

An Information Extraction Model for Recommending

the Most Applied Case

Author: Thashen Padayachy

Student Number: 211228729

Supervisor: Prof Brenda Scholtz

Masters Dissertation

Submitted in fulfilment of the requirements for the degree of Master of Science in Computer Science

and Information Systems at the Nelson Mandela University

April 2019

i

 Acknowledgements
My academic career at the Nelson Mandela University has been a very interesting and fulfilling

experience. Only few know that the original plan was for me to stop studying after obtaining my

undergraduate degree. This plan became even more set-in stone when finances became dire. One

always hears about good people out there but not many get to meet these people or have them play

an important role in their lives. Prof Brenda Scholtz is without a doubt one of the good people!

Ma’m, you were a necessary disruption of the plan as you made it possible for me to be where I am

today. Working with you for the last five years has been an incredible learning experience. You

constantly refined my abilities as a researcher and supported me since the beginning. I am forever

grateful for all that you have done for me and my parents have the utmost respect and appreciation

for all that you have provided me. We are truly thankful that you came into our lives!

To my parents, thank you for the constant support throughout my Masters degree. It is through the

values you instilled in me from a young age that helped me remain focused and give of my best.

Thank you to Ashlynne and all my friends who supported me throughout the last 2 years of my

Masters.

I would like to thank the National Research Foundation and LexisNexis for providing me with the

funding to complete my Masters.

ii

Abstract
The amount of information produced by different domains is constantly increasing. One domain that

particularly produces large amounts of information is the legal domain, where information is mainly

used for research purposes. However, too much time is spent by legal researchers on searching for

useful information. Information is found by using special search engines or by consulting hard copies

of legal literature.

The main research question that this study addressed is “What techniques can be incorporated into a

model that recommends the most applied case for a field of law?”. The Design Science Research (DSR)

methodology was used to address the research objectives. The model developed is the theoretical

contribution produced from following the DSR methodology.

A case study organisation, called LexisNexis, was to help investigate the real-world problem. The initial

investigation into the real-world problem revealed that too much time is spent on searching for the

Most Applied Case (MAC) and no formal or automated processes were used. An analysis of an informal

process followed by legal researchers enabled the identification of different concepts that could be

combined to create a prescriptive model to recommend the MAC.

A critical analysis of the literature was conducted to obtain a better understanding of the legal domain

and the techniques that can be applied to assist with problems faced in this domain, related to

information retrieval and extraction. This resulted in the creation of an IE Model based only on theory.

Questionnaires were sent to experts to obtain a further understanding of the legal domain, highlight

problems faced, and identify which attributes of a legal case can be used to help recommend the MAC.

During the Design and Development activity of the DSR methodology, a prescriptive MAC Model for

recommending the MAC was created based on findings from the literature review and questionnaires.

The MAC Model consists of processes concerning:

• Information retrieval (IR);

• Information extraction (IE);

• Information storage; and

• Query-independent ranking.

Analysis of IR and IE helped to identify problems experienced when processing text. Furthermore,

appropriate techniques and algorithms were identified that can process legal documents and extract

specific facts. The extracted facts were then further processed to allow for storage and processing by

query-independent ranking algorithms.

The processes incorporated into the model were then used to create a proof-of-concept prototype

called the IE Prototype. The IE Prototype implements two processes called the IE process and the

Database process. The IE process analyses different sections of a legal case to extract specific facts.

The Database process then ensures that the extracted facts are stored in a document database for

future querying purposes.

The IE Prototype was evaluated using the technical risk and efficacy strategy from the Framework for

Evaluation of Design Science. Both formative and summative evaluations were conducted. Formative

evaluations were conducted to identify functional issues of the prototype whilst summative

evaluations made use of real-world legal cases to test the prototype. Multiple experiments were

conducted on legal cases, known as source cases, that resulted in facts from the source cases being

extracted. For the purpose of the experiments, the term “source case” was used to distinguish

between a legal case in its entirety and a legal case’s list of cases referred to. Two types of NoSQL

databases were investigated for implementation namely, a graph database and a document database.

iii

Setting up the graph database required little time. However, development issues prevented the graph

database from being successfully implemented in the proof-of-concept prototype. A document

database was successfully implemented as an alternative for the proof-of-concept prototype.

Analysis of the source cases used to evaluate the IE Prototype revealed that 96% of the source cases

were categorised as being partially extracted. The results also revealed that the IE Prototype was

capable of processing large amounts of source cases at a given time.

iv

Declaration
I, Thashen Padayachy, hereby declare the dissertation, An Information Extraction Model for

Recommending the Most Applied Case, for Magister Scientae in Computer Science and Information

Systems is my own independent work. All sources used or quoted have been indicated and

acknowledged by means of complete references. This dissertation has not been previously submitted

for assessment to any other university or completion of any other qualification.

Thashen Padayachy

v

 List of Acronyms
AI Artificial Intelligence

ALL SA All South African

ALL SA All South African

BSON Binary JSON

CO Co-Reference Resolution

CRT Case Referred To

DFA Deterministic Finite Automaton

DSR Design Science Research

EE Event Extraction

FEDS The Framework for Evaluation in Design Science Research

GATE General Architecture for Text Engineering

HITS Hyper-Link Induced Topic Search

IDE Integrated Development Environment

IE Information Extraction

IR Information Retrieval

IRP Irrelevant Pages

IT Information Technology

JSON Javascript Option Notation

MAC Most Applied Case

NER Named Entity Recognition

NFA Non-Deterministic Finite Automaton

NLP Natural Language Processing

NLTK Natural Language Toolkit

NoSQL Not Only SQL

PDF Portable Document Format

POS Part-of-speech

R Relevant

RE Relation Extraction

Ref-To-Case Referred to Case

RO Research Objective

ROI Return on Investment

RQ Research Question

Skmeans Spherical kmeans

TF Term Frequency

VR Very Relevant

WR Weakly Relevant

XML Extensible Markup Language

vi

 Table of Contents
ACKNOWLEDGEMENTS .. I

ABSTRACT ... II

DECLARATION .. IV

LIST OF ACRONYMS ... V

TABLE OF CONTENTS .. VI

LIST OF FIGURES .. X

LIST OF TABLES ... XI

CHAPTER 1: INTRODUCTION ... 13

1.1 Background ... 13

1.2 Problem Statement ... 14

1.3 Aim and Scope of Research ... 14

1.4 Relevance and Envisaged Contribution .. 15

1.5 Research Questions... 15

1.6 Research Objectives .. 15

1.7 Research Methodology and Layout of Dissertation .. 15

CHAPTER 2: RESEARCH DESIGN .. 19

2.1 Introduction .. 19

2.2 Motivation for DSR in This Study .. 19

2.3 The Three Cycle View of DSR and Guidelines. .. 19

2.3.1 Three Cycle View of DSR ... 19

2.3.2 DSR Guidelines .. 20

2.3.3 Research Artefact Types ... 22

2.4 Case Study and Application of DSR ... 23

2.4.1 Context and Case Study .. 23

2.4.2 Application of DSR to this Study ... 24

2.5 Ethical Considerations ... 27

2.6 Summary ... 27

CHAPTER 3: PROBLEM INVESTIGATION OF LEGAL INFORMATION EXTRACTION (THEORETICAL) 28

3.1 Introduction .. 28

3.2 Information Retrieval Processes ... 29

3.3 Types of Information Retrieval Models .. 32

3.3.1 The Boolean Model ... 32

3.3.2 The Vector Space Model ... 32

3.3.3 Language and Probabilistic Models .. 33

3.3.4 Relevance Model ... 35

vii

3.3.5 Inference Network Model ... 36

3.3.6 Comparison of Information Retrieval Models .. 37

3.4 Information Extraction Processes and Techniques ... 38

3.5 Natural Language Processing .. 41

3.5.1 Natural Language Processing Phases and Techniques.. 41

3.5.2 Natural Language Processing Tools .. 43

3.6 Web Scraping Techniques ... 45

3.6.1 Web Scraping .. 45

3.6.2 Web Scraping Tools ... 46

3.7 Regular Expressions .. 49

3.8 Information Storage .. 51

3.8.1 NoSQL Graph Databases ... 51

3.8.2 NoSQL Document Databases .. 54

3.9 Query-Independent Ranking Algorithms .. 56

3.9.1 PageRank Algorithm .. 56

3.9.2 Weighted PageRank Algorithm ... 57

3.9.3 Hyper-link Induced Topic Search (HITS) Algorithm ... 58

3.9.4 Focused Rank Algorithm ... 59

3.10 Frameworks and Systems in the Legal Domain .. 60

3.10.1 ROSS and IBMs WATSON .. 60

3.10.2 Exploratory Analysis of Legal Documents Using Unsupervised Text Mining Techniques

 61

3.10.3 Automating Legal Research through Data Mining .. 63

3.10.4 Wagh vs Firdhous .. 64

3.10.5 Legal Domain Software ... 65

3.10.6 Summary of Frameworks and Systems in the Legal Domain .. 68

3.11 IE Model .. 69

3.12 Conclusions ... 71

CHAPTER 4: THE REAL-WORLD CONTEXT OF THE LEGAL DOMAIN .. 74

4.1 Introduction .. 74

4.2 The Artefact Design Process and Research Methods ... 75

4.3 Legal Cases in South Africa.. 75

4.3.1 Legal Citation Principles .. 75

4.3.2 Structure of a Legal Case in South Africa .. 76

4.4 Problems Faced at LexisNexis ... 79

4.4.1 Aim of Questionnaires and Participant Profiles .. 79

viii

4.4.2 Findings from Questionnaires ... 80

4.5 Systems at LexisNexis .. 83

4.6 Architecture of LegalCitator .. 87

4.7 Problems Encountered in Processing Legal Cases at LexisNexis................................... 88

4.7.1 Problems in Processing Legal Cases .. 88

4.7.2 Problems Experienced at LexisNexis ... 89

4.8 Objectives, Requirements, and To-Be Processes for a MAC Model 90

4.9 Conclusions ... 92

CHAPTER 5: DEVELOPMENT, DEMONSTRATION, AND EVALUATION ... 94

5.1 Introduction .. 94

5.2 The Proposed MAC Model .. 94

5.3 Summary of Software used in the IE Prototype .. 97

5.4 Three Layered Architecture of a MAC System .. 97

5.5 Evaluation Strategies and Methods for DSR ... 98

5.5.1 Functional Purpose of Evaluation ... 99

5.5.2 Paradigm of Evaluations ... 99

5.5.3 FEDs Evaluation Strategies .. 100

5.6 Incremental Prototyping Approach and Evaluation Plan .. 101

5.6.1 Incremental Prototyping ... 101

5.6.2 Functional Purpose, Paradigm, and Strategies ... 101

5.6.3 Evaluation Criteria ... 102

5.7 Overview of Prototypes and Evaluation ... 104

5.7.1 Iteration 1.. 105

5.7.2 Iteration 2.. 113

5.7.3 Analysis of Findings from Experiments ... 115

5.8 Conclusions ... 116

CHAPTER 6: ANALYSIS OF EVALUATION RESULTS ... 117

6.1 Introduction .. 117

6.2 IE Prototype Evaluation using 50 Legal Cases ... 117

6.2.1 Procedure .. 118

6.2.2 General Results ... 118

6.2.3 Effectiveness Results ... 121

6.3 Scalability and Execution Time Evaluation .. 122

6.3.1 Procedure .. 122

6.3.2 Scalability and Execution Time Results ... 122

6.4 Conclusions ... 124

ix

CHAPTER 7: REFLECTION, CONCLUSIONS, AND FUTURE WORK ... 125

7.1 Introduction .. 125

7.2 Fulfilment of Research Objectives .. 126

7.3 Research Contributions ... 127

7.3.1 Theoretical Contributions ... 127

7.3.2 Practical Contributions .. 128

7.4 Problems Experienced and Limitations of Study .. 128

7.5 Future Research .. 129

7.6 Summary ... 129

REFERENCES .. 130

APPENDICES .. 138

Appendix A: Visualisation of Research Problem ... 138

Appendix B: Responses from LexisNexis ... 139

First Questionnaire ... 139

Second Questionnaire ... 140

Email Responses – August 2017 .. 142

Follow up Questions ... 142

Additional Questions ... 143

Appendix C: Ethics Clearance .. 144

Appendix D: Parts of a Legal Case ... 145

Appendix E: The BLC Schema .. 146

Appendix F: Project Plan ... 150

Appendix G: Screenshots from LegalCitator ... 151

Appendix H: Test Document Used for Regular Expression Testing .. 152

Appendix I: Complete Details of Test Documents .. 153

Appendix J: 50 Cases CRT .. 155

Appendix K: ICCECE’18 Conference Paper .. 156

x

 List of Figures
Figure 1-1: DSR Methodology Activities (Peffers et. al,,2007) .. 17

Figure 2-1: Three Cycles of DSR (Hevner,2007) .. 20

Figure 2-2: Mapping of DSR Activities and Cycles (Author’s own work) .. 25

Figure 2-3: Chapter Layout ... 26

Figure 3-1: Chapter 3 DSR Activities ... 28

Figure 3-2: Link between IR and IE (Author's own work) ... 29

Figure 3-3: IR processes and techniques (Author’s own work) .. 31

Figure 3-4: Inference Network Model (Croft et al.,2015) ... 37

Figure 3-5: IE Process (Author’s own work) .. 38

Figure 3-6: Phases of NLP (author’s own work) .. 42

Figure 3-7: Framework of Stanford Core NLP Suite (Manning et al., 2014) ... 44

Figure 3-8: Example of a Graph G ... 52

Figure 3-9: The Adjacency Matrix of Graph G .. 52

Figure 3-10: Example of a Graph B ... 52

Figure 3-11: The Adjacency List of Graph B .. 53

Figure 3-12: A Labelled Property Graph within Social Network Context (Robinson et al., 2015) 53

Figure 3-13: Embedding Data into a Document (Parmar & Roy, 2018) .. 55

Figure 3-14: Example of a BSON object stored in MongoDB (MongoDB, 2018a)... 55

Figure 3-15: Methodology followed by Wagh (2014) ... 62

Figure 3-16: Architecture of Firdhous' (2010) Proposed Framework ... 63

Figure 3-17: Processes and Techniques Shared by Frameworks and Extant Systems .. 69

Figure 3-18: IE Model.. 70

Figure 4-1: Chapter 4 DSR Activities ... 74

Figure 4-2: Types of Legal Citations (Martin,2013) ... 76

Figure 4-3: General Data About a Case ... 77

Figure 4-4: Hierarchy of Courts in South Africa (Author’s own work) .. 77

Figure 4-5: First Example of CRTs ... 78

Figure 4-6: Second Example of CRTs ... 78

Figure 4-7: As-Is process at LexisNexis ... 82

Figure 4-8: MyLexisNexis.co.za System Summary (Author’s own work) .. 84

Figure 4-9: Architecture of LegalCitator System at LexisNexis ... 88

Figure 4-10: High Level Process of MAC Model .. 91

Figure 4-11: IR Process for MAC Model .. 92

Figure 4-12: IE Process for MAC Model .. 92

Figure 4-13: Case Ranking Process for MAC System ... 92

Figure 5-1: Chapter 5 DSR Activities ... 94

Figure 5-2: The MAC Model .. 95

Figure 5-3: Graph Model of Graph Database ... 96

Figure 5-4: Architecture of the MAC System .. 97

Figure 5-5: FEDS Framework with Different Evaluation Strategies (Venable et. al, 2016) 98

Figure 5-6: Results from Experiment One Phase Two .. 108

Figure 5-7: The IE Process of the MAC Model .. 109

Figure 5-8: Results from Experiment Two Phase Two .. 109

Figure 5-9: Comparison of Extraction for Different Rounds ... 113

Figure 5-10: A Legal Case Stored as a Document ... 114

Figure 5-11: Screenshot of a Document in MongoDB .. 115

Figure 6-1: Chapter 6 DSR Activities ... 117

Figure 7-1: Chapter 7 DSR Activities ... 125

file:///C:/Users/Thashen/Downloads/PadayachyTM_dissertation%20final%20-%20DP%20(1).docx%23_Toc531987912

xi

 List of Tables
Table 1-1: Dissertation Layout .. 18

Table 2-1: DSR Guidelines ... 22

Table 3-1: Comparison of IR Models Part 1 .. 37

Table 3-2: Comparison of IR Models Part 2 .. 38

Table 3-3: IE Techniques ... 39

Table 3-4: Comparison of NLP Frameworks and Toolkits Part 1 ... 43

Table 3-5: Comparison of NLP Frameworks and Toolkits Part 2 ... 43

Table 3-6: Libraries for Web Scraping ... 48

Table 3-7: Frameworks for Web Scraping ... 48

Table 3-8: Desktop Applications for Web Scraping .. 49

Table 3-9: Possible Characters for a Regular Expression (Vogel, 2016) .. 50

Table 3-10: Example of how a Regular Expression Engine Works (Kuchling, 2018) 51

Table 3-11: Comparison of Graph Database and Document Database .. 56

Table 3-12: Comparison of Query-Independent Ranking Algorithms .. 59

Table 3-13: Comparison of Wagh’s (2014) and Firdhous’ (2010) Research ... 64

Table 3-14: Summary of Systems within the Legal Domain ... 68

Table 3-15: Problems Encountered when Processing Text... 71

Table 3-16: Summary of Different IE Methods ... 72

Table 4-1: Summary of Methods used in Research .. 75

Table 4-2: Court Case Attributes that can be used to Recommend the MAC 79

Table 4-3: Profile of Experts .. 80

Table 4-4: Problems with Processing Text in the Legal Domain ... 90

Table 4-5: Requirements of a MAC Model.. 90

Table 4-6: Non-Functional Requirements ... 90

Table 4-7: Requirements Mapped to Recommended Approaches .. 91

Table 5-1: Technologies used to Create the MAC Model ... 97

Table 5-2: Summary of FED Strategies Adapted from Venable et al. (2016) 100

Table 5-3: Evaluation Criteria for an IE Prototype .. 104

Table 5-4: Evaluation Summary .. 104

Table 5-5: Experiment Summary .. 105

Table 5-6: Evaluation Process ... 105

Table 5-7: Summary of Formative Evaluations for Iteration 1.. 106

Table 5-8: Summary of Summative Evaluations for Iteration 1 .. 106

Table 5-9: Summary of Test Documents used in Experiments ... 107

Table 5-10: Attributes Extracted from the Legal Cases (T1, T2, and T3) .. 110

Table 5-11: Number of CRTs to be extracted from Unseen Cases .. 110

Table 5-12: Number of Extractions for General Data of Unseen Legal Cases..................................... 111

Table 5-13: Result of Round 1 Extraction for CRTs ... 112

Table 5-14: Result of Round 2 Extraction for CRTs ... 112

Table 5-15: Result of Round 3 Extractions for CRTs .. 113

Table 5-16: Summary of Experiments Conducted for Iteration 2 ... 114

Table 5-17: Summary of the MAC Model Linked to Literature, Figures and Tables 116

Table 6-1: Difference Ratios for 50 Test Cases ... 119

Table 6-2: Number of Source Cases Categorised .. 120

Table 6-3: Summary of CRT Attributes Extracted ... 120

Table 6-4: Summary of Difference Ratio Ranges for 50 Source Cases .. 121

Table 6-5: Difference Ratios for Perfectly Extracted Attributes ... 121

xii

Table 6-6: Time taken to Extract the Source Cases .. 123

Table 6-7: Time taken to Insert Legal Case objects .. 123

Table 6-8: Summary of Experiment Results .. 124

Table 7-1: Reflection of the Research and DSR Guidelines ... 127

 Chapter 1
 Introduction

13

 Chapter 1: Introduction

1.1 Background

Over the years the value and dependency of information has become important resulting in

information explosion (Ifijeh, 2010). Information is present in various forms of media and consists of

data, facts, and ideas. The types of media that contain information include printed documents and

documents in electronic format. Information explosion refers to a major increase in the supply of

information to users (White, 2009). Katz (2002) states that the Internet has contributed greatly to

information explosion. The amount of information generated is predicted to increase from 4.4

zettabytes to 44 zettabytes by 2020 (Khaso, 2016). Although there is an abundance of information

available due to information explosion, retrieving useful information is not always easy. Factors that

affect the quality of information retrieved are retrieval models, web search, and user modelling

(University of Massachusetts, 2002). Multiple retrieval models have been created to cater for tasks

such as describing a document’s content and structure. However, more comprehensive retrieval

models are required to incorporate the evolving information needs of users and to use less

computation. Search engines provide accurate results to users’ queries, but users are generally not

looking for only a single page. To improve web searching, aspects such as web structure, crawling and

indexing must be investigated.

To return valuable information to users, support for Information Retrieval (IR) needs to be provided

(Roshdi & Roohparvar, 2015). IR facilitates various facets of data such as representation and consists

of many intermediate stages and processes. Further processing of information returned by IR is

possible by means of Information Extraction (IE). IE is the process of extracting facts from sources of

text that can be unstructured, semi-structured, or structured (Jiang, 2012). Three processes, namely

extracting, integrating, and translating facts to output are performed by IE that use a particular task

and IE technique. The task and technique chosen depends on the user’s goal and the source of text to

be used.

A technique of IE is the use of web scrapers to automatically search for and extract specific information

from a website (Vargiu & Urru, 2012). Web scrapers can be created using libraries, frameworks, or

desktop-based applications. In-depth analysis of information extracted from IE can be obtained by

applying Natural Language Processing (NLP). NLP is used to analyse natural language and perform

tasks based on the analysis (Chowdhury, 2003). NLP is made up of different phases and tasks. Phases

include morphological and syntactic analysis whilst tasks include Part-of-Speech tagging (POS) and

chunking. Another technique for IE is the application of regular expressions. Regular expressions are

patterns applied to manipulate text and simplify text processing (Goyvaerts & Levithan, 2009). In

addition to information being processed, information must also be stored for retrieval, querying, and

to avoid reprocessing of processed information. Standard relational databases can be used to store

information, but a more efficient method would be to use a NoSQL database such as a graph or

document database. Graph databases use graphs to store information in nodes and allow for

relationships to be created between nodes using edges. Advantages of graph databases include

performance and flexibility (Robinson, Webber, & Eifrem, 2015). Document databases allow for data

to be stored in the form of documents. Document databases also support embedding of data into

documents and require no schema (MongoDB, 2018c). Once information has been stored, additional

processing can occur such as query-independent ranking.

A domain that is particularly affected by information explosion is the legal domain. Any new case that

goes to court increases the body of knowledge that legal practitioners use (Marr, 2016). This

 Chapter 1
 Introduction

14

knowledge is commonly used for precedents. Marr (2016) further states that the legal domain’s data

is mainly used for research and stored in massive databases. Access to the data is only possible through

a search engine-like system called LegalCitator.

A combination of IR, IE, information storage, and query-independent ranking can aid legal researchers

who are involved in court cases. Various factors must be considered when advocating a court case or

deciding on a sentence (LAW.gov, 2016). Due to the time sensitivity of each case it is important for

lawyers to access the Most Applied Case (MAC) so that they can access relevant information quickly

to strengthen their argument and improve their chances of winning a legal dispute. The MAC refers to

a case that is the most useful and commonly used case for a field of law. The act of using a previous

case to strengthen or win an argument is known as a precedent (Black, Nolan, Nolan-Haley, Hicks, &

Brandi, 1990). Different studies ranging from artificial intelligence (AI), IR, and rule-based systems

have been conducted within the legal domain. However, no studies have been conducted that aid in

recommending the MAC for a field of law. Legal citations can aid in locating legal cases, and more

specifically, the MAC. A legal citation refers to legal authorities or precedents within a legal dispute to

help strengthen a case (Black et al., 1990). Legal citations eliminate the need to write out long

references by using abbreviations.

