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ABSTRACT 

A SEASCAPE GENETICS APPROACH TO STUDYING GENETIC DIFFERENTIATION IN THE BULL KELP 
NEREOCYSTIS LUETKEANA 

by 

Lily G Gierke 

The University of Wisconsin-Milwaukee, 2019                                                                                                         
Under the Supervision of Associate Professor Filipe Alberto 

 

The brown alga Nereocystis luetkeana is a foundation species found from Alaska to California. 

In the Salish Sea, N. luetkeana is declining, but little is known about its population structure. We 

explored N. luetkeana 1) allelic dissimilarity and richness using seven microsatellite markers, 

and 2) tested models of gene flow in the Salish Sea using a hydrodynamic transport model. Our 

results suggest that the N. luetkeana distribution is comprised of four genetic co-ancestry 

groups that are geographically coherent, apart the from separation of the Strait of 

Georgia/Puget Sound by the Strait of Juan de Fuca. Our model supported that environmental 

variables and oceanographic currents affect gene flow and population connectivity in the Salish 

Sea. Removal of geography and similarity of allelic identity and richness revealed that northern 

and southern sites were members of one cluster, supporting northern and southern refugia 

served as ancestral sources of modern-day genetic diversity.  
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I. Introduction 

Ecosystems and their associated organisms are at risk of degradation and species loss 

due to the effects of climate change. Habitat destruction may lead to declines in the size of 

populations, reductions in species range (Smale and Wernberg 2013), loss of genetic diversity  

(Pauls et al. 2013), and even localized extinction (Rogers-Bennett 2007). Maintenance of high 

genetic diversity can confer resilience to these changing habitats and provide variation 

necessary for an evolutionary response to changing conditions (Reusch et al. 2005, Sgrò et al. 

2011, Bernhardt and Leslie 2013). Sufficient gene flow between populations can potentially 

maintain or even increase genetic diversity within populations, and therefore is an important 

factor in population resilience and persistence (Palumbi, 2003). Population connectivity, or lack 

thereof, can be measured as genetic differentiation - a measure of how gene flow across long 

temporal scales shapes genetic structure (Pritchard et al. 2000, Waples and Gaggiotti 2006). 

This genetic structure can be a result of historical barriers to gene flow, range shifts or 

expansions from glacial refugia (Maggs et al. 2008, Assis et al. 2014).  

The most apparent feature controlling gene flow is geographic distance between 

populations; dispersal is typically limited by distance, and thus, individuals that are 

geographically closer are often more genetically similar than individuals further away (Wright 

1943). Geographic distance and genetic differentiation share a positive linear relationship 

under the isolation by distance (IBD) or the stepping stone model of IBD  (Wright 1943, Kimura 

and Weiss 1964). In complex systems, however, geography alone often does not predict 

patterns of genetic structure, and IBD models may have poor fit to empirical data. This can be 
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due to low genetic differentiation from increased dispersal and resulting high connectivity or a 

recent recolonization event disturbing normal dispersal patterns (White et al. 2010). 

Ocean currents can extend the gene flow of a species beyond geography and are an 

important means of dispersal for many marine species with pelagic larval stages (Kimberly et al. 

2008, Selkoe et al. 2016). Oceanographic currents often disperse individuals so well that 

patterns of genetic structure in marine systems are weak or non-existent (Mitarai et al. 2009, 

White et al. 2010). A strong ocean current can connect two distant populations or separate two 

adjacent populations as a barrier to gene flow (Mitarai et al. 2009). The model of isolation by 

oceanographic distance (IBOD) describes a pattern in which ocean currents influence gene flow 

more than spatial distance alone (Kimberly et al. 2008, White et al. 2010, Alberto et al. 2011, 

Riginos and Liggins 2013)Therefore, modeling dispersal capabilities of these ocean currents can 

result in a better understanding of population structure and connectivity in marine species. The 

use of ocean current dispersal modeling is particularly useful in species that generally have 

limited dispersal mechanisms due to constraining characteristics of their biology. 

Although ocean currents may extend dispersal of gametes, heterogeneity between 

source and destination environments can affect the establishment of migrants and decrease 

gene flow between different environments (Sexton et al. 2014). This pattern of isolation by 

environment (IBE) is characterized by an increase in genetic differences with environmental 

distance independent of geographic distance (Wang and Bradburd 2014). IBE alone does not 

explain the forces that drive this pattern, but IBE can be used to describe the pattern. Under 

certain conditions IBE may lead to isolation by adaptation where fitness differences prevent 

some genotypes from persisting under a set of environmental variables (Nosil et al. 2008). In 
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sessile organisms (e.g., plants and benthic algae), this difference is more pronounced because 

of their inability to migrate to a suitable environment.  

Nereocystis luetkeana, or bull kelp, is a brown alga in the order Laminariales with 

distribution limited to the Northeast Pacific Ocean. Like other brown algae, it has a 

haplodiplontic life cycle in which adult diploid sporophytes release haploid spores that produce 

unisexual, diploid gametophytes. The gametophyte is an ephemeral stage that only exists 

between settlement on the benthos, the development of embryos, and growth into the mature 

sporophyte stage. N. luetkeana differs from other kelps in that spore-filled tissues, called sori, 

abscise completely from the blade and fall to the benthos releasing haploid spores (Fig. 1) 

(Walker 1980). Mature sori abscission happens between June and November, with the species 

reproducing annually. Spore dispersal from sori begins shortly before abscission and continues 

up to an hour post-abscission (Amsler and Neushul 1989). Although spores are flagellated, 

mobility is minimal and thus negligible in terms of dispersal (Norton 1992). Sorus abscission 

may reduce the proportion of spores released in the water column above the seafloor level and 

limit their dispersal. However, other kelp species demonstrate that long-distance dispersal is 

likely mediated by ocean currents transporting drifting sporophytes released from the substrate 

during storms. This is known as ‘rafting’ due to pneumatocysts, or gas-filled sacs that afford 

positive buoyancy and facilitate floating. For example, in giant kelp, Macrocystis pyrifera, adult 

sporophytes were observed with viable sori after traveling over long distances (Reed 1987, 

Hernández-Carmona et al. 2006) and sporophylls were found to maintain buoyancy for up to 21 

days (Macaya et al. 2005). Although recruitment via spores from rafts may be a rare event, a 
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mean migration rate of one migrant per generation is required for gene flow to sufficiently 

prevent genetic differentiation at ecologically relevant time scales (Mills and Allendorf 1996).  

As canopy-forming kelp (Maxell and Miller 1996, Pfister et al. 2017), N. luetkeana 

provides three-dimensional structure for complex habitat niches (Siddon et al. 2008). Due to 

their extensive growth rate, the resulting forests have high productivity and play a key role in 

nutrient cycling in coastal marine ecosystems (Foster and Schiel 1985, Graham et al. 2008). 

Recent declines in bed density have caused concern for some populations, specifically in 

northern California (Rogers-Bennett, Catton 2019), the Puget Sound (Berry 2017) and more 

recently Oregon. Multigenerational loss of kelp is particularly concerning, as N. luetkeana is an 

annual and yearly successful recruitment is paramount to persistence of beds. Understanding 

the dispersal biology and genetic diversity for this species are crucial for its conservation, as 

they are important factors to consider when planning restoration efforts. 

The Pacific Northwest range of N. luetkeana has a dynamic geographic history that 

makes it of interest for studies of biogeographic patterns (Jacobs et al. 2004).  During the last 

glacial maximum (LGM) in the Pleistocene approximately 25,000 years ago, areas of North 

American coast remained unglaciated and served as glacial refugia for many species. As the 

glaciers retreated, wide-spread coastal recolonization occurred across many taxa of species 

(Blanchette et al. 2008, Kelly and Palumbi 2010, Lindstrom et al. 2011). Modern patterns of 

genetic structure and diversity are shaped by the influence of this glacial period (Marko 2004).  

Our study had two main goals: 1) describe N. luetkeana genetic structure across its 

entire range (Alaska to California) using microsatellite markers, and 2) test three hypotheses 
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regarding gene flow within the Salish Sea (IBE, IBD, IOD) to inform restoration efforts. If rafting 

is a viable means of gene flow, we will see that oceanographic currents affect genetic 

differentiation. We hypothesize that glaciation of the Pacific Northwest during the LGM will 

play a role in modern biogeographic patterns of N. luetkeana distribution in this area. 

Furthermore, N. luetkeana will demonstrate genetic structure throughout its distribution due to 

the limited dispersal predicted by its life-history traits. Life-history traits affecting dispersal, 

importance as an ecosystem engineer, and the geological history of the range it inhabits all 

make N. luetkeana an ideal species for this study.  

