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A B S T R A C T   

The geographically restricted Mycobacterium africanum lineages (MAF) are primarily found in West Africa, where 
they account for a significant proportion of tuberculosis. Despite this phenomenon, little is known about the co- 
evolution of these ancient lineages with West Africans. MAF and M. tuberculosis sensu stricto lineages (MTB) 
differ in their clinical, in vitro and in vivo characteristics for reasons not fully understood. Therefore, we 
compared genomes of 289 MAF and 205 MTB clinical isolates from the 6 main human-adapted M. tuberculosis 
complex lineages, for mutations in their Electron Transport Chain and Central Carbon Metabolic pathway in 
order to explain these metabolic differences. Furthermore, we determined, in silico, whether each mutation could 
affect the function of genes encoding enzymes in these pathways. 

We found more mutations with the potential to affect enzymes in these pathways in MAF lineages compared to 
MTB lineages. We also found that similar mutations occurred in these pathways between MAF and some MTB 
lineages. 

Generally, our findings show further differences between MAF and MTB lineages that may have contributed to 
the MAF clinical and growth phenotype and indicate potential adaptation of MAF lineages to a distinct ecological 
niche, which we suggest includes areas characterized by low oxygen tension.   

1. Introduction 

The Mycobacterium tuberculosis complex (MTBC) consists of a group 
of human–adapted ecotypes- Mycobacterium tuberculosis sensu stricto, 

Mycobacterium africanum, Mycobacterium canetti and animal-adapted 
ecotypes [1–4]. There are seven known MTBC lineages (L) associated 
with particular geographic regions and adapted to specific human 
populations. These are the five lineages that make up M. tuberculosis 
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sensu stricto (lineages 1–4 and lineage 7) and the two M. africanum 
lineages (lineages 5 and 6). Africa uniquely has a representation of all 
seven lineages. 

MTBC strains from the seven lineages differ on average by about 
1200 single nucleotide polymorphisms [5], with clear distinction be
tween MAF and MTB lineages [6–8]. 

MTB Lineages 2 and 4 are more widespread geographically, more 
pathogenic and more transmissible, while MAF Lineages are exclusively 
found in West Africa and less transmissible [5,9,10]. Clinically, MTB L4 
is relatively more virulent than MAF L6 as evidenced by significantly 
faster progression, in contacts of infectious cases, to active disease [11]. 
MAF lineages are associated with extrapulmonary disease and MAF L6 
more commonly causes disease in immunocompromised persons and 
those with lower Body Mass Index, implying a more opportunistic 
pathogen [10,12]. Furthermore, MAF L5 and L6 grow markedly slower 
than MTB and prefer microaerobic growth conditions [13–15]. Reasons 
for these differences are not completely known, although ours and 
other’s previous studies have attempted to explain some of the obser
vations. A study documented non-synonymous SNPs or frameshift mu
tations in some genes associated with growth attenuation in MAF and 
higher mutation frequency in genes necessary for transport of sulphur, 
ions and lipids/fatty acids across the cell membrane [14]. Another re
ported under-expression of, and MAF L6 specific mutations in, 
dormancy regulon genes, a network of genes crucial for the survival of 
MTB during hypoxia or anaerobiosis [15,16]. 

Genes that encode proteins involved in nutrient metabolism and 
respiration, which are closely linked and together govern bacterial 
growth and survival, and those of unknown function, the conserved 
hypotheticals, are highest among the 4173 MTB H37Rv genes reported, 
emphasizing the importance of the nutrient metabolic and respiratory 
pathways [17]. 

As obligate aerobes, the mycobacteria respire and produce energy 
from varied nutritional or energy sources, such as carbon sources [18, 
19]. These enable the bacteria even to maintain metabolism without 
growth. The nutritional demands of the mycobacteria have been a topic 
of interest for over 100 years. Pioneering work throughout the 20th 
century elegantly showed that mycobacteria had unique nutritional re
quirements [20–29]. Central to these findings was that different mem
bers of the MTBC were supported by different nutritional sources and 
consistent results of multiple phenotypic studies led to differentiating 
members of the MTBC based on their nutritional requirements [20,30]. 
For instance, it was observed that MTB showed eugonic growth on 
glycerol, while colonies of MAF and M. bovis were dysgonic, indicating 
an inability to properly utilize this carbon source. MAF and M. bovis 
were only able to show luxurious growth in the presence of sodium 
pyruvate [20,30]. Furthermore, MAF was found to grow small umbili
cated colonies, which on paraffin embedded thin sections revealed 
extension deep into the media, rather than the surface [31]. 

Almost all the energy used by the bacteria is derived from the Central 
Carbon Metabolic Pathway. After nutrients are metabolized through this 
pathway, reducing equivalents are generated that eventually enter into 
the Electron Transport Chain for the generation of significant amounts of 
Adenosine Triphosphate (ATP) [18,32]. 

Mycobacteria generate ATP via substrate level phosphorylation and 
oxidative phosphorylation, which produces more ATP through the ac
tivity of the F1–F0 ATP synthase in the Electron Transport Chain. Sub
strate level phosphorylation alone is insufficient to support growth of 
these bacteria [18]. 

Genome sequencing analyses show that the mycobacteria possess a 
branched respiratory pathway for electron transfer from electron donors 
to acceptors under different growth conditions. However, it appears that 
the transfer of electrons to oxygen, which seems to be the most preferred 
terminal electron acceptor, occurs with little plasticity, given that only 
two terminal oxidases have been found in mycobacteria, the bio
energetically more efficient aa3-type cytochrome c and the less efficient 
cytochrome bd-type menaquinol oxidases [33]. During hypoxia or 

anoxia, mycobacterial growth is inhibited, even in the presence of 
alternate terminal electron acceptors within the branched respiratory 
chain such as fumarate and nitrate reductase. However, mycobacteria 
are still able to adapt and maintain metabolic functions [33]. 

