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Abstract

BACKGROUND: Powdery mildew caused by Blumeria graminis f. sp. hordei (Bgh) is a constant threat to barley production but is
generally well controlled through combinations of host genetics and fungicides. An epidemic of barley powdery mildew was
observed from 2007 to 2013 in the West Australian grain belt.

RESULTS: We collected isolates across Australia, examined their sensitivity to demethylation inhibitor (DMI) fungicides and
sequenced the Cyp51B target gene. Five amino acid substitutions were found, of which four were novel. The most resistant
haplotypes increased in prevalence from 0% in 2009 to 16% in 2010 and 90% in 2011. Yeast strains expressing the Bgh Cyp51
haplotypes replicated the altered sensitivity to various DMIs and these results were complemented by in silico protein docking
studies.

CONCLUSIONS: The planting of very susceptible cultivars and the use of a single fungicide mode of action was followed by the
emergence of a major epidemic of barley powdery mildew. Widespread use of DMI fungicides led to the selection of Bgh isolates
carrying both the Y137F and S524T mutations, which, as in Zymoseptoria tritici, account for resistance factors varying from 3.4
for propiconazole to 18 for tebuconazole, the major azoles used at that time in WA.
© 2019 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

Supporting information may be found in the online version of this article.
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1 INTRODUCTION
Blumeria graminis f. sp. hordei (Bgh) is an ascomycete fungus caus-
ing barley (Hordeum vulgare L.) powdery mildew. In conducive sea-
sons this biotrophic pathogen can reduce yields by as much as
20%1 but is generally well controlled by host genetics including
the durable recessive mlo gene,2 dominant major R-genes and
combinations of minor genes. In cases in which genetic disease
resistance cannot be combined with optimum malting character-
istics, fungicides can be used. Many classes of fungicides have been
used to control powdery mildews but the pathogen has a marked
propensity to develop resistance rapidly.3,4

Barley was grown on∼ 1.3 million hectares in West Australia (WA)
and yielded 1.5–3 million tonnes from 2000 to 2011. Since 1995
the majority of the barley area has been planted to cultivars with
excellent malting quality but low disease resistance. To combat the
increasing incidence of diseases, including powdery mildew, there
has been a steep increase in fungicide use.5 In 2009, 85% of barley
crops were treated with one or more fungicide application (both
seed and foliar) taken from a list of registered chemicals consisting
of almost exclusively of sterol demethylation inhibitors (DMIs).1,6

DMI fungicides have been in the forefront of control of fungal
pathogens of humans, animals and plants for nearly 50 years.7

These fungicides interrupt the biosynthesis of ergosterol (and
other mycosterols in powdery mildews) by inhibiting cytochrome
P450 14𝛼-sterol demethylase (CYP51).8,9 Resistance is now com-
mon in human pathogens, including Candida spp.10,11 and
Aspergillus fumigatus,12 and is a serious problem in agricul-
tural systems.13,14 Fungicide resistance has been associated
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with a number of mechanisms including the alteration and
overexpression of the Cyp51 gene(s) as well as enhanced DMI
efflux.13,15,16

The most commonly observed mechanism of resistance is
non-synonymous changes in the gene sequence of Cyp51.13 A
large number of non-synonymous changes have been observed
in Cyp51A and B genes of various fungal pathogens. A unified
nomenclature for these changes has been proposed and is
adopted in this report.17 Two earlier studies examining DMI resis-
tance in Bgh in Europe identified two changes in Cyp51, Y137F
and K148Q (equivalent to Y136F and K147Q).18,19 Isolates with
only Y137F exhibited both low and high levels of triadimenol
resistance, and K148Q was only ever found in combination with
Y137F. Hence, the exact sensitivity shift afforded by each mutation
remained unclear.

