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ABSTRACT

Tilt rotor vehicles are governed by FAA laws also used for conventional helicopters,
which require autorotational maneuvering and landing given a total power
failure. With low inertia rotors and high disk loading of tilt rotor vehicles, this
already difficult task becomes significantly more challenging. In this work, a
model predictive controller is developed to autonomously maneuver and land a
tilt rotor given complete power loss. A high fidelity model of a tilt rotor vehicle
is created and used to simulate the vehicle dynamics and response to control
inputs. A reduced order dynamic model is used within a model predictive control
algorithm to predict vehicle states on a receding horizon and optimize the control
inputs. Constraint and cost functions are designed to promote reliable nonlinear
optimization using a recurrent neural network. Simulation results show that the

controller works in both normal operation states and in power-off autorotation.
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1. Introduction

Tilt rotor (TR) vehicle designs have been explored since the middle of the
20" century with a goal of increasing the mission radius of vertical take-off
and landing (VTOL) capable vehicles. Tilt rotor vehicles provide the unique
characteristic of blending VTOL capability with efficient wing borne flight. The
cruising aerodynamic efficiency of a fixed wing is far superior to that of a rotor
disk. While TR designs combine useful aspects of helicopters and planes, they are
susceptible to issues involving high disk loading and low rotor inertia.

Separating one large rotor into two smaller rotors significantly decreases the
overall rotor disk area and, in turn, increases the disk loading. Higher disk loading
increases power demands across all ranges of rotor borne flight. Inertia depends on
the square of length, so shorter blades inherently have lower inertia, and low rotor
inertia hinders the amount of energy that can be stored in the rotor system.

The FAA classifies large TR aircraft as large helicopters and requires that they
can autorotate (AR) and land under total power loss (Grant, 2016). Autorotation
is a special operating point of a windmilling rotor disk where zero net power is
required for steady state operation. Gravitational potential energy is converted into
mechanical energy within the rotor system, providing the power needed to produce
thrust and control forces. The rate of descent required for AR is quite high for any
helicopter. A TR with high disk loading and large power demands then requires
an even higher rate of descent. Kinetic energy is stored in the rotor during AR and
used for control and flaring. Tilt rotor aircraft have low rotor inertia leading to low
stored kinetic energy and rapid changes in rotational speed while maneuvering.
Autorotation of a TR aircraft, while necessary, is difficult and can be aided by
autonomous control.

Model predictive control (MPC) computes the control input history that

minimizes a mission-based cost function over a finite time horizon. A portion of
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this control history is implemented after which a new optimization problem is
solved; therefore, the process continues over a sliding time horizon until the mission
is complete. The vehicle state history evolves based on the control input history
through a nonlinear dynamic model. The cost function incorporates objectives
such as tracking a desired reference trajectory and minimizing control effort. In
addition, state and control inequality constraints can be enforced in the MPC
implementation, which in the case of AR can include limits on the rotational speed
of the rotors and swash plate control limits. MPC can also be implemented as a
trajectory planning algorithm, which can provide and re-plan reference trajectories
during the AR phase of flight.

1.1 XV-15 Overview

The Bell XV-15 started development in the early 1970’s as a refined test
bed for TR operations after its predecessor - the Bell XV-3. The idea for the
XV-3 was first introduced as military leaders began realizing the consequences of
conventional helicopter aerodynamics which reduced mission range effectiveness.
The XV-3 was the first convertible aircraft design heavily endorsed by any military
and subsequently faced significant issues. The XV-3 experienced rotor dynamic
instability during hover and transition but, with some perseverance, designers were
able to overcome the challenges and prove that the TR design was useful (Maisel
et al., 2000). Taking the lessons from the XV-3, Bell introduced designs for the
XV-15 which became largely successful and can be seen in modern day TR designs
including the Bell-Boeing V-22 and Leonardo AWG609.

The XV-15 had two 25ft diameter gimballed rotors. A gimballed rotor includes
blades that are stiffly connected at the hub and move as a together as a disk. The
rigid hub connection helps alleviate flapping instabilities and unwanted forces
experienced by the XV-3 (Edenborough et al., 1972). Deriving equations of motion

and connecting the aerodynamics for all three rotor blades proves difficult, so an
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Figure 1.1. Bell XV-15 experimental tilt rotor aircraft (Curry, 2002)
individual blade model with low hub spring stiffness is used giving the system a flap
frequency close to one and low moment transmission through the hub (McVicar,
1993).
1.2 Autorotation and Landing
Autorotation is a specific operating point in rotorcraft descending flight where
the upward flow of air through the rotor disk provides power to spin the rotor
and produce thrust. Disengaged from the engine, the rotor transmits no moments
parallel to the rotor shaft. Rotor control inputs must be carefully applied as they
not only maneuver the vehicle but also affect the rotor speed. If the rotor speed
increases too much, the rotor structure (hub, blades, etc...) will catastrophically
fail, and if the rotor speed falls too low, the blades will stall, stop producing thrust,
and not provide any chance of recovery. Typical helicopter rotor systems can
operate from 0.8 - 1.2 times the normal operating rotor speed (Leishman, 2006).
Upward flow through the rotor disk combines with the local blade velocities
generating power consuming and power producing sections. Shown in Figure 1.2,
at the inner portion of the disk, where local blade velocities are low, high angles of

attack cause the total aerodynamic force to point in the direction of rotation and
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y2

-

Y1 L
Accelerating torque

9'@—'/ ;I\ J

Section in/ \LJ

Decelerating torque

autorotational
At section y4 equilibrium At section y2

Net positive in-plane force Net negative in-plané force

(delivers power to rotor) (consumes power)

Driving force Driving force
4
dL Thrust force dL\ |Thrust force
dD
Qy1 Qyp ab
Relative wind Relative wind

NOTE: Angles exagerated for clarity
Figure 1.2. Blade aerodynamics during autorotation (Leishman, 2006).

produce power within the rotor system. The outer portion of the disk acts as the
rotor normally would: consuming power and creating thrust. When controlling

a helicopter in AR, a pilot is balancing the areas of power consumption and
production within the rotor disk.

A rotor system in vertical AR is naturally stable when separated from the
vehicle. Figure 1.3 shows the power required for axial flight of a generic helicopter.
The required power curve’s intersection with the horizontal axis is the point of ideal
AR, and the slope of the curve shows the state’s stability. The required power
curve is based on momentum theory and experimental results. Positive climb
velocities and high descent velocities well define the rotor wake so momentum

theory can be used to find the inflow conditions. Between -2 and 0 V. /vy, where
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V. is the climb velocity and vy, is the induced inflow at hover, momentum theory
fails as the wake structure is not well defined. Competing forces of downward
induced flow and upward incoming flow produce highly unsteady and non-uniform
aerodynamics.

The positive slope at a zero power requirement means a small increase in
climb velocity causes an increase in power consumption and, therefore a subsequent
decrease in climb velocity. Conversely, a decrease in climb velocity causes an
increase in power production and thrust. Combining the rotor with slower vehicle
dynamics in forward flight complicates the rotor stability significantly, but the same

general ideas hold true.

P/P,
5
[

Required Power
(O Ideal Autorotation

L L L L i
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g i
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Figure 1.3. Axial flight power requirements normalized by hovering conditions
(Leishman, 2006).

Rotorcraft exhibit aerodynamics similar to fixed wing aircraft. Induced rotor
power requirements initially decrease with forward speed as the rotor inflow
decreases. Parasitic airframe drag increases quickly at high speeds from a cubic
speed dependency along with a quadratic power increase from the parasitic
drag of the blades themselves. Combining the induced and parasitic powers
yields the curve shown in Figure 1.4. Since AR relies on power conversion from

gravitational potential energy to mechanical energy which can do some work on a
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fluid, the slowest descent rates occur when the power requirements for flight are

lowest. Autorotation must occur with some forward speed so descent rate can be

minimized and the time in the air maximized.

3000 -

2500 -

Power, hp
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1500
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Velocity, ft/s

Figure 1.4. Generic forward flight power requirements for 130001b aircraft with 2 -
25ft rotors and a flat plate drag area of 9ft? (Leishman, 2006).

Autorotation refers to the steady state descent where total power requirements
are equal to zero and is simply a piece of the entire power-off landing maneuver.
Figure 1.5 shows the entire procedure. At condition 1, the helicopter has just
experienced a power failure and must enter AR. Entering AR requires lowering
blade pitch, so rotor speed is preserved, and increasing or decreasing forward
speed to either the point of minimum descent rate or maximum range. Once in
AR, condition 2, light maneuvering can be performed while maintaining rotor
speed. The most demanding portion of landing are the last three steps. The flare,
condition 3, requires the vehicle to pitch up to arrest forward velocity, which will in
turn increase the rotor speed significantly. Increasing the blade pitch and leveling
the vehicle at condition 4 then uses the stored kinetic within the rotor so a soft

landing with low forward speed can be performed at condition 5.
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Figure 1.5. Power out maneuvers for generic helicopter (Koyovis, 2017).

1.3 Objectives

The objective of this thesis is to develop a MPC algorithm which can bring a
TR into a steady autorotational descent. In doing so, a high fidelity simulation is
built to represent the vehicle begin controlled. and a reduced order model (ROM)
is created to be used for prediction within the controller. A recurrent neural
network (RNN) is used to solve the constrained nonlinear optimization problem
contained within the MPC setup.

First, the current technology and history of AR control is explored with
an emphasis on the importance of optimal control. In chapter 3, the high
fidelity simulation is explained including: rigid body motion, blade mechanics,
aerodynamics, and inflow dynamics. The axes systems used within the model
are explained along with the rotations used to transport vectors between them.
Chapter 4 explains the controller design. First, the simplifying assumptions
used to create the ROM are introduced and the limitations explained. Then, the
optimal control problem is posed including the cost and constraint functions. A
mathematical derivation of the cost and constraint function gradients is given along

with the implementation within the RNN. Finally, convergence of the optimization
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algorithm is proven for the given prediction model. Chapter 5 shows a comparison
the two models along with controlled simulations. The comparison is done with
constant and variable rotor speed. Controlled simulations are shown with the
vehicle flying in a nominal flight condition as well as AR. Lastly, the constraints
are tested by starting simulations near constraint boundaries and placing reference

trajectories beyond those boundaries.
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2. Current Technology

Optimal control was first applied to autorotation (AR) by Johnson (1977)
where he determined longitudinal power-off landing trajectories given varying initial
conditions. A nonlinear longitudinal model was derived and used with a gradient
descent method to minimize the landing velocity while finding optimal control
inputs based on altitude. Johnson proved that the optimal AR trajectory from
hover is a vertical descent. The method was compared to Bell Helicopter flight
test data of a OH-58A with a High Energy Rotor System and showed significant
correlation (Dooley & Yeary, 1979).

Lee extended Johnson’s work by adding inequality constraints to the
optimization problem (Lee, 1985; Lee, 1990). Using slack variables, the inequality
constraints placed on rotor thrust and sink rate were transformed to equality
constraints. A Sequential Gradient Restoration Algorithm was used to find
trajectories of power-off landings from hover and forward flight, and then compared
to the OH-58A flight test data.

Using a 2-D point mass model of a UH-60A helicopter, optimal trajectories
were found for a variety of takeoff and landing scenarios with one engine
inoperative (OEI) (Zhao, Sharma, et al., 1995; Zhao, Jhemi, et al., 1996).
Specifying constraints on rotor thrust, speed, and power consumption, the
helicopter model successfully performed emergency maneuvers including: rejected
takeoff, continued takeoff, continued landing, and balked landing. The work was
then extended the work to tilt rotor (TR) vehicles. Short OEI runway takeoffs
of the XV-15 were explored where path constraints were placed on pitch, rotor
speed, altitude, thrust, longitudinal stick, and nacelle angle (Carlson & Zhao, 2002;
Carlson & Zhao, 2003). Sensitive XV-15 city center operations with OEI were
posed as nonlinear optimization problems focused on minimizing the heliport size

(Carlson & Zhao, 2004). Maximum safe gross weight of the vehicle was found to be
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determined by OEI vertical takeoff.

Tilt rotor operations were further explored by Carlson (1999) where he
examined OEI and all engines inoperative (AEI) with the XV-15. The low inertia
rotor systems require that the XV-15 be able to operate with lower rotor speeds
than a conventional helicopter. Keeping the rotor speed above 78%, the nominal
value, requires that the vehicle begin power-off landing maneuvers with air speeds
above 50 knots. Relaxing the rotor speed constraint to 60% allows the vehicle to
land from hover at 850ft altitude. Carlson showed that landings that start on the
edge of the height-velocity (H-V) curve occur with significant forward and vertical
speed.

Bibik and Narkiewicz (2012) continued work on OEI and AEI situations
in conventional utility helicopters by including a more comprehensive model.
Previously, only longitudinal motion was considered, which is a reasonable
assumption if the vehicle does not need to maneuver. A discrete time adaptive
optimal controller was used, which not only used a standard quadratic cost
function to find optimal trajectories but also allowed the performance indices
and constraints to be changed real time, depending on flight conditions. During
the flare and landing phases, rotor speed limits can be relaxed as the vehicle is
close enough to the ground to withstand an impact and the rotor speed needs to
drastically vary as the vehicle transfers potential and kinetic energy to mechanical
work.

A real time trajectory optimization algorithm was developed by Aponso et al.
(2005). Focused on making the system usable by a remote human pilot, the optimal
control outputs of the algorithm were collective and vehicle pitch. An outer loop
controller or pilot could then use the collective and longitudinal cyclic to follow
the trajectory. Power-off maneuvers could be initiated within the unsafe region

of the H-V curve if the optimal control inputs were used. The work focused on
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an unmanned helicopter with the goal of saving valuable packages and sensors on
board.

Taamallah et al. (2017) used the concept of differential flatness to reduce a
typically large optimization problem to a simple algebraic one. By excluding the
traditional helicopter control inputs and instead finding total aerodynamic forces
and moments, the dynamics problem becomes flat, which allows Fliess’s ideas of
differential flatness to be used (Fliess, 1990). Simplifying the model to exclude
high order rotor dynamics is valid assuming the controls stay within a certain
bandwidth. A robust control algorithm was then used for trajectory tracking.

Using the work of Aponso (2005), Tierny and Langelaan (2010) developed a
method of computing a safe set of vehicle states for flare entrance. If the vehicle
enters the flare maneuver within the safe set, a safe trajectory to touchdown is
guaranteed to exist. The states included within the set are the spatial positions
from the landing point, airspeed, rotor speed, and descent rate. Separating the
entire landing maneuver into different sections could allow different algorithms,
each optimized for their own portion, to feed into each other. The AR controller
could find optimal trajectories such that its end point lies within the safe flare set.

Bang and Lee (2008) used trained radial basis functions to control AR of a
simplified point mass model of a OH-58A helicopter based on Johnson’s work. Only
longitudinal motion is considered in the model and rotor mechanics are simplified
to disk actuation. These simplifications helped training with a neural network and
a reinforcement learning algorithm described by Watkins (1989). After 9000 epochs,
the controller was performing AR maneuvers with an 80% success rate. Around
19000 RBFs were trained within a large action and state space, leading to high
computational load.

