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A b stra ct

Par t ia l  eva luat ion is becoming ever more  promising as a p ro gr am ming  tool. Parly 

par t ia l  evaluators  dep ended  over much on the  source pro gr am  being wri t ten  in a 

par t ic ula r  style,  an d  needed certain ad hoc op t imisa t ions  to produce  good results.  

T h e  pract ice  of pa r t i a l  evaluation is now fairly well developed but  the  theoret ical  

underp inn ings  are not  equally well unders tood.

A par t ia l  eva lua to r  takes  a program,  together  with some of the  input  to the  program,  

and produces  a  new program.  This new, or residual,  p ro gr am  is an opt imised version 

of the  old, having taken the  input  d a t a  into account.  Work under ta ken  at  D1KU in 

C openhagen has shown the  impor tan ce  of prior analysis of the  program.  Thi s  binding-  

t imc analysis  discovers which values wi thin the  pro gram  may  bo com pu ted  dur ing 

par t ia l  eva lua t ion— called s ta t ic  values and which values may not the  dynamic  

values.

In this thesis we propose  using domain projec t ions  in b inding- t ime analysis.  This  

allows a greate r  level of d a t a  separa t ion than  before because  values are no longer 

t r ea ted  atomical ly.  In par t icular ,  we are able to p inpoint  s ta t ic values wi th in  d a t a  

s t ructu re s  conta in ing b o th  s tat ic and dynamic  par ts .  An interest ing consequence of 

using domain  projec t ions  is t h a t  we are able to d em o n s t r a t e  an in t im at e  re la t ionship 

between b inding- t ime analysis and s tr ic tness  analysis.

De pen den t  sum and produc t  are familiar from const ruct ive  type  theory.  Wo give a. 

less familiar domain - theore t ic  definition and show how projections  de te rm ine pa r t i c 

ular  d ep enden t  sums. T h e  pract ical  appl ica tion of this result  is to gene ra te  residual 

functions  whose types  depend on the  s tat ic values from which they wore produced.  

Cer ta in  op t imis ing techniques ,  such as t ag  removal  and ar ity  raising, arise as a direct, 

consequence.

We extend the  use of projec t ions  to polymorph ic  programs,  giving a pract ical  a p 

plicat ion of developments  in the  theory  of polymorph ism.  Polymorphic  functions 

are regarded as na tu ra l  t rans fo rmat ions  betwc'en ap p r o p r ia te  functors.  Thi s  leads to 

three  benefits:  polymorph ic  functions are analysed once and the  result  reused; the  

s ta t ic  inpu t  to polymorphic  functions is described by polymorphic  projec t ions,  which 

reduces tin'  search space of th(' analysis;  and polymorphic  functions are specialised 

to po lymorphic  values,  leading to polymorphic  residual functions.



P reface

This  thesis is su b m i t t ed  in par t ial  fulfillment of the  requirements  for a. Doc tor  of 

Ph i losophy Degree a t  Glasgow University. It comprises a s tudy  of par t ia l  evaluat ion,  

wi th  the  thesis t h a t  domain  projec t ions  provide  an i m p o r t a n t  theoret ical  and pract ical  

tool for its development .

O ur  aim,  therefore,  is not  so much to describe a s t ronger  or more  robust  par tial  

eva lua to r  t h a n  has been achieved hi ther to ,  bu t  to improve our u n d er s ta nd in g  of the  

par t ia l  eva luat ion process.  Because of this much of the  thesis is theoret ical .  However,  

to d e m o n s t r a t e  t h a t  the  ideas are also pract ical ,  they have been implemen ted.  As a 

result ,  the  chap ter s  tend  to a l ternate  betwevn theory and practice.  In C h a p te r  1 we 

explore the  principles of par t ial  evaluat ion and in C h a p te r  2 we s tudy the  a lgor i thms 

and techniques  used.  In C hap ter s  3 and 4 we address the  issue of b inding- t ime a n a l 

ysis. C h a p t e r  3 conta ins  theory,  including the  re la t ionship between congruence in 

b inding- t ime analysis an d  safety in st rictness analysis,  and C h ap te r  4 the  practice'  

the  equa t ions  used in an implemen ta t ion and a proof  of thei r  correctness.  In C h a p te r  

5, we discuss the  n a tu re  of residual functions  and thei r  run- t ime argum ent s ,  and de 

velop a theore tica l  f ramework based on dependent,  sums of domains .  T h e  pract ical  

impl ica t ions  of this are  seen in C h a p te r  6 where we bring the  mater ia l  from the  pre

vious chap ter s  together  in a working projec t ion-based par tia l  evaluator .  In C h a p t e r  

7 we tu rn  our  a t t en t ion  to po lymorph ism to address  some of the  issues it, raises, 

and C h a p te r  8 concludes the  thesis. T h e  appendices  which follow contain a n n o ta t e d  

listings of the  programs used to cons t ruct  the  final polymorphic  par t ia l  evaluator.

To a large ex ten t  this thesis is self conta ined.  No prior knowledge of par t ial  ('val

uat ion is needed,  since a comprehensive  in t roduct ion is included.  However,  some 

knowledge of o ther  areas is assumed,  in par t icular  an e l em enta ry  un der s ta nd in g  of 

both  functional  language's and domain theory,  f o r  C h ap te r s  5 arid 7 a l i tt le cat,('gory 

theory  is useful but ,  again,  nothing too de'ep. In each case' ap pr opr i a t e  background 

mater ia l  may be found in any of the  s t andar d  references. Bird and YVadler provides

n



an excel lent  in t roduct ion to funct ional prog ramming [BW88] and S c h m id t ’s chapters  

on dom ain  theory  are  very readable [Sch86]. Ther e  are few easy in t roduct ions  to 

ca tegory  theory,  bu t  b o th  R ydehea rd  an d  Burstall  [RB88] and Bierce [Bier88] could 

be  recom mended.  Finally,  the  reader is encouraged to follow up some of the  m any  

excel lent  references on par t ia l  evaluation t h a t  are included in the  bibliography.
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C hapter 1 

P artia l E valuation  in P rin cip le

T h er e  seems to be  a  fu ndamenta l  d ichotomy in com put ing  betw<ven clari ty and ef

ficiency. F rom the  p ro g r a m m e r ’s point  of view it is des irable to break a problem 

into subproblems and to tackle each of the  subproblems independent ly .  Once these 

have been solved the  solutions are  combined to provide' a solut ion to the  original 

problem.  If t h e  decomposi t ion has been well chosen,  the  final solut ion will be a clear 

im p le menta t ion  of the  a lgor i thm,  bu t  because' of intermeeliate'  value's passing be'twe'e'n 

the  various modules ,  wh e the r  they are functions and procedures or s ep a ra te  processes 

connected by pipes,  the  solution is unlikely to be as efficient as possible.  Conve'rse'ly, if 

efficiency is considereel pa r am o u n t ,  many  logically se'parate computa t ions  may  need to 

be  performed together .  As a consequence,  the  a lgor i thm will be reflected less directly 

in the  progr am ,  and correctness may be hard  to ascertain.  Th us ,  in most, programs 

we find a t radeoff between these conflicting requirements  of clarity and efficiency.

An ex t r eme form of modular isa t ion  is to wri te prog rams in an in terpre t ive style,  where 

flow of control  is de t ermined by stored da ta .  P rograms  in this s tyle are comparat ively  

easy to prove correct  and to modify when requirements  change,  but  are  well known 

to have ext remely  poor run- t ime beh av io u r— often an order  of m a gn i tude  slower than 

thei r non- in tcrpre t ive  counterpar ts .  Because of this,  the  in terpre t ive style tends  to 

be used infrequently and in non t ime-cri t ical  contexts.  Ins tead,  flow of control  is 

de te rm ined deep wi th in the  program where a reasonable level of efficiency may  be 

obta ined.

Par t ia l  evaluat ion is a serious a t t e m p t  to tackle this issue. In principle it allows the 

p ro g ram m er  to write in a heavily in terpre tive  style wi thout  paying the  corresponding 

price in efficiency. At  partial  evaluation tunc  (compare  with compile t im e ) m any  of 

tin; in terpre t ive  computa t ions  are performed once and for all, and a new program is

1



C H A P T E R  1. P A R T I A L  E V A L U A T I O N  IN  P R I N C I P L E

produced.  Flow of control  decisions are  moved from s tored d a t a  into the  s t ru ct u re  of 

the  new program.

Correctness  is p a r a m o u n t  for par t ia l  evaluat ion to be widely useful. Opt imisa t ion 

phases in m a n y  compi lers regularly in t roduce bugs and so are often d i s t rus ted  by 

pro gr am mers .  This  is rarely serious because  most  opt imisers  may be swi tched off 

wi th  l itt le loss— they  often give only a marginal  improvement  anyway. With  par tial  

eva lua t ion the  s i tua t ion is very different. In choosing an  in terpre t ive  style the  pro 

g ra m m e r  will be  relying on the  par t ia l  evaluat ion process for making the  program 

reasonab ly  efficient. If t h e  t rans fo rma t ion  does not  preserve th e  semant ics of the  

source prog ram,  th en  the  par t ia l  evaluat ion process cannot  be relied upon,  and the  

p ro g ra m m e r  will re turn  to the  original style.

T h e  pur po se  of this chapte r  is to survey par t  ial ( 'valuation.  O u r  in tent ion is to provide 

in tu i t ion  as to w h a t  par t ia l  evaluat ion is and to consider some appl ica tions .  T h e  name 

part ial  evaluation  is one of a nu mber  used to describe the  same process. Others  arc' 

mixed computat ion  (because the  com put a t ion  opera te s  on a mix of program text  

and prog ram  d a ta ) ,  pro gmm specialisation (because the  new program is a specialised 

version of the  old one),  and program projection (because  in some sense we construct, 

a projec t ion collapsing the  first a rgumen t) .

1.1 C orrectn ess

Let us p u t  all this in a more  concrete set ting.  Suppose  we have a program which 

we in tend to run often.  Also suppose t h a t  for m any  of the  runs some of the  input  

d a t a  will remain const ant .  This  means t h a t  m an y  of the  same' com pu ta t ions  will bo 

per formed repeatedly .  We would like to genera te  a new program from the  old one 

incorporat ing the  d a t a  t h a t  remains  constant .  T h e  new program should have the  

sam e behav iour  when given the  rema inder  of the  input  as the  original did with all 

the  input .  Moreover,  those  com pu ta t ions  t h a t  would have been performed repeatedly  

should be  performed jus t  o n c e —-when the  new progr am  is being produced.  This  la t ter  

condi t ion  can never be completely satisfied but  exists as a goal of partial  ( 'valuation. 

In cont ras t ,  the  former condi t ion is a requir ement  t h a t  should be satisfied by ('very 

par tia l  evaluator.  We can express it more formally.

f o r  historical  reasons we call our partial  ( 'valuator mix  (from “mixed c o m p u t a t i o n ” ). 

Suppose  t h a t  tin* program takes two a r g u m e n ts  and t h a t  we want, to specialise it, to 

its first a r gu ment .  If we define,
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f x =  m ix f  x 

then we require t h a t  

fx V =  /  x y

T h e  no ta t ion  we use is in tended to draw a  dist inc tion between a  p rogram  an d  the  

funct ion or ope ra t ion  t h a t  the  p rogram  computes .  T hus  if /  is a function,  then  /  is 

some p rogram  defining t h a t  function.  More generally, if x is a value of any type  then  x 

is a p ro g ram  (or piece of progr am  text )  defining t h a t  value. T h u s  the  function mix  (as 

defined by a program mix)  takes  two programs as a rgume n ts  and re turns  a program 

as a r e su l t1. Similarly, in the  example  above, fT is a program defining the  specialised 

function f x . Not ice t h a t  this nota t ion does not  preclude some non-overl ined variable 

from having a pro gram  value.

We describe the  first p a r am e te r  as static.  We expect  t h a t  it will not  vary for some 

n um ber  of runs but ,  more  impor tant ly ,  its value is known dur ing par t ia l  evaluation.  

T h e  second pa ram eter ,  whose value is not  known until  run- t ime,  is described as 

dynamic .  Clearly there are natu ra l  general isat ions  of the  correctness condit ion ,  where 

a function m ay  have m an y  paramete rs ,  some subset  of which are static.  One of the  

aims of this thesis is to generalise fur ther,  so th a t  individual par am et er s  may have 

both  s ta t ic  an d  dynam ic  par ts .

1.2 A p p lica tio n s

Par t ia l  evaluat ion has a  long history. Lombardi  and Raphael  used it in LISP to 

handle  incomplete  d a t a  [LRC4]. F u ta m u r a  [FutTl] realised t h a t  partial  evaluation 

could be used to derive compilers from interpreters.  We will look at  his idea in 

some detail .  Boyer an d  Moore used par t ial  evaluat ion in a theorem prover for LISP 

functions  [BM75], and Dar l ington and Burs tal l  used it to opt imise procedures [DB75]. 

So far, par t ia l  evaluators  have not  been sufficiently powerful to be widely useful, 

even thou gh  a t eam  at  Linkoping University considered using par t ial  evaluation as a 

general  pu rpose  program ming  tool as early as 1976 [BIIOS70]. More recently, interest, 

in par t ial  ( 'valuation has resurfaced as the  process has become bet t er  unders tood.

' T h e  o v e r b a r  n o t a t  i on h a s  b e e n  i n t r o d u c e d  h e r e  i n s t e a d  o f  t h e  m o r e  c o m m o n  f o r m  L mi x  f  x 

[JSSHfj] a s  i t  m a y  e x p r e s s  m u l t i p l e  l eve l s  o f  r e p r e s e n t a t i o n  m o r e  eas i ly .  N o t e  t h a t  o v e r b a r  is not,  a  

f u n c t i o n :  /  a n d  /  a r e  m e r e l y  d i s t i n c t  l ex i ca l  s y m b o l s  w h o s e  m e a n i n g s  a r c  r e l a t e d .
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In this section we will consider some of the  most  promising applicat  ions of program 

special isation.  Many  of these have appeared in [Frsh82], [Fut.83] and [Tur8(>] amongst  

others.

1 .2 .1  A u t o m a t ic  C o m p ila t io n

Historically,  au to m a t i c  compi lat ion was one of the  earliest  appl ica tions  of par t ia l  

evaluat ion to  be  proposed.  Suppose t h a t  int is an in terp re ter  for some language*, and 

t h a t  prog is a  p ro g ram  in th a t  language.  W he n  we run the  pro gram  prog using the  

in te rp re te r  along wi th some input  d a t a  data we compute  the  result,

result — iut prog data

For m a n y  runs  of int we would expect  the  prog a r gu ment  to bo constant, ,  varying 

only the  data a rgumen t .  T h e  same ins t ruct ions will have to be in terp re ted  again and 

again.  Let us therefore specialise the  in te rpre ter  to its first a rgu ment .

ini prog =  m ix int prog

T h e  result  of the  specialisation is a program (in the  language’ in which int is written) 

which compu tes  some function intprog. Hy the  correctness condi t ion we know tha t ,

iu tprog data = int prog data

T h e  action of in tpTOg on t h e  d a t a  is the  same’ as the* action of prog when in terpre ted  

by int.  B ut ,  unlike prog,  the  function intprog doe’s not require an in terpre ter .  T h u s  

in tprog is a compi led equivalent  of prog. 'Flu’ com pu ta t ions  usually performed by int 

every  t ime it is run will have been performed by mix  dur ing specialisation.  These  are 

the  com pu ta t ions  t h a t  relate to the  stat ic proper t ies  of prog. In principle,  the  only 

com pu ta t ions  of int t h a t  intprog needs to perform are those  t h a t  depend  on data ( tha t  

is, on the  dynamic  propert ies  of prog). Of course this is an idealistic picture’. How 

far this ideal is a t t a i ned depends  on many  factors.

This  use of par t ia l  evaluation is known as the  jirst Futamura projection.
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1 .2 .2  P r o d u c in g  C o m p ile rs  A u t o m a t ic a l ly

We can take  the  process fur ther.  If we had m an y  different prog rams  to compile,  

we would  com pu te  mix int progi for each of the  programs prog,. T h e  int p a r am ete r  

to mix  is unchanged in each of these  com pu ta t ions .  So it l ikewise makes  sense to 

specialise mix  to the  in terpre t er  pr og ram  int.  How do we do this? We use mix  itself. 

Applying the  mix  equa t ion  to itself gives

m i x r— - mix m ix  inti nt

Again the  result  is a  p ro g r am  comput ing  a function.  W h a t  sort  of function is m i x ^ - I  

By the  correctness condi tion,

mixr~t prog — m ix  int prog
—  i n t p r0g

But  in tprog is the  compiled version of prog.  T h e  function ^Lxr-( is therefore playing 

the  role of a compiler.  This  is the  second F u t a m u m  projection.  By specialising mix  

to an in terp re ter  for some language we obta in  a compi ler  for tha t  language.  T h e r e  is, 

of course,  110 requ iremen t  th a t  the  two mix'1 s are ident ical  as long as they are both  

s pec ia l i s e s ,  b u t  there  is a certain elegance when they are the  same.

We can take  one final step.  If we have many  in terpre ters  to tu rn  into compi lers,  we 

will need to ca lculate m ix  mix  int{ for each in te rp re te r  int,.  In each ca.se the  mix  

pa r am e te r  remains  unchanged.  It makes  sense, therefore,  to specialise mix  to itself.

m ix = m ix m ix m ix
m i x

By the  correctness condit ion,

m i x — int =  m ix mix int
m i x  ______________

=  m i x r-
1 nt

T h e  function m i x ^  is a  compi ler  generator ,  ( l iven an in terpre t ive definition of 

a language (an execu tab le  denota t ional  semantics ,  for example)  m i x produc t’s a 

compiler.  T h e  po ten t i a l  of this,  t h e  third F u t a m u m  projection,  was ac tual ly  first 

noticed by Turchin in 1979 [Tur79], bu t  it was not  unti l  the  mid-19N0\s t h a t  it was 

realised in pract ice.  Working in a purely functional  subset  of LISP, the  group at 

DIKIJ,  Copenh agen,  led by Neil Jones ,  produced a version of mix  t ha t  was able to



C H A P T E R  1. P A R T I A L  E V A L U A T I O N  IN  P R I N C I P L E 6

specialise a  copy of itself to itself [JSS85]. Using the  result (now called cogcn by the  

Dan ish  group)  they were able to convert  in terpre ters  into compi lers for a nu m b er  of 

smal l example  languages.  T h e  compilers produced code th a t  ran between 5 an d  20 

t imes  fas ter t h a n  the  in terpre ted  programs did,  and the  code quali ty of the  compi ler  

i tself was qui te  reasonable.  In C h ap te r  2 we will s tudy thei r a lgor i thms in some detail .

Unde rs tand ing  precisely the  link between compilers and in terpre ters  is im p o r tan t .  

Barzdin  ex t ra c t s  a compi ler  basis from an in terpre t er  and uses this to cons t ruc t  

a compi ler [Bar88]. Bulyonkov and Ershov have und er taken  com plem en tar y  work 

[BE88]. T h e y  a t t e m p t  to unde r s ta nd  where the  t radi t ional  compiler  s t ruc tu res  come 

from. W h e re  in an in te rp re te r  are the  proto  versions of object  code t emplates ,  symbol  

tables,  t h e  s tack,  and so on? Is it possible for these s t ructu res  to be created by partial  

evalua t ion alone?

1 .2 .3  E m b e d d e d  L a n g u a g es

T h e  goal of producing compilers autom at i ca l ly  for product ion languages  is st ill some 

way off. Automat i ca l ly  genera ted  compi lers are unable to co m pe te  effectively against, 

h an d  wri t ten  compilers,  and for commercial ly available languages it is wor th  e x p e n d 

ing h u m a n  effort to ob ta in  high quality.  In o ther  s i tuat ions ,  au tomat i ca l ly  produced 

compi lers  are more  appropr ia te .  For example,  Emanuelson and I laraldsson used p a r 

tial evaluat ion to compi le extens ions  to LISP [ElISO]. T h e  extens ions  wore defined 

in tcrpre t ively  and,  prior to execut ion,  were opt imised by par tial  ( 'valuation.  In the  

reference they give a detai led example  involving a p a t t e rn  matching  extens ion.  Their  

results compared well with those given by a commercial  compiler.

T h e  concept  of language extension can be  taken fur ther .  Some hard  problems become 

more  t r ac tab le  throug h the  use of an  in termedia te  language'. T h e  p ro gram me r  writes 

an in te rp re te r  for some problem-specific language,  and then writers the  solut ion to 

the  pro blem  in t h a t  language.  Occasional ly it is convenient  to have more  than  one 

in te rm ed ia te  language and to form an in terpre tive  tower,  where  each language in ter 

pre ts  t h e  one above.  It is imperat ive  to have some means  of collapsing such towers 

au tom at ica l ly  once the  program is wr i t ten ,  because each interpre tive  layer represents  

an orde r  of m ag n i tu d e  loss of efficiency. Only when this is possible will this approach 

to p ro g ram m ing  become pract icable.

So far, the  applica t ions  have been or ien ta ted  towards  p ro gr am ming  languages.  There  

are o the r  areas  for which par tial  evaluation shows promise.
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1 .2 .4  R a y  T rac in g

In his M a s t e r ’s thesis,  Mogensen reports  on an expe r im ent  involving ray t rac ing 

[Mog86]. A ray- t race r  is a function ray of two arguments :  a scene s and a view

point  v. T h e  result  of comput ing  ray s v is a p ic ture  of the  scene as it appear s  from 

the  given viewpoint .  Typically,  ray-t racers are  heavily in terpre t ive  -many flow-of- 

control decisions are based on the  scene which has  to be  constan t ly  re-examined.  If 

the  the  ra y- t r ac er  is specialised to the  scene, these control  decisions become bui lt  

into the  s t ru c tu re  of the  residual program.  This  pro gram  compu tes  a function rays 

which,  when given a viewpoint,  draws the  scene from t h a t  point .  Because rays is no 

longer in terpre t ive ,  the  specialised ray- t racer  is able to draw the  scene rapidly from 

any required viewpoint .

Surprisingly,  Mogensen found t h a t  even if only one view was required,  it proved to 

be faster to  specialise the  ray- t racer and then run the  specialised version,  th an  it 

was to run the  original.  In re trospect  the  reason is clear. In the  original  ray- t racer  

t he  scene descript ion is examined m any  t imes involving many  repeated  co m pu ta t ions  

whereas  in t h e  specialised version these  arc reflected in the  p rogram s t ructu re .  This  

parallels th e  familiar s i tua t ion in p rogram ming  where,  for most programs,  compi ling 

then running  the  prog ram  is faster than  using an interpre ter.

Simi lar  principles m ay  be  seen a t  work in the  following (speculat ive) examples .

1 .2 .5  T h e o r e m  P r o v in g

A theorem prover  takes  a set of axioms and a theorem,  and determines  whe the r  the  

theo re m is a consequence of the  axioms or not.  We could represent, it as a function 

prove  taking  two a rgum ent s ,  axioms a and theo rem /. Because of the  in terpre t ive  

na tu re  of prove  and because  the  sot of axioms a may bo used repeatedly,  it makes  

sense to  specialise prove  to  a. T h e  result,  provea, is a theorem prover optimised to 

prove theorem s der ivable from the  axioms a. In essence prove  is an in terp re ter  for a 

rest ricted “p ro g ram ming  language” where sets of axioms correspond to “p ro g ra m s ” . 

R a th e r  th an  in terp re t  the  “prog ram ” a afresh for each new theorem,  we “compi le” a 

to give provea to use ins tead.

Of  course,  ins tead of ca lcula t ing mix prove a directly, we can first use mix  — to obta in
t  o  i  j i m u

a  “compi ler” for prove , namely mix —Vf. We can use this and com pute  m ix p—-lf a to 

obta in  provea. Moreover,  if we have an a l t e rna te  set of axioms a', we can apply
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m ix p —ve to a'  to  p ro duc e  provea>. This example  shows t h a t  m i x is a compi ler  

gene ra to r  in a broad sense of the  term and is not  rest ricted to p ro gr am ming  languages.

1 .2 .6  E x p e r t  S y s te m s

Very s imilar  me thods  may be applied to exper t  sys tems. We can regard an expe r t  

sys tem as consist ing of three  par ts ,  an inference engine i n f e r , a set of rules r and a 

set of facts / .  Let us suppose  t h a t  the  result ,  given by infer r / ,  is the  set of facts 

deducible  from /  using the  rules r. A general  inference engine proceeds  interpretively.  

It takes  the  set of facts,  chooses a rule, and determines  whether  the  rule is applicable 
to the  facts.  If so the  newly inferred fact is added to the  body  of facts. T hen  the  next  

rule is considered,  and  so on. In pract ice this approach  turns  out  to he  too slow to bo 

useful, especially when m any  rules and facts are being m an ipula t ed .  It is par t icular ly 

acu te  when the  exper t  sys tem is hierarchical ,  i.e. when t h e n ’ are rules that  govern 

the  applicabil ity of o ther  rules. Usually, the  problem is overcome by compi ling the  

exp e r t  sys tem by hand  (a process which is tedious,  er ror-prone,  and t ime-consuming)  

yet  the  same effect may be obtained by specialisation.  T h e  residual program in ferr 

is an inference engine customised to the  set of rules r. It is a function from facts to 

facts t h a t  contains  l itt le or none of the  original in terpre t ive  machinery.  Of course,  we 

canno t  hope  t h a t  the  efficiency gained by au to m at ic  special isation will be as great  as 

is obt a inab le  by hand,  b u t  the  difference between the  two may be qui te small.

Turch in  goes one s tage fur ther  [TurSG]. Suppose' t h a t  the  bo dy  of rule’s is gradual ly  

increasing.  We produce specialised versions of infer  to perform inference according 

to the  rules we al ready have,  but we also retain the  original unspecialised version of 

infer  in case any new rules are’ added.  This allows the  expe r t  system to grow. What, 

is more,  in quiet  per iods the  inference engine could bo specialised to the  new sot of 

rules to allow these to be handled more efficiently. This,  Turchin  postulate's,  may 

correspond with wh a t  happens  to us during sleep.

Of  course,  ra th e r  than  use the  general specialiser again and again we would use mix -j  

to p ro duce one opt imised to the  task of specialising the  inference engine infer.  This  

is an o th e r  example  of “compi ler  genera t ion” .

These  examples  do not  exha us t  the possible appl ica tions  for partial  evaluation.  As a 

final example ,  Consel and Danvy repor ted taking a clear bu t  inefficient, s tr ing m a t c h 

ing a lgo r i thm and,  by specialising it to the  pat t er n ,  autom at ica l ly  produced what, was 

essential ly the  K nu th -M o r r i s - P ra t t  a lgor i thm [CI)89j. It is r e a s o n a b l e  to expect, t h a t
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as par t ia l  evaluators  become more  powerful and robust  many  more  appl ica tions will 

be found.

1.3 H ow  Strong  is a P artia l E valuator?

T h e  equa t ions  given earlier ac tual ly say nothing ab o u t  how efficient the  programs 

resul t ing  f rom par t ia l  evaluation are. T h e  equations are consequences  of the  S- ni-n 

theo rem of recursive funct ion theory.  T h e  theorem  s ta tes  t h a t  a specialised version 

of a recurs ive funct ion is itself an effectively const ructib le  recursive function ( t h a t  

is, there  exists a recursive function which acts as a general  specialise!'). A direct  

im ple menta t ion of the  proof  of the  theorem leads to a trivial implemen ta t ion of s p e 

cialisation.  Thus ,  suppose  t h a t  f  x y is a two p a ram ete r  function and t h a t  wo wish 

to p roduce f \  using some value X  for x.  We can do so by defining

f x  V = f  X  y 

and gain no improvem ent  at  all.

For tunate ly ,  there  are non-t rivial  implemen ta t ions  of par tial  evaluat ion bu t  each dif

fers in power.  Jones  suggests a tes t  for assessing thei r  s t rength .  Suppose  t h a t  s_int  

is a self in terpre ter  for the  language in which mix  is wr i t ten,  so for any program / ,

s j n t  J  =  /

Then  we would hope th a t

m ix  S-int  f  ~  /

where ~  is m ean t  to imply th a t  the  two sides are co mparab le  in size and efficiency. If 

this equa t ion  is satisfied then mix  is able to remove a complete  layer of in terp re ta t ion.

1.4 R e la te d  Topics

As wi th every  area  of study,  par tial  evaluation does not s tand  on its own. We have 

a lready al luded to the  fact t h a t  it has much in common with compi lat ion.  One 

could argu e t h a t  cons tan t  folding is like* partial  evaluation but on a very l imited
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scale, an d  t h a t  funct ion or procedure  unfolding to produce in-line code is more  so. 

Compiler  genera tion techniques  come even closer to mix  technology. Ther e  has luvn 

ac tive research in this area  for some t ime producing familiar p roduc ts  like LFX and 

YACC. A n o th e r  example  is the  Cornell  Synthesizer G enera to r  [1(189] which produces 

s t ru c tu re  editors  from grammars .

On e mot ivat ion for au to m a t i c  compi ler  generat ion is the  difficulty of producing se

man t ica l ly  correct,  ha nd-w ri t te n  compilers.  An au to m a t i c  compi ler  gene ra tor  would 

take  a deno ta t iona l  (or o ther)  description of some language and p roduce a compi ler  

for t h a t  language.  Any compi ler  genera tor  needs to be proved correct,, of course,  but  

the  proof  only lias to be done once. In contras t ,  every hand-pro du ce d  compi ler  iux'ds 

its own proof  of correctness.  An early a t t e m p t  along these  lines was Mosses1 semant ics  

implemen tat ion sys tem  [Mos79] but  the  residual programs produced by the  sys tem 

general ly conta ined a large in terpre t ive  element.  A later  example,  the  C F R F S  projec t  

[Tof84], produced b e t t e r  results th rough  the  use of more' sophist ica ted techniques.

Schm id t  has  explored the  possibil i ty of au tomat i ca l ly  recognising which par am et er s  in 

a deno ta t iona l  semantics  may  be implemented using the  s ta te  or a stack etc. [Sch88] 

and Nielson’s two level type  sys tem a t t e m p t s  to sepa ra te  compi le- t ime and run- t ime 

com pu ta t ions  [Nie88]. To a t t ack  the  problem from a different, direct ion,  ac tion se

mant ics  [M W 87] defines in terpre ters  in terms of combinator s  which m an ipu la te  facets.  

There  are  facets to ca p tu re  variable binding,  value man ipu la t ion ,  s t a t e  t rans it ion  and 

parallel communicat ion.  Facets are or thogonal  in the  sense that  action in one facet, 

is independe n t  of ac tion in the  o thers .  It is hoped that  sepa ra t ing these facets may 

assist t he  product ion of efficient, compilers.

Ther e  are also similarities between par t ial  evaluation and more general  program t r a n s 

formation methods .  For example,  fo ld /unfold t rans fo rmat ions  [HI)77] art'  closely 

mimicked in special isation.  Methods  of program analysis art' also relevant,. As we 

shall see in the  next  chapter ,  a prior program analysis is a vital par t  of the  p a r 

tial evaluat ion process.  In C h ap te r  8 wo explore the  link between this bindiny- t ime  

analysis  and the  more  familiar st rictness analysis [A 1187].

T u rc h in ’s supercompi lat ion  [Tur8G] is more  general  than  par tial  evaluation.  T h e  su- 

percompi ler  ,s7/pervises the  evaluation of a program and compiL s a residual program 

from it. Op t imisa t ion can occur even when no input  d a t a  is present , t hrough the  use 

of driviny.  Expressions  are driven across case-expressions,  genera t ing the  informa 

tion t h a t  (by as sumpt ion)  the  pat te rn  succeeded.  This  informat ion is used allowing 

for more  reduct ion than by partial  ( 'valuation alone. T h e  same principle is seen in
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W a d le r ’s defores tat ion  a lgor i thm [Wad8S]. Ensur ing terminat ion is still a big p ro b 

lem in pa r t i a l  evaluation,  bu t  it seems even worse when driving is present.  VVadler 

addresses  this issue by placing heavy rest rict ions on the  form of function deiinitions 

to which his a lgo r i thm is applied.  In cont ra s t ,  Turchin  applies his supercompi ler  to 

a rb i t ra ry  program s  an d  uni tes two s tates  when they are “dangerously  s imi lar1'. This  

works in m an y  cases though  non - te rminat ion still occurs.

1.5 mix  C urries P rogram s

Before we close this cha p te r  it will be useful to consider the  types  of objects  given to 

and re tu rned  by mix.  Its a rgu me nt s  are two pieces of program,  the  first, represent ing 

a function of two ar guments ,  and the  second represent ing a value sui table for the  

f un c t ion’s first a rgum ent .  Let us wri te T  for the  type  of pro gr am  code represent ing 

an object  of type  T . Th us ,  using the  previous no ta t ion,  if t E T  then 7 E T.  T hen ,

m ix  : A x B  —► C  x A —► H —* C

T h a t  is, m ix  takes  a definition of a two a rgum en t  function and a definit ion of a value 

for the  first a rgumen t ,  and produces  a definition of the  corresponding function of the  

remaining a r gu ment .

W h a t  is the  type  of m i x - r ' l  Subs t i tu t ing into the  type  definition of mix  gives, 

mix  —r : A x B  —> C  —» A —► B  —> Cm \x

Given a definit ion of a program specifying a two a rgum en t  function mix  re turns  a 

pro gram  which,  when executed,  takes  a definition of a value, and re turns  a program 

to c o m p u te  the  corresponding function of the  remaining a rgum ent .

These  equ a t ions  m ot iva te  the  slogan: partial  evaluation is cuiTying on programs.



C hapter 2 

P artia l E valuation  in P ractice

Having seen some of the  principles of par t ia l  evaluat ion we now consider practicali t ies.  

In this cha p te r  we will s tudy the  s t an d a r d  a lgor i thm used in part ial ( 'valuation and 

in t roduce  an ext ended example  which we develop throughout  the  thesis. T h e  mater ia l  

of this cha p te r  draws very heavily on the  experience  of the  DIKU group and much of 

the  mater ia l  presented here may be found in [JSS85], [SesSG] and [JSS89],

Part ia l  evaluat ion has been a t t e m p t e d  in a n um ber  of different p ro gr am ming  

paradigms.  T h e  earliest  work used LISP-like language's because programs in such 

languages can easily be  t rea ted  as data .  In par t icular ,  the  first self-applicable partial  

evaluator  was wri t ten  in a pure ly functional  subset  of first order,  s tat ical ly scoped 

LISP. Since then work has been done to incorporate* of Ikt language feat ure's of LISP- 

like language's including,  for example ,  global variable's [BI)89j. A se' lf-applicable p a r 

tial eva lua to r  for a t e rm  rewri ting language has been achie've'd [Bon89], and more' 

recently a h igher-order A-calculus version has been developed! [domS9].

Because of these successes, par t ial  evaluat ion is somet imes  linke'd with functional  lan

guages.  Indeed the  word “eva lua t ion” itself is expression orie'iitateel. However,  par tial  

evaluat ion has also become popu lar  in logic language's, and in Prolog in par t icular .  

Kursawe,  inves t igat ing “pure  par tial  eva lua t ion” , shows th a t  the* principles are* the* 

same in both  the  logic and functional  parad igms  [Kur88j. Using the* refe'rentially 

opaqu e c l a u s e  primi tive,  very compact  in terpre ters  (and lie'nce partial  ( 'valuators) 

can be* wri t ten.  However,  it is not  cle'ar how th e  c l a u s e  pre'dicate* itsedf should be* 

handled by a par t ia l  ( 'valuator and,  hence*, whe the r  this approach  can ever load to 

self-application.  O th e r  “feature's” of Prolog t h a t  can cause problems for par tial  ('val

uat ion are* the  cut  and ne'gation by failure. Lloyd and Shephe'rseni have' adelre'sse'd 

some of these* [LS87]. However,  by res tr ic ting themselves to the  clean par ts  ol Prolog,

12
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Fuller and A b ra m sk y  have achieved a self-applicable par t ial  eva luator  [FA88]. Th ei r  

m e th o d  is di rec tly  equivalent to the  funct ional  approach  used a t  DIKU.

Every l anguage p a rad ig m  int roduces  its own problems,  and this is also t ru e  in the  

i mpe ra t ive  case. T h e  early LISP work,  for example,  concen tra ted  only on functional  

aspects  because  th e  imperat ive  features  seemed too difficult. Surprisingly,  however,  

a fully sel f-applicable par t ia l  evaluator  for a small  imperat ive  language has  been 

r epo r t ed  [GJ89]. T h e  language consists of a sequence of comman ds ,  which are  as 

s ignment ,  condi t ionals,  or go tos .  Values are S-expressions m an ipu la ted  using the  

s t an d a r d  LISP primi tives.  A few o the r  opera tors  are  provided.  Not  only are the  

resul t ing  compi lers reasonably  small an d  efficient, bu t  they also exhibi t  much of the  

s t ru c tu re  of h and-w ri t te n  compilers.

Much of the  interest  in par t ia l  evaluation in the  Soviet Union focuses on impera t ive  

languages  and on Pascal  in par t icular.  There  the  process is called poly-variant mixed  

com putat ion  [13ulSS]. Technically, mixed eomputat ion  is more general  than  par tial  

evaluat ion.  It includes any semant ics  preserving process t h a t  opera te s  on a mix 

of p ro g ram  and dat a .  T h e  adjective polyvanan t  describes the  s i tua t ion where  one 

p rogram  fr agm ent  m ay  be specialised to many  different s tales  thereby producing 

more t h a n  one descendent  f ragment  in the  residual program.  Wo will see this idea in 

the functional  model .

In the  Soviet  work,  the  s t a t e  is split  into two par ts  the  accessible and the  'inaccessible. 

As one might  expect  this is equivalent  to the  s t a t i c /d y n am ic  separat ion.  Analysis is 

harder  in the  impera t ive  case because both  procedural  unfolding and ( 'valuation of 

expressions m ay  somet imes  be invalid. Nonetheless,  results have been interest ing:  

for example ,  Os t rovsky uses mixed com pu ta t ion  as pa r t  of the  process of producing 

industr ia l  qual i ty  parsers [Ost88].

It is in terest ing to note  t h a t  all the  self-applicable par t ia l  ( 'valuators reported  to dat e  

use S-expressions as thei r  sole d a t a  s t ructure .  Thi s  s i tuat ion must  change if par tial  

evaluat ion is to gain a place as an everyday p ro gram ming tool. We will re turn  to this 

point  at  th e  end of the  thesis.

2.1 T h e  P a rtia l E valuation  P ro cess

We will present the  specialisation a lgor i thm using a functional language.  T h e  DIKU 

group implemented mix  in a subset  of purely functional  s tat ical ly scoped LISP but  

for consis tency wi th the  rest  of the  thesis we will use a typed lazy functional  language.
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T here  are  two s tages  to specialisation.  T h e  pre-process ing phase  takes  a program and 

informat ion ab o u t  wha t  d a t a  will be present  initially, and re tu rn s  an a n n o ta t e d  p ro 

gram.  F ro m  this a n n o ta t e d  p rogram and the  par t ia l  d a t a  the  second phase  produces  

t he  res idual  program.  In most  cases, the  two phases  could be  performed together  

wi th only a  small  loss of efficiency. For sel f-application,  however,  it t urns  out  to be 

crucial  to  sep a ra te  the  phases.  If this is not  done,  the  genera ted  programs  (compilers 

etc.)  are huge an d  inefficient. T h e  reason for this is discussed in Section 2.2.

T h e  first phase  itself consists of two in te rd ependent  par ts .  These  are called binding

t ime analys is  (or BTA  for short ) ,  and call annotat ion.  Binding- t ime analysis d e t e r 

mines  which expressions will be  eva luated  dur ing par t ia l  ( 'valuation,  an d  call a n n o 

ta t i on  decides which function calls will be  unfolded.  T h e  result  of this phase  is an 

a n n o t a t e d  program.  If prog is the  original program then we wri te progann for the  

a n n o ta t e d  version.

2 .1 .1  B in d in g -T im e  A n a ly s is

T h e  pu rp ose  of b inding- t ime analysis is to discover which expressions within the  

p ro g ram  can be evaluated  by the  par tial  evaluator  given the  l imited a m o u n t  of da ta  

t h a t  will be  present .  T h e  analysis can be performed by abstract,  in terpre ta t ion .  In 

this ch a p te r  we follow the  DIKU work and t rea t  values atomical ly.  T h a t  is, if an 

expression contains  any dynam ic  par t ,  then we will consider the  whole expression to 

be dynamic .

T h e  a b s t r a c t  domain  of values is the  two point  domain {.S', 72} where .S' C I). To 

associa te  .S' with an expression indicates t h a t  the  expression is to tal ly  s tat ic it, can be 

fully evaluat ed  dur ing par t ia l  evaluat ion.  In con tras t ,  I) indicates  that, the  expression 

m ay  be  dynamic ,  i.e. it is not  possible to gua ran tee  t h a t  it can be eva luated  during 

par tia l  evaluation.  As ever,  the  analysis is a p p r o x im a te  in that  there  may be some 

expressions  t h a t  are classified as dynam ic  which could ac tual ly  be evaluated.  T h e  

converse never applies: an expression is only classified as stat ic if it, can definitely be 

evalua ted .  T h e  result  of the  b inding-t ime analysis is an an n o ta te d  program where 

the  pa ram ete rs  of each function are c i ther classified as s tat ic  or as dynamic .

