

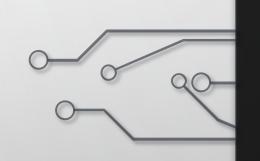
SCHOLARLY COMMONS

National Training Aircraft Symposium (NTAS)

2020 - Perspectives: A Vision into the Future of Aviation

Mar 2nd, 9:30 AM - 10:45 AM

Preliminary Results of a Study Investigating Aviation Students' Intentions to use Virtual Reality for Flight Training


Stephanie G. Fussell Embry-Riddle Aeronautical University, sfussel2@kent.edu

Follow this and additional works at: https://commons.erau.edu/ntas

Part of the Educational Technology Commons, and the Science and Mathematics Education Commons

Fussell, Stephanie G., "Preliminary Results of a Study Investigating Aviation Students' Intentions to use Virtual Reality for Flight Training" (2020). *National Training Aircraft Symposium (NTAS)*. 15. https://commons.erau.edu/ntas/2020/presentations/15

This Presentation is brought to you for free and open access by the Conferences at Scholarly Commons. It has been accepted for inclusion in National Training Aircraft Symposium (NTAS) by an authorized administrator of Scholarly Commons. For more information, please contact commons@erau.edu.

PRELIMINARY RESULTS OF A STUDY INVESTIGATING AVIATION STUDENT'S INTENTIONS TO USE VIRTUAL REALITY FOR FLIGHT TRAINING

STEPHANIE G. FUSSELL, PHD CANDIDATE

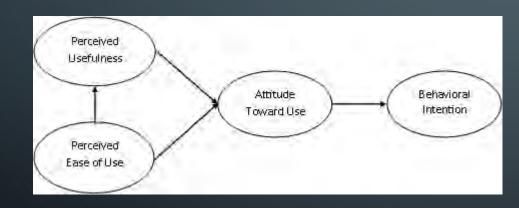
DR. DOTHANG TRUONG, CHAIR

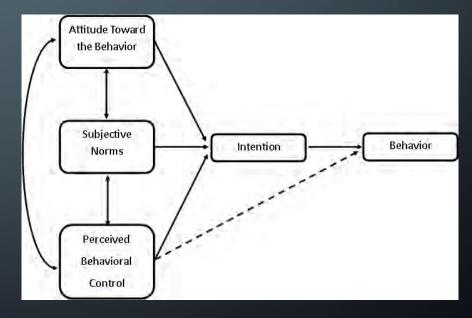
DR. DAVID CROSS, DR. ROBERT THOMAS, DR. CHANG-GEUN OH, COMMITTEE MEMBERS

OUTLINE

- Background
- Research Questions & Purpose
- Proposed Research Theoretical Framework and Hypotheses
- Survey Instrument
- Results of the Pilot Study
- Discussion & Next Steps

AVIATION, VR, AND EDUCATION




FOUNDATION THEORIES OF THE STUDY

TECHNOLOGY ACCEPTANCE MODEL (TAM)

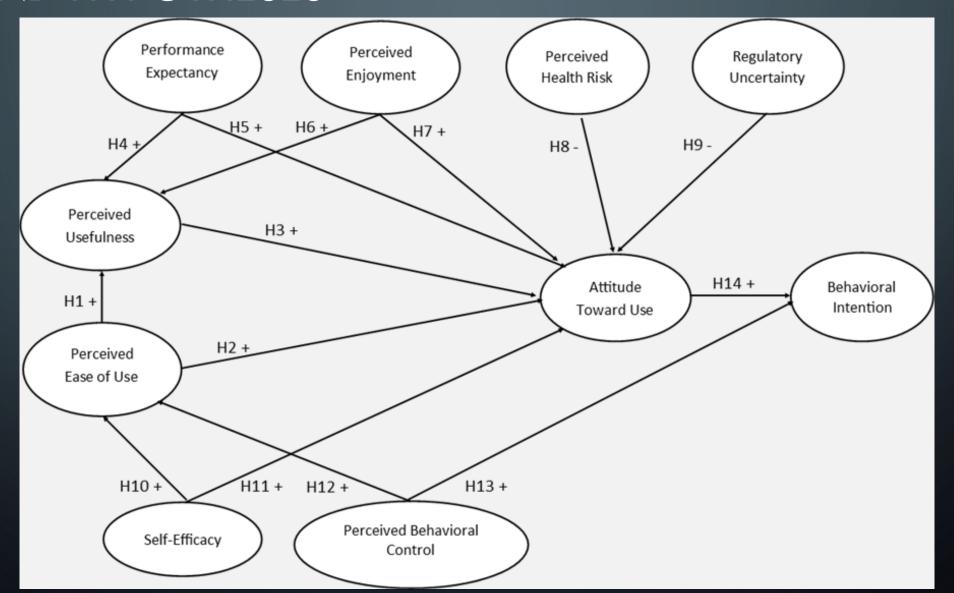
Davis, Bagozzi, and Warshaw (1989)

THEORY OF PLANNED BEHAVIOR (TPB)

Ajzen (1991)

RESEARCH QUESTIONS & PURPOSE

What factors influence aviation students' intentions to use VR technology for flight training?



