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• A novel random classification forests algorithm, called Banzhaf random forests (BRFs), is proposed.
• The Banzhaf power index is employed to evaluate the power of each feature by traversing possible feature coalitions.
• The consistency of BRFs is proved.
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a b s t r a c t

Random forests algorithms have been widely used in many classification and regression applications.
However, the theory of random forests lags far behind their applications. In this paper, we propose a
novel random forests classification algorithm based on cooperative game theory. The Banzhaf power
index is employed to evaluate the power of each feature by traversing possible feature coalitions. Hence,
we call the proposed algorithm Banzhaf random forests (BRFs). Unlike the previously used information
gain ratio, which only measures the power of each feature for classification and pays less attention to the
intrinsic structure of the feature variables, the Banzhaf power index can measure the importance of each
feature by computing the dependency among the group of features. More importantly, we have proved
the consistency of BRFs, which narrows the gap between the theory and applications of random forests.
Extensive experiments on several UCI benchmark data sets and three real world applications show that
BRFs perform significantly better than existing consistent random forests on classification accuracy, and
better than or at least comparable with Breiman’s random forests, support vector machines (SVMs) and
k-nearest neighbors (KNNs) classifiers.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Machine learning is an important sub-area of artificial intelli-
gence. It includes many branches, such as ensemble leaning and
deep learning. In recent years, a great deal of work shows the ef-
fectiveness of deep learning in solving practical problems (Amoze-
gar & Khorasani, 2016; Bulo & Kontschieder, 2014; Kim, Jang, &
Lee, 2016; Mcquoid, 1993; Pavel, Schulz, & Behnke, 2017; Roy
& Todorovic, 2016; Scardapane & Di, 2017). However, in order
to obtain better performance, it tends to combine the ideas of
deep learning and ensemble learning. For instance, some work
tries to improve the performance of deep learning models based
on ensemble learning (Amozegar & Khorasani, 2016; Mcquoid,
1993; Scardapane & Di, 2017), while some uses deep learning
models for feature extraction and ensemble learning models for
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classification or regression (Bulo & Kontschieder, 2014; Roy &
Todorovic, 2016). In this paper, we focus on an ensemble learning
method, random forest, which is mainly based on the combination
of several independent decision trees (Breiman, 2001).

As a general classification and regression tool, the random
forests algorithm and its variants (Ayerdi & Grana, 2014; Ristin,
Guillaumin, Gall, & Van Gool, 2016; Zhang & Suganthan, 2014)
have been successfully applied in many fields, such as computer
vision (Dollar & Zitnick, 2014; Hallman & Fowlkes, 2015; Shotton,
Sharp, Kipman, Fitzgibbon, Finocchio, Blake, Cook, & Moore, 2013;
Zikic, Glocker, & Criminisi, 2013) and pattern recognition (Bosch,
Zisserman, & Muoz, 2007; Shotton, Johnson, & Cipolla, 2008; Yin,
Criminisi, Winn, & Essa, 2007). Nevertheless, the theory of random
forests lags far behind their applications. Fortunately, Biau et al.
have made a breakthrough in theoretical research of the random
forests algorithms in recent years (Biau, 2012; Biau, Devroye, &
Lugosi, 2008). However, as theymainly focus on the consistency of
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the random forests algorithms, the proposed algorithms generally
perform not very well.

In this paper,we propose a new randomclassification forests al-
gorithm based on the cooperative game theory, and call it Banzhaf
random forests (BRFs). BRFs are formed with a number of Banzhaf
decision trees (BDTs). For each BDTs, we adopt the Banzhaf power
index to evaluate the ‘‘best’’ feature at each tree node. The Banzhaf
power index is a method to calculate solution of the cooperative
game, which can be used to explore the internal structure of the
feature variables.More importantly, based onpreviouswork on the
consistency of classifiers (Biau, 2012; Biau et al., 2008), we have
proved the consistency of BRFs.

The remainder of this paper is organized as follows. In Section 2,
we review some related work on random forests algorithms. In
Section 3, we describe two critical issues for constructing decision
trees in random forests. In Section 4, we introduce the proposed
BRFs algorithm in detail. Section 5 is devoted to the proof of the
consistency of BRFs. In Section 6, we report the experimental
results obtained by BRFs and the compared algorithms on several
UCI data sets. Section 7 concludes this paper.

2. Related work

The original random forests algorithm (Breiman, 2001),
which combines several classification and regression trees
(CART) (Breiman, Friedman, Stone, & Olshen, 1984) or C4.5 deci-
sion trees (Salzberg, 1994) using bagging (Breiman, 1996), is pro-
posed by Breiman. The construction of random forests algorithm is
mainly based on three pieces of existingwork: the feature selection
work of Amit and Geman (1997), the random subspace method of
Ho (1998) and the method of random split selection of Dietterich
(2000). Later on, Criminisi et al. present a unified framework for
random forests models (Criminisi, Shotton, & Konukoglu, 2012).

Random forests models have an excellent classification and re-
gression performance. Therefore, they have been applied to a wide
variety of real world applications (Criminisi & Shotton, 2013; Cut-
ler, Edwards Jr, Beard, Cutler, Hess, Gibson, & Lawler, 2007; Prasad,
Iverson, & Liaw, 2006; Svetnik, Liaw, Tong, Culberson, Sheridan, &
Feuston, 2003). Although random forest algorithms have achieved
great successes in practice, the mathematical properties behind
them are difficult to be analyzed (Breiman, 2004). There are two
main properties of the theory related to random forests models.
The first is the consistency of the models, i.e. whether they can
converge to an optimal solution as the data set grows infinitely
large. The second is the rate of the convergence. In this work, we
focus on the consistency aspect of the proposed BRFs algorithm.
Note that, Biau et al. have showed that the consistency of Breiman’s
random forests cannot be theoretically guaranteed (Biau et al.,
2008).