2 .1 .2  C all  a n n o ta t io n

A par t ia l  ( 'valuator t h a t  never unfolded function calls could make liltle improvement,  

to the  programs to which it was applied.  Conversely, if a par tial  eva luator  unfolded
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all funct ion calls, it would be  unlikely to  term inate .  We m u s t  decide,  therefore,  which 

funct ion calls to unfold and which to leave folded. R a th e r  th an  classify the  functions 

themselves as unfoldable or non-unfoldable ,  we a n n o t a t e  individual  function calls. So 

a pa r t ic u la r  function m ay  be  unfolded in one place b u t  not  in ano ther .  Funct ion calls 

to be unfolded are called el iminable,  those  t h a t  are to remain are called residual.

In t h e  early m ix  work call anno ta t ions  were inserted by hand.  Subsequent ly,  Sest.oft 

descr ibed an analysis,  called call graph analys is , which can deduce the  anno ta t ions  

au tom at ica l ly  [Ses88]. T h e  analysis takes a p rogram  having s t a t i c / d y n a m i c  a n n o t a 

tions an d  inserts call annota t ions .  But ,  because a residual call canno t  be unfolded,  

its result  canno t  be  classified as s tat ic,  so call annota t ions  might  cause some expres

sions, previously considered static,  to become dynamic .  Th us ,  af ter  call anno ta t ion ,  

the  p rog ram  mus t  have its s t a t i c / d y n a m i c  ann ota t ions  recomputed .  T h e  new a n 

no ta t ions  m a y  in tu rn  force some calls, previously considered el iminable,  to become 

residual,  an d  so on.

For tunat e l y  this process is monotonic  - no dynam ic  anno ta t ion  ever becomes s tat ic 

and 110 res idual call ever becomes el iminable.  Termina t ion of the  process is therefore 

ensured.  In pract ice,  the  cycle is rarely followed more  th a n  a couple of t imes before 

a limit  is found.

To summarise :  the  anno ta t ions  result ing from t he first, phase  of the  par tial  (‘valuat ion 

process classify pa ram ete rs  as s tat ic  or dynam ic  and function calls as residual or 

el iminable.  Pr imi t ive opera tor s  may also be annot a t ed .  If all thei r ar gum ent s  are 

present they are  el iminable,  o therwise they are residual.  Once an n o ta t e d ,  the  program 

is ready to be  specialised.

2 .1 .3  S p e c ia l isa t io n

Imagine  we have a funct ion /  defined by f  x y =  c when '  x is s tat ic and y dynamic .  

Fu r t he r  suppo se  t h a t  we wish to specialise /  to a value a for x. We evaluate  c in 

an envi ronm ent  in which x is bou nd to a. As the  envi ronmen t  binds s tat ic  values 

only, the  resul t  of the  evaluation is an expression which,  in this case, may involve' y. 

Depending  on the  ann ota t ions  in r ,  some* function calls may remain  in the  residual 

expression.  Suppose,  for example,  there  is a residual call to /  with a value a' for its 

x pa ram ete r .  We wish to replace this call also with a call to a specialised version of 

/ ,  this t ime  specialised to the  value a'. P roducing this new specialised version may, 

in turn ,  gene ra te  new funct i on /ar gumen t  pairs tha t  also need to be ['(‘placed with
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specialised versions,  an d  so on. This  process cont inues  unti l  all residual funct ion calls 

are replaced with  calls to appr op r i a t e  specialised functions.  This  is the  funct ional 
cou n te r p a r t  of polyvar iant  specialisation.

We can descr ibe the  a lgor i thm more  generally.  We are given a list of function names 

pai red wi th  values for thei r  s tat ic  parameters .  This  is called the  pending  list, and 

identifies which functions need to be specialised to which values. T h e r e  is also a list 

of func t i on /va lue  pai rs  for which specialised versions have al ready been produced.  

We repeatedly  select an d  remove an element  from the  pending  list. If t he  a p propr i a te  

specialised version has  al ready been produced,  we go on to the  next  one. Otherwise,  

we ob ta in  the  relevant  function definition from the  program,  giving the  s ta t ic  and 

d ynam ic  p a r am ete r s  along with the  function body.  T h e  function bo d y  is evaluat ed  

in the  par t ia l  envi ronmen t  (binding the  s tat ic names to the  s ta t ic values) result ing 

in a residual  expression which forms the  body of the  new specialised function.  T h e  

new body  is scanned to find any function calls t h a t  may require special isation and 

these are ap pended  to the  pending  list. An implementa t  ion of the  a lgo r i thm in LML 

appear s  in Ap pend ix  C.

flu '  result  of special isation is a list of new function definitions. Initially the  new 

residual functions  are nam ed by the  original function nam e together  with the  values 

of the  s tat ic  paramete rs .  Later on, a now function nam e is genera ted  for each such 

pair,  and the  program consis tent ly renamed.  Dur ing renaming,  the  s ta t ic  p a r a m e 

ters d is appea r  completely  from the  program.  T h e  specialised functions retain thei r 
dynamic  pa ram ete rs  only.

2 .1 .4  T w o  S m a ll  E x a m p le s

It is wo r th  looking a t  some small examples .  T hes e  emphasise  the  point m ad e  in C h a p 

ter 1 t h a t  par t ia l  evaluation has more* appl ica tions  than  jus t  language in terpre ters  and 

compilers.  T h e  first is the  s t anda rd  expon en t ia t ion  function.

power  n x = i f  n=0 

t h e n  1

e l s e  x * power  ( n - 1 )  x

We will specialise p o w e r ’s first a rgum ent  to the  value 3. 'The first, p a r am ete r  is stat ic 

and the  second dynamic .  This is consistent with the  recursive call, for if tin* value 

of n can be  co m pu ted ,  then so can the  corresponding value ( n - 1 )  in the  recursive
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call. T h e  specialised funct ion will lose the  s tat ic pa r a m e te r  and be a function of the  

dy n am ic  p a r a m e te r  x only. In this example  the  recursive call may  be safely unfolded 

so it is classified as eliminable.

Eva lua t ing  th e  body  of the  function in the  envi ronmen t  in which n is bound  to 3 gives 

the  residual  expression x * (x * (x  * 1 ) ) .  All the  condi t ionals  have been reduced 

and th e  recurs ive calls unfolded.  T h e  ( re-named)  residual  function is, therefore,

powe r_3 x = x * (x * (x * 1 ))

(Note  t h a t  simplifying (x * 1) to x requires the  laws of ar i thmet i c ,  not  ju s t  par tial

evaluat ion) .  This  residual function is more  efficient than  the  original.  Ins tead of

having to evaluate  a series of condi tionals and perform a nu mber  of function calls the  

ca lculat ion is performed directly.

T h e  previous example  shows only some aspects of par t ial  evaluat ion.  A richer example  

is given by A c k e rm an ’s function.

ac k  m n = i f  m=0 

t h e n  n+1 

e l s e  i f  n=0

t h e n  ack (m-1) 1

e l s e  ack (m-1) ( a c k  m ( n - 1 ) )

Suppose  we in tend to specialise ack to the  value 2 for its first, pa r am e te r  m. As before 

the  first p a r a m e te r  can be classified as s tat ic and the  second as dynamic .  However,  

in this case the  final two recursive calls should not  be unfolded and must  be classified 

as residual,  but  as the  first, recursive call (a ck  (m-1) l )  has s tat ic informat ion for 

all its pa ram ete rs  it can be unfolded.

Initially the  pending list contains only the  pai r ( a c k ,  [ 2 ] ) .  T h e re  is only one s tat ic 

p a r am e te r  so the  list of s tat ic  values has only one e lement.  T h e  new body,  found by 

par t ial  evaluat ion,  is the  expression

i f  n=0 

t h e n  3

e l s e  ack 1 ( a c k  2 ( n - 1 ) )
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Th e  o u te r  condit ional  has been reduced b u t  the  inner one remains  because  it de 

pends  on a dynam ic  value.  T h e  two recursive calls are present  as they were anno 

ta t ed  as residual,  and so when this expression is scanned for residual calls the  list 

[ ( a c k ,  [ 1 ] ) ,  ( a c k ,  [ 2 ] ) ]  is produced.  This  is app e n d e d  onto  the  end of the  (now 

em p ty )  p e n d i n g  list for the  recursive call of spec .

Next ,  a  version of ack specialised to the  s tat ic  value 1 is produced in exact ly the  same 

way. T h en ,  in the  following recursive call to sp ec ,  the  p e n d i n g  list has the  value 

[ ( a c k ,  [ 2 ] ) ,  ( a c k ,  [ 0 ] ) ,  ( a c k ,  [ 1 ] ) ] .  Because a version of ac k  specialised to 

[2] has a l r eady been produced,  the  first of these  is discarded and  ack  is specialised 

to [0 ] .  After  this process has been repeated  a couple of t imes the  p e n d i n g  list will be 

em p ty  an d  the  process will te rminate .  After  renaming,  the  result  will be the  pro gr am

ac k_0  n = n+1

i f n=0

t h e n 2

e l s e ack_0 ( a c k _ l ( n - 1 ) )

i f n=0

t h e n 3

e l s e a c k _ l (a ck _2 ( n - 1 ) )

Wi th  only hal f  the  n u m b er  of condi tionals per function call, the  residual pro gram  is 

not iceably more  efficient t h an  the  original.  T he re  is a price to pay, however.  It is also 

larger t h a t  the  original.  While there  is, in principle,  no limit to the  increase in size 

the  D IK U  group found t h a t  a l inear growth (with respect  to the  sum of tin* sizes of 

progr am  and d a ta )  is typical  of most  examples .

In each of these examples  the  gain in efficiency is around 300%. This  is fairly low for 

par t ial  eva luat ion as, in each case, the  original programs conta ined only a m odera te  

in terpre t ive  element .  At  the  end of this chapte r  we will in t roduce  a larger e x a m 

ple t h a t  will be developed th ro ughou t  the  thesis. This  will have a more significant 

in terpre t ive  e lement and  so larger gains can be expected.
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2.2 S e lf-A p p lica tion

We recall f rom C h a p t e r  1 t h a t  self-application of a par t ial  eva lua to r  is required in 

order  to p roduc e compi lers and compi ler generators.  T h e  first a t t e m p t s  at  self

appl i ca t ion created  huge residual  programs.  On exa mina t ion  it turned out  t h a t  mix  

was not  obta in ing  sufficient information to perform reduct ions  on the  par t ia l  eva lua to r  

appea r i ng  in its first a rgumen t .  To make this clear imagine  that  we arc' comput ing

mixint =  mix,  m ix2 int

(We n u m b er  the  two occurrences  of mix  to d is t inguish between them  in the  

ex p lan a t io n — the two programs mixt  and mix2 arc' ident ical ).  T h e  program mix  

conta ins  an evaluator  which reduces s tat ic  expressions.  Any s tat ic expressions in 

m ix2 can be recognised during par tial  evaluation even wi thout  b inding- t ime analysis,  

and can be  reduced accordingly (using the  eva luator  in mix,  ). However,  the1 decision 

w h e th e r  or not  to apply the  evaluator  in mix« to expressions in int depends  on which 

pa r ts  of the  inp ut  to int are to be  stat ic when the' compiler  7l)ix— is used. Without- 

b inding- t ime anno ta t ion s ,  this informat ion is dynamic .  This  moans t h a t  very little- 

reduct ion can be performed,  result ing in bulky and inefficient, compilers.

T h e  insight  t h a t  allowed the  DIKU group to c i rcumvent  this problem is t h a t  it is 

sufficient to know which expressions of int arc* s tat ic or dynamic .  T h e  ac tual  value's 

are not  reepiired. Thus ,  if int is annotate-el appmpria tedy  by a pre-preMe'ssing phase', 

then  mix,  is able to decide whe'n to apply  the  eva luates  appear ing  in m ix2. The* jnix 

equat ion  should,  therefore,  be expressed as

——  ---------- —— — a Tin —
mtprog = mix  in t prog 

so t h a t  when self-application takes place we get

 :-----------------  .  :---a  n n  •— jann
miXr- — mixi  m ix2 int

T h e  anno ta t ions  on int  are- available- for m ixs anel alle)w its e-valuateu- to be- applie'el. It, 

is the' annexat ions  on mix 's  S( cond  argume'iit,  the-re'feue', t h a t  allenvs e-ffieie-nt e e>i npi le*rs 

t.e> be* pre)elue'eel.

This  insight  ele'fine-s wh a t  is e'sseuitially a ne-w bineling time-. We* are* alre-ady familiar 

with s ta t ic  anel elynamie- binding-time's.  A st.atie- value- will be- pre-se-nt. eluring partial
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evaluat ion,  whereas  dynam ic  values are not  available unti l  run- t ime.  In order  to 

allow self-application there  must  be  some informat ion t h a t  is even more  s tat ic  th an

the  s t a t ic  values. It m us t  not  depend on the  s tat ic  values themselves ,  bu t  only

on th e  knowledge t h a t  there  will, a t  par t ia l  evaluat ion t ime,  be such s ta t ic  values.  

Thi s  sor t  of informat ion is called metastat ic  [Mog89]. Binding- t ime analysis must  be 

m e tas ta t i c .  If it is not  ( t h a t  is, if the  analysis ever uses th e  ac tua l  s tat ic  values) ,  then
the  results will be of no use in self-application.

2.3 C ongruence  and F in iten ess

T h ere  are o ther  const ra in ts  t h a t  b inding- t ime analysis must  satisfy. Not  only must  

the  analysis be metas ta t i c ,  but the  result ing annota t  ions m us t  bo congruent  and j inite.  

We will s tudy  congruence in some detai l  in C h ap te r  2  but for now wo will confine 

ourselves to informal definitions and intuit ions.

S ta ted  simply,  congruence  requires t h a t  stat ic values only ever depend on st at ic value's 
and never on dynamic  values.  For example,  suppose  wo have' t he' following function 

de'finition.

f  x y = i f  x = 0

t h e n  y

e l s e  f  ( x - 1 ) (x*y)

If f ’s first pa r am e te r  is dynam ic  them its se'conel must  alse) be' dynamic.  This  is lx'cause' 

the  value of f ’s second pa r am e te r  in the  re'cursive' ea 11 eh'pe'nds on the' (dynamic)  value' 

of its first. As we' noteel be'fore, the  a im of special isation is to omit  s tat ic parame'te'rs 

in the  residual program.  If we make  y s tat ic  while x is dynamic ,  anel we* specialise' f  

to the  value 2  (for y) then  we have a problem.  Which specialise'd version e>f f  should 

be used to replace the  recursive call? T h e  answe'r is t h a t  tlie're* is no single call t h a t  

is sufficient. Ins tead we have to replace it with an infinitely branching condit ional  

giving a residual function of the  form

f _ 2  x = i f  x = 0

t h e n  2

e l s e  c a s e  x i n

1 -> f_2 (x-1)
2 -> f _4 (x-1)
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This  is clearly undesi rable!  However, if the  result of b inding- t ime analysis is congr u

ent ,  t h en  it is always possible to ca lculate the  stat ic param eter s  of each funct ion call 

dur ing pa r t i a l  evaluat ion.  As a result ,  there  is a single residual function wi th which 

to replace each original call. Fur thermore ,  the  only condit ionals to a p p e a r  in the 

residual  p ro g ram  orig inate  from the  source p ro g ram — none need to be added.  The  

residual p ro g r am  is, in this sense, “congruen t” wi th the  source program.

In addi t ion  to congruence ,  the  results of b inding- t ime analysis must  be j inilc.  As 

congruen t  a nno ta t ions  produce a congruen t  program,  so finite an n o ta t io n s  load to a 

finite res idual program.  Consider the  following example .

f  x y = i f  y = 0  

t h e n  x

e l s e  f  (x + 1 ) ( y —1 )

We declare x to be s ta t ic  and y dynamic.  This  is congruen t  but  not  finite. Suppose  

we specialise f  to the  value 1 for x. Making the  recursive call residual,  wo ob ta in  the 

following residual  program.

f _ l y = i f "C n o

t h e n 1

e l s e f _ 2 ( y - 1 )

f  _ 2 y = i f

oii>->

t h e n 2

e l s e f_ 3 ( y - D

. . . etc.

A n n o ta t in g  the  recursive call as e liminable does not  help. Whi le  we would then have 

only a single residual function,  its body would be infinite in size. Poor call anno ta t ions  

can in themselves cause infinite unfolding,  but  good call anno ta t ions  cann ot  cause an 

inherent ly  infinite anno ta t ion  to become finite.

.Jones describes  an analysis using a three* point  domain th a t  goes some way to p r o 

ducing a finite anno ta t ion  [.JonSS], T h e  only t ime its results may not be* finite is if 

the  p rogram conta ins an infinite* lemp. Unele*r s trict  semanties ,  the* program would 

not terminate* anyway,  and so it is not unre*ase>nalde* for the* par tial  (‘valuat ion to loop
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also. However,  u nde r  lazy semant ics,  exact ly the  sam e program may  he very well 

behaved.  Indeed infinite s t ructures  are  a  po pu la r  and powerful pr og ram ming  method  
in lazy languages . T here  is a need,  therefore,  for fu r th er  work in this area.

In the  rest  of the  thesis we will sidestep this issue. T h e  binding- t ime analysis given in 

C h ap te r  4 produces  congruent  anno ta t ions  b u t  they  are not  necessari ly finite. How 

to achieve this is still an open problem.

In the  re ma inder  of this cha pte r  we in t roduce the  exa mple  which will be developed 

th ro u g h o u t  the  thesis.

2.4 E x a m p le

Our main  example  concerns au to m a t i c  compi lat ion.  Using fairly s t an d a r d  lazy func

t ional language no ta t ion ,  we define an in terpre ter  for a block s t ruc tu re d imperat ive  

language.  P rogra ms  in this language are const ruc ted  from ass ignment ,  condi t ional ,  

and while s t a t em en t s .  New variables arc  in t roduced using the  A l l o c  declarat ion and 

are in scope in the  block immedia te ly following. Blocks are sequences of s t a t em en t s ,  

represented as lists. Communica t ion  with the  out s ide  world takes  place via s t reams 

(lists). T h e  Read command  retr ieves the  first value from the  input  s t ream and the  

Write c o m m an d  places a value on the  o u t p u t  s t ream.  C o m m a n d s  may bo represented 

as terms of the  following da ta type ,

type Command = Read Ident 
+ Write Exp
+ Alloc Ident [Command]
+ DeAlloc
+ Assign Ident Exp 
+ If Exp [Command] [Command]
+ While Exp [Command]

with ap p ro p r ia t e  definitions for the  types  I d e n t  an d  Exp (we will consider integer 

expressions only and represent  booleans  as integers) ,  d in' D eAlloc  variant, does not 

correspond wi th a com m and ,  bu t  the  in terpre ter  uses it, to mark the  end of a var i

ab le ’s scope. Hach of the  o thers correspond di rect ly with com mands.  T h e  following 

is provided as an example  of programs in this language.  Its action is to find the  

m ax im u m  of a serif's of inputs  ( te rmina ted by 0 ).
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Alloc X 
[ Alloc Y

[ Assign Y zero,
Read X,
While (greater (var X) zero)

[ If (greater (var X) (var Y)) [Assign Y (var X)] [], 
Read X ],

Write (var Y) ] ]

where zero, greater, and var are the  obvious funct ions  associa ted wi th the  expres

sion type  Exp. Notice t h a t  the  effect of an I f  wi thou t  an else branch is achieved by 

supplying an e m p ty  list of commands  as the  else par t.

Idle in te rp re te r  is inspi red by continuation semantics ,  following about  as closely as is 

possible in a first order  language.  The  main function ex ec  takes a list of ins tructions  

and the  inpu t  s t ream,  and re turns  the  o u tpu t  s t ream.  It achieves this by calling the  

funct ion run ,  s t ar t ing  it off with an em pty  s t a te  which will contain the  variables and 

thei r values when au g m en te d  by any A l l o c  s t a t em en ts .  Because of a deficiency of 

the  b ind ing- t ime analysis we are considering at  the  moment ,  the  s ta te  is split  into 

two par ts : a nam e  list an d  a value list. This allows the  names to be stat ic while the  

values are dynamic .  Once the  in terpre ter  reaches the  (Mid of the  program the  o u t p u t  

s t ream is te rm inat ed .  T h e  definitions are,

exec block inp = run block [] [] inp

run [] ns vs inp = []
run (com:corns) ns vs inp 
= case com in 

Read k
-> run corns ns (update ns vs k (hd inp)) (tl inp)

Write e
-> eval ns vs e : run corns ns vs inp 

Alloc k cs
-> run (cs++(DeAlloc:corns)) (k:ns) (0 :vs) inp 

DeAlloc
-> run corns (tl ns) (tl vs) inp 

Assign k e
-> run corns ns (update ns vs k (eval ns vs e)) inp
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If e csl cs2

-> if (eval ns vs e = 0)
then (run (cs2++coms) ns vs inp)
else (run (csl++coms) ns vs inp)

While e cs
-> run [If e (cs++(com:corns)) corns] ns vs inp

T h ere  are two n o n-s tanda rd  aspects  to this definition. Firstly,  in the  i n te rp re ta 

t ion,  t h e  block s t ru c tu re  is flat tened and implemented explicit ly (using DeAlloc) 
ra th e r  t h a n  by using recursion to do so implicitly. Secondly,  looping is performed 

by ap p e n d in g  the  body  of the  loop to the  front of the  program.  T h e  im p le m en ta 

tion makes  use of the  law th a t  s ta t es  tha t  [[while EC]]  has the  sam e behaviour  as 

[if E then ( C ;While E C ) ] .  We will leave a discussion of the  mot ivat ion for these 

choices unt i l  the  conclusion.

T h e  auxi l iary functions  referred to by ru n  have fairly s t anda r d  definitions.  Tin'  

expression evaluator  e v a l  uses the  s t a t e  to supply  values for variables.  It cannot, 

cause side effects on the  s ta t e  bu t  jus t  re turns  an integer result.. In contras t ,  u p d a t e  

re tu rns  a new value list in which the  value associa ted wi th the  nam ed variable is 

replaced wi th  the  new value.

If, in the  initial call, the  b l o c k  input  to exec  is suppl ied but the  input s t ream  i n p  is 

not,  then  significant gains can be achieved by par t ia l  evaluat  ion. T h e  first, two p a r a m 

eters to r u n  are s tat ic,  the  o ther  two dynamic.  This  means  that, residual versions of 

r u n  have only the  value list and the  input, list as paramete rs .  In orde r  to ensure  finite 

unfolding the  call to r u n  in the  Whil e  case should be  m ade residual.  Fverywliere 

else the  p ro g ram  p a r am e te r  decreases in size, so finiteness is gu ar an t (v d .  (falls to the  

u p d a t e  funct ion (and its sibling l o o k u p  which will ap p e a r  in e v a l )  must  all lie made  

residual.  These  functions  will have versions specialised to each of the  variables that  

they  are  used with.

To see w h a t  the  results are  like we will specialise ex e c  to the  example  program above.  

T h e re  is a single While loop so only one residual version of ru n  is produced.

exec inp
= run (update_x (update_y [0,0] 0) (hd inp)) (tl inp)

run vs inp 
= if lookup_x vs > 0
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t h e n  i f  l o o kup_x  vs  > l o o k u p _ y  vs

t h e n  r u n  ( u p d a t e _ x  ( u p d a t e _ y  vs  ( l o o k u p _ x  v s ) )

(hd i n p ) )

( t l  i n p )

e l s e  r u n  ( u p d a t e _ x  v s  (hd i n p ) )  ( t l  i n p )

e l s e  l o o k u p _ y  vs  : []

Th e  residual versions of u p d a t e  and l o o k u p  will he fairly ellicient. For example,

u p d a t e _ x  n ( v l : v 2 :v s )  = v l  : n : vs

u p d a t e _ y  n ( v l : v s )  = n : v s

There'  arc no compar isons  of variable names in order  to find the  correct  place in the  

value list. Those  ac tions are performed dur ing par t ial  ( 'valuation.

Th e  residual in terpre ter  (which is a compi led version of the  input program) is far 
more  efficient th an  the  original in terpre ted  version. It is not as good as a hand 

writ ten  p rogr am for finding the  m ax im u m  in a list., hut is not a long way off. As a 

program produced by au tom at ic  compi lat ion the  results are satisfactory.

Some problems remain  however.  T h e  first concerns the  call annota t ions .  In the 

in terp re ter  code handl ing an I f  s t a t em en t ,  the  sam e code suffix corns ap p ea r s  in

bo th  branches  of the  i f .  . . t h e n .  . . e l s e .  . . expression.  This means  that  some code

dupl ica tion may take  place in the  residual program.  An example  appear s  above in 

the  body of the  residual version of run.  Looking at the  the  inner condi t ional ,  we 

see t h a t  the  expression ( u p d a t e _ x  . . .  (hd i n p ) )  occurs  in both  branches .  Both 

occurrences  arise from a single occurrence  of Read x in the  input program.  It. so 

happe ns  t h a t  in this example ,  this is ac tually desirable,  but  for input  programs  with 

nested condi t ionals the  growth in residual program size could be quite disas t rous.

T h e  solution to this problem is to m ake  each of the  recursive1 calls to ru n  residual.  This 

produces a less pleasing result in some ways, but  prevents  any possible code' explosion.  

In most  cases each inst ruct ion in the' input  program levels to a single' residual function.  

T h e  except ions are' A l l o c  and While,  which e'ach level to two versions. T hus ,  the* size' 

of the  residual p rogram will be l inear in t he' size* of the' input program.  Many  of these 

function calls may be' unfolded in a post-procevssing phase*. Join's calls this transit ion  

comp re .s si on [.] o n 8  S ].

A second problem concerns  the* re'sidual versienis of u p d a t e  ainl lookup.  Because' t he 

residual s ta te  is repre'scnteel as a list, these perform a great  eleal of heap manipu la t ion
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wi Ih associa ted t ime penalt ies .  All t h a t  they are actually doing is accessing or replac

ing values in a fixed length  list. Even more  serious, however,  is the  th ird problem.  

In order  to o b ta in  any worthwhile results whatsoever,  we were forced to sepa ra te  the  

s t a t e  in to  two compo nent s ,  the  nam e  list and the  value list, even though the  most  
na tu ra l  s t ru c tu re  is a  list of pairs. This  flies in the  face of one of the  aims of part ial 

eva luat ion,  namely,  to  allow increased modulari ty.  It is these  last two issues that  are 

addressed in the  ensuing chapters .



C hapter 3 

S ta tic  P rojection s

T h e  equa t ions  for mix  assume th a t  it is opera t ing on a two a r g u m e n t  function where 

the  first a r g u m e n t  is s ta t ic  and the  second dynamic .  This  is the  canonical  case. In 

pract ice we canno t  hope th a t  all functions will turn  out  this way. For example ,  a func

tion m a y  have m an y  argumen ts ,  the  first and th ird being stat ic,  say. Al ternatively,  a 

single a r g u m e n t  may have bo th  s tat ic and dyn am ic  par ts .  We need a f r amework for 

reducing the  general  case to the  canonical  case.

We can simplify the  general  case by requiring t h a t  all functions  have exact ly  one 

a rgum en t .  In first order  languages  this is no real restr ict ion.  Funct ions  mus t  always 

be appl ied  to all thei r  argu ments ,  so we can jus t  express t h e m  as a single tuple.  
T h e  nex t  s tage  is to factorise this single (composi te)  a rgum en t  into two par ts ,  the  

s tat ic  an d  the  dynamic .  We use the  results of b inding- t ime analysis to control the  

factorisat ion.

Note  t h a t ,  even thoug h functions will only have one argumen t ,  we will still loosely 

describe t h e m  as having many.  For example,  we will talk of a function f (x,y) = ... 
as having two a rg u m e n ts  when this is helpful.

3.1 M o tiv a t io n

f o r  the  p resent  we will focus our a t t en t ion  on the  s ta t ic  par t  of the  argumen t .  To 

select the  s t a t i c  pa r t ,  we use a function from the  ar gumen t  domain  to some domain of 

s tat ic  values. If we m ake the  stat ic domain a sub-domain of the  original we can simply 

“blank o u t ” the  dynamic  par t  of the  a r gum e n t  and leave the  s tat ic  par t  unchanged.  

We use T  to represent  the  stat ic par t  of dynamic  da ta .  Here T  has its fun da ment a l
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meaning of “no in fo rm at ion”— we get no s tat ic informat ion from a  dynamic  value 

(_L is often associa ted with  non- terminat ion,  but  this is a  secondary  an d  derived 

in te rp re ta t ion.  As a non- te rm ina t ing  com pu ta t ion  gives no informat ion ab o u t  its 

result ,  _L is its n a tu ra l  value).

As an  example ,  suppose  t h a t  the  original domain is A x B  where  TPs value is s tat  ic 

and A ’s dynamic .  T h en  the  function t h a t  selects the  s tat ic  par t  will be the  m ap  

(a,  b) i—► (_L, b). We can generalise this example  to arb i t ra ry  domains  by using 

domain projections.

D efin it io n
A project ion  7  on a domain  D is a cont inuous function 7  : I) —> D  such t h a t  

(i) 7  □  ID,  and (ii) 7 0 7  =  7  ( idempotence) .

T h e  first condit ion  ensures  t h a t  a projec t ion adds  no new information.  This  accords  

wi th the  in tu i t ion  t h a t  we can know no more  ab o u t  the  s ta t ic pa r t  of a value than  

we knew ab o u t  the  value originally. T h e  second condi tion ensures  t h a t  the  function 

picks ou t  the  s ta t ic  pa r t  in one go. We will not  need to repeatedly  apply  the  function 

to check t h a t  the  result  we have really does represent  the  s ta t ic  par t .

T he re  are two i m p o r t a n t  project ions ,  ID  and A B S ,  which crop up frequently.  ID  

is the  ident i ty  func t ion— used when the  a r gu ment  is completely s tat ic and A P S  is 

the  co n s t an t  function t h a t  always re turns  _L -used when the  argument  is complete ly 

dynamic .

In general  we canno t  hope to find a projec t ion t h a t  selects all the  stat ic par t  of an 

ar gum en t ,  b u t  we should gua rantee  th a t  wha t  is selected is ac tual ly static.  Thi s  

means  t h a t  we will often m ake do with a projec tion t h a t  is smal ler  than  ideal, for if a 

projec t ion 7  selects only s tat ic  informat ion from some a r g u m en t  then any projec tion 

smal ler  t h an  7  does also (smal ler in the  usual function space ordering).  As in C h a p t e r  

2 , therefore,  “s t a t i c ” means  “definitely available dur ing par tial  (‘valua t ion” .

3.2 O th er  U se s  o f  P ro jec t io n s

T h e  projec t ions  we have defined are special cases of a more general  class (if functions  

called retract ions  (or re tmc ts  for short ).  Ret rac t ions  are id em po ten t  cont inuous  func

tions,  but  need bea r  110 relation to the  ident ity function.  Scott  [Sco7fi] used closures  

( re t rac t ions  greate r  than  ID)  to pick ou t  sub-domains  of Pua 'I lie range of a closure*
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is always a  Scot t  domain ,  bu t  this is not  t ru e  for a rbi t ra ry  re t rac ts .  'Die image of 

any projec t ion is always a consistent ly complete,  complete  par t ia l  order,  but  is not  

necessarily algebraic.  (Recall t h a t  a Scot t domain  is a complete  par t ial  order  (so 

having a  b o t t o m  element  _L, and limits of d irec ted  sets) which is also consistent ly 

complete  (every set wi th  an  u p p e r  bo u n d  has a least u p pe r  bou nd)  and u;-algebraic 

(every e lemen t  is th e  limit of its finite approx imat ions ,  there  being only countably  

m an y  finite e lements) ) .  Scott  describes as f in i ia ry  those projec t ions whose image is 

algebraic,  an d  hence a domain.  All the  projec tions  used in this thesis are finitary.

E m b e d d in g /p ro j ec t io n  pai rs (often jus t  called projec t ion pairs) crop up f requent ly in 

founda t iona l  issues in domain theory. They occur  in t,h(' inverse limit const ruct ion,  

for example .  An em bedd ing /p ro jec t io n  pai r consists of two functions.  One,  the  

projec t ion,  maps  f rom a larger domain to a smal ler one and the  o ther ,  the  embedding,  

from th e  smal ler  to the  larger.  Applying the  projec t ion after the  em bedding gives the  

ident i ty  function,  and  applying the  embedd ing after the  projec t ion gives a function 

weaker  t h a n  the  identity.  A projec tion from a domain to itself corresponds  to this 

la t t er  composi t ion.  Pro jec t ion pairs will be impor tant  to us in C h a p te r  5 where they 

are used in the  dependen t  sum construction.  However,  most, relevant, to us for the  

present  is the  use of projec t ions in s tr ictness analysis.

3 .2 .1  S tr ic tn e s s  A n a ly s is

It is well known t h a t  the  halt ing  problem is uncomputab le .  T h a t  is, it is impossible 

to wri te  a  program that,, given any input  program,  can always tell if it, te rm inates  or 

not. However,  there  are many  programs which clearly do t erminate ,  and there  are 

m an y  which clearly do not.  This  means  th a t  we can wri te an analysis program which 

app rox im a te s  the  hal t ing  problem in the  following sense: if the  analysis can be sure 

th a t  the  input  progr am  definitely loops then it will say so, o therwise it will suppose* it 

halts.  If we consider the  answer H A L T S  to be greater  th an  the  answer L O O P S  then we 

are ap p r o x im a t in g  the  hal t ing  problem from above the  a lgor i thm will always give an 

answer  a t  least as great  as the  t ru e  one. Str ictness analysis is such an approximat ion.  

A function /  is called strict  if /  _L =  _L, so s tr ictness  analysis a t t e m p t s  to answer  

the  ques tion:  if I give my function no informat ion (typically,  by applying it to a 

no n- t er mina t ing  com pu ta t ion )  then does it also re turn no information!*

Str ictness  analysis has provoked a lot of interest  because of its use in improving 

the  qual i ty  of compi led code from lazy functional languages.  Ther e  are essential ly 

two main  approaches  to the  analysis,  forwards and backwards ,  fo rwards  analysis
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([AH87]) a t t e m p t s  to address  the  st rictness ques tion directly by consider ing if the 

function r e tu rns  JL when appl ied to _L. In con tras t ,  backwards  analysis considers how 

dem an d  is pro pagated .  It deduces how much inpu t  a function requires to p ro du ce a 

cer ta in a m o u n t  of o u tp u t .  T h e  nam e “backwards  analys is” arises because  informat ion 

is p ro p a g a t ed  f rom a  function result  to its argumen t .  A detai led deve lopment  may 

be  found in [Hug8 8 ]. On e way to specify “a certain a m o u n t ” of informat ion is to use 

domain  projec t ions  [WH87]. From our  point  of view this is immedia te ly  promising.  

By having b o th  st rictness analysis and binding- t ime analysis cast  in the  sam e  f rame

work we m ay  hop e t h a t  the  techniques of one will be  appl icable in the  other .  Indeed,  

we will see an  example  of this in C h ap te r  7.

Suppose ,  we are performing a backwards  analysis and want  to know how much of 

its a r g u m e n t  some function f  : X  —► Y  needs in order  to be able to re tu rn  7 ’s worth  

of result  (where  7  is some projec tion 7  : Y  —► T) .  Let 11s call this am o u n t  ft (a 

projec t ion (3 : X  —► A'). How are / ,  7 , and ft re la ted? T h e  answer is tha t  they  must 

satisfy the  safety  condi tion:

l ° f  — l ° f ° f t

Consider apply ing bo th  sides to some value x.  T h e  safety condi tion implies t h a t  the  

appl ica t ion of ( 7  o f )  to x gives exact ly the  same value as applying it to (ft x) .  So 

to get 7 ’s wo r th  of informat ion ab o u t  the  result  of ( /  j )  we only need to know ft's 

wor th  a b o u t  x.  Of course,  we could still get a t  least y' s  worth  if we knew more 

ab o u t  x.  T h a t  is, if 8 is another  projec tion such t h a t  ft C 8 then 7 0 /  =  7 0 / 0 ^ also 

holds. This  means  t h a t  it is always acceptable  for a backwards  st rictness analyser  

to ap p r o x im a te  u p w a rd s — a larger projec tion than  the  o p t im u m  will still bo safe. In 

backwards  analys is  smal ler  projec tions  convey more accura te  informat ion.

T here  is not h ing  ab o u t  the  safety condi tion t h a t  forces it to be used with backwards  

analysis.  We can also in te rpre t  it in terms of forwards  analysis.  If I know ft 's worth 

ab o u t  the  a r g u m e n t  to /  then /y o f  = ^ o f o f t  implies t h a t  I know at  least 7 ’s worth 

ab o u t  the  result  of / .  Fur ther ,  for some projec tion 8 where 8 C 7  it is also t rue  

t h a t  8 o /  =  8 o /  o ft, so it is safe to app rox im a te  the  result downwards .  In forwards 

analysis larger projec t ions  convey more accu ra te  informat ion.

As the  safety condi t ion is appl icable to bo th  forward and backward analyses  it is 

reasonable to ask which method  is more sui table for a par t icular  analysis problem.  In 

b inding- t ime analysis we s t ar t  with an initial description of the  input  par am et er s  and
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this informat ion is p rop aga ted  thro ugh  the  program.  T h e  direction of informat ion 

flow is from a r g u m e n t  to result,  so we will use a forwards  analysis.

T h e r e  is an  equivalent formulat ion of the  safety condi tion t h a t  is often useful in 

proofs,  namely,  t h a t  7 0  /  =  7 0 / 0 ^  holds exactly when 7  o /  C /  o /i holds. T h e  

proof  follows easily from the  fact th a t  bo th  7  and (3 are projec t ions,  and may be found 

in [WI187]. We  will freely swap between the  two formulat ions  and use whichever is 
most  a p p r o p r i a t e  at  the  t ime.

3.3 C ongruence

Given a p ro g ram  and a description of which par ts  of the  input  a r t ' s ta t i c ,  b inding- t ime 

analysis produces  a projec t ion for each of the  functions in the  program.  T h e  analysis 

m ay  only produce a projec t ion 7  for a function /  if 7  is a s ta t ic project ion for the  

a r g u m e n t  of /  wherever /  is called. But ,  there  may be a place in which the  argument  

to /  is given by the  result  of some other  function,  g say. We may know how much of 

the  a r gum en t  to g is s tat ic,  but  wha t  do we mean when we say the  result of g (and 

hence the  a rgum en t  to / )  is static?

In [JonSS] Jones  defines congruence  to answer  this question.  Congruence lias become 

the  s t an d ar d  correc tness  condi tion in b inding- t ime analysis for par t ial  evaluation.  We 

have a l ready come across it informally, bu t  in this cha p te r  we give a precise definition. 

As we show, congruence  is ac tual ly weaker than safety. However, it. turns  out  t h a t  it 

is too  weak to be sui table for most  par tial  evaluators .  A more  sui table var iant ,  which 

we call uni form congruence,  is equivalent to the  safety condi tion.

Jones  models  a  p ro g ram  in terms of its stepwise behaviour  and then uses this model 

to define congruence.  T h e  program is regarded as a t r iple ( P , V , nx)  when '  P  is a sot 

of p ro gr am  points ,  V  a set of values (s tates) and nx  a s tep function m app ing { p , v )  

pai rs in to  ( ; / ,  v') pairs.  Each ( 7 7  v)  pai r represents  a single point  in the  com pu ta t ion ,  

and the  function nx  defines a single com pu ta t ion  s tep  from program point p and 

value v the  co m p u ta t io n  proceeds to program point 7/  and value v ' . T h e  program is 

un der s to od  to have t e rm ina ted  with value v whenever  nx (p,  v) = (p,  v).  In functional  

programs,  the  p rogram points are the  function names.

T h e  choice of the  des t inat ion program point  under  the  action of nx  depends ,  in g e n 

eral,  011 both  the  initial program point, and the  value. So from any given program 

point 7 7  the  des t inat ion point  depends  on the  value at  th a t  point .  At p , there- 

fore, we can par t i t ion  the  value set V into subsets Vt such th a t  if v G I', then the
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dest inat ion point  is p,. Moreover,  we can define functions /, : V, —> V such t h a t  

v G Vi => nx  (p,  v) =  (p,,  f t v).  Such a choice of par t i t ion  and functions is called 

a control transfer.  A collection of control  t ransfers,  one for each program point ,  is 

called a  control structure.

Congruence is defined in terms of a control s t ru ct u re  and a program division.  

A division consists of th ree  collections of func t ions-  -static,  dynamic ,  and pai r ing 

funct ions— indexed by the  program points.  We will typical ly call these a , A, and 

7r respectively,  each duly subscr ip ted  wi th the  p rogram  point .  T h e  purpose  of the  

pai r ing funct ion is to ensure  th a t  a  and 6 are well -behaved wi th respect  to each o ther  

th ro ug h the  requ irement  t h a t  7Tpo <  crp,S p > =  id (at  each program point  p). We give 

the  precise definit ion of divisions in C h a p te r  5, b u t  have sufficient for t he present.

