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Highlights 

• The valence of mice living environment can be heavily modulated in laboratory settings 

• Environmental enrichment with stimuli carrying a negative valence enhances social competition 

• The valence of environmental enrichment is associated with a specific proteomic signature in 

the CNS 

• Negative enrichment is associated with the upregulation of proteins involved with mitochondrial 

metabolic processes related to TCA cycle and respiration 
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Abstract 

Environmental Enrichment leads to a significant improvement in long-term performance across a range 

of cognitive functions in mammals and it has been shown to produce an increased synaptic density and 

neurogenesis.  Nevertheless it is still an open question as to whether some key aspects of spatial learning 

& memory and procedural learning might be embodied by different molecular pathways to those of 

social cognition.  Associated with synaptic changes and potentially underlying conditions, the Ras-ERK 

pathway has been proposed to be the primary mediator of in vivo adaptations to environmental 

enrichment, acting via the downstream Ras-ERK signalling kinase MSK1 and the transcription factor 

CREB.  Herein, we show that valence of environmental stimulation increased social competition and 

that this is associated with a specific proteomic signature in the frontal lobe but notably not in the 

hippocampus. Specifically, we show that altering the valence of environmental stimuli affected the level 

of social competition, with mice from negatively enriched environments winning significantly more 

encounters—even though mice from positive were bigger and should display dominance. This 

behavioural phenotype was accompanied by changes in the proteome of the fronto-ventral pole of the 

brain, with a differential increase in the relative abundance of proteins involved in the mitochondrial 

metabolic processes of the TCA cycle and respiratory processes. Investigation of this proteomic 

signature may pave the way for the elucidation of novel pathways underpinning the behavioural changes 

caused by negative enrichment and further out understanding of conditions whose core feature is 

increased social competition. 

 

 

Keywords 

Environmental enrichment, Social competition, Ras-ERK pathway, Proteomics, Hippocampus, Frontal 

pole 
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Introduction 

Environmental Enrichment (EE) leads to a significant improvement in long-term performance across a 

range of cognitive functions in humans and other animals [1-3]. EE has been shown to produce an 

increased synaptic density and neurogenesis [4]. In mammals, the Ras-ERK pathway has been proposed 

to be the primary mediator of in vivo adaptations to the environment [4-6]. Previous work in mice has 

shown that much of the cognitive enhancing effects of environmental enrichment act via the downstream 

Ras-ERK signalling kinase MSK1 and a relevant portion of spatial cognitive flexibility is mediated by 

the transcription factor CREB phosphorylation [4, 7, 8]. It remains still an open question whether some 

key aspects of spatial learning & memory and procedural learning might be governed by different 

molecular pathways than those controlling social cognition [9]. 

Most studies on anxiety and stress disorders affecting social cognition, apply one or more stressors 

which are often accompanied by social isolation and/or environmental impoverishment [10-14]. 

Stressful experiences, such as reductions in maternal care, changes in diet, and exposure to aversive 

stimuli, are known to lead to long lasting epigenetic modifications in the degree of DNA 

methylation/demethylation, or histone post-translational modifications such as acetylation [15-17]. 

While these models well recapitulate some endophenotypes of Post-Traumatic Stress Disorder (PTSD) 

and similar conditions where stress levels are high, they somehow fail to address the ecological validity 

of some other conditions that develop when levels of environmental stimulation are high and there is 

high competition within the social group. Highly competitive environments are a core feature of 

nowadays western societies and might also have a pathological manifestation in a spectrum of antisocial 

behaviours defined as Antisocial Personality Disorder (APD). APD subjects, including sociopaths and 

psychopaths, contribute significantly to violent offences among the general population [18].  The 

essential diagnostic feature of APD is a pervasive pattern of disregard for—and violation of—the rights 

of others that begins in childhood or early adolescence and continues into adulthood; DSM 5 Antisocial 

Personality Disorder 301.7 (F60.2).  

In domestic violence crimes, APD prevalence is high in major offenders, which poses a serious and 

expensive threat for modern society. A European-wide investigation launched in 2014 

(http://fra.europa.eu/sites/default/files/fra-2014-vaw-survey-main-results-apr14_en.pdf) has shown 

alarming figures of violence against women in EU countries; in the course of 12 months prior to survey 

interviews, 13 million women experienced physical violence and 3.7 million women had experienced 

sexual violence.  APD or psychopathy are by no means a direct synonymous of physical aggression—

yet they are regarded as a major risk factor. 

