
Adapting Everyday Manipulation Skills to Varied Scenarios

Paweł Gajewski1, Paulo Ferreira3, Georg Bartels4, Chaozheng Wang2, Frank Guerin2, Bipin Indurkhya1,
Michael Beetz4 and Bartłomiej Śnieżyński1

Abstract— We address the problem of executing tool-using
manipulation skills in scenarios where the objects to be used
may vary. We assume that point clouds of the tool and
target object can be obtained, but no interpretation or further
knowledge about these objects is provided. The system must
interpret the point clouds and decide how to use the tool to
complete a manipulation task with a target object; this means
it must adjust motion trajectories appropriately to complete
the task. We tackle three everyday manipulations: scraping
material from a tool into a container, cutting, and scooping from
a container. Our solution encodes these manipulation skills in
a generic way, with parameters that can be filled in at run-
time via queries to a robot perception module; the perception
module abstracts the functional parts of the tool and extracts
key parameters that are needed for the task. The approach is
evaluated in simulation and with selected examples on a PR2
robot.

I. INTRODUCTION

Service robots are expected to be able to perform everyday
manipulation tasks in human environments in the not too dis-
tant future [1]. We focus on common everyday manipulation
skills with tools, such as cutting, scooping and scraping. Such
tasks need to be executed across varied scenarios in order to
complete common everyday domestic tasks. The challenge
is to make robot manipulation skills which can adapt to the
variations in open environments. For example, there may
be variations in the tools available, in the substances to be
manipulated, in the target objects, and in their layout. We
want to encode a manipulation skill in a generic way for our
robot, so that if it encounters a new tool and target object,
it can appropriately adapt its motion and complete the task.

For example consider the manipulation of scraping a
sticky substance from a hand-held domestic tool into some
container. We would like to endow the robot with this skill,
coded in a sufficiently generic way that it could automatically
adapt to scenarios such as depicted in Fig. 1: 1) peanut butter
on a knife can be put back in a jar of peanut butter by
scraping the knife on the inner edge of the jar opening;
2) butter stuck to a spatula can be put in a frying pan by
scraping on the inner edge of the pan.

A key feature of our problem is that a domestic robot
should be able to deal with new objects autonomously.
Ideally we do not want to rely on a human designer to label

1AGH University of Science and Technology, al. Mickiewicza 30, 30-059
Krakow, Poland pawel.gajewski@agh.edu.pl

2Department of Computing Science, University of Aberdeen, King’s
College, AB24 3UE, Aberdeen, Scotland

3School of Computer Science, University of Birmingham, B15 2TT,
Birmingham, England

4Universität Bremen, Am Fallturm 1, 28359 Bremen, Germany

Fig. 1: We want to achieve robust manipulation skills that
can adapt to different tools and target objects, e.g. a generic
‘scrape’ skill can: 1) scrape excess peanut butter from a knife
into a jar (left) or 2) scrape butter into a frying pan (right).

parts of each object or indicate where to grasp and how to
orient the object. We only assume that the robot can obtain
point clouds of the objects. Also the robot has not been
trained to manipulate these particular objects in advance.
The robot must generate appropriate trajectories based on
the information it can extract from perception.

This ability to adapt to varied scenarios (varied tools and
target objects in our case) is one of the key abilities that is
required to allow robots to function in more everyday human
environments, and currently is limiting their deployment in
domestic settings. It is an interesting challenge because it
seems to be so easy for humans (even very young humans) to
outperform existing robot systems on many basic household
manipulation tasks. Tackling this problem in a task-general
way may shed some light on the reasons for the gap between
humans and robots in everyday tasks. For example it is
suggested that it may require an element of creativity [2].

The problem of adapting to varied scenarios is challenging
because we need to connect information at high and low
levels of abstraction, and also between perceptual and motion
control abilities. This can be illustrated with the example
of adapting a scooping skill to work with a new tool:
We have prior high-level knowledge that the suitable tool
will have a concave bowl-like part, and some handle. This
needs to be connected to the lower level 3D vision to find
suitable parts in a suitable relationship which could constitute
these components. Next we need to extract key parameters
from the 3D vision that can be used to adjust the motion
trajectories appropriately. For example to raise the tool higher
above the container if this tool has a particularly long handle,
and to maintain an appropriate orientation of the bowl-shaped
scooping part while a substance is transported in it. Not
many works attempt to integrate in one system the required
perception and motion components, and levels of abstraction.

ar
X

iv
:1

80
3.