Abbeel et al. (2008) simulated and implemented an autonomous AR controller

for a small remote controlled helicopter. A nonlinear form of the linear quadratic
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regulator, differential dynamic programming (DDP), was used to follow a specified
trajectory which was an optimum of several sub-optimal trajectories. A human
pilot performed several AR maneuvers in which the vehicle states were recorded
and then used to predict the optimal trajectory for AR. DDP allows the control
optimization problem to be reduced from minimizing a Nm x Nm matrix to

a m x m matrix N times, where N denotes the length of the control horizon

and m is the number of control dimensions (Tassa et al., 2014). The controller
successfully landed a RC helicopter several times using an AR maneuver. However,
being constrained to a single optimal trajectory, the system is not robust to large
disturbances or varying initial conditions.

Dalamagkidis et al. (2010) used model predictive control (MPC) combined
with a recurrent neural network (RNN) to control a small unmanned helicopter in
a vertical AR. A vertical AR was selected as it provides the lowest chance of the
vehicle hitting another object. The primary goal of the controller was to reduce
probability of damaging outside objects with vehicle safety being the secondary
goal. The RNN decreased computation cost of the nonlinear optimization problem
required for MPC by removing the need to calculate the second derivative of
the system’s Hamiltonian. An ordinary differential equation (ODE) whose
equilibrium point is the solution to the optimization problem is modelled and
solved by the RNN. Xia et al. (2008) proved that the RNN will globally converge
for constrained nonlinear optimization problems if the Hessian of the function is
postive semi-definite.

Yomchinda et al. (2012) used nonlinear dynamic inversion (NLDI) to
provide stability to a helicopter in AR. Inner loop NLDI sets the roll and pitch
axes responses to Attitude Command/Attitude Hold, and the yaw axis to Rate
Command/Attitude Hold which allows an outer loop position controller to make

simple attitude and rate commands. The outer loop control works to keep the



helicopter in coordinated flight as it maneuvers through the given trajectories. A
human pilot could replace the outer loop position control, with the NLDI controller
still performing attitude control.

An optimal control algorithm was used by Yomchinda (2013) to generate
trajectories for the different phases of the AR maneuver including entrance,
autorotation with coordinated manuevers, flaring, and landing. Using a simplified
helicopter model, assuming the rotor tip path plane remains in the same orientation
with respect to the fuselage, optimal trajectories were computed off-line using a
standard quadratic cost function. Using airspeed, interpolation was performed
between the stored entrance trajectories. Maneuvers were optimized using curves
described by Dubins (1957 & 1961). Assuming a mass is moving at a constant
rate and must pass through two points on a plane, Dubins defines a set of curves
that will give the shortest path between the points. Yomchinda used these curves
to create a 2-D planar trajectory, which was then extended to 3-D by including

descent rates.
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3. Tilt Rotor Simulation

The XV-15 is simulated using a nonlinear dynamics model described by
McVicar (1993) utilizing individual rigid blade motion and a dynamic inflow model.
Rigid body motion is tracked in a flat earth reference frame.
3.1 Vehicle Axes Systems

The TR vehicle utilizes 9 frames of reference for simulation: 1 centered at
the vehicle CG, 1 aligned with each of the 2 rotor hubs, and 1 attached to each
of the 6 rotor blades. The set of axes located at the vehicle CG is used for rigid
body motion and is denoted as the body axes (subscript b). Moving from the body
axes to hub axes (subscript h) requires a rotation around y, by the tilt angle 7.
At v = 0 the nacelle is straight up, in hover mode; while at v = 90° the nacelle
is pointing ahead, in forward flight mode. For this work, ~ is fixed at 0 reducing

Equation (3.1) to identity and aligning the hub and body axes.

cosy 0 —sinvy
=10 1 o0 (3.1)

siny 0 cosvy
The rotor blades rotate around z, by the azimuth angle ¥, and flap in the blade
axes (subscript bl), around yy by the angle §. The blade axes system is fixed to the
blade at the hub with x;; pointing along the span of the blade, 2, pointing in the
direction of zj, and ¥, pointing either into or away from the wind, depending on
the direction of rotation. A 0 azimuth angle aligns the z;; axis along the —z axis
with positive rotation {2 occurring around the —z; axis: counter-clockwise when

viewed from above.
cosf 0 —sinf| |—cos¥, sinV¥, 0
=10 1 0 —sinWU;, —cosW;, 0 (3.2)
sinf 0 cosf 0 0 1
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Assuming a small flapping angle (sin 8 = f and cos § ~ 1), Equation (3.2) can be

reduced to Equation (3.3).

—cosV¥, sin¥, —p
TP = | —sin v, —cos¥, O (3.3)
—BcosV, f[BsinV, 1
Converting from the hub or blade axis back to the body requires transposing the
respective rotation matrix or transposing multiple matrices and reversing the
multiplication.
3.2 Rigid Body Dynamics
Applications of rigid body motion are used across wide ranges of mechanical
engineering and design. From spacecraft and aircraft design to automobile and
robotics, any project relating to the motion of body through space will use the
basic principles of rigid body motion. Baruh (1999) explains the fundamental
concepts of mechanics put in place by scientists like Euler. Pamadi (2004) explains
rigid body dynamics related directly to aircraft stability.
3.2.1 Rigid Body Motion
Being relatively close to the Earth, aircraft are subject to an approximately
uniform constant gravity field that causes acceleration towards the ground. Taking

the effects of gravity into account, the rate of change of the body velocities are given

by:

) 1 :
ity = —(uwpg = vr) + —F,, — gsin, (34
. 1 .
vy = —(wpr — wyp) + —F), + g cos b, sin ¢y, (3.5)
m

1
by, = —(vp — upq) + EF% — g cos Oy cos ¢y (36)
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where uy, vy, and wy are the xy, y,, and 2, velocities respectively, p, ¢, and r are the
body axes angular velocities, I, , Fy,, and F}, are the total forces acting in cach
respective axis, ¢ is the acceleration due to gravity, and ¢, and #, are the flat earth
roll and pitch Euler angles. Navigating through 3-D space requires the aircraft to
rotate about the three body axes. Maneuvers begin by applying moments to the

body, causing changes in angular rates given by:

p=1,[(I,,— I.)qr + L. (7 + pq) + M,,] (3.7)
qg= Iy_yl [(IZZ — L) p+ 1 (7"2 — p2) + ]\be} (3.8)
=1 (Iow — Lyy) pq + Lz (p — qr) + M, (3.9)

where I,,, I,,, and I,, are the moments of inertia around the body axes and I, is
the product of inertia caused by asymmetry within the vehicle structure. M,,, M,,,
and M,, are the total moments acting around each body axis. Equation (3.7) relies

on Equation (3.9), so finding the solution requires substituting one equation into

the other. Rewriting Equation (3.7) using Equation (3.9) yields:

I I: (IZZ(IM—Iy )—1

D=1, (Iyy - Izz) qr + be + pq — Lpqr + Mzb):| (3~10)
IZZ IZZ

where 1, is given by:

. 1.2
I, =1, (1 -7 ”I ) (3.11)

which allows integration of the dynamic system.

The standard aircraft Euler angles are a set of rotations known as a 3-2-1
sequence since the transformation from the reference Earth frame to the body frame
requires a rotation around the 3 (yaw) axis, then the 2 (pitch) axis, and, finally,
the 1 (roll) axis (Baruh, 1999). In total, there are 12 possible combinations of

rotations that can be used to describe axes transformations. With 3 rotations, any
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general transformation from one axes system to another can be performed but in
each set, a singularity will exist for some given rotation. For the 3-2-1 sequence,
the singularity occurs when the 2nd angle (pitch) goes to 90°: experienced by the
tangent and secant terms in Equation (3.18) and Equation (3.20). This is not an
issue for non-aerobatic aircraft as they do not fly straight up away from the ground.
In the sense of MPC, some issues could arise if a candidate control input causes
large motions over the prediction horizon. The 3-2-1 rotation, from the Farth to

body axes, is given by the following matrix operation:

1 0 0 cosf, 0 —siné, cosV, sin¥, 0
Ty = |0 cosgy singy 0 1 0 —sinW¥;, cosWy 0 (3.12)
0 —sing, cosgy| |sinf, 0 cosb, 0 0 1

with ¢y, 6, and U, representing the roll, pitch and yaw respectively. The
transformation from the body axes to the Farth axes is obtained by transposing the
product of the three transformations:

cos By cos Wy,  sin 6y, sin ¢y, cos Uy, — sin Uy, cos ¢y sin Oy, cos ¢, cos Wy, + sin Wy, sin ¢y,
TbE = | cosOysin ¥y sin Wy sin by sin ¢y + cos ¥y cos ¢y, sin Wy sin 6y, cos ¢, — cos Uy, sin ¢y (3 13)

—sin 6y sin ¢y cos Oy cos ¢y cos Oy
Planning or following a trajectory in 3-D space requires tracking of the vehicle
position through time using Equation (3.13). Transforming the body velocities to

the Farth frame, the positions of the vehicle can be tracked with:

T = uy cos O, cos ¥y, + vy, (cos Wy, sin ¢y, sin 6, — sin Wy, cos ¢y)

+ wy, (sin Wy, sin ¢y, + cos Uy, cos ¢y, sin Gy,)  (3.14)

Y = up sin Wy, cos Oy, + vy (cos Wy, cos ¢ + sin Wy, sin ¢y, sin 6;)

+ wy, (sin Wy, cos ¢ sin B, — cos Wy, sin Gy,)  (3.15)

2 = —uysin 6y + vy sin @y, cos Oy, + wy, cos ¢y, cos Gy, (3.16)
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Figure 3.1. 3-2-1 Rotation from Farth frame to body frame (Pamadi, 2004).

In level flight, ¢, = 6, = 0, roll rate and pitch rate directly coordinate
to changes in roll and pitch, but given large values of roll and pitch, the body
angular rates do not correlate directly to changes in the respective Euler angles
(i.e. if ¢, = 90°, yaw rate causes change in pitch). Transforming body angular
velocities to Farth angular velocities requires a more graphic analysis than standard
vector transformations performed with Equation (3.13). Figure 3.1 shows the
transformation steps from the Farth (0x1y121) to body frame (0x]'y{"z]"). ¢
follows the z;, axis, meaning p directly tracks into #y, while 6, and U, align with
varying transformation steps. 6, is a rotation around a new axis (y;) that has been
rotated from the body frame by ¢,. Transforming 6, to back to the body frame
simply requires undoing the ¢, rotation around z}’. Secondly, ¥}, occurs around an
axis that has been rotated by ¢, and 6y; transforming ¥, back to the body frame
requires a rotation around the y{ axis by 6, then a rotation around x|’ by ¢y.

Etkin (1972) helps thoroughly explain the derivation. These sets of transformations

gives the body angular velocities as a function of the rates of change the FEuler
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angles:
D 1 0 —sin 6, by
gl = |0 cosgy, sin ¢y cos b, 0, (3.17)
r 0 —sing, cosa@ycost, 0,

The transformation given by Equation (3.17) is not a proper orthogonal rotation
matrix like Equation (3.13), so the inversion requires standard matrix operations

instead of transposition. Euler angles can be tracked from the body angular rates

with:
by = p + gsin ¢ tan B, + 1 cos ¢y tan 6, (3.18)
0, = qcos ¢, — 1 sin ¢y (3.19)
T, = g sin ¢y sec By + 1 cos By, sec By (3.20)

3.2.2 Hub Motion

The rotor hubs are subject to more complex motion as their rotation around
the CG creates additional velocities that affect the aerodynamics of the rotor
system. The transport theorem can be used to find the velocity of the hub (Baruh,
1999).

Up =Up +wp X By, (3.21)

where 9, = [up vy wp]”, 9 = [wpvywe]’, wy = [pgr]’, and By = [zhyn 2]’ By
is the relative distance between the hub and CG in the body axes. It is important
to note that ¥, must be transformed to the hub axes using Equation (3.1) prior

to being used in Equation (3.21), but with the tilt angle at 0, the hub and body
axis are aligned so no rotation needs to be performed. The linear hub velocities are

given by the following the equations:
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up, = up — YR + q2n (3.22)
vp = Uy + T — P2 (3.23)
Wp, = Up — qTh + PYn (3.24)

Applying the transport theorem again to the hub velocity, while acknowledging the
velocity and acceleration of the hub in the body axes is zero (i.e. the structure of

the body is rigid), the acceleration of the hub can be written as:
ap = ap +wp X (wp X Bp) + ap X Ry, (3.25)

where a, = [uy 0p wh]T, ap = [ty Oy wb]T, and o = [pq'f“]T Again, a; must be
converted to the hub axes with Equation (3.1) before using Equation (3.25), but
the body and hub axes are aligned so no transformation needs to be performed. The

linear accelerations of the hub can then be written as:

Up = Up + (q2 + 7’2) Th+ (pqg —7)yn — (rp+4) 21 (3.26)
on =0 — (p° +7°) yn — (pg + 7) p, — (rq +P) 21 (3.27)
=y + (P + @) 7o+ (G —1p) T + (rq + D) 20 (3.28)

3.3 Rotor System

The XV-15 has 3-bladed gimballed rotors, which will be modeled with
individual rotor blades that have a low hub spring stiffness. Gimballed rotors do
not transfer moments through the hub except the torque created by the rotor
spinning. The low moment transfer forces the natural frequency of the rotor to one

per revolution. If there is some moment transfer, as in a rigidly mounted rotor, the
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dynamics of the blades themselves can be greatly affected. Padfield describes the
flap frequency of a rotor (Padfield, 2018):

K

AgP=1+
p 1502

(3.29)

where \g is the flap frequency, Kz is hub spring stiffness, and I is the inertia
of the blade. In any rotor, centrifugal forces dominate and drive the flapping
frequency to one. Exciting the rotor at its natural frequency of one per revolution
then causes changes that occur 90° out of phase. High hub spring stiffness will
cause the natural frequency to change and the phase lag to shift. Gimballed rotors
have flapping frequencies close to one so 90° phase lag should be expected with
control inputs and external disturbances.
3.3.1 Blade Dynamics

The blades are rigid and free to flap relatively uncoupled from each other.
Some secondary effects occur as the forces and moments caused by the blades cause
changes in the inflow, which affects all of the blades. The two rotor system inflows
are assumed to not affect each other.
3.3.2 Blade Motion

The blades rotate around zj, (the azimuth, W;) at the rate Q2 and flap ()
around vy, at the rate of 3. Both the azimuth and flapping dynamics are modelled
by second order equations forced by aerodynamic and inertial terms. Aerodynamic
forces and inertia are products of the blade velocities, but the angular velocity of
the blades must be determined first. A single blade’s angular velocity is comprised

of three components (McVicar, 1993).
Wy = W1 + w2 + W3 (3.30)

where w; is the component from the vehicle’s angular rates, wo is the component

from ), and w; is the component from 3. Converting the vehicles angular rates into
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the blade axes with Equation (3.2) yields:

—pcos ¥y, + ¢gsin ¥y, —rf3

g
I

—psin ¥, — gcos ¥y, (3.31)
—pBcos Wy, + gBsin ¥y, 4 r
Converting the angular velocity around the hub to the blade axes yields:

50

Finally, the flapping angular velocity occurs in the blade axis, so its contribution

can be written as:

[an}

(3.33)

1€
w
|
-

0

The velocity of a blade section (7) can then be found with the transport theorem:
Uy, = Up + wip X By, (3.34)

where Uy, = [up, Vo, wbli]T and Ry, =[xy, 00]7. The hub velocity must be
converted to the blade axes with Equation (3.3) before using Equation (3.34). The

local velocity of the blade sections can be written as:

Up; = —UR COS \I/h + vy, sin \I/h — 6wh (335)

vp, = (Tp,qB — up) sin Wy, — (zp,pf — vp) cos Wy, + 2y, (1 — Q) (3.36)

wy, = (Tp,q — upf) cos Uy, + (vpf + Tp,p) sin Uy, + wy, + mblﬁ (3.37)



3.3.3 Blade Aerodynamics

Splitting the blade along the spanwise direction into Ny sections allows the
varying aerodynamics along the blade to be analyzed in a method called blade
element theory (BET), shown in Figure 3.2. Combining BET with momentum
theory, for calculating the inflow, creates blade element momentum theory
(BEMT). Generally, BEMT is used to analyze the performance of rotors in steady
state flight conditions but, in this case, the inflow model, while still based on
momentum theory, is a dynamic model that allows the inflow states to vary with
time. Using the inflow model, hub velocities, and blade angular velocity, the

aerodynamics of the blade can be modelled.

