
Ticket Tagger: Machine Learning Driven
Issue Classification

Rafael Kallis
Department of Informatics

University of Zurich
Zurich, Switzerland

email: rk@rafaelkallis.com

Andrea Di Sorbo, Gerardo Canfora
Department of Engineering

University of Sannio
Benevento, Italy

email: {disorbo, canfora}@unisannio.it

Sebastiano Panichella
School of Engineering

Zurich University of Applied Sciences
Zurich, Switzerland
email: panc@zhaw.ch

Abstract—Software maintenance is crucial for software
projects evolution and success: code should be kept up-to-date
and error-free, this with little effort and continuous updates
for the end-users. In this context, issue trackers are essential
tools for creating, managing and addressing the several (often
hundreds of) issues that occur in software systems. A critical
aspect for handling and prioritizing issues involves the assignment
of labels to them (e.g., for projects hosted on GitHub), in order to
determine the type (e.g., bug report, feature request and so on) of
each specific issue. Although this labeling process has a positive
impact on the effectiveness of issue processing, the current
labeling mechanism is scarcely used on GitHub. In this demo, we
introduce a tool, called Ticket Tagger, which leverages machine
learning strategies on issue titles and descriptions for automati-
cally labeling GitHub issues. Ticket Tagger automatically predicts
the labels to assign to issues, with the aim of stimulating the use
of labeling mechanisms in software projects, this to facilitate the
issue management and prioritization processes. Along with the
presentation of the tool’s architecture and usage, we also evaluate
its effectiveness in performing the issue labeling/classification
process, which is critical to help maintainers to keep control
of their workloads by focusing on the most critical issue tickets.

Tool Webpage: https://github.com/rafaelkallis/ticket-tagger

Index Terms—Software maintenance and evolution, Issue Pro-
cessing, Unstructured Data Labeling

I. INTRODUCTION

In the life cycle of software projects, maintenance is a crucial
task, which implies several activities. First of all, the source
code should be kept up-to-date and any potential flaws in
terms of performance and correctness removed. On the other
hand, a maintainer must invest as little time and effort (e.g.,
in understanding the relevant software artifacts [12], [11]) as
possible to solve the mentioned tasks to keep the software
maintenance costs low [6].

Issue tracking systems are important means for maintainers
to enable rigorous yet effective software evolution tasks. In
issue tracking systems maintainers report tickets or potential
problems, manage them and keep track of their progress. But
as useful they might be, many developers still end up with a
rapidly growing workload and lose control of it [2], [12].

Differently from more traditional and structured issue
tracking systems, such as Bugzilla or JIRA, GitHub, one of the
most popular social coding platform, provides an integrated
lightweight issue tracking system, in which issue submitters

are only required to provide a short textual abstract, containing
a title and an optional description to report a new issue to
a project hosted on GitHub. While this simplified process of
reporting issues decreases the barrier to entry and attracts more
inexperienced external contributors, it complicates the work
of the development teams for maintaining the software, as
several hundreds of issues of different nature (e.g., asking
questions, proposing features, signaling bugs) and quality are
usually submitted [5]. To cope with these problems, GitHub
also offers a customizable labeling system, which can be used
by developers to mark and manage issue reports. In particular,
labels can give immediate clues about the issues (e.g., what
sort of topic the issue is about, what development task the
issue is related to, or what priority the issue has) and are
also useful for project administrators, since they can serve
both as classification and filtering mechanism, thus facilitating
the managing of the project [8]. However, manually assigning
labels to issues is a labor-intensive and time-consuming task for
project managers [5]. Indeed, although labeling has a positive
impact on the effectiveness of issue processing [10], the labeling
mechanism is scarcely used on GitHub [3], [2]. The goal of our
work is to help maintainers improving their issue processing
effectiveness, by automating the issue labeling process on
GitHub. To pursue this goal, we developed a tool, called Ticket
Tagger.

