

https://theses.gla.ac.uk/

Theses Digitisation:

https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/

This is a digitised version of the original print thesis.

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study,

without prior permission or charge

This work cannot be reproduced or quoted extensively from without first

obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any

format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author,

title, awarding institution and date of the thesis must be given

Enlighten: Theses

https://theses.gla.ac.uk/

research-enlighten@glasgow.ac.uk

http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk

On Compiling Logic Programs
into

Relational Algebra

by

Saeed M.H. A l-A m oudi

A thesis subm itted to the

Faculty of Science

University of Glasgow

for the degree of

Master of Science

D epartm ent of C om puting Science

U niversity of Glasgow

March 1990

(c) S.M.H. Al-Am oudi

ProQuest Number: 11003375

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 11003375

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

Dedicated to my parents

Declaration

This thesis is en tire ly on m y orig inal w ork and no p a rt is done in

collaboration. W here the w ork of others is used, explicit reference is made

in the text. N o p a rt of this thesis has been, or is being subm itted for a

degree a t any other university.

CONTENTS

I A cknow ledgm ents

II Abstract

C hapter 1: In troduction

§ 1-1 The Problem Definition 1

§ 1-2 System O verview 5

C hapter 2: Logic Program m ing Languages and

Relational Database Systems

§ 2-1 In troduction 7

§ 2-2 Logic Program m ing Languages 7

§ 2-2-1 Type Checking 7

§ 2-2-2 Data Storage and Representation 8

§ 2-2-3 Execution Strategy 8

§ 2-2-4 PROLOG 9

§ 2-3 Relational Database 10

§ 2-3-1 Relational Systems 10

§ 2-3-2 Type Checking 11

§ 2-3-3 Data Storage and Representations 12

§ 2-3-4 Execution Strategy 13

§ 2-4 Discussions 13

§ 2-5 Sum m ary 15

C hapter 3: PROLOG and Types

§ 3-1 Introduction 16

§ 3-2 Related W ork 16

§ 3-2-1 TURBO PROLOG 16

§ 3-2-2 Educe* 18

§ 3-3 TPROLOG 20

§ 3-3-1 Type Definitions 20

§ 3-3-2 Type Checking 23

§ 3-3-3 Type Deductions 24

§ 3-4 Discussions 27

§ 3-5 Sum m ary 28

C hapter 4: Safety

§ 4-1 In troduction 29

§ 4-2 Safety Checking at Execution Time 29

§ 4—2-1 Safety for N on-R ecursive PROLOG Program s 29

§ 4-2-2 Safety for Recursive Datalog Program s 31

§ 4-3 Safety Checking of a PROLOG Program at Compile Time 39

§ 4-4 Discussion 46

§ 4-5 Sum m ary 49

C hapter 5: N orm alizing TPROLOG Program s

§ 5-1 In troduction 50

§ 5-2 Fact Base N orm alization 50

§ 5-2-1 N orm alizing Facts 51

§ 5-2-1-1 The N orm alization of Complex Terms 51

§ 5 -2 -1 -2 N orm alizing Lists 52

§ 5-2 -1 -3 N orm alizing Terms of Variant Types 53

§ 5-2-2 N orm alizing Fact Declarations 55

§ 5-3 N orm alizing Rules 57

§ 5-3-1 N orm alizing Body Predicates 58

§ 5 -3-2 N orm alizing Rule H ead 61

§ 5—4 Goal N orm alization 63

§ 5-5 Discussion 64

C hapter 6: System Architecture

§ 6-1 In troduction 66

§ 6-2 Translation of TPROLOG into PROLOG 69

§ 6-2-1 Parser 69

§ 6-2-2 Type Checking 70

§ 6-2-3 Deducing Data Types for Rules 70

§ 6-3 Translation of TPROLOG Program s into 71

Com plex-Free PROLOG Programs

§ 6-3-1 Safety Checking 71

§ 6-3-1-1 Safety Checking for Rules 71

§ 6-3-1-2 Safety Checking for Goals 72

§ 6-3-2 N orm alizing Data Declarations 72

§ 6-3-3 N orm alizing Facts 72

§ 6 -3-4 N orm alizing Rules 73

§ 6-3-5 N orm alizing Goals 73

§ 6-4 The Transform ation of Com plex-free PROLOG Program s 74

into Relational Algebraic Expressions

C hapter 7: Im plem entation

§ 7-1 In troduction 75

§ 7-2 The Com pilation of TPROLOG Program s 75

§ 7-2-1 The Transform ation of TPROLOG Program s into 75

C om plex-Free PROLOG Programs

§ 7-2-1-1 The Transform ation of TPROLOG Program s 76

into PROLOG Programs

§ 7-2-1-1-1 Parser 77

§ 7-2 -1 -1 -2 D educing Rule Data Types 81

§ 7-2-2 The Transform ation of PROLOG Program s 83

into Com plex-Free PROLOG Program s

§ 7-2-2-1 N orm alizing Data Declarations 83

§ 7-2-2 -2 N orm alizing Fact Base 84

§ 7-2-2-2-1 Facts Type Checking 84
§ 7 -2 -2 -2 -2 N orm alizing Facts 86

§ 7-2-2-3 N orm alizing Rule Base 86
§ 7-2-2-3-1 Rules Safety Checking 86
§ 7 -2 -2 -3 -2 N orm alizing Rules 87

§ 7-2-3 The Transform ation of Com plex-free PROLOG 88

Program s into RAEs

§ 7-2-3-1 Storing Facts in Database 89

§ 7 -2 -3 -2 Rules Transform ation 92

§ 7-2-3-2-1 The Transform ation of 92

One N on-R ecursive Rule Procedure

§ 7 -2-3-2-2 The Transform ation of a Procedure 96

Consisting of M ore Than One Clause

§ 7-3 The Com pilation of TPROLOG Goals 97

§ 7-3-1 The Transform ation of TPROLOG Goals into 98

Com plex-Free PROLOG Goals

§ 7-3-1-1 Goals Data Type Checking 98

§ 7-3-1-2 Goals Safety Checking 99

§ 7-3 -1 -3 N orm alizing Goals 99

§ 7-3-2 Transform Com plex-Free Goals into RAE 100

§ 7-4 Status of the Im plem entation 102

C hapter 8: Conclusions and Future Work

§ 8-1 Conclusions 103

§ 8-2 Future W ork 105

III. References 107

IV. A ppendix A: EBNF Specification of TPROLOG Syntax 113

V. A ppendix B : The N orm alization of Rules in Figure 7-1 116

VI. A ppendix C: The Transform ation of Rules in A ppendix B 119

Acknowledgements

There are m any people tha t I w ould like to thank and convey my

g ra te fu lness . F orem ost are m y superv iso rs, Dr. D avid J. H arp er and

Dr. M uffy Thom as, w hom provided me, over the years, w ith the idea and

su p p ly of the re lev an t m a te ria l to th is w ork . I am g ra te fu l to

Dr. Simon B. Jones for his advise and comments in the work. I also like to

th an k m y colleagues Roslan, Tengku M ohd, Riaz, D jam al, K haled,

A bdellatif, H akim , Francis, and Daniel for unforgettable m om ents that we

all shared together as students in this departm ent.

Last b u t no t the least, I w ould like to thank m y wife Lolo, m y son

Sheak, and m y daugh ter Ammel for their patience and support over the

years w e spent in Glasgow.

Financial su pport and study leave w ere provided by King AbdulAziz

U niversity which are highly appreciated and gratefully acknowledged.

ABSTRACT

The com bination of logic program m ing m ethods and database systems

technology will result in know ledge bases of increased size and im proved

efficiency: th is topic has received a lo t of a tten tion [Zaniolo 1985,

R eiter 1978, C hang 1986, M inker 1978, H enschen 1984, P arker 1986,

B rodie 1986]. O ur approach to integrating logic program m ing languages

(e.g. PROLOG) and database system s is to com pile logic program m ing

languages into conventional relational algebra.

There are m any technical problem s w hich m ust be addressed and

solved w hen com piling logic program s into relational algebra. Mainly, we

are in terested in the follow ing problem s: the finiteness (i.e. safety) of a

logic program 's executions and the differences betw een logic program ing

languages and database systems in data representation and typing systems.

O ur approach to safety checking in tegrates the ru le /g o a l graph of

[U llm an 1985] w ith the m agic basis of a variable [Zaniolo 1986]. This

approach allows us, effectively, to check the safety of a logic program at

com pile tim e, for those program s which are strongly safe. O therw ise, the

safety of the program with respect to a query m ust be checked at execution

tim e.

Relational database system s are well typed, w hilst logic program m ing

languages are not. We overcom e this difference by ad d in g types to

PROLOG (i.e TPROLOG). TPROLOG allows the user to define enum erated

types, sub-types, structured types, and variant types.

O ur approach to com piling typed logic program s into conventional

relational algebra expressions is to translate the logic program containing

com plex clauses into an equivalent com plex-free program , and then to

tran s la te it in to a form su itab le for sto rage and m an ip u la tio n by

conventional re la tional da tabase system s. The norm aliza tion of logic

program s is achieved by rem oving com plex argum ents from facts and

rules and replacing them w ith sim plified (i.e. norm alized) facts and rules.

The norm alized facts are sto red in a conventional relational database

(i.e. extensional database), and the norm alized rules are stored in a rule

base (i.e. intentional database). The translation of a com plex-free program

into conventional relational algebra is based on [Reiter 1978, Chang 1986,

H enschen 1984, Bancilhon 1986].

Chapter 1: Introduction

§ 1-1 The Problem Definition

Logic program m ing languages enable us to im plem ent know ledge base

system s by virtue of their ability to represent and reason w ith facts and

rules [Gallaire 1984]. Database systems provide the technology for storing,

m anag ing , and p rocessing very large collections of d a ta efficiently

[U llm an 1981, D ate 1981]. H ow ever, logic program m ing languages are

sim pler to use for expressing queries than database system query languages

(e.g. relational algebra expressions) [Gallaire 1984, Brodie 1986, Parker 1986].

It w ould seem that the com bination of logic program m ing m ethods and

database system s technology will result in know ledge bases of increased

size an d im p ro v ed efficiency. O ur ap p ro ach to in teg ra tin g logic

program m ing languages (e.g. PROLOG) and database systems is to compile

logic program m ing languages into conventional relational algebra.

In o rder to in tegrate logic program s and database system s, there are

m any technical p rob lem s w hich m ust be solved. The fundam en tal

differences betw een logic program m ing languages and database systems,

w h ich m ay cause these p rob lem s, are d iscussed in [Brodie 1986,

Parker 1986]. M ainly, we are interested in the following problems:

1 -The finiteness (i.e. safety) of a logic program 's execution.

2- The represen ta tion of data in logic program m ing languages and

database systems.

1

3- The weakness of typing systems in logic programming languages.

There are two approaches to tackling the safety problem: we can test the

safety of a query w ith respect to the database (facts and rules) at its time of

execution, or w e can determ ine at com pile tim e w hether a set of rules

guaran tees the safety of all queries. In general, both approaches are

necessary. M ost of the existing approaches tackle the problem at execution

tim e [Ullman 1985, Zaniolo 1986, Tsur 1986].

K rish n a m u rth y [K rish n am u rth y 1988] tackles the com pile tim e

problem by in troducing the notion of strongly safe datalog program s. A

p ro g ram is strongly safe, if any query to the program is determ ined

(i.e. safe).

O ur approach integrates the ru le /g o a l graph of [Ullman 1985] w ith the

m agic basis of a variable [Zaniolo 1986]. This approach allow s us to

effectively check the safety of a logic program at compile time, for those

program s which are strongly safe. O therwise, the safety of a program with

respect to a query m ust be checked at execution time. For exam ple, the

PROLOG program in figure 1-2 is strongly safe because of the following:

1) Any query to the facts emp and person is safe.

2) In the rule w hose rule head is glaswegian infant, the body predicates

are strongly safe. Therefore, any query to the rule is safe. Similarly,

any query to the rule whose rule head is glaswegian emp is safe.

H ow ever, the PROLOG program in figure 1-1, w hich is used to

calculate the factorial of num ber n, is not strongly safe. For exam ple, the

query ? - factoriaK-l, N). is unsafe.

2

factorial(0,l).

factorial(N,F) N1 is N -1, factorial(Nl,Fl), F is N*F1.

Figure 1-1. A PROLOG program to calculate the factorial.

person (joe, cool,address(none, glasgow), 20).

person (max, fax,address(flat(21, 18, windsor street, g20),glasgow), 40).

person (joe, doe, address(house(31, kew_drive, gl2), glasgow),3).

emp (joe, cool, porter, none).

emp (max, fax, guard, [degreel(hs, 1968)]).

emp (fred, red, staff,

[degreel(hs, 1975), degree2(msc, ba, school(glasgow_university, glasgow), 1980),

degree2(phd, ba, school(glasgow_university, glasgow), 1983)]).

glaswegian_infant (LN, FN, Age) :-person(FN, LN,address(_, glasgow),Age),

Age < 4.

glaswegian_emp(Ln, Fn, Sch,Yr) emp(Fn, Ln, _, degree2(_, Sch, Yr)]),

person(Fn, Ln,address(_, glasgow),_),

Yr > 1960,

Yr < 1990.

Figure 1-2. A PROLOG program

There exist at least two approaches for com piling logic program s into

re la tio n a l da tab ase system s. The first app ro ach assum es tha t logic

p rogram s contain flat (i.e. simple) clauses only [Minker 1978, Jarke 1984,

Reiter 1978, C hang 1986]. The other tackles the m ore general problem of

com piling non-flat clauses into algebraic opera tions on a relational

da tabase m anagem ent system [Zaniolo 1985]. Zaniolo has done this by

in troducing new relational algebraic operations called Extended Relational

3

A lgebra operations (ERA), and allow ing the database system s to store

complex facts (i.e. the argum ents of facts need not be simple, bu t they may

be com plex term s or lists). H ow ever, conventional relational database

system s can be used to store sim ple facts only. For exam ple, the fact

factorial(0,l) from figure 1-1 is a sim ple fact. Therefore, we are able to store

it in a relational database. The following PROLOG program:

person (joe, cool,address(none, glasgow), 20).

person (max, fax,address(flat(21, 18, windsor_street, g20),glasgow), 40).

person (joe, doe, address(home(31, kew_drive, gl2), glasgow),3).

emp (max, fax, guard, [degreel(hs, 1968)]).

emp (fred, red, staff,

[degreel(hs, 1975), degree2(msc, ba, school(glasgow_university, glasgow), 1980),

degree2(phd, ba, school(glasgow_university, glasgow), 1983)]).

contains com plex facts. Therefore, w e cannot store them in a relational

database. In order to overcome this problem our approach is proposed.

O ur approach compiles logic program s containing non-flat clauses into

equ ivalen t flat logic program s, and those can be translated into a form

su itab le for m an ipu la tion by conventional relational database systems.

This is achieved by rem oving complex argum ents from facts and rules and

rep lacing them w ith sim plified (i.e. norm alized) facts and rules. The

n o rm alized facts are s to red in a conven tional re la tiona l da tabase

(i.e. extensional database), and the norm alized rules are stored in a rule

base (i.e. intentional database).

In logic program s, queries are answ ered by using the built-in theorem

prover of the logic program m ing system. This is achieved w ithout regard

to the type of the data. For example, the PROLOG program in figure 1-2 is

an un typed program . On the other hand, database query languages are

4

typed. We will rem ove this difference by extending PROLOG to become a

typed language which we will call TPROLOG.

§1-2 System Overview

O ur system is outlined in figure 1-3. In this section we briefly describe

the major elem ents of the system. The detailed description of the system is

in chapter 6 and chapter 7.

TPROLOG
Program

Program Database
Compiler to RAEs

j Query j

Query

Compiler to RAEs

transformer to PROLOG

Query answer in
PROLOG form

Figure 1-3. The System Overview

A lthough there are a num ber of different inpu t types perm itted in the

system, only two types are described in figure 1-3: TPROLOG program and

query.

5

Briefly, TPROLOG is PROLOG plus a type system. For exam ple, the

PROLOG program , in figure 1-2, needs to be extended to include some

type inform ation to become a TPROLOG program . For further details refer

to A ppend ix A and chap ter 3. Facts of the TPROLOG program are

n o rm a lized an d com piled in to re la tions, an d then s to red in the

ex ten sio n a l d a tab ase (EDB). Rules in the TPROLOG p ro g ram are

norm alized and com piled into a view [Date 1981], and then stored in the

in ten tio n a l da tabase (IDB). M oreover, the IDB, the EDB, and type

inform ation are in the database(DB).

Before a TPROLOG pro g ram is no rm alized and com piled in to

relational algebra and then stored in the DB, it is tested. Every form ula

(i.e. fact or rule) m ust be tested to determ ine if it is w ell-form ed w ith

respect to safety and the type system. If the form ula is w ell-form ed, then it

is com piled and stored in the DB. Otherwise, it will not be compiled. More

specifically, facts are com piled after they are, simplified, type checked and

norm alized (q.v. chapter 3 and chapter 5). M oreover, types are deduced for

rules and are safety-checked (q.v. chapter 3 and chapter 4), before they are

finally norm alized and compiled into a view (q.v. chapter 5).

A query to the system is w ritten in PROLOG. It is processed by the

system . The query process is explained in chapter 6 and chapter 7. A

w e ll-fo rm ed q u ery is com piled in to a set of re la tio n a l algebraic

expressions. A result of such a query is represented in a PROLOG query

answ ering form.

6

Chapter 2: Logic Programming Languages and Relational
Database Systems

§ 2-1 Introduction

Database systems (DBSs) are concerned w ith how data should be stored

an d re triev ed from a DB. Logic p ro g ram m in g L anguages (LPLs)

(e.g. PROLOG) are concerned w ith how the data should be represented in a

natural way.

The typing systems, data representations, and the execution strategies

in LPLs and relational database systems (RDBSs), which we are interested

in, are addressed in § 1-1. In this chapter, we discuss problem s with these

issues in LPLs and RDBSs. M oreover, we discuss w ith the need to extend

LPLs in order to integrate RDBSs and LPLs.

§ 2-2 Logic Programming Languages

§ 2-2-1 Type Checking

A program m ing language is statically typed, if all type errors of a

program can be detected at com pile time (e.g. Pascal). In LPLs there is a

single dom ain (i.e. one sort logic) for each program . The dom ain is defined

as a H erbrand universe [Lloyd 1984, M ycroft 1984]. A H erbrand universe

m ay be an infinite dom ain. A nom alous form ulae (i.e. type errors) can be

form ed in a logic program which have no basis in the real world. LPLs do

not provide static type checking. The absence of static type checking makes

LPLs unable to provide clean sem antics for updating a collection of facts

7

w hile preserving integrity [Brodie 1986, Parker 1986].

A program m ing language is strongly typed, if it prevents a query from

being applied to value of an inappropria te type at ru n time. Queries in

logic program m ing languages are answ ered by using the bu ilt-in theorem

prover of the logic program m ing system [Kowalski 1979] w ithout regard to

the type of the data. Hence, LPLs are not strongly typed.

§ 2-2-2 D ata Storage and R epresentation

A logic p rogram is defined by a finite set of first o rder form ulae

[Lloyd 1984]. A first o rder form ula, sim ply a form ula, contains a set of

term s. A term is either a complex or sim ple [Zaniolo 1985]. M oreover a

form ula is either a fact, a rule, or a query [Brodie 1986]. A lthough LPLs are

concerned w ith how data should be represen ted in a na tu ra l w ay, all

form ulae in a logic program are represented independently of each other.

Finally, since answ ering system s in LPLs give a tuple at a time, the

in te ra c tio n in LPLs w ith the seco n d a ry s to rag e is ineffic ien t

[N ussbaum 1989]. M oreover, LPLs do not accom m odate m ultip le users

[Parker 1986].

§ 2-2-3 Execution Strategy

A to p -d o w n proof m ethod w orks by resolving the denial of the goal

w ith the original assertions in o rder to produce an em pty clause and

thereby prove the goal by refutation. Resolution is a top -dow n m ethod

w hich uses the m odus tollens inference rule [Kowalski 1979]. From the

m odus tollens inference rule we observe that a top -dow n m ethod can be

carried out even w hen the original assertions have not yet been asserted.

S L -reso lu tion (linear reso lu tion w ith selection com puta tion ru le

[Lloyd 1984]) is a reso lu tion by refu ta tion m ethod. W e assum e the

com putation rule is selection, from top to bottom (i.e. depth-first), of the

left m ost atom . One of the deficiencies of SL-resolution that it is not

guaranteed to term inate in the sense that it does not guarantee is that an

em pty clause can be generated for a successful resolution or a non em pty

clause can be gen era ted w hich is no t u n ified w ith any fo rm ula

[Kowalski 1975].

§ 2-2-4 PROLOG

PROLOG is a declarative program m ing language based on first-o rder

H orn clauses [Frost 1986, Lloyd 1984, Kowalski 1979]. A PROLOG program

consists of a set of facts and rules [Clocksin 1984].

A fact in a PROLOG program is a ground atom. In general, PROLOG

allows a unit clause (i.e. a rule w ith no body predicates) to be defined

[Lloyd 1984] (e.g. person(X,Y):-., w here X and Y are variables). A unit clause

allows the definition of infinite relations. From a database point of view,

facts in PROLOG may be considered as a set of relations in a relational

database, in spite of the fact that PROLOG allows infinite relations to be

defined. Thus, we may consider the subset of a PROLOG program , which

does not contain unit clauses, as a set of relations in a relational database.

PROLOG prog ram ru les m ay be th o u g h t of as expressions in a

quasi-tup le relational calculus. Each rule is w ritten in the form q(t) H'd).,

which denotes that q contains the set of tuples t that satisfy the predicate 'P.

Note, that the tuples, t, are not necessarily flat.

9

Q ueries in PROLOG are answ ered by resolving them by refutation.

Thus, the strategy in PROLOG for com puting the answ er to a query is a

SL -resolu tion m ethod.

§ 2-3 Relational Database Systems

§ 2-3-1 General

The relations in a relational database are finite relations (e.g. PRTV,

and INGRES [Todd 1976, Date 1981, U llm an 1981]). Relational database

query languages (e.g. ISBL, ASTRJD, SQL, Query-By-Exam ple, and QUEL

[Todd 1976, Bell 1978, Date 1981, U llm an 1981]) are based on e ither

relational algebra, tuple relational calculus, or dom ain relational calculus.

Those relational database query languages (e.g. ISBL, ASTRJD, and SQL)

which are based on relational algebra are procedural languages. They allow

en d -u se rs to m an ipu la te relations using relational algebraic operators

(i.e. join, select, project, etc.) in order to obtain the result they require. The

operators used in Relational Algebraic Expressions (RAEs) are applied only

to finite relations and the operands are e ither constants or variables

denoting relations of fixed arity.

Those relational database query languages (for example QUEL) which

are based on tup le relational calculus are declarative languages. They

allow en d -u se rs to specify exactly the properties they require w ithout

h av ing to specify how the data is to be obtained from the relations

availab le in the database. The tup le re la tional calculus is based on

first-o rder predicate logic, and expressions in tuple relational calculus are

of the form {t I T(t)} w hich denotes the set of tuples t that satisfy the

predicate XF.

10

Those relational database query languages (e.g. Q uery-B y-Exam ple)

w hich are based on dom ain relational calculus are built from the same

operators as the tuple relational calculus.