II. Methods 

i. Sample collections & DNA extraction 

We sampled fifty-nine sites across the geographic range of N. luetkeana, ranging from 

Herring Island, Alaska (59.65°N, 151.59°W) to Cambria Bay, California (35.53°N, 121.09°W), from 

May 2016 to August 2017. We collected a higher sampling site density inside the Salish Sea, the 

inner water body composed of the Strait of Georgia in British Columbia, Canada, and Puget 

Sound in Washington, USA (Fig. 2, Table 1). Within each site, the average number of specimens 

collected was 40 and ranged from 7 to 51, resulting in a total of 2,188 individuals.  We sampled 

specimens haphazardly, but separated by at least 2 meters, by cutting 2-4cm pieces of blade 

tissue in a non-destructive manner. We wiped the sampled blade tissue to remove epiphytes 

before storing the tissue in silica gel desiccant for preservation until DNA extraction. We used a 

Tissue Lyser II (Qiagen, Valencia, CA) to homogenize the silica dried tissue to a fine powder 
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before extracting DNA using the DNeasy Nucleospin 96 Plant Kit II (Machery-Nagel, Duren, 

Germany) following the kit protocol.  

ii. Microsatellite loci genotyping 

We characterized microsatellite regions for N. luetkeana and used seven of the resulting 

microsatellite loci (Ner-2, Ner-4, Ner-6, Ner-9, Ner-11, Ner-13, and Ner-14). We prepared PCRs 

in a total reaction volume of 15 µL comprised of 10 µM primer, 10 mM dNTP’s per base 

(Promega, Madison, WI), 25 mM MgCl2, 3.0 µl 5X PCR buffer, and 0.5 U GoTaq Polymerase. 

Thermocycler conditions consisted of a 5 minute denaturation step at 95C, followed by 33 

cycles of 20 seconds each at 95C, 20 seconds at annealing temperature of 57C -61C  , 30 

seconds at 72C followed by a final elongation step of 20 minutes at 72C using a GeneAmp 

9700 thermocycler (Primer Note). We sized microsatellite PCR fragments using fragment 

analysis on a 96-capillary DNA sequencer ABI 3730xl at the Madison Biotechnologies Center. 

We scored the resulting microsatellite fragments with STRand 

(https://www.vgl.ucdavis.edu/informatics/strand.php) and binned them into integer allele 

codes with the R (R Core Team, 2016) package MsatAllele (Alberto 2009).  

iii. Population genetics summary statistics 

Genepop version 4.2 (Rousset 2008)  was used to estimate linkage disequilibrium, test 

for Hardy Weinberg Equilibrium in all populations, and estimate genetic differentiation 

measured as FST . An additional genetic differentiation metric was estimated, Jost’s DEST, using 

the R package diversity (Keenan et al. 2013). Jost’s DEST is included because it is not affected by 

differences of within-population heterozygosity like FST (Jost 2008). We estimated allelic 
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richness standardized for samples of size seven individuals (the minimum among sampled sites) 

using the R package STANDARICH (Alberto 2006). Observed, unbiased, expected 

heterozygosity’s and the inbreeding coefficient (FIS) were calculated in Genetix (v. 4.05) 95% 

confidence intervals were calculated using 100,000 bootstraps. 

iv. Range-wide genetic differentiation  

We used the program STRUCTURE to characterize large-scale patterns of genetic 

differentiation across the entire distribution of N. luetkeana (Pritchard et al. 2000). We used the 

admixture model for all runs with allele frequencies correlated among populations and an initial 

burn in period of 250,000 with 250,000 MCMC (Monte Carlo Markov Chain) repetitions. We ran 

a total of 10 runs per k (number of genetic co-ancestry groups) and let k range from 1 to 8.  We 

then used the Puechmaille method in STRUCTURESELECTOR to determine k (Puechmaille 2016, 

Li and Liu 2018). This method accounts for uneven sample size between populations. 

STRUCTURE outputs were submitted to CLUMPAK to align runs for each k value (Kopelman et 

al. 2015).  

Additionally, to test for an isolation by environment (Wang and Bradburd 2014) pattern 

that could explain the genetic clusters estimated by STRUCTURE analysis, we ran a canonical 

correspondence analysis (CCA), in R package CCA (González et al. 2008). The response variables 

were the assignment probabilities (Q-values) for each site to belong to each of four genetic co-

ancestry groups detected by STRUCTURE (see results). The environmental predictor variables 

were site-specific values obtained from NASA’s MODIS AQUIS satellite for photosynthetically 

active radiation (PAR), particulate organic carbon (POC), summer sea surface temperature 
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(SST), spring SST, fall SST, winter SST, light attenuation (measured as kd490) and chlorophyll-a 

(Chl a). We obtained monthly environmental data, from 2002 to 2016, collected by NASA’s 

MODIS satellite and accessed through ERDDAP (Simons, 2019). We used long-term average and 

seasonal variation (for SST) conditions, putatively acting on the physiology of bull kelp. We 

included in the predictor set the latitude and longitude of each site to control for spatial 

autocorrelation. We used a stepwise model-building approach in the R package vegan (Oksanen 

et al. 2015) to select the best model for the data and used variance partitioning to quantify the 

variation explained by the tested variables (Borcard et al. 1992, Økland and Eilertsen 1994). 

Principal components analysis was also performed in order to visualize the ordination of each 

sampling site with respect to the environmental variables (Appendix A). 

v. Seascape Genetics in the Salish Sea 

Seascape genetics analysis detailed below was only performed for the Salish Sea and 

adjacent North East Pacific coast sites where we had a higher sampling density and an available 

hydrodynamic transport model (Yang and Khangaonkar 2010).  

a. Defining an environmental distance between sites 

Environmental data were obtained from NASA’s MODIS satellite and accessed through 

ERDDAP (Simons, 2019). We characterized pairwise environmental distances using the absolute 

difference between sites for each of eight variables: photosynthetically active radiation (PAR), 

particulate organic carbon (POC), particulate inorganic carbon (PIC), summer sea surface 

temperature (SST), spring SST, fall SST, winter SST, light attenuation (kd490) and chlorophyll-a 

(Chl a).  
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b. Characterizing an oceanographic distance  

We used the Salish Sea Model (Yang and Khangaonkar 2010) to simulate particle 

transport times in the General NOAA Operational Modeling Environment, GNOME (Zelenke et 

al. 2012) with the intent of estimating oceanographic distance. Often the average distance 

between sampled sites exceeds the species dispersal in a single generation. This constitutes a 

challenge when using hydrodynamic models to estimate single generation dispersal between 

sampling sites; most pairwise site connectivity would be zero and thus not informative on the 

genetic differentiation between such sites. One way to tackle this limitation is to consider 

multiple-generation stepping stone gene flow to appropriately estimate connectivity, such that 

two sites may be connected through intermediate site(s) (Yang et al. 2016). This approach 

requires simulating transport from additional kelps beds than just those sampled, hereafter 

referred to as stepping stone connectivity sites (SSC-sites). We selected SSC-sites using 

historical kelp bed maps provided by the British Columbia Coastal Resource Information 

Management System (https://forms.gov.bc.ca/databc-data-request/). Using QGIS (QGIS 

Development Team, 2017), we overlaid a 25 km grid over the map of historical kelp bed cover 

and sampling sites. We selected SSC-sites from the center of grid cells that contained kelp, but 

where no sample was collected in our study. A total of 42 SSC-sites and 33 sample sites were 

therefore considered. Using the GNOME modelling platform, simulations one thousand 

particles were released from each of these sites and tracked for 14 days, assuming the same 

spore longevity as Macrocystis pyrifera (Macaya et al. 2005). Spore releases were done 

separately for 13 time periods (each 14 days long) from June to November to cover the season 

when sori are observed in N. luetkeana (Maxell and Miller 1996). We estimated the probability 
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of transport between pairs of sites as the proportion of particles released from the source site i 

that made it to the destination site j. 

From these transport probabilities, we estimated stepping stone connectivity between 

sampling sites, using a directed network modeled in R package igraph (Csardi and Nepusz 

2006). Network nodes were composed by sample and SSC-sites, while edges (the links between 

nodes) had weights representing the log probability of transport between sites derived from 

the GNOME transport simulations. The shortest path along the network between all pairs of 

sample sites was found using a Dijkstra's algorithm (Dijsktra 1959) in igraph.  Our 

oceanographic distance was the stepping stone connectivity between two sampling sites, 

measured by summing the log-transformed probabilities of transport along the shortest path 

(Hock and Mumby 2015).   

c. Modeling genetic differentiation using multiple regression 

We fitted a multiple linear regression model to estimate how pairwise genetic 

differentiation, as measured by FST and Jost’s D, could be explained by over the water Euclidean 

distance (isolation by distance, IBD), environmental distance (isolation by environment, IBE) 

and oceanographic distance (isolation by oceanographic distance, IBOD). Multiple linear 

regression models were run in R and Akaike information criterion (AIC) was used to select the 

best model by eliminating all predictors that had poor fit with genetic differentiation. We added 

variables to the final optimized model in a stepwise fashion based on their significance with the 

threshold set at p<0.05, so the resulting model had only significant predictors. Correlation 
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among predictor variables was estimated using the variance inflation factor (VIF) and all 

variables in the final optimized model were not significantly correlated (VIF<3).  

III. Results 

i. Population genetics analysis 

At each of the loci sampled, none of the populations showed evidence of linkage 

disequilibrium or deviation from Hardy-Weinberg Equilibrium. Mean allelic richness (AR), 

standardized to 7 individuals per sample, ranged between 1.6 and 7.0 alleles·locus-1 with the 

highest values observed in central California at the southern limit of the species distribution. 