02
74

3v
2

 [
cs

.R
O

]
 4

 M
ar

 2
01

9

To solve this problem it is critical to select a suitable
representation for coding the manipulation skill. Our rep-
resentation describes motion phases in terms of constraints
among key features of the tool and target objects, where these
features can be grounded in perception by a robot vision
system. Constraints are distances between key points on the
objects, or angles between objects. Our system integrates two
existing recent research works, one in robot vision [3] and
one in robot motion [4], [5]. We rely on a hand coded generic
task description for the manipulation skill, which represents
the main steps involved in the motion, in terms of constraints
that the motion solver will attempt to satisfy. In this way, the
actual motion trajectory for a particular tool and target object
is made on the spot.

In terms of the general approach of linking key features of
objects to a constraint-based specification for motor control,
the most closely related work to ours is Tenorth et al. [4]
but we make the following extra contributions:

• Their work requires CAD models, while we fit su-
perquadrics to point clouds of unknown objects; this
allows a robot to be more robust in an open environ-
ment, facing unexpected objects.

• Their work had a hard-coded interpretation of objects
for pouring; we learn affordances through simulated
trials of tools [3], thereby acquiring a deeper semantic
grounding for our task skills. This is a significant step
towards more cognitive robots that form their own
interpretation of the world rather than relying on the
pre-formed interpretation of a human designer.

• Their work only considers pouring and we go beyond,
having three tasks: scraping, cutting and scooping. This
is important to show the general nature of our system:
the way in which we connect visual interpretation of
objects to adaptation of motions can be applied to many
tasks. This contrasts with many leading robotics works
which focus on a single task [6], [7].

In summary our contribution is an integrated system, with
ROS implementation1, that recognises how to use a tool from
its point cloud, extracts key parameters, and passes them to
the robot motion control component in order to appropriately
adapt the motion trajectory to effectively use the tool for a
task. We evaluate our approach by testing how effectively
our skills can be transferred to a set of test scenarios.

II. RELATED WORK

A recent position paper on task transfer [2] outlines a spec-
trum of increasingly difficult transfer problems depending
on the level of similarity between the target scenario faced
and the scenarios with which the robot is familiar. In this
spectrum we tackle levels 3 and 4, i.e., replaced objects and
also adjustments to the relationships between the objects
during the manipulation. The next level (5) involves the
introduction of new skills, such as removing a pot lid to
allow scooping, which is not addressed in our work.

1https://github.com/lubiluk/skill transfer

One branch of research related to this issue deals with
tool substitution; several works make use of some knowledge
source about tools, for example a repository of objects
and attributes with roles [8], or affordances modelled in
description logic [9], or leveraging ConceptNet [10]. We
are more interested in approaches based purely on robot
perception (without relying on other knowledge about the
tool). Robot vision approaches analysing affordances of tools
typically learn a classifier from some visual features [11],
[12]. One of these leading approaches to affordance detection
using deep learning was applied to the task of robot grasping;
for this they needed to fit a minimum rectangular bounding
box around the detected graspable region of an object in
order to provide the required information for a grasp [12].
Similarly we believe that fitting shapes can facilitate tool-use
tasks. For example, for the container part of a spoon to be
used in a manipulation, we need to identify: the orientation,
the tip that should enter a liquid, the centre, etc. which is
easily facilitated if we fit shapes. Our vision component [3]
does fit shapes and can identify a suitable substitute tool,
and also give indications about where to grasp it and how
to orient it. However it does not attempt to adapt a motion
trajectory to accommodate a new tool.

A second branch of research deals with robot motion.
In general, motion description languages are used to lift
low-level task specifications to more symbolic terms. Kresse
and Beetz [13] can operate with high-level descriptions
using terms like point-toward, flip-over, lift for describing
actions. These descriptions can be translated into low-level
constraint-based movement specifications, which can be run
by a motion controller with an appropriate solver. In a similar
manner, Tenorth et al. [4] offers a flexible way of describing
motion tasks via a library of generic motion patterns that are
composable and extensible. These patterns are then translated
into specific constraints by resolving necessary objects and
relations between them, and sent to a controller for execution.
This approach allows us to assemble task descriptions in a
symbolic and reusable way, and to automatically translate
them into specific constraints for a current scene.

