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Abstract 
 

Cancer is one of the leading causes of mortality worldwide. About 44% of all cancer morbidity 

and 53% of all cancer mortality occur in countries with a low to medium Human Development 

Index (HDI). Thus, cancer is rapidly emerging as a serious threat to public health in Africa and 

most especially, sub-Saharan Africa. The International Agency for Research on Cancer (IARC) 

projects that there will be 1.28 million new cancer cases and 970 000 cancer deaths in Africa 

by the year 2030 owing to the increase in economic development associated lifestyles. The 

dominant types of cancer in Africa are those related to infectious diseases such as Kaposi’s 

sarcoma and cervical, hepatic and urinary bladder carcinomas. The main challenge to cancer 

treatment in Africa is the unavailability of efficacious anticancer drugs. This is because most 

developing countries can only afford to procure the most basic anticancer drugs, which are also 

frequently unavailable due to intermittent supplies. This results in patients progressing to more 

advanced cancer states. One way of combating this African problem is to focus on research 

that aims at discovering efficacious and cost effective cancer therapies from available natural 

resources within the African continent. 

This study investigated the potential anti-proliferative activity (against HeLa cervical cancer 

cells) of four plants (Adansonia digitata, Ceiba pentandra, Maytenus senegalensis and Drimia 

altissima) commonly used in the African traditional treatment of malignancies. After in vitro 

bio-assay screening using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide 

(MTT) assay, M. senegalensis root extract (MS-R) and D. altissima bulb extract (DA-B) 

showed anti-proliferative activity against HeLa cervical cancer cells with IC50 values of 25 

μg/mL and 1.1 µg/mL respectively. By possessing the strongest anti-proliferative activity 

among the tested extracts, D. altissima was selected for further studies. Liquid-liquid 

partitioning of the Drimia altissima bulb extract with n-hexane, ethyl acetate, and n-butanol, 

yielded partitions 79a – d, with the n-butanol fraction, 79d, exhibiting the strongest cytotoxic 

activity (IC50 = 0.497 μg/mL). Through High Content Analysis (HCA) screening, fraction 79d 

was found to induce marked early mitotic cell cycle arrest. 

Fractionation of 79d using Diaion® HP-20 open column chromatography and a stepwise 

gradient of reducing polarity (water-methanol-ethanol-ethyl acetate) yielded cytotoxic 

fractions 82b, 82c, 82d and 82e, all with significant anti-proliferative activities at the tested 

concentrations of 0.1, 1.0 and 10 μg/mL. Bio-assay guided fractionation of 82c (the most 
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effective fraction at the lowest tested concentration of 0.1 μg/mL) using Sephadex® LH-20 

open column chromatography and 50% MeOH led to the isolation of compound 3.17. After 

structural elucidation using 1D and 2D Nuclear Magnetic Resonance spectroscopy (NMR), 

High resolution Mass spectrometry (HRMS), Fourier-Transform Infrared spectroscopy (FT-

IR), ultraviolet spectroscopy (UV) and Circular Dichroism (CD), compound 3.17 was 

identified as a novel C-glucosylflavonoid-O-glucoside, 6-C-[-apio-α-D-furanosyl-(1→6)-β-

glucopyranosyl]-4′, 5, 7-trihydroxyflavone (Altissimin, 3.17). Compound 3.17 exhibited a dose 

dependant anti-proliferative activity with an IC50 of 2.44 μM. The mechanism of action for 

compound 3.17 was investigated through cell cycle arrest, phosphatidylserine translocation 

(PS), caspase activation and mitochondrial membrane depolarization. The mechanism of cell 

death elicited by compound 3.17 in HeLa cells was found to involve the induction of M phase 

cell cycle arrest with consequent activation of apoptotic cell death which was evident from 

annexin V staining, mitochondrial membrane potential (∆Ψm) collapse and the activation of 

caspases -8 and -3. 

In silico computational techniques were employed to virtually determine potential biological 

targets of compound 3.17. Target fishing using the Similarity Ensemble Approach (SEA) target 

prediction gave human aldose reductase (hAR, AKR1B1) the highest ranking with a p value of 

2.85 x 10-24, a max Tc of 0.35 and a Z-score of 41.8217. Using AutoDock4 and the AutoDock 

tools suite (ADT), molecular docking of compound 3.17 in the hAR binding pocket was 

successfully achieved with a lower ∆G free energy binding (-9.4 kcal/mol) than that of positive 

control ligand 393 (-8.7 kcal/mol). 

In conclusion, this study identified the genus Drimia and particularly D. altissima as a potential 

source for novel cytotoxic compounds. The discovery of altissimin (3.17), the first flavonoid 

glycoside to be isolated from D. altissima, enquires into the possible existence of similar 

compounds within the species. In addition to the observed in vitro cytotoxic activity against 

HeLa cells, the potential of altissimin (3.17) as a hAR enzyme inhibitor opens up the possibility 

of its use as an adjunct to increase cancer cell sensitivity to chemotherapy. Thus, altissimin 

(3.17) shows promise as a potential anticancer agent.
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Chapter 1 

Literature Review 

 

1.1 Cell signaling: The cell cycle 

In multicellular organisms, the reproduction of cells (cell proliferation) is an elaborate process 

which is achieved by a cascade of events called the ‘cell cycle’ in which chromosomes and 

other cellular components are copied and supplied into two daughter cells (Morgan 2007). 

Proliferating cells are faced with the choice of whether to participate in the cell cycle or to enter 

into a quiescent state and similarly, quiescent cells must choose to either remain quiescent or 

to re-enter the cell cycle (Smith 2005). During the embryonic stage of foetal development, cells 

are in a state of rapid division. However, with the exception of haematopoietic cells and those 

in the gastrointestinal lumen, most cells in an adult are in a quiescent state (Walkley et al. 

2005). Cell division involves biochemical events whose sole purpose is to assure the resulting 

daughter cells of having an accurate and equal segregation of genetic material for normal 

biological function in the absence of which malignant conditions can arise (Meadows et al. 

2011). 

The normal mammalian cell cycle is divided into interphase and mitosis (M phase) (Figure 

1.1). Interphase is further divided into G0, G1 (Gap1), S and G2 (Gap2) phases while mitosis is 

divided into prophase, metaphase, anaphase and telophase (Israels and Israels 2009). During 

the four phases of the mammalian interphase which last between 12 to 24 hours, cells 

synthesize RNA leading to the translation of proteins for cell growth. The G0 phase is occupied 

by cells which, after leaving the cell cycle, enter into quiescence and cease to divide. In the G1 

phase cells grow in size due to an increased production of proteins resulting from the translation 

of RNA. Replication of DNA occurs in the S phase while cell growth and protein 

manufacturing continue in the G2 phase. In M phase (lasting about one to two hours) cell 

growth and protein synthesis is ceased and cells are each divided into two identical daughter 

cells (Mohan 2009). The determination of cell populations in each phase of the cell cycle (cell 

cycle analysis) is achieved by measuring the DNA content, also known as ploidy, which is the 

number of chromosomes that each cell contains (Crissman and Tobey 1974). Cells in phases 
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G0 and G1 have a diploid DNA content (2N), those in phases G2 and M have a tetraploid DNA 

content (4N) and those in S phase have an intermediate DNA content. 

 

Figure 1.1 A schematic representation of the mammalian cell cycle with indicated  

  checkpoints (Krumholtz 2018) 

1.1.1 Cyclins and cyclin dependent kinases (CDKs) 

The two main types of cell cycle control systems are intrinsic mechanisms and checkpoints. 

Intrinsic mechanisms are effected in each and every cell whereas checkpoints are only effected 

when anomalies are detected within the cell cycle. For progression through the cell cycle to be 

granted, it is important that a cell satisfies all the requirements at each checkpoint. Checkpoint 

mechanisms are regulated by the activation and consequent deactivation of cyclin dependent 

kinases (CDK) and cyclins (Obaya and Sedivy 2002). The activation of CDK2, CDK4, and 

CDK6 is required for cells to progress from G1 to S phase, with CDK4 and CDK6 being 

involved in early G1 and CDK2 in late G1 for G1/S phase transition (Neganova and Lako 2008). 

CDK4 and CDK6 interact and form active complexes with D-type cyclins (D1, D2 and D3) 
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whereas CDK2 forms activate complexes with E-type cyclins (E1 and E2). Progression through 

S phase requires the activity of CDK2 and cyclins A1 and A2, with cyclin A-CDK2 active 

complexes occurring in late S phase for DNA replication (Tannoch et al. 2002). The activated 

complexes of CDK4/6 and CDK2 with cyclins D and E respectively are essential for the 

hyperphosphorylation of the retinoblastoma protein (pRb) (Lundberg and Weinberg 1998). 

Following the phosphorylation of pRb, the release of S phase promoting transcription factors 

commits the cells to proliferate without any further need for mitogenic (external growth factor) 

signals. This point of the cell cycle is known as the restriction point (R) and its deregulation, 

often characterised by overexpression of cyclin D, mutation of the CDK4/6 inhibitor, p16 and 

consequent  elevation of cyclin D-CDK activity and pRb phosphorylation, results in the 

development of cancer (Blagosklonny and Pardee 2002). Cell proliferation is dependent on the 

presence of activated cyclin-CDK complexes, which are regulated by oscillating cyclin levels 

throughout the different phases of the cell cycle (Figure 1.2) (Hochegger et al. 2008). 

 

Figure 1.2 Transient activity of cyclin-CDK complexes regulating cell cycle progression 

  (Adapted from: Hochegger et al. 2008) 

Thus, cyclins act as regulators of CDK and cell proliferation. The degradation of cyclin D 

(ubiquitination) is a mitogenic signal-independent process which is performed by the ubiquitin 

proteasome pathway. Phosphorylation of cyclin D1 at Thr-286 through the action of glycogen 

synthase kinase 3β (GSK-3β) increases the ubiquitination of the protein (Alt et al. 2000). A 

family of cyclin-dependent kinase inhibitors called Cip/Kip (particularly p27/Kip1, p57 Kip2 

and p21 Waf1/Cip1) form heterodimeric cyclin-CDK complexes whose actions result in the 

arrest of cells in G1 and prevent progression to S phase (Figure 1.3) (Nakayama and Nakayama 

1999). Over-expression of the p21 protein induces G1 cell cycle arrest. Over-expression of p27 
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is a common feature of G0 quiescent cells (Albrecht et al. 1998; Xiong et al. 1993). Comprising 

of p16INK4a, p15INK4b, p18INK4c, p19INK4d, the INhibitors of CDK4 (INK4) are a family of cyclin-

dependent kinase inhibitors (CKIs) that selectively antagonise CDK4 and CDK6 with 

consequent inhibition of cell proliferation (Ortega et al. 2002). 

 

Figure 1.3 An illustration of early G1, late G1 and S phase cell signaling showing  

  CDK/cyclin interactions and other regulators of G1/S transition (Krumholtz 

  2018) 
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1.1.2 Retinoblastoma protein (pRb) 

G1/S progression of cells requires passage through the restriction point which is regulated by a 

member of the pocket protein family known as the retinoblastoma tumour suppressor protein 

(pRb). Harbouring multiple binding sites, pRb is able to interact with important regulatory 

proteins such as E2F transcription factors, the proto-oncoprotein c-Abl tyrosine kinase and 

proteins with conserved LXCXE motifs (Welsh and Wang 1995; Dahiya et al. 2000; Nevins 

2001). Cell cycle-mediated phosphorylation of pRb by CDKs results in the inhibition of 

targeted pRb binding and thereby permits the progression of cells within the cell cycle. The 

inactivation of pRb first begins with phosphorylation by cyclin D-CDK4/6 followed with 

hyperphosphorylation by cyclin E-CDK2 (Figure 1.3) (Moser et al. 2018). 

1.1.3 Tumour suppressor protein p53 

Cancer is typically a result of an amalgamation of genomic aberrations such as point mutations, 

small insertions and deletions (INDELs) and large copy number variations (CNV) (Mullaney 

et al. 2010; Dayton and Piccolo 2017). The tumour suppressor protein p53 plays a cardinal role 

in the cellular response to genomic aberrations such as DNA damage. The detection of 

damaged DNA stimulates the activation of p53 by initiating its phosphorylation at Ser15 and 

Ser20 (Chehab et al. 1999; Loughery et al. 2014). The phosphorylation of p53 reduces its 

binding to the oncoprotein Mouse double minute 2 homolog (MDM2), a negative regulator that 

targets p53 for destruction by ubiquitination and proteosomal degradation (Figure 1.4) (Nag et 

al. 2013). Also, p53 can be phosphorylated at Ser15 and Ser37 by A-T mutated (ATM) gene, 

ATM-Rad3-related protein (ATR) and DNA-dependent protein kinase (DNA-PK) (Blackford 

and Jackson 2017). The activation of p53 by phosphorylation either results in cell cycle arrest 

and the repairing of DNA or induction of apoptotic cell death (regulated via phosphorylation 

at Ser46) (Speidel 2010). In the presence of DNA damage, p53 undergoes acetylation at Lys382 

which results in increased p53 binding to DNA (Brooks and Gu 2003). The deacetylation of 

p53 is achieved through interaction with the enzyme sirtuin (silent mating type information 

regulation 2 homolog) 1 (S. cerevisiae) (SIRT1) (Lee and Gu 2013). 
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Figure 1.4 The p53 response to DNA damage and p53 regulation by MDM2 (Rockland 

  2018) 

  p53 binds and activates MDM2 transcription via promoter region, elevated levels of MDM2 

  bind to p53 and inhibits its ability to act as a transcription factor, MDM2 targets p53 for  

  ubiquitination and proteolytic damage and targeted p53 undergoes proteosomal degradation 

1.1.4 Histone H3 

In eukaryotic cells, DNA is packed within the nucleus in the form of chromatin which consists 

of positively charged histone protein units and two ~80 base pair (bp) superhelical turns of 

DNA (Figure 1.5) (Li et al. 2007). Modulating the structure of chromatin is cardinal for the 

regulation of cellular transcription. The four core histones that form the nucleosome are H2A, 

H2B, H3 and H4 (Annunziato 2008). The histone structure consists of globular portions and 

unstructured N-terminal “tails” which, upon stimulation, can undergo posttranslational 

modifications (PTM) such as acetylation, lysine and arginine methylation, phosphorylation, 

ubiquitination, sumoylation, ADP ribosylation, deamination and proline isomerization 

(Kouzarides 2007). Modifications on the histone tail alters chromatin interaction with 

transcription factors and gene expression.



 

_____________________________________________________________________________________________ 
1 Chromosomal DNA packaging is achieved by complexation with histone units whose positive charge enables them 

to strongly bind to negatively charged DNA for the formation of nucleosomes 

7 

The acetylation of histone H2B primarily occurs at Lys5, 12, 15 and 20 while that of histone H3 

primarily occurs at Lys9 (a key player in chromatin assembly), 14, 18 and 23. Additionally, 

phosphorylation of histone H3 at Ser10, Ser28 and Thr11 results in chromosome condensation 

during mitosis and meiosis. Inversely, cell cycle arrest in M phase is characterised by the 

dephosphorylation of histone H3 (Hans and Dimitrov 2001). 

 

Figure 1.5 The structure of chromatin consisting of DNA packaged with repeating histone  

  protein units1 (Annunziato 2008)
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1.1.5 Cdc25C 

The protein phosphatase cell division cycle 25C (cdc25C) dephosphorylates and activates cdc2, 

also known as cyclin dependent kinase 1 (CDK1) at threonine 14 and tyrosine 15. The activation 

of cdc2 by cdc25C is considered as a critical step that is required for the entry of eukaryotic cells 

into mitosis (Hoffmann 2000). The constitutive phosphorylation of cdc25C by cdc25C associated 

protein kinase (c-TAK1) at Ser216 occurs throughout interphase as opposed to the G2/M 

checkpoint where phosphorylation at this position only occurs when there is DNA damage (Peng 

et al. 1998). Phosphorylation of cdc25C at Ser216 causes it to bind to members of the 14-3-3 

family resulting in cytoplasmic sequestration of cdc25C and consequent inhibition of premature 

mitosis (Krämer et al. 2004). In the event of DNA damage, checkpoint kinases Chk1 and Chk2 

phosphorylate cdc25C at Ser216 (Bartek and Lukas 2003; Bahassi et al. 2008). In prophase, 

cdc25C phosphorylation by polo-like kinase 1 (PLK1) at Ser216 results in its translocation from 

the cytoplasm to the nucleus to enable interaction with cyclin B-CDK1 (also written as cyclin B-

cdc2) and consequently permit the progression of cells through the rest of mitosis. 
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1.2 Programmed cell death (PCD) 

In multicellular organisms, the quantity of cells is strictly controlled by regulating the rate at which 

cells divide as well as the rate at which they die. Cell death can be classified morphologically 

(apoptosis, autophagy and necrosis), enzymologically (involvement of either nucleases or 

proteases such as caspases, cathepsins and transglutaminases), functionally (programmed, 

accidental, physiological or pathological) and immunologically (immunogenic or non-

immunogenic) (Kroemer et al. 2009). When cells are no longer needed, they commit ‘suicide’ by 

triggering intracellular death programs which are collectively known as ‘programmed cell death’ 

(Alberts et al. 2007). The term programmed cell death may refer to several phenomena including 

the loss of cells during the ageing process and the destruction of large cell populations during 

specific points of development (Lockshin and Beaulaton 1974). There is a marked morphological 

difference between cells undergoing programmed cell death and those undergoing pathological 

death. In pathological death such as trauma, cells swell, rupture and release their contents in a 

process known as necrosis (Leist and Nicotera 1997). Among the released intracellular 

components of necrotic cells are lysosomal enzymes which damage adjacent cells and stimulate 

inflammatory cascades with the involvement of macrophages and other immunological cells 

(Goodman 2008). On the other hand, cells undergoing programmed cell death do not release 

intracellular content, hence, the absence of inflammation. Among the different types of 

programmed cell death (apoptosis, autophagy and programmed necrosis), the most extensively 

studied and best understood is apoptosis (Ouyang et al. 2012). 

1.2.1 Apoptosis 

Coined in 1972 by the Australian pathologist John Kerr and his colleagues Andrew H. Wyllie and 

Alastair R. Currie, the word apoptosis, was derived from the Greek root words apó (away from) 

and ptôsis (falling) to mean “falling off”, as applied to the seasonal falling off of leaves from trees 

(Lockshin and Zakeri 2001). During apoptosis, cells shrink in size and display nuclear and 

chromatin condensation. Morphologically, cells undergoing apoptosis appear as if they are 

‘boiling’ (known as cell blebbing) as a result of cell membrane protrusion caused by transient 

membrane detachment or a rapture in the actin cortex (Charras 2008). This is followed after by 

cellular fragmentation into intact membrane-bound “apoptotic bodies” which are ultimately 
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engulfed by phagocytes in in vivo models without the release of intracellular material into the 

intestitium (Elmore 2007). In summary, apoptosis is characterised by cell rounding, reduced cell 

volume, chromatin condensation, nuclear fragmentation, cell blebbing with maintained membrane 

integrity and phagocytic engulfment. In the absence of phagocytic engulfment, apoptotic bodies 

undergo necrotic degradation as the second option in a process called secondary necrosis (Saraste 

and Pulkki 2000). Some of the biochemical features of apoptosis include regular length DNA 

fragmentation (~ 180 bp), mitochondrial release of factors such as cytochrome c and apoptosis 

inducing factor (AIF) into the cytoplasm, activation of caspases, phosphatidylserine translocation 

and early intracellular actin degradation (Becila et al. 2010). 

1.2.1.1 Molecular mechanisms of apoptosis 

As the first realised component of cell death, caspases were discovered through studies that were 

done on the nematode worm Caenorhabditis elegans. After the analysis of genes belonging to cell-

death defective worm mutants (CED), it was realised that the product of the ced-3 gene was a 

requirement for all developmental-related programmed cell deaths in the worm. In a breakthrough 

discovery, CED-3 was found to be a relative of the then newly discovered human protease, 

interleukin-lβ converting enzyme (ICE) (Yuan et al. 1993). This was followed after by the 

discovery of several ‘ICE-like’ proteases, 14 of which are mammalian, later to be renamed as 

‘caspases’ and ICE becoming caspase-1. Caspases are now recognised as cardinal role players in 

the institution of cell death (Creagh and Martin 2001). Caspases are functionally divided into those 

that are activated through apoptosis (caspases-2, -3,-6, -7, -8, -9 and -10) and those that stimulate 

pro-inflammatory cytokines during immune response (caspases-1, -4, -5 and -11). Apoptotic 

caspases are further divided into initiator (upstream) and executioner (downstream) caspases. As 

their names state, initiator caspases (caspase-2, -8, -9 and -10) are the initiators of the caspase 

cascade while executioner caspases (caspase-3, -6 and -7) are responsible for executing apoptotic 

cell destruction (McArthur and Kile 2018). The executioner caspases are proteolytically activated 

by initiator caspases in order to perform their functions. 

A modular protein known as apoptotic protease-activating factor 1 (Apaf-1) consisting of an N-

terminal caspase recruitment domain (CARD), a CED-4 homologous domain and a C-terminus 

with 12 tryptophan/ aspartic acid (WD-40) repeats, combines with caspase-9 in the presence of 
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cytochrome c and deoxyadenosine triphosphate (dATP) to form ‘the mitochondrial apoptosome’ 

which initiates or amplifies apoptosis (Zou et al. 1999). Formation of the mitochondrial 

apoptosome requires first the release of cytochrome c from mitochondria, a process that is 

controlled by the B cell lymphoma 2 (Bcl-2) family of proteins (Ola et al. 2011). The Bcl-2 family 

can be divided into two (based on whether they are apoptotic or anti-apoptotic) or three sub-groups 

(based on the existing Bcl-2 homolog domain, BH). Members of the anti-apoptotic sub-group such 

as Bcl-2 and Bcl-XL contain the BH4 domain while those of the apoptotic sub-group are either 

devoid of the BH4 domain (Bax, Bak and Bok) or having only the BH3 domain. In total, there are 

eight BH3-only members namely, hara-kiri (Hrk), BH3 interacting domain death agonist (Bid), 

Bcl-2 interacting mediator of cell death (Bim), Bcl-2 modifying factor (Bmf), p53, promoter-

upregulated modulator of apoptosis (Puma), Noxa, Bcl-2 antagonist of cell death (Bad) and Bcl-2 

interacting killer (Bik) (Ola et al. 2011). These are further divided into activators (active BID, BIM 

and PUMA) which activate effector proteins and derepressors (such as BAD and NOXA) which 

block anti-apoptotic effects. The anti-apoptotic Bcl-2 members inhibit the mitochondrial release 

of cytochrome c whereas the pro-apoptotic members promote its release. Activation of the BH3-

only pro-apoptotic members result in the blockade of inhibitory effects from anti-apoptotic Bcl-2 

members which causes AK-Bax to undergo oligomerisation (Chipuk and Green 2008). BH3-only 

members induce conformational changes in pro-apoptotic Bcl-2 members such as Bax and Bak, 

leading to their incorporation and/or oligomerisation into the outer mitochondrial membranes 

(OMM) and causing the formation of permeable channels through which cytochrome c can be 

escaped. The released cytochrome c enters the cytosol where it is then used for the creation of 

mitochondrial apoptosomes (Kalkavan and Green 2017). 

1.2.1.1.1 Intrinsic apoptotic pathway 

The intrinsic (mitochondrial) apoptotic pathway is initiated by Bcl-2 family members. Several pro-

apoptotic signal transducing molecules and cytotoxicity inducers such as death, genomic and 

metabolic stresses and the presence of protein unfolding cause permeabilisation of the outer 

mitochondrial membrane (OMM) and consequent release of apoptotic material, including 

cytochrome c, second mitochondria-derived activator of caspases (Smac/DIABLO), Omi/HtrA2, 

AIF and endonuclease G, into the cytosol (Fulda and Debatin 2006). Released cytochrome c then 

binds to Apaf-1, causing an interaction with dATP that exposes the N-terminal CARD for 
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oligomerisation and activation of initiator procaspase-9 via a CARD-CARD interaction (Figure 

1.6) (Adrain et al. 1999). This results in the recruitment of executioner caspase-3 to the apoptosome 

and its subsequent activation by the resident caspase-9. Activation of caspases can also take place 

through interactions with death receptors which oligomerise and activate initiator caspases 

(Contassot et al. 2007). Released smac/DIABLO and Omi/HtrA2 also activate caspases by 

silencing endogenous caspase inhibitors known as the inhibitor of apoptosis proteins (IAPs) (Liu 

et al. 2018). 

 

Figure 1.6 An illustration of procaspase-9 activation by Apaf-1 (Goodman 2008). 

  The caspase recruitment domain (CARD) is usually inaccessible to procaspase-9. In association  

  with dATP, released mitochondrial cytochrome c binds to Apaf-1 on the WD40 repeats, causing a  

  conformational change in Apaf-1 that exposes the CARD for procaspase-9 activation. 

Since a large variety of cancers occur as a result of mutations in Bcl-2 regulation of the 

mitochondrial pathway, most of the developed anticancer drugs act as inducers of apoptosis 

through the activation of the intrinsic pathway. Examples of such drugs include regulators of Bcl-

2 gene expression, drugs affecting Bcl-2 mRNA and drugs inhibiting Bcl-2 proteins. However, 

most of the apoptosis-inducing drugs destroy DNA or disrupt the cytoskeleton in cancer cells and 

normal cells alike (Alam 2003). Therefore, more ideal anticancer drugs would be those that 

selectively induce apoptosis in cancer cells. Over 30 years of research focused on the discovery of 

selective Bcl-2 modulating drugs has resulted in the development of small molecule compounds 
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called ‘BH3-mimetics’ as direct activators of apoptosis in malignant cells only through the 

selective targeting of pro-apoptotic Bcl-2 proteins (Delbridge et al. 2016). The first bonafide BH3-

mimetic to show efficacy in cancer is navitoclax (1.1) (Figure 1.7), a dual Bcl‑2 and Bcl‑XL 

antagonist (Zhu et al. 2015). Since navitoclax (1.1) acts on Bcl-XL, its inhibitory activity on Bcl-

XL also results in thrombocytopenia. Following navitoclax (1.1), the first BH3-mimetic to be 

licensed for use in chronic lymphocytic leukaemia is venetoclax (1.2) (Figure 1.7) (Ashkenazi et 

al. 2017). 

 

Figure 1.7 BH3-mimetics navitoclax (1.1) and venetoclax (1.2) as selective Bcl-2 antagonists 

1.2.1.1.2 Extrinsic apoptotic pathway 

The extrinsic apoptotic pathway is activated through extracellular signals arising from other cells. 

These extracellular ligands bind to receptor mediated transmembrane death receptors which are a 

member of the tumour necrosis factor (TNF) family of receptors consisting of over 20 proteins and 

characterised by the presence of 80 amino acids known as the ‘death domains’ (Peter et al. 1999). 

When extracellular ligands such as Fas-L and TNF-αL bind to their corresponding death receptors 

(in this case Fas and TNF-α respectively), the death domains transmit received extracellular death 

(1.1) (1.2)
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signals to intracellular signaling pathways. To do this, the activated death receptors interact with 

adaptor proteins such as Fas associated protein with death domain (FADD) which then binds 

initiator procaspase-8 molecules (Ashkenazi 2002). The resulting receptor-ligand-initiator 

procaspase-8 or -10 complex is referred to as the death-inducing signaling complex (DISC) (Yang 

et al. 2005). The formed DISC then draws procaspase-8 molecules in close proximity to each other 

to facilitate for their autocatalytic cleaving and subsequent cytosolic release of initiator caspase-8. 

Cytosolic caspase-8 can then activate executioner caspase-3, -6 and/or -7 (Figure 1.8). Death 

receptor agonists under clinical trial include dulanermin and the monoclonal antibodies 

mapatumumab, lexatumumab and conatumumab. 

 

Figure 1.8 Molecular mechanisms of apoptosis showing the intrinsic and extrinsic pathways  

  (Goodman 2008) 
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1.3 Cancer: A brief history 

The word ‘cancer’ is derived from the Greek word carcinos meaning crab. This term was first used 

by Hippocrates (460-370 BC) to describe malignancies as having the characteristics of finger-like 

projections that, in a similar fashion to the claws of a crab, reach out to surrounding tissues 

(Stephens and Aigner, 2009). Celsius (28-50 BC) eventually translated carcinos into its Latin 

equivalent, cancer (American Cancer Society 2018a). The earliest documentation of malignancies 

is found in the Edwin Smith Surgical Papyrus (Figure 1.9A), an Egyptian paleographic scroll 

supposedly authored by the earliest known physician, Imhotep, whose votive statues are still in 

existence (Figure 1.9B) (Szépmuvészeti Múzeum 2017). The papyrus was  discovered in a tomb 

in Thebes, Greece, dating between 3000 – 2500 B.C. (Lakhtakia 2014). The Edwin Smith Surgical 

Papyrus describes incurable cases of bulging afebrile tumours spreading on the breast (Breasted 

1930). The oldest diagnosed case of cancer is that of a 2700 year old Scythian King from Arzhan, 

Russia, who suffered from a metastatic prostate cancer (Schultz et al. 2007), followed by a 2250 

year old Egyptian Ptolemaic mummy only known as M1 (Figure 1.9C), who suffered from a 

prostate metastatic bone cancer (Prates et al. 2011).  

Some of the early hypotheses about the cause of cancer include Hippocrates’ humoral theory in 

which the body was believed to contain four humors or body fluids; blood, phlegm, yellow bile 

and black bile. An imbalance in the equilibrium between these four body fluids was believed to be 

the cause of disease, with cancer being caused by excess black bile. This was the accepted medical 

teaching through the middle ages for over 1,300 years (Sudhakar 2009). In the 17th Century, the 

humoral theory was replaced by Stahl and Hoffman’s lymph theory in which cancer was believed 

to be caused by a fluid called lymph being discarded from the blood. In 1938, a German Pathologist 

called Johannes Muller developed the blastema theory which claimed that cancer cells did not arise 

from fluids but rather from budding (blastema) cells that did not share the same origin as normal 

cells (American Cancer Society 2018b). Rudolph Virchow, a student of Muller later proposed that 

cancers arise from chronic irritation and spread like fluids. This theory was corrected in the 1860’s 

by the German surgeon, Karl Thiersch, who explained that cancers metastasize through malignant 

cells and not through an unknown fluid. Between 1800 to the 1920’s, cancer was believed to be 

caused by trauma, even though experiments involving the injury of animals did not cause cancer.  



 

_____________________________________________________________________________________________ 
2 Several votive statues of Imhotep exist with this particular one being known as ‘the budapest Imhotep’. The bronze 

statue consisting of arrays of gold, electrum and silver was dedicated to Imhotep (a high priest of Heliopolis often 

equated to the Greek god of medicine, Asklepios) to act as an intermediary between a man named Kham-Khonsu and 

the god Ta-tenen (Szépmuvészeti Múzeum 2017).  

16 

Between 1649 and 1652, the doctors Zacutus Lusitani and Nicholas Tulp from Holland developed 

the contagion theory with the belief that cancer was a highly contagious disease. To implement 

this theory, cancer patients were isolated out of town to prevent the propagation of the disease 

(Bynum 1980). Though we now know that human cancers are not contagious, certain viral, 

bacterial and parasitic infections can create predispositions to cancer development. 

 

Figure 1.9 (A) An excerpt from the Edwin Smith Surgical Papyrus (Levine 2015), (B) a statue 

  of the earliest physician, Imhotep2 (Szépmuvészeti Múzeum 2017) and (C ) the  

  Egyptian Ptolemaic wrapped human mummy, M1 (Prates et al. 2011)
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1.3.1 Hallmarks of cancer 

A cancer can be defined as “a malignant growth that is characterised by a continuing, 

purposeless, unwanted, uncontrolled and damaging growth of cells that differ structurally and 

functionally from the normal cells from which they developed” (Stephens and Aigner 2009). 

The two main types of cancer are carcinomas (which are more common) and sarcomas. 

Carcinomas are cancers of the epithelial tissue whereas sarcomas are cancers of the connective 

tissue. Both types of cancer occur as a result of damages in the genetic make-up of a single cell 

caused by at least 6 mutations in specific proto-oncogenes and tumour suppressor genes 

(Stephens and Aigner, 2009). These mutations can be inherited, spontaneous, as a result of 

environmental factors such as ultra-violet radiation and chemical carcinogens or from a 

lifestyle of smoking, alcohol drinking, sedentary living and unhealthy eating habits. 

The hallmarks of cancer were first introduced by Hanahan and Weinberg to detail the 

succession of capabilities acquired in the progressive development from a normal to a 

cancerous cell (Hanahan and Weinberg 2000). One of these hallmarks is the ability of 

cancerous cells to evade programmed cell death through dysregulations in Bcl-2 control of the 

intrinsic apoptotic pathway and by dampening Bcl-2 stress signals (Letai 2008). Cancerous 

cells are also able to proliferate continuously without control by increasing the levels of growth 

factors, stimulating surrounding cells to supply growth factors, upregulating surface receptors, 

modifying receptors to promote cancerous signaling and activating downstream proteins in the 

signaling pathway (Hanahan and Weinberg 2011). Cancer cells acquire the ability to disturb 

negative feedback loops that act as safety mechanisms in the event of a hyperactive mitogenic 

signal (Bardeesy and Sharpless 2006). The tumour microenvironment is often characterised by 

inflammation due to the infiltration of immunological cells. Cancerous cells benefit from this 

inflammatory state due to the associated increase in growth factors, survival factors, promotion 

of angiogenesis, invasion and metastasis and activation of epithelial-mesenchymal transition 

(EMT) (Grivennikov and Karin 2010). Cancerous cells are able to metastasize by interacting 

with the extracellular matrix through the invasion of tissues, intravasation, blood and lymphatic 

transition and tissue colonisation. These interactions require the active participation of 

surrounding tissues. To circumvent this, cancerous cells modify extracellular receptors that 

interact with external signals. For instance, cancerous cells promote their own migration by 

modifying receptors that participate in the paracrine loop with tumour associated macrophages 
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(TAM) involving CSF-1 and epidermal growth factor (EGF) resulting in the formation of 

elongated protrusions and cell invasion (Goswami et al. 2005).  