It is well known that early life exposure to violence and abuse in humans leads to an increase in the 

violent crime rate—known as “the cycle of violence” [19]. Furthermore, in recent years, a growing body 

of work has shown how early life epigenetic modifications may underlie some of the behavioural 

Jo
ur

na
l P

re
-p

ro
of

http://fra.europa.eu/sites/default/files/fra-2014-vaw-survey-main-results-apr14_en.pdf


5 
 

changes observed in later life, including increased anxiety levels and a higher incidence of cognitive 

disorders and psychopathy [20]. 

Unfortunately, little is known regarding the mechanistic molecular basis of this complex disorder and 

consequently there are no effective pharmacological or therapeutic strategies available to help correct 

its aberrant behaviours. Hence, a key step forward towards a therapeutic strategy must be to uncover the 

biochemical and molecular basis of increased social competition and elucidate the pathways responsible 

for the development of associated behavioural traits. 

 

In this experiment, mice were raised in two different enriched environmental conditions, one of which 

with high levels of competition so as to induce the conditions to trigger an APD-like adaptation. This 

was to mimic real-life conditions in human society that see sociopaths develop as highly intelligent 

individuals who show enhanced social competition and disregard for other people [21-25]. 

Three major environmental manipulations were utilised to increase social competition; (1) Female 

pheromones; (2) Predator pheromones; and (3) Overcrowding. 

The presence of female scents is a powerful trigger for dominance fighting in adult male mice, with 

predator pheromones also known to induce a generalized level of anxiety and trigger defence behaviours 

[26-29]. Similarly, overcrowding was employed to increase social competition. Mice have preferred 

areas where they feel safe from predators and like to sleep and hide (e.g. shuttle box or inside some toys) 

[30]. In our overcrowding settings, there was not enough space in the safe areas for approximately half 

of the mice; thus, there would be continuously competing for these prime areas. 

 

Results and Discussion 

The main behavioural results are reported in Figure 1. Mice raised in the Negatively Enriched group 

(NEG) showed a more competitive/aggressive approach than the Positively Enriched group (POS)—

this in spite of their lower body weight (Figure 1a; S1). Lower body mass would normally see a mouse 

as recessive in the wild, because a smaller mouse would almost inevitably lose an encounter with a 

heavier mouse [31, 32]. Moreover, these groups belonged to the EE housing condition, which made 

them quite fit with little extra body fat compared to standard housing. Further it should be noted that the 

environmental manipulations in the Negative group were introduced after weaning so to avoid 

overwhelmingly levels of stress, which would have induced PTSD [33], rather these mice successfully 

adapted to their more competitive environment as proven by their normal growth and gross behaviour. 

The increased competition of the NEG group was also more directly tested with the T-tube paradigm 

(Figure 1b), whereby one POS and one NEG had to physically compete with one another to gain access 

to the exit leading to the oestrous female. 

Several factors that theoretically could have affected the results of the two tests were investigated. One 

hypothesis being that the NEG were more active regardless of their environment; however, this was not 
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the case, with POS group in fact being more active in the Open Field and showing similar responses to 

a novel object inserted after the initial stage (Figure S2). 

A different explanation could also be argued to the T-tube test; this would see mice raised in different 

enriched environments as having different pattern of exploration in enclosed environment. This was 

tested in the Elevated Plus maze, which revealed no difference between POS and NEG in investigating 

the closed zones of the maze (Figure S3). 

Furthermore, as expected, mice in these groups did not substantially differ in their spatial working 

memory ability, nor in their short-term memory (Figure S4). Interestingly, they did show a different 

pattern of interaction to objects and conspecifics (Figure S5, S6, S7), thus indicating a major effect of 

this oppositely enriched environment to have exerted its effects in the fronto-ventral portion of the brain, 

rather than on the hippocampus. 

 

To investigate this, a bottom-up “shotgun” proteomics study was carried out using LC-MS/MS in these 

two separated brain areas important for social cognition, spatial memory, and action planning, known 

to be altered in APD patients: the frontal pole and the hippocampus (Figure 2) [7, 34-38]. LC-MS/MS 

analysis identified 977 proteins from the hippocampi and frontal lobes of mice from positively and 

negatively enriched groups and determined their normalised abundance (see supplementary data for raw 

data tables). 

Of the total number of proteins identified, none were increased or decreased in the hippocampus 

(supplementary data). However, after correction for false discovery rate (FDR), the relative abundance 

of 47 proteins were seen to be significantly increased in the frontal lobes of mice from the negative 

enrichment group, compared to those from the positive enrichment group (Figure 2). 