The approach that we borrow for our motion control is
described in Fang et al. [5]. At a high level this approach
derives from Tenorth et al. [4], while its lower level motion
control descends from eTaSL language and eTC controller
from Aertbelien and De Schutter [14], which in turn builds
on ideas such as the iTaSC framework [15].

The solutions above provide useful tools for describing
motion tasks. We want to connect this to vision, so that a
robot can autonomously parameterise its motion to adapt
to a newly perceived scene. A related approach tackles
assembly tasks and uses CAD model-based vision system
and an intuitive teaching interface, where a user can specify
constraints between object parts [16], [17]. The robot then
performs appropriate trajectories driven by the vision input
and the constraints it needs to satisfy. This is similar to our
approach except that we have an extra step in vision so that
we can fit geometric shapes to new objects and do not rely
on CAD models. Another related work fits geometric shapes

Parameterise the constraint motion controller script files
2

(Task specification for scraping)

...

motion-phases:

- name: Position Above

file: scraping...yaml

Stop conditions

...

...

- name: Edge Contact

...

...

- name: Scrape Off

...

...

(Motion phase file for Position Above)

...

- tool-frame:

frame-mul:

- left_ee

- tool-grasp

definition of features

- tool-point:

transform-vector: [tool-frame, heel-point]

- target-object-point:

transform-vector:

- target-object-frame

- vector-add:

- edge-point

- {vector3: [0, 0, 0.2]}

20 cm above

...

Visually process point clouds to find key regions and points
(segment and fit superquadrics/superparaboloids into segments)

1
Input point
clouds

handle action part

blade pointheel pointgrasp point
Edge point

centre of
top

(aperture)

Find optimal
orientation of
tool relative to
target object
for this task

Fig. 2: Overview of how geometric features determine motion parameters (via constraints).

to CAD models and recognises functional parts [18]; this
was later connected with a motion control component [4].
Finally, the approach of warping point clouds from a source
object to an unknown target object [19] is a close alternative
to what we propose here; the warping approach can recognise
key features of the target object, such as an aperture to pour
into, or a rim point where liquid exits the pouring container,
and the motor program can be adapted accordingly.

III. SYSTEM

We start with a quick overview of the system followed
by more details of its subcomponents in the subsequent
subsections. We assume the robot already has complete point
cloud scans of the objects in advance, and that it has a stable
grasp of both the tool and the target object. There are existing
works that can solve the problem of arriving at this point
[20], [21]. For the experiments on the real robot PR2, our
grasps are predetermined because there are only certain ways
of grasping an object firmly by PR2 grippers. We need a firm
grasp so we can calculate object positions accurately. Also,
all our tasks involve some additional force on the grasped

tool, beyond its weight. Often custom handles have to be
attached to objects to achieve a reliable grasp.

The system relies on task descriptions that are hand-
engineered and coded in a generic way, referring to key
features of tools and target objects, such as ‘edge point’ or
‘tool tip’ or ‘centre of top’. These features can be grounded,
by vision, in many different tools and target objects, thereby
permitting the manipulation to be adapted to these objects.
An example of a partial task description appears at the
bottom of Fig. 2.

In the first step (step 1 in Fig. 2), the computer vision
module processes the point clouds to extract key features of
objects and to determine the orientation in which the tool
should be used. This is the creative part of the program
because the system itself decides how to interpret the point
cloud, in particular which part could be used for the action
(scoop, cut, or scrape). The system can generate novel
interpretations: e.g., for scooping, if the tool has any concave
part, the system could pick this as a suitable part to use
and will find the orientation which permits it to be used;
similarly for scraping, any flat part could be picked as a

Vision module
Identify key

geometric features

Input tool/object point
clouds and detected
poses in tabletop scene

Task Executive

Hardware Constraint
ControllerPR2

or
simulator

Central
Knowledge
Manager

Task setup
(e.g. scoop)

object types
grasps
…

Motion
template files

PR2.yaml
…

Task files

scraping.yaml
scooping.yaml
…

Motion files

scoop_insert.yaml
scoop_lift.yaml
…

Feature
requests

Motion
spec.

requests

Motion
spec.

stop

state

Points +
orientations

Fig. 3: Overview of system Architecture.

suitable surface to scrape. The vision module is described
further in Sec. III-A.