It is im portan t to note that expressions in tuple relational calculus may

be used to define an infinite relation such as {t I -• R(t)}, which denotes all

possible tuples that are not in the relation R.

The follow ing theorem s from [Ullm an 1981] relate tuple relational

calculus expressions, relational algebra expressions and dom ain relational

calculus expressions:

Theorem 1: If E is a relational algebra expression, then there is a safe

expression in tuple relational calculus equivalent to E.

Theorem 2 : For every safe tuple relational calculus expression there is

an equivalent safe dom ain relational calculus expression.

Theorem 3 : For every safe dom ain relational calculus expression, there

is an equivalent relational algebraic expression.

From the above theorem s we conclude that: for every safe tuple

relational calculus expression there is an equivalent relational algebraic

expression.

§ 2-3-2 Type Checking

A DB definition (i.e. scheme) is used to represent the type of an entity

set in a relation [Ullman 1981]. Any processing of an entity set should be

11

done w ith respect to its scheme, w hile preserv ing in tegrity [Date 1981,

U llm an 1981, G ray 1984]. Therefore, re la tional database system s are

statically typed systems.

Conventional relational database systems do not allow the use of type

co n stru c to rs to define a ttrib u te types. M oreover, an en tity set is

rep resen ted by a re la tion w hose re la tion schem a consists of all the

attributes of the entity set. For each attribute there is a finite dom ain which

is defined by the data type of the attribute. Therefore, the cartesian product

of a relation 's a ttribu te types defines the schem a of the relation. Thus,

RDBSs use m any-sorted logic.

Since relations in RDBSs are based on m any sorted logic [Gallaire 1984],

relational query languages are based on m any sorted logic too. A language

based on m any so rted logic offers a m ore precise defin ition of the

program s well as im posing some restrictions. These restrictions prevent a

query from being applied to value of an inappropria te type. Therefore,

relational database query languages are strongly typed.

§ 2-3-3 Data Storage and Representation

A dom ain is, sim ply, a set of values. A relation is a subset of the

cartesian p ro d u c t of dom ains. Since conventional relational database

system s do not allow type constructors to be included, dom ains contain

atom ic values (i.e. constants) only. We say that a relation in a relational

da tabase system is in first norm al form (INF), if its dom ains contain

atom ic values only.

Integrity constraints are those constraints which ensure that the data

12

m a n ip u la ted in to a da tab ase is accurate an d consisten t. In teg rity

constraints are discussed in [Date 1981, Ullman 1981, Date 1984, Gray 1984].

A norm alization procedure will be designed to translate any relation

containing structu red entities into a set of equivalent relations containing

atom ic entities only. M oreover, it is designed to prevent update anomalies

and data inconsistencies [Kent 1983].

D atabase system s are concerned w ith how data should be stored in,

view ed and updated in, and retrieved from a database.

§ 2-3-4 Execution Strategy

A bo ttom -up proof m ethod works by resolving the original assertions

in order to produce new assertions and thereby prove the goal. Resolution

in a b o tto m -u p m ethod uses the m odus ponens inference rule (from

form ulas B and A <— B we can derive A). From the m odus ponens inference

ru le w e observe that bo ttom -up resolution cannot be carried out until all

o rig inal assertions are know n. The strategies for evaluating queries in

re la tional database query languages are based on a b o tto m -u p proof

m ethod .

§ 2-4 Discussion

§ 2-2 and § 2-3 discuss type checking and representation of data, and

execution strategies for LPLs and RDBSs. In this section w e discuss the

relationships between LPLs and database systems.

Logic p ro g ram m in g languages allow a p ro g ram m er to m odel

inform ation m ore naturally than relational databases by using complex

13

facts and query ing these facts using p red icates con tain ing com plex

argum ents. In conventional relational database m anagem ent system s, we

are forced to norm alize the relations and to use conventional relational

query languages. This ability to store and query the complex facts in logic

p rog ram m ing languages, m akes them m ore pow erfu l and flexible for

e x p re s s in g in fo rm a tio n th a n c o n v e n tio n a l d a ta b a s e sy s te m s

[Zaniolo 1985].

§ 2-3-1 show ed that a safe expression in the tuple relational calculus is

equ ivalen t to a RAE.Tuple relational calculus and PROLOG share the

following characteristics :

a- They are based on first-o rder predicate logic in the sense that they

are built up from first order predicate logic operators.

b- They are declarative languages. They allow en d -u sers to specify

exactly the properties they require w ithou t having to specify how

the process should be done.

c- They m ay be used to define infinite relations (q.v. § 2-3-1 and

§ 2-2-4).

Safety is defined as a property of a program which checks that each

variable in the program is evaluated w ithin a finite dom ain. Therefore, if

we can prove at com pile tim e that a program contains only variables

w hose type is a finite set, then the program is safe.

A universe of LPLs dom ain m ay be infinite (q.v. § 2-2-1). However, a

un iverse of DBS dom ain is finite (q.v. § 2-3-2). Since a program w ith a

H erbrand universe as dom ain m ay have infinitely m any interpretations,

14

then the program m ay be unsafe. Therefore, in order to check the safety of

a program we have to check w hether its universe is finite or infinite.

§ 2-5 Summary

In § 2-4 w e discussed the sim ilarity betw een LPLs and tuple relational

calculus. M oreover, § 2-3-1 show ed the re la tio n sh ip betw een tup le

relational calculus and relational algebraic expressions. Therefore, if we

could define a sim ilar notion of safety for PROLOG program s, then as a

consequence of U llm an's theorems [Ullman 1981], we could say that: If E is

a re lational algebraic expression, then there is a safe ru le in PROLOG

equivalent to E.

LPLs are un typed languages, while RDBSs are strongly typed systems.

In o rd er to com pile a logic program into a set of relational algebraic

expressions w e have to add type inform ation to the program . Therefore,

w e have to extend a LPL to include a type system which makes it statically

an d strong ly typed. We propose TPROLOG as such an extension to

PROLOG.

Finally, LPLs allow structured terms in program s. Therefore, in order

to com pile a logic program into conventional relational database we have

to norm alize structured terms.

15

Chapter 3: PROLOG and Types

§ 3-1 Introduction

PROLOG is not a strongly typed language, and does not provide static

type checking (q.v. § 2-1-1). H ow ever, rela tional algebraic databases

p rov ide static type checking. M oreover, its languages are strongly typed

(q.v. § 2-3-2). Therefore, in o rder to com pile a PROLOG program into

RAEs w e have to extend PROLOG to become a strongly typed language.

The language proposed here is called TPROLOG.

This chapter consists of five sections. § 3-2 reviews some of the related

work. § 3-3 describes the extension of PROLOG to become a typed language

(i.e. TPROLOG). § 3-4 com pares TPROLOG w ith other typed PROLOGS,

w hile § 3-5 gives the advantages of using TPROLOG.

§ 3-2 Related Work

In this section we are, briefly, discussing the data type facilities in

TURBO PROLOG and Educe*. These two system s are described in more

detail in [Patrice 1987] and in [Bocca 1989].

§ 3-2-1 TURBO PROLOG

TURBO PROLOG is a PROLOG language im plem ented for the IBM PC

[Patrice 1987]. The m ain differences betw een PROLOG and TURBO

PROLOG are as follows:

16

1 - TURBO PROLOG is a com piled language, w hile PROLOG is an

interpreted language.

2 - TURBO PROLOG is a strongly typed language, w hile PROLOG is

not. Therefore, TURBO PROLOG is m ore restricted than PROLOG

in searching solution space.

These differences m ake TURBO PROLOG faster than PROLOG.

A TURBO PROLOG program is div ided into sections. Mainly, we are

interested in the following sections:

1 - Domain declaration (domains): in this section the type (i.e. dom ain)

of each argum ent nam e (i.e. attribute) in each clause in the program

is defined . The dom ain of an a ttrib u te is either a basic type

(i.e. integer, real, string, char, etc), a hom ogeneous list, or a dom ain

that consists of com pound object declared by stating a functor and

the dom ain of all sub-argum ents. For exam ple, we m ay w rite a

dom ain section for the PROLOG program in figure 1-2 as follows:

domains

city, post_codc, first_name, last_name, job, post_grad : string

under_grad, grad_subject, school_name, schoolcity : string

year,flat_no, houseno, age: integer

home :none;

flat(flat_no, house_no, post code);

house(house_no, post_code)

addresses : address(home, city)

grad_school : school(school_name, school city)

N ote that since one of the degree types is a heterogeneous list, we

cannot define its domain.

17

2 - P redicate declaration (predicates): In this section, a pred icate is

defined by its argum ent nam es (i.e. a ttributes). For exam ple, in

o rder to rew rite the PROLOG program in figure 1-2 in TURBO

PROLOG we have to add the following:

predicates

person(first_name, last_name, addresses, age)

emp(first_name, last_name, degree)

glaswegian_infant(last_name, first_name, age)

glaswegian_emp(last_name, first_name, school, year)

3 - C lauses (clauses): This section contains facts and rules. For example,

the PROLOG program in figure 1-2 becom es as a com ponent of

clauses section in TURBO PROLOG, w hen we rew rite it in TURBO

PROLOG.

§ 3-2-2 Educe*

Educe is a logic program m ing system based on the coupling and the

in teg ra ting of PROLOG and QUEL [Bocca 1986]. M oreover, in order to

com pute a query answ er Educe translates a query, which is w ritten in

PROLOG, into QUEL. Since PROLOG is not strongly typed language, the

query in Educe is untyped.

Educe* is a logic program m ing system w hich follows up from Educe

[Bocca 1989]. One of the main differences between Educe and Educe* is that

PROLOG in Educe* is extended to include a typing system, w hilst in Educe

PROLOG does not have any typing system. M oreover, PROLOG in Educe*,

unlike TURBO PROLOG, does not consist of separate sections. However,

different syntax is used in defining the extended PROLOG.

18

In addition to basic types, w hich are defined system atically, there are

new types which m ay be defined by a program m er [Bocca 1989]. The new

types are as follows:

1 - enum erated types. For exam ple, in order to w rite the program in

figure 1-2 in Educe* the following enum erated type have to be

w ritten .

?- adt(city, [glasgow, london, edinburgh, manchester, birmingham, reading]).

?-adt(under_grad, [hs, primary]).

?- adt(post_grad, [msc ,phd, diploma]).

?- adt(subject, [ba, computer, engl, maths, engineering, biology, medicine]).

?-adt(school_name, [glasgow_university, edinburgh university,

heriot_watt_university]).

?-adt(job, [guard, vp, staff, porter,]).

?- adt(post_code, [gl, g2, g3, gl2, g20]).

2 - Fixed structure types. These are used to define the type of complex

term. For exam ple, we m ay define the type of complex terms in the

program of figure 1-2 as follows:

? - adt(flat(integer, integer, string, post code)).

?-adt(house(integer, string, post_code)).

?- adt(degreel(under_grad, integer)).

?- adt(degree2(post_grad, subject, school(school_name, city), integer)).

Type declarations in Educe* are syntactically sim ilar to the type

definitions. M oreover, there are some bu ilt- in predicates used for type

checking. N ote that no varian t types are allowed. For exam ple, we are

unable to w rite type definitions for com plex term s w hose functor is

address and for the heterogeneous list. In addition, since person, and emp

contain terms of variant types we cannot w rite type declaration for them.

19

§ 3-3 TPROLOG

TPROLOG is a language w hich follows up from PROLOG. It is a

s trong ly typed language. M oreover, it is statically typed language. A

TPROLOG program consists of three sections: type definitions, facts type

declarations, and facts and rules. The syntax of TPROLOG is in Appendix

A. H ow ever, in this section, we are mainly interested in the typing system

of the TPROLOG.

This section is d iv ided into three sub-sections: § 3-3-1 discusses the

type defin itions. § 3 -3 -2 discusses the type checking, w hile § 3 -3-3

discusses deducing types for variables.

§ 3-3-1 Type Definition

A type is represented as a unary relation (i.e. enum erated type) or as a

type definition program [Sterling 1986]. A type definition program is a

PROLOG p rocedure P: the corresponding type is the set of terms which

satisfy P.

In the following, a type definition procedure nam e is used to refer both

to the type definition procedure and to the corresponding type.

Types are either basic types or non-basic types. Basic types (e.g. integer,

real, string) are pre-defined . N on-basic types are defined by the user as

type definition program s whose syntax is given in A ppendix A. N on-basic

type are sim ple types and struc tu red types. N ote, no recursive type

definition are allowed. Simple types are enum erated types and sub-types.

They are defined as follows:

20

a) E num erated types are, sem antically, the sam e as the enum erated

types in Educe*. H ow ever, they d iffer in the syntax. H ere,

$ f({a^, . . . ,a^}). (w here (V i: 1 < i < n) a. is a ground term and f is a

type-nam e) is the syntax form of an enum erated type. For example,

city, under_grad, post_grad, subject, school-name, job, and post-code in figure

3-1 are enum erated types of the program in figure 1-2

b) Sub-types which are sub-range types of the form $ t (< tl, inti, int2>).,

(w here t l is either basic type or sim ple type) defines t to be a

su b -type of tl (t c tl) , such that the elem ents of t are the sub-range

of the elements of tl specified by inti to int2, inti < int2, as follows:

If tl is basic type, then inti and int2 are interpreted as follows:

1) If tl is string, then inti and int2 give the m inim um and m axim um

length of strings in t. For example, n a m e and street in figure 3 - 1

are sub-types.

2) If tl is nu m er ic a l , then in t i and int2 give the sm allest and largest

num ber in t. For example, age, year, and house_no in figure 3-1 are

sub-types.

If tl is a sim ple type, then inti and int2 are defined as follow s:

1) If tl is an enum erated type defined by $ tl({a ,... , a j) v then t is an

enum erated type defined by $ t({a , . . . ,a J) . . N ote, we m ust
J r J i n t i xn t l

have 1 < inti < int2 < n.

2) If tl is a sub-type defined by $tl(<t2, int3, int4>), w here int3 and int4

21

are defined as above, then t is the sub-type effectively defined by

$ t (<t2, int5, int6>)., where int5 = intl+int3-l, and int6 = int2+int4-l.

Suppose, t l , t2, and t3 are sub-types, then they satisfy the following

properties:

1) If tl c t2 and t2 c t3, then tl c t3.

2) if tl = t2, then tl c t2 and t2 c tl.

$ name(<string, 1, 10>).

$ street(<string, 1,30>).

$ city({glasgow, london, edinburgh, manchester, birmingham, reading}).

$ under_grad({hs, primary}).

$ post_grad({msc ,phd, diploma}).

$ subject({ba, computer, engl, math, engineering, biology, medicine}).

$ school_name({glasgow_university, edinburgh university, heriot_watt_university}).

$ job({guard, vp, staff, porter,}).

$ post_code({Gl, G2, G3, G12, G20}).

$ age(<integer, 0, 200>).

$ year(<integer, 1800, 2100>).

$ house_no(<integer, 1, 1000>).

$ fl(none).

$ f2 (degreel(degree_name: under_grad, degree_year: year)).

$ f3(degree2(degree_name: post_grad, degree_subject:subject, degree_school: f4,

degree_year:year)).

$ f4(school(name: school_name, school_city: city)).

$listl([{f2, f3}]).

$ addresses(address(house_address:home, city_address: city)).

$ flat_address(flat(flat_no: integer, building: house_no, street name: street,

code: post code)).

$ house_address(house(building: house_no, streetname: street, code: post_code)).

$ qualification([fl, listl]).

$ home([fl, house_address, flat_address]).

Figure 3-1. Type definitions of the program in figure 1-2.

22

A structure type is a type of complex ground terms (i.e. complex type), a

type of lists (i.e. list type), or a set of variant types (i.e. variant type).

a) A com plex ty p e is d e fin e d by a u n a ry com plex fact

$ t(tl(all: t i l , ..., aln: tin))., w here tl is an n -a ry function symbol of

type t i l x tl2 x ... x tin —> t and t e {t i l , ..., tin), and (V i : 1 < i < n) t l i is

a type nam e and ali is an attribute nam e+. If the function symbol tl

has degree zero , then the type is the function sym bol itself

(i.e. tl - 4 t). For example, the complex type definitions fi, f2, f3, and f4

of the program in figure 1-2 are shown in figure 3-1.

b) A list type is defined by a unary fact $ t([{ t l , ..., tn}]). (where t, t l , ..., tn

are type nam es and t £ {t l , ..., tn}); the argum ent in the fact is a list

of type names: the corresponding type is a set of finite lists, w here

each elem ent (in a list) has one of the types in the list type as its

type. For example, listl in figure-3-1 is a list type.

c) A varian t type is defined by a unary fact $ t ([t2, . . . , t]). , w here

t j , , t are type nam es and t£ { t l , . . . , tn). An elem ent x is a

m em ber of t if and only if it is a m em ber of t , for some i in 2,..., n.

For exam ple, the variant type definition qualification of the program

in figure 1-2 are shown in figure 3-1.

+ The definition excludes self-recursive types, but permits mutually recursive types. An

extension which restricts the program to backward references would overcome this.

23

§ 3-3-2 Type Checking

The type checking of facts, rule body predicates, and goals are similar.

H ow ever, w e have to consider the following differences.

a) The facts m ust type check against only the fact declarations, w hilst

bod y p red ica tes and goals m ay type check ag a in st the fact

declara tions or the deduced declarations (i.e. ru le types). For

exam ple, the facts in the program of figure 1-2 are typed checked

against the fact declarations in figure 3-2.

b) Facts contain only ground terms, w hilst goals and body predicates

m ay contain non-ground terms as well as ground terms.

c) The type checking of facts just checks the correctness of ground

terms, w hilst that of goal and body predicates checks the consistency

betw een the body predicates or the sub -goa ls, as w ell as the

correctness of the ground terms.

% emp (first_name: name, last_name: name,job_name: job, degree: qualification).

% person(first_name: name, last_name: name, home_address: addresses, person age: age).

Figure 3-2. The fact declarations of a PROLOG program in figure 1-2.

N ow , w e consider the type checking of terms in an atom (i.e. a fact, a

body predicate, or a sub-goal) p(x2,. . . ,x n) w hich corresponds to the type

%p(aI :tj, ..., an :tn). Each x{ (l < i < n) is either a g round term or a term

containing variables.

24

a) If x{ is a term containing variables, then the type of x{ is t.

b) If x . is a g round term, then xf m ust be an elem ent of t (where tf is

either a single type, or an element in a variant type).

As an exam ple of type checking, consider the follow ing fact from
figure 1-2.

emp (joe, cool, porter, none).

This fact is well typed because:

joe e name,

cool e name,

porter e job,

none e fl A -(none e listl)

Consistency checking checks that a variable V, which appears in body

predicates or sub-goals, is compatible. The deduced types (q.v. § 3-3-3) of V

are { t l , . . . , tk} w here V i 1 < i < k the dom ain of ti is Ti. The consistency

checking assum es that there is a unique dom ain T e (T l , . . . , Tk} w here

T = g lb({T l, ... ,Tk}). For exam ple, the fo llow ing PROLOG program is

inconsistency.

%pl(al: integer).

%p2(a2: string).

r(X) pl(X), p2(X).

§ 3-3-3 Type Deduction

Type deductions deduce types for the rule head variables from the rule

body predicates. It is a consequence of the type checking and consistency

checking (q.v. § 3-3-2). Every variable in a ru le head appears som ew here

25

in the body predicates.

In the following, we assum e V and V' are variables w ith the sam e

nam es, w here V occurs in a rule head and V' occurs some w here in the

rule body predicates. The type of V is deduced as follows:

1) If V' occurs in exactly one body predicate, then the type of V is the

type of V'.

2) If V' occurs in m ore than one body predicates (i.e. V' types are

{ tl,..., tk) w here V i 1 < i < k the dom ain of ti is Ti), then the type

nam e of V is t where the dom ain of t is T, and T = glb({Tl,... ,Tk}).

As an exam ple, we give the deduced types for the following rule head

variables in the program of figure 1-2.

glaswegian_infant(LN: name, FN : name, Age :age).

glaswegian_emp(Ln: name, Fn: name, Sch : (4 , Yr :Year).

M oreover, a term x in a rule head may be non-variable term (i.e. either

constant, com plex term or list). A com plex term or list m ay contain

variables. A new type nam e is generated by the system for x. It is defined as

follows:

1) If x is a complex term, then the corresponding type of x is defined in

the same way as the complex type is defined (q.v. § 3-3-1 (a)).

2) If x is a list, then the corresponding type of x is defined in the same

w ay as the list type is defined (q.v. § 3-3-1 (b)).

3) If x is a constant, then the corresponding type o f x is defined in the

26

sam e way as the enum erated type is defined (q.v. § 3-3-1 (a)).

N o te tha t the type of term s, w hich are in the s tru c tu red term

(i.e. complex term, or list), are deduced as shown above.

§ 3-4 Discussion

§ 3-2 discusses the typing system s in TURBO PROLOG and Educe*,

w hile § 3-3 discusses the typing systems in TPROLOG. In this section we

discuss the differences and the sim ilarities betw een TURBO PROLOG,

Educe*, and TPROLOG.

TURBO PROLOG does not allow any new sim ple types to be defined

(i.e. enum erated type, and sub-range type), while Educe* and TPROLOG

do. H ow ever, Educe* allows only enum erated types to be defined, while

TPROLOG allows sub-range types to be defined too.

Educe* does not differentiate betw een type definitions (i.e. dom ains)

an d type declarations (i.e. predicates), w hile TPROLOG and TURBO

PROLOG do. M oreover, Educe* type declarations are represented in the

sam e w ay as type definitions. In Educe* all facts, w hich have sam e

p red icate nam e and arity, correspond to one type definition, w hile in

TURBO PROLOG and TPROLOG they correspond to one type declaration.

In both TPROLOG and TURBO PROLOG, type names in type declaration,

m ay correspond to variant types. Note, TURBO PROLOG allows variant

types for com plex term s only. M oreover, lists in TURBO PROLOG are

hom ogeneous, while in TPROLOG they may be heterogeneous.

Finally, Educe* allows a program m er to define the type of variables in

the rule, while TURBO PROLOG allows a program m er to define the type

27

of argum ents of a rule in predicates. H ow ever, TPROLOG deduces the

types of rule variables.

§ 3-5 Sum m ary

§ 3-4 com pares d ifferent system s w ith TPROLOG. This com parison

extracts the following advantages of using TPROLOG.

1) It enables us to w rite a program in a less restrictive way and closer to

PROLOG.

2) It enables us to have a rich typing system.

3) It enables us to get the benefits of PROLOG flexibility in representing

inform ation as well as the benefits of strongly typed program m ing

languages.

28

Chapter 4: Safety

§ 4-1 Introduction

In chapter 2, we review ed the execution strategies in LPLs and RDBSs,

and concluded that there is a need for checking the safety of the execution

of the queries. In this chapter, we discuss m ethods used for safety checking.

The outline of this chapter is as follows: § 4-2 discusses safety checking

at execution time, w hilst § 4-3 discusses safety checking at compile time.

§ 4-4 com pares ou r approach to safety checking w ith others, and § 4-5

sum m aries the advantages of using our approach for safety checking.