Telomeres are portions of repeating nucleotide sequences at the ends of chromosomes which 

reduce in length with each cell division and hence, limit the number of times a cell can 

proliferate. Shortening telomeres ultimately reach the Hayflick limit which stimulates 

replicative senescence, apoptosis and tumour suppression via the p53 gene. The replenishing 

of telomeres is performed by the enzyme telomerase reverse transcriptase. Cancerous cells are 

able to immortalise themselves by overexpressing telomerase and dysregulating the p53 gene 

(Artandi and DePinho 2010). Normal cells limit uncontrolled cell proliferation through the 

release of anti-proliferative signals which can either induce G0 or stimulate a postmitotic state 

during which cells are unable to undergo mitosis. Cancerous cells are able to circumvent this 

protective mechanism by dysregulating the tumour suppressors retinoblastoma protein (pRb) 

(which protects the restriction point) and p53 (which arrests the cell cycle in the event of DNA 

damage). Loss of pRb and p53 functions lead to uncontrolled cell proliferation despite DNA 

damage (Sherr 2004).  

The immune system provides protection against cancer development through cancer immune-

editing which involves the complete destruction of cancerous cells (elimination) as well as the 

control of cell growth in cancerous cells which cannot be eliminated (equilibrium). However, 

cancerous cells in the equilibrium phase can develop mechanisms to evade the immune system 

and continue proliferating (escape). Hence, the association between a weak immune system 

and poor cancer prognosis (Prendergast 2008). Cancerous cells can also utilise the existing 

gene alterations to promote further mutations and increase oncogenesis. This is achieved by 

increasing sensitivity to mutagens, altering DNA ‘caretaker’ genes and disrupting DNA 

repairing mechanisms (Venkitaraman 2001). Since vascular perfusion is essential for the 

supply of oxygen and nutrients, cancerous cells can activate an ‘angiogenic switch’ in which 

angiogenesis is promoted through the over-expression of pro-angiogenic factors such as 

vascular endothelial growth factor (VEGF) (Hicklin and Ellis 2005). In order for cancerous 

cells to maintain uncontrolled proliferation without experiencing resource shortage, they make 

adjustments to normal energy production by altering glucose production, increasing the 

expression of glucose transporters such as GLUT1 and utilising alternative metabolic 

pathways. This offers the cancerous cells the ability to divert glycolic intermediates to cell 

proliferation pathways (Marie and Shinjo 2011). 
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1.3.2 Cancer incidence in Africa 

It has been estimated by Global Cancer Incidence, Mortality and Prevalence (GLOBOCAN) 

that there will be 18.1 million new cancer cases and 9.6 million cancer deaths worldwide in 

2018 alone (Bray et al. 2018). Currently, cancer statistics in the high-income countries of North 

America and Western Europe are higher than those reported in Africa and Asia. However, it 

has been stated that cancer is soon to become a major cause of morbidity and mortality in all 

world regions regardless of economic status (Bray et al. 2012). The African continent has a 

complex sociodemographic picture resulting from religious, linguistic, cultural and economic 

differences that play a significant role in the incidence and prevalence of cancer (American 

Cancer Society 2011). Africa is demographically divided into Northern Africa and sub-Saharan 

Africa, with the former being populated by Arabs and the latter by indigenous black people. A 

huge economic disparity can be observed between the two African regions, with some sub-

Saharan African countries like Zambia and Zimbabwe having a life expectancy ranging around 

61 years while North African countries like Algeria and Tunisia range >75 years, which is 

almost par with Europe and the Americas (Statista 2018). 

In Northern Africa, breast cancer (30%) followed by colorectal cancer are most common 

among women, whereas lung cancer followed by prostate, colorectal and liver cancers are most 

common among men (Figure 1.10) (IARC 2014). The high incidence of breast cancer in 

affluent Northern Africa can be attributed to increased economic development associated risk 

factors such as early menarche, low or late parity, obesity and increased exposure to xeno-

chemical environmental pollutants (Luzzati et al. 2018). Prostate and liver cancer followed by 

Human Immunodeficiency Virus (HIV)-associated Kaposi’s sarcoma are the most common 

cancers among sub-Saharan African men (Ferlay et al. 2014). Contrary to other world regions, 

cervical cancer (50 cases per 100,000) is the most common cancer among sub-Saharan African 

women owing to a combination of the high incidence in sexually transmitted Human 

Papillomavirus (HPV) infections (the aetiological cause of cervical cancer) and the 

unavailability of Papanicolaou (Pap) testing facilities. In 2012, the probability for a sub-

Saharan African woman to develop cervical cancer was 3.8%, with a 2.5% chance that the 

cancer would eventually kill her (Cancer Atlas 2018). 
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Figure 1.10 GLOBOCAN compilation of the most commonly diagnosed cancers in the 

  African population in 2012 (Adapted from: Ferlay et al. 2014) 

1.3.3 Cervical cancer 

Cervical cancer is a sexually transmitted disease (STD) caused by infection with oncogenic 

high-risk strains of the Human Papillomavirus (HPV), a virus belonging to the 

Pappilomaviradae family (Burd 2003). Infection with HPV has been found to be essential but 

not sufficient for disease development and hence, the involvement of cofactors and molecular 

events. HPV is the cause of 99.7 % of all the cervical cancers worldwide with about 30 types 

of HPV known to primarily infect and cause cancers of the vagina, vulva, cervix, penis and 

anus (Clifford et al. 2003). The HPVs are small circular non-enveloped encapsulated DNA 

tumour viruses with ~ 8 kb genomes encoding eight genes E1, E2, E4, E5, E6, E7, L1 and L2 

(Figure 1.11). The HPV has three functional regions with the first being the highly variable 

non-coding region consisting of 400 to 1000 bp which contain the p97 core promoter together 

with enhancer and silencer sequences for the control of DNA replication (Apt et al. 1996). The 

second is an early region consisting of open reading frames (ORFs) E1, E2, E4, E5, E6, and 

E7 which are implicated in the replication and oncogenic properties of the virus. The third is a 

late region containing the L1 and L2 genes that encode viral capsid structural proteins (IARC 

2007). 

Following viral exposure, HPV attacks the epithelial basal layer and gains entrance into the 

cell within several hours of viral internalisation with viral DNA released and sent to the host 
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nucleus (Woodman et al. 2007). Since basal epithelial cell differentiation is highly controlled 

and replication only permitted in suprabasal cells undergoing maturity or ageing, HPV encodes 

proteins E6 and E7 to stimulate cell proliferation, prolong the cell cycle progression and evade 

apoptosis (Ghittoni et al. 2010). The host cell is then manipulated to permit viral replication 

resulting in the production of thousands of HPV copies in each infected cell. Within 2 to 3 

weeks the HPV completes its life cycle consisting of migration from the basal layer to the 

superficial epithelium, maturity, ageing and death of the cervical cancer cell (Crosbie et al. 

2013). 

 

Figure 1.11 Human Papillomavirus (HPV) life cycle and genome (Crosbie et al. 2013) 

  HPV infects the basal layer of the cervical epithelium via microabrasions, expresses the early 

  region HPV genes E1, E2, E4, E5, E6 and E7 and replicates episomal viral DNA. Further viral 

  replication occurs in the mid and superficial epithelial zones with expression of late region HPV 

  genes L1 and L2 and the early gene E4. Expressed L1 and L2 encapsulates progeny virions in 

  the nucleus which are then released to infect new host cells. If unabated, the HPV infection 

  ultimately results in high grade cervical cancer characterised by viral genome incorporation into 

  the host chromosome, loss of E2 and increased expression of early genes E6 and E7 

 



 

22 

 

Infection with HPV results in the formation and appearance of precancerous lesions which may 

further develop into invasive cervical cancer (ICC) depending mainly on the strain of HPV 

causing the infection (Figure 1.12). The three recognised stages of cervical intraepithelial 

neoplasia (CIN) are: CIN1, exhibiting mild dysplasia; CIN2, exhibiting moderate dysplasia; 

and CIN3, exhibiting severe dysplasia and carcinoma in situ (Buckley et al. 1982). In this 

regard, high-grade squamous intraepithelial lesions (HGSIL, encompassing CIN2, CIN3 or 

CIN2 and CIN3) resulting from prolonged infection with high-risk HPV strains are likely to 

result in ICC (Khieu and Butler 2018). Low immune state diseases such as HIV/AIDS promote 

prolonged HPV infection and thus encourage the development of ICC by developing and 

maintaining CIN3. 

 

Figure 1.12 Pictorial illustration of the progression from mild precancerous lesions to  

  invasive cervical cancer (ICC) (Ibeanu 2011) 

  (A) Mild lesions extending into the endocervical canal, (B) mild lesions with skip patterns, (C) 

  severe lesions with vascular punctation and mosaic features, and (D) invasive cervical  

  carcinoma (ICC) in HIV immunocompromised patient 
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Invasive cervical cancer (ICC) is categorised into stages 0, 1A, 1B, 2A, 2B, 3A, 3B, 4A and 

4B based on the progression of the lesions (Rambaldi 2014). Stage 0 corresponds to CIN3 and 

is characterised by the presence of cancerous cells in the innermost aspects of the cervical 

epithelium. In stage 1, the cancer is localised to the cervical tissue. Stage 1A is microscopically 

detected and presents with cancerous cells of 5 mm maximum depth and 7 mm maximum 

width. In stage 1B, the cancerous cells can be visualised without microscopic aid and are deeper 

than 5 mm and wider than 7 mm (Figure 1.13). Stage 2A presents with progression of cancer 

to the upper two thirds of the vagina but without the involvement of the uterus whereas stage 

2B has uterine involvement. Stage 3A presents with the spread of cancer to the lower thirds of 

the vagina but without affecting the pelvis whereas stage 3B has pelvic involvement with 

possible spread to pelvic lymph nodes. In stage 4A, the cancer spreads to the bladder and 

rectum with pelvic lymph node involvement. In stage 4B, the cancer spreads beyond the pelvis 

to other parts of the body such as the abdominal cavity, gastro-intestinal tract, lungs, liver etc 

(Waggoner 2003). 

 

Figure 1.13 Illustration of cervical cancer progression from stages 1B to 2B (Everviz 2017) 
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1.3.3.1 Treatment of precancerous lesions and cervical cancer 

Treatment of precancerous lesions depends on the stage of the lesions. In CIN1, the main 

treatment option is cryotherapy using liquid nitrogen to freeze the lesions. Apart from 

experiencing vaginal bleeding, discharge and pain, cryotherapy is usually well tolerated. In 

CIN2, cryotherapy can be used but surgery is advised for the purpose of excising the lower 

cervical epithelium. In places with poor medical facilities such as sub-Saharan Africa, the 

recommended surgical procedure in CIN2 is the loop electrosurgical excision procedure 

(LEEP) (Figure 1.14) (Odendal 2011). 

 

Figure 1.14 Illustrations showing the loop electrosurgical excision procedure (LEEP) (A) 

  (Cleveland Clinic 2018) and conisation of the cervix (B) (Everviz 2017) 
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The LEEP method involves the excision of cervical tissue using a wire loop followed after by 

cauterisation and sealing with an electric current. As an alternative to LEEP, a cone of cervical 

tissue is removed in a process called conisation in order to eliminate precancerous cells 

underneath the epithelium (Landoni et al. 2007). In CIN3, the same methods in CIN1 and CIN2 

can be employed except in severe or recurrent cases in which hysterectomy is ideal and most 

especially in post-menopausal women. The main options in the treatment of cervical cancer are 

surgery, radiotherapy and chemotherapy. In stages 1 and 2, treatment involves a combination 

of both internal and external radiotherapy, radical hysterectomy (Figure 1.15), pelvic 

lymphadenectomy and chemotherapy. Treatment for stages 3 and 4 involves the combination 

of internal and external radiotherapy, chemotherapy, radical hysterectomy, primary pelvic 

exenteration and palliative chemotherapy in distant metastases (Waggoner 2003). A major 

challenge in sub-Saharan Africa is the severe lack of access to radiation treatment. The 

preferred chemotherapy options for cervical cancer are those consisting of a cisplatin-based 

regimen (combined with either topotecan or paclitaxel in advanced cases) (Kamura and 

Ushijima 2013). However, due to cost implications, low income countries of sub-Saharan 

Africa are usually unable to adequately avail such combinations (Sitas et al. 2008; Martei et al. 

2018). 

 

Figure 1.15 Illustrations showing total (A) and radical (B) hysterectomy (Everviz 2017) 

1.3.3.2 The Henrietta Lacks (HeLa) cell line 

The HeLa is an immortalised cervical cancer cell line obtained in 1951 by Dr. George Grey 

from the cervix of Ms. Henrietta Lacks, a 30 year old patient with an aggressive 

adenocarcinoma of the cervix (Faussadier 2017). Though Ms. Henrietta Lacks passed on that 

very year, her cells have become the first successfully cultured immortal human cell line and 

are still being used today for scientific research (Lucey et al. 2009). Some of the breakthrough 

discoveries in science that have been achieved through the use of HeLa cells include the effects 
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of zero gravity in outer space, development of the polio vaccine, a Nobel Prize winning 

discovery of the link between HPV and cervical cancer with subsequent development of the 

HPV vaccine, the first human and animal hybrid cells, chromosome counting and major 

contributions in the understanding of leukaemia, the HIV virus and cancer (John Hopkins 

medicine 2018;MacDonald 2018). However, in the 1960’s, a PhD student named Stanley 

Gartler discovered through a technique of isoenzyme analysis of glucose-6-phosphate 

dehydrogenase (G6PD) and phosphoglucomutase (PGM) electrophoretic polymorphisms that 

HeLa cells had in fact contaminated 19 other human cell lines with the same G6PD type A and 

PGM type 1 phenotypes (Gartler 1967; Gartler 1968; Masters 2002). This controversy sparked 

worldwide debates which ultimately led to the development of improved cell culture 

techniques. HeLa cells have since been found to contain Human Papillomavirus HPV-18 DNA 

with observed changes in microRNA expression (Meissner 1999). 

1.3.3.3 Insights into African traditional healers’ perceptions and practices on cervical 

 cancer 

It has been stated that about 80% of the African population rely on traditional medicines and 

practices as their primary source of health care (Mulaudzi 2003). Being the custodians of 

traditional African religion, customs and culture, the role played by traditional healers in the 

treatment and management of diseases among the African population cannot be ignored 

(Mokgobi 2014). It is therefore of paramount importance for scientific researchers to find out 

and be aware of the collective perceptions of traditional health givers towards the diagnosis 

and treatment of highly prevalent life-threatening diseases such as cervical cancer and to make 

strong attempts at harmonizing the two knowledge frontiers where possible. 

In South Africa, traditional healers give the presented ‘cancer’ a diagnostic name based on its 

physical manifestations. For instance, the common terminologies used to describe cervical 

cancer among traditional healers in Limpopo are Sesepidi, meaning ‘something that moves’ 

and Tlhagala, a Sesotho word meaning ‘to be worn out’ (Mokgadi and Fhumulani 2008). 

Interestingly, these traditional terms are very similar in meaning to modern patho-physiological 

descriptions of cervical cancer such as ‘metastasis’ (Sesepidi) and tumour necrosis with foul 

vaginal discharge (Tlhagala). Other general terms for cancer in South Africa are sefola, 

umdlavuza, lethala, thosola, seso, nyamakazi, fokozani, emfokozane, umhlavosi and imvelase, 

most of which have similar or related meanings. The etiology of cervical cancer among African 

traditional beliefs is attributed to various factors such as inadequate intake of herbal medicines, 
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blasphemy towards ancestral spirits and as a form of retribution (Giger and Davidhizar 1995). 

Among the traditional healers of the Igbo tribe of Nigeria, cancer is generally believed to be 

caused by magic spells, bad blood, infections, bad air, incestuous behaviour and adultery. In 

these premises, cancer diagnosis incorporates the dual use of organic and spiritual methods 

with prescribed treatments including the use of plants, divinations, magic and psychotherapy 

(Dein 2004;Nwoha 1994). Among the traditional healers of Ga-Mothapo in South Africa, 

cervical cancer is believed to be caused by chain smoking, multiple sexual partners (Ge mosadi 

a kitima le sekwata sa banna), poor nutrition, early engagement in sexual activity, sexually 

transmitted infections (STIs) (sekgalaka) and genetic predispositions (Mokgadi and Fhumulani 

2008). Though conventional science concedes that the precise etiological cause of cervical 

cancer is still unknown, some of the earlier identified risk factors include multiple sexual 

partners, early sexual practice, STIs, HIV/AIDS, smoking and intake of oral contraceptive pills 

(Brinton et al. 1987). By comparison, there is a striking resemblance between the perspectives 

of traditional African practices and conventional science on the risk factors of cervical cancer. 

African traditional healers often mention irregular per vaginal bleeding, painful coitus, post-

coital bleeding, dysmenorrhoea, lower abdominal pains, abnormal or foul smelling vaginal 

discharge, cervical lesions, pyrexia, polyuria, painful uterine growth (polyps) and feeling as if 

the ‘womb is moving’ as signs and symptoms of cervical cancer (Steyn and Muller 2000). In 

modern science, some of the reported early symptoms of cervical cancer are trans-vaginal 

hemorrhage, foul smelling vaginal discharge, post-coital discharge or bleeding and 

postmenopausal vaginal bleeding. If left untreated, the cervical cancer metastasises and 

symptoms progress with increased per vaginal bleeding, inguinal and/or supraclavicular 

lymphadenitis and the appearance of a continuous serosanguinous vaginal discharge which 

darkens and develops a foul necrotizing smell (López-Arias et al. 2017). 

The African traditional treatment of cervical cancer focuses not only on curing the disease but 

also on promoting spiritual wellness and this is thought to be achieved by ‘extracting’ or 

‘pulling’ the Sesepedi out of the uterus. Traditional treatment regimen for cervical cancer 

normally incorporate oral administration of herbal decoctions, direct application of a crushed 

bluestone (mbapani) and Pentanisia prunelloides (stema-mollo) mixture onto the lesions, 

formulation and intra-vaginal insertion of herbal ‘pessaries’ (lekoni sekgalaka), steam 

inhalation and incisions (Steyn and Muller 2000). These traditional methods are similar to those 
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practiced in modern medicine such as oral administration of chemotherapy (herbal decoctions), 

surgical removal of tumours (incisions) and radiotherapy (steam treatment). 

In-vitro studies have shown P. prunelloides to possess strong uterotonic (ecbolic) properties 

(Moteetee and Seleteng Kose 2016). This may provide the rationale for its traditional use in 

cervical cancer to ‘pull’ the Sesepedi out of the uterus and to reduce per vaginal bleeding. P. 

prunelloides has also been reported to possess in-vitro anti-inflammatory, antibacterial and 

antiviral properties, which are applicable to the amelioration of cervical cancer since it’s a 

virally induced (HPV), inflammatory disease (Van Wyk et al. 2009). Phytochemical studies of 

P. prunelloides leaves, roots and rhizomes revealed the presence of oleanolic acid, palmitic 

acid, diosgenin, the flavonoids epigallocatechin gallate (EGCG), epicatechin, epicatechin 

gallate and their derivatives (Yff et al. 2002; Mpofu et al. 2014; Mpofu et al. 2015). 

Epigallocatechin gallate (EGCG), the major compound in P. prunelloides rhizomes, has been 

reported to possess anti-cancer activity against HeLa and CaSki cervical cancer cell lines via 

the induction of telomere fragmentation, cell cycle arrest, induction of apoptosis and 

modulation of gene expression (also see Section 5.2.2.1) (Ahn et al. 2003; Li et al. 2005). This 

shows that African traditional healers have, in their own terms, a concise understanding of 

cervical cancer pathophysiology, the knowledge to identify signs and symptoms of the disease, 

practical ethnomedicinal experience to provide sustainable care and adequate medicinal plant 

repositories to at least assist in the discovery of newer and more effective cervical cancer 

treatments. Dialogue between traditional health practitioners and scientific researchers must 

therefore be encouraged to promote the sharing of information. 
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1.4 Research rationale: aims and objectives 

With about 44 % of all cancer morbidity and 53 % of all cancer mortality occurring in countries 

with a low to medium Human Development Index (HDI), cancer is rapidly emerging as a 

serious threat to public health in sub-Saharan Africa. According to the International Agency 

for Research on Cancer (IARC) there will be 1.28 million new cancer cases and 970 000 cancer 

deaths in Africa alone by the year 2030 (Ferlay et al. 2010). In sub-Saharan Africa, the few 

positive strides in cancer management are being constantly met with the unavailability of 

cancer screening measures and the inaccessibility of recommended chemoradiotherapy 

regimen (only 10 % of the African population has access to radiotherapy) due to cost 

implications and lack of proper infrastructure to implement established drug supply chain 

systems (Cazap et al. 2016). Most developing countries can only afford to procure the most 

basic anti-cancer drugs which are also frequently unavailable due to intermittent supplies 

(INCTR 2018). These factors, coupled with the heavy HIV/AIDS burden in the sub-Saharan 

African region, largely contribute to the poor prognosis in African cancer patients. Among the 

greater concerns is cervical cancer, which currently has the highest recordings within Africa 

coming from Central and Southern Africa, including the countries Zambia, Zimbabwe, Malawi, 

Namibia and Mozambique. To put it into perspective, the sub-Saharan African female has a 

3.8% chance of developing cervical cancer and a 2.5% chance that if she does in fact contract 

cervical cancer, it will eventually be the cause of her death (Cancer Atlas 2018). The toxicity 

of conventional anti-cancer drugs at therapeutic dosages coupled with the additional costs for 

symptomatic treatment and palliative care can be a source of discouragement to health seeking 

cancer patients. With > 80 % of the African population resorting to African traditional medicine 

as their primary source of health care, there is a desperate need to bridge the gap between 

conventional and traditional health care both in knowledge and in practice. One way of doing 

this would be to increase scientific interest in the African methods of treatment, particularly 

African medicinal plants. 

The aim of this study was to identify the frequently used, yet least studied, medicinal plants in 

African traditional medicine to treat ‘cancers’ and to further explore their anti-cancer potential 

with the purpose of discovering novel phyto-chemotherapeutics. The HeLa cervical cancer cell 

line was used for all bio-assay experiments to ensure that the study was relevant to the current 

cancer picture in the sub-Saharan and most especially Southern African region. 
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To achieve these aims, the following objectives were undertaken: 

 Identification and selection of potential plant sources for novel cytotoxic natural 

compounds through a literature search for frequently used, but least studied, African 

medicinal plants. 

 Determination of the in vitro cytotoxic activity of four selected African medicinal plant 

extracts against HeLa cervical cancer cells. 

 Bio-assay guided fractionation and isolation of natural compound(s) from the active 

medicinal plant extract(s). 

 Structural characterisation of the isolated natural compound(s). 

 Evaluation of the in vitro cytotoxic activity of the isolated natural compound(s) 

 Determination of the in vitro mechanism of cell death elicited by the cytotoxic natural 

compound(s). 

 Identification of potential biological targets for the isolated cytotoxic compound(s) 

using in silico molecular docking. 
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1.5 Structure of thesis 

This thesis is divided into six chapters, consisting of a literature review and five experimental 

chapters (2 – 6) in successive fashion. The literature review gives an overview of the subject 

matter with deliberate effort made to ensure that the reader is adequately prepared in 

understanding the experimental chapters that follow. Each experimental chapter contains a 

concise introduction with the aims clearly stated. This is followed by the results and discussion 

section. The experimental section is given after the discussion of the results with references 

appearing at the end of each chapter. 

In Chapter 2, results are given for the in vitro cytotoxicity screening of four selected African 

medicinal plant extracts against the HeLa cell line. Chapter 3 discusses natural products as a 

powerful resource in anti-cancer drug discovery and details the isolation and structural 

characterisation of a novel flavonoid C-glycoside from the bulb extract of Drimia altissima. 

Chapter 4 introduces High Content Analysis (HCA) as an emerging tool in natural product-

based early drug discovery and reports HCA results for the in vitro anti-cancer activity of 

Drimia altissima fractions and isolated flavonoid C-glycoside. Chapter 5 discusses flavonoids 

as nutraceuticals with promising anti-cancer effects and determines the mechanism of cell 

death induced by the isolated flavonoid C-glycoside. Chapter 6 identifies a potential biological 

target for the isolated flavonoid C-glycoside through in silico molecular docking. Finally, a 

conclusion is made and recommendations are given for future studies. 
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Chapter 2 

In vitro Cytotoxicity Screening of Selected Medicinal Plants 

 

2.1 Introduction 

In developing countries, (especially in Africa and Asia) about 80% of the population solely 

depend on the natural environment and chiefly plant extracts for treating diseases (Campbell-

Tofte et al. 2012). Though nature has been the primary source of therapeutics for thousands of 

years, less than 15% of the available 250 000 higher plant species have been investigated for 

their potential bioactivity (Cragg and Newman 2005a). Plants have been used for a very long 

time in the traditional treatment of various malignant conditions, some of which were loosely 

defined as ‘cancers’ based on the evidence of abnormal swelling such as is present in abscesses, 

calluses, polyps and tumours. In actual fact, over 60% of conventional anti-cancer drugs have 

the natural environment as their primary resource (Cragg and Newman 2005b). The main 

advantage that plant derived compounds have over synthetic drugs in the treatment of cancer 

is their relative non-toxicity and better bioavailability profiles (Amin et al. 2009). By 

mechanism of action, most of the plant derived conventional anti-cancer drugs are 

methyltransferase inhibitors, DNA damaging/ pro-oxidants, histone deacetylase inhibitors 

(HDACi) and mitotic disruptors (Amin et al. 2009). 

2.2 African medicinal plants as potential sources for new anti-cancer therapies 

In order to discover novel anti-cancer phyto-therapies from the African setup, there is need to 

identify frequently used medicinal plants in the traditional treatment of cancers and to focus on 

those which have undergone little or no cancer-related biological studies. Through a thorough 

literature search, the following 14 medicinal plants traditionally used to treat cancers and 

cancer related conditions within the African continent were identified as potential sources for 

anti-cancer agents; Neostenanthera gabonensis (Magnoliales, Annonaceae), 

Pachypodanthium staudtii (Magnoliales, Annonaceae), Bixa Orellana (Malvales, Bixaceae), 

Maytenus senegalensis (Celastrales, Celastraceae), Ceiba pentandra (Malvales, Malvaceae), 

Jatropha multifidi (Malpighiales, Euphorbiaceae), Verbesina encelioides (Asterales, 
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Asteraceae), Gloriosa superba (Liliales, Colchicaceae), Adansonia digitate (Malvales, 

Malvaceae), Capparis thonningii (Brassicales, Capparaceae), Margaritaria discoidea 

(Malpighiales, Phyllanthaceae), Pteris quadriaurita (Polypodiales, Pteridaceae), Drimia 

altissima (Asparagales, Asparagaceae) and Microdesmis puberula (Malpighiales, Pandaceae) 

(Figure 2.1). 

 

Figure 2.1 Selected African medicinal plants with potential anticancer activity 

  Images are not representative of whole plants. Image references are provided in-text 
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The leaves of Neostenanthera gabonensis (Figure 2.1a) (Fauna & Flora of Liberia 2015), 

popularly known as ‘Anyi Afemi’ in Ivory Coast, are used in West African traditional medicine 

to treat tumours and cancers (Global Plants 2018). However, no concrete literature evidence 

from biological studies currently exists to ascertain these claims. N. gabonensis comes from 

the Annonaceae family. Plants from the Annonaceae family are well known for yielding a 

variety of aporphinoid alkaloids with potent cytotoxic activity. Although the mechanisms of 

action by which these alkaloids cause cytotoxicity are not well understood, most of them target 

DNA manipulating enzymes such as polymerases and topoisomerases. An example of such 

compounds include liriodenine (2.1) (Figure 2.2), an oxoaporphine isolated from Polyalthia 

longifolia, with IC50 values of 3.6, 2.6, 2.5, 2.1 and 8.5 µM against KB, A-549, HCT-8, P-388 

and L-1210 cell lines respectively (Stevigny et al. 2005). The first aporphine alkaloids to be 

isolated from N. gabonensis were (-)-stenantherine (2.2) and (-)-N-methylstenantherine (2.3) 

(Renner and Achembach 1988). Other aporphines isolated from N. gabonensis include (-)-

caaverine (2.4) and lirinidine (2.5) (Guinaudeau 1994). The potential anticancer activity and 

mechanism of action for most of these compounds is yet to be known. The absence of literature 

evidence on the cytotoxic activity of N. gabonensis and its alkaloids provides an opportunity 

to investigate whether West African traditional use of this plant to treat tumours and cancers 

can be substantiated. 

 

Figure 2.2 Aporphine alkaloids isolated from the Annonaceae family 

2.1 2.2

2.52.4

2.3
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The bark of Pachypodanthium staudtii (Figure 2.1b) (Help Congo 2018), known as ‘Ntuen’ in 

Cameroon, is used in African traditional medicine as a concoction with other ingredients to 

treat benign tumours (Sarpong et al. 1990; Focho et al. 2010). It is also widely used in the 

treatment of several other illnesses. For instance, in Ivory Coast the bark is pounded with Ficus 

exasperata (Moraceae) leaves, water and clay into a paste for topical treatment of oedemas, in 

Ghana and Gabon, the bark is used to eradicate body vermin, the Guere of Ivory Coast use the 

pulverized bark in arrow poisoning mixtures and in Libya they use it as a vermifuge (Global 

plants, 2014). Most of the studies undertaken on P. staudtii have focused on its anti-filarial 

activity (Attah et al. 2013) but no studies have been done to evaluate its potential cytotoxic 

activity. For instance, P. staudtii is known to possess flavonols. Flavonols are known to have 

antimutagenic activity by inhibiting Aryl hydrocarbon receptor (AHR) transformation. Among 

the flavonoids, flavonols possess the highest antimutagenic activity owing to the presence of a 

carbonyl functional group at the C-4 position (Lopez-Lazaro 2002). The flavonol pachypodol 

(2.6) (Figure 2.3), a potent antiviral agent, was once isolated from P. staudtii along with three 

bisnorlignans (Ngadjui et al. 1989). Pachypodol (2.6) was also isolated from the Indian shrub 

Calycopteris floribunda and shown to inhibit CaCo2 colon cancer cells (IC50 = 185.6 μM) in a 

Promega’s CellTiter 96® non-radioactive cell proliferation assay (Ali et al. 2008). Another 

study reports pachypodol (2.6) isolated from the stem bark of East Asian Acanthopanax 

brachypus as having cytotoxic activity against HepG-2 cancer cells (IC50 = 4.5 μg/mL) (Hu et 

al. 2014). This shows that P. staudtii is a potential source for cytotoxic flavonoid compounds. 

 

Figure 2.3 Structure for the cytotoxic flavonol pachypodol (2.6) 

The seeds of Bixa orellana (Annatto seeds, Figure 2.1c) (Simran et al. 2017) are well known 

for their use in food colouring. Several phytochemical studies have confirmed the presence of 

carotenoid compounds in B. orellana seed extracts. Generally, carotenoids are known to exhibit 
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anti-carcinogenic effects by their ability to scavenge free radicals that cause DNA damage 

(Silva et al. 2001). Carotenoid compounds isolated from B. orellana include cis-bixin (2.7) and 

norbixin (2.8) (Figure 2.4) (Shilpi et al. 2006). The reported chemopreventive and antioxidant 

activity of B. orellana seed extracts is possibly due to the presence of these compounds. In 

particular, studies have shown that cis-bixin (7) possesses cytotoxic activity on various tumour 

cell lines with IC50 values ranging from 10 to 50 µM after 24 h exposure. According to a report 

by Tribodeau et al., 2010, cis-bixin (7) is selectively cytotoxic to highly drug-resistant multiple 

myeloma cell lines by inhibiting thioredoxin and thioredoxin reductase and hence, causing 

reactive oxygen species (ROS) mediated apoptosis (Tibodeau et al. 2010). Norbixin (2.8) has 

also been reported to have antimutagenic properties by causing an 87% inhibition of H2O2
- 

induced mutagenic activity (Júnior et al. 2005). B. orellana has also been reported to contain 

vitamin E isomers called tocotrienols (T3), which have been reported to possess both in vitro 

and in vivo anti-cancer activity by delaying the development and metastasis of mammary 

tumours in HER-2/neu transgenic mice possibly via the induction of oxidative stress, 

senescent-like growth arrest and apoptosis (Pierpaoli et al. 2013). 

 

Figure 2.4 Structures for the cytotoxic carotenoids cis-bixin (2.7) and norbixin (2.8) 

Species from the Maytenus Molina genus are widely used as traditional remedies for the 

treatment of various illnesses. Of these, the most frequently used in traditional African 

medicine are M. senegalensis (Lam) (Figure 2.1d) (Garcin 2018) and M. heterophylla (da Silva 

et al. 2011a). These two plants are traditionally used mainly for their anti-microbial and anti-

inflammatory activities as well as for the relief of dysmenorrhoea and toothaches (da Silva et 

al. 2011a). The Maytenus genus has been a source of different types of compounds with 

cytotoxic activity. Maytansinoids, sesquiterpene polyesters and triterpenes isolated from this 
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genus have been found to possess antitumoral and cytotoxic activity (Shirota et al. 1994). For 

example, the aromatic triterpenes pristimerin (2.9) (also isolated from M. senegalensis), 6-

oxotingenol (2.10), 6-oxopristimerol (2.11), 3-methyl-6-oxotingenol (2.12) and 3-methyl-22β, 

23-diol-6-oxotingenol (2.13) (Figure 2.5) isolated from M. ilicifolia and M. chuchuhuasca 

exhibited cytotoxic activity against L-1210, P-388 and KB cell lines (Shirota et al., 1994). 