In recent years, many researchers have devoted efforts to the
study of the consistency of random forests algorithms. Mein-
shausen has presented a consistent random regression forests
algorithm, called quantile regression forests (Meinshausen, 2006).
Ishwaran and Kogalur have demonstrated that their proposed
algorithm, survival forests, possesses consistency (Ishwaran &
Kogalur, 2010). In addition, Denil et al. have developed an online
version of the random forests algorithms and proved its consis-
tency (Denil, Matheson, & de Freitas, 2013b).Moreover, a new ran-
dom regression forests algorithm was given by Denil, Matheson,
and De Freitas (2013a). However, the consistency of these existing
random forests algorithms only focuses on the online learning and
regression problems. A significant contribution to the theory of
random forests is the work by Biau et al. (2008), which proves
the consistency of various randomized ensemble classifiers and
investigates the consistency of bagging rules (Breiman, 1996). Biau
et al. have also proposed two consistent random forests classifiers:

the pure random forests and the scale-invariant version of the
random forests (Biau et al., 2008). More importantly, Biau et al.
suggest that various greedy random forest classifiers, including
Breiman’s random forests classifier, are inconsistent. To remedy
the inconsistency of these random forests classifier, some tech-
niques need to be employed (Györfi, Devroye, & Lugosi, 1996).
For instance, the decision trees in random forests use different
stopping rules instead of growing every decision tree down to
nodes with a single data point.

In this paper, we propose an innovative random classification
forests algorithm based on the cooperative game theory. It uses
the Banzhaf power index to evaluate the power of each feature
by traversing all possible feature coalitions, and the midpoint of
the most powerful feature is used to split the node. According
to the existing theoretical work, the consistency of the proposed
random forests algorithmhas been proved. Furthermore, extensive
experiments show that the performance of the proposed random
forests algorithm is significantly better than that of existing con-
sistent random forests, and better than or at least comparable with
Breiman’s random forests and other state-of-the-art classifiers.

3. Two critical issues in random forests

In general, when some decision trees are employed in a random
forests algorithm, two critical issues need to be considered. The
first one is the method for splitting the tree nodes, and the second
one is the method for injecting randomness into the trees. At the
same time, the strategic choice of these two critical issues also
determines whether a random forests algorithm is consistent.

Specifying a method for splitting tree nodes needs to select
the shapes of candidate splits and a criterion for evaluating the
quality of each candidate split point or feature. Typical choices are
to use axis aligned splits,where sample data are routed to sub-trees
depending on whether or not they exceed a threshold value of a
chosen feature; or linear splits, where a linear combination of fea-
tures is compared with a threshold to make a decision (Breiman,
2001). The threshold value in either case can be chosen randomly
or by optimizing a function of the data in the tree nodes.

For the used split point, a simple method is to choose among
the candidate split points at random, such as a random forests
algorithm of Biau et al. (2008). A more common method is to
choose the ‘‘best’’ split points, which optimizes a purity function
to travel the possible candidate split point of each feature in a
tree node. A typical choice is to maximize the Gini index or the
information gain ratio (Breiman, 2001; Friedman, 2001; Geurts,
Ernst, & Wehenkel, 2006). Recently, Biau (2012) proposed a new
method to split the tree node in their random forests model (called
Biau12, in our paper). They had not used the traversal way to
compute the ‘‘best’’ split point. Alternatively, the midpoint of the
most important feature was used to split the node. In this way,
Biau12 algorithm can achieve consistency. In our paper, based on
the theoretical results of Biau et al., we proved the consistency
of the proposed BRFs algorithm. In particular, to ensure that the
proposed BRFs algorithm has consistency, the midpoint value of
the ‘‘best’’ feature was used as split point to expand tree nodes.

In addition, Breiman claims that randomness can help to re-
duce the correlation between tree classifiers in a random forests
algorithm, and meanwhile, maintain reasonable strength of each
tree (Breiman, 2001). Therefore, injecting randomness is very
important to improve the performance of random forests models.
In general, injecting randomness into each tree can be achieved in
severalways.Which feature to be chosen for splitting the tree node
can be random, and the split point can be chosen either randomly
or by optimization over some or all of the data at each tree node.
In this work, we randomly select some data samples and features
to construct the decision trees.
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4. Banzhaf random forests

In this section,wepresent the construction rules of Banzhaf ran-
dom forests (BRFs). Banzhaf random forests are formed by combin-
ing the prediction of several Banzhaf decision trees (BDTs). The idea
of constructing theBDTsmainlymotivatedbyBanzhaf power index
that comes from the cooperative game theory. Therefore, first, we
start with some basic concepts of the cooperative game theory
and the Banzhaf power index. Second, we introduce the method
of constructing the randomized BDTs. Third, the construction rules
of BRFs are given. Finally, we discuss the computation issue and
present the prediction method of BRFs.

4.1. Some basic concepts of the cooperative game theory

Cooperative game is a game where groups of players (‘‘coali-
tions’’) may enforce cooperative behavior, while the game is a
competition between coalitions of players rather than between
individual players. Cooperative game theory mainly searches for
an ‘acceptable’ way to distribute gains to each individual player in
the cooperative game (Chalkiadakis, Elkind, & Wooldridge, 2011).
The mathematical definition of cooperative games (Chalkiadakis
et al., 2011) can be read as follows.

Formally, the cooperative game Γ = (N , γ ) consists of a
finite set of player N = {1, 2, . . . , n}, called the grand coalition,
and a characteristic function γ : 2N

→ R. For each subset
S ⊆ N , γ (S) represents the profit achieved by the players of
S ⊆ N by accomplishing the task together. In general, the goal
in a cooperative game is to distribute the total gains γ (N ) to each
player i(i = 1, 2, . . . , n) who belongs to the grand coalition N in a
fair and reasonable way.

Obviously, the grand player set N gets profit more than that
of any player subset S ⊂ N in a cooperative game Γ = (N , γ ),
i.e., γ (N ) > γ (S). Only meeting this condition, the players in N
are willing to cooperate. Otherwise, no cooperation is necessary.
In particular, a game is a cooperative game, which need to satisfy
the superadditivity (Saad, Han, Debbah, & Hjorungnes, 2009).
Superadditivity implies that, given any two disjoint player subsets
S1 and S2, if coalition S1

⋃
S1 forms, then it can guarantee at least

the profit that is obtained by the disjoint coalitions separately.
i.e., γ (S1)

⋃
γ (S2) ≥ γ (S1) + γ (S2), ∀S1 ⊂ N , S2 ⊂ N and

S1 ∩ S2 = ∅. Therefore, how much profit to be obtained and how
to distribute the gains are an important factor to the players in the
cooperation.