Ug
Thes A
(8) Top view Uy
u
.-"""-\‘
2 V e

{bh Blade element

Referance
plane

Figure 3.2. (a) shows the sectioning of a blade for blade element theory and (b)
shows the aerodynamics of that blade section (Leishman, 2000).
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The rotor rotation around z;, causes a large variation in velocity along the
span of the blade. Near the root, the tangential velocity of the blade elements (vy,
or Ur in Figure 3.2) is low, which results in large local angles of attack and low
production of thrust. The tangential velocity of the blade near the tip is highest,
causing lower angles of attack and high production of thrust. Evaluating the
aerodynamics at each blade section describes how a decrease in angle of attack with
a large increase in velocity results in an increase in thrust. The local lift and drag

created by each blade section are given by:

Al = pcCp(a) Ar (3.38)

Ad = pcCp(a)Ar (3.39)

where Al is the local lift, Ad is the local drag, ¢ is the dynamic pressure, ¢ is the
section chord, Ar is the section width, ', is the lift coefficient, C'p is the drag
coefficient, and « is the angle of attack. Introducing the variable N, described
by McVicar, allows the aerodynamic forces to be be resolved correctly for the two

rotors spinning in opposite directions (McVicar, 1993).

1, if rotating anti-clockwise when viewed from above
Ny = (3.40)

—1, if rotating clockwise when viewed from above

A blade section’s local tangential flow is then described by:
Ur = —Ng vy, (3.41)
The perpendicular flow depends on both the local blade velocity and the inflow:
Lol .
Up = wy, — Vo — = (vecos Uy, + vgsin W) (3.42)

where 1y, 1., and v are the normal, longitudinal, and lateral inflow components,

respectively and R is the blade radius. The local dynamic pressure is then found
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1 2 2
o=5p (Ur*+Up’) (3.43)

The two flow components combine and create the flow angle:

Ur

¢ =tan"! U_P

(3.44)
Angle of attack is a combination of the applied blade pitch (f) and the flow angle:

a=0+¢ (3.45)
The blade pitch is given by:

0 = 0y + 0, cos Up, + O, sin U, + O, (3.46)

where 90, éc, and 98 arc the collective, longitudinal cyclic, and lateral cyclic inputs,
respectively, and 0., is the local blade pitch due to twist. The total blade forces in

blade axes can then be resolved using the flow angle with lift and drag components:

Nps
Fy, = Na Y [Ad; cos ¢ — Al; sin ¢ (3.48)
i=1
Nps
szl = - Z [Adl sin sz‘ + A]l COS ¢z] (349)
i=1
where Fy,,, F,,, and F},, are the total acrodynamic forces in the blade axes. Only

2-D aerodynamics are considered in the model, which allows consideration for stall
and Reynold’s number effects but does include any spanwise flow effects. Increased
acrodynamic fidelity is outside the scope of this model as it increases the inflow

calculation complexity greatly. The aerodynamic moments acting on the blades are

also important, and again, the moment acting around the xy axis will be ignored.
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The pitching moment created by the blades is important to rotor system design as
the pitch links and control actuators must be able to both handle and overcome
the forces created. However, for the sake of this study, the pitching moment effects

on the vehicle and controls will be neglected. The aerodynamic moments are then

given by:
Nps
My, = [y, (Ad;sin ¢; + Al; cos ;)] (3.51)
i=1
Nys
M., = Na Y [xy, (Ad; cos ¢ — Al;sin ¢)] (3.52)

1=1

3.3.4 Rotor Forces and Moments
The total rotor forces acting on the hub are resolved using the individual blade

forces and the transpose of Equation (3.3):

Ny
F”f’h = Z [_E/hlj sin lIth - szlj COs \Ijhj] (353)
j=1
Np
P, =Y [—Fybu cos Uy + F,, ,f; sin \11,,]} (3.54)
=1
Ny
F,=Y [szlj] (3.55)
j=1

where j is a summation variable representing each blade. The aerodynamic blade
forces are directly transferred to the hub but the moments are not. The torque

required to spin the rotor, M., , is normally transferred to a transmission in the

bl

hub through a shaft; however, while in AR, a clutch is opened allowing the rotors

to spin freely. In a conventional helicopter, disconnecting the main rotor not only
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allows recovery in total power failure but also provides a means of handling the
loss of tail rotor effectiveness, as the main job of the tail rotor is to counter the
large moment created by the main rotor. Tilt rotor vehicles do not have tail rotors
because the counter rotation of the two large rotors creates a zero net torque. The

only moment transfer to the hub is through the hub spring stiffness:

Ny

M,, = —Kg ) [B;sin Ty, (3.56)
j=1
Np

M, = —Kz ) [B;cos¥y,] (3.57)
j=1

M,, =0 (3.58)

The total moments acting in the body axes are a combination of the spring stiffness
moments and the hub forces acting at the position R, away from the hub. Using
a cross product, the total moments caused by the hub forces and moments in the

body axes can be found as:
My = My + Ry, x Fj, (3.59)

where M, = [M,, M,, M_,]", My, = [M,, M,, M.,|", and F}, = [F,, F,, F.,]". The

individual body axes moments can be written as:

My, = My, + F,yn — Fy, 2 (3.60)
My, = My, — F.,xn + Fy, 2 (3.61)
Mzb = by, o — Foun (3.62)
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3.3.5 Flapping Equation
Evaluating the rotor inertia and motion through space, McVicar (1993) derives

and thoroughly details a general nonlinear flapping equation for the blades:

. K
B — wepw,pB% — (wzﬁwxc + Woelzs + Anpiap — I—ﬁ> 3
B

M,
= (wzcwxc + Anbize — wyc) + bel (363)
B

where the coefficients are described as:

M7y
I, "

Apblze =

(—typ, cos Uy, + 0 sin Uy,

Wge = —pcos ¥y, + gsin Uy,

u)x5=—7’+Q

Wee =1 — £

w,g = —pcos Wy + gsin ¥y,

Wye = —psin Wy, — pQcos ¥y, — ¢cos ¥y, + Qg sin ¥y,

The terms appiz. and app.3 model the linear acceleration of the hub and its effect
on the blades. The hub acceleration in the z;, axis proportionally correlates into
flapping acceleration as the blade mass (M) and center of mass (7g) interact with
the blades moment of inertia. The hub’s acceleration in the x;, and ¥, axes act like
spring terms and can be stabilizing or destabilizing depending on the direction of

acceleration and azimuth position. If the blade is flapped some amount and the
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xp axis is opposing the direction of acceleration, then the acceleration forces 3 to
0 and vice versa. The angular velocity terms, wye, Wy, Wse, and w,g, represent the
blade’s angular velocity with a subscript ¢ denoting constant terms and subscript
[ denoting terms multiplied by 3. The final term w,. maps the vehicle angular
accelerations into blade flapping acceleration.
3.3.6 Azimuth Dynamics

Without lead and lag hinges at the hub, the blade dynamics around the
azimuth are straightforward. Assuming the hub rotating assembly has negligible

inertia, the azimuth acceleration is given by:

Np

(0=~ ; " 3y [MZM j] (3.64)

Jj=1

Rotors spinning clockwise will have negative values of €2, and with the addition of

the N, term, the moment term, M., , will correctly track the sign change.

bl?

3.3.7 Inflow Model

The Peters-HaQuang dynamic inflow model is used as it provides accurate
results with low computation cost (Peters & HaQuang, 1988). The rotor inflow is
modeled with a first order system described by Equation (3.69), which operates in
the wind axis of the rotor system. Using non-dimensional quantities helps simplify

the equations. Velocities have been non-dimensionalized by the rotor tip speed Vip:

Up Up, Wh
__h = = 3.65
= Ve = &n v, (3.65)
The rotor induced inflows vy, v, and v, are non-dimensionalized similarly:
Vo Vs Ve
A=, ds=7—7, Ae=— 3.66
" Vi Vi (3:66)
The rotor thrust 7' is non-dimensionalized by:
T
Cr (3.67)

T AV
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A generic rotor moment J is non-dimensionalized by:

J

Cyp=—
7T pAVZR

(3.68)

where p is the air density, A is the area of the rotor disk, and R is the radius of the

rotor. The Peters-HaQuang dynamic inflow model is then given by:

)\0 /\0 C'T

1 ) -

M X | LA =] @ (3.69)
)\c )\c _CM

aero

Ao is the uniform normal flow velocity across the disk. A; and A, are harmonic
components which affect blade flapping and the overall aerodynamic system
through the dynamic gain matrix [Afl, which can be found with Equation (3.70).

V' is the mass flow parameter and must be handled correctly for various operating
states. My is the apparent mass matrix of the air within the rotor system and
allows the acceleration of the air to be modeled. The forcing term comprised of the
rotor thrust, rolling, and pitching coefficients (C, C;, and C) respectively) operate
in the hub axes and must only include the forces and moments acting on the air.
The rotor’s pitching moment around the CG of the aircraft will be much different

that the pitching moment on the air within the rotor system.

Lt =vr L (3.70)
where 2T is rotation to the wind axes given by Equation (3.71) and L is the
dynamic gain matrix operating in the wind axes given by Equation (3.73).

1 0 0
2T = o cos¥, sinV¥, (3.71)

0 —sinV¥, cosV¥,
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where U, is the hub axis side-slip angle given by:
U, =tan! oh (3.72)

The wind axis dynamic gain matrix is given by:

1 157 1—sin;
2 0 T 64 1+sin;
T — 4
L= 0 Tremx 0 (3.73)
157 1—sinx 0 4sin x
64 1+sinx 1+sin x
where y is the wake skew angle given by:
A —
x = tan~t P Z &l (3.74)

Am is given by Equation (3.78). Early inflow models like Glauert’s assume the
air accelerates instantaneously and do not produce accurate transient effects for
simulation and control design (Wheatley, 1935). The Peters-HaQuang model
utilizes the apparent mass matrix to simulate the acceleration of the air. This

acceleration phase causes a spike in rotor thrust as the inflow has not yet decreased

8

the local angle of attack on the blades. The My,, element was taken to be 5,

which produces results closer to flight test data instead of 222 (Chen, 1989).

=~ 0 0
My= 10 25 o0 (3.75)
0 0 =
The mass flow parameter V' is given by:
Vi 0 0
V=10 v, 0 (3.76)
0 0 V,
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where V; is the total flow through the rotor disk and V/,, relates the normal and

harmonic components. V; is given by:

Vi= /1 + v+ O — 62 (3.77)

where A, is the total resultant normal inflow through the rotor disk, which

produces thrust given by:

1 Ao

Am == |o| TMLTh | (3.78)

S

e}

A

The dynamic inflow model is generally used for conventional operating states
where the flow through the disk passes in the zj, direction. In the windmill-brake
state, the flow passes through the rotor in the —z;, direction and requires a
modification to the mass flow parameter. Murakami and Houston derived a

correction shown in Equation (3.79) (Murakami & Houston, 2009).

_ Nin +VI% + (/\m _fh)2+/\m|/\m _fhl
ik + v+ (A — &)

In the static case, which can be used for simple models, the inflow components

Vi (3.79)

are given by:

A = Ao = — (3.80)

1570 [1 —siny
32 \/ 1 +siny

Ao = c0s BuAm (3.82)

< 15w |1 —siny . -
s = m .81
A 2 ’/1+sinxsmﬁh>\ (3.81)

Solving for A, and Ay requires an iterative process because Cp is a function of the

inflow along with V. Using a fixed point iteration with the following scheme is



robust enough for most flight conditions.

(3.83)

where A is the iterative guess at some step k with the initial guess Mo given by the

Ao = \/? (3.84)

Here Cy is assumed to not be a function of the inflow and rather a static value

hover induced velocity:

that is thrust accounting for half of the vehicle weight, non-dimensionalized by
Equation (3.67). Using Equation (3.84) to start the simulation and then feeding
the converged solution of ) to the next step of the simulation will increase the
robustness of the solution scheme.
3.4 Control Blending

The control inputs used for the controller are the same as a pilot would have
for simplicity. Each rotor has 3 controls: collective, longitudinal cyclic, and lateral
cyclic, and there are 4 controls available to the pilot: collective (6y), longitudinal
stick (6.), lateral stick (6;), and rudder (6,,4). The control inputs are mapped to

the rotors by:

A 1

Oor = 3 (60 + Doy 0s) (3.85)
A 1

0 = 5 (1= Dy, 6, (3.86)
A 1

esl - _5 (00 - erud) (387)
A 1

907‘ = 5 (‘90 - Deoes) (388)

- 1
O = —3 (1 — Dy,) 05 (3.89)
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- 1
esr = 5 (er’ + erud) (390)

where the subscripts [ and r are added to denote the left and right rotor,
respectively, and Dy, is used to linearly vary the use of differential collective or
combined cyclic for roll control. If Dy, is set to 1, then only differential collective
(DC) will be used, and if Dy, is set to 0, only combined cyclic (CC) will be used.
During AR, the use of collective causes large changes in rotor speed, but using DC
creates large rolling moments. Smaller rolling moments are created by the use of
CC, but fast maneuvers in the lateral-directional plane will not be necessary for

landing.
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4. Controller Design

Controlling a plant along a specified trajectory is the overlying goal for any
controls problem. Different control theories have been developed over the past
century, each with their own benefits and pitfalls. Optimal control offers a unique
characteristic in that its purpose is to minimize a cost using the inputs to the
system. Depending on the plant and situation, the cost can weigh system states
and inputs differently yielding varying ranges of controller performance.