Tebuconazole-containing formulations were registered for bar-
ley mildew from 1995 in West Australia20 and were followed soon
after by other DMI actives, mainly flutriafol, triadimenol and propi-
conazole. Initially, they provided good control of leaf rust, powdery
mildew and other diseases.5 Since 2005, WA farmers have reported
reduced efficacy of DMIs in controlling barley powdery mildew
outbreaks.21 Accounts of mildew infection on barley treated with
tebuconazole formulations in particular extended over much of
the southern WA agricultural cropping region with the frequency
of reports greatly increasing after 2009.

In this study, we determined the sensitivity of Australian Bgh
isolates to DMI fungicides registered in WA for use on barley.
Sequencing of the CYP51 coding region in a subset of isolates
revealed five mutational changes defining four unique haplotypes.
The fungicide sensitivities of isolates representing each haplo-
type were determined both by screening on fungicide-treated
detached leaves and heterologous expression of the respective

mutation in Saccharomyces cerevisiae. Our results link variations
in DMI sensitivity to changes in CYP51. In silico protein structural
modelling demonstrated the conformational changes afforded by
mutations, suggesting significant effects on DMI sensitivity, and
was able to rationalize our observations of partial cross-resistance
(see Oliver and Hewitt14 pp. 129–130). A brief report on some this
data has been published previously.22

2 MATERIALS AND METHODS
2.1 Isolates
One hundred and nineteen Bgh isolates were collected from 2009
to 2013 (Fig. 1, Table S1). Isolates from Wagga Wagga, Tamworth
(New South Wales) and Launceston (Tasmania) were supplied by
the Department of Environment and Primary Industries, Victoria.
Isolate purification, sub-culturing and assessments of growth were
performed as described.23

2.2 Fungicide sensitivity assays
Fungicide sensitivities were determined by assessing growth of
isolates on susceptible (cv. Baudin) barley leaves inserted into
fungicide-amended media. Commercial formulations of DMIs
currently registered for Bgh control – Laguna (720 g L−1 tebu-
conazole, Sipcam, Geelong, Victoria, Australia), Flutriafol (250 g L−1

flutriafol, Imtrade, Perth WA, Australia), Opus (125 g L−1 epoxicona-
zole, Nufarm), Alto (100 g L−1 cyproconazole, NuFarm, Laverton,
Victoria, Australia), Tilt (418 g L−1 propiconazole, Syngenta,
North Ryde, NSW, Australia), Proline (410 g L−1 prothioconazole,
Bayer Cropscience, Kallaroo, WA, Australia), Triad 125 (125 g L−1

triadimefon, Farmoz (Adama) St Leonards, NSW, Australia)
and Jockey Stayer (167 g L−1 fluquinconazole, Bayer Crop Sci-
ence) – were incorporated into agar amended with 50 mg L−1

Figure 1. Sample sites of Bgh isolates collected from Australia. Black triangles indicate mutant T524 CYP51 isolates (n = 119). Grey triangles indicate isolates
with CYP51 haplotype S524 (n = 24). Numbers within triangles indicate isolates collected at each site. Scale bar, 100 km. The map is from https://www
.westernaustralia.com/en/plan_your_trip/Pages/WA_maps.aspx#/.
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of benzimidazole.24 Middle sections of 10-day-old seedlings
were excised with each tip inserted abaxial side up into fungi-
cide amended agar. A wide range of concentrations was tested
to identify a specific set of six needed to calculate an accurate
half-maximal effective concentration (EC50) for each product. Each
isolate was inoculated onto three replicates on successive weeks
with conidia dislodged 24 h before use to promote fresh growth.
Conidia were collected on glossy black paper and blown into
a 1.5 m infection tower to ensure even inoculation. Following
7 days incubation at 20 ± 2 ∘C in a 12:12 h light/dark photoperiod,
the growth of each isolate was assessed using a 0–4 infection
type (IT) scale adapted from Czembor.25 Each pustule formation
was assigned an IT score and the average for each isolate and
fungicide concentration was determined. Both the average IT and
concentration was log transformed, per cent inhibition calculated
and plotted to determine the regression equation and correlation
coefficient. Mean EC50 values with associated errors were calcu-
lated for each Bgh Cyp51 haplotype (Fig. 3). All EC50 values were
log10-transformed prior to statistical analysis. Data analysis was
conducted in JMP, v. 10 (SAS Institute Inc., Cary, NC, USA).

