https://theses.gla.ac.uk/

Theses Digitisation:
https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
This is a digitised version of the original print thesis.

Copyright and moral rights for this work are retained by the author
A copy can be downloaded for personal non-commercial research or study, without prior permission or charge

This work cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given

OPTOELECTRONIC DEVICES EXPLOITING THE GUNN EFFECT

A Thesis
Submitted to the Faculty of Engineering of the University of Clasgow for the Degree of Doctor of Philosophy by
David Moreland

October, 1989

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 11007331
Published by ProQuest LLC (2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

To me Parents

I wish to express my thanks to Professor J. Lamb for the provision of the research facilities of the Department of Electronics and Electrical Engineering.

I am particularly grateful to Dr. S.P. Beaumont for his academic supervision of this work, and to Dr. A. MacDonach for his industrial supervision. I would also like to thank Mr. M.R.S. Taylor for many valuable discussions, particularly relating to the microwave aspects of the project, and to Professor J.R. Barker for his help with the Gunn simulation program. The provision of material from the SERC III-V Semiconductor Facility, at the University of Sheffield, is also acknowledged.

I should also like to acknowledge the technical assistance which was available under the leadership of Mr. G.W.T. Boyle, with special thanks to Mr. A. Stark and Mr. D. Gourlay for their assistance with the scanning electron microscopy. Thanks are also given to Mr. R. Harkins, Mr. J. Young, and Mr. J. Cochrane. The help and support of many staff members and fellow research students was greatly appreciated, especially that from Mr. R.H. Hutchins and Mr. D.K. Lau.

I would like to especially direct my thanks to Miss Caroline T. Lang for her support and interest throughout the project, and her patience and understanding during the preparation of the manuscript.

Finally I would like to thank my parents for their continual support and encouragement.

This work was supported by an SERC CASE Award, in conjunction with Barr and Stroud Ltd., and also by the IEE through a Postgraduate Scholarship financed by the Joseph William Beauchamp Bequest Fund.

1. MORELAND, D., ROBERTS, J.S., and BEAUMONT, S.P.: 'Optical Modulation within a Rib Waveguide by Propagating Gunn Domains'. Submitted to Elect. Lett., July 1989
2. LAU, D.K., IRONSIDE, C.N., MORELAND, D., and BEAUMONT, S.P.:
'Optically Triggered and Detected Gunn Domains', Semiconductor and Integrated Opto-Electronics (SIOE'89), Cardiff, March 1989
3. LAU, D.K., BEAUMONT, S.P., IRONSIDE, C.N., MORELAND, D., and STANLEY, C.R.: 'High Speed Optoelectronic Properties of Gunn Domains', Ninth National Quant um Electronics Conference, Oxford, September 1989
Acknowledgements i
Published Work i i
Contents i i i
Summary vii
Chapter 1: Introduction 1
1.1 Gallium Arsenide Technology 1
1.2 Areas of, and Reasons for Interest 4
1.3 Integrated Device Structures 6
1.4 Summary of Thesis Contents 7
Chapter 2: Optical Waveguiding 9
2.1 The Dielectric Slab Guide 9
2.1.1 Ray Optical Treatment 10
2.1.2 Electromagnetic Theory 12
2.2 Three-Dimensional Waveguides 14
2.2.1 The Effective Index Method 14
2.2.2 The Variational Analysis Technique 15
2.2.3 The Finite Difference Technique 17
2.3 Photoelastic Waveguides 19
2.3.1 Stresses in Thin Films 19
2.3.2 The Photoelastic Effect 21
2.4 Loss Mechanisms in Dielectric Waveguides 22
3.1 The Mechanism of the Cunn Effect 25
3.2 Space Charge Instabilities 28
3.2.1 Domain Formation 28
3.2.2 Domain Dynamics 30
3.3 Conventional Gunn Diode Structures 34
3.4 Modes of Operation 36
3.4.1 Constant Voltage Modes 36
3.4.2 Constant Current Modes 37
Chapter 4: Optical Modulation 40
4.1 Electro-Optic Modulation 40
4.2 Optical Effects due to a Propagating Gunn Domain 40
4.2.1 The Linear Electro-Optic Effect 41
4.2.2 The Electro-Absorption Effect 44
4.2.3 Free Carrier Contributions 46
4.3 Optoelectronic Interaction Mechanisms 49
4.3.1 Exploitation of Domain Induced 49
Optical Changes
4.3.2 Exploitation of Optically Induced 51
Electrical Changes
Chapter 5: Devices and their Design 53
5.1 Device Structures 53
5.2 Optical Design 54
5.2.1 Refractive Index Calculations 54
5.2.2 Slab Waveguide Calculations 56
5.2.3 Rib Waveguide Calculations 57
5.2.4 Photoelastic Waveguide Calculations 59
5.3 Electrical Design 60
5.3.1 Electrical Performance 60
5.3.2 Thermal Considerations 64
5.4 Electro-Optical Considerations 65
5.4.1 Calculation of Domain Characteristics 65
5.4.2 Influence on Optical Guiding by the Gunn 74
Doma in
5.4.3 Comparison of Modulator Designs 77
5.4.4 Influence on Threshold Field of Stress 78due to the Photoelastic Effect
5.5 Devices Designed in Other Materials 78
Chapter 6: Devices, their Fabrication and Characterisation 80
6.1 Procedural Aspects 80
6.1.1 Material Growth 80
6.1.2 Material Characterisation 81
6.1.3 Device Fabrication 85
6.2 Spot Contact Gunn Diodes 87
6.3 Vertical/Rib Devices 90
6.4 Planar/Photoelastic Devices 95
6.5 Cleaving, Mounting, and Bonding of Devices 98
Chapter 7: Experimental Results and Discussion 101
7.1 Optical Experiments 101
7.1.1 Guiding Characteristics 101
7.1.2 Loss Measurements 103
4. 2 Microwave Experiments 105
7.2.1 Microstrip Circuit Design and Fabrication 105
7.2.2 Experimental Results 108
7.3 Electro-Optic Experiments 110
7.3.1 Experiments at a Wavelength of $1.15 \mu \mathrm{~m}$ 113
7.3.2 Experiments at a Wavelength of 905 mm 116
7.3.3 Calculation of Electro-Optic and Electro- 118
Absorption Coefficients
Chapter 8: Summary of Results, and Future Work 120
8.1 Conclusions 120
8.2 Future Investigations 123
8.3 Integrated Devices 126
Appendices 128
A. The Equal Areas Rule 128
B. Listing of GUNNSIM, the Cunn Effect Simulator 131
C. Documentation for GUNNSIM 143
D. Optical Apparatus 146
E. Slow Diode Analysis 147
References 151

Semiconductor integrated Electro- Optic modulators which exploit the Gunn effect, have been produced in gallium arsenide.

Both vertical and planar diode structures incorporating a form of optical waveguide were investigated. Optical, electrical, and Electro-Optical, design calculations were carried out for each of the proposed device designs. The vertical Gunn diode structures incorporated either a slab or a rib waveguide, whereas the planar Gunn diode structure incorporated a photoelastic waveguide.

Various methods, such as the Effective Index Method, the Variational Analysis technique, and the Finite Difference method, were used to assess the propagation characteristics of the rib guide structures. The results of this assessment provided a comparison between the different techniques available, and revealed the advantages and disadvantages of each method. The propagation characteristics of the photoelastic waveguides were analysed by the Finite Difference method.

A computer program was developed to analyse the electrical characteristics of the integrated devices. The program solves Poisson's equation and the Current Continuity equation under the conditions for a stable propagating dipole Gunn domain, for: an approximate velocity-field characteristic, $\mathrm{v}(\mathrm{E})$, and field independent diffusion coefficient, D ; an analytical $\mathrm{v}(\mathrm{E})$ characteristic and field independent D ; or an analytical $v(E)$ and a field dependent D. The program supplies an estimate of the maximum electric field within the domain, and also of the domain length. The results for the three possible analysis situations were compared.

The perturbations induced in the optical guiding characteristics, at above bandgap optical wavelengths, due to the presence of a domain, have been studied. A knowledge of the characteristics of the domain, as it propagates through the device, leads to an estimate of the magnitude of the induced optical changes, eg. in the refractive index, or in the optical absorption. A measure of the Electro-Optic interaction between the propagating domain and the guided optical wave was therefore obtained.

In order to test the electrical characteristics of the vertical devices, spot contact diodes, varying in diameter from $20 \mu \mathrm{~m}$ to $90 \mu \mathrm{~m}$, were fabricated. Also, for the purpose of testing both the optical and Electro-Optical properties of the vertical devices, rib guides, varying in width from $4 \mu \mathrm{~m}$ to $15 \mu \mathrm{~m}$, were fabricated by optical photolithography and dry etching techniques.

Unique devices incorporating a vertical Gunn diode and a rib waveguide were consequently designed and fabricated, and assessed for their modulation depth. Optical modulation, at a frequency of 24 GHz , was observed in the vertical diode structure. While at a wavelength of $1.15 \mu \mathrm{~m}$ modulation was solely due to the Linear Electro- Optic effect, at a wavelength of 905 nm modulation was seen to be due to both the Linear Electro- Optic effect, and the Electro- Absorption effect.

Estimated values of the observed Electro-Optic coefficient, r_{41}, at wavelengths of $1.15 \mu \mathrm{~m}$ and 905 nm were obtained, along with an estimate of the observed Electro- Absorption coefficient, α, at 905 nm .

CHAPTER 1

I NTRODUCT I ON

1.1 GALLIUM ARSENIDE TECHNOLOGY

Interest in gallium arsenide (GaAs), as a material suitable for the fabrication of electrical devices, has existed since the invention of the bipolar transistor in the late 1940 's. Gallium arsenide provides a number of distinctive and desirable properties not present in silicon.

One such property is the Transferred Electron effect. For example one of the first commercial applications found for gallium arsenide was as a Gunn diode. This two terminal device exploits the Transferred Electron effect, and can be used to generate RF power at frequencies up to and around 100 GHz . Gunn diodes have thus been used as local oscillators, power amplifiers and solid-state sources for microwave applications such as radars, intrusion alarms, and microwave test instruments.

A second property of gallium arsenide, which is important in the consideration of materials for electrical devices, is the relatively high electron mobility exhibited by the material; gallium arsenide having a low-field electron mobility of around $8500 \mathrm{~cm}^{2} \mathrm{~V}^{-1} \mathrm{~s}^{-1}$ compared to $1300 \mathrm{~cm}^{2} \mathrm{~V}^{-1} \mathrm{~s}^{-1}$ for silicon. However, silicon has till now remained the preferred material because of advantages in device fabrication such as an easily grown, high quality native oxide, having good interfacial characteristics with the substrate. Silicon also offers the easy availability of large, high purity, low defect density substrates.

Many fabrication problems associated with gallium arsenide are, however, being overcome, and useful discrete Metal Semiconductor Field Effect Transistors (MESFET's), operating at frequencies of up to 30 GHz , have been produced. These transistors are suitable for use as the basic elements of analogue or digital integrated circuits fabricated in gallium arsenide, or in related III-V compounds. Presently other potentially faster devices are also being studied such as the High Electron

Mobility Transistor (HEMT) and the Heterojunction Bipolar Transisitor (HBT) [1].
In the late 1950 's proposals were put forward suggesting semiconductors as materials capable of resulting in laser action, and in 1962 it was shown [2] that laser action was indeed possible in direct bandgap semiconductors. It was not, however, until 1969 that room temperature CW operation of a semiconductor laser diode was achieved [3]. This structure was based on the lattice matched heterojunction $\mathrm{GaAs} / \mathrm{AlGaAs}$, and provided both optical and carrier confinement, although at this time the importance of the heterostructure in confining light was not fully understood.

Concurrent with the work on gallium arsenide laser diodes has been progress in the field of integrated optics which deals with the study of discrete components as well as optoelectronic integrated circuits (OEIC's). These are suitable for use in optical communications systems, signal processing, instrumentation or sensors. In integrated optical systems the information signal is carried by means of an optical beam rather than by an electrical current. Also, the various circuit elements are interconnected by optical waveguides on a substrate wafer rather than by metal tracks. The advantages of integrated optical systems are similar to those afforded by optical fibres, ie. increased bandwidth, immunity to electro-magnetic interference, low- loss transmission and reduced weight.

The ability to control the guided optical radiation, by some external signal, requires the control of local perturbations in the optical characteristics of the material, such as the absorption or the refractive index. For example, the refractive index may be perturbed via the Acousto- Optic, Magneto-Optic or the Linear Electro- Optic effects. The latter effect has to date been the most popular.

Two groups of materials have so far been used in integrated optics; the ferroelectric materials, in particular lithium niobate $\left(\mathrm{LiNbO}_{3}\right)$, and the III-V semiconductors, in particular gallium arsenide. Lithium niobate has the advantage over gallium arsenide of having a larger Electro-Optic coefficient, ie. $r_{23}=$ $30.0 \times 10^{-}{ }^{12} \mathrm{mV}^{-1}$ for lithium niobate, at a wavelength of 633 nm , compared with $r_{41}=1.2 \times 10^{-12} \mathrm{mV}^{-1}$ for gallium arsenide, at a wavelength of 900 nm . Also
lithium niobate has a lower refractive index, thus producing lower reflection losses at the interface between fibre and device. III-V materials however offer the distinct advantage of potential monolithic integration of all the components necessary for a complete OEIC, including source, detector, and control electronics, on the same substrate.

Gallium arsenide has also become the basic material for microwave integrated circuits where both active and passive elements are combined on the same chip. This choice is due to two properties of the material [4]. First, it is available in semi-insulating form which provides natural low-capacitance isolation between circuit components. Second, the electrons move with higher velocities than in silicon, so reducing parasitic resistance and transit time effects. Fabrication techniques, such as ion-implantation, air-bridges, and through-GaAs vias, have been specially developed to exploit these properties. This has led to the demonstration and commercial availability of a number of Monolithic Microwave Integrated Circuits (MMIC's) operating in the range $1-100 \mathrm{GHz}$.

The passive components in MMIC's take the form of either distributed or lumped elements. The two most popular transmission lines used on gallium arsenide to date are microstrip and coplanar waveguide. Of these two, microstrip has been the most exploited medium, since the advantage of coplanar waveguide (that of accessible ground planes on the top surface of the chip) is useful only for simple circuits. Lumped elements may also be included, producing a greater design flexibility, provided that the equivalent circuit of such components can be accurately modelled.

From the foregoing, it can be seen that gallium arsenide has found four separate areas of application as a material suitable for fabrication of devices: (i) in electronic circuits (eg. Gunn diodes, and MESFET's); (ii) in optical transducers (eg. light emitting diodes, LED's, laser diodes, LD's, and avalanche photodiodes, APD's); (iii) in integrated optics; and (iv) in guided wave devices (eg. MMIC's).

Until now these areas have remained separate. However, more recently work has begun in order to exploit the potential advantages of monolithically integrated
circuits incorporating dissimilar device types, eg. electrical and optical components. Such circuits would not only be smaller than electrically connected discrete devices. but also more rugged, reliable and inexpensive. Furthermore, the integrated device would be faster and less noisy, due to the reduction in parasitic reactances from electrical interconnections [5].

1.2 AREAS OF, AND REASONS FOR INTEREST

Efforts to exploit the potential bandwidth of light as an information carrier have brought about a renewed interest in the use of microwave techniques for optical systems. Whereas in the late 1960 's primary interest was directed towards analysing propagation in optical waveguides and fibres, using methods originally developed for microwave waveguides, present activity is directed towards the design of microwave control circuitry compatible with high-speed optical devices. Investigations are also being made into the use of optical techniques for the transmission, generation and control of microwave signals [6].

The overall aim of this project was to explore the problems involved in the monolithic integration of microwave electronic devices (sources, waveguides, etc) with integrated optical structures (lasers, waveguides, modulators and detectors). To this end, it was the original objective of the project to design and fabricate an integrated active optoelectronic microwave receiver. Such a receiver would detect a radiant microwave signal, and use this microwave signal to directly modulate a guided optical wave.

As a first attempt at the practical realisation of such an integrated receiver, it became the specific intention to design and fabricate a device which combined a Gunn diode and an optical waveguide within the same device design. Such a device exhibits true monolithic integration of an electronic and an optical device, not only on the same substrate, but also within the same structure, both contributing to the overall device action. It was also proposed that the work be extended to include the design of an electrode structure for the receiver which would detect radiant
microwave energy. It was envisaged that the electrode pattern would resemble a dipole antenna array.

After initial literature surveys relating to optical modulation by propagating Gunn domains, it was found that no work had previously been done to investigate the possibility of Gunn domains being used to modulate an optical signal within an integrated optical guiding structure. It was therefore decided after the first year of research to limit the scope of the work to the investigation of modulation effects occurring within an integrated optical guiding structure due to the presence of propagating Gunn domains. This was felt to be a realistic aim to be achieved within the given time, taking due account of the resources available.

Prior work by Cohen et al [7], and Ohta et al [8], showed that light could be modulated by propagating Gunn domains in bulk GaAs samples. In these reports the interaction was however found to be weak, and of little practical value. Further, these bulk samples required high bias voltages, and provided no means of guiding the optical radiation. This suggested that a much stronger interaction, between the propagating Gunn domain and the optical radiation, might be obtained if the domain propagated through an integrated optical waveguide. Investigations therefore included: (a) The design of optical waveguides compatible with the structure of a super-critical Gunn diode. Design criteria were two-fold, since the device should exhibit monomode optical guiding, as well as the formation and propagation of dipole Gunn domains under the correct bias conditions.
(b) The optical properties of Gunn devices under super-critical conditions, ie. the influence of the electric field pulse associated with a propagating Gunn domain on the optical waveguiding characteristics of the material through which it passes, due to Electro- Optic effects. Considerations not only included the magnitude of the optical perturbation induced within the device, but also the shape of the electric field profile, as well as practical limitations of the length of the propagating domain.
(c) The optimum fabrication conditions for the proposed devices and their testing, optically, electrically, and as integrated devices.

Optically active but electronically passive materials such as lithium niobate have
already been used to produce active Electro- Optic modulators. This technology may, and indeed has, been directly transferred to semiconductor materials such as gallium arsenide. The translation fails however to exploit the electronic properties of the semiconductor material.

The proposed device was therefore original in operation in that it depended not only on the presence or absence of a local perturbation in the optical characteristics (produced by the microwave action), but also that this perturbation would propagate. Further, the magnitude and positions of nucleation and destruction of the perturbation within the device could be controlled. This was unlike conventional Electro-Optic modulators designed in either electronically passive, or electronically active materials.

1.3 INTEGRATED DEVICE STRUCTURES

The ability to guide radiation in an integrated optical waveguide requires the refractive index of the guiding region to be greater than that of the surrounding regions. In the $I I I-V$ semiconductor system this is most popularly achieved by a combination of geometry and material compositional or dopant changes, such as in the slab or rib guide [9]. However, strain induced effects may also be utilised as in the photoelastic guide [10].

The simplest dielectric guide is the three-layer slab guide shown in fig(1.1)(a). The refractive indices of the substrate and cover are less than that of the film, due either to compositional or dopant changes. The result is a planar film of refractive index n_{f} sandwiched between two regions of lower refractive index n_{S} and n_{c}. The light is therefore confined by total internal reflection at the film-substrate and film-cover interfaces. A four-layer slab guide, shown in fig(1.1)(b), may also be formed where the refractive indices are such that $n_{f}>n_{S}$, $\mathrm{n}_{\mathrm{b}}, \mathrm{n}_{\mathrm{c}}$, and $\mathrm{n}_{\mathrm{b}}>\mathrm{n}_{\mathrm{c}}$.

However, the simple planar dielectric guide provides no confinement of the light within the film plane, ie. the $y-z$ plane; confinement occuring in the

Fig (1.1) Optical Waveguiding Structures in III-V Materials
(a) The Three-Layer Slab Guide

(b) The Four-Layer Slab Guide

(c) The Rib Waveguide

(d) The Photoelastic Waveguide

Substrate
x -dimension only. Confinement in the y -dimension can be achieved by forming rib structures as shown in fig(1.1)(c). These ribs may be formed by etching away parts of the substrate between mask lines formed photolithographically. Thus, careful thought prior to fabrication means that an etch mask, formed using metallisation. can subsequently form the control electrode, so ensuring self alignment. The dielectric bias field will therefore be largely confined to the unetched rib region, so minimising the effects due to crystal damage.

Strain induced optical waveguides can be formed in gallium arsenide, and other III-V compound semiconductors, simply by opening windows or defining stripes in an applied surface film which is under compression or tension, as shown in fig(1.1)(d). Since most applied films are likely to be under stress as a result of thermal expansion mismatch, as well as the deposition process, photoelastic waveguiding or antiwaveguiding may be present in many stripe-geometry III-V semiconductor optical devices.

Two common device structures for Gunn diodes may be identified. These are the vertical diode, wherein current flow is perpendicular to a highly conductive substrate, and the less common planar diode, wherein current flow is parallel to an insulating substrate. These structures are shown in fig(1.2)(a) and (b) repectively.

Integrating the optical waveguiding structures with a compatible Gunn diode structure, the following combinations can be identified:
(a) a slab guide and a vertical diode, shown in $\mathrm{fig}(1.3)(\mathrm{a})$;
(b) a rib guide and a vertical diode, shown in fig(1.3)(b); and
(c) a photoelastic guide and a planar diode, shown in fig(1.3)(c).

1.4 SUMMARY OF THESIS CONTENTS

The preceding sections of this Chapter have identified the areas of investigation, and reasons for undertaking this work. Also presented are the integrated device structures which will be dealt with in greater depth in succeeding Chapters.

Fig (1.2) Conventional Gunn Diode Structures
(a) The Vertical Gunn Diode

Ohmic Contact (Cathode)

Ohmic Contact (Anode)
(b) The Planar Gunn Diode

Fig(1.3) Integrated Device Structures
(a) Four-Layer Slab Waveguide / Vertical Gunn Diode

Ohmic Contact (Cathode)

(b) Rib Waveguide / Vertical Gunn Diode

(c) Photoelastic Waveguide / Planar Gunn Diode

o.c =ohmic contact

Chapter 2 describes the theory of optical propagation in slab, rib and photoelastic waveguides, in addition to the various methods of analysis which may be used to calculate the guiding characteristics.

The mechanism of the Gunn effect is explained in Chapter 3, along with a more detailed description of the cyclic formation and propagation of Gunn domains, and an explanation of the possible modes of operation of such devices.

The theoretical basis of Electro- Optical modulation is explained in Chapter 4. along with the analysis of the precise interaction between a propagating Gunn domain and an optical field distribution at wavelengths greater than that of the band gap energy of the material.

In Chapter 5 the techniques which were employed in device design are explained. Since the device must act in the correct way both optically and electrically, the precise design criterion are explained and the necessary trade-offs identified. The design of such devices in materials other than gallium arsenide is mentioned.

In Chapter 6 the methods of growth and characterisation of the material used in making these devices is given, as well as the methods of device fabrication and characterisation. The cleaving, bonding and mounting of completed devices is also addressed.

Experimental observations and results are presented and discussed in Chapter 7, for wavelengths of $1.15 \mu \mathrm{~m}$ and 905 nm . Values of the observed Electro-Optic coefficient, r_{41}, at both of these wavelengths are given, along with the observed Electro-Absorption coefficient, α, at 905 nm .

Finally, Chapter 8 summarises the overall conclusions reached, and identifies various areas which may be of interest in future investigations. This Chapter concludes by suggesting possible structures for an integrated active optoelectronic microwave receiver, capable of detecting radiant microwave energy and directly modulating a guided optical carrier wave.

CHAPTER 2

OPTICAL WAVEGUIDING

Optical guiding in integrated optics is produced by the use of dielectric waveguides [9],[10],[11]. This Chapter explains the mechanism of optical propagation. and the method of analysis, for three and four-layer planar dielectric guiding structures, propagation within such structures being used to develop the analysis of optical propagation within more complex guiding structures.

Three methods of analysis for optical propagation within rib waveguides are presented, ie. the approximate Effective Index Method, and the analytical Variational Analysis Technique, and Finite Difference Method. The advantages and disadvantages of these methods are compared.

The approximate method inherently gives a higher value of the modal effective index, $n_{\text {eff }}$ than is correct. Since for the homojunction rib waveguides analysed herein $n_{\text {eff }}$ is normally near cut-off, it is important in designing these guides that $n_{\text {eff }}$ is not overestimated. Hence the need to employ the Variational Analysis Technique or the Finite Difference Method.

The contributions to optical losses in dielectric waveguides are also briefly considered.

2.1 THE DIELECTRIC SLAB GUIDE

In the simple three layer slab guide previously shown in $\operatorname{fig}(1.1)(a)$ light is confined, and propagates by total internal reflection at the film-substrate and film- cover interfaces.

Section(2.1.1) therefore introduces the ray-optical picture of light propagation in slab waveguides. Although this is the simplest picture to use, it is helpful in gaining an understanding of the properties of more complicated dielectric waveguides. It also introduces many concepts used in dielectric guides including the nature of the modes of propagation, waveguide cut-off and the propagation constant, 6.

Section(2.1.2) goes on to describe the fundamentals of the electromagnetic theory of dielectric waveguides.

2.1.1 Ray Optical Treatment

The ray picture of light guided in a dielectric slab waveguide is one in which light rays trace a zig-zag path within the film, total internal reflection of the light occurring at the film-substrate and film-cover interfaces, as shown in fig(2.1). Now, if $\theta>{ }^{\theta} \mathrm{C}$, where ${ }^{\theta} \mathrm{c}=$ the critical angle, we have that the reflection coefficient, R is such that $|R|=1$, and total internal reflection of the light occurs [11]. R is now complex and the reflected light is phase shifted.

Further, using the Fresnel formulaes [12], the following expressions for the phase shifts $\psi^{\prime} \mathrm{TE}$ and \dot{q}^{TM}, corresponding to the two polarisation states, may be found to be

$$
\begin{align*}
& \tan \psi^{\prime} T E=\frac{\left(n_{1}{ }^{2} \sin ^{2} \theta-n_{2}^{2}\right)^{1 / 2}}{n_{1} \cos \theta} \\
& \tan ^{\prime} T E=\frac{n_{1}^{2}}{n_{2}{ }^{2}} \frac{\left(n_{1}{ }^{2} \sin ^{2} \theta-n_{2}{ }^{2}\right)}{n_{1} \cos \theta}
\end{align*}
$$

where, the expressions used in the above equations are as defined in fig(2.1).
With reference to fig(1.1)(a) introducing normalisations which combine several guide parameters, we have that

```
Normalised frequency V = kf(nf ( 
and film thickness,
```

where, $k=$ wavevector $=2 \pi / \lambda$
$\lambda=$ wavelength of propagation
$\mathrm{f}=\mathrm{film}$ thickness

$$
\text { Normalised guide index, } \quad b^{\prime}=\frac{\left(n_{e f} f f^{2}-n_{s}{ }^{2}\right)}{\left(n_{f}{ }^{2}-n_{s^{2}}\right)}
$$

Fig (2.1) Ray Optical Propagation

where, $n_{e f f}=$ effective index of mode $=B / k=n f s i n \theta$

$$
\begin{aligned}
& \beta=\text { propagat ion constant } \\
& \text { Asymmetry of the guide, } \begin{aligned}
a & =\frac{\left(n_{S^{2}}-n_{c}{ }^{2}\right)}{\left(n_{f^{2}}-n_{S^{2}}\right)} \quad \text { for TE modes } \\
& =\frac{n_{f}^{4}}{n_{c}{ }^{4}} \frac{\left(n_{S^{2}}-n_{c}{ }^{2}\right)}{\left(n_{f}^{2}-n_{S^{2}}^{2}\right)} \quad \text { for TM modes }
\end{aligned}
\end{aligned}
$$

Now, adding up the phase shifts between like points in the ray path, and remembering that for self consistency the sum of all these phase shifts must be a multiple of 2π, it can be shown that the Dispersion relation may be represented as

$$
2 \mathrm{kn}_{\mathrm{f}} \mathrm{~h} \cos \theta-2 i_{\mathrm{s}}-2 \psi_{\mathrm{c}}^{\prime}=2 v \pi
$$

where, $r=$ mode number $=0,1,2, \ldots$.

$$
\begin{aligned}
\psi_{S}= & \text { phase shift introduced on reflection from the film- } \\
& \text { substrate interface } \\
\psi_{C}= & \text { phase shift introduced on reflection from the film-cover } \\
& \text { interface }
\end{aligned}
$$

Now, for TE modes, equation(2.1) may be used in conjunction with the normalisations of equations(2.2), (2.3), and (2.4) to rewrite the Dispersion relation, ie. equation(2.5), in the form [9]

$$
V\left(1-b^{\prime}\right)^{1 / 2}=r \pi+\tan ^{-1}\left[\frac{b^{\prime}}{1-b^{\prime}}\right]+\tan ^{-1}\left(\frac{b^{\prime}+a}{1-b^{\prime}}\right]
$$

For a four-layer slab guide, as shown in fig(1.1)(b), the Dispersion relation is given by [13]
$V\left(1-b^{\prime}\right)^{1 / 2}=1 \cdot \pi+\tan ^{-1}\left(\frac{b^{\prime}}{1-b^{\prime}}\right\}^{1 / 2}+\tan ^{-1}\left\{\eta\left(\frac{b^{\prime}+a_{1}}{1-b^{\prime}}\right\}^{1 / 2}\right\}$

```
where, \(\eta=S_{9} / S_{f} \cdot(1+T) /(1-T)\)
    \(T=e^{-2 S_{2} b} \cdot\left(S_{4}-S_{2}\right) /\left(S_{4}+S_{2}\right)\)
    \(S_{3}=\left(a_{2}+b^{\prime}\right)^{1 / 2} \cdot i / f\)
    \(S_{4}=\left(a_{2}+b^{\prime}\right)^{1 / 2} \cdot{ }^{\prime} / f\)
    \(a_{1}=\left(n_{s}{ }^{2}-n_{c}{ }^{2}\right) /\left(n_{f^{2}}-n_{s}{ }^{2}\right)\) for TE modes
    \(\mathrm{a}_{2}=\left(\mathrm{n}_{\mathrm{s}}{ }^{2}-\mathrm{n}_{\mathrm{b}}{ }^{2}\right) /\left(\mathrm{n}_{\mathrm{f}}{ }^{2}-\mathrm{n}_{\mathrm{s}}{ }^{2}\right)\)
    b = buffer thickness
```


2.1.2 Electromagnetic Theory

For a time dependent field, Maxwell's equations may be represented as

```
\nablaxE = -\partialB/\partialt
    \nablaxH}=\partialD/\partial
```

where, $\mathrm{t}=\mathrm{t}$ ime
$\nabla \quad=i \frac{\partial}{\partial x}+j \frac{\partial}{\partial y+k} \frac{\partial}{\partial z}$
$E(t)=$ electric field
$H(t)=$ magnetic field
$D(t)=$ electric displacement
$B(t)=$ magnetic induction

All fields are assumed to have a periodic time dependent form such as

$$
E(t)=E \exp (j \omega t)+E^{\star} \exp (-j \omega t)
$$

where, $\mathrm{E}=\mathrm{a}$ complex amplitude

$$
E^{*}=\text { the complex conjugate }
$$

Further, assuming a lossless medium, then

$$
D=\varepsilon E, \text { and } B=\mu H
$$

Thus we have that

$$
\nabla \times E=-j \omega \mu \mathrm{H}, \text { and } \quad \nabla \times H=j \omega \varepsilon E
$$

Separating the components of equation(2.11) shows that

$$
\begin{align*}
& \nabla_{t} \times E_{t}=-j \omega \mu H_{z} \\
& \nabla_{t} \times H_{t}=j \omega \varepsilon E_{z} \\
& \nabla_{t} \times E_{z}+e_{z} \times \partial E_{t} / \partial z=-j \omega \mu H_{t} \\
& \nabla_{t} \times H_{z}+e_{z} \times \partial H_{t} / \partial z=j \omega \varepsilon E_{t}
\end{align*}
$$

where, $\nabla_{t}=(\partial / \partial x, \partial / \partial y, 0)$
$e_{z} \quad=$ unit vector in the z direction
$x, y, z=t h e ~ c o o r d i n a t e ~ s y s t e m$ defined in $\mathrm{figs}(1.1)(a)$ and (2.1)

Now, a waveguide mode is defined as a field solution having the form

$$
\begin{align*}
& \mathrm{E}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{E}_{1}(\mathrm{x}, \mathrm{y}) \exp \left(-\mathrm{j} \beta_{1}, z\right) \\
& \mathrm{H}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{H}_{1}(\mathrm{x}, \mathrm{y}) \exp \left(-\mathrm{j} \beta_{1}, z\right)
\end{align*}
$$

where, $r=$ the mode number
$\beta_{1}=$ the propagation constant of mode r

Thus, combining equation(2.13) with equations(2.12) shows that

$$
\begin{align*}
& \nabla_{t} \times E_{t},=-j \omega \mu \mathrm{H}_{\mathrm{Z},}, \\
& \nabla_{t} \times H_{t},=j \omega \varepsilon E_{Z l}, \\
& \nabla_{t} \times E_{z,}, j \beta_{v} e_{z} \times E_{t,}=-j \omega \mu H_{t}, \\
& \nabla_{\mathrm{t}} \times \mathrm{H}_{\mathrm{Z},}, \mathrm{j} \beta_{v} \mathrm{e}_{z} \times \mathrm{H}_{\mathrm{t}}, \quad=\mathrm{j} \omega \varepsilon \mathrm{E}_{\mathrm{t}},
\end{align*}
$$

Equations(2.14) are for slab guide structures incorporating guiding in only one axial direction. For two dimensional guides two mode numbers (or labels) would be needed.

The above equations have two types of solution: those corresponding to guided modes where the energy is confined near the axis of propagation, and radiation modes where the energy spreads out through the medium around the guide. The guided modes have a discrete number of solutions with corresponding propagation constants, β_{1} and are analogous to the bound state solutions of the Schrodinger
equation. The radiation modes are, however, analogous to unbound state solutions, and therefore represent a continuum of possible solutions.

For planar guides equations(2.14) may be simplified by setting $\partial ; \partial y=0$. A planar guide may therefore support transverse electric (TE) modes for which $E_{X_{r}}=0$, and transverse magnetic (TM) modes for which $\mathrm{H}_{\mathrm{x} 1}=0$. For TE modes $\mathrm{H}_{\mathrm{y}_{r}}=0$, and for $T M$ modes $E_{y_{r}}=0$. Thus, for $T E$ modes, from equations(2.14)

$$
\begin{align*}
& \mathrm{E}_{\mathrm{X} r^{\prime}}=0 \\
& \beta_{y} \mathrm{E}_{\mathrm{y} v^{\prime}}=-\omega \mu \mathrm{H}_{\mathrm{x}} \\
& \partial \mathrm{E}_{\mathrm{y}^{\prime}} / \partial \mathrm{x}=-\mathrm{j} \omega \mu \mathrm{H}_{\mathrm{Z}^{\prime}} \\
& \partial \mathrm{H}_{\mathrm{y} v^{\prime}} / \partial \mathrm{x}+\mathrm{j} \beta_{v} \mathrm{H}_{\mathrm{X}},=-\mathrm{j} \omega \varepsilon \mathrm{E}_{\mathrm{y}^{\prime}}
\end{align*}
$$

Combining the above equations yields that for E_{y} the wave equation is given by

$$
\partial^{2} \mathrm{E}_{\mathrm{y}} / \partial \mathrm{x}^{2}=\left(\beta^{2}-\mathrm{n}^{2} \mathrm{k}^{2}\right) \mathrm{E}_{\mathrm{y}}
$$

Further, by setting $E_{y}=0$ in equation(2.14), an analogous approach may be adopted to find the wave equation for TM - modes.

2.2 THREE-DIMENSIONAL WAVEGUIDES

The analysis of dielectric stripe guides is much more complex than that of planar guides, the modes of the guide having no exact analytic solutions. Approximate methods (eg. the Effective Index Method, or the Modified Effective Index Method) or numerical analysis techniques (eg. the Variational Analysis Technique, or the Finite Difference Method) must therefore be employed [9],[10],[14],[15].

2.2.1 The Effective Index Method

In this technique, propagation constants are calculated semi- analytically using equations(2.6) and (2.7) for two slab guides: the slab formed if the rib width were infinite (I), and the slab formed if the rib width were zero (II), as shown in
fig(1.1)(c) [9]. These propagation constants are taken as corresponding to the effective refractive indices inside and outside the rib, ie. n_{I} and $n_{I I}$ respectively, in the horizontal direction. Region II must therefore be able to support at least one mode. These values are then used to define a symmetric slab, with n_{I} confined by $n_{\text {II }}$ on either side, the solution of which gives the resulting propagation constant.

The approximation inherent in this method is that when the waveguide is initially considered as three distinct regions, field continuity conditions at the interface are not met. This method is therefore most accurate when the rib step height is small and the rib width much larger than the rib height. The value of the effective index, $n_{\text {eff }}$ of the mode calculated in this way is consequently greater than the true value.

This overestimation of $\mathrm{n}_{\text {eff }}$ can be unfortunate in the design of homojunction $\mathrm{N}^{+} / \mathrm{N} / \mathrm{N}^{++}$rib waveguides as herein under discussion. This is because in such waveguides $n_{\text {eff }}$ of the first order mode is normally not much greater than n_{s}, ie. the waveguide operates near to cut-off. Hence, using the Effective Index Method to design such guides may lead to the fabrication of waveguides which do not actually guide. Other more accurate methods must therefore be used in designing these guides in order to obviate this problem.

A partial solution to this problem is found in the Modified Effective Index Method, which applies an equivalent network approach to the problem of finding the guided modes in a dielectric thin film waveguide. The application of the so-called transverse resonance technique yields approximate analytical expressions for the Dispersion relations [14].

2.2.2 The Variational Analysis Technique

This method finds the modal field profiles and propagation constants using the Rayleigh-Ritz procedure. The method may be implemented using a computer program called .NWAVE. The wave-equation to be solved, in some region of arbitrary refractive index distribution, is the Helmholtz scalar wave-equation given

$$
\nabla_{x y}{ }^{2} E_{x}+k^{2} E_{x}=\beta^{2} E_{X}
$$

where, $E(x, y)=$ electric field

$$
\mathrm{k} \quad=\mathrm{k}(\mathrm{x}, \mathrm{y})
$$

Since equation(2.17) must be true over all space and is orthogonal, then

$$
\beta^{2}=F(E)=\frac{\iint_{-\infty}^{\infty}\left(\nabla^{2} E+k^{2} E\right) \cdot E d x d y}{\iint_{-\infty}^{\infty} E \cdot E d x d y}
$$

Now, in order to solve equation(2.18) a form of trial function, capable of approximating to $\mathrm{E}(\mathrm{x}, \mathrm{y})$ as closely as required, must be used. A linear combination of parabolic cylinder (Hermite-Gaussian) functions is therefore chosen because: (i) they resemble the modes of a waveguide; (ii) they are orthogonal; and (iii) they are continuous and tend to zero at $\pm \infty$,

The parabolic cylinder function of order n is defined as

$$
\mathrm{D}_{n}(\mathrm{z})=(-1)^{n} \exp \left[\frac{\mathrm{z}^{2}}{4}\right] \frac{\mathrm{d}^{n}}{\mathrm{~d} z^{n}}\left[\exp \left[\frac{-z^{2}}{2}\right]\right]
$$

The guide is assumed symmetric about the y-axis but not the x-axis. Therefore a zero shift parameter, x_{o} equal to the estimated height of the mode centre from the origin, is introduced. Also, the functions must be scaled using the parameters η and ξ, the estimated half width in the \mathbf{x} and y directions respectively. Further, the functions must be normalised, where the norm of the function $D_{j}(y / \xi)$ is given by $(2 \pi)^{1 / 2} \mathrm{i}!\xi$. We therefore have that
$E(x, y)=\sum_{j=0}^{n} \sum_{i=0}^{m} a_{i j}(2 \pi \eta \xi i!j!]^{-1 / 2} \cdot D_{j}\left[\begin{array}{c}y \\ - \\ \xi\end{array}\right] \cdot D_{i}\left[\frac{x-x_{0}}{\eta}\right]$
which is a product of x and y direction parabolic cylinder functions. Thus, by substituting equation(2.20) into equation(2.18), and setting $\partial F / \partial a_{i j}$ to zero, we obtain
the matrix eigenvalue equation

$$
\mathrm{N}-\beta^{2} \mathrm{I} \text { aa }=0
$$

where, $N=$ a symmetric square matrix (nm x nm)

The matrix N has nm possible eigenvalues, β^{2}, each with its corresponding eigenvector \mathbf{a}. The main task of the program .NWAVE is therefore to assemble the matrix \mathbf{N}, and calculate the eigenvalues and eigenvectors. The number of eigenvalues resulting from the program is specified at the beginning within a data file, these eigenvalues corresponding to the effective indices of the modes of the guide (odd or even - whichever was originally specified within the data file).

Thus if $\mathrm{n}_{\text {eff }}<\mathrm{n}_{\mathrm{II}}$, where $\mathrm{n}_{\mathrm{II}}=$ the effective refractive index of the region outside the rib (as defined in section(2.2.1)), then the mode will be cut-off, whereas if $\mathrm{n}_{\text {eff }}>\mathrm{n}_{\mathrm{II}}$, the mode will be guided.

2.2.3 The Finite Difference Technique

The basis of this method is the substitution of the wave equation by finite difference relations in terms of the fields at discrete mesh points, boundary conditions being enforced by enclosing the guide within an arbitrarily determined electric wall [10]. This technique thus leads to a matrix eigenvalue problem, and the iterative calculation of the field distribution and eigenvalue of the modal effective index, $n_{\text {eff }}$.

As shown in fig(2.2) the application of the finite difference technique requires the waveguide cross section to be divided into a rectangular mesh, which suggests that the field $E_{y}(x, y)$ at discrete mesh points may be expressed in terms of finite difference expressions [10]. For TE modes the finite difference expression has the form

Fig (2.2) Solution of the Wave Equation by the Finite Difference Technique: Definition of Axes and Mesh Points

$$
E(I, J)=\frac{E(I+1, J)+E(I-1, J)+R^{2}(E(I, J+1)+E(I, J-1))}{2\left[1+R^{2}\right]-k^{2} X^{2}-\left(n^{2}(I, J)-n_{e f f}\right)}
$$

where, $R \quad=X / Y$

```
n(I,J) = refractive index at point (IX,JY)
```

The waveguide dimensions are therefore $A X$ by $2 B Y$, with a centre line, $J=1$, and the boundary conditions that $E(0, J)=E(A, J)=E(I, B+1)=0$.

A variational expression for the propagation constant, β, of the waveguide can then be formed [10]. This produces a lower bound for β^{2}, which improves as E_{y} tends toward the actual mode distribution. This variational expression, which can also be expressed in Finite Difference form, is the Rayleigh Quotient, given by

$$
\beta^{2}=k^{2} N^{2} \geqslant \frac{\left.\iint_{x-\operatorname{sect}} \int \frac{\partial^{2} E_{y}}{\partial x^{2}}+\frac{\partial^{2} E_{y}}{\partial y^{2}}+k^{2} n^{2} E_{y}\right] E_{y} d x d y}{\iint_{x-\operatorname{sect}} E_{y^{2} d x d y}}
$$

The method operates by drawing up the mesh and assigning a refractive index value to each mesh point, the eigenvalue of $n_{e f f}$ then being estimated. Equation(2.22) is subsequently applied to each point and new field values calculated, these being substituted into the Rayleigh Quotient from which a better approximation to β, and hence $n_{\text {eff }}$, may be calculated. The process is then repeated by substituting these values into equation(2.22) until the eigenvalue of $n_{\text {eff }}$ converges satisfactorily.

The rate of convergence may be increased by implementing the method of Successive Over- Relaxation (SOR). This overcorrects at each stage by a factor, S $(0 \leqslant S \leqslant 2)$. If $S O R$ is used then equation(2.22) takes the form [10].

$$
E(I, J)=\frac{S\left[E(I+1, J)+E(I-1, J)+R^{2}(E(I, J+1)+E(I, J-1))\right]}{2\left(1+R^{2}\right)+k^{2} X^{2}\left(n^{2}(I, J)-n_{e} f f^{2}\right)}
$$

2.3.1 Stresses in Thin Films

Strain-induced optical waveguides can be formed in GaAs, and other III-V compound semiconductors, simply by opening windows or defining stripes in an applied surface film which is under compression or tension [10],[16],[17],[18],[19]. Since most applied films are likely to be under stress as a result of thermal expansion mismatch, as well as the deposition process, photoelastic waveguiding or antiwaveguiding may be present in many stripe-geometry III-V semiconductor optical devices. These simply formed waveguides may therefore be suitable for integrated optical applications.