Moreover, for the distribution of total gains, different require-
ments of fairness and rationality yield different solution concepts
for the cooperative game, such as ‘the nucleolus’, ‘the Shapley
value’, ‘Banzhaf power index’ and other concepts. Among these
solution concepts, the nucleolus and the Shapley value focus on
providing the expected payment for each player in the coalition,
while the Banzhaf power index focuses on evaluating the power
or importance of each player in the coalition (Feltkamp, 1995). In
particular, the Banzhaf power index focusesmore on the fairness of
the distribution gains. For the proposed BRFs algorithm, we try to
search the node feature with the strongest discriminative ability
for classification tasks, according to the intricate and intrinsic
interrelation among candidate features. That is, the most powerful
or important feature is selected as the split feature at each tree
node. Therefore, in this work, we use the Banzhaf power index to
evaluate the power or importance of the candidate features at each
tree node.

The definition of Banzhaf power index is described in Banzhaf III
(1964). The original Banzhaf power index is used to evaluate the
power of players in a simple game. The simple game is a coop-
erative game due to satisfying the superadditivity (Saad et al.,
2009). A simple game Γ = (N , γ ) consisting of a player set

N = {1, 2, . . . , n} with |N | = n, the coalition S with value 1 is
considered to be ‘winning’, and that with value 0 is considered to
be ‘losing’, i.e. ∀S ⊆ N , γ (S) = 1 and γ (S) = 0, respectively. The
phenomenon that coalition S∪{i}wins but S loses is called a swing
of player i ∈ N , because the player i in the coalition S∪{i} is crucial
to its ‘winning’. In fact, the Banzhaf power index of a player i ∈ N
is the probability of swings of player i. Here, the symbol βi(Γ ) is
used to represent the Banzhaf power index of player i ∈ N , and it
is given by

βi(Γ ) =
1

2n−1

∑
S⊆N\{i}

∆i(S), (1)

where 2n−1 represents the total number of player subsets S ⊆

N\{i} and∆i(S) is themarginal contribution of player i, i.e.∆i(S) =

γ (S ∪ {i}) − γ (S).
From Eq. (1), the Banzhaf power index of player i(i ∈ N ) is used

to count the number of ‘winning’ coalitions when the player i joins
in the ‘losing’ coalitions S ⊆ N \ {i}. To find the most powerful
player i that can make the majority of coalitions ‘winning’, the
normalized Banzhaf power index ζi(Γ ) is defined as

ζi(Γ ) =
βi(Γ )∑
i∈N βi(Γ )

, (2)

where
∑

i∈Nβi(Γ ) is the total number of ‘winning’ coalitions of all
players in the game.

Banzhaf power index has a particularly attractive inter-
pretation—it measures the power of each player in a cooperative
game, i.e. the probability that this player yields a good or bad result
to a game. Some famous and vivid examples in Banzhaf III (1964)
may help the readers for a better understanding of the Banzhaf
power index. In this paper, in order to construct each BDT, we
employ the Banzhaf power index to evaluate the power of the
candidate features at each tree node.

4.2. Construction of BDTs

BRFs are composed of several Banzhaf decision trees (BDTs).
Fig. 1 shows the structure of a single BDTs. For the root node,
the ‘‘best’’ feature is selected by the criterion of the information
gain ratio. For all of the other nodes except the leaves, the ‘‘best’’
features (players in the cooperative game) are selected by the
Banzhaf power index. At each step, themidpoint value of the ‘‘best’’
feature is selected as the split point, which can be considered as a
threshold ε. If there is only one data point in each tree node or a
predefined number of cuts has been reached, then the tree stops
growing.

We apply Eq. (1) to the process of constructing BDTs. At each
tree node, the Banzhaf power index of feature fi is computed as
follows.

Each step of constructing the BDTs can be modeled as a simple
game Γ = (N , γ ), which consists of a feature player set N =

{f1, f2, . . . , fn}. i.e., γ (S) ∈ {0, 1}, ∀S ⊆ N and γ (N) = 1. In
particular, the simple game satisfies the superadditivity (Saad et
al., 2009). Therefore, the problem of computing the Banzhaf power
index of features at each node of BDTs is a cooperative game. Then,
let the coalition S be a subset of the features and fi(fi ̸∈ S) be a
feature to be estimated.

Whether feature fi leads a coalitionS to enter the ‘winning’ state
can bemeasured by the ratio σ = µfi (S)/ρfi (S), whereµfi (S) is the
number of features (belonging to the coalition S) interdependent
with the features fi(fi ̸∈ S), and ρfi (S) is the total number of
features in the coalition S. For convenience, the symbol τ is used
to represent the splitting threshold for the ratio σ , and we set
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τ = 1/2. If σ < τ , the coalition S ∪ {fi} is ‘losing’, otherwise, it
is ‘winning’, i.e.

∆fi (S ∪ fi) =

{
1 σ ≥ τ ;

0 σ < τ.

The threshold τ = 1/2 means, if more than half of the features
of a coalition S are interdependent with fi, then fi joining canmake
coalition S enter the ‘winning’ state. Hence, for simplicity of the
computation, we specify ∆i(S) for a single coalition S ⊆ N \ {fi} in
Eq. (1) as

∆i(S) = γ (S ∪ {i}) − γ (S) =

{
1 σ ≥ τ ;

0 σ < τ.
(3)

In this work, we use the conditional mutual information to
evaluate the interdependence between a single feature fi ∈ N \ S
and the feature player fj ∈ S ⊆ N . In general, the conditional
mutual information I(X; Y |Z) is defined as information shared by
random variables X and Y when variable Z is given. It can be
formally defined as

I(X; Y |Z) =

∑
x∈X

∑
y∈Y

∑
z∈Z

p(x, y, z) log
p(x, y|z)

p(x|z)p(y|z)
.

Conditional mutual information is also widely used to measure
the reduction of the uncertainty of X due to the knowledge of Y
when Z is given.

