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ABSTRACT

Ramjet flowpath miniaturization is a potentially useful technology for integration into

munitions to increase range, accuracy, and lethality. The emphasis of this effort is to

numerically characterize the performance of a miniature hydrogen-fueled and

ethylene-fueled ramjet flowpath during Mach 3 and Mach 3.5 sea-level flight. The effect

of geometric scale on ramjet performance is evaluated using high-fidelity RANS CFD

models. Sensitivity to nonequilibrium laminar and turbulence-limited chemistry, and

transitional turbulence treatments are evaluated. The physical sources of small scale

performance limitations are identified for both fuel types. Finally, flowpath integration for

small-scale applications is briefly addressed.
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1. Introduction

1.1 Background and Motivation

Advancements in scalable, adaptable munition systems are being sought by the

United States Army (USArmy, 2017). Whether being fired from UAVs or hand-held guns,

there is interest in development of faster, more lethal, more accurate, and longer range

munitions. Drones with the ability to have guns mounted and fired from them have been

developed by Duke Robotics Inc., as shown in Figure 1.1. These devices ensure the safety

of soldiers when used as a remotely operated device, and offer a quick and efficient form

of handling potentially dangerous situations (Duke-Robotics, 2017).

Figure 1.1  TIKAD Drone.

Traditional artillery shells are propelled using explosive gunpowder and percussion

caps, and are not self-propelled. The velocity of the unpropelled shell velocity decreases

during the subsequent flight. By integrating a fuel and oxidizer within the artillery shell to

allow self-propulsion, there is a possibility for maintaining velocity during flight.

Raytheon has developed the Pike munition system, shown in Figure 1.2, which integrates
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a rocket motor in the artillery shell of a hand-held gun to propel the projectile at increased

velocities (Raytheon, 2015). A drawback of this type of bullet is the need to carry oxidizer

on board which would limit performance due to increased weight.

Figure 1.2  Rocket-powered Pike munition.

To overcome limitations of rocket-powered munitions, experiments have been

conducted to test feasibility of solid-fuel ramjet (SFRJ) motors (Dionisio and

Stockenstrm, 2001). Ground tests indicate a specific impulse (Isp) value of 1111 seconds

with SFRJ-powered munitions (Stockenstrm, 2001). Nordic Ammunition Company

(NAMMO) has reported successful integration of SFRJ motors in artillery shells (Figure

1.3), and plan to begin flight tests in 2020 (Judson, 2018). Although performance of SFRJ

demonstrates a vast improvement over the fuel efficiency of rocket motors, there is no

available evidence that it would be efficient at much smaller geometric scales, on the order

of a few inches in length. SFRJ projectiles at miniature scales could prove difficult to
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implement, given the relatively short time frame for vaporization, mixing, and ignition of

solid fuel grain. A ramjet projectile using gaseous fuels like hydrogen (H2) and ethylene

(C2H4), or liquid propellants like JP-7, may be a valuable alternative at smaller geometric

scales, as the reduced mass might provide higher thrust and better efficiency.

Figure 1.3  SFRJ developed by NAMMO, on display at Eurosatory Expo, 2018.

1.2 Ramjet Fundamentals

The concept of a ramjet engine was proposed by Albert Fono and Rene Lorin in the

early 20th century (Gilreath, 1990). A ramjet is a type of air-breathing engine that utilizes

dynamic air pressure created by the moving object to increase pressure levels inside the

engine without the use of moving parts, i.e., “ram effect.” A basic ramjet engine consists

of three distinct regions, as shown in Figure 1.4:

1. Inlet: Also known as the diffuser, the inlet compresses and diffuses incoming

supersonic air to subsonic speeds through a system of oblique and normal shocks.



42/19/2019 Ramjet_operation.svg
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Figure 1.4  Schematic of a Ramjet Engine.

2. Combustion chamber: Fuel in solid, liquid, or gaseous state is mixed with the

compressed air at subsonic speeds and ignited. Sufficiently high levels of

temperature and turbulence are required to obtain high efficiency combustion.

3. Nozzle: Expands the burnt fuel-air mixture into the atmosphere at increased

velocity. At small geometric scales, it is expected that the nozzle also acts as an

after-burner due to the reduced mixing time in the combustor.

1.3 Literature Review

1.3.1 Ramjet Experimental Data

Available experimental data for small-scale ramjet performance is scarce possibly

due to security restrictions, as well as limited availability of test facilities. Published data

for a Hydrogen-fueled Ramjet indicates a high Isp of 3600s, and total thrust 2200N for

7.6m long flowpath (Frolov et al., 2017). A solid-fueled 155mm ramjet projectile with

self-propelling capabilities has been tested (Dionisio and Stockenstrm, 2001) and

numerically validated (Stockenstrm, 2001), with performance data indicating an Isp of
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1111s. Although the ramjet flowpath configuration is unavailable for either of these

experimental and numerical tests, the results do provide a target Isp when evaluating the

performance of the ramjet flowpath developed in this thesis.

Ferguson (2003) developed a structurally robust projectile that could handle

aerodynamic loads at M∞ = 4.0. A non-reacting numerical simulation was also performed

in their work, and suggestions were made to improve CFD calculations using reacting

flows.

1.3.2 CFD of Ram/Scramjet Combustion

The non-equilibrium chemical nature of high-speed combustion problems presents a

major challenge, especially when validating existing CFD codes and numerical models.

Edwards et. al. (2010) produced an accurate LES study of the Burrows-Kurkov H2-air

supersonic combustor experiment (Burrows and Kurkov, 1971), using a low-dissipation

piecewise parabolic advection scheme that was able to capture small-scale turbulent

eddies. Engblom et. al. (2005) validated high-fidelity RANS analysis on the same

high-speed combustion experiment. Borghi et. al. (2012) validated RANS analysis of a

dual-mode ramjet using a simplified ethylene-methane-air reaction model, using a

combination of finite-rate chemical kinetics and a turbulence mixing limitation. (Vyas

et al., 2012) validated a RANS model of a dual-mode ramjet using a detailed H2-air

chemical kinetics model.

Chen et. al. (2015) presented different fuel injector location configurations for a

miniature ramjet combustor with a cavity. Using a methane-air one-step chemical

mechanism, seven different injection locations were examined using ANSYS Fluent. The
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authors showed that injecting fuel upstream of the cavity had little effect on the overall

performance of the miniature combustor with respect to the combustion efficiency, and

injecting fuel directly into a cavity failed to produce a sustained pilot flame due to the

fuel-rich nature within the cavity.