The treatment of the stress field beneath a film window, given below, uses an isotropic average value of Young's modulus, E^{\prime}, and Poisson's ratio, u, for GaAs, even though GaAs has an anisotropic elastic compliance tensor. Now, from Kirby et al [18], and according to the definitions of fig(2.3)

$$
\sigma_{\mathrm{OX}} \mathrm{t}=\frac{E^{\prime} \mathrm{s}^{2}}{6 \rho(1-u)}=\text { force per unit length }
$$

where, ${ }^{\circ}$ ox $=$ compressive stress of film
$\mathrm{t}=$ film thickness
$E /(1-u)=1.23 \times 10^{12} \mathrm{dyncm}^{-2}$ in the $\{100\}$ plane (GaAs)
s $\quad=$ substrate thickness
$\rho \quad=$ radius of curvature of substrate

Thus $\sigma_{o x}$ may be found for any given film thickness by measuring the radius of curvature, ρ, of the substrate which is under compression or tension. may itself be measured using a sodium-interference- microscope objective [10].

As shown in fig(2.3), if a stripe window is present in the film then a force per unit length, $S=\left(\sigma_{0 x}{ }^{t}\left(\right.\right.$ dyncm $\left.^{-1}\right)$, is exerted on the GaAs substrate by the film

Fig(2.3) Configuration of Stripe Photoelastic Waveguide for Stress Calculations

edge. The applied force S causes the coordinates of point P to change from (x, z) to $(x+u, z+w)$. The displacements are given by [18]

$$
\begin{align*}
u= & 2 S\left[(A B-C) \ln \left(r_{1} / r_{2}\right)+A\left(x_{1}^{2} / r_{1}^{2}-x_{2}^{2} / r_{2}^{2}\right)\right] \\
\mathrm{w}= & S\left\{2 A\left[\left(x_{1} z / r_{1}^{2}\right)-\left(x_{1}^{2} z / r_{2}^{2}\right)\right]\right. \\
& \left.+2 C\left[\cos ^{-1}(z / r)-\cos ^{-1}\left(z / r_{2}\right)\right]\right\}
\end{align*}
$$

where, x_{1}, x_{2}, r_{1}, and r_{2} are shown in $f i g(2.3)$, and

$$
\begin{align*}
& \mathrm{A}=\left(1+v^{\prime}\right) / 2 E^{\prime}=1.63 \times 10^{-3} \mathrm{~cm}^{2} \mathrm{dyn}^{-1} \\
& \mathrm{~B}=\left(3-4 v^{\prime}\right)=2.08 \\
& \mathrm{C}=(1+v)(1-2 v) / 2 \pi E^{\prime}=8.81 \times 10^{-14} \mathrm{~cm}^{2} \mathrm{dyn}^{-1}
\end{align*}
$$

The three independent elastic constants of GaAs are $C_{11}=11.88 \times 10^{11}, C_{12}$ $=5.38 \times 10^{11}$, and $C_{44}=5.94 \times 10^{11} \mathrm{dyncm}^{-2}$. Also, the Voight average shear modulus $=\mu=C_{44}-\mathrm{H} / 5=4.86 \times 10^{1} \mathrm{dynncm}^{-2}$, and the Lame constant $=\lambda$ $=\mathrm{C}_{12}-\mathrm{H} / 5=4.30 \times 10^{11} \mathrm{dyncm}^{-2}$ where, $\mathrm{H}=2 \mathrm{C}_{44}+\mathrm{C}_{12}-\mathrm{C}_{11}$.

Also,

$$
\begin{align*}
& E^{\prime}=\mu(3 \lambda+2 \mu) /(\mu+\lambda)=1.2 \times 10^{12} \mathrm{dyncm}^{-2} \\
& v=\lambda / 2(\mu+\lambda)=0.23
\end{align*}
$$

These averaged elastic constants can thus be used in equations(2.26), (2.27) and (2.28). Further, the stresses and strains at any point (x, y) are defined as follows [10]

Explicit expressions for the strains $e_{x x}$ and $e_{z z}$ of equation(2.31) in the x and z directions respectively, may therefore be obtained by differentiating equations(2.26) and (2.27) with respect to x and z respectively, ie.

$$
\begin{aligned}
& e_{x x}=\frac{d u}{d x}=2 S\left[(A B-C)\left[\frac{x_{2}}{r_{2}^{2}}-\frac{x_{1}}{r_{1}^{2}}\right]-2 A z^{2}\left[\frac{x_{2}}{r_{2}^{4}}-\frac{x_{1}}{r_{1}^{4}}\right]\right] \\
& e_{z z}=\frac{d w}{d z}=2 S\left[A\left[\frac{x_{1}\left(r_{1}^{2}-2 z^{2}\right)}{r_{1}^{4}}-\frac{x_{2}\left(r_{2}^{2}-2 z^{2}\right)}{r_{2}^{4}}\right]\right. \\
& \left.-C\left[\frac{x_{1}}{r_{1}^{2}}-\frac{x_{2}}{r_{2}^{2}}\right]\right]
\end{aligned}
$$

2.3.2 The Photoelastic Effect

The Photoelastic effect describes the dependence of the dielectric constant, ε, and hence the refractive index, n, of a crystal on the stress (or strain) within the crystal. The dielectric constant profile produced by the strain field in the active layer may be found from [10]

$$
B_{i j}=P_{i j r s}{ }^{e} r s \quad(i j r s=x, y, z)
$$

```
where, \(B_{i j}=\) change \(i n\) the relative impermeability tensor \(B_{i j}\) (where
                        the relative impermeability is the inverse of the
                dielectric constant)
            \(P_{i j r s}=\) Photoelastic coefficients (forming a fourth rank tensor)
                        \(\mathrm{e}_{\mathrm{rs}}=\) strain tensor
```

Now, for crystals of class $4 \overline{3} \mathrm{~m}$, such as GaAs, there exist only three independent photoelastic constants p_{11}, p_{12}, and p_{44}, which are given with respect to the primary crystal axes $x^{\prime} y^{\prime} z^{\prime}$, shown in fig(2.4), and not those used in the previous stress calculation of section(2.3.1). Thus, to find the matrix $B_{i j}$ it is necessary to transform the strain field axes from $x y z$ to $x^{\prime} y^{\prime} z^{\prime}$, multiply by the photoelastic tensor, then transform the axes of the resulting $B_{i j}$ matrix back to the xyz axes. This gives [10]

Fig(2.4) Relationship between the Primary Crystal Axes x'y'z', and the xyz Axes used for Strain and Refractive Index Profile Calculations

Since the change in the relative dielectric impermeability, AB , is small in comparison to B , then by series expansion to a first approximation the change in dielectric constant can be found from

$$
\begin{array}{rr}
\Delta \varepsilon_{\mathrm{Xx}}=-\varepsilon^{2} \mathrm{~B}_{\mathrm{Xx}}=-\varepsilon^{2}\left\{\mathrm{e}_{\mathrm{xx}}\left[0.5\left(\mathrm{p}_{11}+\mathrm{p}_{12}\right)+\mathrm{p}_{44}\right]+\mathrm{e}_{\mathrm{zz}} \mathrm{p}_{12}\right\} & \text { for TE waves } \\
\Delta \varepsilon_{\mathrm{zz}}=-\varepsilon^{2} \mathrm{~B}_{\mathrm{zz}}=-\varepsilon^{2}\left\{\mathrm{e}_{\mathrm{xx}} \mathrm{p}_{12}+\mathrm{e}_{\mathrm{zz}} \mathrm{p}_{11}\right\} & \text { for TM waves }
\end{array}
$$

Equations(2.38) can consequently be used, in conjunction with equations(2.25), (2.28) and (2.35), to calculate the refractive index distribution for any proposed photoelastic waveguide.

2.4 LOSS MECHANISMS IN DIELECTRIC WAVEGUIDES

While the preceding sections of this Chapter have dealt with mode propagation in slab, rib, and photoelastic type waveguides, and the analysis of such propagation, this section introduces the concept of optical attenuation or loss within the guide.

Whereas optical propagation may be thought of as the propagation of optical rays or waves, loss mechanisms may be more readily described by viewing the optical radiation as a flux of photons. The total optical power will thus decrease as the optical radiation propagates along the waveguide, due to photons being scattered, absorbed, or radiated. Scattering losses usually predominate in glass or dielectric waveguides, while in semiconductor waveguides thickness variations of the order of $0.01 \mu \mathrm{~m}$ suggest that scattering losses are not important, absorption losses being much larger.

A measure of the optical loss may be derived through the exponential attenuation coefficient, $\alpha\left(\mathrm{cm}^{-}\right)$, where

$$
\mathrm{I}(\mathrm{z})=\mathrm{I}_{0} \mathrm{e}^{-\gamma z}
$$

where, $I=$ the optical intensity at any point, z along the waveguide length

```
IO}=the initial optical intensit
z = propagation distance as defined in fig(2.1)
```

Further, the loss, L in dBcm^{-1} may be given by

$$
\begin{aligned}
L & =10 \log _{10}\left[\frac{\mathrm{I}_{\mathrm{O}}}{\mathrm{I}}\right] \\
& =10 \log _{10}\left(\mathrm{e}^{-\alpha \mathrm{z}}\right) \\
& =4.3 \alpha
\end{aligned}
$$

Two types of scattering loss may be identfied: surface scattering due to surface roughness, and volume scattering due to defects, contaminant atoms, and voids within the crystal structure. Provided that the optical wavelength is larger than any crystal imperfections, losses due to surface scattering are normally much greater than those due to volume scattering.

In semiconductor waveguides significant loss may also occur due to both interband and intraband absorption. Interband absorption is due to photons with energy larger than the bandgap of the material giving up their energy to raise electrons from the valence band to the conduction band. Interband absorption may therefore be avoided by choosing a wavelength longer than that of the absorption edge of the waveguide material.

Intraband, or Free Carrier absorption is that occurring due to a photon giving its energy up to an electron which is already in the conduction band, or a hole already in the valence band. Further, Free Carrier absorption may occur due to the existence of shallow donor states near the conduction band edge, or shallow acceptor states near the valence band edge.

In Chapter 4, classical electromagnetic theory is used to find a relation between the doping density, N , and the corresponding Free Carrier absorption, ${ }^{{ }^{r}} \mathrm{FC}$. From this analysis one can also derive the change in the refractive index due to the presence of free carriers. This effect is obviously of importance to the homojunction waveguide structures proposed in the devices studied herein.

Losses may also result from radiation, where photons are no longer guided. and radiate into the media surrounding the waveguide structure. Radiation losses can. however, be neglected in comparison to scattering - or absorption - losses in sections of straight waveguide in which the modes are well confined. Radiation losses are usually significant only in sections of curved, or bent waveguide.

3.1 THE MECHANISM OF THE GUNN EFFECT

In 1963 Gunn [20],[21] discovered that a coherent microwave output was generated when a $D C$ electric field, exceeding a critical threshold value, E_{T}, of several thousand volts per cm, was applied across a randomly oriented sample of N-type GaAs or InP. The frequency of oscillation was approximately equal to the reciprocal of the carrier transit time across the length of the sample. Subsequently, Gunn made capacitance probe measurements of the spatial variation of the electric field within the material [22]. These measurements showed that a moving distribution of potential, propagating from the cathode to the anode, accompanied each current oscillation.

Kroemer [23] pointed out that the observed properties of the microwave oscillation were consistent with a theory of negative differential resistance (NDR) proposed by Ridley and Watkins [24], and independently by Hilsum [25],[26]. Ridley and Watkins had shown that the presence of NDR could result in the formation and propagation of high field dipole domains, ie. that a homogeneous material could become electrically heterogeneous.

Hilsum meanwhile had predicted that the phenomenon of the Transferred Electron effect could lead to NDR and produce amplification and oscillation.

The Transferred Electron effect is a direct result of the band structures of these semiconductors, which are shown in fig(3.1). It essentially consists of making the normally highly mobile conduction electrons in the lowest conduction band valley (Γ), transfer to higher energy, lower mobility states in the higher energy conduction band valleys (L). The action of the transfer is to reduce the average electron mobility within the semiconductor as the electron energy increases.

At low electric fields the conduction electrons occupy the bottom of the central valley, and are distributed over the thermal energy range. Energy is thus

Fig(3.1) Band Structures of GaAs and InP

delivered to the electrons during their acceleration until they collide with imperfections of the crystal lattice, eg. thermal lattice vibrations of a polar-optical character. As the electric field is increased further the equilibrium state of electrons exists at a higher mean energy, and the electrons will occupy a broader range of energies in the central valley of the conduction band.

When the kinetic energy of the electrons exceeds the intervalley separation, 1 . there is a probability that they will occupy one of the satellite valleys of the conduction band. In these valleys electrons have a higher effective mass, and so the density of states of the satellite valleys is much greater than that of the central valley. Further, the electron mobility of the satellite valley is therefore smaller than that of the central valley. Thus, even though an incremental increase in the applied electric field will produce a separate increase of drift velocity in each valley, the combined effects of electron transfer may cause NDR. The resulting velocity-field characteristics for GaAs and InP are shown in fig(3.2) [27].

Convincing evidence that the Transferred Electron effect was responsible for the oscillations observed by Gunn was supplied by the pressure experiments of Hutson et al [28] carried out on GaAs, and the GaAsP alloy experiments of Allen et al [29]. These experiments varied the separation between the Γ and L valley minima, and demonstrated that the threshold electric field for oscillation, E_{T}, decreases with decreasing Δ.

In the case of Hutson et al the variation in Δ was brought about by the application of hydrostatic pressure. It was found that Δ had a sensitivity of around $9.0 \times 10^{-}{ }^{3} \mathrm{eVkbar}^{-1}$, and that the threshold voltage decreased with increasing pressure, such that at a pressure of 26 kbar the instability vanished completely. This seemed reasonable since the accepted value of $\Delta(\mathrm{GaAs})$, ie. the separation between the central $\Gamma_{\hat{6}}$ valley and the first satellite valley, L_{f}, is 0.2845 eV [30], and should therefore be zero at such a pressure.

Without the application of hydrostatic pressure, Allen et al showed that by forming mixed compounds of GaAs $_{x} P_{1-x}$ with the compositional fraction, x, varying from 1.0 to 0.52 , \rfloor could be seen to vary from 0.36 eV to zero, with a

Fig(3.2) Velocity-Field Characteristics for GaAs and $\ln P$

corresponding variation of the threshold field, E_{T}.
More recent experimental work [31] has shown an increase with pressure of the electron effective mass in the Γ valley, thus resulting in an increase in the threshold field for pressures of up to 15 kbar . It has been suggested that this effect was masked in earlier studies due to the imperfect ohmic action of the device contacts, resulting in the presence of high fields at the cathode contact.

It can be deduced from the above that the manifestation of current instabilities in a Gunn device is dependent upon the following:
(a) The electrical characteristics of the semiconductor, ie.: (i) the intervalley separation, Δ, which must be several times greater than the thermal energy, kT / e $(\approx 0.025 \mathrm{eV})$ so that the satellite valleys are not populated at low values of electric field. (ii) the fundamental energy gap, $\mathrm{E}_{\mathrm{g}}(\approx \mathrm{I} .58 \mathrm{eV}$ for GaAs$)$ must be greater than Δ so that intervalley transfer occurs before impact ionisation of electrons across the band gap. (iii) the electron effective mass in the satellite valleys must be larger than that in the central valley. Electrons with sufficient energy will then more probably occupy the satellite valleys with their higher density of states. For GaAs, m_{Γ} $=0.0632 \mathrm{~m}_{\mathrm{e}}$ and $\mathrm{m}_{\mathrm{L}}=0.55 \mathrm{~m}_{\mathrm{e}}$, where $\mathrm{m}_{\mathrm{e}}=$ electron mass $=9.10956 \times 10^{-}{ }^{31} \mathrm{~kg}$. (iv) the electron mobility in the satellite valley should be less than that in the central valley, eg. for GaAs, $\mu_{\Gamma}=8000 \mathrm{~cm}^{2} V^{-}{ }^{1} \mathrm{~s}^{-1}$ and $\mu_{\mathrm{L}}=900 \mathrm{~cm}^{2} \mathrm{~V}^{-1}{ }^{1} \mathrm{~s}^{-}$, the mobility in the L valley being lower owing to the higher effective mass of electrons, and also the stronger scattering processes which are observed in the satellite valleys.
(b) The circuit within which the device operates.
(c) The boundary conditions imposed on the active region of the device, particularly those at the cathode.

Points (b) and (c) are dealt with further in section(3.4) of this Chapter.

3.2.1 Domain Formation

A noise process, or defect in the doping uniformity, within a uniformly doped device may cause a spontaneous fluctuation of the electron density, N. within the device. There will also be a corresponding electric field non-uniformity, related to the space-charge fluctuation by Poisson's equation

$$
\varepsilon \frac{\partial \mathrm{E}}{\partial \mathrm{x}}=\mathrm{q}\left(\mathrm{~N}-\mathrm{N}_{\mathrm{D}}\right)
$$

where, $\varepsilon=$ material dielectric constant
$\mathrm{E}=$ electric field
$\mathrm{q}=$ electronic charge
$N_{D}=$ doping density

If the average electric field is below the threshold field, E_{T}, then electrons in the region of higher field will move more quickly than those outside, and so the electrons in the region of space-charge accumulation will tend to fill in the depleted region. If, however, the average electric field is above E_{T}, then there will be a reduction in the electron velocity within the region of higher field. Electrons outside this region will therefore travel faster than those within, leading to a further accumulation of electrons on the cathode side of the fluctuation, and depletion of electrons on the anode side.

Following equation(3.1) there will also be an increase in the electric field associated with the fluctuation, and a corresponding reduction in the drift velocity. The fluctuation thus continues to grow exponentially until the electric field outside the fluctuation, E_{R}, has fallen below E_{T} and the electron drift velocity is equal inside and outside the fluctuation. In this way, a dipole domain, as shown in fig(3.3), nucleates and propagates from anode to cathode. The fully matured domain

Fig(3.3) The Generalised Profile of a Dipole Domain

will then drift through the device from cathode to anode at a constant velocity. The Current Density equation is given by

```
    J= - E - qD 位
where, \(J=\) electron current density
\(\rho=\) resistivity \(=1 / \mathrm{Nq} \mu\)
\(\mu=\) electron mobility
\(D=\) diffusion coefficient
```

Further, the one-dimensional continuity equation is given by

$$
\frac{\partial N}{\partial t}+-\frac{\partial J}{\partial \mathrm{~V}}=0
$$

Now, differentiating equation(3.2) with respect to x, and substituting in Poisson's equation yields that

$$
\frac{1 \partial \mathrm{~J}}{\mathrm{q} \partial \mathrm{x}}=\frac{1}{\rho \varepsilon}\left(\mathrm{~N}-\mathrm{N}_{\mathrm{D}}\right)-\mathrm{D} \frac{\partial^{2} \mathrm{~N}}{\partial \mathrm{x}^{2}}
$$

Substituting this into equation(3.3) gives that

$$
\frac{\partial N}{\partial t}+\frac{\left(N-N_{D}\right)}{\rho \varepsilon}-D \frac{\partial^{2} N}{\partial x^{2}}=0
$$

For the temporal response equation(3.6) has the solution

$$
N-N_{D}=\left(N-N_{D}\right)_{t=0} \exp \left(\frac{-t}{\tau R}\right)
$$

where, $\tau_{R}=$ the dielectric relaxation time

$$
\begin{aligned}
& \equiv \rho \varepsilon=\varepsilon / q \mu \mathrm{~N} \\
& \approx \varepsilon / q \mu \mathrm{~N}_{\mathrm{D}}
\end{aligned}
$$

The dielectric relaxation time represents the time constant for the decay of the space-charge to neutrality for a material with a positive differential resistivity, or the rate of growth of any charge imbalance for a material with negative differential resistivity. It should, however, be noted that the above is a simplified model of the behaviour of a space-charge instability

The formation of a strong space-charge instability is dependent upon the condition that enough charge is available in the semiconductor, and that the device is long enough to allow the necessary amount of space-charge to build up within the transit time of the electrons. If equation(3.6) is true throughout the entire transit time of the space-charge layer, then the maximum growth factor will be given by $\exp \left(L / v_{D}\left|\tau_{R}\right|\right)$ where, $v_{D}=$ the average drift velocity of the space-charge layer, and $L=$ the active layer length. This growth factor must be greater than unity for large space- charge growth, ie. $L^{/ / v_{D}}|i \mathrm{R}|>1$. Thus

$$
N_{D} \mathrm{~L}>\frac{\varepsilon \mathrm{V}}{\mathrm{q}\left|\mu_{-}\right|} \approx 10^{12} \mathrm{~cm}^{-2} \quad \text { for } \mathrm{N}-\mathrm{type} \text { CaAs and } \mathrm{InP}
$$

where, $\mu_{-}=$maximum negative differential mobility

$$
\approx-2400 \mathrm{~cm}^{2} \mathrm{~V}^{-1} \mathrm{~s}^{-1} \text { for CaAs }
$$

This condition defines the boundary between so-called sub-critical and super-critical Transferred Electron devices, ie. those in which domains do not form. and those in which domains do form.

3.2.2 Domain Dynamics

The analysis of stable uniform domain propagation was first proposed by Butcher [32] in the mid 1960 's, the relevant equations determining the behaviour of the electron system being Poisson's equation (equation(3.1)) and the Current Continuity equation

$$
\begin{aligned}
J(t) & =\operatorname{Nqv}(E)-q \frac{\partial}{\partial x}\{D(E) N\}+\varepsilon \frac{\partial E}{\partial t} \\
& =\text { conduction }+ \text { dirfusion }+ \text { displacement }
\end{aligned}
$$

We therefore seek a solution of equations(3.1) and (3.8) representing a high- field domain which propagates without change of shape from cathode to anode at a constant drift velocity, ${ }^{v} D$. Further, E and N are functions of $y=x-v^{t}$, such that $E \rightarrow E_{R}$, where $E_{R}=a$ constant value of electric field outwith the domain, and $\mathrm{N} \rightarrow \mathrm{N}_{\mathrm{D}}$ as $\mathrm{x} \rightarrow \pm \infty$.

It can be seen from $\operatorname{fig}(3.3)$ that within the domain N is a two-valued function of E, and that the domain consists of a depletion branch with $N<N_{D}$ which comes from the leading edge of the domain, and an accumulation branch with $\mathrm{N}>\mathrm{N}_{\mathrm{D}}$ which comes from the trailing edge. The two branches come together with $N=N_{D}$ when $E=E_{R}$ - the field outside the domain - and also when $E=E_{D}$ - the peak domain field. The relation between E and y may be represented as [33]

$$
y=y_{m}+\frac{\varepsilon}{q} \int_{E_{D}}^{E} \frac{d E}{\left(N-N_{D}\right)}
$$

where, $y_{m}=$ an arbitrary constant

It can also be shown that when $D(E)=D$ a constant independent of E, the formal solution of equations(3.1) and (3.8) is [32]
$\frac{N}{N_{D}}-\ln \left[\frac{N}{N_{D}}\right]-1=\frac{\varepsilon}{q N_{D} D} \int_{E_{R}}^{E}\left[\left\{v(E)-v_{D}\right\}-\left(\frac{N_{D}}{N}\right)\left\{v_{R}-v_{D}\right\}\right] d E$

Now, $N=N_{D}$ at $E=E_{R}$ or $E=E_{D}$. Thus, from equation(3.10) $v_{D}=v_{R}$.
Moreover, E_{D} is such as to make the integral in equation(3.10) vanish when ${ }^{v_{D}}=v_{R}$, ie. E_{D} is determined by the simple geometrical condition that the two shaded areas in fig(3.4) should be equal in magnitude. This condition is known as the Equal Areas Rule and holds, along with the identity $v_{D}=v_{R}$, for any value of

Fig(3.4) Schematic of Drift Velocity-Field (Full Curve), and Drift Velocity-Peak Domain Field (Broken Curve)

D so long as it is independent of E (see Appendix A).
Further, referring to equation(3.10). it can be seen that in the limit of zero diffusion the domain shape becomes very simple [33], ie. the domain will consist of a triangular field pulse to which is added a flat-topped region in long, low resistivity samples at high bias voltages. This can be seen since $N=N_{D}$ when $E=E_{R}$ or E_{D} for all values of D. However, when E lies between E_{R} and E_{D} the right hand side of equation(3.10) increases indefinitely as $\mathrm{D} \rightarrow 0$, and so $\mathrm{N} \rightarrow 0$ on the depletion branch, and $\mathrm{N} \rightarrow \infty$ on the accumulation branch. Further, as E_{R} decreases towards the minimum value of the field outwith the domain, $E_{R M}$, the peak domain field increases to a maximum value of $E_{D M}$. Moreover, for higher applied fields $v\left(E_{D M}\right)=v\left(E_{R M}\right)$, as predicted by the Equal Areas Rule, and so a flat-topped region of arbitrary width may be inserted between the accumulation and depletion layers.

The primary requirement for domain formation is a velocity-field characteristic with a region of negative differential resistivity; the field dependence of D is of secondary significance. The above analysis which assumes a field independent diffusion coefficient may therefore be expected to yield a useful semi- quantitative description of domain behaviour.

Butcher refined his theory further by introducing:
(a) an analytical approximation to the static velocity-field characteristic for GaAs which takes into account all the relevant scattering mechanisms [34]; and
(b) a constant diffusion coefficient, $D=178 \mathrm{~cm}^{2} \mathrm{sec}^{-1}$ [35].

With the analytical velocity-field characteristic used by Butcher, which saturates at high fields, E_{D} increases without limit as $E_{R} \rightarrow E_{R M}$. Consequently the height and width of the depletion layer triangle also increase without limit, and flat-topped domains of the type discussed above will never arise.

When D is finite the domain shape is more complicated and must be calculated numerically from equations(3.9) and (3.10). It has been observed that when E_{D} is close to E_{T}, ie. when E_{R} is close to E_{T}, the domain assumes a symetrical rounded shape, since the domain is then nearly neutral throughout its
width. However, as E_{D} increases, ie. E_{R} decreases, the domain assumes an assymetrical rounded triangular shape, due to the fact that the magnitude of the space-charge density in the depletion layer cannot exceed $q \cdot V_{D}$, while in the accumulation layer it can be much larger.

The final refinement which Butcher made to the theory was to introduce a field dependent diffusion coefficient, $D(E)$ [36].[37]. The field dependence of $D(E)$ can be found from the two- term Einstein relation

$$
\begin{align*}
& \mathrm{D}(\mathrm{E})=\left.-\frac{\mathrm{k}}{\mathrm{q}} \mathrm{(N}_{1} \mu_{1} \mathrm{~T}_{1}+\mathrm{N}_{2} \mu_{2} \mathrm{~T}_{2}\right) \\
&\text { where, } \left.\mathrm{N}_{1}+\mathrm{N}_{2}\right)
\end{aligned} \quad \begin{aligned}
\mathrm{N}_{1}= & \text { the electron density in the (000) valley } \\
\mathrm{N}_{2}= & \text { the electron density in the (100) valley } \\
\mu_{1}, \mu_{2}= & \text { electron mobilities in (000) and (100) valleys } \\
& \text { respectively } \\
\mathrm{T}_{1}, \mathrm{~T}_{2}= & \text { electrontemperatures in (000) and (100) valleys } \\
& \text { respectively }
\end{align*}
$$

The domain motion is still governed by equations(3.1) and (3.8). However, introducing a field dependent diffusion coefficient, the solution becomes [36]

$$
\begin{align*}
& \frac{N}{N_{D}}-\ln \left(\frac{N}{N_{D}}\right]-1=\frac{\varepsilon}{q N_{D}} \int_{E_{R}}^{E} \frac{\left(V(E)-v_{D}\right)}{D(E)} d E \\
&+\frac{\varepsilon}{q^{\prime} N_{D}}\left(v_{D}-v_{R}\right) \int_{E_{R}}^{E} \frac{N_{D}}{N(E) D(E)} d E \\
&-\int_{E_{R}}^{E} \frac{D^{\prime}(E)}{D(E)}\left[\frac{N(E)}{N_{D}}-1\right] d E
\end{align*}
$$

where, $D^{\prime}(E)=$ the gradient of the diffusion coefficient - field characteristic

It can thus be shown that the electron velocity inside the domain, ${ }^{v} \mathrm{D}$, is
larger than the electron velocity outside the domain, ${ }^{v} R$, and that the difference between v_{D} and v_{R} may be determined by a weighted average of the derivative of D over the domain [36],[37]. The true dynamic characteristic will therefore lie somewhat above that determined by the Equal Areas Rule.

3.3 CONVENTIONAL GUNN DIODE STRUCTURES

Possible Gunn diode chip configurations are shown in fig(3.5)(a)-(f). The diodes represented in (a)-(d) depict vertical sandwich-type structures, wherein the direction of current flow is perpendicular to the conducting substrate. Types (e) and (f) are of a coplanar- contact structure, ie. a 'surface- oriented' or 'transverse'- type device, wherein the current flow is parallel to an insulating substrate.

Type (a) consists of an active material sandwiched between two metal layers forming ohmic contacts. This is the simplest form of Gunn diode used frequently during the earlier stage of the experimental study of the Gunn effect.

Structures (b) - (d) are similar to structure (a) in that the contacts again form a sandwich structure, the active layer being grown epitaxially on a highly doped substrate. These are currently the most favoured configurations for commercial Gunn devices. In the case of device (b) the top metal contact is small in order to reduce the active device area, and therefore reduce the current drawn by the device, as well as to minimise surface breakdown. Devices (c) and (d) have been etched into a mesa structure in order to achieve the same reduction.

The planar structures of devices (e) and (f) are particularly useful for the incorporation of Gunn devices into integrated circuits, since their insulating substrate allows for the electrical isolation of adjacent discrete devices. Device (e), which still essentially forms a sandwich structure, is produced by selective and successive etching and epitaxial regrowth of $\mathrm{N}^{+}, \mathrm{N}$ and N^{+}layers, with SiO_{2} or $\mathrm{Si}_{2} \mathrm{~N}_{4}$ films acting as a lithographic mask. Device (f) is however fundamentally different from the other structures since the active layer is grown directly onto a semi-insulating substrate. The ohmic contacts may be either applied directly to the surface of the active layer,

Fig(3.5) Gunn Diode Chip Configurations

(b)

(c)

Ohmic Contact

(d)

(e)

(f)

Semi-Insulating Material
or to the top of N^{+}contact regions defined by selective etching and/or epitaxial regrowth. The surface of planar structures is often protected by an insulating film, eg. a SiO_{2} film, sputtered onto the GaAs.

Plessey Microwave Ltd. supplied a number of X-Band and J-Band Gunn diode chips, the structures of which are shown in fig(3.6)(a). Shown in $\mathrm{fig}(3.6)(\mathrm{b})$ are electron micrographs of a typical J-Band diode chip, which is approximately $200 \mu \mathrm{~m} \times 200 \mu \mathrm{~m} \times 50 \mu \mathrm{~m}$ in size. As can be seen from these micrographs, the J-Band chip has on its top surface a mesa-type structure approximately $53 \mu \mathrm{~m}$ in diameter, and a spot ohmic contact approximately $41 \mu \mathrm{~m}$ in diameter. The X - Band diode is of a similar structure, having a mesa diameter of approximately $77 \mu \mathrm{~m}$ and a contact diameter of approximately $66 \mu \mathrm{~m}$.

Shown in fig(3.7) is a Gunn oscillator microwave source, supplied by MESL Ltd.. As can be seen, the source consists of a hollow cavity machined from solid metal in which are separately housed a Gunn diode and a varactor diode. The efficiency of the process of conversion of DC energy into microwave energy is fairly small, eg. the device of fig(3.7) requires about 5 Watts of DC power to produce 50 mW of microwave power, ie. the device has a conversion efficiency of around 1%. This efficiency may decrease if the source is operated over a range of frequencies.

The function of the varactor (variable-reacter) diode is to provide electronic tuning of the Gunn diode source, and may be used to produce a frequency change of around 100 MHz for a change in applied voltage from 0 to 30 V . Mechanical tuning of the oscillator from about 8 GHz to 10 GHz is achieved by means of a knurled head screw, which may be used to vary the resonant frequency of the cavity.

Fig(3.6) Commercial Gunn Diodes
(a) Diode Structures

Anode
Ohmic Contact

	X-Band	J-Band
$\mathrm{b}(\mu \mathrm{m})$	2.8	2.0
$\mathrm{~N}_{\mathrm{b}}\left(\mathrm{cm}^{-3}\right)$	6.5×10^{17}	2.0×10^{17}
$\mathrm{f}(\mu \mathrm{m})$	9.2	5.0
$\mathrm{~N}_{\mathrm{f}}\left(\mathrm{cm}^{-3}\right)$	8.0×10^{15}	3.8×10^{15}
$\mathrm{~N}_{\mathrm{f}} \cdot \mathrm{f}\left(\mathrm{m}^{-2}\right)$	7.2×10^{16}	1.9×10^{16}
$\mathrm{~s}(\mu \mathrm{~m})$	50	50
$\mathrm{~N}_{\mathrm{s}}\left(\mathrm{cm}^{-3}\right)$	1.0×10^{18}	1.0×10^{18}

(b) Electron Micrographs of a J-Band Diode
(i) The Diode Chip

(ii) The Etched Mesa Structure

Fig(3.7) The M.E.S.L. Gunn Oscillator
(a) Assembled

(b) Disassembled

If a Gunn diode is placed within a resonant circuit or cavity, one of several modes of oscillation may result. The equivalent circuit of a Gunn oscillator is represented in fig(3.8). The inductance, L_{1} and capacitance, C_{1}, comprise the resonant circuit or cavity, and G is the circuit load corresponding to useful $R F$ dissipation and to power loss.

The mode of oscillation depends upon: (a) the relative values of the domain transit time, T_{D}, and the circuit resonant period, T_{R}; (b) the relative values of the dielectric relaxation time, τ_{R}, within the Gunn diode and T_{R}; and (c) the circuit loading G. Under these conditions several modes of oscillation are possible when the bias voltage across the Gunn device, $V_{\text {bias }}$, is greater than the threshold voltage, V_{T}. These modes are explained in greater detail below.

3.4.1 Constant Voltage Modes

There are three common Constant Voltage Modes, wherein domains will form and propagate. These are normally referred to as Transit Time Mode, Delayed Domain Mode and Quenched Domain Mode [38],[39],[40],[41].

In the case of Transit Time Mode a DC bias is applied to the Gunn device. The circuit is therefore purely resistive, and the frequency of oscillation is determined by the reciprocal of the space- charge transit time across the device. For this mode a current spike will occur when a domain enters the anode and renucleates at the cathode. A disadvantage of this mode is that the frequency of oscillation is defined by the domain transit time. The mode is therefore not frequency tuneable.

In Delayed Domain Mode, the resonant circuit applies a sinusoidal voltage of period T_{e} to the Gunn device, the amplitude of the waveform being large enough to cause the applied voltage to fall below the threshold voltage, V_{T}, over a portion of each cycle. If the domain transit time, T_{D}, is less than T_{e}, then when a domain

Fig(3.8) Equivalent Circuit of a Gunn Oscillator

disappears into the anode the bias voltage will be below threshold. The next domain cannot therefore nucleate until the voltage once again rises above threshold. In this way the frequency of oscillation, f_{R}, may be controlled and tuned within the range $\mathrm{f}_{\mathrm{D}}>\mathrm{f}_{\mathrm{R}}>\mathrm{f}_{\mathrm{D}} / 2$, where $\mathrm{f}_{\mathrm{D}}=$ the Transit Time Mode frequency.

In Quenched Domain Mode the voltage across the Gunn device falls below the domain sustaining voltage, V_{S}, for part of each cycle, where $V_{S}=E_{R M} \cdot L$, and L $=$ the active length of the device. In this way frequencies higher than that of the Transit Time frequency may be generated since, as the bias voltage falls below V_{s}, the domain is quenched as it propagates between cathode and anode, and cannot renucleate until the bias voltage again rises above the threshold voltage, V_{T}. The upper frequency obtainable by this method is limited by the domain relaxation time, ${ }^{\tau} \mathbf{R}$ [39], ie. the time taken for a domain to nucleate or extinguish.

The formation of dipole domains basically masks the negative differential resistivity (NDR) responsible for their formation. Attempts have therefore been made to find methods to completely prevent the formation of space charge domains, and in so doing make use of the NDR as manifested by the static velocity- field characteristic. One such domain free mode is the Limited Space-Charge Accumulation Mode (LSA), in which the electric field across the device rises from below the threshold voltage, V_{T}, and falls back again quickly enough that the space charge distribution associated with the dipole domain does not have time to form. In this way only the primary accumulation layer forms near the cathode. Such a domain free mode is however of no use in the devices under consideration here.

3.4.2 Constant Current Modes

To this point only so called Constant Voltage Modes have been discussed, wherein the action of the domain is defined by the voltage applied across the contacts of the diode. As shown in fig(3.9)(a) for Constant Voltage Modes, the potential at points $x=0$ and $x=L$ are fixed, and the growth of a high-field dipole domain will cause the field outwith the domain to be reduced. When the voltage is

Fig(3.9) Potential Distribution within a Gunn Diode
(a) Under Constant Voltage Conditions

(b) Under Constant Current Conditions

applied to the diode, initially a linear (ohmic) distribution of potential exists (curve(1)). However, thereafter the domain nucleates at the cathode (curve(2)) and begins to propagate towards the anode (curves(3), (4) and (5)). As the domain propagates it can be seen that the field at the cathode becomes less than the value, corresponding to curve(1), which was sufficient to nucleate the domain. Thus, for Constant Voltage Modes, the existence of one domain within the diode inhibits the formation of a further domain, until the first domain reaches the anode and the potential distribution momentarily reverts to that of curve(1).

By contrast under Constant Current conditions [22], as shown in fig(3.9)(b), the field at the cathode is independent of the presence or absence of a domain elsewhere in the diode, and so further domains may be formed at any time. In Constant Current Modes a fixed current is forced through the specimen, the current being such that the threshold for instability is exceeded. Initially, as for Constant Voltage Modes, a linear distribution of potential exists (curve(1)). Thereafter, a domain forms (curve(2)) and propagates through the specimen (curves(3), (4) and (5)), the field outside the domain remaining approximately constant. Finally, the domain reaches the anode and passes out of the diode. Gunn [22] achieved approximately Constant Current conditions by applying to a GaAs sample above threshold, positive rectangular voltage pulses of a few nanoseconds duration via a circuit having a 50Ω impedance.

From the above description of Constant Voltage and Constant Current Modes an important distinction can be drawn between the two, ie. for any given point x along the length of the diode, under Constant Voltage conditions there will be two occasions when there is a change in the electric field: (a) when the domain forms; and (b) when the domain passes over the point x. This differs from what happens under Constant Current conditions, wherein there will be only one perturbation in the field at point x, ie. when the domain propagates across it.

This distinction is important to the operation of the devices under consideration herein, since a change in the electric field at a point will give rise to a corresponding change in the optical characteristics at that point.

Constant Current operation may therefore be more suitable for an optical modulator exploiting the Gunn effect, since for Constant Current operation: (a) no redistribution of the electric field throughout the device occurs during the time (equal to the dielectric relaxation time, $\tau_{\mathrm{R}} \approx 20 \mathrm{pS}$) which exists between the extinction of a domain at the anode and the nucleation of a new domain at the cathode; and (b) more than one domain can exist within the diode at any given time, and so modulation frequencies greater than those possible in Constant Voltage Modes may be obtainable.

CHAPTER 4

OPTICAL MODULATION

4.1 ELECTRO-OPTIC MODULATION

Thin-film optical waveguide modulators are important in the development of integrated optical circuits, due to their high potential bandwidths, low electrical power requirements, and compatibility with other thin- film components such as laser diodes or waveguides [42].

Optical modulators may be classified according to the physical effect employed in their operation. These have most commonly been, to date, either the ElectroOptic, Acousto-Optic, or Magneto-Optic effects. Materials used in the fabrication of Electro- Optic modulators have been III-V and II- VI semiconducting compounds, as well as LiNbO_{3} and the liquid nitrobenzene. Glass films on quartz, or LiNbO_{3} substrates, have been used in Acousto-Optic devices, while garnets have been used in the production of Magneto- Optic devices.

Electro-Optic modulation depends upon one, or a combination of: (a) a change in the index of refraction; (b) a change in the optical absorption; and (c) a change in the scattering, of the material through which the light propagates. These changes are due to the application of an electric field across the material. Effect (c) is seen in some liquid crystals.

4.2 OPTICAL EFFECTS DUE TO A PROPAGATING GUNN DOMAIN

With reference to the generalised domain profile of fig(3.3), it can be seen that there are four possible contributions which may perturb the optical characteristics of the material through which a Gunn domain propagates. These contributions are due to:
(a) the Linear Electro-Optic (Pockel's) effect;
(b) the Electro-Absorption (Franz-Keldysh) effect;
(c) the Free Carrier Plasma effect; and
(d) the Free Carrier Absorption effect.

Contributions (a) and (b) are due to the electric field profile associated with the domain, while (c) and (d) are due to the variation in the carrier density. Further, contributions (a) and (c) perturb the refractive index of the material, whereas (b) and (d) perturb the optical absorption.