D efin it io n  (Jon es)
A division (a, 6 , 7r) is congruent  a t  a program point  p with respect, to a control st ruc

tu re  {(K', f i  '■ Vi —> V’)} if f ° r each i,

Vv ,  w e Vi ■ Op V =  a p w =>  a v% { f  v) =  o Pi ( f  w)

Th e  definition requires t h a t  any two values wi th equal s tat ic pa r ts  are m apped  to new

values whose s ta t ic  pa r ts  are  also equal.  Thus ,  if a division is congruent  we will be 

able,  dur ing  par t ia l  evaluation,  to ca lculate the  s tat ic par t  of a value at  any point  in 

the  compu ta t ion :  we can ca lculate the  initial s tat ic  value it is given to us and if wo 

assume we can ca lcula te the  s tat ic value a t  some program point ,  congruence ensures 

th a t  we will be able to ca lculate it at  its immedia te  successors.  Induction completes  

the proof. Congruence,  therefore,  satisfies the  intuit ive requirements  we discussed in 

C h ap te r  2. Given a congruent  division we can always ca lculate the  value of o p v and 

so can always choose which specialised version of p will replace ( p , e ) .

3.4 U n iform  C ongruence

To just ify the  earl ier claim t h a t  congruence is too weak a condi tion for most, par tial

evaluators  we will consider an example .  Suppose  we have the  function,

pO (x,y) = if y=3
then pi (x*y) 
else p2 x
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and a  division where  a vo = f s t , o ?1 =  ID  and a V2 =  II)  where f s t  ( j ,  ,y) =  x.  T h e  set, 

of values V  a t  po is N  x N  and the  control  s t ru ctu re  is given by,

Vi =  { ( x , 3 )  | x G N }
V& =  {(*,  y)  I x G N ,  y e  N  \  {5}}

The t ransf er  functions are given by

f i  (*,  y) = x x y 
fs  (x,  y)  =  x

To see t h a t  this division is congruent  suppose  t h a t  v,  w G Vi and t ha t  a ro v — a po ?/’. 

ddicn

a vi (ft  v ) = h  v
= fst  v x  3 [definition of f x]
= fs t  w x 3 [because crpo r  =  a po ?/']
=  f i  w 
=  ° V l  i l l  w )

arid the  case of Vs is as easy. But,  even though the  division is congruen t  it would 

cause problems  for most  par t ial  evaluators .  Congruence only examines  f t in the  re

st ricted con tex t  in which it will actually be called, and not over the  whole domain 

of values.  This  means  t h a t  divisions may  take into account  impl ica t ions  from sur

rounding condi t ionals and still be congruent.  T hus  f t  is allowed to “kn ow ” t h a t  its 

p a r a m e te r  y  will have value 3. If a division takes advan tage  of this t hen so must  the  

special isation a lg o r i thm — it must  perform driving. What,  is more,  all the  information 

implied by the  condit ional  must  be ex t rac ted  and used in case the  division has taken 

advan ta ge  of it. In general  this is uncomputable .  If, on the  o ther  hand,  the  special i

sat ion is per formed by an ordinary  par t ia l  evaluator then the  division will ac t  as if it 

were not  congruent .

In pract ice  problems do not  occur as a far s t ronger version of congruence ,  namely  

in tcns ional congruence , is normal ly used. However, this is defined syntact ica lly  ra the r  

than  semant ica l ly  which makes it heavily language dependent .

It is possible to revise the  definition of congruence so t h a t  it loses this value d e p e n 

dence b u t  o therwise remains  the  same. In the  definition of control  s t ructures  the 

functions  {/ ,} were only defined on the  par t icular  V7,, and so it, only made sense to 

draw the  values v and w from V7. This  led to value dependence.  Ther e  is ac tually no
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reason why the  functions  {/ ,} should not  be  defined over the  whole of the  value domain 

V.  After  all, t h a t  is the  range of thei r definition in the  program.  T h e  original {/,•} 

are ju s t  res t r ic ted  versions of these. Let  us now use {/ ,} to denote the  unrest r icted 

versions,  so t h a t  /, : V  —> V  for each i. Now we can define a value independen t ,  or 

uniform,  var iant  of congruence  which we shall call uniform, congmcncc.

D efin it ion
A division (cr, <*), 7r) is uni formly  congruent  a t  a program point, p with respect  to a. 

control  s t ru c tu re  {(V-, f i  '■ V  —* V")} if for each i,

Vu, w £  V  . a r v =  <jp w => a Pi ( f  v) = a Vx ( f  w)

Note th a t ,  unlike the  definition of congruence ,  the  values r and w are fr<v to range 

over the  whole of V . As this is a s t ronger  condit ion  than congruence,  uniformly 

congruent  divisions are also congruent ,  bu t  a congruent  division is only uniformly 

congruent  if an y  two values wi th equal s tat ic  par ts  are given equal stat ic par ts  by f .

3.5 S afety  U n iform  C ongruence

In order to com pare  uniform congruence and safety we have to make a small  extension 

to the  revised prog ram  model.  T h e  definition of nx  assumes th a t  it will always be 

possible to det er m in e which program point  is t he  des t inat ion.  This  is not unreasonable  

in an iterative'  language where the  value r is com puted  using built in opera tors  only. 

In a recursive language,  the  computa t ion  of v may bo given by user defined functions 

and so m ay  not  t erminate .  T h en  nx  (p,  v)  will be undefined.  This  must  be reflected in 

the  control  s t ructu re .  We add a new pro gram  point  p L and define nx {p±,  v) =  (p l 5  

for all values v £  V.  Adding an order ing where p± fi  p for all p £ P  makes  P  into 

a (flat) domain .  V  likewise becomes a domain and the  {V,} disjoint, open sets in V.  

T h e  rest of V  ( t h a t  is, V  \ U { K } )  is a dosed  set which we will call VL . Finally we 

define the  t ransfer  function f L : V —► V  by f ± v =  _L. So, if v £ Vt for some _L),

then nx ( p , v )  =  (;;,, f  v ) as before, bu t  if v £ V± then nx { p , v )  =  (/;_l,_L) and tin*

value of the  p ro g r am  is _L. Notice t h a t  Vj_ may be em pty  at, some program points.

At  (*very pr og ram  point  f±_ v =  _L, so a division which is congruent  with respect  to 

some control s t ru c tu re  will still be congruent,  if we extend the  control s t ru c tu re  with 

V±. This  means  t h a t  we can be a li t t le sloppy with our notat ion.  We will typically 

include Vi in the  {Vi}.
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D efin it ion
A division (a,  8, 7r) is safe at  a program point  p wi th respect  to a control  structure'  

{(K ,  f i  ■ V  -> V ) }  if for each i, a Px o f  = a Px o f  o o p

T h e  extens ion to the  pro gram  model  is required because it is possible for a  projec tion 

er to m a p  a value from a set V, in to  V±. Having defined safety we can now prove th a t  

it is equivalent  to uni form congruence.

T h e o r e m  3.1
Let A  ( — ((7,6,7r)) be a division. A  is safe if, and only if, it is uni formly congruent .  

P r o o f
Assume A  is safe. Let p be  a program point and let {(V,, / ,  : V7 —> V7)) be the  control 

s t ru c tu re  a t  p.  As A  is safe we know t h a t  a Pi o f  — a Px o f  o a p for each i. We want  

to prove t h a t  if erp v  =  a p w then a Px ( f  v ) =  a Pt (f  ?c) for all i and v, w G V . So, 

assume t h a t  o p v = a p w for some arbi t ra ry  i and r ,  w G V . Th en ,

°Pi (fi v ) =  K ,  ° f i ) v
=  { v Vl ° f > o a v ) v [safety]
=  (Vpt ° f i )  {a P v )
= (crp o f )  (<7 p w)  [by assumpt ion]

=  (<?>, ° f i  0  <*p) w
=  (^r ,  0  fi) w [safety]
=  ° p x ifi «’)

and so A  is uni formly congruent  a p.

Conversely,  assume A  is uniformly congruent .  Let p be a program point  and let 
{(\G, / ,  : V  —i► V )}  be the  control s t ructur e  a t  p. T h e  project ion a p is id( 'mj)otent 

so a p v =  a p {<7p r )  for any value v G V ■ As the  division is uni formly congruen t  we 

may  conclude t h a t  crPi ( f  v) =  crPi ( f  (crp v)) for any value v G V.  In o ther  words,  

a Px o f  = a Px o f  o crp as required.  □

We have seen, at  least in principle,  tha t  projec t ions may be used to provide' desc r ip

tions of prog ram  values, pinpoint ing which par ts  are' static:. Furthermore*, the* safe'ty 

conelition used in s tr ictness  analysis is precisely the  condition ne'e'de'el to ensure* un i

form congruence.  W h a t  we* must  do now is to proviele* Imth concre-tc- anel abs t ra c t  

se' inantics for some par t icular  language to ve'rify t h a t  the* principle? of using proje*ctions 

is re'alisable* in practice*. This is done in the* ne>xt e:liapte?r.



C hapter 4 

B in d in g-T im e A nalysis

In this chapte r  we explore some of the  pract ical it ies of using projec tions in b inding 

t ime analysis of typed  lazy functional  languages.  We have' chosen typed languages 

because we use type  informat ion to control the  s t ru c tu re  of the  project ions.  For 

concreteness  we define a simplified language and wi th its aid present, the  b inding- t ime  

analysis equations .  We dem o n s t r a t e  thei r safety, and show th a t  an app rox ima t ion to 

the  analysis m ay  be performed in a finite time.

4.1 P E L  A b stract  S yn tax

T h e  language P E L  (P ar t ia l  Evaluation Language) is in tended as a toy language only 

but  is very much in the  style of o the r  lazy functional  language's. Unlike' “re'alistic” 

languages it has no predefined types like integer or character  and wi thout  the' additiem 

of cer tain  s t an d a r d  features  it would be impractica l  te> use' regularly, Ileiwe've'r the' 

p ro g ram m er  is able to define ar bi t r a ry  algebraic d a t a  type's so it is possible' to write' 

fairly complex programs.  T h e  advan tage  in res tr ic t ing  ourselve\s to a simple' language'  

is t h a t  we should  be  able to avoid being swamped by unne'cessary eh'tail. W h a t  we' 

learn from discussing it can be  appl ied to larger language's.

Various syn tact ic  classes ap p e a r  in the' gr amm ar .  Single' (subscripte'd/ele'e-orate'd) 

le'tte'rs represent  variables in the  variems classe's.

e £  Fxpr  [Expressions]
x £ Var [Variable's]
f  £ Fun [Functions]
c £ (Jon [Const ruelors]

:ui
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d g Fndefn [Function Definitions]
P e Prog [Programs]
T e Type [Types]
A G Alg [Algebraic Types]
D G Tdefn [Type Definitions]
C G Tdecl [Function T y p e  Declarations]

So, for example ,  p rog ram  variables will be called x, x, etc.  R a th e r  th an  cont inual ly 

d is t inguish between individual variables and vectors of variables we will assume th at ,  

typically,  x represents  a  vector of variables.  W hen  we do need to describe the  i th 

var iable  f rom a vector x we will use th e  nota t ion x(i).

A pro g ram  consists of a series of type  definitions followed by some function definitions, 

each of which is immedia te ly  preceded by a declara t ion of its type.  T h e  program 

concludes wi th an expression and its associated type.  T h e  expression represents  the  

mean ing of the  progr am  in the  context  of the  preceding declarat ions .  We use {pat tern  } 

to signify zero or more  repet it ions.

{D} {C d} e: :T 
f x = e ; 
x
(e/,. . . ,en) 
c e 
f e
case e in C; X; -> e ; I I ... | I cn x n -> en end 
A = c T {+ c T}; 
f :: T -> T;
A
( T, , . . . ,T „ )

An example  p rogram  will make the  g ra m m a r  easier to follow. To make  programs

easier to read,  some const ructors  (e.g. False) are not, given an argu ment .  When the

a r g u m e n t  to a co ns t ru c to r  is om it t ed  it is assumed to be the  em p ty  tuple  ()  which 

represents  the  e lement  of the  void (or unit) type.  We will write* e i ther  ( )  or 1 to 

denote  this type.

Bool ::= False + True;

and :: (Bool,Bool) -> Bool;
and (x,y) = case x in
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F a l s e  -> F a l s e  

I I T ru e  -> y 

e n d ;

and ( a n d  ( T r u e , F a l s e ) , T ru e )  : :  Bool

4.2 T y p e  R u les

We will assume the  p rogr am satisfies various well-formedness cri teria in addi t ion  to 

syntact ic  correctness.  For example,  no function should be defined twice, the  cons t ru c

tors in a c a s e  expression should all be from the  same type,  and so on. In addi t ion  a 

pro gram mus t  be  well-typed.  P E L  is first order and,  at  this junc tu re ,  monomorphic .  

It allows for the  definition of new types using (separa ted)  sum,  (s t anda rd )  product  

and recursion.  Expl ici t  type  declarat ions  are provided for the  functions,  so the  tvpe  

of any expression m ay  be easily inferred.

We use the  variables R, S and T to represent  types and wri te assumpt ions  of the  form 

x:  :T to mean  x ( l )  : : T ( l ) , . .  . ,  x ( n )  : :T (n ) .  T h e  assumpt ion lists only conta in  details 
ab o u t  the  local variables within a function body. A typing judgemen t  concerning 

a function is t ru e  exactly when it accords with the  type  declarat ion given in tin* 

program.  T h e  sam e is t rue  of const ructors.  If a cons t ructo r  c, appear s  in t h e  definition

of a type  S then S is of the  form S =  c ,  S,  -f • • • +  c n Sn for some types {S , } and

c ; : : S,• — >S as usual.  T h e  typing rules for expressions are as follows.

x:  :T h x ( i ) : : T ( i )

x :  : T b  e p  iRj ••• x : : T F e n : : R n 

x:  :T F ( e 1? ..  . , en ) : : (R j , . .  . ,  Rri)

f : : R - > S  x : :T F e : :R 

x : : T F f  e : : S

c , : : S,->S x : : T F e : : S, 

x : : T F c, e : : S

x : : T F e : : S Vi . (x : :T, y t : : S, F e, : : R)

x : :T F c a s e  e i n  Cj y, -> ej I I . . .  I I c n yn -> e n e n d : :R
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Only well -formed an d  well-typed programs are assigned a meaning.  This mean ing  is 

defined by th e  deno ta t ional  semant ics .

4.3 D e n o ta tio n a l Sem antics

Th e  deno ta t iona l  semant ics  is fairly s t andard .  T he re  are three  semant ic  domains  

one to model  values and the  o ther  two to model  value and function environments  

respectively.  T h e  funct ion env ironment  is kept  separa te  because funct ions are not  

values— all functions  are first order.

v E Value =  ( Con  X Value) -f ( Value x \ raluc)
p E Vcnv = Var —+ Value
4> E Fenv = Fun  —► ( Value —► Value)

While  we use a universal  value domain it is often useful to imagine otherwise.  For 

example,  if we have a pro gram function f  with type  X->Y it is convenient  to th ink 

of its mean ing  /  as being a function /  : A —► Y  where the  domain A’ corresponds  

to the  ty pe  X an d  likewise wi th Y . We can make  this more  precise. Using d o 

main  sum,  p ro d u c t  an d  limit we can cons t ruc t  domains  to correspond with  the  type  

definit ions and can cons t ruct  the  obvious  projec tion pairs between these domains  

and the  universal  value domain.  T hus  if X is a  type  with corresponding domain A , 

there  exist  m ap s  (f>x ■ X  —> Value and fi>x '■ Value —> A such th a t  V’.v ° <f>x — E ) \  and 

<f> x  o rftx V  ID  Value • T h en  any value i  E A' may be identified with a unique v E Value 

given by v =  (f)X {x).  This  means  t h a t  we can ignore the  dist inction between e lements 

in X  and  e lements  in Value lying in the  range of <j>x. We do not prove t h a t  our  typed 

programs cannot  go wrong [Mil78] but  the  proof would be similar to Milner’s.

T he re  are  two semant ic  functions.  T h e  first const ruc ts  a function envi ronmen t  from 

the  funct ion definitions. T h e  second assigns meanings  to expressions in a context  

suppl ied by the  function and value environments .  Ther e  are no predefined functions  

so the  function envi ronmen t  is const ruc ted  from the  p ro g r am ’s function definitions 

only.

T> : F n d e f n * —► F e n v
T>[ fj x, = ej ,.. ., fn xn = en ]

=  f ix (\<f> . {f; ,..., f n ^  \ v  . 8 ^  e n l{rn_ l)} })
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£  : F e n v  —> E x p r  —> E e m ;  —► Va lue

£ 4 x ]p =  H M
^ [ ( e i , . . . , e n) l p =  ( ^ [ e 1 ]p, . . . , ^ [ e n Jp)

^ l c e i  =  c ( £ 4 e l p)
£ 4 f  e lp =  < 4f  1 ( £ 4 e l p)
^ [ c a s e  e i n  C! x 2 ->  e! I I . . .  I I c n x n -> e n end

=  case  £ 4 e l p in
a  V,  => ,

c ,  v ,  ^ | e ,  I , , , ; . „ , , ,  j

T h e  op e r a to r  0  combines  environments .  It is defined by, 

p' x  if defined
ifl ® S )  * =  . p x  otherwise

So p ® p'  is p overr idden by p' . The  form {x t—»• i;} represents a function ele
men t  in the  usual  way, b u t  as x is in general a vector of variables,  this means  

{ x ( l )  i—► f s t  u, x (2)  •—► snd  u , . . . } .  We will use this no ta t ion fnxdy on environments  

of any type.

T h e  functions  in the  p rogram  can be mutual ly  recursive. This  is cap tu red  in D  

t h rough  the  use of f ix.  T h e  fixed point  is taken across all the  function definitions 

s imul taneously.  In £ ,  certain values need to be appropr ia te ly  injected into Value 

using th e  device discussed earlier. For example,  the  mean ing  of the  const ructed  term 

c (£<4 e Ip) really given by the  value ini ( c, £ ^l  e ]p) in Value. Finally we not ice the 

d ist inc tion between the  syntact ic “c a s e ” and the  semant ic  “ r a s r ” in the  definition of 

£.  We as sume the  la t ter  to be the  s t anda rd  mat hem at ica l  function but  are providing 

a definit ion for the  former.

Expl ici tly wri t ing  £ 4 e Jp f°r ^ ie meaning of an expression e, and £ | f  J for the  m e a n 

ing of a funct ion f  is cumbersome.  There  are t imes when we will need to be precise 

in this way. Otherwise ,  when (f> is the  full function envi ronmen t  defined by T>, we will 

jus t  wr ite /  for <£[f J and  e[v/^  for £ 4 e l {r^ v]-

4.4  A b stra c t  Sem antics

We define an ab s t r ac t  semant ics for PEL.  The  abs t ra c t  values are projec t ions  over 

the  universal  value domain.  As before there are two environmen ts ,  one for ab s t ra c t
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values and  the  o ther  for ab s t ra c t  functions.  We will follow Mycrof t ’s nota t ion [MycSl] 

and use a #  superscr ip t  to indicate the  abs t ra c t  in terpre ta t ion.

7  E Pr oj  = Value P—> Value [domain of finitary projections]
E AbsVenv  =  Var —► Proj  

<f># E AbsFcnv = F u n  —► (P r o j  —► P r o j )

T h e  greates t  lower b ound  of two projec tions wi thin the  domain of functions  (as given

by 7 f l ^  =  Xx.-y x (“I 6 x)  is not,  in general ,  a project ion.  However,  greatest  lower

boun ds  do exist  in Value Value for the  following reason.  Projec t ions  are  bound ed  

by ID,  so t h e  set of projec t ions {/?,• | V f  (/?,• □  7 ) A (J3, C )} is consistent  and,  hence, 

its least u p p e r  bound  exists.  This least uppe r  bou nd is a finitary projec t ion and is 

greater  t h a n  all o ther  lower bounds  for 7  and 6 and so it is the  greates t  lower bound.

T h e  difference between these different greates t  lower bounds  becomes i rrelevant  when 

we in t roduce  pa r t i cula r  finite domains  of project ions.  We will find t h a t  the  usual 

greatest  lower b o u n d  of any set of projec tions from these domains is itself a projection 

and,  moreover,  also a mem ber  of the  same finite domain.

Using the  same t rick as before we can identify projec tions over a domain  .V with 

projec t ions in Proj .  Wri te  Projx  for the  projec t ions on A . Then there  exist func

t ions <Px : P r° jx  ~ > Proj  and 'Px '■ Proj  —► Projx  such t h a t  &x 0 — H)proJX ai)d
<px  o x  U ID proj. &x a n d &X can bo defined using the  project ion pai r </>\-, V’.v ° f  
the  previous section.

$ x  =  h  ■ 4>x o 7  O Ux
V x  =  A[J . ipx  o f i o  4>x

Tlierefore,  as wi th values, we need not  dist inguish notat ional ly between a project ion 

in Projx  an(l th e  corresponding projec t ion in Proj.

We need to define p ro d u c t  and sum opera t ions  011 projections.

D efin it ion
If {7 , : X t —> X,  }{/<,<„} is a family of project ions , then wo define the  project ion 

(7 ; x • • • x 7 n ) : { X , , .  . . , X n) -► ( X , , . . . ,  X n ) by

( 7 ; X X 7 „ )  ( x / , . . . , x n ) — ( 7 1 1 • • • ) 7 n  Xn )
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D e f i n i t i o n

If {7 , : X{ —► X :}{/<i<n} is a  family of project ions , then we define the  projec tion 

(c,  7/ + ------1- cn 7n) : (C1 X i  4  • • • +  cn A'n) (c t X t  4  h cn X n) by

( C l  h  4  h  Cn 7 n )  J _  =  _L

(c/ 7 / +  h c n 7 n ) (c/ X / )  =  a  ( 7 /  X / )

(cj  7 / 4  h Cn 7 n) (cn xB) =  cn (7 b xb)

We will somet imes  use the  no ta t ion ( ci 7 ,) as a shor t  form for (c/ 7 / 4  ■ ■ ■ 4  cn 7 „)-

Ther e  are two ab s t r ac t  semant ic  functions.  These evaluate  functions and expressions 

in the  ab s t r a c t  domains  and  correspond directly wi th the  concrete semant ic  functions.

27^ : F n d e f n *  —► A b s E c n v
27# [ f  1 X/ = ej , . . . ,  f n xn = en J

=  gfp ^  X v - £ f # l e i • • ’ f " ^  A r - ^ I e ’i l {rn^ v} ))

E ^  : A b s F e n v  —> E x p r  —► A b s V c n v  —> P r o j

= p* i x i
 e») ] „ ,  =  x • "  X

=  c, / /> +  --• +  +  ■■■ +  <-, i n

£?* I f  e ] p' = <f>* [ f ]
E*# [ case e in Cj Xj -> ej | | ... II cn x n -> en end ] #

=  case E * # l e ] p„ in

A B S  4  A B S

e ,  (c» 7 .) => n .  ip#(D{xt̂ 7,})

As the  only projec tions  t h a t  can arise over a sum domain are A B S  and sums of 

projec t ions ,  th e  two cases in the  final equat ion are  exhaustive .  Initially surprising,  

in the  definit ion of 27 ,̂ is the  use of greates t  fixed point  (gfp).  Actual ly any fixed 

point  is safe but ,  as we noted in C h ap te r  3 (and in con tra s t  with backwards  analysis),  

larger projec t ions  give more  accura te  informat ion.  As with the  concrete semant ics  we 

will somet imes  use an abbrevia ted  notat ion.  Whe n  is the  result of 27̂  appl ied to 

the whole program,  we will wri te for </># | f  J, and ôr  ̂0  ’

Before we give the  b inding- t ime equations  and prove them correct  we will d em o n s t r a t e  

tha t  the  abs t r a c t  semant ics  are indeed an abs t rac t ion of the  concrete semantics .
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L e m m a  4.1

If (j) an d  (f)# are function environments for which ] 7 o<*>[f J C J o 7  for all

funct ion nam es  f and  all project ions 7 (of the  app ropr i a t e  type)  then

£*# l e  0  At,- 7 I I e ! { , „ . )  E  Af - 7 l e  ]<*„,} ° 7  

P r o o f
Th e  proof  is by induct ion over the  s t ruc tu re  of e. We will prove the  equivalent  

result ,  t h a t  (£*# [ e J {̂ }) (£4 e J{* - n }) ^  £ 4 e l{*~7t,} for a11 values v (obta ined by 
applying b o th  sides to v).

C a s e :  ( x ( i ) )

=  7 ( 1') u(z)

C a s e :  ( e / , . .  . ,  e n)

{£%  I (e l ’ • • • ’ e 4  ^  (e > ’ • • • ’ e 4
=  X  • • •  x  ( ^ l e ,  ! ( , „ „ ) . •  • • ,  7 1  e i

=  « T *  (£ * I e .  ] { >) E
E  ( ^ | e ,  1{JI [induction]

~  7  [I ( e ! ’ • • • 1

C a s e :  (c* e)

(7 * l c t  e l ( T„ 7)) ( 7 1  e l ) I « . } )
=  (c, I /? +  ••• +  ck +  ■•• +  ' ’» I D )  (a- 7 K e l{r „ „ ) )

=  ct ( ( 7 #* I e l ( , „ , ) )  ( 7 b  !{ ,„„}))
E  ct ( 7 I e ] | { r„ „ ) )  [induction]

— <̂t> H e l{ri-.-7 v}

C a s e :  ( f  e)

( 7 #* I f  e l ( r ^ } )  ( 7 I f  e l { r „ „ ) )

=  (<t>* I f ]  ] ( 7 I e ] , _ M))
E  < 4 f J  ( ( 7 ## I e l {r„ l ) ) ( 7 [ M ( , „ „ | ) )  [ns.sumpt ion]

E  <Mf 1 ( 7 I e ] , r„ , . , )  [induction]
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C a s e :  ( c a s e  e i n  . . .  c* x* -> e* . . .  end)

T h e  (projec t ion valued) result  of £*# [ c a s e  e i n  . . .  c k x k -> e k . . .  end]^  ̂ is 

expressed as a  case s t a t e m e n t  wi th two possibilities. We will consider these two 

possibilit ies separately.  T h e  first possibility is t h a t   ̂ =  A B S  in which

case £^# [ c a s e  e i n  . . .  c k x k -> e k . . .  e n d ] ^  =  A B S  and,

A B S  (£4 case e in ... c k x k -> e k . . . end]M )
=  _L
C  ^ | c a s e  e in ... c k x k - >  e k ... end]{r^ 7t/}

T h e  o ther  possibil i ty is t h a t  [[e ]]̂  =  E  C 7 «- If fh>s is the  case the

£*# [ c a s e  e in ... c k x k -> ek ... end] =  fl. Ie«' r }) an<^

) (£0[case e in . . .  ct x k -> e k . . .  e n d J {j. _ r}

{x > —►7 , x , i —>7 , }

case  £ ^ | [ e ] {ar̂  in

ck Vk •y *.■}

□  case  £^>Ie]{ri__>l;} in

c k Vk => 4>#U-

□  case £ 4 e ] {x^ v) in  [induction]

ck Vk £<t>l e k l{x^-7 v,xk̂ 7 kyfc}

=  case  ( E  c, 7 .) (£4 e l {r„ w}) in  [meaning of case]

Ck Vk £<t>\ ek ]]{j:h—7 v,x-fci—y*; }

=  ease  (£f# [e] ) (£*[ e U{x~Wj^  ■** {x> —>7 }

c k Vk  ^  £<t>\ Gk  ]] { r i _ 7 U r̂k>_ y k }
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C  case in  [induction]

c k V k  £<t>l e k l { x . - ' y t > , : r fc. - y fc}

=  ^ [ c a s e  e i n  . . .  ck x k -> e k . . .  e n d ] {r^ v}

which completes  the  proof. □

L em m a  4.2
If 7  is a projec t ion (of the  appropr ia te  type)  then ( / # 7 ) o /  C /  o 7  

P r o o f

T h e  proof  is by fixed point  induct ion.  We wri te f n for the  71th approx imat ion  to /  

( t ha t  is, for <̂ n [ f  ]] where the  {<?!>„} form the  Kleene chain app rox im a t ing  the  full 
funct ion env iro nment  <f>). Recall t h a t  while /  is defined by least fixed point  (and so

its Kleene chain  of ap prox imat ions  is increasing),  is defined using greates t  fixed

point .  If we define J, then j f  =  A7  . ID  and for any integer  k.

We use this la t t er  fact in the  induct ive case. Suppose the  definition of /  is given by 
f  x = e. T h e  induct ion hypothesis is t h a t  / # 7  o /„ f  /„ o 7  for all functions  / .

Case: Base

( / # 7) 0  fo =  ( / # 7) 0 A z . l
=  Az.T [ f*  7  is strict]
=  fo o 7

Case: Induc t ive

( / *  7 ) 0  / . + ,  C 

c

Case: Limit

( / #  7 ) 0  /  =  L r = 0  ( f *  7  0  fn) [continuity of 7 ]
Q U£=o ( L  0  7 ) [finite induction]
— f  0 7  [definition of |_|]

( f n  + l 7 ) 0 f n  + l

^ • ^ n l e ] { zi- . 7u} [ i n d u c t i o n  a n d  l e m m a  4 .2]

f n  + l 0 7
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which com pletes th e  proof. □

We have proved, therefore , th a t  th e  ab s tra c t  version of a function m aps a descript ion 

of / ’s a rg u m en t  in to  a description of its result. T h e  sam e result holds at the  expression 
level.

C oro llary  4 .3
If 7  is a p ro jec tion  (of ap p ro p r ia te  type)

P r o o f
This is a re s ta te m en t  of the  first lemma. Its precondition is satisfied by the  second. 

□

4.5 S afety

In C h ap te r  3 we defined w ha t it m eans for a division to be safe in term s of a slightly 

ex tended  version of Jo n e s ’ program  model. However, th a t  model is most su ited  to 

ite ra tive  p rogram s where the  various transfer functions, the { /,} , are ju s t  p rim itive 

operations. In recursive program s much of the  m eat of the com puta t ion  is likely to be 

perform ed by these transfer  functions, and so we need to focus on their definitions also. 

To do this we will give a m ore general definition of safety which, in the  case of ite ra tive  

program s, will reduce to  th e  one in C h ap te r  3. P E L  program s a.re sufficiently similar 

to o ther  recursion equa tion  languages to serve as a su itab le  model directly. We write 

f  x = • • • (g  e ) - - -  to m ean th a t  the  function g appears  in the  definition of f  with 

arg u m en t e (which will typically depend on x). In Jo n es ’ model the  s ta tic  projection 

a  is subscrip ted  with th e  program  point. For PE L  program s it is subscrip ted  with 

the  function n a m e — th ere  is one s ta tic  projection  per function. Note th a t  the  s ta tic  

projection  is a  descrip tion  of the  argument  to the  function and not of the  result.

D efin it ion
Let p be a P E L  p rogram  and A — (g ,8, 7r ) be a division. A  is safe for p if for every 

definition of the  form f  x = • • • (g e )  - • • in p,

G g o (A e .rp /q )  =  G g o  (Au.c[v/r]) o G f



C H A P T E R  4. B I N D I N G - T I M E  A N A L Y S I S 47

W riting this o u t  fully and  applying bo th  sides to v gives the  equivalent s ta tem en t  ,

v ,  e !{ ,„„} )  =  <r, ( £ 4 e

In other words, in order to calculate er/s worth of the argument to g we only need 
oy’s worth of the argum ent to / .

4.6 B in d in g  T im e A nalysis  E quations

T h e  ab s t ra c t  sem antics  form th e  basis of b inding-tim e analysis. We w ant to p roduce 

a division for the  p ro g ram  and  will use the  abs trac t  sem antics to do so. We in troduce 

one m ore sem antic  dom ain  to model program  divisions. In the  next ch ap te r  we will 

see th a t  th e  functions Sj and  7tj can be derived from the  s ta tic  function aj .  Therefore, 

all we need to  model divisions is a function from variable names to s ta tic  projections. 

T hus ,

A  £  Divis  =  Fun —> Proj

T hree  functions are used to generate  divisions. T h e  function V ^ (corresponding  to

Ses to ft’s function P  [Ses8 6 ]) produces a partia l descrip tion , detailing which p ro jec 

tions should  be assoc ia ted  with the  functions appearing  in its expression a rgum en t.  

T h e  o th er  two com bine this information a t the p rogram  level. T h e  value of is

bounded  by th e  te rm  a b s ) (w^ ere e ' s ^ 1(' expression in the  program )
which associa tes the  pro jec tion  A B S  with any free variable's appearing  in e.

A 4 ^  : Prog  —► D  im s
M * I d , , . . . ' d „ , e ]  =  S/ , - ( A z l . ( n , ^ # [ d , l J  n  ^ ## I e ] jA i^ v))

where'
4>* =  P # [dj,..., dn ]

: A b s F c n v  —► E n d c f  —> D i m .s —► D u n s

x = e l ^  =  1}
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V *  : A b s F e n v  —► E x p r  —> A b s V e n v  —> D u n s

=  i Af • l D )
P £ | [ ( e i , •••><*„)],,  =  ■p/# I ei l p# n . . .  n V * t  [ e„ J ^  

V * A c  e J  # =  T>* [ e l

= { / ~ # M  } n P #
tf,#

II c a s e  e i n  q  xj ->  e j | | . . .  I I c n xn ->  e n end]]

A B S  =>

E ,  c, 7 , =» P #  [ e ]  n ( n ,  ^ f # | [ e t

We will con tinue  to  use th e  n o ta t io n  cry for Z \ | f  ] when A  is the  division defined by

M * .

To show th a t  these  b ind ing-tim e equations are correct we prove tin' following theorem .

T h e o r e m  4 .4

I f p  is a P E L  p rogram , the  division A  defined by A 4 ^ |p J  is safe for p. 

P r o o f

Suppose f  x = • • - (g  e )  - • • is a definition occurring in p. T hen ,

^ I g l  E  ( X * A i  x = - " ( g  [ g  J [ddinil.ion of M * \

[ • • •=  I s ]

E  ({g -> [ g ]

Rewriting this in th e  ab b rev ia ted  form gives, crg □  f[ay/r]- using this, we ob ta in

Vg O \ v . e [v/x] □  e[ty/rl ° X v -€[vh
□  Ar . C [ „ / x] o cry [corollary 4 .4]

which is equivalen t to the  safety requirem ent. □
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4.7  G en era tin g  F in ite  D om ain s

T he dom ain  Projx  contains all finitary projections over A ; in general, uncoun tab ly  

m any of th em . F inding  the  g rea tes t  fixed point required by the  definition of V *  is 

therefore u n com putab le .  Instead  we will restr ic t ourselves to a finite sub-dom ain  of 

pro jec tions ( F i n P r o j x ) and com pute  an approx im ation  to the  fixed poin t by finite 
itera tion .

An a l te rn a t iv e  ap proach  would be to use the  infinite dom ain  of projections. To achieve 

a finite analysis t im e, we would rely on algebraic m anipu la t ion  techniques to  ap p ro x 

im ate  a  so lution to the  a b s tra c t  sem antics equations. Hughes used this approach  for 

backw ards analysis [IIug87] and came across two problems: the  algebra was com pli

cated  and tedious and , m ore seriously, appa ren tly  reasonable approx im ation  m ethods  

could yield very poor results. As the  use of finite dom ains has been successful in 

m any areas we will adop t  it here.

4 .7 .1  P r o je c t io n s

We give an explicit construc tion  of FinProjx  based on th e  form of the  type  defini

tion defining X . In addition  to  projection sum  and  p ro d u c t,  wo define projections 

recursively using the  fixed point o pera to r  /c T h e  projection / ^ . / ' ’(y) is defined to 

be UiLo P k{ A B S )  as usual (i.e. the  least fixed point). In order to cope with m utual  

recursion we ough t also to define a selection opera to r ,  bu t  as this obscures ra th e r

than  clarifies the  m ater ia l  we will omit it here. An equivalent technique ap p ears  in

the  im p lem enta tion .

Each finite dom ain  FinProjx  is defined by the  inference rules below. A projection 7  

is in FinPro jx  if 7  P r o J X  can inferred using these rules.

A B S  proj c ! 1\  +  • • • +  cn Tn

P\ proj 7j • - • Pn proj T n

c\ I \  T  b c.n Pn proj ci T\ + -------- b cn T n

I \  proj Y) • • • Pn proj Tn 

Pi x ••• x proj (7j , . . . ,  Tn)

P ( 7 ) proj T{ t)  [ 7  proj t]

f n - P ( i )  p ^ j  f i t . T( t )
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The final rule should  be read, “if P { j )  proj T( t )  can be inferred under the  a ssu m p 

tion th a t  7  proj / then  f i-f .P(-f) proj f i t . T ( t )  can be  inferred.”

Because ty p e  definitions are finite, it is easy to see th a t  if any type A' is defined using 

the base types  and  - f , x and  // then FinProjx  is a finite domain.

Which pro jec tions a re  included in F i n P r o j x ? C erta in ly  A B S  always is (possibly 

occurring as A B S  x A B S  or f i ^ . ABS ) .  ID  also is always included, though this 

may not be im m ed ia te ly  obvious, par ticu larly  in the  recursive case. However, if 

P(~f) proj T ( t )  (u nde r  th e  assum ption  th a t  7  proj t) and if P ( I D t) = I I )T^ ,  then 

f i~f .P(l ) =  ID^t 'T^)  as required. Over a p roduc t  dom ain  we have only those pro jec

tions which ac t  on th e  com ponen ts  separately. If A' is a sum dom ain then FinProjx  

contains th e  A B S  pro jec t ion  and, in addition , projections which d iscrim inate  between 

all th e  injective tags. T h e  only projections we have over recursive dom ains are those 

which t re a t  every level of recursion identically. Finally, we note th a t  A BS]_ =  / / ) j  as 

there is only one p ro jec tion  on the one point domain.

4 .7 .2  E x a m p le s

To m ake this clearer, we will consider th e  following examples. Suppose th a t  for 

some types X and  Y, FinPr o jx  = { A B S , I D}  =  Fin Pro j y .  T hen  the  elem ents  of 

FinProj^x ,Y) are given by

FinPro j ix  n  =  { A B S  x A B S ,  I D x A B S ,  A B S  x ID,  ID x II)} 
=  { A B S ,  L E F T , R I G H T ,  II)}

To take an o th e r  exam ple , suppose th a t  the  type  Union is a tagged union of Bool, 

I n t ,  and  Char.  T h a t  is,

t y p e  U nion  = B1 Bool + Num I n t  + Ch C har

fh e  e lem ents of FinP rojuni0n are A B S , I A G  (which re tains the tag  bu t  discards 

every th ing  else), ID,  and  six projections lying between T A G  and II)  which variously 

discard values in one or two of the sum m ed domains (under the assum ption  th a t  the 

projections over these  types  are just  A B S  and ID).  This means th a t ,  not only can 

we model to ta l  presence or absence of information, bu t we can also model partia l 

information -knowing only the  tag b u t  not the associated value for example. If we 

have a function th a t  o p era tes  on a tagged union our partia l (“valuator may, at least
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potentially , be able to  eva lua te  away the  tags to  provide sep a ra te  functions specialised 

to a rg u m en ts  of the  different types. This is a  key idea in the  developm ent in the  next 
chapter.

Finally, consider associa tion  lists as used to im plem ent environm ents.  A ssum ing we 

have two o th e r  types Var and  Val we could define,

type Assoc = End + More ((Var, Val), Assoc)

T he p ro jec tions  in FinProjASS0C include A B S  and  ID  as usual. In addition  we have 

S T R U C T  (where only the  recursive s tru c tu re  is known) and  S T R U C T  [ L E F T )  and 

S T R U C T  ( R I G H T )  which discard the  Val are Var p ar ts  respectively. 'These are 

ordered as follows.

ID

S T R U C T ( L E F T )  S T R U C T  ( R I G I I T )

S T R U C T

A B S

Using these  pro jec tions, we can model the  s ituation where we know only the  names 

in an env ironm en t b u t  no t the  values, for example. This  s i tuation  is likely to occur 

during p a r tia l  eva lua tion  of an in terpreter.  It means th a t  it should not be necessary to 

write in te rp re te rs  w ith  sep a ra te  nam e and value lists in order to benefit from partia l 

evaluation.

4.T.3 R e la t in g  to  P ro j%

We m ust  re la te  th e  dom ains  FinProjx  and P r o j x ■ d he inclusion m ap supplies a 

su itable em bedding  of FinProjx  in Projx-  T he  corresponding projection from Projx  

to FinProjx  is given by,

fold  7  =  m ax  {ft £ FinProjx  \ ft Q 7 }
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Currently , th e  ab s t ra c t  sem antics  are defined over the  whole of Proj .  By applying fold  

to every righ t h an d  side in £ * ,  we ob ta in  an approx im ation  to the  ab s trac t  sem antics  

whose values are all in th e  ap p ro p r ia te  finite dom ains of projections. (Actually, 

because of th e  construc tion  of the  finite dom ains, fold  only needs to be applied in the 

construc to r case). As fo ld  is a  p rojection , the  finite ab s trac t  sem antics underestim ate ' 

the t rue  a b s t ra c t  sem antics ,  so the  proof of safety still holds.

4.8 S u m m ary

After defining a small typed  language together with its concrete sem antics, wo defined 

an a l te rn a t iv e  sem antics  th a t  m anipu la tes  projections. These  a l te rn a t iv e  sem antics  

were shown to  ab s t ra c t  the  notion of s ta tic  d a ta  correctly with respect to the  concrete 

semantics. C onsequently , we were able to show th a t  the  equations intended to p roduce 

a congruent division were also correct. Finally, we d em ons tra ted  how to ap p ro x im a te  

the ab s t ra c t  sem antics  in a safe and  com putationally  feasible' way.

We now know how to describe the  s ta tic  data .  In the  next chap te r  we tu rn  our 

a t ten t ion  to  th e  dynam ic.