Another triterpene 30-hydroxy-11α-methoxy-18β-olean-12-en-3-one (HMO) (2.14) isolated 

from the acetonic/ethanolic extract of M. procumbens induced apoptosis in human cancerous 

HeLa cells (Momtaz et al. 2013). Maytenin (2.15), isolated from M. boaria is the main active 

constituent responsible for the plant’s anticancer activity against basic cellular carcinoma, 

Kaposi’s sarcoma and leukemia. Other species reported to have anti-cancer properties include 

M. guangsiensis, M. ovatus, M. wallichiana, M. emarginata and M. senegalensis (Kintzios et 

al. 2004). Despite the fact that most of the traditional uses of plant species from the Maytenus 

genus, and particularly M. senegalensis, have been confirmed by biological studies, very few 

studies have endeavoured to explore the potential anticancer activity of M. senegalensis. 
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Figure 2.5 Structures for aromatic triterpenes isolated from the Maytenus Molina genus 
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Ceiba pentandra (Figure 2.1e) (Schmidt 2018) is one of several other plants commonly called 

‘mangroves’ (Bandaranayake 1998). In Nigeria, the leaves of this plant are used as a vegetable 

cuisine (Igoli et al. 2005) while the stem bark is used by the Hausa and Fulani tribes as folk 

medicine for the treatment of fibrosis (Abubakur et al. 2007). The leaves and stem bark are 

also frequently used for the treatment of diarrhoea and stomach pain (Okoli et al. 2007). Several 

other traditional practices claim that C. pentandra stem bark is able to cure a myriad of diseases 

such as diabetes mellitus, hypertension, yellow fever, malaria, wounds and tumours (Asare 

2012). Biological studies on C. pentandra have mainly focused on investigating its anti-

diabetic, anti-diarrhoeal and wound healing (antibacterial) claims. A study by Ladeji et al. 2003 

reporting the hypoglycaemic properties of the aqueous stem bark extract of C. pentandra in 

streptozotocin-induced diabetic mice confirms the anti-diabetic claims (Ladeji et al. 2003). In 

another study, a methanolic extract of C. pentandra stem bark significantly inhibited castor oil-

induced diarrhoea (Sule et al. 2009) and hence, confirmed the anti-diarrhoeal claims. The in 

vitro antibacterial activity of extracts from the leaves and stem bark of C. pentandra has also 

been reported (Asare, 2012). Besides a study that reported the bark extract of C. pentandra to 

possess significant in vitro and in vivo antitumor activity (Kumar et al. 2016), no other 

biological studies have been done to investigate the traditional use of C. pentandra as an 

antitumour agent. 

Jatropha is a created term from two Greek root words iatrós meaning ‘doctor’ and trophé 

meaning ‘food’. From the term itself, medicinal properties of the Jatropha genus are well 

implied. The genus Jatropha consists of about 170 species with subgenera Curcas and 

Jatropha. Species from Jatropha have vast use in folklore medicine. Jatropha species are also 

known for their use in the traditional treatment of cancers. For instance, Nigerians use J. 

gossypiifolia to treat oral cancers and Mexicans use J. gaumeri to treat skin cancers (Sabandar 

et al. 2013). The cytotoxic and anti-tumour properties of Jatropha species are mainly attributed 

to the presence of diterpene metabolites. Several diterpenes with potential anti-cancer 

properties have been isolated from different species of Jatropha. Among these is the diterpene 

jatrophone (2.16) (Figure 2.6) isolated from J. multifida (Figure 2.1f) (Giardinaggio 2018), J. 

gossypiifolia and J. elliptica with anti-tumour activity and the diterpene 9β, 13α-

dihydroxyisabellione (2.17) isolated from J. isabelli with cytotoxic properties (Devappa et al. 

2011). The cytotoxic diterpenes curcusone C (2.18), curcusone D (2.19), multidione (2.20), 15-

epi-4Z-jatrogrossidentadion (2.21) (also isolated from J. multifida and J. grossidentata), 4Z-

jatrogrossidentadion (2.22), 4E-jatrogrossidentadion (2.23), 2-hydroxyisojatrogrossidion 
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(2.24) and 2-epi-hydroxyisojatrogrossidion (2.25) isolated from J. curcas are responsible for 

the cytotoxic effects of J. curcas extracts against L5178y mouse lymphoma and HeLa human 

cervix carcinoma cell lines (Aiyelaagbe et al. 2011). A few cytotoxic compounds have also 

been isolated from J. multifida. Two macrocyclic diterpenoids, multifidanol (2.26) (structurally 

related to 15-epi-4Z-jatrogrossidentadion ) and multifidenol (2.27), isolated from J. multifida 

showed significant cytotoxic activity against A-549, Neuro-2a , HeLa, MDA-231 and MCF-7 

cell lines (Kanth et al. 2011). A lathyrane-type diterpene called multifidone (2.28) isolated from 

J. multifida showed in-vitro cytotoxic activity against THP-1 (IC50 = 45.63 ± 2.16 µM), HL-

60 (IC50 = 120.70 ± 17.59 µM), A-375 (IC50 = 159.05 ± 24.33 µM) and A549 (IC50 = 127.12 ± 

3.11 µM) cell lines (Das et al. 2009). These studies show that the Jatropha genus is a potential 

source for anti-cancer drugs. Despite these positive reports, few studies have embarked on 

investigating the mechanisms by which Jatropha species such as J. multifida cause their 

cytotoxic effects. 
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Figure 2.6 Selected cytotoxic diterpenes isolated from the Jatropha genus 

Verbesina encelioides, commonly known as the ‘Golden Crown Beard’ (Figure 2.1g) (Bakali 

2016), is a widely used weed in folk medicine for the treatment of cancers, gastro-intestinal 

diseases, dermatological abnormalities, snake bites, warts and haemorrhoids (Jain et al. 2008). 

V. encelioides is well known for being one of the sources of galegine (isoamylenegaunidine), 

a guanidine-based natural compound from which the anti-diabetic class of drugs called 

biguanides were derived (Malik et al. 2012). V. encelioides has been a subject of diabetes and 
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hyperlipidaemia associated studies because of this link. Due to the flexibility of the guanidine 

structural moiety and the ability of its three nitrogen atoms to interact with biological systems, 

guanidine-based compounds offer a wide spectrum of biological activity. A good number of 

natural/ synthetic anti-cancer and antimicrobial agents are guanidine functionalized (Said et al. 

2013). Despite the fact that V. encelioides yields guanidine based compounds, very few 

biological studies have been done to investigate its anti-cancer potential. Among the few 

performed anti-cancer studies, those that focused on using extracts from aerial parts of V. 

encelioides failed to produce favourable results. In an in-vitro study undertaken by Kuete et al. 

2012 to evaluate the cytotoxic and antimicrobial activity of V. encelioides, an 80% methanolic 

extract from the aerial part of the plant inhibited the growth of the micro-organisms 

Enterobacter aerogenes (EA27) and Klebsiella pneumonia (ATCC11296) at a minimum 

inhibitory concentration (MIC) of 1024 µg/ml but failed to show any cytotoxic activity against 

the human pancreatic cell lines, MiaPaCa-2, breast cancer cell line MCF-7, leukaemia cells 

CCRF-CEM and their multi-drug resistant sub-line CEM/ADR5000 (Kuete et al. 2012). In 

another study, a methanolic extract from the aerial parts of V. encelioides failed to display any 

cytotoxic activity against MCF-7, HepG2, HeLa and HFB4 cell lines (Almehdar et al. 2012). 

More recently, aerial parts of V. encelioides failed to show any anti-folate and antitumour 

activity against MCF-7, NCI-H460 and SF-268 cell lines (Albalawi et al. 2015). However, 

when Jain et al. performed a study using aqueous root infusions of V. encelioides, the extracts 

showed significant antitumoral activity (11-40% inhibition) (Jain et al., 2008). These results 

suggest that there could be cytotoxic compounds present in the root extracts of V. encelioides 

that may be absent in the aerial parts of the plant. Therefore, it would be of much interest to 

investigate the potential cytotoxic activity of the whole plant. 

Gloriosa superba Linn, commonly called the ‘Flame Lilly’, Kembang Telang (Java, Indonesia) 

or Kalappaikkilangu (Tamil Nadu, India) (Figure 2.1h) (Plant valley 2018) is a widely used 

traditional remedy throughout the tropics of Africa and in Asia for treating a plethora of 

ailments such as abdominal pains, arthritis and dislocations, as an abortifacient, for wound 

healing, ascites, asthma and coughs, venereal diseases, gouts and tumours etc. (Maroyi and 

Van de Maesen 2011). G. superba has been listed in the IUCN Red Data Book as an over-

exploited plant that is almost facing extinction due to high demands for the medicinal properties 

of its active compound colchicine (Ravindra and Mahendra 2009). Colchicine also possesses 

antimitotic properties that can be beneficial to cancer treatment (Dubey and Behera 2011). In-

vitro studies have revealed colchicine cytotoxic activity against the cholangiocarcinoma cell 
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line with an IC50 of 0.02µg/ml (Mahidol et al. 2002). However, due to its high toxicity, 

colchicine cannot be pharmacologically used in its native form. For this reason, several 

researchers are working to discover new colchicine derivatives that circumvent toxic effects 

(Dubey and Behera, 2011). A colchicine related compound KL-4 (2.29) (Figure 2.7) isolated 

from an Aspergillus species endophytic fungus residing within the seeds of G. superba was 

found to possess antimicrobial and broad spectrum antitumoral activity (Budhiraja et al. 2013). 

In a study that evaluated different Thai medicinal recipes used for the treatment of cancer, a 

recipe consisting of G. superba, Smilax glabra and Thunbergia laurifolia showed high anti-

proliferating activity against KB and HT29 cell lines (Manosroi et al. 2012). All this indicates 

that G. superba is a potential source for anticancer compounds. 

 

Figure 2.7 Structure for colchicine-like compound KL-4 (2.29) 

Adansonia digitata L., commonly known as the ‘Baobab Tree’ (Figure 2.1i) (Tipdisease 2018), 

is a widely used plant in the African tradition. It is mainly used as a food, a beverage and a 

medicine for several ailments. The pulp of A. digitata is used as a febrifuge, for treating 

dysentery and as eye-drops in measles patients. The mashed dried powdered roots are used as 

a tonic for malarial patients while the semi-fluid gum exuded from the bark is used as treatment 

for sores (Gebauer et al. 2012; Inngjerdingen et al. 2004). The traditional use of A. digitata to 

treat infectious diseases was substantiated by results from a biological study showing its 

antibacterial, antifungal and anti-oxidant effects (Lagnika et al. 2012). In an anti-inflammatory 

assay, A. digitata showed a >70 % inhibition of COX-1 and COX-2 enzymes (Mulaudzi et al. 

2013). The antiviral, anti-inflammatory, antipyretic, antimicrobial and anti-trypanosomal 

activities of A. digitata have already been extensively reported (De Caluwé et al. 2010) but no 

anticancer activity reports are currently available. 

Capparis is a major genus of the Capparaceae family. Several species from this genus have 

been subjects of extensive biological studies due to their various biological activities ranging 
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from anti-inflammatory, anti-oxidant and anticancer to anti-diabetic, antiprotozoal and 

analgesic (Upadhyay 2011). In Southern Nigeria, the fruit of C. thonningii (Figure 2.1j) (Randt 

2014), synonymous to C. brassii, is traditionally used as a vermifuge against tapeworms while 

its leaves are either orally ingested as an aphrodisiac or decocted and applied onto the skin to 

treat cancers and tumours. Several species from the genus Capparis have been found to possess 

significant anticancer activity. For example, a 38 kDa protein isolated from the seeds of C. 

spinosa inhibited the proliferation of HepG2, HT29 and MCF-7 cell lines with IC50 values of 

1.0, 40 and 60 µM respectively (Lam and Ng 2009). One of the compounds isolated from C. 

spinosa, stachydrine (2.30) (Figure 2.8) has anti-metastatic effects attributed to its inhibition 

of CXCR3 and CXCR4 chemokine receptors in cancerous cells. The fact that stachydrine 

(2.30) has also been isolated from the fruits of C. thonningii (C. moonii) is suggestive of the 

potential anticancer activity of C. thonningii (Mishra et al. 2007). 

 

Figure 2.8 Structure for the CXCR3/CXCR4 inhibitor stachydrine (2.30) 

The root bark of Margaritaria discoidea (Figure 2.1k) (Phillipson 2018) is frequently used to 

treat fevers, coughs and inflammatory conditions (Kamuhabwa et al. 2000). Methanolic 

extracts of M. discoidea have also shown cytotoxic activity by inhibiting the proliferation of 

HT29 (25-50% cell inhibition at 10 µg/mL) and A431 (50-75% cell inhibition at 10 µg/mL) 

cell lines (Kamuhabwa et al. 2000) but the mechanisms of action have not yet been reported. 

M. discoidea has been reported to contain securinane-type alkaloids (Diallo et al. 2015). A 

study reported that the cytotoxic activity of M. discoidea stem bark extracts against ovarian 

cancer cell lines OVCAR-8, A2780 and A2780cis is possibly due to the presence of the 

compounds securinine (2.31) and gallic acid (2.32) (Figure 2.9) (Johnson-Ajinwo et al. 2015). 

The anti-cancer activities of securinine (2.31) and gallic acid (2.32) are already well 

documented but there are no further reports of cytotoxic compounds isolated from M. 

discoidea. 
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Figure 2.9 Structures for securinine (2.31) and gallic acid (2.32) 

Pteris quadriaurita Retz. (Figure 2.1l) (Moran 2006), commonly known as the ‘Stripped 

brake’, is a fern that is frequently used to treat cancers in African traditional medicine. In 

Nigeria, the crushed rhizomes of P. quadriaurita are traditionally used as an emollient and an 

astringent (Nwosu 2002). In India, the juice extracted from P. quadriaurita leaves together 

with the sap of Pheonix sylvestris are traditionally used for the treatment of irregular 

menstruations by oral administration early in the morning on an empty stomach and at noon 

for two to three consecutive days (Rout et al. 2009). P. quadriaurita is also traditionally used 

as an anthelmintic and the freshly decocted rhizomes are used to treat visceral and spleen 

obstructions (Thomas 2011). Contrary to the negative results previously reported (Banerjee 

and Sen 1980), methanolic extracts from the fronds of P. quadriaurita have shown maximum 

antibacterial activity especially against Pseudomonas aeruginosa at an MIC of 25 mg/mL and 

a minimum bactericidal concentration of 50 mg/mL (Thomas, 2011). However, these results 

are questionable due to the extremely high concentrations that were used for the study. 

Currently, no studies have been undertaken to evaluate the ethnobotanical use of P. 

quadriaurita as an anticancer agent. The anticancer activity of ferns is usually attributed to the 

presence of flavonoids and their O-glycosides. Flavonoids with additional anti-oxidant activity 

exhibit slightly increased cytotoxic activity (Cao et al. 2013). However, a fern called Pteridium 

aquilinum (Bracken) is the only vascular plant known to cause cancer (Hirono et al. 1970) 

owing to the presence of an illudane type norsesquiterpene glucoside, ptaquiloside (2.33) and 

its analogues (Figure 2.10) (Hirono et al. 1984). P. quadriaurita was reported to contain either 

ptaquiloside (2.33) or its analogue pterosin B (2.34) (Tomšík 2014). Despite this, it would still 

be worthwhile to investigate if P. quadriaurita also possesses anti-oxidant flavonoids with 

potential anticancer activity. 
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Figure 2.10 Structures for the norsesquiterpene glucoside ptaquiloside (2.33) and its  

  analogue pterosin B (2.34) 

Species from the genus Drimia have been used for over centuries as ethnomedicines for the 

treatment of various ailments such as dropsy, respiratory conditions, bone and articulation 

disorders, dermatological diseases, epileptic seizures and cancers (Bozorgi et al. 2017). The 

biological activities of species within Drimia have been attributed to the presence of 

bufadienolides which exist as the main plant constituents. Bufadienolides are well known for 

their anticancer properties though the mechanisms by which they elicit these actions are often 

unknown (Gao et al. 2011). Plants from Drimia with reported cytotoxic activity include D. 

maritima, D. calcarata (D. riparia) and D. indica. Among several others, the bufadienolide 

riparianin (2.35) (Figure 2.11), isolated from D. calcarata, has been found to possess antitumor 

activity (Moodley et al. 2007). However, the main challenge with bufadienolides is their 

narrow therapeutic index due to cardiotoxic side effects (Iizuka  et al. 2001). This has created 

a need for the discovery of less toxic Drimia metabolites, possibly from the lesser studied 

species such as D. altissima (Figure 2.1m) (Schmidt 2009). 

 

Figure 2.11 Structure for the cytotoxic bufadienolide riparianin (2.35) 
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Orally administered root decoctions of Microdesmis puberula (Figure 2.1n) (Scamperdale 

2018) are used in South-Western Nigerian traditional medicine for the treatment of cancers 

(Ashidi et al. 2010). The Guineans also have a traditional practice of using the entire M. 

puberula plant to treat tumours (Graham et al. 2000). Analgesic and anti-stress effects of M. 

puberula methanolic stem wood extracts have been reported (Okany et al. 2012) but no 

biological studies have been performed to evaluate its anticancer and antitumor traditional 

claims. 

2.3 Chapter aims 

Key issues discussed in chapter 1 include the increasing prevalence of cancer in Africa, the 

limitations and safety concerns of current anticancer treatment modalities and the potential of 

African natural product-based research in the development of new phyto-therapies. After a 

literature search-driven identification of 14 African medicinal plants used in folklore medicine 

to treat cancers/ inflammatory conditions, four of the plants, Maytenus senegalensis, Ceiba 

pentandra, Adansonia digitata and Drimia altissima, were selected for in vitro cytotoxicity 

screening as potential sources for novel anticancer compounds. The selection of the four plant 

extracts was done by researchers at the University of Lagos as part of a collaboration. The aim 

of this chapter is to evaluate the anticancer potential of the four selected plants through in vitro 

cytotoxicity screening and to select the most active plant extract(s) for bio-assay guided 

isolation of anticancer compound(s). 
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2.4 Results and discussion 

2.4.1 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay 

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) (Figure 2.11) is a 

yellow tetrazolium salt which is converted by dehydrogenase enzymes in viable cells to an 

insoluble purple compound called formazan resulting from the cleavage of the tetrazolium ring 

(Stockert et al. 2012). The amount of purple formazan that is extracted from the cells is 

proportional to the number of viable cells. It is worth noting that since the MTT assay quantifies 

the number of viable cells at the end of the treatment period, it is not possible to distinguish 

between treatments that have cytotoxic (cell killing) from those that have cytostatic (cell 

growth inhibiting) effects. 

 

Figure 2.12 The conversion of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium  

  bromide (MTT) to formazan (Stockert et al. 2012). 
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The cytotoxic activity of extracts from M. senegalensis (MS-L and MS-R), C. pentandra (CP-

L), A. digitata (AD-R) and D. altissima (DA-R) was evaluated in HeLa cells using a modified 

MTT assay (Mosmann 1983). From the obtained results, the root extract of M. senegalensis 

(MS-R) showed strong cytotoxic activity (IC50 = 25 μg/mL) while the leaf extract (MS-L) was 

ineffective (IC50 = 264 μg/mL) (Figure 2.12). 

Figure 2.13 MTT dose response curves for M. senegalensis leaf (MS-L) and root (MS-R) 

  extracts in HeLa cells 

The leaf extract of C. pentandra (CP-L) was found to be ineffective (IC50 = 300 μg/mL) (Figure 

2.13) while the root extract of A. digitata (AD-R) showed significant cytotoxic activity (IC50 = 

48 μg/mL) (Figure 2.14). The bulb extract of D. altissima (DA-B) exhibited the strongest 

cytotoxic activity with an IC50 of 1.1 μg/mL (Figure 2.15). 

 

Figure 2.14 MTT dose response curve for C. pentandra leaf (CP-L) extract in HeLa cells 
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Figure 2.15 MTT dose response curve for A. digitata leaf root (AD-R) extract in HeLa cells 

 

 

 

Figure 2.16 MTT dose response curve for D. altissima bulb (DA-B) extract in HeLa cells 

In this chapter, African medicinal plants are highlighted as a great resource for the potential 

discovery of anti-cancer therapies owing to hundreds of years of African traditional use as 

treatments for cancerous/ inflammatory conditions. A literature search for African medicinal 

plants with potential to yield anticancer compounds led to the selection of four plants, M. 

senegalensis, C. pentandra, A. digitata and D. altissima, which underwent MTT in vitro 

cytotoxicity screening in HeLa cervical cancer cells. 



 

67 

 

From the results, the root extract of M. senegalensis (MS-R) possessed strong cytotoxic activity 

against HeLa cells with an IC50 of 25 μg/mL while the leaf extract (MS-L) was found to be 

ineffective. Interestingly, most biological studies on M. senegalensis focus on leaf extracts 

while neglecting the roots. An in vitro study found M. senegalensis leaf extracts to possess 

antimycobacterial activity against a resistant strain of Mycobacterium tuberculosis (da Silva et 

al. 2011b). Another in vitro study performed by Tahir et al. reported the antiplasmodial activity 

of M. senegalensis in which leaf and bark extracts showed activity against Plasmodium 

falciparum with IC50 values of 3.9 and 5.10 µg/mL for the 3D7 strain as well as 10.0 and 65.0 

µg/mL for the Dd2 strain (Tahir et al. 1999). M. senegalensis leaf extracts have also been 

reported to possess in vivo anti-inflammatory properties (Da silva et al., 2011a). Based on this, 

a study of M. senegalensis roots is more likely to result in the discovery of new compounds. 

The root extract of A. digitata (AD-R) also exhibited cytotoxic activity with an IC50 of 48 

µg/mL. The bulb extract of D. altissima (DA-B) was the most cytotoxic with an IC50 of 1.1 

µg/mL. By exhibiting the most potent cytotoxic activity against HeLa cells, D. altissima (DA-

B) had the greatest potential for the discovery of cytotoxic compounds and was thus selected 

for further studies. 
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2.5 Experimental 

2.5.1 General experimental procedures 

All extractions utilised LiChrosolv® (Merck, Germany) solvents. Samples were dried in-vacuo 

using a Buchi R-210 Rotavapor or freeze dried using a Virtis SP Scientific sentry 2.0 

lyophilizer with an Alcatel Pascal vacuum pump. HeLa cervical cancer cells were obtained 

from Cellonex, South Africa and grown in Roswell Park Memorial Institute 1640 (RPMI 1640) 

medium from GE Healthcare Life Sciences (South Logan, Utah, USA) supplemented with 

gamma irradiated Fetal Bovine Serum (FBS) from Biowest (South America). Cells were 

cultured in BioFlow-II Labotec laminar flow cabinets and incubated in a ThermoForma CO2 

incubator. 3-(4,5-dimethyl-2-thiazolul)-2,5-diphenyl-2H-tetrazolium bromide (MTT) was 

obtained from Sigma® (St. Louis, MO, USA). 

2.5.2 Plant material 

The plant specimens of Adansonia digitata, Ceiba pentandra and Maytenus senegalensis were 

obtained from Osun State, Nigeria and identified at the Forest Research Institute (FRIN), 

Ibadan, Nigeria in November 2014. The plant specimen of Drimia altissima (L.F.) Ker Gawl 

was collected in Kwa-Nobuhle, (Uitenhage, Eastern Cape, South Africa) by Buyiswa 

Hlangothi in February, 2015. The plant material was transported to Nelson Mandela University, 

Chemistry Department and stored in the plant room until the time of extraction. Plant 

authentication was performed by Tony Dold, a curator and taxonomist at Selmar Schonland 

Herbarium (GRA) in Makhanda, Eastern Cape, South Africa, where a specimen of Drimia 

altissima (L.F.) Ker Gawl. with voucher number Hlangothi011(GRA) was deposited. 

2.5.3 Extraction of plant biomasses 

The roots and leaves of Adansonia digitata, Ceiba pentandra and Maytenus senegalensis were 

oven dried at 40 °C, pulverized to powder and extracted using 96% EtOH for 72 h. The filtrate 

was concentrated using a rotary evaporation (Buchi, Switzerland) at 40 °C. The extract was 

then stored at 4 °C until needed for studies. The bulbs of D. altissima were washed under 

running water, peeled and dried at 40 °C after which the plant material was shredded into 

smaller pieces and submerged in liquid nitrogen until brittle. The resulting biomass was 

crushed with a mortar and pestle to powder in readiness for soxhlet extraction. About 100 g of 

dry powdered biomass was loaded onto the soxhlet apparatus and extracted for 75 cycles (1 
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cycle = 16 min) at 65 °C under reflux using MeOH/CH2Cl2 (8:2, 150 mL). The resulting extract 

was dried in vacuo to yield 10.85 g of a brown crude extract designated as DA-B. 

2.5.4 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay 

HeLa cells were seeded into 96-well culture plates at a density of 5 000 cells/well in RPMI 

1640 supplemented with 10 % fetal bovine serum (FBS) and incubated for 24 h. Test 

concentrations for each extract were determined based on repeat experiments to achieve IC50 

values from the dose response curves. Extracts MS-L (15.625, 31.25, 62.5, 125, 250 and 500 

μg/mL), MS-R (0.03, 0.3, 3.0, 30 and 300 μg/mL), CP-L (15.625, 31.25, 62.5, 125, 250 and 

500 μg/mL), AD-R (0.03, 0.3, 3.0, 30 and 300 μg/mL) and DA-B (1.2, 12, 25, 50, 100 and 200 

μg/mL) were added to the cells with melphalan used as positive control. The treated cells were 

incubated for a further 48 h after which the medium was replaced with 100 μL MTT (Sigma®) 

(0.5 mg/mL in RPMI 1640). After 3 h of incubation at 37 °C, the MTT was aspirated and the 

purple formazan product dissolved in 100 μL DMSO. The absorbance was measured at 560 

nm using a multi-well scanning spectrophotometer (Multiscan MS, Labsystems). All 

incubation steps were carried out in a 37 °C humidified incubator with 5% CO2. 

2.5.5 Data analysis 

Each IC50 was performed once in quadruplicate and data was analysed using GraphPad Prism 

version 6. Data points on the log-dose response curves represent the mean ± standard deviation 

(SD) of quadruplicate values. 
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Chapter 3 

Bio-activity Guided Isolation of a Novel Flavonoid C-glycoside from Drimia 

altissima (L.F.) Ker Gawl. (Asparagaceae) 

 

3.1 Introduction 

Drug discovery can be defined as the search for potential therapeutic agents through the 

screening of compound libraries, the isolation of natural bio-active metabolites and the design 

of synthetic compounds for specific pharmacological targets (Nature 2018). The process of 

drug discovery has been termed as a ‘chemical beauty’ contest because compounds cannot be 

eligible for drug development unless they are both biologically relevant and drug-like (Leeson 

2012). Biological relevance is the ability of a compound to interact with pharmacological 

targets such as proteins (receptors, ion channels and carrier enzymes) and nucleic acids whereas 

drug-likeness pertains to the ability of such a compound to possess physicochemical properties 

that promote oral bioavailability (Deng et al. 2013). 

The inception of medicinal and combinatorial chemistry has resulted in the generation of 

numerous compounds with poor physicochemical properties (non-drug-like) and hence, the 

introduction of the Lipinski rule of 5 (RO5) as a screening method to discriminate between 

drug-like and non-drug-like compounds (Lipinski 2004). RO5 restricts drug-like compounds 

to having a molecular weight less than 500 Da, not more than 5 hydrogen bond donors, not 

more than 10 hydrogen bond acceptors and lipophilicity (octanol-water partition coefficient 

log P) not greater than 5 (Benet et al. 2016). A virtual concept referred to as ‘chemical space’ 

has been defined as the total number of small carbon-based molecules that can be principally 

generated (Dobson 2004). Cheminformatics report that there are about 1060 drug-like organic 

molecules in the known chemical space (Reymond and Awale 2012). Despite this vast number 

of potential drug candidates, only 1 in 1000 synthetic compounds makes it through the clinical 

trials phase (Tamimi and Ellis 2009). This is because numerous drug development challenges 

are encountered before a concept drug can be turned into a marketed product. 
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3.1.1 Challenges to drug discovery and development 

Drug discovery and development is a highly expensive and risky business process that takes a 

minimum of 10 – 15 years to accomplish (Tamimi and Ellis 2009). One of the key challenges 

faced by drug discovery enthusiasts is high cost rates. On estimate, discovering, developing 

and launching a single drug candidate costs as much as USD 0.8 - 1.8 billion (Khanna 2012). 

Another challenge is high failure rates associated with clinical trials. Only 1 in 10 clinical trial 

candidates is likely to succeed with most failures occurring during phase II as a result of lack 

of efficacy (51%), strategic reasons (29%) and safety concerns (19%). Also, the pharmaceutical 

industry is the most regulated industry in the world. Extensive global regulatory standards have 

to be met in order to prove a drug candidate’s efficacy and safety across races, ethnicities and 

age groups. This is time consuming and leads to few new chemical entities (NCE’s) being 

approved by the FDA. 

3.1.2 Advantages of natural products over synthetic compounds 

Chemical entities in drug discovery are either synthetic compounds or natural products (NP). 

Synthetic compounds are chemically derived whereas natural products are extracted from the 

natural environment such as from plants, animals, microbes and marine algae. These 

compounds can be further categorised as totally synthetic, totally synthetic with natural product 

pharmacophores (natural product inspired), totally natural, natural with semi-synthetic 

modifications and natural product mimics (Newman and Cragg 2016). However, for the scope 

of this chapter, the mention of synthetic compounds only implies chemical entities that are 

totally synthetic. 

According to the ZINC database there are currently about 22 million commercially available 

synthetic compounds, of which only a relatively small number have biological relevance 

(Figure 3.1) (Irwin and Shoichet 2005; Harvey et al. 2015). On the other hand, the dictionary 

of natural products records 160, 000 compounds, all of which are biologically relevant and 

most of which are drug-like (130,000) (Harvey et al. 2015). Since the 1940’s, about 74.8% of 

commercially available anti-cancer drugs are either natural product based or natural product 

inspired (Newman and Cragg 2012). In the quest for new therapeutic agents, one of the main 

advantages of pursuing natural products over synthetic compounds is that natural products have 

intrinsic biological relevance. This is because natural products are secondary metabolites 

synthesized by living organisms to target biological processes for biological purposes such as 
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adaptation to surrounding environments and as defence mechanisms against predators (Lahlou 

2013). As mentioned above, one of the key drug development challenges is high failure rates 

associated with clinical trials, with 19% of these failures occurring as a result of toxicity. Owing 

to hundreds of years of ethnobotanical plant usage as natural remedies, natural products are 

relatively less toxic than synthetic compounds and hence, more likely to succeed as NCE’s. 

For instance, ancient herbal formulations such as the Mesopotamian records (dated 2600 BC 

as the oldest existing pharmacopoeia) are still in use today (Ji et al. 2009). Natural products 

exhibit more chemical and structural diversity than synthetic compounds to the extent that over 

40% of the natural product pharmacophores are absent from medicinal chemistry libraries, with 

some being too difficult and/ or too expensive to chemically synthesize. For instance, since 

1996 there has been an ongoing attempt to chemically synthesize maitotoxin, a highly potent 

toxin isolated from the dinoflagellate Gambierdiscus toxicus, but success has not yet been 

reported (Krämer 2015). 

 

Figure 3.1 Biological relevance comparison between synthetic and natural compounds 

(Adapted from: Harvey et al. 2015) 
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3.1.3 Challenges to natural product drug discovery 

In the past few decades, there has been a significant reduction in the approval of natural 

product-based drugs owing to current paradigms in the pharmaceutical industry and the 

challenges associated with the discovery of bio-active natural compounds. This has led to an 

explosive interest in combinatorial chemistry and high through-put screening (HTS) (Li and 

Vederas 2009). Natural product drug discovery faces challenges that are inherent to natural 

products and those that are specific to the African setting. Inherent challenges can be further 

classified into basic and practical problems (Guantai and Chibale 2012). One of these basic 

challenges is variations in the content of bioactive plant metabolites resulting from seasonal 

and environmental changes to the extent that even plants of the same cultivar and under the 

same agricultural conditions could have significant variations in their chemical compositions 

(Aires et al. 2011). This makes repetition of experiments very difficult and unreliable. In 

conventional early stage natural product drug discovery (Figure 3.2), extensive literature 

review and careful consideration of ethnobotanical practices is usually performed in order to 

identify and select medicinal plants for bio-activity screening. A basic challenge to this 

approach is that obtaining ethnobotanical information on certain natural product sources can 

be very difficult. For instance, it is a challenge to obtain ethnobotanical information on deep 

water marine algae since they are usually inaccessible to traditional practitioners. For this 

reason, some researchers choose to randomly select and screen plants for classes of compounds 

such as alkaloids, steroids, flavonoids etc. Even though this approach increases the chances of 

obtaining novel compounds, it provides no guarantee of efficacy. Other researchers randomly 

select large numbers of plants and perform biological assays. Except for a few successes such 

as the discovery of paclitaxel and camptothecin, this method is time consuming, expensive and 

has a very high failure rate (Katiyar et al. 2012). Natural products have no guarantee of supply 

since plant species can become extinct. It has been estimated that 15,000 out if 50,000 – 70,000 

medicinal plants are faced with extinction (Brower 2008). Legislations can also prevent access 

to certain medicinal plants. 

One of the practical challenges to natural product drug discovery is the high complexity of 

metabolic content in plant extracts which makes fractionation and purification of active 

metabolites a very tedious process. There is also a risk of losing bio-activity after fractionation 

and purification since some of the efficacies of plant extracts are a result of synergy between 

two or more chemical constituents. Another challenge usually encountered in natural product 
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research is that bio-active compounds are usually isolated in very minute quantities. This can 

be a limiting factor to compound characterisation as well as bio-activity testing as adequate 

amounts are required in these processes. In the African setting, the major challenges to natural 

product drug discovery include insufficient funding, unavailability of or poor infrastructure 

and absence of skilled researchers (Guantai and Chibale 2012). 