2.3 CYP51 sequencing
DNA isolations were performed using a BioSprint 15 DNA Plant Kit
(Qiagen) following the manufacturer’s instructions. The wild-type
Bgh DH14 isolate (GenBank accession no. AJ313157) was used to
design primers (Table S2) covering the entire length of the Bgh
CYP51 (Bgh51) gene including the promoter region (Fig. S1). The
amplimers of 76 isolates were sequenced using Sanger sequenc-
ing and aligned in Geneious v. 5.5 (Biomatters). All sequences have
been submitted to GenBank (Accession no. KM016902, KM016903,
KM016904 and KM016905). A high-throughput method of S524
and T524 allele detection was devised (digesting the amplicon of
Bgh51_3F and Bgh51_3R with Hpy8I; Table S2), and used to deter-
mine the CYP51 524 haplotype of all 119 isolates.

2.4 Yeast phenotyping
2.4.1 Strains and complementation of transformants
Synthesis of the wild-type DH14 (Accession no. AJ313157) CYP51
gene (Bgh51wt) was carried out by GENEWIZ Inc. (South Plainfield,
NJ, USA). Restriction enzyme recognition sites for Kpn1 and EcoR1
were added at the 5′- and 3′-ends respectively. The pYES-Bgh51wt
expression plasmid was constructed by cloning Bgh51wt into
pYES3/CT (Invitrogen, Carlsbad, CA, USA). pYES-Bgh51wt was
sequenced to confirm the fidelity and transformed into S. cerevisiae
YUG37:erg11 (MATa ura3-52 trp1-63 LEU2::tTa tetO-CYC1::ERG11)
with its native Cyp51 gene under the control of a tetO-CYC1
promoter, repressed in the presence of doxycycline.26 All com-
plementation assays were performed according to Cools et al.27

with photographs taken following 72 h of growth at 20 ∘C (Fig. S2).
Mutations found in Bgh51 of Australian isolates were intro-
duced into pYES-Bgh51wt through a QuickChange II site-directed
mutagenesis kit (Stratagene, La Jolla, CA, USA).

2.4.2 Comparative growth rate assay of transformants
The growth rate of transformants was assessed using the Gen5
data analysis software (BioTek Instruments, Inc., Winooski, VT,
USA) where duplicate cultures of replicate transformants were
grown in SD GAL + RAF medium (SD medium) overnight at
30 ∘C. One hundred microliters of each overnight culture, at 105

cells mL−1, was used to inoculate three wells containing 200 μL
SD medium ±3 μg mL−1 doxycycline. Cultures were incubated

without light at 30 ∘C, and OD600 was measured every 15 min for
12 days in a Synergy™ HT Multi-Mode Microplate Reader (BioTek).
The mean maximum growth rate for each strain± doxycycline was
determined on the basis of the greatest increase in OD over a 2 h
period (Table S4).

2.4.3 Fungicide sensitivity assays
Sensitivity assays were carried out as described by Cools et al.27

using pure samples of tebuconazole, cyproconazole, propicona-
zole, epoxiconazole, fluquinconazole, triadimefon, flutriafol
and prothioconazole-desthio with a fungicide-free control.
Because prothioconazole must be activated in plant tissue,28

prothioconazole-desthio was used in all yeast assays.