C hapter 5 

R un T im e A rgum ents

T he s ta t ic  p ro jec tion  tells us which p a r t  of a func tion ’s a rgum en t will he present 

during p a r t ia l  eva lua tion . In any  par ticu la r  call of th e  function, this p a r t  of the 

a rgum ent is used in the  p roduc tion  of a residual function. However, this still leaves 

the question: which p a r t  of the a rgum ent should the residual function he given a t  

run-tim e? O bviously  we could pass the  whole a rgum ent if we wanted to, b u t  we can 

do a lot b e t te r .  A fter all, the  partia l  eva lua tor will have taken the  s ta t ic  par t  into 

account in p roduc ing  th e  residual function. It ought to be unnecessary to  supply  the  

residual function  with th e  sam e inform ation all over again.

We need a way to  select the  run-tim e information. T he  original a rg u m en t to a func

tion /  m ust  be  factorised, or decomposed, into s tatic  and dynam ic factors, and this 

factorisation should  be as com plete as possible. T h a t  is, the am oun t of s ta t ic  in fo rm a

tion which is also regarded as dynam ic should be minimised. T hen , when we pass tin' 

dynam ic a rg u m e n t  to th e  residual function, we will be passing as little inform ation 

at ru n - tim e  as possible.

T here  are, of course, m an y  possible factorisation m ethods. Some produce an exact 

decom position  while o thers  do not. We will look a t  two m ethods  in this chap te r.  T h e  

first does no t p roduce  an exact factorisation b u t  is based on very familiar co n s tru c 

tions. T h e  second m ethod , which is exact, arises as a generalisation of the  first,.

5.1 P r o je c t io n  C om p lem en ts

1 he canonical equa tion  for m i x  assumes th a t  the program  argum ent is defined on a 

produc t of th e  s ta tic  and  dynam ic domains. So if /  : A —> ) is a function defined in
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the  p rog ram , we would like to regard it as having the type  /  : A x B  —► V, where A 

is s ta t ic  an d  B  dynam ic. Assuming we are suppled with a s tatic  projection 7 for /  we 

can p ro d u ce  A — it is ju s t  the  range of the  s ta tic  projection, which we w rite as 7(]A_[) 

(this is a  d o m ain  as all th e  elements of each FinProjx  are finitary projections).  Ideally, 

we would like to  pick an o th e r  projection, 8 say, so th a t  B  =  tfJA'D and  X  = A x B.  

U nfortunate ly , th is  is not possible in general. However, while we canno t achieve 

isom orphism  we can ensure th a t ,  in some sense, X  is a  sub-dom ain  of A x B.  A 

trivial so lu tion  to  this is for 8 to be the  identity  function and  then B  would equal A . 

F o r tu n a te ly  we can do be t te r .

Suppose we are  given a  s ta t ic  projection  and want the  dynam ic function to  be a 

p ro jec tion  also. T h is  dynam ic  projection m ust be a complement  of the  static .

D efin it ion
If 7 : D  —► D  and (3 : D  —► D  are projections, and if 7 U ft =  //>), then (3 is a comple

me nt  of 7 (and vice versa).

There m ay be m any projections which are com plem ents of a projection 7. We will 
choose one in particular and describe it as the complement of 7, written 7.

From the definition it is clear that for each value x G I) the property that 

7 x U 7  x = x holds. In other words, between a projection and its complement, no 

information is lost. But for it to be a good choice, the com plem ent should discard as 

much as possible consistent with this. That is, the com plem ent should be as small 

as possible. In general there is no least com plem ent, but as we are only interested in 

static projections drawn from an appropriate Fin Pro jo  we will take its com plem ent 

from there also. If we do this then we can choose one which is minimal.

We know that D  can be embedded in <t(|/9[) x <$(]D[) when a  and 8 are com ple

ments because the canonical map <  cr, 8 >: I)  —> cr(]D[) x <$(]/J[) is injective. T hat is, 

if (cr d, 8 d) = (a  d', 8 d')  for </, d' G I) then d = a  d U 8 d = a  d' U 8 d' =  d ' .

5 .1 .1  C o n s tr u c t in g  C o m p le m e n ts

In the  previous ch ap te r ,  elements of FinProjx  were defined constructively, f o r  any 

such p ro jec t ion ,  we can give a corresponding construction  of its com plem ent.



C H A P T E R  5. R U N  T I M E  A R G U M E N T S 55

A B S  = ID

I D  = A B S

Ci 7 / +  *' ' +  cn 7 n =  c/ 7 / +  ' • • +  cn 7 n if 7, ^  I D  for some i

h  X • • • x 7 „  =  77 x • • • x 7  „

=  V l - P i l )

It is no t ha rd  to  establish  th a t  7  U 7  =  ID  for all 7  E Projp.  T he  only non-triv ial case 

is the  recursive one. T h is  m ay be established by recognising th a t  / ;n (7 ) =  I**(7 ) for 

all n and  th a t  A B S j  =  I D j  on th e  one po in t dom ain . As f i t . T ( t )  =  UtLo ^’*(1 ) wc 

can appea l  to  con tinu ity  to  complete the  result. T h e  details may be found in [Lau8 8 ].

An exam ple  will show th a t  th e  factorisation is not always exact. Suppose th a t  I) 

is the  Assoc dom ain  from the  previous ch a p te r— essentially a list of pairs and th a t  

the s ta t ic  p ro jec tion  is S T R U C T  which discards all the  elements leaving only the  list 

s truc tu re .  W h a t  is th e  com plem ent of S T R U C T ? If we restr ict ourselves to  e lem ents 

of Projo  then  th e  answ er is ID.  As STRU CT^A ssoc ty  = L is t^ (lists of e lem ents  of 

the void type) it is clear th a t  Assoc ^  S T R U C T ^ A ss o c \ )  x Assoc. This exam ple  also 

shows th a t  th e  com plem ent of the  com plem ent of a projection  is not necessarily equal 

to the  original p ro jec tion  itself.

5 .1 .2  E x a m p le s

W h a t  sort of residual functions are produced  when we use com plem ents? Some ex

amples will be  useful.

T he  sim plest case is where the  argum en t to a function is a tup le  of values each of 

which is e i ther  com pletely  s ta tic  or completely dynam ic. Here pro jections provide 

exactly  the  sam e results as the original DIKU work.

A m ore challenging, b u t  now s tan d ard ,  exam ple is given by the association lists 

described in the  previous chapter.  Suppose we have the  function lo o k u p  which takes 

an associa tion  list and  an index value and  re tu rns  the  value associated with the  index. 

T hus,

lookup :: (Assoc,Var) -> Val; 
lookup (xys,w)
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= case xys in
Empty => fail

II More ((x,y),xys’) => case equal (x,v) in
False => lookup (xys',w)

I I True => y 
e n d ;

e n d ;

where fail an d  equal are su itably  defined. T h e  association list associates vari

able nam es w ith  values. Suppose th a t  we know th e  names at specialise-t ime 

bu t  no t th e  values, as we m ight when specialising an in terp re ter  to a p ro 

gram. Each  call to  th e  function lo o k u p  in th e  original p rogram  will be replaced 

by calls to  specialised versions of it. T he  s ta tic  projection  for lookup will be 

a  : (Assoc x Var ) —* (Assoc  x Var ) given by a  ( a ,u )  =  { S T R U C T ( L E F T )  a, ■?;). 
Its com plem en t is given by 8 ( a , v )  =  ( S T R U C T ( R I G I T T )  a, _L). T hus  the  p a r a m 

eter to  th e  residual function will be from a dom ain  isomorphic to the  range of the  

dynam ic  pro jec tion  8— essentially  a list of values. T h e  specialised versions of lookup 

will move dow n this list of values a set distance, and re tu rn  the  value found there. 

So, no t only  is th e re  no testing  on the  nam es in the  env ironm ent a t  run-tim e, bu t 

th e  nam es have to ta lly  vanished. Knowing this, we could rew rite  the  the  exam ple  in 

C h ap te r  2  so t h a t  th e  s ta te  is modelled by a single association list w ithou t affecting 

the  results of par tia l  evaluation.

A less successful result occurs with the  Union type. If tin ' s ta tic  projection is 7/1(7 

then  th e  d y nam ic  pro jec tion  is ID.  So, a lthough a function body using a value of 

the  U nion  ty p e  m ay be s tream lined  som ewhat to its a rgum en t,  tin.* whole a rgum en t 

is still used a t  ru n - tim e— the  value is still packaged up with its tag. T h e  consequent 

packaging and  unpackaging  consti tu tes  an unnecessary inefficiency. W hile not too 

serious in this exam ple , it is sy m ptom atic  of the weakness of the com plem ent m ethod .

5.2 P ro g ra m  D iv is ion s

Using com plem entary projections to factorise the argument to a function into its 

static and dynam ic com ponents is an exam ple of a proyram division [Jon88]. We 

have already touched on this informally in Chapter .1, but will now give its precise 

definition. It is cast in terms of Jones1 program model.
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D efin it ion  (Jon es)

A program division  is a  triple (cr,<5,7r) where a p : V  —► Vs, Sp : V  -*• Vd, and 

7rp : Vs x Vd —> V  for each p rogram  point p , such th a t  for all v e  V , vs e  V, , and 

Vd G Vrf,

(i) 7Tp (crp V, ^  ») =  v
(ii) crp (ttp ( u„  ^ ) )  =  v,
(iii) Sp (ttp ( v$, vd)) =  vd

T he first condition  requires th a t  between them , the  s ta t ic  and dynam ic functions do 
not lose any  in fo rm ation— the  pairing function 7rp is able to reconst i tu te  the  original 

value from  th e  two par ts .  T h e  o th er  two conditions imply th a t  the  s ta tic  par ts  stay 

static ,  an d  th e  dynam ic  dynamic.

This in tu it ion  is very similar to  the  informal justification we offered for using com ple

m en ta ry  pro jec tions. T h ere  is a good reason for this. Suppose we were to choose Vs 

and Vd to  be sub-dom ains  of th e  original dom ain, and the  pairing function 7rp to be 

least u p p e r  bou n d .  T h en  for the  s ta tic  and dynam ic functions to form a division, they 

m ust be co m plem en ta ry  projections. W hy projections? Because, for example , condi

tion (i) requires t h a t  crp v U 8p v = v for all values v, which implies th a t  crp C ID.  In 

addition , condition  (ii) requires th a t  a p ( vs U Vd) =  vs for all values vs and ?)d. C hoos

ing Vd =  T  and  expressing vs as (a p v) for some value v gives crp (a p v) =  crp v. T hus, 

(jp is id em p o ten t  and  weaker th a t  ID.  It is a projection. Exactly  the  sam e argum en t 

applies to  b. W hy  m u st  they  be  com plem ents? Condition  (i), when expressed using 

least u p p er  bound  for 7Tp , is precisely the com plem ent condition.

We can ex tend  th is  slightly. R a th e r  th a t  insist th a t  Vs and Vd are actual ly  su b 

dom ains of V  it is sufficient for th em  to be isomorphic to sub-dom ains. It then  still 

makes sense to  ta lk  of th e  least upper bound of e lem ents draw n from Vs and Vd- 

From all th is  we d raw  the  conclusion: If the  pairing function 7r from a division is 

essentially  least u p p e r  bound , then the  s ta tic  and dynam ic functions a  and b are 

essentially  co m p lem en ta ry  dom ain projections.

T here  are o th e r  choices for the  pairing function which give rise to different sorts  of 

divisions. In th e  previous section we pointed out some of the  shortcom ings of the 

com plem ent division. We will now study  a more com plicated division, bu t  one which 

provides an exac t  factorisation.
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5.3 D o m a in  T h eoretic  D ep en d en t Sum

In th e  in tro d u c t io n  to  th e  chapter,  we noted th a t  it is usually impossible to find 

non-triv ial fac to risa tions  of an a rb itra ry  domain X  as the  p roduc t  of two others . T h e  

problem  is t h a t  th e  dom ain  produc t operation  is too restrictive. We need some more 

general o p e ra t io n  from  which p roduc t  arises as a special case. T h a t  more general 
opera t ion  is dependent  sum.

D ependen t  su m  is usually  th o u g h t  of as a set construc tion  and  is often associated 

with co n s tru c tiv e  ty p e  (set) theory  [Mar80] where it occurs as a primitive. However, 

it m ade  its  d eb u t  as a dom ain  construction  in an exercise in P lo tk in ’s lecture notes 

in 1978 [Plo78]. Since then  it has been used to provide models for the  po lym or

phic A-calculus [CGW87]. Categorically speaking, dependent sum is a G rothendieck  

construc tion  w here the  underly ing dom ain  is viewed as a category. This  aspect is 
par ticu la r ly  relevant la te r  on.

In order to  develop a  basic unders tand ing  we will give a set theoretic  definition of 

dep en d en t  sum , and  then  show how to extend it to domains.

D efin it ion
Let A be  a  set an d  {/?a } a family of sets indexed by elem ents of A.  T hen  the  dependent  

sum  B a is th e  set,

£  B .  =  { (« ,( .)  I a €  A,  b €  B , }
a£A

T he d ep e n d en t  sum  is a (possibly infinite) tagged union of the  family of sets { B a}. 

If th e  family is co n s tan t ,  i.e. if there  exists some set B  such th a t  B a =  B  for every 

a £ A then  J^aeA Ha reduces to the set p roduc t A x B.

Now suppose  th a t  A and  the family {/?a }aea are dom ains and not ju s t  sets. Let us 

consider w h a t  it m eans to index a family of domains by a dom ain. It is clear w hat it 

means to  index by a set, bu t  a dom ain has more s t ru c tu re  and this should be taken 

into account.  We m ight qu ite  reasonably require th a t  as we move up a chain in the 

indexing dom ain ,  th e  corresponding domains in the  family become larger. r\ ha t  is, if 

a' G A a re  indexing elem ents such th a t  a U a' then there  m ust be an em bedding  

4*a,a' : Ha —► Ha> which embeds B a into B a>. Of course, tin; em beddings should be 

such th a t  if a □  a' C  a" then 4 a , a "  = 4 a \ a "  °  4 a , a ' -  This much reflects th e  ordering 

relation on th e  dom ain . We m ust also express completeness. If we have a directed
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set V  C A  then we require that B \ j v =  [J{ B a | a <E V ]  and that for any a C |J  V 

the em bedding <f>a^ j v is given by <f>^v =  (J{ 4>ay  \ a' G V ]  (we use the least upper 

bound of dom ains following S cott’s information system s; in som e other framework it 
may be replaced by a union, for exam ple).

This m ay be expressed very concisely categorically. If we view the  indexing dom ain 

as a category, th en  th e  indexed family corresponds to  a continuous functor from this 

category in to  th e  ca tegory  of dom ains D o m ep whose arrows are em b ed d in g /p ro jec t io n  

pairs ( th a t  is, pairs  of functions <j>: X  —► Y ,  : Y  —> X  such th a t  ?/’ o <f> =  idx  and
(j) o xp C  idy  )•

Now th a t  we know w h a t  a dom ain-indexed family of dom ains is, we can construc t 

the dep en d en t  sum.

D efin it ion  (D o m a in  D e p e n d e n t  Sum )

if { }  ag .4 is a  dom ain-indexed family of domains, then the dependent  su m  of the  
family is given by,

Y  B a =  {(a , b) \ a e  A,  b e  B a}
a

with the  ordering

(a ,  6 ) E r  ( a ,  b') &  ( a U A a )  A  (<f>ay ( a )  Q Ba, «')

L em m a 5.1
I  he d ep en d en t  sum  of a dom ain-indexed family of dom ains is a domain.

Sketch P r o o f
A com plete  p roof  th a t  this construc tion  results in a Scott dom ain appears  in [CGW87] 

but we will give an  outline here. We need to show th a t  the sum  is an u-a lgebraic ,  

consistently  com plete ,  com plete partia l  order. It is clear th a t  it has a b o t to m  elem ent, 

given by ( T ^ ,  -Lfij^ ) ,  and the  fact th a t  the  relation □  over the elements of th e  sum 

is a par tia l  o rder  follows alm ost im mediately from th e  fact th a t  C a ai)d fhe U Ba are 

all par tia l  orders.

To construc t  th e  least upper bound of a directed set of elements draw n from the  sum 

we initially consider the  set of first com ponents.  These  form a directed set in A which 

will have a  least u p p e r  bound. If all th e  second com ponen ts  of the  original directed
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set are injected into the domain indexed by this least upper bound, then again we 

obtain a directed set which will itself have a least upper bound. T he pair, whose 

com ponents are the two least upper bounds, is an elem ent of the dependent sum and 

is the least upper bound of the original set. We can form the least upper bound of a 
consistent set in the same way.

To show algebraicity we have to characterise the finite elem ents. An elem ent (a , b) 

of the sum is finite exactly when a is finite in A and b is finite in B a. The set of 

finite approxim ations to an elem ent form a directed set. Because A and the {/?«,} 

are algebraic, and because the indexing is continuous, the least upper bound of this 

directed set will be the original elem ent. Finally, because A and the { B a} have 

countable bases, the set of finite elem ents is countable. □

As we m ight expect, domain product is a special case of domain dependent sum. To 

see this suppose that B a =  B  for every a E A.  The elem ents of the sum are then just 

the elem ents of the product. Furthermore, all the embeddings are constrained to be 

the identity, and so the order relation simplifies to the usual product ordering.

We have retained the set style notation for dependent sum even though it does not 

make the em beddings explicit. To be fully formal we should work with the functors 

given by the categorical view. Later on, when we do need the formality, we will 

do this. Elsewhere, however, we will use the set notation in the belief that familiar 

notation is helpful.

5.4 P r o je c t io n  F actorisation

Let us sum m arise what we have done. We started with a domain-indexed family of 

domains. From this, we produced a sum domain that respects the structure of the 

indexing dom ain. In this section we do things the other way around. We start ofr 

with a single dom ain and discover a domain-indexed family of domains sitting inside' 

it. This allow us to express the original domain as a dependent sum.

We have already noted that dom ain-theoretic dependent sum is a special case of the 

(covariant) Grothendieck construction. This (very general) construction has a corre

sponding decom position, namely the Grothendieck cofibration. Cofibrations have* the 

property that they give rise to an indexed family whose' Grothendieck construction re

constructs the original structure. It turns out that cofibration is precisely tin* concept, 

we require in order to generalise our earlier notions of projection complements.
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Consider a call of som e function, ( /  x)  say, and suppose that 7 is the static projection  

for / .  During partial evaluation, we will be able to com pute the static portion of 1 

using 7 . Call this value a. Hence a =  7 x.  At partial evaluation tim e, the value a 

represents the sum  total of our knowledge about the value x.  Prior to calculating the 

static value, all we would have known about x was its type, A" say. Now, however, we 

can be more precise. Not only must x lie in X , but it must also lie in the inverse image 

of a under 7 . T hat is, x E 7 ~ ; {a } . This might provide fairly tight constraints on the 

possible value of x.  How tight the constraints are will depend 011 7 , of course. If 7 is 

a large projection (indicating lots of static information) its inverse images (or fibres) 

will be relatively small but, conversely, if 7 is small (not much st atic information) its 
fibres will be large.

A question naturally arises. Given that the fibres are subsets of the domain, what 

sort of structure do they have? T he precise answers depends 011 the projections. The 

fibres of any projection form a consistently com plete cpo but it will not necessarily 

be algebraic. However, for the projections we use, not only are all the fibres Scott 

domains, but they also correspond to first-order constructible types. I11 part icular, 

they are just products of types that already appear within the source program.

W ith these observations our overall strategy should have becom e clear. The range of 

the static projection forms a domain which indexes the family of its fibres, each of 

these being dom ains. It should, therefore, be possible to express the original domain 

as a dependent sum , where each of the summands is the inverse image of some static  

value. In any particular function application, we will know that the dynam ic value 

must be constrained to the fibre corresponding to the static value, and so may express 

the type of the residual function accordingly.

Towards the end of the chapter we will see some exam ples of this in practice, but in 

the m eantim e will show that the strategy may be realised.

5.4 .1  C o f ib r a t io n

When is a projection a cofibration? That is, when does it give rise to a family of 

domains whose dependent sum is isomorphic to the original domain? Rather than 

give a very general answer we will show that the projections we use do indeed have this 

property. Unsurprisingly, we induct over the projection constructions. I his approach 

is sufficiently flexible so that if another domain construction were added at any time 

then it alone would need to be checked.
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For the present we will take on trust that all the fibres form domains. We will present, 

a lemm a shortly which gives a stronger result. Our im m ediate task is to dem onstrate  
that appropriate em beddings exist.

D efin it ion

Let 7 : X  - + I b e a  projection in FinProjx  (Section 4 .5) with x, x'  £ 7 (X |) such that 

x □  x ' . Then : 7 _; { z }  —► 7 ~ 1 {x'} is a mapping from 7 - /  {x} into 7 ~ / {x '} where 

the ~ operation is defined inductively by

7 X ^(r.j,), -- 7x,x' X 6 y  t y'

A B S  x , l =  id

7 +  ini x' = Xx.x ' (likewise for ini')

7 T ^ini x ,  ini x ' — 7x,x> T id (likewise for inr)

i n - P ( i ) x,x> =  Un (< f> n  O P n( A B S ) xl>nT< M  O </>n

where (</>„,?/>„) : 7ln(_L) -a  i i t . T ( t )  is the canonical em bedding/projection pair. 

L em m a 5.2
Let 7 : X  —► X  be a projection in FinProjx  with z ,x '  £ 7(] A* [) such that z C x'. Then 

7 x , x '  : 1 ~ ‘ {^} —* { z 7} is an embedding with the property that

a C a O  7x,r'(a ) Q a> 

for any a £ 7 _/ { z }  and a' £ 7 _/ (V ) .

P r o o f
The only case in which the result is not immediately obvious is the recursive; case*. 

To simplify notation we will write P n for P n( A B S )  and P ^  for /^7. / J(7 ). We* need 

to show three things. Firstly that P 1̂ T%x< does indeed map elem ents of the z fibre to 

elem ents of the x' fibre. Secondly that the map is an em bedding, and finally that it 

preserves order.

Let a be an elem ent in the x fibre (that is, P “ a = x).  In order to show that P'^z y  

maps elem ents of the x fibre into the x'  fibre, we must show that ! >jJ { P ^ x ^  a) =  x'.
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(P w o P " XtX>) (a) ^

— °  ( U n  4*n rl>n x '  0  0 n ) )  ( « )  [ d o f l l  o f  P “ ]
=  ( U n  P w °  <f>n °  P nri’nx, 4>nx' 0  V’n ) ( a ) [continuity]
=  ( U n  U  k 4>k °  P k 0  0  </>n_0 P nTpnx, 4>nx' 0 0 n ) ( « )  [ d e f n o f / ?w]
=  ( U n  ^ n I / o ^ n ) ( a )  [ r e a r r a n g i n g ]

=  ( U n  <f>n O P n o P n 4>n x,  tl>n x'  0  */>n) ( a )  [V’n °  <£n =  *</]

— U n  (P" (P%nIl V<n*' W n  «)))
— U n  (V’n x>) [ f i n i t e  i n d u c t i o n ]
=  x> [ a l g e b r a i c i t y ]

To see that P uXiX> is an embedding we only need to note that (by finite induction) 

its approxim ations are all embeddings on larger and larger subdomains. In the limit 

we obtain an em bedding on the whole domain. Finally, suppose that a □  a'  (where 

a £ 7 - /  {z}  and a' £  ' )~1 {ad}). As order between the finite approxim ations of a and 
a' (namely, ipn a and xj>n a') is preserved by the approximations to P u xy  (an easy 

induction), then order is also preserved in the limit. □

We are now in a position to show that all the projections in FinProjx  are cofi brat ions. 

Their fibres form an indexed family of domains such that, when we construct their 

dependent sum , we obtain a domain isomorphic to the original. This, our main result, 

is expressed in the following theorem.

T h eo rem  5.3 (P r o je c t io n  Factorisation)
If 7 : X  —+ X  is an elem ent of FinProjx  then

V  as £  7 - ' W
aG7(*)

P r o o f
The elem ents of the sum are all of the form (7 1, x)  and so are in one-to-one corre

spondence with the elem ents of X . Furthermore, both X  and the sum have the same

ordering, for

(7 x)  U e  (7 x>, x ’)
(7 X u x  7 x ’) A ( % x n I '{x) E x x f) [definition]

O  ( 7 1  Q x 1 x>) A {x Q x x>) [lemma 2]
x Q x x'  [7 monotonic]

which com pletes the proof. □



C H A P T E R  5. R U N  T I M E  A R G U M E N T S 64

T he factorisation  theorem  allow s an arbitrary dom ain to  be decom posed  in m any  

different w ays depending on th e choice o f projection . In contrast w ith  using projection  

com plem en ts, th is factorisation  is exact. It is applicab le in partial evalu ation  because  

it can be driven by th e  projection  obtained  as th e result of b in d ing-tim e analysis. 

H owever, there is s till an issue open . W e m ust show th at all th e  fibres form  dom ains. 

W e actua lly  w ant som eth ing  stronger than  th is. As th e fibres correspond to  the  

p ossib le d ynam ic values we would like to  produce a residual function  w hose argum ent 

typ e corresponds to  th e  fibre. W e need to  know , therefore, w hether th e fibres are 

expressib le in th e ty p e  system . F ortunately, in m ost cases th ey  are. W e will consider  

a few exam ples before proving th e result in general.

Consider th e  Assoc ty p e  again (S ection  4 .7), togeth er w ith  th e p rojection  S T R U C T  

th at discards all th e  elem ents. T he elem ent More ((_L ,_L ), End) is in th e  range 

of S T R U C T  and its inverse im age is isom orphic to th e dom ain  (Var,Val). A gain, 

the elem ent More ((_L ,_L ), More ((_L ,_L ), End) ) is also in th e range of S T R U C T .  

Its inverse im age is isom orphic to th e dom ain ( Var,V a l , V a r ,V a l ) . To take another  

exam ple consider th e  Union typ e together w ith  th e projection  T A G  w hich  discards 

everyth ing  excep t th e injection  tags. T he elem ent Num _L is in th e range o f T A G  and  

its inverse im age is isom orphic to  Int.

T hese exam ples are typ ical and m ay be generalised  to  any fin ite elem en t in th e  range 

of a projection , as th e  follow ing theorem  m akes clear.

T h e o r e m  5 .4

Let X  be a dom ain  and a  €  F i n P r o j x  a projection . If a £  tf'flA’I) is a fin ite  elem en t 

then there ex ists  a dom ain B a =  a ~ 1 { a }  such th at B a is expressib le in th e type  

system .

S k e tc h  P r o o f

T he proof is by in d u ction  over th e  s ta tic  projection  constructions. If th e  projection  

is A B S  then  th e inverse im age is ju st one o f th e dom ains w e started  w ith  and so 

is expressib le in th e  ty p e  system . In th e  sum  and product cases th e in d u ction  is 

straightforw ard. For th e recursive case we appeal to  th e restriction  th at th e sta tic  

value is fin ite. In th is case we on ly  need to  apply th e  recursive rule fin itely  often  and  

so will end up w ith  a fin ite product o f dom ains each  expressib le in th e ty p e  system . 

□

T he restriction  in th e theorem  to  fin ite elem en ts ensures th a t w e w ill never need  

to con struct an infin ite product. T here is in principle no reason why w e should  not,
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excep t th at m any languages (including PE L ) exclude such con structions. N on eth eless, 

th is is not a serious restriction . A ttem p tin g  to  specia lise a function  to  an infin ite value  

will fall foul o f  th e  infinity problem , and the partial evaluator will loop. If th e d ivision  

is fin ite th en  no infin ite values w ill arise.

5 .4 .2  D o m a i n  D e p e n d e n t  P r o d u c t s

In order to  describe th e action  of th e  partial evaluator we need to  define d ep en dent 

products. A gain  th ese  are m ore fam iliar in set theory than  dom ain theory, but we 

m ay define th em  quite easily  after having defined dependent sum .

D e f in i t io n  ( D o m a in  D e p e n d e n t  P r o d u c t )

If { B a} aeA is a dom ain-indexed  fam ily of dom ains then  th e dependen t  product  of th e  

fam ily is g iven  by,

n  = {/ I /• e B.}
aeA

where th e  e lem en ts /  are continuous fam ilies indexed  by A  w ith  th e ordering  

/  Q n  9 &  Va e  A.  f a Q Ba 9 a

T he elem en ts of th e product are like functions excep t th a t their range is not very  

clearly defined. Supplying an indexing elem ent a £  A  produces an elem ent o f th e  

corresponding B a. Each fam ily is continuous, so if a C a'  then  <t>ay ( f a) U Ba f a, and  

if a =  U { a ,}  then  f a =  U {^ ail«(/ai )} .

A proof th a t dependent product is a Scott dom ain appears in [C G W 87]. A n eq u iv 

alent form ulation  defines th e elem ents of th e product to  be th e continuous sections  

of th e first projection  from  the dependent sum . T h at is, th e  e lem en ts are fu n c

tions /  : A  —> 5Z(A, B )  such th a t f s t  o /  =  ida - Such functions m ust have th e  form  

/  a =  (a , 6) w here b 6  B a. T his form ulation m akes it very clear th a t, if th e  fam ily  

of dom ains is con stan t, then  th e dependent product WaeA B  is isom orphic to  the  

function  space ( A  —> B ) .

There is an im portant isom orphism  betw een function  spaces from dep en dent sum s  

and d ep en dent products o f function  spaces.
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L e m m a  5.5

If {Baj is a dom ain-indexed family of domains, and if C is some dom ain, then

(E«.)-c  a U ( b^ c )
a £A  a £A

P r o o f

T his can be proved d irectly  for th e case o f dom ains, but w e can give an elegant 

category th eoretic  proof (com m unicated  to  m e by A ndrew  P itts ) . T h e d eta ils m ay  

be skipped  w ith ou t serious consequences.

T he isom orphism  is a consequence of the follow ing adjoint situ a tion . Let D o m  be  

th e usual category  o f dom ains and continuous fun ction s, D o m ej> be th e category  

of dom ains w ith  em bed d in g /p rojection  pairs, and [A —*■ D o m ep] be th e category  o f 

continuous functors from  the dom ain A  (view ed as a category) to  D o m ep. T his latter  

category corresponds to  dom ain-indexed  fam ilies o f dom ains. T here is a functor  

A : D o m  —> [A —* D o m ep] (called th e diagonal  f u n c t o r ) which m aps any dom ain  D  

in to  th e con stan t functor A p  (i.e  th e constant fam ily  {-D }ae^). T his functor has 

b oth  a left and a right adjoint which are dependent sum  and product, respectively  

(w ritten  Z  H A  H f l) -  Let X  be an arbitrary dom ain and B  : A  —> D o m tp be a functor  

corresponding to  an indexed  fam ily o f dom ains { B a ] a^A- T hen  all th e follow ing are 

natural isom orphism s:

[currying tw ice and product com m utative] 
[E H  A]
[A preserves —+]
[currying tw ice  and product com m utative]

[ A - m i

T hu s, H o m (  _ , ( Z  B )  —> C ) is naturally  isom orphic to H o m (  _ , n ( ^  ~ > A C ) )  and  

so, by  th e  Y oneda lem m a, (X] B )  —> C  =  ]1 ( ^  ~ * A C ) .  W ritten  in th e  n ota tion  o f 

fam ilies th is is ju st ( Z aeA B a) ->  C  =  I L e ,i(£ a  C ) .  □

U sing th is isom orphism , we are able to  describe th e  action  o f a partial evaluator. 

Suppose w e start w ith  som e function  /  : X  —► Y  togeth er w ith  a partial descrip

tion o f a value x  €  X . Let 7  : X  —» X  be th e s ta tic  projection , so th a t th e par

tial descrip tion  o f th e value x  £  X  gives us com plete inform ation  ab out th e value  

7 ^ 6  7(1^1). As th e dom ain X  is isom orphic to  th e dom ain XXe7(A')(7_ / { a })i we

H o m ( X , ( Z B )  C)
9* H o m { Z B , X  —* C )
9* H o m ( B , A ( X  -+  C ))
9* H o m ( B , A X  -> A C )
9* H o m ( A X ,  B  -»■ A C )
9* H o m i X ,  n ( #  —► A C ) )
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m ay view  /  as a function  f  • (J2 a£'y[X)(l~ 1 { a }))  Y .  N ow , we are in a posi
tion to  ap peal to  th e isom orphism  above, and so also view  /  as an indexed  fam ily  

/  £  rL ey(X )(7- i  { a } Y) .  Supplying th e index value (7  x)  gives us th e correspond

ing residual function  x) : 1 ~ 1 { a } Y .

W e m ay interpret th e  isom orphism  ab ove as a sta tem en t ab out th e ex isten ce (and  

uniqueness) o f the residual functions. It sta tes th at any function  m ay be view ed as 

a co llection  (product) o f (residual) fun ction s, one for each  sta tic  value. Furtherm ore, 

this result d oes not d ep en d  on th e  s ta tic  value being  in a particu lar form , but holds 

for any p rojection  w hich  is also a cofibration (i.e  w hich  w ill allow  a d ependent sum  

con struction). As w e know , th e purpose o f b in d ing-tim e analysis is to  chose a projec

tion w h ich  accurately  describes th e  s ta tic  inform ation . W e can now  see m i x  as th e  

m eans for ex tractin g  th e appropriate residual function . O f course, as w ith  th e S - m - n  

theorem , th is view  says noth ing ab out th e engineering asp ects o f m ix  (efficiency of th e  

residual program s e tc .)  b ut on ly  ab out th e  ex isten ce  o f the residual functions. It is, 

therefore, im p ortan t to  rem em ber th at a p artia l evaluator actually  m anipu lates pro

gram s (i.e. representations o f fu n ction s) rather than  functions th em selves. As such, 

each of th e  steps above require a fair am ount of sym b olic  m an ipu lation  to  ach ieve in 

practice. T h e description  above expresses ex te ns iona l l y  w hat happens to th e func

tions, b ut says very little  about th e a lgorithm s that achieve it through in t en s io n a l  

m anipu lation .

T h e  t y p e  o f  m i x

T he version  o f mix  th a t uses dep en dent su m  has a correspondingly  m ore general ty p e  

than th a t appearing in C hapter 1.

mix  :: ( £  B. )  -> C -> J I  ( B . -> C)
a,eA Aa£A

Provid ing mix  w ith  a program  as its argum ent produces a d ep en dent product, th at is, 

an indexed  fam ily. Supplying th is fam ily  w ith  an index value (th e  s ta tic  inform ation) 

results in a  residual program  w hose ty p e  depends on  th at s ta tic  inform ation . T his  

has im p ortan t consequences, as we will see in th e n ext section .

If, in th e  isom orphism  d em onstrated  above, we reduce th e dep en dent sum  and d ep en 

dent product to  their special cases o f product and function  space respectively , then  

the isom orphism  reduces to  currying. T h u s, as a specia l case, currying rem ains a use

ful idiom  for d iscussing partial evalu ation . H owever, it fails to exh ib it one im portant
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point: in general, th e type  o f a residual function  depends on th e sta tic  value  used to 

produce it. It is because o f this fact th a t the use o f dependent sum  is u navoidable in 
general.

5 .4 .3  E x a m p le s

W e return to  th e exam ples based on th e Assoc and Union typ es defined in Section  

4 .7 . S uppose th a t, as in th e previous exam ples, we intend to  sp ecia lise  th e  lookup  

function  know ing th e variable nam es b ut not their values. W hat do th e residual 

program s look like? T he follow ing is a typ ical exam ple. Suppose th e sta tic  part of 

the associa tion  list is

[("X" , J_) , ("Y",l), ("Z", _L)]

(using a list n o ta tion  for an elem ent o f Assoc) and th at w e apply lookup to  it w ith  

index "Y". T he residual function  w ould be,

lookup_l (a,b,c) = b

T he residual function  now  has three argum ents w hereas th e original on ly  had one. 

T his is an exam ple o f ar i t y  raising  as described by S estoft [Ses86] and R om anenko  

[Rom 88]. S esto ft reports th at residual functions can have a sign ificantly  greater ef

ficiency if arity raising is perform ed, but relied on hand p laced an n otation s in the  

program  to  ob ta in  it. In contrast, R om anenko perform ed a p ost processing analysis  

and achieved arity raising au tom atically . M ore recently, M ogensen [M og89] used the  

results o f b in d ing-tim e analysis for th e sam e purpose. However, each o f th ese  ap

proaches were fairly ad hoc.  W ith  dependent sum  factorisation , arity  raising arises as 

a natural consequence o f th e theory.

A rity raising is not th e  on ly  op tim isation  th at dependent sum  factorisa tion  provides 

au tom atica lly . A nother is tag rem oval. Consider th e  num eric type,

type Num = Intg Int + Re Real + Comp (Real,Real)

(w here Real is som e su itab ly  defined typ e of floating point num bers), and th e fo llow 

ing coercion fun ction ,
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make_complex:Num->(Real,R e a l ) ; 
make_complex x = case x in

Int n -> (make_real (Intg n ) , 0.0)
I I Re r -> (r, 0.0)
I I Comp c -> c 
e n d ;

S uppose th at b in d ing-tim e analysis determ ines th a t th e projection  T A G  specifies  

th e s ta tic  portion  o f th e input to  th e  function  make_complex. T hen  th e possib le  

sp ecia lisa tion s of make_complex are th e  functions,

m a k e _ c o m p l e x _ l :Int->(Real,R e a l ) ; 
make_complex_l n = (make_real_4 n, 0.0);

m a k e _ c o m p l e x _ 2 :Real - > ( R e a l ,R e a l ) ; 
make_complex_2 r = (r, 0.0);

m a k e _ c o m p l e x _ 3 :(Real,Real)- > (Real,R e a l ) ; 
make_complex_3 c = c;

N ot on ly  has th e  run-tim e test been  elim inated  (an d , presum ably, another te st in 

make_real) but so has th e  unnecessary packaging and unpackaging th at occurred  

w ith  com plem en ts. T he argum ents to th e residual functions are op tim al in th a t th ey  

contains no sta tic  inform ation  at all.

5 .4 .4  D e p e n d e n t  S u m  F a c t o r is a t io n  is a  D iv i s io n

W e w ill close th is chapter by show ing th at th e dep en dent sum  factorisation  con stitu tes  

a d iv ision . A s th e  dom ain is decom posed  into a d ep en dent sum , the d ynam ic function  

becom es an indexed  fam ily o f fu n ction s— one for each sta tic  value. D efine 8 x  =  8ax x  

for a fam ily  o f functions {<5a | a E c r ( J [)} where

8a : g ~ 1 {a }  —► B a

is a b ijection  for each a E cr^D).  T he pairing function  7r m ust take a pair o f va lu es— in 

this case an elem en t of a dependent sum — and reco n stitu te  th e original value. W e 

define,
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7T ( a , b )  =  8 a b

T hese functions form a d ivision . Before w e can show  th is w e need a lem m a exam ining  

the in teraction  betw een  th e  sta tic  and d ynam ic functions.

L e m m a  5 .6

If a G crflDJ), and b £  8 a§cr~ 1 {«}[), th en  a  (8~ ! b) =  a 

P r o o f

As b £  8a§<7 ~ 1 { a }D there ex ists  a value x  £  a -1 { a }  such th at 8~ ! b =  x .  B ut then  

a  (8~ ! b) =  <7 x =  a as required. □

Using this result we can prove,

T h e o r e m  5 .7

A trip le (cr, 8, 7r) defined above forms a division .

P r o o f

W e have to  check the three conditions contained  in th e defin ition  o f a d ivision . T h e  

first can b e done directly.

7r ( a  x ,  8 x )  =  8 ~ * (8 x)
= 8 ~z (8ax x ) [definition o f <5]
=  x

T he other tw o cond itions use the lem m a.

<7 (tt (a , b)) =  a  (8 - 1 b)
=  a [by th e lem m a]

S ( t  (a, b)) = 6 ( 6 ; '  6)
=  ^ ( S - 1 4) (Sa ! b) [definition o f 8}
= 8a (8~ ] b) [by th e  lemma]
=  6

Thus (cr, 8, 7r) form  a d ivision  as required. □

This com p letes th e  th eoretica l developm ent in th e  m onom orphic case. W e now know  

how to  d escribe b oth  sta tic  and d ynam ic d a ta  using projections, and have seen th at  

it fits in to  J o n es’ general framework. In C hapter 7 we will consider th e im plications  

of m oving to  a polym orphic language, but before w e do so w e should  check th at the  

theory we have already seen  m ay be realised in practice.
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Im p le m e n ta tio n

W e have stud ied  som e o f th e theoretical asp ects of using projections in b in d ing-tim e  

analysis and how, again in theory, th e dependent sum  construction  can b e used to  

define th e  run-tim e argum ents. In th is chapter we w ill draw th ese  threads together  

in th e im p lem en ta tion  o f a projection -based  partial evaluator. T h e current version is 

w ritten  in LML [Aug84] and not in PE L  itself, so it is not yet self-app licab le. Indeed  

there are still som e problem s about self-application  o f LM L-like languages, w hich we 

discuss in th e concluding chapter.

O ne sligh tly  surprising feature is th a t th e m oderately  com plicated  d ep en d en t sum  

con struction  turns ou t to  be alm ost tr iv ia l to  im plem ent. In con trast, how ever, th e  

b in d ing-tim e analysis is fairly in tricate becau se of th e com plex ity  involved  in rep

resenting projections. O f necessity, parts o f th e follow ing w ill in terest on ly  th ose  

in ten din g to  produce an im p lem en tation  them selves. A nyone un in terested  in th e  

gory d eta ils  should  sk im  m uch of th is chapter and turn  to  the final section  w here w e  

develop  th e  ex ten d ed  exam ple.