In our paper, the conditional mutual information is used to
measure the interdependency between a single feature player fi ̸∈

S and the target class label y, given feature player fj ∈ S . It is
defined by

I(fi; y|fj) = p(fi, fj, y) log
p(fi, y|fj)

p(fi|fj)p(y|fj)
. (4)

Two feature variables fi and fj are interdependent on each other,
if the relevance between fi and the target class y increases given
fj, i.e. I(fi; y) ≤ I(fi; y|fj), where I(fi; y) is the mutual information
between the feature fi and the class label y.

By Eqs. (1), (3), (2) and (4), we can obtain the Banzhaf power in-
dex of each candidate feature for each tree node. More concretely,
this computation process is described in Algorithm 1.

Algorithm1: Selecting the best feature using the Banzhaf power
index
Input: A tree node contains data set Dn with feature space F
and the data labels y.
Output: β: Banzhaf power index vector of F .

β = 0, τ =
1
2 ;

For each feature i ∈ F do
Create coalitions set {S1, . . . , St} over F \ {i};
For each feature Sj ∈ {S1, . . . , St} do
Calculatemarginal function∆i(Sj) using Eq. (3) and Eq. (4);
End

Calculate the Banzhaf power index βi using Eq. (1);
End

Normalized the value βi using Eq. (2) to obtain ζi;
Choose the best feature with maxi ζi for this tree node.

For clarity, we give an example to demonstrate how the Banzhaf
power index can be used to evaluate the power of a feature. Given
a cooperative feature game Γ = (N , γ ) with the feature player
set N = {f1, f2, f3, f4}. Our goal is to calculate the Banzhaf power
index of the feature f4. For all coalitions S ⊆ N \ {f4}, the total
number of possible coalitions of feature subsets N \ {f4} is 8.
Assume that the feature f4 can make the coalitions {f2}, {f2, f3} and
{f1, f2} enter the ‘winning’ state, i.e. each coalition has half of its

Fig. 1. A Banzhaf decision tree.

features interdependent with feature f4. Then the Banzhaf power
index of f4 can be computed as

βf4 (Γ ) =
1

24−1

∑
S⊆N\{f4}

∆f4 (S) = 3/8.

where
∑

S⊆N\{f4}
∆f4 (S) =

∑
S⊆N\{f4}

(γ (S ∪ {f4}) − γ (S)) =

1+1+1 = 3. Similarly, the Banzhaf power index of other features
can be computed in a similar way.

4.3. Banzhaf random forests algorithm

Given a training data set Dn = (Xi, Yi)ni=1, including n sam-
ples with dimensionality M , the learning of BRFs is based on the
general technique of bootstrap aggregating, or bagging, and the
constructed BDTs. The BRFs algorithm can be formally described
as follows.

• Using the baggingmethod to generate ntree subsets, {d1, d2,
. . . , dntree}, where ntree is the number of trees in BRFs. Con-
cretely, for each tree, randomly samplingDn for n timeswith
replacement.

• For each data set di, a Banzhaf decision tree is built. Before
the decision tree construction, randomly sample a subspace
of h = round(log2(M)+C) (h ≪ M) features from the avail-
able features presented in di, whereC ∈ R is a parameter. For
the root node, the ‘‘best’’ feature is selected by the criterion
of information gain ratio. For the other nodes except the
terminal ones, the ‘‘best’’ feature is selected among the h
features based on the Banzhaf power index. The midpoint
value of the ‘‘best’’ feature is used as a split threshold to
generate left and right child nodes. Repeat this process until
reaching the user-set limit (i.e. the percentage of incorrect
points or a minimal number of samples at a node).

• Integrating ntree BDTs h1(d1), h2(d2), . . . , hntree(dntree) to
form a Banzhaf random forest (BRF), and this BRF uses the
majority votes of ntree BDTs to obtain the class prediction
for a new sample.

It is easy to see that the BRFs algorithm is similar to the original
random forests algorithm by Breiman (2001). Both of them use
bootstrap aggregating, i.e. the bagging ensemblemethod. Themain
difference between them is the way of selecting the split point
(threshold) for each tree node. For the original random forests, the
information gain ratio is employed to traverse each possible split
point at each candidate feature, accordingly, the ‘‘best’’ split point
and the corresponding feature is obtained. While BRFs algorithm
employs a different way to obtain the split point at each tree node.
BRFs first use the Banzhaf power index to evaluate the ‘‘best’’ fea-
ture, and then the midpoint value of the ‘‘best’’ feature is selected
as the split point.
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4.4. Computational issue

To evaluate the power of each feature, it is necessary to calculate
the proportion of the ‘winning’ coalitions. Theoretically, calculat-
ing the Banzhaf power index requires summing over all possible
feature subsets, whichmay lead to high computational complexity.
However, empirically, it is unnecessary to consider empty-set and
large coalitions. In most cases, there is a small probability that a
single feature fi results in a large coalition to be ‘winning’. Hence,
we set a bound ϖ for the coalition size. To this end, Eq. (1) can be
redefined as

βi(Γ ) =
1

|Πϖ |

∑
S⊆Πϖ

∆i(S),

where Πϖ is the subset of the feature set F \ {fi} (except ∅), with
a number of elements less than or equal to ϖ .

Moreover, in our proposed method, whether a coalition win or
not depends on the number of features increasing (or reducing)
its associate with the target class when the condition is given.
Therefore, at each node of BDTs, the number of winning coalitions
containing only one member (denoted as M1) that can be calcu-
lated with time complexity O(n), where n denotes the number of
features at the corresponding tree node. Then, we can calculate
the number of winning coalitions that including more than one
member based onM1 according to the knowledge of combinatorial
mathematics and dynamic programming technique. In particular,
dynamic programming is an efficient programming technique for
solving the combinatorial problems (Cormen, Leiserson, Rivest, &
Stein, 2009). For example, M2 can be calculated as M2 = C2

M1
+

C1
M1

× C1
n−M1

, where C represents the number of combinations. In
this way, each BDTs in BRFs can be constructed with low compu-
tational complexity.

More specifically, to determine the value of ϖ for most appli-
cation, we used 5-fold cross-validation to choose the value of ϖ
for all of the experiments (shown in Section 6). The experimental
results demonstrated that, when ϖ ∈ [3, 5], the performance
of BRFs is satisfactory. Thus, we suggest a range of [3, 5] for ϖ
in most of the applications. Based on the above discussion, the
computational complexity of constructing BRFs is acceptable for
real world applications.