How do these factors impact students' intentions to use VR technology for flight training?

To what extent do these factors influence aviation students' intentions to use VR technology for flight training?

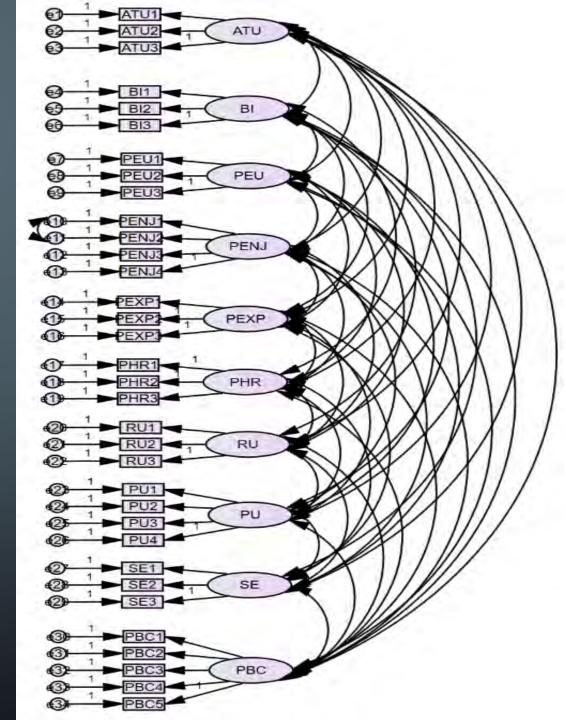
PROPOSED RESEARCH THEORETICAL FRAMEWORK AND HYPOTHESES

SURVEY INSTRUMENT

Designed using foundation theories and previous, validated instruments

Accessed via email with link to online survey platform

Section 1: purpose of study, consent form, screening questions


Section 2: demographic data (11)

Section 3: Likert response items to assess latent constructs (34)

RESULTS OF THE PILOT STUDY: CFA AND SEM RESULTS

- Factor Perceived Health Risk (PHR) had low Cronbach's alpha value of 0.40;
 changes required
- Factor Regulatory Uncertainty (RU) had low construct reliability of 0.67 but acceptable low Cronbach's alpha value; no change required

RESULTS OF THE PILOT STUDY

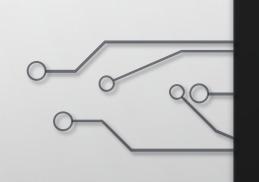
			Std.		
	Ν	Mean	Deviation	Skewness	Kurtosis
ATU_AII	42	3.76	1.21	-0.74	-0.13
BI_AII	42	3.59	1.20	-0.62	-0.40
PEU_AII	42	3.45	1.06	-0.29	-0.21
PENJ_AII	42	3.88	1.00	-0.78	0.37
PEXP_AII	42	3.02	0.93	-0.05	-0.09
PHR_AII	42	2.83	0.82	-0.06	-0.71
RU_AII	42	3.07	1.01	-0.15	-0.16
PU_AII	42	3.34	1.07	-0.34	-0.08
SE_AII	42	3.58	1.03	-0.50	0.21
PBC_AII	42	3.44	1.05	-0.25	-0.68

RESULTS OF THE PILOT STUDY

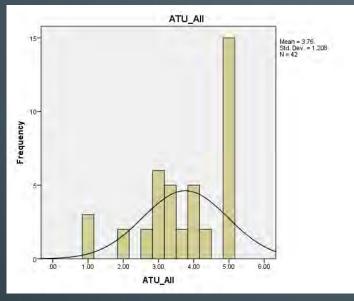
		BI_AII	ATU_AII	PEU_AII	PENJ_AII	PEXP_AII	PHR_AII	RU_AII	PU_AII	SE_AII	PBC_AII
BI_AII	Pearson Correlation	1	.841**	.805**	.643**	.614**	.030	212	.785**	.420**	.531**
	Sig. (2- tailed)		.000	.000	.000	.000	.850	.178	.000	.006	.000
ATU_ All	Pearson Correlation	.841**	1	.762**	.581**	.512**	.079	072	.763**	.367*	.400**
	Sig. (2- tailed)	.000		.000	.000	.001	.619	.649	.000	.01 <i>7</i>	.009
	Ν	42	42	42	42	42	42	42	42	42	42

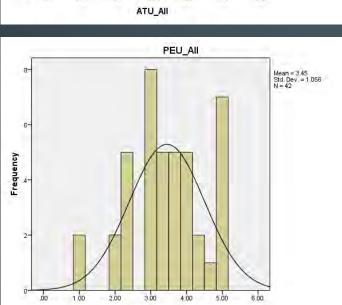
Coefficient	Relationship
Between +0.35 and -0.35	Weak or none
Between ± 0.35 and ± 0.65	Moderate
Between ± 0.65 and ± 1.0	Strong

