety in st rictness analysis, and C h ap te r 4 the practice'

the equa t ions used in an implemen ta t ion and a proof of thei r correctness. In C h a p te r

5, we discuss the n a tu re of residual functions and thei r run- t ime argum ent s , and de

velop a theore tica l f ramework based on dependent, sums of domains . T h e pract ical

impl ica t ions of this are seen in C h a p te r 6 where we bring the mater ia l from the pre

vious chap ter s together in a working projec t ion-based par tia l evaluator . In C h a p t e r

7 we tu rn our a t t en t ion to po lymorph ism to address some of the issues it, raises,

and C h a p te r 8 concludes the thesis. T h e appendices which follow contain a n n o ta t e d

listings of the programs used to cons t ruct the final polymorphic par t ia l evaluator.

To a large ex ten t this thesis is self conta ined. No prior knowledge of par t ial ('val

uat ion is needed, since a comprehensive in t roduct ion is included. However, some

knowledge of o ther areas is assumed, in par t icular an e l em enta ry un der s ta nd in g of

both functional language's and domain theory, f o r C h ap te r s 5 arid 7 a l i tt le cat,('gory

theory is useful but , again, nothing too de'ep. In each case' ap pr opr i a t e background

mater ia l may be found in any of the s t andar d references. Bird and YVadler provides

n

an excel lent in t roduct ion to funct ional prog ramming [BW88] and S c h m id t ’s chapters

on dom ain theory are very readable [Sch86]. Ther e are few easy in t roduct ions to

ca tegory theory, bu t b o th R ydehea rd an d Burstall [RB88] and Bierce [Bier88] could

be recom mended. Finally, the reader is encouraged to follow up some of the m any

excel lent references on par t ia l evaluation t h a t are included in the bibliography.

A ck n o w led g em en t s

This work was funded by a research s tudent sh ip from the Science and Engineering

Research Counci l of G re a t Bri tain and was under taken at the D e p a r tm en t of C o m p u t

ing Science, Glasgow University. W i t h o u t the help of many p<\)ple this thesis would

not have been conceived, let alone b rough t to fruition. I offer my thanks to everyone

who has assisted me in whatever way dur ing the last three years and especially to

those I n am e below.

John Hughes has been my supervisor for the dura t ion of my Ph.D. research. He has

been a co ns tan t source of inspirat ion and ideas, and his input may be seen th ro ughou t

the thesis. T h a n k you John.

O th e r people a t Glasgow also deserve my heart fel t thanks . T h e d e p a r tm e n t is a very

friendly and s t imula t ing place. In par t icular , the thr iving Funct ional P ro g ra mm ing

G ro up is an excit ing place to be. Notable among its members is Philip Wadler who

has frequently provided me with useful insights.

Going fur the r afield, I must offer my thanks to the MIX group a t DIKU in C o p e n

hagen, and in par t icula r to Neil Jones. I have visited DIKU twice dur ing my Ph.D.

and on b o th occasions have had very fruitful discussions with the people there. In

par t icular , Neil Jones , Torben Mogensen, Peter Sestoft , Anders Bondorf, Cars ten

Kehler Holst and Olivier Danvy have all helped me to unde r s tand the more in t r ica te

aspects of par t ia l evaluation. Peter also deserves t h an k s for his extens ive commen ts

on my first draft . I must also t hank Dave Schmidt of Kansas S ta te University, A n

drew P i t t s of Cambridge* and Michael Johnson of Macquar ie University, Sydney for

thei r pa t i en t explanat ions of areas of domain and ca tegory theory.

Ret u rn ing to Glasgow I would like to t h an k all my fellow s tuden ts for our discussions

and t ime together , bu t in par t icular Gebre Baraki, Phil Tr inder and Steve Blott.

On m an y occasions they listened pat ient ly to half-baked ideas gent ly point ing out

the areas t h a t were par t icular ly weak. O the r p m p l e who deserve par t icular thanks

IV

for the discussions I have had wi th th em are Th ier ry Coquaiuh Kieran Clenaghan,

C ar s t en G o m ar d and Fai rouz Kamareddine .

Final ly I would like to th a n k Rachel my wife. She encouraged me whenever 1 t hough t

I was going nowhere, an d cheerfully accepted the t imes when I spen t long per iods

s tud yi ng a t home or in the depa r t m en t . It is to her t h a t I dedicate this thesis. May

G o d bless her always.

.lolm Launchbury

November 1989

C on ten ts

A b str a c t

P reface

A c k n o w l e d g e m e n t s ..

1 P art ia l E va lu a t ion in P r in c ip le

1.1 C o r r e c t n e s s ..

1.2 A p p l i c a t i o n s ..

1.2.1 A u to m a t i c Compi la t ion

1.2.2 Producing Compilers Au tomat ica l ly

1.2.3 E m b ed d ed L a n g u a g e s

1.2.4 Ray T r a c i n g ...

1.2.5 T heorem P r o v i n g

1.2.6 Ex per t S y s t e m s

1.3 How Strong is a Par t i a l Evaluator?

1.4 Rela ted Topics ..

1.5 mix Curries P ro gr ams

2 P ar t ia l E va lu a tion in P r a c t ic e

2.1 T h e Par t i a l Evaluat ion P r o c e s s

2.1.1 B inding-Time A n a l y s i s

2.1.2 Call a n n o t a t i o n

2.1.3 S p e c i a l i s a t i o n ...

2.1.4 Tw o Smal l E x a m p l e s

2.2 S e l f - A p p l i c a t i o n ..

2.3 Congruence and E i n i t e n e s s

2.4 E x a m p l e ...

i

ii

iii

1

2

3

4

5

6

7

7

8

9

9

1 1

12

13

14

14

15

16

19

20

22

v

C O N T E N T S

6 Im p le m e n ta t io n

6.1 General ..

6.2 Bind ing-T ime A n a l y s i s ..

6.2.1 Represent ing P r o j e c t i o n s

6.2.2 C o m p u t in g Fixed P o i n t s

6.3 S p e c i a l i s a t i o n ...

6.4 E x a m p l e ..

7 P o ly m o r p h ism

7.1 Semant ic Prope r t i es of P o l y m o r p h i s m

7.1.1 Types as Functors ...

7.1.2 N a tu ra l T r a n s f o r m a t i o n s

7.1.3 Polymorph ism in Languages with Recursion

7.1.4 Functors and P r o j e c t i o n s

7.1.5 Polymorphic P E L ...

7.1.6 N a t u r a l i t y ...

7.2 Polymorph ic Analysis T h e o r e m

7.2.1 Appro x im a te Factorisat ion of Projec t ions .

7.3 Polymorph ic S p e c i a l i s a t i o n ...

7.4 Represent ing Polymorphic Projec t ions

7.5 E x a m p l e ..

8 C on clu s ion

8.1 Appraisal ..

8.2 Development ...

8.2.1 F i n i t e n e s s ...

8.2.2 Values from Residual F u n c t i o n s

8.2.3 S e l f - A p p l i c a t io n ..

8.2.4 Value P r e s e r v a t i o n ...

8.2.5 Domain R e d u c t i o n ...

C O N T E N T S Vlll

A I m p le m e n ta t io n o f P E L 110

A. l T y p e D e c l a r a t i o n s .. 110

A.2 T h e P E L I n t e r p r e t e r .. I l l

A.3 T y p e c h e c k i n g ... Ilf)

A.4 Global V a l u e s .. 119

A.5 T h e RUN C o m m a n d .. 121

B Im p le m e n ta t io n o f B T A 122

B.l M an ipu la t ing P r o j e c t i o n s ... 122

B.2 T h e Abs t ra c t Funct ion E nvi ro nm en t ... 127

B.3 Binding-Time Analysis O u t p u t .. 130

C Im p le m e n ta t io n o f S p ec ia lisa t io n 131

C . l S p e c i a l i s a t i o n .. 131

C.2 Residual P ro g ra m O u t p u t .. 135

C.3 Ex tended E x a m p l e ... 135

D Library F u n ct ion s 140

D.l General Library F u n c t i o n s .. 140

D.2 Pars ing Pr imi tives ... 143

B ib l io g ra p h y 145

C hapter 1

P artia l E valuation in P rin cip le

T h er e seems to be a fu ndamenta l d ichotomy in com put ing betw<ven clari ty and ef

ficiency. F rom the p ro g r a m m e r ’s point of view it is des irable to break a problem

into subproblems and to tackle each of the subproblems independent ly . Once these

have been solved the solutions are combined to provide' a solut ion to the original

problem. If t h e decomposi t ion has been well chosen, the final solut ion will be a clear

im p le menta t ion of the a lgor i thm, bu t because' of intermeeliate' value's passing be'twe'e'n

the various modules , wh e the r they are functions and procedures or s ep a ra te processes

connected by pipes, the solution is unlikely to be as efficient as possible. Conve'rse'ly, if

efficiency is considereel pa r am o u n t , many logically se'parate computa t ions may need to

be performed together . As a consequence, the a lgor i thm will be reflected less directly

in the progr am , and correctness may be hard to ascertain. Th us , in most, programs

we find a t radeoff between these conflicting requirements of clarity and efficiency.

An ex t r eme form of modular isa t ion is to wri te prog rams in an in terpre t ive style, where

flow of control is de t ermined by stored da ta . P rograms in this s tyle are comparat ively

easy to prove correct and to modify when requirements change, but are well known

to have ext remely poor run- t ime beh av io u r— often an order of m a gn i tude slower than

thei r non- in tcrpre t ive counterpar ts . Because of this, the in terpre t ive style tends to

be used infrequently and in non t ime-cri t ical contexts. Ins tead, flow of control is

de te rm ined deep wi th in the program where a reasonable level of efficiency may be

obta ined.

Par t ia l evaluat ion is a serious a t t e m p t to tackle this issue. In principle it allows the

p ro g ram m er to write in a heavily in terpre tive style wi thout paying the corresponding

price in efficiency. At partial evaluation tunc (compare with compile t im e) m any of

tin; in terpre t ive computa t ions are performed once and for all, and a new program is

1

C H A P T E R 1. P A R T I A L E V A L U A T I O N IN P R I N C I P L E

produced. Flow of control decisions are moved from s tored d a t a into the s t ru ct u re of

the new program.

Correctness is p a r a m o u n t for par t ia l evaluat ion to be widely useful. Opt imisa t ion

phases in m a n y compi lers regularly in t roduce bugs and so are often d i s t rus ted by

pro gr am mers . This is rarely serious because most opt imisers may be swi tched off

wi th l itt le loss— they often give only a marginal improvement anyway. With par tial

eva lua t ion the s i tua t ion is very different. In choosing an in terpre t ive style the pro

g ra m m e r will be relying on the par t ia l evaluat ion process for making the program

reasonab ly efficient. If t h e t rans fo rma t ion does not preserve th e semant ics of the

source prog ram, th en the par t ia l evaluat ion process cannot be relied upon, and the

p ro g ra m m e r will re turn to the original style.

T h e pur po se of this chapte r is to survey par t ial ('valuation. O u r in tent ion is to provide

in tu i t ion as to w h a t par t ia l evaluat ion is and to consider some appl ica tions . T h e name

part ial evaluation is one of a nu mber used to describe the same process. Others arc'

mixed computat ion (because the com put a t ion opera te s on a mix of program text

and prog ram d a ta) , pro gmm specialisation (because the new program is a specialised

version of the old one), and program projection (because in some sense we construct,

a projec t ion collapsing the first a rgumen t) .

1.1 C orrectn ess

Let us p u t all this in a more concrete set ting. Suppose we have a program which

we in tend to run often. Also suppose t h a t for m any of the runs some of the input

d a t a will remain const ant . This means t h a t m an y of the same' com pu ta t ions will bo

per formed repeatedly . We would like to genera te a new program from the old one

incorporat ing the d a t a t h a t remains constant . T h e new program should have the

sam e behav iour when given the rema inder of the input as the original did with all

the input . Moreover, those com pu ta t ions t h a t would have been performed repeatedly

should be performed jus t o n c e —-when the new progr am is being produced. This la t ter

condi t ion can never be completely satisfied but exists as a goal of partial ('valuation.

In cont ras t , the former condi t ion is a requir ement t h a t should be satisfied by ('very

par tia l evaluator. We can express it more formally.

f o r historical reasons we call our partial ('valuator mix (from “mixed c o m p u t a t i o n ”).

Suppose t h a t tin* program takes two a r g u m e n ts and t h a t we want, to specialise it, to

its first a r gu ment . If we define,

C H A P T E R 1. P A R T I A L E V A L U A T I O N I N P R I N C I P L E 3

f x = m ix f x

then we require t h a t

fx V = / x y

T h e no ta t ion we use is in tended to draw a dist inc tion between a p rogram an d the

funct ion or ope ra t ion t h a t the p rogram computes . T hus if / is a function, then / is

some p rogram defining t h a t function. More generally, if x is a value of any type then x

is a p ro g ram (or piece of progr am text) defining t h a t value. T h u s the function mix (as

defined by a program mix) takes two programs as a rgume n ts and re turns a program

as a r e su l t1. Similarly, in the example above, fT is a program defining the specialised

function f x . Not ice t h a t this nota t ion does not preclude some non-overl ined variable

from having a pro gram value.

We describe the first p a r am e te r as static. We expect t h a t it will not vary for some

n um ber of runs but , more impor tant ly , its value is known dur ing par t ia l evaluation.

T h e second pa ram eter , whose value is not known until run- t ime, is described as

dynamic . Clearly there are natu ra l general isat ions of the correctness condit ion , where

a function m ay have m an y paramete rs , some subset of which are static. One of the

aims of this thesis is to generalise fur ther, so th a t individual par am et er s may have

both s ta t ic an d dynam ic par ts .

1.2 A p p lica tio n s

Par t ia l evaluat ion has a long history. Lombardi and Raphael used it in LISP to

handle incomplete d a t a [LRC4]. F u ta m u r a [FutTl] realised t h a t partial evaluation

could be used to derive compilers from interpreters. We will look at his idea in

some detail . Boyer an d Moore used par t ial evaluat ion in a theorem prover for LISP

functions [BM75], and Dar l ington and Burs tal l used it to opt imise procedures [DB75].

So far, par t ia l evaluators have not been sufficiently powerful to be widely useful,

even thou gh a t eam at Linkoping University considered using par t ial evaluation as a

general pu rpose program ming tool as early as 1976 [BIIOS70]. More recently, interest,

in par t ial ('valuation has resurfaced as the process has become bet t er unders tood.

' T h e o v e r b a r n o t a t i on h a s b e e n i n t r o d u c e d h e r e i n s t e a d o f t h e m o r e c o m m o n f o r m L mi x f x

[JSSHfj] a s i t m a y e x p r e s s m u l t i p l e l eve l s o f r e p r e s e n t a t i o n m o r e eas i ly . N o t e t h a t o v e r b a r is not, a

f u n c t i o n : / a n d / a r e m e r e l y d i s t i n c t l ex i ca l s y m b o l s w h o s e m e a n i n g s a r c r e l a t e d .

C H A P T E R 1. P A R T I A L E V A L U A T I O N IN P R I N C I P L E 4

In this section we will consider some of the most promising applicat ions of program

special isation. Many of these have appeared in [Frsh82], [Fut.83] and [Tur8(>] amongst

others.

1 .2 .1 A u t o m a t ic C o m p ila t io n

Historically, au to m a t i c compi lat ion was one of the earliest appl ica tions of par t ia l

evaluat ion to be proposed. Suppose t h a t int is an in terp re ter for some language*, and

t h a t prog is a p ro g ram in th a t language. W he n we run the pro gram prog using the

in te rp re te r along wi th some input d a t a data we compute the result,

result — iut prog data

For m a n y runs of int we would expect the prog a r gu ment to bo constant, , varying

only the data a rgumen t . T h e same ins t ruct ions will have to be in terp re ted again and

again. Let us therefore specialise the in te rpre ter to its first a rgu ment .

ini prog = m ix int prog

T h e result of the specialisation is a program (in the language’ in which int is written)

which compu tes some function intprog. Hy the correctness condi t ion we know tha t ,

iu tprog data = int prog data

T h e action of in tpTOg on t h e d a t a is the same’ as the* action of prog when in terpre ted

by int. B ut , unlike prog, the function intprog doe’s not require an in terpre ter . T h u s

in tprog is a compi led equivalent of prog. 'Flu’ com pu ta t ions usually performed by int

every t ime it is run will have been performed by mix dur ing specialisation. These are

the com pu ta t ions t h a t relate to the stat ic proper t ies of prog. In principle, the only

com pu ta t ions of int t h a t intprog needs to perform are those t h a t depend on data (tha t

is, on the dynamic propert ies of prog). Of course this is an idealistic picture’. How

far this ideal is a t t a i ned depends on many factors.

This use of par t ia l evaluation is known as the jirst Futamura projection.

C H A P T E R 1. P A R T I A L E V A L U A T I O N IN P R I N C I P L E

1 .2 .2 P r o d u c in g C o m p ile rs A u t o m a t ic a l ly

We can take the process fur ther. If we had m an y different prog rams to compile,

we would com pu te mix int progi for each of the programs prog,. T h e int p a r am ete r

to mix is unchanged in each of these com pu ta t ions . So it l ikewise makes sense to

specialise mix to the in terpre t er pr og ram int. How do we do this? We use mix itself.

Applying the mix equa t ion to itself gives

m i x r— - mix m ix inti nt

Again the result is a p ro g r am comput ing a function. W h a t sort of function is m i x ^ - I

By the correctness condi tion,

mixr~t prog — m ix int prog
— i n t p r0g

But in tprog is the compiled version of prog. T h e function ^Lxr-(is therefore playing

the role of a compiler. This is the second F u t a m u m projection. By specialising mix

to an in terp re ter for some language we obta in a compi ler for tha t language. T h e r e is,

of course, 110 requ iremen t th a t the two mix'1 s are ident ical as long as they are both

s pec ia l i s e s , b u t there is a certain elegance when they are the same.

We can take one final step. If we have many in terpre ters to tu rn into compi lers, we

will need to ca lculate m ix mix int{ for each in te rp re te r int,. In each ca.se the mix

pa r am e te r remains unchanged. It makes sense, therefore, to specialise mix to itself.

m ix = m ix m ix m ix
m i x

By the correctness condit ion,

m i x — int = m ix mix int
m i x ______________

= m i x r-
1 nt

T h e function m i x ^ is a compi ler generator , (l iven an in terpre t ive definition of

a language (an execu tab le denota t ional semantics , for example) m i x produc t’s a

compiler. T h e po ten t i a l of this, t h e third F u t a m u m projection, was ac tual ly first

noticed by Turchin in 1979 [Tur79], bu t it was not unti l the mid-19N0\s t h a t it was

realised in pract ice. Working in a purely functional subset of LISP, the group at

DIKIJ, Copenh agen, led by Neil Jones , produced a version of mix t ha t was able to

C H A P T E R 1. P A R T I A L E V A L U A T I O N IN P R I N C I P L E 6

specialise a copy of itself to itself [JSS85]. Using the result (now called cogcn by the

Dan ish group) they were able to convert in terpre ters into compi lers for a nu m b er of

smal l example languages. T h e compilers produced code th a t ran between 5 an d 20

t imes fas ter t h a n the in terpre ted programs did, and the code quali ty of the compi ler

i tself was qui te reasonable. In C h ap te r 2 we will s tudy thei r a lgor i thms in some detail .

Unde rs tand ing precisely the link between compilers and in terpre ters is im p o r tan t .

Barzdin ex t ra c t s a compi ler basis from an in terpre t er and uses this to cons t ruc t

a compi ler [Bar88]. Bulyonkov and Ershov have und er taken com plem en tar y work

[BE88]. T h e y a t t e m p t to unde r s ta nd where the t radi t ional compiler s t ruc tu res come

from. W h e re in an in te rp re te r are the proto versions of object code t emplates , symbol

tables, t h e s tack, and so on? Is it possible for these s t ructu res to be created by partial

evalua t ion alone?

1 .2 .3 E m b e d d e d L a n g u a g es

T h e goal of producing compilers autom at i ca l ly for product ion languages is st ill some

way off. Automat i ca l ly genera ted compi lers are unable to co m pe te effectively against,

h an d wri t ten compilers, and for commercial ly available languages it is wor th e x p e n d

ing h u m a n effort to ob ta in high quality. In o ther s i tuat ions , au tomat i ca l ly produced

compi lers are more appropr ia te . For example, Emanuelson and I laraldsson used p a r

tial evaluat ion to compi le extens ions to LISP [ElISO]. T h e extens ions wore defined

in tcrpre t ively and, prior to execut ion, were opt imised by par tial ('valuation. In the

reference they give a detai led example involving a p a t t e rn matching extens ion. Their

results compared well with those given by a commercial compiler.

T h e concept of language extension can be taken fur ther . Some hard problems become

more t r ac tab le throug h the use of an in termedia te language'. T h e p ro gram me r writes

an in te rp re te r for some problem-specific language, and then writers the solut ion to

the pro blem in t h a t language. Occasional ly it is convenient to have more than one

in te rm ed ia te language and to form an in terpre tive tower, where each language in ter

pre ts t h e one above. It is imperat ive to have some means of collapsing such towers

au tom at ica l ly once the program is wr i t ten , because each interpre tive layer represents

an orde r of m ag n i tu d e loss of efficiency. Only when this is possible will this approach

to p ro g ram m ing become pract icable.

So far, the applica t ions have been or ien ta ted towards p ro gr am ming languages. There

are o the r areas for which par tial evaluation shows promise.

C H A P T E R 1. P A R T I A L E V A L U A T I O N IN P R I N C I P L E 7

1 .2 .4 R a y T rac in g

In his M a s t e r ’s thesis, Mogensen reports on an expe r im ent involving ray t rac ing

[Mog86]. A ray- t race r is a function ray of two arguments : a scene s and a view

point v. T h e result of comput ing ray s v is a p ic ture of the scene as it appear s from

the given viewpoint . Typically, ray-t racers are heavily in terpre t ive -many flow-of-

control decisions are based on the scene which has to be constan t ly re-examined. If

the the ra y- t r ac er is specialised to the scene, these control decisions become bui lt

into the s t ru c tu re of the residual program. This pro gram compu tes a function rays

which, when given a viewpoint, draws the scene from t h a t point . Because rays is no

longer in terpre t ive , the specialised ray- t racer is able to draw the scene rapidly from

any required viewpoint .

Surprisingly, Mogensen found t h a t even if only one view was required, it proved to

be faster to specialise the ray- t racer and then run the specialised version, th an it

was to run the original. In re trospect the reason is clear. In the original ray- t racer

t he scene descript ion is examined m any t imes involving many repeated co m pu ta t ions

whereas in t h e specialised version these arc reflected in the p rogram s t ructu re . This

parallels th e familiar s i tua t ion in p rogram ming where, for most programs, compi ling

then running the prog ram is faster than using an interpre ter.

Simi lar principles m ay be seen a t work in the following (speculat ive) examples .

1 .2 .5 T h e o r e m P r o v in g

A theorem prover takes a set of axioms and a theorem, and determines whe the r the

theo re m is a consequence of the axioms or not. We could represent, it as a function

prove taking two a rgum ent s , axioms a and theo rem /. Because of the in terpre t ive

na tu re of prove and because the sot of axioms a may bo used repeatedly, it makes

sense to specialise prove to a. T h e result, provea, is a theorem prover optimised to

prove theorem s der ivable from the axioms a. In essence prove is an in terp re ter for a

rest ricted “p ro g ram ming language” where sets of axioms correspond to “p ro g ra m s ” .

R a th e r th an in terp re t the “prog ram ” a afresh for each new theorem, we “compi le” a

to give provea to use ins tead.

Of course, ins tead of ca lcula t ing mix prove a directly, we can first use mix — to obta in
t o i j i m u

a “compi ler” for prove , namely mix —Vf. We can use this and com pute m ix p—-lf a to

obta in provea. Moreover, if we have an a l t e rna te set of axioms a', we can apply

C H A P T E R 1. P A R T I A L E V A L U A T I O N IN P R I N C I P L E 8

m ix p —ve to a' to p ro duc e provea>. This example shows t h a t m i x is a compi ler

gene ra to r in a broad sense of the term and is not rest ricted to p ro gr am ming languages.

1 .2 .6 E x p e r t S y s te m s

Very s imilar me thods may be applied to exper t sys tems. We can regard an expe r t

sys tem as consist ing of three par ts , an inference engine i n f e r , a set of rules r and a

set of facts / . Let us suppose t h a t the result , given by infer r / , is the set of facts

deducible from / using the rules r. A general inference engine proceeds interpretively.

It takes the set of facts, chooses a rule, and determines whether the rule is applicable
to the facts. If so the newly inferred fact is added to the body of facts. T hen the next

rule is considered, and so on. In pract ice this approach turns out to he too slow to bo

useful, especially when m any rules and facts are being m an ipula t ed . It is par t icular ly

acu te when the exper t sys tem is hierarchical , i.e. when t h e n ’ are rules that govern

the applicabil ity of o ther rules. Usually, the problem is overcome by compi ling the

exp e r t sys tem by hand (a process which is tedious, er ror-prone, and t ime-consuming)

yet the same effect may be obtained by specialisation. T h e residual program in ferr

is an inference engine customised to the set of rules r. It is a function from facts to

facts t h a t contains l itt le or none of the original in terpre t ive machinery. Of course, we

canno t hope t h a t the efficiency gained by au to m at ic special isation will be as great as

is obt a inab le by hand, b u t the difference between the two may be qui te small.

Turch in goes one s tage fur ther [TurSG]. Suppose' t h a t the bo dy of rule’s is gradual ly

increasing. We produce specialised versions of infer to perform inference according

to the rules we al ready have, but we also retain the original unspecialised version of

infer in case any new rules are’ added. This allows the expe r t system to grow. What,

is more, in quiet per iods the inference engine could bo specialised to the new sot of

rules to allow these to be handled more efficiently. This, Turchin postulate's, may

correspond with wh a t happens to us during sleep.

Of course, ra th e r than use the general specialiser again and again we would use mix -j

to p ro duce one opt imised to the task of specialising the inference engine infer. This

is an o th e r example of “compi ler genera t ion” .

These examples do not exha us t the possible appl ica tions for partial evaluation. As a

final example , Consel and Danvy repor ted taking a clear bu t inefficient, s tr ing m a t c h

ing a lgo r i thm and, by specialising it to the pat t er n , autom at ica l ly produced what, was

essential ly the K nu th -M o r r i s - P ra t t a lgor i thm [CI)89j. It is r e a s o n a b l e to expect, t h a t

C H A P T E R 1. P A R T I A L E V A L U A T I O N IN P R I N C I P L E 9

as par t ia l evaluators become more powerful and robust many more appl ica tions will

be found.

1.3 H ow Strong is a P artia l E valuator?

T h e equa t ions given earlier ac tual ly say nothing ab o u t how efficient the programs

resul t ing f rom par t ia l evaluation are. T h e equations are consequences of the S- ni-n

theo rem of recursive funct ion theory. T h e theorem s ta tes t h a t a specialised version

of a recurs ive funct ion is itself an effectively const ructib le recursive function (t h a t

is, there exists a recursive function which acts as a general specialise!'). A direct

im ple menta t ion of the proof of the theorem leads to a trivial implemen ta t ion of s p e

cialisation. Thus , suppose t h a t f x y is a two p a ram ete r function and t h a t wo wish

to p roduce f \ using some value X for x. We can do so by defining

f x V = f X y

and gain no improvem ent at all.

For tunate ly , there are non-t rivial implemen ta t ions of par tial evaluat ion bu t each dif

fers in power. Jones suggests a tes t for assessing thei r s t rength . Suppose t h a t s_int

is a self in terpre ter for the language in which mix is wr i t ten, so for any program / ,

s j n t J = /

Then we would hope th a t

m ix S-int f ~ /

where ~ is m ean t to imply th a t the two sides are co mparab le in size and efficiency. If

this equa t ion is satisfied then mix is able to remove a complete layer of in terp re ta t ion.

1.4 R e la te d Topics

As wi th every area of study, par tial evaluation does not s tand on its own. We have

a lready al luded to the fact t h a t it has much in common with compi lat ion. One

could argu e t h a t cons tan t folding is like* partial evaluation but on a very l imited

C H A P T E R 1. P A R T I A L E V A L U A T I O N IN P R I N C I P L E 10

scale, an d t h a t funct ion or procedure unfolding to produce in-line code is more so.

Compiler genera tion techniques come even closer to mix technology. Ther e has luvn

ac tive research in this area for some t ime producing familiar p roduc ts like LFX and

YACC. A n o th e r example is the Cornell Synthesizer G enera to r [1(189] which produces

s t ru c tu re editors from grammars .

On e mot ivat ion for au to m a t i c compi ler generat ion is the difficulty of producing se

man t ica l ly correct, ha nd-w ri t te n compilers. An au to m a t i c compi ler gene ra tor would

take a deno ta t iona l (or o ther) description of some language and p roduce a compi ler

for t h a t language. Any compi ler genera tor needs to be proved correct,, of course, but

the proof only lias to be done once. In contras t , every hand-pro du ce d compi ler iux'ds

its own proof of correctness. An early a t t e m p t along these lines was Mosses1 semant ics

implemen tat ion sys tem [Mos79] but the residual programs produced by the sys tem

general ly conta ined a large in terpre t ive element. A later example, the C F R F S projec t

[Tof84], produced b e t t e r results th rough the use of more' sophist ica ted techniques.

Schm id t has explored the possibil i ty of au tomat i ca l ly recognising which par am et er s in

a deno ta t iona l semantics may be implemented using the s ta te or a stack etc. [Sch88]

and Nielson’s two level type sys tem a t t e m p t s to sepa ra te compi le- t ime and run- t ime

com pu ta t ions [Nie88]. To a t t ack the problem from a different, direct ion, ac tion se

mant ics [M W 87] defines in terpre ters in terms of combinator s which m an ipu la te facets.

There are facets to ca p tu re variable binding, value man ipu la t ion , s t a t e t rans it ion and

parallel communicat ion. Facets are or thogonal in the sense that action in one facet,

is independe n t of ac tion in the o thers . It is hoped that sepa ra t ing these facets may

assist t he product ion of efficient, compilers.

Ther e are also similarities between par t ial evaluation and more general program t r a n s

formation methods . For example, fo ld /unfold t rans fo rmat ions [HI)77] art' closely

mimicked in special isation. Methods of program analysis art' also relevant,. As we

shall see in the next chapter , a prior program analysis is a vital par t of the p a r

tial evaluat ion process. In C h ap te r 8 wo explore the link between this bindiny- t ime

analysis and the more familiar st rictness analysis [A 1187].

T u rc h in ’s supercompi lat ion [Tur8G] is more general than par tial evaluation. T h e su-

percompi ler ,s7/pervises the evaluation of a program and compiL s a residual program

from it. Op t imisa t ion can occur even when no input d a t a is present , t hrough the use

of driviny. Expressions are driven across case-expressions, genera t ing the informa

tion t h a t (by as sumpt ion) the pat te rn succeeded. This informat ion is used allowing

for more reduct ion than by partial ('valuation alone. T h e same principle is seen in

C H A P T E R 1. P A R T I A L E V A L U A T I O N IN P R I N C I P L E 11

W a d le r ’s defores tat ion a lgor i thm [Wad8S]. Ensur ing terminat ion is still a big p ro b

lem in pa r t i a l evaluation, bu t it seems even worse when driving is present. VVadler

addresses this issue by placing heavy rest rict ions on the form of function deiinitions

to which his a lgo r i thm is applied. In cont ra s t , Turchin applies his supercompi ler to

a rb i t ra ry program s an d uni tes two s tates when they are “dangerously s imi lar1'. This

works in m an y cases though non - te rminat ion still occurs.

1.5 mix C urries P rogram s

Before we close this cha p te r it will be useful to consider the types of objects given to

and re tu rned by mix. Its a rgu me nt s are two pieces of program, the first, represent ing

a function of two ar guments , and the second represent ing a value sui table for the

f un c t ion’s first a rgum ent . Let us wri te T for the type of pro gr am code represent ing

an object of type T . Th us , using the previous no ta t ion, if t E T then 7 E T. T hen ,

m ix : A x B —► C x A —► H —* C

T h a t is, m ix takes a definition of a two a rgum en t function and a definit ion of a value

for the first a rgumen t , and produces a definition of the corresponding function of the

remaining a r gu ment .

W h a t is the type of m i x - r ' l Subs t i tu t ing into the type definition of mix gives,

mix —r : A x B —> C —» A —► B —> Cm \x

Given a definit ion of a program specifying a two a rgum en t function mix re turns a

pro gram which, when executed, takes a definition of a value, and re turns a program

to c o m p u te the corresponding function of the remaining a rgum ent .

These equ a t ions m ot iva te the slogan: partial evaluation is cuiTying on programs.

C hapter 2

P artia l E valuation in P ractice

Having seen some of the principles of par t ia l evaluat ion we now consider practicali t ies.

In this cha p te r we will s tudy the s t an d a r d a lgor i thm used in part ial ('valuation and

in t roduce an ext ended example which we develop throughout the thesis. T h e mater ia l

of this cha p te r draws very heavily on the experience of the DIKU group and much of

the mater ia l presented here may be found in [JSS85], [SesSG] and [JSS89],

Part ia l evaluat ion has been a t t e m p t e d in a n um ber of different p ro gr am ming

paradigms. T h e earliest work used LISP-like language's because programs in such

languages can easily be t rea ted as data . In par t icular , the first self-applicable partial

evaluator was wri t ten in a pure ly functional subset of first order, s tat ical ly scoped

LISP. Since then work has been done to incorporate* of Ikt language feat ure's of LISP-

like language's including, for example , global variable's [BI)89j. A se' lf-applicable p a r

tial eva lua to r for a t e rm rewri ting language has been achie've'd [Bon89], and more'

recently a h igher-order A-calculus version has been developed! [domS9].

Because of these successes, par t ial evaluat ion is somet imes linke'd with functional lan

guages. Indeed the word “eva lua t ion” itself is expression orie'iitateel. However, par tial

evaluat ion has also become popu lar in logic language's, and in Prolog in par t icular .

Kursawe, inves t igat ing “pure par tial eva lua t ion” , shows th a t the* principles are* the*

same in both the logic and functional parad igms [Kur88j. Using the* refe'rentially

opaqu e c l a u s e primi tive, very compact in terpre ters (and lie'nce partial ('valuators)

can be* wri t ten. However, it is not cle'ar how th e c l a u s e pre'dicate* itsedf should be*

handled by a par t ia l ('valuator and, hence*, whe the r this approach can ever load to

self-application. O th e r “feature's” of Prolog t h a t can cause problems for par tial ('val

uat ion are* the cut and ne'gation by failure. Lloyd and Shephe'rseni have' adelre'sse'd

some of these* [LS87]. However, by res tr ic ting themselves to the clean par ts ol Prolog,

12

C H A P T E R 2. P A R T I A L E V A L U A T I O N IN P R A C T I C E 13

Fuller and A b ra m sk y have achieved a self-applicable par t ial eva luator [FA88]. Th ei r

m e th o d is di rec tly equivalent to the funct ional approach used a t DIKU.

Every l anguage p a rad ig m int roduces its own problems, and this is also t ru e in the

i mpe ra t ive case. T h e early LISP work, for example, concen tra ted only on functional

aspects because th e imperat ive features seemed too difficult. Surprisingly, however,

a fully sel f-applicable par t ia l evaluator for a small imperat ive language has been

r epo r t ed [GJ89]. T h e language consists of a sequence of comman ds , which are as

s ignment , condi t ionals, or go tos . Values are S-expressions m an ipu la ted using the

s t an d a r d LISP primi tives. A few o the r opera tors are provided. Not only are the

resul t ing compi lers reasonably small an d efficient, bu t they also exhibi t much of the

s t ru c tu re of h and-w ri t te n compilers.

Much of the interest in par t ia l evaluation in the Soviet Union focuses on impera t ive

languages and on Pascal in par t icular. There the process is called poly-variant mixed

com putat ion [13ulSS]. Technically, mixed eomputat ion is more general than par tial

evaluat ion. It includes any semant ics preserving process t h a t opera te s on a mix

of p ro g ram and dat a . T h e adjective polyvanan t describes the s i tua t ion where one

p rogram fr agm ent m ay be specialised to many different s tales thereby producing

more t h a n one descendent f ragment in the residual program. Wo will see this idea in

the functional model .

In the Soviet work, the s t a t e is split into two par ts the accessible and the 'inaccessible.

As one might expect this is equivalent to the s t a t i c /d y n am ic separat ion. Analysis is

harder in the impera t ive case because both procedural unfolding and ('valuation of

expressions m ay somet imes be invalid. Nonetheless, results have been interest ing:

for example , Os t rovsky uses mixed com pu ta t ion as pa r t of the process of producing

industr ia l qual i ty parsers [Ost88].

It is in terest ing to note t h a t all the self-applicable par t ia l ('valuators reported to dat e

use S-expressions as thei r sole d a t a s t ructure . Thi s s i tuat ion must change if par tial

evaluat ion is to gain a place as an everyday p ro gram ming tool. We will re turn to this

point at th e end of the thesis.

2.1 T h e P a rtia l E valuation P ro cess

We will present the specialisation a lgor i thm using a functional language. T h e DIKU

group implemented mix in a subset of purely functional s tat ical ly scoped LISP but

for consis tency wi th the rest of the thesis we will use a typed lazy functional language.

C H A P T E R 2. P A R T I A L E V A L U A T I O N IN P R A C T I C E 14

T here are two s tages to specialisation. T h e pre-process ing phase takes a program and

informat ion ab o u t wha t d a t a will be present initially, and re tu rn s an a n n o ta t e d p ro

gram. F ro m this a n n o ta t e d p rogram and the par t ia l d a t a the second phase produces

t he res idual program. In most cases, the two phases could be performed together

wi th only a small loss of efficiency. For sel f-application, however, it t urns out to be

crucial to sep a ra te the phases. If this is not done, the genera ted programs (compilers

etc.) are huge an d inefficient. T h e reason for this is discussed in Section 2.2.

T h e first phase itself consists of two in te rd ependent par ts . These are called binding

t ime analys is (or BTA for short) , and call annotat ion. Binding- t ime analysis d e t e r

mines which expressions will be eva luated dur ing par t ia l ('valuation, an d call a n n o

ta t i on decides which function calls will be unfolded. T h e result of this phase is an

a n n o t a t e d program. If prog is the original program then we wri te progann for the

a n n o ta t e d version.

2 .1 .1 B in d in g -T im e A n a ly s is

T h e pu rp ose of b inding- t ime analysis is to discover which expressions within the

p ro g ram can be evaluated by the par tial evaluator given the l imited a m o u n t of da ta

t h a t will be present . T h e analysis can be performed by abstract, in terpre ta t ion . In

this ch a p te r we follow the DIKU work and t rea t values atomical ly. T h a t is, if an

expression contains any dynam ic par t , then we will consider the whole expression to

be dynamic .

T h e a b s t r a c t domain of values is the two point domain {.S', 72} where .S' C I). To

associa te .S' with an expression indicates t h a t the expression is to tal ly s tat ic it, can be

fully evaluat ed dur ing par t ia l evaluat ion. In con tras t , I) indicates that, the expression

m ay be dynamic , i.e. it is not possible to gua ran tee t h a t it can be eva luated during

par tia l evaluation. As ever, the analysis is a p p r o x im a te in that there may be some

expressions t h a t are classified as dynam ic which could ac tual ly be evaluated. T h e

converse never applies: an expression is only classified as stat ic if it, can definitely be

evalua ted . T h e result of the b inding-t ime analysis is an an n o ta te d program where

the pa ram ete rs of each function are c i ther classified as s tat ic or as dynamic .

2 .1 .2 C all a n n o ta t io n

A par t ia l ('valuator t h a t never unfolded function calls could make liltle improvement,

to the programs to which it was applied. Conversely, if a par tial eva luator unfolded

C H A P T E R 2. P A R T I A L E V A L U A T I O N IN P R A C T I C E 15

all funct ion calls, it would be unlikely to term inate . We m u s t decide, therefore, which

funct ion calls to unfold and which to leave folded. R a th e r th an classify the functions

themselves as unfoldable or non-unfoldable , we a n n o t a t e individual function calls. So

a pa r t ic u la r function m ay be unfolded in one place b u t not in ano ther . Funct ion calls

to be unfolded are called el iminable, those t h a t are to remain are called residual.