6.1 G e n e r a l

A PE L  program , as defined in C hapter 4 , consists o f typ e defin itions follow ed by a 

series o f function  defin itions. At th e end of th ese is an expression  to be evaluated . 

T he value o f th is expression  gives th e value of the w hole program . W hen w e in tend  

to p artia lly  eva lu ate  a program  we present it in ex a ctly  th e sam e form  excep t th a t  

the final expression  is perm itted  to  have free variables. T hese free variables ind i

cate n o n -sta tic  d ata . A fter partial eva lu ation , th e residual program  is in a sim ilar

71
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form. It contains whichever type definitions are required, the residual functions with 

their associated type definitions and, finally, a residual expression. This expression  

contains the same free variables as before, but refers to the newly produced residual 
functions. Substituting any values in for the free variables in both the source and 
residual programs will, on evaluation, produce the same answer.

Expressions are represented as trees constructed in the following data type.

type Expr = Var String 
+ Prod [Expr]
+ Constr String Expr 
+ Call String Expr 
+ RCall String Expr 
+ Case Expr [(String, (Expr, Expr))]

Most of the tags are self explanatory. In the Case variant, the first Expr argum ent is 

the expression over which the case is performed. The names appearing in the asso

ciation list are the various constructors appearing as patterns in the case statem ent. 
Paired with each nam e is a pair of expressions, the first of which is a nested product 

of variables. This allows products to be decomposed. The second expression in the 

pair is the expression on the right hand side of the case statem ent. It is evaluated in 

the original environment augmented with the bindings implied by the pattern.

The function definitions are represented by an association list in which the function  

names are paired with a pair of expressions. As in the case statem ent, the first is a 

nested product of variables (which again allows products to be decom posed) and the 

second is the body of the function. This association list is present as a global value 

throughout the partial evaluator.

Currently only binding-tim e analysis is implemented; call annotations are inserted by 

hand. In the concrete syntax, a residual call is indicated by a # symbol preceding the 

function name. This gives rise to the distinction between the C a ll  and the R C all 

tags above.

6 .2  B in d in g -T im e  A n a ly s is

The abstract objects manipulated in the binding-tim e analysis are projections and 

hence functions. As the analysis contains tests for equality we may not m anipulate
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projections d irectly, but are forced to  handle representations and im plem ent func

tional eq u ality  by representational equality.

6 .2 .1  R e p r e s e n t in g  P r o je c t io n s

B y con struction , each projection  is fin itely  representable. However, for representa

tional eq u ality  to  be a correct im p lem en tation  o f functional equality, each projection  

m ust have a canonical representation . T his m ust b e preserved by th e various projec

tion  m an ipu latin g  operations such as greatest lower bound.

S u m s a n d  P r o d u c t s

P rojection  sum  and product are easy  to  m odel. B ecau se w e use a tagged  sum  w ith  

nam ed tags we represent a projection  sum  by an associa tion  list. T he nam es in th e  

associa tion  list are th e constructor nam es, and they  are paired w ith  th e appropriate  

projection  to  b e  applied  to  th e sum m and. Over a sum , how ever, we m ay also have  

the projection  A B S .  T his gives us tw o possib le variants in th e representation  type: 

either Abs on its  ow n, or Sum w ith  its association  list.

P rod u cts are even  easier. A p rojection  over a product is represented by a list of 

projection s, on e for each o f th e factors. A product node in th e tree is ind icated  by a 

Prod constructor.

To g ive  a uniform  d istin ction  betw een  projection  constructors and constructors in 

other ty p es, such as th e typ e o f expressions, we prefix th e projection  constructors  

w ith  th e  letter P. So far, th is gives th e  tags PAbs, PSum and PProd.

R e c u r s io n

Som e o f th e representation  problem s occur w hen representing projections over recur

sive dom ains. W e ind icate a recursive projection  using a constructor PMu and u se a 

placeholder PRec in th e parts o f th e  tree where recursion takes place. T his echoes th e  

form  f i ^ . P ^ ) .  To access th e internal structure o f th e projection  we m u st unfold th e  

representation . T his involves rem oving th e PMu tag , and replacing every occurrence  

of PRec in th e  su btree w ith  the original projection. T his is perform ed by th e  function  

unfo ld .
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M athem atica lly , it m akes no difference to  a p rojection  w hether it is unfolded or not. 

B y th e defin ition  o f th e fixed point operator //, th e  equation  P ( f i y . P ( j ) )  =  f i j . P ( j )  

alw ays holds. R epresentationally , how ever, there is a difference betw een  th ese  two. 

We m ust ensure th a t, w hen w e want to  com pare tw o recursive projections for equality, 

th ey  are both  folded.

T he fo ld  fu n ction  from  C hapter 4 is essen tia lly  th e  reverse of u n fo ld , a lth ough  th is  

m ight not b e obv iou s from  th e defin ition. W hen fold ing an arbitrary projection , th e  

various parts th a t are to  be replaced by th e PRec placeholder m ay not all b e  th e  

sam e. In th is  case w e have to  approxim ate and take th e  greatest lower bound. T his  

is a d irect result of th e decision to  use fin ite dom ains and, m oreover, th is is w here  

fin iteness is achieved. R eplacing th e parts w ith  their greatest lower bound and then  

fold ing, produces th e largest projection in th e fin ite dom ain w hich  is sm aller than  th e  

original. T hu s w e see th a t th e sim pler b u t less con stru ctive  defin ition  in C hapter 4 is 

the sam e as w e have here. W e m ay n ote  th at th e tw o functions involved, nam ely  fo ld  

and u n fo ld , co n stitu te  th e  em b ed d in g /p rojection  pair b ecau se fo ld  o u nfo ld  =  I D  and  

unfo ld  o fo ld  C  ID .  T hey  are m aps betw een  th e fin ite dom ain of p rojections w e use  

in th e  analysis and th e dom ain  of all projections.

D om ain  defin itions in PE L  m ay be m u tu ally  recursive. In order to  represent th ese , it 

is not sufficient to  have a single recursion marker. T his is not because it is im p ossib le  

to represent th e projections doing so, but because it becom es extrem ely  hard to  keep  

uniqueness o f representation . W e arrange th e dom ain defin itions in to  m u tu ally  recur

sive blocks using a standard  algorithm  for finding th e strongly  connected  com pon en ts  

of a graph. A projection  over one dom ain m ay involve projections over any o f the  

other dom ains in th e sam e com ponent. If, in turn, any o f th ose projections involve a 

projection  in th e original dom ain it w ill be th e on e w e started  w ith .

W e en h ance th e  PRec marker to  include th e  nam e of a dom ain  and likew ise w ith  the

PMu constructor. T h e b od y  o f th e projection  is an associa tion  list in which dom ain

nam es are paired w ith  projections. A ll th e  dom ains in a single m u tu ally  recursive  

com pon en t appear in th e  list. To unfold  a projection  w e extract the projection  as

socia ted  w ith  th e dom ain  appearing as th e first argum ent to  PMu. All occurrences of 

th e PRec placeholder are replaced by th e original projection  w ith th e first param eter  

to  PMu changed  to  th e dom ain indicated  by PRec.

For an exam ple, consider th e following m u tu ally  recursive dom ains,

type Listi = Nili + Consi (Int,Listb)
type Listb = Nilb + Consb (Bool,Listi)



C H A P T E R  6. I M P L E M E N T A T I O N 75

T hese define lists w hose elem ents a lternate betw een integers and booleans. T he pro

jection  over Listi th a t discards all th e elem ents w hile retaining th e structure is given

by

PMu "Listi"
[("Listi",PSum [("Nili",PAbs),

("Consi",PProd [PAbs, PRec "Listb"])]),
("Listb",PSum [("Nilb",PAbs),

("Consb",PProd [PAbs, PRec "Listi"])])]

T he corresponding p rojection  over Listb is exactly  th e sam e excep t th a t th e string  

"Listb" appears as th e first param eter to PMu. If w e unfold th e  projection  in th e  

exam ple and access th e p rojection  associated  w ith  th e  second argum ent to  Consi we 

will ob ta in  th is p rojection — it w ill have exactly  th e sam e representation . R epresen

ta tio n a l uniqueness is therefore preserved and function  eq u ality  m ay be im p lem en ted  

by representational equality.

T h e  R e p r e s e n ta t io n  T y p e

T he d a ta ty p e  w e use to  represent projections m ay b e defined as follow s.

type Proj = PProd [Proj]
+ PAbs
+ PSum [(String,Proj)]
+ PMu String [(String,Proj)]
+ PRec String

B ecau se o f th e  restrictions im posed  by P E L  on th e  form  of ty p e  definitions w e can  

use a less general dom ain. In P E L , possib le dom ain  recursion is alw ays follow ed by  

a sum  and th is is th e on ly  p lace a sum  m ay occur. T he p rojections over a sum  are 

represented using PAbs or PSum so w e m ay rem ove th em  from  th e  generic Proj ty p e  

and p lace th em  in a ty p e  of their ow n. T his allow s th e ty p e  checker to provide m ore 

security gu aranteeing for exam ple, th a t we never com pare a folded projection  w ith  

an unfolded  one.
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6 .2 ,2  C o m p u t in g  F ix e d  P o in t s

As show n by th e equations in C hapter 4 , th e  m eanings o f th e ab stract functions are 

given  by a greatest fixed poin t. T his, th eoretically , is com puted  across all functions  

at all values sim ultaneously. However, even in fairly sm all exam ple program s, a 

direct im p lem en tation  o f this can be proh ib itively  exp en sive . It is not uncom m on, 

for exam p le, for a dom ain  o f projections to contain  10 or m ore elem en ts. A function  

that m aps betw een  tw o such dom ains is a m em ber o f a dom ain  conta in ing  som e 1 0 10 

elem ents (less actu a lly  because only th e m onoton ic functions w ill be includ ed ). It is 

clearly out o f th e  question  to  a ttem p t to  find th e  fixed p oin t by brute force.

F ortunately  w e do not need to  know th e value of th e function  for all of its possib le  

argum ents. O n th e contrary it is usually  sufficient to  ca lcu la te  it for on ly  a few  of 

them . W e ca lcu la te  the value o f th e  function  at th ose p o in ts using th e  ideas of m in im al 

function  graphs [JM 86]. For each function  w e record argu m en t/resu lt pairs for only  

those argum ents we need. T he argum ents m ay arise d irectly  from  th e  an alysis, or 

they  m ight be needed to  calcu late th e value o f another function . T h e startin g  values 

com e from  th e description  th e expression  at th e end of th e  program . W here th at  

expression  has free variables the PAbs projection  tag  is used.

H aving ob ta in ed  a tab le  of (over-)approxim ations to  som e a rg u m en t/resu lt pairs o f  

som e of th e  fun ction s, th e functions are repeated ly  applied  to  th e argum ents using  

the values in th e tab le for any other function  calls. T hese values are g iven  by the  

form ula

ftab x  =  r~|{y I . x C z, { /  : z y }  €  tab]

W henever a function  is used, it and its argum ent are added to  th e  tab le paired w ith  

the value com pu ted  for its result.

W hen finally  an application  of th e functions leaves th e tab le unchanged  th e argu

m en t/resu lt pairs are correct and m ay be used in th e analysis. T erm ination  of th e  

cycle is boun d  to  occur because th e abstract sem antics is m onoton ic, and th e  dom ains  

are fin ite.

6 .3  S p e c ia lisa t io n

M uch of th e  im p lem en tation  of th e specia lisation  function  s p e c  is u nchanged  from  

C hapter 2 . T h e  m ajor difference concerns th e presentation  o f s ta tic  values and d y
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nam ic param eters. In C hapter 2 w e assum ed th a t, in th e program , each  function  

definition had tw o sets o f param eters— one sta tic  th e other dynam ic— and th a t each  

function  call had its argum ents arranged likew ise. T his m eant th a t it was very easy  to  

construct th e  partial environm ent and to  ob ta in  param eters for th e residual function .

In th e current s itu a tio n , w ith  each function  having a single argum ent th a t m ay con

tain  b oth  sta tic  and dynam ic parts, w e cannot hope to  have th e sp lit perform ed  

beforehand. As we noted  in C hapter 5 , th e  generation  o f the residual dom ain  is not 

a m eta sta tic  operation . Instead w e use tw o functions to  sim u late th e action  of the  

functions a  and 8 defined in C hapter 5.

W e need som e o b ject to  represent th e use o f J_. W e cannot use X itse lf b ecau se it 

w ould lead to  n on-term ination  of th e partial evaluator. W e introduce a new sum m and  

into th e Expr ty p e , called  Bot. T he function  sigma takes a function  n am e and a 

partially  s ta tic  argum ent intended for th at function . It uses th e p rojection  associated  

w ith  th e  function  retrieved  from th e (g lobal) d ivision  to  gu ide th e replacem ent of 

the dynam ic parts o f th e expression w ith  Bot. T his takes place w ith in  th e  search 
function  m ention ed  in C hapter 2. T he resulting pair, consisting  o f the fu n ction  nam e  

and th e sta tic  part o f th e argum ent, is returned in th e  result of search to  b e added  

to  th e pending list in th e  recursive call o f spec. T h e sp ecia lisation  function  spec 
m ay b e defined as follow s.

spec [] done = [] 
spec ((f ,s ) :pending) done 
= if member done (f,s)

then spec pending done 
else

( (f ,s ) ,(new_vs,new_body)) :
spec (pending++new_fns) ((f,s):done)

where
(vs,body) = lookup program f
( s 'jVars’) = replace s vaxs
new_vs = delta s s ’

new_body = eval (make_env vs s') body
new_fns - search new_body

T he replace function  uses a global list o f  variables (vars) and replaces each occur

rence of Bot in th e  s ta tic  argum ent w ith  a fresh param eter. T he resulting argum ent 

s ’ contains no occurrences o f Bot, therefore.
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To ob ta in  th e new variables for th e residual program — this corresponds to ca lcu la t

ing th e  inverse im age o f crj— w e use th e  function  d e l t a .  It is in itia lly  surprising th at  

d e l t a  requires th e original blanked ou t argum ent as well as the renam ed one. H ow 

ever, recalling th e  m athem atica l construction  o f th e 8 function  in C hapter 5, it w ill 

be im m ed ia te ly  recognised as necessary. U nlike th e 8 function  o f C hapter 5, how ever, 

d e l t a  does not need to  know  which program  function  its argum ent belongs to. T his  

is becau se w e are using a generic value (expression) dom ain . All d e l t a  has to  do is 

to  produce a product contain ing all th e  parts of s '  th a t are tw inned  w ith  B ot in s . 

In th is case, th is w ill produce a product o f variables.

C orrespondingly, we m ust use d e l t a  at th e original call o f  th e  function . N ot on ly  w ill 

the old  fu n ction  nam e be replaced w ith  th e nam e of th e  new residual function , but a 

new argum ent constructed  from th e dynam ic parts of th e  original argum ent m ust be  

produced. T his is th e role o f d e l t a .  G iven the sta tic  inform ation  it will build a new  

argum ent w hich  will m atch  precisely th e form al param eters o f the residual function .

6 .4  E x a m p le

In this chapter w e have on ly  touched on som e o f the m ore significant im p lem en tation  

issues. H ow ever, th e  action  o f th e partial evaluator on other program s is m ore in ter

estin g  than  th e  te x t o f th e  partial evaluator itself. C onsequently, we will return to  

the exam ple  introduced  in C hapter 2, and consider how it is affected by th e  use o f a 

projection  based  partia l evaluator.

In returning to  th e exam ple w e w ill see som e gains but also som e losses. It w ill com e  

as no surprise th at th e s ta te  in th e interpreter m ay be treated  as a single param eter. 

No longer need it b e im plem ented  as tw o separate lists: a single a ssocia tion  list 

suffices. T h e u p d a te  function  takes a nam e, a value, and an association  list and  

returns a su itab ly  altered  association  list. W orking inside th e structure, th e  b in d ing

tim e analysis is able to  recognise th at the nam es are sta tic  w hile the values are 

dynam ic.

P reviously  th e  value list appeared as a param eter to  residual versions o f run to  be  

m anipu lated  by residual versions o f th e u p d a te  and lo o k u p  functions. N ow , how ever, 

the values appear in th e  residual program  not as a list but as part o f a prod uct. T h e  

residual versions o f th e lo o k u p  function  are m erely selections from  the product and  

the residual versions o f u p d a te  m ap betw een  products. T here will be no harm  in 

allow ing th ese  functions to  be unfolded.
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H owever, as ind icated  above, not everyth ing has im proved. In th e exam ple  in C hapter 

2 th e b in d in g-tim e analysis com pletely  ignored ty p e  inform ation  (in deed , th e  language  

could have been u n typ ed ). Each value was treated  a tom ica lly  so there was no differ

ence b etw een  m on otyp es and instances o f p o ly types. At th is stage  in th e th esis we 

can on ly  hand le m on otyp es, so all occurrences o f p o lym orp hism  m ust be rem oved. 

As a consequence, we m ust introduce three different ty p es o f list, for exam p le , one  

for com m an ds, one for n a m e/v a lu e  pairs and one for integers. Each o f th ese  require 

their ow n  m onom orphic accessing functions. W e w ill use th e  sam e nam es as before 

but w ith  th e  ty p e  nam e appended.

Specia lising  th e  new interpreter to  th e  exam ple program  from  C hapter 2 (w hich  finds 

the m axim u m  value in the input) g ives the residual program ,

exec inp
= run (0, hd_int inp, tl_int inp)

run (y,x,inp)
= if x > 0

then if x > y
then run (x, hd_int inp, tl_int inp)
else run (y, hd_int inp, tl_int inp)

else Cons_int (y, Nil_int)

T he result is now  extrem ely  close to  a hand w ritten  version . T here is little  (if a n y 

th ing) th a t m ay be done in term s o f im provem ent. A m ajor gain has com e from  th e  

au tom atic  arity  raising arising as a consequence o f th e d ep en dent sum .

T his gain  is even  m ore ev ident in th e follow ing exam ple, involving a nested  W hile.

Alloc X 
[ Read X,

While (greater (var X) zero)
[ Alloc Y

[ Assign Y one,
While (greater (var X) zero)

[ Assign Y (multiply (var Y) (var x)),
Assign X (subtract (var X) one) ],

Write (var Y) ],
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Read X ],
Write zero ]

T he program  m aps a list o f integers in to  a list o f  corresponding factorials. B oth  input 

and o u tp u t lists are term inated  by 0. A n otab le  feature in th is exam ple is th at we 

have chosen  to  a llocate a variable w ith in  th e outer While loop . T his variable ex ists  

for one pass o f the loop and is then  deallocated . On th e next pass it is rea llocated  

and so on.

W hat does th e result look like after partial evaluation? T here are now tw o While 
loops and so there are tw o residual versions o f run.

exec inp = run_l (hd_int inp, tl_int inp)

run_l (x,inp)
= if x>0

then run_2 (1, x, inp)
else Cons_int (0 , Nil_int)

run_2 (y,x,inp)
= if x>0

then run_2 (y*x, x-1, inp)
else Cons_int (y, run_l (hd_int inp, tl_int inp))

T he residual program  reflects very clearly the ta il recursive structure o f th e  inter

preter. T h e tw o residual versions o f run are in m utual ta il recursion w ith each other. 

O nce again , there is noth ing in th e residual program  th at is not essen tia l to  the  

com pu tation .

T he inner a llocation  o f th e y variable is reflected in th e fact th a t run_2 has three  

param eters w hereas run_l has on ly  tw o. W hat w ould be less efficient interpretively  

(b ecause th e  Alloc w ould have to  be interpreted  each tim e around the loop ) turns 

out to  p rovide greater efficiency w hen com piled , for th e outer function  (run_l) w ould  

have three param eters even though one w ould not b e live.

Let us n ot forget th e  fly in the ointm ent. P olym orphism  is very im p ortan t as a 

m eans for ob ta in in g  m odularity. At th e m om ent, every input program  to th e  partial 

evaluator m ust be m onom orphic, and every residual program  will be m onom orphic. 

In the ex a m p le  above th is forced us to  declare three different sorts o f list. In the next 

chapter w e explore how to  extend  our techniques to  cope w ith polym orphism .
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P o ly m o r p h ism

T here are tw o  alm ost separate issues to  be addressed w hen w e consider p olym orphic  

languages: How to  perform  polym orphic b ind ing-tim e analysis, and how  to  specia lise  

p olym orp hic functions. W e address b oth  here.

S trachey identified  tw o  flavours o f polym orphism  [Str67] which he sty led  param etric  

and ad hoc. W e will on ly  consider param etric polym orphism , as arises in th e  w idely  

used H indley-M ilner ty p e  system , for exam ple. As ad hoc  po lym orp hism  m ay be 

reduced to  param etric polym orphism  by introducing higher order typ es [W B 89], th is 

decision is con sisten t w ith  the thrust o f th e thesis where w e have been  considering  

first order ty p es only.

A polym orphic function  is a collection  o f m onom orphic instances w hich , in som e sense, 

behave th e  sam e way. Ideally, we w ould like to  take advantage o f th is u niform ity  to  

analyse (and  perhaps even  specialise) a polym orphic function  once, and th en  to use 

th e result in  each  instance. Up to  now th e on ly  work in p olym orp hic p artia l evalu ation  

has been by M ogensen [M og89]. However, w ith  his polym orphic in stan ce analysis each  

in stance o f a p olym orphic function  is analysed  in d ep en d en tly  o f th e  other instances  

and, as a resu lt, a single function  m ay be analysed  m any tim es.

To cap tu re th e  n otion  of uniform ity across instances A bram sky defined th e term  

p o lym o rp h ic  in va r ia n ce  [Abr86]. A property is p olym orphically  invariant if, w hen it 

holds in on e in stan ce, it holds in all. A bram sky show ed, for exam ple, th a t a particu lar  

strictness an alysis was polym orphically  invariant. U n fortun ately  this does not go  far 

enough. P o lym orp h ic invariance guarantees th at th e  result o f th e  an alysis o f any  

m onom orphic in stan ce o f a polym orphic function  can be used in all in stances, but 

not th a t th e  ab straction  o f the function  can. An exam ple of th is d istin ction  appears 

in [Hug89a].

81
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A m ore prom ising avenue of research is suggested  by category  theory. In a first order 

language, polym orphic functions turn out to  be natural transform ations in th e ca te 

gory o f (S co tt) dom ains and continuous functions. In higher order languages th ings  

are n ot so  sim ple. Higher order functions m ay b e  seen  as d inatural transform a

tions [B FSS8 7 , FG SS88] but, unfortunately , th ese  do not com p ose in th e  w ay natural 

transform ations do w hich  lim its their usefu lness. A ltern atively , generalising to  tran s

form ations betw een  structors (a  generalisation  o f functors) seem s m ore prom ising. 

T hese results turn ou t to  be consequences o f R eyn o ld ’s original representation  th eo 

rem  for th e p olym orphic A-calculus [R ey74]. T his is developed  by W adler show ing its 

application  to  “everyday theorem s” [W ad89] and A bram sky has used th ese  n otions  

to greatly  sim plify  th e proof that str ictn ess is polym orphically  invariant [Abr88].

In th is th esis w e have restricted  ourselves to  th e  first order case, so we can treat 

polym orp hic fu n ction s as natural transform ations. U sing th is v iew  w e develop  a 

theory o f polym orp hic b ind ing-tim e analysis. T h e developm ent is based  h eavily  on  

H ughes’ work in polym orphic strictness analysis [Hug89b]— an exam ple o f th e  cross 

fertilisation  betw een  th e tw o analyses su ggested  in C hapter 3 . W e th en  d iscuss how  

to use th e results to  control the specia lisation  o f polym orphic functions.

7.1 S e m a n tic  P r o p e r tie s  o f  P o ly m o r p h ism

B ecause typecheck ing takes place on the sy n ta ctic  description  o f a function , p o ly 

m orphism  is u sually  understood  to be a syn tactic  cond ition . Furtherm ore, it is qu ite  

p ossib le for tw o functions having th e sam e behaviour to  have different degrees o f p o ly 

m orphism . T h e follow ing two definitions o f th e id en tity  function  provide an exam ple  

of th is.

id x = x

id' x = if true then x else 7

T he first has typ e id : :V t  . t —> t w hereas the second has typ e i d ' :: In t  —> I n t .  So, 

w hile th ese  tw o defin itions denote th e sam e function , th ey  have d istin ct typ es. W e 

deduce, therefore, th a t we cannot infer th e ty p e  of a function  from its sem an tic  

properties. W e can, how ever, do th e  converse— som e sem antic  properties o f a function  

m ay b e inferred from  its type.
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W hat sort o f properties m ight we exp ect to  be able to  infer? Param etric polym or

phism  corresponds to  a reuse of essen tia lly  th e sam e function  applied to  ob jects  of 

different typ es. T h e basic in tu ition  behind such functions is th at th ey  do noth in g  to  

th e polym orphic parts o f their argum ents except p ossib ly  discard or d up licate them . 

T he very sam e reverse function , for exam ple, w ill work identically  on b oth  lists o f 

integers and lists o f b ooleans. O ne w ay to express th is is to im agine som e function  

from  integers to  b oo lean s being  applied to  each of th e  elem en ts o f a list. B ecau se  

th e behaviour o f reverse is consisten t across th ese typ es we could apply th e function  

either before or after reversing th e list w ith ou t affecting th e final result.

W e can s ta te  th is m ore generally. If a function  is truly polym orphic (in th e param etric  

sense) then  w e cannot trick it in to altering its action  by applying som e cod ing function  

to th e polym orphic parts o f its argum ent prior to application . W e w ould ob ta in  th e  

sam e result by  apply ing  th e sam e cod ing function  after application . T he fact th at  

the values o f th e polym orphic parts o f the argum ent are different in each case will 

not result in a different behaviour. O f course th is is still rather vague. For exam p le  

we have not specified  w hat we m ean by th e “polym orphic parts o f an argu m ent” . W e 

use th e language o f category theory to  supply th e necessary precision.

7 .1 .1  T y p  e s  a s  F u n c to r s

W e focus on one particular category, th a t o f Scott dom ains w ith  continuous fu n ction s  

which w e d en ote by  D om .  In a m onom orphic language it is sufficient to  m odel 

types by dom ains and program  functions by continuous functions, but not if th e  

language is polym orphic. It is useful to  consider ty p e  constructors to  see th e  necessary  

generalisation .

T ype constructors, such as List or P air , take one or m ore types and return a new  

type. T h ey  m ay b e successfu lly  m odelled  by functors. For exam ple, from th e dom ain  

of integers th e List functor will return th e dom ain o f lists of integers. Functors act 

on arrows also. B y defin ing th e actions o f th e basic ty p e  constructions in th e obvious  

way w e can derive th e  action  of any typ e constructor. So, for exam ple, th e  action  o f  

List on arrows is given  by map (th e  arrow (function) is applied to each elem en t of 

the list). List is a functor List : D om  —► D om  but as an arbitrary typ e con structor  

m ay have m any argum ents each will correspond to  a functor F  : D o m n —* D om  for 

som e n.

M onom orphic typ es m ay b e  included in th e sam e schem e. Such typ es, for exam ple  

Bool, are functors Bool : 1 —> D om  where 1 is th e  category D o m 0 con ta in ing  on ly
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th e one p oin t dom ain and th e identity  function . A ny such functor has no op p ortu n ity  

to  vary and so is con stan t. T he im age o f th e B oo l  functor, for exam ple, is ju st the  

b oolean  dom ain. T ypes th em selves, therefore, are no longer m odelled  by dom ains 

directly , but by functors.

A nother m on otyp e is L is t  B ool.  B ecause we treat m on otyp es such as B o o l  as functors 

B o o l  : 1 —> D o m , th e  usual application  of ty p e  constructors to  typ es m ust b e  replaced  

by functor com position . T hen  L is t  B o o l  (actually , L is t  o B oo l  of course) is also a 

functor L is tB o o l  : 1 —► D o m .

7 .1 .2  N a tu r a l  T r a n s fo r m a tio n s

Program  defined functions are m appings betw een  typ es. As types are m odelled  by 

functors, th ese  functions should be m odelled  by transform ations betw een  functors. In 

fact, by natural transform ations.

From  their defin ition , we recall that a natural transform ation  /  : F  —> G  betw een  

functors is a co llection  o f functions (w hich correspond to  th e m onom orphic instances). 

If th e  source and target o f F  and G  are th e categories D  and S  respectively  then  

for each  ob ject D  £ D  there is a corresponding function  f o  : F D  —> G D  in S .  T hese  

functions are uniform  (or natural) in th e follow ing sense: If 7  : D  —> D '  is any function  

in D  th en  th e property th at G~f o f D  = f D > o F 7  m ust hold. T his captures precisely th e  

notion  th a t all th e  instances of a polym orphic fu n ction  b ehave, in som e sense, in th e  

sam e way. It also expresses our in tu ition  about apply ing  cod ing  (or other) functions to  

the polym orphic parts either before or after application  o f th e  polym orp hic function  

w ith ou t changing th e result. In th e case o f rev e rse , for exam ple, th is m eans th at 

L is t  f  o reverse  =  reverse  o L is t  f  for any function  /  : X  —> Y , or to  use m ore usual 

n ota tion , th a t m a p  f  o reverse  =  reverse  o m ap f .

To strengthen the intuition further we will consider a couple of exam ples. We have 

seen the im plications for the List functor with the function reverse. Now consider 

the selection function fs t .  Its type is fs t : Vs.V F(s, t ) —>• s. Expressed in the functor 

notation we could write fs t  : Pair —> Fst where Pair s t =  (s, t) and Fst s t = s. 
Each of these are functors D o m 2 —► D o m .  The naturality condition says that, 

for any continuous functions 7 : A  —► B  and S : C  —► D,  it must be the case that 

Fst 7  8 o fs t  = fs t  o Pair  7  S. In other words, that 7 (fst (1 , y)) =  fst (7  x ,6  y ) for 

all x, y.

All th is works for m onom orphic functions as well. R ecall th a t types such as B oo l
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or Int  correspond to  functors Bool : 1 —> D om  and Int : 1 —> Dom.  C onsider an 

arbitrary fu n ction  /  : Int —>■ B oo/, say. T here is no polym orphism  here as th e function  

is purely m onom orphic so how does th e  natu ra lity  cond ition  apply? T h e on ly  function  

in th e tr iv ia l category 1 (i.e  D o m 0) is th e id en tity  function , which is m apped  by any  

functor 1 —> D om  on to  th e identity  function  of th e ob ject picked ou t by th e functor. 

T hus th e  n atu ra lity  property reduces to  th e condition  th at /  satisfies th e equation  

I D Booi o f  —  f  o  IDini. B ut th is is no restriction  at all, and so /  m ay be any function . 

W e conclude, therefore, th a t it is on ly  w hen a function  is not m onom orphic th a t the  

natu ra lity  condition  has any effect.

D epend ing  on th e em phasis at any particular tim e, we will either g ive the ty p e  of 

polym orphic functions in th e usual n otation  or in functor n otation . From  th e ex a m 

ples it should  be clear th at the tw o are interchangeable. T h e functor n ota tion  m ay  

be ob ta ined  from  th e usual typ e n otation  m erely by ab stracting  over th e quantified  

variables.

7 .1 .3  P o ly m o r p h is m  in  L a n g u a g e s  w it h  R e c u r s io n

In m ost languages w ith  recursion, _L is an elem en t o f every type. T his gives rise to  a 

necessary m odification  o f the above. C onsider the follow ing function  defin ition ,

f x = f x

T he fu n ction  /  is th e con stan t T  function  and has ty p e  f  : Vt.t t or, equivalently, 

/  : Id —► Id. For th e naturality  property to  hold , th at is, for Id 7  o /  =  f  o  Id  7  to  be  

true, 7  m ust be strict. A s w e will see later th is is th e on ly  extra  con d ition  required.

D om ains togeth er w ith  th e strict continuous functions form a sub-category  o f D om  

which w e w rite D o m s. W e change our view  o f typ e constructors and regard th em  

as functors D o m ” —> D o m s. W e can do th is since all our basic ty p e  con structions  

preserve str ic t functions and, therefore, so does any functor con structed  from them . 

H owever, there is a m inor technicality . R egarding program  defined functions as n a tu 

ral transform ations betw een  functors D o m ” —► D o m s only caters for strict p olym or

phic fu n ction s. B u t, as every functor D o m ” —> D o m a m ay be view ed as a functor  

D o m ” —► D om  by inclusion , this problem  m ay be solved  by treatin g  program  defined  

functions as natural transform ations betw een  functors D o m ” —-> Dom.
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7 .1 .4  F u n c to r s  a n d  P r o je c t io n s

Before addressing polym orphic b ind ing-tim e analysis we ou ght to  n o te  a couple of 

facts ab ou t th e  in teraction  o f functors and projections. T he functors th a t correspond

to P E L  ty p es are o f th e  form  F  : D o m “ —> D o m , so w e need to  define th e projections

in jDo m " .  T h e ob jects  o f D o m na are n -tup les o f ob jects o f D o m  and arrows, likew ise, 

are n -tu p les o f D o m  arrows. T h e p rojections in D o m ns are, therefore, sim p ly  n -tu p les  

of p rojection s in D o m .  M ost o f th e tim e w e will use a single letter  (typ ica lly  7 ) to  

refer to  th e  w hole tup le.

If F  is a functor corresponding to  a typ e expressib le in PE L  and if 7  is a projection , 

then  F 7  is also a projection . Idem potence follow s from  th e com p osition  property  

of functors, and dom inance by th e id en tity  from th e  fact th a t all th e functors are 

m on oton ic. Furtherm ore, b ecause projections are weaker th an  th e  id en tity  function , 

all p rojection s are str ict. T his m akes th em  su itab le for com m u ting  w ith  p olym orphic  

functions in th e m anner described above.

7 .1 .5  P o ly m o r p h ic  P E L

W e have to  ex ten d  PE L  to  allow for polym orphism . T h e on ly  th ing  in th e  language  

that w ill change is th e ty p e  system . In addition  to th e syn tactic  classes in C hapter 4 

we w ill in trod uce th e classes o f ty p e  constructors and ty p e  variables,

F G F u n c  [Type Constructors] 
t  G T V a r  [Type Variables]

The revised (abstract) syntax of the language now caters for polymorphic types.

{D} {C d} e::T 
f x = e 
x
( e i , • • • > )
c e 
f e
case e in c ; X/ -> e ; II ... I I c n x n -> e n end 
F {t} = c T {+ c T} 
f :: T -> T 
F T
( T , , . . . , T „ )  
t
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A lgebraic typ es have been replaced by ty p e  constructors applied to  ty p e  variables. As 

we noted  earlier, from any typ e expression  we m ay ob ta in  the corresponding functor  

by ab stracting  out th e ty p e  variables. In th e follow ing we use F , G, H  and K  as 

variables ranging over functors.

T y p e  R u le s

T he typecheck ing  rules are much th e  sam e as before. T he on ly  additions are tw o  

rules th at s ta te  th at polym orphic functions (including constructors) and expressions 

have any ty p e  which is an instance o f their general type. W e express th is using  

com position  o f functors, F  o H  say. B ecause F  m ay b e a functor D o m ns —► D o m  

where n ^  1 , th e  functor H  m ust b e o f th e form Dom™  —> D o m ns . Such functors  

m ay be expressed  as a categorical product o f functors Hi : D o m  ™ —> D o m  (1 <  i < n)  

w ritten  <  H i , . . . ,  H n >.

x :: F  b x ( i )  : :F(z)

x : : F \ ~ e l : : G 1 ••• x : : F b e n : : G n

x :: F  b ( e ! , . . . , e n): : <  G u . . . , G n >

f  : : G - ^ H  x : : F b e : : G  

x :: F  b f  e:  : H

c , : : G{  —> G  x :: F  b e :: G,

x :: F  b c t e : : G

x : : F b e : : t f  Vt . (x :: F, y - : :H { b e t : :G)

x :: F  b c a s e  e in  Ci -> ex I I . . .  I I c n y n -> e n : :G

f  : : G - >  H  

f : : G o I <  - > H o K

x :: F  b e : : G 

x : : F o i f  b e : : G o / (

In th ese  rules w e have departed from th e n otation  o f C hapter 4 and used th e functor  

n otation . N o tice  th a t th e notation  applies to  variables as well as functions. A value
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v o f ty p e  F  : D o m ng —> D o m  m ay be seen as a natural transform ation  v : 1 ” —> F,
where l n : D o m g —► D o m  is the con stan t functor picking out th e term inal ob ject of

D o m  (th e  on e p o in t dom ain). U sing th is n otation  sim plifies th e proof to  com e.

As before, w e assum e th a t a constructor c, com es from a typ e defin ition  o f th e form  

G  =  ct G t +  b cn G n (using functor n o ta tio n — note th at -f is not categorical co

p rod u ct). For any object A  or arrow /  in D o m ns we have,

G  A  =  c ; ( G t A ) - \ -------- 1- cB ( G n A )
G  f  =  C; ( Gi  / )  +  ••• +  cn ( G n f )

Sim ilarly, th e  product o f functors is given  by,

< G , , . . . , G n >  A  =  (Gt  A , . . . , G b A )
<  G , , . . . , G n > /  -  Gj f  x ••• x  Gn /

as usual.

S e m a n tic s

B ecau se th e  dynam ic sem antics of C hapter 4 was defined using a universal dom ain  of 

values w e can use it w ith ou t change. T h e only difference arises in th e way in w hich  we 

relate th is  sem antics to  th e  category of dom ains. In C hapter 4 we exh ib ited  retracts  

b etw een  ind iv idu al dom ains and th e universal value space. U sing th ese  we were able  

to  relate th e  action  o f a function  on th e universal dom ain w ith  a particu lar arrow  

in th e  category  of dom ains. If w e desired w e could do som eth ing  sim ilar. W e w ould  

use ind exed  retractions to  relate th e action  o f a polym orphic function  on th e value  

space w ith  th e  actions of its m onom orphic instances in th e category  o f dom ains. T h e  

deta ils, how ever, are unnecessary for th e follow ing developm ent.

7 .1 .6  N a t u r a l i t y

F unctions defined in P E L  correspond to  natural transform ations betw een functors 

D o m g —> D o m .  T his property could be deduced from proofs ab out the second order 

lam bda ca lcu lus, and in particular from R eyn old s’ abstraction  theorem , by exh ib itin g  

an appropriate relationsh ip  betw een PEL and th e polym orphic A-calculus. However, 

a d irect proof is ju st as straightforw ard.
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T h e o r e m  7 .1  N a tu r a l ity

Let /  b e a function  and F  and G  be functors defined in PE L . If /  :: F  —► G  is a valid  

typ ing  o f /  then  for all str ict functions 7 : A —> B  (w here A  and B  are arbitrary)

f  o  F  j  =  G  7 o  /

T he proof is by fixed poin t induction  over th e defin ition  o f /  ( =  <j>\f ]j), but first 

we need a lem m a. T h e lem m a sta tes th at if everyth ing  works in som e function  

environm ent (th a t is, th a t for any f ,  th e function  <j>\f ] is a natural transform ation) 

then  any expression  (seen  as a function  o f its free variables, using th e sam e function  

environm ent) is also a natural transform ation.

L e m m a  7 .2
If x :: F  b e :: G  is a valid  typ ing  o f e, and if (f> is som e function  environm ent 

such th a t for every function  g  appearing in e th e valid typ in g  g  :: H  —> I (  im plies  

V7. ^>[g] o H  7 =  K  7 o </>[g], then for all strict functions 7 : A —> £ ,

M e J {* (__► F  7 u) — G 1  ( ^ l le l|2: 1—► 1;})

P r o o f
T he proof is by ind u ction  on the structure of e. T here are five m ain  cases to  consider. 

Each case w ill be presented  in the sam e way. F irst th e  ty p e  rule for th e appropriate  

case will be g iven , follow ed by a dem onstration  of th e lem m a in th e form  required by 

th e ty p e  rule.

C ase: x(i)
T he ty p e  rule is,

x :: F  h x(i) : : F ( i )

So in th is  case G  =  F ( i ) .  T he corresponding derivation  is,

= F{i) 7 (£*I*(i>]{a: „})

C ase: ( e , , . . . , e n)

T he ty p e  rule is,
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x :: F  h e x :: G \  • • • x :: F  h e n :: G n 

x :: F  h ( e 1?. . . ,  en) :: G

where G  = <  G t , . . . ,  G n >.  The corresponding derivation is,

£ 4 ( e i , - - - , e „ )  1{ X ^  p  7

(̂ 11 e l  I j j ;  | _ >  f  * y  5 - * * 9 E ̂  1 ̂  ^  (— >. P  s y  ^ | )

=  ( G t 7  T ̂ l e n l ^ ^ ^ p  [ind. hyp.]