1.3.3 Turbulence Model Relevant to Ramjets

A four-equation transition RANS model is used in this thesis, with the expectations

that it will accurately capture laminar-to-turbulent transition at smaller geometric scales.

Langtry and Menter (2006) proposed a turbulence model coupled with the original

Shear-Stress Transport (SST) turbulence model (Menter, 1994) that could accurately

predict the transition from laminar to turbulent flow. It is a four-equation model that

couples the original k−ω variables with two new variables: γ and Reθt . Menter’s four

equation SST transitional model has been validated for moderate Reynolds number

low-speed flows (Granizo et al., 2017), (Willems et al., 2018). Using this transition model,

You et. al. (2012) showed that direct application of this model accurately predicted the

transition in high-speed flows, and a 30% over-estimated heat flux in shock-impingement

cases. Since the main concern in this thesis is the subsonic combustion in a small-scale

combustor in which the flow is expected to predominantly laminar, this model is deemed

appropriate.

It should, however, be noted that Georgiadis et. al. (2011) demonstrated the

limitations within a RANS framework, especially in ramjet mode, citing the inability of

two-equation RANS models to accurately predict turbulent transition and shock-boundary

layer interaction at compression corners of air-breathing intakes. LES is offered as a
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useful alternative but comments are made about the limitations of LES, with respect to the

enormous computational cost and inaccuracies predicting turbulent mixing and

turbulent-chemistry interactions.

1.3.4 Turbulent-Chemistry Interactions for Ramjet Flows

The chemical interactions that take place in the combustor are numerically evaluated

using a commercial CFD code, ANSYS Fluent, which provides four chemical interaction

models (ANSYS-Inc., 2019a):

1. Finite-rate chemistry (FR, no turbulent-chemistry interaction).

2. Finite-rate/Eddy-Dissipation Model (FR-EDM).

3. Eddy-Dissipation Model (EDM).

4. Eddy-Dissipation Concept (EDC).

It should be pointed out that ANSYS’ definition of EDC differs from the definition of

EDC shown in much of the relevant literature, e.g., (Chen et al., 2015), (Edwards and

Fulton, 2015), and (Borghi et al., 2014). This literature defines EDC in the same way that

ANSYS defines the EDM interaction model, in which the turbulent interaction of fuel and

air is governed by the large-eddy mixing time scale, k/ε, first proposed by Magnussen and

Hjertager (1976). ANSYS’ EDC model assumes the reaction occurs in the fine scales, or

the smallest turbulent structures, which can be used when the assumption of fast chemistry

is invalid (Magnussen, 1981), and is therefore not used to evaluate performance

sensitivity. A numerical comparison of meso-scale combustion using the EDC and FR

models is performed in (Minotti and Bruno, 2011), which suggests that EDC performs
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better when using detailed chemical mechanisms, i.e. multi-step reactions. Only the first

three interaction models (FR, FR-EDM, and EDM) are investigated in this thesis.

1.4 Objectives

The objectives of this thesis are as follows:

• Develop a simplified, scalable ramjet flowpath configuration.

• Numerically evaluate performance of ramjet flowpath at different geometric scales

with high-fidelity CFD models, using two different fuels: H2 and C2H4,

• Determine physical cause of performance limitations at the smallest scales.

• Evaluate the sensitivity of performance to the treatment of turbulent chemical

interactions using finite-rate chemistry, the Eddy-Dissipation Model (EDM), and a

combination of finite-rate and EDM.
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2. Numerical Methodology

This chapter presents a detailed description of the ramjet flowpath design,

performance metrics, computational grid and boundary conditions, and the numerical

schemes and models, including the treatment of chemical kinetics.

2.1 Ramjet flowpath design

An archetype ramjet flowpath configuration is developed to operate efficiently at

Mach 3, at sea level conditions (see Table 2.1). It should be recognized that the ramjet

flowpath and fuel injector configuration are simple and non-optimal, but expected to

provide relevant information on scalability effects.

Table 2.1

Freestream Operating Conditions

Property Value

Static Pressure (P∞) 101325 Pa
Static Temperature (T∞) 300 K

Mach number (M∞) 3, 3.5

2.1.1 Inlet

The inlet (or diffuser) section of the ramjet is configured using one-dimensional

compressible flow equations (Anderson, 1982). The first parameter considered is the

deflection half-angle (θ) of the inlet spike. The conical spike half-angle is chosen to

reduce the overall drag of the engine, aid in stagnation pressure recovery, and prevent

unstart. A simple system of two-shocks is expected to be sufficient for the inlet, with a

leading conical shock and a terminal normal shock to achieve desired compression. Based
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on analytical tests done by Ferguson (2003), θ = 17.5◦ is determined to have the best

stagnation pressure recovery for a ramjet at Mach 3, as depicted in Figure 2.2. The

stagnation pressure recovery across the two-shock system is calculated using Equation

2.1, where P0c is the freestream stagnation pressure, Ac and At are known geometric

parameters, and 4.235 is a constant determined using the isentropic Area-Mach number

equation from Anderson (1982). The cowl lip is constrained one unit length downstream

of the cone tip, as shown in Figure 2.1, so that the leading oblique shock hits the cowl lip.

The exit area of the diffuser (Ad) is evaluated using Equation 2.2 for subsonic flow at

Md = 0.3. For Md ≤ 0.25, Ad would be greater than Ac, which is undesirable from an

integration standpoint since it could increase the overall diameter of the munition.

P0c = 4.235∗ AtP0t

Ac
(2.1)

Ad = At

[(
γ+1

2

) −γ+1
2(γ−1)

][
(1+ γ−1

2 M2)
γ+1

2(γ−1)

M

]
(2.2)

Figure 2.1 Baseline ramjet geometry parameters

2.1.2 Combustor and Fuel Injector

The combustor is a straight axisymmetric section where stored fuel is injected, mixed

with the incoming air and ignited. Ideal thrust-to-weight ratio is achieved at L/R = 6
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Figure 2.2  Stagnation Pressure Recovery across the two-shock system (Ferguson, 2003).

(Chen et al., 2015), where L and R are the length and the radius of the combustor,

respectively. Design restrictions limited the flow Mach number at the combustor entrance

(Ad) to as low as Mach 0.3.

The fuel injector exit plane, shown in red in Figure 2.1, is placed along the centerline,

aft of the diffuser section. Fuel is injected at sonic velocity in the axial direction into the

low-speed flame holding region. This generates a shear layer near the fuel injection site

and promotes turbulent mixing and ignition. The ratio of injector area (A f ) to capture area

(Ac) is maintained throughout the geometric scaling process:

(A f /Ac)H2−air = 3.086E−02 and (A f /Ac)C2H4−air = 2.623E−02

High-speed combustion chambers normally utilize cavities that hold pilot flames and

ignite the fuel-air mixture. However, according to Chen et. al. (2015), a cavity is deemed
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unnecessary at small geometric scales. Therefore, a cavity is not used and fuel is injected

directly into the combustor.