§ 4 -2 Safety C hecking at Execution Time

§ 4 -2 -1 Safety for N on -R ecu rsive PROLOG Program s

A notion of safety for non-recursive PROLOG program s is introduced

by Zaniolo [Zaniolo 1985, Zaniolo 1986], which is sim ilar to the notion of

safety introduced by Ullman [Ullman 1981]. Zaniolo's approach is based on

the notion of a m agic basis of a variable: a technique w hich uses the

no tio n of a p roo f p ro ced u re using connection g raphs (PCG) from

[Kowalski 1975]. (A PCG is a graph, which represents all possible paths of

the resolution (e.g. top-dow n or bottom -up) of a set of first order predicate

clauses).

In the following, we refer to a graph which represents the structure of

the goal as a goal tree, and a graph which represents the structure of a rule

29

head as a rule tree, w here the address (i.e. root) of these trees is either a

ru le head predicate name or a goal predicate name.

The magic basis of a variable in a query (or sub-goal) is a m apping

betw een variables in the goal tree (represented by a PCG) derived from the

query, and term s in the rule trees of the rules w hich unify w ith the goal.

For a given variable X in a goal tree, the magic basis of the variable X is

given by the union of P(X) and LP(X), where P and LP are defined as follows:

Let p i and p2 be atoms with the same address (i.e. p i and p2 have the same

pred icate nam e), let X be a variable occurring in p i and t be a term

occurring in p2, w here X and t are in a same param eter position.

a) If X and t are in a same position in their respective trees (i.e. they are

at a same level), then t is a partner of X and so t e P(X). There are no

other elem ents in P(X).

b) If X and t are not at the same level, bu t X has at least one ancestor

which is partner of t (i.e. X is lower than t), and t is a variable, then t

is a lower partner of X and so t e LP(X). There are no other elements

in LP(X).

For example, if we have the following trees:

r u le t r e e s

P P P

X a S I S 2 d V

A s
Z W

th en , d(Z,W) e P(X), SI e P(X), S2 e LP(Y), and V e LP(Y).

30

In general, the safety of a query depends on the safety of its variables,

w here the safety of a variable of a query depends on w hether the magic

basis of the variable is finite or not, and on the safety of the variables or

constants w ith which it is unified.

M ore precisely, the safety rules which govern ru le /g o a ls by using the

magic basis of a variable are as follows :

Rule 1) Every variable in a goal which unifies w ith a database relation

(i.e. only facts) is safe.

Rule 2) Every constant is safe.

Rule 3) If a variable X in a rule is safe, then all variables in P(X) or LP(X)

of a goal, which are unified w ith the rule, are safe.

Rule 4) If a variable X in a goal is safe, then all variables in P(X) or LP(X)

of a rule, which are unified w ith the goal, are safe.

Rule 5) If all variables in an arithm etic exp are safe then the variable V

in V is exp is safe.

§ 4 -2 -2 Safety for R ecursive D atalog Programs

The datalog program m ing language [K rishnam urthy 1988] is a logic

program m ing language based on first-order predicate logic. A lthough it is

sim ilar to pure PROLOG (i.e. PROLOG as a first-o rder logic w ithout any

b u ilt in pred icates such as cut), it does not allow function sym bols

(i.e. sim ple terms).

31

A notion of safety for recursive datalog has been investigated by m any

r e s e a r c h e r s [U llm a n 1985, T su r 1986, R a m a k r is h n a n 1987,

Bancilhon 1985]. U llm an’s approach uses a ru le /g o a l graph to check the

safety of the execution of a datalog query. The ru le /g o a l graph is a

technique w hich also uses the notion of a PCG [Kowalski 1975]. The safety

conditions, w hich will be explained later, are applied after m apping the

query into node(s) in the ru le /goal graph of the unified rule(s).

A ru le /g o a l g raph consists of nodes and arcs. N odes represen t all

possibilities of representing the variables in an atom as free (f) (i.e. those

variables which are substituted by the unified goal variables) or bound (b)

(i.e. those variables which are substitu ted by the unified goal constants),

w hile arcs represent the dependency relationship betw een the atoms in a

rule. Since logic program m ing languages do not differentiate between free

variab les and b o u n d variables in the sense above, every variable is

potentially both a free variable and a bound variable. Also, each variable of

the ru le head will be called an inpu t variable or an o u tp u t variable as

explained below. If a rule head variable occurs only as an operand to an

a rithm etic atom or com parison atom (w ith one exception), then that

variab le is called an in p u t variable. The exception is: if the rule head

variable is V and the atom is V is exp (for any expression exp), then V is not

an input variable. If a rule head variable is not an input variable then it is

an o u tp u t variable (we note that the ru le /g o a l graph is generated at

com pile time, so an o u tp u t variable m ay becom e an in p u t variable at

execution time).

In the following, we refer to an atom which can be unified only w ith a

fact as a fact atom and otherwise we refer to it as a non-fact atom.

32

The node associated w ith an atom in a rule body, which represents a

fact atom , is defined as follows : if F is an atom containing n variables,

then the node associated w ith F is f Xj , w here (Vg:2 <g < n) xg =b;

all variables are bound. The nodes associated w ith a non-fact atom are

generated as follows :

a) In a non -recu rsive program the nodes are add ressed by their

p red ica te sym bol nam e. In a recursive p rogram , for sake of

sim plicity and non-am biguity , the rule head is addressed by a new

name. W hen a rule head p is addressed by q then we refer to q as the

node nam e associated w ith p. For exam ple, in the program of

figure 1-1 w e m ay address the rule head w ith predicate symbol

factorial by rl.

b) The num ber of nodes associated w ith an atom is determ ined by the

num ber of variables in it. Thus, there are 2n nodes, w here n is the

num ber of variables in that atom.

c) N odes are defined as follows: every variable in an atom can be either

/ or b, thus if F is an atom containing n variables, then there are

2n nodes of the form f*2"*", where (Vg : 1 < g < n) xg e {b,f).

Arcs are generated as follows:

a) For each body pred icate F (A j , , A n) and rule head G(Bj, . . . , B W)

w hich contains o u tp u t variables, w here A j , . . . , A n a re s im p le

te rm s and B j , . . . , B m are sim ple term s, such tha t for som e k,

w here 1 < k < n , and som e h, 1 < h < m , Bh is o u tp u t variable,

and A k a n d are the sam e variable, there are arcs defined as

follows:

33

1) If F(Aj , ..., An) is a non-fact atom, then the arcs are from

p* r - xk - l b \ + l - xn to - Vm

and from each node of form

pXj. . . xn fa i - - y h-if vm •••ym

2) If F(Aj,..., A n) is a fact a to m , th en the arcs are from

pz i - z k ~ i b \ + v - z n i q f ^ Q ^ y i - y k - i t y m ■■■ym

and from each node of the form

Y ^ t " z k - i f \ + V " z n t0 r { G) y r - y h - i f v h i - y m

w here r(G) is the node nam e associated w ith G (since addressing

may have been carried out, as described above), and

(V h : {1...... k-1, k + 1 n}) z h = b,

(V g : {1, ..., k-1, k+1 , ..., n}) xg e {b,f\, and

(V k : {1, ... , h-1, h+1, ... , m)) y e {b,f).

b) If a body predicate F l(A j,..., A„) occurs before (i.e. to the left of) a

b o d y p red ica te F2 (B j , , Bm), w h ere A 7, ... , A n and B7, ... , Bm are

s im p le term s, such that for som e k, w h ere 1 < k < n , and som e

h, w h ere 1 < h < m , A k and are the sam e v a r ia b les , then

there is an arc from each node o f the form

F t o ^ v - y ^ M - ym

and from each node o f the form

34

p | XJ" xk - l f \ + l " x n p2^ t '• y h-1 fyh - i —y-m

w h e r e (V g :{ l k-1, k+1. . . , n}) xg e [b,f),

and (V k : [1, ... , h-1, h+1, ... , m}) y e {b,f}.

c) For each b o d y predicate F(A3, ..., An) and a rule head G(B2, ..., Bm)

w h ich contains input variables, w h ere a 3, ..., A n , B j , ..., Bm are

s im p le term s, such that for som e k, w h ere 1 < k < n , and som e

h , w h ere 1 < h < m , B h is an in p u t variab le , A k and Bh are the

sam e variables, there is an arc form each node of the form

r(G) t̂ ' -yh-ltyh-1 —ym £0 p̂ I" xk-l ̂%+l— xn

and from each n od e o f the form

r - y « to

w h ere r(G) is the n od e nam e associated w ith G (since renam ing m ay

have been carried out, as described above),

(V g : [1, . . . , k-1, k+1. . . , n)) xg e {b,f}, and

(V k : {1, ... , h-1 , h+1, ... , tn)) y g [b,f).

d) F inally, arcs are also directed from a non -recu rsive rule head to a

b od y o f another rule, or from a recursive rule head to its respective

b od y predicate, w h en the atom is un ified w ith that rule. These arcs

are d efin ed as fo llow s: for each atom in a rule body of the form

F(A3, ... , A n) an d ru le head F(B 7, ... , B n), w h ere A l t ... , A n an d

B7, ..., Bn are sim p le term s, there is an arc from each n od e o f the

form

35

r(F) Xl - Xn tQ F * I - x n

w here r(F) is the node name associated w ith F (since renam ing may

have been carried out, as described above), and (V g : l < g <n)

xg <= {b,f}.

A n exam ple of the generated ru le /g o a l graph is the adjacency

matrix of the generated ru le /g o a l graph in figure 4-1 of the program

in figure 1-1. N ote, the rule head is addressed by rl.

36

37

Fi
gu

re

4-
1.

 A
dj

ac
en

cy

m
at

rix

of
the

pr

og
ra

m

in
fig

ur
e

1-
1.

N ote, we adopt the following convention: given an atom P, unless we

state explicitly otherw ise, we will use the notation node P to refer to all

superscripted nodes P in the graph.

In general, the safety of a query at execution time depends on w hether

the query adopts a safe execution paths (i.e. the goal graph) in the ru le /goal

g raph of the rule(s) which are unified w ith it. Therefore, the goal graph is

a su b -g raph of the program ru le /g o a l graph which represents all possible

execution paths of the query. For exam ple, the goal graph of the query

? - factoriaKX, Y) is graph of the whole program in figure 1-1, w hilst the goal

g raph of the query ?-factorial(3, X) is as shown in figure 4 -2 .

Figure 4-2. The goal graph of the query ?-factorial(3,X).

We define an execution path of node P to be a path whose source is a

node w ith in-degree 0 and target node P. A safe execution path of node P

is a path whose source node is a fact node.

Consequently, a safe execution path of a node is a path through nodes

w hich are classified as safe by the following rules: (We note that the rules

refer only to nodes and edges in the given path)

1) If N is a node of a rule head, and P is a safe node of a body atom of

that rule, and there is an arc from P to N, then N is safe.

38

2) If P is a node of a rule body atom which is unified w ith a fact atom,

then P is safe.

3) If P’ is a node of a rule head, P is a non-recursive body atom, and

there is an an arc from P’ to P and P' is safe, then P is safe.

4) If P is an arithm etic expression atom n od e and all variables on the

right hand sid e o f the associated predicate are represented as b, then

P is safe.

5) If P is a com parison atom node and all variables of the associated

atom are represented as b, then P is safe.

6) If P is a recursive body atom node, PI is a safe atom, and there is an arc

from PI to P, then P is safe.

For exam ple, the adjacency m atrix in figure 4-1 is the goal

? - f a c t o r i a l (X , Y) g ra p h . It co n ta in s a t le a s t an u n sa fe p a th

(i.e. factorial^ -» *b̂ -> rlbb). Therefore, the query is unsafe. H ow ever, the

goal ?-factorial(3,Y) is safe, because all paths in the goal graph of figure 4-2

are safe.

§ 4-3 Safety Checking of a PROLOG Program at Compile Time

In the last section we defined the notion of safety, by using the notion

of m agic basis of a variable and by using the notion of ru le /g o a l graph.

Both ru le /g o a l graph and magic basis of a variable are used to define the

safety of a logic program at execution time: safety conditions are used to

check the safety of an atom in the ru le /goal graph approach, while they are

39

used to check the safety of a variable in the m agic basis of a variable.

H ow ever, in practice, these approaches are equivalent for non-recursive

datalog programs.

In th is section, w e ex tend the safety checking p ro ced u re for

n on -recu rsive PROLOG program s into a safety checking procedure for

recursive PROLOG program s by integrating the notion of the ru le /g o a l

g raph w ith the notion of the magic basis of a variable. Moreover, we apply

the procedure at compile time instead of at execution time.

For sake of simplicity, in the following, we represent a complex term as

b (bound), if each variable or complex term in it is represented as \> and

w e rep resen t it as / (free), if each variable or com plex term in it is

represented as /.

O ur graph, like the ru le /g o a l graph of U llm an, consists of arcs and

nodes. The generation of nodes for our graph is similar to the generation

of nodes for ru le /goa l graph with the following three exceptions.

First, the m ain difference is that fact body atom s and non-fact body

atom s are differentiated, whereas in our graph they are not.

Second, a fact is not represented in the ru le /g o a l graph, while in our

g raph it is represen ted by a special node. N ote, nodes represent the

constants in an atom as c (constant). The (special) node, which represents

a fact form ula, is constructed in the following way: if F(aj ,... ,an) is a fact

form ula, then the (special) node associated w ith it is Y%v""Xn (w here

(Vg:2 < g < n) X is the term derived from a^ by replacing all occurrences

of c o n s ta n ts (in ag) by the term c). For e x a m p le , if

F(a7 , ... , a k^ , f l (a'7, ... , a ' m) , a k + 1 , ... , a„) is a fact form ula w ith constants

40

ai> ••• 'a k-i> a ' i ’ ••• a’m, ajt+ 2 /..., a„ , th en th e n o d e a sso c ia te d w ith it is

Wh e r e (V g - . l < g < m) Vg = c , a n d

(V h : (1 k - l , k + l , ... , n)) x h = c.

Third, w e incorporate in form ation about the constants and function

sym b o ls occurring in atom s into the associated node nam es. For exam ple

if F (T j,... , T„) is an atom (w here T2, ... ,T„ are term s an d), then it is

rep resen ted by a se t o f n od es w h ere each n od e is of the form f* z"

w h ere (V g : l < g < n)

a) If T is a constant, then x = c ,
8 8

or

b) If T is a variable, then x e {b,f},
8 8

or

c) If T is a com p lex term , then x i s a term d er iv ed from T ^ ty

rep lacing all occurrences o f n o n -co m p lex term s in T^by the terms

c, b, or /.

The generation o f arcs in our graph is sim ilar to the generation of arcs

in the r u le /g o a l graph. H o w ever, sin ce the m agic basis o f a variab le

d efin es the relationship betw een a goal or a su b -goa l and the unified rule

h ead , the gen eration of arcs (in our graph) d irected to an atom in a

(n o n -recu rsiv e) rule b od y from another rule head or a fact, or to a

(recursive) rule b od y form its rule head is extended as follow s:

a) If F(Vj, ... ,Vjt_2 ,D, Vjt + 3, ..., V„) is an atom in a ru le b o d y and

... , A*.+j, •••, A„) is a r u le h e a d or fa c t (w h e r e

(V g : [1, ... , k - l , k + l , , n}) Vg = A p V g and A g are ter m s, D is a

variable, B is a com plex term, and F, F' are the sam e predicate nam e),

then using the defin ition of Be P(D) from the m agic basis of a variable

41

(q.v. § 4-2-1) there are arcs defined as follows:

1) If P is a rule head , then there is an arc from each n od e o f the

form

r (F) X j... x k_ j b * + 3 ... Xn t o p X j.. . x k_f> Xk +1 ... Xn

and from each form

r(F)X1"'Xk-lf fy+l " xn p*2" xk-lfxk+l"- xn

w h e r e r(F') is th e n o d e n a m e a s s o c ia te d w it h F' (s in c e

r e n a m in g m a y h a v e b e e n ca r r ie d o u t , a s d e s c r ib e d in

§ 4 - 2 - 2) , a n d (v g : [1, ... , k-1, k+1.. . , n)) x g e { b , f } .

2) If F is a fact, then there is an arc from a fact n od e (i.e. special

node) o f the form

p,Zj,... , Z n pX],... , x n

w h ere (V^ :1 < g < n)

(Zg = c A (Xg is a ground term => Xg = c)

A {Xg is not a ground term => Xg e (b,f))).

b) If F(Aj,, Bm), A k+1 A n) is an atom in a rule body

and F'(V3, ... ,Vfc_7/D, Vfc+3/..., V„) is a r u l e h e a d (w h e r e

(V g -. [1, ... , k-1, k + 1 , ... , n}) Vg = A g , V and are term s, D is a

variab le , B?, ... , Bm are term s, and F, F’ are the sa m e p red ica te

nam e), then u sin g the defin ition of D e LP(B7) , ..., D e LP(Bm) from

the m agic basis o f a variable (q.v. § 4 -2 -1) there is an arc from each

n od e of the form

42

and from each form

r(p)x l - xk- l fxk + l - x n to Xk - P <w r-<w tk * + l - > x n

w h ere r(F) is the n od e nam e associated w ith F',

(V g : [1 k-1, k+1 , . . . , n})

xg e (b, f) , and (V i: 1 <, i 5 m) y g e {iy:} and w g e {c,f}.

For exam ple, the g raph in figure 4-3 is generated by the above

defin ition to represen t the following program . N ote, le(X, Y) is unified

w ith a finite set of facts.

rl) order(nil).

r2) order(cons(X,nil))

r3) order(cons(X, cons(Y,Z))) le(X,Y), order(cons(Y,Z)).

43

co
ns

(b
c)

co

rt
s(

fc
)

44

Fi
gu

re

4-
3.

 T
he

gr

ap
h

of
the

or

de
r

pr
og

ra
m

W e m ay use the notion of safety given in § 4-2-2, to define the safety

of a query m apped into this graph. However, the rules in the definition of

§ 4 -2 -2 are for checking the safety of a program at execution time, w hilst

w e look for rules to check the safety of a program at compile time. There

are no general rules to check the safety of a program at compile time

(i.e. safety checking for horn clauses is undecidable [Zaniolo 1986]). As a

consequence, let us consider an extent to w hich the safety checking

algorithm given in § 4-2-2 can check the safety at compile time.

In o rder to do so, we define a set of rules (i.e. a PROLOG procedure

w here the predicate nam e of each rule head in the set are the same) to be

either strongly safe or weakly safe w ith respect to their execution paths in

a graph. We say that a procedure is strongly safe if all its execution paths in

a g raph satisfy the safety rules in § 4-2-2. O therwise, it is weakly safe. For

exam ple, the p rocedure order, w hich is represen ted by the g raph in

figure 4-3, is weakly safe, because although are some execution paths are

safe, o thers are unsafe. For exam ple, the execution of r2, r2bc is safe.

H ow ever, another execution path for r2, r2^c is unsafe by rule 2.

If a procedure is strongly safe, then the procedure is abstractly safe in

the sense that its behaviour does not depend on the environm ent in

which it is executed. So, we can guarantee the run time safety of a strongly

safe procedure at compile time. However, if the procedure is weakly safe,

then it is only safe for some execution paths but not for all. Thus, we

cannot guarantee the run time safety of a weakly safe procedure at compile

tim e.

Thus, any strongly safe PROLOG procedure has an equivalent set of

RAEs. Therefore the PROLOG procedure may be com piled using one of

45

techniques given in [Reiter 1978, Henschen 1984, Chang 1986]. A weakly

safe PROLOG procedure does not necessarily have an equivalent set of

RAEs. As a consequence, we may compile (i.e. translate syntactically) such

a p rocedure (using one of techniques described above), bu t the resulting

RAEs m ay only become m eaningful at execution time (if at all).

§ 4-4 D iscussion

§ 4 -2 discusses the safety checking at execution tim e, w hile § 4-3

discusses the safety checking at compile time In this section we compare

our approach for safety checking (q.v. § 4-3) w ith others (q.v. § 4-2).

In o rd er to m ake a com parison w ith U llm an's approach, we m ust

assum e that his approach is applied at compile time (instead of execution

time). The ru le /g o a l graph (q.v. §4 -2 -2) and our graph (q.v. §4-3) of the

exam ple in figure 1-1 are given in figures 4-1 and figure 4^4 respectively.

46

47

Fi
gu

re

4-4

A
dj

ac
en

cy

m
at

rix

for

ou
r

gr
ap

h
of

the

pr
og

ra
m

in

fig
ur

e
1-

1.

By analyzing the graphs in figure 4-1 and figure 4-4 and using the

node safety definition (q.v. § 4—2-2), we find the following lim itations of

the ru le /g o a l graph:

a) Even though the factorial predicate is either unified w ith a rule or a

fact, the ru le /g o a l g raph is unable to d is tingu ish these two

possibilities. As a consequence, there are no nodes w ith in-degree 0

and therefore there are no executions paths associated w ith the

nodes in the graph. Thus, we can conclude noth ing about the

compile time behaviour of the factorial procedure.

b) Consider the graph in figure 4—4 now: There is a both safe execution

p a th to r l bb and an unsafe execution pa th to r \ b b The unsafe

execu tion p a th is fa cto ria lcc-> factorial-^ -> *b̂ -> v\bb. S in c e
b bunsafe by safe rule 4 (q.v. § 4 -2 -2), r l becomes unsafe by rule 1.

The safe pa th to r l b b is f a c t o r i a l ^ —> f a c t o r i a l ^ —> r l bb. Since

* is safe by rule 4, the rl becomes safe by rule 1.

U llm an 's approach w ould force us to conclude tha t the factorial

procedure is unsafe, w hilst in our approach we w ould conclude that the

procedure is weakly safe. Therefore, our approach allows us, effectively, to

check the safety of a logic program at compile time, if it is strongly safe.

M oreover, we can also check the safety of a logic program at execution

time, if it is weakly safe.

In com parison , U llm an’s approach [U llm an 1985], and Z aniolo 's

approach [Zaniolo 1986] check the safety of logic program s at execution

tim e only. M oreover, K rishnam urthy 's approach [K rishnam urthy 1988]

checks the safety of logic p rogram s at com pile tim e, but does not

distinguish between strong safety and weak safety.

48

Finally, our approach handles the (pure) PROLOG language (including

a r i th m e t ic e x p re s s io n s) , w h e re a s U llm a n 's a p p ro a c h an d

K rish n am u rth y 's approach exclude function sym bols, and Z an io lo ’s

approach excludes recursive programs.

§ 4-5 Sum m ary

§ 4 -4 com pares ou r approach (q.v. 4-3) w ith others. This section

sum m arizes the advantages of our approach

1) The ru le /g o a l graph has been extended to include the complex

terms of pure PROLOG programs, and to differentiate between rules

and facts.

2) The com pile tim e safety checking procedure has becom e m ore

sophisticated in the following ways:

a) If all execution paths of the procedure P are unsafe, then P is

unsafe and it should not be compiled.

b) If all execution paths of the p rocedure P are safe, then P is

strongly safe and the compilation of it should be completed.

c) If some execution paths of the procedure P are safe and the other

are not, then P is w eakly safe and , although the syntactic

translation to relational algebraic expressions is done at compile

time, there will be m ore safety checking carried out at execution

tim e.

49

Chapter 5: Normalizing TPROLOG programs

§ 5-1 Introduction

This chap ter discusses our m ethod of translating (i.e. norm alizing) a

logic p ro g ram contain ing n o n -fla t clauses into an equ ivalen t logic

p rogram w hich contain flat clauses only. Since we adopt TPROLOG, we

translate a TPROLOG program into an equivalent TPROLOG program

w hich contain flat clauses only.