Next the system loads the motion task descriptions, which
consist of one high-level description, and one file for each
phase of motion in the task (see bottom of Fig. 2). These
files are combined with a template file appropriate for the
robot type (e.g. PR2); the template consists of joint and link
definitions, and additional parameters. In step 2 in Fig. 2,
the system injects the knowledge acquired about objects into
the motion phase descriptions. Finally, it sends the prepared
motion description to a controller for execution. The robot
watches the state of motion and decides that a motion phase
is done when certain specified stop conditions are met. This
process repeats until all motion phases are complete.

Fig. 3 gives an overview of the main components of
the system architecture. The Vision module finds object
information (edge-point, heel-point, orientation, etc.). The
Central Knowledge Manager manages specifications and
knowledge needed for the task. The Task Executive super-
vises the motion process. The Constraint Controller uses
motion control software “Giskard”2 internally and translates
motion description files into desired joint velocities.

A. Vision Module

This module is based on prior work [22], which we extended
for this paper. The prior work can learn the best way to use
a new tool for a given task, i.e. which part of the tool should
be the end effector, and what orientation it should be held
in. This is learnt by simulation of different ways to use a
large set of tools for five of tasks3. The system is model-
based, using superquadrics (including superparaboloids) [23]
as its representation of tool parts. The first step it performs
is to segment the tools, then it fits superquadric shapes in
the different segments (details in [3]). In the current paper
we used high quality full point clouds, but in our past
work we also experimented with fitting in low quality and
partial point clouds showing that performance was reduced

2http://giskard.de/
3Code is available at https://github.com/pauloabelha/enzymes/IROS2018/

Fig. 4: Left: Tool’s outputs: heel point (blue), grasp point
(cyan), tip point (magenta); Right: target object’s outputs:
aperture superellipse (magenta); edge point (cyan).

but not catastrophically. Here we extend the vision module
to also identify edges of containers, and also to package it
as a ROS node. The vision module can be queried in two
different ways: 1) get target object information; 2) get tool
information.

1) Target object information: The target object is assumed
to be a container (modelled as superparaboloid); the infor-
mation returned for it is comprised of two points: the target
object’s edge and top centre (which for a container is the
centre of the aperture). These two points are used in all three
tasks. Please see Fig. 4 (right) for the scraping butter task as
an example

For edge detection, the module returns an edge point
closest to a given point. Thus, given a point cloud of the
container and an external point such as the tool’s tip, the
module can output the closest edge point on the container.
This submodule works by first fitting a superparaboloid [3]
to the point cloud; then sampling points around its top
superellipse; and choosing the one closest to a given external
point. The system does not check if this point is reachable,
it is assumed that it is.

2) Tool information: For getting tool information, the
module returns grasp and end-effector points and the required
final orientation of the tool relative to the target object for the
task (see Fig. 4 right). The details returned vary depending
on the task, e.g., a cut point is returned only for the cutting
task. The grasp points returned are not used in the current
work because we have already fixed the robot grasp before
execution starts, as explained at the start of this section.

B. Motion Control

For each task we write configuration files for the high level
task description (in terms of consisting phases of motion
and stopping conditions, see Fig. 2 part 2, left) and for the
phases of motion (in terms of constraints, see Fig. 2 part 2,
right). Stopping conditions take into account measured end
effector velocity, desired end effector velocity or distance
from the goal. In the following the task configurations are
briefly described.

Scraping task: Orient the tool to point in the direction of
the vertical axis through the centre of the target container;
move the heel point of the tool 20cm above the edge point of
the target container; move the tool down until heel contacts
container edge; move the tool backwards along its major
axis.

Scooping task: Orient the tool to point in the direction
of the container rim center; move the tool 20cm above the
center; insert the tool 6.5cm below the rim center; rotate the
tool horizontally while moving it 5cm towards the edge of
the container; pull the tool upwards 20cm away from the rim
center. We assume that the container is sufficiently deep, but
ideally depth should be automatically detected.

Cutting task: Orient the tool with major axis horizontal;
move the blade point of the tool 30cm above the centre point
of the target; move the tool down until contact with table
(distance to table goes to zero, or velocity goes to zero);
move the tool backwards along its major axis.

We use Fang et al.’s [5] constraint based language which
allows one to specify motions as a composition of various
types of constraints. There are hard constraints which cannot
be violated and soft constraints whose violation is minimised.
The motion of the robot’s joints is calculated by solving a
minimisation problem.