Therefore, an intact Central Carbon Metabolic pathway and Electron 
Transport Chain are essential to mycobacterial growth and survival. 

The importance of comparative genomics in unravelling the basis of 
distinct metabolic phenotypes in the MTBC has been shown. Using 
molecular genomic approaches, previous authors found that the 
inability of M. bovis to use glycerol and carbohydrates as sole carbon 
sources and its requirement for pyruvate in growth media was caused by 
a single nucleotide polymorphism in the pykA gene, encoding pyruvate 
kinase, resulting in a Glu220Asp amino acid substitution and causing the 
disruption of sugar catabolism [34]. This mutation was also found in 3 
MAF strains tested in the same analysis. Additionally, the authors 
showed that a frameshift at codon 191 of the glpK gene of the same 
M. bovis strain led to an incomplete coding sequence and the inability to 
use glycerol, although this glpK mutation was not present in all M. bovis 
strains. 

Therefore, we aimed to investigate the genes involved in central 
carbon metabolism and respiration in the MTB and MAF lineages using a 
whole genome sequencing approach coupled with comparative geno
mics. We find important differences between the MAF and MTB lineages 
in their energy and nutrient metabolic pathways that likely contributed 
to the phenotypic differences observed between these lineages. 

2. Materials and methods 

2.1. Ethical statement 

The study was conducted within the framework of an intervention 
trial of Enhanced Case Finding (ECF) in the Greater Banjul Area of The 
Gambia (Clinicaltrials.gov NCT01660646), piloted in 2012 and con
ducted between 2013 and 2017. This study was carried out in accor
dance with the recommendations of the Joint Gambia Government/ 
MRC Ethics Committee and the Institute of Tropical Medicine, Antwerp 
Institutional Review Board. The protocol, including bacterial sub- 
studies, was approved by the Joint Gambia Government/MRC Ethics 
Committee and the Institute of Tropical Medicine, Antwerp Institutional 
Review Board. Nigerian isolates were collected from Southwest Nigeria 
within the West African Node of Excellence for TB, AIDS and Malaria 
(WANETAM) with the recommendations of the University of Ibadan and 
University College Hospital, Ibadan Joint Ethical Review Committees 
and the Nigerian Institute of Medical Research, Institutional Board [35]. 
All subjects gave written informed consent in accordance with the 
Declaration of Helsinki and were anonymized. 

2.2. Bacterial isolates 

In The Gambia, MTB L4 followed by MAF L6 are the most isolated 
MTBC lineages. For almost a decade, the prevalence of all the MTBC 
lineages isolated in The Gambia has remained constant at 4.3% (L1), 
2.5% (L2), 0.8% (L3), 57.2% (L4), 1.0% (L5), and 35.4% (L6) [36]. 

Within the framework of the ECF study conducted in the Greater 
Banjul Area, we sequenced 280 MAF L6 (32%), 3 MAF L5 (0.3%), 19 
MTB L1 (2.2%), 36 MTB L2 (4%) (Beijing), 10 MTB L3 (1%) and 534 
(60.5%) MTB L4 consisting of 85 MTB L4 Cameroon (9.6%), 15 MTB L4 
Ghana (1.7%), 224 MTB L4 Haarlem (25.3%), and 211 MTB L4 LAM 
(23.9%). Given that only 3 MAF L5 were isolated from The Gambia 
within the period of analysis, we included 6 MAF L5 from Nigeria 
(Eastern West Africa), to improve the representativeness of this lineage. 

Of this dataset, we analyzed the whole genome sequences of all 280 
MAF L6 strains, the 3 MAF L5 isolated from The Gambia and the 6 MAF 
L5 from Nigeria, resulting in a total 289 MAF strains. For the MTB lin
eages, we analyzed a total 205 strains consisting of all 19 MTB L1, all 10 
MTB L3 and 15 MTB L4 Ghana, 35 MTB L2 and a random number of L4 
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Haarlem [44], Cameroon [36] and LAM [46], while ensuring that all 
MTB L4 sublineages isolated were represented and isolates from each 
year of isolation, 2012 to 2014, were included. 

2.3. DNA extraction 

Genomic DNA was extracted from loopfuls of pure MTBC colonies 
grown on Lowenstein-Jensen media [37] using the Maxwell 16 DNA 
Purification Kit (Promega). DNA from Nigerian strains was extracted 
using the Cetyl trimethylammonium bromide (CTAB) method [38]. 

2.4. Whole-genome sequencing 

Sequencing of MTBC isolates was performed at MicrobesNG, Bir
mingham; GenoScreen, France; FISABIO, Valencia or the Beijing 
Genome Institute (BGI), Beijing. Sequencing reads were generated on a 
HiSeq or Miseq platform (IIIumina). Quality control was performed for 
each provider to ensure adequate sequencing depth (>30X) and genome 
coverage (>95% of the H37Rv reference strain). Raw Illumina reads 
have been deposited in the ENA with accession PRJEB36076. 

2.5. Bioinformatics analysis 

2.5.1. Mapping and variant calling 
We used Snippy version 3.1 for the analysis of genomes. Briefly, 

paired-end raw reads of each sample were mapped to the M. tuberculosis 
H37Rv reference genome (GenBank accession number: NC_000962.3) 
using BWA-MEM 0.7.12 [39]. Mapped reads were converted to the 
SAM/BAM format and sorted using Samtools 1.3 1 [40]. Variant calling 
was done using Freebayes 0.9.20 [41]. Variants were called only if � 10 
reads covered variant positions and �90% of those reads differed from 
the reference. Genes were annotated with SnpEff 4.1 [42]. Samples were 
assigned to MTBC lineages based on the classification of Coll and col
leagues [43] using the VCF output of snippy and the PhyResSE SNP list 
[44]. 