The ch ap te r consists of five sections. § 5-2 gives a m ethod of

norm alizing facts, w hilst § 5-3 gives a m ethod of norm alizing rules. § 5-4

discusses goal normalization. § 5-5 compares our approach w ith others.

§ 5-2 Fact Base Normalization

In § 3-3 we extended the standard PROLOG language to include data

types (i.e. TPROLOG). This extension, from a data base point of view, may

be used as a data base schema [Atkinson 1987]. It should be used to prevent

an operation from being applied to a value of an inappropriate type: any

query ing of the contents of a database should be done w ith respect to its

schem a (i.e. querying a TPROLOG program is done with respect to the fact

declarations).

A re la tion in a relational database is a relation containing atomic

entities only. N orm alization in RDBSs transform s a schema from IN F to

h igher norm al form (i.e. 2NF, 3NF, etc) w ith respect to the functional

dependencies betw een attributes in the relation. LPLs may contain non

50

atom ic relations. In order to transform a logic program into RAEs, we

have to flatten all structured data. Hereafter, we call this transform ation

norm alization.

O ur norm alization is a procedure which flattens all structu red data

(from relational po in t of view non-struc tu red values) in a TPROLOG

program . In o ther w ords, norm alization rem oves non-fla t clauses and

replaces them by flat clauses. The replacem ent of structured data requires

the replacem ent of the structured data types as well. A structured data type

is either a list or complex term. Moreover, we may consider a type which

consists of a set of types (i.e. a variant type) as a structured data type as well.

§ 5-2-1 gives m ethods to norm alize fact, w hilst in § 5-2-2 discusses how

fact data declarations are norm alized in a similar way.

§ 5-2-1 Normalizing Facts

A structu red fact is a fact where at least one of its com ponents is a

com plex term , a list, or a term of varian t type. In the follow ing

sub-sections we discuss the normalization of these three cases.

§ 5-2-1-1 Normalizing Complex Terms

In this section we give a method which eliminates complex terms from

a n o n -f la t fact. The m ethod consists of in troducing the existential

quantifier (3), and using skolem ization which removes the quantification

[Bundy 1983].

Suppose, we have the following fact f containing one complex term:

f (x j , . . . , x k _ v f K x f l j , .. . , x f l m) , x f c + I , ... , x „) .

51

Then, w e rem ove the complex term fl(x flj,... ,xflm) in f by replacing f by

the following two flat facts.

fC xp -vX ^ j, c, x k+1, ..., xn).

r fK x f lj , ... c).

w here c is a new constant of skolem type. Note that the dom ain of skolem

ty p e is d e fined system atically (i.e. every constan t in tro d u ced by

skolem ization is a member of this type).

N ote, the above exam ple contains one complex term; we can easily

generalize the m ethod to several complex terms.

§ 5-2 -1 -2 Normalizing Lists

In TPROLOG, the differences between complex term and list (q.v. § 3-3)

are as follows:

a) Every term of complex term has a fixed arity (i.e. a fixed num ber of

sub-term s), whilst a term of a list type does not.

b) The type of each sub-term in a list has variant type, w hilst each

sub-term in a complex term does not.

Consequently, the normalization of a fact

f(xj x k_ j , [lx, X m) „ w here [lx ,, , lx„] h as ty p e

lis tl[{ tj,..., tg}], is as follows:

1) f is transform ed into

f(x2, ..., xk_2, listl([lx j, ... , lx j) , x k + p . . . , x m).

52

2) The norm alization of the fact in (1) above is done in the same way

as in § 5—2—1—1:

f(x3,.. ., x k _l f c, x k+1, ..., xm).

rlis tl([lx j,..., lx j, c)

3) is transform ed into n facts of the form

rlistl(lx,-, c)., for each i = 1,..., n, and the type of lx, is one of variant

types {tl f ..., y .

4) The norm alization of the resulted facts from (3) is done in the same

w ay as the normalization process in § 5-2-1-3 below.

§ 5-2-1-3 Normalizing Terms of Variant Types

Each term of variant data type belongs to exactly one type in the variant

type (q.v. § 3-3). The norm alization of terms with variant type is done in

two steps as follows:

step 1- The generation of complex terms: if a term x belongs to a simple

type t in a variant data type, then x is transform ed into a new

unary complex term . The unary complex term is defined with

respect to the type definition of t as follows: suppose that [t ,..., t J

is a varian t type, t e {t2, ..., t j , and t is a sim ple type, then the

new type for t is f(fl(t)) where f is a new type name, fl is a new

function sym bol, and t : f. As a resu lt of transform ing t type

definition into fl(t), x is transform ed into fl(x). For example, given

$ identification([social-no, full-name])., where full-name is a complex

term type (note, there is no need to transform full-name into a

com plex term type) and, social-no is a sim ple type defined by

53

$social-no(<integer,l, 10000>). The type nam e social-no in identification is

transform ed into f(fl(social-no)). M oreover, x is transform ed into a

u n a ry c o m p lex term f l(x) , w h ich corresp on d s to the unary

com p lex term data type.

step 2- The norm alization of the generated complex term is as shown

in § 5-2-1-1.

A n exam ple of facts norm alization is that for given facts in the

program of figure 1-2, the norm alized form of them are in figure 5-1.

54

person(joe, cool, c l, 20).

person(max, fax, c3, 40).

pcrson(joe,doe, c5,3).

raddress(c2, glasgow, cl).

raddress(c4, glasgow, c3).

raddress(c6,glasgow, c5).

rnone(c2).

rflat(21, 18, windsor_street, g20, c4).

rhouse(31, kew_drive, gl2, c6).

emp(joe, cool, porter, c7).

emp(max, fax, guard, c8).

emp(fred, red, staff, c9).

rnone(c7).

rlistl(cl 1, c9).

rlistl(cl2 , c9).

rlistl(cl3 , c9).

rlistl(cl4, c8).

rdegreel(hs, 1968, cl4).

rdegreel(hs, 1975, e ll).

rdegree2(msc, ba, clO, 1980, cl2).

rdegree2(phd, ba, cl5, 1983, cl3).

rschool(glasgow_university, glasgow, cl5).

rschool(glasgow_university, glasgow, clO).

Figure 5-1. The normalization of facts in figure 1-2

§ 5-2-2 Normalizing Fact Declarations

A ny changes in facts requires changes in their declarations. Therefore,

fact declaration norm alization is very similar to the norm alization of their

respective facts. Since, in § 5-2-1, we have defined structured facts by three

categories, the s truc tu red fact declarations are defined by the sam e

categories.

55

The norm alization of structured fact declarations is defined as follows:

Suppose t is a structured data type in a fact declaration

a) If t is a com plex term data type, then the fact declaration is

n o rm a liz e d in the sam e w ay as its co rre sp o n d in g fact

(q.v. § 5 -2-1-1). N ote that, the replaced attribute nam e has type

skolem.

b) If t is a list type, then the fact declaration is normalized as follows:

1) The list data type is transformed into a unary complex term type

(q.v. § 5 -2-1-2) and the type of the function symbol (i.e. a list

name) is a variant type of the set of list types. For example, the

list type $listl([{f2, f3}])., in figure 3-1 is transfo rm ed in to

listl([f2, f3]), where the type of listl is {f2, f3}.

2) The norm alization of the generated complex term type is

explained in § 5-2-1-2.

c) If t is a variant type, then we may consider the fact declaration as

several fact declarations. However, from a relational data base point

of view several data declarations for one relation (i.e. fact base) is

prohibited. So, in order to normalize fact declarations, we have to

elim inate several data declarations and replace them by one fact

declaration. The elim ination and the replacem ent of several fact

da ta declarations is sim ilar to its respective fact norm alization

(q.v. § 5-2-1-3). However, we have to consider the following:

1) A varian t type consists of a list of types, whilst a term, which

56

belongs the variant type, belongs to one elem ent in the variant

type.

2) all variant types are replaced by one constant (i.e. type name). The

norm aliza tion process of the varian t type is sim ilar to the

norm alization process in§ 5-2-1-2.

As an exam ple, we normalize the fact declarations in figure 3-2 below:

% emp (first_name: name, last_name: name,job_name: job, al: skolem).

% person(first_name: name, last_name: name, a3: skolem, person_age: age).

%rnone(al: skolem).

%rdegreel(degree_name: under_grad, degree_year: year, a4: skolem).

%rlistl(a4: skolem, al: skolem).

%rdegree2(degree_name: post_grad, degree_subject: subject, a2: skolem, year, a4: skolem).

%rschool(name: school_name, school_city: city, a2: skolem).

%raddress(al: skolem, city_address: city, a3: skolem).

%rflat(flat_no: integer, building: house_no, street_name: street, code: post_code,

al: skolem).

%rhouse(building: house_no, street_name: street, code: post_code, al: skolem).

Figure 5-2. The normalized form of a complex fact data type declaration.

§ 5-3 Norm alizing Rules

This section discusses a m ethod of norm aliz ing PROLOG and

TPROLOG p rog ram rules. The m ethod is sim ilar to R am akrishnan 's

m e th o d of tran sfo rm in g H orn clauses form in to canonical form

[Ram akrishnan 1987]. Ram akrishnan’s m ethod takes a set of Horn clauses

(i.e. a PROLOG program) and produces another set of clauses in which all

57

their argum ents are variables and all occurrences of a function symbol (in

the H orn clauses) are replaced by a unique occurrence of an infinite

relation. Therefore, the canonical form for H orn clauses is a PROLOG

program w hich is free of non-variable terms. For example, the canonical

form of rules given in figure 1-2 is as follows:

glaswegian_infant (LN, FN, Age) :-person(FN, LN,A,Age),

raddressG, B, A), b(B),

e(E),

Age < E.

glaswegian_emp(Ln, Fn, Sch,Yr) emp(Fn, Ln, C), h(_,_, D,C);

rdegree2(_, Sch, Yr, D),

person(Fn, Ln, A,_),

raddress(_, B, A), b(B),

Yr > I960,

Yr < 1990.

h(_,_, D, C).

rdegree2(_, _, Sch, Yr, D).

raddress(_, B, A).

e(4).

b(glasgow).

H siang 's approach [Hsiang 1985], is similar to Ram akrishnan’s method.

H ow ever, the difference betw een those two approaches is that w hilst

R am ak rish n an 's m ethod generates u n it clauses and stores them as

re lational facts, H siang's approach does not. Thus, the disadvantage of

H siang 's approach is that the new predicates m ay be not be logical

consequences of the program.

A lthough o u r m ethod is sim ilar to the above two approaches in

general, there are some differences. The differences are as follows:

58

a) Both approaches assume that all variables are of simple type, whilst

our approach considers structured types.

b) R am akrishnan 's m ethod allows a new predicate to be stored as

infin ite relation, w hilst our approach allows finite relations only

(i.e. no unit clause is allowed).

c) R am akrishnan 's m ethod replaces every constant by a new finite

relation, w hilst our approach does not replace constants.

This section d iv ides into two sub-sections. The first sub-section

discusses a body predicate norm alization and the second sub-section

discusses the rule head normalization.

§ 5-3-1 Normalizing Body Predicates

A body predicate is either an arithmetic predicate or a base predicate: a

p red icate w hich m ay unify w ith a fact or a rule head. We assum e that

operands in arithm etic predicates are of num erical type and we do not

consider them further. A term v in a base body predicate is either a

constant, a structured term (i.e. complex term or list), or a variable.

a) If v is a constant, then there is no need for further normalization.

b) If v is a structured term, then the norm alization of the base body

predicate is sim ilar to fact norm alization (q.v. § 5-2-2). However,

instead of replacing v by a constant, it is replaced by a variable.

M oreover, the generated predicates are added to the body predicates.

So, if we have the following base body predicate.

59

P(xj' — / xfc_ j/fl(x f l2/ ••• /xflm) / xk+l> ••• / xn)-

Then, we replace it by

■-P<XJ ' - / xt_j,V , x k+ 1 , . . . , Xn), rfl(xflj, ... ,xflm, V).

w h ere V is a n ew variable and r fK x flj ,... ,xflm/ V) is a n ew b od y

predicate

N ote that the above example contains one complex term, w e can

easily generalize the m ethod to several structured terms.

c) If v is a variable of structured data type t, then

1) If t is a list data type or variant type, then a new unary complex

term is generated as shown in § 5-2-1-3. Similarly, v is replaced

by the unary complex term. After that, the body predicate is

norm alized as shown in (b) above and a generated body predicate

is norm alized as shown in (3) below. For example, for a given

body predicate emp(Fn, Ln, D), where D is a variable of listl([{f2, f3}])

(q.v. figure 3-1), D is replaced by a unary complex term listl(D),

w here D is of variant type [fl, f2], and then emp(Fn, Ln, listl (D)) is

replaced by emp(Fn, Ln, V), rlistKD, V). Further norm alization on

rlistKD, V) is shown in (3) below.

2) If t is a complex term type fl(a f2: tf2 afm: tf lOT) (q.v. chapter 3) ,

then we replace v by a new complex term f l(x f i7, ... ,x flm) (where

(V 1 < i < m) xf 1 / is a variable of type t f l ,). The norm alization of

the generated complex term are explained in (b). Note, the

replaced variable in normalizing processor is v. For example, the

body predicate emp(Fn, Ln, [_, _, dcgrcc2(_, _, Sch, Yr)l) in figure 1-2

60

contains Sch variable of complex term type

f4(school(name : school_name, school_city : city), then Sch is replaced by

school(_, _) term and then the body predicate is norm alized as

shown in figure 5-3.

3) If t is a variant type, then the normalization of v is similar to

§ 5-2-2 (c). However, there are two differences. Firstly, instead of

replacing the variant type by attribute name is replaced by v.

Secondly, all new predicates are disjointed together and added to

the body predicate. For example, rlistl (D, V) in (1) above is

replaced by rlistKD, V), (rdegreel(_, D); rdegree2(_, D)).

As an example, the normalization of body predicate rules given in the

program of figure 1-2 is in figure 5-3.

:-person(FN, LN, V2,_), raddress(V3, glasgow, V2),

(rnone(V3); rflat(_,_,_,V3); rhouse(_,_,V3)).

emp(Fn, Ln, _, VI),

rlistl(V2,VI), (rdegreel(_, V2);(rdegree2(_,_,V3,_,V2), rschool(_, V3))),

rlistl(V4, VI), (rdegreel(_, V4); (rdegrec2(_,_,V5,_,V4), rschool(_, _, V5)),

rlistl(V6, VI), rdegree2(_, _, Sch, Yr, V6), rschool(_, _, Sch), person(Fn, Ln, V7,_),

raddress(V8, glasgow, V7), (rnone(V8); rflat(_j_,_,V8); rhouse(_,_,V8)),

Yr > 1960, Yr < 1990.

Figure 5-3. the normalized rule body predicates of figure 1-2.

§ 5-3-2 N orm alizing Rule Heads

§ 5-3-1 describes the normalization of the body predicates. This section

describes the n o rm a l iz a t io n process of a rule head. Note, we assum e that

61

b o d y predicates are norm alized by the m ethod in § 5 -3-1 .

A term v in a rule head is either a constant, a variable, a complex term,

or a list.

a) If v is a constant or a variable, then there is no need for further

n o rm aliza tion .

b) If v is a com plex term, then the removal and replacem ent of v is

defined as follows: Given the following rule:

p(xr ... , xfc r f l(x f li , ... ,x flw) , xjt+2, ... , xn) p3, pg.

Then, we replace the rule by

r(Xj, . .. , xfc r V , xjt+2, ... , xn) rfK xflj, ... ,x flw , V), p 'j p’g.

w here V is a new variable, p 'j, ..., p ' g are the norm alized body

p re d ic a te s p 2, ..., p g and r f l(x f l i , ... ,x f lm, V) is a new body

predicate. N ote, the new body predicate is valid, because it will be

a s s e r te d as a te m p o ra ry fac t a t e x ecu tio n tim e. If

p ' k (1 < k < g) = r f l (x f l i , ... ,x f lm, V), then there is no need to

duplicate it.

c) If v is a list, then v is represented either by a list of terms or as a head

and tail.

1) If v is a list consisting of n terms, then v is transform ed into a

u n ary com plex term instead of v (q.v. § 5 -2 -1 -2 (1)). The

transform ed rule head is norm alized in the same way as in (b)

above. Further normalization for the generated body predicate is

62

needed (q.v. § 5-3-1 (b)).

2) If v consists of a head X and tail Y, then the rule is transform ed

in to tw o rules (q.v. (1) above). The norm alization of the two

rules is sim ilar to (1) above. Note, Y is variable of the list type

w h ich needs fu rth er norm alization as a body p red ica te

(q.v. § 5-3-1).

The follow ing is an example of norm alizing rules; if we have rules

given in a program of figure 1-2, then the normalization of it is as follows:

glaswegian_infant(LN, FN, Age):-person(FN, LN, V2,_),

address(V3, glasgow, V2),

(rnone(V3); rflat(_,_,_,V3); rhouse(_,_,V3)).

glaswegian_emp(Ln,Fn, Sch, Yr):-

emp(Fn, Ln, _, VI),

rlistl(V2,V l), (rdegreel(_, _, V2);(rdegree2(_,_,V3,_,V2), rschool(_, _, V3))),

rlistl(V4, VI), (rdegreel(_, _, V4); (rdegrcc2(_,_,V5,_,V4), rschool(_, _, V5)),

rlistl(V6, VI), rdegree2(_, _, Sch, Yr, V6), rschool(_, _, Sch), person(Fn, Ln, V7,_),

raddress(V8, glasgow, V7), (mone(V8); rflat(_,_,_,V8); rhouse(_,_,V8)),

Yr > 1960, Yr < 1990.

Figure 5-4. The normalized form of rules in figure 1-2.

§ 5-4 Goal Normalization

A goal G is correctly answered (i.e. G is a theorem) on a program P, if it

is a logical consequence of P. Theorem proving for PROLOG is based on

SLD—re fu ta tio n v ia d e p th —first and left—m ost co m p u ta tio n rule.

Therefore, in o rder to answ er a goal, the left—most sub—goal of the goal

63

should be unified w ith either a fact or a rule head in the program , and the

so on for the rest of sub-goals.

H ence, in o rder to norm alize a goal, we have to norm alize it in the

sam e w ay as its unified atom (i.e. a fact or a rule head).

a) If a sub goal is unified with a fact, then

1) Each a structured term in the sub-goal should be norm alized in

the sam e w ay as in § 5-2. However, the only difference is that

instead of replacing a structured term by a constant, it is replaced

it by a new variable.

2) Each variable is normalized in the same way as in § 5-3-1 (c).

b) If a sub-goal is unified with a rule head, then

1) Each s tructu red term is norm alized in the sam e way as in

§ 5-3-2 . However, the only differences are as follows: instead of

replacing the structured term by a variable it is replaced by a

constant, and instead of having body predicates they become

tem porary facts in the program(if they are not already exist).

2) If a term is a variable which is unified with a structured term,

then the variable is replaced by the unified structured term. The

latter is norm alized in the same way as in (1).

For exam ple, if we have the following goal ?- glaswegian_emp(L, F, S, Y),

then it unifies w ith the rule glaswegian_emp in figure 1-2, and it is replaced

by the following:

64

? - g l a s w e g i a n _ e m p (L , F , S , Y), r s c h o o l(_ , S).

§ 5-5 D iscussion

It is in te restin g to com pare our approach w ith others. The m ain

difference is that; w hile [Zaniolo 1985] introduces ERA to make database

system s applicable for logic program s, we norm alize logic program s to

m ake them applicable to conventional relational database systems. We

solved the problem of allowing infinite relations to be generated in the

canonical fo rm for H orn clauses [Ram akrishnan 1987] approach , by

asserting tem porary facts at execution time. Since the canonical form for

H orn clauses replaces each constant by a new predicate, a huge am ount of

facts and rules are generated which may not be used. Tem porary facts, in

our approach , are generated when they are needed. Our approach allows

us to get the [Ramakrishnan 1987, Hsiang 1985] benefits and avoiding their

disadvantages.

O u r da ta schem a for PROLOG (i.e. TPROLOG) allows varian t types,

w hilst da tabase system s do not. We can integrate database systems and

TPROLOG by assum ing any argum ent of varian t type is a complex

argum ent, and then we remove the complex argum ent and replace it by

skolem constant or variable as explained in § 5-2 and § 5-3.

65

Chapter 6: System Architecture

§ 6-1 Introduction

§ gives a general description of a system which is proposed.

§ 3—3 introduces TPROLOG, whilst chapter 4 discusses the safety checking

of TPROLOG. C h ap te r 5 describes the norm aliza tion m ethod of

norm alizing TPROLOG programs.

This ch ap te r describes a design of a com piler w hich com piles a

TPROLOG p rog ram into relational algebra expressions. The com piler

consists of three translators which perform the following transformations:

1) The translation of a TPROLOG program into a standard PROLOG

program (i.e. C-PROLOG program). It is described in § 6-2.

2) The translation of a standard PROLOG program into a PROLOG

p ro g ram w hich is free of complex argum ents. H ereafter, it is

referred as a com plex-free program . The translation process for

PROLOG program s and goals is explained in § 6-3. We have to note

that, in order to complete the translation, there is a need for type

checking (q.v. § 3-3) and safety checking (q.v. chapter 4) of the

program and query.

3) The translation of a com plex-free program into RAEs. This is

discussed in § 6-4.

The configuration of the system is shown in figure 6-1, and figure 6-2.

66

TPROLOG
Program

- f RulesAl-r3 I
Deduce rule Data
type £

Parserzsz ■r Facts

M Data types 3 ^ * 1 Type checldng

7

"heck Safety

Normalize Data
types

W eakly safe

'C onditions
control safet

Strongly Safe f Normalized Data
C L . ^ 1 — T I types

/ Rules f •---------------------------

Normalize rulesI
f Norm alized rules

Translate them into
a set of relational
algebra expressions

Relational
Algebra
Expressions

Normalize Facts

£ Normalized Facts£i

L

reate a set of
relation^ ____

Facts as set of
relations____]

Figure 6—1. System Architecture for Compiling TPROLOG programs into

relational algebra expressions.

67

_ , ^ inconsistentstop

'c o n d itio n s
control safet

unsafe

Check
Safety

tem porary facts

/ Query

Check the queryl
data types_____

consistent^

-/ q u erV f

Data types i

Relational A lgebra
Expressions(RAE)

Norm alize Query

f N orm alizedquery f

Norm alized Data
types 1

Match correct
RAE or facts

Facts as set of
relations____ 1

et of relations
from each sub
goal

use relation
algebraic operators

I
Result as set of
relations

F ig u r e 6 -2 . System Architecture for Compiling TPROLOG query into

relational algebra expressions.

68

§ 6-2 Translation of TPROLOG into PROLOG

§ 3-3 In troduces TPROLOG. It is, simply, an extension of a standard

PROLOG (e.g. C-PROLOG) which is a strongly typed language. Our aim is

to transform TPROLOG program s into complex-free PROLOG program s,

and then to use one of the existing approaches to transform complex-free

PROLOG program s to relational algebraic expressions. Therefore, in order

to transform a TPROLOG program into a complex-free PROLOG program

w e u se th e fo llo w in g p ro ced u re : P a rse r , T y p e _ c h e c k in g , and

Deduce_rule_data_type in figure 6-1 and check the query data type, and check

the query syntax in figure 6-2.