Gene ontology (GO) enrichment analysis of the altered proteins from the frontal lobes identified several 

Biological Processes and Cellular Components affected by the negatively enriched environmental 

stimuli (Figure 3). The functional characterisation of the 47 differentially produced proteins in the 

frontal lobe identified a clear signature of upregulated proteins related to the mitochondrial processes of 

TCA cycle activity and aerobic respiration, in response to negative enrichment (Figure 3C). The proteins 

included alpha-actinin-3, citrate synthase, dihydrolipoyl transacetylase (an enzyme component of the 

pyruvate dehydrogenase (PDH) complex), and succinate dehydrogenase complex flavoprotein subunit 

A. 

Adding to this clear metabolic proteomic signature, mitochondrial respiratory processes related to 

electron transport and oxidative phosphorylation were identified in the upregulated proteins of 

negatively enriched frontal lobes (Figure 3B). These included the components of complex I (Ndufs6a, 

Ndufv1) and complex II (Sdha) of the electron transport chain (ETC), but also the mitochondrial 

calcium-binding carrier protein Slc25a12. 
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Other processes identified centred on ATPase activity and transmembrane proton transport, which 

included components of the vacuolar-type H+-ATPase complex (Figure 3A). Moreover, a number of 

upregulated calcium-related proteins were identified to be associated with the presynaptic cytosol 

(calbindin 1, protein kinase c alpha, and protein kinase c epsilon) in frontal lobes due to negative 

enrichment (Figure 3 D). 

Whilst the Ras-ERK pathway is thought to control transcriptional events in Neuro Developmental 

Disorders and ageing [7, 39-41], little is known about the downstream mechanisms. However, metabolic 

regulation of mitochondrial ATP production lies central to neuronal and glial function and processes 

related to neurotransmission [42-44]. 

Mitochondria are thought to play a pivotal role in neuronal function and synaptic regulation in 

neuropsychiatric disorders [45, 46]. Furthermore, mitochondria and reactive oxygen species (ROS) have 

been implicated in the developmental control of neuronal processes such as synapse pruning [47]. That 

we have identified a striking proteomic signature related to upregulation of proteins involved in the 

mitochondrial processes of the TCA cycle and the electrons transport chain in frontal lobes of mice due 

to negative enrichment, may be important in the elucidation of novel mechanistic pathways underlying 

the development of endophenotypes proper of APD. 

The relative abundance of various proton-transporting ATPase proteins was also seen to be increased in 

the frontal lobe due to negative enrichment. These ATPase proteins pump protons across the plasma 

membrane in order to acidify a wide-range of intracellular and extracellular environments, such as 

secretory synaptic vesicles [48]. Moreover, in cancer cells, increased V-ATPase expression is associated 

with various of metabolic and signalling adaptations [49]. Thus, changes in the abundance of proton-

pumping ATPase enzymes in neurons of the frontal lobe may have far-reaching implications for both 

neurotransmitter release and neuronal/glial metabolism in the context of increased social competition. 

In summary, we have proven that the valence of mice living environment can be heavily modulated in 

laboratory settings and that environmental enrichment with stimuli carrying a negative valence enhances 

social competition. Further we show evidence that the valence of environmental enrichment is 

associated with a specific proteomic signature in the CNS and Negative enrichment is associated with 

the upregulation of proteins involved with mitochondrial metabolic processes related to TCA cycle and 

respiration. 

So a clear proteomic signature in the frontal lobes (but critically not the hippocampi) in the Negatively 

enriched mice paralleled increased social competition, due to a negatively enriched environment. 

Further work is required to investigate the molecular mechanisms underpinning the roles of 

mitochondrial metabolism and ATPase proteins in models of increased social competition. 
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Material and Methods 

Mice and cages 

Forty-two C56/BL6J mice were brought in from Charles River when they were P21 and housed as 

follows: 16 in Positive enrichment (POS) 8 per GR1800 cage (Techniplast) and 16 in Negative 

enrichment (NEG) in one GR1800 cage. Ten mice were housed in standard cages and kept as reference 

for normal growth. The mice were injected s.c. with a 0.8mm transponder (IMI-500) when they were 

P43. 

Lights were on h07:00 – h19:00. Temperature was kept 21 (±1) ºC. Humidity was kept 50-70%. 

The Enriched cages included one shuttle box, one seesaw tube, one big running wheel, multiple tubes, 

one ball, two wooden blocks for chewing and some bedding, along with food and water ad libitum. NEG 

also had one small wheel due to the number of mice within being double than POS to make sure they 

were getting the same opportunity to exercise. 

Cages were cleaned each week. This included fresh sawdust and mouse bedding (fresh mouse bedding 

not added to NEG). Clean toys were also added to NEG at cleaning, as the intention was to induce strong 

environmental change, while toys were gradually changed in POS to minimize environmental 

disruption. Rat bedding was introduced to NEG two to three times a week for extra aversive stimulation. 