The real-world problem of this study is that legal organisations struggle to obtain accurate and useful

information related to the MAC for a field of law. LexisNexis is one such organisation that provides

legal and risk services to companies and government agencies globally (LexisNexis, 2017a). Experts

from LexisNexis revealed that they require techniques to recommend the MAC for a field of law. These

techniques can reduce the amount of time spent on searching for important cases. LexisNexis’ existing

system, LegalCitator, stores vast amounts of data relating to Case Law and Legislation from various

African countries and makes use of elementary searching techniques provided by the Elasticsearch

search engine. LegalCitator highlights the importance of a case by means of a signal and provides a

summary of the case’s judgement. A case can only receive one of six signals. A case’s judgement

includes aspects such as judgement details, subject index, and judgment history. LegalCitator has no

built in AI and does not use any IE techniques.

1.2 Problem Statement
Legal practitioners require fast and efficient access to information regarding precedents. This access

can assist lawyers to strengthen their case as courts base decisions on principles established in prior

cases (Black et al., 1990). Precedents are referenced by means of legal citation. Returning relevant

information can be challenging as information must be accurately processed (Ikonomakis, Kotsiantis,

& Tampakas, 2005).

Legal practitioners at LexisNexis and users of LexisNexis’ LegalCitator product currently spend a large

amount of time searching for cases to use as precedents in their legal disputes. Experts at LexisNexis

reported that they require their LegalCitator system to cater for functions that recommend the MAC

for a field of law. The experts further revealed that reducing search time will allow users to focus on

other aspects of a legal dispute and improve the value of the LegalCitator system. The research

problem within the legal domain is to determine how legal case documents can be processed using

various techniques to suggest the MAC (Young, 2010). Appendix A visualises the real-world research

problem at LexisNexis whilst the answered questionnaires given to LexisNexis can be seen in Appendix

B.

1.3 Aim and Scope of Research
The aim of this study is to design a prescriptive model of techniques and algorithms that recommend

the MAC for a field of law to a legal researcher. A model in Design Science Research is used to depict

 Chapter 1
 Introduction

15

a problem within its solution space. More specifically, a prescriptive model is used to provide

descriptions of possible future solutions and aid in constructing artefacts.

Due to the large scope in the field of law, the study will focus on the accurate retrieval and extraction

of text found in legal case documents pertaining to all fields of law in the All South African (ALL SA)

legal journals for the period 1996 to 2018 from the South African division of LexisNexis. The study will

not focus on any visualisation techniques. The implementation and testing of results from the various

approaches will be limited to the data received from LexisNexis.

1.4 Relevance and Envisaged Contribution
This study will make a theoretical and practical contribution once completed. The theoretical

contribution to the body of knowledge will be the combination of techniques to recommend the MAC.

The envisaged practical contribution will be the IE model for recommending the MAC. The model will

consist of four processes, namely IR, IE, information storage, and query-independent ranking. Once

completed, the outcome of the study will be a final proof-of-concept artefact which is a prototype

that processes legal cases to extract the facts required for recommending the MAC for a field of law.

1.5 Research Questions
The main research question of this study is:

RQ: What techniques can be incorporated into a model that recommends the Most Applied

Case (MAC) for a field of law?

RQ-Context: What text processing techniques can be used to process legal cases at LexisNexis?

In this context research question (RQ-Context) will explore the legal domain and literature related to

the research problem.

1.6 Research Objectives
The main research objective (ROM) of this study is:

To develop an information extraction model to recommend the Most Applied Case for a field of law.

The following preliminary subsidiary research objectives for this study are:

RO1: Identify the problems experienced when processing text as identified by literature and

within a real-world context.

RO2: Identify the attributes of a court case that can be used to aid in recommending the MAC.

RO3: Determine what techniques and algorithms can be used to recommend the MAC.

RO4: Identify the criteria that can be used to evaluate the proposed model.

In this context the term ‘processing text’ refers to all tasks required to ensure that bodies of

text are in the best form to be used in IR models and by IE techniques.

1.7 Research Methodology and Layout of Dissertation
The selected research methodology for this research is the Design Science Research (DSR)

methodology (Hevner, March, Park, & Ram, 2004). More detail on DSR and evaluations is provided in

Chapter 2 and Chapter 5. The research strategies that will be used in the DSR context in this study are:

• A literature review;

• A case study; and

• The Framework for Evaluation in DSR (FEDS).

 Chapter 1
 Introduction

16

To address the problem in this study the DSR methodology, proposed by Hevner (2007) and Peffers,

Tuunanen, Rothenberger, and Chatterjee (2007) is used to facilitate the research process. The DSR

methodology is used to create an artefact in the form of a model that uses various constructs. To

further understand the problem domain, additional questionnaires were sent to experts and a

literature review was conducted. The additional questionnaires were used to obtain LexisNexis

experts’ opinions to derive a set of requirements and research objectives to solve a problem.

Requirements are then further derived by means of the literature review and analysis of existing

systems. The literature review covered topics such as IR, IE, web scraping, NLP, regular expressions,

graph and document databases, and aspects of the legal domain. The set of requirements derived

allow for creation of a model that recommends the MAC. The model will be a prescriptive model that

provides a solution to recommending the MAC and aids in constructing the system to recommend the

MAC (Johannesson & Perjons, 2012). In addition to reducing users’ search time, the questionnaires

revealed that the solution to the proposed research problem would add value to LexisNexis’ product.

Peffers et al. (2007) identify six activities that must be completed when following the DSR

methodology, namely:

• A1: Problem identification and motivation;

• A2: Definition of the objectives for a solution;

• A3: Design and development;

• A4: Demonstration;

• A5: Evaluation; and

• A6: Communication.

The first activity, Problem identification and motivation, involves identifying a problem that needs to

be solved and solutions to the problem. It can be helpful to describe the problem in detail to illustrate

how the solution will address the problem’s complexity. The second activity, Define the objectives for

a solution, requires a researcher to determine what a solution will encompass and highlight aspects

of the solution that will be possible and feasible. The first and second activities are performed during

the relevance cycle whilst the second activity is also performed during the rigor cycle. The third

activity, Design and development, sees the creation of an artefact that solves the identified problem

from the first activity. The artefact can be a construct, model, or method. The fourth activity,

Demonstration, requires the artefact to be used to illustrate how the artefact solves the identified

problem. Demonstration can be conducted in either an experiment, proof of concept, simulation, or

case study. The fifth activity, Evaluation, involves determining how well the artefact solves the

identified problem. Appropriate metrics must be used when evaluating an artefact. The sixth activity,

Communication, reports on the identified problem’s severity and on the usefulness of the artefact.

Activities three to six are all performed during the design cycle. Figure 1-1 illustrates the DSR

methodology activities.

 Chapter 1
 Introduction

17

Figure 1-1: DSR Methodology Activities (Peffers et. al,,2007)

The chapters of this research were structured based on the DSR activities. Chapter 1 reported on the

first and second activities of the DSR methodology namely, Problem Identification and Motivation,

and Definition of Objectives for a Solution. Chapter 1 has introduced the research topic and the reason

for conducting the study. The problem statement and research objectives have been stated. The

research’s scope and constraints, and research methodologies to be used have been identified. High

level objectives for a solution and problems in processing text were introduced.

Chapter 2 will continue to report on the second activity of the DSR methodology. Chapter 2 illustrates

how the DSR methodology will be used to address the research objectives as well as ethical

considerations. Chapter 3 continues to report on the first activity of the DSR methodology. During

Chapter 3, a literature review on the techniques that can be applied to the research topic and an

investigation of the legal domain will be presented. Chapter 3 will produce an expanded list of

 Chapter 1
 Introduction

18

problems in processing text, and provide techniques and algorithms for processing text in the legal

domain.

Chapter 4 will continue to report on the second DSR activity and report on findings from the legal

domain. Chapter 4 will also present the solution objectives and requirements for a model to be used

within the legal domain and in doing so, report on the third DSR activity namely, Design and

Development. The solution will be derived from criteria in the literature review. The requirements will

be derived from the literature review, findings from the questionnaires, and findings from the analysis

of extant systems.

Chapter 5 will continue to report on the third DSR activity and also report on the fourth activity of the

DSR methodology namely, Demonstration. Chapter 5 will also present an evaluation plan for the

proposed model that will consist of evaluation strategies and methods. The development and

evaluation of the prototypes will also be presented in Chapter 5.

Chapter 6 will report on the fifth DSR activity. During Chapter 6, the findings from the evaluations of

the prototype will be presented. The findings will then be interpreted to determine the overall success

of the prescriptive model. Chapter 7 will report on the final DSR activity namely, Communication in

which the conclusion from the research will be presented. Table 1-1 provides a summary of the layout

of this dissertation.

Chapter DSR Activity Deliverables

1 A1: Problem Identification and

Motivation

A2: Definition of Objectives for

Solution (high level)

High Level Objectives for a Solution

Problems in Processing Text -High Level (RO1)

2 - Research Design

Ethical Clearance

3 A1: Problem Identification and

Motivation

Expanded List of Problems in Processing Text (RO1 -

theoretical)

Techniques and Algorithms for Processing Text in the Legal

Domain (RO3)

4 A2: Definition of Objectives for

Solution

A3: Design and Development

Expanded List of Problems in Processing Text (RO1 - practical)

Solution Objectives (RO3)

Solution Requirements (RO2)

Proposed Solution

5 A4: Demonstration

A5: Evaluation

Evaluation Plan

Developed and Evaluated of Prototypes

Solution: 2 Artefacts: MAC Model and IE Prototype (ROM)

6 A5: Evaluation Evaluated Prototype (RO4)

Findings

7 A6: Communication Theoretical and Practical Contributions (ROM)

Table 1-1: Dissertation Layout

 Chapter 2
 Research Design

19

 Chapter 2: Research Design

2.1 Introduction

The previous chapter provided an overview of the research that will be presented in this dissertation.

The aim of this chapter is to report on the research methodology that is applied throughout this

research. The research methodology that is used in this research is the DSR methodology (Section 2.2).

The DSR methodology follows an iterative three-cycle process that is used to create an artefact

(Section 2.3). The DSR methodology will be applied along with other research methods and result in

deliverables throughout the research (Section 2.4). To conduct the research, various ethical

considerations must be considered by the researcher (Section 2.5).

2.2 Motivation for DSR in This Study
Design science aims to improve the world by creating artefacts that help people meet demands,

overcome problems, and take hold of new opportunities (Johannesson & Perjons, 2012). With regards

to Information Technology (IT), artefacts can be constructs, models, methods, and instantiations

(March & Storey, 2008). Constructs enable the communication and description of problems, solutions,

constraints, and objectives for an artefact. Models make use of constructs to represent a problem

within its solution space. Methods can be algorithms or guidelines that search the solution space and

enable instantiations that are computer-based systems implemented in an organisation.

Johannesson and Perjons (2012) identify a relationship between artefacts, people, practices, and

problems. Practices are a set of activities that are performed regularly and are seen to be meaningfully

related to each other by the people engaging in them. The relationship states that when people

engage in practices, they may encounter practical problems that prevent them from completing their

practices. To combat any problems encountered, people make use of artefacts that directly address

the problems. The DSR methodology can be applied to a range of domains within IT to solve practical

problems. Examples showing the diverse application of the DSR methodology can be seen in creating

a mobile health application (Myers & Venable, 2014), an information system for law enforcement

(Kaza, Hu, & Chen, 2011), and measuring the value and impact of Enterprise Architecture by

stakeholders within an organisation (Meyer, Helfert, Donnellan, & Kenneally, 2012).

DSR will be used as the research methodology for this study. DSR is ideal for IT research as it is

proactive instead of reactive like typical behavioural science research (de Villiers, 2005). The goal of

DSR is to create innovative artefacts that address practical problems (Hevner et. al, 2004). As such,

DSR will be used to create an artefact in the form of a prescriptive model to solve the problem of

recommending the MAC for a field of law to legal researchers. Following DSR will allow for a

theoretical and practical contribution from the study. The model consisting of the techniques and

algorithms to recommend the MAC will form the theoretical contribution while the implementation

of a proof-of-concept of the prescriptive model will form the practical contribution.

2.3 The Three Cycle View of DSR and Guidelines.
This section will present the three-cycle view of DSR and a set of guidelines for DSR. A discussion on

artefacts will also be presented.

2.3.1 Three Cycle View of DSR
The DSR methodology consists of an iterative three-cycle process that results in the output of an

artefact (Hevner, 2007). Figure 2-1 illustrates the three cycles mapped to their specific domain. The

three cycles are:

 Chapter 2
 Research Design

20

• The relevance cycle;

• The rigor cycle; and

• The design cycle.

The relevance cycle connects design science with the environment of the application domain. An

application domain is made up of people, organisational systems, and technical systems. During the

relevance cycle, requirements and acceptance criteria for the artefact are determined. The cycle also

encompasses field testing of the artefact once it has been completed to determine whether additional

iterations are required.

The rigor cycle allows the project to set a firm basis based on previous work and existing artefacts. It

is important to identify and analyse previous sources of work to clearly detect opportunities or

problems. Analysing previous sources of work will also ensure that artefacts created are contributions

to the body of knowledge and not based on the application of well-known processes. All existing

theories and techniques identified in the rigor cycle are passed through to the design cycle.

The design cycle consists of iteratively building and evaluating artefacts until the artefacts are

accepted within its application domain. The design cycle is dependent on both the relevance and rigor

cycles because the relevance cycle identifies the requirements whilst the rigor cycle provides theories

and techniques related to design and evaluation. The design cycle is the core cycle of the DSR

methodology as it is within this cycle that the artefacts are created and evaluated.

Figure 2-1: Three Cycles of DSR (Hevner,2007)

2.3.2 DSR Guidelines
Various factors can influence the design process of an artefact. The factors that were identified by

Hevner et al. (2004) are:

• Volatile requirements and constraints due to poorly defined environmental contexts;

• Complex interactions amongst various entities within the problem space; and

• Constant flexibility to alter designs and processes.

 Chapter 2
 Research Design

21

Hevner et al. (2004) provides six guidelines on how DSR can be conducted within an IT domain. The

guidelines are:

• Guideline 1: Problem Relevance;

• Guideline 2: Research Rigor;

• Guideline 3: Design as a Search Process;

• Guideline 4: Design as an Artefact;

• Guideline 5: Design Evaluation; and

• Guideline 6: Research Contributions.

The first guideline, Problem Relevance, requires an artefact to be created that addresses a business

problem. All opportunities presented should be taken to further the development of the artefact.

Opportunities can be interactions with experts, other organisations, and information technology

systems. Two criteria are used to determine relevance, namely representational fidelity and

implementation. In terms of representational fidelity, the artefact must accurately represent the

business and technology within the problem domain. Furthermore, experts must be able to implement

the artefact within the problem domain.

The second guideline, Research Rigor, requires that an artefact undergo an iterative process of

development and evaluation. The use of the DSR methodology ensures the iterative development of

the artefact. The third guideline, Design as a Search Process, states that the research should be

iterative to ensure that an effective artefact that solves a problem is found. To ensure that an effective

artefact is created, three factors must be considered namely means, ends, and laws. Means refers to

the actions and resources available to construct an artefact whilst ends represent the goals and

constraints of an artefact. Laws are forces within the problem domain that experts have no control

over.

The fourth guideline, Design as an Artefact, states that the result of design science must be an artefact

that is either a model, method, or instantiation. Furthermore, the resultant artefact should be

represented and presented in a manner that allows for evaluation and comparison with similar

artefacts. The fifth guideline, Design Evaluation, states that the quality and efficacy of a design

artefact must be continuously evaluated. Continuous evaluation ensures that the artefact meets all

requirements and constraints within its problem domain. Requirements and constraints are decided

on by the experts in the domain. Evaluation of the artefact will also determine its level of quality by

how well the artefact can be evaluated based on a set of criteria. Criteria used for evaluation can be

functionality, completeness, accuracy, performance, and reliability. The sixth guideline, Research

Contributions, requires the DSR to provide clear contributions. Contributions can be the design

artefact, theoretical foundations, or evaluation methodologies. Furthermore, the artefact must be

identifiable and validated as a new contribution to research. Theoretical foundations refer to a new

artefact that improves existing theoretical foundations whilst evaluation methodologies refer to the

creation and use of new methods and criteria to evaluate artefacts.

 Chapter 2
 Research Design

22

The guidelines discussed above are summarised in Table 2-1.

Guideline Description

Guideline 1: Problem Relevance Research must create artefacts that will address relevant

organisational problems

Guideline 2: Research Rigor Methods must be applied to construction and evaluation of the

artefact being designed

Guideline 3: Design as a Search Process Designing an artefact must be an iterative process. All options

should be used until a final, accepted artefact is achieved

Guideline 4: Design as an Artefact Research must produce a design in the form of an artefact

Guideline 5: Design Evaluation The quality of an artefact must be well demonstrated through

evaluation method

Guideline 6: Research Contributions The result of DSR must provide a clear contribution to the body of

knowledge relating to artefact’s design, construction, and

evaluation

Table 2-1: DSR Guidelines

2.3.3 Research Artefact Types
An artefact is an object created by humans to address a practical problem (Johannesson & Perjons,

2012). All artefacts consist of a construction, are part of an environment, and perform a function. An

artefact’s construction refers to how an artefact’s components and inner workings relate and interact

with each other. All artefacts identified by Johannesson and Perjons (2012) in Section 2.2 operate

within a specific environment under certain conditions to achieve a specific goal.

Constructs provide definitional knowledge as they can be terms, notations, definitions, and concepts

that are used to formulate problems and solutions. Examples of constructs are classes in object-

orientated programming, methods in Java, and functional dependency in relational databases

(Johannesson & Perjons, 2012). It is important to have correct constructs as they allow for the

construction of models (Gregor & Hevner, 2013).

Models are used to depict or represent objects unlike constructs that provide definitional knowledge.

Three types of models exist, namely (Johannesson & Perjons, 2012):

• Descriptive models;

• Prescriptive models; and

• Predictive models.

Descriptive models are used to represent existing situations and help explain the nature of the

situations. Additionally, descriptive models can describe possible solutions to practical problems.

Prescriptive models are used to provide descriptions of possible future solutions and aid in

constructing artefacts. Predictive models are used to forecast behaviour of systems and objects. As

such, models can express descriptive, prescriptive, or predictive knowledge.

Methods help express prescriptive knowledge by providing guidelines and processes to solve practical

problems and achieve goals. Methods can be in the form of algorithms, or can be informal such as

best practices or rules of thumb.

Instantiations are working systems that can be used within a domain. A working system consists of an

instantiated artefact such as a model of a blueprint or architecture. In terms of a working system,

constructs cannot be instantiations as they would result in a small outcome that cannot be regarded

 Chapter 2
 Research Design

23

as a working system. Furthermore, methods cannot be instantiations as they are used to help create

a working system. A working system does not instantiate a method.

The artefact produced from this research will be a prescriptive model. The prescriptive model will

provide a possible solution in recommending the MAC for a field of law to legal researchers.

2.4 Case Study and Application of DSR
This section will introduce LexisNexis as the case study that will be used for this research. A report on

how the DSR methodology can be applied will then be provided.

2.4.1 Context and Case Study
A case study refers to an empirical inquiry that investigates a phenomenon within a real-life context

(Yin, 2014). The South African division of LexisNexis will be used as a case study for this research.

LexisNexis is a legal organisation that provides legal advisory services and products. Amongst their

products is the LegalCitator that provides an analysis of legal cases. Part of LexisNexis’ advisory

services include performing research to find the MAC for a field of law. This is a tedious process that

LexisNexis wants to automate and incorporate into their LegalCitator product. Developing a

prescriptive model to recommend the MAC is the aim of this research. Questionnaires will be sent out

to experts at LexisNexis to understand the problems and challenges faced within the legal domain.

Extant systems will also be investigated to determine shortcomings and requirements for the

prescriptive model. Part of recommending the MAC requires the analysis of legal citations that are

found within legal cases.

Legal citation is a language of abbreviations used to save space that is usually consumed by

unnecessarily long references (Martin, 2013). Legal citation allows legal practitioners to refer to legal

authorities with precision and generality, therefore allowing readers to easily follow the references.

References that are correctly written in legal citation allow a reader to effortlessly identify a document

to which a legal practitioner is referring and provide the reader with enough information to find the

referenced document. Legal citations are often labelled with a particular action that depends on what

decision was made regarding the legal case that is being cited. Some of the labels that LexisNexis use

are (LexisNexis, 2017b):

• Applied;

• Distinguished; and

• Followed.

Distinguished is defined as follows:

“The court in the subsequent case holds that the legal principles articulated by the primary case
(usually otherwise persuasive or binding authority) do not apply because of some difference
between the two cases in fact or law.”

Followed is defined as follows:
“The annotation is similar to applied but is used in circumstances where the facts in the primary
case resemble reasonably closely the facts in the subsequent consideration case.”

Applied is defined as follows:
“A principle of law articulated in the primary case is applied to a new set of facts by the court in

the subsequent case.”

 Chapter 2
 Research Design

24

Various information management approaches such as summarisation and classification have been

used within the legal domain (Galgani & Hoffmann, 2010). Summarisation reduces the length and

detail of a document without discarding the document’s main points (Gupta & Lehal, 2009).

Summarisation has been used to classify sentences in a legal report to determine if sentences should

be part of an extractive summary or not (Hachey & Grover, 2005). Classification is the process of

applying a model or classifier to a set of data to predict what class labels the data fits into (Han, Jiawei,

Kamber, Micheline, Pei, 2012). In the context of legal citations, Galgani and Hoffmann (2010) used an

incremental approach based on a Ripple Down Rule methodology to classify legal citations. The

authors created their own corpus of legal citations based on legal reports obtained from the

Australasian Legal Information Institute. Classification was made possible through a series of rules that

processed a legal citation. The rules identified aspects of a case such as:

• General data -Judge’s names;

• General data –Parts such as ‘plaintiff’ and ‘defendant’; and

• General data – Division of the court.

Once the rules had processed the legal citation, a class label was added to the case. The labels added

were those used by LexisNexis (2017b).

Analysing legal cases implies that the text has to be processed. Various problems can be experienced
when processing text. It is important to understand the format in which the file containing the text is
stored as it can affect the text processing. Formats such as Portable Document Format (PDF) are
known to bring about inconsistencies with formatting which results in inefficient processing of text.
Once there is an understanding of the format in which a legal case is saved, the text must then be pre-
processed to remove unnecessary words. Pre-processing can be achieved by performing IE (Section
3.4) and NLP tasks (Section 3.5.1). In the context of legal cases, not only must general case data be
extracted but the cases referred to must also be extracted. To extract a case referred to, which is
written in legal citation form, the referred to case’s information, must be broken up into smaller
pieces.

2.4.2 Application of DSR to this Study
The DSR methodology will be used in this study to create the final and accepted artefacts. This study

will therefore use the three-cycle view of the DSR as presented by Hevner (2007) along with the DSR

activities presented by Peffers et al. (2007). The mapping of the cycles and activities is depicted in

Figure 2-2. In the figure, the DSR activities are numbered and start with the prefix of ‘A’.

 Chapter 2
 Research Design

25

Figure 2-2: Mapping of DSR Activities and Cycles (Author’s own work)

During the relevance cycle, requirements for the research will be identified. The first two DSR activities

will be completed. Experts within LexisNexis will be consulted to determine what problem they require

a solution to. An analysis of LexisNexis’ existing systems will be conducted to identify any

shortcomings. This will in turn help develop research questions and research objectives. An

appropriate sample of experts from LexisNexis will be selected based on their expertise within the

domain of the research problem. A series of questionnaires will be drafted for these experts to

complete.