4.2.1 The Linear Electro-Optic Effect

The Linear Electro-Optic effect has to date been the most exploited physical effect used in the construction of light modulators. The effect is observed only in crystalline solids lacking a centre of symmetry. The change in the refractive index produced by the Linear Electro- Optic effect can be most conveniently characterised by the change in the components of the optical index ellipsoid [43]. In the absence of an electric field the index ellipsoid may be expressed as

$$
\frac{x^{2}}{n_{x^{2}}^{2}}+\frac{y^{2}}{n_{y^{2}}}+\frac{z^{2}}{n_{z^{2}}}=1
$$

where, $\mathrm{n}_{\mathrm{x}}, \mathrm{n}_{\mathrm{y}}$, and n_{z} are the three principle refractive indices, with optical axes coincident with the crystallographic axes. In a zincblende crystal, such as GaAs, InP or CdTe, $n_{x}=n_{y}=n_{z}=n_{0}$. Thus, equation(4.1) becomes

$$
\frac{x^{2}+y^{2}+z^{2}}{n_{0}^{2}}=1
$$

The effect of an applied electric field, $E\left(E_{\mathbf{x}}, \mathrm{E}_{\mathbf{y}}, \mathrm{E}_{\mathbf{z}}\right)$, on a propagating optical signal may be conveniently expressed by giving the changes in the constants $1 / n_{x}{ }^{2}$, $1 / \mathrm{n}_{\mathrm{y}}{ }^{2}$, and $1 / \mathrm{n}_{\mathrm{z}}{ }^{2}$ of the index ellipsoid. By convention, in the presence of an electric field equation(4.1) may be written as [44]

$$
\begin{aligned}
& {\left[\frac{1}{n^{2}}\right]_{1} x^{2}+\left[\frac{1}{n^{2}}\right]_{2}^{y^{2}+\left[\frac{1}{n^{2}}\right]_{3}^{z^{2}}} \begin{aligned}
& \\
&+2\left[\frac{1}{n^{2}}\right]_{4} y z+2\left[\frac{1}{n^{2}}\right]_{5} x z+2\left[\frac{1}{n^{2}}\right]_{6} x y=1
\end{aligned},=1}
\end{aligned}
$$

Since equation(4.3) is equivalent to equation(4.1) in the absence of an electric field then, for $\mathrm{E}=0$

$$
\begin{aligned}
& {\left[\frac{1}{n^{2}}\right]_{1}=\frac{1}{n_{x^{2}}}\left[\frac{1}{n^{2}}\right]_{2}=\frac{1}{n_{y^{2}}} \quad\left[\frac{1}{n^{2}}\right]_{3}=\frac{1}{n_{z^{2}}}} \\
& {\left[\frac{1}{n^{2}}\right]_{4}=\left[\frac{1}{n^{2}}\right]_{5}=\left[\frac{1}{n^{2}}\right]_{6}=0}
\end{aligned}
$$

Also, the change in the coefficients $\left(1 / n^{2}\right)_{\mathrm{i}}$, where $\mathrm{i}=1,2, \ldots, 6$, due to E is given by

$$
\Delta\left[\frac{1}{n^{2}}\right]_{i}=\sum_{j=1}^{3} r_{i j} E_{j}
$$

where, $x=1, y=2$ and $z=3$ by convention. In matrix form equation(4.5) is shown as

$$
\left[\begin{array}{c}
\Delta\left[\frac{1}{n^{2}}\right]_{1} \\
\Delta\left[\frac{1}{n^{2}}\right]_{2} \\
\Delta\left[\frac{1}{n^{2}}\right]_{3} \\
\Delta\left[\frac{1}{n^{2}}\right]_{4} \\
\Delta\left[\frac{1}{n^{2}}\right]_{5} \\
\Delta\left[\frac{1}{n^{2}}\right]_{6}
\end{array}\right]=\left[\begin{array}{lll}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33} \\
r_{41} & r_{42} & r_{43} \\
r_{51} & r_{52} & r_{53} \\
r_{61} & r_{62} & r_{63}
\end{array}\right]\left[\begin{array}{l}
E_{1} \\
E_{2} \\
E_{3}
\end{array}\right]
$$

The 6×3 matrix of equation(4.6) with elements $r_{i j}$ is known as the Electro-Optic tensor. The form of the tensor may be derived from symmetry considerations [45]. For crystals of the zinc-blende class the Electro-Optic tensor
has the form

$$
\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
\mathbf{r}_{41} & 0 & 0 \\
0 & \mathbf{r}_{52} & 0 \\
0 & 0 & \mathbf{r}_{63}
\end{array}\right]
$$

ie. the three non-zero Electro-Optic tensor elements are $r_{41}, r_{52}=r_{41}$, and $r_{63}=r_{41}$. Now, using equation(4.2) with

$$
\left[\frac{1}{n^{2}}\right]_{1}=\left[\frac{1}{n^{2}}\right]_{2}=\left[\frac{1}{n^{2}}\right]_{3}=\frac{1}{n^{2} o}
$$

it can be shown that, if an electric field is applied to the crystal, the index ellipsoid is deformed according to

$$
\frac{x^{2}+y^{2}+z^{2}}{n_{o}^{2}}+2 r_{41}\left(E_{x} y z+E_{y} z x+E_{z} x y\right)=1
$$

Equation(4.8) may be written with reference to a new coordinate system $x^{\prime}, y^{\prime}, z^{\prime}$. The directions of this new system may be determined by rotating the original x, y, z system to coincide with those of equation(4.8), ie.

$$
\begin{align*}
& \frac{x^{\prime}}{n_{x}^{\prime}{ }^{2}}+\frac{y^{\prime}}{n_{y^{\prime}}^{2}}+\frac{z^{\prime}}{n_{z^{\prime}}{ }^{2}}=1 \\
& \text { and }\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
\mathrm{z}
\end{array}\right]=\left[\begin{array}{lll}
\alpha_{1} & \beta_{1} & \gamma_{1} \\
\alpha_{2} & \beta_{2} & \gamma_{2} \\
\alpha_{3} & \beta_{3} & \gamma_{3}
\end{array}\right]\left[\begin{array}{l}
\mathrm{x}^{\prime} \\
\mathrm{y}^{\prime} \\
\mathrm{z}^{\prime}
\end{array}\right] \\
& \text { where, } n_{x}^{\prime}, n_{y}^{\prime}, n_{z}^{\prime} \quad=\text { three principle indices when an electric field } \\
& \text { is applied } \\
& \alpha_{1}, \beta_{1}, \gamma_{1} \ldots=\text { direction cosines relating } x, y, z \text { and } x^{\prime}, y^{\prime}, \\
& z^{\prime}
\end{align*}
$$

Further, $n_{x}^{\prime}, n_{y}^{\prime}, n_{z}^{\prime}$ may be found from the roots of the discriminant [43]

$$
\left|\begin{array}{lll}
\frac{1}{n_{0}^{2}}-\eta & r_{4,}, E_{x} & r_{4}, E_{y} \\
r_{4,1} E_{z} & \frac{1}{n_{0}{ }^{2}}-\eta & r_{4,} E_{x} \\
r_{4,} E_{y} & r_{4,}, E_{x} & \frac{1}{n_{0}^{2}}-\eta
\end{array}\right|=0
$$

For a zinc-blende crystal three electric field directions may be considered, ie. a field perpendicular to $\mathbf{a}(100),(0,11)$ or (111) crystal planes. The natural cleavage planes of GaAs are the $\langle 011\rangle$ set of planes. The devices under consideration (see fig(1.3)) are grown on or near to a (100) plane. It can therefore be seen, referring to $\mathrm{fig}(4.1)(\mathrm{a})$, that for the vertical/slab and vertical/rib devices of $\mathrm{fig}(1.3)(\mathrm{a})$ and (b) respectively, the domain propagates in the [100] direction. It can further be seen, referring to fig(4.1)(b), that for the planar/photoelastic device of fig(1.3)(c) the domain propagates in the [$\left.\begin{array}{lll}0 & 1 & 1\end{array}\right]$ direction. The influence of an applied field in the [1000] and [$\left.\begin{array}{lll}0 & 1 & 1\end{array}\right]$ directions is summarised in table(4.1)

It should be noted from table(4.1) that for the vertical devices, optical radiation propagating in the [$\left.0 \begin{array}{lll}1 & 1 & 1\end{array}\right]$ direction will undergo a positive phase shift, while radiation propagating in the $[0 \overline{1} 1]$ direction will undergo a negative phase shift. It can further be seen from table(4.1) that for the planar device, radiation propagating in the $\left[\begin{array}{ll}0 & 1\end{array}\right]$ direction will experience a phase shift, while radiation propagating in the $\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]$ direction will experience no such shift.

4.2.2 The Electro-Absorption Effect

Optical modulation can also be produced by employing the Electro-Absorption (Franz-Keldysh) effect. In this effect the absorption edge of a semiconductor is shifted by the application of a strong electric field. The absorption coefficient, α, of photons whose energy is close to the energy gap depends very strongly on the

Fig(4.1) Crystallography of Vertical and Planar Devices
(a) Vertical Device

Direction of Domain Propagation $=[100]$
(b) Planar Device

Direction of Domain Propagation $=[011]$

Table(4.1) Influence on Optical Characteristics of an Applied Electric Field, E due to the Linear Electro-Optic Effect

	E $\perp(100)$	E $\perp(011)$
Applied Field	$\mathrm{E}_{\mathrm{x}}=\mathrm{E}_{\mathrm{y}}=0, \mathrm{E}_{\mathrm{z}}=\mathrm{E}$	$\mathrm{E}_{\mathrm{x}}=\mathrm{E}_{\mathrm{y}}=\mathrm{E} / /_{2}, \mathrm{E}_{\mathrm{z}}=0$
$\mathrm{n}_{\mathrm{x}}^{\prime}$	$\mathrm{n}_{\mathrm{O}}+\frac{1}{2} \mathrm{n}_{\mathrm{o}}{ }^{3} \mathrm{r}_{4}{ }_{1} \mathrm{E}$	$\mathrm{n}_{\mathrm{o}}+\frac{1}{2} \mathrm{n}_{\mathrm{o}}{ }^{3} \mathrm{r}_{4} \mathrm{E}$
$\mathrm{n}_{\mathrm{y}}^{\prime}$	$n_{0}-\frac{1}{2} n_{0}{ }^{3} r_{4}{ }^{1} \mathrm{E}$	$\mathrm{n}_{\mathrm{O}}-\frac{1}{2} \mathrm{n}_{0}{ }^{3} \mathrm{r}_{4} \mathrm{E}$
$\mathrm{n}_{\mathrm{z}}^{\prime}$	n_{0}	n_{0}
Phase Difference, Γ	$\begin{aligned} & \Gamma\left[\begin{array}{lll} 1 & 0 & 0 \end{array}\right]=\frac{2 \pi}{\lambda} n_{0}{ }^{3} r_{4}, V \\ & \Gamma\left[\begin{array}{llll} 0 & 0 & 1 \end{array}\right]=\Gamma\left[\begin{array}{lll} 0 & 0 \end{array}\right]=0 \\ & \Gamma\left[\begin{array}{lll} 0 & 1 & 1 \end{array}\right]=\frac{\pi L}{\lambda d} n_{o}{ }^{3} r_{41} v \end{aligned}$	$\begin{aligned} & \Gamma[100]=0 \\ & \Gamma[011]=0 \\ & \Gamma[0 \overline{1} 1]=\frac{2 \pi L}{\lambda d} n_{0}{ }^{3} r_{4}, \mathrm{v} \end{aligned}$

where, $\mathrm{V}=$ applied voltage
L = thickness of crystal in direction of applied electric field
$d=$ thickness of crystal in direction of optical propagation
difference between the photon energy and the energy gap. This is due to the steepness of the absorption edge in direct bandgap semiconductors, such as GaAs.

Illumination of the semiconductor material with photons of energy nearly equal to the bandgap energy, and the simultaneous application of a strong electric field, produces a large increase in the absorption of these photons. This is due to Electro- Absorption, which shifts the absorption edge in the direction of lower energies.

Electro- Absorption may be explained with reference to the energy band diagram of fig(4.2). As can be seen from this diagram, in the presence of a strong electric field the band edges bend. The presence of the electric field thus effectively broadens the states of the conduction band. There is then a finite probability of finding the electron within the energy gap. The effective bandgap is reduced, and hence the absorption edge is shifted to a longer wavelength. The effective change in bandgap energy is given by [46]

$$
\Delta E=\frac{3}{2}\left(m^{*}\right)^{-1 / 3}(q \hbar E)^{2 / 3}
$$

where, m^{*} - carrier effective mass
$\mathrm{q}=$ electronic charge
$\mathrm{h}=\mathrm{h} / 2 \pi$
h = Planck's constant
E = electric field strength

In conventional Electro- Absorption modulators, increasing x represents increasing distance from the surface of the semiconductor, where there is a shallow $\mathrm{p}-\mathrm{n}$ junction or Schottky contact. In such an arrangement a reverse bias voltage is applied at the device surface, resulting in increased band bending and hence absorption. In the devices proposed herein however, increasing \mathbf{x} represents increasing distance from the propagating domain at any given time.

Fig(4.2) Energy Band Diagram

$$
\begin{aligned}
& \mathrm{Ec}=\text { Conduction Band Edge } \\
& \mathrm{Ev}=\text { Valence Band Edge }
\end{aligned}
$$

Considering the generalised domain shape of fig(3.3), it can be seen that there is a variation in the carrier density throughout the extent of the domain. This variation may give rise to a change either in the absorption or the refractive index of the material across which the domain extends.

Free Carrier absorption (intraband absorption) occurs when a photon gives up its energy to an electron which is already in the conduction band, or a hole already in the valence band, thus raising it to a higher energy [11].

With reference to electromagnetic theory, in the presence of an electric field $\mathrm{E}_{\mathrm{o}} \exp (\mathrm{i} \omega t)$, the motion of an electron is given by the product of the electron mass times acceleration, plus any damping acting on the electron motion due to interaction with the lattice, ie.

$$
m^{*} \frac{d^{2} x}{d t^{2}}+m^{*} g \frac{d x}{d t}=-q E_{o} e^{i \omega t}
$$

where, $x=$ displacement

$$
g=\text { damping factor }
$$

Solving equation(4.12) gives that

$$
x=\frac{\left(q / E_{0}\right) / m^{*}}{\omega^{2}-i \omega g} e^{i \omega t}
$$

Now, the material dielectric constant is

$$
\begin{align*}
K & =\frac{\varepsilon}{\varepsilon_{0}}=1+\frac{P}{\varepsilon_{0} E} \\
\text { where, } P & =\text { polarisation } \\
& =P_{0}+P_{1} \\
P_{0} & =\text { polarisation without carriers }
\end{align*}
$$

```
P
        applied electric field
        = -Nq又
N = free carrier concentration
```

Thus, employing equations(4.14) and (4.13), under an applied field

$$
\begin{align*}
K & =1+\frac{P}{\varepsilon_{o} E}+\frac{P_{1}}{\varepsilon_{o} E} \\
& =n_{o}^{2}+\frac{P_{1}}{\varepsilon_{0} E} \\
& =n-\frac{\left(N q^{2}\right) /\left(m^{*} \varepsilon_{o}\right)}{\omega^{2}-i \omega g}
\end{align*}
$$

Hence, the real and imaginary parts of the dielectric constant are given as

$$
\begin{aligned}
& K_{r}=n_{o}^{2}-\frac{\left(N q^{2}\right) /\left(\mathrm{m}^{*} \varepsilon_{0}\right)}{\omega^{2}+g^{2}} \\
& K_{i}=\frac{\left(N q^{2} g\right) /\left(\mathrm{m}^{\star} \omega \varepsilon_{o}\right)}{\omega^{2}+\mathrm{g}^{2}}
\end{aligned}
$$

Now for steady state $d^{2} x / d t^{2}=0$. Thus, equation(4.12) becomes

$$
m^{*} g \frac{d x}{d t}=q E
$$

ie. $\quad g=\frac{q}{m^{*}} \frac{E}{(d x / d t)}=\frac{q}{\mu m^{*}}$

Taking $\mathrm{q}=1.60218 \times 10^{-19} \mathrm{C}, \mu_{\Gamma}(\mathrm{GaAs}) \approx 0.8 \mathrm{~m}^{2} \mathrm{~V}^{-1} \mathrm{~s}^{-1}$ and $\mathrm{m}_{\Gamma}{ }^{*}(\mathrm{GaAs}) \approx 0.0632 \mathrm{~m}_{\mathrm{e}}$ gives that $g \approx 3.45 \times 10^{12} s^{-1}$. Also, at optical frequencies $\omega \approx 10^{15} s^{-1}$. Thus, approximating equation(4.16) gives

$$
\begin{aligned}
\mathrm{K}_{\mathrm{r}} & =\mathrm{n}_{\mathrm{o}}^{2}-\frac{\mathrm{Nq}^{2}}{\mathrm{~m}^{*} \varepsilon_{0} \omega^{2}} \\
\mathrm{~K}_{\mathrm{i}} & =\frac{\mathrm{Nq}^{2} \mathrm{~g}}{\mathrm{~m}^{*} \varepsilon_{0} \omega^{3}}=\frac{\mathrm{Nq}^{3}}{\left(\mathrm{~m}^{*}\right)^{2} \varepsilon_{0} \mu} \quad \ldots \ldots
\end{aligned}
$$

Further, the absorption coefficient due to Free Carrier absorption, α_{FC}, is related to K_{i} by [11]

$$
\alpha_{\mathrm{FC}}=\frac{\mathrm{kK}_{\mathbf{i}}}{\mathrm{n}}
$$

where, $k=$ magnitude of the wavevector $=\omega / c$
$\mathrm{n}=$ refractive index
$c=f \lambda$
$\lambda=$ free space wavelength
$\omega=2 \pi \mathrm{f}$
$\mathrm{f}=\mathrm{frequency}$ of the optical radiation

Thus,

$$
\begin{aligned}
\alpha_{F C} & =\frac{k}{n} \frac{{N q^{3}}_{\left(m^{*}\right)^{2} \varepsilon_{o} \mu}=\frac{N q^{3}}{\left(m^{*}\right)^{2} n \varepsilon_{o} \omega^{2} \mu \mathrm{c}}}{} \\
& =\frac{N q^{3} \lambda_{o}^{2}}{4 \pi^{2} n\left(m^{*}\right)^{2} \mu \varepsilon_{o} c^{3}}
\end{aligned}
$$

Also, we may rewrite equation(4.18) as

$$
K_{r}=n_{0}{ }^{2}-\Delta n^{2}
$$

where, $\Delta \mathrm{n}^{2}=2 \mathrm{n}_{0} \Delta \mathrm{n}=-\frac{\mathrm{Nq}^{2}}{\mathrm{~m}^{\star} \varepsilon_{0} \omega^{2}}$
Further, by analogy with the change in index, $\Delta \mathrm{n}$ produced in a dielectric by a plasma of charged particles, wherein $\Delta n^{2}=2 n_{0} \Delta n$, the change in the index of refraction resulting from the presence of free carriers may be given by [11]

$$
\Delta n=-\frac{\mathrm{Nq}^{2}}{2 n_{0} \mathrm{~m}^{*} \varepsilon_{0} \omega^{2}}=-\frac{\mathrm{Nq}^{2} \lambda_{\mathrm{o}}^{2}}{8 \pi^{2} \varepsilon_{\mathrm{o}} n_{\mathrm{o}} \mathrm{~m}^{*} \mathrm{c}^{2}}
$$

As was pointed out in Chapter 2, the depression in the refractive index due to the presence of free carriers is of extreme importance in the devices under discussion herein, as this is the mechanism used to form the homojunction slab and rib guides of the vertical devices.

4.3 OPTOELECTRONIC INTERACTION MECHANISMS

4.3.1 Exploitation of Domain Induced Optical Changes

The electric field intensity within a propagating Gunn domain is much higher than any electric field which can safely be produced within a wafer of GaAs by conventional methods. It can therefore be concluded that the optical perturbations induced within the wafer will be much more pronounced in the presence of a domain, and the optical beam influenced to a greater extent, than would otherwise be possible. Further, the amplitude and frequency of the optical perturbation may be controlled by variation of the voltage applied to the diode contacts by way of the various modes of operation already outlined in section(3.4).

The first publication referring to travelling Gunn domains being used to modulate a light beam, within a wafer comprising a Gunn diode, was by E.I. Gordon [47]. In this publication it was suggested that the high electric field intensity of the domain may radically alter the local refractive index and absorption edge of the material.

From section(4.2.1) it can be seen that if an electric field is applied along certain crystallographic directions in a zincblende crystal, such as GaAs or InP, the index of refraction is perturbed due to the Linear Electro-Optic effect. The perturbation in the refractive index, Δn is linearly proportional to the first power of the electric field, and for a field of approximately $40.0 \times 10^{5} \mathrm{Vm}^{-1}, \Delta n \approx 10^{-}{ }^{4}$.

Fundamental experimental work relating to this modulation mechanism was reported by Cohen et al [7] who observed the Electro- Optic modulation of a $1.15 \mu \mathrm{~m} \mathrm{He}: \mathrm{Ne}$ laser within a long GaAs Gunn diode due to the presence of a propagating Gunn domain. The active region of the samples used by Cohen et al were around $25 \mu \mathrm{~m}$ to $200 \mu \mathrm{~m}$ long. Consequently oscillation frequencies varying from 0.5 GHz to 4 GHz were observed.

As was explained in section(4.2.2), light can also be modulated by high field domains via the Electro- Absorption effect. Ohta et al [8] reported on the modulation of light from a GaAs laser diode at a frequncy of 0.1 GHz , by a travelling high-field domain in a bulk GaAs element. It was shown in these experiments that optical modulation due to propagating Gunn domains occurred due to both the Linear Electro- Optic effect and the Electro- Absorption effect. Further, by measuring the Electro-Absorption contribution, a quantitative correction could be made to the observed Linear Electro- Optic effect. This correction showed that the retardation due to the Linear Electro-Optic effect was linearly proportional to the electric field within the high field domain. The samples used by Ohta et al were approximately $80 \mu \mathrm{~m}$ thick, $600 \mu \mathrm{~m}$ wide and 1 mm long. Guetin and Boccon-Gibod [48] also independently observed a 25% increase in the optical absorption when a high field domain crossed a region illuminated with radiation of wavelength equal to the energy gap of GaAs.

The prior experimental work outlined above clearly indicated that optical modulation by propagating Gunn domains, due to both the Linear Electro-Optic effect and the Electro-Absorption effect, were possible in bulk GaAs samples. The interaction was however found to be weak, and of little practical value. Further, these samples required high bias voltages, and provided no means of guiding the optical radiation. This suggests that a much stronger interaction might be obtained if the domain propagated through an integrated optical waveguide, and it was the purpose of the devices outlined in fig(1.3) to provide such waveguiding means.

To this point the discussion has been restricted to devices wherein the direction of optical propagation is substantially perpendicular to the direction of
propagation of the travelling Gunn domain. If however the light beam strikes the domain at an acute angle, θ, then the domain may be thought of as a mirror moving at a velocity, $\mathrm{v}_{\mathrm{D}} \approx 10^{5} \mathrm{~ms}^{-1}$. Optical modulation may therefore be produced by exploiting the variation in the reflection coefficient of the domain in comparison with the reflection coefficient of the material as a whole [49]. It can therefore be envisaged that the Doppler effect may be obtained from a propagating domain.

4.3.2 Exploitation of Optically Induced Electrical Changes

Section(4.3.1) essentially deals with the electrical control of an optical signal. However, the electrical behaviour of a Gunn diode may be controlled by illuminating all or part of the diode with optical radiation.

The influence of illumination on the Gunn effect depends on whether the whole or only part of the device is illuminated. If only the region near the anode is illuminated, and the intensity of the light is high enough to sufficiently increase the conductivity of that region, then two different effects may be observed. Since the field intensity near the anode will decrease due to the high illumination induced conductivity, a high field will be extinguished on entering the illumination region. The active length of the device will thus be reduced, and the oscillation frequency increased. This is the so-called 'virtual anode' situation [50].

A different effect is the switching of Gunn domains by illumination [51]. If the diode is biased just below the threshold voltage then an increase in the conductivity at the anode by illumination will result in an increase of the electric field near the cathode, thus leading to domain formation and Gunn oscillations. If the light pulse duration is longer than the domain transit time then oscillations will be observed for as long as the sample is illuminated. If however the light pulse duration is less than the domain transit time, then only a single domain and associated current pulse will be generated. On the other hand, the illumination of the cathode region reduces the field near the cathode, and thus suppresses the formation of domains at voltages greater than the threshold value.

If the whole sample is illuminated then again two cases can be distinguished. If the energy of the photons is greater than that of the energy gap then generated carriers will be distributed uniformly across the sample. Hence, the coherence and amplitude of the oscillations will be enhanced [52]. If however the photon energy is less than that of the energy gap, then the opposite behaviour may be observed, since electrons will be excited into the conduction band from deep lying impurity centres, and the coherence of the oscillations thus reduced [53].

CHAPTER 5
DEVICES AND THEIR DESIGN

Preceding Chapters have addressed the operation and the analysis of discrete optical waveguides and Gunn diodes, and the effects present within a device which integrates both. This Chapter presents the possible device designs which integrate some form of optical waveguiding with a super-critical Gunn diode. Also presented are detailed results of the optical design and the electrical design of these devices, along with a consideration of the magnitude of the Electro- Optic effects present.

5.1 DEVICE STRUCTURES

As was explained in Chapter 1, the optical waveguiding structures of potential use are the slab, rib, or photoelastic waveguides. Also, the Gunn diode structures of potential use are either the vertical or the planar diode structures. Any integrated device structure must incorporate the following device design criteria:
(a) It must allow only one optical mode to propagate, ie. be a monomode waveguide. This is because different optical modes propagate within different parts of an optical guide. This means that the propagating Gunn domain would interact with different modes at different parts within the device, and also at different times. Further, different modes travel along the guide at different velocities of propagation.
(b) As for all super-critical Gunn diodes, the $\mathrm{N}_{\mathrm{o}} \mathrm{L}$ product ($=\mathrm{N}_{\mathrm{f}} \mathrm{f}$ for the vertical devices) must be greater than $10^{12} \mathrm{~cm}^{-2}$ for GaAs and InP , for dipole domains to form and propagate.
(c) It must have a sensible operating voltage, in order that electrical power may easily be supplied to the device. This ensures that the device may be driven from available power sources and further, that the device does not overheat.

Adhering to the above criteria, the possible integrated device structures that may be envisaged are as follows:
(a) a vertical Gunn diode incorporating a slab waveguide (as shown in
fig(1.3)(a));
(b) a vertical Gunn diode incorporating a rib waveguide (as shown in fig(1.3)(b)); and
(c) a planar Gunn diode incorporating a photoelastic waveguide (as shown in fig(1.3)(c)).

The specific device designs which were proposed for both theoretical and experimental investigations are shown in table(5.1). As can be seen, seven such designs were put forward. These will hereafter be referred to as $\mathrm{S} 41, \mathrm{~S} 42, \mathrm{~S} 43, \mathrm{R} 1$, R2, R3, and P1.

Other structures incorporating a thin, low doped P - type layer on top of a highly doped N - type substrate may also be considered. These structures are shown in fig(5.1)(a) and (5.1)(b). For example, a device forming a planar Gunn diode incorporating a photoelastic waveguide, fabricated on an N-type substrate, could be considered. This device would resemble device P1 in operation. Alternatively, a planar Gunn diode incorporating a rib waveguide, on an N-type substrate, could be fabricated. However, the devices presented in fig(5.1) are presently not feasible, since current material growth technologies are unable to grow a thin enough low doped P -type region on top of the highly doped N - type substrate, and therefore play no further part in this work

5.2 OPTICAL DESIGN

5.2.1 Refractive Index Calculations

As was explained and derived in Chapter 4, homojunction optical waveguides may be produced in semiconductor materials by a combination of device geometry and device doping density. This is because increasing the doping density produces a corresponding decrease in the refractive index, Δn, of the material, due to the negative plasma contribution to the refractive index, n. This perturbation, Δn, is dependent upon the square of the wavelength of propagation, and inversely
(a) Vertical Gunn Diode / Slab Waveguide Devices

Device	S41	S42	S43
Buffer Thickness, b $(\mu \mathrm{m})$	0.5	0.5	2.0
Buffer Doping, $\mathrm{N}_{\mathrm{b}}\left(\mathrm{cm}^{-3}\right)$	1.0×10^{18}	1.0×10^{18}	2.0×10^{17}
Film Thickness, f $(\mu \mathrm{m})$	7.0	5.0	5.0
Film Doping, $\mathrm{Nf}_{\mathrm{f}}\left(\mathrm{cm}^{-3}\right)$	5.0×10^{16}	5.0×10^{16}	5.0×10^{15}
$\mathrm{~N}_{\mathrm{f}} \mathrm{f}$ f Product $\left(\mathrm{m}^{-2}\right)$	3.5×10^{17}	2.5×10^{17}	2.5×10^{16}
Substrate Thickness, $\mathrm{s}(\mu \mathrm{m})$	425	425	425
Substrate Doping, $\mathrm{N}_{\mathbf{s}}(\mu \mathrm{m})$	1.0×10^{18}	1.0×10^{18}	1.0×10^{18}

(b) Vertical Gunn Diode / Rib Waveguide Devices

Device	R1	R2	R3
Guiding Region, I	S41	S42	S43
Etch Depth, e ($\mu \mathrm{m})$	4.5	3.0	4.0
Rib Width, w $(\mu \mathrm{m})$	10.0	5.0	5.0

Device	P 1
Metal Film Thickness, $\mathrm{t}(\mu \mathrm{m})$	1.5
Epi-Layer Thickness, $\mathrm{f}(\mu \mathrm{m})$	5.0
Epi-Layer Doping, $\mathrm{N}_{\mathrm{f}}\left(\mathrm{cm}^{-3}\right)$	5.0×10^{16}
Guide Width, $\mathrm{g}_{1}(\mu \mathrm{~m})$	10.0
$\mathrm{~g}_{2}(\mu \mathrm{~m})$	$6.0,8.0,10.0$ or 12.0
$\mathrm{~g}_{3}(\mu \mathrm{~m})$	10.0
Active Length, $\mathrm{L}(\mu \mathrm{m})$	50

Fig(5.1) Alternative Integrated Device Structures
(a) A Planar Gunn Diode incorporating a Photoelastic Waveguide, on an N-type Substrate

(b) A Planar Gunn Diode incorporating a Rib Waveguide, on an N -type Substrate

proportional to the refractive index in the absence of free carriers, n_{0} (see equation(4.21)). The refractive index, n, of a semiconducting material is therefore dependent upon a number of factors. These are:
(a) the compositional fraction, x, of the material in tertiary or
quaternary alloys, eg. in $\mathrm{Al}_{\mathrm{x}} \mathrm{Ca}_{1-x} \mathrm{As}^{\text {or }} \mathrm{Al}_{\mathrm{x}} \mathrm{Ca}_{1-x} \mathrm{As}_{\mathrm{y}} \mathrm{P}_{1-y}$;
(b) the wavelength of radiation used to illuminate the material; and
(c) the doping concentration, N , within the material.

The refractive index in the absence of free carriers, $\mathrm{n}_{\mathrm{o}}(\mathrm{x}, \lambda)$ of $\mathrm{Al}_{\mathrm{x}} \mathrm{Ga}_{1}-\mathrm{x} A \mathrm{As}$, may be calculated by a number of methods [54],[55],[56],[57]. A method proposed by Yariv, based on the reflectivity experiments of Ilegems and Pearson, suggests that the refractive index in the absence of free carriers, $n_{0}(x, \lambda)$ is given by [55]

$$
n_{0}(x, \lambda)=\left\{10.9-2.92 x+\frac{0.9751}{\left[\left(\lambda^{2}-C\right)-D \lambda^{2}\right]}\right\}^{1 / 2}
$$

where, $\begin{aligned} \mathrm{C} & =0.30386-0.105 \mathrm{x} & \text { if } \mathrm{x}>0.36 \\ & =0.52886-0.735 \mathrm{x} & \text { if } \mathrm{x} \leqslant 0.36\end{aligned}$
$D=(1.41 \mathrm{x}+1) \times 2.467 \times 10^{-3}$
$\lambda=$ wavelength in microns

In contrast, a method proposed by Adachi [56],[57] suggests that the real part of the dielectric constant in a zincblende material, below the direct band edge, may be expressed as

$$
\begin{aligned}
\varepsilon_{1}(\omega) & =\mathrm{n}_{\mathrm{o}}^{2}(\mathrm{x}, \lambda) \\
& =\mathrm{A}_{\mathrm{o}}\left\{\mathrm{f}(\chi)+\frac{1}{2}\left[\frac{\mathbf{E}_{\mathrm{g}}}{\mathrm{E}_{\mathrm{g}}+\Delta}\right]^{3 / 2} \mathrm{f}\left(\chi_{\text {so }}\right)\right\}+\mathrm{B}_{\mathrm{O}}
\end{aligned}
$$

where, $E_{g}=$ direct band gap (eV)
$=1.425+1.155 x+0.37 x^{2} \quad$ for GaAs
$\Delta=$ energy gap between the Γ and the L valleys
$=0.340-0.040 \mathrm{x}$

$$
\begin{aligned}
& \mathrm{f}(\chi)=\chi^{-2}\left(2-[1+\chi]^{1 / 2}-[1-\chi]^{1 / 2}\right) \\
& \chi=\hbar \omega / \mathrm{E}_{\mathrm{g}} \\
& \chi_{\mathrm{SO}}=\hbar \omega /\left(\mathrm{E}_{\mathrm{g}}+\Delta\right) \\
& \hbar \omega=\text { photon energy (wave length, } \lambda \text {) } \\
& \mathrm{A}_{\mathrm{o}}(\mathrm{x})=6.0+17.8 \mathrm{x} \\
& \mathrm{~B}_{\mathrm{O}}(\mathrm{x})
\end{aligned}=9.5+9.8 \mathrm{x}
$$

Refractive index values calculated by Yarivs and Adachis methods for a wavelength, λ, of $1.15 \mu \mathrm{~m}$ with varying compositional fraction, x, are shown in table(5.2)(a). Further, refractive index values calculated by Adachis method for varying wavelengths, λ and a constant compositional fraction, $x=0$ (ie. GaAs) are shown in table(5.2)(b). As can be seen from these results, n_{0} decreases with increasing x and with increasing λ. In all optical design calculations hereafter presented Adachis method has been employed, since this method post dates Yarivs, and is also fitted to more recent experimental data.

Now, considering the change, Δn, in the refractive index, n, brought about through doping of the semiconductor material, it can be seen that

$$
\mathrm{n}=\mathrm{n}(\mathrm{x}, \mathrm{~N}, \lambda)=\mathrm{n}_{\mathrm{o}}(\mathrm{x}, \lambda)-\Delta \mathrm{n}
$$

where, n_{0} is given by either equation(5.1) or (5.2), and Δn is given by equation(4.21). The results of suich a calculation using equation(5.3) for various doping densities are shown in table(5.3). The doping densities for which the corresponding refractive index has been calculated are those of importance for the preferred embodiments of the devices, the design procedure for which are outlined in succeeding sections of this Chapter.

5.2.2 Slab Waveguide Calculations

Using the Dispersion relation of equation(2.6), a short program was written to run on a GEC 4180 minicomputer in order to calculate the modal refractive index,

Table(5.2) Calculated Refractive Index values, n_{o} in the absence of

Free Carriers

(a)

Wavelength, λ	Method	\mathbf{x}	n_{o}
$1.15 \mu \mathrm{~m}$	Yariv	0	3.4406
	Adachi	0	3.467567
	Yariv	6%	3.4088
	Adachi	6%	3.438300

(b)

Wavelength, λ	Method	x	n_{o}
$1.15 \mu \mathrm{~m}$	Adach i	0	3.467567
905 nm	Adach i	0	3.587488

Table(5.3) Calculated Refractive Index values, n (by Adachis Method)

λ	n_{o}	$\mathrm{N}\left(\mathrm{cm}^{-3}\right)$	$\Delta \mathrm{n}$	$\mathrm{n}=\mathrm{n}_{\mathrm{o}}-\Delta \mathrm{n}$
$1.15 \mu \mathrm{~m}$	3.467567	5.0×10^{15}	1.353×10^{-5}	3.467554
		5.0×10^{16}	1.353×10^{-4}	3.467432
		1.0×10^{17}	2.706×10^{-4}	3.467296
		2.0×10^{17}	5.412×10^{-4}	3.467026
905 nm	3.587488	5.0×10^{15}	8.011×10^{-6}	3.587480
		5.0×10^{16}	8.011×10^{-5}	3.587408
		1.0×10^{17}	1.602×10^{-4}	3.587328
		2.0×10^{17}	3.204×10^{-4}	3.587168

$n_{\text {eff }}$ of three-layer slab guide structures. For the three-layer slab guides defined in fig(5.2), the modal refractive indices were calculated, as shown in fig(5.3), for various guide thicknesses, f. As can be seen from $\operatorname{fig}(5.3)(\mathrm{a})$, for a wavelength of $1.15 \mu \mathrm{~m}$ the first-order mode of devices S31 and S32 cuts-off at a film thickness of $2.1 \mu \mathrm{~m}$. Similarly, as can be seen from fig(5.3)(b), for a wavelength of $1.15 \mu \mathrm{~m}$ the first-order mode of device S33 cuts-off at a film thickness of around $2.05 \mu \mathrm{~m}$, and for a wavelength of 905 nm at a film thickness of $2.075 \mu \mathrm{~m}$.

Using the Dispersion relation of equation(2.7) for four- layer slab guides, a similar program as for the three- layer slab was written. In the same way as for the three-layer slab guides, the modal refractive indices of the four-layer slab guides shown in fig(5.4), were calculated. Fig(5.5) shows plots for varying guide thickness, f , for the wavelengths, λ, of interest. It was found by running the four-layer slab program that S41 and S42 had a first-order cut-off thickness of around $1.5 \mu \mathrm{~m}$ at a wavelength of $1.15 \mu \mathrm{~m}$, and $1.53 \mu \mathrm{~m}$ at 905 nm . At these thicknesses the effective index of the first-order mode became equal to the substrate refractive index (which is also equal to the buffer index in these guides). It was further found that $\mathbf{S 4 3}$ had a cut-off thickness of around $3.35 \mu \mathrm{~m}$ at $1.15 \mu \mathrm{~m}$, and $3.40 \mu \mathrm{~m}$ at 905 nm . It should be noted that by varying the buffer thickness, b, between $0.5 \mu \mathrm{~m}$ and $2.5 \mu \mathrm{~m}$ for device S 43 , with $\mathrm{f}=5 \mu \mathrm{~m}$, no significant variation in the modal effective index was observed.

5.2.3 Rib Waveguide Calculations

The rib guides of fig(5.6) were analysed by: (a) an Effective Index Method (EIM) program based on the Dispersion relation for the four-layer slab guide, running on the GEC 4180 minicomputer; (b) the .NWAVE program, running on the GEC 4180 minicomputer; and (c) a Finite Difference (FD) program, running on a BBC microcomputer. A comparison of these results is presented in figs(5.7)(a), (b) and (c) for ribs R1, R2, and R3 respectively at a wavelength of $1.15 \mu \mathrm{~m}$. Also shown in fig(5.7)(d) are the corresponding plots for R3 for a wavelength of 905 nm .

Fig(5.2) Structure and Composition of the ThreeLayer Slab Guides under consideration

${ }^{n}$ air

Film, $n_{f}, \quad N_{f}$

Substrate, $\mathrm{n}_{\mathrm{s}}, \mathrm{N}_{\mathrm{s}}$

Device	S 31 and S32	S 33
$\mathrm{f}(\mu \mathrm{m})$	$0-7.0$	$0-5.0$
$\mathrm{~N}_{\mathrm{f}}\left(\mathrm{cm}^{-3}\right)$	5.0×10^{16}	5.0×10^{15}
$\mathrm{~s}(\mu \mathrm{~m})$	425	425
$\mathrm{~N}_{\mathrm{S}}\left(\mathrm{cm}^{-3}\right)$	1.0×10^{18}	1.0×10^{18}

Fig(5.3) Effective Refractive Index of First-Order Mode of Three-Layer Slab Guides versus Guide Layer Thickness
(a) For Slabs S31 and S32

At a Wavelength of 1.15 microns

(b) For Slab S33

(ii) At a Wavelength of 905 nm

Fig(5.4) Structure and Composition of the FourLayer Slab Guides under consideration

Film, n_{f}, N_{f}

Substrate, $\mathrm{n}_{\mathrm{s}} \mathrm{N}_{\mathrm{s}}$

Device	S 41	S 42	S 43
$\mathrm{~b}(\mu \mathrm{~m})$	0.5	0.5	2.0
$\mathrm{~N}_{\mathrm{b}}\left(\mathrm{cm}^{-3}\right)$	1.0×10^{18}	1.0×10^{18}	2.0×10^{17}
$\mathrm{f}(\mu \mathrm{m})$	$1.0-8.0$	$1.0-5.0$	$1.0-8.0$
$\mathrm{~N}_{\mathrm{f}}\left(\mathrm{cm}^{-3}\right)$	5.0×10^{16}	5.0×10^{16}	5.0×10^{15}
$\mathrm{~s}(\mu \mathrm{~m})$	425	425	425
$\mathrm{~N}_{\mathrm{S}}\left(\mathrm{cm}^{-3}\right)$	1.0×10^{18}	1.0×10^{18}	1.0×10^{18}

Fig(5.5) Effective Index of First-Order Mode of Four-Layer Slab Guides versus Guide Layer Thickness
(a) For Slab S41
(i) At a Wavelength of 1.15 microns

(ii) At a Wavelength of 905 nm

(b) For Slab S42
(i) At a Wavelength of 1.15 microns

(ii) At a Wavelength of 905 nm

(c) For Slab S43

(ii) At a Wavelength of 905 nm

Fig(5.6) Structure and Composition of the Rib Guides under consideration

Substrate, $\mathrm{n}_{\mathrm{s}}, \mathrm{N}_{\mathrm{s}}$

Device	R1	R2	R3
$\mathrm{b}(\mu \mathrm{m})$	0.5	0.5	2.0
$\mathrm{~N}_{\mathrm{b}}\left(\mathrm{cm}^{-3}\right)$	1.0×10^{18}	1.0×10^{16}	2.0×10^{17}
$\mathrm{f}(\mu \mathrm{m})$	7.0	5.0	5.0
$\mathrm{~N}_{\mathrm{f}}\left(\mathrm{cm}^{-3}\right)$	5.0×10^{16}	5.0×10^{16}	5.0×10^{15}
$\mathrm{~s}(\mu \mathrm{~m})$	425	425	425
$\mathrm{~N}_{\mathrm{s}}\left(\mathrm{cm}^{-3}\right)$	1.0×10^{18}	1.0×10^{18}	1.0×10^{16}
$\mathrm{t}(\mu \mathrm{m})$	$0-7.0$	$0-5.0$	$0-5.0$
$\mathrm{w}(\mu \mathrm{m})$	10.0	5.0	5.0

Fig(5.7) Effective Refractive Index of First-Order Mode of Rib Guides versus Outer Slab Thickness
(a) For Rib R1, at a Wavelength of 1.15 microns

(b) For Rib R2, at a Wavelength of 1.15 microns

(c) For Rib R3, at a Wavelength of 1.15 microns

(d) For Rib R3, at a Wavelength of 905 nm

As can be seen from these results, above the cut-off thickness of the outer slab, the Effective Index Method produces an answer greater than that of both of the other methods, due to the limitations imposed on this method. These limitations have already been discussed in section(2.2.1). There can also be seen to be a discrepancy between the results produced by the .NWAVE program and by the FD program. This discrepancy can be explained as being a result of the limitations imposed on the accuracy of these methods set by the choice of the number of basis functions for the .NWAVE program, and the mesh- size for the FD method. In the results presented in fig(5.7), for .NWAVE, $f_{1}=10$ and $f_{2}=7$, where f_{1} and f_{2} are the number of basis functions in the x and y directions respectively, and for the FD method the mesh size is $0.2500 \mu \mathrm{~m}, 0.1833 \mu \mathrm{~m}$ and $0.2333 \mu \mathrm{~m}$ for guides $\mathrm{R} 1, \mathrm{R} 2$ and R3 respectively.

Further, for structure R3 (with $t=3.0 \mu \mathrm{~m}$, and $w=5.0 \mu \mathrm{~m}$) the device was analysed by both the .NWAVE program, varying the number of basis functions used, and by the FD method, varying the mesh size used. The pairs of basis functions used were $f_{1}=5, f_{2}=7$, and $f_{1}=7, f_{2}=10$, and $f_{1}=10, f_{2}=13$. The mesh sizes which were used were $0.2666 \mu \mathrm{~m}, 0.2333 \mu \mathrm{~m}$ and $0.2000 \mu \mathrm{~m}$. In the FD program the mesh, ie. grid, size was varied by varying the size of the analysis box within which the waveguide lay, and keeping the number of mesh points constant at 61. The corresponding variation in the resulting value of the effective index, $n_{\text {eff }}$, was as shown in fig(5.8).

As can be seen from this the results of the .NWAVE program and the FD method, tend to converge to the true value of $n_{\text {eff }}$, given a large enough number of basis functions and a large enough mesh size. The above result is in agreement with that found by Robertson et al [58] in so far as the answers given by the two methods will converge. However, Robertson et al found that the FD method converged with decreasing mesh size, not increasing as is the case here. This discrepancy is due to the fact that Robertson et al varied the mesh size by varying the number of mesh points, leaving the box size constant, whereas here the mesh size was varied by leaving the number of mesh points constant and varying the box
Fig(5.8) Variation in the Modal Effective Index with Number of Basis

size.
A graphics program .CONPLOT was used in conjunction with .NWAVE. The resulting mode profiles for the fundamental $\nu=0$ mode of devices R1, R2 and R3, with $\mathrm{f}_{1}=10$ and $\mathrm{f}_{2}=7$, for a wavelength of $\lambda=1.15 \mu \mathrm{~m}$, is shown in fig(5.9). The corresponding mode profile of device R 3 , obtained by the FD program, is shown in fig(5.10).

5.2.4 Photoelastic Waveguide Calculations

Design calculations for photoelastic waveguides were carried out using another program based on the $F D$ technique, also running on a $B B C$ microcomputer. The structures which were analysed are shown in fig(5.11). These structures consisted of: (a) a semi-insulating substrate, with no epilayer, for which: (1) the metal layer thickness was varied, and (2) the stripe width was varied; and (b) a semi-insulating substrate, with a $5 \mu \mathrm{~m}, 5.0 \times 10^{15} \mathrm{~cm}^{-3} \mathrm{~N}$ - type epilayer grown on the top surface, for which again: (1) the metal layer thickness was varied, and (2) the stripe width was varied. These designs were designated P11, P13, P12 and P14 respectively.

For all of these design calculations the refractive index of the semi- insulating substrate was taken to be $n=3.467567$, and the refractive index of the N-type epilayer to be $n=3.467554$, for a wavelength of $1.15 \mu \mathrm{~m}$. Further, the box size was taken to be $15.0 \mu \mathrm{~m}$, giving a mesh size of $0.2459 \mu \mathrm{~m}$.

As can be seen from fig(5.12)(a), for both P11 and P12 the modal refractive index increases with increasing metal thickness. This is because the influence on the material refractive index, due to the photoelastic effect, increases with increasing metal thickness. Also, from fig(5.12)(b) it can be seen that the modal refractive index also increases with increasing guide width. This is as would be expected since, the wider the metal stripe spacing, the more modes the guide will be expected to support.