To add some extra stimulation with the intention to increase competition within NEG female mice’s 

bedding was also introduced. Some females were also individually introduced into the cage protected 

inside a wire-cup for 10 minutes each to trigger intra-cage competition. This was done after the social 

recognition tests had been completed. 

 

Behaviour software, statistics and experimental design 

The order of the mice in behavioural experiments was semi-random so to balance for cage composition. 

Mice were video-tracked and analysed with Anymaze 6.1. 

SPSS 25 was employed for statistical calculations. A mixed model ANOVA was employed with 

Housing condition and Enrichment as the between group factors. Within factors were used as 

appropriate (e.g. days, time). 

Figures legend: *= p<0.05; **= p<0.01. If no otherwise stated graphs depict Mean and SEM. 

Testing started at P50 and followed the order as below (one type of test per week); 

 

Jo
ur

na
l P

re
-p

ro
of



10 
 

Physiology 

Body weight 

Mice were regularly weighed and checked to make sure they were healthy and growing with a scale 

having a 0.1g precision. Three of the initial 32 mice were culled for health reasons (hydrocephalus or 

teeth misalignment). 

 

Social competition 

Reciprocal Interaction with freely moving oestrous female 

The bottom part of a GR1800 cage was placed under the camera. Clean sawdust was on the bottom. One 

NEG and one POS mouse were simultaneously released each into one of the sides of the cage, as far 

away as possible form the freely moving female. Further to starting point balancing, mice pairings were 

made accordingly to body weight so to avoid discrepancies over 10%. This test was carried out under 

Red-lights. 

 

T-tube test 

The bottom part of a GR1800 cage was placed under the camera. Clean sawdust was on the bottom. A 

set of mouse size tubes were set up to form an inverted T shaped figure (25 x 15cm). Fifteen cm apart 

from opening of the central tube, a female mouse in oestrous was placed inside a wire cup. 

One NEG and one POS mouse were simultaneously released each into one of the two lateral openings 

of the T shaped tubing so that they will have to meet each other in the middle and competed to get out 

towards the female. The first mouse to exit the tube towards the female was scored. 

Further to starting point balancing, mice pairings were made accordingly to body weight so to avoid 

discrepancies over 10%. This test was carried out under Red-lights. 

 

Exploration and Anxiety 

Open Field Novel Object 

Four Open field boxes (Ugo Basile 44 x 44 x 44cm) were fit onto a table and tracked simultaneously. 

This had two 30-minute stages. In the first stage each mouse was released into the arena and video-

tracked. For the second stage of the test, the novel object, a 50-ml Flacon tube was placed upside down 

in the centre of the arena. Horizontal locomotor activity was scored. 
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Elevated Plus Maze 

Four of the eight arms or a radial maze were left open to form a +; two of the open arms, facing each 

other, had walls (the closed area) and two were wall-less (the open area). Mice were released 

individually and tracked for 10 minutes. 

 

Spatial working memory 

Spontaneous Alteration 

A mouse size eight-arm radial maze (Ugo Basile) was used keeping only 4 arms open so to form a cross. 

Mice were individually released in the central hub and left free to explore for 10 minutes. Number and 

sequence of arm entries was recorded. A minimum threshold of 20 entries was applied to all groups. 

 

Short term memory 

Novel Object Recognition 

Novel object recognition used the same arenas as the open field and novel object. There were two stages. 

Acquisition with 2 identical objects positioned 30 cm apart lasted 5 minutes, the ITI was 60 minutes and 

the test stage lasted 3 minutes with an old and a new object (330 ml can and 350 ml juice bottle). Time 

spent directly investigating the objects by tracking the head position. 

 

Social Recognition 

Sample investigation 

This test used the same arenas as the open field and novel object. There was a single 10-minute stage 

and two 50-ml beakers were presented 30 cm apart; one was filled with fresh clean sawdust and a the 

other with sawdust from a cage of 5 unfamiliar adult male mice. The set up for this was to have the more 

salient stimulus (the biological sample) in the opposite position to the set-up of the novel object. 

Latencies and time spent directly investigating the samples by tracking the head position. 

 

Social interaction 

3-Chamber 
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Two mouse size 3-chamber arenas (60 x 40 x 30cm) were tracked simultaneously. SH mice were used 

as baits within the wire cup. They were habituated to the wire-cup 2 times for 10 minutes the day before 

the test. Test mice were habituated to the 3-chamber for 20 minutes the day before testing occurred. In 

stage 1, only the central compartment of the 3-chamber was free to the mouse to explore for 5 minutes, 

in the next 10 minutes (stage 2) all 3 chambers were free to explore, one had an empty and clean wire-

cup while the other had a SH male mouse inside. Baits were balanced to test mice. 