—  G  7  (£^1 ©1 ̂  j  J • • • J ^11 e n 1^3. ^  f ;  j  )

=  G  7  1̂1 (e li • • • 5 e n) ^

C ase: (g e)

The type rule is,

g : : G - + H  x : : F b e : : G  

x :: F  h g e : : H

The corresponding derivation is,

6  e ^{j: 1—̂ F  7  u} 

=  ^ t g ]  ( f 4 e ] { z  M F  7  v} )
=  ^ [ g ]  ( G  7  „} ) )  [inductive hypothesis]

=  f f T W g K M e l ^ H t , } ) )  [condition on <f>\

=  H  7  ( £ 4 g

C ase: (c e)

The type rule is,

a : : G i - > G  x : : F L e : : G i  

x :: F  h c t e : : G

where G  — c { G t +  • • • +  cn G n. The corresponding derivation is,

£ 4 C* Ql { x  ^  p  7  v}

—  Ci y—y P  -y u j )

=  C{ (Gi  7  £ 4 e ] { x v })

=  G  7  (c, £ 4, [ e ] ^  ^  wj )

T (^7>II<-'»
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C ase: (c a s e  e in  • • • c,- x, ->  e, • • • )

The type rule is,

x :: F  b e: :IL Vz . (x :: F,  x , : : / / ,  h e t : :G)  

x :: F  h c a s e  e in  ••• c, x ,-> e , ••• : : G

where H  =  Ci / / ; - ( - • • •  T  cn H n . The corresponding derivation is,

£ 4  c a s e  e in  • • • c t- x t ->  e t • • • Jj^. ^  F  ^

=  case  ^  F  1  m

C{ Vi  =>■ p  7  x . v . j

case H  7 (£4 e ] { x ,_>„})  in

Ci Vi  =>  £<1>le i } { X  n f p ,  X i  V i }

case £</.He 11x ^  v j in  

Ci Vi  = >  y^y P  e y  X i  (-> Hi  7  U, }

[ind. hyp.]

[meaning of case\

in [ind. hyp.

= G  7
C»-U* ^  I—► V ,  X i  I—► u , }

[G 7 strict]

=  G  7  (£4 case e in • • • ct- xt -> e, • • • ]|x ^  v j)

In order to  com plete th e proof we m ust consider th e instance rules also. If /  : F  —► G  

is a natural transform ation  from F  : D o m n —► D o m  to  G  : D o m * —> D o m  th en  it is
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also a natural transformation from F  o I(  : Dom™ —► D om  t o G o  /v : Dom™ —> Fora  

where /if is some functor K  : Dom™ —► F o m ”. A simple calculation suffices.

/ o ( ( F o / \ ) 7 ) =  f o ( F ( I < y ) )
= ( G  [naturality]
=  ((G  o A b W

as required. The same calculation holds for values as they may be treated as natural 
transformations from l n to appropriate functors. This com pletes the proof. □

The function environment (f) used in the lemma need not necessarily be the com plete 

function environm ent defined by the program, of course. W hen we use the lemma in 

the following proof, <f> will be a finite approximation to the com plete environment.

P r o o f  (n a tu r a lity )

We have to prove that if /  is a function and F  and G  are functors defined in PEL  

such that /  :: F  —> G  is a valid typing of / ,  then for all strict functions 7  : A  —► B  
(where A  and B  are arbitrary)

/  o F  7  =  F  7  o /

The proof is by fixed point induction over the definition of (f>. From the static  sem an

tics, /  =  f ix  (A <t> . { f ,  f-> A r . ^ [ e ! l {x^ v} , . . . ,  f B »-> A r .^ [ e n l {rn^ w} }) where the  

function definitions in the program are of the form f,- x, = e,-. As in earlier proofs

we write {/,•}  for the Kleene chain approximating (j) (then, by the definition of f i x ,

4> =  U ~ 0W J )  and use fn to denote </>n|  f  ]. There are three cases for the fixed point 
induction.

C ase: base

f o  o F  7  =  Ax._L o F  7
=  Ax.J_
=  G  7 0  Az._L [G 7  strict]
=  G  7 o fo

C ase: inductive
Suppose that the definition of /  is given by f  x = e. Then,



C H A P T E R  7. P O L Y M O R P H I S M 93

/„ + , O F - y  =  o F 7

=  At>.£*Je]|x ^  F  7 uj
=  G 7 0  A v . ^ f e ] ^  ^  [lemma and ind. hyp.
=  G 7 o fn+1

C ase: lim it

/  ° F 7 =  (LK„{/-}) o f 7
= U£(,{/• ° F7} [defn. of U]
= U£,{<?7 o /•}= G 70 US»{/i} [continuity]
=  G 1 o f

which completes the proof. □

It is instructive to note where the various restrictions played their part. The strictness 

of the com m uting function 7 was essential in the inductive base case. In a language 

without recursion the inductive proof would not be required and without it there 

would be no need for strictness. Indeed, if J_ were inexpressible in PEL then program  

functions would be natural transformations over the usual category of domains with 

arbitrary continuous functions. W hen _L is expressible, case expressions com m ute 

only w ith strict functions, hence an appeal to strictness in the lem m a also.

The restriction that PEL functions be first order is used in the proof of the lemma 

in the function case. It is because the meaning of a function can be expressed in 

terms of (f) w ithout reference to the values of variables, that the inductive hypothesis 

may be used to effect the com m utativity essential to the proof. If functions could 

be arbitrary expressions (as is the case in a higher order language) then the need to 

reference variables to obtain their meaning would stop the proof from going through, 

and a more general theorem  would be required.

7.2  P o ly m o r p h ic  A n a ly s is  T h e o r e m

We will see later that we can use polymorphic projections (projections that satisfy the 

sem antic polym orphism  condition) to describe the results of binding-tim e analysis of 

polym orphic functions. Such projections interact cleanly with the program functions 

as the following theorem  (from strictness analysis, [Hug89b]) shows.
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T h e o r e m  7 .3

If /  : F  —* G is polymorphic, and if a  : G  —> G and (3 : F  F  are polym orphic pro
jections such that a  o f  = a  o f  o /?, then for any projection 'y : X  X

( a x  o  G 7 )  o  f x  = ( a x  o G ~f)o f x  o (j3x  o F  7 )

P r o o f

We will use the equivalent statem ent of safety.

( a x  o G 7 )  o f x  = a x  o /*  o F  7  [naturality]
E (fx 0 f ix)  0 F  1  [assumption]
=  f x  o( /3x  o F  7 )

as required. □

7 .2 .1  A p p r o x im a te  F a c to r is a t io n  o f  P r o j e c t io n s

The practical consequence of the theorem is to improve the efficiency of binding

time analysis. Each function /  has an abstract version f *  associated with it, with  

the property that /* /?  o /  C /  o (3 for any projection (3 . By the above theorem  it 

is clear that we can define f *( ( 3x  0 F 7) =  ( f*(3 )x  0 G~j. If we restrict ourselves to 
projections which may be factorised in this way then will be fast to com pute. In 

general there are far fewer polymorphic projections than monomorphic. For exam ple, 
over the List functor we use only three polymorphic projections ( A B S , List A B S , 

and ID)  but over some particular list domain we have these and more. Thus, instead  

of having to find a fixed point in some large domain we can do as well by com puting  

it in a far smaller domain. There is a second advantage, nam ely that the results 

of the analysis are not restricted to one particular instance but may be used in all. 

Separately com puting for each monomorphic instance loses on two accounts— the  

size of the dom ains, and the repeated work.

To discover whether the m ethod will be generally applicable, however, we must ask 

whether it is sufficient to consider only those projections that can be factorised in this 

way. This is certainly the case with the List functor. In designing finite dom ains of 

projections we chose to treat each recursive level alike. Thus all the projections over 

lists may be decom posed into a projection that works on all the elem ents identically  

(and only on the elem ents) and a projection which (possibly) alters the list structure.
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The sam e is not necessarily true in all cases. For exam ple, consider a function  

/  : Vt . ( t , t )  —* t. As the only polymorphic projections over / ’s source functor are 

ABS  and ID (given by (ABS , ABS)  and (ID, ID)), the only projections that may 

be factorised as above treat both elem ents of the pair in the same way. However, in 

any particular instance of / ,  for exam ple f gooi  '• (Bool, Bool) —> Bool , there is noth

ing that constrains the two elem ents to be equally defined or otherwise. Indeed we 

m ight com m only expect the first to be defined and the second not, or vice versa. 

W hat can we do in such cases? The answer is that instead of dem anding an ex

act factorisation we find an approximate factorisation. Thus for any 8 : FA —+ FA we 
find projections (3 : F —► F (polymorphic) and 7  : A —+ A such that (3 o F 7  C 8 . Such 

an approxim ation is safe because we are underestim ating the available information. 

In the exam ple above, a projection (7, <*>) : (Bool, Bool) —► (Bool, Bool) would be re

placed by ( 7  n  <$, 7  n £). W hile there is information loss here it often turns out to 

be m inim al. In som e cases, exactly the same information loss arises anyway but by 

another route. The primitive operator if is a good exam ple of this as we now show.

The type of if is if : Yt . (Bool , t , t )  —> t. W ritten using the functor notation, it is 

if : Cond —> Id where Cond t = (Bool, t, t). There are four polym orphic projections 

from Cond to itself. The Bool field may either be blanked (using A B S b o o i )  or left 

intact, and likewise for the polymorphic parts (using polym orphic ID and ABS).  The  

table for the polym orphic abstract function if& is below.

a i f & a

( A B S b o o i ,  A B S ,  A B S ) A B S
( A B S b o o i ,  ID ,  ID ) A B S
( I D b o o I ,  A B S ,  A B S ) A B S
( I D b o o U  ID ,  ID ) ID

An arbitrary projection, ( t ] , j , 8) say, over the argument to an instance of if  is decom
posed into the composition of either (A B Sgooh ID , ID )  or (IDgooi? ID ,  ID )  (depending 
on whether 7 =  ABSbooI ° r not) with the projection Cond (7 (1 8). Then, the result 
of applying i f#  is either A B S  o (7 n  8) or I D  o (7 n  8) respectively, that is, either 
A B S  or 7 n  8 . Depending on whether the boolean is static or not, the result is either 
completely dynamic, or is static where both branches are static. But this is exactly 
the same result that separate analysis of each monomorphic instance would obtain!

Neither type checking nor binding-time analysis is based on program values. The fact 
that it was necessary to take an approximation to obtain the factorisation (which is 
type based) corresponds to the fact that binding-time analysis cannot determine which 
of the branches of an if may be returned and so must assume the worst. It might
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be hoped that there is a more general result here— possibly that the approxim ate 

factorisation will n e v e r  do any worse than the binding-tim e analysis would anyway. 

After all, both have access to the same information. Unfortunately this is not the 

case. Consider the function,

f (x,y) = fst (x, if true x y)

The type of this function is /  : VT(£, t) —> t or, in functor notation, /  : A —> Id where 

A t =  (t, t). If we analyse an instance of /  polymorphically, using two projections 

7, 6 : A —> A say, we must approximate the projection (7,^) by A (7 FI 6). The result 
of applying the abstract function is, unsurprisingly, 7 n S. If, on the other hand, we 

choose to analyse /  monomorphically, then we do not need an approxim ation step, 
and will obtain 7 as the result. So, this exam ple shows that, even though both type  

checking and binding-tim e analysis have access to the same information, the binding
tim e analysis is able to make fuller use of it. Recently, a type checking approach to 

binding-tim e analysis has been developed [Gom89]. It would be interesting to see 
whether the more general result we hoped for above holds in this case.

The counter-exam ple is so contrived that we might think the problem has no practical 

significance. However it is closely related to an im portant observation. If a function is 

given a type which is not as general as it could be, then unnecessary information loss 

may occur. For exam ple, if the function fst is given the type fst : Vt.(t,  t) t rather 

than its fully general type, then the result will always need to take both parameters 

into account. In the example above, the if expression is used solely as an artificial 

constraint upon the type of the function. Experience suggests that, where the type 

is not constrained artificially but only out of necessity (as in the if exam ple), the 

information loss is minimal.

7 .3  P o ly m o r p h ic  S p e c ia lisa t io n

Binding tim e analysis is not the only beneficiary from taking polym orphism  into  

account. The process of function specialisation m ay also be improved by using such 

information.

If we have a polym orphic function which we wish to specialise to part of its argument 

we have two choices. Either all the available information can be used in the specialisa

tion, or only the parts of the information over which the function is not polym orphic.
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So long as efficiency is not lost the latter is clearly better. The residual function will 

be more general than the in the former case, and will retain a polymorphic type. 
Consequently, we will need to produce fewer residual functions, and each may be 

used in m any situations. The residual functions will be at least as polym orphic as 

the source function because no instance information is supplied.

Is efficiency lost? To answer this we must consider what might happen to polym orphic 

values w ithin the body of a polymorphic function. There are two possibilities. Either 

the values appear in the result of the function, possibly as part of a data structure, 

or, alternatively, they are provided in an argument to another function. In this case 

the typechecking rules guarantee that this other function must itself be polym orphic. 

In neither case, therefore, can any significant com putation take place. The apparent 

circularity of this argument m ay be removed by noticing that the polym orphic prim
itives can them selves do no processing on the polym orphic parts of their argum ents 

(e.g. f s t ) .  Again, this is an appeal to the basic intuition about polymorphic func

tions. We conclude, therefore, that because the source function is (by assum ption) 

param etrically polymorphic, the only possible loss of efficiency is that som e values 
will be passed as parameters rather than appearing as in-line constants. Any increase 

in cost is restricted merely to an increase in the number of parameters. This penalty  

is expected to be minimal on m ost im plem entations. It should be re-emphasised that 
this whole argument depends on the source language being first order with param etric 

polym orphism  only.

Let us consider an exam ple, that of the standard lookup function. It is som etim es 

ascribed the type lookup : VnVv.([(n, t?)], n ) —> v. However, this requires the use of 

a “polym orphic” equality function. The behaviour of such a function can easily be 

altered by coding its arguments in a non-one-to-one manner. Following the argument 

above, therefore, this brand of polymorphism  is ad hoc and not parametric. If we 

replace the overloaded equality function with a monomorphic version, then the actual 

type of the lookup function is lookup : Vu.([(Name, u)], Name)  —> v for som e fixed type  

Name.

We consider a case where the values are static but the names are dynam ic. W hen 

specialising an interpreter we might expect the reverse, of course, but in other contexts 

the situation we describe could arise. From the discussion above we recognise that 

even though the values are actually present we will gain nothing by using them  in the 

specialisation. As the value part is polymorphic we treat it as if it were dynam ic.

Suppose we specialise lookup to the value ([(x,3 ) , (y,4 )] ,z) where x, y and z are
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dynam ic. The values are indeed static— they are provided as constants. Using the 

approach outlined above we obtain the residual function

lookup_l (a,b,c,d,e) = if eq.Name a e then
b

else if eq_Name c e then 
d

else fail

The original function call is then replaced by a call lo o k u p . 1 (x,3 ,y,4 ,z). The  

sam e residual function lo o k u p .l  is suitable for any two-list. Contrast this with the  

situation that would have arisen if the values were used in the specialisation. Then  

the residual function would have been

lookup.l (a,b,c) = if eq.Name a e then
3

else if eq.Name c e then
4

else fail

Granted that there are two fewer parameters, but this residual version of lookup  is 

only suitable for this particular association list. Any other list, even if it had two 

elem ents, would require a new residual function to be produced.

C o n se q u e n c e s  for B in d in g -T im e  A n a ly s is

If a polym orphic function is only ever to receive the non-polym orphic parts of its 
argument during specialisation, then its static projection will have A B S  in the poly

morphic positions. Because A B S  is polym orphic, this means that the projection  

associated with a polymorphic function is itself polym orphic. Therefore, we only  

need to consider a finite domain of polymorphic projections when calculating the 

projection associated with a polymorphic function. There are, of course, fewer of 

these than projections over arbitrary instance types. This means the search space is 

smaller giving an additional benefit for binding-tim e analysis.
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7 .4  R e p r e se n t in g  P o ly m o r p h ic  P r o je c t io n s

Very little  change is required in order to implement the m ethods of this chapter. Of 

course the parser must be altered, the typechecker m ust now handle polym orphism , 
and so on, but such things are standard.

The datatype used to represent projections is much the same as before. The recursion 

former PMu has an extra parameter consisting of a list of projections in order to  

sim ulate the form (3 o F 7. The list of projections corresponds to 7 (which may, in 

general, be an rc-tuple of projections, i.e. a projection in D o m n). Type variables in the  

type definitions lead to variables in the projection structure (PParm). On unfolding, 
the particular projections are substituted for the corresponding parameters.

The com plete datatype is,

type Proj = PProd [Proj]
+ PAbs
+ PSum [(String,Proj)]
+ PMu String [(String,Proj)] [Proj] 
+ PRec String 
+ PParm String

If a projection parameter is encountered within the specialiser, it is treated like PAbs. 
This im plem ents the principle that polymorphic parts of an argument are to be dis

carded. Further details of the im plem entation may be found in the appendices.

7.5  E x a m p le

It should be fairly clear by now how the m ethods of the chapter affect the extended  

exam ple. The ugliness from Chapter 6 (the many list types) has gone, as we are able 

to write the interpreter using polymorphic lists, and obtain polymorphic lists in the 

residual program. In addition, the advantages developed in this chapter will apply, so 

the analysis of functions such as append will be improved (it will happen once only, 
and the result will be obtained more quickly). However, the interpreter was origi
nally a monomorphic program in that the only polym orphic structures appeared as 
monomorphic instances. As a result, the residual programs are little better than their 

monomorphic counterparts. We should not be surprised at this: the main purpose
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of th e p olym orphism  m aterial was to  allow  m ore freedom  in th e source  program , to  

allow  polym orp hism  (an im portant m odularity  technique) to  be used. A com plete  

listin g  o f th e  exam ple is given as th e last section  o f A ppendix C.

If th e  interpreter had m any different typ es of list or perhaps various kinds of trees that 

appeared in residual program s, then  th e im provem ent in m oving to  th e m eth od s of 

th is chap ter w ould be m ore visible. N ot on ly  w ould th e analysis benefit from  tak ing  

p olym orp h ism  in to  accoun t, but the residual program s w ould contain  polym orphic  

fu n ction s m an ipu latin g  th e  various structures. In the m onom orphic case, w e w ould  

have m an y separate instances of these functions.



C h a p ter  8 

C o n c lu sio n

In conclusion  w e w ill sum m arise the previous chapters so th a t w e can assess th e work  

w ith in  a wider con tex t and see w hat rem ains to  b e done.

8 .1  A p p r a isa l

After in troducing partia l evaluation  and its p o ten tia l as a program m ing to o l w e saw , 

in C hapter 2, th e D IK U  im plem entation  strategy  w hich w as sim ple yet pow erful. 

Values are treated  a tom ica lly— a value is either s ta tic  or d ynam ic— but even  so , such  

partia l evaluators have been  used successfu lly  in practice. W e d iscussed  th e  role of 

b in d ing-tim e analysis includ ing an argum ent that it is crucial if self-app lication  is to  

be a ttem p ted .

In an a ttem p t to  reach inside d ata  structures, to  express a greater degree o f separation  

of b in d ing-tim es, we used dom ain projections to  in d icate  s ta tic  data. T here w ere 

various advantages associa ted  w ith  th is. F irstly, there is a very natural sen se in  

w hich a projection  can capture th e absence o f in form ation— dynam ic d ata  is m apped  

to  _L. Secondly, it turned out to  be easy to  gen erate fin ite  dom ains o f p rojection s  

tailored  to  each  d ata  ty p e . Thirdly, projection -based  analysis has already received  

a tten tio n  and, as a backward analysis at least, is fairly w ell understood . Indeed, we 

discovered  a close relationsh ip  betw een b ind ing-tim e analysis and th e m ore fam iliar  

str ictn ess analysis. F inally , projections are sem antic  o b jects w ith  a sem an tica lly  

expressed  sa fety  con d ition , and so need no interp retation  to  fit w ith  sem antica lly  

derived m eth od s, tw o o f which we stud ied  in detail.

T h is last p o in t cam e to  th e  fore in C hapter 5. Earlier, in C hapter 4, we had expressed

101
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th e b in d ing-tim e analysis as a forwards analysis, and proved th e  safety  o f th e equa

tions. T h is took  care o f values th at are present during partial eva lu ation , so in C hapter  

5 w e turned  our a tten tio n  to  run-tim e values. M otivated  by th e need to  express the  

origin o f th e  run-tim e param eter, a decom position  theorem  w as explored. T h e use of 

d ep en dent sum  as a generalisation  o f product allow ed us to  express m ath em atica lly  

th e fam iliar techniques o f arity  raising and tag  rem oval. T h ese  op tim isa tion s need no 

longer b e seen as arbitrary or ad hoc , but as natural ou tgrow ths o f th e theory. T h at  

the d ecom position  theorem  is built around projections is no accident. T heir role in 

th e d ecom position  is m otivated  by th e sam e in tu ition  th at gave rise to  their use in 

b in d ing-tim e analysis in th e first place.

C hapter 6 brought th e threads o f the previous chapters together in a  working  

p rojection -based  p artia l evaluator. T he exten ded  exam ple show ed significant im 

provem ents over th e situ ation  in C hapter 2, but a lso som e degradation: all typ es  

were m onom orphic. T his prohibited  th e  use o f polym orphic lists, for exam ple, (w hich  

w e had been  able to  use in th e sim pler (u n typ ed ) settin g  of C hapter 2). W e turned  

our a tten tio n , therefore, to  polym orphism .

S em an tic characterisations o f polym orphism  have becom e popular recently. T hey  

seem  to  op en  up pow erful proof m eth ods, in addition  to  providing new in tu ition s as 

to  th e  n atu re o f p olym orphic functions. A gain, th e advantage o f using a sem antic  

characterisation  o f b ind ing tim e analysis becam e clear as w e w ere able to  m ake im m e

d iate use of th ese  new insights. In particular, we were able to  apply  H ughes’ po lym or

phic an alysis result d irectly , a result originally in tended  for str ic tn ess analysis. T hus 

p olym orp hic typ es fitted  n eatly  in to  the fram ework we had p reviously  con structed . 

T he m ost im p ortan t consequence o f th is is th e m ost obvious, nam ely  th at th e  partial 

evaluator is actu a lly  ab le to  specialise p olym orphic program s. T his rem oves on e of 

th e restrictions p reviously  placed on th e form of th e input program . B ind ing tim e  

analysis o f  p olym orp hic functions is cheaper than  th e analysis o f m onom orphic in

stan ces b ecau se th e  respective dom ains are sm aller, and as th e  specia lised  versions 

of p olym orp hic functions are them selves polym orphic, th e residual functions m ay be  

used in m any instances.

8 .2  D e v e lo p m e n t

T he story  does not end here, o f course. In particular, there are still m any restrictions  

on th e  form  o f th e input program . For exam ple, it is not yet clear how to  exten d  the
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m eth o d s described  here to  cater for higher order functions. T h is is by no m eans the  

on ly  shortcom ing. In th is section , w e consider som e other areas op en  to  im provem ent.

8 .2 .1  F in i t e n e s s

In C hapter 2, we noted  th a t a d ivision  produced by b in d ing-tim e analysis should  be  

b oth  congruent and fin ite. It is possib le to  capture congruence qu ite well using an 

ab stract in terp retation , but fin iteness d oes not seem  to  b e so straightforw ard. In lazy  

or h igher order languages another problem  arises th a t is very closely  related , th at of 

com paring p artia l or infin ite ob jects. T h is arises in th e  follow ing situ a tion . Suppose  

there is a  call o f a function  /  w ith  argum ent y.  Further su p p ose th a t w e have already  

produced  specia lised  versions of / ,  specia lised  to  values , xg, etc . W e need  to  know  

w hether th e  s ta tic  part o f y  is equal to  th e sta tic  part o f any of th e  rr’s. To be o f any  

use, th is te s t m ust be com putable. T h at is, we m ust guarantee th at th e te st a  y  =  x t 

cannot have th e result _L (here =  is com putab le rather than  m ath em atica l eq u ality ). 

If any  o f th e  s ta tic  values are infinite, th en  m athem atica l eq u ality  is not com putab le. 

In order to  ensure th at th is does not arise, the values w e com pare m ust be fin ite  

and, furtherm ore, m ust b e m axim al in th e dom ain o f s ta tic  values. If th e  value is 

not m axim al th en  again  we would need  a non-m onotonic (h en ce n on-com p u tab le) 

eq u a lity  te st. S ta tin g  th is another way, any _L appearing in th e result o f  a y  m ust 

have been  introduced  by cr.

It is p ossib le  to  discover fin iteness using abstract in terpretation . W e noted  in C hapter  

3 th a t congruence is an over-estim ate o f th e  halting  problem . F in iten ess requires an 

under estim a te  o f th e sam e problem . T h at is, th e answ er L O O P S  should  be returned  

if there is any p ossib ility  o f non-term ination . R ecognising th is , M ycroft introduced  

tw o an alyses, #  and b, th e former being  strictness an alysis, th e  la tter  term ination  

analysis. S trictness analysis has becom e very popular, w hile term in ation  analysis has 

not. T h e reason for th is is th at, w hile abstract in terpretation  can g ive  excellen t results 

for str ic tn ess analysis (and hence congruence an alysis), it g ives very poor results for 

term ination  analysis. A n exam ple w ill help  to  show why. C onsider th e function

f (x,y) = if x=0 then y else f (x-l,y)

defined over th e natural num bers. It is clearly strict in b oth  x  and y  for if _L is sub

stitu ted  for either param eter the result is also X. E ven th e earliest str ictn ess analysis  

techniques could discover this. In contrast, consider th e corresponding term ination
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question . If non-_L values are su b stitu ted  for b oth  x  and is the result also non-_L? 

B y insp ection  th e result is obviously  “yes” . H ow ever m ore m ental work is required to  

discover th is. In particular one has to  consider th e range o f possib le values for x  to  

check th a t, w hatever its value is, th e value 0 will b e reached in th e recursion. T hus, 

th e function  w ill on ly  return a non-_L value if the values for x  and y  are n on -T  and  

if the recurs ion f in is he s . Such a d istin ction  does not need to  be m ade for strictness  

analysis. If th e  value for y  is T  th en  th e result could  b e  _L either b ecau se th e  recur

sion term in ates and y  =  -L, or b ecause th e recursion does not term in ate. W e do not 

need to  d istin gu ish  betw een  th ese  cases and, in particular, never need to  ensure th at 

recursion is fin ite.

A t first it seem s quite puzzling that strictness and term ination  are not equally  easy  to  

discover w hen one is th e dual o f th e other. T he reason is th a t there is an asym m etry  

in the langu age sem antics: recursive defin itions are given  by least fixed  p o in t. If, in 

som e top sy  tu rvy world, recursive defin itions were given  by greatest fixed poin t then  

term ination  w ould  be th e  easy property to  d iscover and str ictn ess w ould  be hard. In 

th e exam ple above, if neither x nor y  were T  then  either y  w ould  b e  returned (if the  

recursion fin ished) or else  th e recursion w ould not finish and th e  result w ould b e  T . 

In neither case is th e  result J_. H owever, in th e  real world we have no op tion  but to  

use least fixed  p o in t, so term ination  analysis w ill alw ays be harder than  str ictness. 

In partial evaluation  term s, th is m eans th at fin iteness w ill be harder to  so lve than  

congruence. T his certain ly  accords w ith  experience.

8 .2 .2  V a lu e s  f r o m  R e s id u a l  F u n c t io n s

A residual function  is produced w henever a residual call is encountered . T h e idea  

behind  m aking a function  residual is th at th e  function  call cannot b e  unfolded safely. 

As a consequence, it m ay be thought th at no result m ay be ob ta ined  from  a residual 

call, for how can a result be ob ta ined  w ith ou t unfolding? H owever, there m ay be  

sufficient inp u t to th e function  to  cause som e part o f th e result to  be s ta tic  even  

though  th e function  as a w hole cannot be unfolded. U nfold ing could take p lace to  

allow  th e s ta tic  part to  be com puted , w hile a residual function  is produced to gen erate  

the rem ainder.

U nless th e  b in d ing-tim e analysis handles partia lly  s ta tic  structures, w e will on ly  ob 

tain  tr iv ia l results. In C hapter 3, w e argued th at it is unreasonable to  exp ect the  

input to  a function  to  be pre-divided in to  s ta tic  and dynam ic parts. T he argum ent 

is even m ore forceful regarding the result of a function . T hus, we m ust perform  the
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factorisation  ourselves using w hichever m ethod  used in th e partial evaluator. Before  

discussing  th e  case o f dependent sum  factorisation , we will consider th e com plem ent 

factorisation . T his will g ive  us insight into w hat we should exp ect in the m ore com 

p licated  situ a tion .

Sup p ose w e have a fu n ction  f  : X  —> Y  where we are able to  factorise X  in to  the  

product A x  B  in w hich  A contains th e s ta tic  part o f th e  input. S uppose also th a t Y  

factorises in to  th e  product C  x D  w ith  C  conta in ing  th e  s ta tic  part o f th e  result. T he  

C  part o f th e  result m ust be determ ined, therefore, b y  th e A part o f th e argum ent 

alone. N ow , w e know th at

X Y ^ A x B - > C x D  =  ( A x B - * C ) x ( A x B - + D )

but b ecau se th e  C  value is determ ined by th e A value, w e do n ot need to  consider  

th e w hole function  space (A x B C)  x ( A x B —> D)  but on ly  th e part isom orphic  

to  (A -+ C ) x  ( A  X  B  —► ^)* T h e first com ponent o f such a pair o f functions gives 

th e s ta tic  result and m ay be unfolded, w hereas the second gives th e d ynam ic result. 

It w ill n ot be unfolded but the function  w ill be specialised  to  th e  A value leaving a 

residual fu n ction  in its place.

M anipu lating  products in th is way is not new. In his thesis M ogensen gives th e syn 

ta c tic  transla tion s needed to  carry it ou t [Mog89] and produces ind ep en d en t tex tu a l 

defin itions o f each function . T his is perform ed as a preprocessing phase to  m i x  and  

results in a program  in which the d ata  can be treated  atom ically . T his allow s the  

original m i x  to  be used. B ecause it is a preprocessing phase, on ly  m eta sta tic  inform a

tion  is u sed  to  drive th e  transform ation . As a result, th e ty p e  o f th e  residual function  

is also d eterm ined  m etastatica lly , in th is case it w ill be B  —» Z), w hich m eans, for 

exam ple, th a t lists w ill rem ain as lists rather than tu p les and th at all tags m ust 

rem ain.

W e can perform  sim ilar factorisations using dependent sum . A gain w e assum e a 

function  f  : X  —> Y  w ith  th e sta tic  part o f th e  input being g iven  by A,  in this case  

as defined by  a projection  a .  T he sta tic  part of th e result is g iven  by C  and de

fined by a p rojection  /? where f l o f  =  / 3 o f o a .  T h e dom ains B  and D  from  the  

com plem en t d iv ision  m ust be replaced by th e fam ily o f dom ains given  by th e fibres 

of th e  projection s. T hus, for each a G A,  th e dom ain  B a = a ~ ! {a} ,  and for each  

c 6  C , th e  dom ain  D c =  { c } .  T he function  /  m ay be regarded as a function

/  : B)  —* Y;(C,  D).  B y the isom orphism  given in C hapter 5, we can also regard

it to  be /  : n ( ^ ?  B  D)).  By assu m ption , th e value o f C  does not depend on
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B , so w e m ay also regard /  as a function  /  : T [ ( A , J 2 { C , B —> D )). Now th e types 

of b oth  the dom ain and th e range o f th e residual version  o f /  depend on th e  actual 

sta tic  value supplied .

A n exam ple w ill be useful. Suppose th at /  is a function  /  : Union  —► U nion  (u sing  the  

ty p e  defined in Section  4 .7 ) and th at T A G  =  T A G .  T h at is, in order to  com pute  

th e  tag  o f th e  result it is sufficient to  know th e tag  o f th e  argum ent. Furtherm ore, 

su pp ose th at th e tag  o f th e argum ent is sta tic , and so w ill be available during partial 

evalu ation . T h e residual versions o f /  w ill all be tag less in b oth  argum ent and result, 

and instead  will m ap, say, characters to  integers etc . E ach w ill have a ty p e  appropriate  

to  th e (now  ab sen t) sta tic  tags. W e can take th is exam ple further. Im agine an  

interpreter for a sta tica lly  typ ed  language w hich uses a universal value dom ain  for 

th e va lue o f expressions. Suppose it is given  sufficient sta tic  d ata  for th e  value tags 

to  be sta tic . T h en , instead  o f having to  m an ipu late values in a universal typ e , the  

residual program s w ould m anipu late d a ta  ob jects directly.

8 .2 .3  S e l f - A p p l ic a t io n

It is very n oticeab le  that all th e  self-applicab le partial evaluators to  d ate  have used  

S-expressions as their sole data structure. T here are tw o reasons for this. F irstly , it is 

very easy to  represent program s using S-expressions, esp ecia lly  in L ISP-like languages. 

M ore im portantly , however, the absence o f m ultip le  typ es in the language m eans th at 

a level o f d ata  encod ing is not required. In C hapter 1, th e  typ e o f m i x  w as g iven  as,

m i x  : A x B —+ C x A —> B —+ C

and unless w e have dependent types w e can do no b etter . H owever, in th e  world of 

S-expressions, w here there is a single universal typ e , th e  s ta tic  input m ay be passed  

directly. T hus,

mi x  : A x B - * C x A - ^ B ^ > C  

W hen th is is applied  to  itself, we obtain  the typ e o f mi x  -r , nam ely



C H A P T E R  8. C O N C L U S I O N 107

T his issue is considered in [Bon88] in th e con tex t o f term  rew riting system s w ith  

m any signatures. E ventually , in order to  produce a self-applicab le partial evaluator, 

a single signature sy stem  was adopted .

W ith o u t a d oub t, typ ed  languages are here to  stay, so a solution  to th is cod ing  

problem  needs to  be found if self-applicable partial evaluators are ever to  be w ritten  in 

such languages. O ne p ossib le m ethod  is to  m ake th e cod ing both  as cheap as possib le, 

and elim in ab le during partial evaluation . W e can illu strate th e form er requirem ent 

as follow s. B oth  o f th e  (LISP sty le) expressions

(c o n s  (q u o te  a ) (c o n s  (q u o te  b ) (q u o te  n i l ) ) )

and

(q u o te  (a  b ) )

eva lu ate  to  th e list (a  b ) ,  but th e former en tails a linear increase in size, w hereas th e  

la tter  on ly  en ta ils a con stan t increase. T his difference becom es m uch greater if each  

expression  is itse lf represented in th e sam e m anner. U sing the first m eth od , th e size  

of th e  representation  is exp on en tia l w ith  respect to  th e  representation  level, w hereas 

th e second is linear. In a m ultip ly  typed  language, therefore, som e equivalent to  

q u o te  m u st be included  in the d a ta ty p e  representing expressions. T his w ill, at least, 

prevent th e self-app licab le partial evaluator from requiring huge d ata  structures.

8 .2 .4  V a lu e  P r e s e r v a t io n

T he b in d ing-tim e analysis given  in th is thesis is not sufficiently strong to  be adequate  

in every case. W h at is w orse, it fails in one o f th e  very cases where we w ould  want it 

to succeed , th a t o f interpreters w hich im plem ent den otation  sem antics directly . An  

exam ple, d ue to  M ogensen, o f th e  failure m ay be seen in interpreters for languages  

that hand le s ta te . T he standard d en otation  description  o f such languages typ ica lly  

conta ins a fun ction ,

C : Com —► State —► State

(ignoring any environm ent param eter) w here th e s ta te  m ay be represented by an  

associa tion  list as usual. W e w ill focus on two standard  clauses in such a defin ition.

ClCr,Ci]<T =  C[Ci](C[C; ]<T)
C|[ i f  E C, Gs \a =  e \ E \ a  ^  CIC,\<T, C \C 2 \a



C H A P T E R  8. C O N C L U S I O N 108

T he first expresses com position . T h e com m and function  C returns th e s ta te  resulting  

from th e com m ands execu ted . T he original sta te  is given  to  th e com m ands in Cj  and  

th e s ta te  produced by th ese  is given to C 2 . T he result is the final s ta te  after C 2 has 

effected an y  changes. T he second equation  handles i f  sta tem en ts . T h e expression  is 

eva lu ated  in th e current s ta te  and, depending on w hether th e result is t rue  or f a l s e , 

th e  resp ective  com m ands are execu ted  w ith  th e current sta te . T h e result is th e sta te  

after th ese  com m ands have been perform ed.

In th e  standard  scenario, th e  nam es in th e  s ta te  will b e  know n during partial eva lu a

tion , but th e  values will not be available until run tim e. As a consequence, th e result 

of S  w ill b e  dynam ic, but b ecause o f th is, the sta te  resulting from  th e execu tion  of an 

i f  s ta tem en t will be com pletely  dynam ic: th e  current b in d in g-tim e analysis equations  

do not allow  for th e p ossib ility  for a dynam ic cond itional producing an yth in g  sta tic . 

H owever, assum ing a sensib le block approach to introducing variables, th e  variable  

nam es can  b e  determ ined during partial evaluation  (if variables are introduced  arbi

trarily, th en  th e  nam e list m ay not be sta tica lly  determ ined , o f course).

In m ost cases it is q u ite  correct th at th e  result o f an i f  w ith  a dynam ic cond ition  

should b e  dynam ic. E ven  if b oth  branches return com pletely  s ta tic  resu lts, we will 

not b e ab le to  decide w hich sta tic  result w ill be th e result of th e  i f .  T here is one  

case, how ever, w hen we can determ ine it: when the sta tic  parts o f th e tw o branches 

are identica l. U ntil a b in d ing-tim e analysis is produced w hich  captures th is sort of 

sta tic  in form ation , partia l evaluation  w ill not be able to  produce com pilers from  som e  

d en ota tion a l sty le  interpreters. T his exp la ins why an unusual structure needed  to be  

adopted  for th e interpreter appearing in the extended  exam ple.

8 .2 .5  D o m a i n  R e d u c t i o n

T here is an additional op tim isation  th at fits neatly  in to  th e fram ework we have con 

structed . Suppose th a t, by using projection-based  str ictn ess an a lysis, we discover  

th a t /  o (3 =  f  for som e projection  fi. T h is m eans th at we need no m ore th at /Ts 

worth o f inform ation  about the argum ent to  /  to b e able to  d eterm ine its result. So, 

rather th an  consider /  to  be a function  X  —■> Y ,  say, we can regard it as a func

tion  (3^X§  —* Y .  T hen , when we factorise the dom ain o f / ’s argum ent in to  sta tic  

and d ynam ic parts, we start w ith  a sm aller dom ain than  w ould  otherw ise b e  th e case. 

C onsequently , th e  residual functions m ay also end up w ith  sm aller argum ent dom ains.

T he length  function  provides an exam ple of th is. Suppose that on ly  the sp ine  

of a list is available during partial evalu ation  and th a t, for som e reason, we
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w anted  to  produce a residual version o f the length  function . If the property that 

length  =  length  o m a p  A B S  was available to  th e partial evaluator then no run tim e  

argum ents need to  be produced. T his possib le op tim isa tion  is th e natural exten sion  

of th e n otion  of projection  difference suggested  in [Lau88].

8 .3  F in a l R em a rk s

In th is chapter w e have seen som e areas in w hich  significant developm ent o f partial 

eva lu ation  is still needed . N onetheless, partial eva lu ation  already is an excitin g  and  

prom ising m eth od  for b oth  optim ising interpretive program s, and for understanding  

th e  th eoretica l relationsh ip  betw een interpreters and com pilers. To be generally  useful 

in  either o f th ese areas, it is essentia l th at its m ath em atica l underpinnings are well 

developed . T his is w here the effort o f this thesis has been d irected . W e hope that 

th e results w ill be as useful in the long run as th e excellen t practical work o f others 

has already proved to  be.



A p p e n d ix  A  

Im p le m e n ta tio n  o f  P E L

T h e projection  based partia l evaluator described in th is thesis was im plem ented  in 

LML [Aug84]. T he com plete  program  is listed  in th ese  appendices for reference, 

togeth er w ith  som e an notations intended  to  fac ilita te  understanding. LML has an 

e lem en tary  m od u le  m echanism  which w as used to provide som e structure to th e  pro

gram . T he m odules are presented  m ore-or-less in d ependency order.