During the rigor cycle, various theories and techniques will be analysed to form a foundation to base

the artefact on. The first DSR activity, Problem identification and Motivation, will be further expanded

to clarify the objectives derived from the second DSR activity, Definition of Objectives, in the relevance

cycle. Various research methods will be reviewed within literature to select the most appropriate

method for this research. Throughout the rigor cycle all findings will be communicated to the relevant

experts.

During the design cycle, DSR activities Design and Development, Demonstration, and Evaluation will

be completed. The proposed solution will be created in the form of two artefacts namely, the model

and the prototype of the model. Questionnaires will be sent to the experts from LexisNexis to obtain

an understanding of the formal and informal processes followed when working with legal cases. The

artefact will be designed, developed, demonstrated and evaluated continuously until a final artefact

is accepted. Figure 2-2 maps the chapters of this research to the DSR activities, DSR guidelines, ROs,

research methods, and deliverables.

Figure 2-3 expands on Table 1-1 by including the research methods that will be used throughout this

research. A literature review and extant systems analysis will be conducted to get an understanding

of the techniques and algorithms that can be applied to problems faced in the legal domain. LexisNexis

will be used as a case study and experts from LexisNexis will be given questionnaires to answer.

Prototyping, experiments, and evaluation methods will be used to evaluate the prototype created.

 Chapter 2
 Research Design

26

Figure 2-3: Chapter Layout

 Chapter 2
 Research Design

27

2.5 Ethical Considerations
Ethics refers to moral principles that govern or influence conduct (Soanes & Stevenson, 2004). DSR

has become an important research methodology in the field of Information Systems (IS) as it seeks to

improve various areas. DSR often requires the use of participants throughout a research study which

has resulted in a set of principles for researchers to adhere to. Areas that DSR seeks to improve are

(Myers & Venable, 2014):

• Effectiveness and efficiency within an organisation;

• People’s health;

• Education; and

• Quality of life.

Mason (1986) states that IS researchers must take the responsibility to ensure that any information

system developed is used for the correct and ethical reasons. Furthermore, Mason (1986) proposes

four ethical questions that researchers must consider. The four questions relate to privacy, accuracy,

property, and access. For this research accuracy, property, and access will be considered. Accuracy

refers to gathering error-free information which will be ensured by obtaining published versions of

legal cases. Property refers to who owns the intellectual property of the artefact and access refers to

who will be authorised to access the information on the artefact. LexisNexis are the owners of the

data provided for this research while the Nelson Mandela University has the right to access and

distribute the findings from this research.

Many universities and research institutions require researchers to obtain permission from an ethics

board to conduct research that involves people or animals. In conducting this research, the DSR

methodology will be used. As such, the DSR methodology requires the researcher to interact with

various experts and obtain information from the experts throughout the study. Therefore, REC-H

approval was obtained from the Nelson Mandela University. The ethical clearance number for this

research is H17-SCI-CSS-009 (Appendix C).

2.6 Summary
This chapter investigated the research and design methodology that will be used in this research,

namely the DSR methodology. The DSR methodology consists of three iterative cycles that must be

completed (Hevner, 2007). These cycles are the relevance, rigour, and design cycles. Additionally,

there are also six activities that must be completed when following the DSR methodology (Peffers et

al., 2007). These activities guide the researcher in starting and completing the research. This research

will make use of questionnaires, a literature review, and a case study and to identify problems faced

within literature and the legal domain, as well as completing the ROs identified in Section 1.6. Ethical

clearance was also obtained from the Nelson Mandela University.

The next chapter will apply the first activity of the DSR methodology, namely Problem Identification

and Motivation. The chapter will focus on addressing RO1 and RO3.

 Chapter 3
 Problem Investigation of Legal Information Extraction

28

 Chapter 3: Problem Investigation of Legal Information Extraction

(Theoretical)

3.1 Introduction

The previous chapter investigated the research and design methodology that will be applied

throughout this research. This chapter reports on the first activity of the DSR methodology, namely

Problem Identification (Figure 3-1) and will address the following research objectives (Section 1.6):

• RO1: Identify the problems experienced when processing text as identified by literature and

within a real-world context.

• RO3: Determine what techniques and algorithms can be used to recommend the MAC.

Different techniques for IE can be applied to process information, specifically text. IR must take place

before any processing can occur (Section 3.2) and several IR models have been proposed (Section 3.3).

IR is possible through general IE techniques (Section 3.4). However, additional techniques are

available. NLP is one such technique that can be used to process raw text (Section 3.5). Sources of

online information can also be processed (Section 3.6). Another technique to process information is

regular expressions (Section 3.7). Storing processed information is possible by means of NoSQL

databases (Section 3.8). After information has been stored, it can then be ranked (Section 3.9) Several

frameworks and methodologies in the legal domain have been proposed (Section 3.10). Lastly, based

on the techniques investigated, a generic IE model is presented (Section 3.11).

Figure 3-1: Chapter 3 DSR Activities

 Chapter 3
 Problem Investigation of Legal Information Extraction

29

3.2 Information Retrieval Processes
IR is a necessary technique for processing text as information first needs to be retrieved before any

extraction of text can occur. To return valuable results to a user, various processes and intermediate

stages must be conducted on a set of data. IR is a process that deals with the representation, storage,

and searching of a collection of data in response to a request from a user (Roshdi & Roohparvar, 2015).

IR’s main goal is to return relevant information based on a user’s request. Additionally, IE can be

applied to further process information from IR to extract facts from bodies of text. Figure 3-2

illustrates the high-level process that should be followed when processing information.

Figure 3-2: Link between IR and IE (Author's own work)

Relevance of the information returned by IR can be determined by applying two measurements known

as precision and recall. Precision deals with the percentage of retrieved documents that are relevant

to the user’s query whilst recall refers to the percentage of documents that are relevant to a query

and are retrieved. To help ensure relevance, all IR systems must support three basic processes, namely

(Roshdi & Roohparvar, 2015):

• Representation of a document’s content;

• Representation of the user’s information need; and

• A comparison of the two above mentioned representations (query and document).

The IR processes are completed by following five intermediate stages, namely (Roshdi & Roohparvar,

2015):

1. Indexing;

2. Searching;

3. Matching;

4. Query-dependent ranking;

5. Filtering.

Indexing is done during the process of representing a document’s content. Indexing is the process of

creating a logical view of documents in a collection by means of keywords or terms (Ceri et al., 2013).

When representing a document’s content, indexing occurs offline. The result is an indexed

representation of the document. Commonly used indexing techniques for IR are the signature file

method and inversion indices (Roshdi & Roohparvar, 2015). The signature file method makes use of

hashing and superimposed coding. The result of the signature file method is a document containing

sequentially stored signatures that allow for faster searching. Inversion indices work with the

keywords of a document. These keywords are inverted to allow for faster retrievals.

Searching begins during the process of representing a user’s information need, when the user creates

a query. In the second stage, the query is parsed through a search algorithm to search for documents.

Pre-processing tasks such as tokenisation and stop-word removal must be applied onto a document’s

text before searching can occur (Gurusamy & Kannan, 2014). These tasks aid in reducing the size of a

document’s body of text by eliminating unnecessary and confusing words. A smaller body of text

 Chapter 3
 Problem Investigation of Legal Information Extraction

30

allows for meaningful keywords to be identified and aid in returning relevant documents to a user.

The absence of these two tasks can result in poor performing IR models. Commonly used searching

algorithms for IR are the linear search, brute force search, and binary search. Linear search is a simple

search algorithm that finds a keyword in a list by traversing every keyword contained in the list. Brute

force searching enumerates all potential keywords for a solution and determines if each keyword

satisfies the problem. Binary searching finds a keyword based on its position in a list. A keyword is

matched with the middle element of the list and if a match is found, the match is returned. If no match

is found, then processing continues to the left or right of the list depending on the value of the middle

element.

The third process is the comparison of the two representations, which is done by matching the two

representations to obtain retrieved documents. Once the comparison is completed, the outcome is a

set of ranked retrieved documents in response to the user’s query. This form of ranking is known as

query-dependent ranking. The user then provides feedback if different information is needed by

altering the query to filter the results. Figure 3-3 represents the processes and intermediate stages

described by Roshdi and Roohparvar (2015) along with accompanying techniques, algorithms, IR

models (Section 3.3), and quality measurements. Once an IR system supports the three processes, the

system can then be tailored to a specific area.

IR systems are applied in various areas such as digital libraries, search engines, and media search

engines (Roshdi & Roohparvar, 2015). Digital libraries consist of vast amounts of digital documents

that are only accessible via computer. Contents of a digital library can be stored locally or remotely.

Search engines are a common form of an IR system as various IR techniques are applied on large scale

text documents. Another application for IR is with media searches where techniques are used to

retrieve various forms of media such as images. In addition to the areas mentioned by Roshdi and

Roohparvar (2015), IR can also be applied to the maintenance and evolution of a software project

(Binkley & Lawrie, 2009). Each IR system used in these areas are based on a specific IR model.

 Chapter 3
 Problem Investigation of Legal Information Extraction

31

Figure 3-3: IR processes and techniques (Author’s own work)

 Chapter 3
 Problem Investigation of Legal Information Extraction

32

3.3 Types of Information Retrieval Models
IR models address the second to fifth intermediate stages of IR. An IR model controls how a document

and query are represented as well as how to define the relevance of a document to a user’s query

(Liu, 2011). All documents and queries are treated as a set of distinct terms carrying a specific weight

(Equation 3.3-1). A term is a word whose semantics helps keep track of a document’s main themes.

 Equation 3.3-1 represents a collection of documents and is interpreted as follows:

𝑉 = {𝑡1, 𝑡2, … , 𝑡|𝑣|}

Equation 3.3-1: Representing a collection of documents

Given a collection of documents, D, let V be the set of distinctive terms in the collection, where ti is a

term. V is known as the vocabulary of the collection with |V| representing the collection’s size

(number of terms in V). A weight Wij > 0 is associated with each term ti of a document dj D.

Five IR models were proposed by Liu (2011) namely:

• A Boolean model;

• A Vector Space model;

• A Language and Probabilistic model;

• A Relevance model; and

• An Inference Network model.

3.3.1 The Boolean Model
The Boolean model is one of the first and simplest IR models developed and makes use of exact

matching using Boolean algebra when matching documents to a user’s query (Liu, 2011). In terms of

document representation, the Boolean model represents documents and queries as sets of terms,

where a term is considered as being either present or absent in a document. A user’s query terms are

combined using the following Boolean operators (Molloy Librarian, 2017):

• AND – all terms stated in the query must be found within the results;

• OR – one of the terms stated in the query must be found within the results; and

• NOT – the term following NOT in the query will be excluded from the results.

With regards to document retrieval, the Boolean model returns every document that results in the

user’s query being true. Therefore, document retrieval is binary in the sense that a document is either

relevant or irrelevant. The binary nature of the Boolean model is disadvantageous as it leads to poor

results returned to the user. Furthermore, the Boolean model is unable to rank and return a list of

documents (Roshdi & Roohparvar, 2015). The reasons the Boolean model cannot rank documents is

due to its binary nature and it assumes that all documents in a retrieved set are equivalent in terms

of relevance. Therefore, the effectiveness of the Boolean model depends entirely on the user. A user

who is well experienced can create complex queries to retrieve data. The only advantages of the

Boolean model is that its results are predictable, easy to explain to users, and the operands of a query

can be any feature from a document (Croft, Metzler, & Strohman, 2015).

3.3.2 The Vector Space Model
The Vector Space model is the most commonly used IR model (Al-Anzi & AbuZeina, 2018). Documents
are represented as weighted vectors, where each component’s weight is calculated based on a
variation of term frequency (TF) or term frequency-IDF scheme (Liu, 2011). The weights of terms
within this model can be any number unlike the Boolean model where weights are in {0, 1}. In the TF
scheme, a term’s weight is based on the amount of times that the term occurs in a document. A

 Chapter 3
 Problem Investigation of Legal Information Extraction

33

disadvantage of the TF scheme is that it does not cater for a term appearing in multiple documents of
a collection. The TF-IDF scheme has many variations, however, the most basic variation is the following
(Equation 3.3-2):

Let N be the total number of documents in the system or the collection and dfi be the number of
documents in which term ti appears at least once.

Let fij be the raw frequency count of term ti in document dj. Then, the normalised term frequency

(denoted by tfij) of ti in dj is given by:

𝑡𝑓𝑖𝑗 =
𝑓𝑖𝑗

max{𝑓1𝑗,𝑓2𝑗,…𝑓|𝑣|𝑗}

Equation 3.3-2 The normalised term frequency

Where the maximum is computed over all terms that appear in document dj.

Queries are represented the same way as a document in a collection. The term weight of each term
in the query can be calculated the same way as a normal document or a different method can be used.
Unlike the Boolean model, the vector space model is not binary. Documents are ranked based on their

degree of relevance to a user’s query. Relevance can be determined by calculating the similarity of a

query to each document within the collection. Many measures to calculate similarity have been

proposed but a popular measure is the cosine similarity. The cosine similarity computes the cosine of

an angle between a query vector and a document vector. Once similarity has been calculated, ranking

is performed using the similarity values. The top ranked documents are more relevant to the user’s

query. An alternative method to calculate relevance is to use the Okapi method which calculates a

relevant score for each document associated with a query.

3.3.3 Language and Probabilistic Models
Language models are based on probability and are founded from statistical theories (Liu, 2011).

Language models represent text in various language technologies such as speech recognition, machine

translation, and handwriting recognition. Examples of language and probabilistic models are Unigram

and N-gram Models, a Query Likelihood Model, and a Relevance Model.

3.3.3.1 Unigram and N-gram Models

An example of a simple language model is a unigram that has a probability distribution over all the

words in a language. Therefore, a probability of occurrence is created for every word in a language

(Croft et al., 2015). The following example is provided by Croft et al. (2015) for a unigram language

model:

If the documents in a collection contained only five words, then a possible language model for the

collection can be (0.2;0.1;0.35;0.25;0.1). Where each number represents the probability of a word

occurring. It must be noted that previous words do not influence the prediction of the next word.

Croft et al. (2015) further state that if a document is treated as a sequence of words then the

probabilities in the language model predict what word will occur next in a sequence. With applications

like speech recognition, n-gram language models are used to predict words. N-gram models differ

from unigram models as n-gram models predict words based on the previous n-1 words. Common n-

gram models are bigrams and trigrams. Bigrams base prediction on two words, being the previous

word and current word whilst trigrams base prediction on the previous two words with the current

word. In terms of search applications, language models are used to represent topical content of each

document. In the context of search applications, a topic refers to a probability distribution over a

 Chapter 3
 Problem Investigation of Legal Information Extraction

34

collection of words. Furthermore, the topic of a query, by an information seeker, can be represented

as a language model. This results in three possibilities for retrieval based on language models, namely:

• A possibility based on the probability of generating query text from a document language

model;

• A possibility based on generating the document text from a query language model; and

• A possibility based on comparing the language models that represent queries and document

topics.

3.3.3.2 Query Likelihood Model

Query Likelihood Models generate query text from a document language model. The query likelihood

retrieval model ranks documents based on the probability that query text can be generated by the

document language model (Croft et al., 2015). As such, this is a topical relevance model because the

probability of a query being generated is the measure of how likely a document is about the same

topic as the query. To rank the documents based on a query, one must calculate P(D|Q), that is, the

probability of document D given query Q. Equation 3.3-3 depicts how Bayes’ Rule can be used to

calculate P(D|Q).

𝑝(𝐷|𝑄) = 𝑃(𝑄|𝐷)𝑃(𝐷)

Equation 3.3-3: Bayes' Rule

P(D) refers to the prior probability of the document and is assumed to be uniform. Therefore, P(D)

does not affect the ranking. P(Q|D) refers to the likelihood of the query given a document. A unigram

language model can be used to calculate P(Q|D), using Equation 3.3-4, where qi represents a query

word and n refers to the amount of words in the query word.

𝑃(𝑄|𝐷) =∏𝑃(𝑞𝑖|𝐷)

𝑛

𝑖=1

Equation 3.3-4: Calculating P(Q|D) for a Unigram Model

To calculate P(qi |D) an estimate for the language model probabilities is needed. To do this Equation

3.3-5 is used:

𝑃(𝑞𝑖|𝐷) =
𝑓𝑞𝑖, 𝐷

|𝐷|

Equation 3.3-5: Calculating Maximum Likelihood Estimate

Where fqi, D represents the amount of times that word qi occurs in document D, and |D| represents

the amount of words in document D. Equation 3.3-5 is known as a maximum likelihood estimate,

meaning that it makes the observed value of fqi, D most likely. The disadvantage of this estimate is that

if any query words are missing from the document then the score returned for P(Q|D) will be zero. To

avoid this issue, smoothing can be applied. Smoothing also overcomes data sparsity. Smoothing

lowers the probability estimates for words that are seen in a document and assigns the ‘leftover’

probability to the estimates for words that are not seen in a document. Estimates for unseen words

are based on the frequency of occurrence of words in the entire document collection. Therefore, if

P(qi |C) represents the probability for query word I in the collection language model for document

collection C, then the estimate used for unseen words in the document is 𝛼𝐷𝑃(𝑞𝑖|𝐶) where 𝛼𝐷 is a

constant coefficient controlling the probability assigned to unseen words. To ensure that the

probabilities add up to one, the probability estimate for a seen word in a document is shown in

Equation 3.3-6.

 Chapter 3
 Problem Investigation of Legal Information Extraction

35

𝑃(𝑞𝑖|𝐷) = (1 − 𝛼𝐷)𝑃(𝑞𝑖|𝐷) + 𝛼𝐷𝑃(𝑞𝑖|𝐶)

Equation 3.3-6: Probability Estimate for a Seen Word

Various estimates occur as a result of different values for 𝛼𝐷. However, for simplicity it is best to set

𝛼𝐷 to a constant value, 𝜆. The collection language model probability estimate used for word qi is
𝐶𝑞𝑖

|𝐶|

where Cqi represents the amount of times a query word is found in a collection of documents and |C|

is the amount of words in the collection. This changes Equation 3.3-6 to Equation 3.3-7 :

𝑃(𝑞𝑖|𝐷) = (1 − 𝜆)
𝑓𝑞𝑖, 𝐷

|𝐷|
+ 𝜆

𝑐𝑞𝑖

|𝐶|

Equation 3.3-7: Probability Estimate for a Seen Word with a Constant Value

This form of smoothing is called the Jelinek-Mercer method. Substituting the estimate results in

Equation 3.3-8:

𝑃(𝑄|𝐷) =∏((1 − 𝜆)
𝑓𝑞𝑖, 𝐷

|𝐷|
+ 𝜆

𝑐𝑞𝑖

|𝐶|

𝑛

𝑖=1

)

Equation 3.3-8

However, the multiplication of many small numbers can lead to accuracy problems. Therefore,

logarithms are used to avoid accuracy problems. The resultant equation will then be Equation 3.3-9:

𝑙𝑜𝑔𝑃(𝑄|𝐷) =∑𝑙𝑜𝑔

𝑛

𝑖=1

((1 − 𝜆)
𝑓𝑞𝑖, 𝐷

|𝐷|
+ 𝜆

𝑐𝑞𝑖

|𝐶|

Equation 3.3-9: Application of Logarithms

3.3.4 Relevance Model
The Query Likelihood Model is limited when it comes to modelling information needs and queries.

Furthermore, it is difficult to incorporate information into the ranking algorithm with respect to

relevant documents or that multiple queries can be used to describe an information need. These

issues can be overcome by extending the model into what is known as a Relevance Model.

A Relevance Model represents the topics covered by relevant documents. Queries are viewed as small

samples of text that are generated from the relevance model. Relevant documents are larger samples

of text generated by the same model. Examples of relevant documents for a query must be given to

estimate probabilities in a relevance model and use this model to predict the relevance of new

documents. Predicting the relevance of documents is known as a Document Likelihood Model where

P(D|R) is calculated. A Document Likelihood Model is used in conjunction with a Relevance Model.

Whilst the document likelihood model incorporates term frequency, it is still difficult to calculate

P(D|R) and compare it across different documents. The reason for this is that documents contain a

variable number of words compared to a query. Considering two documents Da and Db, containing

five and 500 words each. The large difference in word count results in the comparison of P(Da|R) and

P(Db|R) for ranking to be difficult than comparing P(Q|Da) and P(Q|Db). An additional issue is

obtaining examples of relevant documents. However, an alternative to this is to estimate a relevance

model from a query and compare this language model directly with the model from a document.

Documents would then be ranked by the similarity of the document model to the relevance model.

Therefore, a document with a model similar to the relevance model is likely to be on the same topic.

 Chapter 3
 Problem Investigation of Legal Information Extraction

36

To compare any two language models, a measure called Kullback-Leibler divergence can be applied.

Kullback-Leibler divergence is defined as follows (Equation 3.3-10):

Given the true probability distribution, P, and another distribution Q that is an approximation to P,

the Kullback-Leibler divergence is represented as:

𝐾𝐿(𝑃||𝑄) =∑𝑃(𝑥)𝑙𝑜𝑔
𝑃(𝑥)

𝑄(𝑥)
𝑥

Equation 3.3-10: Kullback-Leibler Divergence

Since the Kullback-Leibler divergence is always positive and larger for distributions that are further

apart, the negative Kullback-Leibler divergence should be used as the basis for the ranking function.

Furthermore, the correct distribution must be chosen as the true distribution. Once all of this has been

taken into consideration the Kullback-Leibler divergence can be expressed in Equation 3.3-11:

∑ 𝑃(𝑤|𝑅) log 𝑃(𝑤|𝐷) − ∑ 𝑃(𝑤|𝑅) log𝑃(𝑤|𝑅)

𝑤∈𝑉𝑤∈𝑉

Equation 3.3-11

A simple maximum likelihood estimate for P(w|D) is given based on the frequency in the query text,

fw,Q, and the amount of words in the query, |Q|. Therefore, the score for a document will be

Equation 3.3-12:

∑
𝑓𝑤,𝑄

|𝑄|
log𝑃(𝑤|𝐷)

𝑤∈𝑉

Equation 3.3-12: Calculating a Document's Score

Summation occurs for all words in the vocabulary. Words that are not in the query do not contribute

to the score and have a zero maximum likelihood estimate.

3.3.5 Inference Network Model
An Inference Network model is made up of a directed, acyclic graph containing nodes. The nodes

represent events with possible outcomes whilst the arcs of the network represent probabilistic

dependencies between the events (Croft et al., 2015). In the context of IR, nodes represent the

observation of a document or document features. The events in an inference network model are

binary, indicating that true and false are the only outcomes. An inference network model typically

consists of nodes that represent the following:

• A document, D;

• Document features, rn ;

• Probabilities associated with features, 𝜃;

• Parameters, 𝜇;

• Queries, q; and

• Information need, I.

Figure 3-4 illustrates how an inference network model works. “D” represents a document in the form

of a webpage that is observed by a user. Every document in a collection has one document node for

representation. In the figure, features from a webpage’s title, body, and headings are combined in

relation to different parameters. These features each have probabilities assigned to them based on

the language models used. The query nodes then combine the features extracted from the

 Chapter 3
 Problem Investigation of Legal Information Extraction

37

representation nodes to create more complex document features. The network as a whole ultimately

computes P(I|D,µ), that is the probability of an information need met given a document and specific

parameters. The I node is a combination of all information extracted from query nodes in the form of

a probability or belief score. The score is used to rank documents.

Figure 3-4: Inference Network Model (Croft et al.,2015)

3.3.6 Comparison of Information Retrieval Models
Table 3-1 and Table 3-2 provides a comparison of the IR models that were investigated. The

characteristics for IR models were derived from the literature. Based on the criteria from Table 3-1

and Table 3-2, the Vector Space model will be the most suitable model to use for processing

documents, since it is the most commonly used IR model, it is also not binary and ranks documents

based on its relevance to a user’s query. The Boolean and Inference models will not return accurate

results due to their binary nature. Language and Probabilistic models would require examples of

relevant documents to be shown to the model and could require additional calculations to avoid any

shortcomings.