 

Brains withdrawal 

Two weeks after behavioural testing was terminated mice were culled by cervical dislocation and the 

brains quickly removed; 

Left hemispheres (sagittal cut) were included in OCT and snap frozen for later analysis. 

Right hemispheres were quickly dissected and the whole hippocampus (H), frontal pole (Striatum, 

Nucleus accumbens, Amygdaloid nuclei and Frontal cortices) (F) and the rest of the brain (R) were put 

in 3 cryovials and snap frozen. These were the samples used for proteomics analysis. 

After snap freezing (liquid nitrogen) all samples were promptly placed in dry ice and then stored at -

80°C shortly after. 

 

Sample preparation for proteomic analysis 

Frozen brains sections (frontal lobe and hippocampus) were defrosted on ice and re-suspended in 300 

µL ultrapure water with added cOmplete™ EDTA-free protease inhibitor cocktail (Roche). Samples 

were sonicated twice for 30 seconds each. A BCA protein assay was then performed on homogenised 

samples, which were then diluted to 1mg/mL protein in ultrapure water. Thereafter, a PreOmics iST 96x 

Sample Preparation Kit was used to prepare the samples for mass spectrometry proteomic analysis. 

Briefly, in order to digest the samples, 50 μL of kit lysis buffer was added to 100 μg protein/100 μL of 

each sample, which were incubated on a heating block at 95°C for 10 minutes. Samples were then 

sonicated again to remove DNA. 

Using the supplied adapter, cartridges were placed above the waste plate and samples added. 210 μL of 

re-suspend reagent was added to the digest vial and vortexed. 50 μL of the re-suspended digest reagent 

was then added to each sample cartridge, before place the samples on a heating block at 37°C for 2 

hours. 100 μL of reaction stop reagent was then added to each sample. In order to purify the samples, 

the cartridge plate was centrifuged at 3800 rcf for three minutes, before 200 μL of wash reagent was 

added and the plate spun again (wash repeated twice). The samples in the cartridge adapter were then 

placed on top of the MTP plate and 100 μL of the elution reagent was added, before the plate was 
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centrifuged and the supernatant collected. Samples were placed in a SpeedVac and dried at 45° C until 

completely dry. 100 µL of LC-loading buffer was then added to each sample before sonication (4 x 30 

seconds). Samples were then diluted 1:10 in loading buffer for injection into the LC-MS/MS. 

 

Proteomic analysis by LC-MS/MS 

Peptide analysis was performed in positive ion mode using a Thermo LTQ-Orbitrap XL LC-MSn mass 

spectrometer equipped with a nanospray source and coupled to a Waters nanoAcquity UPLC system. 

The samples were initially desalted and concentrated on a BEH C18 trapping column (Waters, 

Manchester, UK). The peptides were then separated on a BEH C18 nanocolumn (1.7 µm, 75 µm x 250 

mm, Waters) at a flow rate of 300 nL/minute using an ACN/water gradient over 3 hours. MS spectra 

were collected using data-dependent acquisition in the range m/z 200-2000 using a precursor ion 

resolution of 30,000 following which individual precursor ions (top 5) were automatically fragmented 

using collision induced dissociation (CID) with a relative collision energy of 35%. Dynamic exclusion 

was enabled with a repeat count of 2, repeat duration of 30 s and exclusion duration of 180 seconds. 

Data were analysed using Progenesis QIP (Non-Linear Dynamics, Newcastle, UK) with the MASCOT 

(Matrix Science, London, UK) search engine against the UniProt database. The initial search parameters 

allowed for oxidation of methionine, a precursor mass tolerance of 10 ppm, a fragment mass tolerance 

of ± 0.5 Da, and a FDR of 0.01.  

 

Proteomic data analysis 

Analysis of variance (ANOVA) was performed for three-way comparison for normalised protein 

abundance. P-values adjusted for an optimised false discovery rate (FDR) were used to calculate q-

values, whereby q-values ≤ 0.05 was considered statistically significant between normalised protein 

abundance means. Z-score were calculated from the fold change values of significantly altered protein 

abundances, which were then plotted on a heat map. Significantly alerted proteins were input into the 

ClueGO plug-in of Cytoscape in order to perform enrichment analysis and the output was plotted as 

clusters of genes in functionally grouped networks. 