Lower values were observed in the Strait of Georgia and Puget Sound with the lowest value of 

1.6 found in Squaxin island (HBSI), the site farthest from the ocean, within the Puget Sound. We 

found intermediate allelic richness for the oceanic coast of British Columbia and Washington 

and these values increased as site latitude decreased (Fig. 3). Allelic richness values also 

increased north of the outer Salish Sea to sites sampled in Alaska at the northern extent of the 

distribution. Genetic differentiation for all populations, as measured by global FST, was 0.1567. 

The inbreeding coefficient, as measured by FIS, had a range of -0.059 to 0.512 with the values 

belonging to Koitlah Point, Washington (CPKP) and the northern tip of Vancouver Island, God’s 

Pocket (LDGP) respectively. FIS 95% confidence interval represented <0.1 change in value for all 

sites. Observed heterozygosity varied from 0.1319 to 0.7899, while expected heterozygosity 

varied from 0.2310 to 0.8618 (Table 1).  
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ii. Range-wide genetic differentiation 

STRUCTURE analysis estimated four total clusters (k) of genetic co-ancestry distributed 

in geographically coherent groups along the entire sampling distribution (Fig. 4). An exception 

to the continuous distributions of these groups was a genetic break observed between the 

Strait of Georgia and Puget Sound. STRUCTURE assigned populations in these bodies of water to 

the same co-ancestry group, but they were separated by the Strait of Juan de Fuca populations 

with co-ancestry dominated by an adjacent northeast Pacific coastal group (Fig. 5). There were 

two other clusters, one made up of sites in Alaska and another with sites from Oregon and 

California (Fig. 6). Sites from this southernmost cluster span over 1,000 km across areas of 

discontinuous habitat. An admixture of genetic co-ancestry was apparent from Haida Gwaii 

Island to northern Vancouver Island (Fig. 5).  

To test the isolation by environment model, we used CCA to explore associations 

between environmental predictors and membership to genetic co-ancestry groups as 

determined by STRUCTURE analysis for k=4 co-ancestry groups (Fig. 7). Model selection 

resulted in latitude, longitude, PAR, light attenuation, and Chl a as significant predictors 

associated with cluster groups. Variance partitioning showed that 70% of the variance was 

explained by environmental predictors and geography. Of this explained variance, 3% is 

explained by geography, 19% from environmental variables and 75% jointly explained by both. 

When geography was controlled for, POC, PAR, light attenuation, and Chl a remained as 

significant predictors of population assignment to the different clusters. Sites that belong to the 

Alaska and Oregon/California co-ancestry groups were more closely associated with one 

another while the inner Salish Sea and outer coastal Washington/British Columbia remained 
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separated. Additionally, PCA revealed light attenuation, particulate organic carbon, and 

particulate inorganic carbon were associate with differences in the Salish Sea (Appendix A).  

iii. Seascape Genetics in the Salish Sea 

Multiple regression analysis identified ocean currents and environmental variables as 

predictors of genetic differentiation within the Salish Sea. Temporal variability in stepping stone 

connectivity, as measured with single regression models, revealed the second half of July as the 

best predictor of genetic differentiation Jost’s DEST
 (R2= 0.35) and was the only period 

considered in the final multiple regression model. All time periods considered had a higher 

association, as measured by adjusted R2, with Jost’s D than FST, and Jost’s D is the response 

variable considered in the remainder of the study.  

The final optimized multiple regression model included oceanic distance from July 15th 

to the 29th, as measured from the hydrodynamic transport model network, light attenuation, 

Chl-a, and summer SST as environmental predictors of genetic differentiation (Fig. 8). Each one 

of these variables had an individual p-value >0.001, and the overall model had an adjusted R2 of 

0.38 p= 2.2x10-16 (Table 2). Of the variables included in this optimized model, oceanic distance 

had the highest percentage of independent effects meaning most of the variation explained by 

the model was associated with our measure of oceanic distance (Fig. 8).  

IV. Discussion 

i. Range-wide genetic structure and diversity  

Our analysis of biogeography in Nereocystis luetkeana revealed four distinct genetic co-

ancestry groups with coherent geographic distribution across the species range with the 
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exception of disjunct population structure within the Salish Sea (Fig. 5).  Maximum observed 

genetic diversity was at the southern range of the distribution in central California. High 

diversity was also evident at the northern range in Alaska and Haida Gwaii (Fig. 3). These 

patterns of genetic structure and diversity support the hypothesis that the last glacial maximum 

influenced historic distribution of N. luetkeana. During the LGM (~25,000 years ago), much of 

the coastal Pacific Northwest was glaciated (Mann and Hamilton 1995, Jacobs et al. 2004) aside 

from small areas of glacial refugia where species were able to persist (Blanchette et al. 2008). 

These refugia maintained genetic diversity and when the glaciers retreated (~12,000 years ago) 

recolonization of suitable habitat from these refugia occurred. Interestingly, when k was 

constrained to three clusters in the structure analyses, sites in Alaska, Oregon and California all 

belonged to a single genetic co-ancestry group and were therefore more genetically similar to 

one another than they were to members of other clusters. This may be evidence that these 

sites in Alaska and California belong to glacial refugia and served as an ancestral gene pool 

while sites in the outer and inner Salish Sea came from a more recent colonization event post-

glaciation and thus only represent a subset of the historical diversity (a founder’s effect).  

Allelic richness values provide further support for the influence of the LGM on present 

population structure and diversity. The populations at the northern limit of N. luetkeana shows 

high allelic richness, which supports northern sites serving as glacial refugium; this pattern has 

been widely recorded in other species (Jacobs et al. 2004, Carrara et al. 2007, Lindstrom 2009, 

Shafer et al. 2010). The admixture of other co-ancestry groups observed in the Haida Gwaii 

Island populations support the idea that the island remained unglaciated during the LGM, 

allowing it to serve as a refugium for many species (Byun et al. 1997, Shafer et al. 2010). This 
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hypothesis is supported by the likelihood of ice-free conditions (Mann and Hamilton 1995) and 

animal and plant morphological characteristics distinct from those of mainland counterparts 

(Clarke et al. 2001). Vancouver Island is also a site of admixture, suggesting that the continental 

shelf between the two islands remained ice-free and terrestrial (Barrie et al. 2003) up until the 

late Pleistocene when glaciers retreated, and sea levels rise filled the area between Haida Gwaii 

and Vancouver Island. The documented ice-free conditions (Mann and Hamilton 1995) and 

similar genetic admixture found in our study between these two islands suggested historic 

connectivity and a potential recolonization pathway originating in Haida Gwaii and extending 

into the Salish Sea. A stepwise decrease in allelic richness from Haida Gwaii into the Salish Sea 

and further into the Puget Sound also supports this pathway of recolonization from refugia. 

The highest allelic richness values observed in central California just north of Point 

Conception, at the southern limit of the species distribution are likely due to a second glacial 

refugium that allowed this population to persist during cool periods in geologic history (Fig. 6). 

This pattern of maximum genetic diversity at the southern ranges of species distribution is well 

documented in the Northern Hemisphere in other seaweed species, such as Fucus serratus 

(Hoarau et al. 2007), Macrocysts pyrifera (Johansson et al. 2015), and across taxa that 

maintained southern refugia during the LGM (Maggs et al. 2008), as southern waters were 

likely the only areas with habitable temperatures within the species distribution. The shared co-

ancestry group for Alaska, Oregon and California sites when cluster groups were constrained to 

three, along with comparatively high genetic diversity across the distribution also support the 

persistence of both northern and southern refugia.  
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The giant kelp Macrocystis pyrifera exhibits a similar pattern of genetic structure – a 

species with similar life history characteristics (e.g. haplodiplontic with limited spore dispersal) 

and northern hemisphere distribution. M. pyrifera is distributed along the coast of the Pacific 

Northwest but extends further south to Baja California. Genetic structure analysis of M. pyrifera 

showed sites sampled in central and northern California belong to one genetic co-ancestry 

group and have the maximum genetic diversity observed (Johansson et al. 2015). This extensive 

genetic co-ancestry group spans over 1000 km of discontinuous habitat, suggesting dispersal 

distances much farther than the few kilometers spores alone can travel (Reed et al. 1988). This 

extended dispersal capability may be due to rafting of adult sporophytes – a mechanism that 

could also occur in N. luetkeana. Population genetic structure differs between the two kelps in 

the northern sites as M. pyrifera has a single northern co-ancestry group made up of sites from 

Alaska and Vancouver Island with the lowest observed genetic diversity. These sites belong to 

distinct co-ancestry groups in N. luetkeana with relatively high genetic diversity in comparison 

to sites within the Salish Sea. The presence of a single genetic co-ancestry group and low 

genetic diversity at the northern limit of M. pyrifera may be due to stepwise recolonization 

from a single southern glacial refugium. Additionally, N. luetkeana may be a more cold-adapted 

species than M. pyrifera (Provan and Bennett 2008) and therefore more ecologically successful 

at northern latitudes. Further, Dieck (1993) demonstrated that kelp gametophytes vary in their 

tolerance to lower temperature limits and this may constrain species northern ranges. The 

difference in present relative abundance of both N. luetkeana and M. pyrifera at higher 

latitudes suggests different relative success in colder regions, which increases the chances of 
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northern refugia serving as a significant source of recolonization for N. luetkeana, in 

comparison to M. pyrifera.  