Criteria

IR Models

Boolean Vector Space Language and

Probabilistic

Inference Network

How documents are

ranked

Unable to rank

documents due to

binary nature

Ranked based on

degree of

relevance to user’s

query

Ranked based on

probability

Ranked based on a

probability or belief

score

How queries are

represented

As set of terms As weighted terms As a language

model

As a language model

Table 3-1: Comparison of IR Models Part 1

 Chapter 3
 Problem Investigation of Legal Information Extraction

38

Criteria IR Models

Boolean Vector Space Language and

Probabilistic

Inference Network

Document Retrieval Binary Not binary Uses a Relevance

Model to predict

the relevance of

documents

Binary

Advantages First and simplest

IR model

Uses Boolean

Algebra for exact

matching

Most commonly

used IR model

Documents are

represented as

weighted terms

Based on

probability and

founded from

statistical theories

Table 3-2: Comparison of IR Models Part 2

3.4 Information Extraction Processes and Techniques1
IE is a process that derives structured information from unstructured or semi-structured text (Jiang,

2012). IE differs from IR since IR returns a ranked subset of data that is relevant to a user’s query whilst

IE extracts facts about entities and relationships (Piskorski & Yangarber, 2013). IR can be used with IE

to aid in tasks related to pre-filtering large sets of data. Performing IE requires three processes to be

followed that can use different IE techniques to form an IE system. Abdelmagid, Ahmed, and Himmat

(2015) state that in addition to processing unstructured and semi-structured text, structured text can

also be processed with IE. Unstructured text contains a variety of text related to news or stories and

thus makes extraction difficult. Semi-structured text is presented and formatted in a specific manner

for a domain whilst structured text is highly formatted, structured, and organised. Applications for IE

are seen in many fields such as biomedical research, finances, intelligence agencies, and search

engines (Jiang, 2012). Various processes must be followed to extract information from text.

IE consists of three processes as depicted in Figure 3-5, namely (Abdelmagid et al., 2015):

1. Extracting facts;

2. Integrating facts; and

3. Translating the facts to output.

Figure 3-5: IE Process (Author’s own work)

1 The literature discussed in this section was obtained from research that was published as full double-blind peer-reviewed conference paper at the

International Conference on Computing, Electronics & Communications Engineering 2018 in August 2018. Padayachy, T, Scholtz, B and Wesson, J. An
Information Extraction Model Using a Graph Database To Recommend the Most Applied Case. ICCECE’18 Essex, United Kingdom. (Appendix K)

 Chapter 3
 Problem Investigation of Legal Information Extraction

39

Extracting facts from a document requires the text to be analysed and extracted. After the facts have

been extracted, the facts are integrated to create a larger set of facts or infer new facts. A common

issue encountered when determining the meaning of extracted facts is ambiguity (Sumathy &

Chidambaram, 2013). This is because often in the English language words or phrases can have multiple

meanings. In addition to ambiguity, inconsistencies in text can result from special formats,

abbreviations, and acronyms (Gurusamy & Kannan, 2014). Facts can then be put through algorithms

to produce output. Various IE techniques can be applied to complete these processes.

Four categories of IE techniques are investigated. A summary of the categories is provided in Table

3-3. This section will report on the general technique’s category.

Information Extraction Techniques

Category Technique Author Section

General Techniques Named Entity Recognition Piskorski and Yangarber (2013) Section 3.4

Abdelmagid et al. (2015)

Co-reference Resolution Piskorski and Yangarber (2013)

Iida, Inui, & Matsumoto (2006)

Relation Extraction Piskorski and Yangarber (2013)

Event Extraction Piskorski and Yangarber (2013)

Natural Language

Processing

Morphological and Lexical

Analysis

Piskorski and Yangarber (2013) Section 3.5

Chopra, Prashar, and Chandresh

(2013)

Syntactic Analysis Chopra et al. (2013)

Semantic Analysis Chopra et al. (2013)

Discourse Integration Chopra et al. (2013)

Pragmatic Analysis Chopra et al. (2013)

Web Scraping Vargiu and Urru (2012) Section 3.6

Glez-Peña, Lourenço, López-

Fernández, Reboiro-Jato, and

Fdez-Riverola (2013)

Regular Expression Deterministic Finite

Automaton

Goyvaerts and Levithan (2009)

Rabin and Scott (1959)

Prasse, Sawade, Landwehr, and

Scheffer (2015)

Hopcroft, Motwani, and Ullman

(2006)

Section 3.7

Non-Deterministic Finite

Automaton

Table 3-3: IE Techniques

Four general IE techniques can be applied to extract facts from text, namely (Piskorski & Yangarber,

2013):

• Named Entity Recognition (NER);

• Co-reference resolution (CO);

• Relation extraction (RE); and

• Event extraction (EE).

NER is a basic technique of IE and processes extracted information from unstructured and structured

text (Abdelmagid et al., 2015). When applied, all expressions related to an entity are identified.

 Chapter 3
 Problem Investigation of Legal Information Extraction

40

Furthermore, NER can involve extracting descriptive information from text about an entity and

completing a template based on the extracted information. NER is divided into two tasks, namely the

identification and classification of predefined entities. Piskorski and Yangarber (2013) state that

predefined entities can be organisations, persons, temporal expressions, and numerical expressions.

The CO technique requires identification of multiple mentions of the same entity. At the time of

research not much information could be found on CO. An entity’s mention can be (Piskorski &

Yangarber, 2013):

• Named;

• Pronominal;

• Nominal; and

• Implicit.

A named mention refers to an entity by name such as “General Electric” whilst a pronominal mention

refers to an entity by use of a pronoun such as “John bought food. But he forgot to buy drinks”. The

pronoun is the word “he”. A nominal mention refers to an entity by a nominal phrase such as

“Microsoft revealed its earnings. The company also unveiled future plans”. In the aforementioned

example, “The company” is the definite noun phrase that refers to “Microsoft”. Implicit mention uses

zero-anaphora to refer to an entity. Zero-anaphora is a gap in a sentence that has an anaphoric

function and is often used to refer to an expression that provides necessary information to understand

the sentence (Iida et al., 2006). An example of an implicit mention that uses zero-anaphora is seen in

“There are two roads to eternity, a straight and narrow, and a broad and crooked.” In this example,

the gaps of the sentence are “a straight and narrow” and “a broad and crooked”.

RE involves detecting and classifying predefined relationships between entities identified in a body

of text. Piskorski and Yangarber (2013) provide the following examples of RE:

• EmployeeOf (Steve Jobs, Apple); and

• LocatedIn (Smith, New York).

The first example, EmployeeOf, involves detecting the relationship between the entities of a person

and organisation. The person entity is “Steve Jobs” while the organisation entity is “Apple”. This

example extracts the entities from the text “Steve Jobs works for Apple”.

The second example, LocatedIn, involves detecting the relationship between the entities of a person

and location. The person entity is “Smith” while the location entity is “New York”. This example

extracts the entities from the text “Mr. Smith gave a talk at the conference in New York”.

EE involves identifying events in text and deriving a detailed and structured set of information about

the events (Piskorski & Yangarber, 2013). During EE, multiple entities and relationships are extracted.

As such, EE is said to be the hardest of the four IE tasks as information answering, “who did what to

whom, when, where, through what methods?” must be extracted.

NER can be applied with meta-data analysis and tokenisation to this research. All expressions related

to a legal case can be identified, tokenised, and extracted. Depending on the approach used to obtain

the legal cases, an IE technique called web scraping could be used to obtain the required facts from

legal cases.

 Chapter 3
 Problem Investigation of Legal Information Extraction

41

3.5 Natural Language Processing
This section will investigate the IE technique of NLP. Included in this investigation are the phases and

techniques that should be followed when performing NLP. Additionally, the tools available to perform

NLP will be compared.

3.5.1 Natural Language Processing Phases and Techniques
NLP explores how computers can be used to process and understand natural language text to perform

useful tasks (Chowdhury, 2003). NLP can be used to analyse text that has been extracted from sources

such as documents or websites and produce meaning for the text (Singh, 2018). In the context of

recommending the MAC, NLP can be applied to text that has been extracted from legal cases. NLP is

divided into two categories, namely language processing and language generation. Language

processing refers to the analysis of language to produce meaningful representations whilst language

generation refers to producing language from a representation (Liddy, 2001). NLP can be applied to

various activities such as speech understanding, IE, and knowledge acquisition (Chowdhary, 2012). In

the context of IE, NLP can be applied during the Extract Facts process.

There are five phases of NLP that contain various techniques (Chopra et al., 2013), namely:

1. Morphological and lexical analysis;

2. Syntactic analysis;

3. Semantic analysis;

4. Discourse integration; and

5. Pragmatic analysis.

Morphological analysis involves in-depth analysing, identifying and describing the structure of words.

Lexical analysis requires bodies of text to be divided into paragraphs, words, and sentences. This is

known as tokenisation which segments words into separate units called tokens and classifies these

units based on their type (Piskorski & Yangarber, 2013). Morphological analysis can be used to extract

morphological information from tokens such as a token’s base form and part of speech (Piskorski &

Yangarber, 2013). Syntactic analysis, also known as syntactic parsing, involves analysing the words in

a sentence to determine the grammatical structure of the sentence. Semantic analysis determines

the exact meaning of a section of text based on a given context. Discourse integration implies that

the meaning of a sentence is determined by the previous sentence and it invokes the meaning of

successive sentences. Pragmatic analysis derives the purposeful use of language in a situation. The

main purpose of pragmatic analysis is to differentiate between what is said and what is actually meant.

To fulfil each phase, a set of tasks must be completed. An additional technique identified by Piskorski

and Yangarber (2013) that can be used with morphological and lexical analysis is called meta-data

analysis. Meta-data analysis involves analysing and extracting titles, body, structure of the body, and

important dates from text.

Common NLP techniques are (Collobert et al., 2011):

• Part-of-speech tagging (POS);

• Chunking;

• NER; and

• Semantic role labelling.

POS tagging labels each word in a set of text with a unique tag to indicate the word’s syntactic role.

Words are labelled based on English POS such as nouns, verbs, and adjectives (Collobert et al., 2011).

POS tagging is a simplified form of morphological analysis as words are only tagged, not analysed to

find internal structure (Indurkya & Damerau, 2010). Chunking, also known as shallow parsing, labels

 Chapter 3
 Problem Investigation of Legal Information Extraction

42

segments of a sentence with syntactic constituents such as nouns or verb phrases (Collobert et al.,

2011). In the context of NLP, NER involves labelling elements in a sentence into different categories

such as “PERSON” or “LOCATION”. Semantic role labelling provides a semantic role to a syntactic

constituent of a sentence (Collobert et al., 2011). In addition to the NLP techniques mentioned by

Collobert et al. (2011), stop-word removal is also another commonly performed NLP technique

(Vijayarani et al., 2015) and parsing (Chopra et al., 2013). Stop-word removal involves removing

commonly used words that are usually articles, prepositions, or pronouns. Parsing refers to

determining the grammatical structure of phrases or sentences. Figure 3-6 maps the phases of NLP to

the tasks of NLP.

Morphological and lexical analysis can make use of tokenisation, stop-word removal, and POS.

Tokenisation can be used to separate words into tokens after which all unnecessary words can be

removed using stop-word removal. Once this has been completed, POS can be applied to identify each

word’s syntactic role. The result of the morphological and lexical analysis will be analysed and tagged

words. Syntactic analysis can then occur in which chunking can be applied to identify the grammatical

structure of phrases. The result of syntactic analysis would be sentences that have their structure

identified. These sentences can then be passed on for sematic analysis during which the exact

meanings of the sentences can be determined. NER and CO discussed in Section 3.4 can be applied for

semantic analysis. Alternatively, classification or semantic role labelling can be applied. Classification

could use an algorithm such as a Support Vector Machine to determine a sentence’s meaning

(Collobert et al., 2011). Once the meanings of sentences have been determined, discourse integration

and pragmatic analysis can occur. During these two phases, the meanings assigned to the sentences

will be further analysed to determine what was said versus what was actually meant.

Figure 3-6: Phases of NLP (author’s own work)

 Chapter 3
 Problem Investigation of Legal Information Extraction

43

The phases of NLP can be applied within the legal domain to analyse and obtain meanings from text

in legal cases. However, for this research only tokenisation from morphological and lexical analysis

would be relevant because words in a legal case will have to be separated and then specific facts would

have to be extracted. The process of implementing the NLP tasks in Figure 3-6 can be achieved through

an NLP framework or toolkit.

3.5.2 Natural Language Processing Tools
Various frameworks and toolkits are available for implementing NLP. The frameworks and toolkits are

available on different platforms and perform different NLP tasks. These frameworks and toolkits are

summarised in Table 3-4 and Table 3-5.

 Platform

Java Python Java Java

NLP Technique Stanford Core NLP NLTK Apache OpenNLP GATE

POS

Chunking

NER

Tokenisation

Table 3-4: Comparison of NLP Frameworks and Toolkits Part 1

 Platform

Java Python Java Java

NLP Technique Stanford Core NLP NLTK Apache OpenNLP GATE

CO

Stop word removal

Sentence splitting

Syntactic Parsing

Table 3-5: Comparison of NLP Frameworks and Toolkits Part 2

Five open-source libraries that can be applied to various phases and tasks of NLP are (Ingersoll, 2015):

• The Stanford Core NLP Suite;

• Natural Language Toolkit (NLTK);

• Apache OpenNLP; and

• General Architecture for Text Engineering (GATE).

The Stanford Core NLP Suite is a Java Virtual Machine-based annotation pipeline framework that

provides common NLP functionality (Manning et al., 2014). The framework consists of a raw text

source, an annotation object, an execution of various functions, and an annotated text output. Raw

text is put into an annotation object after which a series of annotator functions execute to add

information to the annotator object. Once all annotator functions have executed, the annotated text

can be output in the form of Extensible Markup Language (XML) or other plain forms of text. The eight

annotator functions found in the framework are the following:

• Tokenisation;

• Sentence splitting;

• POS;

• Morphological analysis;

• NER;

• Syntactic parsing;

• CO; and

• Other annotators for sentiment and gender.

 Chapter 3
 Problem Investigation of Legal Information Extraction

44

All annotator functions except the second annotator have been explained in Section 3.5.1. The second

annotator, sentence splitting, splits up a sequence of tokens into sentences. Figure 3-7 illustrates the

framework of the Stanford Core NLP Suite.

Figure 3-7: Framework of Stanford Core NLP Suite (Manning et al., 2014)

NLTK is a Python-based NLP toolkit (NLTK Project, 2017). The toolkit is designed to meet six criteria,

namely (Bird & Loper, 2002):

• Ease of use;

• Consistency;

• Extensibility;

• Documentation;

• Simplicity; and

• Modularity.

The toolkit is aimed at allowing users to build NLP systems without having to spend much time on

learning how to use the toolkit. The toolkit uses consistent data structures and interfaces and can

easily accommodate new components. In terms of documentation, all aspects regarding the toolkit,

its data structures, and its implementation are well documented. With regards to simplicity, all classes

defined within the toolkit are created so that users can immediately implement them once users have

completed an introductory course. In terms of being modular, the toolkit is designed to keep the

interaction of different components to a minimum usage.

The toolkit provides libraries to perform the following functions (NLTK Project, 2017):

• Tokenisation;

• Stemming;

• POS;

• Parsing; and

• Semantic reasoning.

 Chapter 3
 Problem Investigation of Legal Information Extraction

45

The Apache OpenNLP is a machine learning toolkit for NLP (The Apache OpenNLP Development

Community, 2011) . The toolkit aims to be a mature toolkit for common NLP tasks and to provide many

pre-built models for different languages. The toolkit consists of many components that enable the

creation of an NLP pipeline. The following NLP functions are supported by the toolkit:

• Tokenisation;

• Sentence segmentation;

• POS;

• NER;

• Chunking;

• Parsing; and

• CO.

GATE is an open-source framework for creating software components that perform NLP (Cunningham

et al., 2017). In addition to NLP tasks, GATE also provides an IE component called ANNIE -a Nearly New

Information Extraction System. Built-in components of GATE are the following:

• Language resources;

• Processing resources that are part of the IE component;

• Gazetteers;

• Ontologies;

• Machine learning resources;

• Alignment tools; and

• Parsers and taggers;

The built-in component of interest for this research is GATE’s processing resources that are part of

ANNIE. The components that make up ANNIE are the following:

• Tokeniser;

• Lemmatiser;

• Gazetteer lookup;

• Sentence splitter;

• Taggers;

• Name matchers; and

• Parsers;

The developmental aspect of this research will use the programming language Python. Therefore, the

NLTK toolkit can be used to implement NLP for IE. As seen in Table 3-5, NLTK supports most NLP tasks.

Extraction of facts can occur once text has been processed by the NLP tasks. However, it might not be

necessary to perform NLP tasks to extract facts. Extraction can occur by applying patterns onto the

bodies of processed text. These patterns can be in the form of regular expressions.

3.6 Web Scraping Techniques
This section will investigate the practice of web scraping to extract information from websites. This

investigation will include a comparison of the three tools that can be used to perform web scraping,

namely libraries, frameworks, and desktop applications.

3.6.1 Web Scraping
Web scraping is the practice of applying techniques to automatically extract information from a

website (Vargiu & Urru, 2012). It is therefore an IE technique for websites. There are multiple uses for

web scraping such as price comparisons, weather data monitoring, and web data integration. For this

 Chapter 3
 Problem Investigation of Legal Information Extraction

46

research, web scraping can be used to extract and process facts from legal cases. Web scraping is

performed by web scrapers that look for specific information. Web scrapers focus on transforming

unstructured data into structured forms that are stored in a data structure such as a database.

Furthermore, web scrapers mimic the browsing interaction between web servers and a human by

accessing a website and parsing the website’s content to find information of interest (Glez-Peña et al.,

2013). Three tools can be used to create a web scraper, namely:

• Libraries;

• Frameworks; and

• Desktop-based environments.

Libraries are used to grant access to a website by implementing the client-side of an HTTP protocol

(Glez-Peña et al., 2013). The libraries may also provide parsing techniques such as HTML tree building

and XPath matching, but it is not uncommon for built-in string functions to be used. Built-in string

functions can be tokenisation or regular expressions. Libraries identified by Glez-Peña et al. (2013) will

be investigated in Section 3.6.2.

Frameworks are a more integrative method to scrape a website as opposed to using libraries (Glez-

Peña et al., 2013). Generally, libraries require integration with additional libraries to create a

functioning web scraper. Frameworks on the other hand eliminate the need for additional libraries by

providing all the functions required to create a web scraper. Frameworks identified by Glez-Peña et

al. (2013) will be investigated in Section 3.6.2.

Desktop-based environments make use of desktop applications for web scraping (Glez-Peña et al.,

2013). The desktop applications differ from libraries and frameworks as the applications cater for

layman programmers. The programmers are provided with an interface to help create a web scraper.

The interface allows programmers to interact with a web page and select elements to be scraped. A

disadvantage of using web scraping desktop applications is the limited access to APIs which makes it

difficult to embed the web scraper into other programs. Desktop applications will be investigated in

Section 3.6.2.

3.6.2 Web Scraping Tools
Various libraries, frameworks and desktop applications for web scraping are identified and

summarised in Table 3-6 to Table 3-8. Commonly used libraries are (Glez-Peña et al., 2013):

• Libcurl;

• WWW::Mechanize by programming language Perl; and

• Apache HTTPClient by programming language Java.

Libcurl is an open-source library that supports multiple features of the HTTP protocol. Libcurl also has

bindings to multiple programming languages allowing programmers to get full use of the Libcurl library

within their programming language of choice. Features of the HTTP protocol that Libcurl supports are:

• SSL certificates;

• HTTP POST;

• HTTP PUT;

• FTP uploading; and

• HTTP authentication.

The WWW::Mechanize library allows programmers to interact with weblinks and forms and requires

no additional parsing. Support is provided for HTTPS, cookie management, and HTTP authentication.

Java’s Apache HTTPClient library emulates features of the HTTP protocol and can be combined with

 Chapter 3
 Problem Investigation of Legal Information Extraction

47

HTML parsing libraries such as Jsoup. In addition to the libraries identified by Glez-Peña et al. (2013),

the following libraries can be used for web scraping:

• Requests;

• Beautiful Soup 4;

• Lxml; and

• Selenium.

Requests is an HTTP library that is used to access web pages. Requests contains built-in functions to

make accessing and parsing a website’s content easy. The Requests library can also access APIs and

post to forms (EliteDataScience, 2017). Beautiful Soup 4 is a Python based library that pulls data from

HTML and XML files. Files are converted into BeautifulSoup objects on which built-in functions can be

applied to extract information (Richardson, 2015). Lxml is an HTML and XML parsing library that is

bound for the libxml2 and libxslt C libraries (LXML, 2017). The two C libraries allow for core tasks to

be completed such as parsing, serialising, and transforming (Daly, 2011). Selenium is used to scrape

websites that are not in favour of being scraped (Marzagão, 2013). As such, Selenium is called a

webdriver as it takes control of a user’s browser and performs IE.

Frameworks identified by Glez-Peña et al. (2013) are Web-Harvest and jARVEST. Web-Harvest is a

Java-based web scraping framework that uses XML to describe IE processes. Web-Harvest’s various

processes are made up of several pipelines that can include procedural instructions such as variable

definitions, loops, and primitives to retrieve web content and clean HTML. Web-Harvest uses

techniques such as XSLT, XQuery, and Regular Expressions to perform IE (Web-Harvest, 2017).

jARVEST is a DSL Java-based framework that creates harvesters to scrape a website. Harvesters are

made up of transformers that receive streams of strings and output streams of strings. jARVEST

contains multiple features such as XPath Expression Matching, CSS Selector Matching, variable

definitions, and looping (jARVEST, 2017). In addition to the frameworks identified by Glez-Peña et al.

(2013), a framework called Scrapy can also be used for web scraping (Myers & McGuffee, 2015).

Scrapy is Python-based and comes with an engine, scheduler, downloader, and classes. The engine

controls data flow between components, whilst the scheduler receives requests and the downloader

fetches webpages. Classes, known as spiders, are customised by users to parse responses and extract

items. Scrapy provides an array of features such as extracting data from HTML and XML sources, HTTP

support, and support for regular expressions and XPath expressions (Scrapy, 2016).

Desktop applications identified by Glez-Peña et al. (2013) are IrobotSoft, Visual Web Ripper, and

Mazenda. IrobotSoft is a windows-based application that is scriptable, GUI-based, supports multi-

threading and can output to multiple formats. Similarly, Visual Web Ripper is also windows-based,

uses a GUI, supports multi-threading, and can output to multiple formats. However, Visual Web Ripper

is limited in terms of being scriptable. Mazenda supports multi-threading, is GUI-based but is not

scriptable.

 Chapter 3
 Problem Investigation of Legal Information Extraction

48

Libraries for Web Scraping

Library Domain Specific Language Language Features

Libcurl No C+ bindings • HTTP Post;

• SSL Certificates;

• HTTP PUT;

• FTP; and

• HTTP
Authentication.

WWW::Mechanize No Perl • HTTPS;

• HTTP
Authentication;

• Cookie
Management.

Apache HTTPClient No Java • HTTP Protocol

Requests No Python • Built-in functions to
process website;
and

• Can post to forms.

Beautiful Soup 4 No Python • Access HTML and
XML files; and

• Convert files to
BeautifulSoup
objects.

Lxml No Python • Allows for core
processing tasks to
occur.

Selenium No Python • Control a browser
for IE.