4.5. Prediction

We denote a Banzhaf decision tree (BDT) created in the BRFs
algorithm as gn. To make a prediction for a query point x, each BDT
computes, for each class k,

ηk
n(x) =

1
N(An(x))

∑
(Xi,Yi)∈An(x)

δ(Yi = k),

where (Xi, Yi) is i.i.d. pairs of random variables, X (the feature
vector) takes its value in R(M+1), Y (the label) is a multi-class
random variable, An(x) denotes the leaf node of the tree containing
x, and N(An(x)) is the number of points that are located in An(x).
The tree prediction is then the class that maximizes the value ηk

n,
i.e.

gn(x) = argmax
k

{ηk
n(x)}.

BRFs predict the class that receives the most votes from the indi-
vidual BDT.

5. Consistency of BRFs

In this section, we discuss and present the theoretical results
about the consistency of Banzhaf random forests (BRFs). In partic-
ular, under some assumptions, we prove that BRFs are consistent.

5.1. Theoretical results

We denote the Banzhaf decision tree (BDT) created by the BRFs
algorithm from n data points as gn. As n varies, a sequence of BDT
classifiers can be obtained, i.e. {gn}. Then, we focus on showing that
the sequence {gn} is consistent. According to the work of Devroye
et al. (Györfi et al., 1996), a sequence {gn} of BDT classifiers is
consistent, when the probability of error of gn converges to the
Bayes risk L∗, i.e.

L(gn) = P(gn(X, θ,Dn) ̸= Y ) → L∗,

as n → ∞, where (X, Y ) is a random test data point, θ represents
the randomness of constructing BDT, such as randomly selecting
a group of features to evaluate the ‘‘best’’ features for each node,
and Dn is the training data set. The Bayes risk L∗ is the minimum
of the prediction error of the Bayes classifier for the distribution
of (X, Y ), which makes predictions by choosing the class with the
highest posterior probability, g(x) = argmaxkP(Y = k|X = x).
For more explanation about this setting, please refer to the work
by Györfi et al. (1996).

In order to reduce the complexity of the problem, we try to
reduce the problem of proving the consistency of multi-class clas-
sifier {gn} to prove the consistency of the transformed two class
classification problems. Inspired by thework of Denil et al. (2013b),
we give the lemma as follows.

Lemma 1. Suppose the probability estimates, ηk
n(x), for each class

posterior ηk(x) = P(Y = k|X = x), is consistent (as n → ∞, tends
to the class Bayes probability). Then the classifier

gn(x) = argmax
k

{ηk
n(x)}

is consistent for the corresponding multi-class classification problem
as n → ∞.

Proof. In the case, where each class posterior ηk(x) is equal, there
is nothing to prove, since all results have the same probability
of error. So, suppose there is at least one k such that ηk(x) <

ηg(x)(x)(g(x) = argmaxk{ηk(x)}) and define

m(x) = ηg(x)(x) − max
k

{ηk(x)|ηk(x) < ηg(x)(x)},

mn(x) = ηg(x)
n (x) − max

k
{ηk

n(x)|η
k(x) < ηg(x)(x)},

where m(x) is the margin function for each class which measures
how much better the best result is than the second best result.
By assumption, the probability estimates of each class posterior is
consistent, so m(x) ≥ 0. Similarly, the function mn(x) measures
the margin for multi-class gn(x). If mn(x) > 0, then gn(x) has the
same probability of error as the Bayes classifier. Accordingly, we
just need to provemn(x) > 0.

Based on the above guarantees, there is some ϵ such thatm(x) >

ϵ. Because the probability estimates ηk
n(x) of each class posterior ηk

is consistent, by making n large it can satisfy

P(|ηk
n(X) − ηk(X)| < ε/2) ≥ 1 − δ,

where δ ∈ (0, 1) is arbitrary, then we have

mn(X) = ηg(X)
n − max

k
{ηk

n(X)|η
k(X) < ηg(X)(X)}

≥ (ηg(X)
− ϵ/2) − max

k
{ηk

n(X) + ϵ/2|ηk(X) < ηg(x)(X)}

= ηg(X)
− max

k
{ηk(X)|ηk(X)⟨ηg(x)(X)} − ϵ⟩0.

Since δ ∈ (0, 1) is arbitrary, this means that the risk of gn(x)
converges in probability to the Bayes risk. □
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Lemma 1 allows us to transform the proof of the consistency
of multi-class tree classifier to prove the consistency of the corre-
sponding two class classifiers, i.e. given a set of classes {1, . . . , c},
we can re-assign the labels by using the map (X, Y ) ↦→ (X, I(Y =

k)) for any k ∈ {1, . . . , c}. We solve a two class classification
problem, ηk(x) = P(Y = 1|X = x) is equal to learn ηk

n(x) in
the original multi-class classification problem. Then we only need
to show that the sequence {gn} of BDT classifiers is consistent for
the corresponding two-class problem. In addition, according to
the work of Biau et al. (2008), for the two class random forests
classifier, if the number of ntree is large, the random forests classi-
fier takes a majority vote to obtain the classification result, which
can be well approximated by the averaged classifier. As shown in
Biau et al. (2008) that consistency of a random forests classifier is
preserved by averaging, we have Lemma 2.

Lemma 2. Assume that the sequence {gn} of tree classifiers is con-
sistent for a certain distribution of (X, Y ). Then the voting random
forests classifier g (ntree)

n (for any value of ntree) and the averaged
forests classifier gn are also consistent.

Proof. See that for Proposition 1 in Biau et al. (2008). □

According to Lemma 2, we can state the main theoretical result
about BRFs. In addition, to prove the consistency of BRFs, it is
sufficient to prove the consistency of the base tree classifier (BDT)
gn based on Lemma 2. Before giving our main theorem, we recall
the construction method of the Banzhaf decision trees (BDTs) and
give some mild assumptions as follows.

All nodes of the individual BDT can be seen as associated with
rectangular cells, such that at each step of the construction of the
individual BDT, the collection of cells associated with the external
nodes of the BDT forms a partition of dn ∈ [0, 1]h ⊆ Dn. Then, the
root node of BDT is [0, 1]h itself. In addition, the Banzhaf power
index is used to evaluate the power of candidate features for each
tree node. In fact, the Banzhaf power index of each candidate
feature can be seen as a probability that each candidate feature
may be chosen at each node, i.e. at each node, each candidate
feature Xj is chosen according to the value of a Banzhaf power
index ζnj ∈ (0, 1) (refer to Eq. (2)), in particular,

∑h
j=1ζnj = 1.