4.1 Optimal Control Techniques

On an infinite horizon, standard optimal control techniques like the Linear
Quadratic Regulator entail solving the algebraic Riccati equation to provide
the optimal control input for a given reference trajectory. However, infinite
horizon techniques lack robustness when the plant is subject to disturbances and
unmodeled dynamics. Work has been done to extend the LQR’s capabilities by
adding disturbance rejection and applying it in a sub-optimal way to nonlinear
systems. Gao et al. (2017) added a disturbance estimation component to the LQR
by assuming the disturbance becomes constant in the infinite horizon. Wernli
and Cook (1975) applied LQR to a nonlinear system in a sub-optimal manner by
linearizing the system at instances in time and applying optimal linear inputs.

The sub-optimal implementation relies on the plant being stable within a region
around an operating point. While these methods provide a means of improving the
robustness of the LQR, their operation on a infinite horizon enforces undesirable
assumptions.

Model predictive control is another form of optimal control which that can be
applied to both linear and nonlinear systems. Model predictive control predicts the
model trajectory over a finite horizon, optimizes the input over that period of time,
implements some portion of the control input, and repeats the process. Increasing

the speed of the algorithm can be accomplished by implementing larger portions of
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the computed control input or by assuming the control input can be expressed in
terms of a set of basis functions and solving for the basic coefficients.
4.2 Reduced Order Model

Model predictive control relies on predicting the future states of the vehicle
for control input optimization. The reduced order model (ROM) used for
prediction must be simple enough to run quickly over the finite horizon time as
the optimization requires iterating and performing a gradient descent within the
solution space, but the model must also retain key dynamics so the states are
accurately predicted. The reduced order TR model relies on quasi-steady disk
flapping equations and the Peters & HaQuang inflow model, which allows the
simulation time step to increase one order of magnitude over the individual blade
model simulation.
4.2.1 Rotor System

Padfield (2018) derives a set of quasi-steady flapping equations that can
be used for vehicle simulation given the dynamics of the overall vehicle are
significantly slower than the rotor itself. The XV-15, with two large masses at the
ends of its wings and a large tail, has high rolling and yawing inertia along with
large amounts of aerodynamic damping. This yields an effective low pass filter that
is mostly unaffected by the quick rotor dynamics.
4.2.1.1 Multi-Blade Coordinates

Resolving the individual flapping blades to a multi-blade coordinate disk
simplifies the modeling task. In the case of a 3-bladed rotor, the individual blades
create a 3 degree of freedom (DOF) system to model the flapping motion of each
blade. Individual blade flapping can be resolved into a 3 DOF disk: coning (5y),

longitudinal tilt (5.), and lateral tilt (0;) (Padfield, 2018). The transformation to
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multi-blade coordinates is performed as follows:

Bo N g 1))
@ = ﬁc = Nlb Z;V:bl [ﬁj COS \Ilhj] (4].)
ﬁs Nlb Z;—V:bl [/BJ Sin \I]hj]

4.2.1.2 Multi-Blade Flapping Equations

Padfield derives the multi-blade coordinate flapping equation assuming steady
2-D aerodynamics with linear lift and quadratic drag curves (Padfield, 2018).
Reversed flow effects are ignored and the inflow is assumed to be uniform in the
spanwise direction, meaning the blades have a hyperbolic twist profile. However, in
the derivation, a linear twist profile is used which further simplifies the results. The
largest difference between hyperbolic and linear twist profiles occurs at the root of

the blade where aerodynamic forces are low. The blade pitch is written as:
0 = 0y + 70 (4.2)

where 6 is the continuous blade pitch profile, 6, is the total collective pitch, 7 is
the nondimensionalized blade position, and 0., is the total blade twist from root
to tip. The total collective pitch is a combination of inputted collective and the

existing blade twist:
é() = eroot + éO (43)

where 6,,.; is the blade pitch at the root. The harmonic inputs 0, and 0, are equal
to the simulation inputs és and éc but a distinction is made for clarity.
These assumptions allows analytical expressions for the rotor aerodynamics to

be derived and yield a linear blade flapping equation given by:

B + CriofBy, + Daiofuw = Huo (4.4)

where /3, is the second derivative of the blade flapping with respect to the rotor



azimuth angle in the wind axes. The matrix coefficients are given by:

v 1 0 3 Hw
O]WO - g 0 1 %
§Hw _% 1
852
T, ’ |
Do = 3 Guw  Sp 14y
2

0 Buw 1 Sg

~ ~ 2 ~
00 (1 + I-Lw) + 49tw (% + HT“) + %Nwesw + % (gh - >\0) + %Hw (ﬁw - )‘SM‘)
Y NG 2
Hyo = 3 26 (pu+ ) + 0w (14 25°) + (@ — Aew)
_IT/G (qu - 5%) + %Nwéo + lewétw + ésw (1 + %,Urw2) + 2Mw (éh — >\O) + (ﬁu - )\sw)

The lock number () of a rotor blade describes the relation between

aerodynamic and inertial forces and is found with:

B péagR*
==

v (4.5)

where ¢ is the average chord along the blade and aq is the blade’s linear variation of
lift with angle of attack. Higher lock numbers infer the blade will experience larger
motions when perturbed. The stiffness number (Sg) explains the hub, spring, and
blade interaction:

g, = 271 (46)

Y

Higher stiffness numbers imply that the equivalent spring forces take larger
effect on the blade’s motion and tend to drive the phase lag below 90°. The
AugustaWestland Lynx operates with a rigidly mounted rotor boasting a high
stiffness number that pushes the phase lag to around 80° (Padfield, 2018).

The wind axes advance ratio (i) is the magnitude of the hub axes velocity

normalized by the rotor tip speed, or written in terms of the hub advance ratios:

P = N Hn® + vp? (4.7)



Deriving rotor dynamics with respect to rotor azimuth angle offers simple periodic
solutions of the motion. The aerodynamics of a rotor blade in forward flight vary
significantly with respect to their azimuth position, and generally, rotor systems
are governed to operate at a constant rotational speed, making it an organic
normalization term. For simulation, derivatives with respect to azimuth can be

converted to time derivatives with the chain rule:

d v, d
a8 — v, 5 (4.8)
dt dt d¥y
with familiar terms:
g=ap (4.9)
Similarly, second derivatives can be computed as:
p=Q%" (4.10)

Transforming the individual rotor blades to a disk enables some simplifications.
The rotor dynamics operate at a significantly higher frequency than the total
vehicle, which leads to quasi-static rotor flapping (Padfield, 2018). Setting " =
f' = 0 turns Equation (4.4) into a linear algebraic flapping equation. Since the
flapping is considered as a disk, @ does not correlate to a single blade flapping
up and down as it moves around the azimuth, but instead describes the average
motion of all the blades. The aerodynamics of each blade, while assumed to be
steady, linear, and 2-D, are still well modeled with respect to azimuth angle. The

quasi-static flapping equation is written as:
Buw = Agoly + Agrdw + Apguu (4.11)

where the wind axes inflow vector (), ), control vector (6,,), and angular velocity



vector (w,,) are formed as:

o Dy
En — Ao _ y
o= o | = wa=|™ (4.12)
98'21} ﬁw
New )
ecw q’u)

with an overhead bar denoting normalization with respect to rotor speed. A

common term (73) appears throughout the matrix coeflicients and is given as a
function of the stiffness number:

1
=—— 4.13

The control vector matrix coefficient is given as:

app arp a3 0

Y ,
App = 2 [ao1 a2 a9z agy (4. 14)
S\ 5

a3; Aagz2 33 A34

arr =1+ f1,°
4 2
2 = & + FHw
4
a13=§Nw

4 16)\2 0 2
= ng=i1y | S5 (1 W2 B(q 4 Bw
g1 7753,“ < B( + W )+ 5 ( + 5 ))
8A2 w? 8 5
o (2 (0025) 35 (50
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The inflow matrix coefficient is given by:
biu bz 0
~

AB/\Z@ ba1 by bog (4.15)

b31 b32 b33_

4
b =

3

2

bz = —gllw

4\? 1623 [
bor = Mgt | (= ) S 14+ 2=
o ((3) e (1)

8\2 Lo? S (4 2
oy = —Ngng | —2 (1 +59 ) + 25 (24,
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8A2
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Lastly, the angular velocity matrix coefficient is:
0 0 C13 0
Y
Ap = )2 |2t C22 C23 O (4.16)
B

C31 C32 (€33 C34

8Ag ’ NwQ
= N, —= — =1
C32 ﬂ7,8< ~ > ( 5
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8\% /169 w2
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where N, defined in Equation (3.40), adjusts for the direction of rotation.

The quasi-static flapping equations allow the reduced order model to run
at time steps an order of magnitude higher than the fully nonlinear simulation.
Changing the flapping dynamics description from the second order equation (3.63)
to the quasi-static linear flapping equation (4.11) reduces the number of states
within the model by 12 and removes high frequency blade motion.

Assuming that the higher order dynamics have decayed, the individual blade
model is dominated by one per revolution motion of three blades, each offset by
120°, which resolves the forces to a three per revolution cycle. One revolution of the
XV-15 rotor system takes about 0.1 seconds, which produces forces in a periodic
fashion at 30Hz. Therefore, the simulation time steps need to be at least 60Hz,
accounting for Nyquist sampling frequency (Ayanoglu, 1997). Realistically, higher
order blade dynamics will appear in simulation, up to three per revolution of each
blade, so the sampling frequency is increased to 180Hz.

The reduced order rotor model, while offering benefits in computation cost,
does not correctly model coupling between yaw and roll motions. Derived for a
conventional helicopter, the effect of yaw rate on flapping is neglected as the rotor
spins much faster than the fuselage (or, at least, hopefully it does). A tilt-rotor’s
rotor system experiences large motion from the body axes angular rates. With a
positive yaw rate, the left rotor hub has a positive u; velocity and the right hub has
a negative uy, velocity of equal magnitude. Equation (4.11) only considers these two
values, so the effect of yaw on the two rotor systems is equivalent but opposite.

In the individual blade rotor system, the yaw rate is fed directly into the blade



angular motion. A blade on the left rotor, when sweeping around the outside of the
rotor, will see a substantial increase in velocity from a positive yaw rate because
it is far away from the vehicle’s CG. When the same blade sweeps around the
inside of the disk, yaw rate has a lesser negative effect on the blade velocity since
the distance to the CG has decreased. The opposite is true for the right rotor. A
blade sweeping around the outside of the right rotor disk will see a large decrease
in velocity and a small increase once it has reached the inside of the disk. Overall,
the effect causes the left rotor to produce more thrust since its blades have a higher
average velocity than the right side. This causes a positive rolling moment.
4.2.1.3 Wind Axes Transformations

The multi-blade coordinate flapping equations operate within the wind
axes. The z,, axis points into the incoming flow at an angle of ¥,, from the xy
axis. Acting as a standard right-handed coordinate system, the y,, axis remains
perpendicular to the incoming air and the z, axis is aligned with z,. Flapping

angles in the wind axes can be transformed to the hub axes using:

1 0 0
PTh =10 cosW, sinW, (4.17)

0 —sin¥,, cosV,

The rotor coning angle () is constant between the hub and wind axes. The
rotation matrices 2 T and 2T are equal. The flapping angle 3, correlates to a
rotation around the y, axis and B, around the x,, while the inflow vector follows
the standard convention of x; then y;, with A; and A., respectively. A distinction is

maintained for clarity and later analysis. The control vector (¢) can be transferred



to the wind axes using:

0

0 0
1 0

0 cosVW,

0 sinVv,

0
0

—sin ¥,

cos ¥,

(4.18)

The inflow vector is transformed to the wind axes using Equation (3.71) and the

angular velocity vector is transformed using similar techniques:

cos ¥,
sin W,

0

0

4.2.1.4 Forces and Moments

—sin ¥,
cos Vv,
0
0

0
0
cos V¥,

sin ¥,

0
0
—sin ¥,

cos ¥,

(4.19)

The total rotor force acts nearly perpendicular to the disk, which tilts to create

control forces and moments (Padfield, 2018). Using the same assumptions put in

place for the multi-blade flapping equations, the total rotor force can be found to

the zeroth harmonic as:

apS | » 1 ,Uw2 P
U N i Hw
Cr=7 l0(3+ 2)+ 2

(ésw+%) + (

where s denotes the rotor solidity. Solidity is the ratio of the total blade area

&h— Ao 1
)+

4

(1 + NwQ) étw

(4.20)

to the total disk area. Typical rotor systems have solidity ratios from 0.05 - 0.1

(Leishman, 2006). Increasing the solidity decreases the average blade angle of

attack for a given thrust but also increases the parasitic drag. Solidity can be

approximated with:

_ N

S_ﬂ'R

(4.21)



Using the hub axes flapping angles, the z;, and y, force coefficients can be written

as:

Cy, = Crfe (4.22)

C,, = —Crp. (4.23)

Moments passing through the rotor hub are a sole product of the hub spring
stiffness and can be computed as follows:

N,

My, =~ Kb, (4.24)
N
M,, = —gKﬁﬁc (4.25)

The total rotor moments acting in the body axes can be computed with (3.59).
The rotor torque must accurately predict the control and state effects on the rotor
speed. Any inaccuracies within the azimuth dynamics of the reduced order model
could lead to catastrophic failures during AR. Padfield derives the rotor torque

coeflicient to be (Padfield, 2018):

c
Co = —Cr (& — Ao) + 11uCl, + ?ds (14 311,2) (4.26)

where Cq is the rotor torque coefficient, C,,, is the xz,, force coefficient, and Cy is
the average coefficient of drag. Padfield derives Equation (4.26) with the coefficient
of drag as a quadratic function with respect to C7, helping account for induced
drag, but Cy is kept as a constant value. The inflow term (£, — Ao) is negative in
normal working states and shows that increasing thrust increases the rotor torque.