 

Figure 3.2 Conventional early stage natural product drug discovery (Adapted from:  

  Guantai and Chibale 2012) 

3.1.4 Bridging the gap between conventional and modern drug discovery paradigms 

In order for natural products to reclaim their role in pharmaceutical drug development it is 

important to merge conventional natural product drug discovery methods with modern 

approaches. For instance, natural product databases and repositories would provide in-depth 

information on isolated compounds such as geographical source, structural elucidation and 

biological data. In Africa, the few available databases such as Natural Product Research 

Network for East and Central Africa (NAPRECA), Network for Analytical and Bioassay 

Services in Africa (NABSA) and South African National Biodiversity Institute (SANBI) only 

represent a very small fraction of the entire plant diversity of the continent. Natural products 

need to be applied to modern drug discovery techniques such as virtual screening, in silico 

docking and high throughput screening (HTS). Bio-informatics can be applied to perform 

ligand-based virtual screening to determine mechanisms of action and structural activity 

relationship studies (SAR) (Claus and Underwood 2002). This would assist in identifying 

previously unknown biological activities which could then be followed up with in vitro bio-

assays. The absorption, distribution, metabolism and excretion (ADME) characteristics of a 
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potential drug candidate are a known challenge in early drug discovery. In silico software such 

as VolSurf and MetaSite can be used to predict ADME properties such as solubility, membrane 

permeability, bio-availability etc., thereby allowing for the selection of more druggable natural 

compounds (Scotti et al. 2010). 

Since synergistic natural compounds are less effective when tested separately, natural product 

drug discovery can incorporate the design of dual drugs in which two synergistic natural 

pharmacophores are covalently linked together to create novel highly potent hybrid drugs. Such 

hybrid compounds have been found in natural existence. A good example is thiomarinol (3.1), 

an antimicrobial antibiotic isolated from the marine bacterium Alteromonas rava sp. nov. 

SANK 73390. Thiomarinol is a hydrid compound consisting of a pseudomonic acid C analogue 

(3.2) and holothin (3.3). Other examples include the naphthylisoquinoline alkaloid 

michellamine (3.4), a homo-dimer of the alkaloid korupensamine A (3.5) and korundamine A 

(3.6), a hetero-dimer of korupensamine A (3.5) and Yaoundamine A (3.7) (Figure 3.3) (Tietze 

et al. 2003). This hybrid approach has also led to the design of multi-target-directed ligands in 

which natural products are linked to synthetic compounds acting on different pharmacological 

targets. Examples of such compounds include the cytotoxic hybrid distamycin A/DC-81 (3.8) 

(K562 cells, IC50 = 0.04µM) formed by linking the natural antibiotic distamycin A (3.9) (K562 

cells, IC50 = 12µM) isolated from Streptomyces distallicus with a synthetic antineoplastic 

antibiotic DC-81 (3.10) (K562 cells, IC50 = 1µM). Another semi-synthetic hybrid is paclitaxel/ 

α-tocopherol hybrid glycine ester (3.11) consisting of the natural anti-oxidant α-tocopherol 

(3.12) and the antimitotic agent paclitaxel (3.13) (isolated from the bark of Taxus brevifolia) 

linked together via a diester. Hybrid 3.11 exhibited an increased selectivity for A431 skin 

carcinoma cells (Decker 2011). 

Apart from the exploration for natural lead compounds, natural products can also be used to 

identify novel protein targets through metabolic and activity based profiling. In these processes, 

the metabolic activity of an organism is evaluated upon exposure to biologically active 

compounds to determine the affected metabolic pathways. The identified target proteins or 

enzymes are then subjected to either classical or reverse pharmacology in which the targets are 

cloned and subjected to “ligand fishing” with various natural and/ or synthetic compounds 

(Takenaka 2001). 
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Figure 3.3 Natural and semi-synthetic bio-active hybrids and dimers (Tietze et al. 2003)
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3 Images courtesy of Dresser et al. 2014, except 3.4A which was photographed by Mr. Mutenta N. Nyambe at 

Nelson Mandela University, Chemistry Department, 2015
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3.2 Pharmacognosy of Drimia altissima (L.F.) Ker Gawl. 

Drimia altissima (Figure 3.4), commonly known as the “African Squill” or the “Tall White 

Squill”, is a terrestrial bulbous plant that is widely distributed in tropical and southern Africa 

from Senegal all the way to South Africa (Williams et al. 2016). D. altissima is often referred 

to in isiZulu as Umahlokoloza (Crouch et al. 2010), or by its Afrikaans names; Maerman, 

Jeukbol, Maermanbol, Maermanui and Slangkop (Quattrocchi 2000) D. altissima was 

previously called Urginea altissima (L.F.) Baker before the genera Drimia and Urginea were 

combined under the Hyacinthaceae sub-family (Stedje 2000). Other D. altissima synonyms 

include Scilla altissima, Idothea altissima (L.F.) Kuntze and Ornithogalum altissimum L.F 

(Iwu 2014). The name altissima is derived from the Latin word altus (high) and the superlative 

suffix issimus (extremely) to mean “very tall”. 

 

Figure 3.4 Images showing the bulb and leaves (A), inflorescence (B) and habitat (C) of 

Drimia altissima (L.F) Ker Gawl. (Dressler et al. 2014)3 

The leaves of D. altissima (20 - 50 cm long, 2 - 7.5 cm wide) are shaped like a lance head and 

expand after the opening of the flowers. The long internode forming the peduncle is 

perpendicular with a diameter of about 1 cm. The inflorescence (about 80 cm) is a dense 

arrangement consisting of 700 flowers with intervals of spreading pedicels (8 – 30 mm long) 

on a common axis. The modified leaves seated on the pedicels reach up to 14 mm in length 

with associated tubular expansions reaching up to 3 mm. The external floral whorls (either 

white or greenish white with green or purple bands facing away from the stem) are either free  

B CA
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or united, up to 2 mm and having a length of between 5 - 11 mm. The filaments are either linear 

or slightly triangular, and may either be free (4 - 7 mm) or united with the external floral whorls. 

The ovaries are about 2 – 5 mm (equivalent to the length of the style) and take an oval shape. 

The capsule is almost spherical with a notched apex of 8 - 15 mm in height and 9 - 15 mm in 

diameter. The seeds are semi-orbicular and 5 - 8 mm long (Stedje 1987). Scanning electron 

microscopy (SEM) of the leaf surface in Drimia species shows striations with cells exhibiting 

a single central row of papillae and prominent stomata (Figure 3.5). The wax in Drimia species 

is devoid of crystalloids. The longitudinal leaf blades are almost cylindrical with tapering into 

elongated cones. The epidermis exhibits the outer periclinal wall and cuticle which are 

significantly thick while the inner periclinal walls are lobed. The mesophyll shows a single 

palisade layer of cells appearing underneath the epidermises. There is no lacunae, vascular 

bundles appear with 1 to 2 rings and vascular tissue consist of V-shaped xylems. Among cell 

inclusions are crystal fragments and raphid-styloid intermediate crystals which are present in 

idioblast cells (Lynch et al. 2006). The bulbs are half above ground with rough, overlapping 

scales. 

 

Figure 3.5 Microscopic (SEM) images of D. altissima leaves (Lynch et al. 2006) 

  (A) Abaxial leaf surface showing long and narrow epidermal cells, (B) abaxial leaf surface 

  showing papillae on cells proximal to stomata, (C) transverse section of the leaf with single 

  palisade layer underneath the epidermises, and (D) transverse section of the leaf with large 

  lacunae between single rows of vascular bundles 

A B

C D
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100 μm

100 μm 100 μm
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3.2.1 Phylogenetic classification of the Asparagaceae family 

Drimia altissima is a member of the Asparagaceae family. The Asparagaceae is a family of 

monocotyledonous flowering plants from the Asparagales order (APG III 2009). A recent 

study estimates that there are 114 genera and 2900 species in the Asparagaceae family 

(Christenhusz and Byng 2016). The Asparagaceae family can be further divided into seven 

sub-families; Aphyllanthoidae, Agavoidae, Brodiaeoidae, Schilloidae, Lomandroidae, 

Asparagoidae and Nolinoidae (Figure 3.6) (Chase et al. 2009). 

Within Asparagaceae, Drimia altissima comes from the Schilloidae sub-family, which is 

sometimes considered as a separate family under the name Hyacinthaceae. Hyacinthaceae is 

an established monophyletic family with approximately 70 genera and between 700 - 1000 

species (Pfosser and Speta 1999; Manning et al. 2003) which are mainly distributed around 

Europe, Africa and south-west Asia (APG II 2003). Taxonomic differentiation of genera and 

species within the Hyacinthaceae family has been a matter of contention since the time of 

Linnaeus (Stedje 2001). This controversy has continued in recent decades due to contradicting 

results from different phylogenetic studies. Based on results from analytical studies of plastid 

DNA trnL-F, phytochemistry as well as morphological and micro-structural data, the 

Hyacinthaceae family has been divided into four tribes; Oziroëeae, Urgineeae, Hyacintheae 

(which is further divided into sub-tribes Pseudoprospero, Massoliinae and Hyacinthinae) and 

Ornithogaleae (Figure 3.6) (Manning et al. 2003). A phylogenetic study showed the 

relationship between genera from Hyacinthaceae tribes and sub-tribes (Figure 3.7) (Goldblatt 

et al. 2012). 

From the Urgineeae tribe arises the genera Bowiea, Drimia, Schizobasis and Fusifilum, with 

the latter two occasionally included in Drimia. Among these, species from Drimia have the 

most extensive use as medicinal plants (Nath et al. 2014). After a study of chloroplast DNA 

and morphological data, a suggestion has been made to combine the genera Drimia, Urginea 

and Thuranthos into one genus, with Drimia given a wide circumscription (Stedje 2000). The 

same study analysed the nucleotide sequence of the intergenic spacer between the chloroplast 

genes trnL (UAA), the trnF (GAA) and the trnL (UAA) intron to show the relationship between 

11 species within Drimia (Figure 3.8). 
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Figure 3.6 Cladogram of the Asparagaceae family showing separations between sub- 

  families, tribes and sub-tribes (Adapted from: Manning et al. 2003; Chase et al. 

  2009) 
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Figure 3.7 Phylogeny of Hyacinthaceae showing relationships between genera within 

tribes and sub-tribes (Goldblatt et al. 2012) 

 

Figure 3.8 Cladogram of 11 Drimia species after analysis of the nucleotide sequence of 

  the intergenic spacer between the chloroplast genes trnL (UAA), the trnF  

  (GAA) and the trnL (UAA) intron (Stedje 2000) 

  Ornithogalum tenuifolium was used as outgroup. Numerical values above the branches show 

  the number of extra steps required for node collapse while percentages are bootstrap values 
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3.2.2 Drimia altissima plant habitat and distribution 

The genus Drimia is native to and present across the Mediterranean region and sub-Saharan 

Africa where it is widespread with several herbarium specimens accessible in Southern Africa 

(Figure 3.9A) (Conservatoire et Jardin Botaniques 2012). The genus D. altissima is widely 

distributed in Tropical, Eastern and Southern Africa (Figure 3.9B). East African countries 

reporting the presence of D. altissima include Eritrea, Ethiopia, Somalia and Djibouti. In 

Southern Africa D. altissima is widespread in South Africa, Namibia, Botswana, Zimbabwe, 

Mozambique, Malawi and Tanzania. D. altissima finds its habitat in Albany thickets, fynbos, 

bushlands, open woodlands, grasslands and savanna where it reaches a height of 35 - 200 cm 

at altitudes of up to 2,100 meters above sea level (Stedje 1987). 

 

Figure 3.9 Plant distribution map for genus Drimia (A) and species D. altissima (B) 

(Conservatoire et Jardin Botaniques Ville De Genève 2012) 
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3.3 Phytochemistry of the Urgineeae tribe 

The main types of compounds isolated from genera within Urgineeae are flavonoids and 

bufadienolides. Bufadienolides are considered as chemotaxonomic markers for the Urgineeae 

tribe (Pohl et al. 2000). 

3.3.1 Commonly isolated compounds from genus Drimia 

Phytochemical investigations of Drimia species have resulted in the isolation of several bio-

active C-glycosylflavones and scillaridin-based cardiotonic glycosides. For instance, the C-

glycosylflavones vitexin, isovitexin, orientin, isoorientin, scoparin, vicenin-2 and possibly an 

isovitexin-O-xyloside (Fernandez et al. 1975), as well as the bufadienolides proscillaridin A 

and Scillaren A have been isolated from D. maritima (Kedra and Kedrowa 1968; Iizuka et al. 

2001). The ethnomedicinal and pharmacological use of extracts and compounds derived from 

plants belonging to the genus Drimia is well documented (See Chapter 2, Section 2.2). 

3.3.2 Compounds previously isolated from Drimia altissima 

Phytochemical studies involving D. altissima have so far only resulted in the isolation of 

bufadienolides. Bufadienolides that have been isolated from D. altissima include hellebrigenin 

(3.14), urginin (3.15) and arenobufagin-3-O-α-L-rhamnopyranoside (3.16) Figure 3.10) 

(Shimada et al. 1979; Ermias et al. 1994). A report claiming the isolation of the isoquinoline 

alkaloids lycorine and acetylcaranine from D. altissima (Miyakado et al. 1975) has since been 

identified as a mistake resulting from the misidentification of an Amaryllidaceous bulb (Pohl 

et al. 2001). Presently, there are no literature reports of flavonoids isolated from D. altissima. 



 

95 

 

 

Figure 3.10 Selected bufadienolides isolated from Drimia altissima 

3.4 Chapter aims 

In chapter 2, after in vitro cytotoxicity screening of extracts from the four selected plants, it 

was discovered that the methanolic bulb extract of Drimia altissima possessed the highest anti-

proliferative activity against HeLa cells. This chapter, gives a detailed description of the bio-

activity guided isolation and structural characterisation of a novel natural compound from the 

methanolic bulb extract of Drimia altissima which is partly responsible for the cytotoxic 

activity of the extract. 
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3.5 Results and discussion 

3.5.1 Soxhlet extraction and isolation of metabolite from Drimia altissima 

Bulbs of Drimia altissima were collected from Kwa-Nobuhle (Uitenhage), South Africa. The 

plant biomass was extracted with MeOH:CH2Cl2 (8:2) using a soxhlet apparatus to afford crude 

extract MN-14-79 (Scheme 3.1). Sufficient de-ionized water was then added to MN-14-79 

after which the aqueous mixture underwent a series of liquid-liquid partitioning with n-Hex, 

EtOAc, and n-BuOH respectively to give partitions 79a (aqueous), 79b (Hex), 79c (EtOAc) 

and 79d (n-butanol). 1H NMR of partition 79d (Figure 3.11) exhibited signals in the aliphatic 

region, in the sugar region ẟH 3 – 4 and in the aromatic region ẟH 6 – 8.5. 

 

Scheme 3.1 Scheme showing the isolation of compound 100c (3.17) from Drimia altissima 
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Figure 3.11 1H NMR spectra (CD3OD, 400MHz) of Drimia altissima methanolic crude 

extract 79d and fraction 82c                                                                             

The four red arrows indicate peaks of interest in the aromatic region 

Based on bio-assay results (see Chapter 4, Section 4.3.1), partition 79d was further selected for 

fractionation. Bio-assay guided fractionation of 79d by Diaion® HP-20 resin open column 

chromatography using a stepwise gradient of reducing polarity (H2O-MeOH-EtOH-EtOAc) 

yielded 6 fractions (82a – f), with fraction 82c exhibiting peaks of interest in the aromatic 

region (Figure 3.11). Further purification of fraction 82c by Sephadex® LH-20 open column 

chromatography using 50% MeOH yielded fractions 99a – l. After Thin Layer 

Chromatography (TLC) profiling on silica gel using n-BuOH, glacial acetic acid and water 

(4:1:2 v/v) as mobile phase (Figure 3.12), fractions 99b – 99c, 99d – 99f and 99g – 99l were 

combined to form sub-fractions 100a, 100b and 100c respectively (Scheme 3.1). Sub-fraction 

100c was found to be 99% pure using Liquid Chromatography/Mass Spectrometry (LC/MS) at 

280nm (Figure 3.13) and hence, designated as compound 3.17. 

CD3OD

82c

79d
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Figure 3.12 Silica gel TLC profiling of fractions 82b – f (top) and 99a – l (bottom) using n-

BuOH, glacial acetic acid and water (4:1:2 v/v) as mobile phase. 

 UV lamp wavelengths: 254 nm (top right) and 365 nm (top left and bottom) 

 

 

Figure 3.13 LC/MS chromatogram of compound 3.17 at 280 nm using water and acetonitrile 

(95:5 v/v) as mobile phase 
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3.5.2 Structural characterisation of compound 3.17 

3.5.2.1 Mass spectrometry (MS) 

The fragmentation pattern and nomenclature of fragment ions resulting from the ionization of 

flavonoid glycosides was developed in the 1970’s and has undergone several alterations over 

the years (Pikulski and Brodbelt 2003). In the free aglycone, designations i,jA0 and i,jB0 are used 

in reference to fragments with intact A- and B- rings respectively, with superscripts i and j 

indicating cleaved bonds in the C-ring. Fragments of glycosides with retained charges on their 

sugar portions are labelled Ai, Bi and Ci, where i denotes cleaved bonds counted from the 

terminal sugar moiety (Cuyckens and Claeys 2004). Similarly, ionic fragments containing the 

aglycone are designated Xj, Yj and Zj, where j is the number of the cleaved interglycosidic bond 

from the aglycone. The glycosidic linkage between the aglycone and the sugar residue is 

designated as 0. For flavonoid-C-glycosides with O-interglycosidic linkages such as compound 

3.17, Y0 and Y1 represent aglycone-containing fragments with cleaved C- and O-glycosides 

respectively (Figure 3.14) (Vukics and Guttman 2010).  

 

Figure 3.14 Fragmentation pattern and nomenclature for flavonoid C- and C-O-glycosides 

(Vukics and Guttman, 2010) 

From LC/MS and HR-MS results, ESI-MS analysis in the positive mode (Figure 3.15) obtained 

pseudomolecular ions at m/z 565.15 [M+H]+ (base peak) and m/z 584.13 [M+H2O]+, 

confirming the theoretical molecular weight of compound 3.17 (C26H28O14, 564.54 Da). The 
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observed fragment at m/z 431 [M+H-134]+ indicated a Y1 fragmentation pattern (Figure 3.14) 

representing a flavonoid glycoside after departure of a sugar moiety. 

 

 

Figure 3.15 LC/ESI-MS spectrum of 3.17 in positive ionization mode 

3.5.2.2 Ultraviolet spectroscopy (UV) 

The UV absorption of flavonoid compounds in MeOH is characterised by the appearance of 

two absorption peaks designated as Band I (λ 300 – 380 nm) and Band II (λ 240 – 280 nm) as 

a result of absorption from the B-ring cinnamoyl and the A-ring benzoyl systems respectively. 

Flavones and flavonols with oxygenated A-rings but non-oxygenated B-rings tend to have 

more pronounced Band II absorption peaks whereas those which also have B-ring oxygenation 

have more pronounced Band I. Band I can be used to distinguish between flavones and 

flavonols containing an –OH substituent at position C-3, with Band I for flavones appearing 

100C

m/z
250 300 350 400 450 500 550 600 650 700

%

0

100

MS_LCMS_171011_1 785 (2.987) Cm (776:803-885:960) 1: TOF MS ES+ 
6.72e5565.1542

433.1122

566.1577

567.1595

584.1270

[M+H]+

[M+H-134]+



 

101 

 

around λ 304 – 350 nm and that of flavonols appearing around 352 – 385 nm. However, this 

does not apply to flavonols in which the -OH at C-3 is either methylated or O-glycosylated as 

the Band I range (λ 328 – 357 nm) in this case tends to overlap that of flavones. Increased 

oxygenation of the B-ring results in a bathochromic shift of Band I with subsequent splitting 

of Band II into IIa and IIb (without shifting). Similarly, an increase in the hydroxylation of 

ring-A results in a significant bathochromic shift in Band II and a less conspicuous shift in 

Band I. For flavones, hydroxylation at C-5 has a marked effect on the absorption pattern of 

Bands I and II, with absence of hydroxylation causing both Bands to appear at shorter 

wavelengths (λ 3 – 10 nm in Band I and 6 – 17 nm in Band II) than in their hydroxylated forms. 

Glycosylation of the –OH groups in flavones and flavonols at positions C-3, C-5 and C-4′ cause 

hypsochromic shifts, most notably in Band I. However, glycosylation at all other positions has 

no effect on the UV absorption spectra of flavonoids in MeOH (Mabry et al. 1970). 

 

Figure 3.16 UV absorption spectrum of compound 3.17 

The UV spectrum of compound 3.17 (Figure 3.16) exhibited a typical two maxima flavonoid 

absorption pattern with a pronounced Band I at λ 333 nm indicating the presence of 

hydroxylation on the B-ring and a less pronounced Band II at λ 272 nm. The shorter wavelength 

of Band I confirmed the absence of an –OH substituent at position C-3 while the absence of a 

bathochromic shift in Band I and lack of splitting in Band II indicated a single –OH substituent 
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at C-4′ of the B-ring. Compared to the absorption patterns of non-hydroxylated A-rings, the 22 

nm bathochromic shift observed in Band II of compound 3.17 confirmed the A-ring –OH 

substituents at positions C-5 and C-7. 

3.5.2.3 Circular Dichroism (CD) 

Flavonoid glycosides with chiral aglycones exhibit Cotton effects identical to their 

corresponding aglycones whereas those possessing racemic aglycones exhibit weak Cotton 

effects at λ 250 – 350 nm. Flavones have a single chiral centre at position C-2 while flavonols 

with an –OH substituent at C-3 have two chiral centres at positions C-2 and C-3. UV absorption 

maxima in the range λ 270 – 290 nm and 320 – 330 nm are a result of a π – π* and n – π* 

electronic transitions respectively, with the former being more helpful when determining the 

optical chirality of flavonoid glycosides. Flavones with a 2S configuration generally exhibit a 

positive Cotton effect in the range λ 245 – 270 nm accompanied by a negative Cotton effect in 

the range λ 225 – 240 nm (Gaffield 1970).  

 

Figure 3.17 Circular Dichroism (CD) spectrum of compound 3.17 
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The CD spectrum of compound 3.17 (Figure 3.17) exhibited a negative π – π* Cotton effect at 

λ 235 and a positive π – π* Cotton effect at 271 nm corresponding with a 2S configuration at 

chiral position C-2. 

3.5.2.4 Fourier-Transform Infrared (FT-IR) spectroscopy 

In the infrared analysis of flavonoid compounds, the most dominant bands are aromatic ring 

vibrations ranging from 1598 – 1612 cm-1, 1560 - 1570 cm-1 and 1452 - 1488 cm-1 and phenolic 

-OH deformation vibrations ranging from 1308 - 1370 cm-1 (Heneczkowski et al. 2001). Other 

characteristic flavonoid bands include Phenolic -OH stretching vibrations ranging from 1112 - 

1172 cm-1 and out-of-plane bending absorption of the 4′-substituted flavonoid B-ring ranging 

from 831 - 837 cm-1 (Wagner 1963). 

 

 

Figure 3.18 FT-IR spectrum of compound 3.17 

The FT-IR spectrum of 3.17 (Figure 3.18) presented a sharp carbonyl stretching vibration at 

1649.89 cm-1, confirming the flavonoid carbonyl functional group at C-4. The FT-IR spectrum 

also exhibited a broad hydroxyl stretching vibration at 3338.91 cm-1 and a sharp aromatic ring 

vibration at 1608.89 cm-1. Para-substitution of the flavonoid B-ring was confirmed by a 

conspicuous out-of-plane deformation vibration at 833.27 cm-1. 
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3.5.2.5 1D Nuclear Magnetic Resonance (NMR) spectroscopy 

The 1H NMR spectrum of 3.17 (Figure 3.19) showed overlapping signals in the sugar region 

(ẟH 3.0 – 4.0) with doublets at ẟH 4.93 and 5.0 (J = 10.2) suggestive of two anomeric protons. 

Within the aromatic region, there were two singlets at ẟH 6.55 and 6.64 and two doublets at ẟH 

6.96 and 7.88, creating an AMX spin system characteristic of flavonoid compounds as 

previously observed in Figure 3.11 (Maltese et al. 2009). Unlike the 1H NMR spectrum of 82c, 

no up-field aliphatic protons were present. These results were suggestive of a flavonoid 

compound with two glycosidic moieties. 

 

Figure 3.19 1H NMR spectrum (CD3OD, 400MHz) of compound 3.17 

Comparison of 1H and 13C NMR spectroscopic data of 3.17 (Table 3.1) with that of isovitexin 

(3.18) from literature (Ramarathnam et al. 1989) allowed for the identification of the flavonoid 

aglycone as apigenin (3.19) (Figure 3.20). The 13C NMR spectrum of 3.17 (Figure 3.21) had 

24 carbon resonances with peak intensities at ẟC 117.1 and 129.5 showing the presence of 

symmetry in the aromatic region and a carbonyl signal at ẟC 184.1. The presence of sugars was 

confirmed by carbon signals in the region ẟC 60 – 85.  

 

Figure 3.20 Structures for compounds 3.18 and 3.19 showing flavonoid rings A, B and C 
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Figure 3.21 13C NMR spectrum (CD3OD, 100MHz) of compound 3.17 

From the 13C DEPT135 NMR spectrum (Figure 3.22), the presence of 11 methine, 3 methylene 

and 10 quaternary carbons were determined. Hetero-aromaticity of the flavonoid aglycone was 

indicated by 9 of the quaternary carbons signalling in the aromatic region. 

 

Figure 3.22 13C DEPT135 NMR spectrum (CD3OD, 100MHz) of compound 3.17 
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Table 3.1 1H (CD3OD, 400MHz), 13C (CD3OD, 100MHz) and 2D NMR (1H COSY and 

HMBC) spectroscopic data for compound 3.17 

                                            Compound 3.17 

 

Carbon No. 

 

δC 

δC, 

mult 

δH, 

mult, JHz 

 

COSY 

 

HMBC 

Apigenin aglycone 

2 166.25 C    

3 103.92 CH 6.64, s  C-1′, C-2, C-4, C-10 

4 184.09 C    

5 161.88 C    

6 109.00 C    

7 164.84 C    

8 95.49 CH 6.55, s  C-6, C-7, C-9, C-10 

9 158.77 C    

10 105.23 C    

1′ 123.17 C    

2′ 129.48 CH 7.88, d (8.0) H-3′ C-2, C-4′ 

3′ 117.06 CH 6.96, d (7.9) H-2′  

4′ 162.80 C    

5′ 117.06 CH 6.96, d (7.9) H-6′ C-1′, C-4′ 

6′ 129.48 CH 7.88, d (8.0) H-5′  

6-C-Glucopyranosyl unit 

1′′ 75.45 CH 4.93, d (10.2)  C-2′′, C-3′′, C-5, C-6, C-7 

2′′ 72.86 CH 4.08 *   

3′′ 79.9 CH 3.51 *  C-4′′ 

4′′ 71.65 CH 3.56 *   

5′′ 81.26 CH 3.56 * H-6′′  

6′′ 68.95 CH2 3.75 - 4.02 H-5′′  

6′′-Apio-D-Furanosyl unit 

1′′′ 111.09 CH 5.00, d (2.5)  C-4′′′ 

2′′′ 78.02 CH 3.94, s   

3′′′ 80.51 C    

4′′′ 75.00 CH2 3.79 - 4.0 *  C-1′′′, C-3′′′ 

5′′′ 65.63 CH2 3.61, s  C-2′′′, C-3′′′, C-4′′′ 

(*) Signal patterns unclear due to overlap 
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3.5.2.6 2D heteronuclear through-bond NMR correlations 

HSQC-TOCSY NMR correlations were used to determine the arrangement of the two sugar 

moieties (Figure 3.23). From the HSQC-TOCSY results (Figure 3.24), a single spin system 

was observed in one of the sugar moieties. The anomeric proton H-1′′ at ẟH 4.93 correlated 

with protons of carbons C-2′′, C-3′′, C-4′′ and C-5′′ at ẟC 72.86, 79.9, 71.65 and 81.26, 

respectively (Figure 3.24A). Further HSQC-TOCSY correlations were observed between H-5′′ 

and the protons of carbons C-1′′ and C-6′′ at ẟC 75.45 and 68.95 respectively. Correlations in 

the aromatic region confirmed the apigenin aglycone (Figure 3.24B). These results, coupled 

with reported 1H and 13C NMR chemical shifts belonging to the C-glucose of isovitexin (3.18) 

helped to identify the sugar unit as glucopyranoside (Ramarathnam et al. 1989). Three separate 

spin systems where observed in the HSQC-TOCSY correlations of the second sugar (Figure 

3.24A). The anomeric proton H-1′′′ at ẟH 5.0 shared the same spin system with H-2′′′ (ẟH 3.94) 

whereas H-4′′′ (ẟH 3.79, 4.0) and H-5′′′ (ẟH 3.61) geminal protons were in two separate spin 

systems. These results were characteristic of a furanose moiety and thus, led to the 

identification of the second sugar unit as apio-D-furanoside. From 1H NMR results, the H-1′′′ 

to H-2′′′ coupling constant (J = 2.5 Hz) corresponded to an α- anomeric configuration. 

 

Figure 3.23 HSQC-TOCSY NMR correlations for compound 3.17 

(I) apigenin aglycone, (II) glucopyranosyl unit and (III) apio-D-furanosyl unit. 

The black, brown and blue arrows indicate flavonoid, glucopyranose and furanose correlations 

 respectively. (*) shows correlation determined by TOCSY NMR 
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Figure 3.24a HSQC-TOCSY NMR spectrum (CD3OD, 400MHz) of compound 3.17 showing 

resonances in the sugar and anomeric regions 

The grey, pink, blue, and green dots represent coupling within the same spin system 

 

 

Figure 3.24b HSQC-TOCSY NMR spectrum (CD3OD, 400MHz) of compound 3.17 showing 

resonances in the aromatic region  
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HMBC NMR correlations were used to determine the arrangement of the apigenin aglycone 

and the attachment of the glucopyranoside (Figure 3.25). From the HMBC NMR spectrum of 

3.17 (Figure 3.26), attachment of the glucopyranoside to the aglycone via a C-glycosidic bond 

was determined through a correlation between C-6 at ẟC 109 and the anomeric proton H-1′′ at 

ẟH 4.93 (Figure 3.26A). Compared to flavonoid 6-C-glycosides, anomeric protons belonging 

to flavonoid 6-O-glycosides are more deshielded and hence, appear around ẟH 5.1 

(Ramarathnam et al. 1989). Furthermore, the correlations between H-1′′ and carbons C-5 at ẟC 

161.88 and C-7 at ẟC 164.84 would not be observable via an O-glycosidic linkage as this would 

exceed HMBC’s 3-bond limitation. Unlike α- anomeric configurations which are at a 60° 

dihedral angle, β- anomeric configurations are at 180°, hence, their H-1′′ - H-2′′ coupling 

constants being much higher. Based on the high H-1′′ to H-2′′ coupling constant (J = 10.2 Hz) 

observed in the 1H NMR, the anomeric configuration of the C-sugar was determined as β-

glucopyranoside. 

 

Figure 3.25 1H – 13C HMBC NMR correlations for compound 3.17 

 The black, brown and blue arrows indicate flavonoid, glucopyranose and furanose correlations 

respectively 
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Figure 3.26a 1H – 13C HMBC NMR spectrum (CD3OD, 400MHz) of compound 3.17 

showing resonances in the sugar and anomeric regions 

 

 

Figure 3.26b 1H – 13C HMBC NMR spectrum (CD3OD, 400MHz) of compound 3.17 

showing resonances in the anomeric and aromatic regions 
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The fact that no HMBC correlations were observed between the aglycone and the furanose 

anomeric proton H-1′′′ was suggestive of a glycosidic linkage between the β-glucopyranoside 

and the apio-α-D-furanoside. The 13C NMR chemical shift of C-6′′ in the unsubstituted C-

glucopyranoside of isovitexin was reported at ẟC 62.9. In compound 3.17, C-6′′ had a 

significantly higher chemical shift, resonating at ẟC 68.95 resulting from the deshielding effect 

of a proximal electron withdrawing group. It was therefore concluded that in compound 3.17, 

the apio-α-D-furanoside is linked to the C-β-glucopyranoside at C-6′′ via an O-glycosidic bond. 

The structure of 3.17 was thus established as 6-C-[-apio-α-D-furanosyl-(1→6)-β-

glucopyranosyl]-4′, 5, 7-trihydroxyflavone or simply 6′′-O-α-apio-D-furanosylisovitexin 

(Figure 3.27). Compound 3.17 has been named ‘altissimin’, derived from the specie name, 

altissima. Several flavonoids with C-glucopyranosyl and furanosyl residues have been 

previously reported in literature. However, altissimin (3.17) presents a unique structural 

arrangement of the two sugar residues to the apigenin aglycone. Altissimin (3.17) is also the 

first C-glycosylflavone to be isolated from D. altissima. A similar compound consisting of C-

β-D-glucopyranosyl and apio-β-D-furanosyl residue attachments to an 8-hydroxyapigenin 

aglycone was isolated from the aerial parts of Gaillardia grandiflora (Moharram et al. 2017). 

 

Figure 3.27 Proposed structure of compound 3.17 

 

 

 

10

1'

5''
6''

5'

4'

2'

1''

1'''

2'''

4''

3''

2''

8

7

6

9 2

3'

6'

5

4 3

3'''

4'''

5'''



 

112 

 

3.5.2.7 2D through-space NMR correlations 

Through NOESY, determination of spacial relationships within the compound confirmed the 

proposed structural arrangement of 3.17 (Figure 3.28). In the sugar region, there was a 

correlation between the furanose anomeric proton H-1′′′ and the glucopyranose geminal 

protons at H-6′′ (Figure 3.29A), thereby confirming O-inter-glycosidic attachment between the 

furanose and the C-glucose. A correlation between the geminal protons at H-4′′′ was also 

observed. In the aromatic region there were correlations between the vicinal protons H-2′′, 6′′ 

and H-3′′, 5′′ (confirming a para substitution of the flavonoid B-ring) as well as between H-3 

and H-6′ (Figure 3.29B). 