Fig(5.9) Mode Profiles Produced by .NWAVE for the First Order Mode
(a) For Device R1

(b) For Device R2

(c) For Device R3

Fig(5.11) Structure and Composition of the Photoelastic Guides under consideration

Semi-Insulating

Device	$\mathrm{N}_{\mathrm{f}}\left(\mathrm{cm}^{-3}\right)$	$\mathrm{f}(\mu \mathrm{m})$	$\mathrm{t}(\mu \mathrm{m})$	$\mathrm{g}(\mu \mathrm{m})$
P11	SI	-	$0.5-2.5$	5.0
P12	5.0×10^{15}	5.0	$0.5-2.5$	5.0
P13	SI	-	1.5	$2.0-12.0$
P14	5.0×10^{15}	5.0	1.5	$2.0-12.0$

Fig(5.12) Effective Index of First Order Mode of Photoelastic Guides, $\lambda=1.15$ microns
(a) With varying Metal Thickness, t
(i) For Waveguide $\mathrm{P} 11, \mathrm{f}=5.0$ microns, $\mathrm{g}=5.0$ microns

(ii) For Waveguide $P 12, f=5.0$ microns, $g=5.0$ microns

(b) With varying Stripe Width, g

5.3.1 Electrical Performance

In this section are presented the theoretical calculations of: (a) the threshold voltage, V_{T}; and (b) the threshold electrical power, P_{T}, for all of the devices of interest, both vertical and planar. The vertical devices of interest may be grouped into two categories, ie. spot contact diodes, similar to that of fig(1.2)(a), and rib (stripe) contact diodes, similar to that of fig(1.3)(b). As was previously explained, conventional Gunn diodes tend to be of the mesa (spot) type structure similar to the X-Band and J-Band diodes supplied by Plessey Microwave Ltd (see fig(3.6)(a)). The results for these diodes are shown in table(5.4).

The threshold voltage, V_{T} for each of the structures of interest was calculated from $V_{T}=E_{T}$, where, $E_{T}=$ the threshold field $=3.5 \times 10^{5} \mathrm{Vm}^{-1}$ for GaAs , and $\mathrm{f}=$ the active length of the device. The electrical power consumed by the device at threshold was calculated from $\mathrm{P}_{\mathrm{T}}=\mathrm{I}_{\mathrm{T}} \mathrm{V}_{\mathrm{T}}$, where, $\mathrm{I}_{\mathrm{T}}=\mathrm{V}_{\mathrm{T}} / \mathrm{R}, \mathrm{R}=(1 / \mathrm{Nq} \mu)(\mathrm{f} / \mathrm{A})$, $\mu=$ the low field mobility $=0.800 \mathrm{~m}^{2} \mathrm{~V}^{-1} \mathrm{~s}^{-1}$ for GaAs , and $\mathrm{A}=$ the contact area of the device.

Shown in fig(5.13) are the threshold voltages for the four-layer slab guide structures given in fig(5.4), for various active layer thicknesses between 0 and $10 \mu \mathrm{~m}$. Also shown in figs $(5.14)(a)$ and (b) are the electrical powers required for these devices, for spot contacts of diameter $20 \mu \mathrm{~m}, 50 \mu \mathrm{~m}$ and $80 \mu \mathrm{~m}$.

The estimate of the electrical power required for the device to oscillate calculated in this way, is actually an under estimate of the power required. This is because, although the contact on the top most surface of the device is in the form of a spot contact, the contact on the bottom surface covers the whole of that surface. This means that the electric field lines within the active region of the device will not be distributed as is assumed in the above calculations, and so the effective active area of the device will not be simply that of the top contact, but somewhat larger. Consequently, the device resistance will be less than was assumed,

Table(5.4) The X-Band and J-Band Diodes supplied by Plessey

Diode	$\mathbf{f}(\mu \mathrm{m})$	$\mathrm{V}_{\mathbf{T}}(\mathrm{V})$	$\mathbf{P}_{\mathbf{T}}(\mathrm{W})$
X-Band	9.2	3.22	3.95
J-Band	5.0	1.75	0.39

Fig(5.13) Threshold Voltage versus Layer Thickness for the Structures of interest

Fig(5.14) Threshold Electrical Power versus Layer
Thickness for the Spot Contact Structures
of interest, for various Spot Diameter sizes
(a) For Diodes S 41 and S 42

(b) For Diode S 43

and the required threshold current, I_{T}, will be somewhat more. If a more accurate estimate of the electrical parameters was required, the more involved Relaxation Method [59] would have to be employed.

Shown in fig(5.15)(a) are similar results showing the variation in the required threshold electrical power for the rib structures of fig(5.6), with varying rib width, w. All of the calculations of $\operatorname{fig}(5.15)(\mathrm{a})$ were based on a rib contact length of 1.5 mm . Note that from these results it can be concluded that device R 1 is of no practical use as an integrated device since the current drawn by it is excessive. For example, for a rib width of $10 \mu \mathrm{~m}$, and length of $1.5 \mathrm{~mm}, \mathrm{R} 1$ draws a current $\mathrm{I}_{\mathrm{T}}=$ 24.7A. Further, for a rib width of $5 \mu \mathrm{~m}$, and length of $1.5 \mathrm{~mm}, \mathrm{R} 2$ draws a current $\mathrm{I}_{\mathrm{T}}=11.6 \mathrm{~A}$. Although not as excessive as R 1 , the current drawn by R 2 is still too large for the power supplies available, and also too large for the device to withstand due to thermal considerations. R3 however draws a current of only 1.6 A at threshold.

Given in fig(5.15)(b) are the results showing the variation in the required threshold electrical power for a planar structure corresponding to that of device P1 of table(5.1). Again, as for the rib guides, all the calculations were based on a device length of 1.5 mm . Further, the effective area of the device was approximated to the thickness of the epilayer $(5 \mu \mathrm{~m})$ multiplied by the length of the waveguide (1.5mm).

As can be seen from $\mathrm{fig}(5.15)(\mathrm{b})$, the threshold power drawn by the planar diode is much greater than that drawn by device R3. This is due to the larger active length, L , of the planar device, and the consequent higher threshold voltage. The planar diode has, however, a threshold current, $\mathrm{I}_{\mathrm{T}}=1.68 \mathrm{~A}$, which is modest in comparison to that of R1 or R2.

The preferred embodiment of the device incorporating a rib waveguide and a stripe contact vertical Gunn diode, provides a Schottky contact pad on the top surface of the device, as was shown in fig(1.3)(b). The Schottky contact straddles the rib guide, the purpose of the contact being to allow ease of bonding of the top ohmic contact of the device to any external circuitry, since it is not possible to

Fig(5.15)(a) Threshold Electrical Power versus Rib Width for the Rib Structures of interest (Rib Length $=1.5 \mathrm{~mm}$)

Fig(5.15)(b) Threshold Electrical Power versus Active Layer Length for the Planar Structures of interest

reliably bond a wire onto the top of the rib, the rib being of the order of $5 \mu \mathrm{~m}$ to $10 \mu \mathrm{~m}$ wide.

The inclusion of the Schottky contact does however complicate the design procedure since: (a) there will be a capacitance associated with the Schottky contact; and (b) when a negative bias is applied to the top contact, ie. the cathode, there will be a depletion of electrons under the Schottky contact. This depletion may result in a change in the refractive index of the material under the contact due to the Free Carrier Plasma effect, and hence a change in the optical propagation characteristics of the material. Each of these points is dealt with below.

Assumming that the Schottky contact acts as a parallel plate capacitor then, the device may be represented as shown in fig(5.16). Further, we have that [60]

$$
\mathrm{C}_{\text {Schot } \mathrm{ky}}=\frac{\varepsilon \mathrm{A}}{\mathrm{~d}}
$$

where, $\varepsilon=\varepsilon_{\mathrm{o}} \varepsilon_{\mathrm{r}}$
$A=$ area of Schottky contact $=300 \mu \mathrm{~m} \times 1.5 \mathrm{~mm}$
$\mathrm{d}=\mathrm{t}+\mathrm{s}=428 \mu \mathrm{~m}$

The diode resistance, $R_{\text {Diode }}$ and the capacitance of the Schottky contact, C Schottky for each of the rib structures of interest are shown in table(5.5). As well as showing values of $\mathrm{R}_{\text {Diode }}$ and $\mathrm{C}_{\text {Schottky }}$ for a substrate thickness of $400 \mu \mathrm{~m}$, table(5.5) also shows the corresponding values for a reduced substrate thickness of $50 \mu \mathrm{~m}$. Note that these calculations were found for a rib length of 2 mm . As can be seen from table(5.5), the capacitance of the Schottky contact, which varies inversely with substrate thickness, lies in the picofarad range, and is therefore of some influence in the microwave regime. The capacitance of the Schottky contact cannot therefore be ignored in the design of the device, or its associated external electrical circuitry.

The second influence on the action of the device, due to the presence of the Schottky contact, is the possible change in its optical characteristics. This change is

Fig(5.16) Equivalent Circuit representation of the Rib Guide incorporating a Vertical Diode

Table(5.5) Electrical Characteristics of the Vertical/Rib Devices

Device	$\mathrm{s}(\mu \mathrm{m})$	R$_{\text {Diode }}(\Omega)$	C Schottky $\left.^{2} \mathrm{pF}\right)$
	400	0.422	0.169
	50	0.149	1.244
	400	0.391	0.170
R3	50	0.118	1.291

due to the Free Carrier Plasma effect on the refractive index, caused when a negative bias voltage is applied to the top contact. The interface between a metal and an N -type semiconductor forming a Schottky contact may be represented as shown in fig(5.17). This model takes into account only the difference in the work functions of the metal and semiconductor, ψ_{m} and ψ_{s}, respectively, and does not address any chemical interactions on an atomic level. As can be seen from fig(5.17), for N - type material if $\mathrm{q} \psi_{\mathrm{m}}>\mathrm{q} \psi_{\mathrm{s}}$ then a Schottky contact will be formed. Further, the depletion layer width, d, in the absence of an applied field, is given by [61]

$$
\mathrm{d}=\left\{\frac{2 \varepsilon \mathrm{~V}_{\mathrm{B}}}{\mathrm{q}^{2} \mathrm{~N}_{\mathrm{D}}}\right\}^{1 / 2}
$$

$$
\text { where, } \begin{aligned}
V_{B} & =\text { built-in barrier voltage }=q \varphi_{D}=q\left(\varphi_{m}-\varphi_{S}\right) \\
\varphi_{D} & =\text { built-in potential }
\end{aligned}
$$

Now, consider the case of a contact made between gold, Au, having a work function, $\psi_{\mathrm{m}}=5.0 \mathrm{eV}$, and $\mathrm{N}-$ type $\mathrm{GaAs}\left(\mathrm{N}=5.0 \times 10^{22} \mathrm{~m}^{-3}\right)$ having a work function, $\psi_{s}=4.1 \mathrm{eV}$. Since $\psi_{\mathrm{m}}>\psi_{\mathrm{s}}$ then a Schottky contact will be formed. Further, the built-in potential, $\varphi_{\mathrm{D}}=0.9 \mathrm{eV}$, which gives a depletion layer width, d $=0.16 \mu \mathrm{~m}$, in the absence of an applied bias field.

In the presence of an applied bias, d is given by [61]

$$
\mathrm{d}=\left\{\frac{2 \varepsilon\left(\varphi_{\mathrm{D}}+\mathrm{V}_{\mathrm{R}}\right)}{\mathrm{qN}_{\mathrm{D}}}\right\}^{1 / 2}
$$

where, $\mathrm{V}_{\mathrm{R}}=$ reverse bias voltage. This means that for $\mathrm{V}_{\mathrm{R}}=2.5 \mathrm{~V}, \mathrm{~d}=0.314 \mu \mathrm{~m}$. Assuming total depletion of carriers within the depletion region this implies that a slab layer $0.314 \mu \mathrm{~m}$ thick will exist adjacent to the top surface of the device. Also, according to equation(4.21), the perturbation in the refractive index associated with the depletion region is $\Delta \mathrm{n}\left(5.0 \times 10^{22} \mathrm{~m}^{-3}\right)=1.353 \times 10^{-4}$, for a wavelength of $1.15 \mu \mathrm{~m}$. For the case of a Schottky contact made between gold, Au and N -type GaAs (N $=5.0 \times 10^{21} \mathrm{~m}^{-3}$), the associated depletion layer depth $\mathrm{d}=0.992 \mu \mathrm{~m}$, and

Fig(5.17) Schematic Diagram of a Schottky Contact

$\Delta \mathrm{n}\left(5.0 \times 10^{21} \mathrm{~m}^{-3}\right)=1.353 \times 10^{-5}$, for a wavelength of $1.15 \mu \mathrm{~m}$.
Now, the pertinent question is whether the slab layer, produced by the application of a reverse bias voltage, will cause any appreciable change in the guiding characteristics of the device, and whether indeed the induced slab will itself support a mode. Running the three-layer slab program (already referred to in section(5.2.2)) it was found that neither of the induced slab layers associated with Schottky contacts to N -type GaAs , where, $\mathrm{N}=5.0 \times 10^{22} \mathrm{~cm}^{-3}$, or N $=5.0 \times 10^{27} \mathrm{~cm}^{-3}$, supported a mode of propagation. This result was cofirmed for both wavelengths of $1.15 \mu \mathrm{~m}$ and 905 nm .

5.3.2 Thermal Considerations

Most Gunn diodes to date have had an electrical- to- microwave conversion efficiency of between 0.5% and 10%, most of the remaining energy being dissipated in the form of heat. This has meant that Gunn diode assemblies have necessarily incorporated some form of heat sinking. If, for the sake of simplicity, it is assumed that 100% of the electrical power, P_{e}, supplied to the diode is converted into heat, then

$$
\epsilon=\mathrm{mc} \Delta \mathrm{~T}=\mathrm{P}_{\mathrm{e}} \mathrm{t}
$$

```
where, \epsilon = energy supplied
    m = mass of the material = \rhoV
    \rho= density of the material = 5. 32 <10 3 kgm- }\mp@subsup{}{}{-3}\mathrm{ for GaAs [27]
    V = volume of active material
    c= specific heat capacity = 0.35 < 10 3 Jkg - }\mp@subsup{\textrm{C}}{}{-1}\mathrm{ for GaAs
    |T= increase in temperature of the device
    t = time for which energy is supplied
```

Using equation(5.7) in conjunction with the results of figs(5.14) and (5.15), the maximum time, ie. pulse length, for which electrical energy can be supplied may be
found for any given rise in temperature, $\Delta \mathrm{T}$. The results of such calculations for the spot contact diodes of $\mathrm{fig}(5.4)$ are shown in fig(5.18). As can be seen from fig(5.18), the maximum pulse length decreases with increasing active layer length, and hence volume. Further, note that for each structure the maximum pulse length, t, is independent of the area of the contact. This is because the pulse length, t, is inversely proportional to the power delivered, $\mathbf{P}_{\mathbf{e}}$, which is itself directly proportional to the area of the contact, as can be seen from equation(5.7).

Similarly, for the rib structures of interest the maximum electrical pulse duration is independent of the rib width. It can therefore be found that, for $\Delta \mathrm{T}=100^{\circ} \mathrm{C}$, the maximum pulse lengths for the rib structures are $\mathrm{t}(\mathrm{R} 1)=0.868 \mu \mathrm{~S}$, $t(R 2)=0.960 \mu \mathrm{~s}$, and $\mathrm{t}(\mathrm{R} 3)=6.758 \mu \mathrm{~s}$. It should however be remembered that the values of pulse length, t, calculated in this way are an underestimate, since the calculation assumes 100% electrical to thermal conversion, and further does not take into account any thermal dissipation.

It should also be noted that the variation in the temperature of the device when in operation may have an effect on various important optical, as well as electrical, parameters. For example, the refractive index, n, the optical absorption coefficient, α, the bandgap energy, E_{g}, and the threshold electric field, E_{T}, may all vary with temperature [46],[27].

5.4 ELECTRO-OPTICAL CONSIDERATIONS

5.4.1 Calculation of Domain Characteristics

A simulation program based on the solution of Poisson's equation and the Current Continuity equation (equations(3.1) and (3.8) respectively), consistent with the boundary conditions imposed by a high field propagating Gunn domain, was written. A full listing of the program is given in Appendix B, and the documentation relating to the program in Appendix C.

The simulation program requires to know the length and doping density of the

Fig(5.18) Maximum Electrical Pulse Duration versus
Layer Thickness for the Spot Contact
Structures of interest, and $\Delta \mathrm{T}=100 \mathrm{~K}$
(a) For Diodes S41 and S42

(b) For Diode S 43

contact regions and the channel (active) region of the device, along with the electric field applied across the channel region, and the structure of any doping spike, ie. domain nucleation centre, within the channel region. In return, the program calculates the carrier density profile and electric field profile associated with the propagating Gunn domain, as time progresses and the domain traverses the device. Knowing the carrier density profile and the electric field profile throughout the device, means that the associated perturbations in the index of refraction and the optical absorption, as outlined in Chapter 4, may be calculated. The program may be run using:
(a) a four-line approximation to the accepted velocity-field characteristic for GaAs, and a field independent value of diffusion coefficient, $D=0.0178 \mathrm{~m}^{2} \mathrm{~s}^{-1}$;
(b) an analytical velocity-field characteristic for GaAs, based on the constant temperature model [27], and a field independent D; or
(c) an analytical velocity-field characteristic, and a field dependent $D=D(E)$.

As will be shown, a comparison of each of the above analysis situations (a)-(c) was made for each of the various device structures of interest.

The four- line approximation to the accepted velocity- field characteristic for GaAs referred to above may be used to simplify, and therefore increase the speed of, the simulation program. The approximation has the form shown in fig(5.19), and consists of a linear section from 0 to $3.249 \times 10^{5} \mathrm{Vm}^{-1}$, peaking at a velocity of $2.229 \times 10^{5} \mathrm{~ms}^{-1}$, where the mobility $\mu=\mathrm{v} / \mathrm{E}=0.6860 \mathrm{~m}^{2} \mathrm{~V}^{-1} \mathrm{~s}^{-1}$; an inversely linear section from $3.249 \times 10^{5} \mathrm{Vm}^{-1}$ to $5.499 \times 10^{5} \mathrm{Vm}^{-1}$, where $\mu=0.2976 \mathrm{~m}^{2} \mathrm{~V}^{-1} \mathrm{~s}^{-1}$; an inversely cubic section from $5.499 \times 10^{5} \mathrm{Vm}^{-1}$ to $20.0 \times 10^{5} \mathrm{Vm}^{-1}$; and a section of constant velocity, $\mathrm{v}=0.86 \times 10^{5} \mathrm{~ms}^{-1}$ above $20.0 \times 10^{5} \mathrm{Vm}^{-1}$.

Now, it can be seen that rearranging the Current Continuity equation (equation(3.8)) yields
Fig(5.19) The Four-Line Approximation to the Accepted Velocity-Field Characteristic

$$
\begin{align*}
& \quad \frac{\partial E}{\partial t}=\frac{1}{\varepsilon}\left[J(t)-N q v+q \frac{\partial}{\partial x}\{D N\}\right] \\
& \text { ie. } \quad E(t+1)=E(t)+\frac{\Delta t}{\varepsilon}\left[J(t)-N q v+q \frac{\partial}{\partial x}(D N\}\right] \\
& \text { so } \quad E^{t+1}(K)=E^{t}(K)+\frac{\Delta t}{\varepsilon}\left[J(t)+J_{c}^{t}(K)\right]
\end{align*}
$$

where, $K \quad=\quad$ any given point within the the device

$$
\begin{aligned}
& J_{c}^{t}(K)=-N q v+q \partial / \partial x\{D N\} \\
& E^{t}(k)=\text { electric field at a point } K \text { at a time } t
\end{aligned}
$$

Now, $\quad \frac{\partial E}{\partial t}=\frac{1}{\varepsilon}\left[J(t)+J_{c}^{t}(K)\right] \quad$ and, $\quad \int E d x=V$

Thus, $\int \frac{\partial \mathrm{E}}{\partial \mathrm{t}} \mathrm{dx}=\frac{1}{\varepsilon} \int\left(\mathrm{~J}(\mathrm{t})+\mathrm{J}_{\mathrm{c}}^{\mathrm{t}}(\mathrm{K})\right) \mathrm{dx}=0$
ie. $\quad \frac{J(t) L_{\text {Tot }}}{\varepsilon}+\frac{1}{\varepsilon} \int J_{c}^{t}(K) d x=0$
where, $\mathrm{L}_{\text {Tot }}=$ total device length

Thus, $J(t)=-\frac{1}{L_{\text {Tot }}} \int J_{c}^{t}(K) d x$

Substituting equation(5.13) into equation(5.10) gives,

$$
E^{t+1}(K)=E^{t}(K)-\frac{\Delta t}{\varepsilon L_{T o t}} \int J_{C}^{t}(K) d x+\frac{\Delta t}{\varepsilon} J_{C}^{t}(K)
$$

From Poisson's equation (equation(3.1)) we have that

$$
N=\frac{\varepsilon}{q} \frac{\partial E}{\partial x}+N_{D}
$$

and $\quad \frac{\partial N}{\partial x}=\frac{\varepsilon}{q} \frac{\partial^{2} E}{\partial x^{2}}+\frac{\partial N_{D}}{\partial x}$

Further, substituting equations(5.15) and (5.16) into the expression for $\mathrm{J}_{\mathrm{c}}{ }^{t}(\mathrm{~K})$ yields

$$
\begin{aligned}
J_{C}{ }^{t}(K) & =-N q v+q \frac{\partial}{\partial x}(D N) \\
& =-q v\left\{\frac{\varepsilon}{-\frac{\partial E}{\partial x}+N_{D}}\right\}+q D\left\{\frac{\varepsilon}{-\frac{\partial^{2} E}{\partial x^{2}}+\frac{\partial N_{D}}{\partial x}}\right\}+q N \frac{\partial D}{\partial x}
\end{aligned}
$$

Now, if $D(E)$ is taken as being independent of E then the last term in equation(5.17) is equal to zero, and so we have that

$$
J_{c}^{t}(K)=-N_{D} q v-\varepsilon v \frac{\partial E}{\partial x}+\varepsilon D \frac{\partial^{2} E}{\partial x^{2}}+q D \frac{\partial N_{D}}{\partial x}
$$

Therefore from equation(5.14)

$$
\begin{align*}
E^{t+1}(K)= & E^{t}(K)-\frac{\Delta t}{\varepsilon L_{T o t}} \int J_{c}^{t}(K) d x \\
& +\frac{\Delta t}{\varepsilon}\left\{-\varepsilon v \frac{\partial E}{\partial x}-N_{D q v}+\varepsilon D \frac{\partial^{2} E}{\partial x^{2}}+q D \frac{\partial N_{D}}{\partial x}\right\}
\end{align*}
$$

If we define

$$
J_{\chi}=\frac{\Delta t}{\varepsilon}\left\{-\varepsilon v \frac{\partial E}{\partial x}-N_{D q v}+\varepsilon D \frac{\partial^{2} E}{\partial x^{2}}+q D \frac{\partial N_{D}}{\partial x}\right\}
$$

then it can be seen that

$$
\begin{align*}
E^{t+1}(K) & =E^{t}(K)+J_{\chi}-\frac{1}{L_{T o t}} \int J_{\chi} d x \\
& =E^{t}(K)+J_{\chi}-J_{j}
\end{align*}
$$

where, $J_{j}=\frac{1}{L_{\text {Tot }}} \int J_{\lambda} d^{d x}$
If however, D is taken as being dependent upon E , then the last term in
equation(5.17) is not equal to zero, and therefore we have that
$J_{C}{ }^{t}(K)=-N_{D} q v-\varepsilon v \frac{\partial E}{\partial x}+\varepsilon D(E) \frac{\partial^{2} E}{\partial x^{2}}+q D(E) \frac{\partial N_{D}}{\partial x}+q N \frac{\partial D(E)}{\partial x}$
Inserting this into equation(5.14) shows that

$$
\begin{align*}
E^{t+1}(K)=E^{t}(K)- & \frac{\Delta t}{\varepsilon L_{T o t}} \int J_{c}^{t}(K) d x+\frac{\Delta t}{\varepsilon}\left\{-\varepsilon v \frac{\partial E}{\partial x}-N_{D q v}\right. \\
& \left.+\varepsilon D(E) \frac{\partial^{2} E}{\partial x^{2}}+q D(E) \frac{\partial N_{D}}{\partial x}+q N \frac{\partial D(E)}{\partial x}\right\}
\end{align*}
$$

Now, if we define

$$
J \chi=\frac{\Delta t}{\varepsilon}\left\{-\varepsilon v \frac{\partial E}{\partial x}-N_{D} q v+\varepsilon D(E) \frac{\partial^{2} E}{\partial x^{2}}+q D(E) \frac{\partial N_{D}}{\partial x}\right\}
$$

then it can be seen that $\mathrm{E}^{\mathrm{t}+}{ }^{1}(\mathrm{~K})$ is again given by equation(5.21).
Comparing the situations of a field independent diffusion and a field dependent diffusion, as represented by equations(5.18) and (5.22) respectively, it can be seen that in the case of $D=D(E)$ the extra term $q N \partial D(E) / \partial x$ is included in the definition of $\mathrm{J}_{\mathrm{c}}{ }^{\mathrm{t}}(\mathrm{K})$ and $\mathrm{J} \chi$.

In the case that $D=D(E)$, the field dependence of D may be derived from the two- term Einstein relationship given by

$$
D(E)=\frac{k}{q} \frac{N_{1} \mu_{1} T_{1}+N_{2} \mu_{2} T_{2}}{N_{1}+N_{2}}
$$

where, $k=$ Boltzmann's constant $=1.38066 \times 10^{-23} \mathrm{JK}^{-1}$
q = electron charge
$N_{1} \quad=$ electron population in (000) valley
$\mathrm{N}_{2} \quad=$ electron population in (100) valley
$\mu_{1}, \mu_{2}=$ electron mobilities in the respective valleys
$T_{1}, T_{2}=$ electron temperatures in the respective valleys

Using the so-called Single-Temperature Model, which assumes that $T_{1}=T_{2}=T_{e}$, gives that [27]

$$
\begin{align*}
\mathrm{D}(\mathrm{E}) & =\frac{\mathrm{kT} \mathrm{~T}_{e}}{\mathrm{q}} \frac{\mathrm{~N}_{1} \mu_{1}+\mathrm{N}_{2} \mu_{2}}{N_{1}+N_{2}} \\
\text { ie. } \frac{1}{\mathrm{D}(\mathrm{E})} & =\frac{\mathrm{q}}{\mathrm{kT} \mathrm{~T}_{\mathrm{e}}} \frac{\mathrm{~N}_{1}+\mathrm{N}_{2}}{\mathrm{~N}_{1} \mu_{1}+\mathrm{N}_{2} \mu_{2}}
\end{align*}
$$

Now, for GaAs, $\mu_{1} \gg \mu_{2}$, and so

$$
D(E)=\frac{k T_{e}}{q} \frac{\mu_{1}}{1+\frac{N_{2}}{N_{1}}}
$$

Also,

$$
\frac{N_{2}}{N_{1}}=R \exp \left[\frac{-\Delta}{\mathrm{kT}_{e}}\right]
$$

where, $R=$ density of states ratio $=\left(M_{1} / M_{2}\right) \cdot\left(M_{\Gamma} / M_{L}\right)^{X / 2}$

$$
=94 \text { for GaAs in 3-D [27] }
$$

$\Delta=0.31 \mathrm{eV}$ for GaAs
Mvi= number of equivalent lower valleys - 1
Mv2= number of equivalent upper valleys = 4
$M_{\Gamma}=$ electron effective mass in Γ valley $=\mathrm{Mr}_{1} . \mathrm{m}_{\mathrm{e}}$
$M_{L}=$ electron effective mass in L valley $=M r_{\text {r }} . \mathrm{m}_{\mathrm{e}}$
$\mathrm{Mr}_{1}=\Gamma$ density of states mass
Mr $2=\mathrm{L}$ density of states mass
$X=$ number of dimensions

Also, from the concept of energy- relaxation time [27]
$q E v=X k \frac{\left(T_{e}-T\right)}{\tau_{e}}$
where, T actual lat ice temperature

$$
\begin{align*}
\tau_{\mathrm{e}} & =\text { energy relaxation } \mathrm{t} \text { ime } \approx 10^{-12} \mathrm{~s} \\
\mathrm{v} & =\frac{\mu_{1} \mathrm{E}}{1+\frac{\mathrm{N}_{2}}{\mathrm{~N}_{1}}} \\
\mathrm{X} & =3 / 2 \quad \text { for } 3-\mathrm{D} \\
& =1 \quad \text { for } 2-\mathrm{D} \\
& =1 / 2 \quad \text { for } 1-\mathrm{D}
\end{align*}
$$

Therefore, substituting equations(5.28) and (5.30) into equation(5.29) shows that

$$
\mathrm{qE}\left\{\mu_{1} \mathrm{E}\left[1+\operatorname{Rexp}\left[\frac{-\Delta}{\mathrm{kT}}\right]\right]_{\mathrm{e}}^{-1}\right\}=\mathrm{Xk} \frac{\left(\mathrm{~T}_{\mathrm{e}}-\mathrm{T}\right)}{\tau_{\mathrm{e}}}
$$

Rearranging this with respect to the electron temperature, T_{e} gives

$$
T_{e}=T+\frac{q \mu_{1} \tau_{e}}{X k} E^{2}\left[1+\operatorname{Rexp}\left[\frac{-\Delta}{k T_{e}}\right]\right]^{-1}
$$

From equation(5.32) the electron temperature, T_{e}, can be computed as a function of E for any given lattice temperature, T. Further, from equations(5.27) and (5.28) the diffusion coefficient, D, may be found from

$$
D(E)=\frac{k T_{e} \mu_{1}}{q}\left[1+\operatorname{Rexp}\left[\frac{-\Delta}{k T_{e}}\right]\right]^{-1}
$$

Thus, since T_{e} may be found as a function of E from equation(5.32), by employing equation(5.33) the diffusion coefficient, D may be found as a function of E and T_{e}, for any given lattice temperature, T. Further, it can be seen that the electron velocity may be calculated analytically by employing equation(5.32) to find T_{e}, in conjunction with equations(5.28) and (5.30), for any given E and T.

Shown in fig(5.20) are the analytical velocity- field characteristics calculated as described above for: (i) GaAs where [30], $\mu_{1}=0.800 \mathrm{~m}^{2} \mathrm{~V}^{-}{ }^{1} \mathrm{~s}^{-1}{ }^{1}, \Delta=0.284 \mathrm{eV}, \mathrm{Mr}{ }_{1}$ $=0.0632$, and $\mathrm{Mr}_{2}=0.55$; and (ii) GaAs where [27], $\mu_{1}=0.8500 \mathrm{~m}^{2} \mathrm{~V}^{-1} \mathrm{~s}^{-1}, \Delta$

For Data Set (ii)

ลa
$=0.31 \mathrm{eV}, \mathrm{Mr}_{1}=0.0670$, and $\mathrm{Mr}_{2}=0.55 . \operatorname{Figs}(5.20)(\mathrm{a})$ and (b) show the characteristic for $1-D, 2-D$ and $3-D$, for $T=300 K$, for data sets (i) and (ii) respectively.

Shown in figs(5.21)(a), (b) and (c) are plots of the velocity-field characteristic for data set (ii) above for: (a) $1-D$, (b) $2-D$ and (c) $3-D$, each plot showing the velocity- field characteristic for $T=200 \mathrm{~K}, 300 \mathrm{~K}$ and 400 K . As can be seen from these plots the negative differential resistivity observed in GaAs becomes more prominent with decreasing temperature.

Also, shown in $\mathrm{fig}(5.22)(\mathrm{a})$ and (b) are the diffusion coefficient, D, versus electric field, E, characteristics for each of data sets (i) and (ii) respectively. Each plot of fig(5.22) shows the characteristic for $1-D, 2-D$ and $3-D$, for a temperature, $\mathrm{T}=300 \mathrm{~K}$.

Now, for each of the preferred vertical diode/rib guide structures, the Gunn simulation program was run using the approximate velocity-field characteristic, and a constant diffusion coefficient. The results of these investigations are shown in fig(5.23). For these simulations the distance between adjacent points, dx $=5.0 \times 10^{-8} \mathrm{~m}$, and the time step between consecutive simulations, $\mathrm{dt}=4.0 \times 10^{-1}{ }^{15} \mathrm{~s}$. Also, the program assumed the active layer to have a notch, ie. domain nucleation centre, $1 \mu \mathrm{~m}$ long and $0.5 \mu \mathrm{~m}$ from the cathode, with a doping density of 0.9 of that of the active region.

As can be seen from these results, at low values of electric field the domain height, $E_{\text {dom }}$ increases with increasing electric field for each of the rib structures, R1, R2 and R3. Further, at low values of electric field the domain length, $L_{\text {dom }}$ increases with increasing electric field. This is because the total field applied across the active region tends to become increasingly dropped only across the domain. Also, all the avaliable charge tends to be confined to the accumulation region within the dipole domain. However, as the electric field increases, both $E_{\text {dom }}$ and $L_{\text {dom }}$ tend to reach a peak value and then begin to decrease with increasing electric field. This is due to electron diffusion effects occurring within the domain, which can be seen to limit the maximum values of $E_{\text {dom }}$ and $L_{\text {dom }}$ for any given diode structure.

The Gunn simulation program was also run for device R3 alone for the
The Analytical Velocity-Field Characteristics for Data Set (ii), for $T=200,300,400 \mathrm{~K}$

Eloctric Fiald (kV/cm)
For 2-D

으
For 3-D
(
Electric Field (kV,cm) ${ }_{4}{ }_{6}$

(b) For Data Set (ii)

Fig(5.23) Domain Characteristics versus Bias Electric Field for an Approximate v(E) and a Constant D
(a) Domain Height, Edom versus Bias Field, Ebias

(b) Domain Length, Ldom versus Bias Field, Ebias

(a) an approximate $v(E)$ characteristic and constant D;
(b) an analytical $\mathrm{v}(\mathrm{E})$ characteristic and constant D ; and
(c) an analytical $v(E)$ characteristic and analytical $D(E)$.

The results of these simulations, using data set (i), are shown in fig(5.24). In the same way as for the simulations of fig(5.23), $\mathrm{dx}=5.0 \times 10^{-8} \mathrm{~m}$, and dt $=4.0 \times 10^{-15} \mathrm{~s}$, and the doping notch was taken to be $1 \mu \mathrm{~m}$ long, $0.5 \mu \mathrm{~m}$ from the cathode, and 0.9 of the doping density of the active region. The results of fig(5.24) were taken after: (a) 2500 time steps; (b) 1750 time steps; and (c) 1000 time steps, ie. when the domain was approximately half way across the active region. It can therefore be concluded from (a)- (c) above that the domain moves across the device faster in situation (c) than in (b), and also faster in situation (b) than in (a). This result agrees with that mentioned in section(3.2), ie. that the true domain velocity is somewhat larger than the electron velocity outwith the domain, and that the true domain velocity lies somewhat above that determined by the Equal Areas Rule.

From fig(5.24) it can be seen that simulations (a) and (b) predict the same general behaviour for the domain characteristics, and are in agreement with those of fig(5.23). However, situation (c), ie. that of an analytical diffusion coefficient, does not show (at least at such low fields) the same domain behaviour. This is because, whereas in (a) and (b), D is constant and tends to introduce diffusion effects into the domain characteristics at fields around $10.0 \times 10^{5} \mathrm{Vm}^{-1}$, in (c), D begins to decrease at fields around $2.4 \times 10^{5} \mathrm{Vm}^{-1}$. Referring to fig(5.22) it may however be seen that, at higher electric fields, the analytical value of D begins to increase again. It may therefore be concluded that at very high electric fields the decrease in $\mathrm{E}_{\text {dom }}$ and $\mathrm{L}_{\text {dom }}$ due to diffusion effects will be even more prominent in (c) than in (a) and (b).

Shown in fig(5.25)(a), (b) and (c) are plots of the propagating Gunn domain of device R3 for situation (c), ie. an analytical $v(E)$ and analytical $D(E)$. The plots were taken after 500,1000 and 1500 time steps respectively. The bias field was taken to be $\mathrm{E}_{\text {bias }}=7.0 \times 10^{5} \mathrm{Vm}^{-1}$, ie. $\mathrm{V}_{\text {bias }} \approx 3.9 \mathrm{~V}$, for a substrate thickness of

Fig(5.24) Domain Characteristics versus Bias Electric Field for Device R3 for various cases of $v(E)$ and $D(E)$
(a) Domain Height, Edom versus Bias Field, Ebias

(b) Domain Length, Ldom versus Bias Field, Ebias

The Propagating Gunn Domain in Device R3, for Ebias $=7.0 \times 10^{\wedge} 5 \mathrm{~V} / \mathrm{m}$
After 500 Simulations Fig(5.25)

(a)
(b) After 1000 Simulations
(c) After 1500 Simulations
$100 \mu \mathrm{~m}$.
A $50 \mu \mathrm{~m}$ long planar device, having the structure of device P 1 , was also simulated using the approximate $\mathrm{v}(\mathrm{E})$ characteristic and a constant value of D . The results of these simulations are shown in fig(5.26). For these simulations the space interval was $\mathrm{dx}=20.0 \times 10^{-8} \mathrm{~m}$, the time interval, $\mathrm{dt}=16.0 \times 10^{-15} \mathrm{~s}$, and the notch was taken to be $5.0 \mu \mathrm{~m}$ long, positioned $2.5 \mu \mathrm{~m}$ from the cathode, having a doping density equal to 0.99 of the doping density of the active region. The results were taken after 5000 simulations.

As can be seen from $\operatorname{fig}(5.26), \mathrm{E}_{\mathrm{dom}}$ and $\mathrm{L}_{\text {dom }}$ tend to increase as $\mathrm{E}_{\text {bias }}$ increases. However, unlike the results of fig(5.23), no diffusion effects can be observed, at least up to $E_{\text {bias }}=10.0 \times 10^{5} \mathrm{Vm}^{-1}$. Comparing the results of the planar device with those of device R3 (fig(5.23)), it can be seen that for the same bias field, the planar device has associated with it a domain which has a higher peak field, and which is longer, than that of the shorter vertical device. This suggests that the planar diode/photoelastic waveguide device will produce a larger optical perturbation than the vertical structures incorporating either slab or rib waveguides.

5.4.2 Influence on Optical Guiding by the Gunn Domain

In the previous section results were presented which were produced by the Gunn effect simulation program. These predicted the shape, height, and length of the propagating dipole Gunn domain present within the active layer of a Gunn diode when an electric field, greater than that of the so-called threshold field, E_{T}, is applied to the diode. In this section, the results presented in section(5.4.1) are used to predict the magnitude of each of the four possible perturbation mechanisms outlined in section(4.2).

First consider the domain characteristics for each of the vertical structures, for an approximate $\mathrm{v}(\mathrm{E})$ and a constant D . This situation corresponds to that of fig(5.23). Shown in table(5.6)(a) are the maximum possible perturbations introduced due to the electric field of the domain, as predicted by fig(5.23), for devices R1,

Fig(5.26) Domain Characteristics versus Bias Electric Field for Device P1, for an Approximate $v(E)$ and a Constant D
(a) Domain Height, Edom versus Bias Field, Ebias

(b) Domain Length, Ldom versus Bias Field, Ebias

Table(5.6) Electric Field Influences on Optical Characteristics by a Propagating Gunn Domain
(a) Approximate Analysis (from Fig(5.23))

Device	$E_{\text {bias }}$ $\left(\mathrm{Vcm}^{-1}\right)$	$\Delta n_{\text {EO }}$ $(\lambda=1.15 \mu \mathrm{~m})$	$\Delta \alpha_{\text {EA }}$ $(\lambda=1.15 \mu \mathrm{~m})$	$\Delta n_{\text {EO }}$ $(\lambda=905 \mathrm{~nm})$	$\Delta \alpha_{E A}\left(\mathrm{~cm}^{-1}\right)$ $(\lambda=905 \mathrm{~nm})$
R1	9000	1.421×10^{-4}	0	1.574×10^{-4}	1475
R2	9000	1.660×10^{-4}	0	1.838×10^{-4}	3975
R3	9000	6.774×10^{-5}	0	7.501×10^{-5}	325

(b) Analysis of Device R3 (from Fig(5.24))

Analysis	$E_{\text {bias }}$ $\left(\mathrm{Vcm}^{-1}\right)$	$\Delta \mathrm{n}_{\mathrm{EO}}$ $(\lambda=1.15 \mu \mathrm{~m})$	$\Delta \alpha_{\mathrm{EA}}$ $(\lambda=1.15 \mu \mathrm{~m})$	$\Delta \mathrm{n}_{\mathrm{EO}}$ $(\lambda=905 \mathrm{~nm})$	$\Delta \alpha_{\mathrm{EA}}\left(\mathrm{cm}^{-1}\right)$ $(\lambda=905 \mathrm{~nm})$
a	9000	6.774×10^{-5}	0	7.501×10^{-5}	325
b	9000	4.580×10^{-5}	0	5.072×10^{-5}	135
c	9000	4.021×10^{-5}	0	4.453×10^{-5}	105

(c) Approximate Analysis of Device P1 (from Fig(5.26))

Device	$E_{\text {bias }}$ $\left(\mathrm{Vcm}^{-1}\right)$	$\Delta n_{\text {EO }}$ $(\lambda=1.15 \mu \mathrm{~m})$	$\Delta \alpha_{\text {EA }}$ $(\lambda=1.15 \mu \mathrm{~m})$	$\Delta n_{\text {EO }}$ $(\lambda=905 \mathrm{~nm})$	$\Delta \alpha_{E A}\left(\mathrm{~cm}^{-1}\right)$ $(\lambda=905 \mathrm{~nm})$
P1	10000	1.520×10^{-4}	0	1.683×10^{-4}	3775

$R 2$, and $R 3$, where, $\Delta n_{E O}=$ the change in the refractive index of the material due to the Linear Electro-Optic effect (table(4.1)), and $\Delta \alpha_{\mathrm{EA}}=$ the change in the optical absorption coefficient due to the Electro- Absorption effect (equation(4.11)) [9]. As can be seen from table(5.6)(a), $\Delta \mathrm{n}_{\mathrm{EO}}$ tends to increase with decreasing wavelength, and $\Delta \alpha_{E A}$ is negligible at wavelengths not close to the band edge. It can also be seen that both $\Delta n_{E O}$, and $\Delta \alpha_{E A}$, tend to decrease with decreasing active layer doping density, and with increasing active layer length, for a given value of electric field.

Table(5.6)(b) presents the results for device R3 for the three analysis situations presented in fig(5.24), ie. (a) an approximate $v(E)$, and constant D; (b) an analytical $\mathrm{v}(\mathrm{E})$, and constant D ; and (c) an analytical $\mathrm{v}(\mathrm{E})$, and analytical $\mathrm{D}(\mathrm{E})$. Again, it can be seen from table(5.6)(b) that $\Delta n_{E O}$ increases with decreasing wavelength, while $\Delta n_{E A}$ is negligible at wavelengths above the band edge. Table(5.6)(c) presents an estimate of the maximum electric field induced optical perturbations for the planar device P1.

Shown in table(5.7)(a) are the maximum possible perturbations introduced into devices R1, R2 and R3 due to the free carrier variation throughout the extent of the domain, where, $\Delta \mathrm{n}_{\mathrm{FC}}=$ the change in the refractive index of the material due to the Free Carrier Plasma effect associated with the domain (equation(4.21)), and $\Delta \alpha_{\mathrm{FC}}=$ the change in the optical absorption coefficient due to the variation in the carrier density profile across the domain (equation(4.19)). These results were again obtained from the simulation results of fig(5.23). As can be seen from table(5.7)(a), $\Delta n_{F C}$ tends to decrease with decreasing wavelength, and $\Delta \alpha_{\mathrm{FC}}$ (as for $\Delta \alpha_{\mathrm{EA}}$) is negligible at wavelengths not close to the band edge.