  Jo
ur

na
l P

re
-p

ro
of



14 
 

REFERENCES 

[1] P.B. de la Tremblaye, J.P. Cheng, C.O. Bondi, A.E. Kline, Environmental enrichment, alone or in 
combination with various pharmacotherapies, confers marked benefits after traumatic brain injury, 
Neuropharmacology 145(Pt A) (2019) 13-24. 
[2] P. Sampedro-Piquero, A. Begega, Environmental Enrichment as a Positive Behavioral Intervention 
Across the Lifespan, Curr Neuropharmacol 15(4) (2017) 459-470. 
[3] C.P. Schuch, R. Diaz, I. Deckmann, J.J. Rojas, B.F. Deniz, L.O. Pereira, Early environmental 
enrichment affects neurobehavioral development and prevents brain damage in rats submitted to 
neonatal hypoxia-ischemia, Neurosci Lett 617 (2016) 101-7. 
[4] K. Karelina, K.F. Hansen, Y.S. Choi, A.C. DeVries, J.S. Arthur, K. Obrietan, MSK1 regulates 
environmental enrichment-induced hippocampal plasticity and cognitive enhancement, Learn Mem 
19(11) (2012) 550-60. 
[5] D. Lake, S.A. Correa, J. Muller, Negative feedback regulation of the ERK1/2 MAPK pathway, Cell 
Mol Life Sci 73(23) (2016) 4397-4413. 
[6] L.S. Novaes, N.B. Dos Santos, R.F. Batalhote, M.B. Malta, R. Camarini, C. Scavone, C.D. Munhoz, 
Environmental enrichment protects against stress-induced anxiety: Role of glucocorticoid receptor, 
ERK, and CREB signaling in the basolateral amygdala, Neuropharmacology 113(Pt A) (2017) 457-466. 
[7] L. More, J.C. Lauterborn, F. Papaleo, R. Brambilla, Enhancing cognition through pharmacological 
and environmental interventions: Examples from preclinical models of neurodevelopmental 
disorders, Neurosci Biobehav Rev  (2019). 
[8] S. Daumas, C.J. Hunter, R.B. Mistry, L. More, L. Privitera, D.D. Cooper, K.M. Reyskens, H.T. Flynn, 
R.G. Morris, J.S. Arthur, B.G. Frenguelli, The Kinase Function of MSK1 Regulates BDNF Signaling to 
CREB and Basal Synaptic Transmission, But Is Not Required for Hippocampal Long-Term Potentiation 
or Spatial Memory, eNeuro 4(1) (2017). 
[9] T. Kobilo, Q.R. Liu, K. Gandhi, M. Mughal, Y. Shaham, H. van Praag, Running is the neurogenic and 
neurotrophic stimulus in environmental enrichment, Learn Mem 18(9) (2011) 605-9. 
[10] J. Haller, Preclinical models of conduct disorder - principles and pharmacologic perspectives, 
Neurosci Biobehav Rev 91 (2018) 112-120. 
[11] L. Biro, M. Toth, E. Sipos, B. Bruzsik, A. Tulogdi, S. Bendahan, C. Sandi, J. Haller, Structural and 
functional alterations in the prefrontal cortex after post-weaning social isolation: relationship with 
species-typical and deviant aggression, Brain Struct Funct 222(4) (2017) 1861-1875. 
[12] K.R. Mifsud, J. Reul, Mineralocorticoid and glucocorticoid receptor-mediated control of genomic 
responses to stress in the brain, Stress 21(5) (2018) 389-402. 
[13] K.R. Mifsud, J.M. Reul, Acute stress enhances heterodimerization and binding of corticosteroid 
receptors at glucocorticoid target genes in the hippocampus, Proc Natl Acad Sci U S A 113(40) (2016) 
11336-11341. 
[14] E.A. Saunderson, H. Spiers, K.R. Mifsud, M. Gutierrez-Mecinas, A.F. Trollope, A. Shaikh, J. Mill, 
J.M. Reul, Stress-induced gene expression and behavior are controlled by DNA methylation and 
methyl donor availability in the dentate gyrus, Proc Natl Acad Sci U S A 113(17) (2016) 4830-5. 
[15] E. Gorrochategui, J. Li, N.J. Fullwood, G.G. Ying, M. Tian, L. Cui, H. Shen, S. Lacorte, R. Tauler, F.L. 
Martin, Diet-sourced carbon-based nanoparticles induce lipid alterations in tissues of zebrafish 
(Danio rerio) with genomic hypermethylation changes in brain, Mutagenesis 32(1) (2017) 91-103. 
[16] I.B. Zovkic, J.P. Meadows, G.A. Kaas, J.D. Sweatt, Interindividual Variability in Stress 
Susceptibility: A Role for Epigenetic Mechanisms in PTSD, Front Psychiatry 4 (2013) 60. 
[17] M. Tian, B. Zhao, J. Zhang, F.L. Martin, Q. Huang, L. Liu, H. Shen, Association of environmental 
benzo[a]pyrene exposure and DNA methylation alterations in hepatocellular carcinoma: A Chinese 
case-control study, Sci Total Environ 541 (2016) 1243-1252. 
[18] R. Yu, J.R. Geddes, S. Fazel, Personality disorders, violence, and antisocial behavior: a systematic 
review and meta-regression analysis, Journal of personality disorders 26(5) (2012) 775-92. 
[19] K.A. Wright, J.J. Turanovic, E.N. O'Neal, S.J. Morse, E.T. Booth, The Cycle of Violence Revisited: 
Childhood Victimization, Resilience, and Future Violence, J Interpers Violence  (2016). 