In t h e early m ix work call anno ta t ions were inserted by hand. Subsequent ly, Sest.oft

descr ibed an analysis, called call graph analys is , which can deduce the anno ta t ions

au tom at ica l ly [Ses88]. T h e analysis takes a p rogram having s t a t i c / d y n a m i c a n n o t a

tions an d inserts call annota t ions . But , because a residual call canno t be unfolded,

its result canno t be classified as s tat ic, so call annota t ions might cause some expres

sions, previously considered static, to become dynamic . Th us , af ter call anno ta t ion ,

the p rog ram mus t have its s t a t i c / d y n a m i c ann ota t ions recomputed . T h e new a n

no ta t ions m a y in tu rn force some calls, previously considered el iminable, to become

residual, an d so on.

For tunat e l y this process is monotonic - no dynam ic anno ta t ion ever becomes s tat ic

and 110 res idual call ever becomes el iminable. Termina t ion of the process is therefore

ensured. In pract ice, the cycle is rarely followed more th a n a couple of t imes before

a limit is found.

To summarise : the anno ta t ions result ing from t he first, phase of the par tial (‘valuat ion

process classify pa ram ete rs as s tat ic or dynam ic and function calls as residual or

el iminable. Pr imi t ive opera tor s may also be annot a t ed . If all thei r ar gum ent s are

present they are el iminable, o therwise they are residual. Once an n o ta t e d , the program

is ready to be specialised.

2 .1 .3 S p e c ia l isa t io n

Imagine we have a funct ion / defined by f x y = c when ' x is s tat ic and y dynamic .

Fu r t he r suppo se t h a t we wish to specialise / to a value a for x. We evaluate c in

an envi ronm ent in which x is bou nd to a. As the envi ronmen t binds s tat ic values

only, the resul t of the evaluation is an expression which, in this case, may involve' y.

Depending on the ann ota t ions in r , some* function calls may remain in the residual

expression. Suppose, for example, there is a residual call to / with a value a' for its

x pa ram ete r . We wish to replace this call also with a call to a specialised version of

/ , this t ime specialised to the value a'. P roducing this new specialised version may,

in turn , gene ra te new funct i on /ar gumen t pairs tha t also need to be ['(‘placed with

C H A P T E R 2. P A R T I A L E V A L U A T I O N IN P R A C T I C E 16

specialised versions, an d so on. This process cont inues unti l all residual funct ion calls

are replaced with calls to appr op r i a t e specialised functions. This is the funct ional
cou n te r p a r t of polyvar iant specialisation.

We can descr ibe the a lgor i thm more generally. We are given a list of function names

pai red wi th values for thei r s tat ic parameters . This is called the pending list, and

identifies which functions need to be specialised to which values. T h e r e is also a list

of func t i on /va lue pai rs for which specialised versions have al ready been produced.

We repeatedly select an d remove an element from the pending list. If t he a p propr i a te

specialised version has al ready been produced, we go on to the next one. Otherwise,

we ob ta in the relevant function definition from the program, giving the s ta t ic and

d ynam ic p a r am ete r s along with the function body. T h e function bo d y is evaluat ed

in the par t ia l envi ronmen t (binding the s tat ic names to the s ta t ic values) result ing

in a residual expression which forms the body of the new specialised function. T h e

new body is scanned to find any function calls t h a t may require special isation and

these are ap pended to the pending list. An implementa t ion of the a lgo r i thm in LML

appear s in Ap pend ix C.

flu ' result of special isation is a list of new function definitions. Initially the new

residual functions are nam ed by the original function nam e together with the values

of the s tat ic paramete rs . Later on, a now function nam e is genera ted for each such

pair, and the program consis tent ly renamed. Dur ing renaming, the s ta t ic p a r a m e

ters d is appea r completely from the program. T h e specialised functions retain thei r
dynamic pa ram ete rs only.

2 .1 .4 T w o S m a ll E x a m p le s

It is wo r th looking a t some small examples . T hes e emphasise the point m ad e in C h a p

ter 1 t h a t par t ia l evaluation has more* appl ica tions than jus t language in terpre ters and

compilers. T h e first is the s t anda rd expon en t ia t ion function.

power n x = i f n=0

t h e n 1

e l s e x * power (n - 1) x

We will specialise p o w e r ’s first a rgum ent to the value 3. 'The first, p a r am ete r is stat ic

and the second dynamic . This is consistent with the recursive call, for if tin* value

of n can be co m pu ted , then so can the corresponding value (n - 1) in the recursive

C H A P T E R 2. P A R T I A L E V A L U A T I O N IN P R A C T I C E 17

call. T h e specialised funct ion will lose the s tat ic pa r a m e te r and be a function of the

dy n am ic p a r a m e te r x only. In this example the recursive call may be safely unfolded

so it is classified as eliminable.

Eva lua t ing th e body of the function in the envi ronmen t in which n is bound to 3 gives

the residual expression x * (x * (x * 1)) . All the condi t ionals have been reduced

and th e recurs ive calls unfolded. T h e (re-named) residual function is, therefore,

powe r_3 x = x * (x * (x * 1))

(Note t h a t simplifying (x * 1) to x requires the laws of ar i thmet i c , not ju s t par tial

evaluat ion) . This residual function is more efficient than the original. Ins tead of

having to evaluate a series of condi tionals and perform a nu mber of function calls the

ca lculat ion is performed directly.

T h e previous example shows only some aspects of par t ial evaluat ion. A richer example

is given by A c k e rm an ’s function.

ac k m n = i f m=0

t h e n n+1

e l s e i f n=0

t h e n ack (m-1) 1

e l s e ack (m-1) (a c k m (n - 1))

Suppose we in tend to specialise ack to the value 2 for its first, pa r am e te r m. As before

the first p a r a m e te r can be classified as s tat ic and the second as dynamic . However,

in this case the final two recursive calls should not be unfolded and must be classified

as residual, but as the first, recursive call (a ck (m-1) l) has s tat ic informat ion for

all its pa ram ete rs it can be unfolded.

Initially the pending list contains only the pai r (a c k , [2]) . T h e re is only one s tat ic

p a r am e te r so the list of s tat ic values has only one e lement. T h e new body, found by

par t ial evaluat ion, is the expression

i f n=0

t h e n 3

e l s e ack 1 (a c k 2 (n - 1))

C H A P T E R 2. P A R T I A L E V A L U A T I O N IN P R A C T I C E 18

Th e o u te r condit ional has been reduced b u t the inner one remains because it de

pends on a dynam ic value. T h e two recursive calls are present as they were anno

ta t ed as residual, and so when this expression is scanned for residual calls the list

[(a c k , [1]) , (a c k , [2])] is produced. This is app e n d e d onto the end of the (now

em p ty) p e n d i n g list for the recursive call of spec .

Next , a version of ack specialised to the s tat ic value 1 is produced in exact ly the same

way. T h en , in the following recursive call to sp ec , the p e n d i n g list has the value

[(a c k , [2]) , (a c k , [0]) , (a c k , [1])] . Because a version of ac k specialised to

[2] has a l r eady been produced, the first of these is discarded and ack is specialised

to [0] . After this process has been repeated a couple of t imes the p e n d i n g list will be

em p ty an d the process will te rminate . After renaming, the result will be the pro gr am

ac k_0 n = n+1

i f n=0

t h e n 2

e l s e ack_0 (a c k _ l (n - 1))

i f n=0

t h e n 3

e l s e a c k _ l (a ck _2 (n - 1))

Wi th only hal f the n u m b er of condi tionals per function call, the residual pro gram is

not iceably more efficient t h an the original. T he re is a price to pay, however. It is also

larger t h a t the original. While there is, in principle, no limit to the increase in size

the D IK U group found t h a t a l inear growth (with respect to the sum of tin* sizes of

progr am and d a ta) is typical of most examples .

In each of these examples the gain in efficiency is around 300%. This is fairly low for

par t ial eva luat ion as, in each case, the original programs conta ined only a m odera te

in terpre t ive element . At the end of this chapte r we will in t roduce a larger e x a m

ple t h a t will be developed th ro ughou t the thesis. This will have a more significant

in terpre t ive e lement and so larger gains can be expected.

C H A P T E R 2. P A R T I A L E V A L U A T I O N IN P R A C T I C E 19

2.2 S e lf-A p p lica tion

We recall f rom C h a p t e r 1 t h a t self-application of a par t ial eva lua to r is required in

order to p roduc e compi lers and compi ler generators. T h e first a t t e m p t s at self

appl i ca t ion created huge residual programs. On exa mina t ion it turned out t h a t mix

was not obta in ing sufficient information to perform reduct ions on the par t ia l eva lua to r

appea r i ng in its first a rgumen t . To make this clear imagine that we arc' comput ing

mixint = mix, m ix2 int

(We n u m b er the two occurrences of mix to d is t inguish between them in the

ex p lan a t io n — the two programs mixt and mix2 arc' ident ical). T h e program mix

conta ins an evaluator which reduces s tat ic expressions. Any s tat ic expressions in

m ix2 can be recognised during par tial evaluation even wi thout b inding- t ime analysis,

and can be reduced accordingly (using the eva luator in mix,). However, the1 decision

w h e th e r or not to apply the evaluator in mix« to expressions in int depends on which

pa r ts of the inp ut to int are to be stat ic when the' compiler 7l)ix— is used. Without-

b inding- t ime anno ta t ion s , this informat ion is dynamic . This moans t h a t very little-

reduct ion can be performed, result ing in bulky and inefficient, compilers.

T h e insight t h a t allowed the DIKU group to c i rcumvent this problem is t h a t it is

sufficient to know which expressions of int arc* s tat ic or dynamic . T h e ac tual value's

are not reepiired. Thus , if int is annotate-el appmpria tedy by a pre-preMe'ssing phase',

then mix, is able to decide whe'n to apply the eva luates appear ing in m ix2. The* jnix

equat ion should, therefore, be expressed as

—— ---------- —— — a Tin —
mtprog = mix in t prog

so t h a t when self-application takes place we get

 :----------------- . :---a n n •— jann
miXr- — mixi m ix2 int

T h e anno ta t ions on int are- available- for m ixs anel alle)w its e-valuateu- to be- applie'el. It,

is the' annexat ions on mix 's S(cond argume'iit, the-re'feue', t h a t allenvs e-ffieie-nt e e>i npi le*rs

t.e> be* pre)elue'eel.

This insight ele'fine-s wh a t is e'sseuitially a ne-w bineling time-. We* are* alre-ady familiar

with s ta t ic anel elynamie- binding-time's. A st.atie- value- will be- pre-se-nt. eluring partial

C H A P T E R 2. P A R T I A L E V A L U A T I O N IN P R A C T I C E 20

evaluat ion, whereas dynam ic values are not available unti l run- t ime. In order to

allow self-application there must be some informat ion t h a t is even more s tat ic th an

the s t a t ic values. It m us t not depend on the s tat ic values themselves , bu t only

on th e knowledge t h a t there will, a t par t ia l evaluat ion t ime, be such s ta t ic values.

Thi s sor t of informat ion is called metastat ic [Mog89]. Binding- t ime analysis must be

m e tas ta t i c . If it is not (t h a t is, if the analysis ever uses th e ac tua l s tat ic values) , then
the results will be of no use in self-application.

2.3 C ongruence and F in iten ess

T h ere are o ther const ra in ts t h a t b inding- t ime analysis must satisfy. Not only must

the analysis be metas ta t i c , but the result ing annota t ions m us t bo congruent and j inite.

We will s tudy congruence in some detai l in C h ap te r 2 but for now wo will confine

ourselves to informal definitions and intuit ions.

S ta ted simply, congruence requires t h a t stat ic values only ever depend on st at ic value's
and never on dynamic values. For example, suppose wo have' t he' following function

de'finition.

f x y = i f x = 0

t h e n y

e l s e f (x - 1) (x*y)

If f ’s first pa r am e te r is dynam ic them its se'conel must alse) be' dynamic. This is lx'cause'

the value of f ’s second pa r am e te r in the re'cursive' ea 11 eh'pe'nds on the' (dynamic) value'

of its first. As we' noteel be'fore, the a im of special isation is to omit s tat ic parame'te'rs

in the residual program. If we make y s tat ic while x is dynamic , anel we* specialise' f

to the value 2 (for y) then we have a problem. Which specialise'd version e>f f should

be used to replace the recursive call? T h e answe'r is t h a t tlie're* is no single call t h a t

is sufficient. Ins tead we have to replace it with an infinitely branching condit ional

giving a residual function of the form

f _ 2 x = i f x = 0

t h e n 2

e l s e c a s e x i n

1 -> f_2 (x-1)
2 -> f _4 (x-1)

C H A P T E R 2. P A R T I A L E V A L U A T I O N IN P R A C T I C E 21

This is clearly undesi rable! However, if the result of b inding- t ime analysis is congr u

ent , t h en it is always possible to ca lculate the stat ic param eter s of each funct ion call

dur ing pa r t i a l evaluat ion. As a result , there is a single residual function wi th which

to replace each original call. Fur thermore , the only condit ionals to a p p e a r in the

residual p ro g ram orig inate from the source p ro g ram — none need to be added. The

residual p ro g r am is, in this sense, “congruen t” wi th the source program.

In addi t ion to congruence , the results of b inding- t ime analysis must be j inilc. As

congruen t a nno ta t ions produce a congruen t program, so finite an n o ta t io n s load to a

finite res idual program. Consider the following example .

f x y = i f y = 0

t h e n x

e l s e f (x + 1) (y —1)

We declare x to be s ta t ic and y dynamic. This is congruen t but not finite. Suppose

we specialise f to the value 1 for x. Making the recursive call residual, wo ob ta in the

following residual program.

f _ l y = i f "C n o

t h e n 1

e l s e f _ 2 (y - 1)

f _ 2 y = i f

oii>->

t h e n 2

e l s e f_ 3 (y - D

. . . etc.

A n n o ta t in g the recursive call as e liminable does not help. Whi le we would then have

only a single residual function, its body would be infinite in size. Poor call anno ta t ions

can in themselves cause infinite unfolding, but good call anno ta t ions cann ot cause an

inherent ly infinite anno ta t ion to become finite.

.Jones describes an analysis using a three* point domain th a t goes some way to p r o

ducing a finite anno ta t ion [.JonSS], T h e only t ime its results may not be* finite is if

the p rogram conta ins an infinite* lemp. Unele*r s trict semanties , the* program would

not terminate* anyway, and so it is not unre*ase>nalde* for the* par tial (‘valuat ion to loop

C H A P T E R 2. P A R T I A L E V A L U A T I O N IN P R A C T I C E 22

also. However, u nde r lazy semant ics, exact ly the sam e program may he very well

behaved. Indeed infinite s t ructures are a po pu la r and powerful pr og ram ming method
in lazy languages . T here is a need, therefore, for fu r th er work in this area.

In the rest of the thesis we will sidestep this issue. T h e binding- t ime analysis given in

C h ap te r 4 produces congruent anno ta t ions b u t they are not necessari ly finite. How

to achieve this is still an open problem.

In the re ma inder of this cha pte r we in t roduce the exa mple which will be developed

th ro u g h o u t the thesis.

2.4 E x a m p le

Our main example concerns au to m a t i c compi lat ion. Using fairly s t an d a r d lazy func

t ional language no ta t ion , we define an in terpre ter for a block s t ruc tu re d imperat ive

language. P rogra ms in this language are const ruc ted from ass ignment , condi t ional ,

and while s t a t em en t s . New variables arc in t roduced using the A l l o c declarat ion and

are in scope in the block immedia te ly following. Blocks are sequences of s t a t em en t s ,

represented as lists. Communica t ion with the out s ide world takes place via s t reams

(lists). T h e Read command retr ieves the first value from the input s t ream and the

Write c o m m an d places a value on the o u t p u t s t ream. C o m m a n d s may bo represented

as terms of the following da ta type ,

type Command = Read Ident
+ Write Exp
+ Alloc Ident [Command]
+ DeAlloc
+ Assign Ident Exp
+ If Exp [Command] [Command]
+ While Exp [Command]

with ap p ro p r ia t e definitions for the types I d e n t an d Exp (we will consider integer

expressions only and represent booleans as integers) , d in' D eAlloc variant, does not

correspond wi th a com m and , bu t the in terpre ter uses it, to mark the end of a var i

ab le ’s scope. Hach of the o thers correspond di rect ly with com mands. T h e following

is provided as an example of programs in this language. Its action is to find the

m ax im u m of a serif's of inputs (te rmina ted by 0).

C H A P T E R 2. P A R T I A L E V A L U A T I O N IN P R A C T I C E 23

Alloc X
[Alloc Y

[Assign Y zero,
Read X,
While (greater (var X) zero)

[If (greater (var X) (var Y)) [Assign Y (var X)] [],
Read X],

Write (var Y)]]

where zero, greater, and var are the obvious funct ions associa ted wi th the expres

sion type Exp. Notice t h a t the effect of an I f wi thou t an else branch is achieved by

supplying an e m p ty list of commands as the else par t.

Idle in te rp re te r is inspi red by continuation semantics , following about as closely as is

possible in a first order language. The main function ex ec takes a list of ins tructions

and the inpu t s t ream, and re turns the o u tpu t s t ream. It achieves this by calling the

funct ion run , s t ar t ing it off with an em pty s t a te which will contain the variables and

thei r values when au g m en te d by any A l l o c s t a t em en ts . Because of a deficiency of

the b ind ing- t ime analysis we are considering at the moment , the s ta te is split into

two par ts : a nam e list an d a value list. This allows the names to be stat ic while the

values are dynamic . Once the in terpre ter reaches the (Mid of the program the o u t p u t

s t ream is te rm inat ed . T h e definitions are,

exec block inp = run block [] [] inp

run [] ns vs inp = []
run (com:corns) ns vs inp
= case com in

Read k
-> run corns ns (update ns vs k (hd inp)) (tl inp)

Write e
-> eval ns vs e : run corns ns vs inp

Alloc k cs
-> run (cs++(DeAlloc:corns)) (k:ns) (0 :vs) inp

DeAlloc
-> run corns (tl ns) (tl vs) inp

Assign k e
-> run corns ns (update ns vs k (eval ns vs e)) inp

C H A P T E R 2. P A R T I A L E V A L U A T I O N IN P R A C T I C E 21

If e csl cs2

-> if (eval ns vs e = 0)
then (run (cs2++coms) ns vs inp)
else (run (csl++coms) ns vs inp)

While e cs
-> run [If e (cs++(com:corns)) corns] ns vs inp

T h ere are two n o n-s tanda rd aspects to this definition. Firstly, in the i n te rp re ta

t ion, t h e block s t ru c tu re is flat tened and implemented explicit ly (using DeAlloc)
ra th e r t h a n by using recursion to do so implicitly. Secondly, looping is performed

by ap p e n d in g the body of the loop to the front of the program. T h e im p le m en ta

tion makes use of the law th a t s ta t es tha t [[while EC]] has the sam e behaviour as

[if E then (C ;While E C)] . We will leave a discussion of the mot ivat ion for these

choices unt i l the conclusion.

T h e auxi l iary functions referred to by ru n have fairly s t anda r d definitions. Tin'

expression evaluator e v a l uses the s t a t e to supply values for variables. It cannot,

cause side effects on the s ta t e bu t jus t re turns an integer result.. In contras t , u p d a t e

re tu rns a new value list in which the value associa ted wi th the nam ed variable is

replaced wi th the new value.

If, in the initial call, the b l o c k input to exec is suppl ied but the input s t ream i n p is

not, then significant gains can be achieved by par t ia l evaluat ion. T h e first, two p a r a m

eters to r u n are s tat ic, the o ther two dynamic. This means that, residual versions of

r u n have only the value list and the input, list as paramete rs . In orde r to ensure finite

unfolding the call to r u n in the Whil e case should be m ade residual. Fverywliere

else the p ro g ram p a r am e te r decreases in size, so finiteness is gu ar an t (v d . (falls to the

u p d a t e funct ion (and its sibling l o o k u p which will ap p e a r in e v a l) must all lie made

residual. These functions will have versions specialised to each of the variables that

they are used with.

To see w h a t the results are like we will specialise ex e c to the example program above.

T h e re is a single While loop so only one residual version of ru n is produced.

exec inp
= run (update_x (update_y [0,0] 0) (hd inp)) (tl inp)

run vs inp
= if lookup_x vs > 0

C H A P T E R 2. P A R T I A L E V A L U A T I O N IN P R A C T I C E 25

t h e n i f l o o kup_x vs > l o o k u p _ y vs

t h e n r u n (u p d a t e _ x (u p d a t e _ y vs (l o o k u p _ x v s))

(hd i n p))

(t l i n p)

e l s e r u n (u p d a t e _ x v s (hd i n p)) (t l i n p)

e l s e l o o k u p _ y vs : []

Th e residual versions of u p d a t e and l o o k u p will he fairly ellicient. For example,

u p d a t e _ x n (v l : v 2 :v s) = v l : n : vs

u p d a t e _ y n (v l : v s) = n : v s

There' arc no compar isons of variable names in order to find the correct place in the

value list. Those ac tions are performed dur ing par t ial ('valuation.

Th e residual in terpre ter (which is a compi led version of the input program) is far
more efficient th an the original in terpre ted version. It is not as good as a hand

writ ten p rogr am for finding the m ax im u m in a list., hut is not a long way off. As a

program produced by au tom at ic compi lat ion the results are satisfactory.

Some problems remain however. T h e first concerns the call annota t ions . In the

in terp re ter code handl ing an I f s t a t em en t , the sam e code suffix corns ap p ea r s in

bo th branches of the i f . . . t h e n . . . e l s e . . . expression. This means that some code

dupl ica tion may take place in the residual program. An example appear s above in

the body of the residual version of run. Looking at the the inner condi t ional , we

see t h a t the expression (u p d a t e _ x . . . (hd i n p)) occurs in both branches . Both

occurrences arise from a single occurrence of Read x in the input program. It. so

happe ns t h a t in this example , this is ac tually desirable, but for input programs with

nested condi t ionals the growth in residual program size could be quite disas t rous.

T h e solution to this problem is to m ake each of the recursive1 calls to ru n residual. This

produces a less pleasing result in some ways, but prevents any possible code' explosion.

In most cases each inst ruct ion in the' input program levels to a single' residual function.

T h e except ions are' A l l o c and While, which e'ach level to two versions. T hus , the* size'

of the residual p rogram will be l inear in t he' size* of the' input program. Many of these

function calls may be' unfolded in a post-procevssing phase*. Join's calls this transit ion

comp re .s si on [.] o n 8 S].

A second problem concerns the* re'sidual versienis of u p d a t e ainl lookup. Because' t he

residual s ta te is repre'scnteel as a list, these perform a great eleal of heap manipu la t ion

C H A P T E R 2. P A R T I A L E V A L U A T I O N IN P R A C T I C E

wi Ih associa ted t ime penalt ies . All t h a t they are actually doing is accessing or replac

ing values in a fixed length list. Even more serious, however, is the th ird problem.

In order to o b ta in any worthwhile results whatsoever, we were forced to sepa ra te the

s t a t e in to two compo nent s , the nam e list and the value list, even though the most
na tu ra l s t ru c tu re is a list of pairs. This flies in the face of one of the aims of part ial

eva luat ion, namely, to allow increased modulari ty. It is these last two issues that are

addressed in the ensuing chapters .

C hapter 3

S ta tic P rojection s

T h e equa t ions for mix assume th a t it is opera t ing on a two a r g u m e n t function where

the first a r g u m e n t is s ta t ic and the second dynamic . This is the canonical case. In

pract ice we canno t hope th a t all functions will turn out this way. For example , a func

tion m a y have m an y argumen ts , the first and th ird being stat ic, say. Al ternatively, a

single a r g u m e n t may have bo th s tat ic and dyn am ic par ts . We need a f r amework for

reducing the general case to the canonical case.

We can simplify the general case by requiring t h a t all functions have exact ly one

a rgum en t . In first order languages this is no real restr ict ion. Funct ions mus t always

be appl ied to all thei r argu ments , so we can jus t express t h e m as a single tuple.
T h e nex t s tage is to factorise this single (composi te) a rgum en t into two par ts , the

s tat ic an d the dynamic . We use the results of b inding- t ime analysis to control the

factorisat ion.

Note t h a t , even thoug h functions will only have one argumen t , we will still loosely

describe t h e m as having many. For example, we will talk of a function f (x,y) = ...
as having two a rg u m e n ts when this is helpful.

3.1 M o tiv a t io n

f o r the p resent we will focus our a t t en t ion on the s ta t ic par t of the argumen t . To

select the s t a t i c pa r t , we use a function from the ar gumen t domain to some domain of

s tat ic values. If we m ake the stat ic domain a sub-domain of the original we can simply

“blank o u t ” the dynamic par t of the a r gum e n t and leave the s tat ic par t unchanged.

We use T to represent the stat ic par t of dynamic da ta . Here T has its fun da ment a l

C H A P T E R 3. S T A T I C P R O J E C T I O N S 28

meaning of “no in fo rm at ion”— we get no s tat ic informat ion from a dynamic value

(_L is often associa ted with non- terminat ion, but this is a secondary an d derived

in te rp re ta t ion. As a non- te rm ina t ing com pu ta t ion gives no informat ion ab o u t its

result , _L is its n a tu ra l value).

As an example , suppose t h a t the original domain is A x B where TPs value is s tat ic

and A ’s dynamic . T h en the function t h a t selects the s tat ic par t will be the m ap

(a, b) i—► (_L, b). We can generalise this example to arb i t ra ry domains by using

domain projections.

D efin it io n
A project ion 7 on a domain D is a cont inuous function 7 : I) —> D such t h a t

(i) 7 □ ID, and (ii) 7 0 7 = 7 (idempotence) .

T h e first condit ion ensures t h a t a projec t ion adds no new information. This accords

wi th the in tu i t ion t h a t we can know no more ab o u t the s ta t ic pa r t of a value than

we knew ab o u t the value originally. T h e second condi tion ensures t h a t the function

picks ou t the s ta t ic pa r t in one go. We will not need to repeatedly apply the function

to check t h a t the result we have really does represent the s ta t ic par t .

T he re are two i m p o r t a n t project ions , ID and A B S , which crop up frequently. ID

is the ident i ty func t ion— used when the a r gu ment is completely s tat ic and A P S is

the co n s t an t function t h a t always re turns _L -used when the argument is complete ly

dynamic .

In general we canno t hope to find a projec t ion t h a t selects all the stat ic par t of an

ar gum en t , b u t we should gua rantee th a t wha t is selected is ac tual ly static. Thi s

means t h a t we will often m ake do with a projec tion t h a t is smal ler than ideal, for if a

projec t ion 7 selects only s tat ic informat ion from some a r g u m en t then any projec tion

smal ler t h an 7 does also (smal ler in the usual function space ordering). As in C h a p t e r

2 , therefore, “s t a t i c ” means “definitely available dur ing par tial (‘valua t ion” .

3.2 O th er U se s o f P ro jec t io n s

T h e projec t ions we have defined are special cases of a more general class (if functions

called retract ions (or re tmc ts for short). Ret rac t ions are id em po ten t cont inuous func

tions, but need bea r 110 relation to the ident ity function. Scott [Sco7fi] used closures

(re t rac t ions greate r than ID) to pick ou t sub-domains of Pua 'I lie range of a closure*

C H A P T E R 3. S T A T I C P R O J E C T I O N S 29

is always a Scot t domain , bu t this is not t ru e for a rbi t ra ry re t rac ts . 'Die image of

any projec t ion is always a consistent ly complete, complete par t ia l order, but is not

necessarily algebraic. (Recall t h a t a Scot t domain is a complete par t ial order (so

having a b o t t o m element _L, and limits of d irec ted sets) which is also consistent ly

complete (every set wi th an u p p e r bo u n d has a least u p pe r bou nd) and u;-algebraic

(every e lemen t is th e limit of its finite approx imat ions , there being only countably

m an y finite e lements)) . Scott describes as f in i ia ry those projec t ions whose image is

algebraic, an d hence a domain. All the projec tions used in this thesis are finitary.

E m b e d d in g /p ro j ec t io n pai rs (often jus t called projec t ion pairs) crop up f requent ly in

founda t iona l issues in domain theory. They occur in t,h(' inverse limit const ruct ion,

for example . An em bedd ing /p ro jec t io n pai r consists of two functions. One, the

projec t ion, maps f rom a larger domain to a smal ler one and the o ther , the embedding,

from th e smal ler to the larger. Applying the projec t ion after the em bedding gives the

ident i ty function, and applying the embedd ing after the projec t ion gives a function

weaker t h a n the identity. A projec tion from a domain to itself corresponds to this

la t t er composi t ion. Pro jec t ion pairs will be impor tant to us in C h a p te r 5 where they

are used in the dependen t sum construction. However, most, relevant, to us for the

present is the use of projec t ions in s tr ictness analysis.

3 .2 .1 S tr ic tn e s s A n a ly s is

It is well known t h a t the halt ing problem is uncomputab le . T h a t is, it is impossible

to wri te a program that,, given any input program, can always tell if it, te rm inates or

not. However, there are many programs which clearly do t erminate , and there are

m an y which clearly do not. This means th a t we can wri te an analysis program which

app rox im a te s the hal t ing problem in the following sense: if the analysis can be sure

th a t the input progr am definitely loops then it will say so, o therwise it will suppose* it

halts. If we consider the answer H A L T S to be greater th an the answer L O O P S then we

are ap p r o x im a t in g the hal t ing problem from above the a lgor i thm will always give an

answer a t least as great as the t ru e one. Str ictness analysis is such an approximat ion.

A function / is called strict if / _L = _L, so s tr ictness analysis a t t e m p t s to answer

the ques tion: if I give my function no informat ion (typically, by applying it to a

no n- t er mina t ing com pu ta t ion) then does it also re turn no information!*

Str ictness analysis has provoked a lot of interest because of its use in improving

the qual i ty of compi led code from lazy functional languages. Ther e are essential ly

two main approaches to the analysis, forwards and backwards , fo rwards analysis

C H A P T E R 3. S T A T I C P R O J E C T I O N S 30

([AH87]) a t t e m p t s to address the st rictness ques tion directly by consider ing if the

function r e tu rns JL when appl ied to _L. In con tras t , backwards analysis considers how

dem an d is pro pagated . It deduces how much inpu t a function requires to p ro du ce a

cer ta in a m o u n t of o u tp u t . T h e nam e “backwards analys is” arises because informat ion

is p ro p a g a t ed f rom a function result to its argumen t . A detai led deve lopment may

be found in [Hug8 8]. On e way to specify “a certain a m o u n t ” of informat ion is to use

domain projec t ions [WH87]. From our point of view this is immedia te ly promising.

By having b o th st rictness analysis and binding- t ime analysis cast in the sam e f rame

work we m ay hop e t h a t the techniques of one will be appl icable in the other . Indeed,

we will see an example of this in C h ap te r 7.

Suppose , we are performing a backwards analysis and want to know how much of

its a r g u m e n t some function f : X —► Y needs in order to be able to re tu rn 7 ’s worth

of result (where 7 is some projec tion 7 : Y —► T) . Let 11s call this am o u n t ft (a

projec t ion (3 : X —► A'). How are / , 7 , and ft re la ted? T h e answer is tha t they must

satisfy the safety condi tion:

l ° f — l ° f ° f t

Consider apply ing bo th sides to some value x. T h e safety condi tion implies t h a t the

appl ica t ion of (7 o f) to x gives exact ly the same value as applying it to (ft x) . So

to get 7 ’s wo r th of informat ion ab o u t the result of (/ j) we only need to know ft's

wor th a b o u t x. Of course, we could still get a t least y' s worth if we knew more

ab o u t x. T h a t is, if 8 is another projec tion such t h a t ft C 8 then 7 0 / = 7 0 / 0 ^ also

holds. This means t h a t it is always acceptable for a backwards st rictness analyser

to ap p r o x im a te u p w a rd s — a larger projec tion than the o p t im u m will still bo safe. In

backwards analys is smal ler projec tions convey more accura te informat ion.

T here is not h ing ab o u t the safety condi tion t h a t forces it to be used with backwards

analysis. We can also in te rpre t it in terms of forwards analysis. If I know ft 's worth

ab o u t the a r g u m e n t to / then /y o f = ^ o f o f t implies t h a t I know at least 7 ’s worth

ab o u t the result of / . Fur ther , for some projec tion 8 where 8 C 7 it is also t rue

t h a t 8 o / = 8 o / o ft, so it is safe to app rox im a te the result downwards . In forwards

analysis larger projec t ions convey more accu ra te informat ion.

As the safety condi t ion is appl icable to bo th forward and backward analyses it is

reasonable to ask which method is more sui table for a par t icular analysis problem. In

b inding- t ime analysis we s t ar t with an initial description of the input par am et er s and

C H A P T E R 3. S T A T I C P R O J E C T I O N S 31

this informat ion is p rop aga ted thro ugh the program. T h e direction of informat ion

flow is from a r g u m e n t to result, so we will use a forwards analysis.

T h e r e is an equivalent formulat ion of the safety condi tion t h a t is often useful in

proofs, namely, t h a t 7 0 / = 7 0 / 0 ^ holds exactly when 7 o / C / o /i holds. T h e

proof follows easily from the fact th a t bo th 7 and (3 are projec t ions, and may be found

in [WI187]. We will freely swap between the two formulat ions and use whichever is
most a p p r o p r i a t e at the t ime.

3.3 C ongruence

Given a p ro g ram and a description of which par ts of the input a r t ' s ta t i c , b inding- t ime

analysis produces a projec t ion for each of the functions in the program. T h e analysis

m ay only produce a projec t ion 7 for a function / if 7 is a s ta t ic project ion for the

a r g u m e n t of / wherever / is called. But , there may be a place in which the argument

to / is given by the result of some other function, g say. We may know how much of

the a r gum en t to g is s tat ic, but wha t do we mean when we say the result of g (and

hence the a rgum en t to /) is static?

In [JonSS] Jones defines congruence to answer this question. Congruence lias become

the s t an d ar d correc tness condi tion in b inding- t ime analysis for par t ial evaluation. We

have a l ready come across it informally, bu t in this cha p te r we give a precise definition.

As we show, congruence is ac tual ly weaker than safety. However, it. turns out t h a t it

is too weak to be sui table for most par tial evaluators . A more sui table var iant , which

we call uni form congruence, is equivalent to the safety condi tion.

Jones models a p ro g ram in terms of its stepwise behaviour and then uses this model

to define congruence. T h e program is regarded as a t r iple (P , V , nx) when ' P is a sot

of p ro gr am points , V a set of values (s tates) and nx a s tep function m app ing { p , v)

pai rs in to (; / , v') pairs. Each (7 7 v) pai r represents a single point in the com pu ta t ion ,

and the function nx defines a single com pu ta t ion s tep from program point p and

value v the co m p u ta t io n proceeds to program point 7/ and value v ' . T h e program is

un der s to od to have t e rm ina ted with value v whenever nx (p, v) = (p, v). In functional

programs, the p rogram points are the function names.

T h e choice of the des t inat ion program point under the action of nx depends , in g e n

eral, 011 both the initial program point, and the value. So from any given program

point 7 7 the des t inat ion point depends on the value at th a t point . At p , there-

fore, we can par t i t ion the value set V into subsets Vt such th a t if v G I', then the

C H A P T E R 3. S T A T I C P R O J E C T I O N S 32

dest inat ion point is p,. Moreover, we can define functions /, : V, —> V such t h a t

v G Vi => nx (p, v) = (p,, f t v). Such a choice of par t i t ion and functions is called

a control transfer. A collection of control t ransfers, one for each program point , is

called a control structure.

Congruence is defined in terms of a control s t ru ct u re and a program division.

A division consists of th ree collections of func t ions- -static, dynamic , and pai r ing

funct ions— indexed by the program points. We will typical ly call these a , A, and

7r respectively, each duly subscr ip ted wi th the p rogram point . T h e purpose of the

pai r ing funct ion is to ensure th a t a and 6 are well -behaved wi th respect to each o ther

th ro ug h the requ irement t h a t 7Tpo < crp,S p > = id (at each program point p). We give

the precise definit ion of divisions in C h a p te r 5, b u t have sufficient for t he present.

D efin it io n (Jon es)
A division (a, 6 , 7r) is congruent a t a program point p with respect, to a control st ruc

tu re {(K', f i '■ Vi —> V’)} if f ° r each i,

Vv , w e Vi ■ Op V = a p w => a v% { f v) = o Pi (f w)

Th e definition requires t h a t any two values wi th equal s tat ic pa r ts are m apped to new

values whose s ta t ic pa r ts are also equal. Thus , if a division is congruent we will be

able, dur ing par t ia l evaluation, to ca lculate the s tat ic par t of a value at any point in

the compu ta t ion : we can ca lculate the initial s tat ic value it is given to us and if wo

assume we can ca lcula te the s tat ic value a t some program point , congruence ensures

th a t we will be able to ca lculate it at its immedia te successors. Induction completes

the proof. Congruence, therefore, satisfies the intuit ive requirements we discussed in

C h ap te r 2. Given a congruent division we can always ca lculate the value of o p v and

so can always choose which specialised version of p will replace (p , e) .

3.4 U n iform C ongruence

To just ify the earl ier claim t h a t congruence is too weak a condi tion for most, par tial

evaluators we will consider an example . Suppose we have the function,

pO (x,y) = if y=3
then pi (x*y)
else p2 x

C H A P T E R 3. S T A T I C P R O J E C T I O N S 3 3

and a division where a vo = f s t , o ?1 = ID and a V2 = II) where f s t (j , ,y) = x. T h e set,

of values V a t po is N x N and the control s t ru ctu re is given by,

Vi = { (x , 3) | x G N }
V& = {(*, y) I x G N , y e N \ {5}}

The t ransf er functions are given by

f i (*, y) = x x y
fs (x, y) = x

To see t h a t this division is congruent suppose t h a t v, w G Vi and t ha t a ro v — a po ?/’.

ddicn

a vi (ft v) = h v
= fst v x 3 [definition of f x]
= fs t w x 3 [because crpo r = a po ?/']
= f i w
= ° V l i l l w)

arid the case of Vs is as easy. But, even though the division is congruen t it would

cause problems for most par t ial evaluators . Congruence only examines f t in the re

st ricted con tex t in which it will actually be called, and not over the whole domain

of values. This means t h a t divisions may take into account impl ica t ions from sur

rounding condi t ionals and still be congruent. T hus f t is allowed to “kn ow ” t h a t its

p a r a m e te r y will have value 3. If a division takes advan tage of this t hen so must the

special isation a lg o r i thm — it must perform driving. What, is more, all the information

implied by the condit ional must be ex t rac ted and used in case the division has taken

advan ta ge of it. In general this is uncomputable . If, on the o ther hand, the special i

sat ion is per formed by an ordinary par t ia l evaluator then the division will ac t as if it

were not congruent .

In pract ice problems do not occur as a far s t ronger version of congruence , namely

in tcns ional congruence , is normal ly used. However, this is defined syntact ica lly ra the r

than semant ica l ly which makes it heavily language dependent .

It is possible to revise the definition of congruence so t h a t it loses this value d e p e n

dence b u t o therwise remains the same. In the definition of control s t ructures the

functions {/ ,} were only defined on the par t icular V7,, and so it, only made sense to

draw the values v and w from V7. This led to value dependence. Ther e is ac tually no

C H A P T E R 3. S T A T I C P R O J E C T I O N S 31

reason why the functions {/ ,} should not be defined over the whole of the value domain

V. After all, t h a t is the range of thei r definition in the program. T h e original {/,•}

are ju s t res t r ic ted versions of these. Let us now use {/ ,} to denote the unrest r icted

versions, so t h a t /, : V —> V for each i. Now we can define a value independen t , or

uniform, var iant of congruence which we shall call uniform, congmcncc.

D efin it ion
A division (cr, <*), 7r) is uni formly congruent a t a program point, p with respect to a.

control s t ru c tu re {(V-, f i '■ V —* V")} if for each i,

Vu, w £ V . a r v = <jp w => a Pi (f v) = a Vx (f w)

Note th a t , unlike the definition of congruence , the values r and w are fr<v to range

over the whole of V . As this is a s t ronger condit ion than congruence, uniformly

congruent divisions are also congruent , bu t a congruent division is only uniformly

congruent if an y two values wi th equal s tat ic par ts are given equal stat ic par ts by f .