Table(5.7)(b) provides a comparison of the maximum electric field induced and free carrier induced optical perturbations for the wavelengths of interest, the data being taken from tables(5.6)(a) and (5.7)(a) respectively. Note that both $\Delta \alpha_{\text {EA }}$ and ${ }^{\Delta \alpha_{\mathrm{FC}}}$ are negligible at a wavelength of $1.15 \mu \mathrm{~m}$. It can be seen that the ratio of $\Delta n_{E O}$ to $\Delta n_{F C}$ increases with decreasing wavelength, and also increases with increasing active layer doping density, and active layer length. Further, for a

Table(5.7) Free Carrier Influences on Optical Characteristics by a Propagating Gunn Domain
(a) Approximate Analysis (from Fig(5.23))

Device	$\mathrm{E}_{\text {bias }}$ $\left(\mathrm{Vcm}^{-1}\right)$	$\Delta \mathrm{n}_{\mathrm{FC}}$ $(\lambda=1.15 \mu \mathrm{~m})$	$\Delta \alpha_{\mathrm{FC}}$ $(\lambda=1.15 \mu \mathrm{~m})$	$\Delta \mathrm{n}_{\mathrm{FC}}$ $(\lambda=905 \mathrm{~nm})$	$\Delta \alpha_{\mathrm{FC}}\left(\mathrm{cm}^{-1}\right)$ $(\lambda=905 \mathrm{~nm})$
R1	9000	2.547×10^{-6}	0	1.524×10^{-6}	1.395
R2	9000	6.240×10^{-6}	0	3.734×10^{-6}	3.758
R3	9000	5.349×10^{-6}	0	3.200×10^{-6}	0.307

(b) Comparison of Electric Field and Free Carrier Influences

Device	$\mathrm{E}_{\text {bias }}$ $\left(\mathrm{Vcm}^{-1}\right)$	$\frac{\Delta \mathrm{n}_{\mathrm{EO}}}{\Delta \mathrm{n}_{\mathrm{FC}}}$ $(\lambda=1.15 \mu \mathrm{~m})$	$\Delta \alpha_{\mathrm{EA}}$ $(\lambda=1.15 \mu \mathrm{~m})$	$\frac{\Delta \mathrm{n}_{\mathrm{EO}}}{\Delta \mathrm{n}_{\mathrm{FC}}}$ $(\lambda=905 \mathrm{~nm})$	$\frac{\Delta \alpha_{\mathrm{EA}}\left(\mathrm{cm}^{-1}\right)}{\Delta \alpha_{\mathrm{FC}}\left(\mathrm{cm}^{-1}\right)}$ $(\lambda=905 \mathrm{~nm})$
R1	9000	55.79	-	103.28	1057.57
R2	9000	26.60	-	49.23	1057.60
R3	9000	12.66	-	23.44	1057.60

wavelength of 905 nm , it can be seen that the ratio $\Delta \alpha_{\mathrm{EO}} / \Delta \alpha_{\mathrm{FC}}$ is approximately the same for each of the devices of interest.

The cyclic propagation of the Gunn domain through the rib optical waveguide was simulated by approximating the dipole domain to a slab of height, $\mathrm{E}_{\mathrm{dom}}$, and length, $\mathrm{L}_{\text {dom }}$, moving through the rib in a vertical direction from cathode to anode. The .NWAVE program was run, inserting the slab into the device at various distances from the cathode. This simulation was undertaken for each of the rib structures R1, R2 and R3, the values of $E_{d o m}$ and $L_{\text {dom }}$ which were used being the maximum values as taken from fig(5.23). The number of basis functions used in the .NWAVE program for these simulations were $f_{1}=7$ and $f_{2}=10$.

It was found, as would be expected, that when the domain was close to the cathode the perturbation introduced in the refractive index of the material, $\Delta^{n} \mathrm{E}$ E due to the presence of the domain, had no observable effect on the effective index, $\mathrm{n}_{\text {eff }}$ of the guide. However, as the domain passed across the position in the rib corresponding to the mode centre, an observable perturbation in $n_{\text {eff }}$ could be observed. The observed perturbation in $\mathrm{n}_{\text {eff }}$ for R1, R2 and R3, for a wavelength of $1.15 \mu \mathrm{~m}$, is shown in table(5.8). As can be seen from this, the perturbation $\Delta \mathrm{n}_{\text {eff }}$ is small, ie. of the order of 1.0×10^{-5}. However, in the case of device R2, $\Delta n_{\text {eff }}$ can be seen to be sufficient to reduce the effective index of the guide to below the refractive index of the substrate, and therefore to cut-off the mode of the guide. The substrate refractive index, $\mathrm{n}_{\mathrm{s}}=3.464861$, and the perturbed value of $n_{\text {eff }}=3.464853$ in this case.

Note that in the above calculations it is assumed that the perturbation in the refractive index, due to the domain, is positive in value. This corresponds to the rib guides being aligned along the [011] direction, and the domain introducing a waveguiding effect. If the perturbation had however been taken to be negative, ie. if the guides were aligned along the [$0 \uparrow 1$] direction, then an antiwaveguiding effect would have been introduced.

If a more precise estimate of the influence on the propagation constant, β, introduced by the presence of the propagating domain, is required, then the

Table(5.8) Perturbation in the Effective Index, $\Delta n_{e f f}$ due to a Domain at the Mode Centre, for $\lambda=1.15 \mu \mathrm{~m}$

Device	$n_{\text {eff }}$	$n_{\text {eff }}$ with Domain	$\Delta n_{\text {eff }}$
R1	3.464961	3.464956	5.0×10^{-6}
R2	3.464867	3.464853	1.4×10^{-5}
R3	3.464916	3.464898	1.8×10^{-5}

Hellman- Feynman Perturbation Theorem [63] could be used in conjunction with the electric field profile associated with the propagating mode as calculated by either the .NWAVE program, or the Finite Difference technique. This theorem was not, however, employed since it was not within the main aims of the project.

5.4.3 Comparison of Modulator Designs

The integrated devices of fig(1.3) have advantages over previously proposed optical modulators based on the Gun effect [47],[7],[8] in that they: (a) provide means for optical confinement within the device; (b) require a lower electrical drive power; and (c) offer a higher frequency of optical modulation. Advantages (b) and (c) are due to the reduced active layer length of the integrated device in comparison to that of the previous bulk modulators. A quantitative comparison between the bulk modulators and the waveguide modulator structures may be obtained by comparing the average external electrical power, P_{e}, required to operate the modulator.

$$
P_{e}=\frac{V^{2}}{R}
$$

where, $V=E_{\text {bias }} f$
$R=\frac{1}{N q, \mu} \frac{f}{A}$
$A=\omega l$
$\mathrm{w}=$ modulator $w i d t h=r i b$ width
$\mathrm{f}=$ modulator thickness $=$ active layer length
$1=$ modulator length $=$ rib length

Hence, the external drive power is given by

$$
P_{e}=E_{\text {bias }}^{2} f \omega L N q \mu
$$

The important point to note from equation(5.35) is that the modulating power required is proportional to the active volume, $w x f x$. Thus, if a comparison is made between the previously proposed bulk modulators, and the planar waveguide device of $\mathrm{fig}(1.3)(a)$, then it is obvious that significantly less power will be required by the planar waveguide device. Further, still greater power reduction will be obtained by employing the rib waveguide modulator of $\operatorname{fig}(1.3)(b)$.

5.4.4 Influence on Threshold Field of Stress due to the Photoelastic Effect

In the planar device incorporating a photoelastic waveguide, proposed in fig(1.3)(c), a stress field will exist within the epilayer below the metal stripe. The pressure experiments of Hutson et al [28] showed a definite decrease in the threshold voltage, V_{T}, and therefore the threshold field, E_{T}, for Gunn operation below an applied hydrostatic pressure of $15 \mathrm{kbar}=15.0 \times 10^{8} \mathrm{Nm}^{-2}$. Further, the experiments of Westbrook et al [17] measured the stresses present within photoelastic waveguides to be of the order of $6.0 \times 10^{8} \mathrm{Nm}^{-}{ }^{2}$. Therefore it may be reasonable to expect that the presence of the photoelastic waveguide will reduce the Gunn threshold field, E_{T}, of the epilayer, and therefore result in a lower than expected operating voltage of the proposed planar device.

5.5 DEVICES DESIGNED IN OTHER MATERIALS

It may be envisaged that either the vertical/rib device, or the planar/photoelastic device, could be designed and fabricated in a material other than GaAs, eg. InP. The analytical $v(E)$ characteristic calculated for InP, using the same analysis as was outlined for GaAs in section(5.4.1), is shown in fig(5.27)(a). This plot shows the $v(E)$ characteristic of InP for $1-D, 2-D$ and $3-D$, for a lattice temperature $T=300 \mathrm{~K}$. The data used in the calculation of this characteristic was as follows [27]: $\mu_{1}=0.4600 \mathrm{~m}^{2} \mathrm{~V}^{-1} \mathrm{~s}^{-1} ; \quad \Delta=0.54 ; \quad \mathrm{Mr}_{1}=0.077 ; \quad \mathrm{Mr}_{2}=0.55 ; \quad \mathrm{Mv}_{1}=1$;
The Analytical Variation with Electric Field of InP, for $\mathrm{T}=300 \mathrm{~K}$

Fig(5.27)

를
$\operatorname{Mv}_{2}=4$.
As can be seen from $\operatorname{fig}(5.27)(a)$, InP offers the advantage of a higher peak electron velocity than GaAs, but has the disadvantage of a higher threshold electric field. The higher threshold field in InP suggests a correspondingly higher operating voltage in order for domains to form and propagate.

Shown in fig(5.27)(b) is the corresponding $\mathrm{D}(\mathrm{E})$ characteristic for InP , when $\mathrm{T}=300 \mathrm{~K}$. As can be seen the field dependent diffusion coefficient, $\mathrm{D}(\mathrm{E})$ of InP behaves in a similar manner to that of GaAs, but again, as for $v(E)$, peaks at a higher field than the GaAs characteristic. For the device structures under discussion, InP may therefore offer the advantage of an increased frequency of operation, but only at the expense of an increase in the required voltage of operation.

It may alternatively be envisaged that the devices fabricated in GaAs may additionally include tertiary or quaternary compound layers, eg. AlGaAs, to aid in optical confinement. This is what is most commonly done at present in forming rib waveguiding structures, since the heterojunction between GaAs and AlGaAs offers a greater difference in refractive index between the adjacent layers than does the homojunction formed between two differently doped GaAs layers. To date, however, no work has been done on the electrical performance of AlGaAs in relation to the Gunn effect. It should be noted that since AlGaAs has a smaller intervalley spacing, Δ, than GaAs, AlGaAs should therefore also have a correspondingly lower threshold electric field, E_{T}.

CHAPTER 6
DEVICES, THEIR FABRICATION AND CHARACTERISATION

6.1 PROCEDURAL ASPECTS

6.1.1 Material Growth

The material required for the fabrication of the proposed devices was initially supplied by the SERC III-V Semiconductor Facility in the University of Sheffield (US), and latterly by the University of Glasgow (UG) MBE (Molecular Beam Epitaxy) facility. The material designs which were required are shown in table(6.1).

Sample CPM268 was grown by VPE (Vapour Phase Epitaxy). This was because Sheffields MBE and MOCVD (Metal Organic Chemical Vapour Deposition) [64] facilities were at the time unable to grow single layers over approximately $4 \mu \mathrm{~m}$ to $5 \mu \mathrm{~m}$ in thickness. Both LPE (Liquid Phase Epitaxy) and VPE [65] were attempted in growing this sample. However, it was found by the Sheffield workers that LPE was unable to produce a uniformly thick sample, and therefore VPE was chosen. The morphology of single GaAs layers grown by VPE was however a problem. The reactor was so large that a sample interlock was necessary to maintain dry conditions. A growth technique was therefore tried in order to improve the morphology. This involved the growth of $\mathrm{Al} . \mathrm{S}$ in the previous run to build up an Al getter in the reactor. This technique was not, however, entirely successful, and it was found that CPM268 still had an unacceptably high defect density on some areas of the sample.

Both of the remaining vertical samples, CPM351 and CPM411, were grown at the University of Sheffield by MOCVD, while the planar sample, \#A31, was grown at the University of Glasgow by MBE.
\qquad
Buffer, b

Film, f

Substrate, s

Device	$\mathrm{S} 41, \mathrm{R} 1$	$\mathrm{~S} 42, \mathrm{R} 2$	$\mathrm{~S} 43, \mathrm{R} 3$	$\mathrm{P} 12, \mathrm{P} 14$
$\mathrm{~b}(\mu \mathrm{~m})$	0.5	0.5	2.0	0.5
$\mathrm{~N}_{\mathrm{b}}\left(\mathrm{cm}^{-3}\right)$	1.0×10^{18}	1.0×10^{18}	2.0×10^{17}	2.0×10^{17}
$\mathrm{f}(\mu \mathrm{m})$	7.0	5.0	5.0	5.0
$\mathrm{~N}_{\mathrm{f}}\left(\mathrm{cm}^{-3}\right)$	5.0×10^{16}	5.0×10^{16}	5.0×10^{15}	5.0×10^{15}
$\mathrm{~s}(\mu \mathrm{~m})$	425	425	425	425
$\mathrm{~N}_{\mathrm{S}}(\mu \mathrm{m})$	1.0×10^{18}	1.0×10^{18}	1.0×10^{18}	SI
Sample No.	CPM268	CPM351	CPM411	\#A31
Source	US	US	US	UG

6.1.2 Material Characterisation

Each piece of material which was received underwent various tests in order to characterise its properties, and also to ascertain the likelihood that the material would be suitable for use in fabricating the proposed devices.

A piece of the sample would initially be cleaved to a suitable size (around $4 \mathrm{~mm} \times 4.5 \mathrm{~mm}$). The first test that this sample would undergo was a photoluminesence (PL) measurement. This is a non-destructive test which measures the spectral characteristic, and hence the bandgap, of the material. PL therefore allows one to identify whether the material is GaAs , and whether Al is present, or if carbon acceptors are present in quantity. The results of the photoluminesence measurements are shown in table(6.2). It was found that the spectral characteristics of CPM268 and CPM351 strongly showed the presence of carbon acceptors, while those of CPM411 and \#A31 showed that carbon acceptors were present, but in less abundance. The measurements were taken at a reduced temperature of approximately 15 K using a germanium photodetector.

The next test which was undertaken, on each of the pieces of material, was to measure the precise doping profile, ie. doping density with depth, using an electro- chemical $\mathrm{C}-\mathrm{V}$ profiler, ie. a Polaron plotter [66]. The results of these tests are shown in table(6.3). For each of the samples, the magnitude of the doping density was calibrated on the $\mathrm{N}=1.0 \times 10^{15} \mathrm{~cm}^{-3}$ to $\mathrm{N}=1.0 \times 10^{18} \mathrm{~cm}^{-3}$ scale of the Polaron plotter by measuring the $\mathrm{C}-\mathrm{V}$ curve, for any given depth within the sample, and matching this curve to a set of standard $\mathrm{C}-\mathrm{V}$ curves for GaAs , supplied by Polaron Equipment Ltd.

As can be seen from table(6.3), for each of the material designs, the actual material structure varied somewhat from that which was specified. However, the $\mathrm{N}_{\mathrm{f}} \mathrm{f}$ product for the vertical structures, and the $\mathrm{N}_{\mathrm{f}} \mathrm{L}$ product for the planar structures, was greater than $10^{12} \mathrm{~cm}^{-2}$. Consequently each piece of material which was supplied was still suitable for the fabrication of a super-critical Gunn diode.

A Polaron plot was received from the University of Sheffield for sample

Table(6.2) Results of Photoluminescence Measurements

Sample	Emission Wavelength, $\lambda(\mathrm{nm})$	Bandgap, $\mathrm{E}_{\mathrm{g}}(\mathrm{eV})$
CPM268	819.1	1.5092
CPM351	820.3	1.5136
CPM411	819.7	1.5147
\#A31	831.7	1.4928

Table(6.3) Material Designs Received (Grown on a (100) Crystal Plane)
\qquad

Substrate, s

Device	$\mathrm{S} 41, \mathrm{R} 1$	$\mathrm{~S} 42, \mathrm{R} 2$	$\mathrm{~S} 43, \mathrm{R} 3$	$\mathrm{P} 12, \mathrm{P} 14$
$\mathrm{~b}(\mu \mathrm{~m})$	0.52	0.40	1.5	0.4
$\mathrm{~N}_{\mathrm{b}}\left(\mathrm{cm}^{-3}\right)$	2.8×10^{18}	2.0×10^{18}	1.0×10^{17}	1.2×10^{17}
$\mathrm{f}(\mu \mathrm{m})$	7.80	4.36	4.0	7.2
$\mathrm{~N}_{\mathrm{f}}\left(\mathrm{cm}^{-3}\right)$	9.0×10^{16}	7.0×10^{16}	7.5×10^{15}	3.0×10^{15}
$\mathrm{~s}(\mu \mathrm{~m})$	425	425	425	425
$\mathrm{~N}_{\mathrm{S}}(\mu \mathrm{m})$	9.0×10^{17}	1.5×10^{18}	1.2×10^{18}	SI
Sample No.	CPM 268	CPM 351	CPM 411	\#A31

CPM411. This plot did not however tally with that found by the University of Glasgow Polaron plotter. The Sheffield plot suggested that $b=1.6 \mu \mathrm{~m}$, $\mathrm{N}_{\mathrm{b}}=2.9 \times 10^{17} \mathrm{~cm}^{-3}$, and $\mathrm{N}_{\mathrm{S}}=7.0 \times 10^{17} \mathrm{~cm}^{-3}$, and that the active layer length f $=3.8 \mu \mathrm{~m}$, and varied in doping density, almost linearly, between $\mathrm{N}_{\mathrm{f}}=2.0 \times 10^{16} \mathrm{~cm}^{-3}$ and $\mathrm{N}_{\mathrm{f}}=3.7 \times 10^{15} \mathrm{~cm}^{-3}$. If this was the correct structure of CPM411, then it suggested that the material would still be of use in the fabrication of Gunn diodes, since the $\mathrm{N}_{\mathrm{f}} \mathrm{f}$ product was still above the required threshold level. However, the discrepancy between the Sheffield and Glasgow measurements may suggest a substantial variation in the structure, ie. doping density and layer depth, of the material across any given plane parallel to its surface. This would suggest that various samples of this material might therefore give substantially different experimental results.

A piece of each material was also observed under an optical microscope in order to estimate the number of defects appearing on the material surface per unit area. The results of these observations, estimated using a graticular eye piece, are shown in table(6.4). As can be seen from this table, sample CPM268 had a defect density of the order of 10^{2} to 10^{4} times that of the other samples. Note however that this was an averaged value over various parts of the surface of the samples, and that some parts were more free from defects, and therefore more useful for device fabrication, than others.

Observing the surface of the material in an SEM showed the existence of three types of defect: (a) 'eye'-shaped defects; (b) ' D '-shaped defects; and (c) elongated oval-shaped defects. The eye-shaped defect had a centre which extended into the surface of the material, therefore rendering some areas of the surface useless. A typical eye-shaped defect is shown in fig(6.1). The D-shaped defect was typically $1 \mu \mathrm{~m}$ to $2 \mu \mathrm{~m}$ in length, and extended into the surface of the material to a shallow depth ($\approx 0.1 \mu \mathrm{~m}$). The elongated oval-shaped defect was raised ($\approx 0.05 \mu \mathrm{~m}$) from the surface of the material, and had a typical length of around $0.5 \mu \mathrm{~m}$.

The low field mobility, μ, of electrons within the active layer of the planar sample \#A31 was measured by the Van der Pauw method [67]. This method consists

Table(6.4) Measurement of Defect Densities

Sample	Defect Density $\left(\mathrm{cm}^{-2}\right)$
CPM268	4.09×10^{6}
CPM351	3.14×10^{2}
CPM +11	6.82×10^{4}
\#A31	1.11×10^{2}

Fig(6.1) A Typical 'Eye'-Shaped Defect on the Surface of CPM268

of using a 'clover-leaf' sample. The advantages of using the clover-leaf pattern over other methods of mobility measurement are the ease of sample preparation, the relative simplicity with which the relevant voltages can be measured, and the better experimental accuracy. The principal disadvantage lies in the slightly more tedious analysis that is required on the experimental results in order to extract the Hall data, and therefore calculate the mobility.

The Van der Pauw technique applies to planar samples and yields the two-dimensional resistivity of the sample, which may then be converted to the bulk values if the sample thickness is known. For the material structures of interest, this method therefore only applies to the planar device on a semi-insulating substrate. If the same measurements were carried out for the vertical structures, on an N^{++} substrate, then the value of mobility measured would be that of the high conductivity substrate and not that of the active region.

The following procedure was carried out in order to prepare the planar sample for a Van der Pauw measurement. A sample of the material was cleaved to a suitable size ($\approx 7 \mathrm{~mm} \times 7 \mathrm{~mm}$) and cleaned as follows:

```
ultrasonic in a beaker of soapy water for 5mins;
rinse in deionised water for 5 mins;
ultrasonic in a beaker of trichloroethelene for 5mins;
ultrasonic in a beaker of methanol for 5mins;
ultrasonic in a beaker of acetone for 5mins;
rinse in deionised water for 5mins;
blow dry using a nitrogen gun;
dry off on a hot plate at }7\mp@subsup{0}{}{\circ}\textrm{C}\mathrm{ for 5mins.
```

The cleaning procedure outlined above was that which was used in the preparation of all samples, including the vertical spot Gunn diodes, rib waveguides, and photoelastic waveguides referred to in the succeeding sections of this Chapter.

The preparation of the Van der Pauw sample was continued by etching off the capping layer using an etchant consisting of Ammonia $: \mathrm{H}_{2} \mathrm{O}_{2}: \mathrm{H}_{2} \mathrm{O}$ in the ratio 20:7:500. This etchant gave an etch rate of $0.2 \mu \mathrm{mmin}^{-1}$. The sample was then
rinsed in deionised water, blow dried, and dried off on the hotplate.
While still on the hotplate a small clover- leaf metal mask was placed on the sample, and retained on the top surface of the sample with a small quantity of wax. The sample itself was then placed on a microscope slide and retained using wax. The sample was allowed to cool, and any excess wax removed using a scalpel, such that the only wax remaining on the sample surface was that under the metal mask. An air abrasive machine was then used to powder etch the sample, ensuring that the areas of the active layer still exposed were etched away, thus forming the required clover- leaf shaped conducting structure. The sample was then placed on the hotplate and removed from the microscope slide. The metal mask was also removed from the top surface, and the sample cleaned by the same procedure as before.

The sample was then deoxidised using deionised water and ammonia in the ratio 10:1 for 30 secs, and a second circular mask aligned with the clover-leaf pattern, such that each of four holes in the circular mask aligned with one leaf of the clover. The second mask was retained on the sample surface using a small piece of double sided sticky tape. The sample was then, as quickly as possible, placed in the vacuum evaporator, which was pumped down to a suitable pressure (approximately $5.0 \times 10^{-}{ }^{6} \mathrm{mbar}$) before the ohmic contacts were deposited.

An ohmic contact to GaAs may be formed by creating a highly doped semiconductor layer immediately below the contact [68],[69]. The depletion width of the metal-semiconductor barrier is then sufficiently small that electrons can easily tunnel through the barrier. Fabrication of sufficiently good ohmic contacts to GaAs requires careful preparation of the contact surface before evaporation, and rapid deposition of the first metallic layer to the contact surface. The composition of the ohmic contacts for this sample, as well as for the actual devices of interest, is shown in table(6.5).

After deposition was completed, the sample was removed from the evaporator, the mask removed, and the sample cleaned by the same procedure as before. The sample was then annealed in an atmosphere of inert gas, eg. argon (Ar), at a temperature of $325^{\circ} \mathrm{C}$ for 1 min . These annealing conditions have been found to

Table(6.5) Ohmic Contact Composition

Metal	Thickness (nm)	Proportion (\%) by Weight
Au	71	88
Ge	40	12
Ni	20	25
Au	>18	-

produce low contact resistance on heavily doped material [70]. The annealing step allows the $\mathrm{Au} / \mathrm{Ge}$ eutectic to alloy with the GaAs layer thus forming the required high conductivity interface. The Ni layer acts to improve the wetting, and enhances the solubility of the GaAs, but has the disadvantage of itself being a fast diffuser and compensating acceptor.

Using an HL5200 Hall System the standard Van der Pauw method for measuring conductivity was employed, ie. each of the four possible contact permutations was measured, and the resulting voltages used in turn as the inputs to the Van der Pauw equations. From these an average sheet resistivity could be calculated, and, if the thickness was known, the corresponding bulk resistivity, and hence electron mobility, could be obtained.

For a magnetic field of 0.320 Te a a , and input current of $100 \mu \mathrm{~A}$, the 300 K value of the low field electron mobility, μ, of the $3.0 \times 10^{15} \mathrm{~cm}^{-3} \mathrm{~N}$ - doped epilayer of sample \#A31 was found to be $0.3557 \mathrm{~m}^{2} \mathrm{~V}^{-}{ }^{1} \mathrm{~s}^{-1}$. This is lower than the normally accepted value of the low field mobility of $\operatorname{GaAs}\left(\mu \approx 0.800 \mathrm{~m}^{2} \mathrm{~V}^{-}{ }^{1} \mathrm{~s}^{-1}\right)$, and may possibly be explained as being due to deep level scattering mechanisms related to the carbon centres observed from the PL measurement [71].

6.1.3 Device Fabrication

Spot contact Gunn diodes, vertical Gunn diode/rib waveguide devices, and planar Gunn diode/photoelastic waveguide devices, have all been fabricated. The precise fabrication and characterisation procedures for each of these devices is outlined fully in sections(6.2), (6.3) and (6.4) respectively. Each of these devices was fabricated by the optical photolithographic technique commonly known as 'lift-off'. The procedural steps of this technique were as follows:
(a) The sample was cleaned following the procedure already outlined in section(6.1.2).
(b) In the case of the vertical structures a $\mathrm{Au} / \mathrm{Ge} / \mathrm{Ni} / \mathrm{Au}$ ohmic contact was deposited onto the bottom of the sample, but not at this stage annealed.
(c) Photoresist was then spun onto the top surface of the sample at a spin speed of 2000 rpm for 20 secs, and baked at $85^{\circ} \mathrm{C}$ for 30 mins . The spin temperature was $25^{\circ} \mathrm{C}$, and the humidity between 40% and 50%.
(d) The sample was then exposed either on the contact printer for 4 mins in the case of the spot contact diodes, or on the mask aligner for 6 secs in the case of the vertical/rib or planar/photoelastic devices.
(e) The photoresist was then developed in a mixture of $1: 1, \mathrm{H}_{2} 0:$ Microposit Developer for 75 secs, rinsed in deionised water, blow dried, and dried off on the hot plate.
(f) The sample was then deoxidised using a solution of $4: 1, \mathrm{H}_{2} 0: \mathrm{HCl}$ for 20 secs, rinsed quickly in running deionised water, blown dry, and loaded into the evaporator as quickly as possible to avoid regrowth of the oxide layer. The deoxidising solution of $10: 1, \mathrm{H}_{2} \mathrm{O}:$ Ammonia could not be used with resist coated samples. A $\mathrm{Au} / \mathrm{Ge} / \mathrm{Ni} / \mathrm{Au}$ contact similar to that of table(6.5) was then deposited onto the top surface.
(g) The metal on top of the photoresist was lifted- off by placing the sample in a beaker of acetone for 2 to 3 hours, thus leaving the required pattern of ohmic contacts.
(h) The sample was then annealed for 1 min , at $325^{\circ} \mathrm{C}$, in an atmosphere of inert gas, eg. Ar.

Following the procedure outlined above the required ohmic contacts for the devices of interest were formed.

Two types of photoresist were used. These were Shipley's AZ1350J and AZ1450J positive photoresists for spray or spin coatings between $1.5 \mu \mathrm{~m}$ and $2.2 \mu \mathrm{~m}$ thick [72],[73]. The advantage of AZ1450J over AZ1350J is that it should give a relatively striation free surface, and therefore better mask/resist contact during exposure.

The resist thickness versus spin speed characteristic for both AZ1350J and AZ1450J were found by spinning the resists onto clean glass slides, for a period of 20secs. The slides were then baked for 30 mins at $85^{\circ} \mathrm{C}$, subsequently exposed on the
contact printer for 4 mins using a pattern of straight lines, and then developed in a mixture of $1: 1, \mathrm{H}_{2} \mathrm{O}:$ Microposit Developer for 75 secs.

Investigations were also made of the variation in resist thickness with spin speed for Shipley AZ1350. The AZ1350 coated slides were exposed for 3 mins using the same pattern, and developed in a mixture of $1: 1, \mathrm{H}_{2} \mathrm{O}$:Microposit Developer for 70secs.

As can be seen from fig(6.2)(a) AZ1350J and AZ1450J give very similar characteristics, while AZ1350 gives a somewhat thinner resist layer for the same spin speed. Further, the variation in the gradient of the resist wall of AZ1450J, with developing time, was investigated. The results are shown in fig(6.2)(b).

6.2 SPOT CONTACT GUNN DIODES

Spot contact Gunn diodes, of a similar structure to that of the commercial diodes shown in fig(3.6), were fabricated with spot ohmic contacts varying in diameter from $20 \mu \mathrm{~m}$ to $90 \mu \mathrm{~m}$. Such spot contact Gunn diodes were fabricated from each of the pieces of vertical material, ie. CPM268, CPM351 and CPM411. The purpose of fabricating such devices was two-fold. First, one was able to ascertain if the active layer of the material oscillated, ie. whether Gunn domains formed and propagated. Second, by wet etching the spot contacts the crystallographic cleavage planes of the material could be identified from, the resulting etch profile. This is important in the fabrication of the integrated devices since, as was explained in Chapter 4, the observed Linear Electro-Optic effect is different for different directions of applied electric field, and different directions of optical mode propagation.

The procedure for fabricating these devices is explained schematically in fig(6.3). The sample was prepared by the fabrication procedure outlined in section(6.1.3). The samples were fabricated using a chromium mask consisting of a pattern of holes, varying in diameter in $10 \mu \mathrm{~m}$ steps from $20 \mu \mathrm{~m}$ to $90 \mu \mathrm{~m}$. A typical spot contact diode fabricated in this way, after annealing, is shown in fig(6.4). This

Fig(6.2) Characterisation of Shipley Photoresists
(a) Layer Thickness versus Spin Speed

(b) Gradient of AZ1350J Wall versus Development Time (Resist Thickness $=1.8$ microns)

Fig(6.3) Fabrication Procedure for Spot Contact Gunn Diodes

Sample Cleaned and Bottom
Contact Deposited

Photoresist
Spun and
Baked

Photoresist
Exposed and
Developed

Ohmic Contact
 $\xlongequal{\text { そ..... }}$ Photoresist

Fig(6.4) Typical Spot Contact Gunn Diode, Fabricated by Lift-Off

spot contact consists of a $\mathrm{Au} / \mathrm{Ge} / \mathrm{Ni} / \mathrm{Au}$ ohmic contact capped with a further Au bonding layer (approximately $0.8 \mu \mathrm{~m}$ thick).

For each piece of material, each spot was probed using an Omniprobe Electrical Prober Unit, supplied by Semtek Ltd., in conjunction with an HP4145A Semiconductor Parameter Analyser. This allowed one to ensure that the Gunn diode exhibited a low-field ohmic characteristic, and that the resistance of the diode was approximately that which would be expected. For CPM411 a typical I-V characteristic for a spot size of $30 \mu \mathrm{~m}$ is shown in fig(6.5). As can be seen from fig(6.5), the resistance of the $30 \mu \mathrm{~m}$ spot diode is 12.5Ω. Ignoring the resistance introduced by the contacts, the theoretical resistance of the $30 \mu \mathrm{~m}$ spot diode is 11.7 . The experimentally observed value therefore agrees well with theory, suggesting good quality ohmic contacts.

The spot contact diodes referred to above were fabricated on an unthinned substrate approximately $425 \mu \mathrm{~m}$ thick. However, in order to reduce the threshold voltage, V_{T} of the diode, the thickness of the substrate could be reduced by, for example, mechanical polishing or wet etching. In either of these cases the ohmic contact on the rear surface was not deposited until the spot contacts on the top surface had been fabricated, and in the case of the wet etch, the top surface protected, eg. by a layer of photoresist.

The substrate of some samples was back thinned to a thickness of $150 \mu \mathrm{~m}$ using silicon carbide powder, and then down, to a thickness of $100 \mu \mathrm{~m}$ using aluminium oxide powder. The substrate of other samples was back- thinned to a thickness of $100 \mu \mathrm{~m}$ using a wet etch consisting of $\mathrm{H}_{2} \mathrm{SO}_{4}: \mathrm{H}_{2} \mathrm{O}_{2}: \mathrm{H}_{2} \mathrm{O}$ in the ratio 1:8:1. It was found, however, that when the samples were back-thinned to a thickness of around $100 \mu \mathrm{~m}$, by either polishing or wet etching, they became brittle. This made further processing steps impossible with the fabrication facilities available if the sample was to remain of a useful and manageable size, ie. above $1 \mathrm{~mm} \mathbf{x}$ 1 mm . The possibility of back- thinning of the substrate, leading to a reduced device operating voltage, therefore had to be abandoned.

As was pointed out earlier, the second reason for fabricating the spot diodes

Fig(6.5) I-V Characteristic for Spot Contact Diode on CPM411 (Spot Diameter $=30$ microns)

IF (mA)

was that they could be used to identify the natural $<011>$ cleavage planes of GaAs when treated by wet chemical etching of the top surface. To this end, each sample which was received was cleaved into rectangular samples, eg. $5 \mathrm{~mm} \times 5.5 \mathrm{~mm}$ in size. In this way the two cleavage planes could be distinguished, and the orientation of the sample identified as being along one plane or the other. However, to identify the cleavage planes as either (011) or ($O T_{1}$) required the use of an anisotropic wet etch, and observation of the resulting etch profile in the SEM.

It was therefore decided to again use an acidic hydrogen peroxide solution [74], consisting of $\mathrm{H}_{2} \mathrm{SO}_{4}: \mathrm{H}_{2} \mathrm{O}_{2}: \mathrm{H}_{2} \mathrm{O}$ in the volume ratio $1: 8: 1$ (Etch 1). This etch provides an oxidant, ie. hydrogen peroxide, $\mathrm{H}_{2} \mathrm{O}_{2}$, and a solvent or solubilising agent, ie. sulphuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}$, which dissolves the amphoteric oxide of GaAs .

The electron micrographs of the resulting etch profiles are shown in $\mathrm{fig}(6.6)(\mathrm{a})$, (b), and (c). As can be seen from fig(6.6)(b), the ($0 \mathrm{~T}_{1}$) plane yields an etch profile which connects the top of the etched surface with the upper surface by an acute-angled wall. It is also evident on closer inspection that this wall is not planar but appears to be composed of two basic surface orientations, making angles of 55° (\{ 1,11$\}$) for the portion nearest the upper surface, and approximately 40° for that nearest the etched surface. Further, from fig(6.6)(a) it can be seen that the (011) section yields a profile with obtuse-angled walls. Note also that at the extreme lower portion of the wall a small acute-angled surface exists. The etch rate of this etchant was found to be $12 \mu \mathrm{mmin}^{-1}$, which is in approximate agreement with the $14.6 \mu \mathrm{mmin}^{-1}$ which Shaw [74] found for the same etch.

In order to investigate the variation in etch rate with temperature of an acidic hydrogen peroxide etch, a relatively more slow etch consisting of $\mathrm{H}_{2} \mathrm{SO}_{4}: \mathrm{H}_{2} \mathrm{O}_{2}: \mathrm{H}_{2} \mathrm{O}$ in the volume ratios 1:8:80 (Etch 2) was used. The results of this investigation are shown in fig(6.7). As would be expected the etch rate was found to increase with increasing temperature. It should further be noted that on observing samples etched by Etch 2 in the SEM, it was found that for the (0.11) section, the relative portion of the walls made up of the acute-angled surface in comparison with the obtuse one was much greater than for Etch 1. Hence, using Etch 2, it was more difficult

Fig(6.6) Electron Micrographs of Wet-Etched Spot Diodes on CPM411
(a) (011) Section

(b) ($0 \overline{1} 1$) Section

(c) Perspective View of a Wet-Etched Spot Contact

Fig(6.7) Etch Rate versus Temperature for H 2 SO 4 : H 2 O 2 : H 2 O in the Volume Ratio 1:8:80(Etch 2)

to identify the crystal orientations than by using Etch 1 . This showed the importance of the correct choice of wet etch when identifying crystal orientations.

6.3 VERTICAL/RIB DEVICES

Vertical Gunn diodes incorporating a rib waveguide, as shown in fig(1.3)(b), were fabricated with ribs varying in width from $4 \mu \mathrm{~m}$ to $15 \mu \mathrm{~m}$. The fabrication procedure for these devices is explained schematically in fig(6.8). Again, as for the spot contact diodes, the stripe contacts were prepared by the fabrication procedure outlined in section(6.1.3). The $\mathrm{Au} / \mathrm{Ge} / \mathrm{Ni} / \mathrm{Au}$ stripe ohmic contacts were formed using a ferric mask consisting of lines varying in width from $4 \mu \mathrm{~m}$ to $15 \mu \mathrm{~m}$, spaced by $350 \mu \mathrm{~m}$, and 7 mm long. Further, the stripe ohmic contacts were capped with a Ni layer around 125 nm thick. This layer was necessary in order to form an etch mask for the next stage of fabrication, ie. SiCl_{4} dry etching of the sample.

Shown in fig(6.9)(a) and (b) are the $I-V$ characteristics for a $10 \mu \mathrm{~m}$ stripe ohmic contact to CPM411 before and after annealing. As can be seen from fig(6.9), the annealing step considerably reduces the resistance of the sample, ie. from around 150Ω to 30Ω. This is due to the $\mathrm{Au} / \mathrm{Ge}$ eutectic diffusing into the sample during annealing, thus forming a high conductivity region at the metal/semiconductor interface.

The next stage in the fabrication of these devices was the formation of the rib waveguides by etching. There are four main considerations in any etching process:
(a) Anisotropy, ie. the extent to which wall profiles are truly vertical.
(b) Surface and wall smoothness. These depend very much upon mask quality, substrate material, and process parameters (especially any that result in deposition as well as etching).
(c) The extent to which etching produces surface damage. This affects the electrical performance of the device.
(d) Etch selectivity between the various layers of the device. Etch selectivity is

Fig(6.8) Fabrication Procedure for the Vertical / Rib Devices

Sample Cleaned, and Bottom
Contact
Deposited

Photoresist
Spun, Baked,
Exposed and
Developed

$N+$
N
$N+$

Top Contact
Deposited, Lift-Off and Anneal

Dry Etched

Sample Cleaned,
Photoresist Spun, Baked, Exposed, and Developed

Schottky Contact Pad Deposited, and Lift-Off

Ohmic Contact
Photoresist
Schottky Pad

Fig(6.9) Stripe Ohmic Contact I-V Characteristics
(a) Before Anneal, $x=0.2 \mathrm{~V}$ div, $\mathrm{y}=1.0 \mathrm{~mA}$ div

(b) After Anneal, $x=0.01 \mathrm{~V} / \mathrm{div}, \mathrm{y}=0.5 \mathrm{~mA} / \mathrm{div}$

dependent upon the proportion and type of chemically active species used in the process.

Other considerations include the preservation of stoichiometry, a fast enough etch rate, and safety.

Dry etching overcomes most of the problems encountered in wet etching of fine geometrical structures, eg. due to the anisotropic nature of wet etches used for GaAs [75],[76],[77]. The regions to be etched are normally defined by photolithographically produced masks, in this case a Ni mask.

The rib devices were therefore fabricated using a Reactive Ion Etcher, RIE80, supplied by Plasma Tech Ltd., wherein the substrate was rested on the lower driven electrode, which was fed through a matching network to give a power density of around $0.5 \mathrm{Wcm}^{-2}$ at 13.56 MHz . The upper electrode has an area around three times greater. Further, at a pressure of around 20 torr $=15 \mathrm{mbar}$, there was a dark space of several centimetres between the plasma and the substrate, across which the ions are accelerated directionally.

For sample CPM411, a number of samples were prepared, and the variation in etch depth with etch time observed. The results of these observations are shown in fig(6.10). This graph gives an etch rate of $0.35 \mu \mathrm{mmin}^{-1}$. Shown in fig(6.11)(a) is a stripe metal contact, consisting of an ohmic contact capped with 125 nm of Ni , before etching. It was found that the minimum Ni mask thickness required was 25 nm per $\mu \mathrm{m}$ of etch depth. Shown in $\mathrm{fig}(6.11)(\mathrm{b})$ is a $4 \mu \mathrm{~m}$ wide rib produced by SiCl_{4} RIE, having an etch depth of approximately $3.5 \mu \mathrm{~m}$. A 'grass' effect can be seen on the etched surface of the sample of $\operatorname{fig}(6.11)(b)$. This is due to redeposition of material from either the etch mask, the electrodes, or the chamber. Fig(6.11)(c) is an end view of a cleaved edge along one of the natural cleavage planes. As can be seen from this the SiCl_{4} RIE gives a substantially vertical etch wall.

The next, and final, requirement in the fabrication of the vertical/rib devices was the formation of a rectangular Schottky contact bonding pad, this pad being positioned in such a manner as to have its longer edge running substantially parallel with the rib guide. As can be seen from fig(1.3)(c) and fig(6.8), its shorter edge is

Fig(6.10) Etch Depth versus Etch Time for CPM411

Fig(6.11) Results of $\mathrm{SiCl4}$ RIE
(a) Stripe Contact before Etching

(b) A Rib Produced by SiCl 4 RIE

(c) End View of a Rib Produced by SiCl4 RIE

positioned such that the pad is adjacent to the rib, extends up one wall of the rib, and onto the top surface of the rib. In this way the Schottky pad can be used as a bonding pad to bond a wire from the device to any external circuitry. Further, for voltages below the reverse breakdown voltage of the Schottky pad, the only part of the device which will conduct will be the $\mathrm{N}^{+} / \mathrm{N} / \mathrm{N}^{++}$Gunn diode formed between the upper stripe ohmic contact and the ohmic contact on the base of the device.

The device was again cleaned by the procedure of section(6.1.2), and photoresist spun onto the top surface. Two types of photoresist were investigated in order to define the Schottky contact pad pattern. These were Shipley AZ1450J and AZ4620A. AZ4620A was investigated since problems were encountered using AZ1450J to define the Schottky pads. These problems are explained fully below.

Samples were spun with AZ1450J at 2000rpm for 20secs, baked for 30 mins at $85^{\circ} \mathrm{C}$, and exposed for 6secs on the mask aligner using a ferric mask consisting of rectangles $300 \mu \mathrm{~m}$ wide, spaced by $50 \mu \mathrm{~m}$, and varying in length between 1.5 mm and 3.0 mm . Each of the long edges of each rectangle was aligned parallel to each of the ribs already fabricated, such that the rib fell within the rectangular pattern. The rectangles were then developed away in a solution of $1: 1, \mathrm{H}_{2} \mathrm{O}$:Microposit Developer for 75 secs, rinsed in deionised water, blow dried, and dried on the hotplate.

A problem however existed in the above procedure using AZ1450J. Referring to fig(6.12), viewing the sample in the SEM, it could be seen that AZ1450J succeeds in just covering the etched rib when the resist is spun on. The thickness of resist on the rib was approximately $0.56 \mu \mathrm{~m}$. Further, on developing the pattern of rectangular pads, it could be seen that the normal developing time of 75 secs did not succeed in fully removing the thicker layer of resist built up at the sides of the rib. It was found that if the developing time was raised, eg. to 100 secs , then no resist build up was left at the sides of the rib structures. However, the increase in the developing time also produced a corresponding decrease in the angle of the resist profile, and a consequently more difficult lift-off process at a later stage.

It was therefore decided to use Shipley AZ4620A positive photoresist. This resist was capable of giving a sufficiently steep resist profile as well as a very thick

Fig(6.12) AZ1450J Spun onto Etched Sample to Define Rectangular Schottky Pads

Fig(6.13) AZ4620A Spun onto Etched Sample to Define Rectangular Schottky Pads

resist film (approximately $6.0 \mu \mathrm{~m}$). The samples were coated with AZ4620A by spinning at 4000 rpm for 20 secs , then baked at $85^{\circ} \mathrm{C}$ for 30 mins , exposed on the mask aligner using the rectangular pad pattern for 6secs, and developed for 75 secs in $1: 1, \mathrm{H}_{2} \mathrm{O}:$ MF3.2 Developer. This development time was found to give a sufficiently steep resist wall profile, as well as fully clearing any residue of resist from the side walls of the rib. This can be seen from the electron micrograph of fig(6.13). Further, a spin speed of 4000 rpm was found to give a resist thickness of around $5 \mu \mathrm{~m}$, ie. a resist thickness greater than the etch depth of the rib.