C. Simulation and Generating Trajectories

To evaluate our system, we employ the Gazebo simulator as a
core component. We simulate the PR2 robot, its environment
and the actual manipulation processes. The constraint con-
troller modules sends velocity commands to the simulated
robot, and we observe the simulated action effects and
contact events. The system decides when to stop one phase of
motion and start the next based on two stopping conditions:
Thresholds are set for both velocity and distance from goal
being close to zero. These both should approach zero at the
same time, triggering movement to the next motion phase;
however if something unexpected happens such as collision,
one will approach zero, and this will be sufficient to trigger
the next motion phase. Throughout the simulation, we record
the joint trajectories of the robot. On the real robot, we
manually reproduce the same initial geometric setup as in
the simulation and then execute the recorded trajectories
from simulation. In a way, one could consider our simulation
system as a physics-based planning framework.

The entire process is not real-time, but done offline and
later exported to the robot. Some components are rather
slow, e.g. the vision module, because it is coded in Matlab,
incurs the overhead of loading Matlab Runtime. However
the superquadric fitting algorithms used are fast enough to
be implemented in a real-time perception system if required.

IV. EXPERIMENTAL EVALUATION

Given a particular tool and task, we wish to answer: Can the
system adapt the motion appropriately to use this tool for the
task? We tested this for a variety of objects using a simulated
environment and also a real PR2 robot. Testing in simulation
used a larger set of test objects, while only a small subset
was used for PR2 experiments, in order to verify that what
works in simulation does indeed translate to the real robot.

Scraping: We tested in simulation each of the containers
of Fig. 5 with each of the tools of Fig. 6 for the scraping task,
making a total of 50 tests of which 23 worked successfully

Fig. 5: Scanned models of five containers used.

Fig. 6: Segmented models of tools used for scraping. All are
scanned models except for the two large knives on the right
(constructed from CAD models).

(i.e. the simulated butter was scraped off and fell in the con-
tainer). The main reason for failures was the superparaboloid
fitting to the containers. This is especially problematic for
some of the containers which have poor point cloud scans.
The rim (superellipse) of the superparaboloid is sometimes
higher than the rim of the actual mesh model, meaning that
the tool stops short of the container and scrapes in free space
slightly above it. Furthermore the superparaboloid fitting is
nondeterministic due to random planting of seeds. In the
case of the 2-handled pot the superparaboloid tended to
be outside the mesh and lower than the true rim. Higher
quality 3D scans would fix these problems. In contrast to
the containers there was no problem with the tools; all of
the tools worked with at least some containers; they were
appropriately oriented and motions adapted to their sizes.

Note that for getting the tip point of the tool the vision
module does not take a point of the superquadric it has fit,
but rather takes a point from the actual point cloud that is
the furthest point from the grasp. A similar approach may
be beneficial for the container; i.e. to find the true rim,

Fig. 7: PR2 scraping across the bowl edge with a small knife
(left) and large serving spoon (right). Please see the attached
video for further examples on the PR2 robot.

Fig. 8: Segmented models of tools used for scooping. All
are scanned models except for the central mug (constructed
from CAD model).

rather than relying on the result of the superparaboloid fitting
process it could be extended upwards to the furthest extent
of the point cloud. Fig 7 shows the PR2 robot executing the
final phase of scraping with two different tools.

Scooping: Scooping was tested only with tools that could
be expected to be good at scooping, shown in Fig 8 (e.g., not
knives or forks), and the containers of Fig. 5. As with the
scraping experiment, containers were the limiting factor, and
only the two largest containers worked for all scooping tools.
Of particular note is the mug, which worked quite effectively
despite being a quite different tool (see Fig. 8).

Cutting: Cutting was tested with all knives shown in Fig 6
as well as the paint scraper and silicone spatula. Cutting
worked correctly with all tools. There is no container object,
only some simulated material to cut. The motion trajectory
was adapted appropriately to the size of the tool, and the
ideal orientation.

We do not have a direct comparison with a competing
system using the same objects. We feel the best candidate
for such a comparison would be the approach of ‘warped
parameters’ [19] mentioned in Sec. II. We select this as it was
the only example we found that could deal with raw point
clouds of novel objects, and adapt motions appropriately.