Previous studies presented several approaches to automat-
ically categorize issues posted in bug tracking systems. For
example, Antoniol et al. [1] showed that machine learning
models can be used in order to discriminate bugs from other
kinds of issues. Herzig et al. [7] introduced six different
issue categories – bug, feature request, improvement request,
documentation request, refactoring request, and others – and
demonstrated that often developers and maintainers assign the
wrong issue category to the reports. To address this problem,
Zhou et al. [14] combined structured data with unstructured
free-text data to train a classifier able to predict with high
accuracy if a bug report is actually a bug or another kind
of issue. Clearly, no structured information could be found
on GitHub issues, according to the GitHub issue tracking
lightweight structure. Our tool enables, with high effectiveness,
the automated labeling of GitHub issues, this by relying
exclusively on the text contained in issue titles and descriptions.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ZHAW digitalcollection

https://core.ac.uk/display/286703611?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://github.com/rafaelkallis/ticket-tagger


This is important for developers (that often take a lot of
time to handle new issues [8]), as this approach automatically
categorizes issues immediately after they are reported.

Thus, the contribution of this paper is two-fold:
• we release Ticket Tagger, a new GitHub app that can be

integrated with any new or existing software repositories
hosted on GitHub. When creating a new ticket on the
repository’s issue tracker, Ticket Tagger automatically
assigns a relevant label to it, relying on the title and the
description of the issue;

• we evaluate the issue classification effectiveness of Ticket
Tagger. In particular, we conduct an assessment of the
classification performance of the machine learning model
implemented in Ticket Tagger, using a dataset that com-
prises about 30,000 issues extracted from heterogeneous
GitHub projects.

Paper structure. The paper is organized as follows: Sec-
tion II explains the approach behind Ticket Tagger, Section III
illustrates the tool’s architecture and its usage, while in
Section IV we discuss the classification results achieved by
the proposed approach.

II. METHOD

Ticket Tagger classifies issues by performing the following
steps: (i) processing of title and body of the issues; (ii) vectorial
representation of issues; (iii) classification of issues.

Choice of the Machine Learning Model. Different meth-
ods can be used to analyze issues information to deter-
mine/predict the label(s) to assign to them. Machine learning
models require a lot of time for training and use a lot of
memory. Ideally, we look for a model that achieves good
results while remaining portable, i.e., is not memory and storage
intensive, as we desire to deploy the model on low-end server
hardware1. Linear classifiers often obtain near state-of-the-art
text classification performance despite their simplicity[9], [4],
[13]. To perform this task, we decided to use fastText, a tool
that was open sourced by Facebook AI Research in 2016,
which uses linear models with a rank constraint and fast loss
approximation [9]. Joulin et al. [9] showed that whilst fastText’s
accuracy is competitive against several deep learning based
models, it is several orders of magnitude faster for training
and evaluation.

Tickets Pre-processing. The issues pre-processing steps
strictly depends on the method selected to perform the
automated classification of issues. The fastText linear classifier
is typically trained with sentences represented as a bag of
words and a bag of n-grams to partially embed information on
word order. This because local word order information tends to
improve the text classification performance of the linear model.
Thus, each issue submitted to the issue tracker is passed to a
fastText based classifier. We extract the title and body of the
issue and concatenate them into a single textual paragraph. We
then tokenize the resulting text and derive the bag of words
representation from the tokenized text.

1AWS EC2 t2.nano (1 vCPU, 512 MB RAM, 20 GB SSD)

Vectorial Representation of Issues. From the extracted bag
of words representation, each word is represented by a vector
of character n-grams, which represents the desired input of
fastText.

Issues Classification. To classify issues through fastText the
main objective is to minimize the following objective function
over N (possible tickets) labels:

− 1

N

N∑
n=1

yn log(f(BAxn))

where xn is a bag of features, A represents the weight dictionary
of the average text embeddings, B is the weight dictionary that
converts the embedding to pre-softmax values for each class,
and f is the hierarchical softmax function used to minimize
computational complexity. Due to the memory constraints of
our server hardware, we do not capture word n-gram features
in our model2. For the same reason, our model only contains
words that occur at least 14 times in the dataset3. With a
minimum word count of 14, the trained model requires less
than 5 MB of disk space. For the setting of fastText we used
the default values for all other parameters4. Most notably,
this includes 2, 000, 000 buckets, a minimum character n-gram
length of 3, a sampling threshold of 0.0001, a learning rate of
0.05, word vector size of 100, context-window size of 5 and
a skipgram negative sampling loss function with 5 negatives
sampled.