That is:

9Cq _ _

a0, (€n — o) (4.27)



This relationship fails when the flow direction reverses as (£, —\g) becomes positive.
An increase in Cp should always cause an increase in rotor torque, regardless of the
inflow condition. Padfield assumes a uniform inflow distribution and linear blade

aerodynamics which, in the case of AR, is not completely accurate. Essentially, the

magnitude of the inflow term is most important, so modifying Equation (4.28) to

aCq

ac, sig (§n — o) (§n — o) (4.28)

keeps the derivative positive and haven been proven to provide accurate torque
predictions for the controller. The sigmoid function (sig (-)) is scaled and shifted

to produced values between (—1,1) and is defined as:

2

where 7 is a generic value. The sigmoid function essentially acts as a sign function
but is differentiable at zero as required by the optimization algorithm. Rotor
forces and moments in the hub or wind axes are easily found using their respective

flapping angles:
Cr,, = CrBew (4.30)

4.2.1.5 Inflow

The Peters and HaQuang inflow model is used within the ROM. Using the
correction described in Equation (3.79) creates an issue in that again the derivative
of the absolute value function is not defined at 0. Rewriting the absolute value

term in the harmonic inflow equation as

|Am — &l = sign (A, — &) (A — &) (4.31)
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allows an approximation using Equation (4.29). The harmonic inflow equation used

within the ROM is then:

_ 1y 4 vi+ (Am — &) + A sig (A — &) (A — &)

Vi
Vg, + i+ (A — &)

(4.32)

4.3 Optimization

Predicting the vehicle states over a finite horizon of discrete time steps (Ny)
allows a nonlinear optimization algorithm to minimize a cost function using the
control inputs. Vehicle states are desired to follow a reference trajectory or end at
a specific terminal state; including the vehicle’s dynamics within the optimization

allows the controller to find a realizable trajectory. The problem is posed as:
min L(X(U),U) st. C(X(U),U)<0 (4.33)

where X and U are time histories of the states and controls, respectively, over the
receding horizon. The cost function (L) can penalize states individually by adding
additional cost to some and/or completely neglecting others. Increasing the cost
of a specific state creates a soft constraint and emphasizes its importance. Hard
constraints (C') can be used within the optimization as either equality or inequality
functions that describe surfaces or firm boundaries within the solution space where
the optimal solution must exist. If the optimal solution falls on a constraint surface
or boundary that specific constraint is known as being active. The constraint is
inactive if the optimal solution does not fall on the surface or boundary.
4.3.1 Cost Function

A quadratic cost function is radially unbounded, leading to its gradient
pointing in the direction of the origin. This implies that gradient descent (GD) will
then force solutions to a minimum. In the case of reference tracking, the objective

is to force the tracking error to 0. The tracking error at some time step (e;) can be
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defined as:

(4.34)

I
B
15
B
=%

where 2, € R" is the current state vector and z; € R" is the current reference state.
The quadratic cost function associated with the error can then be written as the

sum of a terminal and running cost:

Ns—1
1 178
L = §§%SS§NS —+ 5 Z [@g@ﬁk + 'LL%R’LL]C] (435)
k=1

where S € R™™ and @) € R™™ are symmetric positive semidefinite (PSD), and R €
R™*™ is a symmetric positive definite (PD) matrix, where m represents the number
of control inputs. Performing GD relies on the first derivative of the cost function
with respect to the matrix of control inputs. Analyzing the derivative at each time
step and assembling those into a matrix will allow the optimization algorithm to
find a solution. Taking the derivative of Equation (4.35) with respect to a single

time step of control inputs (u;) yields:

OL 4 .Oen. NS o Ok ¢ pOuk

— =eny. 55— — fu R— 4.36

Ju; EN ou; * kzz: £k 61_% ou; ( )
where ¢ = 1,2,---, Ny — 1 and denotes a specific time unconnected to the summing

variable k. The reference trajectory does not depend on the control or vehicle

states so its derivative can be equated as:

der Oz,
= 4.37
ou; ou; ( )
Equation (4.36) then simplifies to:
ayz‘ Oy '
The derivatives can then be assembled into a m x Ny — 1 dimensional matrix:
oL [oL" oL™ oL "
- e (4.39)
ou Ouy  Ous Oun, -1
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with U representing the time history matrix of control inputs:
U=luus - un, 1] (4.40)

4.3.2 Prediction
Prediction of the vehicle states are included within the optimization through
their dependence on the control inputs. The nonlinear vehicle dynamics can be

described by the function:
= f(z,u) (4.41)
Discretizing Equation (4.41) describes a following time step as:
L1 = Tk + to f (2h, up) (4.42)

where ¢, is the discrete time step. Taking the derivative of Equation (4.42) with
respect to u; gives:

Orp1 _ Oxy ; af

= < Tk, U 4.43
ou; oy, * ou; (U_Lk Uk) ( )
Expanding with the chain and product rules:
alkﬂ Oxy, of Oxy, of Ouy
— to , U ts—— (Tg, U 4.44
du.  Ow 0wy S ui " duy (e 1) Ou, (4.44)
Grouping terms, the derivative can be written as:
0Tk of Oz, of duy,
——— = I +ts— (@r,ur) | = bom— (Zk, Uk) o 4.45
ou; i oxy, (2, 1) ou; * duy, (21, 1) ou; (4.45)

Dalamagkidis (2009) describes logic that correctly applies Equation (4.45) to the

optimization problem. First, control inputs cannot affect the current or past states:

oz .
a;: =0V (zp,u) : 1>k (4.46)
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Second, control inputs do not depend on other control inputs:

ou I, i=k
8/; = (4.47)

N 0, otherwise

Using Eqs. (4.46) and (4.47), the proceeding states dependency on the current

control input is given by:

(

0, kE<i

8$kz+1 af

ou; — \ sun (2, u) , k=1 (4.48)

of Oz ;
\ [[ + b g (zk,gk)] e otherwise

4.3.3 Constraints

Constraining the optimization problem can capture hard physical or safety
limits of the system and ensure they are not exceeded. Introducing the constraints
as inequalities, shown in Equation (4.33), confines the solution space accordingly.
Constraints on thrust and rotor speed will keep the blades from stalling and rotor
speed from drifting. If the collective is increased significantly, local angles of attack
along most of the blade can increase past critical points, causing a loss of thrust.
The average angle of attack along the blade spans can be related to the blade
loading coeflicient (BLC). Conventional rotor blades will begin to stall once the
BLC reaches 0.12 — 0.14 (Leishman, 2006). The XV-15 has small rotor disks, high
solidity, highly twisted blades, and can reach BLC values of 0.18 before stall greatly
effects the thrust (Felker et al., 1985). The BLC can be easily computed within the
controller as Cr is being found at every time step for model prediction, and keeping

it below 0.18 will deter stalling;:

Cr 18 (4.49)
S
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where % is the BLC. Normally, rotor speed is regulated to a constant value during
helicopter operation. Tilt-rotors are unique in that the rotor speed has two nominal
values - one for helicopter mode and one for airplane mode. In any case, rotor
speed is a vital part of proper operation. The centrifugal forces caused by rotation
balance with the aerodynamic forces on the blades and essentially act as a spring,
ensuring the stability of the rotor system. The local blade velocities caused by
rotation far exceed the velocities caused by forward flight. Therefore as the rotor
slows down, the local angles of attack will increase at a constant thrust level. The
rotor speed decreasing too much will lead to blade stall. The rotor hub and blades
are designed to handle the centrifugal stresses caused by normal operation. If the
rotor speed increases too much, the hub or blades can catastrophically fail. The

rotor speed must be kept within 20% of its nominal value:
0.802 < 2 < 1.2 (4.50)

where () is the nominal rotor speed. The upper limit set on C'y and lower limit
set on () correlate to the same problem - blade stall. Dalamagkidis removed the
lower limit on rotor speed and instead relied on a thrust coefficient constraint.
Doing so allows the vehicle to lower its rotor speed below the safe value if it is
generating zero thrust. Keeping the lower rotor speed constraint increases the

size of the constraint matrix and therefore the derivative, which also increases the
computational cost. Fortunately, the upper and lower rotor speed limits are related

to each other and calculation of the derivative only needs to occur for one of them.



Arranging the constraints in a vector yields:

C(X,U) = [Cpp(x1,u1) — 0.18s
Q(z1,u1) — 1.20
—Q (21, u1) + 0.8Q0
Cri(zy,u1) —0.18s

Q(xy,u) — 1.20

Crr(zn,,un,) —0.18s

Qr(z,,un,) — 1.2Q0
— Q(zn,, un,) + 0.8Q
CTI(C_CNS, LLNS) —0.18s

Q(zn,, un,) — 1.2Q0

—(z1,u1) +0.8Q — Ylzn,, un,) +0.800]" (4.51)

with C € R%s and subscripts r and [ denoting the right and left rotors,
respectively. Vectorizing the constraints in Equation (4.51), rather than using a
matrix similar to U, yields a lower rank gradient and eases implementation. The
derivative of C' with respect to U results in a tensor of dimension ¢Ng; x Ny — 1 X m,
where ¢ is the number of constraints. Reshaping U into a vector can further reduce

the gradient’s rank.

T

* —
U= [601 00N5—1 001 QCNS—I ‘981 GSNS—I emdl emst—J (4'52)
Taking the gradient of Equation (4.51) then yields, in block matrix form:
i aCTTI...NS aﬂrl...N _aﬂrl...N achL..N 8911...]\] anl- N T
8901-..N5—1 8001.-.1\75—1 8001~-~N5—1 8901-~-N5—1 8901-~-N5—1 a901.-.1\75—1
T aCTﬁ-.-Ng 89’1.--N( =0, .Ng BCTZL.-Ng—l BQllmN, _aﬂh-.-Ns
oC — ’9001~-~N5—1 8901~-~Ns—1 a901-~-1\75—1 6901-~-Ns—1 8001~-~N5—1 89C1~-~N5—1
HU* aCTTl...NS GQHH.N _BQTl - Ng aCTll...N aﬂll...N _anl~~N5
6951.-.1\7371 a951».-1\1571 sy N, 1 ‘9951--.st1 a6'51.-.1\7371 a951.--1\1571
GCTTL-.NS aQTl-uNs =0, N aCTl1-.-Ns M,y _an1mN5
_aemdl-.-stl 89T“d1--~N371 rudy. Ny aerudln-stl rudy . g1 80T“d1-»~N371 J
(4.53)
where the derivative of the (1,1) element can expanded, similarly to
Equation (4.45), as:
OCr (2, ux)  OCpy (20,1 )8$k ICry, (20,1 )51_% (4.54)
= Ly Uk) 7™ T = Lk, Uk ) 55— .
8902, 8££k ’ 8901 8uk ’ 8902
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which yields a triangular matrix since the states and controls cannot affect previous
constraints. Using the process described by Equation (4.54) with the logic from
Eqgs. (4.47) and (4.48), each block element of Equation (4.53) can be evaluated and
assembled.

The swash plate controls have actuation limits, posing the final constraint,
which can be conveniently handled by the activation function used within the
recurrent neural network optimization algorithm. Efficiently implementing a

saturation can be accomplished with:
(1)t = min (Unaz, maz (Upin, 7)) (4.55)

where 7 is a generic value and U, and U,,;, are the maximum and minimum
control limits, respectively.
4.3.4 Recurrent Neural Network

Xia has developed a body of work regarding neural dynamic approaches to
nonlinear optimization (Xia, Leung, et al., 2002; Xia & Wang, 2004; Xia & Wang,
2005; Xia, Feng, & Kamel, 2007). A RNN which rapidly solves convex nonlinear
optimization problems subject to nonlinear constraints was developed (Xia, Feng, &

Wang, 2008):

AU . U + (U— b~ [aaUC*TQ]*>+ (4.56)
Ao g+ (¢ +CU)"

where ¢ € Rs is a vector of Lagrange multipliers, T > 0 is the learning rate
parameter, and a reshaping of 7 is denoted by 7*. The set of ODE’s modeled

in Equation (4.56) come from applying the projection theorem applied to a
Karush-Khun-Tucker (KKT) point (Kinderlehrer & Stampacchia, 1980). The set

of projection equations cast the KKT conditions into two equations, which can then

be turned into ODE’s with their steady state solutions being the optimal solution
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of the problem. The activation function, as described by the projection theorem, is:
(1)t = max(0,7) (4.57)

which keeps the Lagrangian multipliers and controls from diverging. However,

a saturation function as given by Equation (4.55) can be used in place of the
maximum function, within the first line of Equation (4.56), to keep large control
inputs from entering the prediction system. Using the maximum function

alone does not set any limit to the magnitude of control inputs and can lead to
simulation failure within the inflow model. The important action of the activation
function is ensuring that its output is PSD. Shifting the control inputs up with the
minimum value before use in Equation (4.55), limiting the floor to 0, iterating with
the RNN, then shifting the control inputs back down with the minimum control

value allows the system to converge while still producing negative control outputs:
(7)" = min 2Umaz, maz (0,7 + Upin)) (4.58)

where Upar = —Upin and Upin < Opxn,. The activation function used within the
second line of Equation (4.56) is still taken to be Equation (4.57) as the Lagrangian
multipliers are defined as positive and not bound within the same saturation limit.
4.3.5 Optimization Stability

The RNN used to find optimal control inputs has a relaxed stability criteria
compared to other neural dynamic and conventional approaches. The Hessian of

the Lagrangian must be PSD, that is:
0L

Ju;?

>0 Vi=1,2---.N,—1 (4.59)
where L is the Lagrangian defined as:

L=LX,U)+c"C(X,U) (4.60)
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The Hessian of the Lagrangian can then be written as:

0L L

8%‘,2 31_%2

02C
(X,U) + QTal_MQ

(X,U) (4.61)
The first term of Equation (4.61) can be evaluated by differentiating

Equation (4.38) once more:

2.
Oz,
(9%2

PL_in,' g Oin, 1 g

= + el
ou;? ou; ou; 7 Ouy? & @

2., Ns—lro T ..
Oan, | 3 [aék Oz (4.62)

Ju; Q Ju;

where, again, S and @) are both symmetric and PSD. The quadratic terms are
guaranteed to be PSD (shown in Appendix B) and the remaining terms can be

proven to equal 0. Differentiating Equation (4.43) again yields:

iy 0Py >f

which describes the second order effects of the control inputs throughout the

horizon. The ROM used within this work is a control affine system:

fg,ur) = h(zk) + g(zr)uk (4.64)

which shows that the inputs do not have any second order effects on the states.
Evaluating the second derivative of Equation (4.64) with respect to some control
input wu; yields:

o2 f
Ju;?

(l"k»y'k):oVivk:1a27”'7NS_1 (465)

Using this result along with the fact that the control inputs have no effect on the

initial state - that is:

1y .
auiQZOVZZ]"Q?“'aN?_l (466)

Equation (4.62) can be reduced to:

) " No-1 T
L _ Ozn,” o Oz, la@f az—”’“] (4.67)

w2 Oy ou,; N — Au; Ju;
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which is guaranteed to be PSD. Second, since the constraint function depends
solely on the states and control inputs, there are no second order effects on the
constraints from the controls:

0*C

Gz =0 ¥ =12 No—] (4.68)
Therefore,

OL OV i=1,2, 0 No—1 (4.69)

8yi2_ - )y~ 9 S .

and the RNN will globally converge to an optimal solution of Equation (4.33).
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5. Model Comparison

The ROM should accurately describe the vehicle states over the prediction
horizon for effective controller implementation. Model predictive control offers
some robustness to unmodelled dynamics compared to other optimal control
techniques, but large prediction errors can still lead to ineffective and poor
controller performance. Given equal initial conditions, the ROM is compared to
the high fidelity simulation (SIM), subject to varying control inputs. In each case
where a control input is applied, the input comes in the form of a 5° doublet. The

doublet has a period of 2 seconds and is applied at a simulation time of 1 second:

(

Uj0, t<1
ujo +5°, 1<1<2

ujo—95°, 2<t<3

ijv t Z 3

\

where j = 1,2, 3,4 signifies which control is being affected and wu;o is the nominal
value of u;.
5.1 Collective Shift

The ROM and SIM exhibit similar control power and flapping dynamics but
have an offset in the coning angle and collective input. This is likely related to the
under lying assumptions made with the linearized flapping equations. The flow
angle along the blade span is assumed to be small enough that a local portion of

thrust (AT) is given as:
AT = Al + Ado (5.2)

Given the large twist of tilt rotor blades, this assumption, while helpful for deriving
simple analytical equations, is not accurate for the entire span of the blade. The

ROM takes significantly higher levels of collective input to reach the same amount
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of thrust. Figure 5.1 shows the static thrust from a single rotor the two models at
varying collective inputs. Fitting lines to the two curves and equating thrust gives a

relation between the ROM and SIM:
Oosrar = 0.960300r01 — 0.1865 (5.3)

showing that the two curves are nearly parallel. The steady offset will not affect the
controller performance if this relation is used to transform the calculated control

inputs before use in the SIM.
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Figure 5.1. Thrust produced by a single rotor in the high fidelity simulation (SIM)
and reduced order model (ROM) for varying collective inputs.