3.5 S afety U n iform C ongruence

In order to com pare uniform congruence and safety we have to make a small extension

to the revised prog ram model. T h e definition of nx assumes th a t it will always be

possible to det er m in e which program point is t he des t inat ion. This is not unreasonable

in an iterative' language where the value r is com puted using built in opera tors only.

In a recursive language, the computa t ion of v may bo given by user defined functions

and so m ay not t erminate . T h en nx (p, v) will be undefined. This must be reflected in

the control s t ructu re . We add a new pro gram point p L and define nx {p±, v) = (p l 5

for all values v £ V. Adding an order ing where p± fi p for all p £ P makes P into

a (flat) domain . V likewise becomes a domain and the {V,} disjoint, open sets in V.

T h e rest of V (t h a t is, V \ U { K }) is a dosed set which we will call VL . Finally we

define the t ransfer function f L : V —► V by f ± v = _L. So, if v £ Vt for some _L),

then nx (p , v) = (;;,, f v) as before, bu t if v £ V± then nx { p , v) = (/;_l,_L) and tin*

value of the p ro g r am is _L. Notice t h a t Vj_ may be em pty at, some program points.

At (*very pr og ram point f±_ v = _L, so a division which is congruent with respect to

some control s t ru c tu re will still be congruent, if we extend the control s t ru c tu re with

V±. This means t h a t we can be a li t t le sloppy with our notat ion. We will typically

include Vi in the {Vi}.

C H A P T E R 3. S T A T I C P R O J E C T I O N S 35

D efin it ion
A division (a, 8, 7r) is safe at a program point p wi th respect to a control structure'

{(K , f i ■ V -> V) } if for each i, a Px o f = a Px o f o o p

T h e extens ion to the pro gram model is required because it is possible for a projec tion

er to m a p a value from a set V, in to V±. Having defined safety we can now prove th a t

it is equivalent to uni form congruence.

T h e o r e m 3.1
Let A (— ((7,6,7r)) be a division. A is safe if, and only if, it is uni formly congruent .

P r o o f
Assume A is safe. Let p be a program point and let {(V,, / , : V7 —> V7)) be the control

s t ru c tu re a t p. As A is safe we know t h a t a Pi o f — a Px o f o a p for each i. We want

to prove t h a t if erp v = a p w then a Px (f v) = a Pt (f ?c) for all i and v, w G V . So,

assume t h a t o p v = a p w for some arbi t ra ry i and r , w G V . Th en ,

°Pi (fi v) = K , ° f i) v
= { v Vl ° f > o a v) v [safety]
= (Vpt ° f i) {a P v)
= (crp o f) (<7 p w) [by assumpt ion]

= (<?>, ° f i 0 <*p) w
= (^r , 0 fi) w [safety]
= ° p x ifi «’)

and so A is uni formly congruent a p.

Conversely, assume A is uniformly congruent . Let p be a program point and let
{(\G, / , : V —i► V)} be the control s t ructur e a t p. T h e project ion a p is id('mj)otent

so a p v = a p {<7p r) for any value v G V ■ As the division is uni formly congruen t we

may conclude t h a t crPi (f v) = crPi (f (crp v)) for any value v G V. In o ther words,

a Px o f = a Px o f o crp as required. □

We have seen, at least in principle, tha t projec t ions may be used to provide' desc r ip

tions of prog ram values, pinpoint ing which par ts are' static:. Furthermore*, the* safe'ty

conelition used in s tr ictness analysis is precisely the condition ne'e'de'el to ensure* un i

form congruence. W h a t we* must do now is to proviele* Imth concre-tc- anel abs t ra c t

se' inantics for some par t icular language to ve'rify t h a t the* principle? of using proje*ctions

is re'alisable* in practice*. This is done in the* ne>xt e:liapte?r.

C hapter 4

B in d in g-T im e A nalysis

In this chapte r we explore some of the pract ical it ies of using projec tions in b inding

t ime analysis of typed lazy functional languages. We have' chosen typed languages

because we use type informat ion to control the s t ru c tu re of the project ions. For

concreteness we define a simplified language and wi th its aid present, the b inding- t ime

analysis equations . We dem o n s t r a t e thei r safety, and show th a t an app rox ima t ion to

the analysis m ay be performed in a finite time.

4.1 P E L A b stract S yn tax

T h e language P E L (P ar t ia l Evaluation Language) is in tended as a toy language only

but is very much in the style of o the r lazy functional language's. Unlike' “re'alistic”

languages it has no predefined types like integer or character and wi thout the' additiem

of cer tain s t an d a r d features it would be impractica l te> use' regularly, Ileiwe've'r the'

p ro g ram m er is able to define ar bi t r a ry algebraic d a t a type's so it is possible' to write'

fairly complex programs. T h e advan tage in res tr ic t ing ourselve\s to a simple' language'

is t h a t we should be able to avoid being swamped by unne'cessary eh'tail. W h a t we'

learn from discussing it can be appl ied to larger language's.

Various syn tact ic classes ap p e a r in the' gr amm ar . Single' (subscripte'd/ele'e-orate'd)

le'tte'rs represent variables in the variems classe's.

e £ Fxpr [Expressions]
x £ Var [Variable's]
f £ Fun [Functions]
c £ (Jon [Const ruelors]

:ui

C H A P T E R 4. B I N D I N G - T I M E A N A L Y S I S 37

d g Fndefn [Function Definitions]
P e Prog [Programs]
T e Type [Types]
A G Alg [Algebraic Types]
D G Tdefn [Type Definitions]
C G Tdecl [Function T y p e Declarations]

So, for example , p rog ram variables will be called x, x, etc. R a th e r th an cont inual ly

d is t inguish between individual variables and vectors of variables we will assume th at ,

typically, x represents a vector of variables. W hen we do need to describe the i th

var iable f rom a vector x we will use th e nota t ion x(i).

A pro g ram consists of a series of type definitions followed by some function definitions,

each of which is immedia te ly preceded by a declara t ion of its type. T h e program

concludes wi th an expression and its associated type. T h e expression represents the

mean ing of the progr am in the context of the preceding declarat ions . We use {pat tern }

to signify zero or more repet it ions.

{D} {C d} e: :T
f x = e ;
x
(e/,. . . ,en)
c e
f e
case e in C; X; -> e ; I I ... | I cn x n -> en end
A = c T {+ c T};
f :: T -> T;
A
(T, , . . . ,T „)

An example p rogram will make the g ra m m a r easier to follow. To make programs

easier to read, some const ructors (e.g. False) are not, given an argu ment . When the

a r g u m e n t to a co ns t ru c to r is om it t ed it is assumed to be the em p ty tuple () which

represents the e lement of the void (or unit) type. We will write* e i ther () or 1 to

denote this type.

Bool ::= False + True;

and :: (Bool,Bool) -> Bool;
and (x,y) = case x in

C H A P T E R 4. B I N D I N G - T I M E A N A L Y S I S 38

F a l s e -> F a l s e

I I T ru e -> y

e n d ;

and (a n d (T r u e , F a l s e) , T ru e) : : Bool

4.2 T y p e R u les

We will assume the p rogr am satisfies various well-formedness cri teria in addi t ion to

syntact ic correctness. For example, no function should be defined twice, the cons t ru c

tors in a c a s e expression should all be from the same type, and so on. In addi t ion a

pro gram mus t be well-typed. P E L is first order and, at this junc tu re , monomorphic .

It allows for the definition of new types using (separa ted) sum, (s t anda rd) product

and recursion. Expl ici t type declarat ions are provided for the functions, so the tvpe

of any expression m ay be easily inferred.

We use the variables R, S and T to represent types and wri te assumpt ions of the form

x: :T to mean x (l) : : T (l) , . . . , x (n) : :T (n) . T h e assumpt ion lists only conta in details
ab o u t the local variables within a function body. A typing judgemen t concerning

a function is t ru e exactly when it accords with the type declarat ion given in tin*

program. T h e sam e is t rue of const ructors. If a cons t ructo r c, appear s in t h e definition

of a type S then S is of the form S = c , S, -f • • • + c n Sn for some types {S , } and

c ; : : S,• — >S as usual. T h e typing rules for expressions are as follows.

x: :T h x (i) : : T (i)

x : : T b e p iRj ••• x : : T F e n : : R n

x: :T F (e 1? .. . , en) : : (R j , . . . , Rri)

f : : R - > S x : :T F e : :R

x : : T F f e : : S

c , : : S,->S x : : T F e : : S,

x : : T F c, e : : S

x : : T F e : : S Vi . (x : :T, y t : : S, F e, : : R)

x : :T F c a s e e i n Cj y, -> ej I I . . . I I c n yn -> e n e n d : :R

C H A P T E R 4. B I N D I N G - T I M E A N A L Y S I S 39

Only well -formed an d well-typed programs are assigned a meaning. This mean ing is

defined by th e deno ta t ional semant ics .

4.3 D e n o ta tio n a l Sem antics

Th e deno ta t iona l semant ics is fairly s t andard . T he re are three semant ic domains

one to model values and the o ther two to model value and function environments

respectively. T h e funct ion env ironment is kept separa te because funct ions are not

values— all functions are first order.

v E Value = (Con X Value) -f (Value x \ raluc)
p E Vcnv = Var —+ Value
4> E Fenv = Fun —► (Value —► Value)

While we use a universal value domain it is often useful to imagine otherwise. For

example, if we have a pro gram function f with type X->Y it is convenient to th ink

of its mean ing / as being a function / : A —► Y where the domain A’ corresponds

to the ty pe X an d likewise wi th Y . We can make this more precise. Using d o

main sum, p ro d u c t an d limit we can cons t ruc t domains to correspond with the type

definit ions and can cons t ruct the obvious projec tion pairs between these domains

and the universal value domain. T hus if X is a type with corresponding domain A ,

there exist m ap s (f>x ■ X —> Value and fi>x '■ Value —> A such th a t V’.v ° <f>x — E) \ and

<f> x o rftx V ID Value • T h en any value i E A' may be identified with a unique v E Value

given by v = (f)X {x). This means t h a t we can ignore the dist inction between e lements

in X and e lements in Value lying in the range of <j>x. We do not prove t h a t our typed

programs cannot go wrong [Mil78] but the proof would be similar to Milner’s.

T he re are two semant ic functions. T h e first const ruc ts a function envi ronmen t from

the funct ion definitions. T h e second assigns meanings to expressions in a context

suppl ied by the function and value environments . Ther e are no predefined functions

so the function envi ronmen t is const ruc ted from the p ro g r am ’s function definitions

only.

T> : F n d e f n * —► F e n v
T>[fj x, = ej ,.. ., fn xn = en]

= f ix (\<f> . {f; ,..., f n ^ \ v . 8 ^ e n l{rn_ l)} })

C H A P T E R 4. B I N D I N G - T I M E A N A L Y S I S 40

£ : F e n v —> E x p r —> E e m ; —► Va lue

£ 4 x]p = H M
^ [(e i , . . . , e n) l p = (^ [e 1]p, . . . , ^ [e n Jp)

^ l c e i = c (£ 4 e l p)
£ 4 f e lp = < 4f 1 (£ 4 e l p)
^ [c a s e e i n C! x 2 -> e! I I . . . I I c n x n -> e n end

= case £ 4 e l p in
a V, => ,

c , v , ^ | e , I , , , ; . „ , , , j

T h e op e r a to r 0 combines environments . It is defined by,

p' x if defined
ifl ® S) * = . p x otherwise

So p ® p' is p overr idden by p' . The form {x t—»• i;} represents a function ele
men t in the usual way, b u t as x is in general a vector of variables, this means

{ x (l) i—► f s t u, x (2) •—► snd u , . . . } . We will use this no ta t ion fnxdy on environments

of any type.

T h e functions in the p rogram can be mutual ly recursive. This is cap tu red in D

t h rough the use of f ix. T h e fixed point is taken across all the function definitions

s imul taneously. In £ , certain values need to be appropr ia te ly injected into Value

using th e device discussed earlier. For example, the mean ing of the const ructed term

c (£<4 e Ip) really given by the value ini (c, £ ^l e]p) in Value. Finally we not ice the

d ist inc tion between the syntact ic “c a s e ” and the semant ic “ r a s r ” in the definition of

£. We as sume the la t ter to be the s t anda rd mat hem at ica l function but are providing

a definit ion for the former.

Expl ici tly wri t ing £ 4 e Jp f°r ^ ie meaning of an expression e, and £ | f J for the m e a n

ing of a funct ion f is cumbersome. There are t imes when we will need to be precise

in this way. Otherwise , when (f> is the full function envi ronmen t defined by T>, we will

jus t wr ite / for <£[f J and e[v/^ for £ 4 e l {r^ v]-

4.4 A b stra c t Sem antics

We define an ab s t r ac t semant ics for PEL. The abs t ra c t values are projec t ions over

the universal value domain. As before there are two environmen ts , one for ab s t ra c t

C H A P T E R 4. B I N D I N G - T I M E A N A L Y S I S 41

values and the o ther for ab s t ra c t functions. We will follow Mycrof t ’s nota t ion [MycSl]

and use a # superscr ip t to indicate the abs t ra c t in terpre ta t ion.

7 E Pr oj = Value P—> Value [domain of finitary projections]
E AbsVenv = Var —► Proj

<f># E AbsFcnv = F u n —► (P r o j —► P r o j)

T h e greates t lower b ound of two projec tions wi thin the domain of functions (as given

by 7 f l ^ = Xx.-y x (“I 6 x) is not, in general , a project ion. However, greatest lower

boun ds do exist in Value Value for the following reason. Projec t ions are bound ed

by ID, so t h e set of projec t ions {/?,• | V f (/?,• □ 7) A (J3, C)} is consistent and, hence,

its least u p p e r bound exists. This least uppe r bou nd is a finitary projec t ion and is

greater t h a n all o ther lower bounds for 7 and 6 and so it is the greates t lower bound.

T h e difference between these different greates t lower bounds becomes i rrelevant when

we in t roduce pa r t i cula r finite domains of project ions. We will find t h a t the usual

greatest lower b o u n d of any set of projec tions from these domains is itself a projection

and, moreover, also a mem ber of the same finite domain.

Using the same t rick as before we can identify projec tions over a domain .V with

projec t ions in Proj . Wri te Projx for the projec t ions on A . Then there exist func

t ions <Px : P r° jx ~ > Proj and 'Px '■ Proj —► Projx such t h a t &x 0 — H)proJX ai)d
<px o x U ID proj. &x a n d &X can bo defined using the project ion pai r </>\-, V’.v ° f
the previous section.

$ x = h ■ 4>x o 7 O Ux
V x = A[J . ipx o f i o 4>x

Tlierefore, as wi th values, we need not dist inguish notat ional ly between a project ion

in Projx an(l th e corresponding projec t ion in Proj.

We need to define p ro d u c t and sum opera t ions 011 projections.

D efin it ion
If {7 , : X t —> X, }{/<,<„} is a family of project ions , then wo define the project ion

(7 ; x • • • x 7 n) : { X , , . . . , X n) -► (X , , . . . , X n) by

(7 ; X X 7 „) (x / , . . . , x n) — (7 1 1 • • •) 7 n Xn)

C H A P T E R 4. B I N D I N G - T I M E A N A L Y S I S 42

D e f i n i t i o n

If {7 , : X{ —► X :}{/<i<n} is a family of project ions , then we define the projec tion

(c, 7/ + ------1- cn 7n) : (C1 X i 4 • • • + cn A'n) (c t X t 4 h cn X n) by

(C l h 4 h Cn 7 n) J _ = _L

(c/ 7 / + h c n 7 n) (c/ X /) = a (7 / X /)

(cj 7 / 4 h Cn 7 n) (cn xB) = cn (7 b xb)

We will somet imes use the no ta t ion (ci 7 ,) as a shor t form for (c/ 7 / 4 ■ ■ ■ 4 cn 7 „)-

Ther e are two ab s t r ac t semant ic functions. These evaluate functions and expressions

in the ab s t r a c t domains and correspond directly wi th the concrete semant ic functions.

27^ : F n d e f n * —► A b s E c n v
27# [f 1 X/ = ej , . . . , f n xn = en J

= gfp ^ X v - £ f # l e i • • ’ f " ^ A r - ^ I e ’i l {rn^ v}))

E ^ : A b s F e n v —> E x p r —► A b s V c n v —> P r o j

= p* i x i
 e»)] „ , = x • " X

= c, / /> + --• + + ■■■ + <-, i n

£?* I f e] p' = <f>* [f]
E*# [case e in Cj Xj -> ej | | ... II cn x n -> en end] #

= case E * # l e] p„ in

A B S 4 A B S

e , (c» 7 .) => n . ip#(D{xt̂ 7,})

As the only projec tions t h a t can arise over a sum domain are A B S and sums of

projec t ions , th e two cases in the final equat ion are exhaustive . Initially surprising,

in the definit ion of 27 ,̂ is the use of greates t fixed point (gfp). Actual ly any fixed

point is safe but , as we noted in C h ap te r 3 (and in con tra s t with backwards analysis),

larger projec t ions give more accura te informat ion. As with the concrete semant ics we

will somet imes use an abbrevia ted notat ion. Whe n is the result of 27̂ appl ied to

the whole program, we will wri te for </># | f J, and ôr ̂0 ’

Before we give the b inding- t ime equations and prove them correct we will d em o n s t r a t e

tha t the abs t r a c t semant ics are indeed an abs t rac t ion of the concrete semantics .

C H A P T E R 4. B I N D I N G - T I M E A N A L Y S I S 43

L e m m a 4.1

If (j) an d (f)# are function environments for which] 7 o<*>[f J C J o 7 for all

funct ion nam es f and all project ions 7 (of the app ropr i a t e type) then

£*# l e 0 At,- 7 I I e ! { , „ .) E Af - 7 l e]<*„,} ° 7

P r o o f
Th e proof is by induct ion over the s t ruc tu re of e. We will prove the equivalent

result , t h a t (£*# [e J {̂ }) (£4 e J{* - n }) ^ £ 4 e l{*~7t,} for a11 values v (obta ined by
applying b o th sides to v).

C a s e : (x (i))

= 7 (1') u(z)

C a s e : (e / , . . . , e n)

{£% I (e l ’ • • • ’ e 4 ^ (e > ’ • • • ’ e 4
= X • • • x (^ l e , ! (, „ „) . • • • , 7 1 e i

= « T * (£ * I e .] { >) E
E (^ | e , 1{JI [induction]

~ 7 [I (e ! ’ • • • 1

C a s e : (c* e)

(7 * l c t e l (T„ 7)) (7 1 e l) I « . })
= (c, I /? + ••• + ck + ■•• + ' ’» I D) (a- 7 K e l{r „ „))

= ct ((7 #* I e l (, „ ,)) (7 b !{ ,„„}))
E ct (7 I e] | { r„ „)) [induction]

— <̂t> H e l{ri-.-7 v}

C a s e : (f e)

(7 #* I f e l (r ^ }) (7 I f e l { r „ „))

= (<t>* I f]] (7 I e] , _ M))
E < 4 f J ((7 ## I e l {r„ l)) (7 [M (, „ „ |)) [ns.sumpt ion]

E <Mf 1 (7 I e] , r„ , . ,) [induction]

C H A P T E R 4. B I N D I N G - T I M E A N A L Y S I S 44

C a s e : (c a s e e i n . . . c* x* -> e* . . . end)

T h e (projec t ion valued) result of £*# [c a s e e i n . . . c k x k -> e k . . . end]^ ̂ is

expressed as a case s t a t e m e n t wi th two possibilities. We will consider these two

possibilit ies separately. T h e first possibility is t h a t ̂ = A B S in which

case £^# [c a s e e i n . . . c k x k -> e k . . . e n d] ^ = A B S and,

A B S (£4 case e in ... c k x k -> e k . . . end]M)
= _L
C ^ | c a s e e in ... c k x k - > e k ... end]{r^ 7t/}

T h e o ther possibil i ty is t h a t [[e]]̂ = E C 7 «- If fh>s is the case the

£*# [c a s e e in ... c k x k -> ek ... end] = fl. Ie«' r }) an<^

) (£0[case e in . . . ct x k -> e k . . . e n d J {j. _ r}

{x > —►7 , x , i —>7 , }

case £ ^ | [e] {ar̂ in

ck Vk •y *.■}

□ case £^>Ie]{ri__>l;} in

c k Vk => 4>#U-

□ case £ 4 e] {x^ v) in [induction]

ck Vk £<t>l e k l{x^-7 v,xk̂ 7 kyfc}

= case (E c, 7 .) (£4 e l {r„ w}) in [meaning of case]

Ck Vk £<t>\ ek]]{j:h—7 v,x-fci—y*; }

= ease (£f# [e]) (£*[e U{x~Wj^ ■** {x> —>7 }

c k Vk ^ £<t>\ Gk]] { r i _ 7 U r̂k>_ y k }

C H A P T E R 4. B I N D I N G - T I M E A N A L Y S I S 45

C case in [induction]

c k V k £<t>l e k l { x . - ' y t > , : r fc. - y fc}

= ^ [c a s e e i n . . . ck x k -> e k . . . e n d] {r^ v}

which completes the proof. □

L em m a 4.2
If 7 is a projec t ion (of the appropr ia te type) then (/ # 7) o / C / o 7

P r o o f

T h e proof is by fixed point induct ion. We wri te f n for the 71th approx imat ion to /

(t ha t is, for <̂ n [f]] where the {<?!>„} form the Kleene chain app rox im a t ing the full
funct ion env iro nment <f>). Recall t h a t while / is defined by least fixed point (and so

its Kleene chain of ap prox imat ions is increasing), is defined using greates t fixed

point . If we define J, then j f = A7 . ID and for any integer k.

We use this la t t er fact in the induct ive case. Suppose the definition of / is given by
f x = e. T h e induct ion hypothesis is t h a t / # 7 o /„ f /„ o 7 for all functions / .

Case: Base

(/ # 7) 0 fo = (/ # 7) 0 A z . l
= Az.T [f* 7 is strict]
= fo o 7

Case: Induc t ive

(/ * 7) 0 / . + , C

c

Case: Limit

(/ # 7) 0 / = L r = 0 (f * 7 0 fn) [continuity of 7]
Q U£=o (L 0 7) [finite induction]
— f 0 7 [definition of |_|]

(f n + l 7) 0 f n + l

^ • ^ n l e] { zi- . 7u} [i n d u c t i o n a n d l e m m a 4 .2]

f n + l 0 7

C H A P T E R 4. B I N D I N G - T I M E A N A L Y S I S 46

which com pletes th e proof. □

We have proved, therefore , th a t th e ab s tra c t version of a function m aps a descript ion

of / ’s a rg u m en t in to a description of its result. T h e sam e result holds at the expression
level.

C oro llary 4 .3
If 7 is a p ro jec tion (of ap p ro p r ia te type)

P r o o f
This is a re s ta te m en t of the first lemma. Its precondition is satisfied by the second.

□

4.5 S afety

In C h ap te r 3 we defined w ha t it m eans for a division to be safe in term s of a slightly

ex tended version of Jo n e s ’ program model. However, th a t model is most su ited to

ite ra tive p rogram s where the various transfer functions, the { /,} , are ju s t p rim itive

operations. In recursive program s much of the m eat of the com puta t ion is likely to be

perform ed by these transfer functions, and so we need to focus on their definitions also.

To do this we will give a m ore general definition of safety which, in the case of ite ra tive

program s, will reduce to th e one in C h ap te r 3. P E L program s a.re sufficiently similar

to o ther recursion equa tion languages to serve as a su itab le model directly. We write

f x = • • • (g e) - - - to m ean th a t the function g appears in the definition of f with

arg u m en t e (which will typically depend on x). In Jo n es ’ model the s ta tic projection

a is subscrip ted with th e program point. For PE L program s it is subscrip ted with

the function n a m e — th ere is one s ta tic projection per function. Note th a t the s ta tic

projection is a descrip tion of the argument to the function and not of the result.

D efin it ion
Let p be a P E L p rogram and A — (g ,8, 7r) be a division. A is safe for p if for every

definition of the form f x = • • • (g e) - • • in p,

G g o (A e .rp /q) = G g o (Au.c[v/r]) o G f

C H A P T E R 4. B I N D I N G - T I M E A N A L Y S I S 47

W riting this o u t fully and applying bo th sides to v gives the equivalent s ta tem en t ,

v , e !{ ,„„}) = <r, (£ 4 e

In other words, in order to calculate er/s worth of the argument to g we only need
oy’s worth of the argum ent to / .

4.6 B in d in g T im e A nalysis E quations

T h e ab s t ra c t sem antics form th e basis of b inding-tim e analysis. We w ant to p roduce

a division for the p ro g ram and will use the abs trac t sem antics to do so. We in troduce

one m ore sem antic dom ain to model program divisions. In the next ch ap te r we will

see th a t th e functions Sj and 7tj can be derived from the s ta tic function aj . Therefore,

all we need to model divisions is a function from variable names to s ta tic projections.

T hus ,

A £ Divis = Fun —> Proj

T hree functions are used to generate divisions. T h e function V ^ (corresponding to

Ses to ft’s function P [Ses8 6]) produces a partia l descrip tion , detailing which p ro jec

tions should be assoc ia ted with the functions appearing in its expression a rgum en t.

T h e o th er two com bine this information a t the p rogram level. T h e value of is

bounded by th e te rm a b s) (w^ ere e ' s ^ 1(' expression in the program)
which associa tes the pro jec tion A B S with any free variable's appearing in e.

A 4 ^ : Prog —► D im s
M * I d , , . . . ' d „ , e] = S/ , - (A z l . (n , ^ # [d , l J n ^ ## I e] jA i^ v))

where'
4>* = P # [dj,..., dn]

: A b s F c n v —► E n d c f —> D i m .s —► D u n s

x = e l ^ = 1}

C H A P T E R 4. B I N D I N G - T I M E A N A L Y S I S 48

V * : A b s F e n v —► E x p r —> A b s V e n v —> D u n s

= i Af • l D)
P £ | [(e i , •••><*„)],, = ■p/# I ei l p# n . . . n V * t [e„ J ^

V * A c e J # = T>* [e l

= { / ~ # M } n P #
tf,#

II c a s e e i n q xj -> e j | | . . . I I c n xn -> e n end]]

A B S =>

E , c, 7 , =» P # [e] n (n , ^ f # | [e t

We will con tinue to use th e n o ta t io n cry for Z \ | f] when A is the division defined by

M * .

To show th a t these b ind ing-tim e equations are correct we prove tin' following theorem .

T h e o r e m 4 .4

I f p is a P E L p rogram , the division A defined by A 4 ^ |p J is safe for p.

P r o o f

Suppose f x = • • - (g e) - • • is a definition occurring in p. T hen ,

^ I g l E (X * A i x = - " (g [g J [ddinil.ion of M * \

[• • •= I s]

E ({g -> [g]

Rewriting this in th e ab b rev ia ted form gives, crg □ f[ay/r]- using this, we ob ta in

Vg O \ v . e [v/x] □ e[ty/rl ° X v -€[vh
□ Ar . C [„ / x] o cry [corollary 4 .4]

which is equivalen t to the safety requirem ent. □

C H A P T E R 4. B I N D I N G - T I M E A N A L Y S I S 49

4.7 G en era tin g F in ite D om ain s

T he dom ain Projx contains all finitary projections over A ; in general, uncoun tab ly

m any of th em . F inding the g rea tes t fixed point required by the definition of V * is

therefore u n com putab le . Instead we will restr ic t ourselves to a finite sub-dom ain of

pro jec tions (F i n P r o j x) and com pute an approx im ation to the fixed poin t by finite
itera tion .

An a l te rn a t iv e ap proach would be to use the infinite dom ain of projections. To achieve

a finite analysis t im e, we would rely on algebraic m anipu la t ion techniques to ap p ro x

im ate a so lution to the a b s tra c t sem antics equations. Hughes used this approach for

backw ards analysis [IIug87] and came across two problems: the algebra was com pli

cated and tedious and , m ore seriously, appa ren tly reasonable approx im ation m ethods

could yield very poor results. As the use of finite dom ains has been successful in

m any areas we will adop t it here.

4 .7 .1 P r o je c t io n s

We give an explicit construc tion of FinProjx based on th e form of the type defini

tion defining X . In addition to projection sum and p ro d u c t, wo define projections

recursively using the fixed point o pera to r /c T h e projection / ^ . / ' ’(y) is defined to

be UiLo P k{ A B S) as usual (i.e. the least fixed point). In order to cope with m utual

recursion we ough t also to define a selection opera to r , bu t as this obscures ra th e r

than clarifies the m ater ia l we will omit it here. An equivalent technique ap p ears in

the im p lem enta tion .

Each finite dom ain FinProjx is defined by the inference rules below. A projection 7

is in FinPro jx if 7 P r o J X can inferred using these rules.

A B S proj c ! 1\ + • • • + cn Tn

P\ proj 7j • - • Pn proj T n

c\ I \ T b c.n Pn proj ci T\ + -------- b cn T n

I \ proj Y) • • • Pn proj Tn

Pi x ••• x proj (7j , . . . , Tn)

P (7) proj T{ t) [7 proj t]

f n - P (i) p ^ j f i t . T(t)

C H A P T E R 4. B I N D I N G - T I M E A N A L Y S I S 50

The final rule should be read, “if P { j) proj T(t) can be inferred under the a ssu m p

tion th a t 7 proj / then f i-f .P(-f) proj f i t . T (t) can be inferred.”

Because ty p e definitions are finite, it is easy to see th a t if any type A' is defined using

the base types and - f , x and // then FinProjx is a finite domain.

Which pro jec tions a re included in F i n P r o j x ? C erta in ly A B S always is (possibly

occurring as A B S x A B S or f i ^ . ABS) . ID also is always included, though this

may not be im m ed ia te ly obvious, par ticu larly in the recursive case. However, if

P(~f) proj T (t) (u nde r th e assum ption th a t 7 proj t) and if P (I D t) = I I)T^ , then

f i~f .P(l) = ID^t 'T^) as required. Over a p roduc t dom ain we have only those pro jec

tions which ac t on th e com ponen ts separately. If A' is a sum dom ain then FinProjx

contains th e A B S pro jec t ion and, in addition , projections which d iscrim inate between

all th e injective tags. T h e only projections we have over recursive dom ains are those

which t re a t every level of recursion identically. Finally, we note th a t A BS]_ = / /) j as

there is only one p ro jec tion on the one point domain.

4 .7 .2 E x a m p le s

To m ake this clearer, we will consider th e following examples. Suppose th a t for

some types X and Y, FinPr o jx = { A B S , I D} = Fin Pro j y . T hen the elem ents of

FinProj^x ,Y) are given by

FinPro j ix n = { A B S x A B S , I D x A B S , A B S x ID, ID x II)}
= { A B S , L E F T , R I G H T , II)}

To take an o th e r exam ple , suppose th a t the type Union is a tagged union of Bool,

I n t , and Char. T h a t is,

t y p e U nion = B1 Bool + Num I n t + Ch C har

fh e e lem ents of FinP rojuni0n are A B S , I A G (which re tains the tag bu t discards

every th ing else), ID, and six projections lying between T A G and II) which variously

discard values in one or two of the sum m ed domains (under the assum ption th a t the

projections over these types are just A B S and ID). This means th a t , not only can

we model to ta l presence or absence of information, bu t we can also model partia l

information -knowing only the tag b u t not the associated value for example. If we

have a function th a t o p era tes on a tagged union our partia l (“valuator may, at least

C H A P T E R 4. B I N D I N G - T I M E A N A L Y S I S 51

potentially , be able to eva lua te away the tags to provide sep a ra te functions specialised

to a rg u m en ts of the different types. This is a key idea in the developm ent in the next
chapter.

Finally, consider associa tion lists as used to im plem ent environm ents. A ssum ing we

have two o th e r types Var and Val we could define,

type Assoc = End + More ((Var, Val), Assoc)

T he p ro jec tions in FinProjASS0C include A B S and ID as usual. In addition we have

S T R U C T (where only the recursive s tru c tu re is known) and S T R U C T [L E F T) and

S T R U C T (R I G H T) which discard the Val are Var p ar ts respectively. 'These are

ordered as follows.

ID

S T R U C T (L E F T) S T R U C T (R I G I I T)

S T R U C T

A B S

Using these pro jec tions, we can model the s ituation where we know only the names

in an env ironm en t b u t no t the values, for example. This s i tuation is likely to occur

during p a r tia l eva lua tion of an in terpreter. It means th a t it should not be necessary to

write in te rp re te rs w ith sep a ra te nam e and value lists in order to benefit from partia l

evaluation.

4.T.3 R e la t in g to P ro j%

We m ust re la te th e dom ains FinProjx and P r o j x ■ d he inclusion m ap supplies a

su itable em bedding of FinProjx in Projx- T he corresponding projection from Projx

to FinProjx is given by,

fold 7 = m ax {ft £ FinProjx \ ft Q 7 }

C H A P T E R 4. B I N D I N G - T I M E A N A L Y S I S 52

Currently , th e ab s t ra c t sem antics are defined over the whole of Proj . By applying fold

to every righ t h an d side in £ * , we ob ta in an approx im ation to the ab s trac t sem antics

whose values are all in th e ap p ro p r ia te finite dom ains of projections. (Actually,

because of th e construc tion of the finite dom ains, fold only needs to be applied in the

construc to r case). As fo ld is a p rojection , the finite ab s trac t sem antics underestim ate '

the t rue a b s t ra c t sem antics , so the proof of safety still holds.

4.8 S u m m ary

After defining a small typed language together with its concrete sem antics, wo defined

an a l te rn a t iv e sem antics th a t m anipu la tes projections. These a l te rn a t iv e sem antics

were shown to ab s t ra c t the notion of s ta tic d a ta correctly with respect to the concrete

semantics. C onsequently , we were able to show th a t the equations intended to p roduce

a congruent division were also correct. Finally, we d em ons tra ted how to ap p ro x im a te

the ab s t ra c t sem antics in a safe and com putationally feasible' way.

We now know how to describe the s ta tic data . In the next chap te r we tu rn our

a t ten t ion to th e dynam ic.

C hapter 5

R un T im e A rgum ents

T he s ta t ic p ro jec tion tells us which p a r t of a func tion ’s a rgum en t will he present

during p a r t ia l eva lua tion . In any par ticu la r call of th e function, this p a r t of the

a rgum ent is used in the p roduc tion of a residual function. However, this still leaves

the question: which p a r t of the a rgum ent should the residual function he given a t

run-tim e? O bviously we could pass the whole a rgum ent if we wanted to, b u t we can

do a lot b e t te r . A fter all, the partia l eva lua tor will have taken the s ta t ic par t into

account in p roduc ing th e residual function. It ought to be unnecessary to supply the

residual function with th e sam e inform ation all over again.

We need a way to select the run-tim e information. T he original a rg u m en t to a func

tion / m ust be factorised, or decomposed, into s tatic and dynam ic factors, and this

factorisation should be as com plete as possible. T h a t is, the am oun t of s ta t ic in fo rm a

tion which is also regarded as dynam ic should be minimised. T hen , when we pass tin'

dynam ic a rg u m e n t to th e residual function, we will be passing as little inform ation

at ru n - tim e as possible.

T here are, of course, m an y possible factorisation m ethods. Some produce an exact

decom position while o thers do not. We will look a t two m ethods in this chap te r. T h e

first does no t p roduce an exact factorisation b u t is based on very familiar co n s tru c

tions. T h e second m ethod , which is exact, arises as a generalisation of the first,.

5.1 P r o je c t io n C om p lem en ts

1 he canonical equa tion for m i x assumes th a t the program argum ent is defined on a

produc t of th e s ta tic and dynam ic domains. So if / : A —>) is a function defined in

C H A P T E R 5. R U N T I M E A R G U M E N T S 5-1

the p rog ram , we would like to regard it as having the type / : A x B —► V, where A

is s ta t ic an d B dynam ic. Assuming we are suppled with a s tatic projection 7 for / we

can p ro d u ce A — it is ju s t the range of the s ta tic projection, which we w rite as 7(]A_[)

(this is a d o m ain as all th e elements of each FinProjx are finitary projections). Ideally,

we would like to pick an o th e r projection, 8 say, so th a t B = tfJA'D and X = A x B.

U nfortunate ly , th is is not possible in general. However, while we canno t achieve

isom orphism we can ensure th a t , in some sense, X is a sub-dom ain of A x B. A

trivial so lu tion to this is for 8 to be the identity function and then B would equal A .

F o r tu n a te ly we can do be t te r .

Suppose we are given a s ta t ic projection and want the dynam ic function to be a

p ro jec tion also. T h is dynam ic projection m ust be a complement of the static .

D efin it ion
If 7 : D —► D and (3 : D —► D are projections, and if 7 U ft = //>), then (3 is a comple

me nt of 7 (and vice versa).

There m ay be m any projections which are com plem ents of a projection 7. We will
choose one in particular and describe it as the complement of 7, written 7.

From the definition it is clear that for each value x G I) the property that

7 x U 7 x = x holds. In other words, between a projection and its complement, no

information is lost. But for it to be a good choice, the com plem ent should discard as

much as possible consistent with this. That is, the com plem ent should be as small

as possible. In general there is no least com plem ent, but as we are only interested in

static projections drawn from an appropriate Fin Pro jo we will take its com plem ent

from there also. If we do this then we can choose one which is minimal.

We know that D can be embedded in <t(|/9[) x <$(]D[) when a and 8 are com ple

ments because the canonical map < cr, 8 >: I) —> cr(]D[) x <$(]/J[) is injective. T hat is,

if (cr d, 8 d) = (a d', 8 d') for </, d' G I) then d = a d U 8 d = a d' U 8 d' = d ' .

5 .1 .1 C o n s tr u c t in g C o m p le m e n ts

In the previous ch ap te r , elements of FinProjx were defined constructively, f o r any

such p ro jec t ion , we can give a corresponding construction of its com plem ent.

C H A P T E R 5. R U N T I M E A R G U M E N T S 55

A B S = ID

I D = A B S

Ci 7 / + *' ' + cn 7 n = c/ 7 / + ' • • + cn 7 n if 7, ^ I D for some i

h X • • • x 7 „ = 77 x • • • x 7 „

= V l - P i l)

It is no t ha rd to establish th a t 7 U 7 = ID for all 7 E Projp. T he only non-triv ial case

is the recursive one. T h is m ay be established by recognising th a t / ;n (7) = I**(7) for

all n and th a t A B S j = I D j on th e one po in t dom ain . As f i t . T (t) = UtLo ^’*(1) wc

can appea l to con tinu ity to complete the result. T h e details may be found in [Lau8 8].

An exam ple will show th a t th e factorisation is not always exact. Suppose th a t I)

is the Assoc dom ain from the previous ch a p te r— essentially a list of pairs and th a t

the s ta t ic p ro jec tion is S T R U C T which discards all the elements leaving only the list

s truc tu re . W h a t is th e com plem ent of S T R U C T ? If we restr ict ourselves to e lem ents

of Projo then th e answ er is ID. As STRU CT^A ssoc ty = L is t^ (lists of e lem ents of

the void type) it is clear th a t Assoc ^ S T R U C T ^ A ss o c \) x Assoc. This exam ple also

shows th a t th e com plem ent of the com plem ent of a projection is not necessarily equal

to the original p ro jec tion itself.

5 .1 .2 E x a m p le s

W h a t sort of residual functions are produced when we use com plem ents? Some ex

amples will be useful.

T he sim plest case is where the argum en t to a function is a tup le of values each of

which is e i ther com pletely s ta tic or completely dynam ic. Here pro jections provide

exactly the sam e results as the original DIKU work.

A m ore challenging, b u t now s tan d ard , exam ple is given by the association lists

described in the previous chapter. Suppose we have the function lo o k u p which takes

an associa tion list and an index value and re tu rns the value associated with the index.