2.4.4 Structural modelling
Structural modelling of Bgh51wt and mutant forms and ligand
docking of epoxiconazole and fluquinconazole were undertaken
using an automated homology modelling platform as described
previously for Zymoseptoria tritici CYP51.29 The volume of the
heme cavity of the wild-type and variant protein models was
determined using Pocket-Finder (Leeds, UK) based on Ligsite.30

3 RESULTS
3.1 DNA sequencing
A trial set of Bgh isolates was assessed for sensitivity to DMI fungi-
cides in use in WA to control powdery mildew using a detached leaf
assay. Substantial variation in resistance was observed. Because
of the laboriousness of this phenotyping assay, we decided to
sequence the CYP51 gene first and then determine the fungicide
sensitivity of isolates from each haplotype class.

Primers were designed spanning both the coding and promoter
region of the single Cyp51B gene31 in Bgh (Table S3, Fig. S1). The
Bgh51wt DH14 sequence was used as a reference 32. Cyp51 was
sequenced from 76 Australian isolates collected from 2009 to
2013, including three from eastern Australia. No indels were found
in the promoter but two synonymous and five non-synonymous
changes were identified in the coding region (Fig. 2). All Australian
isolates carried the previously seen tyrosine to phenylalanine
mutation at amino acid position 136 (Y137F).18,19 All three isolates
from the east of Australia carried two synonymous changes at
nucleotides 81 and 1475, which were absent in WA isolates. Fur-
ther non-synonymous mutations leading to amino acid changes
were found; K172E (K171E), M304I (M301I), R330G (R327G) and
S524T (S509T) in various combinations (Fig. 2). Considering only
the non-synonymous changes, four novel Bgh51 haplotypes were
distinguished. Isolates collected in WA were either F137/T524 (hap-
lotype 2) or F137/I304/G330/T524 (haplotype 4), whereas isolates
from other Australian states were either F137/E172 (haplotype 3)
or F137 (haplotype 1). Mutations I304 and G330 were consistently
found together in the same isolates (Fig. 2).

There was both spatial and temporal variation in the frequency
of haplotypes (Fig. 1, Table S1). All isolates collected in 2009 were
wild-type at Cyp51 position 524. The proportion of mutant T524
isolates dramatically increased over subsequent seasons; 99 of the
116 WA isolates collected in 2011 contained the T524 mutation.
These mutants were found in all major WA barley-growing areas
(Fig. 1).

3.2 DMI sensitivities of Bgh isolates
The sensitivities of 18 Bgh isolates (two isolates from haplotypes
2 and 3; seven from haplotypes 1 and 4) were determined using

Pest Manag Sci (2019) © 2019 The Authors. wileyonlinelibrary.com/journal/ps
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WA_1  …FGTDVVFDCPNS…IQNEVKSFIEK…KEIAHIMIALL…LWLAAGPDITE…DYSSMFTRPMAPA…
WA_2  …FGTDVVFDCPNS…IQNEVKSFIEK…KEIAHMMIALL…LWLAARPDITE…DYSSMFTRPMAPA…
NSW   …FGTDVVFDCPNS…IQNEVESFIEK…KEIAHMMIALL…LWLAARPDITE…DYSSMFSRPMAPA…
TAS   …FGTDVVFDCPNS…IQNEVKSFIEK…KEIAHMMIALL…LWLAARPDITE…DYSSMFSRPMAPA…
DH14  …FGTDVVYDCPNS…IQNEVKSFIEK…KEIAHMMIALL…LWLAARPDITE…DYSSMFSRPMAPA…
Z.tri …FGKDVVYDCPNS…IAAETRQFFDR…KEIAHMMIALL…LRLASRPDIQD…DYSSLFSRPLSPA…
.    137 172  304 330 524