5.2 Control Inputs with Constant Rotor Speed

The two models are compared with a constant rotor speed, which allows
the control effectiveness and natural vehicle response of both models to be easily
equated. Longitudinal states are tracked accurately given longitudinal stick and
collective inputs. Roll rate and lateral stick inputs are well predicted given small
yaw rates. Rudder inputs, while predicted moderately well, lead to large roll error
due to an unmodelled coupling between yaw rate and rolling moment.
5.2.1 Longitudinal Doublet

Figures 5.2 and 5.3 show the longitudinal and flapping states of the ROM
and SIM. Applying a longitudinal doublet with an initial forward speed shows

a good correlation in pitch rate between the two models. Some errors in u, and
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wy, propagate into the system as the simulation time continues to increase. The
longitudinal states track closely for 3 seconds after the doublet is ended, which
provides sufficient prediction time for the MPC algorithm. The effects of the
control input and vehicle states on blade flapping are accurately predicted. Some
steady state error in the coning angle () exists but does not affect the vehicle
dynamics. The control input causes symmetric lateral flapping; therefore, the

lateral-direction vehicle states are decoupled from longitudinal inputs.
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Figure 5.2. Longitudinal states comparison of reduced order model (ROM) and
high fidelity simulation (SIM) given a 5° longitudinal doublet and an initial
velocity of 10%.
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Figures 5.4, 5.5, and 5.6 show the longitudinal, lateral-directional, and flapping

states of the vehicle given an initial u, velocity and a lateral stick doublet. The

direct effect on roll rate is accurately predicted and most vehicle states track well

with each other. The yaw rate experiences some tracking error that is paralleled by

the error in longitudinal flapping. The lateral input correlates to combined lateral

cyclic instead of differential collective, which is shown by the large response seen by

Bs and small response in fy.
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Figure 5.4. Longitudinal states comparison of reduced order model (ROM) and
high fidelity simulation (SIM) given a 5° lateral doublet and an initial x; velocity
of 10L.
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Figure 5.5. Lateral states comparison of reduced order model (ROM) and high
fidelity simulation (SIM) given a 5° lateral doublet and an initial x; velocity of
104,
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Figure 5.6. Flapping states comparison of reduced order model (ROM) and high

fidelity simulation (SIM) given a 5° lateral doublet and an initial x; velocity of
104,

5.2.3 Rudder Doublet

Figures 5.7, 5.8, and 5.9 show the longitudinal, lateral-directional, and flapping
states given an initial v, velocity and a rudder doublet. The direct yaw effect of the
rudder is slightly over-predicted by the ROM and a significant steady state error
exists after the doublet. The roll rate is not predicted well as described in Section
4.2.1.2. There is a coupling between yaw rate and the rolling moment, which is not
captured by the ROM. The natural vehicle response to the initial conditions tracks

well except for the yaw and roll rates where significant error builds within the first

second of simulation.
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Figure 5.7. Longitudinal states comparison of reduced order model (ROM) and

high fidelity simulation (SIM) given a 5° rudder doublet and an initial v, velocity
of 10L.
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Figure 5.8. Lateral states comparison of reduced order model (ROM) and high
fidelity simulation (SIM) given a 5° rudder doublet and an initial v, velocity of
104,
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Figure 5.9. Flapping states comparison of reduced order model (ROM) and high
fidelity simulation (SIM) given a 5° rudder doublet and an initial v, velocity of

104,
s

5.2.4 Collective Doublet

Figures 5.10 and 5.11 show the longitudinal and flapping states given an
initial u, and wy, velocity and a 5° collective doublet. The effect of the collective
input on the sink rate is well predicted along with the vehicle states after this
point. The collective input does not excite any lateral-directional motion since the
lateral flapping states are symmetric. The transient coning angles are significantly

under-predicted but the steady difference is correct.



78

10
2. O
3-10F
-20
0
10
== 5k
= ok
. . . . . n 1 .
0 1 2 3 4 5 6 7 8 9 10
time, s
E| o i
= -0.1 F B
02 i | | | I I I I N
0 1 2 3 4 5 6 7 8 9 10
time, s
02F T T T B
E 0 / 7
< paf J
i i i i i i i i i
0 1 2 3 4 5 6 7 8 9 10
time, s

Figure 5.10. Longitudinal states comparison of reduced order model (ROM) and

high fidelity simulation (SIM) given a 5° collective doublet and an initial u, and wy
velocity of 10%.
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Figure 5.11. Flapping states comparison of reduced order model (ROM) and high

fidelity simulation (SIM) given a 5° collective doublet and an initial u, and wy
velocity of 10%.
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5.3 Variable Rotor Speed

Letting the rotor speed vary adds significant nonlinearity to rotorcraft
simulation. Rotor speed is responsible for keeping the rotors blades extended
outward while subject to aerodynamic forces. Angular velocity around the zj, axis
gives the local blade sections sufficient velocity to produce thrust. Varying rotor
speed changes not only the flapping dynamics in a nonlinear manner but also the
blade aerodynamics. The ROM does not capture nonlinear aerodynamics but does
still effectively predict blade flapping and vehicle states with variable rotor speed.
5.3.1 Uncontrolled

Figures 5.13, 5.14, and 5.12 show the longitudinal states, flapping states, and
rotor speed given a large initial u, and wy velocity with a varying rotor speed.
The vehicle states change drastically over the short simulation. The initial forward
speed causes a large pitching moment and pitch rate, which results in 6, exceeding
60°. The ROM slightly under-predicts the pitch, which partially leads to the
difference in u;, and w,. The rotors act as parachutes and tend to force the z,
axis into the oncoming wind, which is shown by the longitudinal flapping. The
coning angle decreases as u, goes to zero, then increases once again as u, becomes

increasingly negative, which is predicted accurately by the ROM.
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Figure 5.12. Rotor speed comparison of reduced order model (ROM) and high
fidelity simulation (SIM) given an initial w, and w, velocity of 80% and 40%,
respectively.
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Figure 5.13. Longitudinal states comparison of reduced order model (ROM) and
high fidelity simulation (SIM) with variable rotor speed given an initial u, and w,
velocity of 80% and 40%, respectively.
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Figure 5.14. Flapping states comparison of reduced order model (ROM) and
high fidelity simulation (SIM) with variable rotor speed given an initial u, and w
velocity of 80% and 40%, respectively.
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5.3.2 Longitudinal Doublet

Figures 5.16, 5.17, and 5.15 show the longitudinal states, flapping states,
and rotor speeds given a longitudinal input doublet and initial u; and w; velocity
with variable rotor speed. The initial positive portion of the doublet does not
significantly increase the pitch rate, which is already increasing quickly due to the
large forward speed, and the two models show similar effects. The negative portion
of the doublet begins shortly before u, crosses zero, which produces a similar
effect to the positive portion in that the control and natural vehicle response are
working in unison to negatively pitch the vehicle. The magnitude of the maximum
pitch is largely unaffected by the control input compared to the uncontrolled case.
Longitudinal blade flapping is roughly predicted. The highly dynamic system is

likely exciting unmodeled nonlinearities in the SIM.
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Figure 5.15. Rotor speed comparison of reduced order model (ROM) and high

fidelity simulation (SIM) given a 5° longitudinal doublet and an initial u;, and wy

velocity of 80% and 40%, respectively.
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Figure 5.16. Longitudinal states comparison of reduced order model (ROM) and
high fidelity simulation (SIM) with variable rotor speed given a 5° longitudinal
doublet and an initial u, and wy velocity of 80% and 40%, respectively.
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Figure 5.17. Flapping states comparison of reduced order model (ROM) and high
fidelity simulation (SIM) with variable rotor speed given a 5° longitudinal doublet
and an initial u, and w, velocity of 80% and 40%, respectively.



5.3.3 Lateral Doublet

Figures 5.18, 5.19, 5.20, and 5.21 show the longitudinal states, lateral states,

flapping states, and rotor speeds given a lateral input doublet and initial u; and wy

velocity with variable rotor speed. The doublet is applied through combined cyclic

and its effect is not well predicted by the ROM. Roll rate is significantly under

predicted causing large discrepancies in both the longitudinal and lateral-directional

states. Blade flapping is not not predicted well either which is also caused by the

difference in roll rate. Flapping induced by roll rate come from the z, position and

mainly affects the lateral plane.
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Figure 5.18. Longitudinal states comparison of reduced order model (ROM) and
high fidelity simulation (SIM) with variable rotor speed given a 5° lateral doublet

and an initial u, and w;, velocity of 80% and 40%, respectively.



0.2r 1
R
o 01F B
0 i T I I I I I I
0 0.5 1 1.5 2 25 3 35 4 45 5
time, s
0.6 ]
]
S 04F S
So2f ,
0 | | T i i i i i
0 0.5 1 1.5 2 2.5 3 35 4 4.5 5
time, s

Figure 5.19. Lateral states comparison of reduced order model (ROM) and high
fidelity simulation (SIM) with variable rotor speed given a 5° lateral doublet and
an initial u, and wy velocity of 80% and 40%, respectively.

0.06
= 0.04 = 0.04
< i~
b =
T 0.02 = 00
——ROM
——SIM
0 0
0 1 2 3 4 5 0 1 2 3 4 5
time, s time, s
0.05 0.15
0.1
3 3
S0 5005
Q <
0
-0.05 -0.05
0 1 2 3 4 5 0 1 2 3 4 5
time, s time, s
01 0.2
0.1
= <
0
g g
< 01 S
-0.1
0.2
0 1 2 3 4 5 0 1 2 3 4 5
time, s time, s

Figure 5.20. Flapping states comparison of reduced order model (ROM) and high
fidelity simulation (SIM) with variable rotor speed given a 5° lateral doublet and
an initial u, and wy velocity of 80% and 40%, respectively.
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Figure 5.21. Rotor speed comparison of reduced order model (ROM) and high
fidelity simulation (SIM) given a 5° lateral doublet and an initial w, and w, velocity
of 80% and 40%, respectively.

5.3.4 Rudder Doublet

Figures 5.23, 5.24, 5.25, and 5.22 show the longitudinal states, lateral states,
flapping states, and rotor speeds given a rudder input doublet and initial u; and
wy velocity with variable rotor speed. The coupling between yaw rate and rolling
moment is again evident and neither roll rate nor roll angle are well tracked. The
sink rate and lateral velocity are under predicted following the control input likely
due to the error in the roll angle. Yaw rate itself is estimated fairly well along with

pitch and pitch rate.
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Figure 5.22. Rotor speed comparison of reduced order model (ROM) and high
fidelity simulation (SIM) given a 5° rudder doublet and an initial w, and w,

velocity of 80% and 40%7 respectively.



Figure 5.23. Longitudinal states comparison of reduced order model (ROM) and
high fidelity simulation (SIM) with variable rotor speed given a 5° rudder doublet
and an initial u, and w, velocity of 80% and 40%, respectively.
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Figure 5.24. Lateral states comparison of reduced order model (ROM) and high
fidelity simulation (SIM) with variable rotor speed given a 5° rudder doublet and
an initial u, and wy velocity of 80% and 40%, respectively.
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Figure 5.25. Flapping states comparison of reduced order model (ROM) and high
fidelity simulation (SIM) with variable rotor speed given a 5° rudder doublet and
an initial u, and wy velocity of 80% and 40%, respectively.

5.3.5 Collective Doublet

Figures 5.26, 5.27, and 5.28 show the longitudinal states, flapping states,
and rotor speeds given a collective input doublet and initial u;, and w, velocity
with variable rotor speed. Collective input effects must be accurately modelled,
especially by the rotor speed, as it has a large effect on the aerodynamic state of
the rotors. The ROM shows poor correlation in wy after the doublet is applied but
this could be in part due to the combined errors of the other states. Interestingly,
both the ROM and SIM show that the increased collective only marginally
decreases the rate of change of wy, which is again likely caused by the vehicle
tending to force the z;, axis into the wind. Most importantly, the ROM very

accurately predicts the rate of energy removal from the rotor during the initial

positive portion of the doublet.
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Figure 5.26. Longitudinal states comparison of reduced order model (ROM) and
high fidelity simulation (SIM) with variable rotor speed given a 5° collective
doublet and an initial u, and wy velocity of 80% and 40%, respectively.
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Figure 5.27. Flapping states comparison of reduced order model (ROM) and high
fidelity simulation (SIM) with variable rotor speed given a 5° collective doublet and
an initial u, and wy velocity of 80% and 40%, respectively.
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Figure 5.28. Rotor speed comparison of reduced order model (ROM) and high
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velocity of 80% and 40%, respectively.
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6. Controller Simulation

The controller has been applied to nominal flight as well as power-off
maneuvers at 83.3Hz. A high frequency was used to help improve performance in
the presence of unmodeled dynamics. The prediction horizon was taken to be 1.2s
(Ng = 100 and ¢, = 0.012). In standard forward flight, a prediction horizon of
1s was determined to provide sufficient length that the controller could reach a
relatively steady state value without large oscillations. A shorter horizon, while
significantly less costly to compute, does not perform well enough to control the
SIM. The weighting matrices () and R were varied to analyze their effects and test
the controller performance. The states have not been normalized for use inside of
the controller, so using different magnitudes within the ) matrix will help ensure
states are weighted evenly.

The controller was applied to forward flight starting at the reference state but
not statically trimmed and away from the reference state. A comparison is made
between the performance of the controller in all axes and just the longitudinal axis
during AR entrance. Finally, the rotor speed constraints are tested by starting the
simulation near a boundary and putting the reference trajectory beyond it.

6.1 Forward Flight Constant Rotor Speed

Flight controllers are used largely to make vehicles maintain constant speeds
and attitudes for long periods of time in cruise. Figures 6.1, 6.2, and 6.3 show the
vehicle states and control inputs with an initial u, velocity. It attempts to regulate
all angular rates to zero, which works well in the longitudinal axis but begins to fail
in the lateral-directional axis. The values of p, r, and ¢, are sufficiently small that
the controller is working but needs further refinement. The performance suggests
the lateral-directional states are not being well predicted, which is reinforced by
the model comparisons presented in Chapter 5. Restricting the dynamics to the

longitudinal axis and only solving for optimal values of collective and longitudinal
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stick significantly improves the controller performance. Figures 6.4 and 6.5 show
the longitudinal states and control inputs given an initial condition farther away
from the reference. The controller is able to take the vehicle from a dynamic initial
position to the reference forward flight state. The values of pitch and pitch rate
have not fully settled to zero within the simulation time but show a converging
trend. The control inputs show the effect of the saturation function within the
RNN. The control limits are met and but not exceeded while the system attempts
to arrest transient motion. Ripples in collective are produced, reflected in wy,
likely due to an inconsistency between the ROM and SIM. The ROM is likely over
predicting the effective control power of the collective causing the value to shift up

and down.