Fig. 9: Scooping simulation with two different tools.

That work was only applied to a pouring task with varied
cups and bowls. If extended to our tool tasks it may be
competitive with our approach.

V. DISCUSSION AND CONCLUSIONS

We have presented an integrated system combining a robot
vision system with a motion control framework in order to
tackle the problem of allowing tool-use manipulation skills
to adapt to varied tools and target objects.

We go beyond the closest work in the literature [4],
advancing three contributions: going from CAD models to
superquadric fitting, thereby improving flexibility; consid-
ering three tasks instead of only one; and partly learning
from simulation instead of relying on purely hard-coded
interpretations for objects. Through these three contributions
we acquire flexible semantic grounding for our tasks.

Future work to make a more robust and complete ma-
nipulation system should perceive and monitor the states of
substances (e.g. material to be scraped or scooped). Some
recent works addressing this kind of perception show that
tackling the perception alone is a quite challenging problem
even for just one modality [24], [25]. Such perception would
permit the system to react to effects during execution, which
indeed is likely to be challenging, requiring time series
perception data and estimation [25].

Currently our approach relies on the human designer
identifying the key features that are needed from vision to
perform tasks robustly. The human then hand codes a generic
motion script for the skill, where these features are used
to parameterise the motions. In future it would be better if
the robot learns its own specific skill from demonstration in
one situation, and then generalises. In fact the robot motion
component that this paper is based on has already been
extended in this direction [5]. The next logical step would
then be to tackle the full transfer problem as described by
Fitzgerald et al. [2], including, e.g., when new planning steps
might be introduced to deal with situations such as a pot
having a lid which needs to be removed.

This system provides a high level abstraction of the key
parameters in a manipulation task and therefore could be tied
into cognitive robots that plan using knowledge [4] although
we did not do that in this paper. An advantage that our work
could bring cognitive robots is that we can ground symbols
(edge point, heel point, etc.) in creative ways, therefore we
can see the world in ways that might facilitate a plan step.
We can use top down pressure from the requirements of a
planning step, rather than being constrained to see the world
in one way, by bottom up processing.

ACKNOWLEDGEMENTS

This work is partially funded by: (1) AGH University
of Science and Technology, grant No 15.11.230.318. (2)
Deutsche Forschungsgemeinschaft (DFG) through the Col-
laborative Research Center 1320, EASE. (3) Elphinstone
Scholarship from University of Aberdeen.

REFERENCES

[1] M. Ersen, E. Oztop, and S. Sariel, “Cognition-Enabled Robot
Manipulation in Human Environments: Requirements, Recent Work,
and Open Problems,” IEEE Robotics & Automation Magazine,
vol. 24, no. 3, pp. 108–122, sep 2017

[2] T. Fitzgerald, A. L. Thomaz, and A. K. Goel, “Human-robot co-
creativity: Task transfer on a spectrum of similarity,” in Eighth In-
ternational Conference on Computational Creativity (ICCC). Atlanta,
Georgia, 2017.

[3] P. Abelha and F. Guerin, “Transfer of Tool Affordance and Manipu-
lation Cues with 3D Vision Data,” ArXiv1710.04970, 2017.

[4] M. Tenorth, G. Bartels, and M. Beetz, “Knowledge-based specifica-
tion of robot motions,” in Proceedings of the Twenty-first European
Conference on Artificial Intelligence, ser. ECAI’14. Amsterdam, The
Netherlands, The Netherlands: IOS Press, 2014, pp. 873–878.

[5] Z. Fang, G. Bartels, and M. Beetz, “Learning models for constraint-
based motion parameterization from interactive physics-based simula-
tion,” in IROS. IEEE, 2016, pp. 4005–4012.

[6] D. Leidner, “Cognitive reasoning for compliant robot manipulation,”
Ph.D. dissertation, University of Bremen, 2017

[7] M. Dogar, “Physics-based manipulation planning in cluttered human
environments,” Ph.D. dissertation, Carnegie Mellon University, Pitts-
burgh, PA, July 2013.

[8] A. Agostini, M. J. Aein, S. Szedmak, E. E. Aksoy, J. Piater, and
F. Wörgötter, “Using structural bootstrapping for object substitution
in robotic executions of human-like manipulation tasks,” in IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems (IROS), Sept 2015, pp.
6479–6486.