T hus,

lookup :: (Assoc,Var) -> Val;
lookup (xys,w)

C H A P T E R 5. R U N T I M E A R G U M E N T S 56

= case xys in
Empty => fail

II More ((x,y),xys’) => case equal (x,v) in
False => lookup (xys',w)

I I True => y
e n d ;

e n d ;

where fail an d equal are su itably defined. T h e association list associates vari

able nam es w ith values. Suppose th a t we know th e names at specialise-t ime

bu t no t th e values, as we m ight when specialising an in terp re ter to a p ro

gram. Each call to th e function lo o k u p in th e original p rogram will be replaced

by calls to specialised versions of it. T he s ta tic projection for lookup will be

a : (Assoc x Var) —* (Assoc x Var) given by a (a ,u) = { S T R U C T (L E F T) a, ■?;).
Its com plem en t is given by 8 (a , v) = (S T R U C T (R I G I T T) a, _L). T hus the p a r a m

eter to th e residual function will be from a dom ain isomorphic to the range of the

dynam ic pro jec tion 8— essentially a list of values. T h e specialised versions of lookup

will move dow n this list of values a set distance, and re tu rn the value found there.

So, no t only is th e re no testing on the nam es in the env ironm ent a t run-tim e, bu t

th e nam es have to ta lly vanished. Knowing this, we could rew rite the the exam ple in

C h ap te r 2 so t h a t th e s ta te is modelled by a single association list w ithou t affecting

the results of par tia l evaluation.

A less successful result occurs with the Union type. If tin ' s ta tic projection is 7/1(7

then th e d y nam ic pro jec tion is ID. So, a lthough a function body using a value of

the U nion ty p e m ay be s tream lined som ewhat to its a rgum en t, tin.* whole a rgum en t

is still used a t ru n - tim e— the value is still packaged up with its tag. T h e consequent

packaging and unpackaging consti tu tes an unnecessary inefficiency. W hile not too

serious in this exam ple , it is sy m ptom atic of the weakness of the com plem ent m ethod .

5.2 P ro g ra m D iv is ion s

Using com plem entary projections to factorise the argument to a function into its

static and dynam ic com ponents is an exam ple of a proyram division [Jon88]. We

have already touched on this informally in Chapter .1, but will now give its precise

definition. It is cast in terms of Jones1 program model.

C H A P T E R 5. R U N T I M E A R G U M E N T S 57

D efin it ion (Jon es)

A program division is a triple (cr,<5,7r) where a p : V —► Vs, Sp : V -*• Vd, and

7rp : Vs x Vd —> V for each p rogram point p , such th a t for all v e V , vs e V, , and

Vd G Vrf,

(i) 7Tp (crp V, ^ ») = v
(ii) crp (ttp (u„ ^)) = v,
(iii) Sp (ttp (v$, vd)) = vd

T he first condition requires th a t between them , the s ta t ic and dynam ic functions do
not lose any in fo rm ation— the pairing function 7rp is able to reconst i tu te the original

value from th e two par ts . T h e o th er two conditions imply th a t the s ta tic par ts stay

static , an d th e dynam ic dynamic.

This in tu it ion is very similar to the informal justification we offered for using com ple

m en ta ry pro jec tions. T h ere is a good reason for this. Suppose we were to choose Vs

and Vd to be sub-dom ains of th e original dom ain, and the pairing function 7rp to be

least u p p e r bou n d . T h en for the s ta tic and dynam ic functions to form a division, they

m ust be co m plem en ta ry projections. W hy projections? Because, for example , condi

tion (i) requires t h a t crp v U 8p v = v for all values v, which implies th a t crp C ID. In

addition , condition (ii) requires th a t a p (vs U Vd) = vs for all values vs and ?)d. C hoos

ing Vd = T and expressing vs as (a p v) for some value v gives crp (a p v) = crp v. T hus,

(jp is id em p o ten t and weaker th a t ID. It is a projection. Exactly the sam e argum en t

applies to b. W hy m u st they be com plem ents? Condition (i), when expressed using

least u p p er bound for 7Tp , is precisely the com plem ent condition.

We can ex tend th is slightly. R a th e r th a t insist th a t Vs and Vd are actual ly su b

dom ains of V it is sufficient for th em to be isomorphic to sub-dom ains. It then still

makes sense to ta lk of th e least upper bound of e lem ents draw n from Vs and Vd-

From all th is we d raw the conclusion: If the pairing function 7r from a division is

essentially least u p p e r bound , then the s ta tic and dynam ic functions a and b are

essentially co m p lem en ta ry dom ain projections.

T here are o th e r choices for the pairing function which give rise to different sorts of

divisions. In th e previous section we pointed out some of the shortcom ings of the

com plem ent division. We will now study a more com plicated division, bu t one which

provides an exac t factorisation.

C H A P T E R 5. R U N T I M E A R G U M E N T S 58

5.3 D o m a in T h eoretic D ep en d en t Sum

In th e in tro d u c t io n to th e chapter, we noted th a t it is usually impossible to find

non-triv ial fac to risa tions of an a rb itra ry domain X as the p roduc t of two others . T h e

problem is t h a t th e dom ain produc t operation is too restrictive. We need some more

general o p e ra t io n from which p roduc t arises as a special case. T h a t more general
opera t ion is dependent sum.

D ependen t su m is usually th o u g h t of as a set construc tion and is often associated

with co n s tru c tiv e ty p e (set) theory [Mar80] where it occurs as a primitive. However,

it m ade its d eb u t as a dom ain construction in an exercise in P lo tk in ’s lecture notes

in 1978 [Plo78]. Since then it has been used to provide models for the po lym or

phic A-calculus [CGW87]. Categorically speaking, dependent sum is a G rothendieck

construc tion w here the underly ing dom ain is viewed as a category. This aspect is
par ticu la r ly relevant la te r on.

In order to develop a basic unders tand ing we will give a set theoretic definition of

dep en d en t sum , and then show how to extend it to domains.

D efin it ion
Let A be a set an d {/?a } a family of sets indexed by elem ents of A. T hen the dependent

sum B a is th e set,

£ B . = { (« ,(.) I a € A, b € B , }
a£A

T he d ep e n d en t sum is a (possibly infinite) tagged union of the family of sets { B a}.

If th e family is co n s tan t , i.e. if there exists some set B such th a t B a = B for every

a £ A then J^aeA Ha reduces to the set p roduc t A x B.

Now suppose th a t A and the family {/?a }aea are dom ains and not ju s t sets. Let us

consider w h a t it m eans to index a family of domains by a dom ain. It is clear w hat it

means to index by a set, bu t a dom ain has more s t ru c tu re and this should be taken

into account. We m ight qu ite reasonably require th a t as we move up a chain in the

indexing dom ain , th e corresponding domains in the family become larger. r\ ha t is, if

a' G A a re indexing elem ents such th a t a U a' then there m ust be an em bedding

4*a,a' : Ha —► Ha> which embeds B a into B a>. Of course, tin; em beddings should be

such th a t if a □ a' C a" then 4 a , a " = 4 a \ a " ° 4 a , a ' - This much reflects th e ordering

relation on th e dom ain . We m ust also express completeness. If we have a directed

C H A P T E R 5. R U N T I M E A R G U M E N T S 59

set V C A then we require that B \ j v = [J{ B a | a <E V] and that for any a C |J V

the em bedding <f>a^ j v is given by <f>^v = (J{ 4>ay \ a' G V] (we use the least upper

bound of dom ains following S cott’s information system s; in som e other framework it
may be replaced by a union, for exam ple).

This m ay be expressed very concisely categorically. If we view the indexing dom ain

as a category, th en th e indexed family corresponds to a continuous functor from this

category in to th e ca tegory of dom ains D o m ep whose arrows are em b ed d in g /p ro jec t io n

pairs (th a t is, pairs of functions <j>: X —► Y , : Y —> X such th a t ?/’ o <f> = idx and
(j) o xp C idy)•

Now th a t we know w h a t a dom ain-indexed family of dom ains is, we can construc t

the dep en d en t sum.

D efin it ion (D o m a in D e p e n d e n t Sum)

if { } ag .4 is a dom ain-indexed family of domains, then the dependent su m of the
family is given by,

Y B a = {(a , b) \ a e A, b e B a}
a

with the ordering

(a , 6) E r (a , b') & (a U A a) A (<f>ay (a) Q Ba, «')

L em m a 5.1
I he d ep en d en t sum of a dom ain-indexed family of dom ains is a domain.

Sketch P r o o f
A com plete p roof th a t this construc tion results in a Scott dom ain appears in [CGW87]

but we will give an outline here. We need to show th a t the sum is an u-a lgebraic ,

consistently com plete , com plete partia l order. It is clear th a t it has a b o t to m elem ent,

given by (T ^ , -Lfij^) , and the fact th a t the relation □ over the elements of th e sum

is a par tia l o rder follows alm ost im mediately from th e fact th a t C a ai)d fhe U Ba are

all par tia l orders.

To construc t th e least upper bound of a directed set of elements draw n from the sum

we initially consider the set of first com ponents. These form a directed set in A which

will have a least u p p e r bound. If all th e second com ponen ts of the original directed

C H A P T E R 5. R U N T I M E A R G U M E N T S 60

set are injected into the domain indexed by this least upper bound, then again we

obtain a directed set which will itself have a least upper bound. T he pair, whose

com ponents are the two least upper bounds, is an elem ent of the dependent sum and

is the least upper bound of the original set. We can form the least upper bound of a
consistent set in the same way.

To show algebraicity we have to characterise the finite elem ents. An elem ent (a , b)

of the sum is finite exactly when a is finite in A and b is finite in B a. The set of

finite approxim ations to an elem ent form a directed set. Because A and the {/?«,}

are algebraic, and because the indexing is continuous, the least upper bound of this

directed set will be the original elem ent. Finally, because A and the { B a} have

countable bases, the set of finite elem ents is countable. □

As we m ight expect, domain product is a special case of domain dependent sum. To

see this suppose that B a = B for every a E A. The elem ents of the sum are then just

the elem ents of the product. Furthermore, all the embeddings are constrained to be

the identity, and so the order relation simplifies to the usual product ordering.

We have retained the set style notation for dependent sum even though it does not

make the em beddings explicit. To be fully formal we should work with the functors

given by the categorical view. Later on, when we do need the formality, we will

do this. Elsewhere, however, we will use the set notation in the belief that familiar

notation is helpful.

5.4 P r o je c t io n F actorisation

Let us sum m arise what we have done. We started with a domain-indexed family of

domains. From this, we produced a sum domain that respects the structure of the

indexing dom ain. In this section we do things the other way around. We start ofr

with a single dom ain and discover a domain-indexed family of domains sitting inside'

it. This allow us to express the original domain as a dependent sum.

We have already noted that dom ain-theoretic dependent sum is a special case of the

(covariant) Grothendieck construction. This (very general) construction has a corre

sponding decom position, namely the Grothendieck cofibration. Cofibrations have* the

property that they give rise to an indexed family whose' Grothendieck construction re

constructs the original structure. It turns out that cofibration is precisely tin* concept,

we require in order to generalise our earlier notions of projection complements.

C H A P T E R 5. R U N T I M E A R G U M E N T S 61

Consider a call of som e function, (/ x) say, and suppose that 7 is the static projection

for / . During partial evaluation, we will be able to com pute the static portion of 1

using 7 . Call this value a. Hence a = 7 x. At partial evaluation tim e, the value a

represents the sum total of our knowledge about the value x. Prior to calculating the

static value, all we would have known about x was its type, A" say. Now, however, we

can be more precise. Not only must x lie in X , but it must also lie in the inverse image

of a under 7 . T hat is, x E 7 ~ ; {a } . This might provide fairly tight constraints on the

possible value of x. How tight the constraints are will depend 011 7 , of course. If 7 is

a large projection (indicating lots of static information) its inverse images (or fibres)

will be relatively small but, conversely, if 7 is small (not much st atic information) its
fibres will be large.

A question naturally arises. Given that the fibres are subsets of the domain, what

sort of structure do they have? T he precise answers depends 011 the projections. The

fibres of any projection form a consistently com plete cpo but it will not necessarily

be algebraic. However, for the projections we use, not only are all the fibres Scott

domains, but they also correspond to first-order constructible types. I11 part icular,

they are just products of types that already appear within the source program.

W ith these observations our overall strategy should have becom e clear. The range of

the static projection forms a domain which indexes the family of its fibres, each of

these being dom ains. It should, therefore, be possible to express the original domain

as a dependent sum , where each of the summands is the inverse image of some static

value. In any particular function application, we will know that the dynam ic value

must be constrained to the fibre corresponding to the static value, and so may express

the type of the residual function accordingly.

Towards the end of the chapter we will see some exam ples of this in practice, but in

the m eantim e will show that the strategy may be realised.

5.4 .1 C o f ib r a t io n

When is a projection a cofibration? That is, when does it give rise to a family of

domains whose dependent sum is isomorphic to the original domain? Rather than

give a very general answer we will show that the projections we use do indeed have this

property. Unsurprisingly, we induct over the projection constructions. I his approach

is sufficiently flexible so that if another domain construction were added at any time

then it alone would need to be checked.

C H A P T E R 5. R U N T I M E A R G U M E N T S 62

For the present we will take on trust that all the fibres form domains. We will present,

a lemm a shortly which gives a stronger result. Our im m ediate task is to dem onstrate
that appropriate em beddings exist.

D efin it ion

Let 7 : X - + I b e a projection in FinProjx (Section 4 .5) with x, x' £ 7 (X |) such that

x □ x ' . Then : 7 _; { z } —► 7 ~ 1 {x'} is a mapping from 7 - / {x} into 7 ~ / {x '} where

the ~ operation is defined inductively by

7 X ^(r.j,), -- 7x,x' X 6 y t y'

A B S x , l = id

7 + ini x' = Xx.x ' (likewise for ini')

7 T ^ini x , ini x ' — 7x,x> T id (likewise for inr)

i n - P (i) x,x> = Un (< f> n O P n(A B S) xl>nT< M O </>n

where (</>„,?/>„) : 7ln(_L) -a i i t . T (t) is the canonical em bedding/projection pair.

L em m a 5.2
Let 7 : X —► X be a projection in FinProjx with z ,x ' £ 7(] A* [) such that z C x'. Then

7 x , x ' : 1 ~ ‘ {^} —* { z 7} is an embedding with the property that

a C a O 7x,r'(a) Q a>

for any a £ 7 _/ { z } and a' £ 7 _/ (V) .

P r o o f
The only case in which the result is not immediately obvious is the recursive; case*.

To simplify notation we will write P n for P n(A B S) and P ^ for /^7. / J(7). We* need

to show three things. Firstly that P 1̂ T%x< does indeed map elem ents of the z fibre to

elem ents of the x' fibre. Secondly that the map is an em bedding, and finally that it

preserves order.

Let a be an elem ent in the x fibre (that is, P “ a = x). In order to show that P'^z y

maps elem ents of the x fibre into the x' fibre, we must show that ! >jJ { P ^ x ^ a) = x'.

C H A P T E R 5. R U N T I M E A R G U M E N T S 63

(P w o P " XtX>) (a) ^

— ° (U n 4*n rl>n x ' 0 0 n)) («) [d o f l l o f P “]
= (U n P w ° <f>n ° P nri’nx, 4>nx' 0 V’n) (a) [continuity]
= (U n U k 4>k ° P k 0 0 </>n_0 P nTpnx, 4>nx' 0 0 n) («) [d e f n o f / ?w]
= (U n ^ n I / o ^ n) (a) [r e a r r a n g i n g]

= (U n <f>n O P n o P n 4>n x, tl>n x' 0 */>n) (a) [V’n ° <£n = *</]

— U n (P" (P%nIl V<n*' W n «)))
— U n (V’n x>) [f i n i t e i n d u c t i o n]
= x> [a l g e b r a i c i t y]

To see that P uXiX> is an embedding we only need to note that (by finite induction)

its approxim ations are all embeddings on larger and larger subdomains. In the limit

we obtain an em bedding on the whole domain. Finally, suppose that a □ a' (where

a £ 7 - / {z} and a' £ ')~1 {ad}). As order between the finite approxim ations of a and
a' (namely, ipn a and xj>n a') is preserved by the approximations to P u xy (an easy

induction), then order is also preserved in the limit. □

We are now in a position to show that all the projections in FinProjx are cofi brat ions.

Their fibres form an indexed family of domains such that, when we construct their

dependent sum , we obtain a domain isomorphic to the original. This, our main result,

is expressed in the following theorem.

T h eo rem 5.3 (P r o je c t io n Factorisation)
If 7 : X —+ X is an elem ent of FinProjx then

V as £ 7 - ' W
aG7(*)

P r o o f
The elem ents of the sum are all of the form (7 1, x) and so are in one-to-one corre

spondence with the elem ents of X . Furthermore, both X and the sum have the same

ordering, for

(7 x) U e (7 x>, x ’)
(7 X u x 7 x ’) A (% x n I '{x) E x x f) [definition]

O (7 1 Q x 1 x>) A {x Q x x>) [lemma 2]
x Q x x' [7 monotonic]

which com pletes the proof. □

C H A P T E R 5. R U N T I M E A R G U M E N T S 64

T he factorisation theorem allow s an arbitrary dom ain to be decom posed in m any

different w ays depending on th e choice o f projection . In contrast w ith using projection

com plem en ts, th is factorisation is exact. It is applicab le in partial evalu ation because

it can be driven by th e projection obtained as th e result of b in d ing-tim e analysis.

H owever, there is s till an issue open . W e m ust show th at all th e fibres form dom ains.

W e actua lly w ant som eth ing stronger than th is. As th e fibres correspond to the

p ossib le d ynam ic values we would like to produce a residual function w hose argum ent

typ e corresponds to th e fibre. W e need to know , therefore, w hether th e fibres are

expressib le in th e ty p e system . F ortunately, in m ost cases th ey are. W e will consider

a few exam ples before proving th e result in general.

Consider th e Assoc ty p e again (S ection 4 .7), togeth er w ith th e p rojection S T R U C T

th at discards all th e elem ents. T he elem ent More ((_L ,_L), End) is in th e range

of S T R U C T and its inverse im age is isom orphic to th e dom ain (Var,Val). A gain,

the elem ent More ((_L ,_L), More ((_L ,_L), End)) is also in th e range of S T R U C T .

Its inverse im age is isom orphic to th e dom ain (Var,V a l , V a r ,V a l) . To take another

exam ple consider th e Union typ e together w ith th e projection T A G w hich discards

everyth ing excep t th e injection tags. T he elem ent Num _L is in th e range o f T A G and

its inverse im age is isom orphic to Int.

T hese exam ples are typ ical and m ay be generalised to any fin ite elem en t in th e range

of a projection , as th e follow ing theorem m akes clear.

T h e o r e m 5 .4

Let X be a dom ain and a € F i n P r o j x a projection . If a £ tf'flA’I) is a fin ite elem en t

then there ex ists a dom ain B a = a ~ 1 { a } such th at B a is expressib le in th e type

system .

S k e tc h P r o o f

T he proof is by in d u ction over th e s ta tic projection constructions. If th e projection

is A B S then th e inverse im age is ju st one o f th e dom ains w e started w ith and so

is expressib le in th e ty p e system . In th e sum and product cases th e in d u ction is

straightforw ard. For th e recursive case we appeal to th e restriction th at th e sta tic

value is fin ite. In th is case we on ly need to apply th e recursive rule fin itely often and

so will end up w ith a fin ite product o f dom ains each expressib le in th e ty p e system .

□

T he restriction in th e theorem to fin ite elem en ts ensures th a t w e w ill never need

to con struct an infin ite product. T here is in principle no reason why w e should not,

C H A P T E R 5. R U N T I M E A R G U M E N T S 65

excep t th at m any languages (including PE L) exclude such con structions. N on eth eless,

th is is not a serious restriction . A ttem p tin g to specia lise a function to an infin ite value

will fall foul o f th e infinity problem , and the partial evaluator will loop. If th e d ivision

is fin ite th en no infin ite values w ill arise.

5 .4 .2 D o m a i n D e p e n d e n t P r o d u c t s

In order to describe th e action of th e partial evaluator we need to define d ep en dent

products. A gain th ese are m ore fam iliar in set theory than dom ain theory, but we

m ay define th em quite easily after having defined dependent sum .

D e f in i t io n (D o m a in D e p e n d e n t P r o d u c t)

If { B a} aeA is a dom ain-indexed fam ily of dom ains then th e dependen t product of th e

fam ily is g iven by,

n = {/ I /• e B.}
aeA

where th e e lem en ts / are continuous fam ilies indexed by A w ith th e ordering

/ Q n 9 & Va e A. f a Q Ba 9 a

T he elem en ts of th e product are like functions excep t th a t their range is not very

clearly defined. Supplying an indexing elem ent a £ A produces an elem ent o f th e

corresponding B a. Each fam ily is continuous, so if a C a' then <t>ay (f a) U Ba f a, and

if a = U { a ,} then f a = U {^ ail«(/ai)} .

A proof th a t dependent product is a Scott dom ain appears in [C G W 87]. A n eq u iv

alent form ulation defines th e elem ents of th e product to be th e continuous sections

of th e first projection from the dependent sum . T h at is, th e e lem en ts are fu n c

tions / : A —> 5Z(A, B) such th a t f s t o / = ida - Such functions m ust have th e form

/ a = (a , 6) w here b 6 B a. T his form ulation m akes it very clear th a t, if th e fam ily

of dom ains is con stan t, then th e dependent product WaeA B is isom orphic to the

function space (A —> B) .

There is an im portant isom orphism betw een function spaces from dep en dent sum s

and d ep en dent products o f function spaces.

C H A P T E R 5. R U N T I M E A R G U M E N T S 66

L e m m a 5.5

If {Baj is a dom ain-indexed family of domains, and if C is some dom ain, then

(E«.)-c a U (b^ c)
a £A a £A

P r o o f

T his can be proved d irectly for th e case o f dom ains, but w e can give an elegant

category th eoretic proof (com m unicated to m e by A ndrew P itts) . T h e d eta ils m ay

be skipped w ith ou t serious consequences.

T he isom orphism is a consequence of the follow ing adjoint situ a tion . Let D o m be

th e usual category o f dom ains and continuous fun ction s, D o m ej> be th e category

of dom ains w ith em bed d in g /p rojection pairs, and [A —*■ D o m ep] be th e category o f

continuous functors from the dom ain A (view ed as a category) to D o m ep. T his latter

category corresponds to dom ain-indexed fam ilies o f dom ains. T here is a functor

A : D o m —> [A —* D o m ep] (called th e diagonal f u n c t o r) which m aps any dom ain D

in to th e con stan t functor A p (i.e th e constant fam ily {-D }ae^). T his functor has

b oth a left and a right adjoint which are dependent sum and product, respectively

(w ritten Z H A H f l) - Let X be an arbitrary dom ain and B : A —> D o m tp be a functor

corresponding to an indexed fam ily o f dom ains { B a] a^A- T hen all th e follow ing are

natural isom orphism s:

[currying tw ice and product com m utative]
[E H A]
[A preserves —+]
[currying tw ice and product com m utative]

[A - m i

T hu s, H o m (_ , (Z B) —> C) is naturally isom orphic to H o m (_ , n (^ ~ > A C)) and

so, by th e Y oneda lem m a, (X] B) —> C =]1 (^ ~ * A C) . W ritten in th e n ota tion o f

fam ilies th is is ju st (Z aeA B a) -> C = I L e ,i(£ a C) . □

U sing th is isom orphism , we are able to describe th e action o f a partial evaluator.

Suppose w e start w ith som e function / : X —► Y togeth er w ith a partial descrip

tion o f a value x € X . Let 7 : X —» X be th e s ta tic projection , so th a t th e par

tial descrip tion o f th e value x £ X gives us com plete inform ation ab out th e value

7 ^ 6 7(1^1). As th e dom ain X is isom orphic to th e dom ain XXe7(A')(7_ / { a })i we

H o m (X , (Z B) C)
9* H o m { Z B , X —* C)
9* H o m (B , A (X -+ C))
9* H o m (B , A X -> A C)
9* H o m (A X , B -»■ A C)
9* H o m i X , n (# —► A C))

C H A P T E R 5. R U N T I M E A R G U M E N T S 67

m ay view / as a function f • (J2 a£'y[X)(l~ 1 { a })) Y . N ow , we are in a posi
tion to ap peal to th e isom orphism above, and so also view / as an indexed fam ily

/ £ rL ey(X)(7- i { a } Y) . Supplying th e index value (7 x) gives us th e correspond

ing residual function x) : 1 ~ 1 { a } Y .

W e m ay interpret th e isom orphism ab ove as a sta tem en t ab out th e ex isten ce (and

uniqueness) o f the residual functions. It sta tes th at any function m ay be view ed as

a co llection (product) o f (residual) fun ction s, one for each sta tic value. Furtherm ore,

this result d oes not d ep en d on th e s ta tic value being in a particu lar form , but holds

for any p rojection w hich is also a cofibration (i.e w hich w ill allow a d ependent sum

con struction). As w e know , th e purpose o f b in d ing-tim e analysis is to chose a projec

tion w h ich accurately describes th e s ta tic inform ation . W e can now see m i x as th e

m eans for ex tractin g th e appropriate residual function . O f course, as w ith th e S - m - n

theorem , th is view says noth ing ab out th e engineering asp ects o f m ix (efficiency of th e

residual program s e tc .) b ut on ly ab out th e ex isten ce o f the residual functions. It is,

therefore, im p ortan t to rem em ber th at a p artia l evaluator actually m anipu lates pro

gram s (i.e. representations o f fu n ction s) rather than functions th em selves. As such,

each of th e steps above require a fair am ount of sym b olic m an ipu lation to ach ieve in

practice. T h e description above expresses ex te ns iona l l y w hat happens to th e func

tions, b ut says very little about th e a lgorithm s that achieve it through in t en s io n a l

m anipu lation .

T h e t y p e o f m i x

T he version o f mix th a t uses dep en dent su m has a correspondingly m ore general ty p e

than th a t appearing in C hapter 1.

mix :: (£ B.) -> C -> J I (B . -> C)
a,eA Aa£A

Provid ing mix w ith a program as its argum ent produces a d ep en dent product, th at is,

an indexed fam ily. Supplying th is fam ily w ith an index value (th e s ta tic inform ation)

results in a residual program w hose ty p e depends on th at s ta tic inform ation . T his

has im p ortan t consequences, as we will see in th e n ext section .

If, in th e isom orphism d em onstrated above, we reduce th e dep en dent sum and d ep en

dent product to their special cases o f product and function space respectively , then

the isom orphism reduces to currying. T h u s, as a specia l case, currying rem ains a use

ful idiom for d iscussing partial evalu ation . H owever, it fails to exh ib it one im portant

C H A P T E R 5. R U N T I M E A R G U M E N T S 68

point: in general, th e type o f a residual function depends on th e sta tic value used to

produce it. It is because o f this fact th a t the use o f dependent sum is u navoidable in
general.

5 .4 .3 E x a m p le s

W e return to th e exam ples based on th e Assoc and Union typ es defined in Section

4 .7 . S uppose th a t, as in th e previous exam ples, we intend to sp ecia lise th e lookup

function know ing th e variable nam es b ut not their values. W hat do th e residual

program s look like? T he follow ing is a typ ical exam ple. Suppose th e sta tic part of

the associa tion list is

[("X" , J_) , ("Y",l), ("Z", _L)]

(using a list n o ta tion for an elem ent o f Assoc) and th at w e apply lookup to it w ith

index "Y". T he residual function w ould be,

lookup_l (a,b,c) = b

T he residual function now has three argum ents w hereas th e original on ly had one.

T his is an exam ple o f ar i t y raising as described by S estoft [Ses86] and R om anenko

[Rom 88]. S esto ft reports th at residual functions can have a sign ificantly greater ef

ficiency if arity raising is perform ed, but relied on hand p laced an n otation s in the

program to ob ta in it. In contrast, R om anenko perform ed a p ost processing analysis

and achieved arity raising au tom atically . M ore recently, M ogensen [M og89] used the

results o f b in d ing-tim e analysis for th e sam e purpose. However, each o f th ese ap

proaches were fairly ad hoc. W ith dependent sum factorisation , arity raising arises as

a natural consequence o f th e theory.

A rity raising is not th e on ly op tim isation th at dependent sum factorisa tion provides

au tom atica lly . A nother is tag rem oval. Consider th e num eric type,

type Num = Intg Int + Re Real + Comp (Real,Real)

(w here Real is som e su itab ly defined typ e of floating point num bers), and th e fo llow

ing coercion fun ction ,

C H A P T E R 5. R U N T I M E A R G U M E N T S 69

make_complex:Num->(Real,R e a l) ;
make_complex x = case x in

Int n -> (make_real (Intg n) , 0.0)
I I Re r -> (r, 0.0)
I I Comp c -> c
e n d ;

S uppose th at b in d ing-tim e analysis determ ines th a t th e projection T A G specifies

th e s ta tic portion o f th e input to th e function make_complex. T hen th e possib le

sp ecia lisa tion s of make_complex are th e functions,

m a k e _ c o m p l e x _ l :Int->(Real,R e a l) ;
make_complex_l n = (make_real_4 n, 0.0);

m a k e _ c o m p l e x _ 2 :Real - > (R e a l ,R e a l) ;
make_complex_2 r = (r, 0.0);

m a k e _ c o m p l e x _ 3 :(Real,Real)- > (Real,R e a l) ;
make_complex_3 c = c;

N ot on ly has th e run-tim e test been elim inated (an d , presum ably, another te st in

make_real) but so has th e unnecessary packaging and unpackaging th at occurred

w ith com plem en ts. T he argum ents to th e residual functions are op tim al in th a t th ey

contains no sta tic inform ation at all.

5 .4 .4 D e p e n d e n t S u m F a c t o r is a t io n is a D iv i s io n

W e w ill close th is chapter by show ing th at th e dep en dent sum factorisation con stitu tes

a d iv ision . A s th e dom ain is decom posed into a d ep en dent sum , the d ynam ic function

becom es an indexed fam ily o f fu n ction s— one for each sta tic value. D efine 8 x = 8ax x

for a fam ily o f functions {<5a | a E c r (J [)} where

8a : g ~ 1 {a } —► B a

is a b ijection for each a E cr^D). T he pairing function 7r m ust take a pair o f va lu es— in

this case an elem en t of a dependent sum — and reco n stitu te th e original value. W e

define,

C H A P T E R 5. R U N T I M E A R G U M E N T S 70

7T (a , b) = 8 a b

T hese functions form a d ivision . Before w e can show th is w e need a lem m a exam ining

the in teraction betw een th e sta tic and d ynam ic functions.

L e m m a 5 .6

If a G crflDJ), and b £ 8 a§cr~ 1 {«}[), th en a (8~ ! b) = a

P r o o f

As b £ 8a§<7 ~ 1 { a }D there ex ists a value x £ a -1 { a } such th at 8~ ! b = x . B ut then

a (8~ ! b) = <7 x = a as required. □

Using this result we can prove,

T h e o r e m 5 .7

A trip le (cr, 8, 7r) defined above forms a division .

P r o o f

W e have to check the three conditions contained in th e defin ition o f a d ivision . T h e

first can b e done directly.

7r (a x , 8 x) = 8 ~ * (8 x)
= 8 ~z (8ax x) [definition o f <5]
= x

T he other tw o cond itions use the lem m a.

<7 (tt (a , b)) = a (8 - 1 b)
= a [by th e lem m a]

S (t (a, b)) = 6 (6 ; ' 6)
= ^ (S - 1 4) (Sa ! b) [definition o f 8}
= 8a (8~] b) [by th e lemma]
= 6

Thus (cr, 8, 7r) form a d ivision as required. □

This com p letes th e th eoretica l developm ent in th e m onom orphic case. W e now know

how to d escribe b oth sta tic and d ynam ic d a ta using projections, and have seen th at

it fits in to J o n es’ general framework. In C hapter 7 we will consider th e im plications

of m oving to a polym orphic language, but before w e do so w e should check th at the

theory we have already seen m ay be realised in practice.

C h a p ter 6

Im p le m e n ta tio n

W e have stud ied som e o f th e theoretical asp ects of using projections in b in d ing-tim e

analysis and how, again in theory, th e dependent sum construction can b e used to

define th e run-tim e argum ents. In th is chapter we w ill draw th ese threads together

in th e im p lem en ta tion o f a projection -based partial evaluator. T h e current version is

w ritten in LML [Aug84] and not in PE L itself, so it is not yet self-app licab le. Indeed

there are still som e problem s about self-application o f LM L-like languages, w hich we

discuss in th e concluding chapter.

O ne sligh tly surprising feature is th a t th e m oderately com plicated d ep en d en t sum

con struction turns ou t to be alm ost tr iv ia l to im plem ent. In con trast, how ever, th e

b in d ing-tim e analysis is fairly in tricate becau se of th e com plex ity involved in rep

resenting projections. O f necessity, parts o f th e follow ing w ill in terest on ly th ose

in ten din g to produce an im p lem en tation them selves. A nyone un in terested in th e

gory d eta ils should sk im m uch of th is chapter and turn to the final section w here w e

develop th e ex ten d ed exam ple.

6.1 G e n e r a l

A PE L program , as defined in C hapter 4 , consists o f typ e defin itions follow ed by a

series o f function defin itions. At th e end of th ese is an expression to be evaluated .

T he value o f th is expression gives th e value of the w hole program . W hen w e in tend

to p artia lly eva lu ate a program we present it in ex a ctly th e sam e form excep t th a t

the final expression is perm itted to have free variables. T hese free variables ind i

cate n o n -sta tic d ata . A fter partial eva lu ation , th e residual program is in a sim ilar

71

C H A P T E R 6. I M P L E M E N T A T I O N 72

form. It contains whichever type definitions are required, the residual functions with

their associated type definitions and, finally, a residual expression. This expression

contains the same free variables as before, but refers to the newly produced residual
functions. Substituting any values in for the free variables in both the source and
residual programs will, on evaluation, produce the same answer.

Expressions are represented as trees constructed in the following data type.

type Expr = Var String
+ Prod [Expr]
+ Constr String Expr
+ Call String Expr
+ RCall String Expr
+ Case Expr [(String, (Expr, Expr))]

Most of the tags are self explanatory. In the Case variant, the first Expr argum ent is

the expression over which the case is performed. The names appearing in the asso

ciation list are the various constructors appearing as patterns in the case statem ent.
Paired with each nam e is a pair of expressions, the first of which is a nested product

of variables. This allows products to be decomposed. The second expression in the

pair is the expression on the right hand side of the case statem ent. It is evaluated in

the original environment augmented with the bindings implied by the pattern.

The function definitions are represented by an association list in which the function

names are paired with a pair of expressions. As in the case statem ent, the first is a

nested product of variables (which again allows products to be decom posed) and the

second is the body of the function. This association list is present as a global value

throughout the partial evaluator.

Currently only binding-tim e analysis is implemented; call annotations are inserted by

hand. In the concrete syntax, a residual call is indicated by a # symbol preceding the

function name. This gives rise to the distinction between the C a ll and the R C all

tags above.

6 .2 B in d in g -T im e A n a ly s is

The abstract objects manipulated in the binding-tim e analysis are projections and

hence functions. As the analysis contains tests for equality we may not m anipulate

C H A P T E R 6. I M P L E M E N T A T I O N 73

projections d irectly, but are forced to handle representations and im plem ent func

tional eq u ality by representational equality.

6 .2 .1 R e p r e s e n t in g P r o je c t io n s

B y con struction , each projection is fin itely representable. However, for representa

tional eq u ality to be a correct im p lem en tation o f functional equality, each projection

m ust have a canonical representation . T his m ust b e preserved by th e various projec

tion m an ipu latin g operations such as greatest lower bound.

S u m s a n d P r o d u c t s

P rojection sum and product are easy to m odel. B ecau se w e use a tagged sum w ith

nam ed tags we represent a projection sum by an associa tion list. T he nam es in th e

associa tion list are th e constructor nam es, and they are paired w ith th e appropriate

projection to b e applied to th e sum m and. Over a sum , how ever, we m ay also have

the projection A B S . T his gives us tw o possib le variants in th e representation type:

either Abs on its ow n, or Sum w ith its association list.

P rod u cts are even easier. A p rojection over a product is represented by a list of

projection s, on e for each o f th e factors. A product node in th e tree is ind icated by a

Prod constructor.

To g ive a uniform d istin ction betw een projection constructors and constructors in

other ty p es, such as th e typ e o f expressions, we prefix th e projection constructors

w ith th e letter P. So far, th is gives th e tags PAbs, PSum and PProd.

R e c u r s io n

Som e o f th e representation problem s occur w hen representing projections over recur

sive dom ains. W e ind icate a recursive projection using a constructor PMu and u se a

placeholder PRec in th e parts o f th e tree where recursion takes place. T his echoes th e

form f i ^ . P ^) . To access th e internal structure o f th e projection we m u st unfold th e

representation . T his involves rem oving th e PMu tag , and replacing every occurrence

of PRec in th e su btree w ith the original projection. T his is perform ed by th e function

unfo ld .

C H A P T E R 6. I M P L E M E N T A T I O N 74

M athem atica lly , it m akes no difference to a p rojection w hether it is unfolded or not.

B y th e defin ition o f th e fixed point operator //, th e equation P (f i y . P (j)) = f i j . P (j)

alw ays holds. R epresentationally , how ever, there is a difference betw een th ese two.

We m ust ensure th a t, w hen w e want to com pare tw o recursive projections for equality,

th ey are both folded.

T he fo ld fu n ction from C hapter 4 is essen tia lly th e reverse of u n fo ld , a lth ough th is

m ight not b e obv iou s from th e defin ition. W hen fold ing an arbitrary projection , th e

various parts th a t are to be replaced by th e PRec placeholder m ay not all b e th e

sam e. In th is case w e have to approxim ate and take th e greatest lower bound. T his

is a d irect result of th e decision to use fin ite dom ains and, m oreover, th is is w here

fin iteness is achieved. R eplacing th e parts w ith their greatest lower bound and then

fold ing, produces th e largest projection in th e fin ite dom ain w hich is sm aller than th e

original. T hu s w e see th a t th e sim pler b u t less con stru ctive defin ition in C hapter 4 is

the sam e as w e have here. W e m ay n ote th at th e tw o functions involved, nam ely fo ld

and u n fo ld , co n stitu te th e em b ed d in g /p rojection pair b ecau se fo ld o u nfo ld = I D and

unfo ld o fo ld C ID . T hey are m aps betw een th e fin ite dom ain of p rojections w e use

in th e analysis and th e dom ain of all projections.

D om ain defin itions in PE L m ay be m u tu ally recursive. In order to represent th ese , it

is not sufficient to have a single recursion marker. T his is not because it is im p ossib le

to represent th e projections doing so, but because it becom es extrem ely hard to keep

uniqueness o f representation . W e arrange th e dom ain defin itions in to m u tu ally recur

sive blocks using a standard algorithm for finding th e strongly connected com pon en ts

of a graph. A projection over one dom ain m ay involve projections over any o f the

other dom ains in th e sam e com ponent. If, in turn, any o f th ose projections involve a

projection in th e original dom ain it w ill be th e on e w e started w ith .

W e en h ance th e PRec marker to include th e nam e of a dom ain and likew ise w ith the

PMu constructor. T h e b od y o f th e projection is an associa tion list in which dom ain

nam es are paired w ith projections. A ll th e dom ains in a single m u tu ally recursive

com pon en t appear in th e list. To unfold a projection w e extract the projection as

socia ted w ith th e dom ain appearing as th e first argum ent to PMu. All occurrences of

th e PRec placeholder are replaced by th e original projection w ith th e first param eter

to PMu changed to th e dom ain indicated by PRec.

For an exam ple, consider th e following m u tu ally recursive dom ains,

type Listi = Nili + Consi (Int,Listb)
type Listb = Nilb + Consb (Bool,Listi)

C H A P T E R 6. I M P L E M E N T A T I O N 75

T hese define lists w hose elem ents a lternate betw een integers and booleans. T he pro

jection over Listi th a t discards all th e elem ents w hile retaining th e structure is given

by

PMu "Listi"
[("Listi",PSum [("Nili",PAbs),

("Consi",PProd [PAbs, PRec "Listb"])]),
("Listb",PSum [("Nilb",PAbs),

("Consb",PProd [PAbs, PRec "Listi"])])]

T he corresponding p rojection over Listb is exactly th e sam e excep t th a t th e string

"Listb" appears as th e first param eter to PMu. If w e unfold th e projection in th e

exam ple and access th e p rojection associated w ith th e second argum ent to Consi we

will ob ta in th is p rojection — it w ill have exactly th e sam e representation . R epresen

ta tio n a l uniqueness is therefore preserved and function eq u ality m ay be im p lem en ted

by representational equality.