The sample was now ready for the deposition of the Schottky contact pads. As with ohmic contacts, the fabrication of sufficiently good Schottky contacts to GaAs requires careful preparation of the contact surface before evaporation, and rapid deposition of the first metallic layer to the contact surface. The sample surface was therefore again cleaned, and deoxidised, immediately before loading the sample into the vacuum system for deposition. The deoxidant which was used was $4: 1, \mathrm{H}_{2} \mathrm{O}: \mathrm{HCl}$ for 20 secs, since the sample was again patterned with photoresist.

The metal systems which were used for the formation of Schottky contact pads were $\mathrm{Ti} / \mathrm{Au}$ or $\mathrm{Mo} / \mathrm{Au}$. The first layer consisted of approximately 70 nm of either Ti or Mo. These metals were used since either forms a good rectifying contact to GaAs. The top gold layer had a thickness of not less than 80 nm in order to ensure a sufficiently thick bonding surface. Note that the Schottky pad was deposited onto the device surface at an angle of around 45°. This ensured that one of the walls of the rib was completely covered with metal. The remaining resist was then removed by the process of lift-off, ie. soaking the sample in acetone for 2 to 3 hours, rinsing in deionised water, blowing dry in nitrogen, and drying off on the hotplate. In this way the required rectangular Schottky contact pads were defined.

In order to characterise the $\mathrm{I}-\mathrm{V}$ characteristic of the vertical/rib device incorporating a Schottky pad, the device was probed using the Omniprobe Electrical Prober Unit, and HP4145A Semiconductor Parameter Analyser. A typical I-V characteristic of such a device, with a $\mathrm{Ti} / \mathrm{Au}$ Schottky contact, is shown in fig(6.14). The devices having a $\mathrm{Mo} / \mathrm{Au}$ Schottky contact had virtually identical characteristics to

Fig(6.14) I-V Characteristic of a Typical
Vertical / Rib Device Incorporating
a Schottky Contact Bonding Pad

that of $\mathrm{fig}(6.14)$.
To investigate the performance of the Schottky contacts in isolation, a number of rectangular Schottky pads were fabricated on areas of the etched surface of CPM411 where no rib guides had been defined. A typical $I-V$ characteristic of a $\mathrm{Ti} / \mathrm{Au}$ Schottky contact pad is shown in fig(6.15)(a). As can be seen from this, the Schottky contact has a reverse bias breakdown voltage, V_{B}, of around 12.1 V . Since in operation a bias voltage, $V_{\text {bias }}$, of around 1.75 V is required for the vertical/rib device R3 to oscillate, it can be seen that when this bias voltage is applied to the cathode of the device, ie. the Schottky pad, the only region of the device which will conduct is that between the ohmic contact on the top of the rib and the ohmic contact on the base of the device. Also, it was found that if the device was annealed after the Schottky contact had been formed, the reverse bias breakdown voltage was greatly reduced. A typical characteristic of such an annealed Schottky pad is shown in $\operatorname{fig}(6.15)(b)$. As can be seen from this characteristic, the behaviour of the contact can no longer be said to be truly Schottky after annealing.

The vertical/rib device was viewed in the SEM after the formation of the Schottky contacts. As can be seen from fig(6.16), the electron micrograph shows that the Schottky pad extends from the etched surface adjacent the rib, up the vertical rib wall, and onto the top surface of the rib. This was confirmed by X - ray analysis of each of the surfaces, which showed that the pad on the etched surface and the sidewall consisted of Au and Ti , while the contact on the top of the rib consisted of $\mathrm{Au}, \mathrm{Ti}, \mathrm{Ni}$ and Ge .

A problem which was met in the fabrication of the Schottky pads was that of adhesion between the Schottky contact and the etched surface of the GaAs. In order to optimise the adhesion, it was of the upmost importance to ensure that the surface of the GaAs was properly cleaned and deoxidised immediately before the deposition was performed. If this was not done then, it was also found that the reverse bias breakdown voltage of the Schottky pad was considerably reduced.

Fig(6.15) I-V Characteristic of a Typical Schottky Pad
(a) Unannealed, $\mathrm{VB}=12.1 \mathrm{~V}$

(b) Annealed

Fig(6.16) Vertical / Rib Device Incorporating a Schottky Contact Bonding Pad

6.4 PLANAR/PHOTOELASTIC DEVICES

Planar Gunn diodes incorporating a photoelastic waveguide, as shown in fig(1.3)(c), were fabricated, with waveguides varying in width from $6 \mu \mathrm{~m}$ to $12 \mu \mathrm{~m}$. The fabrication procedure for these devices is explained schematically in fig(6.17). Rectangular holes $100 \mu \mathrm{~m}$ wide, 7 mm long, and spaced by $200 \mu \mathrm{~m}$, were formed in a photoresist layer using a ferric mask, following procedural steps (a)-(e) of section(6.1.3). The pattern was aligned along one of the natural cleavage planes of the material.

The resist was then used as a mask for $\mathrm{SiCl}_{4} \mathrm{RIE}$, or wet chemical etching, so that the N^{+}contact capping layer was etched away, thus exposing the active N -layer. Wet etching again offered the advantage of being able to identify the orientation of the sample, ie. along the (011) or ($0 \overline{1} 1$) planes. The resist mask was then removed, and AZ1450J resist again spun onto the top surface of the sample. However, this time the resist was spun on at 2000 rpm for 20 secs, and pre-baked for 15 mins at $85^{\circ} \mathrm{C}$. The sample was then soaked in chlorobenzene for 15 mins , rinsed in deionised water, blow dried, and post-baked for 5 mins at $85^{\circ} \mathrm{C}$. The sample was then exposed on the mask aligner for 6secs, using a second ferric mask which was aligned with the pattern fabricated by the first ferric mask. The second ferric mask was designed to define the resist pattern of the third step of $\mathrm{fig}(6.17)$.

The process of chlorobenzene hardening [78] the surface of the resist was employed in order to define an overhang in the resist profile. The purpose of the overhang was to ensure lift- off of the $1.5 \mu \mathrm{~m}$ of metal, deposited at the next stage, from the $1.8 \mu \mathrm{~m}$ of AZ 1450 J resist. A schematic diagram of the resist profile is shown in $\mathrm{fig}(6.18)(\mathrm{a})$. The variation in the undercut, U , the overhang, O , and the hardened layer thickness, T, for AZ1450J, were investigated for various development times, as shown in fig(6.18)(b). A typical AZ1450J resist profile obtained by chlorobenzene hardening is shown in the electron micrograph of fig(6.19).

The next step in the fabrication process was to deposit the required metal contacts. The contact consisted of the $\mathrm{Au} / \mathrm{Ge} / \mathrm{Ni} / \mathrm{Au}$ ohmic contact previously defined

Fig(6.17) Fabrication Procedure for the Planar / Photoelastic Devices

Sample Cleaned, and Photoresist
Spun, Baked,
Exposed and Developed

Sample Cleaned, and Photoresist
Spun, Baked, Exposed and Developed; $\mathrm{X}=6,8,10$ or $12 \mu \mathrm{~m}$

Fig(6.18) Chlorobenzene Hardening of AZ1450J
(a) Schematic Diagram of Resist Profile

(b) Variation of Resist Profile with Developing Time

Fig(6.19) Electron Micrograph of Chlorobenzene Hardened AZ1450J

in table(6.5) (the total thickness of which is approximately 168 nm), capped with around $1.332 \mu \mathrm{~m}$ of Au , thus making a total contact thickness of around $1.5 \mu \mathrm{~m}$. The pattern was then lifted- off in the normal way, leaving a planar Gunn diode with three photoelastic guides between cathode and anode, one guide near the cathode, one near the anode, and one positioned between the two contacts, as shown in fig(6.17).

The third fabrication step of $\mathrm{fig}(6.17)$ was also undertaken using the thicker AZ4620A resist. However, despite the much thicker layer depth offered by this resist, it was found that unless the resist was also chlorobenzene soaked, there was difficulty in lifting-off the pattern. This was due to the thick metallic layer being resiliant to the lift- off process, and resulted in many of the guide lines not being cleared out, and also in some of the metal deposited onto the surface of the sample being pulled off.

After lift-off was completed, the sample was annealed by the process previously outlined in procedural step (g) of section(6.1.3). Electrical measurements were then carried out on the sample. A typical $I-V$ characteristic of a planar sample, after annealing, is shown in fig(6.20).

In order to measure the magnitude of the stress produced within the sample, due to the presence of the $1.5 \mu \mathrm{~m}$ metal layer, samples were back thinned to a thickness of approximately $100 \mu \mathrm{~m}$. A sodium-interference-microscope [10] was then used to investigate the interference fringes associated with the sample. The process used to back thin the sample was as follows. First the sample was mounted on a jig using a small amount of wax to stick it down. The sample was then polished down from $425 \mu \mathrm{~m}$ to around $150 \mu \mathrm{~m}$, using a glass flat cover, and a mix of Buehler 600 Silicon Carbide Powder and water. The sample was further thinned from $150 \mu \mathrm{~m}$ to $100 \mu \mathrm{~m}$ using a mix of bleach, $3 \mu \mathrm{~m}$ alumina powder, and water. The alumina acted as a physical etch, while the bleach, which contains Cl , acted as a chemical etch. This thinning process differed from that previously outlined in section(6.2) since in this case a polished rear surface was required.

By placing the thinned sample under a sodium-interference-microscope the

Fig(6.20) I-V Characteristic of a Typical
Planar / Photoelastic Device,
$x=0.05 \mathrm{~V} / \mathrm{div}, y=4 \mathrm{~mA} / \mathrm{div}$

deflection, δ, over the sample length could be calculated from [79]

$$
\delta=\frac{D \lambda}{2 \mathbf{a}}
$$

where, $D=$ lateral shift in the fringe pattern
$\lambda=$ wavelength of sodium 1 ight $=580 \mathrm{~nm}$
$a=$ fringe separation

Both D and a could be measured from photographs of the fringe pattern taken from the sodium-interference-microscope. Over a sample length, S, the radius of curvature, ρ, may be found from

$$
\rho=\frac{\mathrm{S}^{2}}{2 \delta}
$$

Further, using this value of ρ the product of the film stress, σ_{f}, and the film thickness, t, is given by

$$
\sigma_{\mathbf{f}} \mathbf{t}=\frac{E^{\prime} \mathrm{d}^{2}}{6 \rho(1-v)}
$$

where, d = substrate thickness

$$
E^{\prime}=\text { Young's modulus }
$$

$$
v=\text { Poisson's ratio }
$$

$$
\frac{E^{\prime}}{1-v}=1.23 \times 10^{12} \mathrm{dyncm}^{-2}
$$

A typical fringe pattern observed under the sodium-interference-microscope is shown in fig(6.21). Using equations(6.1), (6.2) and (6.3) in conjunction with the observed fringe pattern, it was found that for a film thickness, $\mathrm{t}=1.5 \mu \mathrm{~m}$ the product of film stress and thickness, $\sigma_{\mathrm{f}} \mathrm{t}=7.76 \times 10^{6} \mathrm{dynm}^{-1}=77.6 \mathrm{Nm}^{-1}$, ie. the film stress, $\sigma_{\mathrm{f}}=5.17 \times 10^{7} \mathrm{Nm}^{-2}$.

Fig(6.21) Typical Fringe Pattern Observed Under the Sodium Interference Microscope ($D=1.6 \mathrm{~cm}, a=1.4 \mathrm{~cm}$)

As was previously explained, on receipt of a sample the majority of it was cleaved into rectangular samples, eg. $5 \mathrm{~mm} \times 5.5 \mathrm{~mm}$ in size. This allowed the two cleavage planes to be distinguished, although not identified.

A mechanical scribing machine was used to scribe the samples, which were always scribed from the back surface. This was particularly important in the case of completed devices incorporating waveguides in which one desired a good, unbroken, and unchipped cleavage edge in order to ensure good optical input to, and output from, the device. The scribed sample was then sandwiched between two glass slides with the scribe running colinearly with one of the longer edges of each of the two slides. A third slide was then placed on top of the portion of the sample protruding from the first two slides, and pressure applied to the third slide by hand. This applied pressure caused it to cleave along the scribe line.

For optical experiments the sample did not need to be securely mounted. Indeed sticking it down was of a distinct disadvantage in loss measurements carried out by the method of sequential cleaving. The best method of mounting samples for purely optical experiments was therefore found to be simply placing them on top of the device mount, the device mount consisting of a long, thin rectangular, horizontally mounted aluminium mount (approximately $1.5 \mathrm{~mm} \quad \mathbf{x} 1.5 \mathrm{~mm} \quad \mathbf{x} 2 \mathrm{~cm}$), retained by a grub screw in relation to a goniometer, and x, y stage. This mounting arrangement allowed optical access to the sample. A small piece of double sided sticky tape was also placed on top of the device mount to aid in retaining the device, but also allowing easy removal.

For electrical experiments the device required to be mounted within a microstrip circuit. The analysis and fabrication procedure for this circuit is explained in section(7.2.1). For the vertical devices the sample had to be mounted on a copper clad ground plane on the top surface of the microstrip circuit, the base contact, ie. the anode of the device, being in electrical contact with the ground plane. To this end the device was mounted on the ground plane using either quick
drying silver dag, or an electrically conductive epoxy such as the silver filled epoxy H20E, supplied by Alpha Metals Ltd.. The disadvantage of the epoxy was that in order to obtain optimum electrical conductivity of the adhesive it required to be cured at an elevated temperature of around $150^{\circ} \mathrm{C}$ for 5 mins . This high temperature curing process however degrades the performance of the annealed ohmic contacts of all of the devices, and also destroys the Schottky performance of the contact pads of the vertical/rib devices.

The top contact, ie. the cathode, of the device was connected to the microstrip circuit via a gold bonding wire of $25 \mu \mathrm{~m}$ in diameter. If the cathode contact was sufficiently large, two or more bonding wires were used in order to cut down parasitic reactances within the circuit. The bonding wire could be positioned by either of two techiniques. The first of these techniques was to use an ultrasonic bonder. This technique did however have a number of disadvantages. For example, spot contacts of less than $70 \mu \mathrm{~m}$ in diameter could not be observed through the microscope of the bonder when the bonder wedge was positioned above the contact. This therefore prevented bonding of such spots. A further disadvantage occurred due to the force exerted on the contact during bonding. If the adhesion of the contact to the semiconductor surface was not sufficient, then it was often found that the process of attempting to make a bond would actually lift the metal contact off the semiconductor surface. This was a particular problem in the case of the rectangular Schottky contact pads in the vertical/rib devices.

The second technique made use of two linear probe movements, such as the OMP242 stages supplied by Semtek Ltd., and a binocular microscope. The probing tip of one of these stages was replaced by a bonder wedge, having a hole at the pointed end to feed the bonding wire through. The probing tip of the other stage was replaced by a sharpened match stick. A small amount of either silver dag or conductive epoxy was then loaded onto the end of the match stick, and dispensed onto the bonding pad. The first stage was then used to position the bonding wire within the pool of adhesive, and left to dry. In the case of the epoxy this process had to be carried out in situ on a hotplate, in order that the epoxy could be
properly cured.
A second pool of adhesive was then dispensed onto the second bonding surface, and the first stage drawn away from the first bond, allowing the wire to feed through the hole in the bonder tip, and fall into the second pool of adhesive. When the second pool of adhesive had dried the first stage was drawn away from it, and the bonding wire cut with a scalpel.

For the planar device the sample had again to be mounted on the copper clad ground plane on the top surface of the microstrip circuit. The base of the device did not however need to be in electrical contact with the ground plane. However, it was found to be more convenient to mount the planar device using either silver dag or epoxy. Two bonds therefore had to be formed, one from the microstrip circuit to the cathode, and one from the anode to the ground plane. These bonds were formed by either of the techniques already described for the vertical devices.

The microstrip circuit was then mounted, and secured by means of grub screws, within a rectangular stainless steel cavity, as shown in fig(6.22). The cavity both shielded the microstrip circuit, and provided a ground plane for it. Two such cavities were available, one for purely electrical experiments, and one for Electro- Optic experiments. The two cavities were identical, except that the one used for Electro- Optic experiments had a slit in the centre of each of its longer sides to allow for optical input and output of the waveguiding sample mounted on the circuit board. In the case of the integrated devices the sample therefore had to be mounted with the waveguides running substantially parallel to the shorter edges of the cavity.

Fig(6.22) Device Mounted within Microstrip Circuit and Retained within Stainless Steel Cavity

CHAPTER 7

EXPERIMENTAL RESULTS AND DISCUSSION

In this Chapter are presented the experimental results for the devices already described in previous Chapters. The experiments which were carried out may be divided into three different types. Firstly, purely optical experiments carried out on each of the slab, rib, and photoelastic waveguiding structures. Secondly, purely electrical experiments carried out in order to test the microwave performance of the devices. These experiments were carried out on the vertical spot contact diodes, as well as the vertical/rib devices incorporating a Schottky contact bonding pad, and the planar/photoelastic devices. The third type of experiment, which were carried out only on the integrated vertical/rib device structures, were Electro- Optic experiments. These experiments were performed in order to observe whether any interaction was present between the optical guided wave and the propagating Gunn domain, and also in order to quantify such observations.

7.1 OPTICAL EXPERIMENTS

7.1.1 Guiding Characteristics

All purely optical experiments were carried out at a wavelength, λ, of $1.15 \mu \mathrm{~m}$, using an NEC He:Ne gas laser with a CW output of approximately 10 mW . The experimental set up is shown in fig(7.1). As was explained in section(6.5), for optical experiments the sample was mounted on a device mount comprising a long, thin rectangular mount (approximately $1.5 \mathrm{~mm} \quad \mathbf{x} \quad 1.5 \mathrm{~mm} \quad \mathbf{x} \quad 2.0 \mathrm{~cm}$) retained horizontally by a grub screw in relation to a goniometer and x , y stage. Using this, any given waveguide sample could be placed on top of the mount, and retained by a piece of double sided sticky tape. A pair of x 40 objective lenses, having a focal length, $\mathrm{F}=0.65 \mathrm{~mm}$, could then be used to couple light into and out of the sample by the end fire method. Both of the lenses were mounted on x, y, z stages in

Fig(7.1) Experimental Apparatus for Optical Experiments

L = Laser ; D = Mounted Device ; H = Hamamatsu IR Camera
order that they could be precisely aligned to the guiding sample.
Each of the optical waveguide samples were cleaved to a length of between 1.5 mm and 4 mm . Optical waveguiding was observed in all of the waveguides under consideration, ie. the slab waveguides $S 41, S 42$, and $S 43$; the rib waveguides $R 1, R 2$, and R3, with and without the Schottky bonding pads; and the photoelastic waveguiding samples P11, and P12. The mode profiles of each of the waveguiding samples could be observed, and digitally stored, using the Hamamatsu IR Camera and controller, linked to an IBM PC via an IEEE 488 Interface.

It was found that slab guide S 41 supported two vertical modes, ie. the fundamental mode, and the first order even mode. This was in agreement with the results of the four- layer vertical slab program, referred to in section(5.2.2). It was further found that slab guides $S 42$, and $S 43$, supported only the fundamental mode as theory predicted.

Rib waveguide samples were similarly tested, and it was observed that rib guide R1 supported three modes, ie. the $\mathrm{TE}_{00}, \mathrm{TE}_{01}$ and TE_{10} modes, while rib guides R2 and R3 supported only the fundamental TE_{00} mode. $\mathrm{Fig}(7.2)(\mathrm{a})$ shows rib guide R3 exhibiting a characteristic pattern of Lloyd fringes. By raising the sample slightly from this position end-fire coupling was achieved. The profile of the vertical component of the fundamental mode of R3, as stored by the computer, is shown in fig(7.2)(b). As can be seen from this, the horizontal (y) component of the mode had a half width of around $8.3 \mu \mathrm{~m}$. This compares well to that found by the .NWAVE program, as shown in fig(5.9), which predicts a half width of around $8.0 \mu \mathrm{~m}$. Shown in $\mathrm{fig}(7.2)(\mathrm{c})$ is a photograph of the output of the rib guide R3.

To ensure that photoelastic waveguides, consisting of a thick gold layer on top of an ohmic contact, could be formed, photoelastic guides equivalent in structure to device P12 were fabricated directly onto a semi-insulating substrate. Other samples, having no ohmic contact beneath the thick gold layer, were also fabricated on a semi- insulating substrate. As expected, it was found that the samples with the ohmic contact performed in substantially the same way as those without, and that the thin ohmic contact layer had no significant effect on the optical guiding characteristic of

Fig(7.2) Experimentally Observed Mode Profiles
(a) Lloyds Fringes Exhibited by a $5 \mu \mathrm{~m}$ Wide Rib Waveguide R3

(b) Horizontal Component of TEOO Mode for a $5 \mu \mathrm{~m}$ Wide Rib Waveguide R3

(c) Near Field Intensity Pattern at the Output of a $5 \mu \mathrm{~m}$ Wide Rib Waveguide R3

the sample.

Photoelastic waveguide samples of the structure of device P12, incorporating ohmic contacts, were fabricated and tested. These samples were found to guide optical radiation at a wavelength of $1.15 \mu \mathrm{~m}$, as was predicted by the Finite Difference calculations presented in section(5.2.4). These guides were also found to be monomode, which is in agreement with theoretical predictions.

7.1.2 Loss Measurements

An important feature of any optical waveguide is the loss, $L\left(\mathrm{dBcm}^{-1}\right)$ suffered by an optical signal propagating through the guide [11],[80],[81]. The basic method of measuring waveguide loss is to launch a known optical power into the waveguide, and measure the optical power emerging from the other end. However, a number of disadvantages exist in such a simple approach, eg. coupling losses at the input and ouput are unknown. Also, in a multimode guide, losses due to each mode cannot be individually measured. A number of methods have therefore been proposed in order to obviate the above mentioned disadvantages [82],[83],[84].

One of the simplest, and most accurate, of these methods is known as the method of Sequential Cleaving. This method comprises end- fire coupling of light of the desired wavelength directly onto the cleaved input face of the waveguide, and measurement of the total power transmitted. This measurement is repeated for a number of samples of different lengths, these samples being obtained, for example, by repeatedly shortening an initially relatively long sample. For each measurement the observed output power is maximised by careful alignment of the coupling system. In this way coupling losses are kept approximately constant. It is therefore the case that the loss coefficient, α, can be found from the gradient of the semilog transmitted power versus sample length graph. Hence, the optical loss, $L\left(\mathrm{dBcm}^{-1}{ }^{1}\right.$) may be found since, $L=4.3 \alpha\left(\mathrm{~cm}^{-1}\right)$.

This procedure of sequential cleaving was carried out for each of the two dimensional guiding structures under consideration, ie. the rib guides R1, R2, and

R3, and the photoelastic guides P11, and P12. The optical power transmitted by the guiding structures was measured using a Photodyne Model 22XLA Fiber Optic Power Meter, inserted between the mounted device and the Hamamatsu IR Camera of fig(7.1). Calibration considerations relevant to the Power Meter are explained in Appendix D.1.

The results obtained for various sample lengths for each of the rib guiding structures are presented in fig(7.3). From this graph it can be calculated that the optical loss, L of the rib guides are $L(\mathrm{R} 1)=12.5 \mathrm{dBcm}^{-1}, L(\mathrm{R} 2)=12.3 \mathrm{dBcm}^{-1}$, and $L(R 3)=1.5 \mathrm{dBcm}^{-1}$. It was suspected that the major loss mechanism present in these guides was Free Carrier loss, due to the relatively high doping densities of the guiding regions. From theory, the loss due to Free Carriers in the rib structures is of the order of $0.215 \mathrm{dBcm}^{-1}$ for R 1 , and R 2 , and $0.022 \mathrm{dBcm}^{-1}$ for R 3 [11]. Comparing these theoretical values to the experimental values shows, however, that the contribution to optical loss within these guides due to Free Carrier losses was not as large as was initially suspected, and that other loss mechanisms, such as scattering, are predominant. However, the values of L found for R1, R2, and R3 are reasonable in comparison to one another in that R2 has a shorter active length than R1, and therefore closer optical confinement. Further, R3 has an active layer doping density of the order of ten times less than that of R2, and R3, and therefore has a significantly lower optical loss.

These results are also in good agreement with previously reported values of the optical loss of homojunction rib waveguides formed in GaAs [85], wherein it was noted that the two major contributions to propagation loss were due to Free Carrier absorption, and scattering due to imperfections. Note further that the optical loss of samples of device R3, with and without a Schottky bonding pad, was measured. It was found through these measurements that the presence of the pad had no observable effect on the optical loss of the device.

Fig(7.4) shows similar experimental results for the photoelastic waveguides P11 and P12. From these graphs it can be seen that the losses in these structures are $L(\mathrm{P} 11)=3.2 \mathrm{dBcm}^{-1}$, and $L(\mathrm{P} 12)=4.0 \mathrm{dBcm}^{-1}$. The higher loss of the P 12 samples,

Fig(7.3) Optical Losses Measured by Sequential Cleaving for Rib Guides R1, R2, and R3

Fig(7.4) Optical Losses Measured by Sequential Cleaving for Photoelastic Guides P11 and P12

in comparison to the P11 samples, is again probably due to the higher doping density of the guiding region of P12.

7.2 MICROWAVE EXPERIMENTS

7.2.1 Microstrip Circuit Design and Fabrication

Microwave tests could have been carried out in either rectangular metallic waveguide, or in microstrip or coplanar waveguide circuits [86]. With recent developments in monolithic microwave integrated circuit (MMIC) technology [87] it was decided however to carry the experiments out in microstrip. Microstrip has a number of advantages over coplanar transmission structures, eg. the mode of propagation in microstrip is almost TEM, allowing an easy approximate analysis and fabrication of wide band circuits. Further, simple transitions to and from coaxial circuits are feasible.

The configuration of microstrip waveguide is shown in fig(7.5). W is the strip width, and h the substrate thickness. The simplest method of microstrip analysis is the Quasi- Static approach in which the mode of wave propagation is assumed to be pure TEM [87]. Values of the characteristic impedance, $Z_{o m}$ of the microstrip line, and the phase constant, β can then be written as

$$
\begin{align*}
& Z_{o m}=Z_{o m}^{a}\left[\frac{C_{a}}{C}\right]^{1 / 2} \\
& \text { and } \beta=\beta_{0}\left[\begin{array}{l}
C \\
C_{a}
\end{array}\right]^{1 / 2} \\
& \text { where, } C_{a}=\text { capacitance per unit length of the microstrip } \\
& \text { configuration with the dielectric substrate replaced by } \\
& \text { air } \\
& C \text { = capacitance per unit length of the microstrip } \\
& \text { configuration with the dielectric substrate present }
\end{align*}
$$

Fig(7.5) Configuration of Microstrip Waveguide

$$
\begin{aligned}
& z_{o m}^{a}=\frac{1}{c C_{a}} \\
& \beta_{o}=\frac{\omega}{c}
\end{aligned}
$$

Formulaes for the impedance can thence be derived via a Modified Conformal Transformation method [88], explicitly relating both Z_{om} in terms of W / h and ε_{r} (ie. analysis), and W / h in terms of Z_{Om} and ε_{r} (ie. synthesis), for both $\mathrm{W} / \mathrm{h}>2$ and $\mathrm{W} / \mathrm{h}<2$.

For the narrow strips (ie. W/h < 2) of interest here, it can be shown that

$$
\frac{2 h}{w}=\frac{1}{4} e^{h^{\prime}}-\frac{1}{2} e^{-h^{\prime}}
$$

where,

$$
h^{\prime}=\left[\frac{\varepsilon_{\mathrm{r}^{+1}}}{2}\right]^{1 / 2} \frac{\mathrm{Z}_{\mathrm{om}}}{60}+\frac{\varepsilon_{\mathrm{r}}-1}{\varepsilon_{\mathrm{r}}+1}\left[0.226+\frac{0.120}{\varepsilon_{\mathrm{r}}}\right]
$$

It should be pointed out that in the Modified Conformal Transformation method discussed above, the thickness of the microstrip conductor is ignored, and the analysis is restricted to an open microstrip without any enclosure.

For the fabrication of the microstrip circuit 3 M Copper Clad PTFE, Microwave Substrate was used. This substrate had a dielectric constant, $\varepsilon_{\mathrm{r}}=11$, a substrate thickness, $\mathrm{h}=780 \mu \mathrm{~m}$, and a metal thickness, $\mathrm{t}=30 \mu \mathrm{~m}$. Using this data in conjunction with equations(7.3) and (7.4), the required strip width, W , for any given characteristic impedance, Z_{om}, could be found. The results of such calculations are shown in $\mathrm{fig}(7.6)$. Note that for $\mathrm{Z}_{\mathrm{om}}=50 \Omega, \mathrm{~W}=0.68 \mathrm{~mm}$

The circuit diagram of the required microstrip circuit is shown in fig(7.7). This circuit allowed the diode to be operated in Transit Time Mode. The purpose of the capacitor C_{1} is to block $D C$ from being applied to the microwave output, since a DC signal applied to the input of the spectrum analyser will damage it. Further, the

Fig(7.6) Width of Microstrip Line, W versus Characteristic Impedance, Zom for 3M Copper Clad, PTFE Microwave Substrate

Fig(7.7) Circuit Diagram of Microstrip Circuit for Microwave Experiments

$$
\begin{aligned}
& C 1=3.6 \mathrm{pF} ; \mathrm{C} 2=1 \mathrm{nF} ; \mathrm{C} 3=\text { Gunn Diode } \\
& \text { Capacitance } ; \mathrm{L} 1=3.6 \mathrm{pH} ; \text { RLoad }=50 \Omega \text {; } \\
& \mathrm{D}=\text { Gunn Diode }
\end{aligned}
$$

inductor L_{1} prevents the microwave output from reaching the DC input terminals. C_{1} is a surface mounted, chip type capacitor, and L_{1} is a spiral inductor fabricated on the surface of the microstrip substrate [4]. C_{2} is a filtering capacitor, the purpose of which is to remove any high frequency components from the input signal.

The procedure for fabricating the microstrip boards was as follows. First, the boards were chopped to the correct size (ie. approximately $5 \mathrm{~cm} \times 4 \mathrm{~cm}$) using a guillotine. Next, each board was ultrasonically cleaned in genklene, methanol, acetone, and finally deionised water, for 5 mins each. Each board was then etched in a solution of $4: 1, \mathrm{H}_{2} \mathrm{O}:$ Ammonia for 1 min , rinsed in deionised water, blow dried in nitrogen, and then dried on a hotplate. Next, each board was coated on one side with AZ1350J which was spun on at 4000 rpm for 20 secs, and baked for 30 mins at $85^{\circ} \mathrm{C}$. The other side of each board was then similarly coated with AZ1350J. One side of each board was then exposed on the contact printer for 5 mins, using a chromium mask to define the required microstrip pattern. The boards were then developed in a mixture of $1: 1, \mathrm{H}_{2} \mathrm{O}$:Microposit Developer for approximately 75 secs. In this way a photoresist mask was defined which corresponded to the desired copper pattern.

Next, each board was placed in an ultrasonic bath of ferric chloride, ie. copper etch, at a temperature of $45^{\circ} \mathrm{C}$. It was found that a board required around 6 mins in the ferric chloride bath in order to etch away the unwanted copper. The boards were then rinsed in water to remove any excess ferric chloride, and placed in a beaker of acetone to remove the photoresist mask on the top surface, and also to remove the photoresist which had been protecting the bottom copper surface. Each board was then rinsed in deionised water, blow dried in nitrogen, and dried on a hotplate.

To complete the fabrication of the microstrip circuit, the surface mounted capacitor, C_{1}, had to be soldered into place. This was done by first tinning the microstrip lines on each side of the position in which C_{1} was to be placed. Silver loaded solder was recommended for use with these surface mounted capacitors. Next,
C_{1} was held in position using a pair of tweezers, and with the aid of a binocular microscope, it was ensured, using a soldering iron, that the end metallic contacts of C_{1} were covered with the solder which had already been used to tin the microstrip lines.

7.2.2 Experimental Results

The experimental apparatus used for the microwave experiments is shown in fig(7.8). The pulsed DC input to the device was supplied via an HP214A Pulse Generator. This generator could deliver a maximum of 5 amps . The microwave ouput was monitored by a spectrum analyser. Two spectrum analysers were available. These were a Tektronix 492 Spectrum Analyser with a frequency range of 50 KHz to 21 GHz , and a Tektronix 7 L 18 Spectrum Analyser with a potential frequency range of 1.5 GHz to 60.5 GHz . The 7 L 18 was a plug in unit for the Tektronix 7000 Series. An oscilloscope was used to monitor the output from the pulse generator, and also the input to the microstrip circuit after filtering capacitor C_{2}.

Microwave experiments were carried out on spot contact diodes fabricated on each of CPM268, CPM351, and CPM411, in order to ascertain whether each of these pieces of material was suitable for the fabrication of Gunn diodes, ie. whether the material oscillated. Microwave experiments were also carried out on the vertical diode/rib waveguide device R3, with Schottky contact bonding pads, as well as on the planar diode/photoelastic waveguide device P12. The results for each of these devices is presented below.

The procedure for the microwave experiments was as follows. A signal having a pulse length of $10 \mu \mathrm{sec}$, and a duty ratio of 0.1 (to prevent thermal runaway), was applied to the microstrip circuit. The amplitude of the pulse was varied from 0 V to around twice the expected threshold voltage, V_{T}, in 0.5 V steps. The experimental results for each of the pieces of vertical material are shown in table(7.1). The Tektronix 492 Spectrum Analyser was used to test CPM268, and CPM351, while the Tektronix 7 L 18 Spectrum Analyser was used to test CPM411, due to the higher

Fig(7.8) Apparatus used in the Microwave Experiments

D = Device Mounted on Microstrip Board within Stainless Steel Cavity ; G = Pulse Generator ; S = Spectrum Analyser ; $\mathrm{O}=$ Oscilloscope

Table(7.1) Results of Microwave Experiments carried out on Vertical Spot Contact Diodes

Material	Threshold Voltage, $V_{\mathrm{T}}(\mathrm{V})$	Oscillation Frequency, $\mathrm{f}_{\mathrm{r}}(\mathrm{GHz})$	Domain Velocity, $v_{\text {dom }}\left(\mathrm{ms}^{-1}\right)$
CPM268	2.8	12.7	0.99×10^{5}
CPM351	1.9	19.5	0.85×10^{5}
CPM411	1.6	24.0	0.96×10^{5}

oscillation frequency, f_{r}, of CPM411. As can be seen from these results, the threshold voltage, V_{T}, for oscillation of each of these materials is in relatively good agreement with the theoretical threshold voltages presented in fig(5.13), bearing in mind the variation in the active layer length, as found by the Polaron measurement, from that of the design specification. Further, taking the active layers to be as found by the Polaron measurement, ie. $7.8 \mu \mathrm{~m}, 4.36 \mu \mathrm{~m}$, and $4.0 \mu \mathrm{~m}$, for CPM268, CPM351, and CPM411 respectively, then the corresponding domain velocities, $v_{\text {dom }}=$ f. $_{\mathrm{f}}$ can also be found, as shown in table(7.1), where, $\mathrm{f}=$ the active layer length, and $f_{r}=$ the Transit Time Mode oscillation frequency.

Shown in figs(7.9)(a) and (b) are: (a) the filtered input to the microstrip circuit; and (b) the corresponding output of the Gunn diode, as observed on the Tektronix 492 Spectrum Analyser, for an $80 \mu \mathrm{~m}$ spot contact diode formed on CPM351. The electrical to microwave conversion efficiency, H, of this device may thus be calculated from the data of fig(5.14) when used in conjunction with the data of $\mathrm{fig}(7.9)$. The conversion efficiency, H , is given by the ratio of the microwave power, P_{m} out, to the electrical power, P_{e} in. From $\operatorname{fig}(7.9)(a), P_{e}=0.1 \mathrm{x}^{2 / R}$, (where, $\mathrm{V}=7.0 \mathrm{~V}$, and $\mathrm{R}=0.234 \Omega$), and $\mathrm{P}_{\mathrm{m}}=0.398 \mathrm{~W}$. This gives that $\mathrm{H} \approx 1.9 \%$. The factor of 0.1 is included in the calculation of the electrical power since the bias signal is pulsed with a duty cycle of 0.1

Microwave tests were similarly carried out on the vertical diode/rib waveguide device R3 (fabricated on CPM411), incorporating a Schottky bonding pad. Again the device was supplied with a signal having a pulse length of $10 \mu \mathrm{sec}$, and a duty ratio of 0.1 . As for the vertical spot diodes fabricated on CPM411, the vertical/rib device was found to have a threshold voltage, $\mathrm{V}_{\mathrm{T}}=1.6 \mathrm{~V}$, and oscillate in Transit Time Mode at a frequency, $f_{r}=24 \mathrm{GHz}$. The microwave output of the stripe contact diode for an input voltage, $\mathrm{V}_{\text {bias }}=1.8 \mathrm{~V}$, is shown in $\mathrm{fig}(7.10$) (where the RF attenuation of the analyser is 90 dB). Again, the electrical to microwave conversion efficiency, H , may be calculated. From fig(7.10), the microwave output power, $\mathrm{P}_{\mathrm{m}}=10 \mathrm{~mW}$. Also, the electrical input power, $\mathrm{P}_{\mathrm{e}}=1.76 \mathrm{~W}$, since $\mathrm{V}_{\text {bias }}=1.8 \mathrm{~V}$, and the resistance of the device, $R=1.84 \Omega$. Hence, $H \approx 5 \%$. This value of H should, however, be viewed with

Fig(7.9) Operation of $80 \mu \mathrm{~m}$ Spot Diode on CPM351 in Pulsed Transit Time Mode
(a) Electrical Input Signal to Microwave Circuit ; Rep. Rate $=10 \mathrm{kHz}$; Pulse Width $=10 \mu \mathrm{sec}$; Pulse Height $=8.0 \mathrm{~V}$

(b) Microwave Output as Observed on the Tektronix 492 Spectrum Analyser ; fr $=19.5 \mathrm{GHz}$; Centre Frequency $=18 \mathrm{GHz}$; Resolution Bandwidth = 1 kHz ; Frequency Span/Div $=500 \mathrm{MHz}$; Ref. Level $=10 \mathrm{dBm} ;$ RF Attenuation $=40 \mathrm{~dB}$

Fig(7.10) Microwave Output as Observed on the Tektronix 7L18 Spectrum Analyser for the Vertical / Rib Device R3 ; $\mathrm{fr}=24 \mathrm{GHz}$ Centre Frequency $=24.24 \mathrm{GHz}$; Resolution Bandwidth $=30 \mathrm{~Hz}$; Frequency Span/Div = 500 MHz ; Ref. Level $=-20 \mathrm{dBm}$
> 200802424 CRZ 30 KZ PES

2009/
50042
some suspicion since the 24 GHz oscillation signal was observed and measured using the Tektronix 7 L 18 Spectrum Analyser. This analyser should only be used in conjunction with an external mixer above a frequency of 18 GHz . No compatible external mixer was however avaliable. It should be noted that this is the first report of oscillations observed in such a vertical, stripe contact, Gunn diode.

Microwave tests were also carried out on the planar diode device, P12 fabricated from $A \# 31$. This device should have had a threshold voltage, V_{T}, of around 35 V . However, no oscillations were observed from this sample. This could be explained as being a result of the formation of a shorting channel between the cathode and the anode, ie. the creation of current filaments resulting from impact ionisation associated with the passage of the high-field domain across the diode [89]. This was substantiated by observing that a discolouration of the material near the anode region appeared after the testing of these devices, implying partial melting near the anode region.

7.3 ELECTRO-OPTIC EXPERIMENTS

The purpose of the experiments described in this section was to investigate the potential of the device R3 as an integrated optical modulator. Presented in this section, therefore, are experimental modulation results for the vertical diode/rib waveguide device R3, incorporating a Schottky contact bonding pad. Results are presented for wavelengths, λ, of $1.15 \mu \mathrm{~m}$ and 905 nm . Also presented is an estimate of the effective Electro-Optic coefficient, r_{41}, of GaAs , at $\lambda=1.15 \mu \mathrm{~m}$ and $\lambda=905 \mathrm{~nm}$, at a frequency of 24 GHz , as well as an estimate of the effective Electro-Absorption coefficient, α, at $\lambda=905 \mathrm{~nm}$.

A block diagram of the experimental apparatus is shown in fig(7.11). As in purely microwave experiments, the device was mounted and bonded on a microstrip circuit fabricated on 3 M PTFE Cu Clad Microwave Substrate. The circuit diagram was already shown in fig(7.7). This circuit allowed the device to be operated in Transit Time Mode. As was shown in fig(6.22), the circuit itself was mounted within
Fig(7.11) Block Diagram of the Experimental Apparatus used in Electro-Optic Experiments
$\mathrm{L}=$ Laser ; $\mathrm{P}=$ Polariser ; $\mathrm{D}=$ Mounted Device ; $\mathrm{PG}=$ Pulse Generator ; S = Spectrum Analyser ; $A=$ Analyser ; $M=$ Partially Reflecting Mirror ; H = Hamamatsu IR Camera PD $=$ Photodiode ; $\mathrm{O}=$ Oscilloscope or Spectrum Analyser
a stainless steel box, identical to that which was used for microwave experiments, except that the box used for integrated experiments provided slits in the centre of the longer sides of the box. Optical access to the mounted device was provided by means of these slits.

As can also be seen from fig(6.22), the laser beam was end-fired into and out of the sample by means of Flat Mounted Refracting Microscope Objective lenses. These lenses had a focal length, $F=51 \mathrm{~mm}$ and a numerical aperture, $N A=0.08$, therefore giving a resolution, $\mathrm{S}=1.22 \lambda / 2 \mathrm{NA} \approx 8.7 \mu \mathrm{~m}$ at $1.15 \mu \mathrm{~m}$.

For all experiments a precision IR linear polariser/analyser unit was used. This unit had an effective wavelength operating range of approximately 800 nm to $2.2 \mu \mathrm{~m}$, and an average transmittance of about 35% over that spectral range. For all experiments the polariser was set at an angle of 45° to the domain field, ie. to the vertical. The analyser was set perpendicular to the polariser for Electro-Optic measurements, and parallel to the polariser for Electro-Absorption measurements.

This experimental arrangement was used since it avoids the complication of having to employ a phase coherent detection system. This is because the polariser allows the linearly polarised optical beam to be introduced into the rib guide at 45° to the x and y axes of the guide. Because the phase change for Electro-Optic modulation occurs only for waves polarised in the y direction (ie. parallel to the material surface), and not for those polarised in the x direction, a rotation of the polarisation vector will occur as the waves propagate along the z direction. This change of polarisation due to Electro- Optic modulation can then be detected by a polarisation sensitive detector, or by placing the analyser, ie. polarisation- sensitive filter, ahead of the detector.

In a similar way, for Electro-Absorption modulation the input beam may be introduced into the guide at an angle of 45° to the x and y axes. However, for this type of modulation no polarisation rotation occurs, only a change in the intensity of the beam polarised along the direction in which the polariser is set. The analyser was consequently set parallel to the polariser in this case.

The partially reflecting mirror, or beam splitter, which was used was of the
pellicle (extra thin construction) type, having an estimated transmission/reflectance ratio at $\lambda=1.15 \mu \mathrm{~m}$ of $30: 45$. The major advantage of such a beam splitter was the elimination of second surface reflections, or 'ghost images'. This is because the beam splitter is fabricated from an elastic membrane of cellulose nitrate, mounted on an optically flat aluminium alloy frame. Reflections from the front and back of the membrane are therefore essentially superimposed.

In order to detect the modulated optical signal emerging from the output of the device, either a fast diode, having a typical rise time of the order of 50 ps , or a slow diode, having a typical rise time of the order of 200 ns , may be used. The fast diode may be used in conjunction with a spectrum analyser to directly detect and measure the modulation. The slow diode may, however, alternatively be used in conjunction with an oscilloscope to detect the averaged optical modulation, and hence to estimate the magnitude of the Electro-Optic modulation depth, $\eta_{E O}$. The analysis required to extract the modulation depth from the average signal detected by the slow diode is somewhat involved, and is explained in detail in Appendix E. From Appendix E it can be seen that for Electro-Optic modulation the modulation depth

$$
\eta_{\mathrm{EO}}=\frac{4 \pi \mathrm{I}_{\perp}}{\mathrm{I}_{\mathrm{O}}}
$$

where, $I_{\perp}=$ average signal received with the polariser and analyser in the perpendicular arrangement
$I_{0}=$ input optical intensity

Further, for Electro- Absorption modulation the modulation depth is

$$
\eta_{\mathrm{EA}}=\cos \left\{2\left[1-\frac{2 \mathrm{I}_{\mathrm{II}}}{\mathrm{I}_{\mathrm{O}}}\right]^{1 / 2}\right\}
$$

where, $I_{\|}=$average signal received with the polariser and analyser in the parallel arrangement

From equation(7.5) it can be seen that the modulation depth, $\eta_{E O}$ of the Electro-Optic modulation signal can be calculated, provided that the averaged modulation signal, with the polariser and analyser in the perpendicular arrangement, I_{\perp}, can be measured, and the input intensity, I_{O}, is known. Similarly, from equation(7.6) it can be seen that the modulation depth, η_{EA} of the Electro- Absorption modulation signal can be calculated, if the averaged modulation signal with the polariser and analyser set parallel, $\mathrm{I}_{| |}$, can be measured, and I_{O} is known.