It is important to mention that, currently, Ticket Tagger
classifies issues with a multi-class classifier according to three
categories describing the intent of the writer: bug report,
enhancement, and question. We chose these labels as they are
included by default in every issue tracker on GitHub repositories
and they encode the vast majority of available issue tickets [3].
Clearly, the approach is designed to work for any label used
on GitHub. Indeed, retraining a multi-class classifier does not
require too much effort, making our model easily adaptable
to specific projects’ needs. In addition, a multi-class classifier
can assign the more relevant label (i.e., the one reflecting the
main intent of the reporter) to any new opened issue, avoiding
to assign multiple tags that may be contradictory [3]. When a
developer submits a new issue to a software repository, Ticket
Tagger is activated and a relevant label is automatically assigned
to the new issue.

In Section IV we discuss our evaluation of the proposed
approach, presenting the accuracy of the trained fastText model
given a training-set consisting of pre-labeled issue tracker
tickets found on GitHub.

III. TICKET TAGGER IN ACTION

As reported in Section I, our goal is to support developers
during issue processing activities. We, therefore, integrated the
pre-trained fastText model (see Section II) into a GitHub app,

2wordNgram parameter
3minCount parameter
4Complete list of parameters can be found at https://fasttext.cc/docs/en/

options.html

https://fasttext.cc/docs/en/options.html
https://fasttext.cc/docs/en/options.html


namely Ticket Tagger, that we developed. The Ticket Tagger
app is able to automatically (i) gather issues information from
a GitHub repository, and (ii) assign labels to newly created
issue tickets.

Ticket Tagger is based on Node.js, de-facto server-side
javascript runtime, and uses the fastText implementation5.

When started, our app exposes an endpoint which is called by
a GitHub hook every time an issue is submitted on repositories
Ticket Tagger was installed on. Fig. 1 illustrates a sequence
diagram of the protocol. The flow is initiated when a user
opens a new issue, after which a procedure is started on GitHub
asynchronously. GitHub calls the hook endpoint exposed by
Ticket Tagger, including a reference to the newly created issue
ticket in the request body. Ticket Tagger then runs a prediction
over the ticket. Before assigning the predicted label, temporary
credentials for the issue ticket’s repository are fetched. More
specifically, an access token is issued from GitHub and it is
consumed when finally assigning the predicted label to the
issue ticket.

Our Ticket Tagger application is freely accessible to any
developer and can be effortlessly integrated into existing
GitHub repositories. Indeed, after going to the Ticket Tagger
app page6, the repository administrator has to simply click
on the “Install” button and select the repository to integrate.
When this is done, Ticket Tagger is successfully integrated
with the specified repositories.

Fig. 2 depicts the standard tagging process. As mentioned
above, each time a user submits a new issue on a software
repository, the application is triggered and runs a classification.
In Fig. 2, Ticket Tagger correctly identifies the issue ticket as
a bug report and automatically assigns the “bug” label to it.
Once labeled, the code owners can (i) immediately react to
any urgent tickets, (ii) postpone less important issues such as
feature or enhancements requests, or (iii) transmit questions to
the responsible persons.

IV. PERFORMANCE EVALUATION

In this section, we assess the classification performance
achieved by the fastText model integrated into Ticket Tagger

5https://github.com/facebookresearch/fastText/
6https://github.com/apps/ticket-tagger

Fig. 1. Sequence diagram of Ticket Tagger.

TABLE I
MODEL BENCHMARK; PRECISION, RECALL AND F-MEASURE OF “BUG”,

“ENHANCEMENT” AND “QUESTION” LABELS FOR THE FASTTEXT MODEL
AFTER A 10-FOLD CROSS VALIDATION.