6y, rad

time, s

Figure 6.1. Controlled longitudinal states with constant rotor speed in forward
flight.
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Figure 6.3. Controller inputs with constant rotor speed in forward flight.
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Figure 6.4. Controlled longitudinal states with constant rotor speed in forward
flight and initial conditions away from the reference.
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Figure 6.5. Controller inputs with constant rotor speed in forward flight and initial
conditions away from the reference.

6.2 Autorotation Entrance

Upon engine failure, the controller needs to regulate the states to a steady AR.
The rotor speed must be forced to a constant value near the nominal operating
point, the body angular rates should be regulated to zero, and the body velocities
forced to the reference values. Figures 6.6 - 6.9 show two simulations of the

controller attempting to enter a steady AR: one restricted to longitudinal motion
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and one including lateral-directional motion. The weighting matrix is set such
that wy is not weighted but wu, is, so the controller will find a sink rate at the given
forward speed which results in a proper energy balance between the rotors and air
flow.

The longitudinal states are well controlled when the dynamics are restricted
but not when lateral-directional states are allowed to propagate. Large weights are
put on the angular rates and Euler angles attempting to keep the body level and
controlled. The roll rate is regulated to zero well but yaw rate is steadily increasing.
The poor performance is again most likely due to inaccuracies within the prediction
model. Lowering the weights on the angular rates and Euler angles, relative to the

velocities, does not improve the controller performance.
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Figure 6.6. Controlled longitudinal states of a longitudinally restricted simulation
and a full spatial 6-DOF simulation.
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Figure 6.7. Controlled lateral states of a longitudinally restricted simulation and a
full spatial 6-DOF simulation.
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Figure 6.8. Rotor speed of a longitudinally restricted simulation and a full spatial
6-DOF simulation.

In both simulations, the rotor speed is well regulated. The large control inputs
at the beginning of the unrestricted simulation result in the decrease in rotor speed.
The energy contained within the rotor is transferred to the body as roll and yaw
rates. The small change in rotor speed shows the amount of energy that is stored

within the two rotor systems. During flare and landing, this energy is used to
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control the vehicle. Lateral stick and rudder inputs remain zero for the longitudinal
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Figure 6.9. Controller inputs of a longitudinally restricted simulation and a full
spatial 6-DOF simulation.

6.3 Rotor Speed Constraints

During AR entrance the constraints are not active. To test the rotor speed
constraints, the simulation is started near the constraint boundaries with the
reference trajectory placed beyond the boundary. Figures 6.10 - 6.12 show a
longitudinal simulation with low initial sink rate and rotor speed. Initiating the
rotor speed at 0.85{2y and weighting w, causes the low rotor speed constraint to
become active. The controller wants to maintain the vehicle’s initial condition,
besides the low rotor speed, but the constraint violations results in wjp increasing
significantly by pitching the vehicle up and using the forward speed to pass air

through the rotor disks.
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Figure 6.10. Longitudinal states of the vehicle starting near the
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constraint boundary.

rotor speed constraint to become active, shown in Figures 6.13-6.15 . The controller

maintains the vehicle’s attitude and forward speed but significantly decreases

wy, by putting in large amounts of collective, showing that the modification to

Equation (4.28) works.
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Figure 6.13. Longitudinal states of vehicle starting near the upper rotor speed
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7. Conclusions and Future Work

A model predictive controller was used to control a tilt rotor craft in
autorotation and forward flight. A reduced order model was developed utilizing
quasi-static flapping equations, which increased the minimum time step for accurate
simulation. Using the reduced order model to predict the vehicle states, a recurrent
neural network was used to find the optimal control inputs given a reference
trajectory. Constraints are placed on rotor speed and thrust, which ensure the
vehicle will safely maneuver.

Based on linearized aerodynamics and neglecting nonuniform flow around the
rotor disk, the quasi-static flapping equations accurately predict blade flapping in
nominal operating conditions. During autoration, when strong nonlinearities are
present, the predictions begin to degrade but work well overall. A strong coupling
between yaw rate and rolling moment exists within the high fidelity simulation
due to the opposite directions of rotor rotation and geometry of the tilt rotor. The
reduced order model does not accurately predict this coupling since the rotors are
treated as disks are only concerned with the total wind axis velocity at the hub. No
correction was added to the reduced order model to accommodate for the moment,
but a simple linear coupling could capture the desired effect. The linearizing
assumptions also lead to an error when the sink rate exceeds the induced inflow.

A sign changing coefficient was added to the rotor torque derivative to ensure the
rotor torque always increases with increasing thrust. Simulation results show that
the controller accurately predicts violation of the upper rotor speed constraint,
given a large sink rate, and implements the correct controls.

The number of discrete time steps increases computational cost significantly
and usable performance required the prediction horizon to be at least 1 second.
The inflow dynamics required the time step of the reduced order model to

be at most 0.015 seconds where the high fidelity simulation, with individual
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blade flapping, needed a time step smaller than 0.005 seconds. Using a static
approximation of the inflow within the reduced order model could lead to
significant increases in the time step. Solving for the static inflow requires a
numerical nonlinear equation solver like Newton-Raphson iteration. The stability
of the method at varying vehicle states would need to be thoroughly analyzed.

A recurrent neural network was used to solve the nonlinear optimization
problem. The algorithm provides a unique capability of solving convex problems
and a class of non-convex problems. The control affine system used within
the prediction along with the quadratic cost function lead to the recurrent
neural network globally converging to an optimal solution of the problem. The
mathematical proof, while important for stability, does not guarantee the problem
will be solved well. Implementing the optimization algorithm required the state
and control weighting matrices, learning rate, constraint function, and convergence
criteria all be correctly scaled. Numerical errors can occur if any one piece is
incorrectly used. Alternatively, the convergence time of the controller is also
significantly impacted. For instance, if the state weighting matrix is scaled low and
the learning rate is low, the controller will behave in a stable way but convergence
will take significantly longer. Conversely, if the state weighting matrix contains
large values and the learning rate parameter is large, unstable oscillations in
convergence can occur as the control inputs jump back and forth over the optimal
value. Similarly, if the cost function is weighted significantly higher than the
constraint function, convergence will likely occur when optimally of the cost
function is satisfied with no regard to the constraint function.

A reference trajectory is used to compute control inputs. Often, optimal
control is used to create a reference trajectory for another controller to follow.

In this work, the reference trajectory is simply a time history of the controller

goals, which lets it weight and compute each state and control input along the
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horizon. In the controller simulations, the reference trajectory is a constant
velocity in each axis, zero angular rates, zero Euler angles, and the nominal

rotor speed. Inflow states are unweighted. A simple trajectory algorithm can be
created that uses kinematics to plan a path to a specified landing spot, which the
controller could then follow by computing the necessary control inputs. These
control inputs can be used directly to control the vehicle or can be passed with

the computed history of states to another controller that can better handle
unmodeled dynamics and disturbances. Given the controller’s poor performance

in the lateral-directional planes and the decoupling of longitudinal inputs, the
model prediction algorithm could be reduced to the longitudinal states where it can
predict optimal inputs for collective and longitudinal stick, which largely control
the rotor speed, and the lateral-directional control could be performed with a model
reference adaptive controller, for example. Doing so would significantly increase the
speed of the model predictive control algorithm and allow it to handle constraints
while letting the adaptive controller deal with the highly nonlinear dynamics of

lateral-directional motion.
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A. APPENDICES

A.1 Reduced Order Model Jacobian

The recurrent neural network uses the systems gradient at each time step to
find the optimal control. Calculating the derivative is costly as the state space is
large. Deriving the underlying equations using the product and chain rules allows
values to be stored and used multiple times for different derivatives, which helps
speed the calculation.
A.1.1 Dynamics Function

The derivative of Eq. (4.41) must be evaluated to determine the effect of each
control within the prediction horizon on the cost and constraint functions. The

linear dynamics matrix g—’;(_,g) will be denoted as A and is given by:

0, 0 Odor 0N 0Ny OXgp OXg Oy

Al
Oor Ox OJdx Ox Ox Oz Ox Oz (A1)
where each entry of A is a row vector and the state vector x is given by :
z = [up vy wy g7 B O Uy 2 Yy 2 L U Aor Asr Aer Aot Ast At |- (A.2)
The rows of A are then found, assuming air density is constant with respect to
altitude, in Eqs. (A.3) - (A.21):
ou 1 | O0F, N OF, N oF, OF, n OF, N 0F,
— = — mr -m — mw muv
or m | du ov 1 ow  Jp dq or
F, OF, OF, OF, 0F, OF, OF, OF,]"
000O0O0TO O 0 0 0 0 0 0 0 0 (A.3)

0Q, O oy ONsy 0Ny Odot ONg Oy
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@ = i —mr + % % mp + & mw + % @ —mu+ —2
dr  m ou  Ov b ow dp  0Oq or
oF, oF, 0F, OF, 0F, 0F, 0F, 0F,]"
00 0O0O0OOQO Y Y Y Y Y Y Y Y A4
00, 0 OXgr OXg ONer Oy OAg 8>\CJ (A-4)
% = l mq + % —mp + OF, OF —muv + @ mu —+ OF, @
dr m ¢ ou b ov  Ow dp dq  Or

OF, OF, OF, OF, 0F, OF, 0F, 0F]"
000000 00, 09 Aoy O Oy Oy OAg aACJ (A.5)

op_ 1oL of 0L oF OL . of | (0F Y 0L

or I, |ou Fou  Ov o ow  TFow T\ op 1 op
oL ar or 0L
a ] - [zz Ixz a_ zz — tzz xz o A
@q+(yy )+ (8q+p) (I, —L.,)g+ 1 8r+87’

oL oL oL 0L oL oL oL oL]"
000000 A
00, 00 Odoy Ohe Ny Oy ONg axcl] (A.6)

dg 1 [oM oM oM oM oM
A_ = Lo = Ipy)r — 2Lpp +
or I, | Ou Ov Ow ( )’ P op  0Oq
oM oM oM

L.—Lp+2L.r 000000 o
( P+ 2Lt o0, o0,

OM oM oM oM oM oM]1*
a)\Or a)\sr a)\cr a)\Ol a)\sl 8)\cl

o T

(A7)

y
%:[0 0 0 1 sing,tanf, cos@ptant, qcoseoytan, — rsin ¢, tanb,

gsin ¢y sec? @, +rcosdpsecid 00 00 0 0 00 0 0 0 O]T (A.8)
A0,

5y =0 0 0 0 cosgy —sing, 00 000000000 0" (A9)
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ov,
Oz
g sin ¢p tan Oy sec O, + rcos pptanpsec, 0 0 0 0 0 0 0 0 O O O O]T

=[0 0 0 0 singpsect, cos@ysech, qcosepysecl, — rsin gy sec by,

(A.10)

ot .
— = [cosbycos ¥, cos Uy sin ¢y sin O, — sin Wy, cos ¢y

Ox

sin Wy, sin ¢, + cos Uy cos ¢psin, 0 0 0O
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ox
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Py
S [—sind, singy,cosl, cosopcosh, 0 0 0 wycospycosl, — wysin g, cos by

35 =
—uy cos By + vy sin ¢y sin@, — wcosgpsind, 0 0 0 0 0 0 0 0O O]T (A.13)

00 pAVER [0Cq, 0Cq, 0Cq, 9Cq 9Cq 9Cy,
dx  3lp Ouy, oy owy, dp Jq ar
9Cq, . 9Cq, 8Co. ACq, g
7 0 e B . 000 (A.14)
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A.1.2 Hub Velocities and Sideslip
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(A.18)

(A.19)

(A.20)

(A.21)

Rotor dynamics are driven largely by the aerodynamic states at the rotor hubs

due to their velocities. The hub velocities depend on not only the vehicle’s body

axis velocities but also the angular rates. Since, the hub axes systems are aligned
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with the body axes, their relation is straightforward:

Guh 8vh__ 6um
8ub 8vb__ 8U%

—1 (A.22)

The angular rates affect hub velocities through Ry, yielding:

0  zn —un

ov

a;wz = |-z 0 (A.23)
Yo —xp 0

Quasi-static flapping equations are cast in the rotor system wind axes leading to
cleaner derivatives when evaluating the advance ratio ju,,. The effect of hub axis

velocities on p,, are given by:

8Nw Up,

— A.24
Oup  Viy/u2 + v? ( )
Otw ____ 0n (A.25)

Oon Vi Ju + v?
While the total in plane velocity has the largest effect on longitudinal and lateral

flapping, the normal flow through the rotor disk produces thrust and w;, impacts

that through:
o6 _ 1

dw, Vi (A.26)

Lastly, transforming the quasi-static flapping equations into the hub axes requires

the rotor sideslip angle. Hub velocities affect the sidelsip with:

A\ -y,

= At2
Oup,  ul +0v? (A.27)
Ny _ _ un (A.28)

2 2
ovy,  up + vy
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Rotor hub velocity derivatives are undefined if the hub axes have no longitudinal
or lateral velocity. This can occur if the vehicle stops moving or rotates such that
the hub velocities induced by body angular rates are equal and opposite to the body
velocities. During normal flight and autorotational descent these issues will not
appear, but during landing, when the vehicle is moving slowly issues could appear.
A.1.3 Wind axis transformations

Transformation to and from the hub and wind axes are determined by the
linear hub velocities. The rotor sideslip (¥,,) dependencies on hub velocities are
given by Eqgs. (A.27) and (A.28), which can be used with following equations to

find the derivatives of the transformations:

00 0 0
oTw 00 0 0
wh — (A.29)
w 0 0 —sinV¥, cosV¥,
0 0 —cosV¥,, —sinV,
0 0
ATy o°Th
6\11h = o “ =10 —sin¥, cosV, (A.30)
0 —cosV¥, —sinV¥,
—sinV¥,, cosV¥, 0 0
OeTw —cosV,, —sinV, 0 0 )
8\11" = (A.31)
w 0 0 —sinW¥,, cosW¥,
0 0 —cosV¥,, —sinV¥,

A.1.4 Thrust Coefficient

Rotor thrust depends on the in-plane velocities as well as the normal velocities.