Figure 2. Sequence alignment of fragments of the Cyp51 protein family. Changes found in Australian Bgh isolates to that of the wild-type DH14
(ABSB01000011.1) are indicated in bold. Numbers above represent amino acid positions in the Bgh and below in the archetype Zymoseptoria tritici isolate
ST1 (GenBank Accession AY730587).17 Isolates WA_1, WA_2, NSW and TAS are from Western Australia (1 and 2), Wagga Wagga and Launceston respectively.
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Figure 3. Box plots of the EC50 (μg mL−1) of a collection of Bgh iso-
lates having one of four Cyp51 haplotypes identified in Australia. Haplo-
type 1 (black), F137; haplotype 2 (stripes), F137/T524; haplotype 3 (blank),
F137/E172; and haplotype 4 (crosshatch), F137/I304/R330/T524. Bars repre-
sent mean EC50 (μg mL−1) of haplotypes, with error bars indicated. Cyp,
cyproconazole; Epoxi, epoxiconazole; Fluquin, fluquinconazole; Flut, flu-
triafol; Propi, propiconazole; Prothio, prothioconazole; Teb, tebuconazole;
Triad, triadimefon.

detached barley leaves inserted into DMI-amended agar. The
results varied between haplotype and fungicide (Fig. 3, Fig. S4).
There was no significant differences in the mean EC50 values of
S524 isolates (haplotypes 1 and 3) or between isolates with the
T524 mutation (haplotypes 2 and 4). Isolates of haplotypes 2 and
4 were found to have significantly higher mean EC50 values than
haplotypes 1 and 3 for most of the DMIs tested. The mean EC50 val-
ues for T524 haplotypes ranged from 1.88 μg mL−1 for triadimefon,
3.73 μg mL−1 for propiconazole to 29.88 μg mL−1 for tebuconazole,
whereas the S524 isolates had mean EC50 values of 0.59, 1.09 and
1.7 μg mL−1 respectively. The estimated resistance factors ranged
from 3.41 for propiconazole to 17.6 for tebuconazole. However,
for fluquinconazole (used solely in WA in seed dressing formu-
lations) mutant T524 haplotypes were marginally more sensitive
[EC50 4.73 μg mL−1 compared with 8.06 μg mL−1; resistance factor
(RF) = 0.58]. Unfortunately, because of quarantine restrictions, we
were not able to phenotype the Bgh CYP51 DH14 isolate carrying
the wild-type Y137 allele.

3.3 Heterologous expression in yeast
The Bgh51wt gene was synthesized and cloned into S. cerevisiae
YUG37:erg11 with a doxycycline repressible promoter. The S. cere-
visiae Bgh51wt transformant was able to grow in the presence of
doxycycline (Fig. S2) and for most variants there was no significant

difference in the growth rates in the absence of doxycycline. Two
S. cerevisiae Bgh51 variants (pYES-Bgh51_Y137F/S524T/R330G and
pYES-Bgh51_Y137F/M304I/R330G/S524T) had significantly lower
rates and were therefore removed from all further in vitro analysis.

The DMI sensitivities of S. cerevisiae strains expressing Bgh51
variants which restored growth on doxycycline-amended medium
were determined (Table S4) and resistance factors were calculated
(Table 1). Modest RF values were associated with the solo K172E
and M304I mutations. RF values for the S524T mutation varied from
0.5 for fluquinconazole to 12.4 for propiconazole. The combination
of F137 and T524 had much larger RF values of 340.6 for propi-
conazole and 33.2 for tebuconazole. RF values for fluquinconazole
were< 1.0 except for the solo Y137F construct with a calculated RF
of 9.7.

3.4 Structural modelling
Protein variants of all Bgh51 haplotypes were modelled in silico
(Fig. S5). The effect that each mutational change had on the vol-
ume of the heme cavity containing the DMI binding site and the
morphological changes to the cavity access channel were deter-
mined (Table 2). Modest volume increases in binding cavity were
observed with the introduction of the solo mutations; a 17.7%
increase with K172E and 39.6% increase in volume with Y137F.
Mutation S524T was an exception, with an increase in the volume
of the heme cavity by 73.2% compared with that of the wild-type
model. The combination of F137/T524 gave an even more substan-
tial increase in volume of 83.9%. Table 2 also shows the estimated
distances between amino acids Y226 (Y222) and S521 (S506), which
span the entrance to the channel leading to the DMI binding
site. Modelling simulations predicted that all Bgh CYP51 muta-
tions observed in WA would cause a restriction in the diameter of
the access channel when compared to wild-type Bgh CYP51. The
most dramatic decrease was observed with the introduction of the
Y137F mutation, which caused a 28.5% decrease in channel diame-
ter compared with the wild-type model. The combination of Y137F
and S524T in a single model did not result in a further significant
restriction (Table 2).