§ 6-2-1 Parser

Parser : TPROLOG program —»

Bool x set(rule) x set(fact) x set(fact-declaration) x set(data-type)+

Parser is a procedure which translates a TPROLOG program into four

data sets w ritten in a standard PROLOG program m ing language form. It

takes as inpu t a TPROLOG program and checks its syntax w ith respect to

the TPROLOG EBNF (q.v. Appendix A). If it is syntactically valid, then the

parser translates it into four data sets.

The set(fact—declaration) and set(data-type) define the TPROLOG program

data types. The set(rule) and set(fact) contain the TPROLOG program ru les

and facts respectively (i.e a PROLOG program).

t —» is a function space constructor

x is product constructor

69

N ote tha t TPROLOG queries are identical to PROLOG queries. Therefore,

there is no need to translate it into PROLOG form.

§ 6-2-2 Type Checking

Type_checking : set(rule) x set(fact) x set(fact-declaration) x set(data-type)

—» Bool

Type_checking : set(goals) x set(fact-declaration) x set(data-type)

—> Bool

§ 6 -2 -1 -1 checks the syntax of a TPROLOG program. PROLOG is not

s tro n g ly ty p ed language, w hilst TPROLOG is. Therefore, before a

TPROLOG program is translated, it should be type checked.

Type_checking in figure 6 -1 and figure 6 -2 is a procedure used to check

correctness of facts data type and the consistency of goals and body

p red ica tes w ith respect to its type definitions. It is fully explained in

chapter 3.

§ 6-2-3 D educing Data type forRules

Deduce_rule_data_declarations : set(rule) x set(data-declaration) x set(data-type)

Bool x set(data-declaration)

The D e d u c e —r u l e _ d a t a _ d e c l a r a t i o n is a procedure used to deduce the data

type of ru le heads. It takes as an input the type inform ation (i.e. the type

inform ation of facts (q.v. § 6-2-1) and the deduced rule data type). Before

the rule head data type is deduced, the body predicates are typed and checked

for consistency.

70

§ 6-3 Translation of TPROLOG Programs into Complex-Free PROLOG

Programs

§ 6-2 describes the procedure which translates a TPROLOG program

into an equ ivalen t PROLOG program. This section describes the first step

of com piling a PROLOG program into equivalent RAEs: normalization.

In chapter 2 w e showed that a safe PROLOG program is equivalent to

RAEs. Therefore, before the compilation of a PROLOG program is carried

o u t, th e PROLOG prog ram is safety checked (q.v. chap ter 4) and

norm alized (q.v. chapter 5), in that order.

The descrip tion of the safety checking procedure is in § 6-3-1. § 6-3-2,

§ 6 -3-3 , and § 6 -3-4 describe the normalization of a PROLOG program ,

w hilst § 6-3-5 describes the goal normalization.

§ 6-3-1 Safety Checking

§ 6-3-1-1 Safety Checking for Rules

Check_rules_safety : (set(rule) x set(facts) —> rule/goal graph)

-» Bool x set(safe-path)

The Check_rules_safety, which check the safety of a PROLOG program, is

a decision p rocedure w hich takes as input a rule-set a and fact-set. The

p rocedure generates a graph which represents the execution route of the

rule-set (i.e. ru le /g o a l graph), and then checks the safety of the rule-set graph

in the ligh t of safety conditions. The result-of the decision is either the

rule-set is strongly safe or it is weakly safe (q.v. chapter 4). Note that, the

(weakly and strongly) safe paths represent all safe executions of the rules.

71

§ 6-3-1-2 Safety Checking for Goals

Check_goals_safety : set(goals) x set(safe-path) -> Bool

Check_goals_safety is a decision procedure which takes a set of sub-goals

and safe execution paths as an input. The procedure checks the safety of each

sub—goal w ith respect to the safe execution paths. This is done by generating

a goal g raph and m apping it into the safe execution paths. The result of the

decision d epends on w hether the goal graph is successfully unified w ith a

safe execution path or not.

§ 6-3-2 Norm alizing Data Declarations

Normalize_data_declaration : set(data-declaration)x set(data-type)

—» set(normalized-declaration)

N o r m a liz e _ d a ta _ d e c la r a t io n is a p rocedure w hich takes the type

inform ation of a PROLOG program (i.e. data_declaration_set and data_type

(q.v. § 6-2)). It is used to extract and replace structured type terms by simple

type term s. It ou tpu ts a new set of type information which is equivalent to

the orig inal type information. The new set of type inform ation contains a

sim ple type term s only.

§ 6-3-3 Norm alizing Facts

Normalize_facts :
set(data-type) x set(facts) x set(normalized-declaration) x

set(facts-declaration) —> Bool x set(normalized-fact)

Normalize_facts is a procedure which extracts s truc tu red terms and

replaces them by new sim ple terms in the same way as their respective

types are norm alized. It takes as an input the set of facts in the program ,

72

the type inform ation about the facts, and the normalized form of the type

inform ation. Before the facts are norm alized, they are typed checked

(q.v. § 6 -2 -2). If the g round term s in facts are correctly typed, the

norm alize procedure is carried out. If a fact is ill typed, then it is rejected

and w ill no t be norm alized. The output of the normalize procedure is a

new set of facts w hich are equivalent to the original facts (q.v. § 5-2-1).

The new facts are com plex-free facts.

§ 6-3-4 N orm aliz ing Rules

Normalize_rules : set(data-type) x set(normalized-declaration) x set(rule)

—» set(normalized-rule)

Normalize_rules is a procedure used to extract structured terms from rule

heads and their body predicates by replacing them by new simple terms. It

takes a PROLOG program rule and produces an equivalent new set of rules

which does not contain any structured terms. The procedure is carried out,

after the typ ing checking done on its body predicates and the rule head

types are deduced, and safety of the program are done. It produces a new

set of com plex-free rules which are equivalent to the original rules.

§ 6-3-5 N orm aliz ing Goals

Normalize_goals :
set(goal) x sct(data-type) x set(normalizcd-declaration) x

set(data-declaration) —> set(normalized-query) x set(temporary-fact)

Norm alize_goals is a procedure which extracts all complex terms from

goals and replaces them by new simple terms. It is carried out, after the

goals are correctly typed and safety checked. It takes as input a set of

PROLOG goals, the original type information, and the normalized form of

the type inform ations. It outputs a n e w - g o a l s - s c t which is a norm alized

73

form of the goals. The norm alization process for goals is similar to the

n o rm a liza tio n o f the un ified clause. The only difference is som e

tem porary facts m ay be added to the program.

§ 6-4 T he T ran sfo rm atio n of C om plex-free PROLOG program s into

R elational A lgebraic Expressions (RAEs)

§ 6-3 describes how a TPROLOG program is transform ed into a

com plex-free PROLOG program . This section shows how a relational

database can be constructed from a complex-free PROLOG program . The

transla tion of a com plex-free PROLOG program is based on Reiter's,

H e n sc h e n ’s, C h a n g 's an d B ancilhon 's ap p ro ach es [R eiter 1978,

H encschen 1984, C hang 1986, Bancilhon 1986]. The construction is done as

follows:

a) The fact base (i.e. norm alized-facts and their type inform ation) is

transfo rm ed into a base-table. Each base-table is represented in

storage by a distinct stored file.

b) The ru les base (i.e. PROLOG com plex-free rules and their type

inform ation) is translated into a view. A view is a table which does

not exist in its ow n right, but instead it is derived from one or more

tables (i.e. view or base-table).

74

Chapter 7: Implementation

§ 7-1 Introduction

C hapter 6 discusses the system architecture. This chapter discusses the

im plem entation of the system using C-PROLOG.

The system is d iv ided into two separate parts. One for compiling a

TPROLOG program into RAEs (figure 6-1) and the other for compiling a

TPROLOG query into a relational algebraic query languages (figure 6-2).

T his c h a p te r consists of three sections. § 7-2 d iscusses the

im plem en ta tion of the TPROLOG compiler, w hilst § 7-3 discusses the

TPROLOG query compiler. § 7-4 gives the status of the implementation.

N ote that, term inals in Appendix A are referred to in this chapter.

M oreover, they are w ritten in italic form.

§ 7-2 The C om pilation of TPROLOG Programs

§ 7-2-1 T he T ransform ation of TPROLOG Program s into Com plex-Free

PROLOG Programs

§ 6-2 and 6-3 describe the transformation of TPROLOG program s into

com plex-free PROLOG program s. The transform ation is done in two

steps; the tran sfo rm atio n of a TPROLOG program into a PROLOG

program , and then the transform ation of a PROLOG program into a

c o m p le x -f re e PRO LO G p ro g ram . This sec tion d esc rib es the

75

im plem entation of these two steps.

§ 7 -2 -1 -1 The Transform ation of TPROLOG Programs into PROLOG

Programs

The transform ation of a TPROLOG program into a PROLOG program

consists of tw o procedures (q.v. § 6-2): the parser, and the deduction of

rule types.

§ 7-2-1—1-1 Parser

parser(P) = (Ok, rule-set, fact-set, facts-declaration-set, data-type-set)

w here O k is false if a TPROLOG program P is not syntactically valid,

o therw ise O k is true. If Ok is true, then P is translated into four data set

w ritten in PROLOG form..

The o u tp u t of the parser is as follows:

a) Each s ta te m e n t (q.v. A ppendix A) of the form clause, w here clause is

of the form s truc ture expressions, (i.e. rule), is translated into an

equivalent unit clause called rule' defined as follows:

ruleistructure, expressions).

w here structure is defined as follows:

predicate xlist(term)

76

w h ere pre d ic a t e is the rule head predicate name, list(ierm) are the

sub-term s in the rule head, and expressions is defined as follows:

listC'P)x list(list(term))

w h ere 'F is e ither a body predicate symbol, an operator of the

arithm etic expression in the body of the rule, a logicop in the body of

the ru le , or /, and list(ferm) is list of terms associated w ith each VF.

M oreover, rule' e rule-set. For example, the rules in the program of

figure 1 -2 are translated into the rule-set shown in figure 7-1 .

rule(glaswegian-infant, [LN, FN, Age], [person, <],

[[FN, LN, address(_, ba, glasgow), Age], [Age, 4]]).

rule(glaswegian-emp, [Ln, Fn, Sch, Yr], [emp, person, >, <],

[[Fn, Ln, degree2(_, Sch, Yr)]], [Fn, Ln, address(_, glaswegian), J ,

[Yr, 1960], [Yr, 1990]]).

Figure 7-1. the translated rules in figure 1-2.

b) A set of s ta temen t of the form clause, where each clause is of the form

structure, (i.e. facts), is translated into an equivalent unit clause called

fact', and it is defined as follows:

relation(predicate, sct(Hst(term)))

w h ere pre d ica te is a predicate symbol (i.e. fact nam e) and each

list(ferm) is a list of ground terms for each fact w ith the sam e

p red icate symbol. Moreover, fact' e f a c t - s e t . For example, the facts in

the program of figure 1—2 are translated as shown in figure 7 2.

77

relation(person, [[joe, cool, porter, address(none, glasgow), 20],

[max, fax, guard, address(flat(21,18, windsor_street, g20), glasgow), 40],

[joe, doe, address(house(31, kew_drive, gl2), glasgow), 3]]).

relation(emp, [[joe, cool, porter, none], [max, fax, guard, [degreel(hs,1968)]],

[fred, red, staff, [degreel(hs, 1975),

degree2(msc, ba, school(glasgow_university, glasgow), 1980),

degree2(msc, ba, school(glasgow_university, glasgow), 1983)]]]).

Figure 7-2. The rewritten form of facts in figure 1-2.

c) Each s t a t e m e n t of the form % facts-declaration., with respect to the set

of s t a t e m e n t of form $ d a t a - t y p e . , is translated into a set of unit

clauses. Such a un it clause, called fact-declaration', is defined as

follows:

schem (predicate, list (term), list {type), list(complex-type))

w here predicate is a fact predicate name or a function symbol in the

d a t a - t y p e (q.v. d), term is an attribute (i.e. c o n) in the f ac t-declara t ion

or d a t a - t y p e , and each term is associated with a t y p e . If the d a ta - t yp e

of an a ttr ib u te in a f a c t - d e c l a ra t i o n is of variant type, then the

predicate definition consists of more than one f a c t - d e c l a r a t i o n ' for the

f a c t - d e c l a r a t i o n . The l i s t (c o m p l e x - t y p e) C l i s t (type) is used w hen we

s e a rc h fo r an a t t r ib u te of com plex ty p e - F in a lly ,

f a c t - d e c l a r a t i o n ' e f a c t - d e c l a r a t i o n - s e t . For example, from the type

in fo rm a tio n in figure 3-1 and figure 3-2 of the p rog ram in

figure 1—2, w e get the set of facts shown in figure 7-3.

78

schem(emp, [first_name, last_name, job_name, degree], [name, name, job, fl], [fl]).

schem(emp, [first_name, last_name, job_name,degree], [name, name, job, f2], [f2]).

schem(emp, [first_name, last_name, job_name,degree], [name, name, job, f3], f3]).

schem(person, [first_name, last_name, home_address, person_age],

[name, name, addresses, age], [addresses]).

figure 7—3. The translation of fact-declaration of the program in

figure 1-2.

d) Each s t a t e m e n t of the form $ data-type. is translated into data-type’,

w here data-type' e data-type-set, and data-type' is defined as follows:

1) If d a t a - t y p e is of the form type(<con, in teger , in teger>) , then

data_typ e’ is of the form type(X) :-con(X), between(X, integer, integer),

w here X is a variable. Note, between is a built-in predicate used to

check the range of X. It is explained in § 3-3-1.

2) If d a t a - t y p e is of the form type((atom, ..., atom}), then data_type' is

of the form typeQQ member(X, [a t o m , a t o m]) .

3) If d a t a - t y p e is of the form type(predicate) , then data-type' has the

sam e form as data- type.

4) If d a t a - t y p e is of the form t y p e d type y t y p e ^) , then d a ta ty p e ' is

Of the form t ype(X) elem ent_in(X ,Y), m e m b e r (Y , I t y p e r ..., t ypen)).

N ote , e le m e n tjn is a b u il t jn predicate used to assume that X is of

type Y.

5) If d a t a - t y p e is of the form type([(t ype1 t y p e j]) , then d a ta ty p e

79

is of the fo rm t y p e (X) each_elem en t(X ,Z), e lem en t_ in (Z ,Y),

m e m b e r (Y A t y p e ^ , t y p e]). N ote , e a c h _ e le m e n t is a b u ilt_ in

p red icate used to take an elem ent Z from list X.

6) If d a ta - ty p e is of the form t y p e (p r e d i c a t e (c o n : t y p e y ..., con : t ype^)) ,

then data-type' is of the form

t y p e (p r e d i c a t e (t y p e ^ , ..., t ype)).

A n ex am p le of tra n s la tin g set of $ d a t a - t y p e in f ig u re 3 -1 in to

d a ta - ty p e - s e t is show n in figure 7 - 4 .

name(X):-string(X), between(X, 1, 10).

street(X):- string(X), between(X, 1, 30).

city(X) member(X, [glasgow, london, edinburgh, manchester, birmingham, reading]).

undergrad(X)m em ber(X , [hs, primary]),

postgrad(X) member(X, [msc, phd, diploma]).

subject(X)m em ber(X , [ba, computer, engl, math, engineering, biology, medicine]).

school_name(X):- member(X, [glasgow_university, edinburgh university,

heriot_w att_uni versity]).

job(X) member(X, [porter, guard, vp, staff]).

post_code(X)m em ber(X , [gl, g2, g3, gl2, g20]).

age(X) integer(X), between(X, 0, 200).

year(X):-integer(X), between(X, 1800, 2100).

house_no(X) integer(X), between(X, 1,1000).

fl(none).

f2(degreel(undergrad, year)).

f3(degree2(postgrad, subject, school, year)).

f4(school (school_nam e, city)).

addresses(address(hom e, city)).

listl(X) each_element(X, Z), element_in(Z, Y), member(Y, [f2,f3]).

qualification(X) element_in (X,Y), member(Y, [fl, listl]).

Figure 7-4 The translation of the p rogram in figure 3-1 into

data-type-se t.

80

For the sake of type checking, each term of the form predicate is

tran s la ted in to schem (predicate,[],[], []) , and each term of the form

p r e d i c a t e d ' con t ype { ’/ con type) ')' is transla ted in to

s c h e m (p r e d i c a t e , \ i s t (c o n) , list (type) , list (co m p le x - t yp e)) . T ran sla ted term s are

a d d e d to fact-declaration-set. For exam ple, the transla tion of the $ da ta - t y p e

in figu re 3-1 are transla ted as show n in figure 7-5.

schem(none, [], [], 11).

schem(degreel,[degree_name, degree_yearl, [under_grad, year], []).

schem(degree2, [degree_name, degree_subject, degree_school, degree_year],

[post_grad, subject, f4, year], [f4]).

schem(school, [name, school_city], [school_name, city], []).

schem(address, [house_address, dty_address], [fl, city], [fl]).

schem(address, [house_address, city_address], [house_address, city], [house_address]).

schem(address, [house_address, city_address], [flat_address, city], [flat_address]).

schem(flat, [flat_no, building, street_name, code], [integer, house_no, street, post_code],

[]).

schem(house, [building, street_name, code], [house_no, street, post_code], []).

Figure 7-4 The translation of $ data-type set in figure 3-1 into a

fact-declaration-set

§ 7 -2 -1 -1 -2 D educing Rule Data Types

Deduce_rule_data_type(rule-set, data-declaration-set, data-type,) =

(Ok,rule-data-declaration-set)

D ed u ce_ ru le s_ d a ta _ ty p e is a recu rsive p ro c e d u re u sed to p ro d u c e a

r u le - d e c la r a t io n - s e t (i.e. ty p e of v a riab le s in ru le h e ad s), w h e re a

81

rule-declaration e rule-declaration-set is syntactically eq u iv a len t to the syntax

of the fact-declaration-set (q.v. § 7 -2 -1 -1 -1 (c)) (note, an a ttr ib u te nam e m ay

be var in a ru le head). The p ro ced u re takes as an in p u t data-declaration-set,

an d a rule-set (q.v. § 7—2—1-1-1), w here

data-declaration-set= fact-declaration-set U rule-declaration-set

It checks the correctness and the consistency of the body pred icates da ta

ty p e w ith respec t to its ex isting type in fo rm ation (i.e. d ata -d eclara tion -set

an d data-type). The o u tp u t of the p rocedure is defined as follows: For each

R e ru le-set, D c data-declaration-set, and T e data-type-set,

a) If the p rocedu re can deduce type for R head from D an d T (i.e. OK is

true), then rule-declaration is generated and ad d ed to D. N ote that, if a

variab le in h ead of R has v a rian t d a ta - ty p e , then there is m ore than

one rule-declaration for R.

b) O therw ise, R is u n ty p ed (i.e. OK is false). As a resu lt of this decision

w e can n o t com pile R to a RAE. T herefore , th e re is no n eed for

fu rth e r processing.

For exam ple, from figure 7-3, figure 7-4, an d figu re 7 -5 the d ed u ced

ru les d a ta type of the p rogram in figure 1-2 is show n in figu re 7-6.

schem(glaswegian_emp, [Ln, Fn, Sch, Yr], [name, name, school, year], [school]).

schem(glaswegian_infant,[LN, FN, Age], [name, name, age], []).

Figure 7-6. A rules data declaration of the p rogram in figure 1-2.

82

§ 7 -2-2 The Transformation of PROLOG Programs into Complex-Free

PROLOG Programs

§ 7 -2 -1 sh ow ed th a t fu rth er processing sh o u ld be done only on facts

a n d ru les w hich have a type. Therefore, the transfo rm ation of a TPROLOG

p ro g ram in to a com plex-free PROLOG p ro g ram p ro ced u re assum es facts

an d ru les w hich are correctly typed.

§ 7 -2 -2 -1 N orm alizing Data Declarations

Normalize_data_declaration (data-declaration, data-type) =

(normalized-declaration).

Each n orm alized-d eclaration e n orm alized -d ec lara tion -set (q.v. § 6—3 —2) is

p ro d u c e d by rep lacing each term (i.e. constan t o r variab le) of a com plex

d a ta ty p e in each d ata-d eclaration e d a ta -d ec la ra tio n -set w ith a new term

(i.e. co n stan t or variab le) of skolem constan t type. M oreover, a com plex

ty p e is in troduced as normalized-declaration by ad d in g the rep laced term and

its ty p e to it, an d prefix ing r to the function nam e (q.v. § 5-2). N o te , the

d a ta d e c la ra tio n of com plex term s is in tro d u c e d in § 7 -2 -1 -1 -1 . A

norm alized-declaration is of the follow ing form:

new_schem(predicate, \ ist (term) x list (type + skolem-type))

For ex am p le , the n o rm a lized form of d a ta -d e c la r a tio n -se t , w hich is

sh o w n in figure 7-3, figure 7-5, and figure 7-6, is show n in figure 7-7.

83

new-schem (emp, [first_name, last_name, job_name, a l], [name, name, job, skolem]).

new-schem (person, [first_name, last_name, a3, person age], [name, name, skolem, age]).

new_schem(rnone, [al], [skolem]).

new_schem (rdegreel, [degree_name, degree_year, a4], [under_grad, year, skolem]).

new_schem(rdegree2,[degree_name, degree_subject, a2, degreeyear, a4],

[post_grad, subject, skolem, year, skolem]).

new_schem(rschool,[name, school_city, a2], [school_name, city, skolem]).

new_schem (rlistl, [a4, a l], [skolem, skolem]).

new_schem(raddress, [al, city_address, a3], [skolem, city, skolem]).

new_schem(rflat, [flat_no, building, street_name, code, a l],

[integer, house_no, street, post_code, skolem]).

new_schem(rhouse, [building, street_name, code, a l],

[house_no, street, post_code, skolem]).

new_schem(glaswegian_emp, [Ln, Fn, Sch, Yr], [name, name, skolem, year]).

new_schem(glaswegian_infant, [LN, FN, Age], [name, name, age]).

Figure 7-7. The norm alization of data set in figure 7-3, figure 7-5. and

figure 7-6.

§ 7 -2 -2 -2 N orm alizing Fact Base

§ 7 -2 -2 -2 -1 Facts Type Checking

facts_type_checking(fact-set, facts-declaration-set, data-type-set) = Ok

T he type of each fact in fa c t-se t is checked w ith re sp ec t to its fact

d ec la ra tio n s in fa c ts-d ec la ra tio n -se t an d d a ta -ty p e -se t (q .v . § 3 -3 -2). The

o u tp u t of the ty p e checking re su lt is e ith e r ty p ed (i.e. O k is true) or

u n ty p e d (i.e. O k is false). If O k is false , then the fact cannot be s to red in a

database. Therefore, there is no need for fu rther processing. A n exam ple of

type checking is tha t re la tion em p and person in figure 7 -2 are typed w ith

respect to data-declaration-set in figure 7-3 and figure 7-5 and d ata -typ e-set

84

in figure 7-4.