It is also interesting to note that the maximum genetic diversity for N. luetkeana persists 

in northern California despite the recent dramatic declines in population numbers (Rogers-

Bennett and Catton 2019). Samples for this genetic study were taken in 2016, two years after 

the documented declines. This suggests that despite near-complete or complete canopy loss, 

genetic diversity is still comparable to maximal values recorded elsewhere in CA. This diversity 

could potentially be within life stages other than the conspicuous sporophyte; it is unknown 

how long gametophytes and juvenile sporophytes persist, and these cryptic life stages may be 

preserving genetic diversity when conditions are less favorable for adult sporophytes, such as 

following a strong storm event or nutrient-poor El Niño conditions. For example, Ladah and 

Zertuche-González (2007) showed that M. pyrifera juvenile sporophytes were the only life stage 

able to recover from simulated El Niño conditions. The resiliency of different life stages is likely 

to be a key factor in the persistence of kelp beds as trends shift to an increasingly warming 

ocean.  

Small scale genetic structure analysis of the sea palm Postelsia palmaeformis, a brown 

algal with distribution similar to N. luetkeana, revealed strong genetic differentiation and 

limited gene flow between populations, even at a scale of 5 km (Kusumo et al. 2006). However, 

P. palmaeformis differs distinctly in its ecology from kelp – it is found higher up in the intertidal 

zone and experiences extended periods of complete exposure. It releases most spores during 

low tide (Kusumo et al. 2006) and thus has lower dispersal potential in comparison to N. 

luetkeana and M. pyrifera, which likely drives the patterns of high genetic structure. 
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Conversely, marine animals with Pacific Northeastern distributions and pelagic larvae 

often show little to no genetic structure across the coast of North America (Hedgecock 1994, 

Lee and Boulding 2009). These animals can have larval durations of up to four or five weeks, 

allowing them to survive prolonged periods in the water column, and therefore long distances, 

and can be dispersed via oceanographic currents.  However, larval duration and dispersal 

mechanism are species specific, and therefore result in significantly different patterns of 

genetic structure (Kelly and Palumbi 2010). In general, species with longer larval duration (e.g. 

animals) have less spatial genetic structure, while species with limited dispersal capabilities 

often show strong genetic structure at small spatial scales (e.g. P. palmaeformis). N. luetkeana 

and M. pyrifera represent an intermediate dispersal potential with distinct genetic breaks that 

are driven by limited spore dispersal but exhibit some potential for gene flow over long 

distances via rafting.  

In general, patterns of genetic structure for intertidal species in the Pacific Northeast are 

explained by environmental and oceanographic drivers. Modeling by  Fenberg et al. (2015) 

identified biogeographic structure for rocky intertidal species including a major biogeographic 

break where the North Pacific Current diverges into the California Current and Alaska current 

just south of Haida Gwaii Island, which is consistent with data for the California sea cucumber 

(Xuereb et al. 2018). This diverging current does not appear to be a barrier to gene flow in N. 

luetkeana, as Haida Gwaii and Vancouver Island share similar genetic co-ancestry and are 

centers of admixture where there is successful gene flow from multiple different populations. 

Particle transport models by Robinson et al. (2005) found that sea surface currents would allow 

drifting individuals to be carried between the two islands. This provides an explanation for 
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connectivity in N. luetkeana, which floats on the sea surface current. Admixed genetic structure 

is also observed in M. pyrifera populations that border two regions of different co-ancestry – 

areas experiencing genetic admixture in California separate regions of distinct co-ancestry to 

the north and south (Johansson et al. 2015).  

The CCA showed that the four STRUCTURE cluster groups were associated with latitude, 

longitude, PAR, light attenuation, and chl a. Light attenuation was not associated with latitude 

and longitude, while PAR was; when geography (latitude and longitude) was controlled for, light 

attenuation, PAR and POC were important variables separating the two STRUCTURE clusters 

from the Salish Sea and outer coastal area. Under the same model in which geography was 

excluded as a factor, Alaska and Oregon/California co-ancestry groups clustered closer 

together, despite being separated by the greatest oceanographic distance. This further 

supports the hypothesis of a northern and southern refugia.  

ii. Patterns of genetic differentiation within Salish Sea 

In the Salish Sea, disjunct population structure was evident where the Puget Sound and 

Strait of Georgia sites were significantly different from those in the outer coast and Strait of 

Juan de Fuca. This pattern does not follow the IBD model for explaining genetic differentiation 

because sites directly adjacent to one another belong to separate co-ancestry groups. This 

disjunctive pattern within the Salish Sea is inconsistent with similar studies on fish species that 

have mobile larval stages such as the Pacific hake, Merluccius productus (Iwamoto et al. 2015) 

and copper rock fish, Sebastes caurinus (Buonaccorsi et al. 2002). These studies support the 

hypothesis that currents in the Strait of Juan de Fuca serve as a barrier to gene flow between 
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these two inner waterways. The Strait of Juan de Fuca is a highly dynamic environment with 

large fluxes of water movement each day (Khangaonkar et al. 2017) that could prevent gene 

flow between the Strait of Georgia and Puget Sound.  

One explanation for the inconsistency between fish models and N. luetkeana is that 

populations of N. luetkeana within the Puget Sound and Strait of Georgia originated from only a 

few colonizing individuals post-glaciation, resulting in a founder’s effect and reduction of 

genetic diversity. This hypothesis is supported by allelic richness values that show a stepwise 

reduction from Alaska, southward, and into the Salish Sea. There is further reduction of 

diversity with proximity to the outer coast moving inward within the Salish Sea and the lowest 

value belongs to the southernmost site sampled within the Puget Sound, Squaxin Island.  This 

reduction of genetic diversity with proximity to the outer coast is indicative of a founder’s 

effect and seen in other species with distributions that span the outer coast of Washington and 

the Salish Sea, such as the pacific hake M. productus (Iwamoto et al. 2015). Founding 

populations are likely small and as drift acts on the already reduced genetic diversity, these two 

sites could converge to the same genetic co-ancestry group simply due to chance of fixing the 

same dominant alleles in the common ancestor population, or similarity of environmental 

constraints. Any further divergence between Strait of Georgia and Puget Sound might go 

undetectable if populations are highly homozygous or may require scanning a larger region of 

the genome (e.g., SNP analysis).  
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iii. Seascape Genetics in the Salish Sea 

As suggested by the disjunct population structure, sea surface spatial distance was not a 

significant predictor of genetic differentiation in the optimized multiple regression model. Both 

the multiple regression model as well as the CCA supported the IBE hypothesis as an 

explanation of genetic differentiation within the Salish Sea. These analyses revealed latitude, 

longitude, light attenuation, chl a, summer SST and POC as important predictors of genetic 

patterns in this localized region. Both the Puget Sound and Strait of Georgia environments have 

strong influence from anthropogenic forces (Khangaonkar et al. 2017, Sobocinski et al. 2018), 

which could affect the survival of spores and thus recruitment in these locations. The major 

cities of Seattle and Vancouver provide a high influx of pollutants, such as sewage and other 

runoff, and are often in the form of suspended sediment in the water column. Sedimentation 

reduces penetration of light in the water column and negatively affects recruitment of N. 

luetkeana spores as well as juvenile sporophytes (Carney 2003). 

Furthermore, The Puget Sound and even more so the Strait of Georgia have days with 

above average sea surface temperature during summer months (Simons 2019). High anomaly 

temperatures negatively affect kelp forest size (Assis et al. 2018, Wernberg et al. 2018, 

Cavanaugh et al. 2019) and shift ecosystem dynamics (Connell and Russell 2010). Additionally, 

temperatures above 19 °C inhibit the formation of germ tubes in N. luetkeana spores, 

effectively halting the life cycle before gametophyte development (B. Schiltroth pers comms). 

Therefore, days with above average SST may negatively affect the ecology and persistence of N. 

luetkeana within the Salish Sea.  
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Oceanographic distance provides the strongest explanation of genetic differentiation in 

the Salish Sea. This body of water is influenced by coastal oceanographic currents 

predominantly through the Strait of Juan de Fuca and less so the northern limit of the Strait of 

Georgia. Khangaonkar et al. (2017) showed that less than 12% of the water that flows from the 

Pacific into the Strait of Juan de Fuca makes it into the Puget Sound in comparison, up to 42% 

reaches the Strait of Georgia and the remaining 46% is returned into the Pacific Ocean. This 

suggests that ocean currents do affect the Salish Sea, but more directly in the Juan de Fuca and 

Georgia Straits than the Puget Sound. The importance of oceanographic currents as a driver of 

gene flow is consistent with studies on the sea snail Kelletia kelletii (White et al. 2010) and on 

M. pyrifera (Alberto et al. 2011). In M. pyrifera, oceanographic distance was also found to be an 

important predictor of genetic differentiation, despite differences in methodology. To estimate 

oceanographic distance, they used a Lagrangian particle transport model, thus incorporating 

data from the whole water column, effectively capturing the potential spore dispersal on an 

individualized scale. Conversely, our study used sea surface current data in order to better 

capture multigenerational long-distance dispersal via rafting sporophytes, which is more 

important in N. luetkeana given the unique characteristic of sorus abscission and its effect on 

spore dispersal. Our study supports the hypothesis that isolation by oceanographic distance is 

an important driver of gene flow and may extend connectivity for kelps.   