2.5.2. Phylogenetic analysis 
Using the Snippy output folders of all isolates and custom python 

scripts, a SNP alignment and a count of all excluded invariant sites were 
created. A maximum-likelihood (ML) phylogeny was inferred using 
RAxML version 8.2.9 [45] executing a thousand rapid bootstrap in
ferences under the general time-reversible (GTR) model, with ascer
tainment bias correction using the Stamatakis reconstituted DNA 

Fig. 1. Link between central carbon metabolism and the Electron Transport Chain. Reducing equivalents like NADH and FADH2 enter into the Electron 
Transport Chain that drives the production of high amounts of ATP for cellular processes. 
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approach [46,47]. The resulting tree was exported to interactive Tree of 
Life (iTOL) for visualization [48]. 

2.5.3. Protein predictions 
The effect of amino acid substitutions were predicted using PRO

VEAN software tools at default settings (PROVEAN protein) [49–51]. 
The PROVEAN NCBI non redundant 2012 database is a newer and larger 
sequence database than SIFT databases [52] but comparable to SIFT in 
prediction accuracy. A PROVEAN score of � � 2.5 implies that the amino 
acid substitution could impact negatively on protein function. 

3. Results and discussion 

Given that generalists and specialists differ in the vastness of their 
ecological niches [53], and thus carbon sources, we compared the 
specialist MAF lineages (289 strains) to the generalist MTB lineages (205 
strains) for genomic differences in their Electron Transport and Carbon 
metabolic pathways. These pathways are intrinsically linked and are 
central to deriving energy (ATP) from carbon sources (Fig. 1). 

Understanding differences in metabolism and respiration between 
the MTBC lineages is also pertinent for tackling TB as mycobacterial 
central metabolism and respiration have re-emerged as potential targets 
for TB chemotherapy. The new TB drug, Bedaquiline (TMC207) and the 
drug candidate, Telacebec (Q203), both target the respiratory chain 
[54–56] and even the repurposed drug Clofazimine, and another new 
drug, Delamanid, reportedly interfere with redox cycling and cellular 
respiration by generating Reactive Intermediates [57–61]. Thus respi
ratory inhibitors may offer the next generation of core drugs against 
mycobacterial diseases [62] and there is a pressing need to understand 
the differences in these processes between the different lineages of the 

MTBC. 
It is now increasingly apparent that genetic and metabolic differ

ences between the MTBC human-adapted lineages have the potential to 
affect transmission, diagnostics and treatment [5,63–68]. Moreover, 
niche adaptation is influenced by the metabolic requirements of an or
ganism, a consequence of evolution. However, the extent of such genetic 
changes and their potential metabolic effects has not been well explored. 
In this study, we found a large number of mutations with the potential to 
negatively affect gene function (hereafter referred to as harmful muta
tions), particularly in MAF lineages (Fig. 2 and Fig. 4). However, we also 
observed that similarities in these pathways occurred between some 
MTB and MAF lineages potentially due to convergent evolution. 

3.1. Mutations in genes encoding central carbon metabolic pathway 
enzymes 

We examined mutations in all genes in the glycolytic pathway, the 
Tricarboxylic Acid cycle and the Methylcitrate Cycle. Genes and en
zymes in these pathways contribute directly to the growth and virulence 
of the MTBC, by generating products that feed directly into the Electron 
Transport Chain [69]. Therefore, mutations, with the potential to affect 
proper function of these genes and their gene products, would have 
obvious consequences downstream, for energy generation, survival and 
ultimately, the virulence of members of the MTBC. 

3.1.1. The glycolytic pathway 
In MAF lineages, all genes leading to the breakdown of sugars to 2- 

phosphoglycerate at the seventh step (Figs. 2 and 3), were generally 
conserved. However, at the critical stage of pyruvate metabolism, mu
tations with the potential to affect the normal function of Enolase (eno), 

Fig. 2. Mutations detected in the Central Carbon Metabolic Pathway of a) MAF L6 and MAF L5 and b) MTB L4 Ghana, L4 Haarlem, L1, L3, L2, L4 Cameroon 
and L4 LAM. Red and blue coloured bars represent nonsynonymous mutations detected in 50–100% of strains per lineage in the associated genes shown below each 
set of bars indicating mutations. Genes emboldened red have mutations detected predicted to be harmful in MAF lineages, genes emboldened blue have mutations 
detected predicted to be harmful in MTB lineages and genes emboldened purple have mutations detected predicted to be harmful in the same gene in MTB and MAF 
lineages. Grey bars indicate that no nonsynonymous and/or predicted harmful mutations were detected in the corresponding gene below each set of grey bars. First 
column colour indicates the lineage: a) MAF L6 (green) and MAF L5 (brown), b) MTB L4 Ghana (brown), L4 Haarlem (red), L1 (lilac), L3 (purple), L2 (blue), L4 
Cameroon (pink) and L4 LAM (dark red). 
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Pyruvate kinase (pykA) and Pyruvate carboxylase (pca) were detected. 
Enolase is responsible for the penultimate step of glycolysis, where 2- 
phosphoglycerate is converted to Phosphoenolpyruvate. Pyruvate ki
nase modulates the irreversible reaction converting Phosphoenolpyr
uvate to Pyruvate while Pyruvate carboxylase drives the conversion of 
Pyruvate to Oxaloacetate. Of these three genes, it had previously been 
shown, in M. bovis and 3 MAF strains, that the mutation in pykA 
rendered the critical enzyme pyruvate kinase inactive, resulting in a 
metabolic block at the level of pyruvate biosynthesis [34]. We also 
confirm this mutation in the MAF strains we analyzed in our study 
(Fig. 2). However, to the best of our knowledge this is the first report on 
lineage-specific mutations with potentially harmful effects in the 
essential gene eno, in MAF L6. eno is found on the surface of many 
pathogenic bacteria and beyond its primary role in glycolysis, aids in 
tissue remodeling and invasion of host cells [70]. This gene was recently 
reported as a novel target for the 2-aminothiazoles of the aminothiazole 
(AT) series, that exerted its effect by inhibiting eno in MTB H37Rv (L4 
strain). Therefore, the potentially harmful mutations we detected in eno 
may affect energy metabolism and potentially contributes to the meta
bolic block at the level of pyruvate biosynthesis, further reducing the 