§ 1 - 2 - 2 - 2 -2 Norm alizing Facts

Normalize_fact (data-type, fact-set, fact-declaration-set, normalized-declaration-set)=

(Ok, normalized-fact-set).

normalize_fact p rocedu re checks the type of a g ro u n d term in the fact-set

(q.v. § 7 -2 -2 -2 -1) . If the g round term s d a ta type is correct (i.e. O k is true),

th e n th e p ro c e d u re o u tp u ts a n o r m a l iz e d - f a c t s - s e t (q .v . 5—2—1). A

n o r m a liz e d -fa c ts -se t is a rew ritten form of the fa c t-se t (q .v . § 7 -2 -1). In

g e n e ra l, th e p ro c e d u re m irro rs the fa c ts -d e c la r a t io n n o rm a liz a t io n

(q .v . § 7 -2 -2 -1) . M ore p rec ise ly , the tra n s fo rm a tio n fro m fa c t-se t to

norm alized-facts-set is done recursively as follows:

a) Each com plex term in a fact' e facts-set is rep laced by a new skolem

constan t.

b) Each co m p lex te rm is tra n s fo rm e d in to a n e w fac t ca lled

normalized-fact, w here normalize-fact e norm alized-facts-set, by ap p en d in g

the com plex term w ith the rep laced skolem constant.

A norm alize-fact e norm alized-fact-set is of the follow ing form:

new-relation(predicate, setdist(con)).

w h ere predicate is e ither fact p red icate nam e or a functor of com plex term

in a fact, and con is is either a constant in a fact-set or a constan t of skolem

type. For exam ple, re la tion em p and person in figure 7 -2 are ty p ed w ith

respec t to data-declaration-set in figure 7—3 and figure 7—5 and d ata -typ e-set

in fig u re 7-4. T herefore , the norm alized form of facts em p and person is

85

sh o w n in fig u re 7 -8 w ith re sp ec t to n o rm a liz e d -d a ta -d e c la ra t io n in

fig u re 7-7.

new-relation(person, [[joe, cool, c l, 20], [max, fax c3 ,40], [joe, doe, c5, 3]]).

new-relation(em p, [[joe, cool, porter, c7], [max, fax, guard, c8], [fred, red, staff, c9]]).

new_relation(raddress, [[c2, glasgow, cl], [c4, glasgow, c3], [c6, glasgow, c8]]).

new_relation(rnone, [[c2], [c7]]).

new_relation(rflat, [[21,18, windsor_street, g20, c4]]).

new_relation(rhouse, [[31, kew_drive, g l2 , c6]]).

new_relation(rlistl, [[cl4, c8], [e ll, c9], [cl2, c9], [cl3, c9]]).

new_relation(rdegreel, [[hs, 1968, cl4], [hs, 1975, e ll]]).

new_relation(rdegree2, [[msc, ba, clO, 1980, cl2], [phd, ba, clO, 1983, cl3]]).

new_relation(rschool, [[glasgow_university, glasgow, clO]]).

Figure 7-8. The norm alized form of facts in figure 7-2.

§ 7 -2 -2 -3 N orm alizing Rule Base

§ 7 -2 -2 -3 -1 Rules Safety Checking

Check_rules_safety (rule/goal graph generator(rule-set)) =

(Ok, safe-path-set)

check_rules_safety procedure w orks in tw o steps.

s tep 1 : Takes as an in p u t r u le -s e t a n d g en era te s a g ra p h w h ich

rep resen ts the execution pa th of the rule-set (q.v.§ 4-3). Each node in

the g rap h is rep resen ted in the follow ing form.

node(current_node,

list_of_nodes_directed_from_current_node,

list_of_nodes_directed_to_current_node)

86

step 2 : After the ru le /g o a l g raph of rule-set is generated , the p ro ced u re

checks the safety of the ru le -se t in the lig h t of safety cond itions

(q.v. § 4-2-2). The resu lt of the decision m ay be defined as follows:

For each P <z ru le -se t (w here P is a set of ru les rep resen ted by a

g raph using the ru le /g o a l g raph generator),

a) P is strong ly safe (i.e. OK is false), if every execution p a th for P in

the ru le /g o a l g rap h satisfies the safety conditions. In this case,

there is no need to store the graph.

b) O therw ise, w e say P is w eakly safe (i.e. O k is true). In this case,

som e execution paths for P satisfy the safety conditions, b u t n o t

all. The su b -g ra p h of the P w hich satisfies the safety conditions

is called safe-path-set. N ote, if there is no p a th is satisfied by the

safety conditions, then safe-path-set is em pty.

For exam ple, each execution p a th for each ru le in figu re 7-1 satisfies

the safety conditions: w hole p rogram is strong ly safe an d there is no need

to store the graph.

§ 7 -2 -2 -3 -2 N orm alizing Rules

Norm alize_rules(rules-set, data-declaration, norm alized-declaration-set) =

normalized-rule-set

The p ro c e d u re takes ru le -se t (q.v. § 7 -2 -1 -1 -1 (a)), d a ta -d ec la r a tio n

(q.v. § 7 -2 —1-1-1 (c)), an d n orm alized -d eclara tion -set (q.v. § 7 -2 -2 -1) an d

p roduces a new -rules-set. The new -rules-set is p ro duced by extracting com plex

term s from each ru le in rules-set. The ex traction is defined as follows: For

ea c h R e rules-set

87

a) Each com plex term in R head is rep laced by a v a riab le of skolem

constant type. Each com plex term is a d d ed to the b o d y pred icates of

R, after append ing the com plex term w ith rep laced variable.

b) Each com plex term in the body of R is rep laced by a n ew variab le of

skolem constan t type. Each com plex term is ad d to the b o d y of R,

after ap p en d in g the com plex term w ith the rep laced variable. N ote,

if the com plex term also exists in R h ead , then it is rep laced by the

sam e variab le. M oreover, the type of each v ariab le of a com plex

term data type is replaced by the skolem constant type.

A norm alized-rule e norm alized-rule-set is of the follow ing form

new-rule(normalized-structure, normalized-statement)

w h e re

normalized-structure = con x list(non-structured-term), and

normalized-statement = list(x list(non-structured-term))

w h ere 'F is defined in § 7 - 2 - l - l - l . For exam ple, ru le-set in figure 7-1 are

transla ted into a set of new-rules as show n in A ppend ix B.

§ 7 -2 -3 T h e T ran sfo rm a tio n of C o m p lex -free PR O L O G P ro g ram s in to

RAEs

§ 7-2-1 and § 7 -2 -2 described how a TPROLOG p rog ram is transform ed

in to a com plex-free PROLOG program . A com plex-free PROLOG p ro g ram

consists of the following:

88

1) N o rm a liz ed -d a ta -d e c la ra tio n -se t (q.v. § 7 -2 -2 -1).

2) N o rm alized -fac ts -se t (q.v. § 7 -2 -2 -2 -2).

3) N o rm a liz ed -ru le -se t (q.v. § 7 -2 -2 -3 -2).

This section show s how a re la tional da tabase can be constructed from

the above com ponents. In general, the construction is done as follows:

a) Each n o r m a liz e d -fa c t e n o r m a liz e d -fa c t- s e t is tra n s fo rm e d in to a

b ase-tab le . Each b ase -tab le is rep resen ted in s to rage by a d is tinc t

sto red file.

b) Each norm alized-rule e norm alized-rule-set is tran sla ted in to a view . A

v iew is a table w hich does no t exist in its ow n righ t, b u t instead it is

derived from one or m ore tables (i.e. v iew or base-tab le).

In th e fo llo w in g su b -se c tio n s w e d iscu ss , in m o re d e ta il , the

transla tion of com plex-free PROLOG prog ram into RAE.

§ 7 -2 -3 -1 Storing Facts in Database

N o rm alized facts and their da ta declarations are transfo rm ed in to a set

of RAE. Facts are sto red in the da ta base by executing the set of RAEs. The

tran sfo rm a tio n of no rm alized facts and the ir d ec la ra tions in to a set of

RAEs is defined as follows:

a) For each norm alize-fact-declaration e n orm alized -fact-d eclaration -set, an

em p ty b a se -ta b le can be created (i.e. re la tio n a l schem) u s in g the

CREATE-TABLE operation. So that, each n orm alized-fact-declaration is

transfo rm ed as follows:

89

CREATE-T ABLE p r e d i c a t e (list (t e r m x t y p e))

w h ere pred ica te is a fact nam e an d t e rm is an a ttr ib u te nam e, and

t ype is a type of the correspond ing a ttribu te . N ote , w e assum e th a t

u ser-d efin e types (i.e. dom ain) are su p p o rted by the re la tional d a ta

base m an ag em en t system s. For exam ple, the n orm alized -d ata-set of

facts in figure 7 - 7 is transform ed into a set of RAE show n in figure

7 - 9 .

CREATE-TABLE emp(first_name : name, last_name : name, job_name : job, a l : skolem)

CREATE-TABLE person(first_name : name, last_name : name, a3 : skolem,

person_age : age)

CRE ATE-TABLE mone(a l : skolem)

CREATE-TABLE rlistl (al : skolem, a4 : skolem)

CRE ATE-TABLE rdegreel(degree_name : under_grad, degree_year : year, a4 : skolem)

CREATE-TABLE rdegree2 (degree_name : post_grad, degree_subject: subject, a2 : skolem,

degree_year : year, a4 : skolem)

CREATE-TABLE rschool (name : school_name, school_city : city, a2 : skolem)

CREATE-TABLE raddress(al : skolem, city_address : city, a3 : skolem)

CREATE-TABLE rflat(flat_no : integer, building : house_no, street_name : street,

code : post_code, al : skolem)

CREATE-TABLE rhouse(building : house_no, street_name : street, code : post_code,

a l : skolem)

Figure 7 - 9 . The transform ation of facts data declaration in

figure 7 - 7 into RAE.

b) For each n o r m a l i z e d - f a c t e n o r m a l i z e d - f a c t - s e t , each l i s t (c o n)

(q.v. § 7-2 -2 -2 -1) is transform ed as follows:

INSERT INTO predicate (list (term)) : list (con)

90

w h e re p re d ic a te is a fact nam e and l ist (t e r m) is a lis t of a ttr ib u te s

nam e (q.v. § 7 - 2 - 2 - 1) corresponds a type of list(con) of a rgum en ts in

the fact. For exam ple, the set of n e w _ r e l a t i o n in fig u re 7 - 8 is

transfo rm ed in to RAEs show n in figure 7 - 1 0 .

INSERT INTO person (first_name, last_name, a3, p erson -age): joe, cool, c l , 20;

INSERT INTO person (first_name, last_name, a3, person-age) : max, fax, c3, 40;

INSERT INTO person (first_name, last_name, a3, p erson -age): joe, doe, c5, 3;

INSERT INTO raddress(al, city_address, a 3) : c2, glasgow , cl;

INSERT INTO raddress(al, city_address, a 3) : c4, glasgow , c3;

INSERT INTO raddress(al, city_address, a 3) : c6, glasgow, c5;

INSERT INTO rhouse(building, street_name, code, a l) : 31, kew_drive, g l2 , c6;

INSERT INTO rflat(flat-no, building, street_name, code, a l) : 21, 18, windsor_street, g20,

c4;

INSERT INTO emp (first_name, last_name, job_name, a l) : joe, cool, porter, c7;

INSERT INTO emp (first_name, last_name, job_name, a l) : max, fax, guard, c8;

INSERT INTO emp (first_name, last_name, job_name, a l) : fred, red, staff, c9;

INSERT INTO none (a l) : c2;

INSERT INTO rnone (al) : c7;

INSERT INTO rlistl (a4, a l) : cl4 , c8;

INSERT INTO rlistl (a4, a l) : e l l , c9;

INSERT INTO rlistl (a4, a l) : cl2 , c9;

INSERT INTO rlistl (a4, a l) : cl3 , c9;

INSERT INTO rdegreel (degree_name, degree_year, a 4) : hs, 1968, cl4;

INSERT INTO rdegreel (degree_name, degree_year, a 4) : hs, 1975, el l ;

INSERT INTO rdegree2 (degree_name, degree_subject, a2, degree_year, a 4) :

msc, ba, clO, 1980, cl2;

INSERT INTO rdegree2 (degree_name, degree_subject, a2, degree_year, a 4) :

phd, ba, c l 5 , 1983, cl3;

INSERT INTO rschool (name, school_city, a 2) : glasgow_university, glasgow, clO;

INSERT INTO rschool (name, school_city, a 2) : glasgow_university, glasgow, cl 5;

Figure 7 - 1 0 . The transform ation of new _rclation in figure 7 - 8 into a set of

RAEs.

91

§ 7 -2-3-2 Rules Transformation

A pred icate definition, in a PROLOG program , is one of the following:

1) A pred icate defin ition consists of one n o n -recu rs iv e rule.

2) A p red ica te defin ition consists of m ore than one clause (i.e. ru les

and facts). N ote, it m ay contains recursive rules.

In the fo llow ing sub-sections w e discuss the transfo rm ation of each of

the above p red icate defin ition in to a view . The first su b -sec tio n discusses

the transfo rm ation of p red icate consisting of one n o n -recu rs iv e ru le , and

the o th e r su b -sec tio n d iscusses the g en era liza tion of the tran sfo rm atio n

p ro c e d u re in § 7 -2 -3 -2 -1 to include a p red ica te d efin ition consisting of

m ore th an one clause.

§ 7-2-3-2-1 The Transform ation of One N on-R ecursive Rule Procedure

T he tra n s fo rm a tio n of a p re d ic a te d e f in itio n c o n s is tin g of one

n o n -recu rs iv e ru le is done as follows:

Let R be a ru le w ith

a) ru le head nam e r,

b) body predicate nam es p r p 2, ..., p m,

c) and variab les V^, ... , occurring in the ru le head and in a t least

92

one body predicate,

a n d assum e that, each base bo d y p red ica te (i.e. base tab le or view)

p . (1 < i < m) is a s s o c ia te d w i th i ts d a ta d e c la r a t io n

D .e n o rm a lized -d a ta -d ec la ra tio n , then the tran sfo rm a tio n of R in to a
i '

view is as follows:

step 1- The transform ation of R body p red icate into re la tional algebraic

operations is defined as follows:

a) Since w e m ay have tw o body pred icates w ith a sam e pred icate

nam e, the nam e of each body p red icate is referred to by an alias.

For exam ple, for a g iven body p red ica te n am es p 3 /p2, —, pm,

(note p. and p̂ . are tw o body predicates w ith p red icate nam e), the

follow ing expressions are produced:

P2 is as

p is asbt'z 2

p is as b
m m

The in troduction of the new nam es is done for sake of clearity

an d non -am b ig u ity .

b) For each base body pred icate con tain ing one or m ore constants,

each constan t is rep resen ted by the con junction o f a rith m etic

expressions. M oreover, these expressions are u sed as conditions

in a SELECT operation. The SELECT o p era to r on re la tion (i.e. base

b o d y p red ica te) p m selects tup les from p m , w h ere each tup le

sa tisfie s the a rith m e tic ex p ress io n s . For ex am p le , g iv en a

93

re la tio n p , and c l and c2 are constan ts ap p ea rin g as g th and

k th argum ents in p m, then p m is transfo rm ed in to

SELECT p WHERE p .a = cl a p .a = c2
ttl m g m k

w h e re a, an d a are the k th an d the g th a t tr ib u te n am es ,k g &
respectively, in p , and c l and c2 are constants.

c) Each tw o base body predicates, w hich share variables, are joined

to g e th e r by u s in g =-join o p era tio n . For exam ple , if a g iven

variab le V ap p ears in k th colum n of p^ and g th co lum n of p.,

then p. and p. are transform ed to follows:
r 1 v)

(p. JOIN p) WHERE p .a =p . a
* 1 1 k) Z

w h e re a fc is the k th a ttr ib u te n am e in p ., an d a^ is the g th

a ttribu te nam e in p . Each tw o of the resu lting re la tions or base

bo d y p red ica te s (i.e. base body p red ica te s w h ich are n o t ye t

joined), w hich share variables, are jo ined together by u sing =-join

op era tio n too. For exam ple, if tw o variab les V^, and V2 ap p ea r

in the k th ancj g th co lum ns of p ., a p p ea rs in the m th

co lum n of p., V? ap p ea r in the n th co lum n of p , p., p ., and
) Z Z l J

p z are base body predicates, then they are transform ed in to RAE

as follows:

((p. JOIN p. WHERE p..a =p. .a)
i j i k j tn

JOIN p WHERE p .a = p .a)
r z J g z n

w h ere a, and a are a ttr ib u te nam es in p., a is an a ttr ib u te
k g r i m

nam e in p., and a^ is an a ttrib u te nam e in p^. The join of the

94

re su lted re la tions a re carried o u t u n til th e re a re no re la tio n

sharing variables w ith an other.

d) The re su lted re la tions fo rm (c) above, w h ich do n o t sh are

variables, are com bined by using the cartesian p ro d u c t operation.

For exam ple, g iven p̂ . an d p̂ . b ase b o d y p red ica te s o r n ew

re la tio n s w ith o u t sh a red v ariab les , th en th ey a re com bined

using the cartesian p ro d u c t opera tion as follows:

p TIMES p
* /

e) Finally, each com parison p red icate is transfo rm ed in to a sim ilar

arithm etic com parison opera tion w hich is u sed as a condition in

a SELECT opera tion on the resu lting re la tion from (d) above. For

exam ple, given a com parison body pred icate X > Y, w here X is jth

p . a rgum en t and Y is k th p a rg u m en t, then w e can transfo rm

the com parison pred icate as follows:

SELECT p WHERE p .a >p .a
* } g k

w h ere a. is the jth p . a ttr ib u te n am e an d a, is the k th p

a ttr ib u te n am e, p is a re su ltin g re la tio n fro m (d) above.

M oreover, if one of th e o p e ra n d s is a c o n sta n t, th en the

co m p ariso n p re d ic a te is tra n s fo rm e d in to an a r ith m e tic

com parison opera tion contain ing a constan t as its operand .

step 2- The ru le head of R is translated as follows:

DEFINE VIEW r (a , . . . , a) AS PROJECT Pg a ' " ' Pfc a WHERE ^
I n I n

95

w here is an expression bu ilt u p form step 1, and (Vi: 1 < i < n) â .

is V. c o rre sp o n d in g a ttr ib u te n am es d e d u c e d fro m the b o d y

predicates.

§ 7 -2 -3 -2 -2 The Transform ation of a Procedure C onsisting of More Than

One Clause

In this su b -sec tio n , w e d iscuss the case w h en a p red ica te defin ition

co n sis ts of m o re th an one clause. The tra n s fo rm a tio n of a p red ica te

defin itio n consisting of ru les and facts is d e fined as follows: Let P be a

p red ica te defin ition consisting of clauses (i.e. facts an d ru les) C^, ... , C^

w ith the sam e facts and rules nam e c.

Each fact C. (1 < i < n) in P is transform ed in to RAE as follows:

1) C. fact nam e is rep laced by a new fact n am e f. M oreover, the

co rresponding fact nam e in norm alized-data-declaration is rep laced by

f.

2) T he fact f d a ta -d e c la ra tio n a n d its c o rre sp o n d in g facts a re

tra n s fo rm e d in to RAEs as sh o w n in § 7 -2 -3 -1 . T he la tte r is

executed.

Each ru le C. (1 < i < n) is a ru le w ithi

a) ru le head nam e c,

b) and body predicate p ^ , ..., p .^ ,

is transfo rm ed in to RAE as follows:

96

1) For each ru le C. , the ru le h ead nam e c is rep laced by a new nam e

r..
i

2) The transfo rm ation of each ru le w ith ru le h ead nam e r. in to RAE
i

is defined in § 7 -2 -3 -2 -1 .

A ll tab les g en e ra ted from ru le tran sfo rm a tio n s an d fact tran sfo rm a tio n s ,

above, are jo ined together by UNION operation , an d then the p red ica te nam ed c

is transfo rm ed in to RAE as follows:

DEFINE VIEW c AS UNION f, r , , r,
1 h

w h ere f is defined in the facts transfo rm ation above an d r ^ , . . . , r^

are defined in ru les transform ation above.

F o r ex am p le , ru le s in A p p e n d ix B a re tra n s la te d as sh o w n in

A p p en d ix C, by using n o rm a lized -d a ta -d ec la ra tio n in figu re 7-7.

§ 7-3 The Com pilation of TPROLOG Goals

TPROLOG p ro g ram goals are syntactically sim ilar to C-PR O LO G goals

(q.v. A ppend ix A). Therefore, there is no n eed to translate TPROLOG goals

in to PROLOG form . H ow ever, since TPROLOG program s are ex tended to

in c lu d e type in fo rm atio n (q.v. § 3-3), TPROLOG goals sh o u ld be ty p ed

checked before they are com piled in to RAE. M oreover, they sh o u ld be

safety checked too. W e use the follow ing exam ple th ro u g h o u t this section:

97

?-glaswegian_infant(L, F, A),

glaswegian_emp(L,_, school(edinburgh_university, edinburgh), Y).

Figure 7-11 A goal in TPROLOG form.

§ 7 -3 -1 The Transform ation o f TPROLOG G oals into C om plex-Free

PROLOG Goals

The tran sfo rm a tio n of TPROLOG goals in to co m p lex -free PROLOG

g o a ls co n sists of th ree p ro c e d u res . T hey are: c h e c k _ g o a l _ d a t a _ t y p e ,

check_golas_safety, and norm alize_goals. The execution of the last p ro ced u re

d ep en d s on the resu lts of the first tw o procedures.

§ 7 -3 -1 -1 Goals Data Type Checking

Check_goals_data_type (data-declaration-set, data-type-set, goals) = Ok

Check_goals_data_type is a decision p rocedure. It decides, d ep en d in g on

the da t a - d e c l a r a t i o n- s e t (q.v. § 7 -2 -1), w h e th e r the d a ta of the goal is

correctly typed and consistent or not. The p rocedure takes as an in p u t goals,

d ata-typ e-set, and data-declaration-set. The resu lt of the decision is defined as

follows: suppose tha t D is a data-declaration-set, T is a data-typ e-set, and Q is

a goal, then

a) Q is w e ll-ty p ed goal (i.e. Ok is true), if the type of all its term s are

deducible, and consistent w ith respect to D and T.

b) O therw ise (i.e. O k is false), Q is no t w e ll-ty p ed and as a resu lt of this

decision, it is no t possible to get the answ er for the goal.

98

For exam ple the goal in figure 7-11 is w e ll-ty p ed and consistent.

§ 7 -3 -1 -2 Goals Safety Checking

Check_goals_safety (goals, safe-path-set) = Ok

Check_goals_safety is a decision p rocedure. It takes a set of su b -g o a ls as

an in p u t. The p rocedure checks the safety of each su b -g o a l w ith respect to

the safety of the unified procedures. The resu lt of the decision is defined as

follows: Suppose that, Q is a sub-goal and S is a set of safe p a th s for Q, then

a) Q is safe goal (i.e. O k is true), if Q is un ified w ith a s tro n g ly safe

pred icate defin ition or if Q is m apped to the safe path .

b) O therw ise, Q is unsafe and as a resu lt of this decision there is no

need to try to find the answ er of the sub-goal.

For exam ple, the goal in figure 7-11 is safe because the un ified ru les, in

figu re 7-1, are strongly safe.