2.1.3 Nozzle

The nozzle is configured to isentropically expand to axial flow at the exit. This is

done without increasing the overall diameter of the ramjet flowpath, and therefore

minimizing flowpath drag.

2.2 Performance Metrics

Four parameters are calculated to measure performance of the ramjet at different

geometric scales. To define these parameters, a representation of the control volume,

depicted in red, is shown in Figure 2.3. This control volume accounts only for the mass

flow captured within the cowl body, labeled station i.

Figure 2.3  Control Volume for Performance Calculations.

1. Thrust (F): Thrust is computed as the difference in mass flow-averaged axial

momentum flux and mass flow-averaged pressure forces across the control volume:

F = ṁeue− ṁiui +Ae(Pe−P∞) (2.3)

2. Specific Impulse (Isp): It is a measure of the thrust produced by the engine per unit

weight of fuel injected:
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Isp =
F

ṁ f g0
(2.4)

3. Net Force (FN): It is measured using a summation of the wall forces, both pressure

and frictional. It can also calculated as the difference in mass flow-averaged

momentum flux and mass flow-averaged pressure forces across the entire domain

(see Equation 2.5). Note that the difference between the thrust and net force is the

skin friction drag force along the upper external surface of the flowpath cowl and

the external portion of the conical centerbody.

FN = ṁeue + ṁe0ue0− ṁ∞u∞ +AePe +Ae0Pe0−A∞P∞ (2.5)

4. Combustion efficiency (ηc): Efficiency is defined in this work as the ratio of mass

fraction of a product species at the nozzle exit to the theoretical mass fraction of the

product in the exhaust assuming all the injected fuel is burned completely. For

H2-air and C2H4-air, it is calculated using Equations 2.6 and 2.7, respectively, for

φ-adjusted reactions.

ηH2−air =
YH2O

0.081
∗100% (2.6)

ηC2H4−air =
YCO2

0.0422
∗100% (2.7)

The effects of geometric scale on is inferred by performing calculations of these

metrics at nine different geometric scales. The scales ranged from 1:1 (full-scale 8.1m

flowpath length) to 1:256 ( 3cm flowpath length). All nine scales are shown in Table 2.2.
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Table 2.2

Matrix of Cases for Scale Sensitivity Study

Scale factor Length (m) Injection diameter (mm)
H2-air C2H4-air

1 : 1 8.10E+00 32 27.2
1 : 2 4.05E+00 16 13.6
1 : 4 2.02E+00 8 6.8
1 : 8 1.01E+00 4 3.4

1 : 16 5.06E-01 2 1.7
1 : 32 2.53E-01 1 0.85
1 : 64 1.26E-01 0.5 0.425

1 : 128 6.33E-02 0.25 0.2125
1 : 256 3.16E-02 0.125 0.10625

2.3 Computational Grid and Boundary Conditions

2.3.1 2-D Computational Domain

The 2D computational grid is shown in Figure 2.4. A two-zone grid is used: an

‘inner’ combustor and nozzle section shown in red, and an ‘outer’ section shown in blue.

A grid independence study is performed for the full-scale baseline and the 1:128 scale

geometries, each with a coarse (26,000 cells) grid and a fine (104,000 cells) grid. The fine

grid is constructed by doubling grid resolution in both x and y computational directions.

Results for the full-scale indicate that there is a small 1.6% difference in F and Isp, as

shown in Figure 2.5(a). The study conducted for the 1:128 scale show that the results

change by 0.29% (see Figure 2.5(b)). Consequently, since the fine grid does not

significantly improve accuracy, the coarse grid has been used in the subsequent

investigation for computational efficiency. A dimensionless wall distance value (y+) of 2
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is maintained to capture boundary layer along the walls for all scales, which results in

∆s = 1E−06m for the 1:1, and ∆s = 7.8E−09m for the 1:128 scale.

Figure 2.4 Coarse computational grid.

(a) Baseline. (b) 1:128 scale.

Figure 2.5 Grid independence study for (a) Baseline and (b) Small-scale 1:128.

2.3.2 3-D Computational Domain

The 2-D calculations provide a preliminary investigation to the effects of scale.

However, turbulence cannot be accurately characterized using 2-D simulations. Therefore,

to accurately predict turbulent effects along the flowpath, a three-dimensional grid is

developed. The grid is a 30◦ pie-section consisting of 1,528,160 cells, revolved from the

2-D grid described above, except for the region immediately downstream of the injection
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port. The 2-D grid is revolved using 41 points along the 30◦ circumferential arc. Isometric

projection of the grid is shown in Figure 2.6.

Figure 2.6  Pie section of three-dimensional grid that consists of structured 
and unstructured blocks.

Figure 2.7  Unstructured prism block downstream of fuel injection port.

The region downstream of the injector is treated using an unstructured block

consisting of triangular prisms concentrated near the fuel injection port, as shown in

Figure 2.7. The fine grid near injection site allows for improved evaluation of injector jet
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turbulence than in the 2-D grid. Wall spacings are determined such that y+ at any point

along the walls doesn’t exceed a value of 5. Simulations are performed only for C2H4-air,

and only at the small 1:64 geometric scale, as that is the size of most interest to develop a

munition. The 3-D pie-section potentially provides a more realistic characterization of the

injected flow and resulting turbulence levels within the ramjet flowpath than the 2-D

model (Ouellette, 2012).

2.3.3 Boundary Conditions

The boundary conditions for the computational grid is shown in Figure 2.8, and

values at each boundary are illustrated in Table 2.3. Each boundary condition is discussed

below.

Figure 2.8 Boundary Conditions

• The inlet of the entire domain is a Velocity Inlet, with the supersonic velocity, the

static temperature and the static pressure maintained constant. For C2H4 the

free-stream conditions are set at Mach 3.5, since it was determined the stagnation

temperature for Mach 3 flow was not sufficient to auto-ignite the fuel in the

combustor.



18

• The fuel injector exit is a Pressure Inlet for the 2-D cases. The fuel inflow

stagnation pressure is maintained high enough (≥ 10MPa) that the the rise in

stagnation pressure on initiation of combustion, due to the fixed-geometry nozzle

downstream of the combustor, doesn’t result in reversed flow through the fuel inlet.