 

Figure 3.28 1H – 1H NOESY NMR correlations for compound 3.17 

 The black and blue arrows indicate flavonoid and furanose correlations respectively 
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Figure 3.29a 1H – 1H NOESY NMR spectrum (CD3OD, 400MHz) of compound 3.17 

showing resonances in the sugar and anomeric regions 

 

 

Figure 3.29b 1H – 1H NOESY NMR spectrum (CD3OD, 400MHz) of compound 3.17 

showing resonances in the aromatic regions 
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3.6 Biosynthesis of flavonoid C-glycosides 

In the biosynthesis of flavonoids, enzymatic formation of naringenin chalcone by chalcone 

synthase is considered the most important step. During this process, acetate units from malonyl-

CoA undergo three successive condensation reactions resulting in the 6-carbon elongation of 

4-coumarate followed by cyclization to form flavonoid ring A (Figure 3.30). Since neither 

naringenin nor chalcone is a C-glycosyl acceptor, the ring is further opened to form a 

dibenzoylmethane isomer which then accepts C-glycosylation. The glycosylation of flavonoid 

metabolites serves as a storage mechanism and a preventer of cytoplasmic damage in plants 

because flavonoid glycosides are more hydrophilic and less reactive than their aglycones 

(Harborne and Williams 1982). The favoured positions for glycosylation in flavones are C-6 

and C-8 for C-glycosides and C-7 for O-glycosides (Vukics and Guttman 2010). Flavonoid C-

glycosides are further categorised into mono-C-glycosylflavonoids, di-C-glycosylflavonoids 

and C-glycosylflavonoid-O-glycosides, with the last category having inter-glycosidic bonds 

via the -OH groups of the C-sugars (Cuyckens and Claeys 2004).  

Flavonoid C-glycosides are formed through the enzymatic transference of a sugar unit from 

uridine diphosphate-glucose (UDP-glucose) to the C-6 or C-8 position of a flavone aglycone. 

In this process, C-glucosyltransferase mediates the transfer of a glucose unit with subsequent 

release of UDP (Kerscher and Franz 1987). The biosynthetic formation of a (1→2) O-inter-

glycosidic linkage between a furanose moiety and a C-glucoside on the C-8 position of the 

flavone has been reported (Hahlbrock et al. 1971). In the case of compound 3.17, in addition 

to C-glycosylation of the apigenin aglycone, it is proposed that a furanose moiety is 

subsequently added to the –OH at carbon C-6′′ by uridine diphosphate-apiose (UDP-apiose) 

through the enzymatic activity of apiofuranosyltransferase to form a (1→6) O-inter-glycosidic 

linkage between the furanose and the C-glucoside (Figure 3.27). 
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Figure 3.30 Proposed biosynthesis of compound 3.17 
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3.7 Experimental 

3.7.1 General experimental procedures 

All extractions and chromatography utilised LiChrosolv® (Merck, Germany) solvents. Open 

column reverse phase chromatography techniques were carried out using Diaion® HP-20 

(Supelco, USA) and Sephadex® LH-20 resins (Merck, South Africa). Samples were freeze 

dried using a Virtis SP Scientific sentry 2.0 lyophilizer with an Alcatel Pascal vacuum pump 

and/ or dried in vacuo using a Buchi R-210 Rotavapor. NMR experiments were performed with 

an Ultrashield Plus Bruker Avance III 400 MHz NMR spectrometer using standard pulse 

sequences. FT-IR results were obtained using a Bruker Tensor 27 FT-IR spectrometer and 

analysed using Opus data collection program. LC/MS and HR-MS results were obtained on a 

Waters Synapt G2 quadrupole time-of-flight mass spectrometer (detected by an ESI positive 

source with a 15 V cone voltage) from the Central Analytical Facilities (CAF) at Stellenbosch 

University, South Africa. The UV and Circular Dichroism (CD) results were recorded on a 

Chirascan Plus Spectrapolarimeter. 

3.7.2 Plant material 

Bulbs of Drimia altissima (L.F.) Ker Gawl were collected in Kwa-Nobuhle, (Uitenhage, 

Eastern Cape, South Africa) by Buyiswa Hlangothi in February, 2015. The plant material was 

transported to Nelson Mandela University, Chemistry Department and stored in the plant room 

until the time of extraction. Plant authentication was performed by Tony Dold, a curator and 

taxonomist at Selmar Schonland Herbarium (GRA) in Makhanda, Eastern Cape, South Africa, 

where a specimen of Drimia altissima (L.F.) Ker Gawl. with voucher number 

Hlangothi011(GRA) was deposited. 

3.7.3 Soxhlet extraction and isolation of compound 3.17 

The bulbs of Drimia altissima were washed under running water, peeled and dried at 40 °C 

after which the plant material was shredded into smaller pieces and submerged in liquid 

nitrogen until brittle. The resulting biomass was then crushed with a mortar and pestle to 

powder in readiness for soxhlet extraction. About 100 g of dry powdered biomass was loaded 

onto the soxhlet apparatus and extracted at 65 °C under reflux using MeOH/CH2Cl2 (8:2, 150 

mL) for 75 cycles (1 cycle = 16 min). The resulting extract was then dried in vacuo to yield a 

brown crude extract (MN-14-79, 10.85 g). MN-14-79 (10.85 g) was then solubilised in 160 
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mL de-ionised H2O and transferred into a 2 L separating funnel. The crude extract then 

underwent a succession of liquid-liquid partitioning using 160 mL each of Hex, EtOAc and n-

BuOH to obtain fractions 79a (H2O, 4.85 g), 79b (Hex, 1.78 g), 79c (EtOAc, 2.86 g) and 79d 

(n-BuOH, 1.77 g). Each fraction was partially dried in vacuo, diluted with sufficient amounts 

of HPLC-grade H2O, frozen at -80 °C and then lyophilized. 100g of dry Diaion® HP-20 resin 

was transferred into a 500 mL beaker to which sufficient amounts of MeOH were added to 

cover the resin bed by 5 cm. The resin was gently stirred for 1 min and allowed to stand for 15 

min after which the MeOH was decanted and replaced with de-ionized H2O. The mixture was 

then stirred and allowed to stand for 10 min before it was carefully packed into an open column 

of diameter 30mm to a resin height of 12.5cm. Fraction 79d (1.77 g) was then applied to the 

column and eluted using a series of solvents (200 mL each) in decreasing polarity to yield 

fractions 82a (H2O/MeOH, 7:3, n.d.), 82b (H2O/MeOH, 5:5, 270.8 mg), 82c (H2O/MeOH, 3:7, 

216.3 mg), 82d (100% MeOH, 144 mg), 82e (100% EtOH, 5 mg) and 82f (100% EtOAc, 15.8 

mg). After lyophilisation, 160 mg of fraction 82c was solubilized in 2 mL MeOH, applied onto 

an open column of diameter 20mm pre-packed with 12 g of Sephadex®  LH-20 gel in de-

ionized H2O (swelling ratio; 1 g = 4 mL) and eluted with 50% MeOH. 10 mL fractions were 

collected and dried to afford sub-fractions 99a – 99l. Sub-fractions 99g – 99l were combined 

to afford compound 3.17 (26.7 mg) as a yellow amorphous powder. 
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3.8 Physical data and spectral constants for compound 3.17 

 

6′′-O-α-apio-D-furanosylisovitexin (altissimin): 

6-C-[-apio-α-D-furanosyl-(1→6)-β-glucopyranosyl]-4′, 5, 7-trihydroxyflavone (3.17) 

Yellow amorphous powder (Mp 174 – 178 °C); CD (c 0.03, MeOH): [Θ]235 -73 320, [Θ]271 

+70 500, [Θ]300 +16 920, [Θ]345 +23 500; UV (MeOH) (log ε) λmax 272 (2.40), 333 (2.45); FTIR 

(KBr) νmax/cm-1: 3338.91 (-OH), 1649.89 (C=O), 1608.89 (Ar), 833.27; HRESI-MS m/z (rel. 

int.): 565.15 [M+H]+ (100), 433 [M+H-132]+ (calcd for C26H28O14, 565.15); 1H NMR (CD3OD, 

400 MHz): δ ppm 3.51 (1H, H-3′′), 3.56 (1H, H-4′′), 3.56 (1H, H-5′′), 3.61 (s, 2H, H-5′′′), 3.94 

(s, 1H, H-2′′′), 3.79 - 4.00 (2H, H-4′′′), 3.75 – 4.02 (2H, H-6′′), 4.08 (1H, H-2′′), 4.93 (d, J = 

10.2 Hz, 1H, H-1′′), 5.00 (d, J = 2.5 Hz, 1H, H-1′′′), 6.55 (s, 1H, H-8), 6.64 (s, 1H, H-3), 6.96 

(d, J = 7.9, 2H, H-3′, H-5′), 7.88 (d, J = 8.0 Hz, 2H, H-2′, H-6′); 13C NMR (CD3OD, 100 MHz): 

δ ppm 65.63 (C-5′′′), 68.95 (C-6′′), 71.65 (C-4′′), 72.86 (C-2′′), 75.00 (C-4′′′), 75.45 (C-1′′), 

78.02 (C-2′′′), 79.9 (C-3′′), 80.51 (C-3′′′), 81.26 (C-5′′), 95.49 (C-8), 103.92 (C-3), 105.23 (C-

10), 109.00 (C-6), 111.09 (C-1′′′), 117.06 (C-3′, C-5′), 123.17 (C-1′), 129.48 (C-2′, C-6′), 

158.77 (C-9), 161.88 (C-5), 162.80 (C-4′), 164.84 (C-7), 166.25 (C-2), 184.09 (C-4). 
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Chapter 4 

In vitro Anticancer Activity of Drimia altissima Fractions and Isolated 

Compound against the HeLa Cell Line 

 

4.1 Introduction 

Albeit the advantages of natural over synthetic compounds, recent decades have seen a decline 

in the approval of natural product-based drug candidates due to increased interest in the 

application of High-Throughput-Screening (HTS) methods to combinatorial synthetic 

compounds. This challenge to natural products can be circumvented by the merging of 

conventional natural product drug discovery paradigms with more modern approaches. A good 

example of such is the screening and bio-activity guided isolation of natural metabolites using 

High Content Analysis (HCA) equipment, also referred to as cellomics. HCA is a platform of 

sophisticated equipment and methods which operate by the use of biological applications and 

informatics software through automated cell-by-cell screening and quantitative analysis in 

order to investigate temporal and 3-dimentional cellular and sub-cellular activities and 

functions (Taylor 2007). Since the 1950’s, the interpretation of cellular images has played a 

significant role in the study of disease pathology and diagnosis. HCA technology was 

developed in 1996 to enable the large-scale screening of cells performed on either microplates 

or CellChip™ systems (lab-on-chips) for micro and nanotechnology applications (Kenneth et 

al. 1997). 

Conventional microscopy using manual or semi-automated imaging involves long hours of 

sitting while focusing with high concentration on the different fields of view. This method is 

tedious, time consuming and results in the analysis of a small number of samples. On the other 

hand, HCA platforms offers quantitative imaging with the full capacity for high throughput 

screening within just a few minutes of data acquisition and processing. HCA systems are able 

to analyse different types of samples from adherent, fixed and live tissue culture cells to beads, 

tissue slices, whole organisms and micro-organisms. The presence of a large field of view 

detector in HCA systems allow for whole well imaging at low magnification, an advantage for 

high statistic cell counting and scoring as well as for the discovery of rare events. HCA has 
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thus emerged as a key application among the modern methods employed in early drug 

discovery. 

 

Figure 4.1 The Molecular Devices® Image Xpress Micro XLS Widefield HCA System 

  (Molecular Devices 2018) 

There are several manufacturers of HCA systems such as Yokogawa, ThermoFisher, BioTek® 

and Molecular Devices®. Being the equipment that was used for this study, Molecular Devices® 

HCA systems will be further discussed. Molecular Devices® HCA systems come either as 

standard or Micro XLS models. The Micro XLS model (Figure 4.1) is a benchtop automated 

widefield microscope with the capacity to hold four objectives of 1 - 100x magnification and 

five filter cubes for multiple wavelength image acquisition. The XLS model operates using a 

4.66 megapixels scientific complementary metal-oxide semi-conductor (cMOS) camera with a 

larger field of view and a solid state light source of excitation ranging from 380 nm (DAPI) to 

650 nm (Cy5). The XLS model utilises a high speed laser autofocus with reduced sample 

photobleaching and phototoxicity, two problematic phenomena that complicated fluorescent 

molecule observation in early HCA models (Giuliano et al. 2003). Molecular Devices® HCA 

systems literally have hundreds of automated image application modules (Figure 4.2) such as 

cell proliferation, cell cycle analysis, multi-wavelength cell scoring, apoptosis, autophagy, 
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angiogenesis/ endothelial tube formation, cell signalling by translocation etc. (Molecular 

Devices 2018). 

 

Figure 4.2 Selected application modules used in HCA systems (Adapted from: Molecular 

  Devices 2018) 

4.1.1 Basic skill sets for High Content Analysis 

There are several basic skill sets required to develop and successfully run experiments on HCA 

systems. Firstly, biological skills are required in order to identify relevant biological research 

areas and thereby develop cellular assays that have practical in vivo applications (Haney et al. 

2015). A sound knowledge on microscopy is also very important. For instance, the choice of 

light source determines the wavelength to be employed in cellular staining and an 

understanding of the microscopes objective parameters is important for choosing the sample 

type to be used, which has a huge influence on the resolution of the acquired images. A firm 

knowledge on instrumentation is also key in effectively utilising HCA equipment. 

Unfortunately, most of the practical information needed to successfully run HCA experiments 

can only be acquired from the manufacturers of the equipment being used. In order to apply 

information from these manufacturer-provided resources, one needs to have sound knowledge 

of the equipment’s hardware such as laser autofocus, camera exposure time, photomultiplier 
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tube amplifier gain etc. Understanding instrumentation can also help the researcher to 

seamlessly integrate HCA systems with other equipment such as automated plate-handling 

devices for high-throughput screening. Due to the large quantity of data generated by HCA 

systems, a data analyst may be required for statistical analysis. An information technology 

expert may also be required for the safe storage and retrieval of HCA generated data. It is 

important to note that these skills and responsibilities may be shared among a small integrated 

team, especially in academic institutions were the majority of personnel are research students. 

4.1.2 Image acquisition and data management in High Content Analysis systems 

During a typical HCA experiment, plates are introduced into the HCA system for image 

acquisition and the system is configured based on the experiment to be done. Customization of 

the experiment is then performed using macros software such as MetaMorph® without the need 

for a programming language. After image acquisition, the data is sent to a computer system for 

management (Figure 4.3). An interactive data display allows for the detailed view of single 

cellular data. Molecular Devices® HCA systems give the option of data mining using their 

MDCStore solution software. Multi-parametric analysis of the acquired data is then performed 

through the use of various field or cell-by-cell parameters. The processed results can then be 

exported to various output channels such as ORACLE®, Microsoft® SQL, text file and 

Microsoft® Excel® (Molecular Devices 2012). 

 

Figure 4.3 Image acquisition and data processing in Molecular Devices® HCA systems 

  (Molecular Devices 2018) 
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4.1.3 Impact of High Content Analysis on early drug discovery challenges 

The key steps involved in early drug discovery include target identification, compound 

selection and validation, initial screening and lead optimization (Kenneth et al. 1997). At some 

of these processes, major challenges occur which hinder the rate at which lead drug candidates 

are discovered. These rate limiting steps are referred to as ‘bottlenecks’ of early drug discovery 

(Ekins et al. 2013). The key bottlenecks in early drug discovery are target validation, primary 

Ultra High Throughput Screening (UHTS), candidate optimization, secondary screening, 

structural activity relationship studies (SAR) and toxicity evaluation (Figure 4.4). Due to the 

numerous competitive challenges encountered when identifying potential candidates for drug 

development, target validation is considered a major bottleneck of early drug discovery (Ilag 

et al. 2002). During target validation, the causative or functional role of a specific drug target 

in normal physiology or disease pathology is evaluated through the use of numerous in vitro 

and/or in vivo biological assays (Kenneth et al. 1997). The high discovery rate of new drug 

targets has further raised the target validation input and increased the time required for bio-

assay analysis (Thomsen and Gloyn 2017). The three main factors to consider when attempting 

to improve the output of target validation are; data-handling, productivity and cost reduction. 

Bio-informatics, proteomics and the use of genomics databases has led to an improvement in 

the utilisation of data-handling tools (Emilien et al. 2000). To further improve this, HCA 

systems are now successfully applied to cellular genomics for the discovery of new therapeutic 

agents. This is because HCA enhances the reliability of cellular and functional genomics by 

interrogating endogenous markers to determine assay endpoints, normalizing the desired 

endpoint through meticulous examination of single cells and normalizing multiple endpoints 

for individual phenotypes, thereby increasing the confidence in candidate gene selection 

(Heynen-Genel et al. 2012). The high throughput capabilities of HCA systems can also help to 

improve target validation productivity levels. Due to these properties, HCA systems can be 

effectively used to eliminate the challenges of target validation, thereby enabling the discovery 

of new drug discovery targets in various therapeutic areas such as the discovery of new 

regulators of cell proliferation and the identification of additional components involved in stem 

cell self-renewal (Zock 2009). 
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Figure 4.4 Key bottlenecks in early drug discovery (Adapted from: Giuliano et al. 2003) 

4.1.4 High Content Analysis in cancer research 

Programmed Cell Death (PCD) is a physiological mechanism that works to maintain normal 

cell proliferation levels and a defence mechanism against infections (Lockshin and Beaulaton 

1974; Jorgensen et al. 2017). PCD can be evaded by some disease states to allow for the 

unwanted and continuous proliferation of cells, which thereby results in the development of 

malignancies such as cancer (Elmore 2007; Fuchs and Steller 2011). PCD is categorised as 

apoptosis, autophagy and programmed necrosis (Sun and Peng 2009), each with 

distinguishable morphological and biochemical features (Ouyang et al. 2012). PCD 

mechanisms continue to play a significant role in cancer research by aiding the discovery of 

new pharmacological and genetic modulators of cell death (Alam 2003). Many chemotherapy 

drugs induce cancer cell death by effecting changes on critical cell cycle signalling pathways 

(Mills et al. 2018). Application of HCA in cancer research was primarily based on the 

measurement of PCD. Through quantitative high-resolution biofluorescence imaging, HCA 

has revolutionized cancer drug discovery by being able to identify chemical entities that are 

able to alter the phenotypic characteristics of cancerous cells (Chetak et al. 2016). This is 

because HCA is able to identify morphological and biochemical alterations associated with 

PCD. In early apoptosis, HCA is able to measure phosphatidylserine “flipping”, mitochondrial 

membrane potential flux, released cytochrome c and activation of caspace-3. HCA can also be 

used to measure membrane permeability and DNA fragmentation in late apoptosis and 

necrosis, cytoskeletal collapse in late apoptosis and LC3B expression in autophagy. 
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4.1.5 Advances in natural products research using High Content Analysis 

The application of HCA tools to natural products research has produced ground-breaking 

results. For instance, the application of a High Content Screening (HCS) protocol termed 

U2nesRELOC to U2OS osteosarcoma cells treated with natural product extracts of microbial 

origin resulted in the discovery of a novel nuclear export inhibitor, MDN-0105, with an IC50 of 

3.4 μM (Cautain et al. 2013). Since protein and RNA nucleocytoplasmic transportation plays 

a key role in the onset and progression of malignancies, the disruption of nuclear export has 

now been identified as a novel therapeutic approach. HCA of a fungal extract led to the 

isolation of MDN-0066 (Figure 4.5), a lipodepsipeptide with selective cytotoxicity for Von 

Hippel-Lindau (VHL) deficient cells, thereby being a potential new treatment for VHL disease 

and also providing insight into the pathogenesis of the disease (Cautain et al. 2015; Bellomo et 

al. 2017). 

Recently, a new HCA screening platform called “Compound Activity Mapping” (CAM) was 

developed for the functional annotation of natural product libraries. CAM utilises HCA image 

based phenotypic screening to accurately predict individual structures and biological activities 

of plant metabolites from their complex natural product extracts (Kurita and Linington 2015). 

CAM is highly effective and more efficient than conventional laborious methods in that novel 

bioactive compounds can be discovered right from the preliminary screening stage. Through 

CAM, four novel compounds called quinocinnolinomycins A – D (Figure 4.5) were discovered 

as the first microbial-based natural compounds containing a cinnoline core (Kurita et al. 2015). 

HCA is also being used in natural product drug discovery to eliminate bioactive natural 

compounds with potential adverse effects through the analysis of nuclear morphology. This is 

because alterations in nuclear area has been identified as a strong marker for potential 

cytotoxicity, thereby acting as a sensitive endpoint in determining compounds that are likely 

to fail later on in the drug development process (Martin et al. 2014). Furthermore, the past few 

decades have seen increased interest in the development of natural product based nanoparticles 

as novel drug delivery systems due to their increased bio-availability, improved solubility and 

high target selectivity (Griffin et al. 2018; Khan and Gurav 2018). These “phyto-nanoparticles” 

have raised serious safety concerns with regards to their impact on human health, hence, the 

need to adequately evaluate their potential toxicity during early drug discovery (Boczkowski 

and Hoet 2010; Boraschi et al. 2011). Since HCA has been identified as a universal method for 
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the characterisation of nanoparticle induced cytotoxicity (Jan et al. 2008; Anguissola et al. 

2014), its application in natural product research will significantly increase the number of 

clinically approved phyto-nanoparticles. 

 

Figure 4.5 Structures of MDB-0066 (Cautain et al. 2015) and quinocinnolinomycins A – 

  D (Kurita et al. 2015). 

      The cinnoline moiety is highlighted in red 

4.2 Chapter aim 

In chapter 3, phytochemical investigation of the methanolic bulb extract of Drimia altissima 

led to the isolation and chemical characterisation of a novel C-glucosylflavonoid-O-glucoside, 

compound 3.17. This chapter provides the bio-activity results which guided the isolation of 

compound 3.17 through the cytotoxic activity of D. altissima partitions and fractions, with 

MDN-0066

R

Quinocinnolinomycin C Quinocinnolinomycin DQuinocinnolinomycin B

R=

Quinocinnolinomycin A
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further evaluation of the cytotoxic activity of compound 3.17 against HeLa cervical cancer 

cells using High Content Analysis (HCA). 

4.3 Results and discussion 

4.3.1 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay 

The potential cytotoxicity of fractions 79a – d and 82b – f were evaluated using a modification 

of the original MTT assay (Mosmann 1983). From the obtained results (Figure 4.6), fractions 

79c and 79d exhibited significant anti-proliferative activity at all tested concentrations, with 

79d being slightly more effective. Fractions 79a and 79b were less effective, with 79b showing 

the least activity at the lowest tested concentration of 0.1 µg/mL. It was based on these results 

that Fraction 79d was selected for further bio-assay guided fractionation, which then afforded 

fractions 82a – f (see Chapter 3, Section 3.5.1). Fractions 82b, 82c, 82d and 82e exhibited 

significant anti-proliferative activity at all tested concentrations, with 82c being the most 

effective fraction at the lowest tested concentration (Figure 4.7). Fraction 82f was only 

effective at 10 µg/mL. After coupling these results with NMR chemical profile comparisons, 

82c was selected for further purification leading to the isolation of compound 3.17. 

 

Figure 4.6 MTT assay results after treatment of HeLa cells with fractions 79a – d 

  Melphalan (M) was used as positive control at 40 μM. Data points represent the mean ± SD of 

  three independent experiments, each performed in quadruplicate 
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Figure 4.7 MTT assay results after treatment of HeLa cells with fractions 82b – f 

  Data points represent the mean ± SD of three independent experiments, each performed in 

  quadruplicate 
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4.3.2 High Content Analysis (HCA) 

4.3.2.1 Cytotoxicity - bisBenzamide H 33342 trihydrochloride/ Propidium Iodide (PI) 

The bisBenzamide H 33342 trihydrochloride (Hoechst 33342) (Figure 4.8) is a cell permeable 

nucleic acid stain which acts by binding to the minor groove of deoxyribonucleic acid (DNA) 

at AT-rich sequences, resulting in a blue-fluorescent stain (Tirino et al. 2016). Hoechst 33342 

nucleic acid binding allows for the determination of DNA content in live cells without the need 

for a fixation agent. In cellular applications, Hoechst 33342 requires excitation by 

bombardment with either a mercury arc lamp, an argon-ion laser or a 325 nm Helium-Cadmium 

(He-Cd) laser (Deligeorgiev and Vasilev 2006; Shapiro and Telford 2018). Hoechst 33342 has 

excitation and emission maxima of 350 nm and 461 nm, respectively (blue-cyan fluorescence). 

Propidium iodide (PI) (Figure 4.8) is the most commonly used DNA probe. PI is a fluorescent 

dye which intercalates between bases and stains both DNA and RNA. Specific DNA staining 

is achieved by enzymatic removal of RNA with a ribonuclease (RNase). PI is commonly used 

as a nuclear stain in fluorescent microscopy and as a DNA content determinant in cell cycle 

analyses by flow cytometry. PI has excitation and emission maxima of 535 and 617 nm, 

respectively (orange to red range of the spectrum). Due to its lack of permeabilization in viable 

cells, PI is also employed as a viability marker to detect dead cells whose disrupted membranes 

allow the dye to reach the nucleic acids. 

 

Figure 4.8 Structures for Hoechst 33342 and propidium iodide dyes. 
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The anti-proliferative activity of partition 79d and compound 3.17 against HeLa cells was 

evaluated via Hoechst 33342/ PI dual staining with melphalan (40 μM) used as positive control 

(Figure 4.9A). Images were acquired from 9 sites per well of a treated 96-well plate at 10x 

objective (Figure 4.9B). Values are reported as the average of 9 sites from each well. From the 

results obtained after 24 h of treatment, partition 79d exhibited a dose dependent inhibition of 

cell proliferation from 0.2 μg/mL onwards (Figure 4.10), with an IC50 of ± 0.497 μg/mL (Figure 

4.11). At 20 μg/mL, partition 79d was found to be almost as effective as melphalan. Similarly, 

compound 3.17 exhibited a dose dependant inhibition of cell proliferation (Figure 4.10), with 

an IC50 of ± 2.44 μM (1.37 μg/mL) (Figure 4.11). At 20 μM, compound 3.17 was found to be 

more effective than melphalan. 

 

Figure 4.9 (A) Hoechst 33342/ PI dual staining with phase contrast in HeLa cells after a 

  10x objective, (B) 9 sites per well HCA image acquisition 

  Blue stains indicate Hoechst/DNA staining of live cells, red stains indicate PI/RNase staining 

  of dead cells.
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Figure 4.10 Number of live cells per image site (left) and stacked number of live and dead cells (right) after 24 h of treatment with partition 79d 

  (top) and compound 3.17 (bottom) 

  Concentrations for partition 79d and compound 3.17 were measured in µg/mL and µM respectively. Melphalan (M) was used as positive control at 40 μM. 

  Data points represent the mean ± SD of three independent experiments, each performed in quadruplicate. Significance was determined by a two-tailed Student 

  t-test with (****) = p value ≤ 0.0001 compared to untreated control (C). (####) = p value ≤ 0.0001 compared to melphalan
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Figure 4.11 Dose response curves for the anti-proliferative activity of partition 79d (left) 

  and compound 3.17 (right) against HeLa cells after 24 h of treatment 

  Data points represent the mean ± SD of three independent experiments, each performed in 

  quadruplicate 

Besides cell proliferation and mitochondrial area, one of the most sensitive parameters in 

evaluating cytotoxicity using HCA systems is the measurement of nuclear area (O'Brien et al. 

2006). Changes in nuclear area can give an impression of the mechanism of action induced by 

a cytotoxic agent. For instance, due to the increased DNA content (4N) associated with G2/ 

early M phases as well as increased cellular size in necrosis, treatments that cause either G2/ 

early M or late S phase cell cycle arrest or necrosis will typically increase the nuclear area of 

the treated cells. If cell cycle arrest further leads to apoptosis, a consequent reduction in nuclear 

area can be noticed as a result of nuclear condensation (Sirenko et al. 2014). 

 

After 48 h treatment with partition 79d and compound 3.17 using melphalan as positive control 

at 20 and 40 μM respectively, nuclear size was evaluated by the measurement of nuclei area. 

From the obtained results (Figure 4.12), melphalan caused a reduction in nuclear area at 20 μM 

and an increase in nuclear area at 40 μM, indicating possible G2/M cell cycle arrest at the higher 

dose and induction of apoptosis at the lower dose. Partition 79d caused a significant increase 

in nuclei area at 2 μg/ml and a decrease at 20 and 100 μg/mL, suggesting S or G2/ M cell cycle 

arrest at the lower concentration and apoptosis induction at the higher concentrations (Figure 

4.12A). Compound 3.17 caused an increase in nuclei area at the highest tested concentration 

of 20 μM, suggesting induction of cell cycle arrest in S, G2 or early M phase (Figure 4.12B). 
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Figure 4.12 Nuclei mean area after 48 h of treatment with partition 79d (A) and compound 

  3.17 (B) 

  Concentrations were measured in µM with melphalan (M) used as positive control at 20 and 40 

  μM for partition 79d and compound 3.17 respectively. Data points represent the mean ± SD of 

  three independent experiments, each performed in quadruplicate. Significance was determined 

  by a two-tailed Student t-test with (*) = p value ≤ 0.05, (**) = p value ≤ 0.01, (***) = p value = 

  ≤ 0.001 and (****) = p value ≤ 0.0001 compared to untreated control (C) 

 

4.3.2.2 Cell Cycle Analysis - Hoechst 33342/ Annexin-V-FITC 

Cell cycle analysis is a method used to determine the proportion of cells in each phase of the 

cell cycle (Figure 4.13) for a given cell population based on differences in the content of DNA 

(Crissman and Tobey 1974). In this method, fluorescent probes are used to measure DNA 

molecules either by labelling or staining through stoichiometric binding which gives an 
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equivalent probe-to-DNA quantification (Darzynkiewicz 2010). Generally, these DNA probes 

are phenanthridiniums in chemical structure which get excited in the ultraviolet spectrum and 

produce red spectral emissions (Huber et al. 2004). Examples of these DNA fluorescent probes 

include Hoechst 33342, 1,5-bis{[2-(di-methylamino) ethyl]amino}-4, 8-dihydroxyanthracene-

9,10-dione (DRAQ5) and 4′,6-diamidino-2-phenylindole (DAPI) (Martin et al. 2005). The 

ploidy of a cell is the number of chromosomes that it contains. Cells in G0 and G1 have a diploid 

DNA content (2N) while those in G2 and M have a tetraploid DNA content (4N). Cells in G2 

and M contain twice the DNA content compared to those in G0/G1 because of ploidy 

implications. The DNA content during S phase lies between these two extremes. If a cytostatic 

compound caused cell cycle arrest, a cell cycle histogram can be generated to determine 

whether the arrest is at G0/G1, S, G2 or M based on the percentage of total cells in each phase 

population. Traditional cell cycle analysis using flow cytometry does not distinguish between 

G2 and M. However, HCA-based cell cycle analysis is able to distinguish between G2, and M 

as well as between Early M and Late M. This is based on the fluorescence intensity of the dye. 

Cells in G2 and early M have large areas, with G2 cell intensity being lower than that of M 

phase.  In late M phase, each cell exists with two very bright but small nuclei and thereby 

allowing HCA systems to distinguish between early and late M phases. 

 

 

Figure 4.13 Phases of the Cell cycle with key checkpoints (Cooper and Hausman 2007) 

 



 

143 

 

Cell cycle analysis of partition 79d and compound 3.17 was determined via Hoechst 33342/ 

Annexin-V-fluorescein isothiocyanate (FITC) staining using melphalan at 40 μM as positive 

control. Apoptotic cells may incorrectly be identified as mitotic cells because of the increased 

fluorescence intensity. Therefore, it is important to include an apoptosis marker when working 

with potential apoptosis inducers. From the obtained results, melphalan induced M phase cell 

cycle arrest as expected. Partition 79d induced a dose dependent mitotic cell cycle arrest from 

0.1 μg/mL onwards, which was characterised by a marked increase in Early M phase and a 

slight increase in Late M phase cell populations (Figure 4.14). 

 

Figure 4.14 Cell Cycle Analysis after 24 h of treatment with partition 79d 

  Concentrations were measured in µM with melphalan (40 µM) used as positive control. Data 

  points represent the mean ± SD of three independent experiments performed in quadruplicate 
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Similar to partition 79d, compound 3.17 induced a dose dependent mitotic cell cycle arrest 

exhibited by a marked increase in Early M phase and a slight increase in Late M phase cell 

populations (Figure 4.15). These results suggested that compound 3.17 is, at least in part, 

responsible for the anti-proliferative activity of extract 79 and partition 79d through an 

induction of M phase cell cycle arrest in HeLa cells. 