T h e R e p r e s e n ta t io n T y p e

T he d a ta ty p e w e use to represent projections m ay b e defined as follow s.

type Proj = PProd [Proj]
+ PAbs
+ PSum [(String,Proj)]
+ PMu String [(String,Proj)]
+ PRec String

B ecau se o f th e restrictions im posed by P E L on th e form of ty p e definitions w e can

use a less general dom ain. In P E L , possib le dom ain recursion is alw ays follow ed by

a sum and th is is th e on ly p lace a sum m ay occur. T he p rojections over a sum are

represented using PAbs or PSum so w e m ay rem ove th em from th e generic Proj ty p e

and p lace th em in a ty p e of their ow n. T his allow s th e ty p e checker to provide m ore

security gu aranteeing for exam ple, th a t we never com pare a folded projection w ith

an unfolded one.

C H A P T E R 6. I M P L E M E N T A T I O N 76

6 .2 ,2 C o m p u t in g F ix e d P o in t s

As show n by th e equations in C hapter 4 , th e m eanings o f th e ab stract functions are

given by a greatest fixed poin t. T his, th eoretically , is com puted across all functions

at all values sim ultaneously. However, even in fairly sm all exam ple program s, a

direct im p lem en tation o f this can be proh ib itively exp en sive . It is not uncom m on,

for exam p le, for a dom ain o f projections to contain 10 or m ore elem en ts. A function

that m aps betw een tw o such dom ains is a m em ber o f a dom ain conta in ing som e 1 0 10

elem ents (less actu a lly because only th e m onoton ic functions w ill be includ ed). It is

clearly out o f th e question to a ttem p t to find th e fixed p oin t by brute force.

F ortunately w e do not need to know th e value of th e function for all of its possib le

argum ents. O n th e contrary it is usually sufficient to ca lcu la te it for on ly a few of

them . W e ca lcu la te the value o f th e function at th ose p o in ts using th e ideas of m in im al

function graphs [JM 86]. For each function w e record argu m en t/resu lt pairs for only

those argum ents we need. T he argum ents m ay arise d irectly from th e an alysis, or

they m ight be needed to calcu late th e value o f another function . T h e startin g values

com e from th e description th e expression at th e end of th e program . W here th at

expression has free variables the PAbs projection tag is used.

H aving ob ta in ed a tab le of (over-)approxim ations to som e a rg u m en t/resu lt pairs o f

som e of th e fun ction s, th e functions are repeated ly applied to th e argum ents using

the values in th e tab le for any other function calls. T hese values are g iven by the

form ula

ftab x = r~|{y I . x C z, { / : z y } € tab]

W henever a function is used, it and its argum ent are added to th e tab le paired w ith

the value com pu ted for its result.

W hen finally an application of th e functions leaves th e tab le unchanged th e argu

m en t/resu lt pairs are correct and m ay be used in th e analysis. T erm ination of th e

cycle is boun d to occur because th e abstract sem antics is m onoton ic, and th e dom ains

are fin ite.

6 .3 S p e c ia lisa t io n

M uch of th e im p lem en tation of th e specia lisation function s p e c is u nchanged from

C hapter 2 . T h e m ajor difference concerns th e presentation o f s ta tic values and d y

C H A P T E R 6. I M P L E M E N T A T I O N 77

nam ic param eters. In C hapter 2 w e assum ed th a t, in th e program , each function

definition had tw o sets o f param eters— one sta tic th e other dynam ic— and th a t each

function call had its argum ents arranged likew ise. T his m eant th a t it was very easy to

construct th e partial environm ent and to ob ta in param eters for th e residual function .

In th e current s itu a tio n , w ith each function having a single argum ent th a t m ay con

tain b oth sta tic and dynam ic parts, w e cannot hope to have th e sp lit perform ed

beforehand. As we noted in C hapter 5 , th e generation o f the residual dom ain is not

a m eta sta tic operation . Instead w e use tw o functions to sim u late th e action of the

functions a and 8 defined in C hapter 5.

W e need som e o b ject to represent th e use o f J_. W e cannot use X itse lf b ecau se it

w ould lead to n on-term ination of th e partial evaluator. W e introduce a new sum m and

into th e Expr ty p e , called Bot. T he function sigma takes a function n am e and a

partially s ta tic argum ent intended for th at function . It uses th e p rojection associated

w ith th e function retrieved from th e (g lobal) d ivision to gu ide th e replacem ent of

the dynam ic parts o f th e expression w ith Bot. T his takes place w ith in th e search
function m ention ed in C hapter 2. T he resulting pair, consisting o f the fu n ction nam e

and th e sta tic part o f th e argum ent, is returned in th e result of search to b e added

to th e pending list in th e recursive call o f spec. T h e sp ecia lisation function spec
m ay b e defined as follow s.

spec [] done = []
spec ((f ,s) :pending) done
= if member done (f,s)

then spec pending done
else

((f ,s) ,(new_vs,new_body)) :
spec (pending++new_fns) ((f,s):done)

where
(vs,body) = lookup program f
(s 'jVars’) = replace s vaxs
new_vs = delta s s ’

new_body = eval (make_env vs s') body
new_fns - search new_body

T he replace function uses a global list o f variables (vars) and replaces each occur

rence of Bot in th e s ta tic argum ent w ith a fresh param eter. T he resulting argum ent

s ’ contains no occurrences o f Bot, therefore.

C H A P T E R 6. I M P L E M E N T A T I O N 78

To ob ta in th e new variables for th e residual program — this corresponds to ca lcu la t

ing th e inverse im age o f crj— w e use th e function d e l t a . It is in itia lly surprising th at

d e l t a requires th e original blanked ou t argum ent as well as the renam ed one. H ow

ever, recalling th e m athem atica l construction o f th e 8 function in C hapter 5, it w ill

be im m ed ia te ly recognised as necessary. U nlike th e 8 function o f C hapter 5, how ever,

d e l t a does not need to know which program function its argum ent belongs to. T his

is becau se w e are using a generic value (expression) dom ain . All d e l t a has to do is

to produce a product contain ing all th e parts of s ' th a t are tw inned w ith B ot in s .

In th is case, th is w ill produce a product o f variables.

C orrespondingly, we m ust use d e l t a at th e original call o f th e function . N ot on ly w ill

the old fu n ction nam e be replaced w ith th e nam e of th e new residual function , but a

new argum ent constructed from th e dynam ic parts of th e original argum ent m ust be

produced. T his is th e role o f d e l t a . G iven the sta tic inform ation it will build a new

argum ent w hich will m atch precisely th e form al param eters o f the residual function .

6 .4 E x a m p le

In this chapter w e have on ly touched on som e o f the m ore significant im p lem en tation

issues. H ow ever, th e action o f th e partial evaluator on other program s is m ore in ter

estin g than th e te x t o f th e partial evaluator itself. C onsequently, we will return to

the exam ple introduced in C hapter 2, and consider how it is affected by th e use o f a

projection based partia l evaluator.

In returning to th e exam ple w e w ill see som e gains but also som e losses. It w ill com e

as no surprise th at th e s ta te in th e interpreter m ay be treated as a single param eter.

No longer need it b e im plem ented as tw o separate lists: a single a ssocia tion list

suffices. T h e u p d a te function takes a nam e, a value, and an association list and

returns a su itab ly altered association list. W orking inside th e structure, th e b in d ing

tim e analysis is able to recognise th at the nam es are sta tic w hile the values are

dynam ic.

P reviously th e value list appeared as a param eter to residual versions o f run to be

m anipu lated by residual versions o f th e u p d a te and lo o k u p functions. N ow , how ever,

the values appear in th e residual program not as a list but as part o f a prod uct. T h e

residual versions o f th e lo o k u p function are m erely selections from the product and

the residual versions o f u p d a te m ap betw een products. T here will be no harm in

allow ing th ese functions to be unfolded.

C H A P T E R 6. I M P L E M E N T A T I O N 79

H owever, as ind icated above, not everyth ing has im proved. In th e exam ple in C hapter

2 th e b in d in g-tim e analysis com pletely ignored ty p e inform ation (in deed , th e language

could have been u n typ ed). Each value was treated a tom ica lly so there was no differ

ence b etw een m on otyp es and instances o f p o ly types. At th is stage in th e th esis we

can on ly hand le m on otyp es, so all occurrences o f p o lym orp hism m ust be rem oved.

As a consequence, we m ust introduce three different ty p es o f list, for exam p le , one

for com m an ds, one for n a m e/v a lu e pairs and one for integers. Each o f th ese require

their ow n m onom orphic accessing functions. W e w ill use th e sam e nam es as before

but w ith th e ty p e nam e appended.

Specia lising th e new interpreter to th e exam ple program from C hapter 2 (w hich finds

the m axim u m value in the input) g ives the residual program ,

exec inp
= run (0, hd_int inp, tl_int inp)

run (y,x,inp)
= if x > 0

then if x > y
then run (x, hd_int inp, tl_int inp)
else run (y, hd_int inp, tl_int inp)

else Cons_int (y, Nil_int)

T he result is now extrem ely close to a hand w ritten version . T here is little (if a n y

th ing) th a t m ay be done in term s o f im provem ent. A m ajor gain has com e from th e

au tom atic arity raising arising as a consequence o f th e d ep en dent sum .

T his gain is even m ore ev ident in th e follow ing exam ple, involving a nested W hile.

Alloc X
[Read X,

While (greater (var X) zero)
[Alloc Y

[Assign Y one,
While (greater (var X) zero)

[Assign Y (multiply (var Y) (var x)),
Assign X (subtract (var X) one)],

Write (var Y)],

C H A P T E R 6. I M P L E M E N T A T I O N 80

Read X],
Write zero]

T he program m aps a list o f integers in to a list o f corresponding factorials. B oth input

and o u tp u t lists are term inated by 0. A n otab le feature in th is exam ple is th at we

have chosen to a llocate a variable w ith in th e outer While loop . T his variable ex ists

for one pass o f the loop and is then deallocated . On th e next pass it is rea llocated

and so on.

W hat does th e result look like after partial evaluation? T here are now tw o While
loops and so there are tw o residual versions o f run.

exec inp = run_l (hd_int inp, tl_int inp)

run_l (x,inp)
= if x>0

then run_2 (1, x, inp)
else Cons_int (0 , Nil_int)

run_2 (y,x,inp)
= if x>0

then run_2 (y*x, x-1, inp)
else Cons_int (y, run_l (hd_int inp, tl_int inp))

T he residual program reflects very clearly the ta il recursive structure o f th e inter

preter. T h e tw o residual versions o f run are in m utual ta il recursion w ith each other.

O nce again , there is noth ing in th e residual program th at is not essen tia l to the

com pu tation .

T he inner a llocation o f th e y variable is reflected in th e fact th a t run_2 has three

param eters w hereas run_l has on ly tw o. W hat w ould be less efficient interpretively

(b ecause th e Alloc w ould have to be interpreted each tim e around the loop) turns

out to p rovide greater efficiency w hen com piled , for th e outer function (run_l) w ould

have three param eters even though one w ould not b e live.

Let us n ot forget th e fly in the ointm ent. P olym orphism is very im p ortan t as a

m eans for ob ta in in g m odularity. At th e m om ent, every input program to th e partial

evaluator m ust be m onom orphic, and every residual program will be m onom orphic.

In the ex a m p le above th is forced us to declare three different sorts o f list. In the next

chapter w e explore how to extend our techniques to cope w ith polym orphism .

C h a p ter 7

P o ly m o r p h ism

T here are tw o alm ost separate issues to be addressed w hen w e consider p olym orphic

languages: How to perform polym orphic b ind ing-tim e analysis, and how to specia lise

p olym orp hic functions. W e address b oth here.

S trachey identified tw o flavours o f polym orphism [Str67] which he sty led param etric

and ad hoc. W e will on ly consider param etric polym orphism , as arises in th e w idely

used H indley-M ilner ty p e system , for exam ple. As ad hoc po lym orp hism m ay be

reduced to param etric polym orphism by introducing higher order typ es [W B 89], th is

decision is con sisten t w ith the thrust o f th e thesis where w e have been considering

first order ty p es only.

A polym orphic function is a collection o f m onom orphic instances w hich , in som e sense,

behave th e sam e way. Ideally, we w ould like to take advantage o f th is u niform ity to

analyse (and perhaps even specialise) a polym orphic function once, and th en to use

th e result in each instance. Up to now th e on ly work in p olym orp hic p artia l evalu ation

has been by M ogensen [M og89]. However, w ith his polym orphic in stan ce analysis each

in stance o f a p olym orphic function is analysed in d ep en d en tly o f th e other instances

and, as a resu lt, a single function m ay be analysed m any tim es.

To cap tu re th e n otion of uniform ity across instances A bram sky defined th e term

p o lym o rp h ic in va r ia n ce [Abr86]. A property is p olym orphically invariant if, w hen it

holds in on e in stan ce, it holds in all. A bram sky show ed, for exam ple, th a t a particu lar

strictness an alysis was polym orphically invariant. U n fortun ately this does not go far

enough. P o lym orp h ic invariance guarantees th at th e result o f th e an alysis o f any

m onom orphic in stan ce o f a polym orphic function can be used in all in stances, but

not th a t th e ab straction o f the function can. An exam ple of th is d istin ction appears

in [Hug89a].

81

C H A P T E R 7. P O L Y M O R P H I S M 82

A m ore prom ising avenue of research is suggested by category theory. In a first order

language, polym orphic functions turn out to be natural transform ations in th e ca te

gory o f (S co tt) dom ains and continuous functions. In higher order languages th ings

are n ot so sim ple. Higher order functions m ay b e seen as d inatural transform a

tions [B FSS8 7 , FG SS88] but, unfortunately , th ese do not com p ose in th e w ay natural

transform ations do w hich lim its their usefu lness. A ltern atively , generalising to tran s

form ations betw een structors (a generalisation o f functors) seem s m ore prom ising.

T hese results turn ou t to be consequences o f R eyn o ld ’s original representation th eo

rem for th e p olym orphic A-calculus [R ey74]. T his is developed by W adler show ing its

application to “everyday theorem s” [W ad89] and A bram sky has used th ese n otions

to greatly sim plify th e proof that str ictn ess is polym orphically invariant [Abr88].

In th is th esis w e have restricted ourselves to th e first order case, so we can treat

polym orp hic fu n ction s as natural transform ations. U sing th is v iew w e develop a

theory o f polym orp hic b ind ing-tim e analysis. T h e developm ent is based h eavily on

H ughes’ work in polym orphic strictness analysis [Hug89b]— an exam ple o f th e cross

fertilisation betw een th e tw o analyses su ggested in C hapter 3 . W e th en d iscuss how

to use th e results to control the specia lisation o f polym orphic functions.

7.1 S e m a n tic P r o p e r tie s o f P o ly m o r p h ism

B ecause typecheck ing takes place on the sy n ta ctic description o f a function , p o ly

m orphism is u sually understood to be a syn tactic cond ition . Furtherm ore, it is qu ite

p ossib le for tw o functions having th e sam e behaviour to have different degrees o f p o ly

m orphism . T h e follow ing two definitions o f th e id en tity function provide an exam ple

of th is.

id x = x

id' x = if true then x else 7

T he first has typ e id : :V t . t —> t w hereas the second has typ e i d ' :: In t —> I n t . So,

w hile th ese tw o defin itions denote th e sam e function , th ey have d istin ct typ es. W e

deduce, therefore, th a t we cannot infer th e ty p e of a function from its sem an tic

properties. W e can, how ever, do th e converse— som e sem antic properties o f a function

m ay b e inferred from its type.

C H A P T E R 7. P O L Y M O R P H I S M 83

W hat sort o f properties m ight we exp ect to be able to infer? Param etric polym or

phism corresponds to a reuse of essen tia lly th e sam e function applied to ob jects of

different typ es. T h e basic in tu ition behind such functions is th at th ey do noth in g to

th e polym orphic parts o f their argum ents except p ossib ly discard or d up licate them .

T he very sam e reverse function , for exam ple, w ill work identically on b oth lists o f

integers and lists o f b ooleans. O ne w ay to express th is is to im agine som e function

from integers to b oo lean s being applied to each of th e elem en ts o f a list. B ecau se

th e behaviour o f reverse is consisten t across th ese typ es we could apply th e function

either before or after reversing th e list w ith ou t affecting th e final result.

W e can s ta te th is m ore generally. If a function is truly polym orphic (in th e param etric

sense) then w e cannot trick it in to altering its action by applying som e cod ing function

to th e polym orphic parts o f its argum ent prior to application . W e w ould ob ta in th e

sam e result by apply ing th e sam e cod ing function after application . T he fact th at

the values o f th e polym orphic parts o f the argum ent are different in each case will

not result in a different behaviour. O f course th is is still rather vague. For exam p le

we have not specified w hat we m ean by th e “polym orphic parts o f an argu m ent” . W e

use th e language o f category theory to supply th e necessary precision.

7 .1 .1 T y p e s a s F u n c to r s

W e focus on one particular category, th a t o f Scott dom ains w ith continuous fu n ction s

which w e d en ote by D om . In a m onom orphic language it is sufficient to m odel

types by dom ains and program functions by continuous functions, but not if th e

language is polym orphic. It is useful to consider ty p e constructors to see th e necessary

generalisation .

T ype constructors, such as List or P air , take one or m ore types and return a new

type. T h ey m ay b e successfu lly m odelled by functors. For exam ple, from th e dom ain

of integers th e List functor will return th e dom ain o f lists of integers. Functors act

on arrows also. B y defin ing th e actions o f th e basic ty p e constructions in th e obvious

way w e can derive th e action of any typ e constructor. So, for exam ple, th e action o f

List on arrows is given by map (th e arrow (function) is applied to each elem en t of

the list). List is a functor List : D om —► D om but as an arbitrary typ e con structor

m ay have m any argum ents each will correspond to a functor F : D o m n —* D om for

som e n.

M onom orphic typ es m ay b e included in th e sam e schem e. Such typ es, for exam ple

Bool, are functors Bool : 1 —> D om where 1 is th e category D o m 0 con ta in ing on ly

C H A P T E R 7. P O L Y M O R P H I S M 84

th e one p oin t dom ain and th e identity function . A ny such functor has no op p ortu n ity

to vary and so is con stan t. T he im age o f th e B oo l functor, for exam ple, is ju st the

b oolean dom ain. T ypes th em selves, therefore, are no longer m odelled by dom ains

directly , but by functors.

A nother m on otyp e is L is t B ool. B ecause we treat m on otyp es such as B o o l as functors

B o o l : 1 —> D o m , th e usual application of ty p e constructors to typ es m ust b e replaced

by functor com position . T hen L is t B o o l (actually , L is t o B oo l of course) is also a

functor L is tB o o l : 1 —► D o m .

7 .1 .2 N a tu r a l T r a n s fo r m a tio n s

Program defined functions are m appings betw een typ es. As types are m odelled by

functors, th ese functions should be m odelled by transform ations betw een functors. In

fact, by natural transform ations.

From their defin ition , we recall that a natural transform ation / : F —> G betw een

functors is a co llection o f functions (w hich correspond to th e m onom orphic instances).

If th e source and target o f F and G are th e categories D and S respectively then

for each ob ject D £ D there is a corresponding function f o : F D —> G D in S . T hese

functions are uniform (or natural) in th e follow ing sense: If 7 : D —> D ' is any function

in D th en th e property th at G~f o f D = f D > o F 7 m ust hold. T his captures precisely th e

notion th a t all th e instances of a polym orphic fu n ction b ehave, in som e sense, in th e

sam e way. It also expresses our in tu ition about apply ing cod ing (or other) functions to

the polym orphic parts either before or after application o f th e polym orp hic function

w ith ou t changing th e result. In th e case o f rev e rse , for exam ple, th is m eans th at

L is t f o reverse = reverse o L is t f for any function / : X —> Y , or to use m ore usual

n ota tion , th a t m a p f o reverse = reverse o m ap f .

To strengthen the intuition further we will consider a couple of exam ples. We have

seen the im plications for the List functor with the function reverse. Now consider

the selection function fs t . Its type is fs t : Vs.V F(s, t) —>• s. Expressed in the functor

notation we could write fs t : Pair —> Fst where Pair s t = (s, t) and Fst s t = s.
Each of these are functors D o m 2 —► D o m . The naturality condition says that,

for any continuous functions 7 : A —► B and S : C —► D, it must be the case that

Fst 7 8 o fs t = fs t o Pair 7 S. In other words, that 7 (fst (1 , y)) = fst (7 x ,6 y) for

all x, y.

All th is works for m onom orphic functions as well. R ecall th a t types such as B oo l

C H A P T E R 7. P O L Y M O R P H I S M 85

or Int correspond to functors Bool : 1 —> D om and Int : 1 —> Dom. C onsider an

arbitrary fu n ction / : Int —>■ B oo/, say. T here is no polym orphism here as th e function

is purely m onom orphic so how does th e natu ra lity cond ition apply? T h e on ly function

in th e tr iv ia l category 1 (i.e D o m 0) is th e id en tity function , which is m apped by any

functor 1 —> D om on to th e identity function of th e ob ject picked ou t by th e functor.

T hus th e n atu ra lity property reduces to th e condition th at / satisfies th e equation

I D Booi o f — f o IDini. B ut th is is no restriction at all, and so / m ay be any function .

W e conclude, therefore, th a t it is on ly w hen a function is not m onom orphic th a t the

natu ra lity condition has any effect.

D epend ing on th e em phasis at any particular tim e, we will either g ive the ty p e of

polym orphic functions in th e usual n otation or in functor n otation . From th e ex a m

ples it should be clear th at the tw o are interchangeable. T h e functor n ota tion m ay

be ob ta ined from th e usual typ e n otation m erely by ab stracting over th e quantified

variables.

7 .1 .3 P o ly m o r p h is m in L a n g u a g e s w it h R e c u r s io n

In m ost languages w ith recursion, _L is an elem en t o f every type. T his gives rise to a

necessary m odification o f the above. C onsider the follow ing function defin ition ,

f x = f x

T he fu n ction / is th e con stan t T function and has ty p e f : Vt.t t or, equivalently,

/ : Id —► Id. For th e naturality property to hold , th at is, for Id 7 o / = f o Id 7 to be

true, 7 m ust be strict. A s w e will see later th is is th e on ly extra con d ition required.

D om ains togeth er w ith th e strict continuous functions form a sub-category o f D om

which w e w rite D o m s. W e change our view o f typ e constructors and regard th em

as functors D o m ” —> D o m s. W e can do th is since all our basic ty p e con structions

preserve str ic t functions and, therefore, so does any functor con structed from them .

H owever, there is a m inor technicality . R egarding program defined functions as n a tu

ral transform ations betw een functors D o m ” —► D o m s only caters for strict p olym or

phic fu n ction s. B u t, as every functor D o m ” —> D o m a m ay be view ed as a functor

D o m ” —► D om by inclusion , this problem m ay be solved by treatin g program defined

functions as natural transform ations betw een functors D o m ” —-> Dom.

C H A P T E R 7. P O L Y M O R P H I S M 86

7 .1 .4 F u n c to r s a n d P r o je c t io n s

Before addressing polym orphic b ind ing-tim e analysis we ou ght to n o te a couple of

facts ab ou t th e in teraction o f functors and projections. T he functors th a t correspond

to P E L ty p es are o f th e form F : D o m “ —> D o m , so w e need to define th e projections

in jDo m " . T h e ob jects o f D o m na are n -tup les o f ob jects o f D o m and arrows, likew ise,

are n -tu p les o f D o m arrows. T h e p rojections in D o m ns are, therefore, sim p ly n -tu p les

of p rojection s in D o m . M ost o f th e tim e w e will use a single letter (typ ica lly 7) to

refer to th e w hole tup le.

If F is a functor corresponding to a typ e expressib le in PE L and if 7 is a projection ,

then F 7 is also a projection . Idem potence follow s from th e com p osition property

of functors, and dom inance by th e id en tity from th e fact th a t all th e functors are

m on oton ic. Furtherm ore, b ecause projections are weaker th an th e id en tity function ,

all p rojection s are str ict. T his m akes th em su itab le for com m u ting w ith p olym orphic

functions in th e m anner described above.

7 .1 .5 P o ly m o r p h ic P E L

W e have to ex ten d PE L to allow for polym orphism . T h e on ly th ing in th e language

that w ill change is th e ty p e system . In addition to th e syn tactic classes in C hapter 4

we w ill in trod uce th e classes o f ty p e constructors and ty p e variables,

F G F u n c [Type Constructors]
t G T V a r [Type Variables]

The revised (abstract) syntax of the language now caters for polymorphic types.

{D} {C d} e::T
f x = e
x
(e i , • • • >)
c e
f e
case e in c ; X/ -> e ; II ... I I c n x n -> e n end
F {t} = c T {+ c T}
f :: T -> T
F T
(T , , . . . , T „)
t

C H A P T E R 7. P O L Y M O R P H I S M 87

A lgebraic typ es have been replaced by ty p e constructors applied to ty p e variables. As

we noted earlier, from any typ e expression we m ay ob ta in the corresponding functor

by ab stracting out th e ty p e variables. In th e follow ing we use F , G, H and K as

variables ranging over functors.

T y p e R u le s

T he typecheck ing rules are much th e sam e as before. T he on ly additions are tw o

rules th at s ta te th at polym orphic functions (including constructors) and expressions

have any ty p e which is an instance o f their general type. W e express th is using

com position o f functors, F o H say. B ecause F m ay b e a functor D o m ns —► D o m

where n ^ 1 , th e functor H m ust b e o f th e form Dom™ —> D o m ns . Such functors

m ay be expressed as a categorical product o f functors Hi : D o m ™ —> D o m (1 < i < n)

w ritten < H i , . . . , H n >.

x :: F b x (i) : :F(z)

x : : F \ ~ e l : : G 1 ••• x : : F b e n : : G n

x :: F b (e ! , . . . , e n): : < G u . . . , G n >

f : : G - ^ H x : : F b e : : G

x :: F b f e: : H

c , : : G{ —> G x :: F b e :: G,

x :: F b c t e : : G

x : : F b e : : t f Vt . (x :: F, y - : :H { b e t : :G)

x :: F b c a s e e in Ci -> ex I I . . . I I c n y n -> e n : :G

f : : G - > H

f : : G o I < - > H o K

x :: F b e : : G

x : : F o i f b e : : G o / (

In th ese rules w e have departed from th e n otation o f C hapter 4 and used th e functor

n otation . N o tice th a t th e notation applies to variables as well as functions. A value

C H A P T E R 7. P O L Y M O R P H I S M 88

v o f ty p e F : D o m ng —> D o m m ay be seen as a natural transform ation v : 1 ” —> F,
where l n : D o m g —► D o m is the con stan t functor picking out th e term inal ob ject of

D o m (th e on e p o in t dom ain). U sing th is n otation sim plifies th e proof to com e.

As before, w e assum e th a t a constructor c, com es from a typ e defin ition o f th e form

G = ct G t + b cn G n (using functor n o ta tio n — note th at -f is not categorical co

p rod u ct). For any object A or arrow / in D o m ns we have,

G A = c ; (G t A) - \ -------- 1- cB (G n A)
G f = C; (Gi /) + ••• + cn (G n f)

Sim ilarly, th e product o f functors is given by,

< G , , . . . , G n > A = (Gt A , . . . , G b A)
< G , , . . . , G n > / - Gj f x ••• x Gn /

as usual.

S e m a n tic s

B ecau se th e dynam ic sem antics of C hapter 4 was defined using a universal dom ain of

values w e can use it w ith ou t change. T h e only difference arises in th e way in w hich we

relate th is sem antics to th e category of dom ains. In C hapter 4 we exh ib ited retracts

b etw een ind iv idu al dom ains and th e universal value space. U sing th ese we were able

to relate th e action o f a function on th e universal dom ain w ith a particu lar arrow

in th e category of dom ains. If w e desired w e could do som eth ing sim ilar. W e w ould

use ind exed retractions to relate th e action o f a polym orphic function on th e value

space w ith th e actions of its m onom orphic instances in th e category o f dom ains. T h e

deta ils, how ever, are unnecessary for th e follow ing developm ent.

7 .1 .6 N a t u r a l i t y

F unctions defined in P E L correspond to natural transform ations betw een functors

D o m g —> D o m . T his property could be deduced from proofs ab out the second order

lam bda ca lcu lus, and in particular from R eyn old s’ abstraction theorem , by exh ib itin g

an appropriate relationsh ip betw een PEL and th e polym orphic A-calculus. However,

a d irect proof is ju st as straightforw ard.

C H A P T E R 7. P O L Y M O R P H I S M 89

T h e o r e m 7 .1 N a tu r a l ity

Let / b e a function and F and G be functors defined in PE L . If / :: F —► G is a valid

typ ing o f / then for all str ict functions 7 : A —> B (w here A and B are arbitrary)

f o F j = G 7 o /

T he proof is by fixed poin t induction over th e defin ition o f / (= <j>\f]j), but first

we need a lem m a. T h e lem m a sta tes th at if everyth ing works in som e function

environm ent (th a t is, th a t for any f , th e function <j>\f] is a natural transform ation)

then any expression (seen as a function o f its free variables, using th e sam e function

environm ent) is also a natural transform ation.

L e m m a 7 .2
If x :: F b e :: G is a valid typ ing o f e, and if (f> is som e function environm ent

such th a t for every function g appearing in e th e valid typ in g g :: H —> I (im plies

V7. ^>[g] o H 7 = K 7 o </>[g], then for all strict functions 7 : A —> £ ,

M e J {* (__► F 7 u) — G 1 (^ l le l|2: 1—► 1;})

P r o o f
T he proof is by ind u ction on the structure of e. T here are five m ain cases to consider.

Each case w ill be presented in the sam e way. F irst th e ty p e rule for th e appropriate

case will be g iven , follow ed by a dem onstration of th e lem m a in th e form required by

th e ty p e rule.

C ase: x(i)
T he ty p e rule is,

x :: F h x(i) : : F (i)

So in th is case G = F (i) . T he corresponding derivation is,

= F{i) 7 (£*I*(i>]{a: „})

C ase: (e , , . . . , e n)

T he ty p e rule is,

C H A P T E R 7. P O L Y M O R P H I S M 90

x :: F h e x :: G \ • • • x :: F h e n :: G n

x :: F h (e 1?. . . , en) :: G

where G = < G t , . . . , G n >. The corresponding derivation is,

£ 4 (e i , - - - , e „) 1{ X ^ p 7

(̂ 11 e l I j j ; | _ > f * y 5 - * * 9 E ̂ 1 ̂ ^ (— >. P s y ^ |)

= (G t 7 T ̂ l e n l ^ ^ ^ p [ind. hyp.]

— G 7 (£^1 ©1 ̂ j J • • • J ^11 e n 1^3. ^ f ; j)

= G 7 1̂1 (e li • • • 5 e n) ^

C ase: (g e)

The type rule is,

g : : G - + H x : : F b e : : G

x :: F h g e : : H

The corresponding derivation is,

6 e ^{j: 1—̂ F 7 u}

= ^ t g] (f 4 e] { z M F 7 v})
= ^ [g] (G 7 „})) [inductive hypothesis]

= f f T W g K M e l ^ H t , })) [condition on <f>\

= H 7 (£ 4 g

C ase: (c e)

The type rule is,

a : : G i - > G x : : F L e : : G i

x :: F h c t e : : G

where G — c { G t + • • • + cn G n. The corresponding derivation is,

£ 4 C* Ql { x ^ p 7 v}

— Ci y—y P -y u j)

= C{ (Gi 7 £ 4 e] { x v })

= G 7 (c, £ 4, [e] ^ ^ wj)

T (^7>II<-'»

C H A P T E R 7. P O L Y M O R P H I S M 91

C ase: (c a s e e in • • • c,- x, -> e, • • •)

The type rule is,

x :: F b e: :IL Vz . (x :: F, x , : : / / , h e t : :G)

x :: F h c a s e e in ••• c, x ,-> e , ••• : : G

where H = Ci / / ; - (- • • • T cn H n . The corresponding derivation is,

£ 4 c a s e e in • • • c t- x t -> e t • • • Jj^. ^ F ^

= case ^ F 1 m

C{ Vi =>■ p 7 x . v . j

case H 7 (£4 e] { x ,_>„}) in

Ci Vi => £<1>le i } { X n f p , X i V i }

case £</.He 11x ^ v j in

Ci Vi = > y^y P e y X i (-> Hi 7 U, }

[ind. hyp.]

[meaning of case\

in [ind. hyp.

= G 7
C»-U* ^ I—► V , X i I—► u , }

[G 7 strict]

= G 7 (£4 case e in • • • ct- xt -> e, • • •]|x ^ v j)

In order to com plete th e proof we m ust consider th e instance rules also. If / : F —► G

is a natural transform ation from F : D o m n —► D o m to G : D o m * —> D o m th en it is

C H A P T E R 7. P O L Y M O R P H I S M 92

also a natural transformation from F o I(: Dom™ —► D om t o G o /v : Dom™ —> Fora

where /if is some functor K : Dom™ —► F o m ”. A simple calculation suffices.

/ o ((F o / \) 7) = f o (F (I < y))
= (G [naturality]
= ((G o A b W

as required. The same calculation holds for values as they may be treated as natural
transformations from l n to appropriate functors. This com pletes the proof. □

The function environment (f) used in the lemma need not necessarily be the com plete

function environm ent defined by the program, of course. W hen we use the lemma in

the following proof, <f> will be a finite approximation to the com plete environment.

P r o o f (n a tu r a lity)

We have to prove that if / is a function and F and G are functors defined in PEL

such that / :: F —> G is a valid typing of / , then for all strict functions 7 : A —► B
(where A and B are arbitrary)

/ o F 7 = F 7 o /

The proof is by fixed point induction over the definition of (f>. From the static sem an

tics, / = f ix (A <t> . { f , f-> A r . ^ [e ! l {x^ v} , . . . , f B »-> A r .^ [e n l {rn^ w} }) where the

function definitions in the program are of the form f,- x, = e,-. As in earlier proofs

we write {/,•} for the Kleene chain approximating (j) (then, by the definition of f i x ,

4> = U ~ 0W J) and use fn to denote </>n| f]. There are three cases for the fixed point
induction.

C ase: base

f o o F 7 = Ax._L o F 7
= Ax.J_
= G 7 0 Az._L [G 7 strict]
= G 7 o fo

C ase: inductive
Suppose that the definition of / is given by f x = e. Then,

C H A P T E R 7. P O L Y M O R P H I S M 93

/„ + , O F - y = o F 7

= At>.£*Je]|x ^ F 7 uj
= G 7 0 A v . ^ f e] ^ ^ [lemma and ind. hyp.
= G 7 o fn+1

C ase: lim it

/ ° F 7 = (LK„{/-}) o f 7
= U£(,{/• ° F7} [defn. of U]
= U£,{<?7 o /•}= G 70 US»{/i} [continuity]
= G 1 o f

which completes the proof. □

It is instructive to note where the various restrictions played their part. The strictness

of the com m uting function 7 was essential in the inductive base case. In a language

without recursion the inductive proof would not be required and without it there

would be no need for strictness. Indeed, if J_ were inexpressible in PEL then program

functions would be natural transformations over the usual category of domains with

arbitrary continuous functions. W hen _L is expressible, case expressions com m ute

only w ith strict functions, hence an appeal to strictness in the lem m a also.

The restriction that PEL functions be first order is used in the proof of the lemma

in the function case. It is because the meaning of a function can be expressed in

terms of (f) w ithout reference to the values of variables, that the inductive hypothesis

may be used to effect the com m utativity essential to the proof. If functions could

be arbitrary expressions (as is the case in a higher order language) then the need to

reference variables to obtain their meaning would stop the proof from going through,

and a more general theorem would be required.

7.2 P o ly m o r p h ic A n a ly s is T h e o r e m

We will see later that we can use polymorphic projections (projections that satisfy the

sem antic polym orphism condition) to describe the results of binding-tim e analysis of

polym orphic functions. Such projections interact cleanly with the program functions

as the following theorem (from strictness analysis, [Hug89b]) shows.

C H A P T E R 7. P O L Y M O R P H I S M 94

T h e o r e m 7 .3

If / : F —* G is polymorphic, and if a : G —> G and (3 : F F are polym orphic pro
jections such that a o f = a o f o /?, then for any projection 'y : X X

(a x o G 7) o f x = (a x o G ~f)o f x o (j3x o F 7)

P r o o f

We will use the equivalent statem ent of safety.

(a x o G 7) o f x = a x o /* o F 7 [naturality]
E (fx 0 f ix) 0 F 1 [assumption]
= f x o(/3x o F 7)

as required. □

7 .2 .1 A p p r o x im a te F a c to r is a t io n o f P r o j e c t io n s

The practical consequence of the theorem is to improve the efficiency of binding

time analysis. Each function / has an abstract version f * associated with it, with

the property that /* /? o / C / o (3 for any projection (3 . By the above theorem it

is clear that we can define f *((3x 0 F 7) = (f*(3)x 0 G~j. If we restrict ourselves to
projections which may be factorised in this way then will be fast to com pute. In

general there are far fewer polymorphic projections than monomorphic. For exam ple,
over the List functor we use only three polymorphic projections (A B S , List A B S ,

and ID) but over some particular list domain we have these and more. Thus, instead

of having to find a fixed point in some large domain we can do as well by com puting

it in a far smaller domain. There is a second advantage, nam ely that the results

of the analysis are not restricted to one particular instance but may be used in all.

Separately com puting for each monomorphic instance loses on two accounts— the

size of the dom ains, and the repeated work.

To discover whether the m ethod will be generally applicable, however, we must ask

whether it is sufficient to consider only those projections that can be factorised in this

way. This is certainly the case with the List functor. In designing finite dom ains of

projections we chose to treat each recursive level alike. Thus all the projections over

lists may be decom posed into a projection that works on all the elem ents identically

(and only on the elem ents) and a projection which (possibly) alters the list structure.

C H A P T E R 7. P O L Y M O R P H I S M 95

The sam e is not necessarily true in all cases. For exam ple, consider a function

/ : Vt . (t , t) —* t. As the only polymorphic projections over / ’s source functor are

ABS and ID (given by (ABS , ABS) and (ID, ID)), the only projections that may

be factorised as above treat both elem ents of the pair in the same way. However, in

any particular instance of / , for exam ple f gooi '• (Bool, Bool) —> Bool , there is noth

ing that constrains the two elem ents to be equally defined or otherwise. Indeed we

m ight com m only expect the first to be defined and the second not, or vice versa.

W hat can we do in such cases? The answer is that instead of dem anding an ex

act factorisation we find an approximate factorisation. Thus for any 8 : FA —+ FA we
find projections (3 : F —► F (polymorphic) and 7 : A —+ A such that (3 o F 7 C 8 . Such

an approxim ation is safe because we are underestim ating the available information.

In the exam ple above, a projection (7, <*>) : (Bool, Bool) —► (Bool, Bool) would be re

placed by (7 n <$, 7 n £). W hile there is information loss here it often turns out to

be m inim al. In som e cases, exactly the same information loss arises anyway but by

another route. The primitive operator if is a good exam ple of this as we now show.

The type of if is if : Yt . (Bool , t , t) —> t. W ritten using the functor notation, it is

if : Cond —> Id where Cond t = (Bool, t, t). There are four polym orphic projections

from Cond to itself. The Bool field may either be blanked (using A B S b o o i) or left

intact, and likewise for the polymorphic parts (using polym orphic ID and ABS). The

table for the polym orphic abstract function if& is below.

a i f & a

(A B S b o o i , A B S , A B S) A B S
(A B S b o o i , ID , ID) A B S
(I D b o o I , A B S , A B S) A B S
(I D b o o U ID , ID) ID

An arbitrary projection, (t] , j , 8) say, over the argument to an instance of if is decom
posed into the composition of either (A B Sgooh ID , ID) or (IDgooi? ID , ID) (depending
on whether 7 = ABSbooI ° r not) with the projection Cond (7 (1 8). Then, the result
of applying i f# is either A B S o (7 n 8) or I D o (7 n 8) respectively, that is, either
A B S or 7 n 8 . Depending on whether the boolean is static or not, the result is either
completely dynamic, or is static where both branches are static. But this is exactly
the same result that separate analysis of each monomorphic instance would obtain!