V. Conclusions/Restoration Applications 

The distinct patterns of genetic structure and diversity in N. luetkeana might be shaped 

by the LGM, with potential recolonization from either northern or southern glacial refugia. 

Subsequent recolonization of outer-coastal British Columbia/Washington and the Salish Sea 
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from these refugia produced patterns of lower diversity with membership primarily limited to 

one genetic co-ancestry group.  In order to determine if patterns of allelic richness and genetic 

structure are consistent with glacial refugia, a haplotype study should be done to rebuild the 

biogeographic history of the species and estimate relative times for large population 

expansions. 

Minimal genetic diversity and membership to a single co-ancestry group provides 

evidence that populations within the Puget Sound are isolated. The reduction in genetic 

diversity within the Puget Sound and Strait of Georgia combined with environmental stressors 

due to proximity to metropolitan areas raises concerns for the future of kelp beds in this region. 

Low genetic diversity decreases resilience to increasing temperatures in other species of kelps 

(Wernberg et al 2018). Additionally, the complex fjord-like geography of the Puget Sound 

increases the likelihood that kelp beds located within the Sound are at risk for further isolation 

due to the inability of ocean currents to facilitate spore dispersal to and from these sites, which 

completes the cycle of their inability to increase genetic diversity and lowers their adaptive 

potential to environmental fluxes. Connectivity estimates for individual sites based on 

oceanographic currents should be calculated in order to identify N. luetkeana beds that are 

more isolated within the Puget Sound that should be prioritized for restoration.  

Our study found support for an IBE model of genetic differentiation within the Salish 

Sea, which may be due to the harsh environmental conditions imposed by humans in this area. 

The reduced diversity found within the Puget Sound and Strait of Georgia may be a signature of 

strong selection for a few adaptive alleles. This would be more accurately described as isolation 

by adaptation where environmental conditions alone do not explain genetic differentiation (as 
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in IBE). Local adaptation to these stressful environments may be allowing kelp beds to persist in 

this region; however, experimental work in the form of reciprocal transplants is required to test 

the localized adaptation hypothesis. Restoration efforts should be planned with this in mind as 

the addition of foreign genotypes may swamp out the few adaptive alleles. This study was done 

on neutral genetic loci markers, and future studies should target the whole genome in order to 

explore areas of the genome that natural selection may be acting. This would allow broader 

conclusions to be drawn on how the environment affects the distribution of genotypes within 

the Salish Sea.   

The maximum observed genetic diversity was also found to be in populations that have 

been in dramatic decline in northern California (Rogers-Bennett and Catton 2019). As 

temperatures warm, and El Niño oscillations become more frequent the importance of other 

life stages for preserving genetic diversity increases. Experiments are needed to better 

understand what conditions various life-stages can persist under.  

Our study shows that distinct patterns of genetic structure are present throughout the 

distribution of N. luetkeana. These patterns can largely be explained by range contractions due 

to extensive glaciation and then recolonizations from northern and southern refugia. The 

disjunct population structure in the Salish Sea is associated with differences in the environment 

as well as oceanographic currents. Genetic diversity in northern California sites is still 

comparable to maximum observed values despite recent declines and diversity of kelps may be 

preserved by the cryptic gametophyte life stage. Restoration of declining kelp beds may be 

necessary to ensure the biodiversity preservation of these ecosystems. This study provides 
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genetic insight of N. luetkeana to highlight populations of particularly low genetic diversity and 

connectivity that can be used to guide future restoration plans.  
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Table 1. Population genetics summary statistics for sampled sites of N. luetkeana. Summary of all sampled locations. n, sample 
size. AR, standardized allelic richness, based on 7 samples; HE unbiased expected heterozygosity; HO, observed heterozygosity; 
FIS, inbreeding coefficient (95% confidence interval represented <0.1 change in value) 

Population (Code) Pop. Label Abbrev. Latitude Longitude n AR Fis He Ho 

Herring Island, Alaska 
(BKHI) 1 BKHI 59° 39' 9.72"N 151° 35' 40.92"W 51 4.617 0.129 0.694 0.611 
Cohen Island, Alaska 
(BKCI) 2 BKCI 59° 32' 30.00"N 151° 32' 30.00"W 50 5.54 0.302 0.784 0.554 

Hezketh Island, Alaska 
(BKHK) 3 BKHK 59° 30' 21.60"N 151° 30' 15.60"W 50 5.846 0.277 0.746 0.546 

Outside Beach, Alaska 
(BKOB) 4 BKOB 59° 27' 51.00"N 151° 42' 33.60"W 50 5.743 0.154 0.718 0.614 

Port Graham, Alaska 
(BKPG) 5 BKPG 59° 22' 14.400"N 151° 53' 23.40"W 51 5.54 0.159 0.726 0.617 
Dasani Island, Alaska 
(TSDI) 6 TSDI 55° 45' 39.21"N 133° 16' 45.96"W 40 5.643 0.236 0.741 0.575 

Wiah Point/Cape 
Edenshaw, Haida Gwaii 
(GSWC) 7 GSWC 54° 6' 25.16"N 132° 21' 59.08"W 33 6.474 0.186 0.783 0.649 

Gudal and Tana's Bay, 
Haida Gwaii (GSGT) 8 GSGT 53° 11' 40.27"N 132° 35' 31.88"W 32 6.197 0.134 0.780 0.688 

Cumshewa Island, Haida 
Gwaii (GSCI) 9 GSCI 53° 1' 50.41"N 131° 36' 9.65"W 26 5.837 0.202 0.760 0.621 

McMullin Islands NE 10 JBMI 52° 4' 14.52"N 128° 24' 23.40"W 50 5.943 0.105 0.720 0.651 

Starfish Island (JBSI) 11 JBSI 51° 40' 45.90"N 128° 7' 33.90"W 50 5.009 0.327 0.641 0.439 
West Beach, Alaska 
(JBWB) 12 JBWB 51° 38' 57.48"N 128° 9' 15.90"W 51 5.777 0.239 0.719 0.554 

South Calvert Island 
Thrasher (JBTH) 13 JBTH 51° 24' 41.76"N 127° 55' 6.90"W 50 5.551 0.285 0.716 0.519 
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God's Pocket (LDGB) 14 LDGP 50° 52' 39.79"N 127° 38' 53.18"W 40 4.871 0.513 0.700 0.347 

Campbell River, British 
Columbia (WHQI) 15 WHQI 50° 2' 15.12"N 125° 14' 31.02"W 40 3.591 0.119 0.391 0.350 

Cape Lazo Shoal (CLAZ) 16 CLAZ 49° 41' 56.70"N 124° 50' 39.09"W 33 3.74 0.281 0.478 0.351 

Maude Reef, British 
Columbia (RZMR) 17 RZMR 49° 29' 57.00"N 124° 40' 54.60"W 40 2.146 0.057 0.344 0.329 

Hornby Island, British 
Columbia (BHHI) 18 BHHI 49° 29' 57.00" 124° 40' 54.60"W 40 2.534 0.162 0.449 0.382 

Stanley Park, British 
Columbia (BSSP) 19 BSSP 49° 18' 10.44"N 123° 6' 45.61"W 42 3.457 0.150 0.442 0.381 

Tofino (Vancouver 
Island) (JETF) 20 JETF 49° 6' 7.77"N 125° 56' 53.95"W 45 5.103 0.214 0.713 0.568 

Aguilar Point, British 
Columbia (LDAP)  21 LDAP 48° 48' 54.59"N 125° 10' 32.92"W 20 4.871 0.142 0.631 0.557 

Cape Beale, British 
Columbia (LDCB)  22 LDCB 48° 47' 30.00"N 125° 12' 47.99"W 20 4.969 0.027 0.608 0.607 

Dodd's Narrows, British 
Columbia (RFDN) 23 RFDN 49° 8' 9.66"N 123° 49' 6.60"W 45 4.529 0.281 0.566 0.413 

Sansum Narrows (WHSN) 24 WHSN 48° 46' 51.82"N 123° 33' 25.52"W 40 4.169 0.363 0.568 0.373 

Lumni Island (EHLI) 25 EHLI 48° 39' 0.52"N 122° 37' 31.60"W 38 4.634 0.312 0.688 0.481 

Turn Rock, San Juan 
Channel (TMTR) 26 TMTR 48° 32' 5.97"N 122° 57' 51.94"W 40 4.251 0.150 0.613 0.529 