Table 3-6: Libraries for Web Scraping

Frameworks for Web Scraping

Framework Domain Specific Language Language Features

Web-Harvest Yes Java • XPath;

• Regular Expressions;

• XLST and

• XQuery;

jARVEST Yes Java/JRuby • XPath Expression Matching;

• Regular Expressions;

• CSS Selection;

• Looping; and

• Variable definitions.

Scrapy No Python • Regular Expressions;

• XPath;

• HTTP Authentication;

• HTTP Compression;

• HTML/XML support; and

• Reusable spiders.
Table 3-7: Frameworks for Web Scraping

 Chapter 3
 Problem Investigation of Legal Information Extraction

49

Desktop Applications for Web Scraping

Desktop Application Platform Output Formats Multi-Threading Scriptable GUI-Based

IrobotSoft Windows • Text;

• CSV;

• XML; and

• DB

Yes Yes Yes

Visual Web Ripper Windows • CSV;

• XML;

• DB; and

• Excel.

Yes Limited Yes

Mazenda Windows • CSV;

• TSV;

• XML; and

• Excel.

Yes No Yes

Table 3-8: Desktop Applications for Web Scraping

It is evident that there are multiple technologies available to perform web scraping. Depending on the

end goal, libraries, frameworks, or desktop applications can be used. Libraries can be used with other

libraries to create a fully functional web scraper. However, frameworks are preferable as they provide

a more integrated approach to web scraping. If an easier approach to web scraping is required, then

desktop applications can be used. The only limitation to using desktop applications is that there could

be limited access to APIs. For this research, web scraping using libraries can be applied to extract facts

from legal cases located online. The web scraping library can interact with other technologies relating

to IR and IE. The facts that are extracted by the library can then be further processed by means of

Natural Language Processing to obtain meanings from the facts.

3.7 Regular Expressions
Regular expressions are specific text patterns that are used to search in bodies of text, replace text,

segregate text into smaller bodies, and rearrange pieces of text (Goyvaerts & Levithan, 2009). If used

correctly, regular expressions can simplify programs and text processing tasks by reducing the amount

of code needed for processing. Regular expressions differ from NLP as none of the NLP phases need

to be applied when working with bodies of text. This implies that a regular expression can be used

directly on an unprocessed body of text. Regular expressions are implemented using finite automatons

and can be divided into two categories, namely traditional regular expressions and modern-day

regular expressions. Finite automatons are machines that consist of a finite amount of states that are

used for memory and computation (Rabin & Scott, 1959). Traditional regular expressions originate

from mathematics and computer science theory and reflect a trait called regularity. These traditional

regular expressions do not support backtracking and can be implemented by using a deterministic

finite automaton (DFA). Conversely, modern-day regular expressions can use backtracking and are

implemented using a non-deterministic finite automaton (NFA) (Goyvaerts & Levithan, 2009). Both

DFAs and NFAs can be represented using Equation 3.7-1, where both consist of a set of finite states, a

set of finite input symbols, a starting state, a final state, and a transition function. The difference

between a DFA and NFA is that a DFA returns a single state from its transition function while an NFA

can return multiple states. This implies that DFAs can only be in one state at a time while NFAs can be

in multiple states at the same time (Hopcroft et al., 2006).

 Chapter 3
 Problem Investigation of Legal Information Extraction

50

𝐴 = (𝑄, 𝐸, 𝛿, 𝑞0, 𝐹)

Equation 3.7-1: Representation of a DFA and NFA

Where:

• Q represents a finite set of states;

• E represents a finite set of input symbols;

• 𝛿 represents a transition function;

• q0 represents a starting state; and

• F represents a final state.

Regular expressions can consist of characters from an alphabet or apply an operator to a set of

argument expressions (Prasse et al., 2015). Multiple operators are available for use such as

concatenation, disjunction, and the Kleene star. Additionally, characters can be specific matching

symbols, meta characters, or quantifiers. Table 3-9 summarises the common matching symbols, meta

characters, and quantifiers that a regular expression can consist of (Vogel, 2016).

Possible Characters of a Regular Expression

Matching Symbols Meta Characters Quantifiers

Symbol Meaning Meta Character Meaning Quantifier Meaning

. Matches any

character

\d Any digit. * Occurs zero or

more times

^regex Matches a

regular

expression at

the beginning

of a line

\D A non-digit. + Occurs one or

more times

regex$ Matches a

regular

expression at

the end of a line

\w A word

character.

? Occurs zero or

one time.

[abc] Matches ‘a’, ‘b’,

or ‘c’

\W A non-word

character

{X} Occurs X

number of

times.

[^abc] Matches any

character

except for ‘a’,

‘b’, or ‘c’

\b A word

boundary

*? The ‘?’ makes

the regular

expression stop

at the first

match

[a-d1-7] Matches a

range between

the letters a to

d, and numbers

from 1 to 7

X|Z Find ‘X’ or ‘Z’

Table 3-9: Possible Characters for a Regular Expression (Vogel, 2016)

Goyvaerts and Levithan (2009) state that various programming languages are available that support

the implementation of regular expressions. The programming languages include Perl, Java, Ruby, and

Python. Perl and Ruby support regular expressions as part of their language while Java and Python

provide packages or modules to support regular expressions.

 Chapter 3
 Problem Investigation of Legal Information Extraction

51

Table 3-10 demonstrates how Python’s regular expression engine works with the string ‘abcbd’ and

regular expression ‘a[bcd]*b’ (Kuchling, 2018):

Step Match Explanation

1 a The ‘a’ in the string matches the ‘a’ in the regular expression

2 abcbd A match is found using [bcd]* by going to the end of the string

3 Failure A match is attempted for ‘b’ but the current position is at the end of the string so there is

no match

4 abcb The regular expression engine backtracks so that one less character is matched, this means

the ‘b’ after ‘*’ is dropped

5 Failure The regular expression then reattempts to match ‘b’ but the current position is at the ‘d’

6 abc The regular expression engine backtracks again so that [bcd]* matches ‘bc’

6 abcb The regular expression engine reattempts to match ‘b’. This is successful as the current

position is on ‘b’

Table 3-10: Example of how a Regular Expression Engine Works (Kuchling, 2018)

In the context of this research, regular expressions can be applied to extract facts from a legal case.

Legal cases consist of a semi-structured format that can allow for specific regular expression patterns

to be created and applied to a legal case.

3.8 Information Storage
This section investigates the Not Only SQL (NoSQL) Database options available for storing processed

information. Two types of options will be investigated, namely NoSQL Graph Databases and NoSQL

Document Databases. These two types of NoSQL databases are investigated as they cater for multi-

structured data types and allow for large amounts of data to be easily inserted and stored (MongoDB,

2018c). NoSQL Databases differ from traditional Relational Databases as they are distributed, non-

relational, flexible, and designed for large-scale data storage (Moniruzzaman & Hossain, 2013).

3.8.1 NoSQL Graph Databases
Performing IE results in the output of facts that need to be stored for easy access or use. Many fields

such as science, government, and business can be modelled using graphs to understand the datasets

produced from these fields (Robinson et al., 2015). The graph space is divided into two parts, namely

graph compute engines and graph databases. Graph compute engines analyse large datasets primarily

for offline graph analytics. Graph databases are graph-orientated databases that consist of one or

many graphs to manage and perform complex queries over data (Pokorný, Valenta, & Kovačič, 2017).

A graph consists of a set of vertices and edges. Vertices are called nodes and are connected by edges

that define the relationship between nodes. Relationships are a key feature of graph databases as

they eliminate the need to deduce connections between entities using foreign keys (Robinson et al.,

2015). Graphs can be implemented using two types of structures namely, adjacency matrices or

adjacency lists (Kolosovskiy, 2009). An adjacency matrix is a symmetric matrix that reflects adjacencies

between the vertices or edges within a graph (Kolosovskiy, 2009). Creating an adjacency matrix is

possible by means of a 2D array (Jemini, 2018). An example of a graph implemented as an adjacency

matrix is seen in Figure 3-8 and Figure 3-9 (Singh & Sharma, 2012). Graph, G, is represented by four

nodes, namely X, Y, Z, and W in Figure 3-8.

 Chapter 3
 Problem Investigation of Legal Information Extraction

52

Figure 3-8: Example of a Graph G

The adjacency matrix, A, of graph G is represented by Figure 3-9. Adjacency matrix A represents the

nodes from graph G and indicates connections with a 1 and no connections with a 0.

Figure 3-9: The Adjacency Matrix of Graph G

An adjacency list represents all edges in a graph as a list (Singh & Sharma, 2012). An adjacency list can

be implemented by using nodes and linked lists, or a dictionary if it is being implemented in Python

(Programiz, n.d.). If a node and linked list are used, then a node represents a vertex and the linked lists

represents all the nodes connected to the vertex. If a dictionary is used, then vertices are represented

as the keys and the values are represented as set of nodes. An example of a graph implemented as an

adjacency matrix is seen in Figure 3-10 and Figure 3-11 (Singh & Sharma, 2012). Graph B in Figure 3-10

contains nodes A, B, C, D, and E.

Figure 3-10: Example of a Graph B

Figure 3-11 represents Graph B implemented as an adjacency list. The adjacency list is interpreted as

“Node A is connected to nodes B, C, and D”.

 Chapter 3
 Problem Investigation of Legal Information Extraction

53

Figure 3-11: The Adjacency List of Graph B

A commonly used graph model is a Labelled Property Graph that consists of nodes and relationships

(Robinson et al., 2015). Nodes can have multiple labels and contain properties. Relationships are

directed, named, have a start and end node, and can also contain properties. Figure 3-12 illustrates a

Labelled Property Graph within a social network context. In a social network context, users can follow

each other and view current and previously sent messages. Figure 3-12 consists of three ‘User’ labelled

nodes and three ‘Message’ labelled nodes. The edges represent the relationship between nodes for

example, ‘Ruth’ follows ‘Billy’ and the recent message by ‘Ruth’ is represented by ‘Message’ node with

property ‘id: 101’.

Figure 3-12: A Labelled Property Graph within Social Network Context (Robinson et al., 2015)

Once a graph database has been implemented, methods to create, read, update, and delete data are

applied to the graph database. By creating a simple abstraction of nodes and relationships into a graph

database one ends up with an accurate model that represents a problem domain. In addition to

 Chapter 3
 Problem Investigation of Legal Information Extraction

54

simplicity (Robinson et al., 2015), various characteristics make graph databases advantageous to

traditional relational databases such as performance, flexibility, and agility (Zhang, 2017).

Robinson et al. (2015) elaborates on the advantages of graph databases listed by Zhang (2017). In

terms of performance, graph databases bring about an increased performance when working with

connected data as opposed to relational databases. Increased performance is seen when querying the

database. Relational databases’ join-intensive query performance becomes poor as a dataset

increases whilst performance in a graph database remains constant. A possible reason for query

performance in a graph database remaining constant is because queries are localised to a portion of

the graph resulting in execution times that are constant or faster. In terms of flexibility, graphs enable

new data to be easily added. New data can be in the form of relationships, nodes, labels, or subgraphs

and do not interrupt existing query and application functionality. This results in less migration,

overhead, and risk. Relational databases on the other hand require more work. In terms of agility,

graph databases allow for easy development and maintenance of systems. Systems can be evolved in

a controlled manner due to the systems being schema-free. In addition to the advantages discussed,

graph databases also allow data elements that have complicated relationships to be easily handled.

This is possible by using edges to connect elements instead of foreign keys.

A commonly used vendor for implementing a graph database is Neo4j (MongoDB, 2018c). Neo4j

makes use of linked lists to implement the graph structure (De Marzi, 2012). Linked lists are used to

represent and store nodes, relationships, and properties. Properties use key-values and point to the

next property in the linked list. Nodes and relationships reference the first property associated with

it. Nodes also represent the first relationship in the relationship linked list. Each relationship

references a start and end node.

The advantages mentioned by Robinson et al. (2015) and Zhang (2017) make graph databases suitable

for storing information regarding legal cases. A graph database can therefore be used to contain all

extracted information obtained from the IE processes illustrated in Figure 3-5 and can be queried to

translate facts to output. The use of a graph database would eliminate the need to setup and manage

a relational database containing tables. Instead of using tables to represent legal cases, nodes can be

used to represent information obtained via IE.

3.8.2 NoSQL Document Databases
A document database is a type of NoSQL database that stores data in the form of documents that can

be grouped together to form collections (MongoDB, 2018c). Documents can be viewed as objects that

contain typed values such as strings, binary values, or arrays. Unlike relational databases that store

data across multiple tables and columns, document databases store data in a single document. This

helps eliminate the need for JOIN operators.

Data can be stored in three types of structures namely, XML, Javascript Option Notation (JSON), or

Binary JSON (BSON) (Moniruzzaman & Hossain, 2013). JSON objects store data as strings and numbers

while BSON objects are an extension of JSON objects that allow representation of additional types

such as int, long, floating point, and date (MongoDB, 2018b). The data is stored as key-value pairs

where both the keys and values are searchable. In addition, document databases are schema-free.

Document databases do not require any schemas to be predefined before data can be added to the

database (Parmar & Roy, 2018). The schema is automatically created as data is added. This lack of a

predefined schema provides developers with more flexibility than using relational databases as they

do not have to force-fit new types of application data to the database. A key characteristic of a

document database is that documents can contain embedded documents and lists containing multiple

values. This eliminates the need to join multiple sets of data together as would be the case in a

 Chapter 3
 Problem Investigation of Legal Information Extraction

55

relational database. Figure 3-13 illustrates an example of how a document is stored as a JSON object

that has a list embedded within its document. In the example, the document contains a key called

‘PreviousPositions’ that contains a list of documents.

Figure 3-13: Embedding Data into a Document (Parmar & Roy, 2018)

Document databases are ideal for storing and managing big-data sized collections of data regarding

text documents, email messages, or XML documents (Moniruzzaman & Hossain, 2013). Additionally,

document databases are also good at storing conceptual documents such as a representation of a

database entity, as well as semi-structured data that would normally require relational databases to

use many nulls for missing values. Commonly used vendors for implementing document databases

are CouchDB and MongoDB (Parmar & Roy, 2018). CouchDB stores data as JSON objects while

MongoDB stores data as BSON objects. Figure 3-14 illustrates an example of a BSON object stored in

MongoDB (MongoDB, 2018a).

Figure 3-14: Example of a BSON object stored in MongoDB (MongoDB, 2018a)

Figure 3-14 is different from Figure 3-13 as it supports the additional types discussed above such as

date and long. The date type is represented by the keys “birth” and “death” while the long type is

represented by the key “views”. Table 3-11 provides a comparison of Graph Databases and Document

Databases.

 Chapter 3
 Problem Investigation of Legal Information Extraction

56

Comparison of Graph Database and Document Database

Characteristic Graph Database Document Database

Underlying structure Adjacency matrixes or Linked Lists JSON, BSON, or XML

How data is stored Nodes connected by edges Documents containing key-values

Schema No predefined schema needed No predefined schema needed

Relationships Uses edges to create relationships

amongst data

No relationships used

Embedding data Not supported Supports embedding data

Uses When there is an interest in the

relationship amongst data

Storing and managing big-data

sized collections of literal

documents

Table 3-11: Comparison of Graph Database and Document Database

It can be seen that while graph and document databases are both NoSql databases and do not require

a predefined schema, they are different when it comes to the structures used to represent them, how

data is stored, and have different uses. IE can be used to extract and store facts that can later be

retrieved for actions such as query-independent ranking.

3.9 Query-Independent Ranking Algorithms
The World Wide Web is rapidly growing and is massive, diverse, and unstructured (Choudhary &

Burdak, 2012). As a result, the number of queries submitted by users is also increasing. Therefore, IR

and IE systems require efficient methods to process queries to return relevant information to users.

Four query-independent ranking algorithms can be used to further process and return relevant results

to a user, namely:

• PageRank;

• Weighted PageRank;

• Hyper-link Induced Topic Search; and

• Focused Rank.

3.9.1 PageRank Algorithm
The PageRank algorithm evaluates the importance of a webpage based on a webpage’s link structure

(Gleich, 2014). The algorithm is both recursive and iterative (Choudhary & Burdak, 2012). PageRank is

based on the concept that if a page has important links pointing towards it, then the links of this

particular page that point towards other pages will result in the particular page being considered as

important. When determining a page’s rank, the algorithm considers all back-links. If the addition of

all the ranks of back-links are large, then a page is assigned a large rank value. The algorithm uses a

damping factor to prevent other pages from having a large influence on a page’s rank. The damping

factor is a value between zero and one but is usually set to 0.85. Furthermore, a page’s rank is divided

evenly amongst its outgoing links. Due to the recursive and iterative nature of the PageRank algorithm,

computation can take long if there are a large number of pages for the PageRank algorithm to process

(Prakash & Kumar, 2015).

The PageRank algorithm is represented by Equation 3.9-1.

𝑃𝑅(𝐴) = (1 − 𝑑) + (
𝑃𝑅(𝑇1)

𝐶(𝑇1)
+⋯+

𝑃𝑅(𝑇𝑛)

𝐶(𝑇𝑛)
)

Equation 3.9-1: The PageRank Algorithm

The variables of Equation 3.9-1s represent the following:

• PR(A) – the PageRank of page A;

• PR(Ti) – the PageRank of pages Ti which link to page A;

• C(Ti) – the number of outbound links on page Ti; and

 Chapter 3
 Problem Investigation of Legal Information Extraction

57

• D – the damping factor value between 0 and 1.

3.9.2 Weighted PageRank Algorithm
The Weighted PageRank algorithm is a modification of the original PageRank algorithm. WPR is an

iterative algorithm that assigns a ranking based on a page’s popularity (Choudhary & Burdak, 2012).

Popularity of a page is determined by calculating the weight of a page’s outgoing and incoming links.

Popular pages are assigned higher rank values. Furthermore, ranks are not divided equally amongst a

page’s outgoing links unlike the original PageRank algorithm.

The formula for the Weighted PageRank algorithm is shown in Equation 3.9-2.

𝑊𝑃𝑅(𝑛) = (1 − 𝑑) + 𝑑 ∑ 𝑊𝑃𝑅(𝑚)

𝑚∈𝐵(𝑛)

𝑊𝑖𝑛(𝑚, 𝑛)𝑊𝑜𝑢𝑡(𝑚, 𝑛)

Equation 3.9-2: The Weighted PageRank Algorithm

Equation 3.9-3 and Equation 3.9-4 are used to calculate weight values of incoming and outgoing links:

𝑊𝑖𝑛(𝑚, 𝑛) = 𝐼𝑛 ∑ 𝐼𝑝
𝑃∈𝑅𝑒(𝑚)

Equation 3.9-3: Calculate weight of incoming links

𝑊𝑜𝑢𝑡(𝑚, 𝑛) = 𝑂𝑛 ∑ 𝑂𝑝
𝑃∈𝑅𝑒(𝑚)

Equation 3.9-4: Calculate weight of out-going links

Equation 3.9-3 represents the number of incoming links with respect to pages n and p. Re(m) represents

all reference pages of page m.

Equation 3.9-4 is computed the same as Equation 3.9-3 to determine the outgoing link’s weight.

A limitation of the Weighted PageRank algorithm is that the algorithm only considers the link structure

of a page and not the page’s content. This limitation can result in irrelevant pages being returned

(Kumari, Gupta, & Dixit, 2014). The original PageRank algorithm and Weighted PageRank algorithm

can be compared by analysing the resultant webpages of a given query. Based on a user’s query, the

resultant webpages can be categorised into four categories, namely (Jain, Sharma, Dixit, & Tomar,

2013):

• Very relevant pages (VR);

• Relevant pages (R);

• Weakly relevant pages (WR); and

• Irrelevant pages (IRP).

VR pages contain important information in relation to a user’s query whilst R pages are relevant but

do not contain important information with regards to a user’s query. WR pages can contain a query’s

keywords but does not have relevant information whilst IRP contain no relevant information and

keywords from a query.

Due to PageRank and Weighted PageRank producing a ranked list of pages in a particular sorting order,

a relevancy rule can be applied to calculate the relevancy value of all pages produced by the

 Chapter 3
 Problem Investigation of Legal Information Extraction

58

algorithms. The relevancy rule assigns a value to a page based on the page’s category and position in

the ranked list. Equation 3.9-5 is used to calculate the relevancy value of a page:

𝑘 = ∑ (𝑛 − 𝑖) ∗ 𝑊𝑖

𝑖∈𝑅(𝑝)

Equation 3.9-5: Calculate relevancy of a page

Equation 3.9-5 has the following variables:

• i – the ith page in the list R(p);

• n – represents the first n pages chosen from the list R(p); and

• Wi – represents the weight of the ith page.

3.9.3 Hyper-link Induced Topic Search (HITS) Algorithm
The Hyper-link Induced Topic Search (HITS) is an iterative algorithm that views the world wide web as

a directed graph that contains two types of pages, namely hubs and authorities (Jain et al., 2013).

Hubs are pages that act as resource lists and authorities are pages that contain important content. A

good hub points to many authoritative pages. A good authority page is pointed to by many good hubs

that contain pages of the same content. HITS has two steps, namely:

• A sampling step; and

• An iterative step.

The sampling step collects a set of relevant pages for a given query whilst the iterative step uses the

output of the sampling step to find hubs and authorities.

Equation 3.9-6 and Equation 3.9-7 are used to calculate the weight of a hub and the weight of an

authority:

𝐻𝑝 = ∑ 𝐴𝑞

𝑞∈𝐵(𝑝)

Equation 3.9-6: Calculate weight of hub

𝐴𝑝 = ∑ 𝐻𝑞

𝑞∈𝐵(𝑝)

Equation 3.9-7: Calculate weight of authority

The HITS algorithm has four constraints, namely (Jain et al., 2013):

• Hubs and authorities;

• Topic drift;

• Automatically generated links; and

• Efficiency.

In terms of hubs and authorities being a constraint, it is not easy to differentiate between hubs and

authorities as many pages can serve as both hubs and authorities. With regards to topic drift, some

results produced are not relevant to the query due to equivalent weights. In terms of automatically

generated links, the HITS algorithm gives equal importance for automatically generated links which

may be irrelevant to a user’s query. The HITS algorithm is not efficient for real-world application due

to the above-mentioned constraints.

 Chapter 3
 Problem Investigation of Legal Information Extraction

59

3.9.4 Focused Rank Algorithm
The Focused Rank algorithm is based on the PageRank Algorithm and the focused web surfers model.

The focused web surfers model states that a PageRank of a node is proportional to the probability of

a node being reached by a user randomly going through a graph. Equation 3.9-8 represents how a

preferable path is presented to the user (Krapivin & Marchese, 2008).

𝑃𝑖 = (1 − 𝑑).∑𝑃𝑗. 𝑠(𝑗|𝑖) +
𝑑

𝑁

𝑗∈𝐷

𝑖≠𝑗

Equation 3.9-8 Determine Preferable Path

Equation 3.9-8 has the following variables:

• Pi – a Page P;

• (1-d) – the damping factor;

• S(j|i) – probability to follow the reference I being at place j. S may be arbitrary.

Variable s(j|i) from Equation 3.9-8 can be calculated as follows:

𝑠(𝑗|𝑖) =
𝐶(𝑖)

∑ 𝐶(𝑘)𝑘∈𝐷

Equation 3.9-9 Determining Variables

No further information on the Focused Rank algorithm could be found.

Table 3-12 provides a summary of the ranking algorithms that were investigated. The PageRank

algorithm is highlighted as it will be the most suitable algorithm to use for query-independent ranking.

Criteria
Query-Independent Ranking Algorithms

PageRank Weighted PageRank HITS Focused Rank

Ranking Based on a page’s

link structure

Based on a page’s

popularity

Based on the

weight of hub and

authority

Dependent on a

user reaching a

page randomly

General Page’s rank is

divided evenly

amongst all

outgoing links;

Recursive and

iterative; and

Uses a damping

factor.