A suitable fast diode which was found was the HSD30 supplied by Instrument Technology Ltd. (ITL). A suitable slow diode which was found was the GM8 supplied by Rofin-Sinar UK Ltd.. The required data for these diodes is given in Appendix D.2.

7.3.1 Experiments at a Wavelength of $1.15 \mu \mathrm{~m}$

There are three aspects to the operation of the integrated vertical/rib device to be considered. These are: the purely optical behaviour of the device acting as an optical waveguide, the purely microwave (electrical) behaviour of the device acting as a Gunn diode, and the interaction between the microwave and optical actions. In the experiments of this section these aspects were addressed consecutively

Considering the device first as an optical waveguide, at $\lambda=1.15 \mu \mathrm{~m}$ an NEC $\mathrm{He}: \mathrm{Ne}$ laser with a CW output of approximately 10 mW was used. The beam was focussed by means of the Flat Refracting Microscope Objective lenses to a spot size of approximately $20 \mu \mathrm{~m}$. The Hamamatsu IR Camera, controller and video monitor were then aligned to the optical beam. The device, mounted within the microwave cavity, was then placed between the two lenses. The position of the device was then adjusted, using the x, y stage, in order that the beam was end-fired into and out of the device by means of the objective lenses. The Hamamatsu IR Camera was then used in order to monitor the output guided optical beam from the rib device.

Next, considering the device as a Gunn diode, the device was again electrically
biassed using the HP214A Pulse Generator. A negative going rectangular pulse of $10 \mu \mathrm{~s}$ duration was applied to the cathode, ie. top surface, of the vertical/rib device. The electrical signal again had a duty cycle of 0.1 to prevent thermal runaway. The input pulse height was adjusted from 0 V in 0.1 V steps. Monitoring the output of the microstrip circuit, using the Tektronix 7 L 18 Spectrum Analyser, the device was found to oscillate at a frequency of 24 GHz , and have an input threshold voltage of 1.6 V . This was already explained in the results of section(7.2).

The device was at this stage acting both as an optical waveguide and as a Gunn diode. It was therefore now possible to monitor and measure the interaction between the electrical and the optical actions of the device. The modulated optical signal was observed using the fast photodiode in conjunction with the Tektronix 7 L 18 Spectrum Analyser. With the polariser and analyser in the perpendicular arrangement modulation was successfully observed at a frequency of 24 GHz . The modulation signal detected by the fast photodiode and spectrum analyser, in the perpendicular polariser/analyser arrangement, is shown in fig(7.12). This is the first reported observation of Electro- Optic modulation due to propagating Gunn domains within an integrated optical waveguide.

At this wavelength, with the polariser and analyser set in the parallel arrangement, no modulation was observed. This is in agreement with the calculations of section(5.4.2) which suggest that no Electro-Absorption modulation should be seen at such a long wavelength. In view of the original calculations of section(5.4.2), the experimental results also substantiate that electric field induced effects outweigh Free Carrier effects, and that Free Carrier effects are indeed negligible. This may be concluded since such effects should be crystallographically independent and should therefore, if present, be observed in the parallel polariser/analyser arrangement.

Although the above results clearly show the presence of Electro-Optic modulation due to propagating Gunn domains, using this detection system no reliable measurements of the magnitude of the received modulation signal could be made. This is because, as was explained in section(7.2.2), the Tektronix 7 L 18 Spectrum Analyser should in fact be used with an external mixer above a frequency of

Fig(7.12) Electro-Optic Modulation Signal for $\lambda=1.15 \mu \mathrm{~m}$, Detected by an ITL HSD30 Photodiode, and Tektronix 7L18 Spectrum Analyser ; Vin $=1.8 \mathrm{~V}$; Centre Frequency $=24 \mathrm{GHz}$; Resolution Bandwidth $=300 \mathrm{kHz}$; Frequency Span/Div $=500 \mathrm{kHz}$; Ref. Level $=-50 \mathrm{dBm}$

Fig(7.13) Averaged Modulation Signal, Detected by a GM8 Photodiode and Oscilloscope, for Electro-Optic Modulation, $\lambda=1.15 \mu \mathrm{~m}$

18 GHz .
In order to measure and quantify the Electro-Optic modulation effect due to Gunn domains, the slow Ge photodiode, type GM8, and oscillosope were used to measure the averaged received intensity. The results obtained using the slow diode are shown in $\mathrm{fig}(7.13)$. As can be seen from this, the Electro-Optic modulation effect at $\lambda=1.15 \mu \mathrm{~m}$, due to propagating domains, tends to increase with increasing bias voltage up to a bias voltage, $\mathrm{V}_{\text {bias, }}$ of approximately 2.3 V . This behaviour was predicted by the approximate simulation results of section(5.4.1) (using an approximate velocity-field characteristic and a constant diffusion coefficient), and by the semi-analytical simulation results (using an analytical velocity-field characteristic and a constant diffusion coefficient). This tendency may be explained as being due to diffusion effects occurring within the domain, causing charge held within the domain to diffuse out, therefore leading to a reduction in the peak domain field.

Using the Photodyne 22XLA Fibre Optic Power Meter, the input optical power, $P_{i n}$, to the rib guide was measured to be $P_{i n}=-10.7 \mathrm{dBm}=0.08 \mathrm{~mW}$. Since the responsivity of the diode was $0.425 \mathrm{AW}^{-1}$ at $\lambda=1.15 \mu \mathrm{~m}$, and since the impedance of the photodiode receiver circuit was set to $47 \mathrm{k} \Omega$, then the corresponding unmodulated input voltage, V_{O}, to the oscilloscope was equal to 1.8 V . This input voltage is directly proportional to the input optical intensity, I_{O}. Similarly, the average change in the output voltage, $V_{\text {out }}$, of the photodiode due to domain modulation is directly proportional to the average modulated signal, I_{\perp}. From fig(7.13), the maximum change in $V_{\text {out }}$ was measured to be 20 mV . Consequently, using these results in conjunction with equation(7.5), the corresponding value of the peak rotation factor is $\mathrm{A}=0.138$. Hence, the maximum Electro-Optic modulation depth, η_{EO}, may be found since, from Appendix $\mathrm{E}, \eta_{\mathrm{EO}}=\mathrm{I}_{\mathrm{EO}} / \mathrm{I}_{\mathrm{O}}=|\sin \mathrm{A}|=$ 13.8%, when A is small.

In the same way as for a wavelength of $1.15 \mu \mathrm{~m}$, experiments were carried out at a wavelength of 905 nm , in both the perpendicular and parallel polariser/analyser arrangements. An RCA Type SG2001 GaAs laser diode was used. The laser diode was mounted on a head unit which also housed a capacitor-discharge SCR current pulser circuit. The current pulser was fed with a variable DC voltage of $0-300 \mathrm{~V}$, and was triggered by a 1 KHz fixed- frequency oscillator. The manufacturers published data for the diode indicated a minimum total peak radiant power of 1 W , and a peak forward current of 10 A .

Using the fast photodiode and the spectrum analyser, Electro-Optic modulation was observed at $\lambda=905 \mathrm{~nm}$, with the polariser and anlayser in the perpendicular arrangement. Further, with the analyser set parallel to the polariser, modulation was detected due to the Electro-Absorption effect. Both of these modulation signals were observed to have the same frequency as the Transit Time oscillation frequency of the Gunn diode, ie. 24 GHz .

Again, the slow Ge photodiode, type GM8, and oscilloscope were used to measure the averaged perturbation in the received intensity due to domain modulation. The results obtained using this diode are shown in fig(7.14)(a) and (b) for Electro- Optic and Electro- Absorption modulation respectively. Again, it may be noticed that each of these modulation signals peaks at an input bias voltage of around 2.3 V

Using the Photodyne 22XLA Fibre Optic Power Meter the input optical power, $P_{i n}$, to the rib guide was measured to be $P_{i n}=-7.9 \mathrm{dBm}=0.16 \mathrm{~mW}$. The responsivity of the diode was $0.225 \mathrm{AW}^{-1}$ at $\lambda=905 \mathrm{~nm}$, and the impedance of the photodiode circuit was again $47 \mathrm{k} \Omega$. Using this data in the same way as for $\lambda=1.15 \mu \mathrm{~m}$, and observing from $\operatorname{fig}(7.14)(a)$ that the maximum change in the output voltage of the photodiode in the perpendicular polariser/analyser arrangement was 17 mV , the corresponding value of the peak rotation factor, A, may be calculated to be $A=0.118$ using equation(7.5). Further, the corresponding maximum modulation depth

Fig(7.14) Averaged Modulation Signal, Detected by a GM8 Photodiode and Oscilloscope, $\lambda=905 \mathrm{~nm}$
(a) For Electro-Optic Modulation

(b) For Electro-Absorption Modulation

for Electro-Optic modulation, for $\lambda=905 \mathrm{~nm}$, is therefore given by $\eta \mathrm{EO}=11.8 \%$, since A is small.

Also, it can be seen from $\mathrm{fig}(7.14)(\mathrm{b})$ that the maximum change in the output voltage of the photodiode in the parallel arrangement was 4 mV . Hence, using equation(7.6) in conjunction with the above data, the peak rotation factor is $A=1.146$. Thus, the maximum modulation depth, $\eta_{E A}$ due to Electro-Absorption modulation, may be found, since from Appendix $\mathrm{E}, \eta_{\mathrm{EA}}=\mathrm{I}_{\mathrm{EA}} / \mathrm{I} \mathrm{O}=\cos \mathrm{A}=$ 41.2%.

Electro- Optic modulation, giving rise to polarisation rotation, is observed only in the perpendicular polariser/analyser arrangement. Further, Electro-Absorption modulation can only be observed and measured in the parallel polariser/analyser arrangement, where Electro-Absorption is the only modulation mechanism present. Electro- Absorption modulation is however also present in the perpendicular arrangement. For this reason, a quantitative correction to the observed Electro- Optic effect can be made using the Electro- Absorption results.

The value of the modulation depth, η_{EO} for the Electro-Optic effect, for $\lambda=905 \mathrm{~nm}$, should therefore be corrected by taking the magnitude of the Electro-Absorption effect into account. After this correction, the value of $\eta_{E O}$ becomes higher by an amount equal to η_{EA}, ie. since $\eta_{\mathrm{EA}}=41.2 \%$, then the corrected value of $\eta_{\mathrm{EO}}=16.7 \%$. This correction indicates that the experimental values of η_{EO} are in agreement with the theoretical predictions of table(5.6) which suggest a stronger influence due to the Linear Electro-Optic effect at $\lambda=905 \mathrm{~nm}$ than at $\lambda=1.15 \mu \mathrm{~m}$.

It should be noted that the sample used for the above experiments, at $\lambda=1.15 \mu \mathrm{~m}$ and at $\lambda=905 \mathrm{~nm}$, was 2.5 mm long, and was oriented along the (0.11) crystal direction. Samples oriented along the ($O T_{1}$) crystal direction were observed to have a similar behaviour, in that at $\lambda=1.15 \mu \mathrm{~m}$ only Electro-Optic modulation was observed, whereas at $\lambda=905 \mathrm{~nm}$ both Electro-Optic and Electro-Absorption modulation were observed. Further, the Electro- Optic effect produced by the (OT1) samples was substantially the same as that produced by samples oriented along
(011). This was because the only difference in the operation of the samples oriented along different directions is that those oriented along (011) will give a positive phase change, whereas those oriented along ($O T_{1}$) will give a negative phase change. This difference in the effect was not however observable by the detection system which was used.

7.3.3 Calculation of Electro-Optic and Electro-Absorption Coefficients

According to the theory of the Electro- Optic effect, the modulation depth is given by [8]

$$
\eta_{\mathrm{EO}}=\frac{\mathrm{I}_{\mathrm{EO}}}{\mathrm{I}_{\mathrm{O}}}=\sin ^{2}\left[\begin{array}{l}
\frac{1}{2} \Gamma
\end{array}\right]
$$

where, $\Gamma \quad=$ the retardation [43]

$$
\begin{aligned}
& =\left[\frac{\pi}{\lambda}\right] \mathrm{n}^{3} \mathrm{r}_{41} \mathrm{E}_{\mathrm{dom}} 1 \\
\mathrm{n} \quad & =3.467554 \quad \text { at } \lambda=1.15 \mu \mathrm{~m} \\
& =3.587480 \quad \text { at } \lambda=905 \mathrm{~nm}
\end{aligned}
$$

$$
1=\text { length of the sample }=2.5 \mathrm{~mm}
$$

$$
E_{\text {dom }}=\text { peak domain field }
$$

$$
\text { ie. } \quad \frac{1}{r_{41}}=\left[\begin{array}{c}
\pi \\
- \\
\lambda
\end{array}\right] n^{3} E_{\text {dom }} 1 \frac{1}{\Gamma}
$$

Thus, it can be seen that an estimate can be made of the Electro-Optic coefficient, r_{41}, of the material, for any given wavelength, λ, if the retardation, Γ, is known and an estimate can be made of the peak field, $E_{\text {dom }}$ within the domain. No direct measurement of $\mathrm{E}_{\mathrm{dom}}$ could be made in the short vertical diode under consideration.

However, an estimate of $\mathrm{E}_{\mathrm{dom}}$ could be obtained via the theoretical simulation results of section(5.4.1). The estimated values of r_{41}, at a modulation frequency of

24 GHz , are shown in table(7.2). The results are presented for: (a) the approximate simulation results; (b) the semi-analytical simulation results; and (c) the analytical simulation results. Note that for $\lambda=905 \mathrm{~nm}$ the corrected value of $\eta_{\mathrm{EO}}(=16.7 \%)$ was used. Note also that the calculations presented in table(7.2) assume a constant value of electric field, equal to $E_{\text {dom }}$, across the length of the domain. The values of r_{41} given in table(7.2) agree well with those given by Walsh [93], who reported a variation in r_{41} from $1.2 \times 10^{-12} \mathrm{mV}^{-1}$ to $1.6 \times 10^{-12} \mathrm{mV}^{-1}$ over the wavelength range $1 \mu \mathrm{~m}$ to $3 \mu \mathrm{~m}$.

An estimate of the value of the absorption coefficient, α, of the observed Electro- Absorption effect, at $\lambda=905 \mathrm{~nm}$, may also be made since

$$
\eta_{\mathrm{EA}}=\frac{\mathrm{I}_{\mathrm{EA}}}{\mathrm{I}_{\mathrm{O}}}=\mathrm{e}^{-\alpha 1}=41.2 \%
$$

Using equation(7.9) the effective absorption coefficient, $\alpha=355 \mathrm{~cm}^{-1}$. This compares favourably with the values of α calculated from the simulation results presented in table(5.6)(b).

Table(7.2) Calculated Values of r_{41} of GaAs at 24 GHz

Wavelength	Simulation Method	$\begin{aligned} & \mathrm{E}_{\mathrm{dom}} \\ & \left(\mathrm{kVcm}^{-1}\right) \end{aligned}$	$\eta_{\text {EA }}$ (\%)	$\begin{aligned} & r_{4}, \times 10^{-12} \\ & \left(\mathrm{mV}^{-1}\right) \end{aligned}$
$1.15 \mu \mathrm{~m}$	Approximate	27.079	13.8	0.9872
	Semi-analytical	18.307	13.8	1.4602
	Analytical	16.074	13.8	1.6631
905 nm	Approximate	27.079	16.7	0.9860
	Semi-analytical	18.307	16.7	1.4585
	Analytical	16.074	16.7	1.6612

8.1 CONCLUSIONS

The project was successful in meeting the initial aims outlined in section(1.2), since the investigations of section(7.3), and the results presented therein, clearly indicate for the first time modulation of a guided optical carrier wave due to effects introduced by the electric field associated with a propagating Gunn domain.

Whereas at a wavelength, $\lambda=1.15 \mu \mathrm{~m}$ modulation was observed to arise solely from the Linear Electro- Optic effect, at $\lambda=905 \mathrm{~nm}$ modulation was observed due to both the Linear Electro- Optic effect and the Electro- Absorption effect, ElectroAbsorption modulation being particularly strong. At $\lambda=1.15 \mu \mathrm{~m}$ the modulation depth of the optical guided wave, due to the Linear Electro- Optic effect, η_{EO}, was found to be 13.8%, whereas at $\lambda=905 \mathrm{~nm}, \eta_{\mathrm{EO}}$ was found to be 11.8%.

It was further found that at $\lambda=905 \mathrm{~nm}$ the modulation depth due to the Electro- Absorption effect, $\eta_{E A}$, was 41.2%. A quantitative correction could thence be made to the observed Electro-Optic effect at $\lambda=905 \mathrm{~nm}$. Taking into account this correction, $\eta_{E O}$ at $\lambda=905 \mathrm{~nm}$ becomes 41.2% higher, ie. 16.6%.

Since direct measurement of the electric field within the domain of the vertical device was not possible, the results of the computer simulation program, GUNNSIM, were used in conjunction with the experimental results to obtain an estimate of the Electro-Optic coefficient, r_{41}, at $\lambda=1.15 \mu \mathrm{~m}$ and $\lambda=905 \mathrm{~nm}$. These values were shown in table(7.2). The values found were in agreement with previously reported results at lower frequencies. Further, an estimate of the Electro-Absorption coefficient, α, was calculated and found to be equal to $355 \mathrm{~cm}^{-1}$. This was in reasonable agreement with the estimated theoretical values presented in section(5.4.2).

Previous work relating to optical devices operating in association with Gunn diodes have, for example, demonstrated the mutual phase-locking of a coupled laser diode and Gunn diode, oscillating at a frequency of 1.249 GHz [94].

Another previous work integrated a laser diode and a Gunn diode on a semi- insulating substrate, the two devices being integrated in series, such that the laser acted as one of the Gunn oscillator electrodes [95]. In this device oscillating current pulses, coming from the Gunn device, formed the injection current of the laser diode, such that the laser light was modulated at the frequency of the Gunn diode, ie. 1 GHz .

Each of the above examples differs, however, from the device examined in the work presented herein. This is because the device R3 comprises a Gunn diode and an optical waveguide, not only operating in association with one another, but which are also combined within the same device structure.

The device also differs from those which have been considered in previously reported experiments investigating the interaction between propagating domains and an optical signal, since the device provides means for guiding the optical radiation within a rib optical waveguide. This obviates the disadvantages of the prior work, eg. by Cohen et al [7], and Ohta et al [8], which showed the mechanism of optical modulation due to propagating domains in bulk Ga As samples, but wherein the interaction was found to be weak in comparison to other Electro-Optic modulators, and of little practical value. Further, these samples required high bias voltages. It was found, by the experiments of section(7.3), that a much stronger interaction was obtained when the domain propagated through an integrated optical waveguide, and also that a much smaller operating voltage was required.

The results of section(7.3) did however substantiate previous work in that it was found that at a wavelength, $\lambda=1.15 \mu \mathrm{~m}$, only Linear Electro-Optic modulation was observed, whereas at $\lambda=905 \mathrm{~nm}$, Electro- Absorption as well as Linear Electro- Optic modulation was observed. It was also concluded from the experimental observations that, as was expected from the theoretical calculations of section(5.4.2), electric field induced perturbations in the optical characteristics of the device (ie. due to the Linear Electro- Optic or Electro- Absorption effects) far outweighed those due to Free Carrier effects (ie. the Free Carrier Plasma or Free Carrier Absorption effects).

If the device is compared with previously proposed Electro-Optic waveguide modulators, then it can be seen that the vertical diode/rib waveguide device, R3, differs from previous devices in that R3 depends for its operation not only on the presence or absence of a local perturbation in the optical characteristics, but also that this perturbation will propagate and may be controlled with regard to its magnitude by variation of the bias voltage [96],[97],[98],[99].

For example, the Electro-Optic modulator of Campbell et al [99] comprised an N^{+}GaAs substrate, having a $2.5 \mu \mathrm{~m}$ thick N -type epilayer, with a narrow Schottky barrier stripe contact on the top surface. Light was thus confined underneath the contact when the Schottky contact was reverse biased. Campbell et al demonstrated: a modulation depth due to the Linear Electro-Optic effect of 95% at $\lambda=1.15 \mu \mathrm{~m}$, and at $\lambda=1.06 \mu \mathrm{~m}$, for a bias voltage of 40 V ; a detection limited modulation rate of 150 MHz , with a potential maximum operating frequency and bandwidth of 1.2 GHz ; and a power requirement of around $3 \mu \mathrm{WMHz}^{-1}$.

It can therefore be seen that the vertical diode/rib waveguide device, R3, offers a considerably lower Electro-Optic modulation depth than the device of Campbell et al. R3 also has the disadvantage of a somewhat higher power requirement of around $115.6 \mu \mathrm{WMHz}^{-1}$ for a rib width of $5 \mu \mathrm{~m}$, rising to $346.8 \mu \mathrm{WMHz}^{-1}$ for a rib width of $15 \mu \mathrm{~m}$. This disadvantage of high electrical power consumption, and also the subsequent low electrical to microwave conversion efficiency, leading to the production of heat, is of course one of the major disadvantages of all Gunn diode devices.

The vertical/rib device does, however, have the advantages of having a considerably smaller operating voltage ($\approx 1.6 \mathrm{~V}$), and a Transit Time Mode operating frequency of 24 GHz . Further, if the Gunn diode is operated in Delayed Domain Mode, then the modulator could be used in conjunction with a received microwave signal of between 12 GHz and 24 GHz . The device thus offers a potential bandwidth of 12 GHz .

As was explained in section(3.4), a Gunn diode may be operated in either a Constant Voltage or a Constant Current Mode. For the experiments of Chapter 7 the diodes were operated in the Constant Voltage Mode known as Transit Time Mode. In Transit Time Mode when a field, $\mathrm{E}_{\text {bias, }}$ higher than the required threshold voltage, E_{T}, is applied between the anode and the cathode of the device, a dipole domain forms, and the electric field outwith the domain falls below that of E_{T} to some quasi- DC level, E_{R}. The field outwith the domain will remain at this level until the domain is destroyed at the cathode, at which time the electric field throughout the device redistributes itself to the bias level which it was at before the domain originally nucleated. Another domain will then form and propagate, and the process repeat itself.

The important point to note here is that for one complete domain cycle the electric field at any given point within the diode will originally be $E_{\text {bias }}$ fall to E_{R} when the domain forms, peak at $E_{d o m}$ when the domain passes by, fall back to E_{R} when the domain is passed, and rise to $\mathrm{E}_{\text {bias }}$ when the domain is destroyed. This sequence then repeats itself when the next domain forms. The sequence is true for all Constant Voltage Modes, not only Transit Time Mode.

This means that there are essentially two occasions when the electric field at a given point changes. These are first when the domain passes over the point, and second when the domain is destroyed and renucleates. Both of these instances will give rise to electric field induced modulation effects occurring within the device. Both will also occur at the same microwave frequency, and can therefore not be distinguished. It can be seen from the simulation results of section(5.4.1) that E_{R} is of the order of two to three times less than $E_{\text {bias }}$, which is itself of the order of 1.5 to 4 times less than $E_{\text {dom. }}$.

It is therefore obvious that for Constant Voltage Modes, although the change in electric field at any given point due to the domain propagating is greater than that due to the domain being destroyed, there are still two individual, but
indistinguishable, contributions to electric field induced optical modulation.
In order however that the only electric field induced modulation occurring within the device is produced by the propagating Gunn domain, the device may be operated in Constant Current Mode [21]. As was previously explained in section(3.4.2), in this mode of operation no redistribution of the electric field occurs throughout the diode when a domain is destroyed at the anode and renucleated at the cathode. This means that, for any given point, the sole perturbation in the electric field, and hence contribution to electric field induced optical modulation, will be due to the propagating domain. Further, in the Constant Current Mode of operation more than one domain can exist within the diode at any time. This mode may therefore offer even higher operating frequencies, and potential bandwidths, than the Constant Voltage Modes.

Any future work directed towards the planar diode/photoelastic waveguide device must of course repeat the experiments of section(7.3) in observing the interaction between the high-field domain and the guided light via the Linear Electro- Optic and Electro- Absorption effects. For the planar diode the electric field of the domain is directed along the surface of the material, ie. along the (100) crystal plane. The electric field is, therefore, perpendicular to the (011) plane if the guides are aligned along (011), or the ($O T_{1}$) plane if the guides are aligned along ($0 T_{1}$). Accordingly, the theory of the Electro-Optic effect in zinc-blende crystals [43] suggests that the maximum phase retardation, along the direction of the guides, observed in the planar device, will be twice that observed in the vertical device for the same value of domain field.

It can be envisaged that the planar device could be biased by a DC electric field just below threshold. Domain formation could then be triggered by a pulse of light [100], as explained in section(4.3.2). The light could have photon energies either above or below the band gap energy of the material. This suggests that the Gunn diode could be controlled directly by optical pulses, or that the diode could be used as a high- speed detector.

If, however, the optical triggering of Gunn domains, and the Electro-Optic
interaction of these domains, are combined within the one device, then other potential applications emerge. For example, a domain could be triggered by a first pulsed light beam, and the Electro-Optical effects induced by the domain used to modulate a second guided light beam. The device would thus effectively have an all-optical switching function, the switching information being carried by the first light pulse. The device would resemble the planar diode/photoelastic waveguide device of $\mathrm{fig}(1.3)(\mathrm{c})$.

In operation, a first picosecond light pulse from a mode- locked laser would be input into the photoelastic guide on the inner edge of the cathode. This pulse would then trigger formation of a Gunn domain, which would propagate from cathode to anode, traversing the photoelastic guide on the inner edge of the anode. The field associated with the domain would alter the optical properties of the anode guide via the Linear Electro- Optic and Electro- Absorption effects. This alteration would then be detected by a second picosecond pulse input into the anode guide, this pulse being derived from the same laser as the first pulse, but being controllably delayed with respect to the first. The mechanism for modulation of the second pulse would again be dependent upon the wavelength of operation, eg. for light of wavelength larger than that of the bandgap the Linear Electro- Optic effect, giving rise to a refractive index perturbation and consequent polaristion modulation of the light pulse, would predominate. Alternatively, for light of wavelength close to the material bandgap Electro- Absorption modulation would be much greater, and might predominate.

A further consideration which should be addressed in the construction of the planar devices is that of the stress within the active epilayer. The pressure experiments of Hutson et al [28] demonstrated a decrease in the threshold field for Gunn domain formation, E_{T}, below an applied hydrostatic pressure of $15.0 \times 10^{8} \mathrm{Nm}^{-2}$. Further, stresses within photoelastic guides have been measured to be of the order of $6.0 \times 10^{8} \mathrm{Nm}^{-2}$ [17]. It can therefore reasonably be expected that the presence of the photoelastic guide may affect the threshold field, and therefore possibly reduce the threshold voltage of the planar device.

The planar device may also find application in the area of optoelectronic microwave switching [101], where a microwave signal would be generated by illuminating the device with light pulses of energy greater than the bandgap energy. In this way, the effective length of the Gunn diode may be varied, thus varying the corresponding output microwave frequency. This effect could therefore be used in either the optical control of a microwave signal, or in the microwave processing of an optical signal.

8.3 INTEGRATED DEVICES

As was previously mentioned in section(1.2), the original aim of this work was to design an integrated active optoelectronic microwave receiver, wherein a radiant microwave signal would be received and used to directly modulate a guided optical wave. The experiments of section(7.3) have shown the feasibility of optical modulation within an integrated optical waveguide due to propagating Gunn domains. Therefore, it can now be envisaged, using known microstrip antenna array technology [102],[103], that an integrated active optoelectronic microwave receiver could be fabricated by connecting the output of such an antenna array receiver to either the vertical/rib or planar/photoelastic device. The diode device could then be operated in Delayed Domain Mode, and used to encode the received microwave signal onto the guided optical wave through domain induced Electro-Optical effects.

It could further be envisaged that the integrated device might not only be mounted in association with an antenna receiver fabricated on conventional copper clad microstrip board, but that the whole receiver could be fabricated on the same semi- insulating GaAs substrate. Such a monolithic integrated active optoelectronic microwave receiver would constitute a complete radar receiver on a single chip, and could be fabricated using special design features such as air bridges and through-substrate vias. Schematic diagrams of possible embodiments of such a device are shown in figs(8.1)(a) and (b) for: (a) the vertical diode/rib waveguide design; and (b) the planar diode/photoelastic waveguide design.
Fig(8.1) Monolithic Integrated Active Optoelectronic Microwave Receivers
(a) The Vertical Diode / Rib Waveguide Device

Semi-Insulating Substrate
———ner
(b) The Planar Diode / Photoelastic Waveguide Device

$\mathrm{PG}=$ Photoelastic Waveguide

As can be seen from $\mathrm{fig}(8.1)(\mathrm{a})$, in the case of the vertical diode, a microstrip line extends from the antenna array receiver circuit carrying the received microwave signal to the modulator device via an air bridge. The modulator device can be seen to be similar in construction to the device investigated in section(7.3), ie. R3, with the obvious difference that the device of fig(8.1)(a) is fabricated on a semi-insulating substrate. The anode of the device, therefore, is not formed by an ohmic contact on the base of the N - type substrate, but is rather formed by the first N^{+}epilayer grown on top of the substrate, and is connected to the earth plane by a via-hole.

The planar device of $\operatorname{fig}(8.1)(b)$ can be seen to be analagous to the vertical device design, except that only two epilayers are required. Further, the anode of the device, situated on the top-most surface, is connected to the earth plane by an air bridge and via-hole.

It can be seen that the monolithic integrated active optoelectronic microwave receivers described above may be used to detect a radiant microwave signal, and consequently use this signal as the modulation signal to control an optical guided wave. These receivers may therefore find application in such areas as the optical processing of a microwave signal used in a satellite up or down-link.

APPENDIX A THE EQUAL AREAS RULE

The following gives an outline of the calculation of the steady-state properties of a stable, uniformly propagating, high field domain observed in the Gunn effect. The equations to be satisfied are [33] the Current Continuity equation

$$
J(t)=N q v(E)+\varepsilon \frac{\partial E}{\partial t}-q \frac{\partial}{\partial x}[D(E) N]
$$

and Poisson's equation

$$
\frac{\partial E}{\varepsilon-}=\left(N-N_{D}\right) q
$$

where, $J(t)=$ total current density
$\mathrm{N} \quad=$ electron density
$\mathrm{N}_{\mathrm{D}} \quad=$ donor density
$D(E)=$ diffusion coefficient

It is assumed in this calculation that the diffusion coefficient, D , is independent of the electric field E, and that the drift velocity $v(E)$ follows the form shown in fig(3.4).

For a freely propagating stable domain, as shown in fig(3.3), the boundary condition is that
thus

$$
E \rightarrow E_{R}(=\text { a constant }) \text { as } x \rightarrow \pm \infty
$$

and so, $J(t)=q N_{D} V_{R}$
where, $\quad v_{R}=v\left(E_{R}\right)$
We therefore seek a non-trivial solution of equations(A.1) and (A.2) for which

```
E=E(x-v
N=N(x-v
where, \(v_{D}\) is the domain velocity. Now from equation(A.4)
\[
\begin{align*}
& \frac{\partial E}{\partial t}=-v_{D} \frac{\partial E}{\partial x}  \tag{A. 6}\\
& \frac{\partial N}{\partial x}=\frac{d N}{d E} \cdot \frac{\partial E}{\partial x}
\end{align*}
\]

Substituting equations(A.3), (A.6) and (A.7) into equation(A.1), and rearranging, gives
\[
q\left\{N_{D} v_{R}-N v(E)\right\}=\left\{q D \frac{\partial N}{\partial E}+\varepsilon v_{D}\right\} \frac{\partial E}{\partial x}
\]
and substituting for \(\partial E / \partial x\) from equation(A.2) gives
\[
\begin{equation*}
\left\{N_{D} \vee_{R}-N v(E)\right\}=-\left\{q D \frac{\partial N}{\partial E}+\varepsilon v_{D}\right\} \cdot \frac{\left(N-N_{D}\right)}{\varepsilon} \tag{A. 8}
\end{equation*}
\]

Rearranging equation(A.8) shows that
\[
\begin{equation*}
\left(N-N_{D}\right) \frac{d N}{d E}=\frac{\varepsilon}{q D}\left\{N v(E)-N_{D} v_{R}-v_{D}\left(N-N_{D}\right)\right\} \tag{A. 9}
\end{equation*}
\]

Rearranging this and multiplying by \(1 / \mathrm{NN}_{\mathrm{D}}\) gives
\[
\left[\begin{array}{cc}
1 & 1  \tag{A. 10}\\
- & - \\
N_{D} & N_{N}
\end{array}\right] \frac{d N}{d E}=\frac{\varepsilon}{q_{N_{D} D}}\left\{\left(v(E)-v_{D}\right)-\frac{N_{D}}{N}\left(v_{R}-v_{D}\right)\right\}
\]

Integrating equation(A.10) from the conditions at infinity to any point within the domain
\[
\begin{aligned}
& \int \begin{array}{l}
N=N \\
N=N_{D}
\end{array}\left[\begin{array}{cc}
1 & 1 \\
\frac{1}{N_{D}}-\frac{-}{N}
\end{array}\right] d N=\frac{\varepsilon}{q^{\prime} N_{D} D} \int E_{R}\left\{\left(v(E)-v_{D}\right)\right. \\
& \left.-\frac{N_{D}}{N}\left(v_{R}-v_{D}\right)\right\} d E
\end{aligned}
\]

Therefore,
\[
\begin{align*}
\frac{N}{N_{D}}-1-\ln \left[\frac{N}{N_{D}}\right]= & \frac{\varepsilon}{q_{N_{D}} D} \int{ }_{E_{R}}^{E}\left\{\left(v(E)-v_{D}\right)\right.  \tag{A. 12}\\
& \left.\quad-\frac{N_{D}}{N}\left(v_{R}-v_{D}\right)\right\} d E
\end{align*}
\]

Now, the depletion and accumulation branches of the domain must come together when \(N=N_{D}\) at \(E=E_{D}\), as well as at \(E=E_{R}\). Since the left-hand side of equation(A.12) vanishes when \(N=N_{D}\), then the right-hand side must vanish at \(E\) \(=E_{D}\), when N in the integrand takes values on either the depletion branch, where \(\mathrm{N}<\mathrm{N}_{\mathrm{D}}\), or the accumulation branch, where \(\mathrm{N}>\mathrm{N}_{\mathrm{D}}\). From equation(A.12) this can be seen to be impossible unless \(\mathrm{v}_{\mathrm{D}}=\mathrm{v}_{\mathrm{R}}\) since the first term in the integrand is independent of N , whereas the second term will differ in both cases.

It can therefore be concluded that equation(A.12) is solvable only if \(v_{D}=v_{R}\), ie. that the domain drifts at the same velocity as the electron drift velocity outside the domain, if it is assumed that \(D\) is independent of \(E\). Therefore,
\[
\begin{equation*}
\frac{N}{N_{D}}-1-\ln \left[\frac{N}{N_{D}}\right]=\frac{\varepsilon}{q N_{D} D} \int E_{R}^{E}\left\{v(E)-v_{R}\right\} d E \tag{A. 13}
\end{equation*}
\]

At the peak point of the domain \(E=E_{D}\) and \(N=N_{D}\), and so equation(A.13) becomes
\[
\begin{equation*}
0=\int E_{E_{R}}\left\{v(E)-v_{R}\right\} d E \tag{A. 14}
\end{equation*}
\]

This suggests that \(E_{D}\) is determined by the simple geometrical condition that the two shaded areas in \(\mathrm{fig}(3.4)\) should be equal. This is the so called Equal Areas Rule. The solid line in fig(3.4) represents the static \(v(E)\) characteristic, whereas the dashed line represents the locus of points ( \(\mathrm{E}_{\mathrm{D}}, \mathrm{v}_{\mathrm{R}}\) ) determined by the Equal Areas Rule, ie. the dynamic characteristic. The dynamic characteristic extends from the peak of the \(v(E)\) characteristic to the point \(\left(E_{D M}, v_{R M}\right)\), for which the areas bounded by the line \(v=v_{R M}\) above and below the characteristic are equal. The domain shape may be found by integration of equation(A.14).





```

!
IFTIOA E:ASE

```



```

IIM Frofilex{1],\forall\&{[1]
!
GIHIT
GPFIFHIES OH
GClEAR
cosum Euestions
gosue nata
GuSUE \#-1field
GusuE Initial
gusue cors
EHII
!

```


```

 !
 STEMIIGRIT
 INFUT -ENTEK EIFS FIELH (%/CM) *.EEi\Xi=
 IHPUT "EHTEF CHANHEL LENGTH {IICRONS: *,LE
 IHPIT "ENTER CONTECT LENGTH \MICFOHE: *,LCC
    ```

```

 L=LE#1E-E゙
 C=LEC#1E-E
    ```

```

 FETURH
 !
    ```

```

 !
    ```

```

 H1=5.GEこ2 ! CHENHEL EOPIHE
 112=1.0EZ4 ! COHTACT LUOFINL
 Lr=L+2xC ! TOTAL IEEICE LENETH
    ```

```

 Erax=20#Et ! SCALIT:G FACTOF FOE F:I!T
    ```


```

 Hotchu,i-Jth=1E-E
 |Etstig.0s=G+L/10
    ```

```

 ルこ=2
    ```

```

 It =4E-15 !
    ```

```

 IIx=5E-3 !
    ```

```

660 S=IHT((L+2*C)/Dx) ! FiUMEES EF FGI|!TS
661 Cathode=INT(C/Dx)
662 Anode=INT ((L+C)/DX)
663 Hot=h=1NT(Hotchpos/Dx)

```

```

6%0 !
670
700 !
70
729
730
7 4 0
750
76
70
?59
790
850
810
820
C20
8こ5
845
35G
S69
576
ssg
890
505
519
329
930
95
O59
965
970
ジ\emptyset
-00
6515
1010
152
GEEL -
1040 FEH 1
15SM MO\becauseE 5,0.E
1DEG LAEEL Channel length (mierens)= "EvHLf(LC)
197G Hज`E G,0.7

```

```

1GGG MO%E 日,G.E
110g FLOAT ?
1119 LAEEL " Chann=l doping densiry = "\#vfls(N1)\&* cm^3"
1120 H0%E G,O.E
113日 LAEEL " Corisact doping densivy = "**%AL\$(H2)** Em^3"
114日 MO%E G,0.3
115g FEN 2

```

```

1170 H0ソE घ,ウ.2
11ED STHMIAR:D
1190 LAEEL " Repeat inierual = mälle(fepeat)
120日 MO%E 5, ब.1
1210 LAEEL " Spate intervalミ = m%:Ht.f(INT(S))
1220 FEH S
1239 HOYE G,-G.1
1249 LAEEL" Eias electric fi\geqle, =t = "qYALs(Ebias)\&* V/
これ"
125G HOYE 6, -5.2
1260 FLDAT 4

```

```

12ЭG STAMDGRD
1290 FEN 3
1350 110%E Eे,-0.4
1310 LAEEL Notch factor = *\&tht (HErthi`gctor)
1320
1330
1340
1350
1360
1370
1350
1390
1409
1410

```

```

1430 !

```

```

1450 PEN
146ज LFEEL "FEHE!IEER TO CHANGE THE SIIE. YEEECITY FCCORDIMGLY !!!"

```

```

1480 FAUSE
149G IISP**
1590 GINIT
1510 !
1520 T=3000.0 ! K
1530 Tmax=100%T ! K
1549 \because゙ぃах=3.0ES ! ms-1

```

```

15EG!

```

```

58g GCLEFF
15こ1 !
ISE2 !FLOTTER IS 4G5,"HFGL*;DISTEFI
15E3 !
5\#G M0%E S0,95
1EजG FEN 2
1610 CSIZE 4
1629 LAEEL "Gafis Chara`teristiE"
163ज NO%E 2.5,35
1649 CEIZE 3
1656 DEG
16EG LDIP 90
167G LFEEL *\becauseElogit%(1gnEmE-1)"
1EEG LDIF G
1690 MOVE 4S, E
iTgG LHEEL "Elecirie Field <<``にm;"
1710 YIEWFORT 10,125,10,90
172G FEH 1
1730 FFINHE
1740 WIHDOW 5,26G,0,1.5
1750 AXES 2,0.05,0,0,14,5,3
17EG CLIF OFF
1775 CEIZE 3,0.5
1?0G FOF I=\emptyset TO 己OG STEF 2פ
179G MNYE 1,(-5.54)

```

```

151G HEXT I
1S20 LORTG E
183G FOF 1=\emptyset TO 1.5 STEP 9.2こ
HO:OE -1. G, I
LHEEL USING "\#,IDD.HI";<I*3;
HEYT I
IT SP "GgNESTHS"
PHuSE
DIEP * -

```

```

Emin1=0.0 ! kV/cm
Emax!=20.0 ! kV/cm
Ecount=200
Eminve=Emin1%1.DES ! Curnve:r \&o \because-'a
EmaxUe=Emax 1.* 1. 日ES
Eincr=(Enaxue-Emirove)/Esount
IF VeE="E" THEH
GosuB Exact
ELSE
gosub Approx
END IF
D1SP "CONTEMME"
PRUSE
DISP * -
!
!PLOTTER IS "IHTEF:HAL",%
!
GCLERR
FETUF:N
!

```

```

!

```

```

Hut1=0.636
H0.42=-63. 2976
На=2.23E-14
\becauseた1ミ!=S6609
v%`ak=22296g
LOw=324Э50
High=549906

```

```

FEH 7
HOYE 1, B
FGR K=1 TO Erount
F=Eminve+k*Eiruer
GOEuE Yelocity
FLDT K,\becauseаl/ध゙心ax
HEXT K
!
RETURN
!

```

```

!
EELECT F
CHSE <LOW
Val=110b1%F
CASE <High
Va!=Not.2:(F-L@w)+\becausepEj
CAEE <FU

```

```

 CRSE ELSE
    ```

```

 EHIS EELECT
 #uv=%al#C2 ! UEEI IN fLGGPlTH:A, EEE SUEFOUTIHE CORE.
    ```

```

 FETUEII
 !
    ```

```

 !
 STFHIGRRD
 FRIAT "N = Newest data for Goms"
 FRIHT " S = Sze's data fror rafiE"
 FRINT " I = Data for Irif"
    ```

```

 IF <DE=*N"` THEM
    ```

```

2540
2550
2560
2570
2520
2590
2591
2603
2610
2620
2630
2040
2653
2660
2670
2671
26E0
2690
2760
2719
2729
2730
2746
2759
276!
2761
2778
27气@
2790
25@4

```

```

2`डg A-Euracy=1.G ! K 2e45 INPUT *How man! dimensi=ns ? (1,2 or 3)", Dimm 2`SG !IF Dimm<>1 OR 2 OR 3 T:EEN BOTO 112F
2E6g GOSUR MSsigndala
2\#76 Te=T
23Eg Hrat=ivratioinitial
2\&\&1 \becausep=0
2ESG FOR K=1 TO Ecount
2909 F=Emin.e+kまEiner

```

```

3520
23この
2330
2F45
2955
2960
2961
2962
2963
2ЭG4
2379


```
3041 !
3950 KDr=KD*T
3069 Dele=1pltae:*Eq
3970 Prefartor=0.SxDimm ! For kirietir zmergy - Trelation
3080 R=(Mu2/Mu1)=<(|M2/M1)^Pr=f:Ector)
3090 Nratiginitial=R*EXP&-DEIE<KE:;
3100 !E=Emiruce !!!!!!!!!!!!!!!!!!!!!!!!
3110 Afroris={Eq#Tats#mot1)/{FrEfactcru#kts?
```

```
FETURH
130
130
```



```
3150 !
3160 Hfrontzerm=Afront*F*F
```



```
3130 GOSUE RIbis
3199 !GOSUB Findiff
3200 !
3210 Te=Rtb
322G Ktote=KtzTe
3230 Nratio=R*EXP(-Dele/Kbte)
```



```
2259 :}=14\textrm{cbl*F/(1+14ratio)
```



```
S2E0 II=\langleKLtexllot1/Eq)/(1+Nratios)
32?9 !
そ2eg \because\becauseッ=ッ*C2
こ290 FETUFH
`305 !
```