Jo
ur

na
l P

re
-p

ro
of



15 
 

[20] M.R. Dadds, C. Moul, A. Cauchi, C. Dobson-Stone, D.J. Hawes, J. Brennan, R.E. Ebstein, 
Methylation of the oxytocin receptor gene and oxytocin blood levels in the development of 
psychopathy, Dev Psychopathol 26(1) (2014) 33-40. 
[21] R.E. Christian, P.J. Frick, N.L. Hill, L. Tyler, D.R. Frazer, Psychopathy and conduct problems in 
children: II. Implications for subtyping children with conduct problems, J Am Acad Child Adolesc 
Psychiatry 36(2) (1997) 233-41. 
[22] N. Fontaine, E.D. Barker, R.T. Salekin, E. Viding, Dimensions of psychopathy and their 
relationships to cognitive functioning in children, J Clin Child Adolesc Psychol 37(3) (2008) 690-6. 
[23] P. Pinel, Medical philosophical treatise on mental alienation, Occup Ther Rehabil 26(2) (1947) 
63-8. 
[24] H.M. Cleckley, The mask of sanity, Postgrad Med 9(3) (1951) 193-7. 
[25] M.E. McKenzie, S.S. Lee, Cognitive ability and psychopathic traits: independent and interactive 
associations with youth conduct problems, J Abnorm Child Psychol 43(4) (2015) 761-71. 
[26] J.J. Cowley, D.R. Wise, Pheromones, growth and behaviour, Ciba Found Study Group 35 (1970) 
144-70. 
[27] F.H. Bronson, Rodent pheromones, Biol Reprod 4(3) (1971) 344-57. 
[28] R. Apfelbach, C.D. Blanchard, R.J. Blanchard, R.A. Hayes, I.S. McGregor, The effects of predator 
odors in mammalian prey species: a review of field and laboratory studies, Neurosci Biobehav Rev 
29(8) (2005) 1123-44. 
[29] L. More, Intra-female aggression in the mouse (Mus musculus domesticus) is linked to the 
estrous cycle regularity but not to ovulation, Aggress Behav 34(1) (2008) 46-50. 
[30] F.H. Bronson, The reproductive ecology of the house mouse, Q Rev Biol 54(3) (1979) 265-99. 
[31] V. Ryan, F. Wehmer, Effect of postnatal litter size on adult aggression in the laboratory mouse, 
Dev Psychobiol 8(4) (1975) 363-70. 
[32] J.P. Scott, Agonistic behavior of mice and rats: a review, Am Zool 6(4) (1966) 683-701. 
[33] J.M. Reul, Making memories of stressful events: a journey along epigenetic, gene transcription, 
and signaling pathways, Front Psychiatry 5 (2014) 5. 
[34] L. More, B. Kunnecke, L. Yekhlef, A. Bruns, A. Marte, E. Fedele, V. Bianchi, S. Taverna, S. Gatti, P. 
D'Adamo, Altered fronto-striatal functions in the Gdi1-null mouse model of X-linked Intellectual 
Disability, Neuroscience 344 (2017) 346-359. 
[35] V. Kumari, M. Das, S. Hodgins, E. Zachariah, I. Barkataki, M. Howlett, T. Sharma, Association 
between violent behaviour and impaired prepulse inhibition of the startle response in antisocial 
personality disorder and schizophrenia, Behavioural brain research 158(1) (2005) 159-66. 
[36] M. Atmaca, S. Kaya, I. Taskent, S. Baykara, H. Yildirim, Orbito-frontal cortex volumes in patients 
with antisocial personality disorder, Asian J Psychiatr 28 (2017) 131-132. 
[37] E.D. Bigler, Frontal lobe pathology and antisocial personality disorder, Arch Gen Psychiatry 58(6) 
(2001) 609-11. 
[38] I. Barkataki, V. Kumari, M. Das, P. Taylor, T. Sharma, Volumetric structural brain abnormalities in 
men with schizophrenia or antisocial personality disorder, Behavioural brain research 169(2) (2006) 
239-47. 
[39] S. Fasano, R. Brambilla, Ras-ERK Signaling in Behavior: Old Questions and New Perspectives, 
Front Behav Neurosci 5 (2011) 79. 
[40] D. Silingardi, A. Angelucci, R. De Pasquale, M. Borsotti, G. Squitieri, R. Brambilla, E. Putignano, T. 
Pizzorusso, N. Berardi, ERK pathway activation bidirectionally affects visual recognition memory and 
synaptic plasticity in the perirhinal cortex, Front Behav Neurosci 5 (2011) 84. 
[41] C. Slack, N. Alic, A. Foley, M. Cabecinha, M.P. Hoddinott, L. Partridge, The Ras-Erk-ETS-Signaling 
Pathway Is a Drug Target for Longevity, Cell 162(1) (2015) 72-83. 
[42] C.N. Hall, M.C. Klein-Flugge, C. Howarth, D. Attwell, Oxidative phosphorylation, not glycolysis, 
powers presynaptic and postsynaptic mechanisms underlying brain information processing, J 
Neurosci 32(26) (2012) 8940-51. 
[43] G. Yellen, Fueling thought: Management of glycolysis and oxidative phosphorylation in neuronal 
metabolism, J Cell Biol 217(7) (2018) 2235-2246. 