Page’s rank is not

divided evenly

amongst all

outgoing links

Iterative and views

world wide web as

a directed graph

containing hubs

and authorities

Based on

PageRank

algorithm and the

Focused Surfers

model

Limitations Computation can

take long if there

are too many pages

Only considers link

structure of a page,

not a page’s

content. Less

relevant pages

returned

Has too many

constraints making

it inefficient for

real-world

application

Limited

information

available

Table 3-12: Comparison of Query-Independent Ranking Algorithms

 Chapter 3
 Problem Investigation of Legal Information Extraction

60

3.10 Frameworks and Systems in the Legal Domain
An analysis of studies conducted within the legal domain and systems designed for the legal domain

is presented in this section.

3.10.1 ROSS and IBMs WATSON
ROSS is an intelligence tool for supporting legal research activities which is built upon a legal artificial

intelligence framework called Legal Cortex in conjunction with IBM’s Watson technology (Houlihan,

2017). ROSS makes use of NLP and machine learning capabilities to identify appropriate legal

authorities to specific questions. This implies that ROSS is used for IE and knowledge acquisition as

mentioned in Section 3.5.1. ROSS was tested by Blue Hill Research, an organisation that creates

research programs to assess artificial intelligence solutions in real-world legal use cases. The purpose

of the test was to determine the quality of ROSS in terms of:

• IR;

• User confidence and usability;

• Research efficiency; and

• Business value and return on investment (ROI).

The test consisted of 16 legal researchers who were provided with a set of questions that model real-

world questions faced daily by legal practitioners. The test used ROSS to supplement traditional legal

research tools such as Boolean searching and natural language searching. The legal researchers were

divided into groups and assigned a legal platform to perform the test on. The legal platforms used

were Westlaw and LexisNexis. Each group was constrained by the type of tool they could use, namely:

• Boolean search – this group of researchers could only use keyword searching that was

narrowed by Boolean logic;

• Natural language search – this refers to parsing a query that is entered in plain English, into a

search algorithm to identify content based on the query. This group of researchers could only

search by using plain English;

• ROSS and Boolean search – this group of researchers had to use ROSS and keyword searching;

and

• ROSS and natural language searching - this group of researchers had to use ROSS and natural

language searching.

In terms of IR, ROSS outperformed Boolean searching and natural language searching. ROSS returned

a higher percentage of relevant authorities, relevant results, and had a better normalised discounted

cumulative gain. With regards to user confidence and usability, participants were required to

complete a survey after completing their questions. The results of the survey revealed that ROSS

scored the highest for both usability and confidence. For research efficiency, the time taken to

complete all questions was observed. Time taken was divided into time spent on research, writing

answers, and unused time. the results indicated that when ROSS was used as a supplement to Boolean

searching, research time was 36.5 minutes and 36.7 minutes for ROSS supplementing natural language

searching. Research times for Boolean and natural language searching without ROSS supplementation

were 52.3 minutes and 47.2 minutes respectively.

Overall, the results from the test indicated that when ROSS was used with Boolean searching and

natural language searching there were improvements as opposed to using tools without ROSS. The

improvements were in:

• Research time;

• Improved identification of relevant authorities;

 Chapter 3
 Problem Investigation of Legal Information Extraction

61

• Less non-relevant results; and

• Improved prioritised placement of relevant authorities in search results.

3.10.2 Exploratory Analysis of Legal Documents Using Unsupervised Text Mining Techniques
This study conducted by Wagh (2014), proposes the application of an unsupervised text mining

technique called clustering to group legal documents to improve searching for legal documents.

Clustering is the process of partitioning objects into groups called clusters. Clustering is unsupervised

as its aim is to reveal hidden structures within a set of data and does not make use of any input

parameters (Cornuéjols, Wemmert, Gançarski, & Bennani, 2018). Generally, legal information is

categorised under various headings in a semi-structured manner that can be used to quickly interpret

law. Although many online legal databases provide access to such information, the retrieval is Boolean

based, and it is only possible to access the information by searching for keywords. It is for these two

reasons that Wagh (2014) believes clustering can be utilised to improve the quality of the information

retrieved. Wagh (2014) used an online legal database in India called Manupatra to download 47

judgements based on the search query “patents act”. The layout of the judgements from the

Manupatra database is different to what is used in the ALL SA judgements. The judgements from

Manupatra are divided into the following different sections:

• Catchwords;

• Date of the judgment;

• Details about the court and the bench;

• Appellants;

• Respondent;

• Judges;

• Subject (categorisation viz civil);

• Rules/Order;

• Cases Referred;

• Disposition;

• Case Notes (Abstract of the case); and

• Detailed judgment given by the court.

However, for the study only catchwords and case notes were considered for clustering analysis. The

documents were identified using a set of 15 to 25 catchwords. The documents were then divided by

catchwords and case notes. Catchwords and case notes were processed individually. The methodology

consisted of four processes (Figure 3-15), namely:

1. Data collection;

2. Data pre-processing 1;

3. Data pre-processing 2; and

4. Grouping the documents.

 Chapter 3
 Problem Investigation of Legal Information Extraction

62

Figure 3-15: Methodology followed by Wagh (2014)

During data collection, documents were retrieved based on a given query for a generic category. The

documents retrieved were then stored as plain text. During the data pre-processing 1 phase,

structured and unstructured information in each document were separated. The documents were

then divided by catchwords and case notes. Data pre-processing 2 involved the application of

linguistic techniques such as tokenisation and creating a term document matrix. In the last phase,

grouping the documents, a text clustering algorithm, called spherical kmeans (skmeans), was applied

to the case notes to identify relevant terms. The results obtained from running the skmeans algorithm

for two different cluster sizes resulted in clusters with related documents. The number of clusters

produced on both runs were three and four respectively. Two shortcomings were identified in this

study. The first shortcoming was that many of the sections such as cases referred to were not

processed. Processing the other sections could contribute to better results. The second shortcoming

was that no Information Storage process was discussed. The author only stated that the documents

retrieved would be stored as plain text, but no discussion was provided on where the documents

would be stored.

 Chapter 3
 Problem Investigation of Legal Information Extraction

63

3.10.3 Automating Legal Research through Data Mining
Manually performing legal research is a time-consuming process. Legal researchers have the option

of using two methods, namely catalogues and search engines (Firdhous, 2010). It is common to see a

combination of these two methods, which is then known as portals. However, finding information on

either one of the two methods still produces unsatisfactory results. Keyword searching is commonly

used in search engines but often results in many false returns. The study conducted by Firdhous (2010)

presents a methodological framework to automate the process of identifying and retrieving

appropriate information to support legal decision-making. The framework consists of a combination

of multiple text mining techniques. Firdhous' (2010) framework uses a term-based text mining system

and a vector space model for developing the framework. The architecture of the methodology is

illustrated in Figure 3-16:

The architecture of Firdhous' (2010) proposed framework consists of four processes, namely:

• A mining process;

• A research process;

• A law reports’ repository; and

• A processed law reports; repository.

 The mining process was applied to an entire collection of law reports in a repository. The law reports

used consist of a head and detail section. For Firdhous' (2010) study, only the head section was

processed. During the mining process, each law report was analysed and information that could be

used for legal research was recorded in a processed law reports repository. The mining process

consists of linguistic pre-processing that requires tokenisation and part of speech tagging. Once

linguistic pre-processing was completed, term generation and term weighting were applied. Term

generation produced a set of terms that were associated with a law report whilst term weighting

assigned each term found a specific score to indicate its importance in relation to a goal. Once all law

reports were processed, the research process began using the processed law reports repository.

During the research process, the input received from the user was analysed and the required

information was extracted and compared to all legal reports to identify matching reports. When

evaluating the framework, only Fundamental Rights cases that were filed at the Supreme Court of Sri

Lanka were used. Firdhous (2010) states the reasons for using only these cases are that it is easy to

find records about Fundamental Rights and the Supreme Court’s decisions are binding upon lower

courts in Sri Lanka. These cases were put into the law reports repository and evaluation continued by

using different user input text as search text. The results obtained from the evaluation indicated a high

accuracy of reports retrieved. The most relevant case record had the highest similarity score and was

located at the top of all other returned cases for the given query. Furthermore, the results remained

Figure 3-16: Architecture of Firdhous' (2010) Proposed
Framework

 Chapter 3
 Problem Investigation of Legal Information Extraction

64

the same when the search text was changed without altering its meaning. The methodology used by

Firdhous (2010) can help guide in recommending the MAC but an additional process for ranking the

data will be required.

3.10.4 Wagh vs Firdhous
Sections 3.10.2 and 3.10.3 investigated research conducted within the legal domain by Wagh (2014)

and Firdhous (2010). Table 3-13 compares the two studies along with the concepts investigated in

these studies.

Table 3-13: Comparison of Wagh’s (2014) and Firdhous’ (2010) Research

Both researchers’ aim was to improve the search process for finding information to aid in legal

decision making. Wagh (2014) proposed an unsupervised text mining technique called clustering

whilst Firdhous proposed a framework to improve searching for information. Wagh (2014) used a four-

step methodology whilst Firdhous (2010) used a framework that consisted of three processes. An

inspection of the methodology and framework revealed that while both use different techniques, the

underlying processes followed are similar. The first step of Wagh's (2014) methodology is identical to

Firdhous' (2010) first process as both require data to be collected from a source. Wagh's (2014) second

and third step involves processing the collected data. During the second and third steps, unstructured

and structured information is separated, and linguistic techniques are applied. Similarly, the second

process of Firdhous' (2010) framework processes the collected data. The second process separates

useful data into a new repository after which linguistic techniques are applied. The fourth step of

Wagh's (2014) methodology is to group and return documents based on a clustering algorithm.

Author Wagh (2014) Firdhous (2010) Comparison
Steps

1 Data Collection from

Manupatra Database

Populate Law Reports’

Repository with Sri

Lankan Fundamental

Rights Cases

Both studies require

data to be collected

from a source

2 Data Pre-Processing 1:

separate structured and

unstructured

information and divide

documents into catch

words and case notes

Mining Process: analyse

cases and store in a new

processed repository.

Apply linguistic

techniques (tokenisation

and POS). Then apply

term generation and

term weighting

Wagh (2014) performs

processing in two

separate steps whilst

Firdhous (2010)

processes in one step.

Both studies use the NLP

techniques tokenisation

and POS

3 Data Pre-Processing 2:

Apply linguistic

techniques

(tokenisation) and create

a term document matrix

Research Process:

receive user input and

return relevant results

Wagh (2014) continues

processing data whilst

Firdhous (2010) starts

providing input and

returns information

4 Grouping Documents:

apply clustering

algorithm

 Wagh (2014) applies

clustering algorithm to

obtain results whilst

Firdhous has completed

all steps

5 Evaluation and Results:

applied technique to 47

judgements. The clusters

produced similar results

Evaluation and Results:

created a Java based

system. High accuracy

results were achieved

for precision and recall

Both studies obtained

results that were

satisfactory to the

authors

 Chapter 3
 Problem Investigation of Legal Information Extraction

65

Firdhous' (2010) third process requires the researcher to provide input to extract the required

information.

Wagh (2014) evaluated the proposed technique by applying the technique to 47 judgements retrieved

by using the query “patents act”. The clusters produced contained similar documents (Section 3.10.2).

Firdhous (2010) evaluated the framework by creating a Java-based prototype system that made use

of libraries and object orientation. The results from the evaluation revealed a high accuracy rate for

both precision and recall. Results for precision revealed that 93% of the time the most relevant case

was found at the top of the returned information. Results for recall revealed that 88% of the time a

different set of case records were returned to the user. The methodology used by Firdhous (2010) can

be used as a guide in creating the prescriptive model for recommending the MAC. The prescriptive

model would require input from a user, perform IE instead of linguistic techniques, have a new

repository created and populated, and query the new repository. The research conducted by Wagh

(2014) will not apply in creating the prescriptive model as no text mining will be needed to aid in

recommending the MAC.

3.10.5 Legal Domain Software
This section will investigate the software available for use in the legal domain. Four types of software

were identified, namely RAVN Applied Cognitive Engine, Equivo’s Zoom System, Beagle AI System, and

eBravia.

3.10.5.1 RAVN Applied Cognitive Engine (ACE)

RAVN ACE is an AI platform that supports applications that automatically organise, discover and

summarise important information from documents and unstructured data. RAVN ACE utilises a

combination of information processing in the form of IE, NLP and semantic technologies to connect to

and work through all sources of information kept on a system (RAVN Systems, 2016). Sources of

information can be document management systems, online repositories, customer relationship

management systems, shared files, and content management systems.

RAVN ACE has three applications that can be applied to the legal domain. These three applications are

(RAVN Systems, 2016):

• RAVN Extract;

• RAVN Connect Enterprise; and

• RAVN Refine.

RAVN Extract can be used to summarise, analyse, and perform IE. The areas where RAVN Extract can

be used are:

• Contract analysis;

• Due diligence;

• Real estate; and

• Financial documents.

With regards to contract analysis, RAVN Extract is used to analyse contracts and detect anomalies or

key points of information. An example of how legal organisations can use RAVN Extract is to provide

clients with contract analysis and make use of it in assessments that have risk and compliance issues.

With regards to due diligence, RAVN Extract automates due diligence by uploading documents and

then applying clustering techniques to the content to place similar documents in a class. Documents

include contracts and portable document formats. With regards to real estate, RAVN Extract can be

applied to commercial real estate data extraction, title deed extraction, and to the sale of shopping

 Chapter 3
 Problem Investigation of Legal Information Extraction

66

centres. In terms of commercial real estate data extraction, RAVN Extract can be used to analyse an

organisation’s competitor marketing brochures and extract key points of information such as tenant

names, prices, and important dates. A similar process is followed to extract title deeds. In terms of the

sale of shopping centres, RAVN Extract makes use of clustering techniques to produce a visual map of

shopping clusters. The visual map indicates a shop’s financial value based on the shop’s lease within

the shopping centre. With regards to financial documents, RAVN Extract can be applied to various

financial agreements to extract the agreement’s structure. The structure generally includes clauses

and terms that might have become outdated over time. Once the first part of extraction is completed,

the application then extracts key definitions from the contract and then exports the data into various

systems or Excel spreadsheets.

RAVN Connect Enterprise is used to locate, capture, and manage knowledge and experience produced

by an organisation. This application identifies implicit and explicit links between data and people using

a graph database. RAVN Refine is used to clean, categorise, and store data. Furthermore, RAVN Refine

applies various controls and policies to deal with data retention, duplicate data, and remove

unnecessary data.

3.10.5.2 Equivo’s Zoom System

Equivo is a software development company that creates text analytic software. Their platform, called

Zoom, is specifically aimed at the e-discovery process within the legal domain. Zoom organises large

collections of documents whilst quantifying and visualising the decision space. Zoom uses six types of

applications to analyse data, namely (Equivo, 2012):

• Near-duplicates;

• Email threads;

• Language detection;

• Search;

• Themes; and

• Relevance.

Near-duplicates is a clustering process in which similar documents are grouped together. Using near-

duplicates allows for similar documents to be grouped together without the user having to accidently

discard the other document. Email threads is used to obtain and reconstruct all email conversations

and identify unique emails within a collection. Language detection is used to identify the main

language that a document is written in. Search allows for data to be explored so that lawyers can

familiarise themselves with a case before relevance training can begin. The Themes application

analyses documents within a collection and creates thematic connections between the content, and

then presents all themes detected in a list for a user to drill-down into and find documents. The

Relevance application organises a group of documents based on the documents’ relevance scores.

This application must first be trained by a human before it can be used. The applications for email

threads, and themes make use of NLP. Search and relevance applications make use of IR. Additionally,

themes also make use of IR to present detected themes.

3.10.5.3 Beagle AI System

Beagle AI is an AI platform aimed at automatic contract analysis. Part of the Beagle AI framework uses

NLP by tagging units of text known as clauses. The framework uses a binary classifier to tag clauses.

Four solutions are offered by Beagle AI, namely (Beagle Inc., 2018) :

• Contract Analysis;

• Licence Analysis;

 Chapter 3
 Problem Investigation of Legal Information Extraction

67

• Corporate Compliance; and

• Regulations and Law.

The Contract Analysis solution analyses a contract and highlights information related to parties,

parties’ responsibilities, and liabilities. A contract is displayed by means of graphs and charts. The

Licence Analysis solution analyses licenses and provides feedback based on the analysis. The

Corporate Compliance solution analyses documents and compares these documents to an

organisation’s corporate rules. The Regulations and Law solution is aimed for team members in an

organisation. The solution analyses contracts, agreements, and corporate policies to create a

database. This database is then used to link with team members’ experience to aid in making

decisions.

3.10.5.4 eBravia

eBravia is an organisation that specialises in contract analysis. eBravia makes use of IE. The solutions

offered by eBravia are (eBravia, 2018):

• Contract Analyser;

• Diligence Accelerator;

• Lease Abstractor;

• Bespoke.

The Contract Analyser stores, retrieves, and analyses contracts. With regards to analysis, the Contract

Analyser extracts information from current and legacy contracts. Users can then populate the

extracted information into a database, Microsoft Excel, or Microsoft Word. The Contract Analyser

makes use of supervised machine learning to recognise various concepts within a contract. The

Diligence Accelerator solution aims to mimic the due diligence process by extracting key concepts

from legal documents and then populating specific templates. Supervised machine learning is also

applied to the Diligence Accelerator solution. The Lease Abstractor solution is aimed at people who

deal with real estate. The Lease Abstractor aims to automate the lease abstraction process to reduce

time and costs that are usually associated with lease abstraction. Similar to Contract Analyser and

Diligence Accelerator, the Lease Abstractor also uses supervised machine learning to recognise

concepts and key words within leases. Bespoke is a solution aimed at users who want to perform

customised analysis on their contracts. Existing eBravia software is customised to cater to a user’s

specific needs. Customisation can be performed by eBravia employees or by the user. Table 3-14

summarises the systems analysed with their features and the techniques used.

 Chapter 3
 Problem Investigation of Legal Information Extraction

68

Systems in the Legal Domain

System Authors Features Techniques

RAVN ACE RAVN Systems

(2016)

• Organises, discovers, and

summarises important

information;

• Uses combination of information

processing, NLP, and semantic

processing;

• Processes documents and

unstructured data; and

• Has three applications, namely:

o RAVN Extract;

o RAVN Connect Enterprise;

and

o RAVN Refine.

• NLP; and

• IR.

Equivo Equivo (2012) • Performs text analytics;

• Focuses on e-discovery within legal

domain;

• Uses six types of applications for

analysis, namely:

o Near-duplicates;

o Email threads;

o Language detection;

o Search;

o Themes; and

o Relevance.

• NLP;

• IE;

• IR; and

• Clustering.

Beagle Beagle Inc. (2018) • AI platform;

• Using tagging and a binary

classifier; and

• Offers four solutions:

o Contract Analysis;

o Licence Analysis;

o Corporate Compliance;

and

o Regulations and Law.

• NLP

eBravia eBravia (2018) • Performs contract analysis; and

• Offers four solutions:

o Contract Analyser;

o Diligence Accelerator;

o Lease Abstractor; and

o Bespoke.

• IE

Table 3-14: Summary of Systems within the Legal Domain

3.10.6 Summary of Frameworks and Systems in the Legal Domain
Figure 3-17 illustrates the common processes shared by the frameworks and extant systems (Section

3.10.1 to Section 3.10.5). Both frameworks and extant systems used four common processes coupled

with certain techniques. The processes followed are:

1. Collect data from a source;

2. Pre-Process analysis;

3. Process data; and

 Chapter 3
 Problem Investigation of Legal Information Extraction

69

4. Store information in repository

Figure 3-17: Processes and Techniques Shared by Frameworks and Extant Systems

The second process, pre-process analysis, makes use of NLP. In the third process, process data,

different techniques were used such as NLP, IR, IE, clustering, and term generation. Based on Figure

3-17, a model can be created that incorporates the shared processes and some of the techniques used

by the frameworks and extant systems. The model would need to collect data from a source, perform

pre-processing analysis, process the data using IE techniques, and save the data.

3.11 IE Model
Based on the concepts investigated in the literature (Section 3.2 to Section 3.9) and the frameworks

and methodologies (Section 3.10) a proposed IE model was derived and is depicted in Figure 3-18. The

IR Process in Figure 3-18 is similar to the Collect Data from a Source process identified in Figure 3-17.

The IR Process as modelled in Figure 3-3 receives a query and returns data from a source to be further

processed. The IE Process and Information Storage Process in Figure 3-18 are the same as Pre-Process

Analysis, Process Data, and Store Information in a Repository from Figure 3-17 as the data would need

to be processed and stored for later use.

 Chapter 3
 Problem Investigation of Legal Information Extraction

70

Figure 3-18: IE Model

 Chapter 3
 Problem Investigation of Legal Information Extraction

71

The IR process in Figure 3-18 accepts a query from a user and processes the query via four processes

to display output based on the information processed. The four processes deal with IR, IE, Information

Storage, and Query Independent Ranking. The IR process will process a user’s query to return a set of

ranked results. The first round of ranking is influenced by the type of IR model implemented. As

discussed in Section 3.3 there are four IR models that can be used to implement the IR process. The

Boolean model should be avoided as its binary nature can produce inaccurate results. The Vector

Space Model could be considered due to its popular usage and the way it ranks documents.

The IE process will extract, integrate, and translate facts from documents. Section 3.4 to Section 3.7

investigated multiple options that are available to extract facts from documents. Depending on the

structure of the documents, general IE techniques can be used to extract facts. Alternatively, Natural

Language Processing or Regular Expressions can be used to extract facts. After all required facts have

been processed, the facts must be saved for future reference and to avoid duplicate processing.

Section 3.8 investigated graph and document databases as an option for storing information instead

of relational databases. Using a graph database would allow for the extracted facts to be stored in

nodes that are connected to each other by specific relationships. Using a document database would

allow for the extracted facts to be stored as documents and have multiple types of data embedded

into a single document.

To further process and get valuable information from the information that has been extracted, query-

independent ranking algorithms can be applied. Different algorithms can be used. Section 3.9

investigated algorithms such as the PageRank, Weighted PageRank, HITS, and Focused Rank

algorithms. The PageRank makes use of links to rank pages. Similarly, legal cases can be connected to

other legal cases if there is a referral. This referral can act as a link that can be parsed through the

PageRank algorithm. The Weighted PageRank would not be suitable in recommending the MAC as it

only considers the link structure and not the content of the legal case. This would mean that the

“division” attribute of a legal case would be overlooked. The division refers to which court a case is

being appealed. The “division” attribute can play an important role as divisions contribute to the

importance of a legal case. The HITS ranking algorithm uses too many constraints which could prevent

the MAC from being produced. The Focused Rank algorithm has limited information available for it,

which could result in limited support for future development.

In terms of IE, the model would have to make use of one of the techniques discussed in throughout

this chapter (Table 3-3). The model would also have to cater for the problems identified in literature

for processing text (Table 3-15). It is likely that these problems could occur as legal documents could

contain ambiguous words, inconsistencies, or words that are either unnecessary or important. Table

3-15 summarises the problems that can be encountered when processing text.