§ 7 -3 -1 -3 N orm alizing G oals

Norm alize_goals (goal, data-type-set, data-type-declaration-set, norm alized-data-set)

=(normalized-query, temporary-facts-set)

N orm alize_goals takes as an in p u t goals, d a ta -ty p e-se t, data-d eclaration-set,

an d norm alized-declaration-set. It ou tp u ts a new -goals-set. A n ew -goals-set is the

no rm a lized form of the goals. The transfo rm ation of the goals is defined as

follow s: S uppose that, Q is a goal, D is a d a ta -d ec la ra tio n -se t, and D' is a

norm alized-declaration—set, then

99

a) If Q contains a variable of a com plex d a ta -ty p e , then Q is norm alized

in th e s im ila r w ay to its d a t a - d e c l a r a t i o n n o r m a l i z a t i o n

(q.v. § 7 -2 -2 -1). H ow ever, in stead of h av in g a constan t of skolem

type, w e have the variable of a skolem type.

b) If Q contains com plex term s, then its no rm aliza tion is sim ilar to a

ru le h ead n o rm a liza tio n (q.v. § 7 - 2 -2 -3 -2). H o w ev e r, th e new

p red ica te , w hich rep laces the com plex te rm s, is a d d e d to the

p rogram as a tem porary fact.

For exam ple, the norm alized form of the goal in figure 7 - 1 1 is show n

in figure 7 —1 2 . N ote, rsch o o l(ed in b u rg h _ u n iv ersity , ed in b u rg h) is asserted as a

tem porary fact.

?- glaswegian_infant(L, F, A),

assert(rschool(edinburgh_university, edinburgh, c)),

glaswegian_emp(L, F, c, Y).

Figure 7-12. The norm alization form of goals in figure 7-11.

§ 7 -3-2 T ransfo rm C om plex-Free G oals in to RAE

§ 7-3-1 describes how TPROLOG goal are transla ted in to com plex-free

goals. The transform ation p rocedure results in:

1) A set of tem porary facts.

an d

2) A set of norm alized goals.

1 0 0

T his sec tio n sh o w s h o w re la tio n a l d a ta b a se e x p re ss io n s can be

c o n stru c te d from the above com ponen ts. The co n stru c tio n is d o n e as

follow s:

a) All tem porary facts are tran sfo rm ed in to b ase -tab le s as show n in

§ 7 -2 -3 -1 .

b) The norm alized goal is transform ed in to RAE in the sim ilar w ay to

the transfo rm ation of ru le bo d y pred icates. H ow ever, a p ro jection

o pera tion is used to project the value of all variables in the goal.

For exam ple, the no rm alized goal in figu re 7-12 is tran sfo rm ed in to

the fo llow ing expression:

PROJECT

glaswegian_infant.last_nam e,

glaswegian_infant.first_name,

glaswegian_infant.person_age,

glaswegian_emp.degree_year,

WHERE (SELECT(glaswegian_infant JOIN glaswegian_emp

WHERE glaswegian_infant.last_name = glaswegian_emp.last_name)

WHERE glaswegian_emp.a2 = c)

Since a query is orig inally w ritten in PROLOG, the resu lt of the query

sh o u ld be in PROLOG form . For exam ple, the resu lt of the query above is

rew ritten in PROLOG form as follows:

L = value(glaswegian_infant.last_name)

F = value(glaswegian_infant.first_name)

A =value(glaswegian_infant.person_age)

Y = value(glaswegian_emp.degree_year)

1 0 1

§ 7-4 Status of the Implementation

§ 7 - 2 an d § 7 - 3 give the p lan of the w ho le system im p lem en ta tio n .

H ow ever, w e have no t im plem ented the w hole system .

W e have im plem ented the TPROLOG p arse r w hich checks the syn tax

o f a TPROLOG p ro g ra m a n d th e n tra n s la te s it in to fo u r d a ta set

re p re se n te d in PRO LO G form (q.v. § 7 - 2 - 1 - 1 - 1) . A fter th a t, the ty p e

c h e c k e r o f ru le s a n d th e ty p e d d e d u c t io n a re im p le m e n te d

(q.v. § 7 - 2 - 1 - 1 - 2) . The fact base n o rm a liza tio n has b een im p lem en ted .

This includes the no rm aliza tion of d a ta -d e c la r a t io n -s e t (q.v. § 7 - 2 - 2 - 1) , the

facts ty p e checker, an d the n o rm a liza tio n of fa c t-se t (q.v. § 7 - 2 - 2 - 2) .

Finally , w e have im p lem en ted the ru le /g o a l g rap h of the p ro g ram , an d

then the safety checker is im plem ented (q.v. § 7 - 2 - 2 - 3 - 1) .

R ules in a TPROLOG p ro g ram have n o t been im p lem en ted yet. The

com pila tion of the n o rm alized TPROLOG p ro g ram , w h ich is b ased on

[R eiter 1 9 7 8 , H enschen 1 9 8 4 , Bancilhon 1 9 8 6 , C hang 1 9 9 8 6] , has no t been

im p lem en ted yet. F inally , the com plete p rocessing of TPROLOG goals,

w hich is described in § 7 - 3 , needs to be im plem ented .

1 0 2

Chapter 8: Conclusions and Future Work

§ 8-1 C onclusions

W e m ay d iv id e o u r w o rk on co m p ilin g log ic p ro g ra m s in to

c o n v e n tio n a l RAEs in to tw o p a rts : the p re -c o m p ila t io n an d the

co m p ila tio n .

The pre-com pila tion p a rt is used to check the typing an d the safety of a

logic p ro g ram (i.e. a PROLOG p rogram). It ensu res the ex istence of an

equ ivalen t RAE for the logic program .

The type system in PROLOG (i.e. TPROLOG) allow s us to a d d type

in fo rm a tio n to PROLOG. It is u sed to check the co rrec tn ess an d the

co n sis ten cy of the d a ta w ith re sp ec t to the d a ta ty p e in fo rm atio n .

M oreover, it allow s us to get a rich typ ing system as well as the benefits of

PROLOG flexibility in the in fo rm ation rep resen ta tio n . H o w ev er, it does

no t inc lude recursive type definitions. If allow s any term to be of a v a rian t

type, w h ils t database system s do not. W e include varian t type by assum ing

tha t any a rg u m en t of varian t type is a com plex a rgum en t, an d then it is

norm alize it as show n in the usual way.

C heck ing the safety of ru les by usin g m agic basis [Z aniolo 1986] is

r e s tr ic te d to n o n - re c u rs iv e PR O LO G p ro g ra m ru le s , w h ils t th e

com bination of ru le /g o a l g raph [U llm an 1985] and m agic basis enables us

to check the safety of a PROLOG p ro g ram contain ing a recu rsive ru les.

A lth o u g h o u r safety checking is a com pile tim e checking, som e safety

check ing m ay d o n e a t execu tion tim e too. W e check a t com pile tim e

103

w h e th e r the p rog ram is strong ly safe or w eakly safe, w h ils t a t execution

tim e w e check w hether a query is safe or not. All safety checking is done

w ith respect to a generated ru le /g o a l g raph w hich rep resen ts all possible

execu tio n s of a PROLOG p rog ram . The safety co n d itio n s d isca rd any

unsafe p a rt of the ru le /g o a l graph. Therefore, it w ou ld be m uch faster and

econom ical to inco rpo ra te the safety checking in to the genera tion of the

graph .

The co m p ila tio n p a r t com piles logic p ro g ram s co n ta in in g n o n -fla t

c la u se s in to in p u t su ita b le fo r c o n v e n tio n a l re la t io n a l d a ta b a s e

m an ag em en t system s. This is achieved by rem ov ing com plex a rgum en ts

from facts and ru les an d rep lacing them w ith s im plified facts and rules.

The s im plified facts are s to red in a conventional re la tional da tabase, and

the sim p lified ru les are com piled in to v iew s an d s to red in a ru le base.

M oreover, tem porary facts, w hich are g enera ted and u sed a t a t execution

tim e, a re s to red tem p o ra rily in a da tab ase . The rem o v a l of com plex

a rg u m en ts in this w ay has several advantages :

1) It enables conventional relational databases to be u sed for sto ring the

com plex facts as g ro u n d clauses contain ing atom ic clauses.

2) S tandard relational algebraic operations can be u sed an d need no t be

extended.

3) It a llow s us to use bo th logic p ro g ram m ing languages and database

query languages (e.g. SQL [Chang 1986]).

4) It allow s us to use a lready existing m ethods of com piling flat clauses

in to a relational database.

104

W e h av e im p lem en ted a p a r t of the system u s in g C -PR O LO G . W e

have im p lem en ted TPROLOG w hich com prise of tran sla to r an d the type

checker(w here tran sla to r transla tes TPROLOG p ro g ram in to PROLOG,

an d type checker checks the type of the TPROLOG program). M oreover, w e

have im plem en ted the ru le /g o a l g rap h generato r an d the safety checker

for a TPROLOG program .

§ 8-2 F u tu re W ork

W e have the follow ing p lan for fu tu re w ork.

1) E xtending TPROLOG to include a recursive type defin itions. § 3 -3-1

a llow s us to define the type of fin ite ran g e (i.e. en u m era te d types,

su b - ty p e of the en u m era ted type or basic type , an d s tru c tu re d types

w hich are constructed from finite types or basic types). The inclusion of

recu rsiv e type defin itions w o u ld allow us to define in m ore in fin ite

types (e.g. n a tu ra l-n u m b er).

2) Incorpora te the safety conditions in to the generation of the g raph . A

ru le /g o a l g raph generato r generates a g raph of all execution paths of a

p ro g ram , w h ils t the safety conditions d iscard unsafe p a th s. Therefore,

w e m ay restric ts the gen era tio n of the g rap h to g en e ra te on ly the

ru le /g o a l g rap h contain ing the unsafe paths. Therefore, if there is no

g ra p h gen era ted for the p rog ram , then the p ro g ram is s trong ly safe.

O therw ise it is w eakly safe.

3) C om plete the w hole system and use i t w ith of a rea l database. This

w ill allow us to experim ent and determ ine m ore precisely the benefits

of com bining LPLs and RDBSs.

105

4) E m bedd ing RAEs in PROLOG. Since n o t every ru le in a PROLOG

p ro g ram can be transla ted in to RAEs. H ow ever, som e bo d y pred icates

in a such ru le is u n ified w ith a p ro ced u re w hich is tra n s la ted in to

RAEs. Therefore, w e m ay need to ex ten d PROLOG to inc lu d e som e

b u ilt- in p red icates , such as those in tro d u ced by C hang [C hang 1986]

w hich can be used as a b ridge to a relational system .

5) U sing the RAEs op tim iza tion techniques and para lle l p ro ced u res to

execu te them . O ur app ro ach of tran sla tin g a PROLOG p ro g ram ru le

in to RAE is by tra n sfo rm in g each b ase b o d y p re d ic a te co n ta in s

constan ts into a SELECT opera tion , an d transfo rm ing each p a ir of base

p red icates into a =join opera tion and so on un til no m ore relations m ay

be jo ined. A fter that, transfo rm ing the re su ltin g re la tio n s from =join

op era tio n s to cartesian p ro d u c t opera tions. F inally , tran sfo rm in g any

co m p ariso n b o d y p red ica te in to SELECT o p era tio n on the top of the

re su lted re la tion from the cartesian p ro d u c t opera tion . W e can execute

the SELECT opera tion for each ind iv idual base body p red icate in parallel.

= join opera tions for each p a ir of relations m ay be execu ted in parallel

too. Finally, cartesian p ro d u c t operations for each pa ir of re la tions m ay

be executed in parallel. W e m ay im pose som e op tim iza tio n techniques

w h ich reo rder the operations o rder to m ake queries m ore efficient.

106

References

[A tkinson 1987]

M .P. A tk in so n , a n d O .P. B unem an , " T ypes an d P e rs is ten ce in

D atabase P rogram m ing L anguages ", ACM C om p u tin g Surveys, Vol.

19, N o. 2, June 1987. PP. 105-190.

[Bancilhon 1985]

F. Bancilhon, D. M aier, Y. Sagiv, and J. D. U llm an, " M agic Sets and

O th e r S trange W ays to Im p lem en t Logic P ro g ram s ", M CC Tech.

R eport No. DB-121-85.

[Bancilhon 1986]

F. Bancilhon, an d R. R am akrishnan , " A n A m ateur's In tro d u ctio n to

R ecursive Q u ery P rocessing Strategies ", P roceed ing of SIGM OD 86

In te rna tiona l C onference on M anagem ent of D ata, W ash ing ton D.C.

M ay 1986. PP. 16-52.

[Bell 1978]

R. Bell, an d P. G ray, " A n In tro d u c tio n to R elational A lgebra: A n

in fo rm al G u ide to the ASTRJD R elational L anguage " U n iversity of

A berdeen Tech. R eport A UCS/78003, Septem ber 1978.

[Bocca 1986]

J. Bocca, " O n the E v a lu a tio n S tra teg y of E duce ",P ro ceed in g of

SIGM O D 86 In te rn a tio n a l C o n ference on M an a g e m en t of D ata,

W ashington, D.C. M ay, 1986, PP. 368-378.

107

[Bocca 1989]

J. Bocca, " EDUCE* -A Logic P rog ram m ing System for Im plem enting

K B M S's ", B N C O D -7 , H e r io t - W a t t U n iv e r s i ty , E d in b u rg h ,

12-14 July 1989, PP. 117-146.

[Brodie 1986]

M.L. Brodie, and M. Jarke, " O n In teg ra ting Logic P rog ram m ing an d

D atabases ", P roceed ing of 1st In te rn a tio n a l W o rk sh o p in E xpert

D atabase Systems , 1986, PP. 191-207.

[Bundy 1983]

A. B undy, " The C o m p u te r M odelling of M athem atical R easoning ",

A cadem ic Press Inc, 1983.

[Chang 1986]

C. C hang and A. W alker, " PRSQL : A P rolog P rog ram m ing Interface

w ith SQ L /D S ", P roceeding of 1st In te rna tiona l W orkshop in E xpert

D ata Base System s, 1986, PP. 233-246.

[Clocksin 1984]

W .F. C lo ck sin a n d C.S. M ellish ," P ro g ra m m in g in P ro lo g ",

S p ringer-V erlag Second Edition 1984.

[Date 1981]

C.J. Date, " A n In troduction to D atabase System s ", A d d iso n -W esley

Publish ing C om pany (Third Edition), 1981.

[Frost 1986]

R.A. Frost, " In troduction to K now ledge Base System s ", Collins 1986.

108

[Gallaire 1984]

H. G alla ire , J. M inker an d J. N ico las, " Logic a n d D ata Base: A

D eductive A pproach ", C om p u tin g Survey, Vol. 16, N o. 2, June 1984,

PP. 153-185.

[Gray 1984]

P. G ray, " Logic, A lgebra and D atabase ", Ellis H orw ood Lim ited, 1984.

[H enschen 1984]

L.J. H enschen an d S.A. N aqv i, " O n C om piling Q ueries in R ecursive

F irst-O rder D atabases ", JACM, Vol. 31, No. 1, January 1984, PP. 47-85.

[H siang 1984]

J. H siang an d M.K. Srivas, " A Prolog E n v iro n m en t for D evelop ing

an d R easoning A bout D ata Types ", In H. Ehrig, C. Floyd, M. N ivat,

a n d J. T hatcher, LNCS, Vol 186, TAPSOFT C onference, Berlin 1985,

PP. 276-293.

[Jarke 1984]

M. Jarke, J. C liffo rd , an d Y. V assiliou , " A n O p tim iz in g P ro log

F ro n t-E n d To R ela tio n a l Q u e ry S ystem ", 1984, P ro ceed in g of

A C M -SIG M O D In te rn a tio n a l C onference on M an ag em en t of D ata,

Boston, MA, PP. 296-306.

[Kent 1983]

W. K ent, " A Sim ple G u id e to Five N o rm al Form s in R elational

D ata Base Theory " CACM , Vol. 26, No. 2, February 1983, PP. 120-125.

109

[Kowalski 1975]

R. K ow alski, " A Proof P rocedure U sing C onnecting G raphs ", JACM,

Vol. 22, No. 4, 1975, PP. 572-595.

[Kowalski 1979]

R. K ow alsk i, " Logic P ro g ram m in g for P rob lem S o lv ing ", N o rth

H olland 1979.

[K rishnam urthy 1988]

R. K r is h n a m u rth y , O. S h m u e li, a n d R. R a m a k r ish n a n , " A

F ram e w o rk fo r T estin g Safety a n d E ffective C o m p u ta b ility of

E x tended D atalog " Proce. of SIGM OD In te rna tiona l C onference O n

M anagem ent of Data, Chicago June 1988, PP. 154-163.

[Lloyd 1984]

J.W. L loyd, " F oundation of Logic P rog ram m ing ", S p rin g er-V erlag ,

Second Edition 1984.

[M inker 1978]

J. M inker, " A n E xperim ental R elational D atabase System Based on

Logic (or C lause Encounters of a Logical K in d)", In H. G allaire and

J. M inker, " Logic and Data bases ", P lenum 1978, PP. 107-145.

[Mycroft 1984]

A. M ycroft, an d R. A. O 'K eefe, " A P o lym orph ic T ype System for

P ro log ", Al, Vol. 23, 1984, PP. 295-307.

110

[N ussbaum 1989]

M . N u s s b a u m , " C o m b in in g T o p - D o w n a n d B o tto m -U p

C o m p u ta tio n in K now ledge Based System s " In L. K erschberg , "

P ro c e e d in g of the S econd In te rn a tio n a l C o n fe ren ce on E x p ert

D atabase System s ”, 1989, PP. 273-310.

[Parker 1986]

D. S to tt P a rk e r, M. C arey , M. Jarke , a n d A. W alk e r, " Logic

P ro g ra m m in g a n d D ata Base ". P ro ce e d in g of 1st In te rn a tio n a l

W orkshop in Expert D ata Base System s, 1986, PP. 35-48.

[Patrice 1987]

B. Patrice, " T urbo Prolog: an In tro d u ctio n to A rtificial in telligence ",

John W iley 1987.

[R am akrishnan 1987]

R. R am ak rish n an an d F. B ancilhon , ” Safety of R ecu rsiv e H o rn

C la u se s w ith In f in i te R e la tio n s ", P ro c e e d in g o f th e 6 th

A C M -S IG A C T -S IG M O D -S IG A R T S y m p o s iu m o n P r in c ip le s of

D ata Base System s, M arch 1987, PP. 328-339.

[Reiter 1978]

R. R eiter, " D ed u ctiv e Q u e s tio n -A n sw e rin g on R e la tio n a l D ata

Bases ". In G alla ire H ., a n d M inker J., " Logic an d D ata Bases "

P lenum 1978, PP. 149-177.

[Todd 1976]

S. Todd, " The Peterlee R elational Test V ehicle- a system o v e rv ie w ".

IBM System Journal, Vol. 15, No. 4, 1976, PP. 285-308.

I l l

[Tsur 1986]

S. T sur, an d C. Z anio lo , " LDL: A L ogic-B ased D a ta -L an g u ag e ",

Proceedings of 12th VLDB, Kyoto, Japan, A ugust 1986, PP. 33-41.

[U llm an 1981]

J.D. U llm an , " P rincip les of D atabase System s ", C o m p u te r Science

Press (Second Edition), 1981.

[U llm an 1985]

J.D. U llm an , " Im p lem en ta tio n of Logical Q u e ry L an g u ag es for

D atabase ", ACM T ransactions on D atabase System s, Vol. 10, N o. 3,

Septem ber 1985, PP. 289-321.

[Zaniolo 1985]

C. Z an io lo , " The R ep re se n ta tio n a n d D e d u c tiv e R e trie v a l of

Com plex Objects ", Proceeding of 11th VLDB, PP. 458-469.

[Zaniolo 1986]

C. Z an io lo , " S afe ty an d C o m p ila tio n of N o n -R e c u rs iv e H o rn

C lauses ", P ro ceed in g of 1st In te rn a tio n a l C on fe ren ce on E xpert

D atabase System s, 1986, PP. 167-178.

112

Appendix A: EBNF Specification of TPROLOG Syntax

p ro g ram ::= s tatem ent { s ta te m e n t}

s ta tem en t ::= clause

I '%' fac t-decla ra tion

I ’$' d a ta - ty p e

I 7 ' goal'.'

d a ta - ty p e ::= ty p e '(' ('< ’ con '/in teg e r ’/ in teger V

I '{' a tom { V a tom } '}'

I p red icate < '(' con type { '/ con type } ')’

I T (’{’ type { type} '}' I type { t ype }) ’]'

)

type ::= con

clause ::= struc tu re (I s tatem ents)

goal ::= expressions

expressions::= { expression ('/ I ' ; ') } < expression >

expression s tructu re I com pute I '!'

s tru c tu re ::= p red icate < '(' term { term } ')' >

113

predicate ::= con

term ::= in teger I var I list I s truc tu re I "" { char } ""

com pute (var I in teger)

('is' (var I integer) opera to r (var I in teger)

I logicop (var I in te g e r)

)

o p era to r ::= V I’-' I I I 'm od'

logicop ::= ’>' < '=' >

I ’=' < '<’ >

I ’< ’

I ’\ =

list ::= '[' < term < { term } < ' I' term » > ']'

a tom ::= in teger I con

con ::=lo { char }

in teger ::= dig { d ig }

var ::= cap { char } I

char lo I cap I d ig I

d ig I T I I ’9’

114

lo ::= ’a' I 'b* I I ’z ’

cap 'A' I 'B* I I Z ’

fac t-decla ra tion ::= pred icate '(' con type { con con } ')'

N ote:

N o n te rm in a l = { s ta tem en t, c lause, s tru c tu re , exp ression , d a ta - ty p e , goal,

com pute , term , in teger, var, list, char, logicop, o pera to r, type,

con, expressions, predicate, fac t-declara tion , atom}

T erm inal = {7, T , ’(’, ')', *+', V , ’m od ',

’W , ’I ' / r , ’e ’, ’O’, '1 ',....... , ’9V a', ’b ’....... , 'z ’,

’A ’, 'B ',..... , ’Z ’, I ’, 'is'}

Sym bols

< > (zero or one time)

{} {zero o r m ore time)

() (only one time).

115

Appendix B : The Normalization of Rules in Figure 7-1

ncw_rule(glaswegian_infant, [LN, FN, Age],

[person, raddress, mone, <],

[[FN, LN, VI, Age], [V2, glasgow, VI], [V2], [Age, 4]]).

new_rule(glaswegian_infant, [LN, FN, Age],

[person, raddress, rflat, <],

[[FN, LN, VI, Age], [V2, glasgow, VI], V2], [Age, 4]]).

new_rule(glaswegian_infant, [LN, FN, Age],

[person, raddress, rhouse, <],

[[FN, LN, VI, Age], [V2, glasgow, VI], [_, _, V2]], [Age, 4]]).

new_rule(glaswegian_emp, [Ln, Fn, Sch, Yr],

[emp, rlistl, rdegreel, rlistl, rdegreel, rlistl, rdegree2, rschool, person, raddress, mone, >, <],

[[Fn, Ln,_, VI], [V2, VI], [_, V2], [V3, VI], [_ ,_ ,V 3], [V4, VI], [_, _, Sch, Yr, V4],

L, Sch], [Fn, Ln, V5, J , [V6, glasgow, V5], [V6], [Yr, 1960], [Yr, 1990]]).

ncw_rule(glaswegian_emp, [Ln, Fn, Sch, Yr],

[emp, rlistl, rdegreel, rlistl, rdegreel, rlistl, rdegree2, rschool, person, raddress, rflat, >, <],

[[Fn, Ln,_, VI], [V2, VI], [_, V2], [V3, VI], [_, _, V3], [V4, VI], [_, _, Sch, Yr, V4],

U Sch], [Fn, Ln, V5, J , [V6, glasgow, V5], V6], [Yr, 1960], [Yr, 1990]]).

ncw_rule(glaswegian_emp, [Ln, Fn, Sch, Yr],

[emp, rlistl, rdegreel, rlistl, rdegreel, rlistl, rdegree2, rschool, person, raddress, rhouse, >,

<] ,

[[Fn, Ln,_, VI], [V2, VI], [_, V2], [V3, VI], [_, _, V3], [V4, VI], [_, _, Sch, Yr, V4],

[_, Sch], [Fn, Ln, V5, J , [V6, glasgow, V5], [_, V6], [Yr, 1960], [Yr, 1990]]).