For the 3-D cases, the fuel inlet is a Velocity Inlet, where sonic velocity is

maintained constant at a pressure that is slightly higher (= 4MPa) than that of the

static pressure rise due to combustion. Stagnation temperature is typical sea-level

value at 300K. Injector exit values are indicated in Table 2.3.

• The ramjet body is made of adiabatic, no-slip walls. Flight duration for the munition

is assumed to be short enough that the walls do not have sufficient time to heat

significantly.

• The upper wall of the domain is modeled as an inviscid wall to prevent loss of mass

flow at the domain outlet.

• The lower boundary for the 2-D grid is the axis of symmetry.

• For the 3-D grid, the lower boundary is an inviscid wall, and the walls of the pie

section are symmetry planes.

2.4 Numerical Schemes and Models

The coupled-implicit RANS equations are solved simultaneously using the

density-based solver in ANSYS Fluent (ANSYS-Inc., 2019b). The inviscid flux scheme

chosen is the AUSM scheme, presented in (Liou and Steffen Jr., 1993), with second-order

upwind spatial accuracy and local time-stepping. The courant number (Courant et al.,
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Table 2.3

Initial Conditions

Air Inlet (M∞ = 3)

U∞ 1057 m/s
P∞ 101325 Pa
T∞ 300 K
YN2 0.79
YO2 0.21

Air Inlet (M∞ = 3.5)

U∞ 1215 m/s
P∞ 101325 Pa
T∞ 300 K
YN2 0.79
YO2 0.21

H2 Pressure Inlet
P0H2

11.37 MPa
T0H2

300 K
(Min j = 1, φ = 0.2) YfH2

1

2-D C2H4 Pressure Inlet
P0C2H4

10.77 MPa
T0C2H4

300 K
(Min j = 1, φ = 0.2) YfC2H4

1

3-D C2H4 Velocity Inlet
UC2H4 332 m/s
TC2H4 267 K

(Min j = 1, φ = 0.2) YfC2H4
1

1956), which relates the time step size, cell size, and velocity, is set as 1 to drive the

solution towards steady-state.

The fully turbulent SST model (Menter, 1994) has been validated for high-speed

reacting flows (Georgiadis et al., 2011) (Engblom et al., 2005). It is a robust 2-equation

model for µt that combines the k−ω model near the walls and the k− ε model in the

free-shear flow regions, with a blending function that transitions between the two. At the

smaller geometric scales, it is expected that the onset of turbulence is delayed further

downstream along the walls of the ramjet diffuser, and it is crucial to the transition from

laminar to turbulent flow for prediction of mixing and combustion.
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An extension to the SST turbulence model was proposed by adding two transport

equations used to predict the transition from laminar to turbulent boundary layer (Menter

et al., 2006). Of the two new turbulence variables that arise in the model, the first variable

γ predicts the onset of turbulence, and the second variable Reθt estimates the length of

transition using empirical correlations. γ is set to 0 in the freestream and fuel injector,

assuming that there is no onset of turbulence at the respective inlets. Reθt is a function of

the turbulent intensity in the freestream, and is required by the γ equation inside the

boundary layer regions of the flow. Essentially, Reθt is a transported scalar that models the

local turbulent transition at every point in the flow-field. Turbulent parameters for fuel and

air inflow boundaries are specified in Table 2.4. The values for k and ω are selected based

on a previous study (Liou and Shih, 1996) and numerical investigation of the fuel injection

flowpath presented in the Results chapter.

Table 2.4

Turbulent Parameters for 2-D Inlet Boundary Conditions

Fuel Inlet
γ 0
k 1000 m2/s2

ω 1.00E+07 s−1

Air Inlet
γ 0
k 1 m2/s2

ω 1 s−1

The SST-transition (SST-Tr) model, developed and validated for subsonic and

transonic regimes (Langtry and Menter, 2009), has been used in the present study. For

hypersonic flows, (Frauholz et al., 2015) showed that the separation bubble in scramjet

intakes can be accurately predicted using this model. When combined with the Reynolds
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Stress Model, the transition model outperformed the fully turbulent SST computations for

a variety of intakes, showing better predictions for pressure and heat loads on the intake.

Although the transition is predicted well for hypersonic flows, it has been suggested that

improvements are required within the model since it over-predicts heat flux by nearly 30%

in shock-impingement cases (You et al., 2012). The transition model was deemed

appropriate for the current study despite this drawback, since the cases considered in this

thesis deal with the separation bubble in the intake, and largely subsonic flow within the

combustor section.

Two fuels are evaluated: H2 and C2H4. Global chemical kinetics models are selected

for the laminar finite-rate reactions for each fuel. H2-air is a 4-species, single reaction

model, and C2H4-air is a 5-species, single reaction model. Values for the Arrhenius

reaction rates are given in Table 2.5 (ANSYS-Inc., 2019b). A is the pre-exponential factor,

b is the temperature exponent and Ea/Ru is the activation temperature. The forward

reaction rate constant is calculated as k = AT bexp
Ea

RuT , where Ru is the universal gas

constant and units of the activation temperature and the pre-exponential factor are K and

m3/kgmol-s, respectively.

Table 2.5

Global kinetics Arrhenius reaction rates for H2-air and C2H4-air reactions

Reaction A b Ea/Ru

H2 +0.5O2 +3.76N2 −→ 2H2O+3.76N2 9.87e+08 0 3726

C2H4 +14.28(0.21O2 +0.79N2)−→ 2CO2 +2H2O+3.76N2 1.125e+10 0 15,098
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Unstart of a ramjet engine is a phenomenon in which the normal shock formed in the

nozzle moves upstream into the diffuser and ‘chokes’ off the flow entering the inlet throat

due to insufficient intake compression, leading to a sudden reduction in performance. It is

usually caused by an increase in stagnation pressure downstream of the inlet throat at

higher equivalence ratios (φ). To evaluate the sensitivity of the flowpath to φ, a range of

values of φ is utilized for analysis, starting from 0.1 with increments of 0.05. It is

observed that the ramjet tended to unstart at φ≥ 0.25. Therefore, φ is restricted to a value

of 0.2 in this thesis. This sensitivity to φ is presented in the results chapter.

The reactions are modeled using three chemical interaction schemes: (i) laminar

finite-rate chemistry (FR); (ii) turbulence-limited Eddy-Dissipation Model (EDM); and

(iii) a combination of EDM and laminar finite-rate chemistry (FR-EDM), in which the

minimum rate is used to limit the reaction. EDM is often referred to as Eddy-Dissipation

Concept (EDC) like in (Edwards and Fulton, 2015) and (Borghi et al., 2014). The model

was first proposed by (Magnussen and Hjertager, 1977). It accounts for turbulent mixing

of the fuel and oxidizer at the smallest turbulent Kolmogorov scales, and puts an

additional turublence limit on the Arrhenius reaction rates. ANSYS Fluent’s EDC model

utilizes an extended equation that accounts for detailed reaction mechanisms (Magnussen,

1981), and is not used in this work.