Further morphological changes were observed that may impact
DMI binding. In particular conformation of a loop of beta-turn
running from S520 (S505) to F523 (F508) is markedly different in
the Y137F haplotype from that of the wild-type, with the result
that it projects into the cavity. A similar constriction is observed
for the F137/T524 mutant (Fig. S5). However, in this case, it is also
accompanied by a substantial increase in cavity volume (Table 2),
consistent with the exceptional resistance factors observed. It is
interesting to note that this loop is adjacent to S524. This supports
the idea that the structural changes brought about by the Y137F

wileyonlinelibrary.com/journal/ps © 2019 The Authors. Pest Manag Sci (2019)
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mutation on its own may exert selective pressure on the 524
position, leading to the F137/T524 mutant.

Fluquinconazole docking studies were carried out to elucidate
the mechanistic reasons for the contrasting cross-resistance pat-
terns (Fig. 4). In the wild-type structure, the binding site of fluquin-
conazole is bordered by amino acids Y123 and Y226. It appears
that the position of Y123 is particularly important in establishing
the correct orientation of fluquinconazole so as to be coordinated
by the heme. This arrangement is disrupted in the Y137F mutant,
where Y123 and S521 prevent fluquinconazole accommodation
(Fig. 4B). With the Y137F/S524 T mutant, Y123 is positioned sim-
ilarly to the wild-type, allowing accommodation of fluquincona-
zole as in the wild-type. Here, S521 borders the binding site and
is predicted to interact with the fluquinconazole ligand (Fig. 4).
Thus, it appears the relative inconsistency of the Y137F mutant
and enhanced selection of the Y137F/S524T double mutant can be
explained by the 3D docking results.

4 DISCUSSION
Studies best exemplified by those in the wheat pathogen
Zymoseptoria tritici have dissected the relationship between
mutational changes in CYP51 with failures of DMI fungicides in
the field. DMIs have been used since the first registration in the UK
of triadimefon in 1973.33 Twenty years later, Z. tritici isolates were
found with CYP51 changes conferring reductions in sensitivity.13

Subsequently, numerous DMIs have been introduced and 34 addi-
tional CYP51 mutations have been identified. This long history of
chemical use and the comparatively recent identification of muta-
tions has made it difficult to discern cause and effect. The situation
in WA is far simpler: DMI use has been widespread only since 2004
with the first reports of resistance dating from 2005. Furthermore,
usage in WA has been dominated by first-generation DMIs and
mainly solo tebuconazole and propiconazole formulations.22

Analysis of the single CYP51 gene of Australian Bgh isolates col-
lected from 2009 to 2013 revealed four haplotypes. The sensitivi-
ties of isolates from different haplotypes on detached leaves varied
between the DMIs tested. Bgh isolates with haplotypes harbour-
ing the S524T mutation were less sensitive to all the foliar fungi-
cides used on barley in WA and more sensitive to fluquinconazole.
The Y137F mutation was found in all isolates examined including
those from the east of Australia, where as yet, there have been
no reports of DMI field failure. Previous phenotypic tests corre-
lated the presence of the Y137F mutation with strong resistance to
triadimenol.18,19 We were unable import the wild-type CYP51 Bgh
isolate DH14 into Australia due to quarantine restrictions. How-
ever, Y137F expression in the heterologous yeast system showed
only modest decreases in sensitivity to most DMIs including tri-
adimenol (Table 1). This suggests that Y137F would lead to only
small reductions in the DMI field efficacy. The ubiquity of Y137F in
Australia suggests two possibilities: (i) the limited fungicide use in
eastern Australia has been sufficient to select for this mutation, or
(ii) the wild-type CYP51 haplotype has never been present in Aus-
tralia.