 

Figure 4.15 Cell Cycle Analysis after 48 h of treatment with compound 3.17 

  Concentrations were measured in µM with melphalan (40 µM) used as positive control. Data 

  points represent the mean ± SD of three independent experiments performed in quadruplicate 
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4.3.2.3 Apoptosis – Hoechst 33342/ Annexin-V-FITC-PI 

The characteristics of apoptosis include pyknosis (asymmetric plasma membrane), nuclear and 

cytoplasmic condensation and DNA fragmentation (Kepp et al. 2011). In the early stages of 

apoptosis, cells translocate membrane phosphatidylserine (PS) from the internal to the external 

surfaces of plasma membranes resulting in the exposure of PS to the extracellular space 

(Segawa and Nagata 2015). Annexin-V, usually conjugated to fluorochromes such as 

fluorescein isothiocyanate (FITC), is a Ca2+ dependent phospholipid binding protein with a 

high binding affinity for exposed PS. Since exposure of PS in early apoptosis precedes loss of 

cell membrane integrity in late apoptosis/ necrosis, multiple staining with Hoechst 33342, 

Annexin-V-FITC and PI can be used to distinguish between live, early apoptotic, late apoptotic/ 

necrotic and necrotic cells. Ideally, live cells only stain with Hoechst 33342 since they do not 

expose PS for Annexin-V-FITC binding and PI does not permeate intact cell membranes 

(Figure 4.16). Early apoptotic cells stain with both Hoechst 33342 and Annexin-V-FITC due 

to exposed PS while PI is excluded by the presence of intact cell membranes. Late apoptotic/ 

necrotic cells stain with Hoechst 33342, Annexin-V-FITC and PI resulting from the disruption 

of cell membranes. Exclusively necrotic cells only stain with Hoechst 33342 and PI since PS 

is not present for Annexin-V-FITC binding due to loss of membrane integrity. 

 

Figure 4.16 An illustration of Annexin-V-FITC-PI staining in viable cells, early apoptosis 

  and late apoptosis (Sawai and Domae 2011) 

Multiple staining with Hoechst 33342/ Annexin-V-FITC-PI was employed to determine if 

compound 3.17 induced apoptosis in HeLa cells at test concentrations of 5.5 and 22.14 µM. 

This combination of dyes was used to distinguish between viable, early apoptotic and late 

apoptotic/ necrotic cells as shown below (Figure 4.17). 
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From the obtained results after 48 h of treatment, 5.5 µM of 3.17 induced 14% apoptosis 

(Figure 4.19A) and 11.4% late apoptosis/ necrosis (Figure 4.19B). At 22.14 µM, the apoptotic 

cells increased to 19%, with a corresponding increase in late apoptotic/ necrotic cells (12.6%). 

These results suggest that the cytotoxic activity of compound 3.17 against HeLa cells involves 

the induction of apoptosis. The specific apoptotic pathways that are triggered by compound 

3.17 in HeLa cells are further investigated and discussed in the next chapter. 

 

Figure 4.17 HCA acquired image overlay (left) with masks (right) distinguishing between 

  live, apoptotic, late apoptotic/ necrotic and necrotic HeLa cells 

 

Figure 4.18 Percentage of live HeLa cells after 48 h treatment with compound 3.17 

  Concentrations were measured in µM with melphalan (40 µM) used as positive control. Data 

  points represent the mean ± SD of three independent experiments performed in quadruplicate 
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Figure 4.19 Percentage of apoptotic (A) and late apoptotic/necrotic (B) HeLa cells after 

  48 h treatment with compound 3.17 

  Concentrations were measured in µM with melphalan used as positive control. Data points 

  represent the mean ± SD of three independent experiments, each performed in quadruplicate 
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MTT assay. This was then followed by an evaluation of the cytotoxic activity of the isolated 

compound, 3.17, in comparison with its parent partition, 79d, against HeLa cells using High 

Content Analysis (HCA). It was determined from the MTT results that partition 79d was the 

most cytotoxic partition after it exhibited significant anti-proliferative activity at all the tested 

concentrations with 60% cell death (% of control) at 10 µg/mL. Fractions 82b – e showed 

cytotoxicity profiles similar to that of their parent partition, 79d, with 82c being the most 

effective at 0.1 μg/mL. From the HCA results, both partition 79d and compound 3.17 showed 

significant cytotoxicity with IC50 values of ± 0.497 μg/mL and ± 2.44 μM (1.37 μg/mL) 

respectively. Since the IC50 of partition 79d was lower than that of crude extract 79 and 

compound 3.17, it is implied that partition 79d contains other cytotoxic compounds that are yet 

to be isolated. This can also be seen from the fact that 82c was not the only cytotoxic fraction 

from partition 79d. Thus, 3.17 is one of, if not the main compound, responsible for the anti-

proliferative activity of partition 79d. From cell cycle results, both partition 79d and compound 

3.17 caused a marked increase in Early M phase and a slight increase in Late M phase cell 

populations after 48 h of treatment. Additionally, compound 3.17 was also found to induce 

19% apoptosis at 22.4 µM with only 12.6% late apoptotic/ necrotic cells. It can therefore be 

summarised that the anti-proliferative activity of the methanolic crude extract of Drimia 

altissima in HeLa cervical cancer cells partly involves the cytotoxic activity of the flavonoid 

glycoside compound, 3.17, through its induction of cell cycle arrest at Early M phase and 

subsequent apoptotic cell death. The mechanisms by which compound 3.17 elicits this anti-

proliferative activity is explored in the next chapter. 
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4.4 Experimental 

4.4.1 General experimental procedures 

HeLa cervical cancer cells were obtained from Highveld Biological, South Africa and grown 

in Roswell Park Memorial Institute 1640 (RPMI 1640) medium from GE Healthcare Life 

Sciences (South Logan, Utah, USA) supplemented with gamma irradiated Fetal Bovine Serum 

(FBS) from Biowest (South America). Cells were cultured in BioFlow-II Labotec laminar flow 

cabinets and incubated in a ThermoForma CO2 incubator. Annexin V-FITC kit was obtained 

from MACS Miltenyi Biotec (Auburn, USA). 3-(4,5-dimethyl-2-thiazolul)-2,5-diphenyl-2H-

tetrazolium bromide (MTT) and Hoechst 33342 were obtained from Sigma (St. Louis, MO, 

USA). 

4.4.2 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay 

HeLa cells were seeded into 96-well culture plates at a density of 5 000 cells/well in RPMI 

1640 supplemented with 10% fetal bovine serum (FBS) and incubated for 24 h. Partitions 79a 

– d and fractions 82b – f were added to the cells at 0.1, 1.0 and 10 μg/mL with melphalan used 

as positive control. The treated cells were incubated for a further 48 h after which the medium 

was replaced with 100 μL MTT (Sigma®) (0.5 mg/mL in RPMI 1640). After 3 h of incubation 

at 37 °C, the MTT was aspirated and the purple formazan product dissolved in 100 μL DMSO. 

The absorbance was measured at 560 nm using a multi-well scanning spectrophotometer 

(Multiscan MS, Labsystems). All incubation steps were carried out in a 37 °C humidified 

incubator with 5% CO2. 

4.4.3 High Content Analysis (HCA) 

4.4.3.1 Hoechst 33342/ Propidium Iodide (PI) cytotoxicity assay 

HCA was used for cytotoxicity screening of partition 79d and compound 3.17. HeLa cells were 

seeded at a density of 5000 cells/well into 96 well culture plates and incubated for 24 h at 36.7 

°C in a humidified 5% CO2 incubator. The cells were treated at different concentrations of the 

extract, partition and compound. For partition 79d, cells were treated at 0.001, 0.002, 0.01, 

0.02, 0.1, 0.2, 2, 20 and 100 μg/mL. For compound 3.17, cells were treated at 0.3125, 0.625, 

1.25, 2.5, 5 and 20 μM. In each of these experiments, 20 or 40 µM of melphalan was used as 

positive control. Treatments were incubated for 24 and 48 h at 36.7 °C after which the medium 

was aspirated and cells washed with PBS containing calcium and magnesium. The cells 
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underwent Hoechst/PI staining with bisBenzamide H 33342 trihydrochloride (Hoechst 33342) 

at 5 µg/mL and propridium iodide (PI) at 10 µg/mL. After 15 min incubation at 36.7 °C, cellular 

images were acquired with a Molecular Devices® ImageXpress Micro XLS Widefield High-

Content Analysis System using a DAPI filter for Hoechst 33342 and a Texas Red filter for PI. 

The acquired images were analysed using the Multiwavelength Cell Scoring analysis module 

of MetaXpress® High-Content Image Acquisition and Analysis Software. 

4.4.3.2 Hoechst 33342/ Annexin V-FITC (Cell Cycle Analysis) 

HeLa cells were seeded and treated with partition 79d and compound 3.17 as above. Cell Cycle 

Analysis was performed using a Hoechst 33342/ Annexin V-FITC staining mixture prepared 

by the addition of 50 μL of Annexin V-FITC and 5 μL of Hoechst 33342 to 5 mL PBS 

(containing 250 μL of Binding Buffer, 20x). The Hoechst 33342/ Annexin V-FITC mixture 

was used in 50 μL aliquots to stain the cells. The stained cells were incubated for 15 min at 

room temperature followed by image acquisition with a Molecular Devices® ImageXpress 

Micro XLS Widefield High-Content Analysis System using a DAPI filter for Hoechst 33342 

and a FITC filter for Annexin V-FITC. The acquired images were analysed using the Cell Cycle 

Analysis module of MetaXpress® High-Content Image Acquisition and Analysis Software. 
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Chapter 5 

In vitro Mechanism of Cell Death Induced by 6′′-O-α-apio-D-

furanosylisovitexin (Altissimin) in HeLa Cells 

 

5.1 Introduction 

Flavonoids are benzo-γ-pyrone (chromone) derived pigments which are ubiquitous in plants as 

the largest class of polyphenols. All flavonoids are diphenylpropanes with a C6-C3-C6 carbon 

framework characterised by the presence of two aromatic rings A and B linked together by 

three carbon atoms usually presenting as a heterocyclic ring C (Figure 5.1) (Rice-Evans et al. 

1996). Based on the position of aromatic ring attachment to the chromone moiety, flavonoids 

can be broadly classified into flavonoids (2-phenylbenzopyrans) (5.1), isoflavonoids (3-

benzopyrans) (5.2) and neoflavonoids (4-benzopyrans) (5.3) (Figure 5.2) (Marais et al. 2006). 

A fourth class referred to as minor flavonoids consisting of chalcones (5.4) and aurones (5.5) 

is often included. Flavonoids can be further categorised into six main subclasses; flavones, 

flavonols, flavonones, flavanols, anthocyanidins and isoflavones (Ross and Kasum 2002). 

 

Figure 5.1 Flavonoid scaffold showing aromatic rings A and B, and heterocyclic ring C 

  The chromone moiety is highlighted in red 

In 1979, Dr. Stephen DeFelice coined the term “nutraceuticals” to entail foods or dietary 

components which possess medicinal and general health benefits through their disease 

prophylactic and curative effects (DeFelice 1992). Flavonoids are biologically active 

compounds with various proven nutraceutical benefits (Kaleem and Ahmad 2018). Some of 
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the nutraceutical benefits associated with the daily intake of flavonoids include antioxidant, 

antibacterial, antifungal, anti-ulcer, hepatoprotective, cardioprotective, anti-diabetic, anti-

inflammatory, and anticancer effects (Tapas et al. 2008). With the isoflavones genistein (5.6), 

daidzein (5.7) and equol (5.8) (Figure 5.3) being the most extensively studied flavonoids, some 

safety concerns have been raised concerning the potential risk of uterine hypertrophy, 

reproductive tract malformations, infertility and estrogen-sensitive cancers due to decreased 

expression of an estrogen-responsive gene following the consumption of isoflavones in soy 

products (Harlid et al. 2017). However, the frequently consumed nutraceutical flavonoids 

(anthocyanins, flavonols, catechins and quercetin) are generally considered to be safe and 

without adverse effects (Ronis et al. 2018). 

 

Figure 5.2 Major structural classes for flavonoid compounds (Marais et al. 2006). 

There are currently over 5,000 naturally occurring flavonoids which are abundantly sourced 

from almost all parts of plants (Oyama et al. 2011). The flavonols quercetin (5.9), kaempferol 

(5.10) and myricetin (5.11) and the flavones apigenin (5.12), luteolin (5.13) and naringenin 

(5.14) (Figure 5.3) are among the most abundant flavonoids in foods. Some of the food sources 

for these flavonoids include black rice, vegetables, fruits, berries and red wine for anthocyanins 
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(Ahmad et al. 2015), parsley, thyme celery and sweet red pepper for flavones, soy beans and 

legumes for isoflavones (Crozier et al. 2009), onions, broccoli, berries and tea for flavonols 

and citrus fruits for flavanones (Jung et al. 2006). 

 

Figure 5.3 Structures for selected natural flavonoids 

The daily intake of natural flavonoids has been met with controversy due to some conflicting 

in vitro and in vivo scientific reports leading researchers to question whether these compounds 

have practical human health benefits (Lambert et al. 2007). Others have suggested that daily 

flavonoid intake is in fact a health risk as it may cause or potentiate various disease states such 

as hepatotoxicity (chalcones), blood dyscrasias (catechin), allergic dermatitis (catechols), 

infertility and carcinogenesis (isoflavones) (Galati 2004), or lead to significant drug 

interactions (Morris and Zhang 2006). It is worth noting that most studies on the total intake of 

flavonoids have been done in Europe such as the European Prospective Investigation into 

Cancer and Nutrition (EPIC). A survey discovered that in these European countries (most 

especially Mediterranean countries, Belgium and Germany) daily flavonoid intake is too low 

to elicit any therapeutic or adverse effects (Vogiatzoglou et al. 2015). This is despite the fact 
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that Mediterranean diets are high on flavonoid containing foods such as fruits, vegetables and 

red wine. This may be explained in that ingested flavonoids as well as their esters, glycosides 

and polymers are not readily absorbed in their native forms (Manach et al. 2004), thereby 

significantly reducing bio-availability to sub-therapeutic levels (less than 1% for tea catechins 

and 20% for quercetin and isoflavones) (Hollman et al. 1995; Lee et al. 1995). It has also been 

observed that flavonoid concentrations used during in vitro and in vivo studies are often much 

higher than the daily human intake (Yang et al. 2001). Additionally, some studies suggest that 

flavonoids are more effective in in vitro than in vivo studies due to poor water solubility in the 

latter (Tan et al. 2012). Certain in vitro studies have evaluated entire crude extracts in which 

flavonoids are deemed to be present without considering single compound isolation. These 

types of assays provide no further information as to which flavonoids are active or whether 

other non-flavonoid constituents also contribute to the treatment outcomes. This is important 

because flavonoids act specifically in that certain flavonoids can significantly reduce the risk 

of developing a particular disease state in which other flavonoids are without effect. This is 

evident from the fact that daily intake of apigenin is associated with a reduced risk of ovarian 

cancer whereas total flavonoid intake is of no effect (Romagnolo and Selmin 2012). 

5.2 Anticancer activity of flavonoids 

A majority of in vitro and in vivo studies have shown flavonoids to possess significant 

anticancer activity through various mechanisms such as steroid hormone modulation, anti-

proliferative, chemo-preventive, anti-inflammatory and anti-oxidant effects (Yao et al. 2004). 

Recently, flavonoids (mostly epigallocatechin gallate) were found to inhibit hepatocellular 

carcinoma in a murine model through the inhibition of tumour growth, anti-angiogenesis and 

anti-metastasis (García et al. 2018). In separate meta-analysis studies, the dietary intake of total 

flavonoids, anthocyanidins, flavones and flavanones reduced the risk of oesophageal cancer 

(Cui et al. 2016), flavonols and isoflavones reduced the risk of ovarian cancer (Hua et al. 2016), 

and flavones and flavonols reduced the risk of breast cancer (Hui et al. 2013). Heterogeneous 

variations in the therapeutic response to flavonoid intake have been noticed, most likely due to 

agricultural, socio-demographic and lifestyle differences (Romagnolo and Selmin 2012). For 

instance, dietary flavonoid intake has been found to reduce the risk of gastric cancers in 

European but not in American and Asian populations (Bo et al. 2016). 
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5.2.1 Anticancer structure-activity relationship (SAR) studies of flavonoids 

In medicinal chemistry, the benzo-γ-pyrone (chromone) moiety found in flavonoid compounds 

is considered as an important scaffold for developing bioactive compounds of various 

pharmacological effects (Gaspar et al. 2014). The anticancer activity of flavonoid compounds 

is influenced by various structural factors such as the number and position of hydroxylation, 

the presence of the C-4 carbonyl functionality, methoxylation, prenylation, bond unsaturation 

and glycosylation. 

5.2.1.1 Anti-oxidant activity 

Due to the important role of free radical-mediated oxidative stress in the development and 

progression of various cancers through the activation of transcription factors (such as NF-κB, 

β-catenin/Wnt and p53) and the initiation of inflammatory cascades, compounds possessing 

anti-oxidant/ free radical scavenging and anti-inflammatory effects have potential anticancer 

benefits (Reuter et al. 2010). Flavonoids are known to possess strong anti-oxidant properties 

through the inhibition of free radical generating enzymes, metal ion chelation, radical 

scavenging, activation of intrinsic anti-oxidant mechanisms, increased elimination of oxidising 

species and induction of anti-oxidant enzymes (Halliwell 1997; Pietta 2000). In mono-

substituted flavonoid B-rings, the presence of a –OH para-substituent is vital for anti-oxidant 

activity, with minimal to no effect observed in ortho or meta hydroxylation (Scotti et al. 2012). 

After fast reaction kinetics studies using 2,2′-Azinobis-(3-ethylbenzthiazoline-6-sulfonic acid) 

(ABTS) radical cation, flavonoids with two or more B-ring –OH substituents such as 5.9, 5.11 

and 5.13 were found to have better anti-oxidant activity than those with one –OH substituent 

due to an electron donating mechanism leading to the formation of a semi-quinone specie and 

a subsequent quinine (Scheme 5.1). The anti-oxidant mechanism for flavonoids with C-4′ 

mono-hydroxylated B-rings (having no potential conjugation with the C-ring due to the 

absence of a –OH group at C-3) such as apigenin, 5.12, and naringenin, 5.14) involve the 

formation of a phenoxyl radical which can further oxidise glutathione (GSH) to its radical, GS• 

(Scheme 5.2). Flavonoids with methoxyl-hindered B-rings have strong electron-donating 

properties through an increased reaction rate and more stable phenoxyl radical formation 

(Scheme 5.3) (Sekher Pannala et al. 2001). 
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Scheme 5.1 Anti-oxidant mechanism for flavonoids with a dihydroxylated B-ring against 

  ABTS radical cation (Sekher Pannala et al. 2001). 

 

Scheme 5.2 Anti-oxidant mechanism for flavonoids with a monohydroxylated B-ring  

  against ABTS radical cation (Sekher Pannala et al. 2001). 
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Scheme 5.3 Anti-oxidant mechanism for flavonoids with a methoxyl-hindered B-ring  

  against ABTS radical cation (Sekher Pannala et al. 2001). 

The double bond at C2-C3 coupled with the carbonyl functionality at C-4 are also essential for 

anti-oxidant activity. Hydroxylation at position C-3 (as seen in flavonols) is cardinal while that 

at positions C-5 and C-7 is of no anti-oxidant benefit (Scotti et al. 2012). 

5.2.1.2 Antimutagenic activity 

The ability of flavonoids to inhibit carcinogenesis has been previously evaluated through their 

effects on various environmental pollutants such as nitroarenes and dioxins (Melo et al. 2010). 

Dioxins transform and translocate arylhydrocarbon receptors (AhR) into the nucleus to 

facilitate interactions with dioxin-responsible element (DRE), which increases the expression 

of enzymes that promote carcinogenesis and cancer progression (Ashida 2000). Flavonoids 

have been found to inhibit dioxin-induced AhR translocation with flavones and flavonols being 

the most potent followed by flavonones and lastly catechins. Increased hydrophobicity, the 

presence of a carbonyl functionality at position C-4 and B-ring attachment to position C-2 

(flavonones were found to be ineffective) are cardinal for AhR inhibition while glycosylation 

reduces activity (López-Lázaro 2002). For flavonoid inhibition of nitroarene-induced 

carcinogenesis, increased polarity and the C-4 carbonyl functionality are essential for activity 

while the C2-C3 double bond, C-3 B-ring position and C-ring opening are not. Glycosylation 
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and methylation of phenolic –OH groups were found to significantly reduce this activity 

(Edenharder and Tang 1997). 

5.2.1.3 Inhibition of oncogenic viruses 

Oncogenic viruses are known to cause about 15 – 20 % of all human cancers (Luo and Ou 

2015), with the common ones including Kaposi’s sarcoma (Kaposi’s sarcoma herpesvirus - 

KSHV), Burkitt´s lymphoma (Epstein-Barr virus - EBV), cervical cancer (Human 

papillomavirus - HPV), hepatic cancers (Hepatitis B - HBV) and adult T-cell leukaemia 

(Human T-cell lymphotropic virus-1  - HTLV-1) (Chen et al. 2014). Despite the fact that 

oncogenic viruses are unable to cause cancer by themselves, their ability to infect, but not kill, 

their host cells results in the establishment of immune response-evading chronic inflammatory 

disease states which promote DNA damage and cellular mutations (McLaughlin-Drubin and 

Munger 2008). Several flavonoids and flavonoid derivatives such as the pentaallyl ethers 5.15 

and 5.16 (Figure 5.4) have been reported to inhibit the activities of oncogenic viruses (Iwase 

et al. 2001). For instance, apigenin (5.12) was found to inhibit initiation of the EBV lytic cycle 

by suppressing the immediate-early (IE) gene Zta and Rta promoters (Wu et al. 2017). From 

SAR studies, the oncogenic virus inhibitory activity of flavones, flavonones and isoflavones 

against EBV is increased by the presence and number of prenylations, C-3 methoxylation 

(flavones), 3′,4′ -dihydroxylation (isoflavones) and the presence of allyl groups (Ito et al. 2000; 

Itoigawa et al. 2002). 

 

Figure 5.4 Structures for selected flavonoids with pentaallyl ether substituents 

  The pentaallyl ether substituents are highlighted in red 
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5.2.1.4 Anti-proliferative activity 

In a study done by Plochmann et al., the cytotoxicity structure-activity relationships of several 

flavonoids was evaluated (Plochmann et al. 2007). From the obtained results, flavonoids 

possessing a C2-C3 double bond such as quercetin (5.9), apigenin (5.12) and luteolin (5.13) 

had increased cytotoxicity (3- to 10-fold) than their molecular counterparts with a single C2-

C3 bond (taxifolin, naringenin, eriodictyol), signifying the importance of the double bond for 

cytotoxic activity. Similarly, the presence of a C-4 carbonyl functionality increased flavonoid 

cytotoxicity. Taxifolin, a C-4 carbonyl functionalised flavonoid had a 30-fold increased 

cytotoxicity compared to catechin which has no carbonyl substituent. The presence of a –OH 

substituent at position C-3 such as in kaempferol, quercetin and taxifolin was associated with 

a 2- to 10-fold decrease in cytotoxicity. Compared to meta, ortho –OH substitution of the B-

ring resulted in a 3-fold increase in cytotoxicity. Increasing the number of methoxy substituents 

on flavonoid rings resulted in increased cytotoxicity. This was evident from the fact that 7-

methoxy-baicalein (5.17) (Figure 5.5) was more cytotoxic than baicalein, cirsimaritin (5.18) 

was more cytotoxic than hispidulin (5.19), and hispidulin (5.19) was more cytotoxic than 

scutellarein. 

 

Figure 5.5 Chemical structures for selected methoxylated flavonoids 

  The methoxy substituents are highlighted in red 
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Glucuronidation was also found to increase the cytotoxicity of flavonoids. However, an 

increase in the number of –OH substituents inversely correlated with cytotoxicity. This was 

evident from the fact that flavonoids with two -OH substituents showed greater activity than 

their molecular counterparts with three -OH substituents. The presence of a B-ring was also 

established as a cardinal feature for flavonoid cytotoxicity. 

Prenylation of natural products involves the structural addition of C5 isoprene (dimethylallyl) 

unit(s) to metabolites through the action of prenyl transferase (Mukai 2018). Naturally 

occurring prenylated flavonoids mostly have C-prenyl groups with a few reported O-

prenylations. Prenylation has been observed on various positions of the three flavonoid rings 

with C-8 being the most reported position. The anti-proliferative activity of several flavonoids 

can be increased through the addition of prenyl substituents. For instance, the prenylation of 

quercetin at position C-8 (5.20) resulted in an increased inhibition of SEK1-JNK1/2 and 

MEK1/2-ERK1/2 phosphorylation and a stronger inhibition of SEK1 and MEK1 kinases 

(Hisanaga et al. 2016). Similarly, C-8 prenylation of apigenin and liquritigenin to form 

licoflavone C (5.21) and isobavachin (5.22) respectively (Figure 5.6), resulted in an increased 

cytotoxic activity against MCF7/BOS breast cancer cells (Wang et al. 2006). In H4IIE 

hepatoma cells, the anti-proliferative activity of 5.21 and 5.22 is mediated via a caspase 3/8 

dependent induction of apoptosis (Wätjen et al. 2007). The C-6 prenylated flavonoids, 5.23 and 

5.24, were reported to have anti-proliferative activity against A-549 adenocarcinoma cells with 

IC50 values of 48.6 and 20.2 μg/mL respectively (Yang et al. 2015). 
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Figure 5.6 Chemical structures for selected C-6 and C-8 prenylated flavonoids 

  The prenyl substituents are highlighted in red 

From an in vivo perspective, increasing the number of prenylations enhances the biological 

activity of flavonoids through a reduction in the rate of excretion by glucuronidation which 

consequently leads to flavonoid bio-accumulation and increased bio-availability (van de 

Schans et al. 2015). 

5.2.2 Apigenin as a potential scaffold for cancer modulation 

The anticancer activity of natural flavonoids has been extensively reported. Among the 

common flavonoids, apigenin (5.12) has been labelled as one of the most promising food-based 

chemo-preventive agents (Shukla and Gupta 2010). The in vitro anti-proliferative activity of 

apigenin (5.12) against various cancer cell lines is well documented and can be broadly 
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attributed to its ability to induce apoptosis and autophagy as well as its inhibition of 

carcinogenesis (Table 5.1). 

5.2.2.1 Mechanisms for the anti-cancer activity of apigenin 

Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), a member of the 

cytokine superfamily, induces caspace-8 mediated selective apoptosis in various cancer cell 

lines by binding to death receptors TRAIL-RI (DR4) and TRAIL-RII (DR5). However, 

TRAIL-based therapies have failed over the past decades due to intrinsic and developed 

TRAIL-resistance among various cancer cells, poor agonistic activity of existing TRAIL 

formulations and toxicity concerns (de Miguel et al. 2016). Through p53-independent 

regulation, apigenin (5.12) induced selective DR5 expression in TRAIL-resistant T cell 

leukemic Jurkat cells via proteasome inhibition and thereby restored TRAIL sensitivity 

(Horinaka et al. 2006). Recently, apigenin-induced TRAIL sensitization in HepG2 and Hep3B 

human liver carcinoma cells was reported (Kang et al. 2018). The synergism and selectivity of 

apigenin-TRAIL combinations can therefore be used to develop more potent TRAIL 

formulations with better safety profiles. 

The classical E- and N-cadherins are cell adhesion molecules which play major roles in normal 

tissue formation. Of particular interest is E-cadherin, an important molecule in the formation 

of epithelial cells and maintenance of cell-cell adhesions. The control of normal cellular 

adhesion and motility plays a central role in the prevention of carcinogenesis and tumour 

invasion (Pecina-Slaus 2003). Therefore, the suppression of E-cadherin expression is a key 

feature of tumour development and progression. Apigenin (5.12) has been reported to increase 

E-cadherin expression in a prostate cancer model called transgenic adenocarcinoma of the 

mouse prostate (TRAMP) and in DU145 human prostate cancer cells via the blockade of β-

catenin signalling (Hurwitz et al. 2001; Shukla et al. 2007a). This mechanism of apigenin (5.12) 

can be applied to various malignancies such as breast cancer in which cancerous cells avoid 

the destructive effects of multipolar divisions through centrosome amplification, clustering and 

loss of E-cadherin (Rhys et al. 2018). 

Among several other functions, the enzymes phosphoinositide-3-kinase (PI3K) and protein 

kinase B (PKB, also known as Akt) play cardinal roles in cell proliferation, motility and 

survival (Hemmings and Restuccia 2012). The activation of PI3K/PKB leads to an array of 
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intracellular events which ultimately promote oncogenesis and inhibit apoptotic cell death 

(Duronio 2008). It is well established that several components involved in the PI3K/PKB 

activation pathway are genetically altered in many cancers leading to anti-apoptotic events 

(Amancio 2010; Tang et al. 2018). The PI3K/PKB activation pathway is thus an important 

therapeutic target for the development of cancer modulating agents. The development of 

PI3K/PKB inhibitors such as the quercetin derived synthetic compound LY294002 (5.25) and 

the steroidal fungal metabolite wortmannin (5.26) (Figure 5.7) for the treatment of cancers has 

faced safety challenges including cytotoxicity towards normal cells (Polak and Buitenhuis 

2012). LY294002 (5.25) was also reported to abnormally enhance PKB phosphorylation in 

gemcitabine (GEM)-resistant pancreatic cancer cells (Wang et al. 2017). In an in vitro study, 

apigenin (5.12) was found to induce G2/M cell cycle arrest and caspase-dependent inhibition 

of the PI3K/PKB pathway in myeloid human leukemic HL60 cells with an IC50 of 40 µM 

(Ruela-de-Sousa et al. 2010). Apigenin-based compounds can thus be considered as potential 

candidates for safer PI3K/PKB inhibitors. 

 

Figure 5.7 Structures for PI3K/PKB inhibitors, LY294002 (5.15) and wortmannin (5.16) 

  The chromone-like moiety is highlighted in red 

 

The ubiquitin/proteasome system is a pathway that handles the degradation of eukaryotic 

cellular proteins through ubiquitin multimeric ‘tagging’ that precedes enzymatic proteolysis by 

the 26S proteasome (Nandi et al. 2006). The 26S proteasome is a large intracellular adenosine 

5′-triphosphate–dependent protease that identifies and degrades ubiquitin-tagged proteins 

(Rajkumar et al. 2005). The proper degradation of eukaryotic cellular proteins by the 

ubiquitin/proteasome pathway is vital for maintaining a normal cell cycle such that its 

inhibition results in cell cycle arrest and apoptotic cell death. The deregulation of this 
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proteasome system causes increased proteolysis of tumour suppressors and oncoproteins with 

consequent uncontrolled cell proliferation, malignancies and cancer metastasis as is evident in 

lung, colorectal and breast carcinomas, gliomas and lymphomas (Naujokat and Hoffmann 

2002). The first 26S proteasome inhibitor to be approved for the treatment of malignancies was 

the synthetic compound, bortezomib (5.27) (Figure 5.8). However, the use of bortezomib (5.27) 

is limited by its deleterious side effects, intrinsic and acquired drug resistance, significant drug 

interactions with certain natural products and poor efficacy in solid tumours (Chen et al. 2011). 

This has warranted an ongoing search for more efficacious and less toxic 26S proteasome 

inhibitors, possibly from natural sources. Apigenin (5.12) was reported to be a potent inhibitor 

of 26S proteasome after it inhibited the proteasome’s chymotrypsin-like, trypsin-like and 

caspase-like actions at IC50 values of 11.5, 20 and 1.5 µM respectively (Li et al. 2016). Other 

natural proteasome inhibitors include lactacystin (5.28), clastol lactacystin β-lactone (5.29), (–

)-epigallocatechin-3-gallate (EGCG) (5.30), genistein (5.31) and curcumin (5.32) (Figure 5.8) 

(Yang et al. 2008). 
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Figure 5.8 Structures for selected synthetic and natural 26S proteasome inhibitors 

Poly (ADP-ribose) polymerase (PARP) is a family of proteins responsible for the routine repair 

of DNA single strand breaks and base excision repair (BER) through the addition of poly (ADP 

ribose) polymers and alteration of nuclear proteins (Chaitanya et al. 2010). During attempted 

DNA repair, activation of PARP leads to the depletion of cellular nicotinamide adenine 

dinucleotide (NAD) and adenosine triphosphate (ATP) which results in lysis and necrotic cell 

death (Boulares et al. 1999). The inhibition of PARP through caspase- or cathepsin-mediated 

enzymatic cleavage results in reduced DNA repair, enhanced cytotoxicity of DNA damaging 

compounds, telomere shortening and increased apoptosis (Mohan 2009b). The cleavage of 

PARP by the caspace-3 enzyme is considered as an early apoptotic event. Apigenin (5.12) has 

been reported to induce apoptosis in bladder cancer (RT112) and human chronic myelogenous 

leukemia (K562) cells through a dose dependent PARP cleavage (Kilani-Jaziri et al. 2012). 
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Several other natural flavonoids such as quercetin, isoquercetin, naringin, naringenin, 

hesperetin, hesperidin and rutin, have also been reported to have PARP inhibitory activity (Su 

et al. 2017). 

Oxygen is a fundamental need for all human cells in order for them to grow and perform their 

normal physiological functions (Costache et al. 2015). Vasculogenesis, which is the de novo 

differentiation of endothelial cell precursors to form vascular systems, is cardinal for tissue 

perfusion. Maintenance of vasculogenesis is done through the synthesis of vascular systems 

from pre-existing blood vessels in what is referred to as angiogenesis (Carmeliet and Jain 

2000). The process of angiogenesis requires the action of autocrine and paracrine angiogenic 

growth factors such as vascular endothelial growth factor (VEGF), fibroblast growth factors, 

tumour necrosis factor-α (TNF-α) and angiogenin (Mohan 2009a). In the absence of sufficient 

vascular perfusion, the growth of solid tumours is restricted to a size of about 1 – 2 mm owing 

to the deficiency in oxygen and nutrient supply. Angiogenesis in tumours is dependent on 

tumour angiogenic factors (TAF) of which VEGF is the most potent (Ferrara and Henzel 1989). 

Chemical entities which inhibit the VEGF pathway are potential therapeutic agents in the 

treatment of solid tumours (Adela 2006). A monoclonal antibody called bevacizumab 

(Avastin®) was the first molecular antibody to be approved by the FDA as a VEGF inhibitor 

for the treatment of solid tumours in combination with other chemotherapeutics (Ferrara et al. 