Ben Uhre Island (DPBU) 27 DPBU 48° 24' 18.36"N 122° 37' 39.50"W 40 4.366 0.379 0.649 0.410 

Koitlah Point, 
Washington (CPKP) 28 CPKP 48° 23' 31.56"N 124° 38' 40.56"W 40 5.06 

-
0.059 0.637 0.682 

Tatoosh Island, 
Washington (CPTI) 29 CPTI 48° 23' 28.32"N 124° 44' 15.38"W 40 5.117 0.237 0.682 0.529 

Snow Creek Resort, 
Washington (FASR) 30 FASR 48° 21' 12.32"N 124° 32' 41.83"W 39 4.537 0.127 0.600 0.531 

Callam Bay, Washington 
(FACB) 31 FACB 48° 15' 24.17"N 124° 16' 31.31"W 40 4.56 0.143 0.611 0.531 
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Partridge Point (Whibdey 
Island), (DPPP) 32 DPPP 48° 13' 55.92"N 122° 46' 10.49"W 40 4.166 0.117 0.582 0.521 

Cape Alava, Washington 
(CPCA) 33 CPCA 48° 10' 22.22"N 124° 45' 2.95"W 26 4.943 0.093 0.641 0.593 

Salt Creek, Washington 
(FASC) 34 FASC 48° 9' 57.29"N 123° 41' 49.51"W 39 4.471 0.066 0.588 0.557 

North Beach Port 
Townsend, Washington 
(LHPT) 35 LHPT 48° 8' 33.38"N 122° 46' 57.03"W 31 4.323 0.186 0.589 0.489 
Scatchet Head/Whidbey 
Island, Washington 
(JGSH) 36 JGSH 47° 54' 36.04"N 122° 24' 50.06"W 40 3.557 0.121 0.473 0.421 

Richmond Beach (BARB) 37 BARB 47° 46' 16.07"N 122° 23' 39.26"W 40 2.363 0.402 0.301 0.183 

Shilshole Bay (BASB) 38 BASB 47° 40' 54.66"N 122° 24' 32.87"W 41 2.823 0.209 0.414 0.332 

Magnolia Bluff (BAMB) 39 BAMB 47° 40' 50.70"N 122° 23' 55.07"W 40 2.669 0.374 0.392 0.250 

Destruction Island, 
Washington (LADI) 40 LADI 47° 40' 29.53"N 124° 28' 51.53"W 44 4.434 0.113 0.629 0.565 

Vashon Island, 
Washington (FAVI) 41 FAVI 47° 22' 49.48"N 122° 31' 3.54"W 7 2.429 0.279 0.283 0.225 

Tacoma Narrows, 
Washington (FATN) 42 FATN 47° 15' 30.49"N 122° 32' 58.50"W 47 2.291 0.159 0.252 0.214 
Squaxin Island (Tucksel 
Point), Washington 
(HBSI) 43 HBSI 47° 10' 1.75"N 122° 53' 41.67"W 40 1.631 0.440 0.231 0.132 
Otter Rock, Oregon 
(JWOR) 44 JWOR 44° 45' 51.08"N 124° 4' 51.72"W 49 5.763 0.184 0.735 0.607 

Port Orford, Oregon 
(JWPO) 45 JWPO 42° 44' 17.83"N 124° 29' 58.03"W 50 5.96 0.171 0.746 0.626 

Crescent City, California 
(RACC) 46 RACC 41° 44' 53.63"N 124° 12' 33.74"W 50 6.054 0.132 0.734 0.644 

Trinidad Harbor (RATH) 47 RATH 41° 3' 20.14"N 124° 8' 48.02"W 50 4.297 0.223 0.585 0.461 

Van Damm Patch1 48 CCVDA 39° 16' 21.47"N 123° 47' 31.92"W 50 5.654 0.406 0.736 0.444 

Van Damm Patch2 48 CCVDB 39° 16' 5.77"N 123° 48' 2.16"W 50 6.014 0.291 0.751 0.541 
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Van Damm Patch3 48 CCVDC 39° 16' 9.77"N 123° 47' 36.24"W 50 6.526 0.147 0.797 0.688 

Ocean Cove, California 
(BSOC) 49 BSOC 38° 33' 4.27"N 123° 18' 26.52"W 50 6.491 0.167 0.804 0.677 

Stillwater Cove, 
California (BSSW) 50 BSSW 36° 33' 34.83"N 121° 57' 7.15"W 50 6.231 0.358 0.835 0.543 
Big Creek, California 
(BSBC) 51 BSBC 36° 33' 34.83"N 121° 36' 0.61"W 51 6.951 0.086 0.855 0.790 

Cambria, California 
(DCCM) 52 DCCM 35° 31' 56.44"N 121° 5' 5.93"W 50 7 0.158 0.862 0.735 
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Table 2. Results from multiple regression of the final optimized model including 
oceanographic distance, light attenuation, Chl a, and summer SST as explanatory 
variables and genetic differentiation (Jost’s D) as the response variable. Adjusted R2 
and Akaike information criterion (AIC) values reported.  

Variable in Multiple Regression Slope P-value Adj R2 AIC 

Oceanographic Distance July 15 0.011 2x10-16     

Light Attenuation 0.046 0.0002     

Chl a 0.0004 0.028     

Summer SST 0.007 0.005175     

Optimized Model        

Oceanographic Distance July 15 + Light 
Attenuation + Chl a + Summer SST   <2.2x10-16 0.389 -1063 
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Figure 1. Haplodiplontic life cycle of N. luetkeana with sori abscission depicted as the darker 

colored sori tissue separating from the frond. Spores are shown releasing from the sori as it 

falls to the benthos.   
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Figure 2. Sampling site locations of Nereocystis luetkeana across the Pacific coast of North America. 

Site numbers correspond to information in Table 1.  
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Figure 3. Allelic richness, across seven microsatellite markers, standardized to n=7 individuals 

per sample where error bars represent this standardization. Nereocystis luetkeana sampling 

sites are ordered left to right corresponds to approximate sampling location north to south 

on the coast. Population abbreviations are found in Table 1.  
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Figure 4. Stacked STRUCTURE bar plots for k=2 to k=4 where k is the number of co-ancestry 

groups. Population order left to right corresponds to approximate north to south location on the 

coast. The Puechmaille method provided support for k=4 co-ancestry groups. Each bar represents 

genetic co-ancestry membership for an individual and the solid bar at the bottom represent the 

color of the co-ancestry group that has a majority percent assignment.  
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Figure 5. Map of northern sampling region including distribution of k=4 STRUCTURE clusters for 

Nereocystis luetkeana in the Salish Sea/Vancouver Island (bottom) and Haida Gwaii Island (top). 

Clusters are represented as the mean individual membership coefficient (proportion of an 

individual’s genome inherited from ancestors in a particular population) for a given sampling 

location. The proportion of the populations membership to each of the k=4 clusters are represented 

in the pie chart by the following colors: Alaska (purple), outer coastal Washington/British 

Columbia/Juan de Fuca (orange), and Oregon/California (teal).   

British Columbia Haida Gwaii 

Vancouver Island 
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Figure 6. Left panel: Allelic richness values per site and color representing the major genetic 

co-ancestry group. Center panel: Map of sampling sites where the color of the site 

corresponds to the major genetic co-ancestry group. Right panel: Individuals percent 

assignment to k=4 genetic co-ancestry groups as measured from STRUTURE analysis.  
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Figure 7. Canonical correspondence analysis with STRUCTURE analysis cluster groups and 

photosynthetically active radiation (PAR), particulate organic carbon (POC), summer sea surface 

temperature (SST), spring SST, fall SST, winter SST, light attenuation (kd490) and chlorophyll-a 

(Chl a). Clusters are Alaska (purple), outer coastal Washington/British Columbia/Strait of Juan 

de Fuca, Puget Sound/Strait of Georgia (red) and Oregon/California (teal).  Population 

abbreviations found in Table 1 and information on variables found in Methods.  
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Figure 8. A: Optimized regression model with oceanographic distance, light attenuation, Chl a, 

and summer SST as predictor variables of genetic differentiation measured as Jost’s D. 

(R2=0.3883, p=< 2.2e-16). B: The percentage of independent effects each variable had on the 

optimized multiple regression. 

Light 

Attenuation 
Chl a Oceanic 

Distance 

A 

B 



 

 39 
 
 

VII. References  

Alberto, F. 2006. standArich _ v1 . 00 : an R package to estimate population allelic richness using 
standardized sample size 999:1–8. 

Alberto, F. 2009. MsatAllele-1.0: An R package to visualize the binning of microsatellite alleles. 
Journal of Heredity 100:394–397. 

Alberto, F., P. T. Raimondi, D. C. Reed, J. R. Watson, D. A. Siegel, S. Mitarai, N. Coelho, and E. A. 
Serrão. 2011. Isolation by oceanographic distance explains genetic structure for 
Macrocystis pyrifera in the Santa Barbara Channel. Molecular Ecology 20:2543–2554. 