The net production rate of the species for a given reaction in the EDM mechanism is

given by the smaller limiting value of equation 2.8 and 2.9, where: i and j indicate species;

r indicates the reaction; ν
′
i,r is the stoichiometric coefficient of i in r; YP is the mass

fraction of the product species; YR is the mass fraction of reactant species; k/ε is the

large-eddy mixing time scale; and A = 4.0 and B = 1e+10 are empirical constants. When
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turbulence is present, i.e. k/ε > 0, the reaction proceeds and an ignition source is not

required to initiate combustion. For non-premixed flames, presence of turbulence assumes

“mixed is burned,” i.e. complete fuel-air mixing at every turbulent scale burns without an

ignition source. The empirical constant B controls the presence of “hot products” in the

reaction zones, and it is set large enough to ensure that the lack of presence of hot

products does not limit reaction rates.

Ri,r = ν
′
i,rMw,iAρ

ε

k
min

R

( YR

ν
′
i,rMw,i

)
(2.8)

Ri,r = ν
′
i,rMw,iABρ

ε

k

Σ
P
YP

Σ
j
ν
′′
j,rMw, j

(2.9)

Thermodynamic properties are calculated in a typical manner for reacting flows.

Specific heat capacity (Cp) is calculated using available curve fits from (McBride et al.,

1993), assuming thermodynamic equilibrium, using a three-coefficient formula as in

Equation 2.10, to solve for dynamic viscosity µ (Sutherland, 1893). Values and definitions

for each coefficient is given in (ANSYS-Inc., 2019a).

µ = µ0

( T
T0

)3/2 T0 +S
T +S

(2.10)

Thermal conductivity is solved using kinetic theory, as in equation 2.11

(ANSYS-Inc., 2019a).

k =
15
4

Ru

MW
µ
[ 4

15
CpMW

Ru
+

1
3

]
(2.11)
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Turbulent Prandtl number (Prt) is the ratio of turbulent momentum transfer to

turbulent heat transfer. Turbulent Schmidt number (Sct) is the ratio of turbulent

momentum transfer to turbulent mass transfer. For high speed combustion problems,

typical values are Prt = 0.7 and Sct = 0.5 (Edwards et al., 2010). High-speed combustion

is highly sensitive to Sct and small changes in the value could either lead to unstart or

flame-out conditions (Georgiadis et al., 2014). Prt , on the other hand, doesn’t have as

much of a pronounced effect, as shown by Engblom et. al. (2005).

2.4.1 Large Eddy Simulations

To maintain the isotropic nature for an LES grid within the 30-degree pie section, a

simple calculation was carried out to determine the total number of cells across x-, y-, and

z-directions. It is found that to accurately capture boundary layer while maintaining y+ of

10:1:10 in the x:y:z directions respectively, a grid size of more than 200-million cells is

required. An attempt to evaluate the computational expense of an LES simulation at small

geometric scales based on Kolmogorov scale considerations is described in the results

section.
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3.   Results and Discussion

2-D and 3-D simulations are performed on ERAU’s Vega supercomputer. The 2-D

simulations used 2 nodes and 72 cores, and the average simulation time for 100,000

iterations on the 2D grid was 2 hours with chemical reactions. For the 3D grid, the

average simulation time for 100,000 iterations on 4 nodes and 144 cores was 35 hours.

Convergence is obtained when the solver shows residual drop of at least 3 orders of

magnitude for all RANS equations, and nozzle exit mass flow and mass flow-averaged

velocity converge to within .01%.

3.1 Sensitivity to Equivalence Ratio

Preliminary set of results, such as shown in Figure 3.1, demonstrate the unstart

phenomenon for higher values of φ using hydrogen as fuel. The steady state pressure

contours for increasing φ from 0.2 to 0.25 are displayed. In the geometric 1:1 scale for

H2-air, the pressure rise in the combustion chamber for φ of 0.2 is sufficiently handled by

the intake compression. A steady increase to φ of 0.25 results in an unstart in which the

normal shock is pushed out of the internal flowpath and chokes the inlet, causing a

subsequent pressure drop within the combustor. At this point, even with the reactions

turned off, the normal shock is never again fully swallowed by the diffuser throat,

confirming that the engine has fully unstarted. Consequently, to mitigate potential for

unstart, all cases considered herein possess φ = 0.2, for both H2 and C2H4 fuels.
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Figure 3.1 Sensitivity of flowpath to φ = 0.2 (top) and φ = 0.25 (bottom).

3.2 Fuel Injection Turbulent Parameters

To estimate fuel inflow turbulence in a small scale injector, a separate study of the

fuel injector flowpath is conducted.

The sonic fuel injector is set up as a 2-D axisymmetric flowpath with a short subsonic

section at M = 0.3 leading up to a nozzle that accelerates the flow to M = 1, followed by a

long sonic section to develop a turbulent boundary layer. The inflow boundary conditions

for the CFD calculation are shown in Table 3.1, assuming isentropic flow throughout the

injector, ReD of the flow at the injector outlet is 1.056E+07.
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Table 3.1

Inflow Conditions for Fuel Injector

Pressure Inlet (Min = 0.3)

P0in 4 MPa
T0in 300 K

YC2H4 1
k 1 m2/s2

ω 1 s−1

γ 0

Contours of turbulent variables, k and ω are plotted in Figures 3.2 and 3.3,

respectively, showing the development of turbulence in the injector pipe. Using data from

this study, and from previous studies of turbulent flow in a tunnel at transonic speeds

(Liou and Shih, 1996), fuel is injected and evaluated for sensitivity to inflow k at two

different levels of k: 100 m2/s2 and 1000 m2/s2; at constant ω = 1.0E+07 s−1. This is

expected to provide a clear picture of the dependence of fuel-air mixing and combustion

on turbulent fuel inflow, and offers preliminary insight to dependence of mixture ignition

over a realistic range of inflow turbulence. Range of k levels at the injector exit matches

well with previous experiments and CFD data shown by Liou and Shih (1996) for

transonic turbulent flow at high Reynolds numbers.

Figure 3.2 Development of k in the injector.

To confirm that the flow through small geometric scale injectors is turbulent, an

analytical calculation is carried out for expected Reynolds number in the injector pipe. A
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Figure 3.3 Development of ω in the injector.