Furthermore, because BDT chooses the midpoint of feature as the
split point to expand tree at each node, then we assume that
each BDT has 2⌈log2kn⌉(≈kn) terminal (leaf) nodes, and let Knj(X, θ )
denote the number of times the leaf node An(X, θ ) is split on the
j− th feature (j = 1, . . . , h). Then, conditioned on X, Knj(X, θ ) has a
binomial distribution B(⌈log2kn⌉, ζnj). Inspired by the work of Biau
et al. (Biau, 2012) and based on the above assumptions, our main
theorem is given as follows.

Theorem 1. Assume that the distribution of X has support on
[0, 1]h ⊆ Dn. Then the BRFs estimate gn is consistent whenever
log2kn → ∞ and kn/n → 0 as n → ∞.

Proof. By Lemma 1, the consistency of multi-class classifier can
be transformed to the consistency of the corresponding two-class
classifiers. In addition, for the two-class situation, Lemma 2 allows
us to transform proving the consistency of BRFs into proving the
consistency of base tree classifier gn. Therefore, we only need to
prove that the individual BDT classifier is consistent.

To prove the consistency of BDT, we recall a general consistency
theorem for partitioning tree classifiers proved in Györfi et al.
(1996, Theorem 6.1). According to this theorem, the BDT classifier
gn is consistent if both diam(An(X, θ )) → 0 in probability and
Nn(X, θ ) → ∞ in probability, where An(X, θ ) is the rectangular

cell (node) of the tree partition containing X and

Nn(X, θ ) =

n∑
i=1

I{Xi∈An(X,θ )}

is the number of data point falling in the same cell as X.
First, we prove that Nn(X, θ ) → ∞ in probability, where θ

denotes the partition of BDT. Assume that the number of partition
is ⌈log2kn⌉, then a single BDT has exactly 2⌈log2kn⌉ cells (nodes),
i.e. A1, . . . , A2⌈log2kn⌉ . Let N1, . . . ,N2⌈log2kn⌉ denote the number of
data points among X,X1, . . . ,Xn falling in these 2⌈log2kn⌉ cells.
Since the data pointsX,X1, . . . ,Xn are independent and identically
distributed, fixing θ , the conditional probability of data pointX falls
in the ith cell is equal to Ni/(n + 1). Thus, for every fixed t ≥ 0,

P(Nn(X, θ ) ≤ t) = E[P(Nn(X, θ ) ≤ t|θ ]

= E[

∑
i=1,...,2⌈log2kn⌉

:Ni<t

Ni

n + 1
]

≤
t2⌈log2kn⌉

n + 1

≤
2tkn
n + 1

,

which converges to 0 by assumption on kn/n → 0.
Next, we show that diam(An(X, θ )) → 0 in probability. To this

aim, it is sufficient to show that the size of the each dimension
feature of the rectangular cell containing X converges to 0. Let
Vnj(X, θ ) denote the size of the j− th (j = 1, . . . , h) dimension fea-
ture. Then, we only need to show that Vnj(X, θ ) → 0 in probability
for all j = 1, . . . , h. In addition, we have

Vnj(X, θ ) = 2−Knj(X,θ ),

where Knj(X, θ ) denotes the number of times the cell containing X
is split on the j-th coordinate, and conditionally on X, Knj(X, θ ) has
a binomial B(⌈log2kn⌉, ζnj) distribution according to the construc-
tion of BDT. Therefore

E[Vnj(X, θ )] = E[2−Knj(X,θ )
]

= E[E[2−Knj(X,θ )
|X]]

= (1 − ζnj/2)⌈log2kn⌉,

which tends to 0 as log2kn → ∞. □

By Lemmas 1, 2 and Theorem 1, the consistency of the multi-
class classifier BRFs has been proved. Note that, in BRFs, we use
the bagging method to generate many bootstrap samples from the
original data set. Each of the BDTs is grown based on an indepen-
dent bootstrap sample. According to the work of Biau et al. (Biau,
2012; Biau et al., 2008), the bagging classifiers gn (random forests)
are consistent,when the base tree classifier gn is consistent (refer to
Biau et al., 2008, Theorem 6). Therefore, in BRFs, using the bagging
method does not affect the consistency of BRFs.

5.2. Discussion

According to the work of Biau et al. (2008), the original random
forests classifier proposed by Breiman does not have consistency.
To verify this fact, a two dimensional example was provided
by Biau et al. (2008). Similarly, inspired by Biau et al., we give a two
dimensional example to illustrate the inconsistency of the original
random forests classifier and the consistency of the BRFs algorithm.
That is, consider the joint distribution of (X, Y ) sketched in Fig. 2,X
has a uniformdistribution on [0, 1]×[2, 3]∪[1, 2]×[1, 2]∪[2, 3]×
[0, 1]. Y is a function of X, that is η(x) ∈ {0, 1} and L∗

= 0. The
upper left square [0, 1] × [2, 3] is divided into countably infinitely
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Fig. 2. An example of a distribution for which Breiman’s random forests classifier
is inconsistent.

many vertical stripes in which the stripes with η(x) = 0 and
η(x) = 1 alternate. The lower right square [2, 3]× [0, 1] is divided
similarly into horizontal stripes. Themiddle rectangle [1, 2]×[1, 2]
is a 2 × 2 checkerboard. For simplicity, we consider the original
random forests classifierwhen each node is split byminimizing the
empirical probability error instead of maximizing the information
gain ratio to achieve the growth of each tree. In addition, each tree
is grown until every tree node cell contains just one data point.
Then, it is not hard to find that no matter what the sequence of
random selection of split directions is and no matter how long
each tree is grown, no tree will ever cut the middle rectangle, and
therefore the probability of error of the original random forests
classifier is at least 1/6. However, in BRFs, the midpoint of the
features is selected as the split point at each node for each tree.
Thus, in any case, it is clear that BRFs can definitely cut the middle
rectangle.