The rotor must induce some flow through itself to create thrust but increases in
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the inflow cause decreases in thrust as the average angle of attack on the blade
is decreased. Increasing the downward hub velocity increases the thrust from the

opposite effect. The derivatives of the rotor thrust are given by:

() B) )
%_gj - o (% 4 %) (A.33)

29% - Doty (A.34)

% _ CLOZ“W (A.35)

83_(;? _ “OZ“w (A.36)

%(if = odthy (A.37)

Using the chain rule and product rule, combinations of the thrust derivatives
above and other independent derivatives will yield the relation between rotor thrust

and the vehicle states:

9Cr  0Cr O,  9CT 0y, — ICT Op,,

Oup, Oty Ouy, 00 Oun — OPw Ouy, (4.38)
0Cr  9Cr o, ~ 9Cr 0y, — OCT Op,, (A.39)
v, Oy Ouy, 00, Ovn Oy Ovy '
ICt B oCy 0&,
Gwh N (%h 8wh <A40)
8CT . aCT 3Uh 8C’T 8wh 8CT Gﬁw (A.41)

dp v, Op  Owy, Op Opw Op



8CT . 8CT Guh + 8CT 8wh 4 6CT 8]310

= A 42
dq Oup 0q  Owy Jq Opw 0q ( )
BC’T . 8OT 8uh BOT 8Uh
or  Ouy, Or + Ovy, Or (A.43)
ACy  ICp Oy n oCy 0p,  OCyp % @% (A44)
00 Opy 0 0P, 0N 0&, 02 O 0N '
oCr  0Cr
. on =0 (A.45)

A.1.5 Torque Coefficient

The rotor torque is handled similarly to the thrust. Taking the derivative of
(4.26) in terms of its own variables, then using the chain rule and product rule,
will give the derivative of the rotor torque in terms of the vehicle’s states. Section
4.2.1.4 explains the modification to Eq.(A.47). The derivatives of (4.26) with

respect to its own variables are given as:

90, 3.
% = Cxw + 4Cdb[Lw <A46)
aCo .
90 = 518 (€ = 20) (€0 = Xo) (A47)
aCq
92— _C A48
dé-h ! ( )
9Cq
0Cq _ [ (A.50)
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A.1.6 Inflow
The rotor inflow depends on the hub velocities and forces as well at the inflow
states themselves. Velocity effects can be found with:

oA . (0Fu, OL!
Dy <8uw Ot A) (A50)

where Fuero = [Cr — C CM]T and A = [Ag Ag /\C]T. The normal inflow affects the

inflow dynamics through:

1
) oF, oL~
— =M = - A52
Y ) VR Wl (4.52)
0
The lateral inflow affects the inflow dynamics through:
_ 0
oA OF, A
oA ]\/[_1 Laero L_l A
oa | Ton, L (A.53)
0

Longitudinal effects can be found similarly. Vehicle states that do not directly
appear within the velocities or inflow can affect the inflow dynamics through the

forcing term. The forcing term’s effect is given by:

— = M;! (A.54)

The inflow dynamics are derived in the wind axes, then transformed to the hub
axes. The transformation of the dynamics gain matrix depends on ¥,, while the
matrix itself depends on the wake skew angle (). The mass flow parameter (V)

depends directly on hub velocities and the normal inflow. The dynamics gain
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matrix derivative can be taken as:

s T _
oL ! v )\ThTL 12\Th + Va)\ ’L’; L 1)\Th V)\ThTaL 1)\Th + V)\ThTL— a/\Th
Op Ot Y Oty Oty e
(A.55)
L™ OV, 7 TOL™!
= —ATh [TRATh L vATh ATh A.56
8)\0 8)\0 w w + w 8)\0 w ( )
ALt AV, 1 1OL!
— — Apht [ —1Ah + VATh Ah A.BT
o 0, " v Yoog " (A.57)
The derivative of the mass flow parameter is taken as:
Vi
oV mb_vw | ’
EPe =10 ‘g% 0 (A.58)

0 0 VYm
O

An equivalent process is used for &, and A\g. The total inflow (V}) derivatives are

given by:
Ve
— = A.59
Oy Vi (4.59)
oV Ao —&n
— A.60
oV, Ao — &n
— = — A.61
& Vi (A.61)
The harmonic inflow component can be written as:
Vy
Vin = — A.62
- (A.62)
which eases the differentiation process. The derivative is then taken as:
BVI V Vv, 9V
8Vm _ t Jauw (AGB)

Oty VZ
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where the derivatives of the auxiliary term (V) are taken as:

ovy

— =2, A.64
o, (A.64)
oV )
O—Ag = | Ao — &+ Aosign (Ao — &) + 2X0 — 28, (A.65)
oV
GfJ = —MAgsign (Mg — &) — 2Xo + 2&, (A.66)
h

The dynamics gain matrix is inverted for use in the inflow model. The derivative of

the inverse can be expanded as:

LL ' =T (A.67)
oL - _ oL
Ly = A.
Oy Oty ’ (A.68)
oL - 0L -
= [ —=! A.69
Oty Oty (4.69)

0 0 9Lig
- Ox
oL oL
a—X =10 ZF& 0 (A.70)
OLs1 g OLss
Ox Ox

The components are related to each other with:

OLiz _6L31 _ 1bm cos Y (A71)
ox 5% 64 /T —siny (1 -l—simx)?’/2 '
OLyy  OLsz 4 cos x (A72)
Qun — Qup  (1+siny)” '
Finally, the wake skew angle depends on the velocities and inflow as:
) Ao —
X _ ol (A.73)

Oy V2
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dXo V2

OX _ uwsign (Ao — &)

5/33 V2

A.1.7 Flapping - Hub Velocities
Quasi-static flapping depends heavily on the rotor advance ratio. The

derivative of flapping in the wind axes is taken as:

OB _ 0Apgy NTyY 0Apx
_ TG, + A L g, T\
e Ope ML T B
ATe  9A oI
A ho\ Bowpw 1 Ag,
T T By, T auw@h

Transforming the wind axes derivative to the hub axes is done using:

M 8uw vt g

The derivative of the control matrix coefficient are then found as:

0Agp 7

— * * * *
Oty 8)\% Qg1 Qgy Qg3 Ggy

where 7* denotes the derivative of 7 with respect to fi,.

aTl = 2/1110
. 4
19 gﬂlw
. 4
3 = 3
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(A.74)

(A.75)

(A.76)

(A.77)

(A.78)

4 16X2 12 4 1612
Uy = Ng5 (Sﬁ (1+p2) + (1 +o )) + M35 Hw <2S,B,Uw 5 uw>
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8% 2 8 5 8% 8
ayy = 213 (Tﬁ (1 + '%U) + ESg (1 + 5/@)) A (Tﬁ,uw + 385/1,1,])

322 392
a;?, =g ( ~ B,UJw + _NwS,B)

9

* $A2
az = —1NgSp Tﬂw

8 0 8/\% 32
F=p2 — (1422 ) -9, —Z2 —

. 32 24\
16M2 .
sy = ng—pid,

Similarly, the derivative of the inflow matrix coefficient is given as:

0 b, 0
8Aﬁ,\ Y
Erisel L (A.79)
by b b3
. 2
blzz—g

4\° 1673 2 16X
b, =n (—) S+—ﬁ(1+—w> + 1 i

8\% 16
by = s (22 4 186.)
292 g ( ~ + 9 B) 2

, N (L 16A5) 4
b3 =15 ((g) <1 - 7) — 5p ﬁ/ﬁ - 5776#30
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) 83
= ——77 o
33 ~ I¢]

Lastly, the angular rate matrix coefficient’s derivative is:

0 0 ¢35 0
0Ag, v
—ﬁ = — 0 C§3 034 (A.SO)

*

* *
0 3 3 &y

8\% 16
023—775 _+ SB o

128)\2

Coqy = — Mg 7 Nw

8/\
C3p = ~ o

. 12803 16
C33 = (s 7 4 g ) Hw

2
C3q = nﬁﬁﬂw
7

The normal velocity does not affect pu,, but does effect in the inflow vector, so the

derivative of flapping with respect to wy, is found as:

(23N
85 owy,
8wh = Ag>\ Th 0 (ASl)

0
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Transforming to the hub axes requires simply using the transformation matrix:

aﬁh 8
— = Pw
8wh h

0B

— A.82
Bwn (A.82)

A.1.8 Flapping - Rotor Speed

Blade flapping also depends highly on rotor speed as it causes the balance of
inertial and aerodynamic forces. The derivative of wind axis blade flapping is given
as:

OB _ 04,
o o0

aAﬁA
o0

Age,
AT}';UA +A,3)\‘\Tw% + a_ﬁ@

w w wac—u

B0+ " 90

Transforming to the hub axes:

a@h 8 hagw
0~ g (A.84)
Flapping frequency depends on rotor speed as:
K
2= 90 A.
As T (A.85)

where 7* now denotes the derivative of 7 with respect to 2. The stiffness number

derivative is then found as:

L8 .
v
Lastly, the auxiliary term (73):
2555}
= —— Py (A.87)
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The coefficient of the flapping matrices depend on €2. Defining the controls flapping

matrix as:

Agg = —5Mpy

8)\2

allows the derivative to be found:

* ’7 A{Q
e o2

The derivative of the auxiliary flapping matrix is then taken as:

* * *
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*_
My =

* * * *
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8 * /Lz 8 5 8/\5 8
Zy ==X (1+=2 )+ =S5 1+ -p withy | — + 28
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1673

)

)

(A.88)

(A.89)

(A.90)
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Z5 = —X; (1 - @) -2y,
¥
a3y = —npZy — N2y

The inflow flapping matrix is defined as:

v
Aﬁ/\ = —M)\ (A91)
8)Z
leading to the similar derivative:
aAﬁ)\ Y M)\ 9%
=—— | M;——")\ A.92
o0 s\ oA (4.92)

The derivative of the auxiliary inflow matrix is:

0 b, 0
My = b3, by, Ui, (A.93)
by b3y b

2
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12 3Nw

Ss A3 T
Ziwo=16 22 + 20 (1 4 Eu
10 (9+7 T

Sy A 2\ A
Z*=1 /3 /3 1 w /8 w*
10 6(—9+—7 ( +—2>+—7u P

by, = néume +1p (Hay Z10 + P Z 1)

Sy (4 \°
=24+ — | =ty
11 4+2(3M)

S* S
75 = 75 1641 | L1y + 2Ly
11 1+ 1640 (18N + 9 /1w>
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by = —TIEZH — sl

bi, = *%S § A2"S, + M35
23 = 1z ~ 6+,y77/3( 3 O T Az ﬁ)

4\? 12 1673
Tio= | — _w) _ g
() (%) 0%

7 N o M
75 = —16 [ Bepr 15328 4 5,00
12 <guu’w+ ,67 + B 7)

by, = n}ulez + g (Hay Z12 + P Z 1)

8\ 1/4 \?
Ty = —LSs — = i
13 ’yﬁ 2(M>

3
Z7 8/\*5 + 8)\[23 S 10 .
=- — 55— o Hu,
13 ~y B B v B 9

by = 772213 +nsZis

82 2
Ziy = B (1 _ 'u_w>
0 2

8 o« /ﬂ 8)\%
- (1-5) - B
Moy 2 v

bys = 21 + M2y,
The angular rate flapping matrix is defined as:
Apy = — M, (A.94)
8)\%

giving:

Y M, | 5«
ALY = —— [ M* — —=)\ A.
Bw 8)\% < w )\% B ) ( 95)
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The derivative of the auxiliary angular rate matrix is:

0 0 ¢ 0

Mw = C;l (A96)

* * *
Coo Coz Coy

* * * *
€31 C32 C33 Cgzy

82 2 168 Ss (4 \?
Zy5 = —" (1 +He —ﬁ) + ?ﬁ <§Mw)

8 o 12 1655\ 8\2 16 1., /4 \* 16
Z= =22 (148w - B it — =S5 ) + =55 (g |+ —Sapait’
15 ,Yﬁ("‘Q >+ Faw oy 75"‘2[13# T g Pty

Co3 = 15715 + 15215

16 0
Zis = S+ 2 (14 Hu
" [3+7(+2>

Zig = SB + 7/Lu,uw

=5 — ——1)+ —) X | =—=1)+(— ] pwmr,
39 7]5( ~ 9 UF; ~ 8 9 ~ Hapf
8A% (16 ([ 112
Ty v 2 ’
8
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C33 = TIBZN +

5 okl + N3 217
82 /165 2
Zlg=—ﬁ(—5+“—w_1>
gl gl 2
8 o« (1685 2 8\% (16
Zis = X (—B+—“’—1> +— | =55+ twtiy
BT g 2 v \v""?
Cyq = U;Zuz +nsZ1y
A.1.9 Hub Forces and Moments

Rotor forces and moments depend on both the amount of thrust being

produced by the rotor and the flapping states of the rotor. Defining the rotor force
coefficient as:

Can

Cr, = | Cyn (A.97)
Cen

then leads to introduction of thrust and flapping:

CTBC
Cr, = | —Crps (A.98)
Oy
Taking the derivative with respect to Crp
Be
JCF,
aCT - _/33

(A.99)
~1
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then the derivative with respect to 3y,

0 Cr 0

OCp,

93 =10 0 —-Cp (A.100)
0 0 0

Using the familiar process involving the product rule and chain rule, the force
derivatives with respect to the vehicle states can be assembled. The rotor moment

derivative solely depends on blade flapping. Defining a moment vector as:

M,
M, = " (A.101)

M,

Yh

yields a derivative with respect to blade flapping of:

001
OM, —&Kﬁ (A.102)

W2 "o 1 0

A.1.10 Dimensional Derivatives - Rotor Speed
The nondimensionalizing terms are functions of rotor speed and must also be

taken into account. A generic rotor force K can be written as:
K = pAVZRCxk (A.103)

leading to the derivative:

oK ICk
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Secondly, a generic rotor moment J written as:

J = pAVZRC, (A.105)
can be differentiated as:
oJ oC;

A.1.11 Controls
Control inputs are mapped to the individual rotors to create desired forces and

moments in an efficient way. The right rotor controls depend on the inputs as:

10 — Dy, 0
96, 110 0 0 0
u 0 1 0 1
00 — (1 — Dy,) 0]
The left rotor’s control derivative is given by:
10 D, 0
9, 110 0 0 0
Y 0 1 0 —1
0 0 —(1—Dg,) O

A.2 Positive Semidefiniteness of A”QA
Let @ € R™ " be a positive semidefinite (PSD) symmetric matrix. There exists

an eigenvalue decomposition of @) in the form of:

Q = PAPT (A.109)
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where P € R™" is composed of orthogonal eigenvectors and A € R"*" is a diagonal
matrix of eigenvalues. Since @) is PSD, its eigenvalues are non-negative and the

square root of A can be taken:

1

Q= (PA?) (A%PT) (A.110)
Let y € R be a function of z € R™ and be defined as:
y=a" ATQAz (A.111)
where A € R™™ is of generic value. Equation (A.111) can be rewritten as:

y=a AT (PA%) (A%PT) Az (A.112)

Let z € R™ be defined as:
2= (A%PT) Az (A.113)

If z is chosen such that it is a singular value of A or any eigenvalues of () are zero
then z may equal zero but it will remain non-negative. Equation (A.112) can be

rewritten as:

T (A.114)

@

Il
R
I

showing that:

y>0V zeR" (A.115)

and proving that:
ATQA >0 (A.116)
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