Figure 3.4 Reynolds number vs scale factor for C2H4 and H2 fuels.

plot of ReD vs scale for different injector sizes and H2 and C2H4 fuels is plotted in Figure

3.4, where ReD is calculated using the diameter of the fuel injector, dynamic viscosity, and

sonic velocity of the pressurized fuel, as in equation 3.1. Flow in a pipe is considered

turbulent at ReD > 4000, and the analytical and numerical solutions indicate that the fuel

inflow should be turbulent at the injected pressure and temperature.

ReD =
ρin juin jD

µ f uel
(3.1)
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3.3 Geometric Scaling (2D)

This section analyses the effects of geometric scale on the performance metrics

described in Chapter 2 for both hydrogen and ethylene fueled 2-D cases.

3.3.1 H2-air

Figure 3.7 shows the temperature contours for H2-air at 1:1, 1:8 and 1:128 scales.

With a specific impulse that ranges between 2500 and 4000 seconds, the performance

levels agree with previous experiments conducted in (?), which showed F = 2200N and

Isp = 3600s. The performance of the engine from geometric scales 1:1 to 1:64 sees no

significant reduction for the hydrogen-fueled case. The performance metrics see a uniform

drop across the first seven scales, as shown in Figures 3.5(a), 3.5(b), 3.6(a), and 3.6(b).

The time required to mix and ignite the fuel is apparently adequate to develop a distinct

diffusion flame as is seen in Figures 3.7(a) and 3.7(b). However, at the 1:128 scale there is

no lifted diffusion flame (Figure 3.7(c)) as the turbulent mixing is significantly limited by

the lack of fuel residence time (τr). A single molecule of hydrogen fuel continuously

traveling at Mach 1 requires 3.4ms to move from the fuel injector to the nozzle exit in the

1:1 case, while it has just 0.027ms in the 1:128 case.

Figure 3.8 shows the H2O mass fraction contours for H2-air cases. It is observed that

the cases 1:1, 1:2, 1:4, 1:8, 1:16, 1:32, and 1:64, all produce similar drop in product mass

fraction exiting the nozzle, but 1:128 scale shows a significant reduction in product mass

fraction at the nozzle exit. This can be attributed to the limited τr. Despite the large

reduction in performance metrics in the 1:128 case, the ramjet is shown to still be able to

maintain a positive FN . This suggests the self-propelling capabilities of the
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(a) Variation of F with scale. (b) Variation of FN with scale.

Figure 3.5 Effects of geometric scale on F and FN for H2-air and C2H4-air.

(a) Variation of Isp with scale. (b) Variation of ηc with scale.

Figure 3.6 Effects of geometric scale on Isp and ηc for H2-air and C2H4-air.

hydrogen-fueled ramjet flowpath is possibly scalable to the order of a few centimetres in

length.

Isp for the H2-air ramjet flowpath (Figure 3.6(a)) shows a significant improvement

versus SFRJ projectiles, which had values of 1111s (Dionisio and Stockenstrm, 2001).
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Figure 3.7  Temperature Contours for H2-air reaction, a) Full-scale baseline, b) 1:8 scale,
c) 1:128 scale
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Figure 3.8  H2O Mass Fraction Contours for H2-air reaction, a) Full-scale baseline, b) 
1:8 scale, c) 1:128 scale

The H2-air case Isp is also consistent with that measured in the experiment by Frolov

et. al. (2017) with φ = 0.25. The monotonic decrease in ηc and Isp follow very similar
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trends, drawing a relation of the ramjet performance to its combustion efficiency.

Similarly, F and FN follow similar trends and remain positive even at the smallest scales,

implying the hydrogen-fueled ramjet self-propelling capabilities are scalable to the orders

of six centimetres in length. However, there are storage and injection limitations at these

scales. Hydrogen requires enormous pressure for storage which is a logistical challenge

when integrating the ramjet into a bullet shape of a sniper caliber.

3.3.2 C2H4-air

It was observed that the combustor inflow stagnation temperature is insufficient for

auto-ignition of C2H4 at Mach 3 freestream flow. Note that the activation temperature for

the C2H4-air reaction is 15,098K, almost five times higher than that of H2-air (3726K). An

increase to Mach 3.5 increased the combustor stagnation temperature sufficiently beyond

the auto-ignition temperature of the fuel-air mixture. By increasing the fresstream

velocity, overspeeding the engine also offers an additional measure to prevent engine

unstart (Veillard et al., 2008).

Scaling effects for ethylene fuel shows a distinct lifted diffusion flame across every

scale from 1:1 to 1:128, as shown in Figure 3.9. This is in contrast to the hydrogen cases,

and the difference is attributed to a four-fold increase in τr for the fuel, based on the

reduced speed of sound of the injected fuel, as well as the increase in stagnation

temperature at Mach 3.5. Contours of mass fraction of CO2 are shown in Figure 3.10, and

products leaving the domain are also more consistent across the geometric scales than for

H2-air at Mach 3. The scale effects for C2H4-air at φ = 0.2 are minimal, compared to that

of H2-air. Isp at every scale shows results close to the 1111s in the SFRJ experiment by
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Dionisio and Stockenstrm (2001). The performance metrics in Figures 3.5(a) 3.5(b) 3.6(a)

and 3.6(b) suggest that small scale ramjet projectiles can potentially be developed using

C2H4 fuel.

Figure 3.9  Temperature Contours for C2H4-air reaction, a) Full-scale baseline, b) 
1:8 scale, c) 1:128 scale
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Figure 3.10  CO2 Mass Fraction Contours for C2H4-air reaction, a) Full-scale baseline, b) 
1:8 scale, c) 1:128 scale

3.3.3 Effects of Geometric Scale on Turbulent Transition

Turbulence plays an important role in initiating mixing and auto-ignition. The shear

layer formed by sonic injected fuel and subsonic air enhances turbulent mixing. The EDM
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chemical interaction model is heavily reliant on this turbulent shear layer. To investigate

the level of turbulence near the injection region, maximum turbulent kinetic energy (k or

TKE) near the injector region is plotted to show effect of geometric scale in Figure 3.11(a).

It is apparent that a reduction in geometric scale does not reduce peak levels of turbulence

near the injection port, and hence does not cause lack of combustion at the smallest

geometric scales. The relative lack of turbulence in C2H4-air compared to H2-air must be

noted in Figure 3.11(a). Sonic ethylene enters the combustor at a velocity 332 m/s, which

is approximately four times lower than that of sonic hydrogen, which enters at 1206 m/s.

This reduction in velocity results in smaller strain rates and appears to be the primary

cause of reduced turbulence levels produced in the C2H4-air interaction. An in-depth

study of small scale injectors is expected to show realistic levels of inflow turbulent data.