Amsler, C. D., and M. Neushul. 1989. Diel periodicity of spore release from the kelp Nereocystis 
luetkeana (Mertens) Postels et Ruprecht. Journal of Experimental Marine Biology and 
Ecology 134:117–127. 

Assis, J., M. B. Araújo, and E. A. Serrão. 2018. Projected climate changes threaten ancient 
refugia of kelp forests in the North Atlantic. Global Change Biology 24:e55–e66. 

Assis, J., E. A. Serrão, B. Claro, C. Perrin, and G. A. Pearson. 2014. Climate-driven range shifts 
explain the distribution of extant gene pools and predict future loss of unique lineages in a 
marine brown alga. Molecular Ecology 23:2797–2810. 

Bennett, K. D., and J. Provan. 2008. What do we mean by “refugia”? Quaternary Science 
Reviews 27:2449–2455. 

Bernhardt, J. R., and H. M. Leslie. 2013. Resilience to Climate Change in Coastal Marine 
Ecosystems. Annual Review of Marine Science 5:371–392. 

Blanchette, C. A., C. Melissa Miner, P. T. Raimondi, D. Lohse, K. E. K. Heady, and B. R. Broitman. 
2008. Biogeographical patterns of rocky intertidal communities along the Pacific coast of 
North America. Journal of Biogeography 35:1593–1607. 

Borcard, D., P. Legendre, and P. Drapeau. 1992. Partialling out the Spatial Component of 
Ecological Variation. Ecology 73:1045–1055. 

Buonaccorsi, V. P., C. A. Kimbrell, E. A. Lynn, and R. D. Vetter. 2002. Population structure of 
copper rockfish (Sebastes caurinus) reflects postglacial colonization and contemporary 
patterns of larval dispersal. Canadian Journal of Fisheries and Aquatic Sciences 59:1374–
1384. 

Byun, S. A., B. F. Koop, and T. E. Reimchen. 1997. North American Black Bear mtDNA 
Phylogeography: Implications for Morphology and the Haida Gwaii Glacial Refugium 
Controversy. Evolution 51:1647. 

Carney, L. T. 2003. Factors Limiting the Restoration of Nereocystis luetkeana (Mertens) Postels 
et Ruprecht (Bull Kelp). Thesis, University of Washington. 

Carrara, P. E., T. A. Ager, and J. F. Baichtal. 2007. Possible refugia in the Alexander Archipelago 
of southeastern Alaska during the late Wisconsin glaciation. Canadian Journal of Earth 



 

 40 
 
 

Sciences 44:229–244. 

Cavanaugh, K. C., D. C. Reed, T. W. Bell, M. C. N. Castorani, and R. Beas-Luna. 2019. Spatial 
Variability in the Resistance and Resilience of Giant Kelp in Southern and Baja California to 
a Multiyear Heatwave. Frontiers in Marine Science 6:1–14. 

Clarke, T. E., D. B. Levin, D. H. Kavanaugh, and T. E. Reimchen. 2001. Rapid evolution in the 
Nebria gregaria group (coleoptera: Carabidae) and the paleogeography of the queen 
charlotte islands. Evolution 55:1408–1418. 

Connell, S. D., and B. D. Russell. 2010. The direct effects of increasing CO2 and temperature on 
non-calcifying organisms: Increasing the potential for phase shifts in kelp forests. 
Proceedings of the Royal Society B: Biological Sciences 277:1409–1415. 

Dieck, I. T. 1993. Temperature tolerance and survival in darkness of kelp gametophytes 
(Laminariales, Phaeophyta) - Ecological and biogeographical implications. Marine Ecology 
Progress Series 100:253–264. 

Dijsktra, E. W. 1959. A note on two problems in connection with graphs. Numberische 
Mathematik 1:269–271. 

Fenberg, P. B., B. A. Menge, P. T. Raimondi, and M. M. Rivadeneira. 2015. Biogeographic 
structure of the northeastern Pacific rocky intertidal: The role of upwelling and dispersal to 
drive patterns. Ecography 38:83–95. 

Foster, M. S., and D. R. Schiel. 1985. The Ecology of Giant Kelp Forests in California: A 
Community Profile. US Fish and Wildlife Service. 

González, I., S. Déjean, P. G. P. Martin, and A. Baccini. 2008. CCA: An R package to extend 
canonical correlation analysis. Journal of Statistical Software 23:1–14. 

Graham, M. H., B. Halpern, and M. Carr. 2008. Diversity and Dynamics of California Subtidal 
Kelp Forests: Disentangling Trophic Interactions from Habitat Associations. Pages 1–28 
Marine Sublittoral Food Webs. 

Hedgecock, D. 1994. Temporal and spatial genetic structure of marine animal populations in the 
California current. California Cooperative Oceanic Fisheries Investigations 35:73–81. 

Hernández-Carmona, G., B. Hughes, and M. H. Graham. 2006. Reproductive longevity of drifting 
kelp Macrocystis pyrifera (Phaeophyceae) in Monterey Bay, USA. Journal of Phycology 
42:1199–1207. 

Hoarau, G., A. Coyer, J. H. Vedsink, W. T. Stam, and J. L. Olsen. 2007. Glacial refugia and 
recolonization pathways in the brown seaweed Fucus serratus. Molecular Ecology 
16:3606–3616. 

Hock, K., and P. J. Mumby. 2015. Quantifying the reliability of dispersal paths in connectivity 
networks. Journal of The Royal Society Interface 12:20150013–20150013. 

Iwamoto, E. M., A. E. Elz, F. J. Garcı, C. A. Silva-segundo, M. J. Ford, W. A. Palsson, and R. G. 



 

 41 
 
 

Gustafson. 2015. Microsatellite DNA analysis of Pacific hake Merluccius productus 
population structure in the Salish Sea. ICES Journal of Marine Science 72:2720–2731. 

Jacobs, D. K., T. A. Haney, and K. D. Louie. 2004. Genes, Diversity, and Geologic Process on the 
Pacific Coast. Annual Review of Earth and Planetary Sciences 32:601–652. 

Johansson, M. L., F. Alberto, D. C. Reed, P. T. Raimondi, N. C. Coelho, M. A. Young, P. T. Drake, 
C. A. Edwards, K. Cavanaugh, J. Assis, L. B. Ladah, T. W. Bell, J. A. Coyer, D. A. Siegel, and E. 
A. Serrão. 2015. Seascape drivers of Macrocystis pyrifera population genetic structure in 
the northeast Pacific. Molecular Ecology 24:4866–4885. 

Jost, L. 2008. GST and its relatives do not measure differentiation. Molecular Ecology 17:4015–
4026. 

Keenan, K., McGinnity, P., Cross, T.F., Crozier, W.W., & Prodöhl, P.A., (2013), diveRsity: An R 
package for the estimation of population genetics parameters and their associated errors, 
Methods in Ecology and Evolution,<doi:10.1111/2041-210X.12067> 

Kelly, R. P., and S. R. Palumbi. 2010. Genetic structure among 50 species of the northeastern 
pacific rocky intertidal community. PLoS ONE 5. 

Khangaonkar, T., W. Long, and W. Xu. 2017. Assessment of circulation and inter-basin transport 
in the Salish Sea including Johnstone Strait and Discovery Islands pathways. Ocean 
Modelling 109:11–32. 

Kimberly, A. S., M. H. Christine, and D. G. Steven. 2008. Seascape genetics and the spatial 
ecology of marine populations. Fish and Fisheries 9:363–377. 

Kimura, M., and G. H. Weiss. 1964. The Stepping Stone Model of Population Structure and the 
Decrease of Genetic Correlation with Distance. Genetics 49:561–76. 

Kopelman, N. M., J. Mayzel, M. Jakobsson, N. A. Rosenberg, and I. Mayrose. 2015. Clumpak: A 
program for identifying clustering modes and packaging population structure inferences 
across K. Molecular Ecology Resources 15:1179–1191. 

Kusumo, H. T., C. A. Pfister, and J. T. Wootton. 2006. Small-scale genetic structure in the sea 
palm Postelsia palmaeformis Ruprecht (Phaeophyceae). Marine Biology 149:731–742. 

Ladah, L. B., and J. A. Zertuche-González. 2007. Survival of microscopic stages of a perennial 
kelp (Macrocystis pyrifera) from the center and the southern extreme of its range in the 
Northern Hemisphere after exposure to simulated El Niño stress. Marine Biology 152:677–
686. 

Lee, H. J., and E. G. Boulding. 2009. Spatial and temporal population genetic structure of four 
northeastern Pacific littorinid gastropods: the effect of mode of larval development on 
variation at one mitochondrial and two nuclear DNA markers. Molecular Ecology 18:2165–
2185. 

Li, Y. L., and J. X. Liu. 2018. StructureSelector: A web-based software to select and visualize the 
optimal number of clusters using multiple methods. Molecular Ecology Resources 18:176–



 

 42 
 
 

177. 

Lindstrom, S. C. 2009. The biogeography of seaweeds in Southeast Alaska. Journal of 
Biogeography 36:401–409. 

Lindstrom, S. C., J. L. Olsen, and W. T. Stam. 2011. Postglacial recolonization and the 
biogeography of Palmaria mollis (Rhodophyta) along the Northeast Pacific coast. Canadian 
Journal of Botany 75:1887–1896. 