A search was conducted on the CYP51 mutations in other fungal
species reported as conferring a reduction in DMI sensitivity. The
Bgh51 amino acid sequence of Australian haplotypes was aligned
with Z. tritici CYP51 (Fig. 2). Mutational changes at amino acids
137, 304, 330 and 524 fall in regions conserved between Bgh
and Z. tritici.31 Amino acids 136 and 509 in Bgh51 correspond to
137 and 524 in Z. tritici, which have previously been correlated
with alterations in DMI sensitivity.34 The combination of Y137F
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Table 2. Measurements of heme cavity volume and key inter-residue distances in wild-type haplotype Y137/K172/M304/R330/S524 (WT) and mutant
Bgh CYP51

CYP51 haplotype
Heme cavity
volume (Å3)

ΔHCVa

from WT (%)
Diameter channel

to binding siteb
ΔChannel

diameter from WT
ΔHCV × ΔChannel

diameter

Wild-type 1809 – 12.862
Y137F 2526 +39.6 9.202 −28.5 0.113
K172E 2130 +17.7 11.861 −7.8 0.014
M304I 2573 +42.2 12.015 −6.6 0.028
R330G 2607 +44.1 12.074 −6.1 0.027
S524T 3134 +73.2 10.233 −20.4 0.149
Y137F/K172E 2334 +29.0 10.870 −15.5 0.045
Y137F/S524T 3327 +83.9 9.294 −28.7 0.241
Y137F/M304I/R330G/S524T 2181 +20.6 9.960 −22.6 0.047

a ΔHCV – change in heme cavity volume.
b Distance between key amino acids Y226–S315 which border the entrance to the DMI binding site.

Y226

Y123

S521

a

Y123

S521

T524

Y226

c

Y123

Y226

S521

b

Figure 4. Docking of fluquinconazole in Blumeria graminis f. sp. hordei CYP51. (A) Wild-type CYP51, showing bound fluquinconazole (in light green, centre)
and steric interaction with Y123 (surface shown as mesh). (B) The Y137F mutant, showing encroachment of Y123 and S521 (surface shown as mesh) upon
the docking site of fluquinconazole, indicating that the compound cannot be bound at that location. (C) The Y137F-S524T mutant, showing orientation
of Y123 similar to wild-type and predicted interaction with S521 (shown in yellow).

and S524T was associated with substantial RFs in both the Z.
tritici strains and the yeast transformants. This study did not test
fluquinconazole or the solo Y137F haplotype in the yeast system.

In the current study, the combination of Y137F and S524T
encoded a CYP51 with a marked decrease in sensitivity to tebu-
conazole and propiconazole in both mildew and the yeast sys-
tem. This may be sufficient to account for the field failure (Fig. 3).
Increases in heme cavity volume and restriction of the access
channel in Y137F/S524T protein models correlate well with the
significant RF obtained (Fig. 5). A high RF for propiconazole was
also observed for the Y137F/S524T Bgh CYP51 construct when
expressed in the yeast system.

Structural modelling suggests that there are two main mecha-
nisms that underpin the emergence of DMI resistance associated
with mutational changes in Bgh51. The first mechanism is similar to
that observed in Z. tritici CYP51,29 where the gross volume of the
heme cavity increases with successive mutations (Table 2). There
appears to be a correlation between the increase in cavity volume
and the RF values reported in Table 1. It is likely that any increase
in heme cavity volume would perturb the orientation of the DMI
ligand and hence the heme binding properties. This differentiates
the smaller DMI ligands such as tebuconazole and epoxiconazole.