6. Experiments

In order to evaluate the effectiveness and robustness of the
proposed BRFs algorithm, we conducted extensive experiments on
12 data sets from the UCI machine learning repository and three
real world applications, including handwritten digits recognition
(usps), face recognition (Yale) and text classification (newsgroups).
Furthermore, to demonstrate the effect of the Banzhaf power index
in construction of random forests, we compared it with the infor-
mation gain ratio. The basic information of the used data sets was
shown in Table 1.

6.1. Classification performance of BRFs

To assess the classification accuracy of BRFs, we compared BRFs
to the existing random forests algorithms and the well-known
classifiers—support vector machines (SVMs) (Chang & Lin, 2007)
and k-nearest neighbors (KNNs), where SVMs with radial basis
function (RBF) kernel was used in our experiments. In particular,
Breiman’s random forests (RFs) (Breiman, 2001) and the consistent
random classification forests (Biau12) (Biau, 2012) were used in
the experiments to compare with BRFs.

Table 1
Summary of the used UCI data sets.

Data sets No.examples No.features No.classes

ionosphere 35 34 2
wine 178 13 3
sonar 208 20 2
housing 506 13 2
dermatology 366 34 6
pima 768 8 2
vehicle 846 18 4
waveform40 5000 40 3
newsgroups 16242 100 4
satimage 6435 36 6
musk2 6598 166 2
shuttle 14516 9 7
usps 9298 256 10
Yale 165 1024 15
isolet 6238 617 26

For RFs and Biau12, we employed the information gain ratio
as the splitting criterion to grow each binary tree of the forests.
Although the Gini index criterion was also implemented in RFs
(Breiman, 2001), the information gain ratio based split criterion
occupied the dominant position in the construction of random
forests. Thus, in this paper, we do not consider to use the Gini index
as split criterion. For Biau12, we first evaluated the importance
of each candidate feature by using the information gain ratio to
compute the candidate split point (i.e. the midpoint value of the
each feature) based on the training data set, then the tree nodes
in Biau12 were expanded by selecting a fixed number of random
candidate features (without replacement). If the selected features
were all weak ones, then chose one at random and splitted at the
midpoint value. If more than one strong features were selected,
chose one at random and cutted at the midpoint value. For all the
random forests algorithms, we empirically set ntree = 100. At the
same time, to construct the decision trees, h = round(log2(M)+C)
features were randomly selected, whereM was the dimensionality
of the data samples and C ∈ Rwas a parameter. For all the forests,
SVMs and KNNs, 5-fold cross-validation was applied to select the
parameters. For all the data sets, the sample features were scaled
to [0, 1].

In our experiments, all of the classification results were ob-
tained by averaging over 5-fold cross-validation except for the
isolet data set. For the isolet data set, we simply followed the
training and test partition given a priori. Table 2 showed the
results obtained by SVMs, KNNs, RFs, Biau12 and BRFs. The best
classification accuracy was shown in boldface.

Following the suggestions of Demsar (2006), we implemented
the Friedman and Nemenyi statistical test at 95% confidence level
to show the performance difference between BRFs and the com-
pared algorithms. The computedmeanrank (the less is it, the better
is the corresponding algorithm) is shown in the last row of Table 2.
The critical difference was computed as CD = 1.5750. It was easy
to see that BRFs performed significantly better than Biau12, and at
least comparable with RFs, KNNs and SVMs.

The reason for BRFs performed comparable with RFs was that
BRFs employed a simple way to choose the midpoint of the ‘‘best’’
feature as the split point, while RFs took a traverseway to compute
each possible split point for each feature. From the view point
of structure, our BRFs algorithm was much rougher than RFs.
However, choosing the midpoint of the ‘‘best’’ feature as the split
point, which can guarantee the consistency of BRFs algorithm.
Note that, RFs algorithm does not have consistency. In addition,
Biau12 also employed a simple way to choose the midpoint of the
‘‘best’’ feature as the split point, but the performance of Biau12
was significantly worse than that of BRFs. The reason for this
result was that BRFs employed Banzhaf power index to evaluate
the importance of candidate feature variable at each tree node,
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Table 2
Mean classification accuracy and standard deviation obtained by the compared SVMs, KNNs and random forests algorithms. Algorithms with the best accuracy are shown
in boldface.

Data sets SVMs KNNs RFs Biau12 BRFs

ionosphere 0.9401 ± 0.0370 0.8375 ± 0.0562 0.9315 ± 0.0384 0.8972 ± 0.0469 0.9315 ± 0.0530
wine 0.8964 ± 0.0477 0.9423 ± 0.0474 0.9658 ± 0.0251 0.8715 ± 0.0909 0.9706 ± 0.0509
sonar 0.5687 ± 0.1192 0.5908 ± 0.1847 0.6840 ± 0.0914 0.5933 ± 0.0723 0.7088 ± 0.1361
housing 0.7605 ± 0.1151 0.8132 ± 0.1230 0.6418 ± 0.0645 0.6715 ± 0.1052 0.7964 ± 0.1230
dermatology 0.9540 ± 0.0130 0.9656 ± 0.0246 0.9530 ± 0.0167 0.8777 ± 0.0643 0.9730 ± 0.0128
pima 0.7605 ± 0.0132 0.7593 ± 0.0218 0.7461 ± 0.0482 0.6382 ± 0.0440 0.7617 ± 0.0250
vehicle 0.6728 ± 0.0470 0.7359 ± 0.0220 0.6490 ± 0.0076 0.6532 ± 0.0340 0.7513 ± 0.0420
waveform40 0.8652 ± 0.0086 0.7724 ± 0.0148 0.7490 ± 0.0076 0.7012 ± 0.1121 0.7790 ± 0.0082
newsgroups 0.7872 ± 0.0580 0.7386 ± 0.0554 0.7729 ± 0.0579 0.5776 ± 0.0323 0.6973 ± 0.0144
satimage 0.8645 ± 0.0123 0.8850 ± 0.0091 0.8970 ± 0.0110 0.7048 ± 0.0478 0.8735 ± 0.0206
musk2 0.8508 ± 0.0747 0.7227 ± 0.0636 0.8546 ± 0.1204 0.6202 ± 0.0292 0.8960 ± 0.0503
shuttle 0.9752 ± 0.0042 0.9951 ± 0.0035 0.9983 ± 0.0011 0.8468 ± 0.0137 0.9968 ± 0.0013
usps 0.9251 ± 0.0132 0.9450 ± 0.0125 0.9041 ± 0.0183 0.8968 ± 0.0126 0.9032 ± 0.0115
Yale 0.7400 ± 0.1362 0.6911 ± 0.1811 0.5156 ± 0.0183 0.5067 ± 0.0147 0.4986 ± 0.0182
isolet 0.9628 ± 0.0000 0.9256 ± 0.0000 0.9529 ± 0.0000 0.9415 ± 0.0000 0.9628 ± 0.0000
meanrank 2.4333 2.9333 2.9000 4.4667 2.2667