Macaya, E. C., S. Boltaña, I. A. Hinojosa, J. E. Macchiavello, N. A. Valdivia, N. R. Vasquez, A. H. 
Buschmann, J. A. Vasquez, J. M. A. Vega, and M. Thiel. 2005. Presence of sporophylls in 
floating kelp rafts of Macrocystis spp. (Phaeophyceae) along the Chilean Pacific Coast. 
Journal of Phycology 41:913–922. 

Maggs, C. A., R. Castilho, D. Foltz, C. Henzler, M. T. Jolly, J. Kelly, J. Olsen, K. E. Perez, W. Stam, 
R. Väinölä, F. Viard, and J. Wares. 2008. Evaluating signatures of glacial refugia for north 
atlantic benthic marine taxa. Ecology 89:108–122. 

Mann, D. H., and T. D. Hamilton. 1995. Late Pleistocene and Holocene paleoenvironments of 
the North Pacific coast. Quaternary Science Reviews 14:449–471. 

Marko, P. B. 2004. “What’s larvae got to do with it?” Disparate patterns of post-glacial 
population structure in two benthic marine gastropods with identical dispersal potential. 
Molecular Ecology 13:597–611. 

Maxell, B. A., and K. A. Miller. 1996. Demographic Studies of the Annual Kelps Nereocystis 
luetkeana and Costaria costata (Laminariales, Phaeophyta) in Puget Sound, Washington. 
Botanica Marina 39:479–489. 

Mills, L. S., and F. W. Allendorf. 1996. The One-Migrant-per-Generation Rule in Conservation 
and Management. Conservation Biology 10:1509–1518. 

Mitarai, S., D. A. Siegel, J. R. Watson, C. Dong, and J. C. McWilliams. 2009. Quantifying 
connectivity in the coastal ocean with application to the Southern California Bight. Journal 
of Geophysical Research: Oceans 114:1–21. 

Norton, T. A. 1992. Dispersal by macroalgae. British Phycological Journal 27:293–301. 

Nosil, P., S. P. Egan, and D. J. Funk. 2008. Heterogeneous genomic differentiation between 
walking-stick ecotypes: “Isolation by adaptation” and multiple roles for divergent 
selection. Evolution 62:316–336. 

Økland, R. H., and O. Eilertsen. 1994. Canonical Correspondence Analysis with variation 
partitioning: some comments and an application. Journal of Vegetation Science 5:117–126. 

Pauls, S. U., C. Nowak, M. Bálint, and M. Pfenninger. 2013. The impact of global climate change 
on genetic diversity within populations and species. Molecular Ecology 22:925–946. 

Pfister, C. A., H. D. Berry, and T. Mumford. 2017. The dynamics of Kelp Forests in the Northeast 
Pacific Ocean and the relationship with environmental drivers. Journal of Ecology:1–14. 



 

 43 
 
 

Pritchard, J. K., M. Stephens, and P. Donnelly. 2000. Inference of population structure using 
multilocus genotype data. Genetics 155:945–959. 

Provan, J., and K. D. Bennett. 2008. Phylogeographic insights into cryptic glacial refugia. Trends 
in Ecology and Evolution 23:564–571. 

Puechmaille, S. J. 2016. The program structure does not reliably recover the correct population 
structure when sampling is uneven: Subsampling and new estimators alleviate the 
problem. Molecular Ecology Resources 16:608–627. 

Reed, D. C. 1987. Factors affecting the production of sporophylls in the giant kelp. Journal of 
Experimental Marine Biology and Ecology 113:61–69. 

Reed, D. C., D. R. Laur, and A. W. Ebeling. 1988. Variation in Algal Dispersal and Recruitment: 
The Importance of Episodic Events. Ecological Monographs 58:321–335. 

Reusch, T. B. H., A. Ehlers, A. Hämmerli, and B. Worm. 2005. Ecosystem recovery after climatic 
extremes enhanced by genotypic diversity. Proceedings of the National Academy of 
Sciences of the United States of America 102:2826–2831. 

Riginos, C., and L. Liggins. 2013. Seascape Genetics: Populations, Individuals, and Genes 
Marooned and Adrift. Geography Compass 7:197–216. 

Robinson, C. L. K., J. Morrison, and M. G. G. Foreman. 2005. Oceanographic connectivity among 
marine protected areas on the north coast of British Columbia, Canada. Canadian Journal 
of Fisheries and Aquatic Sciences 62:1350–1362. 

Rogers-Bennett, L. 2007. Is climate change contributing to range reductions and localized 
extinctions in northern (Haliotis kamtschatkana) and flat (Haliotis walallensis) abalones? 
Bulletin of Marine Science 81:283–296. 

Rogers-Bennett, L., and C. A. Catton. 2019. Marine heat wave and multiple stressors tip bull 
kelp forest to sea urchin barrens. Scientific Reports:1–9. 

Rousset, F. 2008. GENEPOP’007: A complete re-implementation of the GENEPOP software for 
Windows and Linux. Molecular Ecology Resources 8:103–106. 

Selkoe, K. A., C. C. D’Aloia, E. D. Crandall, M. Iacchei, L. Liggins, J. B. Puritz, S. Von Der Heyden, 
and R. J. Toonen. 2016. A decade of seascape genetics: Contributions to basic and applied 
marine connectivity. Marine Ecology Progress Series 554:1–19. 

Sexton, J. P., S. B. Hangartner, and A. A. Hoffmann. 2014. Genetic isolation by environment or 
distance: Which pattern of gene flow is most common? Evolution 68:1–15. 

Sgrò, C. M., A. J. Lowe, and A. A. Hoffmann. 2011. Building evolutionary resilience for 
conserving biodiversity under climate change. Evolutionary Applications 4:326–337. 

Shafer, A. B. A., C. I. Cullingham, S. D. Côté, and D. W. Coltman. 2010. Of glaciers and refugia: A 
decade of study sheds new light on the phylogeography of northwestern North America. 
Molecular Ecology 19:4589–4621. 



 

 44 
 
 

Siddon, E. C., C. E. Siddon, and M. S. Stekoll. 2008. Community level effects of Nereocystis 
luetkeana in southeastern Alaska. Journal of Experimental Marine Biology and Ecology 
361:8–15. 

Smale, D. A., and T. Wernberg. 2013. Extreme climatic event drives range contraction of a 
habitat-forming species. Proceedings of the Royal Society B: Biological Sciences 280. 

Sobocinski, K. L., C. M. Greene, M. W. Schmidt, K. L. Sobocinski, C. M. Greene, and M. W. 
Schmidt. 2018. Using a qualitative model to explore the impacts of ecosystem and 
anthropogenic drivers upon declining marine survival in Pacific salmon. Environmental 
Conservation 45:306. 

Stephen R. Palumbi. 2003. Population genetics, demographic connectivity, and the design of 
marine reserves. Ecological Applications 13:S146–S158. 

Venables, W. N. & Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth Edition. 
Springer, New York. ISBN 0-387-95457-0 

Walker, D. C. 1980. Sorus Abscission from Laminae of Nereocystis luetkeana (Mert.) Post. and 
Rup. Dissertation, University of British Columbia.  

Wang, I. J., and G. S. Bradburd. 2014. Isolation by environment. Molecular Ecology 23:5649–
5662. 

Waples, R. S., and O. Gaggiotti. 2006. What is a population ? An empirical evaluation of some 
genetic methods for identifying the number of gene pools and their degree of connectivity. 
Molecular Ecology:1419–1439. 

Wernberg, T., M. A. Coleman, S. Bennett, M. S. Thomsen, F. Tuya, and B. P. Kelaher. 2018. 
Genetic diversity and kelp forest vulnerability to climatic stress. Scientific Reports 8:1–8. 

White, C., K. A. Selkoe, J. Watson, D. A. Siegel, D. C. Zacherl, and R. J. Toonen. 2010. Ocean 
currents help explain population genetic structure. Proceedings of the Royal Society B: 
Biological Sciences 277:1685–1694. 

Wright, S. 1943. Isolation by distance. Genetics 28:114–138. 

Xuereb, A., L. Benestan, É. Normandeau, R. M. Daigle, J. M. R. Curtis, L. Bernatchez, and M. J. 
Fortin. 2018. Asymmetric oceanographic processes mediate connectivity and population 
genetic structure, as revealed by RADseq, in a highly dispersive marine invertebrate 
(Parastichopus californicus). Molecular Ecology 27:2347–2364. 

Yang, D., Y. Song, J. Ma, P. Li, H. Zhang, M. R. S. Price, C. Li, and Z. Jiang. 2016. Stepping-stones 
and dispersal flow: establishment of a metapopulation of Milu (Elaphurus davidianus) 
through natural re-wilding. Scientific Reports. 



 

 45 
 
 

VIII. Appendix. Principle components analysis was done in R using the package MASS using the function 

princomp (Venables and Ripley 2002). Environmental variables were obtained from NASA’s MODIS 

AQUIS satellite (Simons 2019).    
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