[9] I. Awaad, G. K. Kraetzschmar, and J. Hertzberg, “Affordance-based
reasoning in robot task planning,” in Planning and Robotics (Plan-
Rob) Workshop at the 23rd International Conference on Automated
Planning and Scheduling (ICAPS), 2013.

[10] A. Boteanu, D. Kent, A. Mohseni-Kabi, C. Rich, and S. Chernova,
“Towards robot adaptability in new situations,” in 2015 AAAI Fall
Symposium Series. AAAI, 2015.

[11] A. Myers, C. L. Teo, C. Fermüller, and Y. Aloimonos, “Affordance
detection of tool parts from geometric features,” in IEEE International
Conference on Robotics and Automation (ICRA), 2015.

[12] A. Nguyen, D. Kanoulas, D. G. Caldwell, and N. G. Tsagarakis,
“Detecting object affordances with convolutional neural networks,” in
2016 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Oct 2016, pp. 2765–2770.

[13] I. Kresse and M. Beetz, “Movement-aware action control - Integrating
symbolic and control-theoretic action execution,” Proceedings - IEEE
International Conference on Robotics and Automation, pp. 3245–3251,
2012.

[14] E. Aertbelien and J. De Schutter, “ETaSL/eTC: A constraint-based task
specification language and robot controller using expression graphs,”
IEEE International Conference on Intelligent Robots and Systems, no.
Iros, pp. 1540–1546, 2014.

[15] R. Smits, T. De Laet, K. Claes, H. Bruyninckx, and J. De Schutter,
“ITASC: A tool for multi-sensor integration in robot manipulation,”
Lecture Notes in Electrical Engineering, vol. 35 LNEE, pp. 235–254,
2009.

[16] A. Perzylo, N. Somani, S. Profanter, I. Kessler, M. Rickert, and
A. Knoll, “Intuitive instruction of industrial robots: Semantic process
descriptions for small lot production,” in 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Oct 2016, pp.
2293–2300.

[17] N. Somani, A. Gaschler, M. Rickert, A. Perzylo, and A. Knoll,
“Constraint-based task programming with cad semantics: From in-
tuitive specification to real-time control,” in 2015 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), Sep.
2015, pp. 2854–2859.

[18] M. Tenorth, S. Profanter, F. Balint-Benczedi, and M. Beetz, “De-
composing CAD models of objects of daily use and reasoning about
their functional parts,” in Intelligent Robots and Systems (IROS), 2013
IEEE/RSJ International Conference on, Nov 2013, pp. 5943–5949.

[19] S. Brandi, O. Kroemer, and J. Peters, “Generalizing pouring actions
between objects using warped parameters,” in 2014 IEEE-RAS Inter-
national Conference on Humanoid Robots, Nov 2014, pp. 616–621.

[20] M. Krainin, P. Henry, X. Ren, and D. Fox, “Manipulator and object
tracking for in-hand 3D object modeling,” The International Journal
of Robotics Research, vol. 30, no. 11, pp. 1311–1327, 2011.

[21] J. Mahler, J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu, J. A. Ojea,
and K. Goldberg, “Dex-net 2.0: Deep learning to plan robust grasps
with synthetic point clouds and analytic grasp metrics,” in Robotics:
Science and Systems (RSS), 2017.

[22] P. Abelha and F. Guerin, “Learning How a Tool Affords by Simulating
3D Models from the Web,” in 2017 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), Vancouver, 2017, pp.
4923–4929.

[23] P. Ferreira, “Sampling Superquadric Point Clouds with Normals,”
ArXiv1710.04970, 2018.

[24] C. Schenck and D. Fox, “Visual closed-loop control for pouring
liquids,” in 2017 IEEE International Conference on Robotics and
Automation (ICRA), May 2017, pp. 2629–2636.

[25] D. Leidner and M. Beetz, “Inferring the effects of wiping motions
based on haptic perception,” in 2016 IEEE-RAS 16th International
Conference on Humanoid Robots (Humanoids), Nov 2016, pp. 461–
468.

	I INTRODUCTION
	II RELATED WORK
	III SYSTEM
	III-A Vision Module
	III-A.1 Target object information
	III-A.2 Tool information

	III-B Motion Control
	III-C Simulation and Generating Trajectories

	IV EXPERIMENTAL EVALUATION
	V DISCUSSION AND CONCLUSIONS
	References