fitness of L6. 
Unlike the MAF lineages, MTB lineages, notably, did not have any 

potentially harmful mutations in eno and pykA (Figs. 2 and 3), implying 
a general ability to complete glycolysis. However, mutations were 
detected in Glucose-6-phosphate isomerase (pgi) in L4 LAM and in 
Phosphofructokinase B (pfkB) in MTB L3, at the second and third steps of 
glycolysis respectively, where Glucose-6-phosphate is converted to 
Fructose-6-phosphate and subsequently to Fructose-1-6-biphosphate 
(Fig. 3). pgi is essential for the in vitro growth of M. tuberculosis, and 
M. smegmatis pgi mutants are glucose auxotrophs. Moreover, an addi
tional role for pgi in cell wall biosynthesis was reported [37,71–73]. 
Therefore, pgi is important and the effect of the predicted harmful mu
tations we detected in pgi in L4 LAM should be investigated. However, 
the defect in pfkB in MTB L3 is unlikely to affect glycolysis given that 
Phosphofructokinase activity has so far only been associated with pfkA, 
where a pfkA deletion mutant was neither able to grow on glucose in 
vitro nor to have any detectable Phosphofructokinase activity; the 
mutant could not be rescued by expressing pfkB [32,74]. 

Interestingly, additional genes, Pyruvate carboxylase (pca) in MAF 
L5 and MTB L3 and Phosphoenolpyruvate carboxylase (pckA) in MTB L4 

Fig. 3. Mutations in the Central Carbon Metabolic Pathway of MAF and MTB. Genes with a red colour code have harmful mutations in MAF lineages, indicated 
next to the gene. Genes with a blue colour code have harmful mutations in MTB lineages, while genes in purple have harmful mutations in the same gene in MAF and 
MTB lineages. 
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Cameroon, were mutated at the level of pyruvate metabolism (Fig. 3). 
pca and pckA secrete enzymes that contribute significantly to the control 
of metabolic flux to glycolysis, gluconeogenesis and anaplerosis. These 
genes carry out functions related to cholesterol detoxification and 
lipogenesis during intracellular survival and pckA was shown to be 
essential for virulence in M. bovis [75,76]. 

3.1.2. The Tricarboxylic Acid Cycle 
At the final stage of glycolysis, pyruvate is generated and converted 

to Acetyl Coenzyme A (Figs. 1 and 3), that is fed into the critical 
Tricarboxylic Acid Cycle (TCA), for the release of reducing equivalents 
into the Electron Transport Chain. Therefore, the ability to complete this 
cycle, whether by progression through all stages of the cycle or via the 
crucial glyoxylate by-pass, is essential for the generation of ATP. 

Overall, genes encoding enzymes of the TCA cycle were largely 
conserved in MAF and MTB lineages, however, in MTB L1-L3, L4 
Haarlem, L4 Ghana and MAF lineages, we found potentially harmful 
mutations in Isocitrate lyase (icl2a) and Isocitrate dehydrogenase (icd2). 

Emphasizing the importance of the glyoxylate shunt, M. tuberculosis 
strains lacking both ICLs are unable to grow on fatty acids in vitro, 
establish and maintain a chronic infection in mice and were said to be 
the most severely attenuated strains [32,77]. In our analysis, we found 
the frameshift mutation previously found in H37Rv, an L4 strain [78], 
which we, for the first time to the best of our knowledge, also report in 
MTB L4 Haarlem and Ghana, MTB L1, L2, L3, MAF L5 and L6, yet, 
interestingly, not in MTB L4 Cameroon and LAM (Figs. 2 and 3 and 
Table 1). 

As stated earlier, in section 3.1.1, Pyruvate carboxylase (pca), that 
converts pyruvate to oxaloacetate towards the final stage of glycolysis, 
was mutated in L5, however, at the last step of the TCA cycle, malate 
dehydrogenase (mdh) that converts malate to oxaloacetate, was also 
mutated (Figs. 2 and 3 and Table 1), implying that both routes for the 
production of oxaloacetate in MAF L5 have mutated genes. Given that 
oxaloacetate feeds not only into the TCA cycle but also into the meth
ylcitrate cycle, impaired function of mdh may affect energy metabolism 

in MAF L5. 
Overall, with major blocks in Central Carbon Metabolism in MAF 

lineages, the number of reducing equivalents produced via the central 
carbon metabolic pathway for electron transport may be lower. MTB 
lineages largely had a conserved glycolytic pathway and TCA cycle, 
however, different MTB lineages have previously been shown to have 
different growth rates and patterns [79–81]. Notably, the growth rate of 
MTB L3 is reportedly lower compared to other MTB lineages [79,80]. 
Therefore, in MTB lineages/sublineages where we found more poten
tially harmful mutations, particularly in MTB L3, further investigations 
on the effect of these mutations on energy metabolism need to be carried 
out as slower growth of these lineages may be directly linked to impaired 

Fig. 4. Mutations detected in the Electron Transport Chain of a) MAF L6 and MAF L5 and b) MTB L4 Ghana, L4 Haarlem, L1, L3, L2, L4 Cameroon and L4 
LAM. Red and blue coloured bars represent nonsynonymous mutations detected in 50–100% of strains per lineage in associated genes shown below each set of bars 
indicating mutations. Genes emboldened red have mutations detected predicted to be harmful in MAF lineages, genes emboldened blue have mutations detected 
predicted to be harmful in MTB lineages and genes emboldened purple have mutations detected predicted to be harmful in the same gene in MTB and MAF lineages. 
Grey bars indicate that no nonsynonymous and/or predicted harmful mutations were detected in the corresponding gene below each set of grey bars. First column 
colour indicates the lineage: a) MAF L6 (green) and MAF L5 (brown), b) MTB L4 Ghana (brown), L4 Haarlem (red), L1 (lilac), L3 (purple), L2 (blue), L4 Cameroon 
(pink) and L4 LAM (dark red). 