116

new_rule(glaswegian_emp, [Ln, Fn, Sch, Yr],

[emp, rlistl, rdegreel, rlistl, rdegree2, rschool, rlistl, rdegree2, rschool, person, raddress,

mone, >, <],

[[Fn, Ln,_, VI], [V2,V1], [_, V2], [V3, VI], [_, V4, _,V3], [_, _, V4], [V5,V1],

L , Sch, Yr, V5], [_, Sch], [Fn, Ln, V6, J , [V7, glasgow, V6], [V7], [Yr, 1960], [Yr, 1990]]).

new_rule(glaswegian_emp, [Ln, Fn, Sch, Yr],

[emp, rlistl, rdegreel, rlistl, rdegree2, rschool, rlistl, rdegree2, rschool, person, raddress,

rflat, >, <],

[[Fn,Ln,_, VI], [V2,V1], U V2], [V3, VI], [_, _, V4, _,V3], [_ ,_ ,V 4], [V5,V1],

[_, Sch, Yr, V5], [_, _, Sch], [Fn, Ln, V6, J , [V7, glasgow, V6], V7], [Yr, 1960],

[Yr, 1990]]).

new_rule(glaswegian_emp, [Ln, Fn, Sch, Yr],

[emp, rlistl, rdegreel, rlistl, rdegree2, rschool, rlistl, rdegree2, rschool, person, raddress,

rhouse, >, <],

[[Fn, Ln,_, VI], [V2,V1], [_, V2], [V3, VI], [_, _, V4, _,V3], [_ ,_ ,V 4], [V5,V1],

[_, Sch, Yr, V5], [_, _, Sch], [Fn, Ln, V6, J , [V7, glasgow, V6], [_, V7], [Yr, 1960],

[Yr, 1990]]).

new_rule(glaswegian_emp, [Ln, Fn, Sch, Yr],

[emp, rlistl, rdegree2, rschool, rlistl, rdegreel, rlistl, rdegree2, rschool, person, raddress,

mone, >, <],

[[Fn, Ln,_, VI], [V2, VI], [_, _, _,V3, _,V2], [_, V3], [V4, VI], [_ ,_ ,V 4], [V5,V1],

Sch, Yr, V5], [_, Sch], [Fn, Ln, V6, J , [V7, glasgow, V6], [V7], [Yr, 1960], [Yr, 1990]]).

new_rule(glaswegian_emp, [Ln, Fn, Sch, Yr],

[emp, rlistl, rdegree2, rschool, rlistl, rdegreel, rlistl, rdegree2, rschool, person, raddress,

rflat, >, <], [[Fn, Ln,_, VI], [V2, VI], [_, _, ^V3, _,V2], [_ ,_ ,V 3], [V4, VI], [_, _, V4],

[V5, VI], [_, Sch, Yr, V5], [_, Sch], [Fn, Ln, V6, J , [V7, glasgow, V6], [_, _, V7],

[Yr, 1960], [Yr, 1990]]).

117

new_rulc(glaswegian_emp, [Ln, Fn, Sch, Yr],

[emp, rlistl, rdegree2, rschool, rlistl, rdegreel, rlistl, rdegree2, rschool, person, raddress,

rhouse, >, <],

[[Fn, Ln,_, VI], [V2, VI], [_, _, _,V3, _,V2], [_, _, V3], [V4,V1], [_ ,_ ,V 4], [V5,V1],

U Sch, Yr, V5], [_, Sch], [Fn, Ln, V6, J , [V7, glasgow, V6], [_, _, V7], [Yr, 1960],

[Yr, 1990]]).

new_rule(glaswegian_emp, [Ln, Fn, Sch, Yr],

[emp, rlistl, rdegree2, rschool, rlistl, rdegree2, rschool, rlistl, rdegree2, rschool, person,

raddress, rnone, >, <],

[[Fn, Ln,_, VI], [V2,V1], U V3, _, V2], [_, _, V3], [V4, VI], [_, _, V5, _,V4], [_, _, V5],

[V6, VI], [_, _, Sch, Yr, V6], [_, Sch], [Fn, Ln, V7, J , [V8, glasgow, V7], [V8], [Yr, 1960],

[Yr, 1990]]).

new_rule(glaswegian_emp, [Ln, Fn, Sch, Yr],

[emp, rlistl, rdegree2, rschool, rlistl, rdegree2, rschool, rlistl, rdegree2, rschool, person,

raddress, rflat, >, <],

[[Fn, Ln,_, VI], [V2,V1], [_, V3, _, V2], [_ ,_ ,V 3], [V4, V l]„ U _ ,V 5 ,_ ,V 4], [_, _, V5],

[V6, VI], [_, _, Sch, Yr, V6], [_ ,_,Sch], [Fn, Ln, V7, J , [V8, glasgow, V7], [_, _, V8],

[Yr, 1960], [Yr, 1990]]).

new_rule(glaswegian_emp, [Ln, Fn, Sch, Yr],

[emp, rlistl, rdegree2, rschool, rlistl, rdegree2, rschool, rlistl, rdegree2, rschool, person,

raddress, rhouse, >, <],

[[Fn, Ln,_, VI], [V2, VI], [_, _, V3, V2], [_, V3], [V4, VI], [_, V5, ^V 4], [_, _, V5],

[V6, VI], [_, Sch, Yr, V6], [_, _, Sch], [Fn, Ln, V7, J , [V8, glasgow, V7], [_, _, V8],

[Yr, 1960], [Yr, 1990]]).

118

Appendix C: The Transformation of Rules in Appendix B

person is as bl

raddress is as b2

mone is as b3

DEFINE VIEW rl (last_name, first_name, person age)

AS PROJECT bl.last_name, bl.first_name, bl.person_age

WHERE SELECT((bl JOIN b2 WHERE bl.a3= b2.a3)

JOIN b3 WHERE b l.a l = b3.al)

WHERE

b2.city_address = glasgow a

bl.person_age> 4

person is as bl

raddress is as b2

rflat is as b3

DEFINE VIEW r2 (last_name, first_name, person_age)

AS PROJECT bl.last_name, bl.first_name,bl.person_age

WHERE SELECT((bl JOINb2 WHERE bl.a3= b2.a3)

JOIN b3 WHERE b l.a l = b3.al)

WHERE

b2.city_address = glasgow a

bl.person_age> 4

119

person is as bl

raddress is as b2

rhouse is as b3

DEFINE VIEW r3 (last_name, first_name, person age)

AS PROJECT bl.last_name, bl.first_name,bl.person_age

WHERE SELECT!(bl JOIN b2 WHERE bl.a3= b2.a3)

JOIN b3 WHERE b l.a l = b3.al)

WHERE

b2.city_address = glasgow a

b l .person_age> 4

DEFINE VIEW glaswegian_infant AS UNION rl, r2, r3

120

emp is as bl

r listl is as b2

rdegreel is as b3

rlistl is as b4

rdegreel is as b5

rlistl is as b6

rdegree2 is as b7

rschool is as b8

person is as b9

raddress is as blO

mone is as b ll

DEFINE VIEW r4 (last_name, first_name, a2, degree_year)

AS PROJECT bl.last_name, bl.first_name, b7.a2, b7.degree_year

WHERE SELECT((((((((((bl JOIN b2 WHERE b l.a l = b2.al)

JOIN b3 WHERE b2.a4 = b3.a4)

JOIN b4 WHERE b l.a l = b4.al)

JOIN b5 WHERE b4.a4 = b5.a4)

JOIN b6 WHERE b l.a l = b6.al)

JOIN b7 WHERE b6.a4 = b7.a4)

JOIN b8 WHERE b6.a2 =b8.a2)

JOIN b9 WHERE bl.first_name = p9.first_name a

bl.last_name = b9.1ast_name)

JOIN (SELECT blO WHERE

bl0.city_address = glasgow)

WHERE b9.a3 = bl0.a3)

JOIN b l l WHERE blO.al = b ll .a l)

WHERE b7.degree_year > 1960 a

b7.degree_year < 1990

121

emp is as bl

rlistl is as b2

rdegreel is as b3

rlistl is as b4

rdegreel is as b5

rlistl is as b6

rdegree2 is as b7

rschool is as b8

person is as b9

raddress is as blO

rflat is as b ll

DEFINE VIEW r5 (last_name, first_name, a2, degree_year)

AS PROJECT bl.last_name, bl.first_name, b7.a2, b7.degree_year

WHERE SELECT((((((((((bl JOIN b2 WHERE b l.a l = b2.al)

JOIN b3 WHERE b2.a4 = b3.a4)

JOIN b4 WHERE b l.a l = b4.al)

JOIN b5 WHERE b4.a4 = b5.a4)

JOIN b6 WHERE b l.a l = b6.al)

JOIN b7 WHERE b6.a4 = b7.a4)

JOIN b8 WHERE b6.a2 =b8.a2)

JOIN b9 WHERE bl.first_name = p9.first_name a

bl.last_name = b9.1ast_name)

JOIN (SELECT blO WHERE

bl0.city_address = glasgow)

WHERE b9.a3 = bl0.a3)

JOIN b l l WHERE blO.al = b ll .a l)

WHERE b7.degree_year > 1960 a

b7.degree_year < 1990

122

emp is as bl

rlistl is as b2

rdegreel is as b3

rlistl is as b4

rdegreel is as b5

rlistl is as b6

rdegree2 is as b7

rschool is as b8

person is as b9

raddress is as blO

rhouse is as b ll

DEFINE VIEW r6 (last_name, first_name, a2, degree_year)

AS PROJECT bl.last_name, bl.first_name, b7.a2, b7.degree_year

WHERE SELECT((((((((((bl JOIN b2 WHERE b l.a l = b2.al)

JOIN b3 WHERE b2.a4 = b3.a4)

JOIN b4 WHERE b l.a l = b4.al)

JOIN b5 WHERE b4.a4 = b5.a4)

JOIN b6 WHERE b l.a l = b6.al)

JOIN b7 WHERE b6.a4 = b7.a4)

JOIN b8 WHERE b6.a2 =b8.a2)

JOIN b9 WHERE bl.first_name = p9.first_name a

bl.last_rvame = b9.1ast_name)

JOIN (SELECT blO WHERE

bl0.city_address = glasgow)

WHERE b9.a3 = bl0.a3)

JOIN b ll WHERE blO.al = b ll .a l)

WHERE b7.degree_year > 1960 a

b7.degree_year < 1990

123

emp is as bl

rlistl is as b2

rdegreel is as b3

rlistl is as M

rdegree2 is as b5

rschool is as b6

rlistl is as b7

rdegree2 is as b8

rschool is as b9

person is as blO

raddress is as b ll

mone is as b!2

DEFINE VIEW r7 (last_name, first_name, a2, degree_year)

AS PROJECT bl.last_name,bl.first_name, b8.a2, b8.degree_year

WHERE SELECT(((((((((((bl JOIN b2 WHERE b l.a l = b2.al)

JOIN b3 WHERE b2.a4 = b3.a4)

JOIN b4 WHERE b l.a l = b4.al)

JOIN b5 WHERE b5.a4 = b5.a4)

JOIN b6 WHERE b52.a2 =b6.a2)

JOIN b7 WHERE b l.a l = b7.al)

JOIN b8 WHERE b7.a4 = b8.a4)

JOIN b9 WHERE b8.a2 =b9.a2)

JOIN blO WHERE bl.first_name = bl0.first_name a

bl.last_name = bl0.1ast_name)

JOIN (SELECT b l l WHERE

bll.city_address = glasgow)

WHERE bl0.a3 =bll.a3)

JOIN b l2e WHERE b lls .a l = b l2 .a l)

WHERE b8.degree_year > 1960a

b8.degree_year < 1990

124

emp is as bl

rlistl is as b2

rdegreel is as b3

rlistl is as b4

rdegree2 is as b5

rschool is as b6

rlistl is as b7

rdegree2 is as b8

rschool is as b9

person is as blO

raddress is as b ll

rflat is as b!2

DEFINE VIEW r8 (last_name, first_name, a2, degree_year)

AS PROJECT bl.last_name, bl.first_name, b8.a2, b8.degree_year

WHERE SELECT(((((((((((bl JOIN b2 WHERE b l.a l = b2.al)

JOIN b3 WHERE b2.a4 = b3.a4)

JOIN b4 WHERE b l.a l = b4.al)

JOIN b5 WHERE b5.a4 = b5.a4)

JOIN b6 WHERE b52.a2 =b6.a2)

JOIN b7 WHERE b l.a l = b7.al)

JOIN b8 WITERE b7.a4 = b8.a4)

JOIN b9 WHERE b8.a2 =b9.a2)

JOIN blO WHERE bl.first_name = bl0.first_name a

bl.last_name = bl0.1ast_name)

JOIN (SELECT b l l WHERE

bll.city_address = glasgow)

WHERE bl0.a3 =bll.a3)

JOIN b l2e WHERE b lls .a l = b l2 .a l)

WHERE b8.degree_year > 1960a

b8.degrce_year < 1990

125

emp is as bl

rlistl is as b2

rdegreel is as b3

rlistl is as b4

rdegree2 is as b5

rschool is as b6

rlistl is as b7

rdegree2 is as b8

rschool is as b9

person is as blO

raddress is as b ll

rhouse is as b!2

DEFINE VIEW r9 (last_name, first_name, a2, degree_year)

AS PROJECT bl.last_name, bl.first_name, b8.a2, b8.degree_year

WHERE SELECT(((((((((((bl JOIN b2 WHERE b l.a l = b2.al)

JOIN b3 WHERE b2.a4 = b3.a4)

JOIN b4 WHERE b l.a l = b4.al)

JOIN b5 WHERE b5.a4 = b5.a4)

JOIN b6 WHERE b52.a2 =b6.a2)

JOIN b7 WHERE b l.a l = b7.al)

JOIN b8 WHERE b7.a4 = b8.a4)

JOIN b9 WHERE b8.a2 =b9.a2)

JOIN blO WHERE bl.first_name = bl0.first_name a

bl.last_nam e = bl0.1ast_name)

JOIN (SELECT b l l WHERE

bll.city_address = glasgow)

WHERE bl0.a3 =bll.a3)

JOIN bl2e WHERE b lls .a l = b l2 .a l)

WHERE b8.degree_year > 1960a

b8.degree_year < 1990

126

emp is as bl

rlistl is as b2

rdegree2 is as b3

rschool is as b4

r listl is as b5

rdegreel is as b6

rlistl is as b7

rdegree2 is as b8

rschool is as b9

person is as blO

raddress is as b ll

mone is as b!2

DEFINE VIEW rlO (last_name, first_name, a2, degree_year)

AS PROJECT bl.last_name, bl.first_name, b8.a2, b8.degree_year

WHERE SELECT(((((((((((bl JOIN b2 WHERE b l.a l = b2.al)

JOIN b3 WHERE b2.a4 = b3.a4)

JOIN b41 WHERE b3.a2 =b4.a2)

JOIN b5 WHERE b l.a l = b5.al)

JOIN b6 WHERE b5.a4 = b6.a4)

JOIN b7 WHERE b l.a l = b7.al)

JOIN b8 WHERE b7.a4 = b8.a4)

JOIN b9 WHERE b8.a2 = b9.a2)

JOIN blO WHERE bl.first_name = bl0.first_name a

bl.last_name = bl0.1ast_name)

JOIN (SELECT b ll WHERE

bll.city_address = glasgow)

WHERE bl0.a3 = b ll.a3)

JOIN b l2 WHERE b ll .a l = b l2 .a l)

WHERE b8.degree_year > 1960a

b8.degree_year < 1990

127

emp is as bl

r listl is as b2

rdegree2 is as b3

rschool is as b4

rlistl is as b5

rdegreel is as b6

rlistl is as b7

rdegree2 is as b8

rschool is as b9

person is as blO

raddress is as b ll

rflat is as b!2

DEFINE VIEW r l l (last_name, first_name, a2, degree_year)

AS PROJECT bl.last_name, bl.first_name, b8.a2, b8.degree_year

WHERE SELECT(((((((((((bl JOIN b2 WHERE b l.a l = b 2 .a l)

JOIN b3 WHERE b2.a4 = b3.a4)

JOIN b41 WHERE b3.a2 =b4.a2)

JOIN b5 WHERE b l.a l = b5.al)

JOIN b6 WHERE b5.a4 = b6.a4)

JOIN b7 WHERE b l.a l = b7.al)

JOIN b8 WHERE b7.a4 = b8.a4)

JOIN b9 WHERE b8.a2 = b9.a2)

JOIN blO WHERE bl.first_name = bl0.first_name a

bl.last_name = bl0.1ast_name)

JOIN (SELECT b ll WHERE

bll.city_address = glasgow)

WHERE bl0.a3 = b ll.a3)

JOIN b l2 WHERE b ll .a l = b l2 .a l)

WHERE b8.degree_year > 1960a

b8.degree_year < 1990

128

emp is as bl

r listl is as b2

rdegree2 is as b3

rschool is as b4

rlistl is as b5

rdegreel is as b6

rlistl is as b7

rdegree2 is as b8

rschool is as b9

person is as blO

raddress is as b ll

rhouse is as b!2

DEFINE VIEW rl2 (last_name, first_name, a2, degree_year)

AS PROJECT bl.last_name, bl.first_name, b8.a2, b8.degree_year

WHERE SELECT(((((((((((bl JOIN b2 WHERE b l.a l = b2.al)

JOIN b3 WHERE b2.a4 = b3.a4)

JOIN b41 WHERE b3.a2 =b4.a2)

JOIN b5 WHERE b l.a l = b5.al)

JOIN b6 WHERE b5.a4 = b6.a4)

JOIN b7 WHERE b l.a l = b7.al)

JOIN b8 WHERE b7.a4 = b8.a4)

JOIN b9 WHERE b8.a2 = b9.a2)

JOIN blO WHERE bl.first_name = bl0.first_name a

bl.last_nam e = bl0.1ast_name)

JOIN (SELECT b l l WHERE

bll.city_address = glasgow)

WHERE bl0.a3 = b ll.a3)

JOIN b l2 WHERE b ll .a l = b l2 .a l)

WHERE b8.degree_year > 1960a

b8.degree_year < 1990

129

emp is as bl

rlistl is as b2

rdegree2 is as b3

rschool is as b4

rlistl is as b5

rdegree2 is as b6

rschool is as b7

rlistl is as b8

rdegree2 is as b9

rschool is as blO

person is as b ll

raddress is as bl2

mone is as bl3

DEFINE VIEW rl3 (last_name, first_name, a2, degree_year)

AS PROJECT b l .last_name, b l .first_name, b9.a2, b9.degree_year

WHERE SELECT((((((((((((bl JOIN b2 WHERE b l.a l = b 2.a l)

JOIN b3 WHERE b2.a4 = b3.a4)

JOIN b41 WHERE b3.a2 =b4.a2)

JOIN b5 WHERE b l.a l = b5.al)

JOIN b6 WHERE b5.a4 = b6.a4)

JOIN b7 WHERE b6.a2 = b7.a2)

JOIN b8 WHERE b l.a l = b8.al)

JOIN blO WHERE b9.a4 = bl0.a4)

JOIN blO WHERE b9.a2 = bl0.a2)

JOIN b ll WHERE bl.first_name = bll.first_nam e a

bl.last_nam e = bll.last_nam e)

JOIN (SELECT bl2 WHERE

bl2.city_address = glasgow)

WHERE b ll.a 3 = bl2.a3)

JOIN bl3 WHERE b l2 .al = b l3 .a l)

WHERE b9.degree_year > 1960a

b9.degree_year < 1990

130

emp is as bl

rlistl is as b2

rdegree2 is as b3

rschool is as b4

rlistl is as b5

rdegree2 is as b6

rschool is as b7

rlistl is as b8

rdegree2 is as b9

rschool is as blO

person is as b ll

raddress is as bl2

rflat is as bl3

DEFINE VIEW rl4 (last_name, first_name, a2, degree_year)

AS PROJECT bl.last_name, bl.first_name, b9.a2, b9.degree_year

WHERE SELECT((((((((((((bl JOIN b2 WHERE b l.a l = b2.al)

JOIN b3 WHERE b2.a4 = b3.a4)

JOIN b41 WHERE b3.a2 =b4.a2)

JOIN b5 WHERE b l.a l = b5.al)

JOIN b6 WHERE b5.a4 = b6.a4)

JOIN b7 WHERE b6.a2 = b7.a2)

JOIN b8 WHERE b l.a l = b8.al)

JOIN blO WHERE b9.a4 = bl0.a4)

JOIN blO WHERE b9.a2 = bl0.a2)

JOIN b ll WHERE bl.first_name = b ll.first name a

bl.last_name = bll.last_nam e)

JOIN (SELECT bl2 WHERE

bl2.city_address = glasgow)

WHERE b ll.a 3 = bl2.a3)

JOIN bl3 WHERE bl2.al = b l3 .a l)

WHERE b9.degree_year > 1960a

b9.degree_year < 1990

131

emp is as bl

rlistl is as b2

rdegree2 is as b3

rschool is as b4

rlistl is as b5

rdegree2 is as b6

rschool is as b7

rlistl is as b8

rdegree2 is as b9

rschool is as blO

person is as b ll

raddress is as bl2

rhouse is as b!3

DEFINE VIEW rl5 (last_name, first_name, a2, degree_year)

AS PROJECT bl.last_name, b l .first_name, b9.a2, b9.degree_year

WHERE SELECT((((((((((((bl JOIN b2 WHERE b l.a l = b2.al)

JOIN b3 WHERE b2.a4 = b3.a4)

JOIN b41 WHERE b3.a2 =b4.a2)

JOIN b5 WHERE b l.a l = b5.al)

JOIN b6 WHERE b5.a4 = b6.a4)

JOIN b7 WHERE b6.a2 = b7.a2)

JOIN b8 WHERE b l.a l = b8.al)

JOIN blO WHERE b9.a4 = bl0.a4)

JOIN blO WHERE b9.a2 = bl0.a2)

JOIN b ll WHERE bl.first_name = bll.first_nam e a

bl.last_name = bll.last_nam e)

JOIN (SELECT bl2 WHERE

bl2.city_address = glasgow)

WHERE b ll.a 3 = bl2.a3)

JOIN bl3 WHERE bl2.al = b l3 .a l)

WHERE b9.degree_year > 1960a

b9.degree_year < 1990

DEFINE VIEW galswegian_emp AS UNION r4, r5, r6, r7, r8, r9, rlO, r l l , r!2, r!3, r!4, r!5

132

Gl AS«;ov;
i . s r ■ ' •

L.Ii> -v j.