Fig. 3. Classification accuracy for different random forests algorithms on several data sets. In these charts, the y-axis shows the classification accuracy and the x-axis indicates
different algorithms.

which could find some features with good discriminative ability
as a group for the construction of a single decision trees. Biau12
first used the information gain ratio to evaluate the importance
of each feature variable in the training data set. The information
gain ratio often pays less attention to the intrinsic structure of
feature variables, then any combination of predicting feature vari-
ables which presents a much stronger prediction may therefore be
missed. In the following subsection, we will give a more detailed
experimental analysis to show the difference between the Banzhaf
power index and the information gain ratio.

6.2. Banzhaf power index vs. information gain ratio

To further illustrate the effectiveness of the Banzhaf power
index in improving the performance of random forests algorithm,
comparison experiments for Biau12, Biau12V (a variant of Biau12),
BRFs and PBRFs (a variant of BRFs) were performed on several data
sets from the UCI machine learning repository. In detail, Biau12V

used the Banzhaf power index to evaluate the importance of the
sample features instead of the information gain ratio in the original
Biau12 algorithm, while PBRFs employed the Banzhaf power index
to select the feature of the root node instead of the information
gain ratio in the original BRFs algorithm.

For comparison, 5-fold cross-validation was applied to select
the parameter, i.e., the number of candidate features for each
node. The classification performances of BRFs, PBRFs, Biau12 and
Biau12V are shown in Fig. 3. It is easy to see that the perfor-
mance of BRFs was comparable to that of PBRFs, while both of
them outperformed Biau12 and Biau12V. In addition, Biau12V
generally performed better than Biau12. These results indicated
that in a practical sense it was the feature evaluation strategy
that accounted for most of the improvement of BRFs and Biau12V
over Biau12. Furthermore, we can see that the performances of
BRFs and PBRFs were certainly competitive, but we found that
the computation speed of PBRFs was generally slower than that
of BRFs. In view of this, we recommend the BRFs algorithm to
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Fig. 4. The performance of BRFs and RFs with different ‘‘h’’ parameters for the ‘‘musk2’’ and ‘‘sonar’’ data sets. In the two charts, the y-axis shows the accuracy and x-axis
shows the different ‘‘h’’ values.

the practical applications. According to the experimental results,
it is sufficient to show that the effectiveness of the Banzhaf power
index in improving the performance of random forests algorithm,
in particular, for the consistent random forests algorithm.

6.3. Robustness analysis

In order to investigate the robustness of BRFs, the robustness
analysis experiments were performed. Fig. 4 shows the perfor-
mance of BRFs and Breiman’s Random forests (RFs) (Breiman,
2001) with different parameter hwhich controls the size of feature
subsets for each tree on two data sets (musk2 and sonar). Fig. 5
shows how the number of trees ntree affects the performance of
BRFs on the pima, wine, sonar and ionosphere data sets. The curves
of the other data sets told a similar story.

From Fig. 4, we can see after h approached to 10 all the random
forests algorithms lead to satisfactory results for both the ‘‘musk2’’
and ‘‘sonar’’ data sets, which demonstrated that the BRFs algorithm
was fairly robust to the parameter h (though the results tend to
have small fluctuation).

The obtained classification accuracy results vs. the number of
trees in BRFswas shown in Fig. 5.We can see that BRFs are basically
robustwith the number of trees.With the increasing of the number
of trees, the classification accuracy increases gradually. When the
number of trees is within [100, 1000], are quite robust. Hence, for
simplicity, we chose ntree = 100 in our experiments. Moreover,
Fig. 5 shows that BRFs will not incur over-fitting.

7. Conclusion and future work

Random forests play an important role in areas related to ma-
chine learning. At present, there are many random forests algo-
rithms. Among these forests models, we rarely find one that has
both significant practical performance and a complete theoretical
guarantee. The structure of the original random forests is mainly
based on information theory. However, information theory pays
less attention to the intrinsic structure of candidate feature vari-
ables. Alternatively, the Banzhaf power index can capture this
structure information between feature variables.Motivated by this
fact, in this paper, we propose a novel random forests model called
Banzhaf random forests (BRFs) and give the proof of its consistency.
We have tested BRFs on several UCI data sets and some real world
applications. The experimental results demonstrate that BRFs per-
form significantly better than existing consistent random forests,

Fig. 5. The performance of BRFs is influenced by the number of trees ntree on four
data sets; in this plot, the y-axis shows the classification accuracy and the number
of trees are shown along the x-axis.

and better than or at least comparable with the original random
forests, support vector machines (SVMs) and k-nearest neighbors
(KNNs).

Our work is an innovation utilizing the combination of cooper-
ative game theory and the random forests algorithm in machine
learning. In the future, we will try to combine the game theory
and the existing neural networks based on the research results
discussed in this paper, so that the neural networks can explore
better features for target tasks. In fact, there has already been
some studies that combined Game Theory and the neural net-
works (Fung & Liu, 2003; Goodfellow, Pouget-Abadie, Mirza, Xu,
Warde-Farley, Ozair, Courville, & Bengio, 2014; He, Yu, Huang, Li,
& Li, 2014). Typically, Generative Adversarial Networks (GANs) are
built upon the two person zero-sum game (two-player game) in
the Game Theory. In addition, the efficiency of existing network
models can be improved by combining the proposed random for-
est algorithm. Moreover, we will try to combine other solution
concepts of cooperative game theory (i.e. the Shapley value and
the nucleolus) with random forest algorithms or existing neural
networks to develop new learning models.
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