2005). The fact that bevacizumab is too expensive for cancer patients in low- and medium-

income countries (about $21.083 per month of added life and $24,597 per quality-adjusted life 

month, QALM) has created a desperate need for cheaper alternatives in the treatment of solid 

tumours (Minion et al. 2015; Gyawali and Iddawela 2017). Apigenin (5.12) was among several 

other flavonoids reported to significantly inhibit VEGF protein secretion in human ovarian 

cancer cells (OVCAR-3) (IC50 = 50 μM) after a 48 hr treatment (Luo et al. 2008). Thus, 

apigenin-based compounds can have great potential as adjunct therapeutics in the treatment of 

solid tumours. 

The Wnt/wg signal transduction pathways encompass mechanisms that control embryogenic 

processes such as axis patterning, cell growth, fate and migration, and maintain tissue 

homeostasis (Logan and Nusse 2004). Wnt/wg signaling causes an increase in the levels of β-

catenin which results in the activation of specific target genes during embryogenesis (Morin 

1999). Genetic mutations that constitutively activate the Wnt/wg pathways are known to cause 
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malignancies including colorectal cancers, hair follicle tumours, melanomas, 

medulloblastomas, hepatocellular carcinomas and leukemia (Clevers 2006). Mutation and 

consequent deregulation of β-catenin, adenomatous polyposis coli (APC) and scaffold protein 

Axin signaling play significant roles in the development of these malignancies (Takayama et 

al. 1996; Hwang et al. 2016). Treatment of DU145 human prostate cancer cells with apigenin 

(5.12) resulted in the inhibition of β-catenin nuclear translocation as well as a decrease in c-

Myc and cyclin D1 (Shukla et al. 2007b; Shukla and Gupta 2007). 

Epithelial-mesenchymal transition (EMT) is a normal biological process in which polarized 

epithelial cells are converted to mesenchymal cells through several biochemical alterations 

which enable them to have, among other properties, increased levels of migration, invasion and 

resistance to programmed cell death (Kalluri and Weinberg 2009). Transcriptional repressors 

known as Snail and Slug (or zinc finger proteins SNAI2 and SNAI1 respectively) are 

responsible for regulating several biological processes including organogenesis, wound healing 

and the EMT of cancerous cells (Ganesan et al. 2016). Snail and slug mediated EMT increases 

the metastasis of cancerous cells (Dhasarathy et al. 2011). In a recent study, apigenin (5.12) 

was found to inhibit the snail (not slug) pathway, modulate the levels of EMT markers and 

reduce invasion and migration in Bel-7402 and PLC/PRF/5 hepatocellular carcinoma cells (Qin 

et al. 2016). 

Apigenin (5.12) has also been reported to inhibit pyruvate kinase muscle isozyme M2 (PKM2), 

an enzyme responsible for catalysing the last step of glycolysis (Xie et al. 2016), in colorectal 

cancer cell lines HCT116, HT29 and DLD1 (Shan et al. 2017). PKM2 is an important 

therapeutic target because it is usually deregulated in malignancies through overexpression to 

meet the high nutrient demand from proliferating cancerous cells (Dong et al. 2016). Other 

reported anticancer mechanisms of action for apigenin (5.12) include mitochondrial redox 

impairment with inhibition of cancer cell migration and invasion (Erdogan et al. 2016; Souza 

et al. 2017) and p53 mediated cell cycle arrest and apoptosis (Zheng et al. 2005). 

Apart from the induction of apoptosis, apigenin (5.12) has also been reported to induce 

autophagy in various cancer cell lines. Apigenin-induced autophagy was found to be 

accompanied by G2/M arrest (via inhibition of Cdc25C gene expression) in BCPAP thyroid 

cancer cells (Zhang et al. 2015), JAK/STAT pathway mediated G0/G1 arrest in TF1 

erythroleukemic cells (Ruela-de-Sousa et al. 2010), elevated autophagosomal marker LC3-
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phosphatidylethanolamine conjugate (LC3-II) in breast (T47D, MDA-MB-231) and colorectal 

(HCT116) cancer cells (Cao et al. 2013; Lee et al. 2014) and downregulation of casein kinase 

2α (CK2α) expression in HeLa sphere-forming cells (SFCs) (Liu et al. 2014). Apigenin (5.12) 

also prevents carcinogenesis through its selective inhibition of AKR1B10 (Figure 5.9), a 

NADPH-dependent reductase enzyme which is overexpressed in various cancers as a 

biomarker (Zemanová et al. 2015). 

 

Figure 5.9 Binding of apigenin to the AKR1B10-NADP+ complex (Zemanová et al. 2015). 

  Apigenin is indicated in green, protein residues within 4.0 Å of apigenin are indicated in blue,

  NADP+ is indicated in white and predicted hydrogen bonding with Tyr49 and His111 is  

  indicated by dashed lines. 
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Table 5.1 The anticancer activity of apigenin (5.12) in various human cancer cell lines 
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  N.D. = Not determined 
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5.3 The influence of C-glycosylation on flavonoid in vivo biological fate 

In flavonoid C-glycosides, sugar residues are attached to their aglycones via cleavage-resistant 

C-C bonds usually at positions C-6 and/or C-8. Flavonoid C-glycosides have a combination of 

biological activities from flavonoid aglycones and sugar residues, thereby creating unique and 

more diverse biological functions than those of O- and non-glycosylated flavonoids. Flavonoid 

C-glycosides are categorized into monoglycosides (mono-C-glycosylflavonoids) and 

multiglycosides. Flavonoid C-multiglycosides can be further divided into di-C-

glycosylflavonoids and C-glycosylflavonoid-O-glycosides (C-O-glycosides), with the latter 

having inter-glycosidic bonds via the -OH groups of the C-sugars (Cuyckens and Claeys 2004). 

The most common sugar substituents in flavonoid C-glycosides are D-glucopyranose (5.33), 

D-xylopyranose (5.34), L-arabinopyranose (5.35), L-rhamnopyranose (5.36), D-apiose (5.37), 

L-fucopyranose (5.38), D-galactopyranosiduronic acid (5.39), D-glucopyranosiduronic acid 

(5.40), D-galactopyranose (5.41) and D-boivinopyranose (5.42) (Figure 5.10) (Zeng et al. 

2013). 

 

Figure 5.10 Structures for common sugar substituents in flavonoid C-glycosides (Zeng et al. 

  2013). 
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Together with methylation, hydrogenation and galloylation, glycosylation is a key structural 

property that increases the chemical stability of flavonoids in blood plasma and in-vitro cell 

culture environments (Xiao and Högger 2015). Flavonoid C-glycosides are even more stable 

than O-glycosides and aglycones because their substitution of oxygen with carbon atoms 

results in increased resistance to β-glucosidase enzyme hydrolysis. (Rawat et al. 2009). 

5.3.1 Pharmacokinetic considerations for flavone C-glycosides 

As a prerequisite to oral absorption, flavonoid O-glycosides are deglycosylated in the colon by 

intestinal microbiota to release the corresponding aglycones. Intestinal microbiota achieve this 

through the release of O-glycosidic bond cleaving enzymes such as α-rhamnosidase, β-

glucosidase, endo-β-glucosidase and β-glucuronidase (Yang et al. 2018). O-glycosidic bond 

cleaving is essential for the absorption of flavonoid O-glycosides because loss of hydrophilic 

sugar moieties results in the release of lipophilic aglycones which are then readily absorbed. 

The absorbed aglycones are then conjugated in the liver to form O-glucuronides and O-sulfates 

(Zhang et al. 2007). 

In flavone C-glycosides, the presence of cleavage-resistant C-C bonds result in deviations from 

typical flavonoid pharmacokinetics. The major challenge faced by flavone C-glycosides is poor 

intestinal absorption since theoretically, cleavage-resistant C-glycosidic bonds do not easily 

release their aglycones. Despite this, several reports have stated that deglycosylation is not a 

prerequisite to the intestinal absorption of flavone C-glycosides (Courts and Williamson 2009). 

For instance, after reports of non-absorption in Caco-2 cells (Gouvea et al. 2013), the apigenin 

C-glycoside, vicenin-2 (5.43), was later shown to undergo rapid small intestinal absorption in 

an in vivo rat model (Buqui et al. 2015). 

The pharmacokinetics of flavone C-glycosides vary based on the number of attached 

glycosides. Flavone C-monoglycosides such as vitexin (5.44) and isovitexin (5.45) are 

considered to have poor oral absorption with very few metabolite traces in plasma and urine 

(Xiao et al. 2016). A few intestinal bacteria have been reported to cleave and metabolize 

flavone-C-monoglycosides within 24 h of oral administration. For instance, an isolated 

Lachnospiraceae bacterial strain, CG19-1, completely metabolized vitexin (5.44) into 3-(3,4-

dihydroxyphenyl)propionic acid and 3-(4-hydroxyphenyl)propionic acid while the intestinal 

bacterium Eubacterium cellulosolvens cleaved isovitexin (5.45) and homoorientin (5.46) into 
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their aglycones, apigenin (5.12) and luteolin (5.13) respectively (Figure 5.11) (Braune and 

Blaut 2012). The fact that C-C bond cleavage by Eubacterium cellulosolvens was observed in 

C-6 and not C-8 monoglycosides implies that the position of glycosylation (with respect to the 

–OH substituents at positions C-5 and C-7) and differences in compound transportation may 

significantly influence the deglycosylation of flavone C-monoglycosides (Braune and Blaut 

2016). Human intestinal bacterial strains reported to cleave both C- and O-glycosidic bonds of 

isoflavones include Dorea sp. PUE, Robinsoniell sp. CG19-1, Lactococcus sp. MRG-IFC-1 

and Enterococcus sp. MRG-IFC-2, with MRG-IFC-1 and MRG-IFC-2 also able to cleave 

flavone O-glycosides (Kim 2015). 

 

Figure 5.11 Biotransformation of flavone C-monoglycosides by human intestinal bacteria 

  (Braune and Blaut 2016) 

  (a) C-8 deglycosylation by Lachnospiraceae bacterial stain, CG19-1 (b) C-6 deglycosylation 

  by Eubacterium cellulosolvens (c) hydrogenation (d) ring opening 

 

After oral administration, flavone C-multiglycosides are absorption unchanged, received by 

the liver and taken back to the gut through enterohepatic recirculation. This is followed after 

by ileal reabsorption of the unchanged and glucuronidated forms into the portal circulation as 

a sign of bio-availability (Angelino et al. 2013). With regards to flavone-C-O-diglycosides, 

sampling of the portal vein after caecal administration of vitexin-2-O-xyloside (5.47) in rats 
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resulted in the discovery of reduced forms (possibly with an open flavone C-ring) of the 

corresponding glucuronidated C-monoglycoside (Angelino et al. 2013). This might imply that 

the deglycosylation of the O-sugar in certain flavone-C-O-diglycosides is performed by 

intestinal microbiota and/or enterocytes prior to first-pass glucuronidation. 

5.3.2 Anticancer activity of selected apigenin C-glycosides 

The anti-cancer activity of several apigenin C- and C-O-glycosides has been reported. One of 

the most studied apigenin C-glycosides is vitexin (5.44), which has a sugar residue attached to 

the aglycone at position C-8. Vitexin (5.44) has been reported to induce apoptosis in U937 

human leukaemia cells through the inhibition of Bcl-2 and activation of caspases 3, 7 and 9 

(Lee et al. 2012). In another study, vitexin (5.44) inhibited the proliferation of hepatocellular 

carcinoma (HCC) cells and induced apoptotic cell death in HepG2 hepatocellular carcinoma 

cells via the activation of caspases 3, 8 and 9 (Wang et al. 2013). The anticancer mechanism 

for vitexin (5.44) in HepG2 cells involves the inhibition of AKT and ERK1/2 kinase 

phosphorylation and the activation of FOXO3a, which results in increased expression of 

apoptosis target gene products such as Bim, TRAIL, DR4 and DR5 (Wang et al. 2013). Vitexin 

(5.44) induced early apoptosis in EC-109 oesophageal cancer cells (An et al. 2015). Vitexin 

(5.44) also induced caspace-3 mediated apoptosis while supressing autophagy in hepatocellular 

carcinoma (HCC) cell lines SK-Hep1 and Hepa1-6 via the JNK MAPK pathway (He et al. 

2016). Vitexin (5.44) was reported to inhibit cancer angiogenesis, metastasis and invasion in 

rat pheochromocytoma (PC12) cells through the inhibition of hypoxia inducible factor-1α 

(HIF-1α) (Jung Choi et al. 2007). The induction of apoptosis and inhibition of human oral 

cancer cell (OC2) metastasis by vitexin (5.44) was elicited via the p53 pathway (Yang et al. 

2013). Vitexin (5.44) induced caspases 7, 8 and 9 mediated apoptosis in MCF-7 human breast 

adenocarcinoma cells (Mohammed et al. 2014; Czemplik et al. 2016). One of the suggested 

anticancer mechanisms for vitexin (5.44) in HeLa cells is the inhibition of reactive oxygen 

species (ROS) mediated oxidative damage, increased Bax and decreased Bcl2 expression, 

leading to caspase 3 dependent apoptosis (Talakatta et al. 2016). Vitexin (5.44) also possesses 

antimutagenic properties through its selective inhibition of AKR1B10, though apigenin (5.12) 

is 3.5 times more potent (Zemanová et al. 2015). 

Other apigenin C-glycosides such as the monoglycosides isovitexin (5.45) (Talakatta et al. 

2016), aciculatin (5.48) (Lai et al. 2012), 7-de-O-methylaciculatin (5.49) and 8-C-β-D-
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boivinopyranosylapigenin (5.50) (Shen et al. 2012), and the multiglycoside vitexin-2-O-

xyloside (5.47) (Figure 5.12) (Papi et al. 2013; Salvatore Scarpa et al. 2017), have apoptotic 

mechanisms that are similar to those of vitexin (5.44) (Table 5.2). 

 

Figure 5.12 Structures for selected apigenin C-glycosides 
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Table 5.2 Anticancer activity of selected apigenin C-glycosides in various cancer cell 

  lines 
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5.4 Chapter aims 

It was discussed in chapter 4 that 6′′-O-α-apio-D-furanosylisovitexin (altissimin, 3.17), the 

flavonoid C-multiglycoside that is partly responsible for the cytotoxicity of Drimia altissima 

against HeLa cervical cancer cells, elicits its anti-proliferative activity via the induction of 

Early M phase cell cycle arrest and apoptotic cell death. This chapter further explores the 

signaling pathways by which altissimin (3.17) achieves its anti-proliferative activity and 

thereby proposes a plausible mechanism of action. 
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5.5 Results and discussion 

5.5.1 Cytotoxicity assay 

In Chapter 4, the IC50 of compound 3.17 against HeLa cells was determined to be 2.44 µM 

after a 48 h exposure (Figure 4.11). In this chapter, a fixed concentration of 2.5 µM 

(representative of the IC50) and an additional two concentrations lower than the IC50 were used 

to investigate the mechanism of action of compound 3.17. The cytotoxicity of compound 3.17 

at these three concentrations against HeLa cells was confirmed through Hoechst 33342/ PI dual 

staining with melphalan (20 μM) as positive control. Based on results obtained from the 

analysis of nuclei per site after a 24 and 48 h treatment (Figure 5.13), compound 3.17 induced 

a dose dependent reduction in cell number, with the highest tested concentration (2.5 μM) 

eliciting a similar effect to that of melphalan. The untreated control cells doubled in number 

from 24 to 48 h. Compound 3.17 caused a significant reduction in cell number at 24 h but at 

48 h this reduction was much more enhanced and roughly equivalent to the expected 50%. 

 

Figure 5.13 Nuclei per site in HeLa cells after 24 and 48 h treatment with compound 3.17 

  Concentrations were measured in µM with melphalan (20 µM) used as positive control. Nuclei 

  were stained with Hoechst 33342 and Propidium iodide. Data points represent the mean ± SD 

  of three independent experiments, each performed in quadruplicate. *p<0.05; **p<0.001  

  compared to control 
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Nuclear size was also evaluated through the measurement of nuclei area. From the obtained 

results (Figure 5.14), compound 3.17 caused an increase in nuclear size at 2.5 µM after 48 h of 

treatment, suggesting S or G2/M cell cycle arrest. 

 

Figure 5.14 Nuclei mean area in HeLa cells after 24 and 48 h treatment with compound 3.17 

  Concentrations were measured in µM with melphalan (20 µM) used as positive control. Nuclei 

  were stained with Hoechst 33342 and Propidium iodide. Data points represent the mean ± SD 

  of three independent experiments, each performed in quadruplicate. *p<0.05; **p<0.001  

  compared to control 

 

5.5.2 Cell Cycle Analysis 

Anticancer drugs can be cell cycle specific (causing cells to arrest in a specific cell cycle phase) 

or cell cycle non-specific. Results from Chapter 4 suggested a dose-dependent increase in cells 

accumulating in early M phase upon exposure to compound 3.17 (Figure 4.15).  This 

experiment was repeated using the IC50 of compound 3.17.  Cell cycle analysis of compound 

3.17 was determined through Hoechst 33342/ Annexin-V-fluorescein isothiocyanate (FITC) 

staining using melphalan at 20 μM as positive control. From the obtained results (Figure 5.15), 

melphalan induced S/G2 cell cycle arrest. At 2.5 μM, compound 3.17 induced M phase cell 

cycle arrest which was characterised by a marked increase in Early M phase and a slight 

increase in Late M phase cell populations.  Pie charts were used to present the cell cycle data 

in this chapter for ease of interpretation.   
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Figure 5.15 Compound 3.17 induces mitotic arrest in HeLa cells after 48 h 

  Positive control: 20 μM melphalan. Nuclei were stained with NucRed Live 647 and Annexin 

  V-FITC was used as apoptosis marker. Data points represent the mean ± SD of three  

  independent experiments, each performed in quadruplicate. 

5.5.3 Mitochondrial membrane potential (MMP) 

The mitochondria is considered to play a central role in the induction of apoptotic cell death 

(Desagher and Martinou 2000). This is because mitochondria centrally regulate the intrinsic 

apoptotic pathways and are effector-mediators of the extrinsic apoptotic pathways (Cottet-

Rousselle et al. 2011). Mitochondria are responsible for maintaining the production of ATP, 

the mitochondrial membrane potential (∆Ψm) or MMP and mitochondrial membrane 

permeability for release of apoptotic factors into the cytosol (Leist and Nicotera 1997; Kroemer 

and Reed 2000). The mitochondrial membrane potential (ΔΨm) is a part of the transmembrane 

potential of hydrogen ions which are utilised by cells to generate ATP. Produced by the proton 

pump Complexes I, III and IV, ΔΨm is a key entity in the energy storage process during 
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oxidative phosphorylation. The vitality of ΔΨm to cellular health and homeostasis is seen in 

that sustained changes in ΔΨm may result in reduced cell viability and the onset of various 

pathological states (Zorova et al. 2018). 

The mitochondrial permeability transition pore (mPTP) is a protein channel composed of the 

voltage-dependent anion channel (VDAC), adenine nucleotide translocase (ANT) and 

mitochondrial benzodiazepine receptor which is formed in the inner aspects of the 

mitochondrial membrane during certain pathological conditions (Halestrap et al. 2002). The 

induction of mPTP leads to increased permeability of apoptotic factors such as cytochrome c, 

apoptosis-inducing factor (AIF) and second mitochondria-derived activator of caspases 

(Smac/Diablo) (Creagh and Martin 2001). A difference in charge between the mitochondrial 

matrix and the cytosol causes this “permeability transition” (PT) which may then lead to 

apoptosis (Ly et al. 2003). The induction of mPTP is regulated by ∆Ψm and mitochondrial 

matrix pH, with a decrease in ∆Ψm and a drop in pH below 7.0 both increasing the probability 

of channel opening (Bernardi et al. 1992; Petronilli et al. 1993). The loss of ∆Ψm has been 

found to be either an early apoptotic event or a result of apoptotic signaling depending on the 

cell model being used (Ly et al. 2003). Several fluorescent lipophilic cationic dyes are used to 

detect ∆Ψm in cell models, with differences in fluorochrome sensitivity significantly 

contributing to the accurate determination of changes in ∆Ψm. Examples of ∆Ψm detection 

dyes include  tetramethylrhodamine methyl ester (TMRM), tetramethylrhodamine ethyl ester 

(TMRE), Rhodamine 123 (Rhod123), DiOC6(3) (3,3′- dihexyloxacarbocyanine iodide) and JC-

1 (5,5′,6,6′-tetrachloro-1,1′,3,3′- tetraethylbenzimidazolylcarbocyanine iodide) (Sakamuru et 

al. 2016). The advantages of evaluating ∆Ψm using tetramethylrhodamine ester dyes such as 

TMRE (5.51) (Figure 5.16) over other cationic dyes are that they do not interfere with 

mitochondrial function, their fluorescence quenching is not readily dependent on concentration 

factors and effects of mitochondrial inhibitors and oxidative phosphorylation uncouplers at 

submicromolar concentrations can be examined in both isolated and live cell mitochondria 

(Chazotte 2011). 
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Figure 5.16 Structure for tetramethylrhodamine ethyl ester (TMRE) dye 

Mitochondrial accumulation of ∆Ψm detection dyes follows the Nernst equation (below) where 

𝐸𝑐𝑒𝑙𝑙 is cell potential, 𝐸𝑜
𝑐𝑒𝑙𝑙 is standard cell potential, 𝑛 is the number of electrons transferred 

and Q is the reaction quotient. The mitochondrial accumulation of ∆Ψm detection dyes is 

inversely proportional to ∆Ψm, with hyperpolarized mitochondria accumulating more dye and 

depolarized mitochondria accumulating less dye (Perry et al. 2011). 

𝐸𝑐𝑒𝑙𝑙 = 𝐸𝑜
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After 24 and 48 h of treatment with 0.25, 1.4 and 2.5 μM of compound 3.17, mitochondrial 

membrane collapse in HeLa cells was determined via staining with TMRE and Hoechst 33342 

as counterstain. From the acquired images, control cells presented with intense TMRE 

fluorescence while cells treated with compound 3.17 presented with weak TMRE fluorescence 

(Figure 5.17). Because apoptotic cells fail to retain TMRE due to the presence of a collapsed 

∆Ψm, the observed low TMRE fluorescence in cells treated with compound 3.17 was indicative 

of an apoptotic mitochondrial membrane potential collapse. 

 

Figure 5.17 HCA acquired images showing mitochondrial membrane depolarisation in 

  HeLa cells after treatment with 2.5 µM of compound 3.17 

  Concentrations were measured in µM with melphalan (20 μM) used as positive control.  

  Mitochondria and nuclei were stained with TMRE and Hoechst 33342, respectively. 
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After HCA of the acquired images, 48 h of treatment with melphalan (20 μM) induced a 

collapse of the ∆Ψm in HeLa cells. Similarly, compound 3.17 significantly collapsed the ∆Ψm 

in HeLa cells at 1.4 and 2.5 μM after 24 and 48 h of treatment (Figure 5.18). 

 

 

Figure 5.18 Compound 3.17 collapses the mitochondrial membrane potential in HeLa cells 

  after 24 and 48 h 

  Concentrations were measured in µM with melphalan (20 μM) used as positive control.  

  Mitochondria and nuclei were stained with TMRE and Hoechst 33342, respectively.  

  Data points represent the mean ± SD of three independent experiments, each performed  

  in quadruplicate. *p<0.05; **p<0.001 compared to control 
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5.5.4 Cleaved caspase -8 and -3 analysis 

The caspases (cysteine-aspartic proteases, cysteine aspartases or cysteine-dependent 

aspartate-directed proteases) are a family of proteases that modulate signaling events which 

lead to programmed cell death either by apoptosis or pyroptosis via apoptotic and inflammatory 

caspases respectively (Ramirez and Salvesen 2018). Apical caspases of the extrinsic apoptotic 

pathway, caspases -8 and -10, are monomeric zymogens which are activated through 

heterodimerization. Caspases -8 and -10 undergo Fas-induced activation at the death-inducing 

signaling complex (DISC) which is enhanced by the long form FLIPL (FLICE-like inhibitory 

protein) at low expression (Salvesen and Walsh 2014). Caspase -8 and FLIPL form elongations 

through connections between their N-terminal death effector domains (DEDs), with the short 

form (FLIPS) not being able to encode caspase activation due to the presence of a stop codon 

after the DEDs (Dickens et al. 2012). Dimerization of the apical caspases is followed after by 

cleavage of the N-terminal DEDs and cytosolic release of the activated caspases. 

On the other hand, the executioner caspases -3 and -7 exist intracellularly as inactive obligate 

dimeric zymogens (separated by an interdomain linker) awaiting proteolytic activation via 

cleavage by initiator caspases or by other proteases under specific circumstances (Boatright 

and Salvesen 2003). Cleavage of the interdomain linker in executioner caspases permits the 

arrangement of mobile loops which allow for the assembly of the catalytic site. Caspase -3 has 

been described as a typical hallmark of apoptosis that is required for apoptotic chromatin 

condensation, DNA fragmentation and blebbing in all cell models (Porter and Jänicke 1999). 

The activation of caspase -3 consequently leads to the cleavage of downstream death substrates. 

As a key feature in the aetiology of cancer, the mutation and deregulation of apoptotic proteins 

prevents the transmission of pro-apoptotic signals to executioner caspases and thereby gives 

malignant cells the ability to avert apoptotic cell death. Since the activation of executioner 

caspases occurs at the final phase of apoptosis, potential anticancer compounds may activate 

caspases -3 in cancer cells by several mechanisms including DNA damage, increased 

expression of pro-apoptotic proteins, decreased expression of anti-apoptotic proteins, and 

direct activation of procaspase -3. PAC-1 (5.51) (Figure 5.19) was the first small molecule 

found to be an allosteric activator of procaspase -3 to caspase -3 (Putt et al. 2006). Other direct 

activators of procaspase -3 include compound 1541 (5.52), compound 42 (5.53) and compound 

2 (5.54) (Wolan et al. 2009; Schipper et al. 2011; Vickers et al. 2013). 
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Figure 5.19 Selected direct allosteric activators of procaspase -3 to caspase -3 
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Caspase activation in HeLa cells was evaluated after 24 and 48 h treatment with compound 

3.17 at 0.25, 1.4 and 2.5 μM. From the obtained results (Figure 5.20), compound 3.17 induced 

significant elevation of cleaved caspase -3 after 48 h (Figure 5.20A) and caspase -8 after 24 h 

(Figure 5.20B) in HeLa cells, indicating activation of both caspases. The elevation of caspase 

-8 suggests activation of the extrinsic apoptotic pathway. 

 

Figure 5.20 Compound 3.17 activates caspases -8 and -3 after 24 and 48 h respectively 

  Concentrations were measured in µM with melphalan (20 μM) used as positive control. Nuclei 

  were stained with Hoechst 33342 and active caspases with appropriate monoclonal antibodies 

  and Alexa Fluor 488 conjugated secondary antibodies. Data points represent the mean ± SD of 

  three independent experiments, each performed in quadruplicate. *p<0.05; **p<0.001  

  compared to control 
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5.5.5 LysoTracker® Red (autophagy) 

Lysosomes are spherical, membrane bound organelles appearing as vesicles containing 

hydrolytic enzymes for the degradation of biomolecules in eukaryotic cells. Because an acidic 

environment is optimal for lysosomal proteases, lysosomes have a luminal pH of 4.0 – 6.0 

(Yapici et al. 2015). In autophagic cell death, lysosomes fuse with autophagosomes (early 

autophagic vesicles with neutral pH) to form autolysosomes (late autophagic vesicles with 

acidic pH) (Figure 5.21) (Nakamura and Yoshimori 2017). Weakly basic amines such as N-

{3-[(2,4-Dinitrophenyl)amino]propyl}-N-(3-aminopropyl)methylamine dihydrochloride 

(DAMP, which has since been discontinued), neutral red and acridine orange and 

LysoTracker® probes such as LysoTracker® Red and LysoSensor™ are used as lysosomal 

markers to detect autophagy due to their selective accumulation in autolysosomes (Pierzynska-

Mach et al. 2014). Increased cellular staining with these acidotropic probes is indicative of the 

presence of late autophagic vesicles resulting from the activation of autophagy. 

 

 

Figure 5.21 An overview of autophagy detailing the biomolecular degradation process 

  Induced of autophagy leads to the formation of autophagosomes (neutral pH) which fuse with 

  either late endosomes (amphisomes) or lysosomes to form autolysosomes (acidic pH) for the 

  degradation or recycle of biomolecules (Nakamura and Yoshimori 2017) 
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The activation of autophagy in HeLa cells was evaluated after 24 h treatment with compound 

3.17 at 0.25, 1.4 and 2.5 μM. HCA acquired images showed an increase in LysoTracker® Red 

staining at 2.5 μM of compound 3.17 compared to the control (Figure 5.22). After HCA data 

analysis, the confirmation of a slight increase in LysoTracker® Red staining at 2.5 μM of 

compound 3.17 suggested the activation of autophagy (Figure 5.23). 

 

Figure 5.22 HCA acquired images showing increase in LysoTracker® Red staining in HeLa 

  cells after 24 h treatment with 2.5 µM of compound 3.17. 

  Concentrations were measured in µM with chloroquine (100 μM) used as positive control 



 

196 

 

 

Figure 5.23 Compound 3.17 caused slight increase in LysoTracker® Red staining after 24 h. 

  Concentrations were measured in µM with chloroquine (100 μM) used as positive control. Data 

  points represent the mean ± SD of three independent experiments, each performed in  

  quadruplicate. *p<0.05; **p<0.001 compared to control. 

 

In this chapter, flavonoids are identified as “nutraceuticals” possessing medicinal properties 

that are ideal for the development of natural product-based therapeutic agents. In particular, 

flavonoids have shown to possess significant anticancer activity against a wide spectrum of 

cancers through their various mechanisms. The cancer modulating effects of flavonoids 

include, but are not limited to, anti-oxidant, anti-inflammatory, antimutagenic, anti-

proliferative and inhibition of oncogenic viruses. Some of the structural properties that tend to 

influence the anticancer activity of flavonoids are hydroxylation, C-4 carbonylation, 

methoxylation, prenylation, bond unsaturation and glycosylation. Among the different 

flavonoids, apigenin is highlighted as one of the most promising natural product-based 

chemotherapeutic agents. Anticancer mechanisms associated with the apigenin scaffold 

include selective DR5 expression in TRAIL-resistant cancers, increased E-cadherin 

expression, caspase-dependent PI3K/PKB inhibition, 26S proteasome inhibition, PARP 

inhibition, VEGF protein inhibition, inhibition of β-catenin nuclear translocation, snail 

pathway inhibition and the induction of both apoptosis and autophagy. Unfortunately, a major 

concern with flavonoid therapy is lack of in vivo stability due to their susceptibility to β-

glucosidase enzyme hydrolysis. Interestingly, the biosynthetic addition of C-glycosides to 

flavonoid aglycones such as apigenin result in the formation of flavonoid C-glycosides, a 
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unique type of compounds with greater in vivo stability and more diverse biological functions. 

Despite concerns of poor absorption, several pharmacokinetic studies have shown flavonoid 

C-glycosides to be sufficiently absorbed after oral administration. Flavonoid C-glycosides with 

anticancer activity include vitexin, isovitexin, aciculatin, 7-de-O-methylaciculatin, 8-C-β-D-

boivinopyranosylapigenin and vitexin-2-O-xyloside. The anticancer activity of apigenin C-

glycosides include the activation of apoptosis and/or autophagy, antimutagenic and anti-

metastatic activities. 

From the obtained results, compound 3.17, an apigenin C-glycoside, induced a dose dependent 

anti-proliferative activity against HeLa cells with 2.5 μM of the compound eliciting a similar 

effect to that of melphalan (20 μM). The anti-proliferative activity of compound 3.17 was then 

found to involve the induction of M phase cell cycle arrest which was characterised by a marked 

increase in Early M phase and a slight increase in Late M phase cell populations. On further 

evaluation, compound 3.17 collapsed the mitochondrial membrane potential (∆Ψm) in HeLa 

cells, signalling the activation of apoptotic cell death. Induction of both the intrinsic and 

extrinsic apoptotic pathways by compound 3.17 in HeLa cells was confirmed through the 

activation of caspases -8 and -3 after 24 h and 48 h respectively. Compound 3.17 also slightly 

activated autophagic cell death. In summary, the mechanism of cell death elicited by compound 

3.17 in HeLa cells involves, to a greater extent, the induction of M phase cell cycle arrest with 

consequent activation of apoptotic cell death which is evident from annexin V staining, 

mitochondrial membrane potential (∆Ψm) collapse and activation of caspases -8 and -3. To a 

lesser extent, compound 3.17 elicits its cytotoxic activity against HeLa cells by activating 

autophagic cell death. 
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5.6 Experimental 

5.6.1 General experimental procedures 

HeLa cervical cancer cells were obtained from Cellonex, South Africa and grown in Roswell 

Park Memorial Institute 1640 (RPMI 1640) medium from GE Healthcare Life Sciences (South 

Logan, Utah, USA) supplemented with gamma irradiated Fetal Bovine Serum (FBS) from 

Biowest (South America). Cells were cultured in BioFlow-II Labotec laminar flow cabinets 

and incubated in a ThermoForma CO2 incubator. Annexin V-FITC kit was obtained from 

MACS Miltenyi Biotec (Auburn, USA). 

5.6.2 Hoechst 33342/ Propidium Iodide (PI) cytotoxicity assay 

The cytotoxicity of altissimin (3.17) against HeLa cells was performed using the Hoechst 

33342/ propidium iodide (PI) assay. HeLa cells were seeded into 96 well plates at a density of 

5000 cells/well and incubated at 37 °C in a humidified 5% CO2 incubator for 24 h. The cells 

were treated with compound 3.17 at 0.25, 1.375 and 2.5 µM and 20 µM of melphalan was used 

as positive control. Treatments were incubated at 37 °C for 24 or 48 h after which the medium 

was aspirated and cells washed with Phosphate-buffered saline (PBS) containing calcium and 

magnesium. The cells underwent Hoechst/PI staining with bisBenzamide H 33342 

trihydrochloride (Hoechst 33342) at 5 µg/mL and propidium iodide (PI) at 10 µg/mL. After 

incubation at 37 °C for 15 min, cellular images were acquired with a Molecular Devices® 

ImageXpress Micro XLS Widefield High-Content Analysis System using a DAPI filter for 

Hoechst 33342 and a Texas Red filter for PI. Acquired images were analysed using the 

Multiwavelength Cell Scoring analysis module of the MetaXpress® High-Content Image 

Acquisition and Analysis Software. 