Table 1 
Potentially deleterious mutations in genes encoding enzymes in the Cen
tral Carbon Metabolic Pathway. List of all mutations found to be potentially 
harmful by PROVEAN. The full list of mutations is given in Supplementary 
Table S5.  

Gene MTB amino acid 
change 

MTB Lineage MAF amino acid 
change 

MAF  
Lineage 

pgi Arg546His clade of L4 LAM   
pfkB Leu221Phe L3   
eno Arg8Gly;  

Lys429Gln 
L1, L2, L3 Arg8Gly;  

Arg179Ser 
L5, L6 

pykA   Glu220Asp L5, L6 
pca Ala406Thr L3 Ala926Thr L5 
icd2 Gly655Ser;  

Leu254Val 
L3 Val447Met;  

Lys117Asn 
L6 

mdh   Leu326Ile;  
Ala112Thr;  
Asp253Ala 

L5, L6 

icl2a Gly179Asp;  
Thr296fs 

L1, L2, L3, L4 
Haarlem, L4 Ghana 

Ala146Thr;  
His151Arg;  
Gly179Asp;  
Thr296fs 

L5, L6 

pckA Met108Ile;  
Ala536Gly 

L4 Cameroon, clade 
of L4 LAM 

Lys422Thr L5  
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energy metabolism. 

3.2. Mutations in genes encoding Electron Transport Chain enzymes 

As reducing equivalents, like NADH, from the Central Carbon 
Metabolic Pathway deliver electrons into the Electron Transport Chain, 
NADH dehydrogenases serve as the gateway of the Electron Transport 
Chain in the MTBC and electrons are transferred from NADH oxidation 
to quinone reduction and ultimately to ATP synthase for ATP production 
in greater quantities (Fig. 1). Therefore, defects in the Electron Trans
port Chain are bound to affect the net yield of ATP generated. 

Relative to MTB lineages, MAF lineages had multiple mutations 
predicted to affect the normal function of genes encoding key enzymes 
of the Electron Transport Chain (Figs. 4 and 5). 

Potentially harmful mutations were detected in ndhA, pruB, qcrC, 
ctaB, frdA, atpHG, sdhA and ald (Figs. 4 and 5, Table 2 and Supple
mentary File S3). Interestingly, for some MTB lineages, mutations pre
dicted to affect gene function were also found in ndhA, Rv0249c, frdB, 
atpD, and nuoDHF (Figs. 4 and 5, Table 2 and Supplementary File S4). 

3.2.1. NADH dehydrogenases 
To receive NADH from central metabolism into the Electron Trans

port Chain, M. tuberculosis possesses two NADH dehydrogenases, NDH-1 
and -2. NDH-1 has 14 subunits (nuoA-N) while two copies of NDH-2 exist 
in M. tuberculosis: ndh and ndhA. Between the two NADH 

Fig. 5. The core and alternate respiratory chain of mycobacteria during in vitro exponential growth when oxygen is abundant and when oxygen is 
limited. Mutations in MAF lineages are indicated in red boxes next to each affected complex. Mutations in MTB are indicated in blue boxes next to the affected gene 
while mutations found in the same gene in both MAF and MTB are shown in purple boxes. The core chain consists of type I NADH:menaquinone oxidoreductase 
(NuoA-N), succinate: menaquinone oxidoreductase 1 (SDH1), cytochrome aa3-bc supercomplex (Qcr-Cta) and F1F0-ATPase while the route used during oxygen 
limitation is composed of Type II NADH:menaquinone oxidoreductase (Ndh); succinate:menaquinone oxidoreductase (SDH2); nitrate reductase (Nar); Fumarate 
Reductase (Frd) and cytochrome bd oxidase (Cyd), a high affinity terminal oxidase allowing hypoxic survival. 

Table 2 
Potentially deleterious mutations in genes and gene subunits encoding 
Electron Transport Chain enzymes. List of all mutations found to be poten
tially harmful by PROVEAN (marked by a *). The full list of mutations is given in 
Supplementary Table S5.  

Gene MTB amino acid 
change 

MTB Lineage MAF amino acid 
change 

MAF  
Lineage 

ndhA Asn360Ser;  
Met325Thr;  
Gly229Val 

clade of L2,  
L1,  
L3 

Ala341fs L5 

pruB   Arg257Cys L5 
qcrC   Lys228Gln L6 
ctaB   Ala68Thr L5, L6 
frdA   Gly16Asp L5 
frdB Ser157Leu L4 Haarlem   
atpG   Tyr220Ser L5 
atpH   Gly403Asp;  

Ser434Leu 
L5 

atpD Val371Ala L2   
nuoD Gly392Ala clade of L4 

LAM   
nuoH Gly5His; 6insArg clade of L4 

LAM   
nuoF Pro19Leu L3   
Rv0249c Thr17fs clade of L1   
ald   Gln89fs;  

Asp198Val;  
Ala123;_Asp124del 

L5, L6  
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dehydrogenases, an essential role of ndh for the growth of M. tuberculosis 
was reported previously and a function of ndh in recycling NADH and 
maintaining an energized membrane was documented [33,82]. Even 
though ndhA was previously reported to be dispensable for growth, it 
was recently shown that both ndh and ndhA differentially control oxygen 
consumption [82]. In fact, ndh was also shown to be dispensable for 
growth of M. tuberculosis but deletion of both ndh and ndhA prevented 
growth altogether in standard media and resulted in attenuated growth 
in mice [82,83]. We found a potentially harmful mutation in ndhA in all 
MAF L5. Given the adaptation of MAF lineages towards a micro
aerophilic lifestyle, ndhA may be redundant in MAF L5 and defects in 
this gene may have coincided with the adaptation to a microaerophilic 
lifestyle [84]. 

No potentially harmful mutations were detected in the essential ndh 
in any analyzed genome. This implies that the function of ndh is likely 
conserved across the MTBC lineages. 