Neither type checking nor binding-time analysis is based on program values. The fact
that it was necessary to take an approximation to obtain the factorisation (which is
type based) corresponds to the fact that binding-time analysis cannot determine which
of the branches of an if may be returned and so must assume the worst. It might

C H A P T E R 7. P O L Y M O R P H I S M 96

be hoped that there is a more general result here— possibly that the approxim ate

factorisation will n e v e r do any worse than the binding-tim e analysis would anyway.

After all, both have access to the same information. Unfortunately this is not the

case. Consider the function,

f (x,y) = fst (x, if true x y)

The type of this function is / : VT(£, t) —> t or, in functor notation, / : A —> Id where

A t = (t, t). If we analyse an instance of / polymorphically, using two projections

7, 6 : A —> A say, we must approximate the projection (7,^) by A (7 FI 6). The result
of applying the abstract function is, unsurprisingly, 7 n S. If, on the other hand, we

choose to analyse / monomorphically, then we do not need an approxim ation step,
and will obtain 7 as the result. So, this exam ple shows that, even though both type

checking and binding-tim e analysis have access to the same information, the binding
tim e analysis is able to make fuller use of it. Recently, a type checking approach to

binding-tim e analysis has been developed [Gom89]. It would be interesting to see
whether the more general result we hoped for above holds in this case.

The counter-exam ple is so contrived that we might think the problem has no practical

significance. However it is closely related to an im portant observation. If a function is

given a type which is not as general as it could be, then unnecessary information loss

may occur. For exam ple, if the function fst is given the type fst : Vt.(t, t) t rather

than its fully general type, then the result will always need to take both parameters

into account. In the example above, the if expression is used solely as an artificial

constraint upon the type of the function. Experience suggests that, where the type

is not constrained artificially but only out of necessity (as in the if exam ple), the

information loss is minimal.

7 .3 P o ly m o r p h ic S p e c ia lisa t io n

Binding tim e analysis is not the only beneficiary from taking polym orphism into

account. The process of function specialisation m ay also be improved by using such

information.

If we have a polym orphic function which we wish to specialise to part of its argument

we have two choices. Either all the available information can be used in the specialisa

tion, or only the parts of the information over which the function is not polym orphic.

C H A P T E R 7. P O L Y M O R P H I S M 97

So long as efficiency is not lost the latter is clearly better. The residual function will

be more general than the in the former case, and will retain a polymorphic type.
Consequently, we will need to produce fewer residual functions, and each may be

used in m any situations. The residual functions will be at least as polym orphic as

the source function because no instance information is supplied.

Is efficiency lost? To answer this we must consider what might happen to polym orphic

values w ithin the body of a polymorphic function. There are two possibilities. Either

the values appear in the result of the function, possibly as part of a data structure,

or, alternatively, they are provided in an argument to another function. In this case

the typechecking rules guarantee that this other function must itself be polym orphic.

In neither case, therefore, can any significant com putation take place. The apparent

circularity of this argument m ay be removed by noticing that the polym orphic prim
itives can them selves do no processing on the polym orphic parts of their argum ents

(e.g. f s t) . Again, this is an appeal to the basic intuition about polymorphic func

tions. We conclude, therefore, that because the source function is (by assum ption)

param etrically polymorphic, the only possible loss of efficiency is that som e values
will be passed as parameters rather than appearing as in-line constants. Any increase

in cost is restricted merely to an increase in the number of parameters. This penalty

is expected to be minimal on m ost im plem entations. It should be re-emphasised that
this whole argument depends on the source language being first order with param etric

polym orphism only.

Let us consider an exam ple, that of the standard lookup function. It is som etim es

ascribed the type lookup : VnVv.([(n, t?)], n) —> v. However, this requires the use of

a “polym orphic” equality function. The behaviour of such a function can easily be

altered by coding its arguments in a non-one-to-one manner. Following the argument

above, therefore, this brand of polymorphism is ad hoc and not parametric. If we

replace the overloaded equality function with a monomorphic version, then the actual

type of the lookup function is lookup : Vu.([(Name, u)], Name) —> v for som e fixed type

Name.

We consider a case where the values are static but the names are dynam ic. W hen

specialising an interpreter we might expect the reverse, of course, but in other contexts

the situation we describe could arise. From the discussion above we recognise that

even though the values are actually present we will gain nothing by using them in the

specialisation. As the value part is polymorphic we treat it as if it were dynam ic.

Suppose we specialise lookup to the value ([(x,3) , (y,4)] ,z) where x, y and z are

C H A P T E R 7. P O L Y M O R P H I S M 98

dynam ic. The values are indeed static— they are provided as constants. Using the

approach outlined above we obtain the residual function

lookup_l (a,b,c,d,e) = if eq.Name a e then
b

else if eq_Name c e then
d

else fail

The original function call is then replaced by a call lo o k u p . 1 (x,3 ,y,4 ,z). The

sam e residual function lo o k u p .l is suitable for any two-list. Contrast this with the

situation that would have arisen if the values were used in the specialisation. Then

the residual function would have been

lookup.l (a,b,c) = if eq.Name a e then
3

else if eq.Name c e then
4

else fail

Granted that there are two fewer parameters, but this residual version of lookup is

only suitable for this particular association list. Any other list, even if it had two

elem ents, would require a new residual function to be produced.

C o n se q u e n c e s for B in d in g -T im e A n a ly s is

If a polym orphic function is only ever to receive the non-polym orphic parts of its
argument during specialisation, then its static projection will have A B S in the poly

morphic positions. Because A B S is polym orphic, this means that the projection

associated with a polymorphic function is itself polym orphic. Therefore, we only

need to consider a finite domain of polymorphic projections when calculating the

projection associated with a polymorphic function. There are, of course, fewer of

these than projections over arbitrary instance types. This means the search space is

smaller giving an additional benefit for binding-tim e analysis.

C H A P T E R 7. P O L Y M O R P H I S M 99

7 .4 R e p r e se n t in g P o ly m o r p h ic P r o je c t io n s

Very little change is required in order to implement the m ethods of this chapter. Of

course the parser must be altered, the typechecker m ust now handle polym orphism ,
and so on, but such things are standard.

The datatype used to represent projections is much the same as before. The recursion

former PMu has an extra parameter consisting of a list of projections in order to

sim ulate the form (3 o F 7. The list of projections corresponds to 7 (which may, in

general, be an rc-tuple of projections, i.e. a projection in D o m n). Type variables in the

type definitions lead to variables in the projection structure (PParm). On unfolding,
the particular projections are substituted for the corresponding parameters.

The com plete datatype is,

type Proj = PProd [Proj]
+ PAbs
+ PSum [(String,Proj)]
+ PMu String [(String,Proj)] [Proj]
+ PRec String
+ PParm String

If a projection parameter is encountered within the specialiser, it is treated like PAbs.
This im plem ents the principle that polymorphic parts of an argument are to be dis

carded. Further details of the im plem entation may be found in the appendices.

7.5 E x a m p le

It should be fairly clear by now how the m ethods of the chapter affect the extended

exam ple. The ugliness from Chapter 6 (the many list types) has gone, as we are able

to write the interpreter using polymorphic lists, and obtain polymorphic lists in the

residual program. In addition, the advantages developed in this chapter will apply, so

the analysis of functions such as append will be improved (it will happen once only,
and the result will be obtained more quickly). However, the interpreter was origi
nally a monomorphic program in that the only polym orphic structures appeared as
monomorphic instances. As a result, the residual programs are little better than their

monomorphic counterparts. We should not be surprised at this: the main purpose

C H A P T E R 7. P O L Y M O R P H I S M 100

of th e p olym orphism m aterial was to allow m ore freedom in th e source program , to

allow polym orp hism (an im portant m odularity technique) to be used. A com plete

listin g o f th e exam ple is given as th e last section o f A ppendix C.

If th e interpreter had m any different typ es of list or perhaps various kinds of trees that

appeared in residual program s, then th e im provem ent in m oving to th e m eth od s of

th is chap ter w ould be m ore visible. N ot on ly w ould th e analysis benefit from tak ing

p olym orp h ism in to accoun t, but the residual program s w ould contain polym orphic

fu n ction s m an ipu latin g th e various structures. In the m onom orphic case, w e w ould

have m an y separate instances of these functions.

C h a p ter 8

C o n c lu sio n

In conclusion w e w ill sum m arise the previous chapters so th a t w e can assess th e work

w ith in a wider con tex t and see w hat rem ains to b e done.

8 .1 A p p r a isa l

After in troducing partia l evaluation and its p o ten tia l as a program m ing to o l w e saw ,

in C hapter 2, th e D IK U im plem entation strategy w hich w as sim ple yet pow erful.

Values are treated a tom ica lly— a value is either s ta tic or d ynam ic— but even so , such

partia l evaluators have been used successfu lly in practice. W e d iscussed th e role of

b in d ing-tim e analysis includ ing an argum ent that it is crucial if self-app lication is to

be a ttem p ted .

In an a ttem p t to reach inside d ata structures, to express a greater degree o f separation

of b in d ing-tim es, we used dom ain projections to in d icate s ta tic data. T here w ere

various advantages associa ted w ith th is. F irstly, there is a very natural sen se in

w hich a projection can capture th e absence o f in form ation— dynam ic d ata is m apped

to _L. Secondly, it turned out to be easy to gen erate fin ite dom ains o f p rojection s

tailored to each d ata ty p e . Thirdly, projection -based analysis has already received

a tten tio n and, as a backward analysis at least, is fairly w ell understood . Indeed, we

discovered a close relationsh ip betw een b ind ing-tim e analysis and th e m ore fam iliar

str ictn ess analysis. F inally , projections are sem antic o b jects w ith a sem an tica lly

expressed sa fety con d ition , and so need no interp retation to fit w ith sem antica lly

derived m eth od s, tw o o f which we stud ied in detail.

T h is last p o in t cam e to th e fore in C hapter 5. Earlier, in C hapter 4, we had expressed

101

C H A P T E R 8. C O N C L U S I O N 102

th e b in d ing-tim e analysis as a forwards analysis, and proved th e safety o f th e equa

tions. T h is took care o f values th at are present during partial eva lu ation , so in C hapter

5 w e turned our a tten tio n to run-tim e values. M otivated by th e need to express the

origin o f th e run-tim e param eter, a decom position theorem w as explored. T h e use of

d ep en dent sum as a generalisation o f product allow ed us to express m ath em atica lly

th e fam iliar techniques o f arity raising and tag rem oval. T h ese op tim isa tion s need no

longer b e seen as arbitrary or ad hoc , but as natural ou tgrow ths o f th e theory. T h at

the d ecom position theorem is built around projections is no accident. T heir role in

th e d ecom position is m otivated by th e sam e in tu ition th at gave rise to their use in

b in d ing-tim e analysis in th e first place.

C hapter 6 brought th e threads o f the previous chapters together in a working

p rojection -based p artia l evaluator. T he exten ded exam ple show ed significant im

provem ents over th e situ ation in C hapter 2, but a lso som e degradation: all typ es

were m onom orphic. T his prohibited th e use o f polym orphic lists, for exam ple, (w hich

w e had been able to use in th e sim pler (u n typ ed) settin g of C hapter 2). W e turned

our a tten tio n , therefore, to polym orphism .

S em an tic characterisations o f polym orphism have becom e popular recently. T hey

seem to op en up pow erful proof m eth ods, in addition to providing new in tu ition s as

to th e n atu re o f p olym orphic functions. A gain, th e advantage o f using a sem antic

characterisation o f b ind ing tim e analysis becam e clear as w e w ere able to m ake im m e

d iate use of th ese new insights. In particular, we were able to apply H ughes’ po lym or

phic an alysis result d irectly , a result originally in tended for str ic tn ess analysis. T hus

p olym orp hic typ es fitted n eatly in to the fram ework we had p reviously con structed .

T he m ost im p ortan t consequence o f th is is th e m ost obvious, nam ely th at th e partial

evaluator is actu a lly ab le to specialise p olym orphic program s. T his rem oves on e of

th e restrictions p reviously placed on th e form of th e input program . B ind ing tim e

analysis o f p olym orp hic functions is cheaper than th e analysis o f m onom orphic in

stan ces b ecau se th e respective dom ains are sm aller, and as th e specia lised versions

of p olym orp hic functions are them selves polym orphic, th e residual functions m ay be

used in m any instances.

8 .2 D e v e lo p m e n t

T he story does not end here, o f course. In particular, there are still m any restrictions

on th e form o f th e input program . For exam ple, it is not yet clear how to exten d the

C H A P T E R 8. C O N C L U S I O N 103

m eth o d s described here to cater for higher order functions. T h is is by no m eans the

on ly shortcom ing. In th is section , w e consider som e other areas op en to im provem ent.

8 .2 .1 F in i t e n e s s

In C hapter 2, we noted th a t a d ivision produced by b in d ing-tim e analysis should be

b oth congruent and fin ite. It is possib le to capture congruence qu ite well using an

ab stract in terp retation , but fin iteness d oes not seem to b e so straightforw ard. In lazy

or h igher order languages another problem arises th a t is very closely related , th at of

com paring p artia l or infin ite ob jects. T h is arises in th e follow ing situ a tion . Suppose

there is a call o f a function / w ith argum ent y. Further su p p ose th a t w e have already

produced specia lised versions of / , specia lised to values , xg, etc . W e need to know

w hether th e s ta tic part o f y is equal to th e sta tic part o f any of th e rr’s. To be o f any

use, th is te s t m ust be com putable. T h at is, we m ust guarantee th at th e te st a y = x t

cannot have th e result _L (here = is com putab le rather than m ath em atica l eq u ality).

If any o f th e s ta tic values are infinite, th en m athem atica l eq u ality is not com putab le.

In order to ensure th at th is does not arise, the values w e com pare m ust be fin ite

and, furtherm ore, m ust b e m axim al in th e dom ain o f s ta tic values. If th e value is

not m axim al th en again we would need a non-m onotonic (h en ce n on-com p u tab le)

eq u a lity te st. S ta tin g th is another way, any _L appearing in th e result o f a y m ust

have been introduced by cr.

It is p ossib le to discover fin iteness using abstract in terpretation . W e noted in C hapter

3 th a t congruence is an over-estim ate o f th e halting problem . F in iten ess requires an

under estim a te o f th e sam e problem . T h at is, th e answ er L O O P S should be returned

if there is any p ossib ility o f non-term ination . R ecognising th is , M ycroft introduced

tw o an alyses, # and b, th e former being strictness an alysis, th e la tter term ination

analysis. S trictness analysis has becom e very popular, w hile term in ation analysis has

not. T h e reason for th is is th at, w hile abstract in terpretation can g ive excellen t results

for str ic tn ess analysis (and hence congruence an alysis), it g ives very poor results for

term ination analysis. A n exam ple w ill help to show why. C onsider th e function

f (x,y) = if x=0 then y else f (x-l,y)

defined over th e natural num bers. It is clearly strict in b oth x and y for if _L is sub

stitu ted for either param eter the result is also X. E ven th e earliest str ictn ess analysis

techniques could discover this. In contrast, consider th e corresponding term ination

C H A P T E R 8. C O N C L U S I O N 104

question . If non-_L values are su b stitu ted for b oth x and is the result also non-_L?

B y insp ection th e result is obviously “yes” . H ow ever m ore m ental work is required to

discover th is. In particular one has to consider th e range o f possib le values for x to

check th a t, w hatever its value is, th e value 0 will b e reached in th e recursion. T hus,

th e function w ill on ly return a non-_L value if the values for x and y are n on -T and

if the recurs ion f in is he s . Such a d istin ction does not need to be m ade for strictness

analysis. If th e value for y is T th en th e result could b e _L either b ecau se th e recur

sion term in ates and y = -L, or b ecause th e recursion does not term in ate. W e do not

need to d istin gu ish betw een th ese cases and, in particular, never need to ensure th at

recursion is fin ite.

A t first it seem s quite puzzling that strictness and term ination are not equally easy to

discover w hen one is th e dual o f th e other. T he reason is th a t there is an asym m etry

in the langu age sem antics: recursive defin itions are given by least fixed p o in t. If, in

som e top sy tu rvy world, recursive defin itions were given by greatest fixed poin t then

term ination w ould be th e easy property to d iscover and str ictn ess w ould be hard. In

th e exam ple above, if neither x nor y were T then either y w ould b e returned (if the

recursion fin ished) or else th e recursion w ould not finish and th e result w ould b e T .

In neither case is th e result J_. H owever, in th e real world we have no op tion but to

use least fixed p o in t, so term ination analysis w ill alw ays be harder than str ictness.

In partial evaluation term s, th is m eans th at fin iteness w ill be harder to so lve than

congruence. T his certain ly accords w ith experience.

8 .2 .2 V a lu e s f r o m R e s id u a l F u n c t io n s

A residual function is produced w henever a residual call is encountered . T h e idea

behind m aking a function residual is th at th e function call cannot b e unfolded safely.

As a consequence, it m ay be thought th at no result m ay be ob ta ined from a residual

call, for how can a result be ob ta ined w ith ou t unfolding? H owever, there m ay be

sufficient inp u t to th e function to cause som e part o f th e result to be s ta tic even

though th e function as a w hole cannot be unfolded. U nfold ing could take p lace to

allow th e s ta tic part to be com puted , w hile a residual function is produced to gen erate

the rem ainder.

U nless th e b in d ing-tim e analysis handles partia lly s ta tic structures, w e will on ly ob

tain tr iv ia l results. In C hapter 3, w e argued th at it is unreasonable to exp ect the

input to a function to be pre-divided in to s ta tic and dynam ic parts. T he argum ent

is even m ore forceful regarding the result of a function . T hus, we m ust perform the

C H A P T E R 8. C O N C L U S I O N 105

factorisation ourselves using w hichever m ethod used in th e partial evaluator. Before

discussing th e case o f dependent sum factorisation , we will consider th e com plem ent

factorisation . T his will g ive us insight into w hat we should exp ect in the m ore com

p licated situ a tion .

Sup p ose w e have a fu n ction f : X —> Y where we are able to factorise X in to the

product A x B in w hich A contains th e s ta tic part o f th e input. S uppose also th a t Y

factorises in to th e product C x D w ith C conta in ing th e s ta tic part o f th e result. T he

C part o f th e result m ust be determ ined, therefore, b y th e A part o f th e argum ent

alone. N ow , w e know th at

X Y ^ A x B - > C x D = (A x B - * C) x (A x B - + D)

but b ecau se th e C value is determ ined by th e A value, w e do n ot need to consider

th e w hole function space (A x B C) x (A x B —> D) but on ly th e part isom orphic

to (A -+ C) x (A X B —► ^)* T h e first com ponent o f such a pair o f functions gives

th e s ta tic result and m ay be unfolded, w hereas the second gives th e d ynam ic result.

It w ill n ot be unfolded but the function w ill be specialised to th e A value leaving a

residual fu n ction in its place.

M anipu lating products in th is way is not new. In his thesis M ogensen gives th e syn

ta c tic transla tion s needed to carry it ou t [Mog89] and produces ind ep en d en t tex tu a l

defin itions o f each function . T his is perform ed as a preprocessing phase to m i x and

results in a program in which the d ata can be treated atom ically . T his allow s the

original m i x to be used. B ecause it is a preprocessing phase, on ly m eta sta tic inform a

tion is u sed to drive th e transform ation . As a result, th e ty p e o f th e residual function

is also d eterm ined m etastatica lly , in th is case it w ill be B —» Z), w hich m eans, for

exam ple, th a t lists w ill rem ain as lists rather than tu p les and th at all tags m ust

rem ain.

W e can perform sim ilar factorisations using dependent sum . A gain w e assum e a

function f : X —> Y w ith th e sta tic part o f th e input being g iven by A, in this case

as defined by a projection a . T he sta tic part of th e result is g iven by C and de

fined by a p rojection /? where f l o f = / 3 o f o a . T h e dom ains B and D from the

com plem en t d iv ision m ust be replaced by th e fam ily o f dom ains given by th e fibres

of th e projection s. T hus, for each a G A, th e dom ain B a = a ~ ! {a} , and for each

c 6 C , th e dom ain D c = { c } . T he function / m ay be regarded as a function

/ : B) —* Y;(C, D). B y the isom orphism given in C hapter 5, we can also regard

it to be / : n (^ ? B D)). By assu m ption , th e value o f C does not depend on

C H A P T E R 8. C O N C L US I O N 106

B , so w e m ay also regard / as a function / : T [(A , J 2 { C , B —> D)). Now th e types

of b oth the dom ain and th e range o f th e residual version o f / depend on th e actual

sta tic value supplied .

A n exam ple w ill be useful. Suppose th at / is a function / : Union —► U nion (u sing the

ty p e defined in Section 4 .7) and th at T A G = T A G . T h at is, in order to com pute

th e tag o f th e result it is sufficient to know th e tag o f th e argum ent. Furtherm ore,

su pp ose th at th e tag o f th e argum ent is sta tic , and so w ill be available during partial

evalu ation . T h e residual versions o f / w ill all be tag less in b oth argum ent and result,

and instead will m ap, say, characters to integers etc . E ach w ill have a ty p e appropriate

to th e (now ab sen t) sta tic tags. W e can take th is exam ple further. Im agine an

interpreter for a sta tica lly typ ed language w hich uses a universal value dom ain for

th e va lue o f expressions. Suppose it is given sufficient sta tic d ata for th e value tags

to be sta tic . T h en , instead o f having to m an ipu late values in a universal typ e , the

residual program s w ould m anipu late d a ta ob jects directly.

8 .2 .3 S e l f - A p p l ic a t io n

It is very n oticeab le that all th e self-applicab le partial evaluators to d ate have used

S-expressions as their sole data structure. T here are tw o reasons for this. F irstly , it is

very easy to represent program s using S-expressions, esp ecia lly in L ISP-like languages.

M ore im portantly , however, the absence o f m ultip le typ es in the language m eans th at

a level o f d ata encod ing is not required. In C hapter 1, th e typ e o f m i x w as g iven as,

m i x : A x B —+ C x A —> B —+ C

and unless w e have dependent types w e can do no b etter . H owever, in th e world of

S-expressions, w here there is a single universal typ e , th e s ta tic input m ay be passed

directly. T hus,

mi x : A x B - * C x A - ^ B ^ > C

W hen th is is applied to itself, we obtain the typ e o f mi x -r , nam ely

C H A P T E R 8. C O N C L U S I O N 107

T his issue is considered in [Bon88] in th e con tex t o f term rew riting system s w ith

m any signatures. E ventually , in order to produce a self-applicab le partial evaluator,

a single signature sy stem was adopted .

W ith o u t a d oub t, typ ed languages are here to stay, so a solution to th is cod ing

problem needs to be found if self-applicable partial evaluators are ever to be w ritten in

such languages. O ne p ossib le m ethod is to m ake th e cod ing both as cheap as possib le,

and elim in ab le during partial evaluation . W e can illu strate th e form er requirem ent

as follow s. B oth o f th e (LISP sty le) expressions

(c o n s (q u o te a) (c o n s (q u o te b) (q u o te n i l)))

and

(q u o te (a b))

eva lu ate to th e list (a b) , but th e former en tails a linear increase in size, w hereas th e

la tter on ly en ta ils a con stan t increase. T his difference becom es m uch greater if each

expression is itse lf represented in th e sam e m anner. U sing the first m eth od , th e size

of th e representation is exp on en tia l w ith respect to th e representation level, w hereas

th e second is linear. In a m ultip ly typed language, therefore, som e equivalent to

q u o te m u st be included in the d a ta ty p e representing expressions. T his w ill, at least,

prevent th e self-app licab le partial evaluator from requiring huge d ata structures.

8 .2 .4 V a lu e P r e s e r v a t io n

T he b in d ing-tim e analysis given in th is thesis is not sufficiently strong to be adequate

in every case. W h at is w orse, it fails in one o f th e very cases where we w ould want it

to succeed , th a t o f interpreters w hich im plem ent den otation sem antics directly . An

exam ple, d ue to M ogensen, o f th e failure m ay be seen in interpreters for languages

that hand le s ta te . T he standard d en otation description o f such languages typ ica lly

conta ins a fun ction ,

C : Com —► State —► State

(ignoring any environm ent param eter) w here th e s ta te m ay be represented by an

associa tion list as usual. W e w ill focus on two standard clauses in such a defin ition.

ClCr,Ci]<T = C[Ci](C[C;]<T)
C|[i f E C, Gs \a = e \ E \ a ^ CIC,\<T, C \C 2 \a

C H A P T E R 8. C O N C L U S I O N 108

T he first expresses com position . T h e com m and function C returns th e s ta te resulting

from th e com m ands execu ted . T he original sta te is given to th e com m ands in Cj and

th e s ta te produced by th ese is given to C 2 . T he result is the final s ta te after C 2 has

effected an y changes. T he second equation handles i f sta tem en ts . T h e expression is

eva lu ated in th e current s ta te and, depending on w hether th e result is t rue or f a l s e ,

th e resp ective com m ands are execu ted w ith th e current sta te . T h e result is th e sta te

after th ese com m ands have been perform ed.

In th e standard scenario, th e nam es in th e s ta te will b e know n during partial eva lu a

tion , but th e values will not be available until run tim e. As a consequence, th e result

of S w ill b e dynam ic, but b ecause o f th is, the sta te resulting from th e execu tion of an

i f s ta tem en t will be com pletely dynam ic: th e current b in d in g-tim e analysis equations

do not allow for th e p ossib ility for a dynam ic cond itional producing an yth in g sta tic .

H owever, assum ing a sensib le block approach to introducing variables, th e variable

nam es can b e determ ined during partial evaluation (if variables are introduced arbi

trarily, th en th e nam e list m ay not be sta tica lly determ ined , o f course).

In m ost cases it is q u ite correct th at th e result o f an i f w ith a dynam ic cond ition

should b e dynam ic. E ven if b oth branches return com pletely s ta tic resu lts, we will

not b e ab le to decide w hich sta tic result w ill be th e result of th e i f . T here is one

case, how ever, w hen we can determ ine it: when the sta tic parts o f th e tw o branches

are identica l. U ntil a b in d ing-tim e analysis is produced w hich captures th is sort of

sta tic in form ation , partia l evaluation w ill not be able to produce com pilers from som e

d en ota tion a l sty le interpreters. T his exp la ins why an unusual structure needed to be

adopted for th e interpreter appearing in the extended exam ple.

8 .2 .5 D o m a i n R e d u c t i o n

T here is an additional op tim isation th at fits neatly in to th e fram ework we have con

structed . Suppose th a t, by using projection-based str ictn ess an a lysis, we discover

th a t / o (3 = f for som e projection fi. T h is m eans th at we need no m ore th at /Ts

worth o f inform ation about the argum ent to / to b e able to d eterm ine its result. So,

rather th an consider / to be a function X —■> Y , say, we can regard it as a func

tion (3^X§ —* Y . T hen , when we factorise the dom ain o f / ’s argum ent in to sta tic

and d ynam ic parts, we start w ith a sm aller dom ain than w ould otherw ise b e th e case.

C onsequently , th e residual functions m ay also end up w ith sm aller argum ent dom ains.

T he length function provides an exam ple of th is. Suppose that on ly the sp ine

of a list is available during partial evalu ation and th a t, for som e reason, we

C H A P T E R 8. C O N C L U S I O N 109

w anted to produce a residual version o f the length function . If the property that

length = length o m a p A B S was available to th e partial evaluator then no run tim e

argum ents need to be produced. T his possib le op tim isa tion is th e natural exten sion

of th e n otion of projection difference suggested in [Lau88].

8 .3 F in a l R em a rk s

In th is chapter w e have seen som e areas in w hich significant developm ent o f partial

eva lu ation is still needed . N onetheless, partial eva lu ation already is an excitin g and

prom ising m eth od for b oth optim ising interpretive program s, and for understanding

th e th eoretica l relationsh ip betw een interpreters and com pilers. To be generally useful

in either o f th ese areas, it is essentia l th at its m ath em atica l underpinnings are well

developed . T his is w here the effort o f this thesis has been d irected . W e hope that

th e results w ill be as useful in the long run as th e excellen t practical work o f others

has already proved to be.

A p p e n d ix A

Im p le m e n ta tio n o f P E L

T h e projection based partia l evaluator described in th is thesis was im plem ented in

LML [Aug84]. T he com plete program is listed in th ese appendices for reference,

togeth er w ith som e an notations intended to fac ilita te understanding. LML has an

e lem en tary m od u le m echanism which w as used to provide som e structure to th e pro

gram . T he m odules are presented m ore-or-less in d ependency order.

A . l T y p e D e c la r a tio n s

T he m ajor typ es used in th e program are defined together. T w o are used in th e
im p lem en ta tion o f PE L itself, and tw o in b ind ing-tim e analysis.

m odule ~ TYPES.M

e x p o r t t e rm , d o m a in , p r o j e c t i o n , sum ;

T he typ es term and dom ain provide representations for P E L -expressions and PE L -
typ es respectively. T he B ot sum m and of term is used to represent _L after a p rojection
has been applied ,
r e c

t y p e t e r m = C o n s t r (L i s t C ha r) t e rm

+ Case t e r m (L i s t ((L i s t C har) # (t e r m # t e r m)))

+ P ro d (L i s t t e rm)

+ Parm (L i s t C har)

+ C a l l (L i s t C har) te rm

+ R C a ll (L i s t C ha r) t e rm

+ Bot

and

t y p e dom ain = DProd (L i s t domain)

110

A P P E N D I X A . I M P L E M E N T A T I O N O F P E L 111

+ D F u n c to r (L i s t C ha r) (L i s t dom ain)

+ DParm (L i s t Chao:)

P rojection s are represented by th e types p r o j e c t io n and sum. Separating th e rep
resen ta tion in th is w ay allow s th e LML typechecker to provide ad dition al checks on
p rojection m an ipu lation . T his is d iscussed in A p p en d ix B .
and

t y p e p r o j e c t i o n

= P Prod (L i s t p r o j e c t i o n)
+ PMu (L i s t C har)

(L i s t ((L i s t Chau:) # sum))

(L i s t p r o j e c t i o n)

+ PRec (L i s t Char)

+ PParm (L i s t Char)
and

t y p e sum = PAbs

+ PSum (L i s t ((L i s t C har) # p r o j e c t i o n))
end

A .2 T h e P E L In te r p r e te r

N ow th e im p lem en tation o f PEL itself. T he follow ing m od u le conta ins an interpreter,
a parser, and a printer. T he interpreter is th e m ost significant as regards partial
eva lu ation , for it is th is th at will be m odified to produce th e partial evaluator.

m odule — PEL.M

i n c l u d e " l i b r a r y . t "

i n c l u d e " p a x s e l i b . t "

i n c l u d e " t y p e s . t "

— t i n c l u d e " g l o b a l s . t " (a c y c l i c dep e n d en c y)

im p o r t p ro g ra m : L i s t ((L i s t C har) # (te r m # t e r m)) ;

e x p o r t e v a l , make_env,

p a r s e , p r o g , i n , exp , t y p e _ d e f , t y p e _ d e c ,

p r i n t _ p r o g , p r i n t _ f n , p r i n t _ e x p ,

p r i n t _ t y p e _ d e f , p r i n t _ t y p e _ d e c , p r i n t _ t y p e ;

A parsed program has typ e [(s t r i n g , (t e r m ,t e r m))] . T h e s t r i n g (list of char
acters) com pon en t conta ins the function nam es, th e first term a (p ossib ly nested)
product o f param eter nam es, and the second term th e b ody o f the function . T he
environm ent is an association list betw een s t r in g s and term s, and the result o f eval

A P P E N D I X A . I M P L E M E N T A T I O N O F P E L 112

uation is a term .

r e c e v a l env (Parm v) = lo o k u p env v

I I e v a l env (P ro d e x p s) = P ro d (map (e v a l env) e x p s)

I I e v a l env (C o n s t r c a r g) = C o n s t r c (e v a l env a r g)

II e v a l env (C a l l f a r g) = l e t (v s , body) = lo o k u p p ro g ra m f i n

e v a l (make_env v s (e v a l env a r g)) body

I I e v a l env (C ase e e l s) = e v a l _ c a s e env (e v a l env e) e l s

and e v a l _ c a s e env (C o n s t r name e _ a r g) ((c , (v s , e x p)) . e l s)
= i f name = c

t h e n e v a l (make_env vs e _ a r g C env) exp

e l s e e v a l _ c a s e env (C o n s t r name e _ a r g) e l s

said make_env (Parm x) e = C (x ,e)]

I I make_env (P ro d v s) (P ro d e s) = cone (map2 make_env vs e s)

P arsing is sp lit up in to tw o phases, lexical and syn tactic analysis. L exem es are just
strings. T h e on ly purpose o f the lexer is to rem ove w h ite space and to d iv id e co n tig u
ous characters appropriately. T h e basic parsing operators are defined in A p p en d ix
D.

and w h i t e = some (s a t (\ c . c < = > ’))

and comment = l i t . . l i t . . s k i p ’\ n ’

and o p c h a r = s a t (member " ~ - = |+ > : ")

and i d e n t c h = s a t i s u p p e r !! s a t i s l o w e r !!

s a t i s d i g i t !! l i t

and lexem e = (w h i te . a s . (\ c . " "))

!! (comment . a s . (\ c . " "))

!! (s a t (member " () , ; [] # ") . a s . (\ c . [c]))

!! (some o p c h a r)

!! (s a t i s u p p e r . . many i d e n t c h . a s . co n s)

!! (s a t i s l o w e r . . many i d e n t c h . a s . c o n s)

!! (some (s a t i s d i g i t))

and l e x i n p = f i l t e r (\ s . s " = []) (f s t (hd (many lexem e i n p)))

and p a r s e p = hd o p o l e x

T h e parser cu lm in ates in th e function p ro g w hich , w hen applied to a program te x t,
returns th e parse tree. T h e tree has th e structure

([t y p e d e f i n i t i o n] , ([(t y p e d e c l a r a t i o n , f u n c t i o n d e f i n i t i o n)] , (t e r m , t y p e)))

A P P E N D I X A . I M P L E M E N T A T I O N O F P E L 113

W e a l lo w t h e u s u a l s y n t a x f o r l i s t s a n d n u m b e r s . H o w e v e r t h i s is m e r e l y s y n t a c t i c

s u g a r f o r e x p r e s s i o n s s u c h a s C o n s (x , N i l) o r S u c c Z e r o e t c . T h e u s u a l d e f i n i t i o n s

o f t h e s e t y p e s n e e d t o b e p r o v i d e d f o r a p r o g r a m t h a t u s e s t h e s e s y n t a c t i c f o r m s t o
b e le g a l .

and p r o g = many ty p e _ d e f

. . many (ty p e _ d e c . . I n)

. . o p t (ex p . . l i t x . . t y p e _ a r g) (P ro d □ ,DProd [])

and f n = lo w e r . . p a t t . . l i t "=" x . . exp . . x l i t

and exp = c a s e _ e x p !! d a t a !! c a l l !! r c a l l !! s im p le

and p a t t = (lo w e r . a s . Parm) !!

(t u p l e p a t t . a s . make P ro d)

and ca se _ e x p = l i t " c a s e " x . . exp

l i t " i n " x . . (c l a u s e . s e p _ b y . l i t " I I ")

. . x l i t "end" . a s . u n c u r r y Case

= u p p e r . . o p t p a t t (P ro d []) . . l i t x . . exp

= u p p e r . . o p t s im p le (P ro d [])

. a s . u n c u r r y C o n s t r

= lo w e r . . s im p le . a s . u n c u r r y C a l l

= l i t "#" x . . lo w e r . . s im p le

. a s . u n c u r r y R C all

= (p a r s e _ l i s t exp . a s . make_Cons)

!! (lo w e r . a s . Parm)

!! (u p p e r . a s . (\ c . C o n s t r c (P ro d [])))

!! (t u p l e exp . a s . make P ro d)

!! (number . a s . (make_Succ o s t o i))

and ty p e _ d e f = l i t " t y p e " x . . u p p e r . . many lo w e r

. . l i t "=" x . . t y p e _ r h s . . x l i t

and t y p e _ r h s = (u p p e r . . o p t t y p e _ s im p l e (DProd []))

. s e p _ b y . l i t "+"

and t y p e _ s i m p l e = (lo w e r . a s . DParm)

!! (u p p e r . a s . (\ c . D F unc to r c []))

!! (t u p l e t y p e _ a r g . a s . make DProd)

and t y p e _ a r g = (u p p e r . . many t y p e _ s im p l e . a s . u n c u r r y D F u n c to r)

!! ty p e _ s im p l e

and c l a u s e

and d a t a

and c a l l

and r c a l l

and s im p le

A P P E N D I X A . I M P L E M E N T A T I O N O F P E L 114

and ty p e _ d e c = lo w e r . . l i t x . . t y p e _ a r g

. . l i t x . . t y p e _ a r g . .x l i t " ; "

amd t u p l e p = (l i t " (" . . l i t ") " . a s . (\ x . []))

!! (l i t " (M x . . (p . s e p _ b y . l i t " , ") . . x l i t ") ”)

and p a r s e _ l i s t p = (l i t " [" . . l i t "] " . a s . \ x . [])

!! (l i t " [" x . . (p . s e p _ b y . l i t " , ") . . x l i t "] ")

and u p p e r = s a t (\w . i s u p p e r (hd w))
and lo w e r = s a t (\w . i s l o w e r (hd w) k

"member [" c a s e " ; " i n " ; " e n d " ; " t y p e "] w)
and number = s a t (\w . i s d i g i t (hd w))

and malce_Cons □ = C o n s t r " N i l " (P ro d □)

1 1 make_Cons (x . x s) = C o n s t r "Cons" (P ro d [x; matke_Cons x s])

amd maike_Succ 0 = C o n s t r "Z e ro" (P ro d □)

I 1 maike_Succ n = C o n s t r "Succ" (maike_Succ (n - 1))

T h e converse o f a parser is a p r in t function . T h o se defined here co n stitu te an
extrem ely basic pretty-prin ter, but th e ou tp u t is parseable by th e parsers given above.

amd p r i n t _ p r o g (t d e f s , (t f s , (e , t)))

= map_sep p r i n t _ t y p e _ d e f " \ n \ n " t d e f s C " \ n \ n \ n "
C map_sep p r i n t _ t f s " \ n \ n " t f s C " \ n \ n \ n "

C p r i n t _ e x p e C " : : " C p r i n t _ t y p e t C " \ n \ n "

and p r i n t _ f n (f , (x , e x p)) = f (p r i n t _ a r g x C " = \ n \ t '

C p r i n t _ e x p exp C " ; "

and p r i n t _ e x p (C ase exp e l s)

= " c a s e " C p r i n t _ e x p exp € " i n \ n \ t "

€ map_sep p r i n t _ c l " \ n \ t I I " e l s

C " \ n \ t e n d "

p r i n t _ e x p (C o n s t r name a r g) = name € p r i n t _ c a r g a r g

p r i n t _ e x p (C a l l name a r g) = name C p r i n t _ a r g a r g

p r i n t _ e x p (R C a l l name a r g) = "#" C name C p r i n t _ a r g a r g

p r i n t _ e x p (Paxm x) = x

p r i n t _ e x p (P ro d ex p s) = " (" C map_sep p r i n t _ e x p " , " exps C ") "

p r i n t _ a r g (Paurm x) = " " C x

A P P E N D I X A . I M P L E M E N T A T I O N O F P E L 115

II p r i n t _ a r g (P ro d ex p s) = " (" C map_sep p r i n t _ e x p " , " exps € ") "
I I p r i n t _ a r g any = " (" € p r i n t _ e x p any © ") "

and p r i n t _ c a r g (P ro d □) = ""

I I p r i n t _ c a r g o t h e r = p r i n t _ a r g o t h e r

and p r i n t _ c l (c , (x , e)) = c C p r i n t _ c a r g x © " -> " © p r i n t _ e x p e

and p r i n t _ t y p e _ d e f (f , (v s , c d s))

= " t y p e " C f © " " € map_sep i d " " v s © " = \ n \ t "

© map_sep p r in t_ sum m and " \ n \ t + " cd s ©

and p r in t_ su m m an d (c ,D P ro d []) = c

I I p r in t_ su m m an d (c , t) = c © p r i n t _ t y p e _ a r g t

and p r i n t _ t y p e (DParm x) = x

I I p r i n t _ t y p e (D F u n c to r f t s) = f C concmap p r i n t _ t y p e _ a r g t s

II p r i n t _ t y p e (DProd x s) = " (" © map_sep p r i n t _ t y p e " , " xs © ") "

and p r i n t _ t y p e _ a r g (DParm x) = " " fi x

II p r i n t _ t y p e _ a r g (DProd t s) = " (" © map_sep p r i n t _ t y p e " , " t s fi ") "
I I p r i n t _ t y p e _ a r g any = " (" © p r i n t _ t y p e any © ") "

and p r i n t _ t f s (t , f n) = p r i n t _ t y p e _ d e c t © " \ n " © p r i n t _ f n f n

and p r i n t _ t y p e _ d e c (f , (t , s)) = f © " : : " © p r i n t _ t y p e t
© " -> " © p r i n t _ t y p e s © " ; "

end

A . 3 T y p e c h e c k in g

PE L is a typ ed language. T he im p lem en tation o f typecheck ing follow s. T his m ay
b e th ou gh t to be superfluous in an exp erim en tal sy stem but in p ractice it has been
extrem ely useful in tracing errors in exam ple program s. T he typecheck ing m odule
m akes heavy use o f th e YN d ata typ e defined in th e l i b r a r y m odule (A p p en d ix D).
U se o f th is d a ta ty p e m akes failure (w ith m essages) easy to propagate through th e
use o f th e operator. If the left hand argum ent fails, then the result is failure. If
it su cceeds, then the right hand argum ent (a fu n ction) is applied to th e successfu l
value.

m odule — CHECK.M

A P P E N D I X A . I M P L E M E N T A T I O N O F P E L 116

i n c l u d e " l i b r a r y . t "

i n c l u d e " t y p e s . t "

i n c l u d e " p e l . t "

— # i n c l u d e " g l o b a l s . t " (a c y c l i c d ep e n d en c y)

im p o r t t y p e s : L i s t ((L i s t C har) # (dom ain # d o m a in)) ;

e x p o r t c h e c k _ f n , c h e c k , a p p _ t y p e , u n i f y ;

c h e c k _ f n (f , (v s , e))

= (f , lookupYN t y p e s f (\ (r , s) .

make_envYN vs r (\ e nv .

c h e ck f a l s e env e v a r s (\ (v , t , n s) .

u n i f y v (DProd [a p p _ ty p e v r ; t] ,

DProd [r ; s]) (\ u .

i f (a p p _ ty p e u s ~= s | a p p _ ty p e u r ” = r)

t h e n N " ty p e to o u n c o n s t r a i n e d "

e l s e Y [])))))

T he c h e c k function returns th e ty p e o f th e expression being checked, togeth er w ith
a su b stitu tio n function for th e p olym orphic variables (a p p _ ty p e is used to apply
su b stitu tio n s). D ue to th e need for fresh variables a list o f variables is p iped around
th e fun ction s. T h e other param eters to ch eck are: a b oolean w hich determ ines
w h ether th e expression m ay contain free variables (th is is th e m eans for ind icating
absent d a ta in th e final expression); and an environm ent b ind ing variables to their
typ es.

and ch e c k b env (Parm x) (n . n s)

= i f b

t h e n Y (DParm, DParm n , n s)

e l s e lookupYN env x \ t . Y (D P a r m , t ,n s)

I I c h e ck b env (C o n s t r c e) ns

= c h e ck b env e ns \ (v , t , n s) . a p p l y _ f n c c v t n s

I I c h e ck b env (C a l l f e) n s

= ch eck b env e n s \ (v , t , n s) . a p p l y _ f n c f v t ns

I I c h e ck b env (R C a l l f e) n s

= ch e ck b env e n s \ (v , t , n s) . a p p l y _ f n c f v t n s

I I c h e ck b env (P ro d e s) n s

= c h e c k _ l i s t b env e s n s \ (v , t s , n s) . Y (v ,D P ro d t s , n s)

I I c h e ck b env (C ase e e l s) ns

= ch e ck b env e n s \ (v , t , n s) . c h e c k _ c l s b env v t e l s n s

amd c h e c k _ c l s b env v t □ (n . n s) = Y (v , DPairm n , n s)

II c h e c k _ c l s b env v t ((c , (v s , e)) . e l s) n s

A P P E N D I X A . I M P L E M E N T A T I O N O F P E L 117

= c h e c k _ c l s b env v t e l s n s (\ (v ’ , u , n s) .

f r e s h _ t y p e c n s (\ (r , s , n s) .

u n i f y v ’ (s , t) (\ w.

make_envYN vs (a p p _ ty p e w r) (\ e n v ’ .

c h e ck b (e n v ’ € app_env w env) e n s (\ (w ’ , t , n s) .