Problem Section Author/Source

Ambiguity of words 3.4 Sumathy and Chidambaram (2013)

Inconsistencies because of special

formats, acronyms, and abbreviations

3.4 Gurusamy and Kannan (2014)

Unnecessary and confusing words 3.2 Gurusamy and Kannan (2014)

Identifying meaningful keywords 3.2 Gurusamy and Kannan (2014)

Table 3-15: Problems Encountered when Processing Text

3.12 Conclusions
This chapter reported on the first activity of the DSR Methodology, namely Problem Identification.

Multiple challenges in processing text can occur and should be addressed accordingly. The absence of

pre-processing tasks on text can bring about poor results returned to a user. Additionally, ambiguity,

 Chapter 3
 Problem Investigation of Legal Information Extraction

72

inconsistencies, and special formatting can all negatively affect text processing. Different methods for

processing text were investigated and various models and algorithms were identified from literature

for IR. Analysis of IR resulted in the illustration of a generalised IR process with accompanying

processes and techniques (Figure 3-3). The process of IE can be used to aid IR by extracting facts from

data that IR has processed. Techniques such as general IE, NLP, web scraping, and regular expressions

were identified to perform IE. The facts extracted after IE should be stored for future use. Instead of

storing extracted facts in traditional relational database management systems, graph and document

databases were investigated as alternative options. Literature suggested that graph and document

databases brought better performance, flexibility, and scalability compared to relational database

management systems. The frameworks and systems investigated in the legal domain all performed

variations of IE and NLP. The frameworks and methodologies were aimed at grouping cases and

improving research by returning appropriate information to users. None of the studies performed

ranking on the data. The frameworks and systems investigated performed IE and NLP on various legal

documents, not only legal cases. Further inspection of the concepts investigated in the literature

review revealed that different techniques from each concept can be incorporated to create a

prescriptive model to recommend the MAC.

This chapter fulfilled the following research objectives:

• RO1: Identify the problems experienced when processing text as identified by literature and

within a real-world context.

This chapter partially fulfilled the following research objectives:

• RO3: Determine what techniques and algorithms can be used to recommend the MAC.

By addressing these ROs, two deliverables were obtained namely, an expanded list of problems (Table

3-15), and techniques and algorithms to process text (Figure 3-3, Table 3-3, and Table 3-12). The

expanded list of problems consisted of problems encountered when processing text as identified by

sources in literature. Table 3-16 provides a summary of the different IE techniques that were

investigated in this chapter. These deliverables will contribute to expanding on the objectives for a

solution.

IE

Technique

NER CO RE EE Web

Scraping

NLP Regular

Expressions

What it

does

Identifies

expressions

related to

an entity

Identifies

multiple

mentions

of a

particular

entity

Detects and

classifies

predefined

relationships

between

entities in a

body of text

Identifies

events and

creates

detailed

structured

set of

information

Extracts

information

from a

website

Analyses

natural

language

text

Uses

patterns to

process

specific bits

of text

When to

use it

To extract

descriptive

information

about an

entity and

complete a

template

To

identify

all

mentions

of an

entity in

a body of

text

To identify

relationships

between

different

entities

To have a

detailed set

of

information

about

events

To

automatically

extract data

from a

website

To

identify

meaning

from

bodies of

text

containing

natural

language

To extract

text,

validate

input text,

search for

text, or

replace text

Table 3-16: Summary of Different IE Methods

 Chapter 3
 Problem Investigation of Legal Information Extraction

73

The next chapter will review findings from questionnaires to identify problems experienced in the real-

world context of the legal domain and will present the design process and proposed model for the

legal domain.

 Chapter 4
 The Real-World Context of the Legal Domain

74

 Chapter 4: The Real-World Context of the Legal Domain

4.1 Introduction

The previous chapter reported on an extensive review of literature related to concepts for IR, IE,

frameworks, methodologies, and tools that can be used to create a model within the legal domain.

This chapter reports on the second and third activities of the DSR methodology namely, Definition of

Objectives for a Solution and Design and Development (Figure 4-1). The problem within the legal

domain is identified, potential objectives and solutions will be determined, and two artefacts to

address the problem are designed in this chapter. Different processes were followed to create the

proposed artefacts (Section 4.2). Legal citations and the structures and features of a legal case are

investigated (Section 4.3). Problems faced within the legal domain will be explicated via

questionnaires (Section 4.4). The environment in which the case study falls will be reviewed (Section

4.5) along with the current architecture used by the case study (Section 4.6). Problems that could be

encountered when processing legal cases will be reviewed (Section 4.7). Objectives and requirements

for the proposed solution are identified (Section 4.8). The following research objectives are

investigated in this chapter:

• RO1: Identify the problems experienced when processing text as identified by literature and

within a real-world context.

• RO2: Identify the attributes of a court case that can be used to aid in recommending the MAC.

• RO3: Determine what techniques and algorithms can be used to recommend the MAC.

Figure 4-1: Chapter 4 DSR Activities

 Chapter 4
 The Real-World Context of the Legal Domain

75

4.2 The Artefact Design Process and Research Methods
The literature review allowed the researcher to gain an understanding of the different techniques that

can be used to create a prescriptive model for recommending the MAC and to identify problems

reported by researchers. To identify the problems experienced by legal researchers, the researcher

sent out a series of questionnaires to the experts from LexisNexis. As part of the DSR methodology,

an artefact is required to solve a practical problem. The artefact suggested for this research problem

is a prescriptive artefact (Section 2.3.3). The prescriptive artefact is a model that would recommend

the MAC for a field of law. Two methods were performed during the relevance cycle of DSR, namely

sending out questionnaires, and analysing existing systems. A literature review was conducted during

the rigor cycle. Table 4-1 summarises the methods used during the research. The information obtained

through the relevance and rigor cycles are passed through to the design cycle.

Methods Used in Research

Method Reason How Method Conducted Cycle

Addressed

Questionnaires and email

correspondence

To further explicate the problem

and obtain a participant profile

Via email Relevance

Cycle

Literature Review To get an understanding of the

techniques, models, and tools

available within the problem

domain

Analysing and critically

reviewing textbooks,

academic articles, and

articles posted online

Rigor Cycle

Extant Systems Analysis To analyse existing systems

within the problem domain

Comparing the systems Relevance

Cycle

Table 4-1: Summary of Methods used in Research

4.3 Legal Cases in South Africa
Principles followed to write legal citations as well as the structure and features of a typical South

African legal case will be presented in this section. The principles indicate how the legal citations

should be written in different areas of a legal case while the structure of a legal case must be

considered to extract information.

4.3.1 Legal Citation Principles
The writing of legal citations is governed by citation principles. Citation principles are followed by a

legal practitioner to write legal citations. The different types of citation principles are illustrated in

Figure 4-2. There are four categories of citation principles, namely:

• Full address principles;

• Other minimum content principles;

• Compacting principles; and

• Format principles.

Full address principles refer to the completeness of the address or identification of a cited document

in terms that allow a user to retrieve a document easily. Other minimum compacting principles refer

to the inclusion of additional information apart from a retrieval address. Additional details include

author names and the year a decision is made. Compacting principles reduces the space taken by

additional information by means of abbreviations and use of principles that eliminate redundancy.

Format principles refers to punctuation, typography, and the order of items within a citation. These

four principles are used throughout a legal case when referencing other legal cases for precedent.

 Chapter 4
 The Real-World Context of the Legal Domain

76

Figure 4-2: Types of Legal Citations (Martin,2013)

4.3.2 Structure of a Legal Case in South Africa
A well-structured legal case report aids in improving clarity, conciseness, and helps ensure that the

reasoning process for a case is complete (Dessau & Wodak, 2003). A legal case report follows a semi-

structured format as there is no set layout that a case must adhere to. The research analysed multiple

legal cases by reading and comparing them to each other. During the analysis, common sections of

information were identified. An example of parts of a legal case obtained from LexisNexis is provided

in Appendix D. A typical legal case consists of sections that provide the following:

• General data;

• An editor’s summary;

• Notes;

• Cases Referred To (CRT) in the judgement; and

• The final judgement of the case.

The general data section of a legal case provides basic information related to a case such as (Figure

4-3):

• Division;

• Date;

• Case number;

• Before (the judges who sat on the case);

• Sourced by; and

• Who summarised the case.

 Chapter 4
 The Real-World Context of the Legal Domain

77

Figure 4-3: General Data About a Case

The division refers to which court a case is being appealed in. There are five courts within South Africa

that are organised in a hierarchy of supremacy, illustrated in Figure 4-4. The five courts based on the

hierarchy of supremacy are the Constitutional Court, Supreme Court of Appeal, High Courts, Special

Courts, and Tribunals, Councils and Commissions.

Figure 4-4: Hierarchy of Courts in South Africa (Author’s own work)

The Constitutional Court deals with all cases that are constitutional related and is the highest-ranking

court in South Africa. A decision made in the Constitutional Court is binding and must be followed by

all courts. The Supreme Court of Appeal deals with appeals made from the High Courts. The Supreme

Court of Appeal is the highest-ranking court to which criminal and civil cases can be heard. All decisions

made in the Supreme Court of Appeal are binding and must be followed in all lower courts unless the

Constitutional Court over-rules a Supreme Court’s decision. High Courts hear all criminal and civil

cases as well as some constitutional cases (Barrett-Grant & Heywood, 2003). Special Courts only hear

specific cases (Webbers Attoryneys, Notaries, 2017). Special Courts consist of various other courts

such as the Labour Appeal Court and Small Claims Court. Tribunals are court of justices used to settle

specific types of disputes (Yambu, 2018). Councils are an advisory body who assist authoritative

Constitutional
Court

Supreme Court of
Appeal

High Courts

Special Courts

Tribunals, Councils, and Commisions

 Chapter 4
 The Real-World Context of the Legal Domain

78

figures with legal matters while commissions grant authority from government to individuals to

perform certain acts, exercise jurisdiction or perform the duties of an office (Black et al., 1990).

Date and case number refer to when the case was held as well as a unique number to identify each

case. All legal cases are heard by an odd number of judges to ensure a unanimous decision is always

reached. Sourced by indicates who sourced the information and Summarised by indicates who

summarised the legal judgement.

The Editor’s Summary provides a shortened description of an entire case and is aimed at people who

do not have enough time to read through an entire case. Notes refer to areas and procedures of law

that a user can refer to. In the legal case, a list of CRTs are provided. These CRTs are cases that were

used to support any arguments (Figure 4-5 and Figure 4-6). The final judgement of the case provides

the ultimate decision made by the judges.

Figure 4-5: First Example of CRTs

Figure 4-6: Second Example of CRTs

 Chapter 4
 The Real-World Context of the Legal Domain

79

To recommend the MAC, various sections of information from a legal case needs to be extracted. The

extracted information can be used to build up a new information storage structure and be parsed

through a query-independent ranking algorithm (Section 3.9). Information from a legal case that can

be useful in recommending the MAC are a legal case’s general data and the list of all CRTs. The general

data that can be useful are the case’s title, division, date, and case number. These bits of general data

can be used to create a smaller version of the legal case along with the CRTs. The case number can be

used to identify each legal case. The title and date can provide more information about a legal case

while the division can be used to determine the legal case’s supremacy (Figure 4-4). The hierarchy of

divisions can influence the value a legal case has. For example, assume there are three legal cases,

where the first legal case is an active case in the High Court, and the other two cases were heard in a

Special Court and the Supreme Court of Appeal. In terms of supremacy, the decision made on the case

in the Supreme Court of Appeal overrules the decision made on the case in the High Court. This implies

that if the nature of the active case is identical or similar to the case heard in the Supreme Court of

Appeal then the judge sitting on the active case has to make the same decision as that in the Supreme

Court of Appeal. This means that the value of the case heard in the Supreme Court of Appeal is higher

than the value of the case heard in the Special Court.

All the CRTs of a legal case should be extracted to aid in the ranking process. When extracting the

details of a CRT it will be useful to extract the CRT’s title, year, journal, and the action taken on that

case. The CRT’s title and year can help identify the CRT in the journals to which it belongs. The action

taken on the CRT will be important as the action determines how valuable the CRT will be for

recommending the MAC. Actions such as ‘Referred to’ or ‘Applied’ will hold a higher value than an

action like ‘Distinguished’ as it means that CRT can be possibly be used to build up a defence for a legal

researcher. Table 4-2 summarises the court case attributes that can be used to recommend the MAC.

Court Case Attributes

Section of Legal Case Attribute Reason

General Data

Title Build a summarised version of the legal case

Division Determine a legal case’s value

Date Build a summarised version of the legal case

Case Number Build a summarised version of the legal case

To identify each case

CRTs Title Build a CRT object

Year Build a CRT object

Journal Build a CRT object

Action Determine the value of the CRT

Table 4-2: Court Case Attributes that can be used to Recommend the MAC

4.4 Problems Faced at LexisNexis
The results of the questionnaires and a description of the participant profiles will be reported on in

this section. The aim of the questionnaires was to explicate and more clearly understand the problems

within the legal domain at LexisNexis.

4.4.1 Aim of Questionnaires and Participant Profiles
Questionnaires are used to easily generate data from any number of respondents at a low cost

(Johannesson & Perjons, 2012). Questionnaires were completed by five experts from LexisNexis. Due

to the level of detail and complexity relating to existing processes and technical infrastructure it was

deemed more appropriate to use questionnaires than interviews. In the context of this research,

experts were defined as individuals who were highly knowledgeable in the legal domain’s processes

and systems. The experts from LexisNexis worked in different departments related to IT and editing

 Chapter 4
 The Real-World Context of the Legal Domain

80

of legal cases. The experts provided valuable information with regards to practical problems within

the legal domain and processes followed at LexisNexis. The results obtained from the questionnaires

was used to create a set of requirements that the prescriptive artefact must address. Table 4-3 and

provides a summary of the profile of the five experts (E1 to E5) from LexisNexis that completed the

questionnaires.

Position Held Expert Work Experience Qualification Responsibilities at

LexisNexis

Technical

Development

Manager and

Solutions

Architect

E1 Software Development

Manager for six years

and a Senior Developer

for two years

BSc Electrical and

Electronics Engineering

Manages technical

research projects.

Architect for various

software and processes

Senior Editor E2 Previously a practicing

Attorney. Senior Editor

since 2008

B.A (Psychology and

Criminology) (UDW); LLB

(UKZN)

Co-ordinates and runs

Judgments Online

product. (Now moved

into Publishing Co-

ordinator Position in

New Business and

Content Development

Team)

Managing

Editor

E3 Practised as an Attorney

prior to joining

LexisNexis. Currently the

Managing Editor for Law

Reports

Law (LLB) (UKZN)

Manages online law

reports and content

LegalCitator

Editor

E4 BLC Editor at LexisNexis

for five years

Advocate at KZN Society

of Advocates for three

years, Lecturer at UKZN

for three years

LLB, LLM Updating and

maintaining the

LegalCitator content

Editor and

Developer of

LegalCitator

E5 24 Years B.Proc, Attorney Editor at LexisNexis

Table 4-3: Profile of Experts

4.4.2 Findings from Questionnaires
Questionnaires were sent to the experts at LexisNexis, followed by a visit to their offices in Durban.

The visit formed part of the relevance and rigor cycles in DSR and aided in completing the second

activity of the DSR methodology. The visit to the head offices allowed the researcher to address

various aspects of the relevance cycle’s application domain such as people, technical systems, and

problems and opportunities. The feedback from the experts verified and clarified the research

problem. This section discusses the findings from the questionnaires and emails. The findings from the

first questionnaire confirmed the problem and objectives stated in Chapter 1 and provided more

detail.

4.4.2.1 Findings from First Questionnaire

The Problem

Two high level problems were identified namely, a primary and secondary problem. The primary

problem was that of recommending the MAC for a field of law to a legal researcher. The experts all

 Chapter 4
 The Real-World Context of the Legal Domain

81

stated that too much time is spent on finding the MAC. The secondary problem was that LexisNexis

has no formal systems or processes in place to help legal researchers find the MAC.

Existing Systems

LexisNexis uses a specialised in-house product called LegalCitator that allows users to perform basic

searching and provides an analysis of judgements. The search functionality is provided by the

technology called ElasticSearch. LegalCitator does not use any algorithms for mining or extracting data

but LexisNexis is trying to get LegalCitator to perform entity extractions.

When asked why the software such as IBMs Watson or ROSS (Section 3.10) are not used at LexisNexis

it was explained to the researcher that licencing issues and competitors already using the software

prevented LexisNexis from implementing any of the software.

Data and Processes

The data available is Case Law and Legislative data. All data is available in XML format. The data

obtained from LexisNexis is semi-structured whilst the data stored on LexisNexis’ databases are

structured. The data is collected and inserted into the system by various editors who are responsible

for different law reports/publications. Data for the LegalCitator is entered into the LegalCitator

desktop application whilst data for other law reports are entered into a stylised Microsoft Word

document and later converted to XML. The rate at which data for reports/publications is updated

depends on the publication but data for LegalCitator is updated monthly.

4.4.2.2 Findings from Second Questionnaire

To further understand the research problem, a second questionnaire was sent to experts at LexisNexis.

The findings from this questionnaire verified and validated the problems and requirements.

Data, IR, and Text Mining

No formal IR processes are followed at LexisNexis. However, LexisNexis makes use of visual pattern

identification and document meta-data markup. All data is referenced on a SQL database whilst the

content is stored in semi-structured XML format and replicated to the production environment.

Converting of data to XML is done using a tool called Link Management Tool. LexisNexis contains

100 000 law reports all from various time periods. No text mining, therefore, no IE, is performed by

the LegalCitator system. LexisNexis believes that text mining could allow for clients to get information

faster.

General Information

According to LexisNexis, the primary objectives of the artefact are:

• To process and extract ALL SA legal cases;

• To save extracted legal cases for future use; and

• To help in recommending the MAC.

4.4.2.3 Additional Information Obtained (from emails and site visit)

Processes for Adding a Case to the LegalCitator Database

In terms of processing cases, the researcher aimed to find out what processes are currently followed

to transform a case from its raw state as a judgement to entering all the case’s data into LegalCitator.

It was found that cases were manually processed by employees with legal backgrounds.

 Chapter 4
 The Real-World Context of the Legal Domain

82

Categorising a legal case is done manually by a person known as an Editor. An Editor has a legal

background but only focuses on the editing of legal documents that are uploaded to systems online.

The Editor reads through the legal case and then uses his/her legal knowledge to determine which

category of law the case fits into. A specific process is followed to enter a case into the database and

LegalCitator. The process includes adding the content into a stylised template, proof reading, and

adding additional information.

The following tasks are performed by Editors and are illustrated in the As-Is business process (Figure

4-7):

1. Retrieve case from Q Drive that contains all unprocessed judgements;

2. Apply corporate styling to the case;

3. Proof read the case;

4. Add relevant information obtained, from Gracies Database, such as area of law and names of

judges;

5. Add keywords and summaries;

6. Add parallel citations;

7. Send final case to the Electronic Product Team;

8. Build case to the live site;

9. Store case on BLC Database; and

10. Legal practitioners use the final case from task 7 to enter details into the BLC Database.

Figure 4-7: As-Is process at LexisNexis

Additional details in task 10 can be the category of a case. Categorising a case requires identification

of various aspects such as the type of court the case was heard in and the legislation used within the

case. Keeping track of a word-count of specific words can be used to categorise a case but it does not

always reflect a true image of what category a case belongs to. During task 11 LexisNexis can use the

cases for any purpose such as finding the MAC.

Databases

Two databases are used with regards to processed cases, namely the BLC Database and the Gracies

Database. Final versions of all cases are stored on the BLC Database whilst the Gracies Database

contains all subject-indexed data. Gracies Database is used to refer to permanent headings such as

 Chapter 4
 The Real-World Context of the Legal Domain

83

areas or categories of law and breaking down keywords from a judgement. These keywords are then

added to the case that is processed. The BLC Database is used by employees to add in a case’s details

such as the category of law and judges’ names. The schema, obtained from LexisNexis, for the BLC

Database can be seen in Appendix E With regards to finding the MAC, the details of an informal process

conducted by LexisNexis was provided which is investigated in Section 4.5.

Legal Citations and Finding the MAC

With regards to legal citations, it was found that the style used to reference citations in South Africa

was different to styles used in other countries, particularly the United States of America. The contents

of a legal citation also vary depending on the structure of the publication cited and the frequency of

the publication. Parallel citations refer to one case that comes from different publications or sources.

4.5 Systems at LexisNexis
Finding the MAC for a field of law can be a long and tedious process. Legal researchers must read

through countless cases to find similar facts and applicable cases worth using. Based on findings from

questionnaires in Section 4.4.2.2, it was determined that LexisNexis has no formal processes and tools

to aid in finding the MAC for a field of law. Furthermore, no range of time taken to find a case could

be provided as the time is different for every situation. An informal process was explained on how

researchers find the MAC for a field of law. The informal manual process consists of the following tasks

which are performed manually by legal researchers:

1. Determine the research area;

2. Determine the problem that needs to be solved e.g. “Unfair dismissal”;

3. Search for cases in the research area;

4. Extract ±20 cases returned from the search process;

5. Read through the 20 cases to find similar facts to current case;

6. Look for cases that use “Applied to”; and

7. Repeat process until applicable cases are found.

The steps from the informal process help identify which attributes of a legal case can be used to

recommend the MAC. Based on task 2, the division in which the legal case was heard will have to be

extracted. A summarised version of the case can be created by extracting the date, case number, and

all cases referred to. Based on task 6, specific words regarding referred to cases will have to be

extracted. These words can include “Applied to” as indicated in task 6. It is suspected that problems

will arise when processing the text of a legal case. LexisNexis employees make use of two systems

namely, the Mylexisnexis.co.za website and the LegalCitator. Mylexisnexis.co.za can be used when

performing tasks such as finding the MAC or any other research while LegalCitator is used to process

and publish legal cases to the Mylexisnexis.co.za website.

An extant systems analysis was conducted to determine how information is accessed and analysed.

Marr (2016) states that all new case data is entered and stored on databases. Mylexisnexis.co.za is an

online search system developed in-house that analyse judgements. The system is powered by the

Elasticsearch search engine. ElasticSearch is an open-source search engine that uses a full-text search

engine library called Apache Lucene (Gormley & Tong, 2015). Elasticsearch stores an entire object or

document and indexes the content of each document to make it searchable. With this search engine,

a user can perform functions such as filtering, searching, and indexing on documents instead of rows

of columnar data. Figure 4-8 illustrates a summary of the Mylexisnexis.co.za system.

 Chapter 4
 The Real-World Context of the Legal Domain

84

Figure 4-8: MyLexisNexis.co.za System Summary (Author’s own work)

The Mylexisnexis.co.za system performs the following functions (LexisNexis, 2016) :

• Searching;

• Signal analysis; and

• Maintaining judgements;

When searching for information on Mylexisnexis.co.za, users currently have the option to focus their

search on five categories of attributes, namely:

• Case details;

• Act details;

• Regulations;

• Rules; and

• Subject.

Searching on case details allows the user to enter an array of information to refine their search. Users

can enter details regarding a judgement’s name, citation, subject, dates, or a judge’s name. Searching

on act details allows the user to obtain information regarding specific acts by letting the user enter

information such as act name, number, and year. Searching on regulations allows a user to enter

information such as a regulation’s name, number, and the type of regulation. If searching on rules,

 Chapter 4
 The Real-World Context of the Legal Domain

85

the user must select a country, jurisdiction, and division. A similar layout is provided when searching

on subject with the addition of a division field to further refine the search. Searching based on subject

was the most commonly used option for searching.

Signal analysis is used to provide an immediate appraisal of each judgement to aid users in

determining which cases they might be interested in. Signals that a judgment can receive are:

• Neutral analysis – a judgement has not been analysed by a court of law to affect its value in

terms of precedence or interpretation;

• Cautionary analysis – a judgement has been analysed by a court of law in a way that suggests

it should be re-examined;

• Positive analysis – a judgement has been analysed by a court of law in a way that suggests it

can be relied upon as authority;

• Negative analysis – a judgement has been analysed by a court of law in a way that suggests it

should not be relied upon as authority;

• No analysis – the judgement has not been analysed by a court of law at all; and

• Conflict analysis – a judgement has been analysed by at least two National Courts in a

conflicting way resulting in the analysis being unresolved by the LegalCitator.