3.2.2. Succinate dehydrogenases 
Succinate dehydrogenase 1 (Rv0247c-Rv0249c, SDH-1) functions 

during aerobic respiration when oxygen and nutrients are abundant, 
while SDH-2 (sdhABCD) functions during hypoxia/anaerobiosis, when 
nutrients are limited [33,85,86] (Fig. 5). Succinate dehydrogenases are a 
direct link between the TCA cycle and electron transport and typically 
reduce succinate to fumarate [87]. 

The only potentially harmful mutations we detected in the Succinate 
dehydrogenases were in sdhA of SDH2 in a clade of MAF L6 and in SDH1, 
Rv0249c, in a clade of MTB L1 (Fig. 4). Given the essential role of SDH1 
for growth and survival, where the deletion of SDH1 was shown to 
impair the rate of respiration through the Electron Transport Chain and 
to reduce cell viability [85], future studies should determine if electron 
transport and aerobic respiration are affected in certain MTB L1 strains, 
as recent studies report slower growth and a lower odds to grow in 
culture for MTB L1 and the MAF lineages [67,79]. 

3.2.3. Cytochrome bc1-aa3 complexes and cytochrome bd oxidase 
Electrons from Succinate dehydrogenases, move into the quinone 

pool, ready for transfer to the third and fourth complexes Cytochrome 
bc1-aa3 (qcrABC and ctaBCDE), during aerobic respiration, when oxy
gen is abundant, and to the less efficient cytochrome bd oxidase 
(cydABCD) when oxygen is limited (Fig. 5). 

The bc1-aa3 complexes are the major respiratory route in myco
bacteria under standard aerobic conditions and are essential for growth 
where they play a key role in oxidative phosphorylation and electron 
transport that yields more ATP [33,88], yet in our analysis, we detected 
potentially harmful mutations in qcrC and ctaB of the bc1-aa3 complexes 
in MAF lineages and intact gene complexes in MTB lineages (Figs. 4 and 
5). To the best of our knowledge, this is the first work demonstrating that 
the critical bc1-aa3 complex is mutated in MAF lineages. This is perhaps 
crucial to understanding the difference in energy metabolism, particu
larly oxidative phosphorylation, between the MTB and MAF lineages, 
especially because MAF lineages preferentially grow microaerobically 
[15,84,89–91] and significantly under-express the dormancy regulon 
required for adaptation to oxygen limitation [15]. Notably, the Imida
zopyridine amide in Phase 2 clinical trials, Telacebec (Q203), inhibits 
qcrB of Cytochrome bc1, further emphasizing the importance of this 
complex for the survival of MTB. Therefore, the predicted harmful 
mutations we found in qcrC, the heme of the cytochrome bc1-complex, 
in MAF L6 (Figs. 4 and 5) likely impairs aerobic respiration and growth 
in this lineage severely, given that qcrC, like qcrB, is essential for sur
vival [86]. Similarly, M. smegmatis strains that had mutations in the 
bc1-aa3 complex were significantly growth impaired, confirming the 
essentiality of the bc1-aa3 respiratory pathway for mycobacterial 
growth. Recently, it was also confirmed that M. tuberculosis requires the 
bc1-aa3 complex to attain optimal growth rates and high titres in mice 
[83]. 

Taken together, our analysis provides further support for the view 

that MAF is adapted to a distinct niche, less dependent on aerobic 
respiration and more adapted to a microaerobic lifestyle [15]. Reasons 
for this potential niche adaptation and the benefit to the pathogen in its 
interaction with its host should be investigated further. 

Ultimately, with an impaired bc1-aa3 complex, ATP yield will be 
reduced overall. This is likely the case in MAF lineages. Therefore, we 
postulate that ATP yield through oxidative phosphorylation in the MAF 
lineages is lower compared to the MTB lineages. 

3.2.4. ATP synthase 
The F1–F0 ATP synthase itself, the target for Bedaquiline [54,92], is 

rather conserved in the different lineages. However, in MAF L5 and MTB 
L2 we detected potentially harmful mutations in atp genes (Table 2). The 
F1–F0 ATP synthase operon is encoded by atpIBEFHAGDC and is required 
for survival as all genes in the operon are essential [71,93]. A defective 
ATP synthase may coincide with the microaerophilic lifestyle of MAF. 
However, for MTB L2, it is not clear what the advantage is for acquiring 
mutations in genes encoding ATP synthase. Interestingly though, 
compared to MTB L4, MTB L2 was found to have a lower growth rate 
[79]. 

3.2.5. Fumarate reductase 
The branched respiratory chain of the MTBC permits anaerobic sur

vival. During hypoxic or anaerobic conditions when oxygen is limited, 
Fumarate reductase (FRD, frdABCD) and Nitrate reductase (NAR, 
narGHJI) can serve as terminal electron acceptors to maintain the 
membrane potential. Therefore, these enzymes are critical. Moreover, 
further studies of sdh suggested that FRD could partially compensate for 
a lack of SDH activity [94]. Defects in any of the subunits of frd could 
limit the overall function of the FRD complex. Notably, the attenuated 
strain H37Ra grown under low-oxygen conditions showed a lag in gene 
expression of frdA and frdB [95]. The mutations we found in frdA and 
frdB in MAF L5 may be related to the adaptation of this lineage to a 
hypoxic or microaerophilic lifestyle. Therefore, the effect of mutations 
on gene function in MAF L5 and MTB L4 sublineage, Haarlem, should be 
determined experimentally. 