Y (compose w’ w, t , n s))))))

and c h e c k _ l i s t b env [] n s = Y (DParra, [] , n s)

II c h e c k _ l i s t b env (e . e s) n s

= ch eck b env e n s (\ (v , t , n s) .

c h e c k _ l i s t b (app_env v env) e s n s (\ (u , t s , n s) .

Y (compose u v , (a p p _ ty p e u t) . t s , n s)))

and a p p l y _ f n c f v t n s = f r e s h _ t y p e f n s (\ (r , s , n s) .

u n i f y v (r , t) (\ w.

Y (w, a p p _ ty p e w s , n s)))

P olym orphic type-check ing requires unification. A fairly standard im p lem en tation
is given in th e function unify. T he first param eter to unify is a su b stitu tio n , the
second is a pair o f types to be unified.

and u n i f y v (DParm x , t) = i f v x = DParm x

t h e n e x t e n d v x (a p p _ ty p e v t)

e l s e u n i f y v (v x , a p p _ ty p e v t)

I I u n i f y v (t , DParm x) = u n i f y v (DParm x , t)

I I u n i f y v (D F u n c to r f x s , D F unc to r g y s)

= i f f= g
t h e n u n i f y _ l i s t v (x s / / y s)

e l s e N ("C a n n o t u n i f y " C f • " w i t h " C g)

I | u n i f y v (DProd d s , DProd e s)

= i f l e n g t h d s = l e n g t h es

t h e n u n i f y _ l i s t v (d s / / e s)

e l s e N "C annot u n i f y d i f f e r e n t s i z e p r o d u c t s "

I | u n i f y v (s , t) = N ("C an n o t u n i f y " C p r i n t _ t y p e s

C " w i th " C p r i n t _ t y p e t)

and u n i f y _ l i s t v [] = Y v

II u n i f y _ l i s t v ((s , t) . s t s) = u n i f y v (s , t) (\ u . u n i f y _ l i s t u s t s)

The auxiliary functions required the functions above appear next and are all fairly
self-explanatory. Some m anipulate type variables and others m anipulate program
variables.

A P P E N D I X A . I M P L E M E N T A T I O N O F P E L 118

and

and

and

and

and

and

and

and

end

f r e e _ v a r s (DParm y) = [y]

f r e e _ v a r s (DProd d s) = concmap f r e e _ v a r s d s

f r e e _ v a r s (D F u n c to r f d s) = concmap f r e e _ v a r s ds

f r e s h _ t y p e f n s = lookupYH t y p e s f

(\ (r , s) .
l e t r e c v r = f r e e _ v a r s r

and v s = f r e e _ v a r s s

and ns ’ = t a i l (l e n g t h v r) n s

and n s ” = t a i l (l e n g t h v s) n s ’

said env = (v r / / n s) fi (v s / / n s ’)

i n Y (s u b s t env r , s u b s t env s , n s ”))

s u b s t env (DParm x) = DParm (lo o k u p env x)

s u b s t env (DProd d s) = DProd (map (s u b s t env) d s)

s u b s t env (D F u n c to r f d s) = D F u n c to r f (map (s u b s t env) d s)

e x t e n d v x t = i f t = DParm x t h e n Y v

e l s e i f member (f r e e _ v a r s t) x

t h e n N (" C y c l i c t y p e : " f i x ® " , " C p r i n t _ t y p e t)

e l s e Y (\ y . i f x=y t h e n t e l s e (v y))

a p p _ ty p e v (DParm y) = v y

aPP_type v (DProd d s) = DProd (map (ap p _typ e v) d s)

ap p_type v (D F u n c to r f d s) = D F unc to r f (map (ap p _typ e v) d s)

app_env v env = map (\ (x , y) . (x , a p p _ ty p e v y)) env

compose v w x = ap p _ ty p e v (w x)

make_envYN (Parm x) t = Y [(x , t)]

make_envYN (P ro d x s) (DProd t s)

= i f l e n g t h x s = l e n g t h t s

t h e n AppendYN (map2 make_envYN xs t s)

e l s e N "C anno t make e n v i ro n m e n t t o m a tch"

make_envYN any a n y ’ = N "C annot make e n v i ro n m e n t t o m atch"

A P P E N D I X A . I M P L E M E N T A T I O N O F P E L 119

A .4 G lo b a l V a lu es

M any item s, such as th e input program , rem ain unchanged throughout any partic
ular execu tion and so are defined as global values. T h ese values are defined on the
assu m p tion th at there are no errors, but if errors occur, th e r e s u l t function reports
th o se errors rather than returning a result that w ould require th e other g lobal values
to be eva lu ated .

m odule - - GLOBALS.M

i n c l u d e <0K>

i n c l u d e <FILE>

i n c l u d e " l i b r a r y . t "

i n c l u d e " t y p e s . t "

i n c l u d e " p e l . t "

i n c l u d e " c h e c k . t "

e x p o r t e r r m , u n p a r s e d , i l l _ t y p e d , p a r s e d _ p r o g ,

t y p e _ d e f s , t y p e _ d e c s . p r o g r a m ,

e x p r , t _ e x p r , t y p e s ,

r e s u l t ,

c y c l e s . m u t u a l ;

T h e va lue a rg v is a list o f strings which gives the argum ents supplied in th e program
invocation . T his list should contain th e nam e of a file contain ing the input program .
A ssu m ing such a file ex ists , the value o f p r o g _ te x t is th e file ’s con tents.

r e c (e r r m , p r o g _ t e x t) =

i f a rgv= □ t h e n

(" P l e a s e s u p p ly a f i l e n a m e " , [])

e l s e

c a s e o p e n f i l e (hd a r g v) i n

Yes f i l e : ([] , f i l e)

I I No mesg : ("No f i l e " C hd a r g v C " \ n " C m e s g . D)

end

If p r o g _ t e x t represents a syn tactica lly correct program , th en th e parser w ill reach
th e end of th e tex t resulting in an em pty u n p a rsed portion . In this case, th e parsed
program m ay be sp lit into its various com ponents: ty p e defin itions, declarations g iv
ing th e typ es o f th e functions defined in the program , function defin itions, and a final
expression togeth er w ith its type. T h e constant t y p e s is an associa tion list g iv ing
th e declared typ es o f all th e functions and constructors defined in the program . T he
fu n ction m u tu a l takes a typ e nam e and returns th e nam es of all th e typ es m utually
recursive w ith w ith it. T his uses th e function c y c l i c (defined in l ib r a r y .m) which

A P P E N D I X A . I M P L E M E N T A T I O N O F P E L 120

takes a graph and returns an ordered list of its strongly connected com pon en ts.

and (p a x s e d _ p r o g ,u n p a x s e d) = p a r s e p r o g p r o g _ t e x t

and (t y p e _ d e f s , (t f _ d e f s , (e x p r , t _ e x p r))) = p a r s e d _ p r o g

and (t y p e _ d e c s , p ro g ra m) = u n z i p t f _ d e f s

and g e t _ c o n s t r _ t y p e s (t , (v s , c d s))

= C (c , (d , D F u n c to r t (map DParm v s))) ; ; (c , d) < - cds]

and t y p e s = ty p e _ d e c s © concmap g e t _ c o n s t r _ t y p e s t y p e _ d e f s

and c y c l e s = c y c l i c (concmap ed g e s t y p e _ d e f s) (map f s t t y p e _ d e f s)

and m u tu a l x = hd [xs ; ; x s < - c y c l e s ; member x s x]

and e d g e s (t , (v s , c d s))

= map (\ f . (t , f)) (m e r g e _ l i s t [f u n c t o r s d ; ; (c , d) < - c d s])

and f u n c t o r s (DProd d s) = m e r g e _ l i s t (map f u n c t o r s d s)

I I f u n c t o r s (DParm x) = []

II f u n c t o r s (D F u n c to r f d s) = m e r g e _ l i s t ([f] . map f u n c t o r s d s)

If any errors arise then e r r o r s returns th e appropriate m essage, otherw ise it returns
th e em p ty string. T he boolean argum ent allows for free variables to occur in th e final
expression . T h e function r e s u l t returns its second argum ent on ly if no errors arise.

and e r r _ s t r (f , Y x) = ""

I I e r r _ s t r (f , N ms) = " \ t " © f © " : " © ms © " \ n "

and i l l _ t y p e d = concmap (e r r _ s t r o ch e c k _ fn) p rog ram

and e r r o r s b

= i f e r rm “= [] t h e n errm

e l s e i f u n p a r s e d "= □ t h e n

" S y n ta x e r r o r (s) i n : \ n " © map_sep i d " " u n p a r s e d

e l s e i f i l l _ t y p e d '= [] t h e n

" E r r o r (s) i n : \ n " fi i l l _ t y p e d

e l s e
c a s e ch e ck b [] e x p r v a r s i n

N ms : " E r r o r (s) i n f i n a l e x p r e s s i o n : \ n \ t " © ms

II Y x : ""

end

A P P E N D I X A . I M P L E M E N T A T I O N O F P E L 121

and r e s u l t b s t r l s t r 2 = s t r l C " \ n \ n "

C c a s e e r r o r s b i n

"" : s t r 2

I I e r r : e r r

end

C " \ n \ n "
end

A .5 T h e R U N C o m m a n d

Finally, th e run m odule collates all th e previous into a single expression . W hen
com piled th is produces a binary file w hich m ay be execu ted like any U N IX com m and.

RUN. M

i n c l u d e " t y p e s . t "

i n c l u d e " p e l . t "

i n c l u d e " g l o b a l s . t "

r e s u l t f a l s e

" S ta n d a r d I n t e r p r e t a t i o n o f PEL"

(p r i n t _ e x p (e v a l [] e x p r))

A p p e n d ix B

Im p le m e n ta tio n o f B T A

T his ap pend ix contains th e im p lem en tation o f polym orphic projection -based b inding
tim e analysis. T h e first m odule provides functions th at m an ipu late th e d ata struc
tures used to represent projections; th e second com pu tes th e abstract fu n ction en v i
ronm ent (fft described in C hapter 4. T he final execu tab le file prints th e result o f the
bin d ing-tim e analysis.

B . l M a n ip u la tin g P r o je c t io n s

module — PROJECTIONS.!!

i n c l u d e " l i b r a r y . t "

i n c l u d e " t y p e s . t "

i n c l u d e " p e l . t "

i n c l u d e " g l o b a l s . t "

— # i n c l u d e " f n _ v a l s . t " (a c y c l i c d ep e n d en c y)

im p o r t f n _ v a l u e s : L i s t (((L i s t C h a r) # p r o j e c t i o n) # p r o j e c t i o n) ;

im p o r t i n i t i a l _ e n v : L i s t ((L i s t C ha r) # p r o j e c t i o n) ;

e x p o r t g i b , g l b _ l i s t , g e t _ i d , g e t _ a b s , m ake_abs ,

u n i o l d , l o l d , e x t r a c t , mask,

g e t _ e n v , s q u a s h , p s u b s t ,

p r i n t _ p r o j , p r i n t _ p r o j _ s u m ,

e v a l p , m ake_penv, a p p l y ,

d e s c r , a b s _ e n v , d e s c r i p t i o n , i t e r _ d e s c r , d e s c r ;

T he function g ib com putes th e greatest lower bound betw een tw o projections w hile
rem aining w ith in th e fin ite dom ain. Its defin ition relies h eavily on th e fact th at it
will on ly ever be applied to projections defined over exactly th e sam e typ e. T hus, in

122

A P P E N D I X B. I M P L E M E N T A T I O N O F B T A 123

the various clauses, we can guarantee th at f = g , for exam ple.

r e c g i b (P P rod p s) (P P rod q s) = PProd (map2 g i b p s q s)

I I g i b (PMu f f p s p s) (PMu g gqs q s)

= PMu f (map2 (\ (h , p) . \ (k , q) . (h , glbSum p q)) f p s g q s)

(map2 g i b p s q s)

I I g i b (PRec 1) (PRec g) = PRec f

I I g i b any (PPann y) = any

I I g i b (PPann x) any = any

and g l b _ l i s t (p . p s) = r e d u c e g i b p p s

and glbSum PAbs p = PAbs

I I glbSum p PAbs = PAbs

II glbSum (PSum c p s) (PSum d q s) = l e t (c s , p s) = u n z i p cp s

and (d s , q s) = u n z i p dqs

i n PSum (c s / / map2 g i b p s q s)

In a num ber o f different situ ations w e need to produce either ID or A B S over p artic
ular typ es. T h ese have a structural form which reflects th e defin ition o f th e typ e.

and g e t _ i d t = g e t _ i d J [] t

and g e t _ i d ’ t s (DProd d s) = P Prod (map (g e t _ i d ’ t s) d s)

I I g e t _ i d ’ t s (DParm x) = PParm x

I I g e t _ i d ’ t s (D F u n c to r f d s)

= i f member t s f t h e n PRec f e l s e

l e t t s ’= m utua l f i n

PMu f [(t , PSum [(c , g e t _ i d ’ (t s Q t s *) d) ; ; (c , d) < - c d s]) ; ;

(t , (v s , c d s)) < - t y p e _ d e f s ; member t s ’ t]

(map (g e t _ i d ’ t s) d s)

and g e t _ a b s t = g e t _ a b s ’ [] t

and g e t _ a b s ’ t s (DProd d s) = PProd (map (g e t _ a b s ’ t s) d s)

I I g e t _ a b s ’ t s (DParm x) = PPaxm x

I I g e t_ a b s * t s (D F u n c to r f d s)

= i f member t s f t h e n PRec f e l s e

PMu f [(t , P A b s) ; ; t < - m u tu a l f] (map (g e t_ a b s * t s) d s)

and m ake_abs (P P ro d p s) = P Prod (map m ake_abs p s)

I I make_abs (PParm x) = PParm x

I I make_abs (PMu f f p s p s)

= PMu f [(f , P A b s) ; ; (f , p) <- f p s] (map make_abs p s)

A P P E N D I X B. I M P L E M E N T A T I O N O F B T A 124

In order to get “inside” a projection on a recursive ty p e we m ust unfold the defin ition.
T his w ill involve su b stitu tin g the original projection for the recursive m arkers, and
su b stitu tin g th e appropriate projections for th e polym orphic param eters. N otice th at
th e result in a sum -type projection , thus allow ing th e ty p e system to d istingu ish
b etw een a folded and unfolded projection .

and u n f o l d (PMu f f p s p s)

= l e t (v s , c d s) = loo k u p ty p e _ d e f s f

i n c a s e lo o k u p f p s f i n

PAbs : PAbs

I I PSum cps : PSum

[(c , u n f o l d _ r e c (v s / / p s) f p s p s p) ; ; (c , p) <- c p s]

end

and u n f o l d _ r e c env f p s p s p

= c a s e p i n

P Prod qs

I I PMu g gqs qs

I I PRec g

I I PParm x

end

P Prod (map (u n f o l d _ r e c env f p s p s) q s)

PMu g gqs (map (u n f o l d _ r e c env f p s p s) q s)

PMu g f p s p s

lo o k u p env x

T h e f o l d function is a converse to u n fo ld . Its argum ents represent th e projection
Co ID T • • • -f c p + • • • -f cn ID as occurs in th e constructor clause of th e abstract
sem antics. T his is n o t, in general, an unfolded version of a projection in th e finite
dom ain (th ou gh , by assum ption , all th e p rojections it refers to are). T hus, in folding
th e projection , som e inform ation will be lost, as evidenced by the call to g l b _ l i s t .

and f o l d c p

= l e t r e c (r ,D F u n c t o r f d s) = lo o k u p t y p e s c

and t s = m u tu a l f

and (r p , env) = (s q u a s h r p , g e t_ e n v r p)

i n g l b _ l i s t (mask t s c env r p . e x t r a c t t s f r p)

and e x t r a c t t s f (PP rod p s) = cone (map (e x t r a c t t s f) p s)

I I e x t r a c t t s f (PMu g gps p s)

= i f member t s g t h e n [PMu f gps p s] e l s e

cone (map (e x t r a c t t s f) p s)

I | e x t r a c t t s f (PRec g) = []

I I e x t r a c t t s f (PParm x) = □

and mask t s c env p = l e t r e c (r , s) = lo o k u p t y p e s c
and (PMu f f p s p s) = g e t _ i d s

A P P E N D I X B . I M P L E M E N T A T I O N O F B T A 125

i n PMu f [(f , i n s e r t t s c p q) ; ; (f , q) < - f p s]

(map (i n s t a n c e env) p s)

and i n s e r t t s c p PAbs = PAbs

I I i n s e r t t s c p (PSum c p s)

= PSum [i f c = c ’ t h e n (c , i n s t s p) e l s e (c ’ , q) ; ; (c ’ ,q) < - cp s]

and i n s t s (P P rod p s) = PProd (map (i n s t s) p s)

I I i n s t s (PParm x) = PParm x

I I i n s t s (PMu f f p s p s) = i f member t s f t h e n PRec f e l s e

PMu f f p s (map (i n s t s) p s)

and i n s t a n c e env (PParm x) = lo o k u p ’ (PParm x) env x

To im p lem en t th e m aterial o f C hapter 7, w e have to b e able to factorise a projec
tion in to its polym orphic and m onom orphic parts. T h is factorisation is not alw ays
exact as it m ay involve tak ing th e g ib of different p rojections th at appear in th e
p osition o f m u ltip le occurrences o f a single typ e variable. T h e function sq u a sh takes
a ty p e th at m ay involve free typ e variables, togeth er w ith a projection over an in
stan ce o f th e ty p e , and returns th e corresponding projection over th e original typ e.
In contrast g e t_ e n v extracts the parts o f th e p rojection occurring at each p o ly
m orphic p o in t and constructs an environm ent b inding th e typ e variables to their
resp ective projections. C onstructing th e environm ent m ay involve approxim ation if
a single ty p e variable appears m ore than once. T h e “inverse” to th ese is p s u b s t
w hich takes a polym orphic projection , together w ith an environm ent binding ty p e
variables to projections, and su b stitu tes for th ese variables in th e projection . T hus
p s u b s t (g e t_ e n v r p) (sq u a sh r p) C p for all typ es r and projections p.

and s q u a s h (DProd d s) (P P rod p s) = P Prod (map2 s q u a s h d s p s)

I | s q u a s h (DParm x) p = PParm x

I | s q u a s h d (PParm x) = g e t _ i d d

I | s q u a s h (D F u n c to r f d s) (PMu g gps p s) = PMu g g p s (map2 s q u a s h d s p s)

and g e t _ e n v (DProd d s) (P P rod p s) = j o i n _ l i s t g i b (map2 g e t_ e n v d s p s)

I | g e t_ e n v (DParm x) p = [(x , p)]

I I g e t_ e n v (D F u n c to r f d s) (PMu g gps p s)

= j o i n _ l i s t g i b (map2 g e t_ e n v d s p s)

and p s u b s t env (P P rod p s) = P Prod (map (p s u b s t env) p s)

I | p s u b s t env (PParm x) = lo o k u p env x

I | p s u b s t env (PMu f f p s p s) = PMu f f p s (map (p s u b s t env) p s)

and a b s _ e n v c v s p

A P P E N D I X B. I M P L E M E N T A T I O N O F B T A 126

= l e t (r , s) = lo o k u p t y p e s c i n

make_penv vs (p s u b s t (g e t_ e n v s (make_abs p)) (g e t _ a b s r))

T h e fu n ction p r in t _ p r o j provides a tex tu a l representation o f projections.

and p r i n t _ p r o j (P P ro d p s) = " (" € map_sep p r i n t _ p r o j " , " p s C ") "

I I p r i n t _ p r o j (PRec f) = " (PR ec " C s h o w _ s t r i n g f C ") "

I I p r i n t _ p r o j (PParm x) = x

I I p r i n t _ p r o j (PMu f f p s p s)

= " (PMu " € s h o w _ s t r in g f C " "

C s h o w _ l i s t (s h o w _ p a i r (s h o w _ s t r i n g , p r i n t _ p r o j _ s u m)) f p s

C " " C s h o w _ l i s t p r i n t _ p r o j p s € ") "

and p r i n t _ p r o j _ s u m PAbs = "PAbs"

I I p r i n t _ p r o j _ s u m (PSum c p s)

= "(PSum " C s h o w _ l i s t (s h o w _ p a i r (s h o w _ s t r i n g , p r i n t _ p r o j)) cp s fi ") "

In C hapter 4 w e presented the S ^ function . Here it is called e v a lp . It takes an
environm ent associa tin g param eter nam es w ith projection s, and an expression , and
returns th e projection value of th e expression . T he function e v a lp has access to the
com p lete abstract function environm ent through th e use of a p p ly . T h is function en
v ironm ent is com puted in the m od u le f n _ v a l s (in th is ap pend ix).

and e v a l p env (Parm v) = lo o k u p env v

I I e v a l p env (P ro d e s) = PProd (map (e v a l p env) es)
I I e v a l p env (C o n s t r c e) = f o l d c (e v a l p env e)

I I e v a l p env (C a l l f e) = a p p ly f (e v a l p env e)

I I e v a l p env (R C a l l f e) = app lyR f (e v a l p env e)
I I e v a l p env (C ase e e l s)

= l e t p = e v a l p env e i n

c a s e u n f o l d p i n

PAbs : l e t (c , (v s , e)) = h d e l s i n

make_abs (e v a l p (a b s_ e n v c v s p C env) e)

I | PSum cps : g l b _ l i s t

[e v a l p (make_penv vs (lo o k u p cps c) C env) e ; ; (c , (v s , e)) < - e l s]

end

and make_penv (Parm x) p = [(x , p)]

I | make_penv (P ro d v s) (P P rod p s) = cone (map2 make_penv vs p s)

and a p p l y f p = l e t (r , s) = lo o k u p t y p e s f

i n p s u b s t (g e t_ e n v r p) (lo o k u p f n _ v a l u e s (f , s q u a s h r p))

A P P E N D I X B. I M P L E M E N T A T I O N O F B T A 127

and app lyR f p = l e t (r , s) = lo o k u p t y p e s f

i n p s u b s t (g e t_ e n v r (m ake_abs p)) (g e t _ a b s s)

In addition to im plem enting , we m ust im plem ent . This also ta k e s an a b s tra c t
environm ent and an expression , but returns a list of function nam es paired w ith
p rojections w hich (in th e lim it— see below) p laces lower bounds on th e am ount of in
form ation available to the function at partial evaluation tim e. T he value d e s c r ip t i o n
is the final result o f th e b in d ing-tim e analysis and corresponds to th e result o f .

and d e s c r env (Parm v) = []

I I d e s c r env (P ro d e s) = j o i n _ l i s t g i b (map (d e s c r env) e s)

I I d e s c r env (C o n s t r c e) = d e s c r env e

I I d e s c r env (C a l l f e) = l e t (r , s) = lo o k u p t y p e s f i n

j o i n g i b [(f , s q u a s h r (e v a l p env e))] (d e s c r env e)

I I d e s c r env (R C a l l f e) = l e t (r , s) = lo o k u p t y p e s f i n

j o i n g i b [(f , s q u a sh r (e v a l p env e))] (d e s c r env e)

I I d e s c r env (C ase e e l s) = l e t p = e v a l p env e i n

j o i n g i b (d e s c r env e)

(c a s e u n f o l d p i n

PAbs : j o i n _ l i s t g i b

[d e s c r (a b s_ e n v c v s p C env) e ; ; (c , (v s , e)) <- e l s]

I I PSum cps : j o i n _ l i s t g i b

[d e s c r (make_penv vs (lo o k u p cps c) fi env) e ; ;

(c , (v s , e)) < - e l s]

end)

and i t e r _ d e s c r d e s c = j o i n g i b d e s c (j o i n _ l i s t g i b (map d e s c r _ f n d e s c))

and d e s c r _ f n (f , p) = l e t (v s ,b o d y) = lo o k u p p rog ram f i n

d e s c r (make_penv v s p) body

and d e s c r i p t i o n = l i m i t (r e p e a t i t e r _ d e s c r (d e s c r i n i t i a l _ e n v e x p r))

end

B .2 T h e A b str a c t F u n c tio n E n v ir o n m e n t

The abstract function environment (ffi (Chapter 4) is computed by the functions
in this m odule. Its value is given by the constant fn _ v a lu e s , which is defined by
iteration to the greatest fixed point. As described in Chapter 6, we restrict the table
to contain only the arguments that might possibly be required. The table has the
structure [((f u n c t io n name, argu m en t), r e s u l t)] .

A P P E N D I X B. I M P L E M E N T A T I O N O F B T A 128

m odule — FN_VALS.M

i n c l u d e " l i b r a r y . t "

i n c l u d e " t y p e s . t "

i n c l u d e " p e l . t "

i n c l u d e " c h e c k . t "

i n c l u d e " g l o b a l s . t "

i n c l u d e " p r o j e c t i o n s . t "

e x p o r t f n _ v a l u e s , i t e r _ f n s , i n i t i a l _ t a b l e , i n i t i a l _ e n v ,
e v a l f , a p p l y _ f n ;

r e c f n _ v a l u e s = l i m i t (r e p e a t i t e r _ f n s i n i t i a l _ t a b l e)

and i t e r _ f n s t a b l e

= l e t (t a b l e ’ , t a b s) = u n z i p (map (i t e r _ f n t a b l e) t a b l e)

i n j o i n _ l i s t g ib (t a b l e ’ . t a b s)
and i t e r _ f n t a b l e ((f , p) , q)

= l e t r e c (v s ,b o d y) = lo o k u p p ro g ra m f

and (q ’ . t a b) = e v a l f t a b l e (make_penv v s p) body

i n (((f , p) , q ») , t a b)

and i n i t i a l _ t a b l e = sn d (e v a l f □ i n i t i a l _ e n v e x p r)

and i n i t i a l _ e n v = g e t_ a b s _ e n v e x p r t _ e x p r

and g e t_ a b s _ e n v (Parm x) t = [(x , g e t _ a b s t)]

I I g e t _ a b s _ e n v (P ro d e s) (DProd d s) = cone (map2 g e t _ a b s _ e n v es d s)

I I g e t _ a b s _ e n v (C a l l f e) t = g e t_ a b s _ e n v e (a r g _ t y p e f t)

I 1 g e t_ a b s _ e n v (R C a l l f e) t = g e t_ a b s _ e n v e (a r g _ t y p e f t)

I I g e t _ a b s _ e n v (C o n s t r c e) t = g e t_ a b s _ e n v e (a r g _ t y p e c t)

and a r g _ t y p e f t = l e t (r , s) = lo o k u p t y p e s f i n

c a s e u n i f y DParm (s , t) i n

Y v : a p p _ ty p e v r

end

T h e evalu ator returns a pair of values. T he first is th e ab stract value o f an expression
com pu ted w ith respect to the function tab le provided. T h e second is a tab le o f all
th e (p ossib ly new) fu n ctio n /a rg u m en t pairs th a t were used , paired w ith th e best
ap proxim ation to th e result then known. T his tab le is used to exten d the function
environm ent.

cind e v a l f v a l s env (Parm v) = (lo o k u p env v , □)

I | e v a l f v a l s env (P ro d e s) = (P P ro d , j o i n _ l i s t g i b) C2

u n z i p (map (e v a l f v a l s env) e s)

A P P E N D I X B. I M P L E M E N T A T I O N O F B T A 129

II e v a l f v a l s env (C o n s t r c e) = (f o l d c , i d) ©2 e v a l f v a l s env e

I I e v a l f v a l s env (C a l l f e) = a p p l y _ f n v a l s f (e v a l f v a l s env e)

I I e v a l f v a l s env (R C a l l f e) = a p p l y _ f n v a l s f (e v a l f v a l s env e)
I I e v a l f v a l s env (C ase e e l s)

= l e t (p , t) = e v a l f veils env e i n

c a s e u n f o l d p i n

PAbs : l e t (c , (v s , e)) = h d e l s i n

(m ak e _ ab s , i d) ©2 (e v a l f v a l s (a b s_ e n v c vs p © env) e)

II PSum cps : l e t (p s , t s) = u n z i p

[e v a l f v a l s (make_penv vs (lo o k u p cps c) © env) e ; ;

(c , (v s , e)) < - e l s] i n

(g l b _ l i s t p s , j o i n _ l i s t g i b (t . t s))
end

and a p p l y _ f n v a l s f (p , t)

= l e t r e c (r , s) = lo o k u p t y p e s f

and (q , e n v) = (s q u a s h r p , g e t_ e n v r p)

and f q = a p p l y _ t a b f q s v a l s

i n

(p s u b s t env f q , j o i n g i b C ((f , q) , f q)] t)

T he tab le contains representations for each o f th e functions. T he m eaning of any
particu lar function / is defined to be x = [~|{y | 3 z . x C z, { / : z y) £ tab}.

and a p p l y _ t a b f p s [] = g e t _ i d s

II a p p l y _ t a b f p s (((g , q) , g q) . r e s t)

= i f f= g & l e s s p q t h e n

g i b gq (a p p l y _ t a b f p s r e s t)

e l s e a p p l y _ t a b f p s r e s t

and l e s s (PParm x) (PParm y) = t r u e

I I l e s s (PRec x) (PRec y) = t r u e

I I l e s s (P P ro d p s) (P P rod q s) = And (map2 l e s s p s q s)

I I l e s s (PMu f f p s p s) (PMu g g qs q s)

= And (map2 (\ x A y . le s s _ s u m (sn d x) (s n d y)) f p s g q s)

& And (raap2 l e s s p s q s)

and l e s s _ s u m PAbs any = t r u e

I | l e s s _ s u m any PAbs = f a l s e

I | l e s s _ s u m (PSum c p s) (PSum d q s)

= And (map2 (\ x . \ y . l e s s (s n d x) (sn d y)) cps d q s)

end

A P P E N D I X B. I M P L E M E N T A T I O N O F B T A 130

B .3 B in d in g -T im e A n a ly s is O u tp u t

W e have not defined an in term ed iate annotated version o f PE L designed to convey
bin d ing-tim e inform ation as this is on ly actua lly necessary for self-app lication . In
stead , th e b in d ing-tim e inform ation is com puted each tim e th e program is specialised
to som e input values. However, if separate b ind ing-tim e inform ation is required it
m ay be ob ta ined from th e follow ing execu tab le program .

BTA .M

i n c l u d e " l i b r a r y . t "

i n c l u d e " t y p e s . t "

i n c l u d e " g l o b a l s . t "

i n c l u d e " p r o j e c t i o n s . t "

l e t s e p = "\n\n==\n\n"

and p r (f , p) = f fi " : \ n " © p r i n t _ p r o j p

i n r e s u l t t r u e

" P r o j e c t i o n - B a s e d P a r t i a l E v a l u a t i o n "

(" B in d in g -T im e s A n a ly s i s R e s u l t s : " fi s e p

© map_sep p r " \ n \ n " d e s c r i p t i o n © s e p)

In A p p en d ix C w e d iscuss the way in w hich th e specialiser uses th e b in d ing-tim e
inform ation com puted by th e m odules occurring here.

A p p e n d ix C

Im p le m e n ta tio n o f S p e c ia lisa tio n

T his ap pend ix contains th e definition o f th e specialiser itself. T h e m od u le spec.m
provides th e defin itions o f th e sp ecialisation functions, and th ese are brought togeth er
at th e end of the ap pend ix into an execu tab le program . T he ap pend ix closes w ith
th e exam p le sp ecia lisation referred to in Section 7.5.