A . l  T y p e  D e c la r a tio n s

T he m ajor typ es used in th e program  are defined together. T w o are used  in th e  
im p lem en ta tion  o f PE L  itself, and tw o in b ind ing-tim e analysis.

m odule ~  TYPES.M

e x p o r t  t  e rm , d o m a in , p r o j  e c t  i o n , sum ;

T he typ es term  and dom ain provide representations for P E L -expressions and PE L - 
typ es respectively. T he B ot sum m and of term  is used to  represent _L after a p rojection  
has been applied , 
r e c

t y p e  t e r m  = C o n s t r  ( L i s t  C ha r)  t e rm

+ Case t e r m  ( L i s t  ( ( L i s t  C har)  # ( t e r m  # t e r m ) ) )

+ P ro d  ( L i s t  t e rm )

+ Parm ( L i s t  C har)

+ C a l l  ( L i s t  C har)  te rm  

+ R C a ll  ( L i s t  C ha r)  t e rm  

+ Bot

and

t y p e  dom ain  = DProd ( L i s t  domain)

110
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+ D F u n c to r  ( L i s t  C ha r)  ( L i s t  dom ain)

+ DParm ( L i s t  Chao:)

P rojection s are represented by th e types p r o j e c t io n  and sum. Separating th e rep
resen ta tion  in th is w ay allow s th e LML typechecker to  provide ad dition al checks on  
p rojection  m an ipu lation . T his is d iscussed  in A p p en d ix  B . 
and

t y p e  p r o j e c t i o n

= P Prod  ( L i s t  p r o j e c t i o n )
+ PMu ( L i s t  C har)

( L i s t  ( ( L i s t  Chau:) # sum))

( L i s t  p r o j e c t i o n )

+ PRec ( L i s t  Char)

+ PParm ( L i s t  Char)
and

t y p e  sum = PAbs

+ PSum ( L i s t  ( ( L i s t  C har)  # p r o j e c t i o n ) )
end

A .2 T h e  P E L  In te r p r e te r

N ow  th e  im p lem en tation  o f PEL itself. T he follow ing m od u le  conta ins an interpreter, 
a parser, and a printer. T he interpreter is th e m ost significant as regards partial 
eva lu ation , for it is th is th at will be m odified to  produce th e partial evaluator.

m odule  — PEL.M 

# i n c l u d e  " l i b r a r y . t "

# i n c l u d e  " p a x s e l i b . t "

# i n c l u d e  " t y p e s . t "

—  t i n c l u d e  " g l o b a l s . t "  ( a  c y c l i c  dep e n d en c y )  

im p o r t  p ro g ra m  : L i s t  ( ( L i s t  C har)  # ( te r m  # t e r m ) ) ;

e x p o r t  e v a l ,  make_env,

p a r s e ,  p r o g ,  i n ,  exp ,  t y p e _ d e f ,  t y p e _ d e c ,  

p r i n t _ p r o g ,  p r i n t _ f n ,  p r i n t _ e x p ,  

p r i n t _ t y p e _ d e f , p r i n t _ t y p e _ d e c , p r i n t _ t y p e ;

A parsed program  has typ e [ ( s t r i n g ,  ( t e r m ,t e r m ) ) ] .  T h e s t r i n g  (list of char
acters) com pon en t conta ins the function  nam es, th e  first term  a (p ossib ly  nested ) 
product o f param eter nam es, and the second term  th e b ody  o f the function . T he  
environm ent is an association  list betw een  s t r in g s  and term s, and the result o f eval
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uation  is a term .

r e c  e v a l  env (Parm v) = lo o k u p  env v

I I e v a l  env (P ro d  e x p s )  = P ro d  (map ( e v a l  env )  e x p s )

I I e v a l  env ( C o n s t r  c a r g )  = C o n s t r  c ( e v a l  env a r g )

II e v a l  env ( C a l l  f  a r g )  = l e t  ( v s ,  body)  = lo o k u p  p ro g ra m  f  i n

e v a l  (make_env v s  ( e v a l  env a r g ) )  body 

I I e v a l  env (C ase  e e l s )  = e v a l _ c a s e  env ( e v a l  env e )  e l s

and  e v a l _ c a s e  env ( C o n s t r  name e _ a r g )  ( ( c , ( v s , e x p ) ) . e l s )  
= i f  name = c

t h e n  e v a l  (make_env vs  e _ a r g  C env) exp 

e l s e  e v a l _ c a s e  env ( C o n s t r  name e _ a r g )  e l s

said make_env (Parm x) e = C ( x ,e ) ]

I I make_env (P ro d  v s )  (P ro d  e s )  = cone  (map2 make_env vs  e s )

P arsing is sp lit up in to  tw o phases, lexical and syn tactic  analysis. L exem es are just 
strings. T h e on ly  purpose o f the lexer is to  rem ove w h ite  space and to  d iv id e co n tig u 
ous characters appropriately. T h e basic parsing operators are defined in A p p en d ix  
D.

and  w h i t e  = some ( s a t  ( \ c . c < = > ’ ) )

and  comment = l i t  . .  l i t  . .  s k i p  ’\ n ’

and  o p c h a r  = s a t  (member " ~ - = |+ > : " )

and  i d e n t c h  = s a t  i s u p p e r  !! s a t  i s l o w e r  !!

s a t  i s d i g i t  !! l i t

and  lexem e = ( w h i te  . a s .  ( \ c . " " ) )

!! (comment . a s .  ( \ c . " " ) )

!! ( s a t  (member " ( ) , ; [ ] # " )  . a s .  ( \ c . [ c ] ) )

!! (some o p c h a r )

!! ( s a t  i s u p p e r  . .  many i d e n t c h  . a s .  co n s )

!! ( s a t  i s l o w e r  . .  many i d e n t c h  . a s .  c o n s )  

!! (some ( s a t  i s d i g i t ) )

and  l e x  i n p  = f i l t e r  ( \ s . s " = [ ] )  ( f s t  (hd  (many lexem e i n p ) ) )

and  p a r s e  p = hd o p o l e x

T h e parser cu lm in ates in th e function  p ro g  w hich , w hen applied  to  a program  te x t,  
returns th e parse tree. T h e tree has th e structure

( [ t y p e  d e f i n i t i o n ] ,  ( [ ( t y p e  d e c l a r a t i o n ,  f u n c t i o n  d e f i n i t i o n ) ] ,  ( t e r m ,  t y p e ) ) )
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W e  a l lo w  t h e  u s u a l  s y n t a x  f o r  l i s t s  a n d  n u m b e r s .  H o w e v e r  t h i s  is m e r e l y  s y n t a c t i c  

s u g a r  f o r  e x p r e s s i o n s  s u c h  a s  C o n s  ( x , N i l )  o r  S u c c  Z e r o  e t c .  T h e  u s u a l  d e f i n i t i o n s  

o f  t h e s e  t y p e s  n e e d  t o  b e  p r o v i d e d  f o r  a  p r o g r a m  t h a t  u s e s  t h e s e  s y n t a c t i c  f o r m s  t o  
b e  le g a l .

and  p r o g  = many ty p e _ d e f

. .  many ( ty p e _ d e c  . .  I n )

. .  o p t  (ex p  . .  l i t  x . . t y p e _ a r g )  (P ro d  □  ,DProd [ ] )

and  f n  = lo w e r  . .  p a t t  . .  l i t  "=" x . .  exp . . x  l i t

and  exp = c a s e _ e x p  !! d a t a  !! c a l l  !! r c a l l  !! s im p le

and  p a t t  = ( lo w e r  . a s .  Parm) !!

( t u p l e  p a t t  . a s .  make P ro d )  

and  ca se _ e x p =  l i t  " c a s e "  x . . exp

l i t  " i n "  x . .  ( c l a u s e  . s e p _ b y .  l i t  " I I " )

. . x  l i t  "end"  . a s .  u n c u r r y  Case

= u p p e r  . .  o p t  p a t t  (P ro d  [ ] )  . .  l i t  x . . exp

= u p p e r  . .  o p t  s im p le  (P ro d  [ ] )

. a s .  u n c u r r y  C o n s t r  

= lo w e r  . .  s im p le  . a s .  u n c u r r y  C a l l  

= l i t  "#" x . .  lo w e r  . .  s im p le

. a s . u n c u r r y  R C all  

= ( p a r s e _ l i s t  exp . a s .  make_Cons)

!! ( lo w e r  . a s .  Parm)

!! ( u p p e r  . a s .  ( \ c . C o n s t r  c (P ro d  [ ] ) ) )

!! ( t u p l e  exp . a s .  make P ro d )

!! (number . a s .  (make_Succ o s t o i ) )

and  ty p e _ d e f  = l i t  " t y p e "  x . . u p p e r  . .  many lo w e r

. .  l i t  "=" x . .  t y p e _ r h s  . . x  l i t

and  t y p e _ r h s  = ( u p p e r  . .  o p t  t y p e _ s im p l e  (DProd [ ] ) )

. s e p _ b y .  l i t  "+"

and  t y p e _ s i m p l e  = ( lo w e r  . a s .  DParm)

!! ( u p p e r  . a s .  ( \ c .  D F unc to r  c [ ] ) )

!! ( t u p l e  t y p e _ a r g  . a s .  make DProd)

and  t y p e _ a r g  = (u p p e r  . .  many t y p e _ s im p l e  . a s .  u n c u r r y  D F u n c to r )

!! ty p e _ s im p l e

and  c l a u s e

and  d a t a

and  c a l l

and  r c a l l

and  s im p le
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and  ty p e _ d e c =  lo w e r  . .  l i t  x . . t y p e _ a r g

. .  l i t  x . .  t y p e _ a r g  . .x  l i t  " ; "

amd t u p l e  p = ( l i t  " ( "  . .  l i t  " ) "  . a s .  ( \ x . [ ] ) )

!! ( l i t  " ( M x . .  (p . s e p _ b y . l i t  " , " )  . . x  l i t  " ) ” )

and  p a r s e _ l i s t  p  = ( l i t  " [ "  . .  l i t  " ] "  . a s .  \ x . [ ] )

!! ( l i t  " [ "  x . .  (p . s e p _ b y . l i t  " , " )  . . x  l i t  " ] " )

and u p p e r  = s a t  ( \w .  i s u p p e r  (hd  w))
and lo w e r  = s a t  ( \w .  i s l o w e r  (hd  w) k

"member [ " c a s e " ; " i n " ; " e n d " ; " t y p e " ]  w)
and number = s a t  ( \w .  i s d i g i t  (hd  w))

and malce_Cons □  = C o n s t r  " N i l "  (P ro d  □ )

1 1 make_Cons ( x . x s )  = C o n s t r  "Cons" (P ro d [x; matke_Cons x s ]  )

amd maike_Succ 0 = C o n s t r  "Z e ro"  (P ro d  □ )

I 1 maike_Succ n = C o n s t r  "Succ"  (maike_Succ ( n - 1 ) )

T h e converse o f a parser is a p r in t  function . T h o se  defined here co n stitu te  an 
extrem ely  basic pretty-prin ter, but th e ou tp u t is parseable by th e parsers given  above.

amd p r i n t _ p r o g  ( t d e f s , ( t f s , ( e , t ) ) )

= map_sep p r i n t _ t y p e _ d e f  " \ n \ n "  t d e f s  C " \ n \ n \ n "  
C map_sep p r i n t _ t f s  " \ n \ n "  t f s  C " \ n \ n \ n "

C p r i n t _ e x p  e C " : :  " C p r i n t _ t y p e  t  C " \ n \ n "

and  p r i n t _ f n  ( f , ( x , e x p ) )  = f  (  p r i n t _ a r g  x C " = \ n \ t  '

C p r i n t _ e x p  exp C " ; "

and  p r i n t _ e x p  (C ase  exp e l s )

= " c a s e  " C p r i n t _ e x p  exp € " i n \ n \ t  "

€ map_sep p r i n t _ c l  " \ n \ t I  I " e l s  

C " \ n \ t e n d "

p r i n t _ e x p  ( C o n s t r  name a r g )  = name € p r i n t _ c a r g  a r g

p r i n t _ e x p  ( C a l l  name a r g )  = name C p r i n t _ a r g  a r g

p r i n t _ e x p  (R C a l l  name a r g )  = "#" C name C p r i n t _ a r g  a r g

p r i n t _ e x p  (Paxm x) = x

p r i n t _ e x p  (P ro d  ex p s )  = " ( "  C map_sep p r i n t _ e x p  " ,  " exps  C " ) "

p r i n t _ a r g  (Paurm x) = " " C x
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II p r i n t _ a r g  (P ro d  ex p s )  = " ( "  C map_sep p r i n t _ e x p  " ,  " exps € " ) "
I I p r i n t _ a r g  any = " ("  € p r i n t _ e x p  any © " ) "

and  p r i n t _ c a r g  (P ro d  □ )  = ""

I I p r i n t _ c a r g  o t h e r  = p r i n t _ a r g  o t h e r

and  p r i n t _ c l  ( c , ( x , e ) )  = c C p r i n t _ c a r g  x © " ->  " © p r i n t _ e x p  e

and  p r i n t _ t y p e _ d e f  ( f ,  ( v s ,  c d s ) )

= " t y p e  " C f  © " " € map_sep i d  " " v s  © " = \ n \ t  "

© map_sep p r in t_ sum m and  " \ n \ t +  " cd s  © 

and  p r in t_ su m m an d  (c ,D P ro d  [ ] )  = c

I I p r in t_ su m m an d  ( c , t )  = c © p r i n t _ t y p e _ a r g  t

and  p r i n t _ t y p e  (DParm x) = x

I I p r i n t _ t y p e  (D F u n c to r  f  t s )  = f  C concmap p r i n t _ t y p e _ a r g  t s

II p r i n t _ t y p e  (DProd x s )  = " ( "  © map_sep p r i n t _ t y p e  " ,  " xs  © " ) "

and  p r i n t _ t y p e _ a r g  (DParm x) = " " fi x

II p r i n t _ t y p e _ a r g  (DProd t s )  = " ( "  © map_sep p r i n t _ t y p e  " ,  " t s  fi " ) "
I I p r i n t _ t y p e _ a r g  any = " (" © p r i n t _ t y p e  any  © " ) "

and  p r i n t _ t f s  ( t , f n )  = p r i n t _ t y p e _ d e c  t  © " \ n "  © p r i n t _ f n  f n

and  p r i n t _ t y p e _ d e c  ( f , ( t , s ) ) =  f  © " : :  " © p r i n t _ t y p e  t
© " -> " © p r i n t _ t y p e  s © " ; "

end

A . 3 T y p e c h e c k in g

PE L  is a typ ed  language. T he im p lem en tation  o f typecheck ing follow s. T his m ay  
b e th ou gh t to  be superfluous in an exp erim en tal sy stem  but in p ractice it has been  
extrem ely  useful in tracing errors in exam ple program s. T he typecheck ing m odule  
m akes heavy use o f th e YN d ata typ e defined in th e l i b r a r y  m odule (A p p en d ix  D ). 
U se o f th is d a ta ty p e  m akes failure (w ith  m essages) easy  to  propagate through th e  
use o f th e operator. If the left hand argum ent fails, then  the result is failure. If 
it su cceeds, then  the right hand argum ent (a fu n ction ) is applied to  th e successfu l 
value.

m odule —  CHECK.M
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# i n c l u d e  " l i b r a r y . t "

# i n c l u d e  " t y p e s . t "

# i n c l u d e  " p e l . t "

—  # i n c l u d e  " g l o b a l s . t "  ( a  c y c l i c  d ep e n d en c y )

im p o r t  t y p e s  : L i s t  ( ( L i s t  C har)  # (dom ain  # d o m a in ) ) ;

e x p o r t  c h e c k _ f n , c h e c k , a p p _ t y p e , u n i f y ;

c h e c k _ f n  ( f , ( v s , e ) )

= ( f , lookupYN t y p e s  f  ( \  ( r , s ) .

make_envYN vs  r  ( \  e nv .

c h e ck  f a l s e  env e v a r s  ( \  ( v , t , n s ) .

u n i f y  v (DProd [ a p p _ ty p e  v r ; t ] ,

DProd [ r ; s ] ) ( \  u .

i f  ( a p p _ ty p e  u  s  ~= s | a p p _ ty p e  u r  ” = r )  

t h e n  N " ty p e  to o  u n c o n s t r a i n e d "  

e l s e  Y [ ] )  ) ) ) )

T he c h e c k  function  returns th e ty p e  o f th e  expression  being checked, togeth er w ith  
a su b stitu tio n  function  for th e p olym orphic variables (a p p _ ty p e  is used to  apply  
su b stitu tio n s). D ue to  th e need for fresh variables a list o f variables is p iped  around  
th e fun ction s. T h e other param eters to  ch eck  are: a b oolean  w hich  determ ines 
w h ether th e  expression  m ay contain  free variables (th is is th e  m eans for ind icating  
absent d a ta  in th e final expression); and an environm ent b ind ing variables to  their  
typ es.

and  ch e c k  b env (Parm x) ( n . n s )

= i f  b

t h e n  Y (DParm, DParm n ,  n s )

e l s e  lookupYN env x \ t . Y ( D P a r m , t ,n s )

I I c h e ck  b env (C o n s t r  c e )  ns

= c h e ck  b env e ns  \ ( v , t , n s ) .  a p p l y _ f n c  c v t  n s

I I c h e ck  b  env ( C a l l  f  e )  n s

= ch eck  b env e n s  \ ( v , t , n s ) .  a p p l y _ f n c  f  v t  ns

I I c h e ck  b env (R C a l l  f  e )  n s

= ch e ck  b env e n s  \ ( v , t , n s ) .  a p p l y _ f n c  f  v t  n s

I I c h e ck  b env (P ro d  e s )  n s

= c h e c k _ l i s t  b env e s  n s  \ ( v , t s , n s ) .  Y (v ,D P ro d  t s , n s )

I I c h e ck  b env (C ase e e l s )  ns

= ch e ck  b env e n s  \ ( v , t , n s ) .  c h e c k _ c l s  b env v t  e l s  n s

amd c h e c k _ c l s  b env v t  □  ( n . n s )  = Y ( v ,  DPairm n ,  n s )

II c h e c k _ c l s  b env v t  ( ( c , ( v s , e ) ) . e l s )  n s
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= c h e c k _ c l s  b env v t  e l s  n s  ( \  ( v ’ , u , n s ) .

f r e s h _ t y p e  c n s  ( \  ( r , s , n s ) .

u n i f y  v ’ ( s , t )  ( \  w.

make_envYN vs ( a p p _ ty p e  w r )  ( \  e n v ’ .

c h e ck  b ( e n v ’ € app_env w env)  e n s  ( \  (w ’ , t , n s ) .

Y (compose w’ w, t ,  n s )  ) ) ) ) )

and  c h e c k _ l i s t  b env [] n s  = Y (DParra, [ ] ,  n s )

II c h e c k _ l i s t  b env ( e . e s )  n s

= ch eck  b env e n s  ( \  ( v , t , n s ) .

c h e c k _ l i s t  b (app_env  v env) e s  n s  ( \  ( u , t s , n s ) .

Y (compose u v ,  ( a p p _ ty p e  u  t ) . t s ,  n s )  ) )

and  a p p l y _ f n c  f  v t  n s  = f r e s h _ t y p e  f  n s  ( \  ( r , s , n s ) .

u n i f y  v ( r , t )  ( \  w.

Y (w, a p p _ ty p e  w s ,  n s )  ) )

P olym orphic type-check ing  requires unification. A fairly standard im p lem en tation  
is given  in th e function  unify. T he first param eter to  unify is a su b stitu tio n , the  
second is a pair o f types to  be unified.

and  u n i f y  v (DParm x ,  t )  = i f  v x = DParm x

t h e n  e x t e n d  v x ( a p p _ ty p e  v t )  

e l s e  u n i f y  v (v  x ,  a p p _ ty p e  v t )

I I u n i f y  v ( t ,  DParm x) = u n i f y  v (DParm x ,  t )

I I u n i f y  v (D F u n c to r  f  x s ,  D F unc to r  g y s )

= i f  f= g
t h e n  u n i f y _ l i s t  v (x s  / /  y s )

e l s e  N ("C a n n o t  u n i f y  " C f  •  " w i t h  " C g)

I |  u n i f y  v (DProd d s ,  DProd e s )

= i f  l e n g t h  d s  = l e n g t h  es

t h e n  u n i f y _ l i s t  v (d s  / /  e s )

e l s e  N "C annot u n i f y  d i f f e r e n t  s i z e  p r o d u c t s "

I |  u n i f y  v ( s , t )  = N ("C an n o t  u n i f y  " C p r i n t _ t y p e  s

C " w i th  " C p r i n t _ t y p e  t )

and  u n i f y _ l i s t  v [] = Y v

II u n i f y _ l i s t  v ( ( s , t ) . s t s )  = u n i f y  v ( s , t )  ( \ u .  u n i f y _ l i s t  u s t s )

The auxiliary functions required the functions above appear next and are all fairly 
self-explanatory. Some m anipulate type variables and others m anipulate program  
variables.
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and

and

and

and

and

and

and

and

end

f r e e _ v a r s  (DParm y) = [y]

f r e e _ v a r s  (DProd d s )  = concmap f r e e _ v a r s  d s

f r e e _ v a r s  (D F u n c to r  f  d s )  = concmap f r e e _ v a r s  ds

f r e s h _ t y p e  f  n s  = lookupYH t y p e s  f  

( \  ( r , s ) .
l e t  r e c  v r  = f r e e _ v a r s  r  

and  v s  = f r e e _ v a r s  s

and ns  ’ = t a i l  ( l e n g t h  v r )  n s

and n s ” = t a i l  ( l e n g t h  v s )  n s  ’

said env = ( v r  / /  n s )  fi (v s  / /  n s  ’ )

i n  Y ( s u b s t  env r ,  s u b s t  env s ,  n s ” ) )

s u b s t  env (DParm x) = DParm ( lo o k u p  env x)

s u b s t  env (DProd d s )  = DProd (map ( s u b s t  env) d s )

s u b s t  env (D F u n c to r  f  d s )  = D F u n c to r  f  (map ( s u b s t  env) d s )

e x t e n d  v x t  = i f  t  = DParm x t h e n  Y v

e l s e  i f  member ( f r e e _ v a r s  t )  x

t h e n  N ( " C y c l i c  t y p e :  " f i x ® " ,  " C p r i n t _ t y p e  t )  

e l s e  Y ( \ y . i f  x=y t h e n  t  e l s e  (v y ) )

a p p _ ty p e  v (DParm y) = v y

aPP_type v (DProd d s )  = DProd (map (ap p _typ e v) d s )

ap p_type v (D F u n c to r  f  d s )  = D F unc to r  f  (map (ap p _typ e v) d s )

app_env  v env = map ( \ ( x , y ) . ( x ,  a p p _ ty p e  v y ) )  env

compose v w x = ap p _ ty p e  v (w x)

make_envYN (Parm x) t  = Y [ ( x , t ) ]

make_envYN ( P ro d  x s )  (DProd t s )

= i f  l e n g t h  x s  = l e n g t h  t s

t h e n  AppendYN (map2 make_envYN xs t s )

e l s e  N "C anno t make e n v i ro n m e n t  t o  m a tch"

make_envYN any a n y ’ = N "C annot make e n v i ro n m e n t  t o  m atch"
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A .4  G lo b a l V a lu es

M any item s, such as th e input program , rem ain unchanged throughout any partic
ular execu tion  and so are defined as global values. T h ese  values are defined on the  
assu m p tion  th at there are no errors, but if errors occur, th e r e s u l t  function  reports 
th o se  errors rather than returning a result that w ould  require th e other g lobal values 
to  be eva lu ated .

m odule  - -  GLOBALS.M 

# i n c l u d e  <0K>

# i n c l u d e  <FILE>

# i n c l u d e  " l i b r a r y . t "

# i n c l u d e  " t y p e s . t "

# i n c l u d e  " p e l . t "

# i n c l u d e  " c h e c k . t "

e x p o r t  e r r m , u n p a r s e d , i l l _ t y p e d , p a r s e d _ p r o g ,  

t y p e _ d e f s , t y p e _ d e c s . p r o g r a m ,  

e x p r , t _ e x p r , t y p e s , 

r e s u l t ,

c y c l e s . m u t u a l ;

T h e va lue a rg v  is a list o f strings which gives the argum ents supplied  in th e  program  
invocation . T his list should  contain  th e nam e of a file contain ing  the input program . 
A ssu m ing such a file ex ists , the value o f p r o g _ te x t  is th e file ’s con tents.

r e c  ( e r r m , p r o g _ t e x t ) =

i f  a rgv=  □  t h e n

( " P l e a s e  s u p p ly  a  f i l e  n a m e " , [ ] )  

e l s e

c a s e  o p e n f i l e  (hd  a r g v )  i n  

Yes f i l e :  ( [ ] ,  f i l e )

I I No mesg : ("No f i l e  " C hd a r g v  C " \ n "  C m e s g . D )

end

If p r o g _ t e x t  represents a syn tactica lly  correct program , th en  th e  parser w ill reach  
th e end of th e  tex t resulting in an em pty  u n p a rsed  portion . In this case, th e  parsed  
program  m ay be sp lit into its various com ponents: ty p e  defin itions, declarations g iv 
ing th e  typ es o f th e  functions defined in the program , function  defin itions, and a final 
expression  togeth er w ith  its type. T h e constant t y p e s  is an associa tion  list g iv ing  
th e  declared  typ es o f all th e functions and constructors defined in the program . T he  
fu n ction  m u tu a l takes a typ e nam e and returns th e nam es of all th e typ es m utually  
recursive w ith  w ith  it. T his uses th e function  c y c l i c  (defined in l ib r a r y .m )  which
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takes a graph and returns an ordered list of its strongly  connected  com pon en ts.

and  ( p a x s e d _ p r o g ,u n p a x s e d )  = p a r s e  p r o g  p r o g _ t e x t

and ( t y p e _ d e f s ,  ( t f _ d e f s , ( e x p r , t _ e x p r ) ) )  = p a r s e d _ p r o g

and ( t y p e _ d e c s ,  p ro g ra m )  = u n z i p  t f _ d e f s

and g e t _ c o n s t r _ t y p e s  ( t ,  ( v s ,  c d s ) )

= C ( c , ( d ,  D F u n c to r  t  (map DParm v s ) ) ) ; ;  ( c , d )  < -  cds ]  

and  t y p e s  = ty p e _ d e c s  © concmap g e t _ c o n s t r _ t y p e s  t y p e _ d e f s

and  c y c l e s  = c y c l i c  (concmap ed g e s  t y p e _ d e f s )  (map f s t  t y p e _ d e f s )

and m u tu a l  x = hd  [xs  ; ;  x s < - c y c l e s ; member x s  x]

and e d g e s  ( t , ( v s , c d s ) )

= map ( \ f . ( t , f ) )  ( m e r g e _ l i s t  [ f u n c t o r s  d ; ; ( c , d )  < -  c d s ] )

and  f u n c t o r s  (DProd d s )  = m e r g e _ l i s t  (map f u n c t o r s  d s )

I I f u n c t o r s  (DParm x) = []

II f u n c t o r s  (D F u n c to r  f  d s )  = m e r g e _ l i s t  ( [ f ] . map f u n c t o r s  d s )

If any  errors arise then  e r r o r s  returns th e appropriate m essage, otherw ise it returns
th e em p ty  string. T he boolean  argum ent allows for free variables to  occur in th e final
expression . T h e function  r e s u l t  returns its second argum ent on ly  if no errors arise.

and e r r _ s t r  ( f ,  Y x)  = ""

I I e r r _ s t r  ( f , N ms) = " \ t "  © f  © " :  " © ms © " \ n "

and i l l _ t y p e d  = concmap ( e r r _ s t r  o ch e c k _ fn )  p rog ram

and e r r o r s  b

= i f  e r rm  “= [] t h e n  errm

e l s e  i f  u n p a r s e d  "= □  t h e n

" S y n ta x  e r r o r ( s )  i n : \ n "  © map_sep i d  " " u n p a r s e d

e l s e  i f  i l l _ t y p e d  '=  [] t h e n  

" E r r o r ( s )  i n : \ n "  fi i l l _ t y p e d

e l s e
c a s e  ch e ck  b [] e x p r  v a r s  i n

N ms : " E r r o r ( s )  i n  f i n a l  e x p r e s s i o n : \ n \ t "  © ms

II Y x : ""

end
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and  r e s u l t  b s t r l  s t r 2  = s t r l  C " \ n \ n "

C c a s e  e r r o r s  b i n  

""  : s t r 2

I I e r r  : e r r  

end 

C " \ n \ n "
end

A .5 T h e  R U N  C o m m a n d

Finally, th e run m odule collates all th e previous into a single expression . W hen  
com piled  th is produces a binary file w hich m ay be execu ted  like any U N IX  com m and.

RUN. M 

# i n c l u d e  " t y p e s . t "

# i n c l u d e  " p e l . t "

# i n c l u d e  " g l o b a l s . t "

r e s u l t  f a l s e

" S ta n d a r d  I n t e r p r e t a t i o n  o f  PEL"

( p r i n t _ e x p  ( e v a l  [] e x p r ) )



A p p e n d ix  B  

Im p le m e n ta tio n  o f  B T A

T his ap pend ix  contains th e im p lem en tation  o f polym orphic projection -based  b inding
tim e analysis. T h e first m odule provides functions th at m an ipu late th e d ata  struc
tures used  to  represent projections; th e  second com pu tes th e abstract fu n ction  en v i
ronm ent (fft described in C hapter 4. T he final execu tab le  file prints th e result o f the  
bin d ing-tim e analysis.

B . l  M a n ip u la tin g  P r o je c t io n s

module —  PROJECTIONS.!!

# i n c l u d e  " l i b r a r y . t "

# i n c l u d e  " t y p e s . t "

# i n c l u d e  " p e l . t "

# i n c l u d e  " g l o b a l s . t "

— # i n c l u d e  " f n _ v a l s . t "  ( a  c y c l i c  d ep e n d en c y )

im p o r t  f n _ v a l u e s :  L i s t  ( ( ( L i s t  C h a r)  # p r o j e c t i o n )  # p r o j e c t i o n ) ;  

im p o r t  i n i t i a l _ e n v :  L i s t  ( ( L i s t  C ha r)  # p r o j e c t i o n ) ;

e x p o r t  g i b ,  g l b _ l i s t ,  g e t _ i d ,  g e t _ a b s ,  m ake_abs ,  

u n i o l d ,  l o l d ,  e x t r a c t ,  mask, 

g e t _ e n v ,  s q u a s h ,  p s u b s t ,  

p r i n t _ p r o j , p r i n t _ p r o j _ s u m ,  

e v a l p ,  m ake_penv, a p p l y ,

d e s c r ,  a b s _ e n v ,  d e s c r i p t i o n , i t e r _ d e s c r , d e s c r ;

T he function  g ib  com putes th e greatest lower bound betw een  tw o projections w hile  
rem aining w ith in  th e fin ite dom ain. Its defin ition  relies h eavily  on th e fact th at it 
will on ly  ever be applied to  projections defined over exactly  th e sam e typ e. T hus, in
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the various clauses, we can guarantee th at f = g ,  for exam ple.

r e c  g i b  (P P rod  p s )  (P P rod  q s )  = PProd  (map2 g i b  p s  q s )

I I g i b  (PMu f  f p s  p s )  (PMu g gqs q s )

= PMu f  (map2 ( \ ( h , p ) . \ ( k , q ) . ( h ,  glbSum p  q ) )  f p s  g q s )

(map2 g i b  p s  q s )

I I g i b  (PRec 1 )  (PRec g)  = PRec f

I I g i b  any  (PPann y)  = any

I I g i b  (PPann x)  any = any

and g l b _ l i s t  ( p . p s )  = r e d u c e  g i b  p p s

and glbSum PAbs p = PAbs

I I glbSum p PAbs = PAbs

II glbSum (PSum c p s )  (PSum d q s )  = l e t  ( c s , p s )  = u n z i p  cp s

and ( d s , q s )  = u n z i p  dqs

i n  PSum ( c s  / /  map2 g i b  p s  q s )

In a num ber o f different situ ations w e need to produce either ID or A B S  over p artic
ular typ es. T h ese  have a structural form  which reflects th e defin ition  o f th e  typ e.

and g e t _ i d  t  = g e t _ i d J [] t

and g e t _ i d ’ t s  (DProd d s )  = P Prod  (map ( g e t _ i d ’ t s )  d s )

I I g e t _ i d ’ t s  (DParm x) = PParm x

I I g e t _ i d ’ t s  (D F u n c to r  f  d s )

= i f  member t s  f  t h e n  PRec f  e l s e  

l e t  t s ’= m utua l  f  i n  

PMu f  [ ( t ,  PSum [ ( c ,  g e t _ i d ’ ( t s Q t s * )  d ) ; ;  ( c , d ) < - c d s ] )  ; ;

( t , ( v s , c d s ) ) < - t y p e _ d e f s ; member t s ’ t ]

(map ( g e t _ i d ’ t s )  d s )

and g e t _ a b s  t  = g e t _ a b s  ’ [] t

and g e t _ a b s ’ t s  (DProd d s )  = PProd  (map ( g e t _ a b s ’ t s )  d s )

I I g e t _ a b s ’ t s  (DParm x) = PPaxm x

I I g e t_ a b s *  t s  (D F u n c to r  f  d s )

= i f  member t s  f  t h e n  PRec f  e l s e

PMu f  [ ( t , P A b s ) ; ;  t  < - m u tu a l  f ]  (map (g e t_ a b s *  t s )  d s )

and m ake_abs (P P ro d  p s )  = P Prod  (map m ake_abs p s )

I I make_abs (PParm x) = PParm x

I I make_abs (PMu f  f p s  p s )

= PMu f  [ ( f , P A b s ) ; ;  ( f , p )  <- f p s ]  (map make_abs p s )
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In order to  get “inside” a projection on a recursive ty p e  we m ust unfold the defin ition. 
T his w ill involve su b stitu tin g  the original projection  for the recursive m arkers, and  
su b stitu tin g  th e  appropriate projections for th e polym orphic param eters. N otice th at  
th e  result in a sum -type projection , thus allow ing th e ty p e  system  to  d istingu ish  
b etw een  a folded and unfolded projection .

and  u n f o l d  (PMu f  f p s  p s )

= l e t  ( v s , c d s )  = loo k u p  ty p e _ d e f s  f  

i n  c a s e  lo o k u p  f p s  f  i n  

PAbs : PAbs

I I PSum cps  : PSum

[ ( c ,  u n f o l d _ r e c  ( v s / / p s )  f p s  p s  p ) ; ;  ( c , p )  <- c p s ]

end

and  u n f o l d _ r e c  env f p s  p s  p 

= c a s e  p i n

P Prod  qs  

I I PMu g gqs qs

I I PRec g

I I PParm x

end

P Prod  (map ( u n f o l d _ r e c  env f p s  p s )  q s )

PMu g gqs (map ( u n f o l d _ r e c  env f p s  p s )  q s )  

PMu g f p s  p s  

lo o k u p  env x

T h e f o l d  function  is a converse to  u n fo ld .  Its argum ents represent th e projection  
Co ID  T  • • • -f c p +  • • • -f cn ID as occurs in th e constructor clause of th e abstract 
sem antics. T his is n o t, in general, an unfolded version of a projection  in th e finite  
dom ain  (th ou gh , by assum ption , all th e p rojections it refers to  are). T hus, in folding  
th e  projection , som e inform ation will be lost, as evidenced  by the call to  g l b _ l i s t .

and  f o l d  c p

= l e t  r e c  ( r ,D F u n c t o r  f  d s )  = lo o k u p  t y p e s  c 

and  t s  = m u tu a l  f

and  ( r p ,  env) = ( s q u a s h  r  p ,  g e t_ e n v  r  p)

i n  g l b _ l i s t  (mask t s  c env r p  . e x t r a c t  t s  f  r p )

and  e x t r a c t  t s  f  (PP rod  p s )  = cone  (map ( e x t r a c t  t s  f )  p s )

I I e x t r a c t  t s  f  (PMu g gps  p s )

= i f  member t s  g t h e n  [PMu f  gps p s ]  e l s e  

cone (map ( e x t r a c t  t s  f )  p s )

I | e x t r a c t  t s  f  (PRec g)  = []

I I e x t r a c t  t s  f  (PParm x) = □

and  mask t s  c env p = l e t  r e c  ( r , s )  = lo o k u p  t y p e s  c
and (PMu f  f p s  p s )  = g e t _ i d  s
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i n  PMu f  [ ( f , i n s e r t  t s  c p q ) ; ;  ( f , q )  < -  f p s ]

(map ( i n s t a n c e  env )  p s )

and  i n s e r t  t s  c p PAbs = PAbs

I I i n s e r t  t s  c p (PSum c p s )

= PSum [ i f  c = c ’ t h e n  ( c ,  i n s  t s  p )  e l s e  ( c ’ , q ) ; ;  ( c ’ ,q )  < -  cp s ]

and  i n s  t s  (P P rod  p s )  = PProd  (map ( i n s  t s )  p s )

I I i n s  t s  (PParm x) = PParm x

I I i n s  t s  (PMu f  f p s  p s )  = i f  member t s  f  t h e n  PRec f  e l s e

PMu f  f p s  (map ( i n s  t s )  p s )

and  i n s t a n c e  env (PParm x) = lo o k u p ’ (PParm x) env x

To im p lem en t th e m aterial o f C hapter 7, w e have to b e able to  factorise a projec
tion  in to  its polym orphic and m onom orphic parts. T h is factorisation  is not alw ays 
exact as it m ay involve tak ing th e g ib  of different p rojections th at appear in th e  
p osition  o f m u ltip le  occurrences o f a single typ e variable. T h e  function  sq u a sh  takes  
a ty p e  th at m ay involve free typ e variables, togeth er w ith  a projection  over an in 
stan ce o f th e  ty p e , and returns th e corresponding projection  over th e original typ e. 
In contrast g e t_ e n v  extracts the parts o f th e p rojection  occurring at each p o ly 
m orphic p o in t and constructs an environm ent b inding th e typ e variables to  their  
resp ective  projections. C onstructing th e environm ent m ay involve approxim ation  if 
a single ty p e  variable appears m ore than  once. T h e “inverse” to  th ese  is p s u b s t  
w hich takes a polym orphic projection , together w ith  an environm ent binding ty p e  
variables to  projections, and su b stitu tes for th ese  variables in th e projection . T hus  
p s u b s t  (g e t_ e n v  r  p ) (sq u a sh  r  p ) C p  for all typ es r  and projections p.

and  s q u a s h  (DProd d s )  (P P rod  p s )  = P Prod  (map2 s q u a s h  d s  p s )

I | s q u a s h  (DParm x) p = PParm x

I |  s q u a s h  d (PParm x )  = g e t _ i d  d

I |  s q u a s h  (D F u n c to r  f  d s )  (PMu g gps p s )  = PMu g g p s  (map2 s q u a s h  d s  p s )

and  g e t _ e n v  (DProd d s )  (P P rod  p s )  = j o i n _ l i s t  g i b  (map2 g e t_ e n v  d s  p s )

I |  g e t_ e n v  (DParm x) p = [ ( x , p ) ]

I I g e t_ e n v  (D F u n c to r  f  d s )  (PMu g gps  p s )

= j o i n _ l i s t  g i b  (map2 g e t_ e n v  d s  p s )

and  p s u b s t  env (P P rod  p s )  = P Prod  (map ( p s u b s t  env )  p s )

I |  p s u b s t  env (PParm x ) = lo o k u p  env x

I |  p s u b s t  env (PMu f  f p s  p s )  = PMu f  f p s  (map ( p s u b s t  env) p s )

and a b s _ e n v  c v s  p
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= l e t  ( r , s )  = lo o k u p  t y p e s  c i n

make_penv vs ( p s u b s t  ( g e t_ e n v  s (make_abs p ) )  ( g e t _ a b s  r ) )

T h e fu n ction  p r in t _ p r o j  provides a tex tu a l representation  o f projections.

and  p r i n t _ p r o j  (P P ro d  p s )  = " ( "  € map_sep p r i n t _ p r o j  " ,  " p s  C " ) "

I I p r i n t _ p r o j  (PRec f ) = " (PR ec " C s h o w _ s t r i n g  f  C " ) "

I I p r i n t _ p r o j  (PParm x) = x

I I p r i n t _ p r o j  (PMu f  f p s  p s )

= " (PMu " € s h o w _ s t r in g  f  C " "

C s h o w _ l i s t  ( s h o w _ p a i r  ( s h o w _ s t r i n g , p r i n t _ p r o j _ s u m ) ) f p s  

C " " C s h o w _ l i s t  p r i n t _ p r o j  p s  € " ) "

and  p r i n t _ p r o j _ s u m  PAbs = "PAbs"

I I p r i n t _ p r o j _ s u m  (PSum c p s )

= "(PSum " C s h o w _ l i s t  ( s h o w _ p a i r  ( s h o w _ s t r i n g , p r i n t _ p r o j ) )  cp s  fi " ) "

In C hapter 4 w e presented  the S ^ function . Here it is called e v a lp .  It takes an 
environm ent associa tin g  param eter nam es w ith  projection s, and an expression , and  
returns th e  projection  value of th e expression . T he function  e v a lp  has access to  the  
com p lete  abstract function  environm ent through th e  use of a p p ly . T h is function  en 
v ironm ent is com puted  in the m od u le f n _ v a l s  (in th is ap pend ix).

and  e v a l p  env (Parm v) = lo o k u p  env v

I I e v a l p  env ( P ro d  e s )  = PProd  (map ( e v a l p  env) es)
I I e v a l p  env ( C o n s t r  c e )  = f o l d  c ( e v a l p  env e)

I I e v a l p  env ( C a l l  f  e) = a p p ly  f  ( e v a l p  env e)

I I e v a l p  env (R C a l l  f  e)  = app lyR  f  ( e v a l p  env e)
I I e v a l p  env (C ase  e e l s )

= l e t  p = e v a l p  env e i n  

c a s e  u n f o l d  p i n

PAbs : l e t  ( c , ( v s , e ) ) = h d  e l s  i n

make_abs ( e v a l p  (a b s_ e n v  c v s  p C env )  e)

I |  PSum cps  : g l b _ l i s t

[ e v a l p  (make_penv vs ( lo o k u p  cps c )  C env) e ; ;  ( c , ( v s , e ) )  < -  e l s ]

end

and  make_penv (Parm x) p = [ ( x , p ) ]

I |  make_penv (P ro d  v s )  (P P rod  p s )  = cone (map2 make_penv vs  p s )

and  a p p l y  f  p  = l e t  ( r , s )  = lo o k u p  t y p e s  f

i n  p s u b s t  ( g e t_ e n v  r  p )  ( lo o k u p  f n _ v a l u e s  ( f , s q u a s h  r  p ) )
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and  app lyR  f  p  = l e t  ( r , s )  = lo o k u p  t y p e s  f

i n  p s u b s t  ( g e t_ e n v  r  (m ake_abs p ) )  ( g e t _ a b s  s )