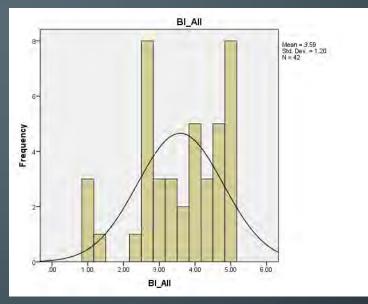
DISCUSSION AND NEXT STEPS

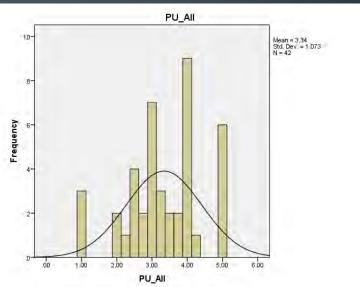

Potential support of original TAM factors: PEU, PU, ATU, and BI

Potential support of factors supported by the literature: PENJ, PEXP, PBC, and SE

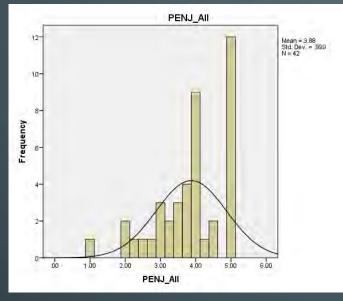

Potential lack of support of new factors for the model: PHR and RU

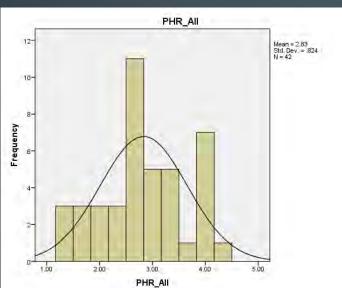


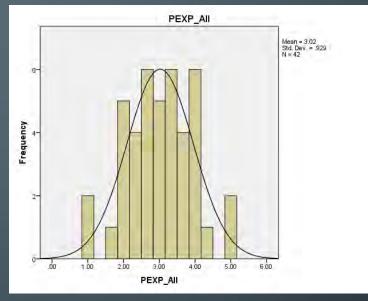

QUESTIONS, COMMENTS, CONCERNS?

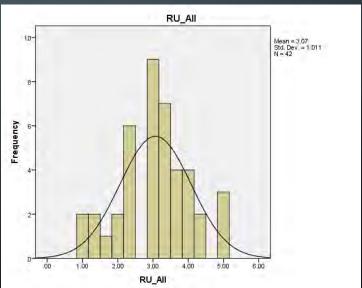

THANK YOU.

HISTOGRAMS OF ATU, BI, PEU, & PU

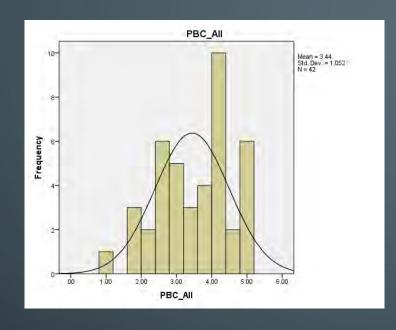


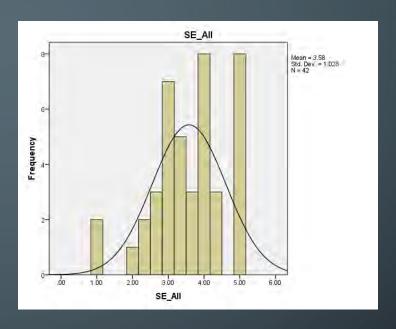






HISTOGRAMS OF PENJ, PEXP, PHR, & RU





HISTOGRAMS OF PBC & RU

OPERATIONAL DEFINITIONS OF THE PROPOSED MODEL CONSTRUCTS

Factor	Definition
Attitude toward use	The degree to which a student has a favorable or unfavorable appraisal or evaluation of VR for flight training.
Behavioral intention	An indication of how hard a student is willing to try or how much effort they are planning to exert in order to use VR for flight training.
Perceived behavioral control	The extent to which an aviation student feels able to control using VR technology for flight training.
Perceived ease of use	The degree to which a student believes that using VR for flight training would be free of effort.
Perceived enjoyment	The degree to which using VR for flight training is perceived to be enjoyable in its own right apart from any performance consequences that may be anticipated.

Factor	Definition
Performance expectancy	The degree to which a student believes that using VR for flight training will improve flight performance as compared to an FTD.
Perceived health risk	The perception a student forms and revises based on the possible health risks of using VR for flight training.
Perceived usefulness	The degree to which a student believes that using VR for flight training would enhance his or her performance.
Regulatory uncertainty	The degree to which the lack of FAA regulations regarding the use of VR for flight training impacts attitude toward the technology.
Self-efficacy	Perception of one's flight skills in the virtual and real-world environments.