```
3311!
3325 \1=T
333G 22=T+fifrentterm/(1.G) ! Higr:ここ! Expected value
3345 Zacc=Accuracy
Fこちら Jぃax=40
ごGも Tt=マこ
ごG GたSリE Ffx
3こ\mp@code{Fmin=Fx}
ごすG Tr=21
*agg TOE|E Ffx
シ4!\mp@code{FE=Fx}
ジこう IF ({Ff%Fmid)>=0.G) THEN
3430 FRIHT * GHT OF- RGOTS*
344g EHIN IF
3450 IF (FF<Q.0) THEN
*4GG Frb=マ1
#470 Idx=22-こ1
34@G ELEE
345G Fitt=ここ
#5g血 Ifdx=21-22
`S1G EHI IF
3529 FGR J=1 TO Jmax
53g Indx= [1dx#g.5
シ545 Zmid=Fitr+Idx
こ5S0 Tt=2mig
35E0 GOEUE Ffx
3570 Fmid=Fx
25:59 IF (Fmid<=0.6) THEM Ftb=Z利隹
```



```
こも畏 HEXT J
FE10 FETUSN
3520 !
```



```
ごこ1!
ご40 K上tて=Kbき丁を
```



```
З690 Fx=Tt-T-Afren:tera/<l+Nrat)
3750 FETUF:H
3710 !
```



```
3721!
37ご9 Jm玉x=150
374日 Tここ=T
3759 FOR I=1 TO Jmax
```


426G IRFAW S¥IIX, B. S
427ら FEH 2
42Sg NOYE ㅍ. H2/Nmax
4296 ! 民
434
4340
4350
4360
4370
43 を0
4395
4495
Tel = T+Afrontterme (1+ingat
Zafc=fBS (Tel)-fES (Te玉)
IF (AES(Zacc)<=ficcur三cy) THEN TOTO 3826
Te2=Tel
HEXT J
Frbot $=1$
RETURH
$!$

!
PEN 2
MDVE 0, 0
FOR $K=1$ TO Eccunt
PLOT K,TE(K)ノTmax
HEXT K
FEN 3
MOVE 日, 6
FOR $K=1$ Tū Ecouriz
FLOT K, Hratio(K)/106
NEXT K
FEH 4
MOYE 日, 0
FOF $K=1$ TO Ecourit
PLOT K, Y(K)ノソiax
MEXT K
PEN 5
HO $\mathcal{F} \mathrm{E}$ G, $\overline{\mathrm{b}}$
FOR $K=1$ TA. ECourit

HEXT K
FEH 2

FRUEE
FETUFN
!

GIHIT
GCLEFR
ItifUT " Do you tish E-field or ref. index profile? (E/R) ", profilet
HIHDÔH G, S干1.
FEN 1
H0\%E (
IF Frgiflet="E" THEN
LAECL. " INITIAL ELECIRIC FIELE FODE UGPIHG FROFILES*
ELSE

END IF
FRFME
10\%E 日, 5 . 5
of $\begin{aligned} & 1=1 \quad 1 \\ & x=10 x=1\end{aligned}$
$x(1)=\mathrm{D} \times \mathrm{X}=1$
IF $X<C / H 2$ THEN $P=H 2$

IF $X>=C$ THEN $P=N 1$

IF $\therefore>=L+C+C-C / H 2$ THEA $F=1 i 2$
HJ:I) $=$ P
Et: : I = = Eb*HI/Md(I)

```
    E(I)=EL<1)
    PLOT X,Ndil)/H2
HEXT 1
FEH S
HDYE G,Eb:N1/H2/Em=x
FÜR I=1 TO S
    x=1*Bx
    FLOT X,EE<I\/Emax+\emptyset.S
    F(I)=E(I)
HEXT I
E(S)=E(S+1)
E(G)=E(S)
Hd(G)=Nd(S)
UISP "CONFTNDE"
FHUSE
HIEP * -
FETUFH
!
```



```
!
GOSUE nutline
```



```
FOR K=1 TO S
            Olde(K)=E{K)/Emax+5.s
```



```
    ! POISSOH'S EQUATIOH NCFEMFIIEEN TO N2
            HEwe{K)=01de(K)
            Hewr.(K)=01dn(K)
    HEXT K
```



```
F=Eb
GOEUE \becauseElacity
J1=`̛0ッ天N1
J3=-Jj/(10*J1;-5.125
T1=0
GOEUE FRPPIOZ
```



```
FOR T1=0 TO Tmax
        FOF Rep=1 TO Repeइt
            Timき=(T1 丷Repeこt+F:こか) =1!
            IIISP T1*Rep+REp, I ime
            Sun=脑
            FOR K=2 TO E-1
                    !
                    F=Eik+1;
                    GNSUE ジミl0=1t%
                    B(K+1)=0
                    !
                    F=E<K;
                    GOSUE VElcociq;
                    I:K)=0
```



```
            F(K)=F+J=hi
            Sum=Susm+[1x*J=ti
            HEXT K
```



```
                    !
                            F=E(2)
                            GOSUE भै:locity
                            D(2)=I!
                            !
                            F=E(1)
                            GOSUE \ddot{FElGCiry}
                            I\\1)=D
```

```
    5070
    5030
    509G
    S1G日
    5110
    5120
    5136
    5140
    5156
    5160
    $170
    5126
    5199
)
    5290
    5216
    5220
    5236
    E240
    5250
    S265
    S27G
    5286
    529G
    5`50
    S316
    5`7!
    5350
    5%%0
    S+50
    5415
    5426
    54こG
    5445
    5456
    5465
    5476
    548G
    5494
    S5Gg
```



```
    5511!
    S525 IFLOTTER IS 405,"HPGL";IISTORT
```



```
    SS4G ECLEFR
    S55G FEN 1
    5565 H0%E {S#Dx:-15,-5.15
    S575 IF Profile:=*E* THEN
        LAEEL " ELECTRIC FIE!I PND ERREIEP. HENSITY PROFILES"
        ELSE
            LAFEL " REFFFRCTIVE INEEX HNT SAF:RIER DENSITY PROFILES*
        EHS IF
    FFAMME
    HOOE G.g.S
    IFAW ミะIDX,G.S
    !FLGTTEF İ*IHTEFNAL*,
    !FAUSE
    RETUFH
    !
```



```
    !
```



```
    FEH 1
    H0`E G,Et(1),Emax+b.S
    FGR I=1 ro =
        x=1*nx
```

```
5.74
S776
```



```
579G
5 3 5 0
5&10
5320
5836
5640
5850
5`66
587a
5384
589G
5900
5F16
552a
5936
5940
5950
5960
5970
5980
5G9%
F.0й0
E010
EG25
6日30
6G40
6050
6!S! !
6060 ! J2=-Jj/(10%J1)-. 25
EMTG ! FEN E
6@&G ! FZ=(T) NOD (S*1G)
```



```
61ज4! [F:HW F=*INx×/4,J2
611G:J3=J2
6120 ! IF Fz=O THEH
E130 ! H0VE -19#10x,-5.25
E145 ! FFEN FEH 1
```



```
E1GG ! EHN IF
E17G ! RETURN
E12G !
```



```
6191
E174 EtOn= is
ElэS FOR K=Horen TO finode
El9G IF E{K)\Eb THEN
5197
6198
E19%
52061
6261
G20%
E295
E204
5205
6206
Eこ1!
6220
```



```
230
5246
625%
6264
6276
        EMS IF
HEXT I
FEN 2
FOR 1=3 TO S-1 STEP 2
    PEH -2
    M0%E X(1-2),01tn(1-2;
    IRAH X(I),01dn(1)
    PEN }
    MOYE X(I-2),Newn<I-2)
    DRAH X(I),Hewn(I)
HEXT I
FEH 5
FOR I=3 TO S-1 STEP 2
        PEN -5
        M0\becauseE X(1-2),01de(1-\Sigma゙)
        DFFH x<I;,Ölde(I)
        PEH 5
        H0%E X(1-2), H=wこ(1-こ)
        DRHH X(I),HEWe(I)
HEXT I
FUR K=1 TG S
        0|dn(K)=Heuri(K)
        01de(K)=Newe(K)
    HEXT K
    !GOEUE Curreris
    RISP TIEREpeat ! NO. OF SIF:JAATISHS SO FFR.
    FEETUPN
    !
```



```
!
!
                IF E(K)>Ed%n THEN
                    EdEm=E(K)
                    Peak=K
                EHII IF
        ENII IF
        IF E(K)<EdOw THEN
                GuT0 E2g%
        END IF
    HEKT K
    FOF K=(Fagk-1) TO Cathoce STEF - :
        IF (:E(K)-E(K-1))/E(K))<घ.1] THE|
                IF E(K)<=Eb THEH
                    Kminl=K
                    Ewinl=E(K)
                    GOTO E2G0
            END IF
```

```
62GG HEXT K
629G FOR K=(Peak+1) TO Fnode
600
631G
632a
5336
6346
6.359
6366
6370
6.320
6390
6400
6410
E420
6.430
E446
6459
E4E0
*)
```



```
E46日 FEN 1
6490 MÖ`E G,D.S
ESOB LAEEL NOMAIN HEIGHT, EdOM = "*?FiLEEEdOM)
5510 IF.Proijle=E THEH GOTO ESS%
```



```
ES3G HO%E O,5.7
```



```
ESS5
ESEG
E570
<6E0
HOYE 9,5.5
    EEGG HÖvE i, ט̄.4
    EW19 LAEEL "'
    EE20 HOWE B,9.3
    EF39 LREEL *
    6E4G HO%E 5,0.2
    ESSG LAEEL "
    EGE& HOUVE B,9.1
    GE7E FEH 5
```



```
k)
    EOG !PEN こ
```



```
    671G !PAUSE
    ET25 !DISF * *
    6730 !DUHP GRAPHICE TO FRT.
    6749 FAUSSE
    6750 GCLEFF
    ET6G !PLOTTER IS 405,*HFIGL*;&IETSRT
    ETTE !GOSUE Dutline
    E7EG !GOE|E Greplot
    G7\Xi二 !FLOTTEF IE IFF
    GEGE FLOTTER IS 1,"以FFFHICS"
    6S10 GOSUE Gutline
    6820 GOEリE FiPplot
    ES35 !DUMF GFFFHHICS TO FRY
```



```
    6%76 If Yalue=62EG0 THEN %al-E==750%%
    E3Sg IF Value=500g0 THEN %albe=EこSEじ
    E.390 IF Value=37500 THEN 'r=1.こ==5に50:g
```



```
G721 IF Value=6900 THEH valus=10G0E
E3G IF Value=5000 THEH Value=6000
\epsilon946 IF Value=4005 THEN Yalu==5600
6441 IF Value=1750 THEN Yalue=46019
6943 IF Valu%=1500 THEN \forallalu= =1750
6944 IF Value=1256 THEN 'value= =1500
6554 IF Value=1000 THEH \forallаlue=1250
676G FEETURH
```



```
69E2 !
6963 FEN 1
E964 MÜ`E 0,Eb(1)/Emax+凫.5
EGES FOR I=1 TO S
6.766 X=I*DX
EGE? PLOT 只,Et<I`/Emax+G.S
6.GGS NEXT I
EGE9 HOVE D,EL.(1)/E:MSX+G,S
6Э7G FEN 1
6971 FOR I=S TO S-1 STEF 2
G97% FLOT X(I),Hewn(I)
EGTF HEXT I
E974 NO%E Q,EL(1)/Emax+G.S
GF7S FEN 1
E9TG FGR I=3 T0 S-1 STEP 2
EG77 IHRFW K(I;,HEWE(I)
EGTS HEXT I
EG7G FETUFH
E9%1 EHI
```

The GUNNSIM program (listed in Appendix B) simulates the action of a super-critical Gunn device. The program displays the carrier density profile, and either the electric field or the refractive index profiles, associated with the propagating Gunn domain, as time progresses and the domain traverses the device. The program therefore requires to know the length, and the doping density, of the contact and channel regions of the device, along with the electric field applied across the channel region, and the structure of any doping spike (ie. domain nucleation centre) within the device. The program is divided into the following subroutines:

Questions: The channel and contact lengths are input in microns, along with the bias field, $\mathrm{E}_{\text {bias }}=\mathrm{E}_{\mathrm{B}}$, applied across the channel region. The variables are then converted to the required units.

Data: The doping levels of the channel and contact regions, and the total device length, are defined along with the structure of the doping spike, and the gradient of the doping profile between the channel and contact regions. The time interval between successive simulations, Dt is also defined, and the device divided into S equal parts of length Dx. Further, the optical constants necessary for the conversion of the electric field profile into the corresponding refractive index profile are given, along with all other constants necessary for the required calculations. Included also is the repeat interval, ie. the number of simulations between outputting consecutive results to the screen.

Velfield: Allows the user to select either the approximate, or analytical, velocityfield characteristic, and either a constant, or field dependent, diffusion coefficient, depending on the analysis method desired. This is done by selecting either subroutine Approx, or subroutine Exact.

Approx: This subroutine defines all the constants necessary for the approximate four-line velocity-field characteristic, and displays this characteristic on the screen.

Velocity: For any given value of electric field this subroutine calculates the corresponding value of velocity. Two subroutines named Velocity exist. One calculates the velocity, $\mathrm{v}(\mathrm{E})$ given by the four- line approximation. The other calculates the analytical $v(E)$ characteristic given by either the root bisection method, or the finite difference method.

Exact: Allows selection of data from one of a number of various sources, and then calculates, and plots, the corresponding analytical $\mathrm{v}(\mathrm{E})$ characteristic.

Assigndata: Calculates various constants required in the running of the subroutines for the analytical $\mathrm{v}(\mathrm{E})$ characteristic.

Rtbis: Calculates the electron temperature, T_{e}, as a function of electric field, E , by the root bisection method.

Ffx: Calculates the conversion factor of consecutive results of the subroutine Rtbis.

Findiff: Calculates the electron temperature, T_{e}, as a function of electric field, E , by the Finite Difference method. This subroutine was found, however, to bifercate at electric fields greater than the threshold field.

Plotresults: Plots the analytical variation with electric field, E, of all, or some of the following: the electron temperature, T_{e}; the upper to lower valley electron population ratio, N_{2} / N_{1}; the electron velocity, v, and the electron diffusion coefficient, D.

Initial: This subroutine requires to know whether the user wishes to view the carrier
density profile, along with either the electric field profile, or the refractive index profile, associated with the propagating domain. On answering this prompt the program goes on to plot the initial profile shapes within the device.

Core: This constitutes the main program block, based on the solution of Poisson's equation and the Current Continuity equation given in the algorithm presented in section(5.4). The initial values of the variables used for the plotted output are assigned, and plotted on the screen. The algorithm is then employed to calculate the profiles associated with the propagating domain as time progresses. After a number of simulations, equal to the repeat interval, the new profiles are plotted to the screen using the subroutine Replot. The position of the peak field within the domain is also found, as this information is required when the subroutine Domain is called.

Outline: Draws a frame around the output domain profiles, labels the output profiles, and draws the line corresponding to the bias value of the electric field or refractive index.

Replot: The old output is erased from the screen, and the new plotted. The new output values are then assigned to the array holding the old output values. The number of simulations carried out so far is also displayed.

Domain: This subroutine may be called at regular intervals during the running of the program in order to calculate the width, and the maximum electric field and/or maximum refractive index change, associated with the propagating domain. The program is paused, allowing the information printed to the screen to be dumped to the printer, along with the corresponding domain profile if so desired.

Greplot: May be selected in order to dump the domain profile, selected by subroutine Domain, to the HP Graphics Plotter.

D. 1 PHOTODYNE MODEL 22XLA FIBRE OPTIC POWER METER

A Photodyne Model 22XLA Fibre Optic Power Meter was used to measure all the relevant optical powers in the experiments presented in Chapter 7. This meter incorporated a general purpose germanium detector head (Model 550). Such heads each have a unique behaviour with varying wavelength, λ, and are calibrated by the US National Bureau of Standards. The responsivity (Amps/Watt) for the head used for these experiments is shown in fig(D.1)(a).

The head was calibrated to a set point of 1300 nm . This suggested a dB add- on factor had to be added to each measurement which was taken, this factor being dependent upon wavelength. The variation in the $d B$ add-on factor with wavelength is shown in $\mathrm{fig}(\mathrm{D} .1)(\mathrm{b})$.

D. 2 PHOTODIODE DATA

Two photodiodes were used in the Electro- Optic experiments of section(7.3). The first of these was the ITL InGaAs HSD30 High Speed Photodetector. This detector was used in conjunction with a spectrum analyser to directly detect Electro- Optic, or Electro- Absorption, modulation. The characteristics of this diode are shown in table(D.1).

The second photodiode which was used in these experiments was the Rofin-Sinar UK Ltd., GM8 Ge Photodiode. This was a relatively slow photodetector which could be used, in conjunction with an oscilloscope, to measure the averaged modulated intensity received. Hence, using the analysis outlined in Appendix E, the modulation depth of the modulated signal could be calculated. The characteristics of this diode are also shown in table(D.1).

Fig(D.1) Spectral Analysis Data for Ge Detector Head
(a) Responsivity versus Wavelength

(b) dB Add-On Factor versus Wavelength

Table(D.1) Photodiode Characteristics

| Photodiode | HSD30 | GM8 |
| :--- | :--- | :--- |
| Material | InGaAs | Ge |
| Typical Pulse Rise Time | 45 ps | 200 ns |
| Active Diameter | $100 \mu \mathrm{~m}$ | 5.0 mm |
| Peak Sensitivity Wavelength | 1600 nm | 1500 nm |
| -10 dB Spectral Range | $950 \mathrm{~nm}-1650 \mathrm{~nm}$ | $500 \mathrm{~nm}-1800 \mathrm{~nm}$ |
| Responsivity (Amps/Watt) | | 0.425 |
| at $\lambda=1.15 \mu \mathrm{~m}$ | | |
| at $\lambda=905 \mathrm{~nm}$ | | 0.225 |

If an optical detector, ie. a 'slow' diode with a rise-time far below that of the microwave modulated optical signal (ie. the microwave drive signal), is used to average the optical intensity, then the change in the average intensity can be related to the actual modulation depth.

Considering first modulation due to the Linear Electro-Optic effect. It can be seen that the output amplitude, I_{EO} with the polariser and analyser in the perpendicular arrangement, is given by

$$
\begin{equation*}
\mathrm{I}_{\mathrm{EO}}=\mathrm{I}_{\mathrm{O}} \mid \sin \Phi_{\mathrm{EO}} \mathrm{l} \tag{E. 1}
\end{equation*}
$$

where, $\mathrm{I}_{\mathrm{O}}=$ input intensity
$\Phi_{\mathrm{EO}}=$ polarisation rotation factor

Now, assuming that the polarisation rotation factor is a sinusoidally dependent function, ie. $\Phi_{\mathrm{EO}}=\mathrm{A}|\sin \omega t|$, then we have that the averaged received signal, over one modulation cycle, is given by

$$
\begin{equation*}
I_{\perp}=\frac{\omega}{2 \pi} \int_{0}^{T} I_{O}|\sin (A|\sin \omega t|)| d t \tag{E. 2}
\end{equation*}
$$

Now, it can be shown for Bessel functions of the first kind, $\mathrm{J}_{\nu}(\mathrm{z})$, that when ν is fixed, and $z \rightarrow 0$, then [90]

$$
\begin{equation*}
\mathrm{J}_{v} \approx \frac{\left(\frac{1}{2} \mathrm{z}\right)^{\nu}}{\Gamma(\nu+1)} \tag{E. 3}
\end{equation*}
$$

where, $\nu \quad \neq-1,-2,-3, \ldots \ldots$

$$
\Gamma(n+1)=n!\text { for integer values }
$$

It can therefore be seen that $J_{\nu}(\mathrm{z})=1$, for $v=0$. It can also be shown that [91]

$$
\begin{aligned}
J_{\nu}(z) & =\sum_{k=0}^{\infty}(-1)^{k} \frac{z^{2 k}}{2^{2 k}(k!)^{2}} \\
& =1+\left[-\frac{z^{2}}{4}\right]+\left[\frac{z^{4}}{64}\right]+\ldots . \\
& =1-\frac{z^{4}}{4} \text { for small } z
\end{aligned}
$$

E. 4

Now, it can further be shown that the following serial expansions are correct [92]

$$
\begin{align*}
\sin (x \sin \theta) & =2 \sum_{k=0}^{\infty} J_{2 k+1}(x) \sin [(2 k+1) \theta] \quad \ldots \ldots \tag{E. 5}\\
& =2 J_{1}(x) \sin \theta+2 J_{3}(x) \sin 3 \theta+2 J_{5}(x) \sin 5 \theta+\ldots \ldots
\end{align*}
$$

and,

$$
\begin{aligned}
\cos (x \cos \theta) & =J_{0}+2 \sum_{k=1}^{\infty}(-1)^{\mathrm{k}_{\mathrm{J}_{2 k}}(x) \cos (2 \mathrm{k} \theta)} \\
& =\mathrm{J}_{0}(x)-2 \mathrm{~J}_{2}(x) \cos 2 \theta+2 \mathrm{~J}_{4}(x) \cos 4 \theta+\ldots \ldots .
\end{aligned}
$$

Thus, approximating the modulation effect of the propagating domain to a half-wave rectified sinusoidal influence, we have that

$$
\begin{equation*}
I_{\perp}=\frac{\omega}{2 \pi} \int_{0}^{T / 2} I_{0} \sin (A \sin \omega t) d t \tag{E.}
\end{equation*}
$$

And, using equation(E.5) we have that

$$
\begin{equation*}
\mathrm{I}_{\perp} \approx \frac{\mathrm{I}_{\mathrm{O}^{\mathrm{J}}}(\mathrm{~A})}{\pi} \tag{E. 8}
\end{equation*}
$$

Further, assuming A to be small, and employing equation(E.3), it can be seen that $J_{1}(A)=A / 4$. Thus,

$$
\begin{equation*}
\mathrm{I}_{\perp} \approx \frac{\mathrm{AI}_{\mathrm{O}}}{4 \pi} \tag{E. 9}
\end{equation*}
$$

Therefore, rearranging equation(E.9), we have that the modulation depth, $\eta_{E O}$ for

Electro- Optic modulation, is given by

$$
\begin{equation*}
\eta_{\mathrm{EO}}=\frac{\mathrm{I}_{\mathrm{EO}}}{\mathrm{I}_{\mathrm{O}}} \approx \mathrm{~A} \approx \frac{4 \pi \mathrm{I}_{\perp}}{\mathrm{I}_{\mathrm{O}}} \tag{E. 10}
\end{equation*}
$$

In an analogous way, the modulation depth, $\eta_{\text {EA }}$ observed due to ElectroAbsorption modulation, may be calculated using the averaged output amplitude, $\mathrm{I}_{\text {II }}$ observed with the polariser and analyser in the parallel arrangement. The output amplitude in the parallel arrangement, I_{EA}, is given by

$$
\begin{equation*}
\mathrm{I}_{\mathrm{EA}}=\mathrm{I}_{\mathrm{O}} \cos \Phi_{\mathrm{EA}} \tag{E. 11}
\end{equation*}
$$

where, $\Phi_{E A}=$ polarisation rotation factor
$=A|\cos \omega t|$

Thus, the averaged received signal, over one modulation cycle, is given by

$$
\begin{equation*}
I_{\|}=\frac{\omega}{2 \pi} \int_{0}^{T} I_{O} \cos (A \cos \omega t) d t \tag{E. 12}
\end{equation*}
$$

Assuming that the propagating domain produces an approximately half- wave rectified modulation influence it can be seen, using equation(E.6), that

$$
\begin{align*}
I_{I I} & =\frac{\omega}{2 \pi} \int_{0}^{T / 2} I_{0} \cos (A \cos \omega t) d t \\
& \approx \frac{I_{0} J_{0}(A)}{2} \tag{E. 13}
\end{align*}
$$

Further, employing equation(E.4)

$$
\begin{equation*}
I_{11} \approx \frac{I_{0}}{2}\left[1-\frac{A^{2}}{4}\right] \tag{E. 14}
\end{equation*}
$$

Thus, it can be seen that the modulation depth, η_{EA}, of the modulated signal due to the Electro- Absorption effect is given by

$$
\begin{equation*}
\eta_{\mathrm{EA}}=\frac{\mathrm{I}_{\mathrm{EA}}}{\mathrm{I}_{\mathrm{O}}} \approx \cos \mathrm{~A} \approx \cos \left\{2\left[1-\frac{2 \mathrm{I}_{\|}}{\mathrm{I}_{O}}\right]^{1 / 2}\right\} \tag{E. 15}
\end{equation*}
$$

1. LADBROOKE, P.H.: 'GaAs Mesfet's and High Electron Mobility Transistors (HEMT)', Gallium Arsenide for Devices and Integrated Circuits, 1986, Proc. GaAs School, UWIST, Cardiff
2. DUMKE, W.P.: 'Intraband Transitions and Maser Action', Phys. Rev. ,1962, 127, 5, pp.1559-1563
3. ALFEROV, ZhI., ANDREEV, V.H., KOROL'KOV, V.I., PORTNOI, E.L., and YAKOVENKO, A.A.: 'Spontaneous Radiation Sources Based on Structures with AlAs-GaAs Heterojunctions', Sov. Phys. Semicond., 1970, 3, pp.1107-1110
4. COMBES, P.F., GRAFFEUIL, J., and SAUTEREAU, J.F.: 'Microwave Components, Devices and Active Circuits', 1987, Wiley, Chichester
5. YARIV, A.: 'The Beginning of Integrated Optoelectronic Circuits', IEEE Trans. Elect. Dev., 1984, 31, 11, pp.1656-1661
6. SOBOL,H.: 'The Application of Microwave Techniques in Lightwave Systems', J. Lightwave Technology, 1987, 5, 3, pp.293-299
7. COHEN, M.G., KNIGHT, S., and ELWARD, J.P.: 'Optical Modulation in Bulk GaAs using the Gunn Effect', Appl. Phys. Lett., 1966, 8, 11, pp. 269-271
8. OHTA, K., KAWASHIMA, M., and KATAOKA, S.: 'Electro-Optic Modulation of a Laser Beam by a Travelling High-Field Domain in a GaAs Gunn Diode', J. Appl. Phys., 1975, 46, 3, pp.1318-1321
9. KOGELNIK, H., RAMASWAMY, V.: 'Scaling Rules for Thin-Film Optical Waveguides', Appl. Optics, 1974, 13, 8, pp.1857-1862
10. BENSON, T.M.: 'Integrated Optical Components Produced in GaAs and InP Epitaxial Layers using the Photoelastic Effect', 1982, Ph.D Thesis, University of Sheffield
11. HUNSPERGER, R.G.: 'Integrated Optics: Theory and Technology', 1985, Springer-Verlag, New York
12. RAMASWAMY, V.: 'Strip-Loaded Film Waveguide', Bell Sys. Tech. J., 1974, 53, 4, pp.697-703
13. HEWAK, D.W., LIT, J.W.Y.: 'Generalised Dispersion Properties of a Four-Layer Thin-Film Waveguide', Appl. Optics, 1987, 26, 5, pp. 833 -841
14. KOSHIBA, M., SUZUKI, M.: 'Equivalent Network Analysis of Dielectric Thin-Film Waveguides for Optical Integrated Circuits and it's Applications', Radio Sci., 1982, 17, 1, pp.99-107
15. MacFADYEN, D.N.: 'Components for GaAs Integrated Optics Fabricated by Wet Chemical Etching', 1980, Ph.D Thesis, University of Glasgow
16. CAMPBELL, J.C., BLUM, F.A., and SHAW, D.W.: 'GaAs Electro-Optic Channel-Waveguide Modulator', Appl. Phys. Lett., 1975, 26, 11, pp. 640-642
17. WESTBROOK, L.D., ROBSON, P.N., and MAJERFELD, A.: 'Strain-Induced Optical Waveguiding in GaAs Epitaxial Layers at $1.15 \mu \mathrm{~m}$, Elect. Lett., 1979, 15, 3, pp.99-100
18. KIRBY, P.A., SELWAY, P.R., and WESTBROOK, L.D.: 'Photoelastic Waveguides and their Effect on Stripe-Geometry GaAs/Ga ${ }_{1} X_{x} \mathbf{A l}_{\mathrm{X}} \mathbf{A s}$ Lasers', J. Appl. Phys., 1979, 50, 7, pp.4567-4579
19. WESTBROOK, L.D., FIDDYMENT, P.F., and ROBSON, P.N.: 'Photoelastic Channel Optical Waveguides in Epitaxial GaAs Layers', Elect. Lett., 1980, 16, 5, pp.169-170
20. GUNN, J.B.: 'Microwave Oscillation of Current in III-V Semiconductors', Solid State Commun., 1963, 1, pp.88-91
21. GUNN, J.B.: 'Instabilities of Current in III-V Semiconductors', IBM J. Res. Dev., 1964, 8, pp.141-159
22. GUNN, J.B.: 'Instabilities of Current and of Potential Distribution in GaAs and InP', Proc. Sym. Plasma Effects in Solids, 1964, pp.199-207
23. KROEMER, H.: 'Theory of the Gunn Effect', Proc. IEEE, 1964, 52, p. 1736
24. RIDLEY, B.K., WATKINS, T.B.: 'The Possibility of Negative Resistance Effects in Semiconductors', Proc. Phys. Soc. Lond., 1961, 78, pp.293-304
25. HILSUM, C.: 'Transferred Electron Amplifiers and Oscillators', Proc. IRE, 1962, 50, pp.185-189
26. HILSUM, C.: 'Historical Background of Hot Electron Physics', Solid State Electron., 1978, 21, pp.5-8
27. SZE, S.M.: 'Physics of Semiconductor Devices', 2nd Edition, 1981, Wiley, Chichester
28. HUTSON, A.R., JAYARAMAN, A., and CHYNOWETH, A.G.: 'Mechanism of the Gunn Effect from a Pressure Experiment', Phys. Rev. Lett., 1965, 14, pp.639-641
29. ALLEN, J.W., SHYAM, M., CHEN, Y.S., and PEARSON, G.L.: 'Microwave Oscillations in GaAs ${ }_{1-x} \mathrm{P}_{\mathrm{x}}$ Alloys', Appl. Phys. Lett., 1965, 7, 4, pp. 78-80
30. BLAKEMORE, J.S.: 'Semiconducting and Other Major Properties of Gallium Arsenide', J. Appl. Phys., 1981, 53, 10, pp.R123-R181 PICKERING, C., ADAMS, A.R., PITT, G.D., and VYAS, M.K.R.: 'The Effect of Pressure on High Electric Field Instabilities in n-type GaAs', J. Phys., C8, 1975, pp.129-137

Effect', Phys. Lett., 1965, 19, 7, pp.546-547
BUTCHER, P.N., FAWCETT, W.: 'A Simple Analysis of Stable Domain Propagation in the Gunn Effect', Brit. J. Appl. Phys., 1966, 17, pp. 841-850
34. BUTCHER, P.N., FAWCETT,W.: 'Calculation of the Velocity-Field Characteristic for Gallium Arsenide', Phys. Lett., 1966, 21, 5, pp. 489-490
35. BUTCHER, P.N., FAWCETT, W.: 'Stable Domain Propagation in the Gunn Effect', Brit. J. Appl. Phys., 1966, 17, pp.1425-1432
36. BUTCHER, P.N., FAWCETT, W., and OGG, N.R.: 'Effect of FieldDependent Diffusion on Stable Domain Propagation in the Gunn Effect', Brit. J. Appl. Phys., 1967, 18, pp.755-759
37. BUTCHER, P.N.: 'The Gunn Effect', Rep. Prog. Phys., 1967, 30, 1, pp. 97-148
38. CARROLL, J.E.: 'Hot Electron Microwave Generators', 1970, Edward Arnold, London
39. HOBSON, G.S.: 'The Gunn Effect', 1974, Clarendon Press, Oxford
40. BOSCH, B.G., ENGELMANN, R.H.W.: 'Gunn-Effect Electronics', 1975, Pitman Publishing, London
41. SHAW, M.P., GRUBIN, H.L., and SOLOMON, P.R.: 'The Gunn-Hilsum Effect', 1979, Academic Press, London
42. TAYLOR, H.F., YARIV, A.: 'Guided Wave Optics', Proc. IEEE, 1974, 62, 8, pp.1044-1060
43. NAMBA, S.: 'Electro-Optical Effect of Zincblende', J. Opt. Soc. Amer., 1961, 51, 1, pp.76-79
44. YARIV, A.: 'Int roduction to Opt ical Electronics', 2nd Edition, 1976, Holt, Rinehart and Winston, London
45. NYE, J.F.: 'Physical Properties of Crystals', 1957', Clarendon Press, London
46. PANKOVE, J.I.: 'Optical Processes in Semiconductors', 1971, Prentice Hall, Englewood Cliffs
47. GORDON, E.I.: 'Gunn-Effect Light Modulator', 1965, US Patent No. 3,475,078
48. GUETIN, P., BOCCON-GIBOD, D.: 'Franz-Keldysh Effect with Gunn Domains in Bulk GaAs', Appl. Phys. Lett., 1968, 13, 5, pp.161-163
49. SANDOMIRSKII, V.B., SHEVEREV, A.V.: 'Doppler Effect from a Gunn Domain', Sov. Tech. Phys. Lett., 1983, 9, 12, p. 608
50. MYERS, F.A., McSTAY, J., and TAYLOR, B.C.: 'Variable-Length Gunn Oscillator', Elect. Lett., 1968, 4, 18, pp.386-387
51. ADAMS, R.F., SCHULTE, H.J.: 'Optically Triggered Domains in GaAs Gunn Diodes, Appl. Phys. Lett., 1969, 15, 8, pp.265-267
52. HAYDL, W.H., SOLOMON, R.: 'The Effect of Illumination on Gunn Oscillations in Epitaxial GaAs', IEEE Trans. Elect. Dev., 1968, 15, 11, pp.941-942
53. SEWELL, K.G., BOATHER, L.A.: 'Multimode Operation in GaAs Oscillators Induced by Cooling and Illumination', Proc. IEEE, 1967, 55, 7, pp.1228-1229
54. AFROMOWITZ, M.A.: 'Refractive Index of $\mathrm{Ga}_{1}-\mathrm{x}^{\mathrm{Al}} \mathrm{x}^{\mathrm{As}}{ }^{\prime}$, Solid State Commun., 1974, 15, pp.59-63
55. ILEGEMS, M., PEARSON, G.L.: 'Infrared Reflection Spectra of Ga ${ }_{1-x}$ Al $_{\mathrm{x}}$ As Mixed Crystals', Physical Rev. B1, 1970, 1, 4, pp.15761582
56. ADACHI, S.: 'Refractive Indices of III-V Compounds: Key Properties of InGaAsP Relevant to Device Design', J. Appl. Phys., 1982, 53, 8, pp.5863-5869
57. ADACHI, S.: 'GaAs, AlAs, and $\mathrm{Al}_{\mathrm{x}} \mathrm{Ca}_{1-\mathrm{x}} \mathrm{As}$: Material Parameters for use in Research and Device Applications', J. Appl. Phys., 1985, 58, 3, pp.R1-R29
58. ROBERTSON, M.J., RITCHIE, S., and DAYAN, P.: 'Semiconductor Waveguides: Analysis of Optical Propagation in Single Rib Structures and Directional Couplers', IEE Proc., Pt. J, 1985, 132 , 6, pp.336-342
59. LORRAIN, P., CORSON,D.: 'Electromagnetic Fields and Waves', $2^{\text {nd }}$ Edition, 1970, Freeman, San Fransisco
60. RAMO, S., WHINNERY, J.R., and VAN DUZER, T.: 'Fields and Waves in Communication Electronics', $2^{\text {nd }}$ Edition, 1984, Wiley, Chichester 61. BUBE, R.H.: 'Electrons in Solids An Introductory Survey', 1981,

Academic Press, London
62. KITTEL, C.: 'Introduction to Solid State Physics', 5th Edition, 1976, Wiley, Chichester
63. ARNAUD, J.A.: 'Beam and Fiber Optics', 1976, Academic Press, London
64. HERRENDEN-HARKER, W.G., WILLIAMS, R.H.: 'Epitaxial Growth of GaAs : MBE and MOCVD', Gallium Arsenide for Devices and Integrated Circuits, 1986, Proc. GaAs School, UWIST, Cardiff
65. HOUSTON, P.A.: 'Liquid Phase and Vapour Phase Epitaxy of GaAs and Related Compounds', Gallium Arsenide for Devices and Integrated Circuits, 1986, Proc. GaAs School, UWIST, Cardiff
66. THOMAS, H.: 'Characterisation of GaAs I: Electrical Techniques', Gallium Arsenide for Devices and Integrated Circuits, 1986, Proc. GaAs School, UWIST, Cardiff
67. VAN DER PAUW, L.J.: 'A Method of Measuring Specific Resistivity and Hall Effect of Discs of Arbitrary Shape', Philips Research Reports, 1958, 13, 1, pp.1-9
68. PIOTROWSKA, A., GUIVARC'H, A., and PELOUS, G.: 'Ohmic Contacts to III-V Compound Semiconductors: A Review of Fabrication Techniques' , Solid State Elect., 1983, 26, 3, pp.179-197
69. LAKHANI, A.A., OLVER, L.C., DVORSKY, E.F., and HEMFLING, E.U.: 'Passivation of Ohmic Contacts to GaAs', IEEE Elect. Dev. Letts., 1985, 11, pp. 586-588
70. PATRICK, W., MACKIE, W.S., BEAUMONT, S.P., and WILKINSON, C.D.W.: 'Low Temperature Annealed Contacts to Very Thin GaAs Epi-Layers', Appl. Phys. Lett., 1986, 48, pp.986-988
71. BENZAQUEN, M., MAZURUK, K., WALSH, D., SPRINGTHORPE, A.J., and MINER, C.: 'Determination of Donor and Acceptor Impurity Concentrations in n - InP and n-GaAs', J. Elect. Mats., 1987, 16, 2 pp.111-117
72. DILL, F.H: 'Optical Lithography', IEEE Trans. Elect. Dev., 1975, 22, 7, pp. 440-444
73. PACANSKY, J., LYERLA, J.R.: 'Photochemical Decomposition Mechanisms for AZ-Type Photoresists', IBM J. Res. Dev., 1979, 23, 1, pp.42-55
74. SHAW, D.W: 'Localised GaAs Etching with Acidic Hydrogen Peroxide Solutions', J. Electrochem Soc.: Solid-State Sci. and Tech., 1981 , 128, 4, pp.874-880
75. WOODWARD, J.: 'Wet and Dry Processing of GaAs', Gallium Arsenide for Devices and Integrated Circuits, 1986, Proc. GaAs School, UWIST, Cardiff
76. LI, J.Z., ADESIDA, I., and WOLF, E.D.: 'Evidence of Crystallographic Etching in (100) GaAs using SiCl_{4} Reactive Ion Etching', J. Vac. Sci. Tech. B, 1985, 3, 1, pp.406-409
77. HU, E.L., HOWARD, R.E.: 'Reactive-Ion Etching of GaAs and InP using CCl ${ }_{2} \mathrm{~F}_{2} / \mathrm{Ar} / \mathrm{O}_{2}{ }^{\prime}$, Appl. Phys. Lett., 1980, 37, 11, pp.10221024
78. CANAVELLO, B.J., HATZAKIS, M., and SHAW, J.M.: 'Process for Obtaining Undercutting of a Photoresist to facilitate Lift-off', IBM Tech. Dis. Bull., 1977, 19, 10, p. 4048
79. HOFFMAN, R.W.: 'The Mechanical Properties of Thin'Condensed Films', Phys. Thin Films, 1966, 3, pp.211-273
80. MIYAGI, M., NISHIDA, S.: 'Bending Losses of Dielectric Rectangular Waveguides for Integrated Optics', J. Opt. Soc. Am., 1978, 68, 3, pp.316-319
81. DERI, R.J., KAPON, E., and SCHIAVONE, L.M.: 'Bend Losses in GaAs/ AlGaAs Optical Waveguides', Elect. Lett., 1987, 23, 16, pp.845847
82. NOURSHARGH, N., STARR, E.M., FOX, N.I, and JONES, S.G.: 'Simple Technique for Measuring Attenuation of Integrated Optical

Waveguides', Elect. Lett., 1985, 21, 18, pp. 818-820
83. WALKER, R.G.: 'Simple and Accurate Loss Measurement Technique for Semiconductor Optical Waveguides', Elect. Lett., 1985, 21, 13, pp. 581-583
84. MERZ, J.L., LOGAN, R.A., and SERGENT, A.M.: 'Loss Measurements in GaAs and $\mathrm{Al}_{\mathrm{X}} \mathrm{Ca}_{1-\mathrm{X}} \mathrm{As}$ Dielectric Waveguides between 1.1 eV and the Energy Gap', J. Appl. Phys., 1976, 47, 4, pp.1436-1450

CARENCO, A.: 'Semiconductor Waveguides in III-V Materials for Integrated Optics', $4^{\text {th }}$ European Conference on Integrated Optics, Glasgow, 1986, pp.1-7
86. GUPTA, K.C., GARG, R., and BAHL, I.J.: 'Microstrip Lines and Slot lines', 1979, Artech, Dedham
87. PENGELLY, R.S.: 'Gallium Arsenide Monolithic Microwave Integrated Circuits', Gallium Arsenide for Devices and Integrated Circuits, 1986, Proc. GaAs School, UWIST, Cardiff
88. WHEELER, H.A.: 'Transmission Line Properties of Parallel Strips Separated by a Dielectric Sheet', IEEE Trans. Microwave Theory Tech., 1965, 13, pp.172-185
89. CHIGOGIDZE, Z.N., KHUCHUA, N.P., GUTNIK, L.M., KHARATI, R.G., VARLAMOV, I.V., BEKIREV, U.A., and TYUTYUN, A.A.: 'Mechanism of Failure of Gunn Diodes', Sov. Phys. Semicond., 1973, 6, 9, pp. 1443-1447
90. ABRAMOWITZ, M., STEGUN, I.A.: 'Handbook of Mathematical Functions', 1970, Chap.9, Dover Publications, New York
91. GRADSHTEYN, I.S, RYZHIK, I.M.: 'Table of Integrals, Series and Products', 1980, Academic Press, London

SPIEGEL, M.R.: 'Advanced Mathematics for Engineers and Scientists ', Schaum's Out line Series, 1980, McGraw-Hil1, London
93. WALSH, T.E.: 'Gallium Arsenide Electro-Optic Modulators', $R C A$ Review, 1966, pp.323-335
94. IZADPANAH, S.H., RAV-NOY, Z., MUKAI, S., MARGALIT, S., and YARIV, A.: 'Mutual Phase Locking of a Coupled Laser Diode-Gunn Diode Pair', Appl. Phys. Lett., 1984, 45, 6, pp.609-610
95. LEE, C.P., MARGALIT, S., URY, I., and YARIV, A.: 'Integration of an Injection Laser with a Gunn Oscillator on a Semi-Insulating GaAs Substrate', Appl. Phys. Lett., 1978, 32, 12, pp.806-807
96. HALL, D., YARIV, A., and GARMIRE, E.: 'Optical Guiding and Electro-Optic Modulation in GaAs Epitaxial Layers', Optics Commun., 1970, 1, 9, pp.403-405
97. ALFERNESS, R.C.: 'Waveguide Electro-Optic Modulators', IEE Microwave Theory Tech., 1982, 30, 8, pp.1121-1135
98. CROSS, P.S., SCHMIDT, R.V.: 'A 1Gbit/s Integrated Optical Modulator', IEEE J. Quantum Elect., 1979, 15, 12, pp.1415-1418
99. CAMPBELL, J.C., BLUM, F.A., and SHAW, D.W.: 'GaAs Electro-Optic Channel-Waveguide Modulator', Appl. Phys. Lett., 1975, 26, 11, pp. 640-642
100. CARRUTHERS, T.F.: 'Picosecond Optical Control of TEDs', ed. LEE, C.H., 1984, Academic Press, London
101. PLATTE, W., -ING, Dr.: ' Optoelectronic Microwave Switching', IEE Proc., Pt. J, 1985, 132, 2, pp.126-132
102. CARVER, K.R., MINK, J.W.: 'Microstrip Antenna Technology', IEEE Trans. Ant. Prop., 1981, 29, 1, pp.2-24
103. MAILLOUX, R.J., McILVENNA, J.F., and KERNWEIS, N.P.: 'Microstrip Array Technology', IEEE Trans. Ant. Prop., 1981, 29, 1, pp.25-37