Jo
ur

na
l P

re
-p

ro
of



16 
 

[44] M. Kreft, L.K. Bak, H.S. Waagepetersen, A. Schousboe, Aspects of astrocyte energy metabolism, 
amino acid neurotransmitter homoeostasis and metabolic compartmentation, ASN Neuro 4(3) 
(2012). 
[45] M. Vos, E. Lauwers, P. Verstreken, Synaptic mitochondria in synaptic transmission and 
organization of vesicle pools in health and disease, Front Synaptic Neurosci 2 (2010) 139. 
[46] F. Jeanneteau, M. Arango-Lievano, Linking Mitochondria to Synapses: New Insights for Stress-
Related Neuropsychiatric Disorders, Neural Plast 2016 (2016) 3985063. 
[47] E. Sidlauskaite, J.W. Gibson, I.L. Megson, P.D. Whitfield, A. Tovmasyan, I. Batinic-Haberle, M.P. 
Murphy, P.R. Moult, J.N. Cobley, Mitochondrial ROS cause motor deficits induced by synaptic 
inactivity: Implications for synapse pruning, Redox Biol 16 (2018) 344-351. 
[48] D. Wang, P.R. Hiesinger, The vesicular ATPase: a missing link between acidification and 
exocytosis, J Cell Biol 203(2) (2013) 171-3. 
[49] S. Pamarthy, A. Kulshrestha, G.K. Katara, K.D. Beaman, The curious case of vacuolar ATPase: 
regulation of signaling pathways, Mol Cancer 17(1) (2018) 41. 

 

 

  

Jo
ur

na
l P

re
-p

ro
of



17 
 

Figure 1: Social Competition can be increased by modulating the Valence of Environmental 

Enrichment 

Figure 1a. Social interaction with oestrous female. The number of initial interactions with the female (in 

oestrous) was superior in the negative group; independent samples t-test (26)= -2.895,  p: 0.008 (two-tailed). 

 

 

Figure 1b. T-tube. The Fisher’s exact test gave a p: 0.007 (two-tailed) indicating the Negative group winning 

11 out of the 14 encounters. 
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Figure 2: Proteins differentially regulated in brain’s fronto-ventral pole of mice raised in a highly 

competitive form of environmental enrichment. Heat map showing fold-change difference (plotted 

as Z-scores) of the 47 differentially produced proteins in the frontal lobes of mice from positively 

enriched environments (A1-5) and negatively enriched environments (B1-5) (ANOVA, n = 5; q < 0.05). 

No significant differences were found in hippocampi. 

Data were ranked by fold difference between positive enrichment and negative enrichment, with higher 

abundance shown in red and lower abundance shown in blue. 
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Figure 3. Network analysis of functional interactions was performed using the Cytoscape plugin 

ClueGo. The 47 differentially produced proteins measured between positively enriched and negatively 

enriched groups were mapped to GO categories (Biological Processes, Molecular Function, and Cellular 

Component). The most significant term in each cluster is highlighted in bold. 
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