5.6.3 Hoechst 33342/ Annexin (Cell Cycle Analysis) 

For cell cycle analysis, HeLa cells were seeded and treated with compound 3.17 as above. 

Treatments were aspirated and cells washed with PBS containing calcium and magnesium. A 

mixture was prepared by the addition of 50 μL of Annexin V-FITC and 5 μL of Hoechst 33342 

to 5 mL PBS containing 250 μL of Binding Buffer (20x). Hoechst 33342/ Annexin staining 

was then performed using 50 μL aliquots drawn from the prepared mixture. The stained cells 

were incubated at room temperature for 15 min followed by image acquisition with a Molecular 

Devices® ImageXpress Micro XLS Widefield High-Content Analysis System using a DAPI 
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filter for Hoechst 33342 and a FITC filter for Annexin V. Acquired images were analysed using 

the Cell Cycle analysis module of the MetaXpress® High-Content Image Acquisition and 

Analysis Software. 

5.6.4 Hoechst 33342/ Annexin-PI (Phosphatidylserine translocation) 

To determine phosphatidylserine translocation, HeLa cells were seeded and treated with 

compound 3.17 as in Section 5.6.3 and 10 µg/mL of PI further added after staining with 

Hoechst 33342 and PI and before cellular imaging. Image acquisition with a Molecular 

Devices® ImageXpress Micro XLS Widefield High-Content Analysis System was done using 

DAPI, FITC and Texas Red filters for Hoechst 33342, Annexin V and PI respectively. 

Acquired images were analysed using the Multiwavelength Cell Scoring analysis module of 

the MetaXpress® High-Content Image Acquisition and Analysis Software. 

5.6.5 TMRE (Mitochondrial Membrane  Depolarization) 

To determine mitochondrial membrane depolarization, HeLa cells were seeded and treated 

with compound 3.17 as above. A mixture of 0.05 mM tetramethylrhodamine ethyl ester 

(TMRE) (50 μL) and 5 µg/mL Hoechst 33342 in 10 mL PBS was prepared. After aspiration of 

the treatment medium, 100 μL aliquots of the prepared mixture were added to the cells and 

incubated in the dark at 37 °C for 30 min. Image acquisition with a Molecular Devices® 

ImageXpress Micro XLS Widefield High-Content Analysis System was done using the DAPI 

filter for hoechst 33342 and the tetramethylrhodamine (TRITC) filter for TMRE. Acquired 

images were analysed using the Multiwavelength Cell Scoring analysis module of the 

MetaXpress® High-Content Image Acquisition and Analysis Software. 

5.6.6 Caspase Activation (Caspase -8 and -3) 

To determine caspase activation, HeLa cells were seeded and treated with compound 3.17 as 

above. After aspiration of the treatment medium, cells were fixed and permeabilized by adding 

50 µL of 4% formaldehyde and incubating at room temperature for 15 min. To this, 10 µL of 

PBS containing magnesium and calcium was added and the resulting mixture aspirated. 50 µL 

of 80% ice cold MeOH was added and the cells incubated at -20 °C for 10 min. For treatment 

with antibody solution, the MeOH was aspirated and 100 µL of PBS was added. Aspiration of 

the PBS was followed by the addition of 100 µL of 0.5% Bovine serum albumin (BSA) in PBS 

as blocking solution and incubation at room temperature for 10 min. After aspiration, 50 µL of 
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antibody solution containing caspase 3 (dilution factor 1:200) and caspase 8 (dilution factor 

1:100) were added and the cells incubated in the dark at 37 °C for 60 min. Cells were washed 

once with blocking solution followed by addition of 50 µL of the secondary antibody anti-

rabbit IgG F(ab′)2 fragment (Alexa fluor® 647 conjugate) (dilution factor 1:500) for 30 min.  

The cells were washed once with blocking solution followed by the addition of 100 µL of 

Hoechst 33342 at 5 µg/mL. Image acquisition with a Molecular Devices® ImageXpress Micro 

XLS Widefield High-Content Analysis System was done using DAPI and Cy5 filters for 

Hoechst 33342 and Alexa fluor 647 respectively. Acquired images were analysed using the 

Multiwavelength Cell Scoring analysis module of the MetaXpress® High-Content Image 

Acquisition and Analysis Software. 

5.6.7 Lysotracker® Red (Autophagy) 

To determine the induction of autophagy, HeLa cells were seeded and treated with compound 

3.17 as above. A mixture of 50 nM Lysotracker® Red (0.5 μL) and 5 µg/mL hoechst 33342 in 

10 mL PBS was prepared. After aspiration of the treatment medium, cells were stained by the 

addition of 100 µL aliquots of the prepared mixture and incubated in the dark at 37 °C for 30 

min. Image acquisition with a Molecular Devices® ImageXpress Micro XLS Widefield High-

Content Analysis System was done using DAPI and TRITC filters for Hoechst 33342 and 

TMRE respectively. Acquired images were analysed using the Multiwavelength Cell Scoring 

analysis module of the MetaXpress® High-Content Image Acquisition and Analysis Software. 
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Chapter 6 

Target Prediction and In silico Molecular Docking of Altissimin in the 

Aldose Reductase (hAR, AKR1B1) Binding Site 

 

6.1 Introduction 

Proteins control a wide array of biological processes by interacting with small molecules or 

other proteins that bind to them (Schreiber et al. 2015). Understanding these protein-ligand 

interactions is of great interest, providing an opportunity to better understand protein and ligand 

function for further therapeutic intervention (McFedries et al. 2013). The interaction between 

a protein and ligand is known as molecular recognition, and is defined by a complex 

combination of several factors such as inter-molecular forces between the protein, ligand and 

surrounding solvent, variation in conformation between binding partners and the 

thermodynamics of molecular association (Cleaves 2011). Despite the development of 

experimental and computational techniques to better understand the specific role of these 

factors, complete understanding of molecular recognition is still a work in progress. This 

chapter includes a brief review of the important aspects of computational target prediction and 

analysis of protein-ligand interactions. 

6.2 Computer aided drug design (CADD) 

In the past, drug discovery used to be predominantly serendipitous, coincidental and most often 

a trial and error process, also referred to as forward pharmacology (Kubinyi 1999).  In contrast, 

modern day approaches involve rational drug design which begins with a hypothetical 

pharmacological effect resulting from the modulation of a particular biological target, also 

referred to as reverse pharmacology (Todd et al. 2009). Analogous to the Latin terms in vitro, 

in vivo and in situ, the term in silico (Pseudo-Latin for in silicon) was coined in 1989 as an 

expression for computer aided rational drug design (Geris and Vermolen 2014). The term in 

silico was first used by a mathematician named Pedro Miramontes during the workshop 

"Cellular Automata: Theory and Applications" to characterise biological experiments solely 

performed in a computer (Parimal et al. 2018). Computer aided drug design (CADD) involves 

the use of computerised technologies to streamline drug discovery and development, the 
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utilisation of chemical and biological data about ligands and biological targets to develop new 

drugs and the development of in silico filters to disqualify compounds with undesirable 

physicochemical properties (Kapetanovic 2008). By acting as a virtual shortcut, CADD 

technologies significantly reduce the number of ligands to be screened in experimental assays 

and hence, reduce the cost of research (Sliwoski et al. 2014). The two main disciplines of 

CADD are ligand-based and structure-based (Figure 6.1). 

 

Figure 6.1 An illustration of computer aided drug design (CADD) techniques 

  (Adapted from: Katsila et al. 2016) 
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6.2.1 Ligand-based CADD 

Ligand-based CADD is employed when the structure of the biological target is not properly 

characterised, as is usually the case with cell surface receptors which are generally difficult to 

crystallise. Ligand-based CADD employs virtual screening through the molecular docking of 

large compound libraries (such as the ZINC database) against a target protein to identify 

compounds that bind to the active site (Irwin et al. 2012). The ligand-based approach heavily 

relies on the characteristics of bioactive ligands such as physicochemical properties, binding 

affinities and chemical structure which can be used to develop chemical fingerprints for the 

identification of similarity hits (Mestres et al. 2006). The ligand-based approach is also 

employed in the designing of 3D-quantitative structure activity relationship (3D-QSAR) 

algorithms in which structural and physicochemical descriptors of active and inactive 

compounds are gathered for use in the prediction of new bioactive compounds (Jitender and 

Vijay 2010).  Recent ligand-based approaches include proteochemometrics modeling (PCM) 

which combines ligand and protein data into a single predictive model, and polypharmacology 

modeling which exploits the interaction of single drug molecules to multiple biological targets 

(Reddy and Zhang 2013; Cortés-Ciriano et al. 2015). Another recent ligand-based method is 

the similarity ensemble approach (SEA) which is used to predict target proteins for particular 

compounds of interest. 

6.2.1.1 Target protein prediction - Similarity Ensemble Approach (SEA) 

Computational target prediction of compounds plays an important role in drug discovery 

(Katsila et al. 2016). The chemical Similarity Ensemble Approach (SEA) is a promising 

method which has been successfully applied in many drug-related studies (Wang et al. 2016). 

This approach considers proteins from a chemocentric point of view, relating them through the 

chemical similarity of their ligands. The idea is that similar molecules have similar biological 

profiles and bind similar targets. In 2007, Keiser et al. developed the chemical SEA, which 

relates proteins to one another based on the chemical similarity among their bound ligands 

(Keiser et al. 2007). Since then, SEA and SEA-like methods have been successfully applied in 

new target identification for old drugs and natural products (Keiser et al. 2009; Cameron et al. 

2013), for side-effect prediction and for the prediction of potential anatomical therapeutic 

indications (ATCs) of approved drugs (Wu et al. 2013). 
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6.2.2 Structure-based CADD 

With the inception of X-ray crystallography and NMR techniques as utilities for the 

development of large protein structure depositories such as the protein databank (PDB), 

increase in the knowledge of biological targets has become the cornerstone of Structure-based 

CADD (Parasuraman 2012). Through molecular dynamic simulations, a trajectory of protein 

conformations are rendered over time for the prediction of binding affinities (Hospital et al. 

2015). A well-known structure-based approach is homology modeling (also called comparative 

modeling) which is used when the structure of a biological target is not yet defined. In this 

case, comparative models are designed as predictors of the protein structure based on structural 

templates containing similar amino acid sequences (Cavasotto and Phatak 2009). Commonly 

used homology modeling software include MODELER and SWISS-MODEL (Schwede et al. 

2003; Krieger et al. 2005). One of the key structure-based CADD approaches is molecular 

docking, which is used to predict the preferred orientation of a ligand to its target protein. 

6.2.2.1 Molecular docking  

Molecular docking is one of the most frequently used methods in structure based drug design 

because of its ability to predict, with a substantial degree of accuracy, the conformation of 

small-molecule ligands within the appropriate target binding site (Xuan-Yu et al. 2011). 

Following the development of the first algorithms in the 1980s, molecular docking became an 

essential tool in drug discovery (Fabian et al. 2011). For example, investigations involving 

crucial molecular events, including ligand binding modes and the corresponding intermolecular 

interactions that stabilize the ligand-receptor complex, can be conveniently performed (Huang 

and Zou 2010). Furthermore, molecular docking algorithms execute quantitative predictions of 

binding energetics, providing rankings of docked compounds based on the binding affinity of 

ligand-receptor complexes (Fabian et al. 2011; Huang and Zou 2010). The identification of the 

most likely binding conformations require two steps; (i) exploration of a large conformational 

space representing various potential binding modes; (ii) accurate prediction of the interaction 

energy associated with each of the predicted binding conformations (Kapetanovic 2008). 

Molecular docking programs perform these tasks through a cyclic process, in which the ligand 

conformation is evaluated by specific scoring functions. The commonly used molecular 

docking software include Autodock (Morris et al. 2009), Autodock Vina (Trott and Olson 
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2010), Gold (Verdonk et al. 2003), DOCK (Moustakas et al. 2006), GLIDE (Friesner et al. 

2006), and SURFLEX (Jain 2003). 

6.2.3 Integrating computational approaches to natural product drug discovery 

The hallmark of computational drug discovery is what is referred to as ‘data mining’, a term 

that was coined by Gasteiger and his colleagues to entail the extraction of knowledge from pre-

existing large data repositories for the purpose of generating new information (Hand 2007). In 

this case, large compound databases are mined using in silico techniques from which ideal 

candidates are selected for further evaluation (Gasteiger et al. 2003). The computational 

approach is meant to significantly reduce the high costs of drug discovery and development in 

that experimental efforts are only directed towards promising candidates. An important facet 

to natural product computational studies is the exploitation of pharmacophoric moieties. In this 

approach, natural product libraries are screened in search for compounds with specific 

pharmacophores. Compounds with the desired pharmacophores are then further evaluated 

based on physicochemical properties that may influence toxicity and pharmacokinetics 

(absorption distribution, metabolism and excretion or ADME). This approach has proven more 

effective than random screening by 1700-fold (Doman et al. 2002). In structure-based 

pharmacophore models a crystalline structure of a target protein with ligand bound to its active 

site is studied in order to identify pharmacophores that would interact with the target in a similar 

fashion (Berman et al. 2000). A good example is LigandScout, a software that is used to 

identify important interaction points between ligands and target proteins (Wolber and Langer 

2005). 

However, computational natural product drug discovery faces the challenge of limited free 

access to natural product databases. This has restricted the number of virtual studies conducted 

on natural product based chemical entities. Computational screening usually requires the input 

of a large number of synthetic compounds from which about 10 – 30% become successful 

candidates. Unfortunately, this is difficult to implement with natural products since large 

numbers of compounds are not easily accessible and only a small quantity of exorbitantly 

priced secondary metabolites are commercially available. The seamless integration of 

computational approaches to natural product drug discovery can be achieved through various 

strategies. One of these strategies begins with the development of a virtual hit using 3D 

databases of natural compounds followed by the preselection of natural product sources known 
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to contain the desired metabolites through ethnopharmacology, literature review and resource 

availability. In vitro preliminary screening and direct or bioactivity guided isolation of the 

desired metabolites is then carried out on the selected natural product sources to obtain the 

bioactive natural products (Figure 6.2) (Rollinger et al. 2008). 

 

Figure 6.2 Integration of virtual natural product screening and in vitro validation methods 

  (Adapted from: Rollinger et al. 2008) 

Another approach involves the identification of potential sources of bioactive natural products 

through ethnomedicinal practices and literature review which are then screened using in vitro 

assays. A virtual database is then created to encompass all the known compounds that have 

been isolated from the bioactive plant sources. The created natural product database is then 

virtually screened against a structure based pharmacophore model to identify potentially active 

pharmacophores followed by the isolation of the virtual hits from the plant sources and 



 

227 

 

evaluation of bioactivity to identify bioactive natural products. This has been referred to as the 

in combo approach due to its integration of in silico and in vitro methods (Figure 6.3) (Van De 

Waterbeemd 2005). 

 

 

Figure 6.3 The in combo approach integrating in silico and in vitro methods (Adapted 

  from: Rollinger et al. 2008) 

One can also start with the virtual screening of a natural compound of unknown biological 

activity against several biological targets. In this target fishing approach, potential target-

natural compound interactions are identified followed by the pharmacological evaluation of the 

interactions to realise bioactive natural products (Figure 6.4) (Nettles et al. 2006). 
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Figure 6.4 The target fishing approach to natural product drug discovery (Adapted from: 

  Rollinger et al. 2008) 

6.3 Chapter aims 

The research in this chapter focuses on the implementation of in silico computational 

techniques to determine potential biological target proteins of 6′′-O-α-apio-D-

furanosylisovitexin (Altissimin, 3.17). In addition, molecular docking is utilized to predict 

ligand-protein interactions. A brief overview and explanation of the aforementioned techniques 

is given in the introductory section with a detailed description of the in silico methodology 

provided in the experimental section. 
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6.4 Results and Discussion 

6.4.1 SEA target prediction 

The results generated by the SEA search server are shown in Table 6.1. Biological targets for 

altissimin (3.17) were ranked based on their respective p-values, Z-scores and max Tc values. 

Based on these results the most promising protein target for altissimin (3.17) was human aldose 

reductase (hAR). hAR is a NADPH-dependent oxidoreductase that catalyses the reduction of 

glucose to sorbitol (Brownlee 2001). This is a key reaction in the polyol pathway of glucose 

metabolism, a process implicated in the long-term complications of diabetes. Hyperglycemia 

induces overexpression of hAR, leading to an increase in sorbitol concentration, which 

ultimately causes osmotic imbalance, alterations in membrane permeability, oxidative stress, 

and finally tissue damage (Srivastava et al. 2005). Accordingly, the enzyme has been 

extensively studied as a molecular target for the treatment of diabetes complication (Wang et 

al. 2013). 

Table 6.1 SEA search server results for altissimin (3.17) target prediction 

 

 

 

 

 

Rank Target ID Name Description P-Value Max Tc Z-Score

1 ALDR_HUMAN AKR1B1 Aldose reductase 2.85E-24 0.35 41.8217

2 XDH_HUMAN XDH Xanthine dehydrogenase/oxidase 6.76E-23 0.40 39.3527

3 ALDR_RAT Akr1b1 Aldose reductase 5.44E-20 0.52 34.1355

4 BGLR_RAT Gusb Beta-glucuronidase 4.93E-19 0.38 32.4173

5 ULA1_HUMAN NAE1 NEDD8-activating enzyme E1 regulatory subunit 6.06E-18 0.43 30.4612

6 AMY1_HUMAN AMY1A; AMY1B; AMY1C Alpha-amylase 1 6.66E-16 0.43 26.7389

7 CP1B1_HUMAN CYP1B1 Cytochrome P450 1B1 9.99E-16 0.38 26.4627

8 O96394_LEIAM Arginase 1.83E-14 0.33 24.212

9 Q965D6_PLAFA fabG 3-oxoacyl-acyl-carrier protein reductase 6.64E-14 0.35 23.2079

10 PLGF_HUMAN PGF Placenta growth factor 2.09E-13 0.31 22.3146

11 IL2_HUMAN IL2 Interleukin-2 9.91E-12 0.42 19.3056

12 LOX5_RAT Alox5 Arachidonate 5-lipoxygenase 1.24E-10 0.39 17.3352

13 NMUR2_HUMAN NMUR2 Neuromedin-U receptor 2 3.99E-10 0.36 16.4234

14 LX15B_RAT Alox15b Arachidonate 15-lipoxygenase B 4.03E-10 0.39 16.4172

15 CDK6_HUMAN CDK6 Cyclin-dependent kinase 6 2.18E-08 0.38 13.306

16 CLK1_MOUSE Clk1 Dual specificity protein kinase CLK1 2.43E-08 0.31 13.2215

17 CBR1_HUMAN CBR1 Carbonyl reductase [NADPH] 1 9.34E-08 0.35 12.1702

18 MDR1_HUMAN ABCB1 Multidrug resistance protein 1 2.08E-07 0.38 11.5457

19 DPO1_THEAQ polA DNA polymerase I, thermostable 6.64E-07 0.32 10.6413

20 MRP2_RAT Abcc2 Canalicular multispecific organic anion transporter 1 7.87E-07 0.41 10.5086
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6.4.2 Molecular docking  

Molecular docking was performed against hAR for both altissimin (3.17) and known ligand 

393 (control) (Figure 6.5). Altissimin (3.17) and 393 demonstrated high affinities for aldose 

reductase, with the lowest binding energy observed for altissimin (3.17) (Figure 6.6). 

 

Figure 6.5 3D visualisation of the human aldose reductase (hAR) enzyme (using visual 

  molecular dynamics, VMD), compound 3.17 and known ligand 393 (using 

  BIOVIA’s Discovery studio software) 

 

 

3.17 393

hAR
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Figure 6.6 Graphical representation of the ∆G free energy binding values for altissimin 

  (3.17) (-9.4 kcal/mol) and known ligand 393 (-8.7 kcal/mol) after molecular 

  docking with AutoDock4 

6.4.3 Protein-ligand interactions 

hAR is a monomeric 36 kDa protein that consists of 315 amino acids and folds into a β/α-TIM-

barrel. Eight α-helices and two additional smaller α -helices wrap around eight β-strands. The 

binding pocket of hAR is located near the C-terminal loop in the barrel core where also the 

cofactor NADPH is bound. The so-called anionic binding pocket is formed by Tyr 48, His 110, 

Trp 111, and the nicotinamide moiety of the cofactor. Furthermore, the latter three residues are 

involved in the catalytic function of hAR.   

In the control docking procedure with known ligand 393, the protein-ligand interactions were 

analysed with LigPlot+ software (Figures 6.7 and 6.8). A total of four hydrogen bonds were 

observed between the ligand and protein, and involved amino acid residues Tyr48 (2.70 Å), 

His110 (2.70 Å), Trp111 (2.98 Å) and Leu300 (3.03 Å). Analysis of protein-ligand interactions 

for altissimin (3.17) also witnessed the formation of four hydrogen bonds and involved amino 

acid residues Lys22 (2.92 Å), Gln50 (3.18 Å), Val48 (2.73 Å) and Leu301 (2.98 Å). The 

remainder of ligand atoms predominantly forms hydrophobic interactions. 
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Figure 6.7 Schematic representation of target site bound by ligands; Chimera visualization 

  showing altissimin (3.17) (A) and known ligand 393 (B) in the hAR binding 

  pocket 

  The hAR binding pocket is indicated in red 

 

Figure 6.8 Schematic representation of target site bound by ligands; LigPlot+ 2D  

  interaction map showing interacting residues and hydrogen bond for altissimin 

  (3.17) (A) and known ligand 393 (B) 

A B
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From the obtained results, altissimin (3.17) showed a high binding affinity (∆G = -9.4 kcal/mol) 

for the human aldose reductase (hAR) enzyme. Thus, altissimin (3.17) can be considered as a 

potential aldose reductase inhibitor. However, these in silico results require confirmation 

through further biological testing including in vitro biological assays. Besides its involvement 

in diabetic complications, the human aldose reductase (hAR, AKR1B1) has been found to 

potentiate various inflammatory conditions such as atherosclerosis, sepsis, uveitis and 

colorectal cancer (Ramana and Srivastava 2010). Several human malignancies such as hepatic, 

colorectal, breast, ovarian and cervical cancers have shown overexpression of hAR, thereby 

giving rationale for the use of aldose reductase inhibitors as modulators of inflammatory 

cancers (Tammali et al. 2011). For instance, concomitant administration of the aldose reductase 

inhibitor ethyl 1- benzyl-3-hydroxy-2(5H)-oxopyrrole-4-carboxylate (EBPC) with 

doxorubicin and cisplatin in HeLa cells was found to enhance the activity of the two 

chemotherapeutics (Shapiro 2002). Furthermore, the inhibition of aldose reductase has been 

found to increase the sensitivity of HeLa cells to chemotherapeutic agents through the 

activation of extracellular signal-regulated kinases (ERK) (Kyoung Lee et al. 2002). These 

findings warrant the further exploration of aldose reductase inhibitors as potential adjuncts to 

chemotherapeutic agents. Since increased chemotherapeutic sensitivity translates into reduced 

therapeutic dosages, hAR inhibitor-chemotherapy combinations may serve the cardinal 

purpose of reducing the overall cost of cisplatin-based cancer treatments in developing 

countries. 
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6.5 Experimental 

6.5.1 General experimental 

Preparation of compound structure for molecular docking was performed using BIOVIA’s 

Discovery studio software obtained from http://www.3dsbiovia.com/resource-

center/downloads/. The Similarity Ensemble Approach (SEA) was performed from the search 

servers on the website http://sea.bkslab.org/ provided by Shoichet Laboratory, Department of 

Pharmaceutical Chemistry, University of California, San Francisco (UCSF). Molecular 

docking of compound was done using AutoDock4 and the Autodock tools suite obtained from 

http://autodock.scripps.edu/. 

6.5.2 Similarity Ensemble Approach (SEA) 

The structure file of altissimin (3.17) was prepared using BIOVIA’s Discovery studio software 

and exported in MOL format. The structure was converted to the SMILES format using Open 

BABEL software (O'Boyle et al. 2011), and submitted to the SEA Search Server in order to 

evaluate potential activities (Keiser et al. 2007). Target proteins were ranked according to their 

respective Z-scores, max Tc and p-values (Table 1). A threshold of 0.3 for max Tc was adopted 

and values lower than 0.3 were excluded. The highest overall ranking protein target was 

identified and selected for subsequent molecular docking studies. 

6.5.3 Molecular docking 

The 3D structure of aldose reductase was retrieved from the protein data bank (PDB code 

3MC5). Molecular docking was performed for both altissimin (3.17) and known protein 

inhibitor 393. All molecular docking experiments were completed using AutoDock4 and the 

AutoDock tools suite (ADT) (Morris et al. 2009). Molecular docking with AutoDock4 can be 

broken down into six steps (Figure 6.9). The initial preparation steps 1 and 2 were performed 

using a custom made python script which incorporated the ADT scripts prepare_receptor4.py 

and prepare_ligand4.py to convert both the protein model and ligand to required PDBQT 

format. In preparation for Autogrid4 (step 3), a grid parameter file was defined using the ADT 

script prepare_gpf4.py. In preparation for the docking run with AutoDock4 (step 6), docking 

parameters were defined using the ADT script prepare_dpf42.py and user defined parameters 

passed in TXT file format. Grid box spacing parameter was set to 1 Å and the number of points 

X = 126, Y = 126, Z = 126. Specific docking parameters were used in docking run; population 

http://www.3dsbiovia.com/resource-center/downloads/
http://www.3dsbiovia.com/resource-center/downloads/
http://sea.bkslab.org/
http://autodock.scripps.edu/
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= 50, evaluations = 10 million, number of generations = 10 million and the number of runs = 

256. 

 

Figure 6.9 Overview of ligand and receptor protein preparation for AutoDock4. 

6.5.4 Docking analysis and scoring 

Protein docking with AutoDock4 generated a single docking log file (DLG) for screened 

ligand. The log file was analysed using the write_lowest_energy_ligand.py ADT script and the 

resulting ligand visually inspected in conjunction with receptor using Chimera molecular 

viewer software (Pettersen et al. 2004). Ligand-protein interactions were analysed using 

LigPlot+ software (Laskowski and Swindells 2011). In preparation for LigPlot+, the ligand 

was written to PDB file format using the ADT scripts write_lowest_energy_ligand.py and 

pdbqt_to_pdb.py. The ligand PDB was viewed with the respective receptor in Chimera and a 

PDB file containing the receptor and ligand in complex written. 
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Chapter 7 

Conclusion 

 

This study has demonstrated the anticancer activity of Drimia altissima (L.F.) Ker Gawl. 

against the HeLa cervical cancer cell line and marked the plant genus as a potential source for 

novel bio-active compounds. 

In accordance with the aim of identifying and exploring potential plant sources for novel 

cytotoxic natural compounds, this research evaluated African traditional claims for the 

common ethnopharmacological use of the plants Adansonia digitata, Ceiba pentandra, 

Maytenus senegalensis and Drimia altissima as cancer treatments. Preliminary cytotoxicity 

screening of the selected plants revealed that Maytenus senegalensis root extract, MS-R, and 

Drimia altissima bulb extract, DA-B (79), possess significant anti-proliferative activity against 

HeLa cervical cancer cells with IC50 values of 25 and 1.1 μg/mL respectively. Among others, 

the antimycobacterial, anti-inflammatory and antiplasmodial activity of M. senegalensis leaf 

extracts is well documented (Tahir et al. 1999; da Silva et al. 2011). However, very few studies 

have embarked on evaluating the anticancer potential of M. senegalensis root extracts. This 

study provides basis for the further phytochemical evaluation of M. senegalensis root extracts 

in order to isolate the metabolites that are responsible for its cytotoxic activity. Unfortunately, 

this could not be done in this study due to a limitation in biomass quantity. Evaluation of the 

D. altissima bulb extract yielded a cytotoxic n-butanol fraction, 79d, (IC50 = 0.497 μg/mL) with 

greater anti-proliferative activity than the parent extract (79) and thus, disclosing the location 

of the cytotoxic metabolite(s). High Content Analysis (HCA) of 79d revealed that the partition 

induces marked early mitotic cell cycle arrest in HeLa cells. 

Within the Asparagaceae family, n-butanol extracts are known for possessing a high saponin 

content dominated by the presence of bio-active cardenolides, spirostanols and mono or 

bidesmosidic steroidal glycosides (Mulholland et al. 2013). Previous phytochemical studies on 

D. altissima only resulted in the isolation of several bufadienolides, a class of cardenolides 

known to be the chemotaxonomic markers of Urgineeae, the tribe from whence D. altissima 

emanates. Though bufadienolides are known to possess strong anticancer properties, their 

narrow therapeutic index and cardiotoxic side effects pose serious safety concerns. Bio-assay 
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guided fractionation of n-butanol fraction 79d yielded cytotoxic fractions 82b – e, with 82c 

being the most effective fraction at the lowest tested concentration (0.1 μg/mL). Despite 

showing strong cytotoxic activity, fractions 82b, 82d and 82e were not further purified due to 

lack of time. Future research in the isolation of compounds from these active fractions is highly 

recommended. Fractionation of 82c led to the isolation of a novel C-glucosylflavonoid-O-

glucoside, 6-C-[-apio-α-D-furanosyl-(1→6)-β-glucopyranosyl]-4′, 5, 7-trihydroxyflavone 

(Altissimin, 3.17). Altissimin (3.17) contains a unique arrangement of the glucose and furanose 

moieties to the apigenin aglycone. This study proposes that the biosynthesis of altissimin (3.17) 

includes the addition of a furanose moiety to the C-6′′ –OH by uridine diphosphate-apiose 

(UDP-apiose) through the enzymatic activity of apiofuranosyltransferase to form a (1→6) O-

inter-glycosidic linkage between the furanose and the C-glucoside. This study reports 

altissimin (3.17) as the first flavonoid to be isolated from D. altissima. Unlike the 

bufadienolides, flavonoids and their O-glycosides are generally considered to be safe for 

human consumption. 

Altissimin (3.17) exhibited a dose dependant anti-proliferative activity against HeLa cells with 

an IC50 of ± 2.44 μM. The anti-proliferative activity and mechanism of cell death elicited by 

altissimin (3.17) at IC50 concentration in HeLa cells was found to involve the induction of M 

phase cell cycle arrest with consequent activation of apoptotic cell death. Altissimin-induced 

apoptosis was evident from annexin V staining, increased nuclear size, mitochondrial 

membrane potential (∆Ψm) collapse and the activation of caspases -8 and -3. The activation of 

caspase -8 also suggested the induction of extrinsic apoptotic pathways. To a lesser extent, 

altissimin (3.17) induces autophagy in HeLa cells, which was evident from the slight increase 

in LysoTracker® Red staining. The induction of autophagy by apigenin-type flavonoids is well 

documented (Ruela-de-Sousa et al. 2010; Cao et al. 2013; Lee et al. 2014; Liu et al. 2014; 

Zhang et al. 2015), but less observed in flavonoid C-mono and diglycosides. 

Among the concerns on flavonoid O-glycosides is lack of stability in biological systems due to 

their susceptibility to β-glucosidase enzyme hydrolysis in vivo (Yang et al. 2018). On the other 

hand, flavonoid C-glycosides are more stable than O-glycosides because of the presence of 

cleavage resistant C-C bonds. However, due to very few and often conflicting reports, the 

absorption of flavonoid C-glycosides after oral administration has not been fully confirmed. 

There are even fewer studies on the pharmacokinetic evaluation of flavonoid C-diglycosides 

containing furanose moieties such as altissimin (3.17). Future studies will find it beneficial to 
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investigate the in vivo pharmacokinetic properties of altissimin (3.17) and other furanose-

containing C-O-diglycosides as a gap that needs urgent filling in the natural product drug 

development pipeline. The anticancer activity of altissimin (3.17) can be further improved 

through semi-synthetic derivatization including pentaallyl ether substituent additions, 

methoxylation and prenylation. 

Using in silico (computational) methods, the human aldose reductase enzyme (hAR, AKR1B1) 

was identified as a potential biological target for altissimin (3.17). Overexpression of hAR is a 

known feature of inflammatory malignancies, including cervical cancer (Tammali et al. 2011). 

Compounds with hAR inhibitory activity increase the sensitivity of certain types of cancers to 

chemotherapeutic agents (Shapiro 2002). These results warrant the confirmation of altissimin 

(3.17) as a potential hAR inhibitor through further in vitro and in vivo studies. Other virtually 

determined potential biological targets for altissimin (3.17) such as NEDD8-Activating 

Enzyme E1 regulatory Subunit (NAE1), placenta growth factor (PGF), arachidonate 5-

lipoxygenase (Alox5), arachidonate 15-lipoxygenase B (Alox15B), cyclin-dependent kinase 6 

(CDK-6) and multidrug resistance protein 1 (ABCB1) are known to play roles in cancer cell 

proliferation, apoptosis, inflammation and drug resistance. These targets could potentially 

contribute to the anticancer activity of altissimin (3.17). 

Thus, it can be concluded that altissimin (3.17), a secondary metabolite that is partly 

responsible for the cytotoxic activity of D. altissima, shows promise as a potential anticancer 

agent, at least, in the management of cervical cancer. 
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Appendix I 

Nuclear magnetic resonance (NMR) spectra 

 

 

Figure A1.1 1H NMR spectra (CD3OD, 400MHz) of fractions 82b, 82c and 82d 
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Appendix II 

LC/MS spectra 

 

 

 

Figure A2.1 LC/ESI-MS spectra of Drimia altissima crude extract in positive (top) and 

  negative (bottom) ionization modes 
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Figure A2.2 LC/ESI-MS spectra of compound 3.17 in positive (top) and negative (bottom) 

  ionization modes 
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