(a) Variation of k with scale. (b) Distribution of k along diffuser walls at dif-
ferent scales.

Figure 3.11 Effects of geometric scale on turbulence levels.

Turbulent kinetic energy (k) along the intake and diffuser walls up to the entrance of

the combustor for all geometric scales is shown in Figure 3.11(b). A common trend is the

re-laminarization of the flow downstream of the normal shock just downstream of the
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throat (x/scale factor = 1.5), across all geometric scales. The flow is laminar throughout

along the walls from 1:16 to 1:128 scales. The boundary layer is tripped again only at the

entrance of the combustor, as observed by the spike in k at the combustor entrance at

x/scale factor = 4 in Figure 3.11(b). The re-circulation zone at the diffuser exit and

combustor entrance acts as a flameholder.

Figure 3.12  Shock-Boundary Layer Interaction causing inlet unstart at 1:256 
scale (bottom), compared to the started 1:128 scale (top)

The laminar nature of the flow at the geometric scales lower than 1:16 combined with

the shock impingement off the cowl lip, causes flow separation at the inlet throat due to

the laminar nature of the flow. Below the 1:128 scale, this effect becomes prominent and

prevents critical mass flow from passing into the diffuser and combustor sections, leading
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to an inlet unstart, as shown in Figure 3.12 for Mach 3 H2-air. The performance at the

1:256 scale is not evaluated due to this phenomenon. A high-fidelity LES simulation is

recommended to observe the growth of the separation bubble at the inlet throat.

3.4 3-D Flowpath Analysis

The 3-D model should provide a more realistic representation of the ramjet

combustion performance. As designed earlier, the model is setup as a 30-degree

pie-section with a port injection aft on the diffuser rearward-facing step. More refined grid

near the injection port is expected to more accurately model fuel-air mixing and

combustion.

3.4.1 Sensitivity to Chemical Kinetics Model

The sensitivity of the flowpath performance to chemical kinetics models is evaluated

in this subsection using three chemical approaches described in the Methodology chapter.

Table 3.2 compares the values of F , Isp and ηc at different levels of fuel inflow turbulence

using the three different chemical interaction models. Figure 3.13 shows the temperature

contours for the three kinetics models with fuel injected at k = 1000 m2/s2. The laminar

FR model produces the highest temperatures inside the combustor, as well as the highest

Isp. Raising the inflow Mach to 3.5 ensures that the stagnation temperature is well above

the reaction activation temperature. The FR model takes time to ignite, but once ignited,

the flame propagates upstream and produces a distinct diffusion flame.

The EDM model ignites the earliest, but it produces the lowest temperatures in the

combustor as well as the lowest Isp and lowest efficiency of all three models. Turbulence
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Figure 3.13  Temperature contours of (a) FR, (b) FR-EDM, (c) EDM

is limited further downstream of the injector and limits the overall performance of the

ramjet flowpath.

The FR-EDM model results suggest that the chemical reaction rates are smaller than

the turbulent mixing and reaction rates near the flameholder, suppressing ignition in that
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Table 3.2

Comparison of performance metrics for different chemical interaction models

Reaction Model Fuel inflow k(m2/s2) Isp (s) F (N) ηc (%)

FR 1000 966.59 36.001 91.22%

EDM
1000 811.78 30.24 83.63 %
100 811.86 30.24 83.56%
1 796.58 29.67 82.64%

FR-EDM 1000 965.99 35.98 89.89%
100 963.6 35.89 89.89%

region. The flow ignites further downstream, similar to the FR model, but never produces

as high a temperature as the FR model. This suggests that the turbulent mixing and

reaction rates are limiting further downstream in the combustor, similar to the EDM

model.

To visualize the different reactions taking place within the combustor, Figures 3.14

and 3.15 show the chemical reaction rates and turbulent mixing reaction rates,

respectively, for the FR-EDM model with inflow k = 1000 m2/s2. The contours further

suggest that the turbulent reaction reactions are larger in the flameholder region but tend to

dissipate further downstream of the combustor, at which point the chemical reaction rates

are larger.

The combustion efficiency of each chemical kinetics model is shown in Figure 3.16.

Mass flow-weighted average of CO2 mass fraction is integrated at 100 streamwise

locations from the combustor entrance to the nozzle exit, and ηc is calculated using

Equation 2.7. All of the models predict good combustion efficiency between 80% and

92% The FR model performs the best at Mach 3.5. The EDM model performs least
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favorably, with a 9% lower ηc than the FR and 6% lower than the FR-EDM model. The

FR-EDM model shows a change of < 2% when compared to the FR model.

Figure 3.14 Kinetic Reaction Rate (KRR) for the FR-EDM model.

Figure 3.15  Turbulent mixing-limited reaction rate (TRR) for the FR-EDM model.
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Figure 3.16  Combustion efficiency for different chemical interaction models at the 
1:64 scale.

3.4.2 Sensitivity to Fuel Inflow k

Based on the evaluation of CFD in the fuel injector flowpath in Section 3.2,

100≤ k ≤ 1000 m2/s2 is a realistic range of values for k at injector exit plane. The EDM

and FR-EDM models are reliant on levels of turbulence for combustion. Contours of YCO2

are shown in Figures 3.17 and 3.18 for the EDM and FR-EDM interaction models,

respectively, at fuel inflow k of 100 m2/s2 and 1000 m2/s2, and ω = 1.0E+07 s−1. Results

demonstrate negligible sensitivity when comparing the same chemical interaction models,

with < 1% change in the performance metrics, as shown in Figure 3.16 and Table 3.2.

However, with inflow k = 1 m2/s2, there was a significant reduction in performance using

the EDM model as shown in Table 3.2. This indicates that fuel injection requires a higher

level of inflow k (≥ 100m2/s2) for sustained performance levels. The flowpath
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performance is essentially independent of magnitude of inflow k since the shear layer

generates sufficient turbulence for mixing and ignition.

Figure 3.17  Contours of carbon-dioxide for EDM model. (a) k = 100 m2/s2, (b) k = 1000 
m2/s2

Figure 3.19 shows the growth and eventual dissipation of k downstream of the

injector port. The shear layer between fuel jet and recirculating air increases k to nearly 10

times its injection value before eventually dissipating, raising the turbulent mixing and

reaction rates well above the chemical and reaction rates, which was apparent in Figures

3.14 and 3.15.