The second mechanism provides a means of linking structural
changes with phenotypic changes in a measurable way. Changes

wileyonlinelibrary.com/journal/ps © 2019 The Authors. Pest Manag Sci (2019)
Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.



DMI resistance in Bgh www.soci.org

y = 6.1049x - 0.1941

R2 = 0.8003

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 0.05 0.1 0.15 0.2 0.25 0.3

L
o

g
 T

eb
u

co
n

az
o

le
 R

F

Product ΔHCV x ΔY226-S315

Figure 5. Correlation between tebuconazole resistance factor (RF) of
pYES-Bgh51_Y137F/S524T and the product of the change in the volume of
the heme cavity (ΔHCV) with the change in distance between amino acids
Y226 and S315 (ΔY226–S312).

in distances between specific pairs of residues that border the
cavity result in changes to the diameter of the access channel.
The limiting of the binding surface between Y226 and S314 (S312)
appears to correlate well with resistance to tebuconazole. The nar-
rowing of the access channel between Y226 and S521 correlates
particularly well, especially when tempered by consideration of
the effects of each variant on the cavity volume. This is demon-
strated by the result obtained when the product of the per cent
change in the heme cavity volume is multiplied by the per cent
change in the distance between Y226 and S521 (Fig. 5). All the vari-
ants that contain F137 demonstrate a substantially reduced dis-
tance between Y226 and S521 (Table 2). When one of the mech-
anisms is employed, moderate resistance factors are observed:
F137 (access channel narrowing); T524 (substantial increase in
cavity volume). Although, when both mechanisms act together
there is a strong correlation between the structural changes and
the very high resistance factors of the F137/T524 mutants in the
presence of tebuconazole. The in silico creation of Bgh51wt and
mutant CYP51 protein variants opens the possibility of future
docking studies employing novel or unregistered DMI fungicides.
This will allow the prediction the effectiveness of any new prod-
uct prior to in planta testing. Furthermore, we can now recom-
mend bespoke spray regimes depending on which Bgh51 hap-
lotype is present in the field even if the benefit might only be
transient.

One of the major anti-resistance strategies used for fungi-
cides is to mix active compounds with different MOA because
isolates with mutations conferring resistance to one fungicide
will most likely still be sensitive to the second.35 This strategy
requires that there is no positive cross resistance between the
two fungicides and so generally rules out mixtures of the same
MOA. However some cases of negative cross-resistance within a
single MOA group has been shown with Z. tritici isolates which
are highly resistant to tebuconazole but fully susceptible to
prochloraz.36,37 The negative cross-resistance shown in both
the Bgh (Fig. 3) and yeast expression studies (Table 1) was con-
firmed using in silico protein docking studies. Here the single
Y137F mutation substantially impaired the binding of fluquin-
conazole (Fig. 4). By contrast, the binding of fluquinconazole
at the docking site of the Y137F/S524T protein model was
more akin to that of the wild-type. Exploitation of negative
cross-resistance as a resistance management is attractive in prin-
ciple but would be rendered inoperable if cross-resistant isolates
were to evolve.

The widespread use of high malt quality but very susceptible
barley varieties and the repeated use of fungicide with a single
mode of action was a perfect recipe for an epidemic of powdery
mildew in WA. A report covering the decade from 1999 to 2009
estimated that Bgh caused losses of AU$30 million each year
in WA.1 We have estimated that in the period from 2007 to
2010 a population of highly virulent23 and DMI-resistant Bgh
caused losses of AU$100 million each year5 Since 2010, the barley
area in WA has grown from 1.3 to 1.95 million ha and the total
yield has grown from a decadal average of ∼ 2 million tonnes to
5.1 million tonnes in 2017 as new varieties and fungicides have
been introduced.38 It is reasonable to suggest that some of these
increases are due to greater farmer confidence in the control of
powdery mildew.
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