3.2.6. Alanine dehydrogenase and proline dehydrogenase 
Other key dehydrogenases that contribute to redox balance of NADH 

for initiation of electron transport were also mutated in the MAF line
ages (Figs. 4 and 5), indicating potential redox imbalance in MAF line
ages with the likelihood to impede electron transport. From our analysis, 
all MAF lineages had potentially harmful mutations in Alanine dehy
drogenase (ald) and all MAF L5 had potentially harmful mutations in 
Proline dehydrogenase (pruB). Proline dehydrogenase is associated with 
the adaptation to hypoxia, slow growth rate and is essential for growth 
[71,93,96,97]. Alanine dehydrogenase has been shown to play a role in 
redox balance during low oxygen conditions and the downshift of 
M. tuberculosis to the state of nonreplicating persistence. ald mutants had 
altered NADH/NAD ratios and significant delays in growth resumption 
after reaeration. Additionally, induction of ald rescued the bc1-aa3 
complex mutant while its disruption made the growth defect of the 
mutant worse [97,98]. 

Given that ald and the bc1-aa3 complex were mutated in all MAF in 
our analysis, MAF lineages are most probably natural mutants of ald and 
the bc1-aa3 complex. It is possible that these mutations in the MAF 
lineages contribute significantly to their slower growth compared to 
MTB due to impaired energy production. Moreover, these poly
morphisms further support the adaptation of MAF to a hypoxic niche. 

3.3. Additional mutations and similarities between MTBC lineages in the 
central carbon metabolic pathway and Electron Transport Chain 

We detected several other mutations in genes of the Central Carbon 
Metabolic pathway and Electron Transport Chain that could potentially 
impact on enzyme function (Supplementary File S5). However, their 
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PROVEAN scores were above the cut-off for harmful mutations and thus 
any impact may be slight or only due to neutral evolution. cydB and 
narG, highly important genes in the Electron Transport Chain also had 
several mutations, but none predicted to be potentially harmful (Sup
plementary File S5). 

For multiple genes in the Electron Transport Chain and the Central 
Carbon Metabolic pathway, we either found the same mutation occur
ring in the same gene or different mutations occurring in the same gene 
in the different MTBC lineages. These mutations may confer a selective 
advantage and/or contribute to adaptation (Supplementary File S5). 

Of these, only those mutations detected in pca in MTB L3 and MAF 
L5, those detected in icl2a and those found in ndhA are potentially 
harmful. 

Overall, more similarities occurred between MTB L1, MTB L3 and the 
MAF lineages. This is interesting as the MAF lineages, MTB L1 and L3 
lineages all reportedly grow relatively slower than the MTB L2 and L4 
lineages [14,67,79,80,99]. We postulate that the slower growth rate of 
these lineages and the similarities we observe in their metabolic path
ways, may be linked to their similar migration and dispersal patterns in 
Africa and Eurasia [100], where L2 and L4 have become widely 
dispersed, while L5, L6, and L7, had more geographically restricted 
expansion, adapting to more specific hosts. This may have influenced 
niche adaptation, where L2 and L4, in line with increased dispersion and 
range expansion, also increased their replicative/growth capacity and 
ability to transmit, while the more host restricted lineages maintained a 
lower replicative/growth potential in line with expansion in situ. 

3.4. Limitations 

Limitations of our analysis include the small sample size of MAF L5 
analyzed. In the Gambia and other countries in Western West Africa, the 
prevalence of L5 is significantly lower than L6 [36]. In our isolation of 
the 289 MAF strains included in this study, only 3 from The Gambia 
were MAF L5. However, to ensure that the mutations we detected in L5 
from The Gambia were more representative of the MAF L5 lineage, we 
included L5 from Nigeria (Eastern West Africa), where the prevalence of 
L5 is high and L6 is significantly less likely to be isolated [101]. Another 
limitation is that we did not experimentally confirm any of our in silico 
phenotype predictions. 

4. Conclusion 

In this comparative analysis, we describe genomic differences be
tween the MTB and MAF lineages in genes encoding enzymes of the 
Electron Transport Chain and the Central Carbon Metabolic pathway, 
which may explain the differences in the clinical- and in vitro phenotype 
described for the MAF and MTB lineages. In vitro, MAF lineages grow 
significantly slower than MTB lineages and MAF L6 is, clinically, less 
virulent than MTB L4, as evidenced by significantly lower progression of 
MAF L6 infected individuals to active TB disease [11]. Again, in vitro, 
MAF lineages show microaerobic growth and clinically, are associated 
with extrapulmonary disease, implying a preference for regions with low 
oxygen [10,15]. Furthermore, MAF L6 more commonly causes disease in 
immunocompromised persons, implying a more opportunistic pathogen 
[12,13]. Generally, it appears from our analysis that compared to MTB 
lineages, MAF lineages had the most mutated Central Carbon Metabolic 
and Electron Transport Pathways, with mutations occurring in critical 
components of each pathway. The combined effect of a defective Carbon 
Metabolic Pathway and Electron Transport Chain in MAF lineages, likely 
contributes to the reduced fitness of the MAF lineages. We speculate that 
our findings may contribute to 1 - the slower growth of MAF lineages, 2 - 
relative attenuation of the MAF L6 lineage compared to MTB lineages 
and 3 - host specificity to West Africans. 

It is intriguing that in the different MTBC lineages multiple harmful 
mutations occurred in the same gene. These similarities largely found in 
MTB lineages 1, 2, 3 and the MAF lineages, indicates there may be a 

selective advantage for this. Interestingly, these lineages, compared to 
MTB L4 strains, have been associated with slower growth and cytokine 
induction patterns suggestive of immune evasion [8,14,67,79–81,99, 
102,103]. 

If the potentially harmful mutations we report on in this analysis 
affect energy metabolism in the different MTBC lineages, fitness will 
differ and ultimately the infection and transmission potential of these 
lineages. Therefore, our findings are not only relevant for TB product 
development but also for transmission studies and interventions. The 
literature already provides credence to and evidence for our hypothesis 
[9,81,104,105]. 