In addition  to  im plem enting  , we m ust im plem ent . This also  ta k e s  an a b s tra c t  
environm ent and an expression , but returns a list of function  nam es paired w ith  
p rojections w hich  (in th e lim it— see below ) p laces lower bounds on th e am ount of in 
form ation available to  the function at partial evaluation  tim e. T he value d e s c r ip t i o n  
is the final result o f th e  b in d ing-tim e analysis and corresponds to  th e result o f .

and  d e s c r  env (Parm v) = []

I I d e s c r  env (P ro d  e s )  = j o i n _ l i s t  g i b  (map ( d e s c r  env) e s )

I I d e s c r  env (C o n s t r  c e )  = d e s c r  env e

I I d e s c r  env ( C a l l  f  e)  = l e t  ( r , s )  = lo o k u p  t y p e s  f  i n

j o i n  g i b  [ ( f ,  s q u a s h  r  ( e v a l p  env e ) ) ]  ( d e s c r  env e)

I I d e s c r  env (R C a l l  f  e )  = l e t  ( r , s )  = lo o k u p  t y p e s  f  i n

j o i n  g i b  [ ( f ,  s q u a sh  r  ( e v a l p  env e ) ) ]  ( d e s c r  env e)

I I d e s c r  env (C ase  e e l s )  = l e t  p = e v a l p  env e i n

j o i n  g i b  ( d e s c r  env e)

( c a s e  u n f o l d  p i n

PAbs : j o i n _ l i s t  g i b

[ d e s c r  (a b s_ e n v  c v s  p C env) e ; ;  ( c , ( v s , e ) )  <-  e l s ]

I I PSum cps : j o i n _ l i s t  g i b

[ d e s c r  (make_penv vs  ( lo o k u p  cps c)  fi env)  e ; ; 

( c , ( v s , e ) )  < -  e l s ]

end)

and  i t e r _ d e s c r  d e s c  = j o i n  g i b  d e s c  ( j o i n _ l i s t  g i b  (map d e s c r _ f n  d e s c ) )

and  d e s c r _ f n  ( f , p )  = l e t  ( v s ,b o d y )  = lo o k u p  p rog ram  f  i n

d e s c r  (make_penv v s  p )  body

and  d e s c r i p t i o n  = l i m i t  ( r e p e a t  i t e r _ d e s c r  ( d e s c r  i n i t i a l _ e n v  e x p r ) )

end

B .2  T h e  A b str a c t  F u n c tio n  E n v ir o n m e n t

The abstract function environment (ffi (Chapter 4 ) is computed by the functions 
in this m odule. Its value is given by the constant fn _ v a lu e s , which is defined by 
iteration to the greatest fixed point. As described in Chapter 6, we restrict the table 
to contain only the arguments that might possibly be required. The table has the  
structure [ ( ( f u n c t io n  name, argu m en t), r e s u l t ) ] .
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m odule  —  FN_VALS.M 

# i n c l u d e  " l i b r a r y . t "

# i n c l u d e  " t y p e s . t "

# i n c l u d e  " p e l . t "

# i n c l u d e  " c h e c k . t "

# i n c l u d e  " g l o b a l s . t "

# i n c l u d e  " p r o j e c t i o n s . t "

e x p o r t  f n _ v a l u e s ,  i t e r _ f n s ,  i n i t i a l _ t a b l e , i n i t i a l _ e n v ,  
e v a l f ,  a p p l y _ f n ;

r e c  f n _ v a l u e s  = l i m i t  ( r e p e a t  i t e r _ f n s  i n i t i a l _ t a b l e )

and  i t e r _ f n s  t a b l e

= l e t  ( t a b l e ’ , t a b s )  = u n z i p  (map ( i t e r _ f n  t a b l e )  t a b l e )

i n  j o i n _ l i s t  g ib  ( t a b l e ’ . t a b s )
and  i t e r _ f n  t a b l e  ( ( f , p ) , q )

= l e t  r e c  ( v s ,b o d y )  = lo o k u p  p ro g ra m  f

and ( q ’ . t a b )  = e v a l f  t a b l e  (make_penv v s  p )  body

i n  ( ( ( f , p ) , q » )  , t a b )

and  i n i t i a l _ t a b l e  = sn d  ( e v a l f  □  i n i t i a l _ e n v  e x p r )

and i n i t i a l _ e n v  = g e t_ a b s _ e n v  e x p r  t _ e x p r

and  g e t_ a b s _ e n v  (Parm x) t  = [ ( x ,  g e t _ a b s  t ) ]

I I g e t _ a b s _ e n v  ( P ro d  e s )  (DProd d s )  = cone  (map2 g e t _ a b s _ e n v  es  d s )

I I g e t _ a b s _ e n v  ( C a l l  f  e)  t  = g e t_ a b s _ e n v  e ( a r g _ t y p e  f  t )

I 1 g e t_ a b s _ e n v  (R C a l l  f  e )  t  = g e t_ a b s _ e n v  e ( a r g _ t y p e  f  t )

I I g e t _ a b s _ e n v  ( C o n s t r  c e) t  = g e t_ a b s _ e n v  e ( a r g _ t y p e  c t )

and  a r g _ t y p e  f  t  = l e t  ( r , s )  = lo o k u p  t y p e s  f  i n

c a s e  u n i f y  DParm ( s , t )  i n  

Y v : a p p _ ty p e  v r  

end

T h e evalu ator returns a pair of values. T he first is th e ab stract value o f an expression  
com pu ted  w ith  respect to  the function  tab le provided. T h e second is a tab le o f all 
th e (p ossib ly  new ) fu n ctio n /a rg u m en t pairs th a t were used , paired w ith  th e  best 
ap proxim ation  to  th e result then  known. T his tab le  is used to  exten d  the function  
environm ent.

cind e v a l f  v a l s  env (Parm v) = ( lo o k u p  env v ,  □ )

I |  e v a l f  v a l s  env (P ro d  e s )  = (P P ro d ,  j o i n _ l i s t  g i b )  C2

u n z i p  (map ( e v a l f  v a l s  env) e s )
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II e v a l f  v a l s  env ( C o n s t r  c e )  = ( f o l d  c ,  i d )  ©2 e v a l f  v a l s  env e

I I e v a l f  v a l s  env ( C a l l  f  e)  = a p p l y _ f n  v a l s  f  ( e v a l f  v a l s  env e)

I I e v a l f  v a l s  env (R C a l l  f  e)  = a p p l y _ f n  v a l s  f  ( e v a l f  v a l s  env e)
I I e v a l f  v a l s  env (C ase  e e l s )

= l e t  ( p , t )  = e v a l f  veils env e i n  

c a s e  u n f o l d  p i n  

PAbs : l e t  ( c , ( v s , e ) ) = h d  e l s  i n

(m ak e _ ab s , i d )  ©2 ( e v a l f  v a l s  ( a b s_ e n v  c vs  p © env )  e)

II PSum cps  : l e t  ( p s , t s )  = u n z i p

[ e v a l f  v a l s  (make_penv vs ( lo o k u p  cps  c )  © env)  e ; ;  

( c , ( v s , e ) )  < -  e l s ]  i n  

( g l b _ l i s t  p s ,  j o i n _ l i s t  g i b  ( t . t s ) )
end

and  a p p l y _ f n  v a l s  f  ( p , t )

= l e t  r e c  ( r , s )  = lo o k u p  t y p e s  f

and  ( q , e n v )  = ( s q u a s h  r  p ,  g e t_ e n v  r  p)

and  f q  = a p p l y _ t a b  f  q s v a l s

i n

( p s u b s t  env f q ,  j o i n  g i b  C ( ( f , q ) , f q ) ]  t )

T he tab le contains representations for each o f th e  functions. T he m eaning of any 
particu lar function  /  is defined to  be x  =  [~|{y | 3 z  . x C  z, { /  : z y )  £  tab}.

and  a p p l y _ t a b  f p s  [] = g e t _ i d  s

II a p p l y _ t a b  f p s  ( ( ( g , q ) , g q ) . r e s t )

= i f  f= g  & l e s s  p q t h e n

g i b  gq ( a p p l y _ t a b  f p s  r e s t )  

e l s e  a p p l y _ t a b  f p s  r e s t

and l e s s  (PParm x) (PParm y) = t r u e

I I l e s s  (PRec x) (PRec y)  = t r u e

I I l e s s  (P P ro d  p s )  (P P rod  q s )  = And (map2 l e s s  p s  q s )

I I l e s s  (PMu f  f p s  p s )  (PMu g g qs  q s )

= And (map2 ( \ x A y . le s s _ s u m  (sn d  x) ( s n d  y ) )  f p s  g q s )  

& And (raap2 l e s s  p s  q s )

and  l e s s _ s u m  PAbs any = t r u e

I |  l e s s _ s u m  any  PAbs = f a l s e

I |  l e s s _ s u m  (PSum c p s )  (PSum d q s )

= And (map2 ( \ x . \ y . l e s s  ( s n d  x)  ( sn d  y ) )  cps  d q s )

end
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B .3  B in d in g -T im e  A n a ly s is  O u tp u t

W e have not defined an in term ed iate annotated  version o f PE L  designed  to  convey  
bin d ing-tim e inform ation  as this is on ly  actua lly  necessary  for self-app lication . In
stead , th e b in d ing-tim e inform ation is com puted  each tim e th e program  is specialised  
to  som e input values. However, if separate b ind ing-tim e inform ation  is required it 
m ay be ob ta ined  from  th e follow ing execu tab le program .

BTA .M

# i n c l u d e  " l i b r a r y . t "

# i n c l u d e  " t y p e s . t "

# i n c l u d e  " g l o b a l s . t "

# i n c l u d e  " p r o j e c t i o n s . t "

l e t  s e p  = "\n\n========================================\n\n"

and p r  ( f , p )  = f  fi " : \ n "  © p r i n t _ p r o j  p

i n  r e s u l t  t r u e

" P r o j e c t i o n - B a s e d  P a r t i a l  E v a l u a t i o n "

( " B in d in g -T im e s  A n a ly s i s  R e s u l t s : "  fi s e p  

© map_sep p r  " \ n \ n "  d e s c r i p t i o n  © s e p )

In A p p en d ix  C w e d iscuss the way in w hich th e specialiser uses th e b in d ing-tim e  
inform ation  com puted  by th e m odules occurring here.



A p p e n d ix  C 

Im p le m e n ta tio n  o f  S p e c ia lisa tio n

T his ap pend ix  contains th e definition o f th e specialiser itself. T h e m od u le spec.m 
provides th e defin itions o f th e sp ecialisation  functions, and th ese  are brought togeth er  
at th e end of the ap pend ix  into an execu tab le  program . T he ap pend ix  closes w ith  
th e exam p le sp ecia lisation  referred to  in Section  7.5.

C .l  S p e c ia lisa t io n

module —  SPEC.M

# i n c l u d e  " l i b r a r y . t "

# i n c l u d e  " t y p e s . t "

# i n c l u d e  " p e l . t "

# i n c l u d e  " g l o b a l s . t "

# i n c l u d e  " p r o j e c t i o n s . t "

# i n c l u d e  " f n _ v a l s . t "

e x p o r t  s p e c , r e s i d _ p r o g , s i g m a . d e l t a ,  

raake_menv, s e l f _ e n v ;

T he key function  in specia lisation  is spec. T he first argum ent to  spec is often  called  
th e  p en d in g  list. It con sists o f a list o f function  n am es, each paired w ith  a s ta tic  value, 
th at aw ait sp ecia lisa tion . T he second argum ent is also a list o f fu n ctio n /sta tic -v a lu e  
pairs corresponding to  th e specia lisations already perform ed. S ta tic  values contain  
occurrences o f Bot where the sta tic  projection  has caused th e d ynam ic value to  be  
b lo tted  out. Each of th ese  occurrences is replaced w ith  a fresh param eter nam e (o b 
tained  from th e list vars), and a product o f th ese  new nam es is constructed  by delta 
(corresponding to  th e 8 function o f C hapter 5). A fter th e function b od y  has been

131
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evalu ated  it is searched to find any function  calls th a t will th em selves need sp ecia l
isation .

r e c  s p e c  □  t a b l e  = []

I I s p e c  ( f n . f n s )  t a b l e

= i f  member t a b l e  f n  t h e n  

sp e c  f n s  t a b l e  

e l s e  l e t

r e c  ( f , a r g )  = f n

and ( v s ,  body) = lo o k u p  p rog ram  f

cind (a rg *  , v a r s ’ ) = r e p l a c e  a r g  v axs

cind new_vs = d e l t a  a r g  a r g  ’

and  new_body = evalm  (make_menv vs a r g ’ ) body

and new _fns = s e a r c h  new_body

i n  ( fn , (n e w _ v s ,n e w _ b o d y ) )  .

sp e c  ( f n s  C n ew _ fn s )  ( f n . t a b l e )

and  r e p l a c e  Bot ( n . n s )  = (Parm n ,  n s )

I I r e p l a c e  ( C o n s t r  c e )  n s  = ( C o n s t r  c ,  i d )  C 2 r e p l a c e  e n s

I I r e p l a c e  (P ro d  e s )  n s  = ( P r o d ,  i d )  C 2 f e e d  r e p l a c e  e s  n s

and  eva lm  env (Parm x) = lo o k u p  env x

I I eva lm  env (P ro d  ex p s )  = P ro d  (map (ev a lm  env) ex p s )

I I eva lm  env ( C o n s t r  c a r g ) =  C o n s t r  c (ev a lm  env a r g )

I I eva lm  env ( C a l l  f  a r g )  = l e t  ( v s ,  body) = lo o k u p  p ro g ra m  f  i n

evalm  (make_menv vs  (e v a lm  env a r g ) )  body

I I eva lm  env (R C a l l  f  a r g )  = R C a l l  f  (ev a lm  env a r g )

I I eva lm  env (C ase  e e l s )  = ev a lm _ c a se  env (ev a lm  env e )  e l s

cind e v a lm _ c a se  env ( C o n s t r  name e _ a r g )  ( ( c , ( v s , e x p ) ) .  e l s )

= i f  name = c t h e n  eva lm  (make_menv vs e _ a r g  C env)  exp

e l s e  ev a lm _ c a se  env ( C o n s t r  name e _ a r g )  e l s  

I I ev a lm _ c a se  env any e l s

= Case any  [ ( c , ( v s ,  eva lm  ( s e l f _ e n v  v s  € env )  e ) ) ; ;  ( c , ( v s , e ) )  < -  e l s ]

and  s e l f _ e n v  (Parm x) = [ ( x ,P a r m  x ) ]

I I s e l f _ e n v  ( C a l l  f  e)  = s e l f _ e n v  e

I |  s e l f _ e n v  (R C a l l  f  e )  = s e l f _ e n v  e

I I s e l f _ e n v  ( C o n s t r  c e)  = s e l f _ e n v  e

I I s e l f _ e n v  (P ro d  e s )  = concmap s e l f _ e n v  es

and make_menv (Parm x) e = [ ( x , e ) ]

I I make_menv (P ro d  v s )  (P ro d  e s )  = cone  (map2 make_menv vs  e s )
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I I make_menv ( P ro d  v s )  e = cone (map ( \y .m ake_m env  y e )  v s )

P rojection s are applied using sigma. G iven a function  nam e and an expression  (as
sum ed to  b e  an argum ent to  the fu n ction ), sigma ex tracts from  th e b in d ing-tim e  
descrip tion  the projection  associated  w ith  th e function , and applies it to  th e  expres
sion. B ecau se th e recursion is guided by th e projection , th e parts o f th e expression  
reached w ill b e  in norm al form. W hen th e projection  A B S  is encountered  th e expres
sion B ot is returned, representing _L.

and  s ig m a  f  e = s igm a_exp  ( lo o k u p  d e s c r i p t i o n  f )  e

and  s igm a_exp  (P P rod  p s )  (P ro d  e s )  = P rod  (map2 s igm a_exp  p s  e s )

I I s igm a_exp  (PMu f  f p s  p s )  e = sigma_sum ( u n f o l d  (PMu f  f p s  p s ) )  e

I I s igm a_exp  (PParm x) e = Bot

and  sigma_sum PAbs e = Bot

I I sigma_sum (PSum c p s )  ( C o n s t r  c e )  = C o n s t r  c ( s ig m a _ ex p  ( lo o k u p  cps  c )  e)

cind d e l t a  e ’ e = make P rod  ( d e l t a _ e x p  e ’ e)

and  d e l t a _ e x p  Bot e = [e]

II d e l t a _ e x p  (P ro d  e s ’ ) ( P ro d  e s )  = cone (map2 d e l t a _ e x p  e s ’ e s )

II d e l t a _ e x p  ( C o n s t r  c ’ e ’ ) ( C o n s t r  c e) = d e l t a _ e x p  e ’ e

and  d e l t a _ t y p e  e ’ e = make DProd ( d e l t a _ t  e ’ e)

and  d e l t a _ t  Bot t  = [ t ]

I I d e l t a _ t  ( P r o d  e s )  (DProd t s )  = cone (map2 d e l t a _ t  e s  t s )

I I d e l t a _ t  ( C o n s t r  c e)  (D F u n c to r  f  t s )

= l e t  ( v s , c d s )  = lo o k u p  ty p e _ d e f s  f  i n

d e l t a _ t  e ( s u b s t  ( v s / / t s )  ( lo o k u p  c d s  c ) )

and  s u b s t  env (DParm x) = lo o k u p  env x

I |  s u b s t  env (DProd d s )  = DProd (map ( s u b s t  env) d s )

I I s u b s t  env (D F u n c to r  f  d s )  = D F u n c to r  f  (map ( s u b s t  env) d s )

T h e function  search w ill go through th e specialised  function  b o d y  and pick ou t any 
rem aining function  calls along w ith  th e sta tic  part o f the argum ents. R ep eats are not 
checked for, as th ey  will not cause a problem  for spec.

and  s e a r c h  (Parm x) = □

I |  s e a r c h  Bot = □

II s e a r c h  ( R C a l l  f  a r g )  = ( f ,  s igm a f  a r g )  . s e a r c h  a r g

I |  s e a r c h  ( C o n s t r  c a r g )  = s e a r c h  a r g

I |  s e a r c h  ( P r o d  e s )  = concmap s e a r c h  es

II s e a r c h  (C ase  exp e l s )  = s e a r c h  exp C cone [ s e a r c h  e ; ;  ( c , ( v s , e ) ) < - c l s ]
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H aving produced th e specialised  program , w e need to  tid y  it up by renam ing each  
sp ecia lisa tion  o f th e  original functions. F irst a tab le is constructed  of th e in sta n tia 
tions g iv ing  the new nam e, and then  th e  program  is altered  to  su it. At th is p oin t the  
new  typ es of th e  residual functions m ay be generated  from  th e old using a version of 
delta defined over types.

and  r e n a m e _ fn  n s  ( f n , ( v s , b o d y ) )

= l e t  r e c  new_f = lo o k u p  n s  f n

and  ( f , e )  = f n

and  ( r , s )  = lo o k u p  t y p e s  f  i n

( (n e w _ f ,  ( d e l t a _ t y p e  e r ,  s ) ) ,

(n ew _ f ,  ( v s ,  renam e_exp  n s  b o d y ) )  )

and  renam e_exp  n s  (Parm x) = Parm x

I I renam e_exp  n s  Bot = Bot

I I renam e_exp  n s  ( C o n s t r  c e)  = C o n s t r  c ( renam e_exp  n s  e)

I I renam e_exp  n s  (P ro d  e s )  = P ro d  (map (re n am e _ ex p  n s )  e s )

I I renam e_exp  n s  (R C a l l  f  e)

= l e t  s e  = s igm a f  e i n

C a l l  ( lo o k u p  n s  ( f , s e ) )  ( d e l t a  se  ( renam e_exp  ns  e ) )

I I renam e_exp  n s  (C ase  exp e l s )

= Case ( renam e_exp  ns  exp)  [ ( c , ( v s , r e n a m e _ e x p  ns  e ) ) ; ;  ( c , ( v s , e ) ) < - c l s ]

and  new_name n ( ( f , a r g ) , r h s )  = ( ( f , a r g ) ,  f  C C n)

T he functions above are now com bined to  give produce th e residual program . T he  
ty p e  defin itions appearing in th e residual program  w ill b e a subset of th e defin itions
appearing in th e original. T he function  get_types scans th e (new ) typ es o f the resid
ual functions and inserts the required ty p e  defin itions.

and  g e t _ t y p e s  t s  [] = []

II g e t _ t y p e s  t s  ( ( ( f , ( r , s ) ) , f n _ d e f ) . r e s t )

= l e t  t l  = d i f f e r e n c e  ( s c a n  r )  t s  i n

l e t  t 2  = d i f f e r e n c e  ( s c a n  s )  ( t l C t s )  i n

[ ( t . d e f ) ; ;  ( t , d e f )  < -  t y p e _ d e f s ;  member ( t l f i t 2 )  t ]

0 g e t _ t y p e s  ( t l f i t 2 C t s )  r e s t

and  s c a n  (DProd d s )  = m e r g e _ l i s t  (map s c a n  d s )

I | s c a n  (DParm x) = []

I I s c a n  (D F u n c to r  f  d s )
= m e r g e _ l i s t  ( [ [ g ] ; ;  g < -  m u tu a l  f ]  « map s c a n  d s )
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r e s i d _ p r o g

= l e t  r e c new_expr = evalm  ( s e l l _ e n v  e x p r )  e x p r
and s p e c _ f n s = s p e c  ( s e a r c h  new _expr)  G
and new_names = map2 new_name v a r s  s p e c _ f n s
and new _fns = map ( re n a m e _ fn  new_names) sp e c
and n ew _types = g e t _ t y p e s  G new _fns
i n

( n e w _ ty p e s ,

(n ew _ fn s ,

( renam e_exp  new_names new _expr,  t _ e x p r ) ) )
end

C .2 R e s id u a l P ro g r a m  O u tp u t

All th e m odules used up to  now are brought togeth er by th e follow ing execu tab le  
w hich, w hen com piled , produces a U N IX  com m and to  perform  partial evalu ation .

PE.M

# i n c l u d e  " t y p e s . t "

# i n c l u d e  " p e l . t "

# i n c l u d e  " g l o b a l s . t "

# i n c l u d e  " s p e c . t "

l e t  s e p  = " \ n \ n = = ======================================\n\n"

i n  r e s u l t  t r u e

" P r o j e c t i o n - B a s e d  P a r t i a l  E v a l u a t i o n "

( " P a r t i a l l y  E v a l u a t e d  P ro g ra m :"  C sep  

C p r i n t _ p r o g  r e s i d _ p r o g  

C s e p )

C .3  E x te n d e d  E x a m p le

W e conclude th is append ix  w ith  an actual listing  ob ta in ed  from th e partial evaluator. 
W e specia lise  th e im p erative language interpreter introduced  in C hapter 2 (given  
below ) to  th e factorials program  of Section  6.4. T h e defin itions o f functions such as 
g* ( > )  have been deleted  as they  do not affect the resu lts— the residual versions are
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identica l to  th e original versions.

t y p e  Command = Read I d e n t  

+ W r i te  Exp

+ A l lo c  ( I d e n t ,  L i s t  Command)

+ D eA lloc

+ A s s ig n  ( I d e n t ,  Exp)

+ I I  (Exp ,  L i s t  Command, L i s t  Command)

+ W hile  (Exp , L i s t  Command);

t y p e  Exp = V al Num + I d  I d e n t  + Op (O p e r ,  Exp, Exp);

t y p e  I d e n t  = X + Y + Z;

t y p e  Oper = Gt + Mul + M inns;

t y p e  L i s t  a  = N i l  + Cons ( a ,  L i s t  a ) ;

t y p e  Num = Z ero  + Succ  Num;

exec  : :  ( L i s t  Command, L i s t  Num) ->  L i s t  Num; 

exec  ( b l o c k ,  i n p )  = r u n  ( b l o c k ,  N i l ,  i n p ) ;

r u n  : :  ( L i s t  Command, L i s t  ( Id e n t ,N u m ) ,  L i s t  Num) ->  L i s t  Num; 
r u n  ( b l o c k ,  env ,  in p )

= c a s e  b l o c k  i n  N i l  ->  N i l  II Cons (com,corns) ->  c a s e  com in  

Read k

->  r u n  (corns, u p d a t e  ( e n v ,  k ,  #hd i n p ) ,  # t l  in p )

I I W r i te  e

->  Cons ( e v a l  ( e n v , e ) ,  r u n  (corns, e n v ,  i n p ) )

I I A l lo c  ( k , c s )

->  r u n  (a p p e n d  ( c s ,  Cons (D e A l lo c ,c o r n s ) ) ,  Cons ( ( k , Z e r o ) , e n v ) , i n p )

I I DeA lloc

->  r u n  (corns, t l  en v ,  i n p )

I |  A ss ig n  ( k , e )

->  r u n  (corns, u p d a t e  ( e n v ,  k ,  e v a l  ( e n v , e ) ) ,  i n p )

II I f  ( e ,  c s l , c s 2 )

->  # i f  ( e v a l  ( e n v , e ) ,  r u n  (ap p e n d  ( c s l , c o r n s ) ,  e n v ,  i n p ) ,

r u n  ( a p p e n d  ( c s 2 , c o r n s ) ,  e n v ,  i n p ) )

I I W hile  ( e , c s )

->  # ru n  ( [ I f  ( e ,  append  ( c s , b l o c k ) ,  c o rn s ) ] ,  e n v ,  in p )

end

end;
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e v a l  : :  ( L i s t  ( I d e n t ,N u m ) , Exp) ->  Num; 

e v a l  ( e n v , e )  = c a s e  e i n

V al n ->  n 

II Id  k ->  lo o k u p  ( e n v , k )

II Op ( o p e r , e l , e 2 )  -> 

c a s e  o p e r  i n

Gt -> # g t  ( e v a l  ( e n v , e l ) ,  e v a l  ( e n v , e 2 ) )

II Mul ->  #mul ( e v a l  ( e n v , e l ) ,  e v a l  ( e n v , e 2 ) )

II Minus -> #minus ( e v a l  ( e n v , e l ) ,  e v a l  ( e n v , e 2 ) )  
end

end;

lo o k u p  : :  ( L i s t  ( Id e n t ,N u m ) ,  I d e n t )  ->  Num; 

lo o k u p  ( e n v , k )  = c a s e  env in

Cons ( ( j , y ) , j y s )  ->  i f  ( e q  ( k , j ) ,  y ,  lo o k u p  ( j y s , k ) )  

end;

u p d a t e  : :  ( L i s t  ( I d e n t ,N u m ) ,  I d e n t ,  Num) ->  L i s t  ( I d e n t ,  Num); 

u p d a t e  ( e n v , k , v )  = c a s e  env i n

co n s  ( ( j , y ) > j y s )
->  i f  ( e q  ( k , j ) ,  Cons ( ( j , v ) , j y s ) ,

Cons ( ( j , y ) ,  u p d a t e  ( j y s , k , v ) ) )
end;

eq  : :  ( I d e n t , I d e n t ) ->  Num; 

eq  ( j , k )  = c a se  j  i n

X ->  c a s e  k i n  X->1 I I Y->0 I I Z->0 end

I I Y ->  c a s e  k i n  X->0 I I Y->1 I I Z->0 end

I I Z ->  c a s e  k i n  X->0 I |  Y->0 I I Z->1 end

end;

i f  : :  (N u m ,a ,a )  ->  a ;

i f  ( n , x , y )  = c a s e  n  i n  Z ero  ->  y I I Succ m ->  x end;

append  : :  ( L i s t  a ,  L i s t  a )  ->  L i s t  a ;  

append  ( x s , y s )  = c a s e  xs  i n

N i l  ->  ys

II Cons ( z , z s )  -> Cons ( z ,  append  ( z s , y s ) )  

end;

hd  : :  L i s t  a  ->  a ;

hd xs = c a s e  xs  i n  Cons ( y , y s )  ->  y end;
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t l  : :  L i s t  a  ->  L i s t  a ;

t l  xs  = c a s e  x s  i n  Cons ( y , y s )  ->  y s  end ;

g t  : :  (Num,Num) ->  Num; 

g t  (n ,m )  = . . .  ;

mul : :  (Num,Num) ->  Num; 

mul (n ,m )  = . . .  ;

m inus : :  (Num,Num) ->  Num; 

minus (n ,m ) = . . .  ;

# ex e c  ( [  A l lo c  (X,

C Read X,

W hile  (Op ( G t ,  Id  X, V al 0 ) ,

[ A l lo c  (Y,

[ A ss ig n  (Y, Val 1 ) ,

W hile  (Op (G t ,  Id  X, Val 0 ) ,

[ A s s ig n  (Y, Op (Mul, I d  Y, I d  X ) ) ,

A s s ig n  (X, Op (M inus,  I d  X, V al 1 ) )  ] ) ,
W r i t e  ( I d  Y) ] ) ,

Read X ] ) ,

W r i te  (Veil 0) ] )  ] ,

i n p u t

) : :  L i s t  Num

T h e result o f sp ecia lisa tion  is the follow ing residual program . A part from  altering  
th e  layout o f th e program  (including sugaring th e sy n ta x  of num bers and lists), and  
d eletin g  th e  defin itions o f functions such as g t  ( > ) ,  th e  ou tp u t is unchanged . N ote  
in particu lar th at different residual versions o f run are equipped  w ith  d istin ct typ es.

P r o j e c t i o n - B a s e d  P a r t i a l  E v a l u a t i o n

P a r t i a l l y  E v a l u a t e d  P rogram :

t y p e  L i s t  a  = N i l  + Cons ( a ,  L i s t  a ) ;
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t y p e  Num = Z ero  + Succ (Num);

e x e c _ a  : :  L i s t  (Num) ->  L i s t  (Num); 

e i e c _ a  a  = r u n _ b  (hd_c  a ,  t l _ d  a )  ;

r u n _ b  : :  (Num, L i s t  (Num)) ->  L i s t  (Num);

r u n _ b  ( a ,  b )  = i:f_e ( g t _ f  ( a ,  0 ) ,  ru n _ g  ( 1 ,  a ,  b ) , [ 0 ] ) ;

ru n _ g  : :  (Num, Num, L i s t  (Num)) ->  L i s t  (Num);

ru n _ g  ( a ,  b ,  c )  = i :f_e  ( g t _ l  ( b ,  0 ) ,

ru n _ g  (mul_h ( a ,  b ) ,  m in u s _ i  ( b ,  1 ) ,  c ) , 

Cons ( a ,  ru n _ b  (hd_c  c ,  t l _ d  c ) ) ) ;

hd_c  : :  L i s t  a  ->  a ;

hd_c  a  = c a s e  a  i n  Cons ( y ,  y s )  ->  y end; 

t l _ d  : :  L i s t  a  ->  L i s t  a ;

t l _ d  a  = c a s e  a  i n  Cons ( y ,  y s )  ->  y s  end;

i f _ e  : :  (Num, a ,  a )  ->  a ;

i f _ e  ( a ,  b ,  c )  = c a s e  a  i n

Z ero  ->  c 

I I Succ m ->  b 

end;

g t _ i  : :  (Num, Num) ->  Num; 

g t _ f  ( a ,  b )  = . . .  ;

mul_h : :  (Num, Num) ->  Num;

mul_h ( a ,  b )  = . . .  ;

m in u s _ i  : :  (Num, Num) ->  Num; 

m in u s _ i  ( a ,  b )  = . . .  ;

e x e c _ a  i n p u t  : :  L i s t  (Num)

S u b stitu tin g  any value for the free variable in p u t  in either the original or th e  residual 
program  will g ive identica l results, but w ith sign ificantly  less com pu tation  needed in 
th e latter case.



A p p e n d ix  D  

L ibrary  F u n ctio n s

D . l  G e n e r a l L ib rary  F u n c tio n s

In ad d ition  to  th e standard  prelude o f LML th e follow ing functions were needed. 
M ost o f th ese  are fairly fam iliar, but th ose th a t are less so will be exp lained.

m odule  —  LIBRARY.M

i n f i x r  —  c u r r i e d  form  o f  z i p

i n f i x r  "G2"; —  a P P ly  l u n c t i o n  on p a i r s

i n f i x r  " — c o m b in a to r  f o r  YN t y p e

e x p o r t  f  s t , s n d , c o n s , u n c u r r y , 0 2 , i d , / / , unz  i p , 

l o o k u p , l o o k u p ’ .member, 

map_ s e p ,m ap2, f  e e d , 

m ake , r e p e a t . l i m i t , v a r s , 

j o i n , j o i n _ l i s t . m e r g e , m e r g e _ l i s t , 

c y c l i c , d f s , s p a n ,

YN, ' ' - , lookupYN, AppendYN, l i s t Y N ;

r e c f  s t  ( x , y )  = X

and sn d  ( x , y )  = y
and cons ( x , x s ) = x . x s

and swap ( x , y ) = ( y , x )

and u n c u r r y  f  ( x , y )  = f x y
and (* » g ) «2 (x ,y )  = (* g
and i d  x = X

and [] / / ys []

1 1 xs / / []  = []

140
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I I ( x . x s )  / /  ( y . y s )  = ( x , y )  . ( x s  / /  y s )

and  u n z i p  [] = ( □ , □ )

II u n z i p  ( ( x , y ) . x y s )  = ( ( \ x s . ( x . x s ) ) , ( \ y s . ( y . y s ) ) )  G2 ( u n z i p  x y s)

and lo o k u p  ( ( n , v ) . r e s t )  m = i f  n=m t h e n  v e l s e  l o o k u p  r e s t  m

and  l o o k u p ’ d e l  ( ( n , v ) . r e s t )  m = i f  n=m t h e n  v e l s e  l o o k u p ’ d e f  r e s t  m

I I l o o k u p ’ d e f  □  m = d e f

cind member xs  x = mem x xs

In ad d ition  to  the usual map function , other variants are conven ient. T h e function  
map2 is a binary version of map, and map_sep con caten ates th e result list but inserts 
th e separator provided. T he feed function  acts like m ap excep t th at a second , s ta te 
like, param eter is fed dow n th e list. T his is used to  pass a list o f new variable nam es 
so th a t at each application  th e function  f has access to  fresh variables.

and map2 f [] ys = []
1 1 map2 f xs [] = □
1 1 map2 f ( x . x s ) ( y - y s ) = H

i K . map2 f  xs ys

and map_sep f  s t r [] = []

1 1 map_sep f  s t r Cx] = f  X

1 1 map_sep f  s t r ( x . x s ) = f  X ® s t r  G map_sep f

cind f e e d  f [] n s  = ( [ ] , n s )

1 1 f e e d  f ( x . x s ) n s  = l e t ( y ,  n s ’ ) = f  x ns

i n  ( ( \ y s . y . y s ) ,  i d )  ®2 f e e d  f  xs  n s ’

The main use of make is in conjunction with constructors such as Prod where the con
structor is only required if the list is not a singleton. The function repeat generates 
an infinite list of iterations of its function argument, and limit extracts the elem ent 
of the list once stability has been reached. The list vars is an infinte list of distinct 
variable names.

and make c [x] = x

I I make c xs = c xs

and  r e p e a t  f  x = x . r e p e a t  f  ( f  x)

and  l i m i t  ( x . y . r e s t )  = i f  x=y t h e n  x e l s e  l i m i t  ( y . r e s t )

and  a t o z  = " a b c d e fg h i jk lm n o p q r s tu v w x y z "

and  v a r s  = [ f x ] ; ;  x < -  a t o z ]  <D [ ( x . x s ) ; ;  xs  <-  v a r s ;  x < -  a t o z ]
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T he m erge function  m erges ordered lists. Sim ilarly, th e j o i n  function  is used to m erge 
ordered association  lists. W hen th e nam es p and q are d istin ct the action  is clear, but 
w hen th ey  are th e sam e their values are com bined. As th e m eth od  o f com bination  
d epends on th e  situ ation  w e use an extra param eter to  describe it.

and  m erge  □  y s  = y s

I I m erge xs [] = xs

I I merge ( x . x s )  ( y . y s )  = i f  x<y th e n

i f  x>y t h e n

and  m e r g e _ l i s t  = r e d u c e  merge []

and  j o i n  f  xs  □  = xs

I I j o i n  f  □  ys  = ys

II j o i n  f  ( ( p . x ) . p x s )  ( ( q , y ) . q y s )

= i f  p<q t h e n  ( p , x )  . j o i n  f  p xs ( ( q , y ) . q y s )  e l s e

i f  p>q t h e n  ( q , y )  • j o i n  f  ( ( p , x ) . p x s )  qys e l s e

( p ,  f  x y) . j o i n  f  p x s  qys

and  j o i n _ l i s t  f  = r e d u c e  ( j o i n  f )  □

W hen con structing  projections we need to  d ivide type defin itions in to  m utually  recur
sive  groups. T his reduces to the problem  of d etectin g  strongly  connected  com ponents  
in a d irected  graph. T h e graph is represented as a list o f edges and a list o f vertices.

and  c y c l i c  es  vs  = l e t  i n s  w = [x ; ;  ( x , y )  < - e s ;  y=w]

and  o u t s  w = [y ; ;  ( x , y )  < -  e s ;  x=w]

i n

sn d  ( s p a n  i n s  ( □ , □ )  ( s n d  ( d f s  o u t s  ( □ , □ )  v s ) ) )  

and  d f s  r  ( v s , n s )  [] = ( v s , n s )

II d f s  r  ( v s , n s )  ( x . x s )  = i f  member v s  x t h e n  d f s  r  ( v s , n s )  xs e l s e

l e t  ( v s ’ . n s ’ ) = d f s  r  ( x . v s , [ ] )  ( r  x)

i n  d f s  r  ( v s * , x . n s ’ fins) xs

and  s p a n  r  ( v s . n s )  [] = ( v s , n s )

I |  spam r  ( v s , n s )  ( x . x s )  = i f  member vs  x t h e n  sp a n  r  ( v s , n s )  xs e l s e

l e t  ( v s ’ . n s ’ ) = d f s  r  ( x . v s , [ ] )  ( r  x)
i n  sp a n  r  ( v s ' , ( x . n s ’ ) . n s )  xs

T h e Y N  typ e allow s cond itional responses. T he m ajor m eans o f com bin ing th ese is
through  th e use of .
and

x . merge xs ( y . y s )  e l s e

y . merge ( x . x s )  y s  e l s e

x . merge xs  ys
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t y p e  YN * a  *b = N *a + Y *b

and (N w) f  = N w

II (Y x )  f  = f  x

and  lookupYN [] y = N (y C " n o t  fo u n d " )

II lookupYN ( ( x , v ) . x v s )  y = i f  x=y t h e n  Y v e l s e  lookupYN x v s  y

and  AppendYN xs  = l i s tY N  xs  ( \ y s .  Y (co n e  y s ) )

l i s tY N  : :  L i s t  (YN a b)  ->  YN a  ( L i s t  b )  
and  l i s tY N  □  = Y □

II l i s tY N  ( x . x s )  = addYN x ( l i s tY N  x s )

and  addYN (N y) any = N y

I I addYN (Y x)  (N y)  = N y

II addYN (Y x) (Y x s )  = Y ( x . x s )

end

D .2  P a r s in g  P r im it iv e s

In order to  provide a accept PEL program s a parser is required. T his section  contains  
the prim itives used to  construct it. T h e  technique is described in [W ad85] and [FL89]. 
T he particu lar choice o f prim itives has been guided by experience.

m odule —  PARSELIB.M 

# i n c l u d e  " l i b r a r y . t "

i n f i x r  " ! ! "  ; 

i n f i x r  " . .  " ; 

i n f i x r  " x . . " ;  

i n f i x r  " . . x " ;  

i n f i x r  " . s e p _ b y . " ;  

i n f i x  " . a s . " :

' o r e l s e ' ,  c o r r e s p o n d s  t o  I i n  BNF 

’t h e n ’ , BNF u s e s  a  s p a c e  

’t h e n ' ,  d r o p p in g  t h e  l e f t  hand  v a l u e  

’t h e n ’ , d r o p p in g  t h e  r i g h t  h and  v a l u e  

r e t u r n s  a  l i s t  d e l i m i t e d  by t h e  g iv e n  s e p a r a t o r s  

a p p l i e s  s e m a n t ic  f u n c t i o n s

export  !! , . .  , x .................x , . a s .  , su c c e e d ,

o p t ,  many, some, . s ep _b y .  , s a t ,  s k i p ,  l i t ;

r e c  p i  !! p2 = \ i n p  . p i  inp  C p2 inp

and p i  . .  p2 = \ i n p  . [ ( ( v , w ) , i n p ’ ’ ) ; ;  ( v , i n p ’ ) < -  p i  inp;

( w , i n p ' ' ) < -  p2 i n p ' ]
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and p x . . q = p . . q  . a s .  snd

and  p . . x  q = p . .  q . a s .  f s t

and p  . a s .  f  = \ i n p  . [ ( f  v ,  i n p ’ ) ; ;  ( v , i n p ’ ) < -  p in p ]

and s u c c e e d  v = \ i n p  . [ ( v ,  i n p ) ]

and o p t  p  v = \ i n p  . [hd ( ( p  !! s u c c e e d  v) i n p ) ]

and many p = o p t  (p  . . many p . a s . c o n s ) []

and  some p = p . .  many p . a s .  cons

and p . s e p _ b y .  q = p . .  many (q  x . .  p) . a s .  cons

and s a t  p ( c . l )  = i f  p c t h e n  C ( c , l ) ]  e l s e  []

I I s a t  p [] = □

and l i t  t  = s a t  ( \ x . t = x )

and  s k i p  x ( c . l )  = i f  x=c t h e n  [ ( c , l ) ]  e l s e  s k i p  x 1

II s k i p  x □  = C ( x , [ ] ) ]

end
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