Bug Enhancement Question

Precision 82.2% 89.4% 78.1%
Recall 84.1% 76.3% 87.4%
F-measure 83.1% 82.3% 82.5%

(see Section II). To conduct our assessment, we collected a
dataset containing 30,000 issues7: (i) 10,000 of them had the

“bug” label assigned, (ii) 10,000 issues had the “enhancement”
label assigned, and (iii) 10,000 issues had the “question”
label assigned. Tickets with the “enhancement” label refer
to improvements and new features. The dataset was collected
by querying the GitHub Archive8 using Google BigQuery9.
Collected issues were drawn at random from the set of all
GitHub issues closed during January 2018 and containing a
label matching to one of the strings: “bug", “enhancement" or
“question". More specifically, the issues were collected from
12, 112 heterogeneous projects. On average, 2.48 issues for
each project (median = 1 and standard deviation = 15.78)
were extracted.

We performed a 10-fold cross validation using the dataset
containing the aforementioned pre-labeled issues. More pre-
cisely, the collected dataset was partitioned into 10 equal size
subsamples. The cross-validation process was repeated ten
times so that each time a different subsample was used as the
testing set while the remaining nine subsamples were used as
training data. During each iteration, we recorded the precision,
recall and F-measure metrics achieved for each class. At the end
of this process, we had exactly ten values for each considered
metric and each issue category. Such results were then averaged
in order to produce a single estimation for each considered
metric and each category.

As shown in Table I, we observe that our fastText model
obtained F-measure values above 80% for each considered label,
confirming the practical usefulness of the proposed approach for
improving the issue management practices on GitHub. However,
while for issues belonging to the Bug class both precision and
recall are above 80%, our model produces higher numbers of
false positives for the Question category (i.e., a lower precision
is achieved for this class) and higher amounts of false negatives
for the Enhancement class (i.e., for this category a lower recall
is achieved). Indeed, the strong use of function words (such as
how or what, that typically introduce questions) in the issue title
or description could lead the classifier to erroneously assign
the “question" label to issues that actually belong to different
classes and, consequently, this degrades the precision results
achieved for the Question category. In addition, the lower recall
obtained for the Enhancement class could be connected with
the many different ways through which users (and developers)

7Raw data available at: https://tinyurl.com/y23kgdro
8https://gharchive.org
9https://cloud.google.com/bigquery

https://github.com/facebookresearch/fastText/
https://github.com/apps/ticket-tagger
https://tinyurl.com/y23kgdro
https://gharchive.org
https://cloud.google.com/bigquery


Fig. 2. Ticket Tagger automatically assigns the “bug” label to a newly created issue on GitHub.

request improvements or new features [13], making it hard to
learn all the patterns that could lead to the assignment of this
label.

V. CONCLUSION

In this work, we presented Ticket Tagger, an app that
we released on the GitHub marketplace, that automatically
assigns suitable labels to issues opened on GitHub projects. In
particular, we presented the tool’s architecture and provided
all the necessary information for installing and using our app
on custom GitHub repositories. Indeed, fellow developers who
desire to improve the issue maintenance process through the
automated classification enabled by the tool, can easily integrate
Ticket Tagger into their repositories.

The core of Ticket Tagger is represented by a machine
learning model that analyzes the title and the textual description
of the issue in order to determine whether such issue can
be labeled as a bug report, a feature request or a question.
Thus, with the aim of assessing the classification performance
achieved by our tool, we conducted an experimental evaluation
of the model on a dataset comprising 30,000 issues. The
results of such evaluation showed that our classifier allows
to automatically assign labels with appreciable levels of
precision and recall for all the three categories, confirming the
practical usefulness of Ticket Tagger for improving the issue
management practices on GitHub.

Future work will be aimed (i) at comparing Ticket Tagger’s
accuracy and functionality with other existing solutions, as
well as (ii) at investigating its usefulness through the analysis
of direct feedback from end-users.

REFERENCES

[1] G. Antoniol, K. Ayari, M. Di Penta, F. Khomh, and Y. Guéhéneuc,
“Is it a bug or an enhancement?: a text-based approach to classify
change requests,” in Proceedings of the 2008 conference of the Centre
for Advanced Studies on Collaborative Research, October 27-30, 2008,
Richmond Hill, Ontario, Canada, 2008, p. 23.