4.1. Future proposed investigations 

4.1.1. Functional studies 
Significant genomic differences between MTB and MAF lineages 

presented in this analysis warrant further studies in order to properly 
characterize the regulatory network of MAF. Recently, the regulatory 
network of H37Rv (MTB L4) was characterized yet what pertains to MAF 
lineages is not clearly defined, even though it has been shown that 
master regulators like PhoPR and Rv0081 as well as the DosR regulon are 
underexpressed and/or mutated in MAF [15,106–108]. It is possible that 
the PhoPR system controls other components of the respiratory and 
central metabolic pathway although this is yet to be shown. We suspect 
that the potentially harmful mutations we report on will produce 
different growth phenotypes (Table 3). Therefore, we propose functional 
genomic assays followed subsequently by in vitro and in vivo charac
terization of mutants to confirm the contribution to growth and survival 
that each gene makes. Such studies on the MAF lineages are limited, but 
not for MTB, particularly the generalist MTB L4. Recent studies provide 
data describing functional consequences of synonymous SNPs 
[109–111], i.e. caution needs to be taken in inferring the relative sig
nificance or impact of observed genomic mutations from sequencing 
data alone. Therefore, further studies to correlate genotype with 
phenotype are necessary and our findings serve as a prelude to such 
experimental studies. 

4.1.2. Investigate bioenergetics in MAF lineages 
It is highly plausible that adaptation of MAF lineages to growth 

under low oxygen (microaerobic) conditions could be a strategy to 
escape the harmful effects of Reactive Oxygen Species (ROS) generated 
as electrons leak from a defective respiratory chain and react with built 
up oxygen [112]. Moreover, reduced aerobic respiration or oxygen 
consumption in the MAF lineages could potentially affect the sensitivity 
of rapid diagnostics like the automated MGIT 960 system, that depends 
on oxygen consumption to detect growth [113]. Interestingly, the per
centage of MAF in certain parts of West and Central Africa was reported 
to have suddenly and sharply declined over the last decade [4,114–117], 
which could possibly be due to the introduction and use of new di
agnostics like the MGIT 960 system. Of note, we recently detected, in a 
retrospective analysis based on genotyping, that 84% of strains that did 
not grow in the MGIT 960 system were MAF L6 (Ofori-Anyinam et al., 
unpublished). Since growth and survival, driven by nutrient and energy 
metabolism, sustain pathogen transmission, and given that the success 
of drugs and phenotypic diagnostics rely on metabolic properties of the 
bacteria, understanding metabolism in these bacteria is essential. We 
hypothesize that MAF lineages generate less ATP and are more exposed 
to ROS than MTB lineages (Table 3). Therefore, we propose studies to 
investigate energy metabolism in MAF lineages relative to the MTB 
lineages, including whether MAF lineages are more exposed to ROS 
during growth. 

4.1.3. Host genetics 
One common feature of host specificity is genomic decay. Genomes 

of specialists usually show signs of genome decay evidenced by gene 
deletions or gene inactivation via point mutations. A driving force for 
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the accumulation of mutations in some key electron transport and car
bon metabolism genes in the specialist/host-restricted MAF lineages 
could indicate adaptation of the MAF lineages to a specific host, West 
Africans, or a niche within the host, due to altered or loss of function of 
these genes. This potential niche adaptation could be driven by a precise 
feature of the host environment that favors the association between MAF 
lineages and West Africans such as has been described for some diseases 
[118]. Some findings have been made, including MAF lineage-specific 
mutations in genes and pseudogenes involved in vitamin B12 and 
vitamin B3 metabolism, important cofactor biosynthetic pathways for 
many cellular functions. Unlike MAF though, MTB is fully capable of 
synthesizing vitamin B12. Therefore, it has been suggested that the 
mutations in the vitamin B12 pathway of the MAF lineages may affect 
their host range to West Africans. According to a study in the United 
States, black persons reportedly have higher levels of vitamin B12 
relative to other ethnicities [8,10,119–121]. Future studies should 
investigate the molecular mechanisms underlying host specificity. 
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Table 3 
Future proposed experiments.  

Examination Proposed Experiments Predicted Phenotype/ 
Expected outcome 

Experimentally 
determine if mutations 
detected in eno, pca, 
pgi, pckA, korB, fba, 
aceE and glpK of the 
Glycolytic Pathway 
and TCA cycle 
contribute to slow 
growth. 

Mutagenesis experiments, 
complementation studies, 
Growth studies. 
Mutagenesis studies would 
involve introducing the 
mutations detected into L2, 
L4 or H37Rv and testing for 
attenuated growth through 
growth studies or by 
complementing MAF and 
MTB L1 and L3 with a wild- 
type allele and testing for 
complementation of 
growth. 

It is expected that the 
reported mutations will 
lead to attenuated 
growth. 

Experimentally 
determine if mutations 
detected in ndhA, pruB, 
qcrC, ctaB, frdAB, sdhA, 
atpDHG, ald, Rv0249c, 
narG and cydB of the 
respiratory pathway 
contribute to slow 
growth. 

Mutagenesis experiments, 
complementation studies, 
Growth studies. 
Mutagenesis studies would 
involve introducing the 
mutations detected into L2, 
L4 or H37Rv and testing for 
attenuated growth in 
growth studies or by 
complementing MAF and 
MTB L1 and L3 with a wild- 
type allele and testing for 
complementation of 
growth. 

It is expected that the 
reported mutations will 
lead to attenuated 
growth. 

Energy generation, in the 
form of ATP, for 
cellular processes 

ATP quantitation assays. MAF lineages will 
generate less ATP via 
the respiratory chain 
compared to MTB 
lineages 

ROS accumulation and 
DNA damage in MAF 
cultures relative to 
MTB 

Flow cytometry 
experiments and terminal 
deoxynucleotidyl 
transferase dUTP nick end 
labelling (TUNEL) assay. 

Higher levels of ROS in 
MAF cultures and 
greater DNA damage of 
MAF relative to MTB. 

Host-Pathogen 
interactions driving 
geographic restriction 
of MAF lineages to 
West Africa 

Host genetics and Genome- 
wide association studies. 

Specific genes in West 
Africans have 
undergone strong 
positive selection and 
increased the 
susceptibility of West 
Africans to MAF 
infection, permitting 
host restrictedness.  
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