C .l S p e c ia lisa t io n

module — SPEC.M

i n c l u d e " l i b r a r y . t "

i n c l u d e " t y p e s . t "

i n c l u d e " p e l . t "

i n c l u d e " g l o b a l s . t "

i n c l u d e " p r o j e c t i o n s . t "

i n c l u d e " f n _ v a l s . t "

e x p o r t s p e c , r e s i d _ p r o g , s i g m a . d e l t a ,

raake_menv, s e l f _ e n v ;

T he key function in specia lisation is spec. T he first argum ent to spec is often called
th e p en d in g list. It con sists o f a list o f function n am es, each paired w ith a s ta tic value,
th at aw ait sp ecia lisa tion . T he second argum ent is also a list o f fu n ctio n /sta tic -v a lu e
pairs corresponding to th e specia lisations already perform ed. S ta tic values contain
occurrences o f Bot where the sta tic projection has caused th e d ynam ic value to be
b lo tted out. Each of th ese occurrences is replaced w ith a fresh param eter nam e (o b
tained from th e list vars), and a product o f th ese new nam es is constructed by delta
(corresponding to th e 8 function o f C hapter 5). A fter th e function b od y has been

131

A P P E N D I X C. I M P L E M E N T A T I O N O F S P E C I A L I S A T I O N 132

evalu ated it is searched to find any function calls th a t will th em selves need sp ecia l
isation .

r e c s p e c □ t a b l e = []

I I s p e c (f n . f n s) t a b l e

= i f member t a b l e f n t h e n

sp e c f n s t a b l e

e l s e l e t

r e c (f , a r g) = f n

and (v s , body) = lo o k u p p rog ram f

cind (a rg * , v a r s ’) = r e p l a c e a r g v axs

cind new_vs = d e l t a a r g a r g ’

and new_body = evalm (make_menv vs a r g ’) body

and new _fns = s e a r c h new_body

i n (fn , (n e w _ v s ,n e w _ b o d y)) .

sp e c (f n s C n ew _ fn s) (f n . t a b l e)

and r e p l a c e Bot (n . n s) = (Parm n , n s)

I I r e p l a c e (C o n s t r c e) n s = (C o n s t r c , i d) C 2 r e p l a c e e n s

I I r e p l a c e (P ro d e s) n s = (P r o d , i d) C 2 f e e d r e p l a c e e s n s

and eva lm env (Parm x) = lo o k u p env x

I I eva lm env (P ro d ex p s) = P ro d (map (ev a lm env) ex p s)

I I eva lm env (C o n s t r c a r g) = C o n s t r c (ev a lm env a r g)

I I eva lm env (C a l l f a r g) = l e t (v s , body) = lo o k u p p ro g ra m f i n

evalm (make_menv vs (e v a lm env a r g)) body

I I eva lm env (R C a l l f a r g) = R C a l l f (ev a lm env a r g)

I I eva lm env (C ase e e l s) = ev a lm _ c a se env (ev a lm env e) e l s

cind e v a lm _ c a se env (C o n s t r name e _ a r g) ((c , (v s , e x p)) . e l s)

= i f name = c t h e n eva lm (make_menv vs e _ a r g C env) exp

e l s e ev a lm _ c a se env (C o n s t r name e _ a r g) e l s

I I ev a lm _ c a se env any e l s

= Case any [(c , (v s , eva lm (s e l f _ e n v v s € env) e)) ; ; (c , (v s , e)) < - e l s]

and s e l f _ e n v (Parm x) = [(x ,P a r m x)]

I I s e l f _ e n v (C a l l f e) = s e l f _ e n v e

I | s e l f _ e n v (R C a l l f e) = s e l f _ e n v e

I I s e l f _ e n v (C o n s t r c e) = s e l f _ e n v e

I I s e l f _ e n v (P ro d e s) = concmap s e l f _ e n v es

and make_menv (Parm x) e = [(x , e)]

I I make_menv (P ro d v s) (P ro d e s) = cone (map2 make_menv vs e s)

A P P E N D I X C. I M P L E M E N T A T I O N O F S P E C I A L I S A T I O N 133

I I make_menv (P ro d v s) e = cone (map (\y .m ake_m env y e) v s)

P rojection s are applied using sigma. G iven a function nam e and an expression (as
sum ed to b e an argum ent to the fu n ction), sigma ex tracts from th e b in d ing-tim e
descrip tion the projection associated w ith th e function , and applies it to th e expres
sion. B ecau se th e recursion is guided by th e projection , th e parts o f th e expression
reached w ill b e in norm al form. W hen th e projection A B S is encountered th e expres
sion B ot is returned, representing _L.

and s ig m a f e = s igm a_exp (lo o k u p d e s c r i p t i o n f) e

and s igm a_exp (P P rod p s) (P ro d e s) = P rod (map2 s igm a_exp p s e s)

I I s igm a_exp (PMu f f p s p s) e = sigma_sum (u n f o l d (PMu f f p s p s)) e

I I s igm a_exp (PParm x) e = Bot

and sigma_sum PAbs e = Bot

I I sigma_sum (PSum c p s) (C o n s t r c e) = C o n s t r c (s ig m a _ ex p (lo o k u p cps c) e)

cind d e l t a e ’ e = make P rod (d e l t a _ e x p e ’ e)

and d e l t a _ e x p Bot e = [e]

II d e l t a _ e x p (P ro d e s ’) (P ro d e s) = cone (map2 d e l t a _ e x p e s ’ e s)

II d e l t a _ e x p (C o n s t r c ’ e ’) (C o n s t r c e) = d e l t a _ e x p e ’ e

and d e l t a _ t y p e e ’ e = make DProd (d e l t a _ t e ’ e)

and d e l t a _ t Bot t = [t]

I I d e l t a _ t (P r o d e s) (DProd t s) = cone (map2 d e l t a _ t e s t s)

I I d e l t a _ t (C o n s t r c e) (D F u n c to r f t s)

= l e t (v s , c d s) = lo o k u p ty p e _ d e f s f i n

d e l t a _ t e (s u b s t (v s / / t s) (lo o k u p c d s c))

and s u b s t env (DParm x) = lo o k u p env x

I | s u b s t env (DProd d s) = DProd (map (s u b s t env) d s)

I I s u b s t env (D F u n c to r f d s) = D F u n c to r f (map (s u b s t env) d s)

T h e function search w ill go through th e specialised function b o d y and pick ou t any
rem aining function calls along w ith th e sta tic part o f the argum ents. R ep eats are not
checked for, as th ey will not cause a problem for spec.

and s e a r c h (Parm x) = □

I | s e a r c h Bot = □

II s e a r c h (R C a l l f a r g) = (f , s igm a f a r g) . s e a r c h a r g

I | s e a r c h (C o n s t r c a r g) = s e a r c h a r g

I | s e a r c h (P r o d e s) = concmap s e a r c h es

II s e a r c h (C ase exp e l s) = s e a r c h exp C cone [s e a r c h e ; ; (c , (v s , e)) < - c l s]

A P P E N D I X C. I M P L E M E N T A T I O N O F S P E C I A L I S A T I O N 134

H aving produced th e specialised program , w e need to tid y it up by renam ing each
sp ecia lisa tion o f th e original functions. F irst a tab le is constructed of th e in sta n tia
tions g iv ing the new nam e, and then th e program is altered to su it. At th is p oin t the
new typ es of th e residual functions m ay be generated from th e old using a version of
delta defined over types.

and r e n a m e _ fn n s (f n , (v s , b o d y))

= l e t r e c new_f = lo o k u p n s f n

and (f , e) = f n

and (r , s) = lo o k u p t y p e s f i n

((n e w _ f , (d e l t a _ t y p e e r , s)) ,

(n ew _ f , (v s , renam e_exp n s b o d y)))

and renam e_exp n s (Parm x) = Parm x

I I renam e_exp n s Bot = Bot

I I renam e_exp n s (C o n s t r c e) = C o n s t r c (renam e_exp n s e)

I I renam e_exp n s (P ro d e s) = P ro d (map (re n am e _ ex p n s) e s)

I I renam e_exp n s (R C a l l f e)

= l e t s e = s igm a f e i n

C a l l (lo o k u p n s (f , s e)) (d e l t a se (renam e_exp ns e))

I I renam e_exp n s (C ase exp e l s)

= Case (renam e_exp ns exp) [(c , (v s , r e n a m e _ e x p ns e)) ; ; (c , (v s , e)) < - c l s]

and new_name n ((f , a r g) , r h s) = ((f , a r g) , f C C n)

T he functions above are now com bined to give produce th e residual program . T he
ty p e defin itions appearing in th e residual program w ill b e a subset of th e defin itions
appearing in th e original. T he function get_types scans th e (new) typ es o f the resid
ual functions and inserts the required ty p e defin itions.

and g e t _ t y p e s t s [] = []

II g e t _ t y p e s t s (((f , (r , s)) , f n _ d e f) . r e s t)

= l e t t l = d i f f e r e n c e (s c a n r) t s i n

l e t t 2 = d i f f e r e n c e (s c a n s) (t l C t s) i n

[(t . d e f) ; ; (t , d e f) < - t y p e _ d e f s ; member (t l f i t 2) t]

0 g e t _ t y p e s (t l f i t 2 C t s) r e s t

and s c a n (DProd d s) = m e r g e _ l i s t (map s c a n d s)

I | s c a n (DParm x) = []

I I s c a n (D F u n c to r f d s)
= m e r g e _ l i s t ([[g] ; ; g < - m u tu a l f] « map s c a n d s)

A P P E N D I X C. I M P L E M E N T A T I O N O F S P E C I A L I S A T I O N 135

r e s i d _ p r o g

= l e t r e c new_expr = evalm (s e l l _ e n v e x p r) e x p r
and s p e c _ f n s = s p e c (s e a r c h new _expr) G
and new_names = map2 new_name v a r s s p e c _ f n s
and new _fns = map (re n a m e _ fn new_names) sp e c
and n ew _types = g e t _ t y p e s G new _fns
i n

(n e w _ ty p e s ,

(n ew _ fn s ,

(renam e_exp new_names new _expr, t _ e x p r)))
end

C .2 R e s id u a l P ro g r a m O u tp u t

All th e m odules used up to now are brought togeth er by th e follow ing execu tab le
w hich, w hen com piled , produces a U N IX com m and to perform partial evalu ation .

PE.M

i n c l u d e " t y p e s . t "

i n c l u d e " p e l . t "

i n c l u d e " g l o b a l s . t "

i n c l u d e " s p e c . t "

l e t s e p = " \ n \ n = = ======================================\n\n"

i n r e s u l t t r u e

" P r o j e c t i o n - B a s e d P a r t i a l E v a l u a t i o n "

(" P a r t i a l l y E v a l u a t e d P ro g ra m :" C sep

C p r i n t _ p r o g r e s i d _ p r o g

C s e p)

C .3 E x te n d e d E x a m p le

W e conclude th is append ix w ith an actual listing ob ta in ed from th e partial evaluator.
W e specia lise th e im p erative language interpreter introduced in C hapter 2 (given
below) to th e factorials program of Section 6.4. T h e defin itions o f functions such as
g* (>) have been deleted as they do not affect the resu lts— the residual versions are

A P P E N D I X C. I M P L E M E N T A T I O N O F S P E C I A L I S A T I O N 136

identica l to th e original versions.

t y p e Command = Read I d e n t

+ W r i te Exp

+ A l lo c (I d e n t , L i s t Command)

+ D eA lloc

+ A s s ig n (I d e n t , Exp)

+ I I (Exp , L i s t Command, L i s t Command)

+ W hile (Exp , L i s t Command);

t y p e Exp = V al Num + I d I d e n t + Op (O p e r , Exp, Exp);

t y p e I d e n t = X + Y + Z;

t y p e Oper = Gt + Mul + M inns;

t y p e L i s t a = N i l + Cons (a , L i s t a) ;

t y p e Num = Z ero + Succ Num;

exec : : (L i s t Command, L i s t Num) -> L i s t Num;

exec (b l o c k , i n p) = r u n (b l o c k , N i l , i n p) ;

r u n : : (L i s t Command, L i s t (Id e n t ,N u m) , L i s t Num) -> L i s t Num;
r u n (b l o c k , env , in p)

= c a s e b l o c k i n N i l -> N i l II Cons (com,corns) -> c a s e com in

Read k

-> r u n (corns, u p d a t e (e n v , k , #hd i n p) , # t l in p)

I I W r i te e

-> Cons (e v a l (e n v , e) , r u n (corns, e n v , i n p))

I I A l lo c (k , c s)

-> r u n (a p p e n d (c s , Cons (D e A l lo c ,c o r n s)) , Cons ((k , Z e r o) , e n v) , i n p)

I I DeA lloc

-> r u n (corns, t l en v , i n p)

I | A ss ig n (k , e)

-> r u n (corns, u p d a t e (e n v , k , e v a l (e n v , e)) , i n p)

II I f (e , c s l , c s 2)

-> # i f (e v a l (e n v , e) , r u n (ap p e n d (c s l , c o r n s) , e n v , i n p) ,

r u n (a p p e n d (c s 2 , c o r n s) , e n v , i n p))

I I W hile (e , c s)

-> # ru n ([I f (e , append (c s , b l o c k) , c o rn s)] , e n v , in p)

end

end;

A P P E N D I X C. I M P L E M E N T A T I O N O F S P E C I A L I S A T I O N 137

e v a l : : (L i s t (I d e n t ,N u m) , Exp) -> Num;

e v a l (e n v , e) = c a s e e i n

V al n -> n

II Id k -> lo o k u p (e n v , k)

II Op (o p e r , e l , e 2) ->

c a s e o p e r i n

Gt -> # g t (e v a l (e n v , e l) , e v a l (e n v , e 2))

II Mul -> #mul (e v a l (e n v , e l) , e v a l (e n v , e 2))

II Minus -> #minus (e v a l (e n v , e l) , e v a l (e n v , e 2))
end

end;

lo o k u p : : (L i s t (Id e n t ,N u m) , I d e n t) -> Num;

lo o k u p (e n v , k) = c a s e env in

Cons ((j , y) , j y s) -> i f (e q (k , j) , y , lo o k u p (j y s , k))

end;

u p d a t e : : (L i s t (I d e n t ,N u m) , I d e n t , Num) -> L i s t (I d e n t , Num);

u p d a t e (e n v , k , v) = c a s e env i n

co n s ((j , y) > j y s)
-> i f (e q (k , j) , Cons ((j , v) , j y s) ,

Cons ((j , y) , u p d a t e (j y s , k , v)))
end;

eq : : (I d e n t , I d e n t) -> Num;

eq (j , k) = c a se j i n

X -> c a s e k i n X->1 I I Y->0 I I Z->0 end

I I Y -> c a s e k i n X->0 I I Y->1 I I Z->0 end

I I Z -> c a s e k i n X->0 I | Y->0 I I Z->1 end

end;

i f : : (N u m ,a ,a) -> a ;

i f (n , x , y) = c a s e n i n Z ero -> y I I Succ m -> x end;

append : : (L i s t a , L i s t a) -> L i s t a ;

append (x s , y s) = c a s e xs i n

N i l -> ys

II Cons (z , z s) -> Cons (z , append (z s , y s))

end;

hd : : L i s t a -> a ;

hd xs = c a s e xs i n Cons (y , y s) -> y end;

A P P E N D I X C. I M P L E M E N T A T I O N O F S P E C I A L I S A T I O N 138

t l : : L i s t a -> L i s t a ;

t l xs = c a s e x s i n Cons (y , y s) -> y s end ;

g t : : (Num,Num) -> Num;

g t (n ,m) = . . . ;

mul : : (Num,Num) -> Num;

mul (n ,m) = . . . ;

m inus : : (Num,Num) -> Num;

minus (n ,m) = . . . ;

ex e c ([A l lo c (X,

C Read X,

W hile (Op (G t , Id X, V al 0) ,

[A l lo c (Y,

[A ss ig n (Y, Val 1) ,

W hile (Op (G t , Id X, Val 0) ,

[A s s ig n (Y, Op (Mul, I d Y, I d X)) ,

A s s ig n (X, Op (M inus, I d X, V al 1))]) ,
W r i t e (I d Y)]) ,

Read X]) ,

W r i te (Veil 0)])] ,

i n p u t

) : : L i s t Num

T h e result o f sp ecia lisa tion is the follow ing residual program . A part from altering
th e layout o f th e program (including sugaring th e sy n ta x of num bers and lists), and
d eletin g th e defin itions o f functions such as g t (>) , th e ou tp u t is unchanged . N ote
in particu lar th at different residual versions o f run are equipped w ith d istin ct typ es.

P r o j e c t i o n - B a s e d P a r t i a l E v a l u a t i o n

P a r t i a l l y E v a l u a t e d P rogram :

t y p e L i s t a = N i l + Cons (a , L i s t a) ;

A P P E N D I X C. I M P L E M E N T A T I O N O F S P E C I A L I S A T I O N 139

t y p e Num = Z ero + Succ (Num);

e x e c _ a : : L i s t (Num) -> L i s t (Num);

e i e c _ a a = r u n _ b (hd_c a , t l _ d a) ;

r u n _ b : : (Num, L i s t (Num)) -> L i s t (Num);

r u n _ b (a , b) = i:f_e (g t _ f (a , 0) , ru n _ g (1 , a , b) , [0]) ;

ru n _ g : : (Num, Num, L i s t (Num)) -> L i s t (Num);

ru n _ g (a , b , c) = i :f_e (g t _ l (b , 0) ,

ru n _ g (mul_h (a , b) , m in u s _ i (b , 1) , c) ,

Cons (a , ru n _ b (hd_c c , t l _ d c))) ;

hd_c : : L i s t a -> a ;

hd_c a = c a s e a i n Cons (y , y s) -> y end;

t l _ d : : L i s t a -> L i s t a ;

t l _ d a = c a s e a i n Cons (y , y s) -> y s end;

i f _ e : : (Num, a , a) -> a ;

i f _ e (a , b , c) = c a s e a i n

Z ero -> c

I I Succ m -> b

end;

g t _ i : : (Num, Num) -> Num;

g t _ f (a , b) = . . . ;

mul_h : : (Num, Num) -> Num;

mul_h (a , b) = . . . ;

m in u s _ i : : (Num, Num) -> Num;

m in u s _ i (a , b) = . . . ;

e x e c _ a i n p u t : : L i s t (Num)

S u b stitu tin g any value for the free variable in p u t in either the original or th e residual
program will g ive identica l results, but w ith sign ificantly less com pu tation needed in
th e latter case.

A p p e n d ix D

L ibrary F u n ctio n s

D . l G e n e r a l L ib rary F u n c tio n s

In ad d ition to th e standard prelude o f LML th e follow ing functions were needed.
M ost o f th ese are fairly fam iliar, but th ose th a t are less so will be exp lained.

m odule — LIBRARY.M

i n f i x r — c u r r i e d form o f z i p

i n f i x r "G2"; — a P P ly l u n c t i o n on p a i r s

i n f i x r " — c o m b in a to r f o r YN t y p e

e x p o r t f s t , s n d , c o n s , u n c u r r y , 0 2 , i d , / / , unz i p ,

l o o k u p , l o o k u p ’ .member,

map_ s e p ,m ap2, f e e d ,

m ake , r e p e a t . l i m i t , v a r s ,

j o i n , j o i n _ l i s t . m e r g e , m e r g e _ l i s t ,

c y c l i c , d f s , s p a n ,

YN, ' ' - , lookupYN, AppendYN, l i s t Y N ;

r e c f s t (x , y) = X

and sn d (x , y) = y
and cons (x , x s) = x . x s

and swap (x , y) = (y , x)

and u n c u r r y f (x , y) = f x y
and (* » g) «2 (x ,y) = (* g
and i d x = X

and [] / / ys []

1 1 xs / / [] = []

140

A P P E N D I X D. L I B R A R Y F U N C T I O N S 141

I I (x . x s) / / (y . y s) = (x , y) . (x s / / y s)

and u n z i p [] = (□ , □)

II u n z i p ((x , y) . x y s) = ((\ x s . (x . x s)) , (\ y s . (y . y s))) G2 (u n z i p x y s)

and lo o k u p ((n , v) . r e s t) m = i f n=m t h e n v e l s e l o o k u p r e s t m

and l o o k u p ’ d e l ((n , v) . r e s t) m = i f n=m t h e n v e l s e l o o k u p ’ d e f r e s t m

I I l o o k u p ’ d e f □ m = d e f

cind member xs x = mem x xs

In ad d ition to the usual map function , other variants are conven ient. T h e function
map2 is a binary version of map, and map_sep con caten ates th e result list but inserts
th e separator provided. T he feed function acts like m ap excep t th at a second , s ta te
like, param eter is fed dow n th e list. T his is used to pass a list o f new variable nam es
so th a t at each application th e function f has access to fresh variables.

and map2 f [] ys = []
1 1 map2 f xs [] = □
1 1 map2 f (x . x s) (y - y s) = H

i K . map2 f xs ys

and map_sep f s t r [] = []

1 1 map_sep f s t r Cx] = f X

1 1 map_sep f s t r (x . x s) = f X ® s t r G map_sep f

cind f e e d f [] n s = ([] , n s)

1 1 f e e d f (x . x s) n s = l e t (y , n s ’) = f x ns

i n ((\ y s . y . y s) , i d) ®2 f e e d f xs n s ’

The main use of make is in conjunction with constructors such as Prod where the con
structor is only required if the list is not a singleton. The function repeat generates
an infinite list of iterations of its function argument, and limit extracts the elem ent
of the list once stability has been reached. The list vars is an infinte list of distinct
variable names.

and make c [x] = x

I I make c xs = c xs

and r e p e a t f x = x . r e p e a t f (f x)

and l i m i t (x . y . r e s t) = i f x=y t h e n x e l s e l i m i t (y . r e s t)

and a t o z = " a b c d e fg h i jk lm n o p q r s tu v w x y z "

and v a r s = [f x] ; ; x < - a t o z] <D [(x . x s) ; ; xs <- v a r s ; x < - a t o z]

A P P E N D I X D. L I B R A R Y F U N C T I O N S 142

T he m erge function m erges ordered lists. Sim ilarly, th e j o i n function is used to m erge
ordered association lists. W hen th e nam es p and q are d istin ct the action is clear, but
w hen th ey are th e sam e their values are com bined. As th e m eth od o f com bination
d epends on th e situ ation w e use an extra param eter to describe it.

and m erge □ y s = y s

I I m erge xs [] = xs

I I merge (x . x s) (y . y s) = i f x<y th e n

i f x>y t h e n

and m e r g e _ l i s t = r e d u c e merge []

and j o i n f xs □ = xs

I I j o i n f □ ys = ys

II j o i n f ((p . x) . p x s) ((q , y) . q y s)

= i f p<q t h e n (p , x) . j o i n f p xs ((q , y) . q y s) e l s e

i f p>q t h e n (q , y) • j o i n f ((p , x) . p x s) qys e l s e

(p , f x y) . j o i n f p x s qys

and j o i n _ l i s t f = r e d u c e (j o i n f) □

W hen con structing projections we need to d ivide type defin itions in to m utually recur
sive groups. T his reduces to the problem of d etectin g strongly connected com ponents
in a d irected graph. T h e graph is represented as a list o f edges and a list o f vertices.

and c y c l i c es vs = l e t i n s w = [x ; ; (x , y) < - e s ; y=w]

and o u t s w = [y ; ; (x , y) < - e s ; x=w]

i n

sn d (s p a n i n s (□ , □) (s n d (d f s o u t s (□ , □) v s)))

and d f s r (v s , n s) [] = (v s , n s)

II d f s r (v s , n s) (x . x s) = i f member v s x t h e n d f s r (v s , n s) xs e l s e

l e t (v s ’ . n s ’) = d f s r (x . v s , []) (r x)

i n d f s r (v s * , x . n s ’ fins) xs

and s p a n r (v s . n s) [] = (v s , n s)

I | spam r (v s , n s) (x . x s) = i f member vs x t h e n sp a n r (v s , n s) xs e l s e

l e t (v s ’ . n s ’) = d f s r (x . v s , []) (r x)
i n sp a n r (v s ' , (x . n s ’) . n s) xs

T h e Y N typ e allow s cond itional responses. T he m ajor m eans o f com bin ing th ese is
through th e use of .
and

x . merge xs (y . y s) e l s e

y . merge (x . x s) y s e l s e

x . merge xs ys

A P P E N D I X D. L I B R A R Y F U N C T I O N S 143

t y p e YN * a *b = N *a + Y *b

and (N w) f = N w

II (Y x) f = f x

and lookupYN [] y = N (y C " n o t fo u n d ")

II lookupYN ((x , v) . x v s) y = i f x=y t h e n Y v e l s e lookupYN x v s y

and AppendYN xs = l i s tY N xs (\ y s . Y (co n e y s))

l i s tY N : : L i s t (YN a b) -> YN a (L i s t b)
and l i s tY N □ = Y □

II l i s tY N (x . x s) = addYN x (l i s tY N x s)

and addYN (N y) any = N y

I I addYN (Y x) (N y) = N y

II addYN (Y x) (Y x s) = Y (x . x s)

end

D .2 P a r s in g P r im it iv e s

In order to provide a accept PEL program s a parser is required. T his section contains
the prim itives used to construct it. T h e technique is described in [W ad85] and [FL89].
T he particu lar choice o f prim itives has been guided by experience.

m odule — PARSELIB.M

i n c l u d e " l i b r a r y . t "

i n f i x r " ! ! " ;

i n f i x r " . . " ;

i n f i x r " x . . " ;

i n f i x r " . . x " ;

i n f i x r " . s e p _ b y . " ;

i n f i x " . a s . " :

' o r e l s e ' , c o r r e s p o n d s t o I i n BNF

’t h e n ’ , BNF u s e s a s p a c e

’t h e n ' , d r o p p in g t h e l e f t hand v a l u e

’t h e n ’ , d r o p p in g t h e r i g h t h and v a l u e

r e t u r n s a l i s t d e l i m i t e d by t h e g iv e n s e p a r a t o r s

a p p l i e s s e m a n t ic f u n c t i o n s

export !! , . . , xx , . a s . , su c c e e d ,

o p t , many, some, . s ep _b y . , s a t , s k i p , l i t ;

r e c p i !! p2 = \ i n p . p i inp C p2 inp

and p i . . p2 = \ i n p . [((v , w) , i n p ’ ’) ; ; (v , i n p ’) < - p i inp;

(w , i n p ' ') < - p2 i n p ']

A P P E N D I X D. L I B R A R Y F U N C T I O N S 144

and p x . . q = p . . q . a s . snd

and p . . x q = p . . q . a s . f s t

and p . a s . f = \ i n p . [(f v , i n p ’) ; ; (v , i n p ’) < - p in p]

and s u c c e e d v = \ i n p . [(v , i n p)]

and o p t p v = \ i n p . [hd ((p !! s u c c e e d v) i n p)]

and many p = o p t (p . . many p . a s . c o n s) []

and some p = p . . many p . a s . cons

and p . s e p _ b y . q = p . . many (q x . . p) . a s . cons

and s a t p (c . l) = i f p c t h e n C (c , l)] e l s e []

I I s a t p [] = □

and l i t t = s a t (\ x . t = x)

and s k i p x (c . l) = i f x=c t h e n [(c , l)] e l s e s k i p x 1

II s k i p x □ = C (x , [])]

end

B ib lio g ra p h y

[Abr86]

[Abr88]

[AH87]

[Aug84]

[Bar88]

[BD77]

[BD89]

[BE88]

[BEJ88]

[BFSS87]

[BHOS76]

S. A bram sky. S tr ic tn e s s A n a ly s is a n d P o lym o rp h ic Invariance . In P ro
g ra m s as D a ta O bjec ts , LNCS 217, 1986.

S. A bram sky. N o te s on S tr ic tn e s s A n a ly s is f o r P o lym o rp h ic F unctions .
D raft paper, 1988.

S. A bram sky and C. H ankin (ed itors). A b s tra c t In te rp re ta t io n o f D eclar
ative Languages. Ellis H orwood, C hichester, E ngland , 1987.

L. A u gu stsson . A C o m p ile r f o r L a zy M L . P roceed ings of Lisp and F unc
tional Program m ing Conference, A u stin , T exas, 1984.

G. Barzdin. M ixed C o m p u ta t io n and C o m p i le r B asis . In [BEJ88], pages
15-26, 1988.

R. B ursta ll and J. D arlington . A T ra n s fo rm a t io n a l S y s te m f o r D evelop ing
R ecu rs ive Programs. Journal o f the AC M 24, pages 44-67, 1977.

A. B ondorf and 0 . D anvy. A u to m a t ic A u to p ro jec t io n f o r R ecu rs ive E q u a
tio n s w ith Global Variables an d A b s tra c t D a ta types . U npublished . 1989.

M .A . B ulyonkov and A .P . Ershov. H ow do ad-hoc C o m p ile r C o n s tru c ts
A p p e a r in U niversa l M ixe d C o m p u ta t io n P ro ce s se s?. In [BEJ88], pages
65-82, 1988.

D. Bjprner, A .P . E rshov and N .D . Jones (E d itors). P a r t ia l E va lu a t io n and
M ixe d C o m p u ta t io n . Proceed ings IFIP T C 2 W orkshop, G am m el Avernass,
D enm ark, O ctober 1987. N orth-H olland, 1988.

E .S . B ainbridge, P .J. Freyd, A. Scedrov, and P .J. S cott. F u n c to r ia l P o ly
m o rp h ism . In Logical F o u n d a t io n s o f F u n c t io n a l P ro g ra m m in g , A ustin ,
T exas, 1987, ed itor G. H uet. A ddison-W esley, 1989.

L. B eckm an, A. H araldson, 0 . O skarsson and E. Sandew all. A P ar tia l
E va lua tor , a n d I ts Use as a P ro g ra m m in g Tool. Artificial In telligence, Vol.
7, No. 4, pages 319-357, 1976.

145

B I B L I O G R A P H Y 146

[BM 75]

[B on 8 8]

[Bon89]

[B 11I8 8]

[B W 8 8]

[CD89]

[C G W 87]

[DB75J

[EH80J

[Ersh82]

[FA 8 8]

[F G S S 8 8]

[FL89]

[Fu t71]

R . B oyer a n d J .S . M oore . P ro v in g T h eo rem s about L I S P F unc tions . 3rd In
te rn a tio n a l J o in t C o n feren ce on A rtific ia l In te llig en ce , S ta n fo rd R esea rch
In s t i tu te , S ta n fo rd , C A , 1975.

A. B o n d o rf. Towards A Self-Applicable P a r t ia l E va lu a to r f o r T e rm R e w r i t
ing S y s tem s . In [B E J 8 8], pages 27-50, 1988.

A. B o n d o rf. A Self-Applicable P a r t ia l E v a lu a to r f o r T erm R e w r i t in g S y s
tem s. In T A P S O F T 89, ed ito rs J . D iaz a n d F . O re ias . L N C S 352, pages
81-95, 1989.

M .A . B u lyonkov . A Theoretica l A pp ro a ch to P o lyv a r ia n t M ixe d C o m p u
ta tion . In [B E J 8 8], p ages 51-64, 1988.

R . B ird a n d P. W ad le r. In tro d u c tio n to F u n c t io n a l P rogram m ing . Series
in C o m p u te r Science, e d ito r C .A .R . H o are , P re n tic e H all, 1988.

C . C o n se l a n d 0 . D anvy . P a rtia l E va lu a t io n o f P a t te r n M a tch in g in
S tr ings. Inf. P ro c . L e tt . 30, pages 79-86, 1989.

T . C o q u a n d , C. G u n te r , a n d G . W in sk el. D o m a in T heore tic M ode ls o f
P o lym o rp h ism . T ech n ica l R e p o r t 116, U n iv e rs ity o f C am b rid g e , 1987.

J . D a rlin g to n a n d R . B u rs ta ll. A S y s te m which A u to m a t ic a l ly Im p ro v es
Programs. 3rd In te rn a t io n a l J o in t C o n feren ce on A rtific ia l In te llig en ce ,
S ta n fo rd R esea rch In s t i tu te , S ta n fo rd , C A , 1975.

P. E m an u e lso n an d A. H a ra ld sso n . O n C o m p il in g E m bedded L anguages in
Lisp. P ro ce ed in g s o f th e 1980 L isp C o n feren ce , S ta n fo rd , C a lifo rn ia , pages
208-215, 1980.

A .P . E rsh o v . M ixe d C o m p u ta t io n : P o te n t ia l A p p l ica t io n s a n d P roblem s
f o r S tu d y . T h e o re tic a l C o m p u te r Science, Vol. 18, p ages 41-67, 1982.

D .A . F u lle r an d S. A b ram sk y . M ixed C o m p u ta t io n o f Prolog Programs.
New G e n e ra tio n C o m p u tin g , Vol. 6 , No. 2 ,3 , pages 119-141, 1988.

P .J . F rey d , J .Y . G ira rd , A. S ced rov , a n d P .J . S co tt. S e m a n t ic P a ra m e tr ic -
i ty in P o lym o rp h ic Lam bda Calculus. In 3 rd A n n u a l S y m p o s iu m on Logic
in C o m p u te r S c ie n c e , E d in b u rg h , S c o tla n d , 1988.

R . F ro s t a n d J . L au n ch b u ry . C o n s tru c t in g N a tu ra l Language In te rp re te r s
in a F u n c t io n a l Language. J o u rn a l o f th e B ritish C o m p u te r S ociety , A pril,
1989.

Y. F u ta m u ra . P a rt ia l E va lu a tio n o f C o m p u ta t io n P rocess— A n A pproach
to a C o m p iler -C o m p iler . S y stem s, C o m p u te rs , C o n tro ls , Vol. 2 , No. 5,
p ages 45-50, 1971.

B I B L I O G R A P H Y 147

[Fut83]

[GJ89J

[Gom 89]

[Hug87]

[Hug88]

[Hug89a]

[Hug89b]

[JM 86]

[Jon88]

[JSS85]

[JSS89]

[K ur88]

Y. F u ta m u ra . P a rtia l C o m p u ta t io n o f Programs. In R I M S S y m p o s ia on
So ftw are S c ien ce an d E n g in ee r in g , K yo to , Japan, 1982. E d ito rs E. G o to ,
e t al. L N C S 147, p ages 1-35, 1983.

C .K . G o m ard a n d N .D . Jo n es . C o m p iler G en era tio n by P a r t ia l E va lu a tio n :
A Case S tu d y . In fo rm a tio n P ro cessin g 89, e d ito r H. G a lla ire , IF IP , 1989.

C .K . G o m ard . H igher O rder P a r t ia l E v a lu a t io n — Hope f o r the L am bda
Calculus. M a s te r ’s T h esis , D IK U , U n iv e rs ity o f C o p e n h a g e n , 1989.

R .J .M . H ughes. A n a ly s in g S tr ic tn e s s by A b s tra c t In te rp re ta t io n o f C o n
tin u a tio n s . In [AH87], pages 63-102, 1987.

R .J .M . H ughes. B a ckw a rd s A n a ly s is o f F u n c t io n a l Programs. In [B E J88],
pages 187-208, 1988.

R .J .M . H ughes. A b s tra c t In te rp re ta t io n o f F ir s t O rder P o lym o rp h ic F u n c
tions. P ro ce ed in g s o f th e 1988 G lasgow W o rk sh o p on F u n c tio n a l P ro g ra m
m ing , R esea rch R e p o r t 8 9 /R 4 , U n iv e rs ity of G lasgow , 1989.

R .J .M . H ughes. P ro jec t io n s f o r P o lym o rp h ic S tr ic tn e s s A na lys is . In C a t
egory T h eo ry in C o m p u te r S c ie n c e , M a n c h es te r , 1989.

N .D . Jo n es a n d A. M y cro ft. D ata F low A n a ly s is o f A pp lica tive Program s
Using M in im a l F u n c t io n Graphs. P ro ceed in g s of th e T h ir te e n th A C M
S y m p o siu m o n P rin c ip le s o f P ro g ra m m in g L an g u a g es , S t. P e te rs b u rg ,
F lo r id a , p ag es 296-306, 1986.

N .D . Jo n es . A u to m a t ic Program Spec ia liza tion: A R e -E x a m in a t io n f r o m
B a s ic P rinc ip les . In [B E J88], pages 225-282, 1988.

N .D . Jo n es , P. S esto ft a n d H. S p n d e rg a a rd . A n E x p e r im e n t in P a r t ia l
E va lu a tio n : The G en era t io n o f a C o m p ile r G enera tor . In R ew ri t in g Tech
n iques a n d A p p l ic a t io n s , e d i to r J .-P . J o u a n n a u d , L N C S 202, pages 124-
140, 1985.

N .D . Jo n es , P . S esto ft a n d H. S p n d e rg a a rd . M ix: A Self-A pp licab le P a r t ia l
E v a lu a to r f o r E x p e r im e n ts in C o m p ile r G enera tion . L isp a n d S ym bolic
C o m p u ta tio n , 2, p ages 9-50, 1989.

P. K u rsaw e. P ure P a r t ia l E va lu a t io n and In s ta n t ia t io n . In [B E J88], pages
283-298, 1988.

[Lau88] J . L au n ch b u ry . P ro jec t ions f o r Specia lisa tion . In [B E J88], pages 299-315,
1988.

B I B L I O G R A P H Y 148

[LR64]

[LS87]

[M ar80]

[Mil78]

[Mog86]

[Mog88]

[Mog89]

[Mos79]

[M W 87]

[M yc81]

[Nie88]

[O st88]

[Pier88]

[Plo78]

[RB88]

L .A .L o m b ard i a n d B .R ap h a e l. Lisp as the Language f o r an In c r e m e n ta l
C o m p u ter . In The P ro g ra m m in g Language L isp: I ts O pera tion an d A p
p lica t io n s , e d ito rs E .C . B erke ley a n d D .G . B obrow , p ages 204-219, M IT
P re ss , 1964.

J .W . L loyd a n d J .C . S h ep h erd so n . P a r t ia l E va lu a t io n in Logic P ro g ra m
m ing . T ech n ica l R e p o r t C S-87-09 , U n iv e rs ity of B ris to l, E n g la n d , 1987.

P. M artin -L o f. In tu i t io n is t ic Type Theory . B ib lio p o lis , 1980.

R . M ilner. A theory o f type p o ly m o rp h ism in p rogram m ing . JC S S 17, pages
348-375, 1978.

T . M ogensen . The A p p lica tio n o f P a r t ia l E va lu a t io n to R a y -T ra c in g . M as
t e r ’s T h es is , D IK U , U n iv ers ity o f C o p en h ag e n , 1986.

T . M ogensen . P a rtia lly S ta t ic S tru c tu re s in a Se l f-A pp licab le P a r t ia l E va l
uator. In [B E J88], pages 3 2 5 -3 4 7 , 1988.

T . M ogensen . B in d in g T im e A sp ec ts o f P a r t ia l E va lua tion . P h .D . T h esis ,
D IK U , U n iv e rs ity o f C o p en h ag e n , 1989.

P .D . M osses. S I S — S e m a n t ic s Im p le m e n ta t io n S y s te m , R e ference M a n u a l
a n d User Guide. D A IM I R e p o r t , M D -30, U n iv e rs ity o f A rh u s , D e n m a rk ,
1979.

P .D . M osses an d D .A . W a tt . The use o f ac t ion sem a n t ic s . In F o rm a l D e
scr ip t io n o f P ro g ra m m in g C o n cep ts I I I , e d ito r M . W irs in g , p ag es 135-163,
N o rth -H o lla n d , 1987.

A . M y cro ft. A bstrac t In te rp re ta t io n a n d O p tim iz in g T ra n s fo rm a t io n s f o r
A p p lica t ive Programs. P h .D . T h es is , U n iv e rs ity o f E d in b u rg h , 1981.

F . N ielson . A F o rm a l Type S y s t e m fo r C o m p a r in g P a r t ia l Eva lua tors . In
[B E J88], p ag es 349-384, 1988.

B .N . O stro v sk y . Im p le m e n ta t io n o f C ontro lled M ixe d C o m p u ta t io n in
S y s t e m f o r A u to m a t ic D e ve lo p m e n t o f L a n g u a g e-O r ie n te d P arsers . In
[B E J88], p ag es 385-403, 1988.

B . P ie rce . A Taste o f C a tegory T h eo ry f o r C o m p u te r S c ien t is ts . R esea rch
R e p o r t C M U -C S -88-203 , C a rn e g ie M ellon U n iv ersity , 1988.

G .D . P lo tk in . C om ple te P a r t ia l Orders, a Tool f o r M a k in g M ean ings . L ec
tu re n o te s for th e P isa S u m m ersch o o l, 1978.

D .E . R y d e h e a rd an d R .M . B u rs ta ll . C o m p u ta t io n a l C ategory Theory. Se
ries in C o m p u te r S cience, e d ito r C .A .R . I lo a re , P re n tic e H all, 1988.

B I B L I O G R A P H Y

[Rey74]

[Rom 88]

[RT89]

[Sch86]

[Sch88]

[Sco76]

[Ses86]

[Ses88]

[Str67]

[Tof84]

[Tur79]

[Tur86]

[W ad85]

[W ad88]

[W ad89]

J .C . R ey n o ld s. Towards a T h eo ry o f Type Stim cturc . In th e p ro ceed in g s of
th e Colloque su r la P ro g ra m m a t io n , e d ito r B. R o b in e t, L N C S 19, 1974.

S .A . R o m an en k o . A C o m p ile r G e n era to r Produced by a Self-A pp licab le
Spec ia l izer Can H ave a S u rp r is in g ly N a tu ra l a n d U nders tandable S t r u c
ture. In [B E J88], pages 445-463, 1988.

T . R eps a n d T . T e ite lb au m . The S y n th e s i z e r G enera tor: A S y s te m fo r
C o n s tru c t in g Language-B ased E ditors . S p rin g e r-V erlag , 1989.

D .A . S ch m id t. D en o ta t io n a l S e m a n tic s . A llyn a n d B aco n , Inc. M as
s a c h u s e tts , 1986.

D .A . S ch m id t. S ta t ic P roper t ies o f P a r t ia l E va lua tion . In [B E J88], pages
465-483, 1988.

D. S co tt. D a ta Types as Lattices. S IA M J o u rn a l o f C o m p u tin g , Vol. 5, No.
3, 1976.

P. S esto ft. The S tru c tu re o f a Se lf-A pp licab le P a r t ia l Eva lua tor . In P ro
g ra m s as D ata O bjec ts , e d ito rs H. G a n z in g e r a n d N .D . Jo n es , L N C S 217,
p ages 236-256, 1986.

P. S es to ft. A u to m a t ic Call U nfolding in a P a r t ia l E valuator . In [B E J88],
p ag es 485-506, 1988.

C. S trach ey . F u n d a m e n ta l C o n cep ts in P ro g ra m m in g Languages. L ec tu re
N o tes , In te rn a tio n a l S u m m er School in C o m p u te r P ro g ra m m in g , C o p e n
h ag e n , 1967.

M . T o fte . C o m p iler G e n e ra to r s— W h a t T h e y C an Do, W h a t T h e y M ight
Do, a n d W hat T h ey W ill Probably N e v e r Do. M a s te r ’s T h es is , D IK U ,
U n iv e rs ity of C o p en h ag e n , 1984.

V .F . T u rch in . A S u p erco m p ile r S y s t e m B a sed on the Language Refal. S IG -
P L A N N otices, Vol. 14, No. 2, p ag es 46-54, 1979.

V .F . T u rch in . The C oncep t o f a Supercom piler . A C M T O P L A S , Vol. 8,
No. 3, pages 292-325, 1986.

P . W a d le r. H ow to Replace Failure by a L is t o f Successes. F P C A 85, L N C S
201, 1985.

P . W ad le r. D efores ta t ion : T ra n s fo rm in g P r o g m m s to E l im in a te Trees.
E S O P 88, L N C S 300, 1988.

P . W ad le r. T heorem s f o r F m e! F P C A 89, Im p e r ia l C ollege, L o n d o n , 1989.

B I B L I O G R A P H Y 150

[W B89]

[W H87]

P. W a d le r a n d S. B lo tt . H ow To M ake A d-hoc P o ly m o r p h is m Less Ad-hoc.
P O P L 89, A u s tin , 1989.

P . W ad le r a n d R .J .M . H ughes. P ro jec t ions f o r S t r ic tn e s s A na lys is . F P C A
87, P o r t la n d , O reg an , 1987.