[2] T. F. Bissyandé, D. Lo, L. Jiang, L. Réveillere, J. Klein, and Y. Le Traon,
“Got issues? who cares about it? a large scale investigation of issue
trackers from github,” in 2013 IEEE 24th international symposium on
software reliability engineering (ISSRE). IEEE, 2013, pp. 188–197.

[3] J. Cabot, J. L. C. Izquierdo, V. Cosentino, and B. Rolandi, “Exploring
the use of labels to categorize issues in open-source software projects,”
in 2015 IEEE 22nd International Conference on Software Analysis,
Evolution, and Reengineering (SANER), 2015, pp. 550–554.

[4] A. Di Sorbo, S. Panichella, C. A. Visaggio, M. Di Penta, G. Canfora,
and H. C. Gall, “DECA: development emails content analyzer,”
in International Conference on Software Engineering, ICSE 2016
- Companion Volume, 2016, pp. 641–644. [Online]. Available:
https://doi.org/10.1145/2889160.2889170

[5] Q. Fan, Y. Yu, G. Yin, T. Wang, and H. Wang, “Where is the
road for issue reports classification based on text mining?” in
International Symposium on Empirical Software Engineering and
Measurement, ESEM 2017, 2017, pp. 121–130. [Online]. Available:
https://doi.org/10.1109/ESEM.2017.19

[6] P. Floris and H. Vogt Harald, “How to save on software maintenance
costs, omnext white paper,” SOURCE 2 VALUE, 2010.

[7] K. Herzig, S. Just, and A. Zeller, “It’s not a bug, it’s a feature: how
misclassification impacts bug prediction,” in International Conference
on Software Engineering, ICSE ’13, 2013, 2013, pp. 392–401. [Online].
Available: https://doi.org/10.1109/ICSE.2013.6606585

[8] J. L. C. Izquierdo, V. Cosentino, B. Rolandi, A. Bergel, and J. Cabot,
“Gila: Github label analyzer,” in 22nd IEEE International Conference
on Software Analysis, Evolution, and Reengineering, SANER 2015,
Montreal, QC, Canada, March 2-6, 2015, 2015, pp. 479–483. [Online].
Available: https://doi.org/10.1109/SANER.2015.7081860

[9] A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov, “Bag of tricks for
efficient text classification,” arXiv preprint arXiv:1607.01759, 2016.

[10] Z. Liao, D. He, Z. Chen, X. Fan, Y. Zhang, and S. Liu, “Exploring the
characteristics of issue-related behaviors in github using visualization
techniques,” IEEE Access, vol. 6, pp. 24 003–24 015, 2018.

[11] S. Panichella, “Summarization techniques for code, change, testing, and
user feedback (invited paper),” in VST@SANER. IEEE, 2018, pp. 1–5.

[12] S. Panichella, G. Bavota, M. D. Penta, G. Canfora, and G. Antoniol,
“How developers’ collaborations identified from different sources tell us
about code changes,” in ICSME. IEEE, 2014, pp. 251–260.

[13] S. Panichella, A. Di Sorbo, E. Guzman, C. A. Visaggio, G. Canfora,
and H. C. Gall, “How can I improve my app? Classifying user reviews
for software maintenance and evolution,” in International Conference
on Software Maintenance and Evolution, ICSME, 2015, pp. 281–290.
[Online]. Available: https://doi.org/10.1109/ICSM.2015.7332474

[14] Y. Zhou, Y. Tong, R. Gu, and H. C. Gall, “Combining text mining
and data mining for bug report classification,” Journal of Software:
Evolution and Process, vol. 28, no. 3, pp. 150–176, 2016. [Online].
Available: https://doi.org/10.1002/smr.1770

https://doi.org/10.1145/2889160.2889170
https://doi.org/10.1109/ESEM.2017.19
https://doi.org/10.1109/ICSE.2013.6606585
https://doi.org/10.1109/SANER.2015.7081860
https://doi.org/10.1109/ICSM.2015.7332474
https://doi.org/10.1002/smr.1770