3.4.3 High-fidelity CFD calculations

The smallest turbulent scale in any flow is known as the Kolmogorov microscale

(ηκ). At these turbulent scales, k dissipates into heat. For numerical dissipation of k, the
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Figure 3.18  Contours of carbon-dioxide for FR-EDM model. (a) k = 100 m2/s2, (b) 
k = 1000 m2/s2

Figure 3.19  Transport of k within the injection for inflow k = 1000 m2/s2

ηκ field can be calculated using Equation 3.2, where ε is the rate of dissipation of k, and ν

is the kinematic viscosity of air. The RANS model solves for k and ω turbulence variables

and the relation in Equation 3.3 is used to calculate ε, with Cµ = 0.09. Figure 3.20 shows
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XY and YZ slices of ηκ at every cell in the combustor and nozzle sections. An isotropic

grid size of 1.4E-07m would resolve the smallest eddies near the injector in the 1:64 scale.

Figure 3.21 shows the calculated Kolmogorov scale vs scale factor for every geometric

scale using the 2-D results.

ηκ =
(

ν3

ε

) 1
4 (3.2)

ε =Cµkω (3.3)

Figure 3.20  Range of Kolmogorov scales (in m) in the domain for 1:64 scale using 
C2H4 fuel.

An approximation of the grid size required for a DNS calculation for the 1:64 scale at

Mach 3.5, can be calculated. The equations from (Zikanov, 2010) are used to calculate

number of grid points. First, the turbulent Reynolds number is determined using Equation

3.4, where u′ is the root-mean-square free-stream velocity, calculated using Equation 3.5,

and L is the overall length of the computational domain. The number of grid points, N, is

then estimated using the Kolmogorov value using Equation 3.6. The grid size required to

solve for the flow using DNS is 6.13E+15 cells, which is intractable.
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Figure 3.21  Range of Kolmogorov scales for all geometric scales using C2H4 fuel.

Returb =
u′L
ν

(3.4)

u′ = (εL)
1
3 (3.5)

N3 = Re2.25
turb (3.6)

Rather than a DNS, an LES numerical analysis to resolve the small scale eddies near

the injection port and transport of k within the combustor will be useful in evaluating the

ramjet performance.
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4. Integrated Design Considerations

Ferguson (2003) developed a structurally robust projectile using 304 stainless steel

and 7075 aluminum alloy. It was shown experimentally that the ramjet structure could

handle aerodynamic loading at M∞ = 4.0 at an overall length of 7 inches. However, only

non-reacting flows were tested. A CAD model of the ramjet assembly and the fully

assembled ramjet model are shown in Figures 4.1 and 4.2, respectively (Ferguson, 2003).

Figure 4.1 Assembled CAD model showing all parts of the ramjet.

Figure 4.2 Fully assembled ramjet.

The current work suggests that a ramjet propulsion system will be thermally efficient

at geometric scales on the order of a few centimetres in length. To determine if the ramjet

flowpath can be practically integrated into a munition, the outer casing drag (Fdrag,casing)
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of the munition is evaluated using Equation 4.1 and compared to the available positive FN

of the ramjet flowpath at Mach 3.5. Figure 4.3 shows the allowable outer diameter of a

munition casing, D (normalized by munition diameter, Dram), versus geometric scale. The

plot indicates that the ramjet flowpath can be integrated into a munition casing with an

annular diameter 1.5 times greater than the diameter of the flowpath. The casing provides

structural integrity as well as room for pressurized fuel storage. Since the ramjet flowpath

accounts for the overall internal drag, the external drag is evaluated for the annular ramjet

casing, shown in gray in Figure 4.4. The inviscid drag coefficient for the outer casing is

evaluated using Equation 4.2 by integrating the axial component of the pressure forces

over the annular casing, based on oblique-shock theory. The value of CD,casing is

approximately 0.06.

Fdrag,casing = FN =
1
2

ρu2
∞ScasingCD,casing (4.1)

CD,casing =
Fdrag,casing

q∞Scasing
(4.2)

A first order calculation for flight time can be made. At the 1:64 scale, the volume of

pressurized C2H4 stored at 500 bar is equal to 21 mL. Making an assumption that 80% of

the volume is used for fuel storage, the total mass of C2H4 stored is 11g. At a constant fuel

injection φ of 0.2, the self-propelling capability of the munition lasts as long as 3.23s. At a

constant flight velocity of M∞ = 3.5 at sea-level, the extended range of the ramjet-powered

munition is 3.9km.

The flowpath and casing shape at the 1:64 scale is compared to the G7 ballistic

projectile’s shape (Litz, 2016) in Figure 4.5. The G7 profile is a standard for long-range
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Figure 4.3 Ratio of diameters for different scales

Figure 4.4 Ramjet flowpath (red) integrated within an outer munition casing (grey).

projectiles and is used here to compare with the diameter-to-length ratio of the

ramjet-powered munition shown in Figure 4.4. It is observed that the overall munition

diameter is significantly lower than the G7, implying that the outer casing diameter for the

flowpath can be further increased to accommodate a larger volume of fuel, increasing

overall range and flight time of the proposed flowpath. The latter would likely require

operation at a slightly large φ to compensate for this drag increase.
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Figure 4.5 Current ramjet-powered munition (top) compared to standard G7 projectile
(bottom).
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5.   Conclusion

A preliminary numerical investigation was performed to determine the effects of

geometric scale on the performance of a simplified 2-D axisymmetric ramjet flowpath

using two different fuels: H2 and C2H4. It was found that the ramjet flowpath could be

reduced to a size as small as nearly 5cm long, without a significant loss in performance

metrics (i.e. F , Isp, ηc) for either fuel. The freestream Mach number (M∞) was maintained

at 3.0 for H2, but increased to 3.5 for C2H4 so that the fuel could auto-ignite. Ramjet

intake unstart due to shock-boundary layer interaction of the laminar flow along the

conical centerbody was a limiting factor in the geometric scaling process, restricting the

scale factor to no smaller than 1:128.

The 2-D grid was extended to a 3-D 30◦ pie-section, and investigated for

performance limitations at M∞ = 3.5 for the 1:64 scale using C2H4 fuel. It was observed

that extending the grid to 3-D did not significantly reduce performance. The sensitivity to

different chemical interaction models was also investigated using FR, EDM, and FR-EDM

models. All three models produced ηc between 80-92% and Isp between 800-1000s.

Sensitivity of the FR-EDM and EDM chemical interaction models to fuel inflow k was

shown to be negligible for inflow k between 1-1000 m2/s2. The shear layer within the

injected fuel plume generates enough turbulence to ignite the fuel and produce a sustained

diffusion flame. The numerical results, combined with the first order calculations for range

and time, suggests that there is potential for self-propelling small-scale ramjet projectiles.
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