 Signals are given to four features of a case, namely:

• Judgement history;

• National courts’ decision on the judgement;

• Division courts’ decision on the judgment; and

• Judgement name.

Once a user has selected their required results, LegalCitator provides a summary of each judgement.

The summary contains details regarding the following:

• Judgement details;

• Subject index;

• Judgement history;

• Judgement treatment;

• Judgements cited by court;

• Acts, ordinances and by-law;

• Rules; and

• Regulations.

Before content can be published to the Mylexisnexis.co.za system, the content has to be processed

on LegalCitator by LexisNexis users.

LegalCitator is an in-house system developed by LexisNexis to maintain and extract judgements from

four series of law reports. LegalCitator requires the user to perform many tasks and once completed,

allows the user to publish updates to the live site, Mylexisnexis.co.za. The following series of law

reports are supported by LegalCitator:

• ALL SA;

• Butterworth’s Constitutional Law Reports;

• Butterworths’ Labour Law Reports; and

• South African Law Reports.

The main features that LegalCitator allows the user to perform are the following:

 Chapter 4
 The Real-World Context of the Legal Domain

86

• View tables;

• View legislation;

• Maintain cases:

o View existing cases;

o Create new record of a case;

Sixteen tables are available for users to view. A screenshot of the list of tables available can be seen

in Appendix G: Screenshots from LegalCitator. In terms of legislation, LegalCitator contains all Acts

and Ordinances for law in South Africa that users can view. When viewing a case, the user can enter

four different types of information to retrieve the required cases, namely:

• Citation;

• Case name;

• Case number; and

• Judgement date.

When creating a new record, all case details must be added to LegalCitator. Fourteen fields must be

completed when creating a new record. Six of the fourteen fields are compulsory and must be

completed to proceed with creating the case. A screenshot of the fields that must be completed when

creating a new case can be seen in Appendix G: Screenshots from LegalCitator. The compulsory fields

are the following:

• Division;

• Case number;

• Citation;

• Judgement date; and

• Originator.

The user has the option to edit existing records or newly created records by adding additional

information. Additional information is added under eleven tabs, namely:

• Judgement details;

• Case history;

• Parties and appearances;

• Judges;

• Citations;

• Subjects;

• Words and phrases;

• Rule references;

• Act/ordinances;

• Regulations; and

• Cases cited.

Judgement details refer to all case details that would have initially been entered when the case was

created. Case history requires a preceding case to be entered. The parties and appearances tab refer

to all persons who take part in the current case as attorneys or advocates for applicants and

respondents. The judges tab documents all judges who sat in on a case. A judge’s title must be inserted

and whether a judge delivered and was part of the majority. Citations require all parallel citations be

added to the case. When a parallel citation is added, the citation’s name, division, and country must

be added. There must also be an indication if the citation is a primary citation or not. The subjects tab

 Chapter 4
 The Real-World Context of the Legal Domain

87

keeps track of all legal concepts addressed within a legal case. The words and phrases tab keep track

of any key words mentioned throughout the legal case. The acts/ordinances tab consists of all

legislation referred to in a case. All instances of legislation are captured as separate records. As such,

information such as an act/ordinance number, name, and section number must be captured.

Regulations provide a list of all regulations that a court referred to. Cases Cited consists of all cases

that have been cited in a current cast. Once all information has been entered, the BLC and Gracies

database can be updated. The updated information is then made available on the live site,

mylexisnexis.co.za.

4.6 Architecture of LegalCitator
Software architecture consists of a collection of components that interact with each other based on a

specified pattern (Garlan & Shaw, 1993). Various architectural patterns exist but a common pattern

used for business applications is a three-tier architectural pattern (Buschmann, Maunier, Rohnert,

Sommerlad, & Stal, 1996).

A high-level design of the architecture used in LexisNexis’ LegalCitator product was created by the

researcher and vetted by experts at LexisNexis. The resultant architecture can be seen in Figure 4-9.

Various servers and databases work in conjunction to ensure the smooth running of the LegalCitator

A three-tier architectural pattern consists of layers for presentation, application logic, and data (Chen

et al., 2003). LegalCitator uses a three-tier architectural pattern. The first tier is the presentation layer

that consists of the screens that MyLexisNexis users and LexisNexis staff interact with. The

presentation layer manages all user input, output and display of information. MyLexisNexis users

interact with screens on the Mylexisnexis.co.za website through a web browser whilst LexisNexis staff

users interact with screens on the LegalCitator system that is locally installed on staff computers. The

second tier is the application logic layer that controls all business logic based on users’ requests. The

third tier is the database layer that stores and models data required by LegalCitator. The names of the

servers in the architecture are as follows:

• Web server – ResearchWeb.01;

• Application server – ResearchWeb.02; and

• Database server – Research Database.

To display requested data for a MyLexisNexis user the following process is followed by LegalCitator:

1. User inputs a request via a web browser;

2. The request is sent via hyper-text transfer protocol (HTTP) to the ResearchWeb.01 web server;

3. The ResearchWeb0.1 web server passes the request on to the ResearchWeb.02 application

server;

4. The appropriate services/functions within the application server are called and utilised based

on the request;

5. The results from the services/functions are used to look-up the required data from the

Research Database server;

6. The Research Database server sends the required data to the ResearchWeb.01 web server;

and

7. The ResearchWeb.01 web server sends the response in HTML format to the MyLexisNexis

user.

The process to display requested data for LexisNexis users is similar to the process followed for

MyLexisNexis users. However, steps requiring the web server are not needed. As such, the following

processes are followed:

 Chapter 4
 The Real-World Context of the Legal Domain

88

1. Users inputs a request via locally installed LegalCitator program;

2. The request is sent to the ResearchWeb.02 application server;

3. The appropriate services/functions within the application server are called and utilised based

on the request;

4. The results from the services/functions are used to look-up the required data from the

Research Database server;

5. The Research Database server sends the required data to the ResearchWeb.02 web server;

and

6. The output is displayed to the LexisNexis user.

Figure 4-9: Architecture of LegalCitator System at LexisNexis

4.7 Problems Encountered in Processing Legal Cases at LexisNexis
This section reports on the problems that could be encountered when processing legal cases and, on

the problems, experienced at LexisNexis. The informal manual process used to find the MAC in Section

4.5 was used to identify where problems from literature could occur.

4.7.1 Problems in Processing Legal Cases
Chapter 3 identified problems in literature that are encountered when processing text, namely:

 Chapter 4
 The Real-World Context of the Legal Domain

89

• Ambiguity of words;

• Inconsistencies because of special formats, acronyms, and abbreviations;

• Unnecessary and confusing words; and

• Identifying meaningful keywords.

These problems will all be experienced when processing legal cases to recommend the MAC.

Ambiguity can occur during the second and third processes of finding the MAC as search queries could

contain ambiguous words that refer to the problem, research area, and a different concept. Processing

legal cases for step 4 and step 5 can be hindered due to unnecessary and confusing words, and

inconsistencies. This would require the text of the legal cases to be reduced to only the information

needed to recommend the MAC. Additionally, inconsistencies can occur in steps 4 and 5 due to the

style in which legal citations are written. Step 5 and 6 would require meaningful keywords to be

identified. These keywords include the phrase “Applied to” and other actions taken on the list of cases

referred to.

4.7.2 Problems Experienced at LexisNexis
Based on the findings from the questionnaires and email correspondence, LexisNexis experienced the

following problems:

• Lack of access to proprietary systems due to licensing issues;

• No formal IR processes followed;

• Time wasted on searching for the MAC;

• No IE techniques are used;

• No query-independent ranking algorithms are used;

• LegalCitator does not have functionality to recommend the MAC; and

• Different formats of legal citations.

Licencing issue prevent LexisNexis from using existing proprietary systems. This results in LexisNexis

having to find alternative options such as creating the systems themselves. Having no formal IR

processes or functionality to recommend the MAC results in time wasted. Experts revealed that legal

researchers must read through countless amounts of text before finding useful information. This is an

issue that can be resolved by means of IE techniques and the use of query-independent ranking

algorithms. IE could be used to identify and extract important facts from legal cases while query-

independent ranking algorithms can be used to rank legal cases. The absence of formal processes

prevents valuable resources from being allocated to other aspects of a legal researcher’s activities.

Lastly, legal citations are formatted differently to each other and differently in other countries. This

can result in issues when reading the legal citations and ultimately lead to more time wasted.

 Chapter 4
 The Real-World Context of the Legal Domain

90

Table 3-15 can be expanded to include additional problems encountered at LexisNexis (Table 4-4):

Problem Section Author/Source

Ambiguity of words 3.4 Sumathy and Chidambaram (2013)

Inconsistencies because of special formats,

acronyms, and abbreviations

3.4 Gurusamy and Kannan (2014)

Unnecessary and confusing words 3.2 Gurusamy and Kannan (2014)

Identifying meaningful keywords 3.2 Gurusamy and Kannan (2014)

Lack of access to proprietary systems due to

licensing issues

4.4.2 LexisNexis Questionnaires

No formal IR processes followed 4.4.2 LexisNexis Questionnaires

Large amounts of time spent on searching for the

MAC

4.4.2 LexisNexis Questionnaires

No IE techniques used at LexisNexis 4.4.2 LexisNexis Questionnaires

No query-independent ranking algorithms used

at LexisNexis

4.4.2 LexisNexis Questionnaires

LegalCitator does not have functionality to

recommend the MAC

4.4.2 LexisNexis Questionnaires

Different formats of legal citations (to each other

and other countries)

4.4.2 LexisNexis Questionnaires

Table 4-4: Problems with Processing Text in the Legal Domain

4.8 Objectives, Requirements, and To-Be Processes for a MAC Model
The MAC Model will be a prescriptive model that uses IE to recommend the MAC and will from here

on be referred to as the MAC Model. Table 4-5 tabulates the functional requirements that the MAC

Model must meet whilst Table 4-6 tabulates the non-functional requirements. The MAC model should

be able to make a recommendation of the MAC. However, to achieve this, facts from legal cases must

be extracted and CRTs must be identified. After facts have been extracted, the facts should be saved

into a database.

Number Requirement

R1 Recommend the MAC for a field of law

R2 Extract data from legal cases

R3 Populate a database

R4 Identify CRTs

R5 Store extracted facts

Table 4-5: Requirements of a MAC Model

The MAC Model should reduce the amount of time spent by legal researchers on looking for

information. Time can be reduced by extracting the important court case attributes (Table 4-2). The

MAC Model must be able to process large amounts of legal cases quickly to help researchers get as

much information possible in a short time. Lastly, the MAC Model should have an accuracy of 85% to

eliminate the informal manual process that is used.

Non- Functional Requirement Problem

Reduce research time Large amounts of time spent on research

Process large amounts of legal cases quickly Legal researchers would need to process multiple legal cases

at once

Have 85% accuracy To eventually eliminate using the manual, informal process

to find the MAC

Table 4-6: Non-Functional Requirements

 Chapter 4
 The Real-World Context of the Legal Domain

91

Table 4-7 maps the requirements to the features. R1 will require the implementation of IR

intermediate stages (Section 3.2) and IE techniques (Section 3.4 to Section 3.7). R2 and R4 will require

the an implementation of the IE process (Section 3.4) along with specific IE techniques (Section 3.5

and Section 3.7). R3 and R5 will require an IE process to first be implemented followed by the creation

of a database (Section 3.8.1 and Section 3.8.2).

Requirement Recommended Approach Author

R1 To recommend the MAC, IR intermediate stages

and IE techniques must be implemented.

Roshdi and Roohparvar (2015)

Piskorski and Yangarber (2013)

Choudhary and Burdak (2012)

R2 To extract data from legal cases, IE processes

and techniques must be implemented

Abdelmagid et al. (2015)

Piskorski and Yangarber (2013)

Chopra et al. (2013)

R3 To populate the database, facts need to first be

extracted.

Abdelmagid et al. (2015)

R4 To identify CRTs will require the implementation

of Regular Expressions and NLP techniques such

as tokenisation and stop-word removal.

Prasse et al. (2015)

Goyvaerts & Levithan (2009)

Piskorski and Yangarber (2013)

R5 To store extracted facts will require the

implementation of a database.

Pokorný, Valenta, and Kovačič (2017)

Robinson et al. (2015)

MongoDB (2018c)

Table 4-7: Requirements Mapped to Recommended Approaches

To meet the requirements a set of processes must be followed (Figure 4-10 to Figure 4-13). Figure

4-10 illustrates at a high level the To-Be process that is represented by the MAC Model. The process

is triggered by receiving a query for the MAC. This query will then be parsed through the processes of

the proposed model. Once all processing is completed, the final output will be a recommendation of

the MAC.

Figure 4-10: High Level Process of MAC Model

Figure 4-11 expands on the IR process of the proposed model. Once a query has been received, it must

first be validated. An invalid query will require the user to enter another query. If the query is valid it

will be parsed through to the Vector Space Model after which a set of ranked results will be returned

to the user. This first round of ranking is based on the Vector Space Model.

 Chapter 4
 The Real-World Context of the Legal Domain

92

Figure 4-11: IR Process for MAC Model

Figure 4-12 expands on the IE process of the proposed model. Once a set of ranked results have been

returned to the user, the user will then select cases he/she thinks will be appropriate. The selected

cases will then have its content extracted, integrated, and saved to a database. The process will end if

facts are either successfully or unsuccessfully saved to the database. The process would be

unsuccessful if facts could not be saved to the database.

Figure 4-12: IE Process for MAC Model

Figure 4-13 expands on the query-independent ranking process of the proposed model. Once facts

have been saved to the database, the database can then be queried, and the contents can be parsed

through an adaption of the PageRank algorithm to perform the query-independent ranking of the

cases. After cases have been ranked, they will be displayed to the user.

Figure 4-13: Case Ranking Process for MAC System

4.9 Conclusions
This chapter reported on the second and third activities of the DSR methodology namely, Definition

of Objectives for a Solution and Design and Development. Analysis of a legal case revealed that

different attributes of a legal case provided various information about the legal case. The general data

and CRTs of a legal case can be extracted and used to aid in recommending the MAC. In particular, a

legal case’s division, case number, and the CRTs’ action will be important to extract to aid in

recommending the MAC. Questionnaires completed by experts from LexisNexis, revealed the problem

 Chapter 4
 The Real-World Context of the Legal Domain

93

of recommending the MAC for a field of law (Table 4-4). Finding the MAC is a tedious process with no

formal process followed. No formal processes were followed by LexisNexis in terms of IR and data was

stored on various locations. Many of the processes followed such as entering data, searching for data,

and determining the MAC were manual. Analysis of the existing systems at LexisNexis revealed that

these systems were used for capturing data and searching for information.

This chapter fulfilled the following research objectives:

• RO1: Identify the problems experienced when processing text as identified by literature and

within a real-world context.

• RO2: Identify the attributes of a court case that can be used to aid in recommending the Most

Applied Case.

• RO3: Determine what techniques and algorithms can be used to recommend the Most Applied

Case.

Coupled with the literature review and existing systems, the findings from the questionnaires aided in

establishing a set of requirements for the proposed model to recommend the MAC. The proposed

MAC Model will comprise of four processes, namely IR, IE, Information Storage, and Query-

Independent Ranking, and will mimic the informal manual process followed by experts to recommend

the MAC. The informal process highlighted which attributes of a court case can be used to recommend

the MAC (Table 4-2).

By fulfilling these research objectives, five deliverables were provided. The deliverables are an

expanded list of problems in processing text, the solution objectives and requirements (Table 4-5), the

court case attributes that can be used to recommend the MAC (Table 4-2), the As-Is processes at

LexisNexis (Figure 4-7) and the To-Be processes for the MAC Model (Figure 4-10 to Figure 4-13). The

next chapter will report on the evaluation plan and the development of the prototypes based on the

deliverables from this chapter.

 Chapter 5
 Development, Demonstration, and Evaluation

94

 Chapter 5: Development, Demonstration, and Evaluation

5.1 Introduction

The previous chapter investigated the real-world problem of finding the MAC within the legal domain

and introduced the proposed MAC Model along with the MAC Model’s requirements. This chapter

continues to report on the third DSR activity namely, Design and Development, as well as the fourth

activity, Demonstration (Figure 5-1). The proposed model will be presented (Section 5.2) along with

software to be used (Section 5.3) and the architecture (Section 5.4).Different evaluation strategies are

available for DSR (Section 5.5). The Incremental Prototyping Approach is used within the design cycle

of DSR to create iterative prototypes (Section 5.6). An overview of the design and development of the

prototype will be presented (Section 5.7). The main research objective will be investigated in this

chapter:

• RoM : To develop a model to recommend the Most Applied Case for a field of law

Figure 5-1: Chapter 5 DSR Activities

5.2 The Proposed MAC Model
The proposed MAC Model’s IE process will be implemented as a proof-of-concept of the model in a

prototype called the IE Prototype. Various technologies must be used to create the proposed MAC

Model. The MAC Model is different from the IE Model in Figure 3-18 as the MAC Model is developed

 Chapter 5
 Development, Demonstration, and Evaluation

95

based on the findings from literature in Chapter 3 and the requirements established in Section 4.8.

The MAC Model can consist of four processes that address IR, IE, Information Storage, and Query-

Independent Ranking and is illustrated in Figure 5-2.

Figure 5-2: The MAC Model

The first process, IR, deals with the retrieval of cases based on a user’s query (Section 3.2). The user’s

query will be parsed through an IR model after which a set of ranked legal cases will be returned to

the user. The IR model selected is the Vector Space Model as it is the most commonly used IR model

reported in literature (Table 3-2). This first form of ranking is known as query-dependent ranking as a

query provided from a user is required. In the second process, IE, a user will select legal cases returned

 Chapter 5
 Development, Demonstration, and Evaluation

96

from the IR process. Specific facts from the general data section and the list of CRTs of a legal case will

then be extracted (Table 4-2). Facts will be extracted by using a combination of NLP techniques

(Section 3.5) and regular expressions (Section 3.7). The NLP techniques will be used to process the text

and the regular expressions will be used to extract facts from the processed text. The facts will be

integrated and translated into LegalCase objects that will then be saved in the Information Storage

process (Section 3.8).

The Information Storage process will make use of a graph database or document database to save

LegalCase objects that are created from the IE process. Figure 5-3 illustrates the graph model used to

model the graph database. ALL SA cases contain basic information about a case and a list of cases that

were referred to. The graph database will store two types of nodes, namely ‘Case’ and ‘Ref-To-Case’

nodes. Nodes representing a ‘Case’ will contain properties for a case’s title, date of case, division, and

unique case number. The ‘Ref-To-Case’ nodes will contain properties for a referred-to case’s title, year

of case, the journal in which the case can be found, and the action taken on the referred-to case. ‘Case’

and ‘Ref-To-Case’ nodes will be connected by the action that a ‘Case’ node took on a ‘Ref-To-Case’

node. In Figure 5-3 the actions taken are applied, followed, and distinguished. Using a document

database will result in the LegalCase objects being stored as documents that would have a similar

structure to Figure 3-14. The fourth process, query-independent ranking, will rank and return the

LegalCase objects created in a list with the first LegalCase object being the recommended MAC. An

adaption of the PageRank algorithm can be used (Table 3-12).

Figure 5-3: Graph Model of Graph Database

 Chapter 5
 Development, Demonstration, and Evaluation

97

5.3 Summary of Software used in the IE Prototype
To create the IE Prototype, different technologies must be used and connected. The development

language called Python will be used to create the IE process of the model. The IE process will use

Python libraries RE, LXML, and Zipfile. The RE library will enable regular expressions to be created and

executed on text in a legal case. The LXML and Zipfile libraries will allow .docx formatted legal cases’

XML content to be accessed and parsed for extraction. To setup and run the databases, the Neo4j

desktop application can be used for the graph database and the MongoDB Compass desktop

application can be used for the document database. The Neo4j Python library will be used to allow

the IE process to interact with the graph database. Similarly, MongoDB’s Python library can be used

to allow interaction between the IE process and the document database. Table 5-1 summarises the

technologies used to create the IE Prototype.

Software Technique Addressed Use

Pycharm IDE IE and Information Storage To develop the proposed model using

the Python language

Neo4j - desktop application Information Storage To setup the graph database

Neo4j - Python library Information Storage To allow for the IE process to interact

with the Neo4j graph database

MongoDB Information Storage To setup the document database

MongoDB Compass -desktop

application

Information Storage To manage the document database

RE - Python library IE To create regular expressions

LXML - Python library IE To parse legal cases in .docx format

Zipfile - Python library IE To extract the XML contents of a .docx

formatted legal case

Table 5-1: Technologies used to Create the MAC Model

5.4 Three Layered Architecture of a MAC System
The MAC system can be built using a three-tier architecture. Figure 5-4 illustrates how the processes

of the MAC Model relate to the three layers and maps LexisNexis’ architecture to the MAC Model.

Figure 5-4: Architecture of the MAC System

 Chapter 5
 Development, Demonstration, and Evaluation

98

In Figure 5-4 IR will form part of the presentation and application layers. The presentation layer will

receive input from the user in the form of a query and allow the user to select cases. The query is then

parsed through the IR process which will return cases for the user to select for processing. IE will then

process the selected cases. IE will only be part of the application layer as the user will not have control

over the extraction of the selected cases. The extracted facts are then processed to become LegalCase

objects and parsed to the database layer to be saved. Information Storage will form part of the

database layer and use a document database. The extracted facts are then parsed to a query-

independent ranking algorithm. Query-independent ranking will form part of the application layer and

return results to the presentation layer. Ranking will make use of an adaption of the PageRank

algorithm to rank the selected cases and recommend the MAC. Once cases have been ranked, the

output will be sent back to the presentation layer for the user to view.

Figure 5-4 also maps the architecture used by LexisNexis to the MAC System. LexisNexis users interact

with either the Mylexisnexis.co.za website or the LegalCitator which are both found on the

presentation layer. The Mylexisnexis.co.za website is linked to the Research Web.01 server while the

LegalCitator is linked to the Research Web.02 application server. Both servers are connected to the

Research Database server and pass information back to the presentation layer.

5.5 Evaluation Strategies and Methods for DSR
Evaluation is an essential activity when performing DSR. During evaluation, outputs such as design

artefacts, theories, and information systems must be examined. These examinations act as evidence

that a newly created artefact from DSR works or achieves the requirements for which it was designed

(Venable, Pries-Heje, & Baskerville, 2012). When evaluating a design artefact various characteristics

must be examined against the requirements of the artefact (Hevner, March, Park, & Ram, 2004). An

appropriate strategy consisting of evaluation methods must be followed. Following a strategy will

determine how well the design artefacts supports a solution to its assigned problem (Peffers et al.,

2007).

The Framework for Evaluation in Design Science Research (FEDs) was developed to guide researchers

in developing an appropriate strategy to evaluate artefacts that are created during DSR (Venable,

Pries-Heje, & Baskerville, 2016). The FEDs Framework is built on two dimensions, namely the

functional purpose of an evaluation and the paradigm of the evaluation. The two dimensions can make

use of different evaluation methods and strategies (Figure 5-5).

Figure 5-5: FEDS Framework with Different Evaluation Strategies (Venable et. al, 2016)

 Chapter 5
 Development, Demonstration, and Evaluation

99

5.5.1 Functional Purpose of Evaluation
The functional purpose of an evaluation is the first dimension of the FEDs Framework. This dimension

answers the question Why an evaluation must occur. Venable et al. (2016) identify two types of

evaluations based on the first dimension, namely:

• Formative evaluations; and

• Summative evaluations.

Formative evaluations aid in iteratively improving an artefact that is being developed and produce

empirically based interpretations that act as a basis for successful action to improve the characteristics

or performance of an artefact. Summative evaluations determine the extent to which outcomes match

the intended expectations and focus on meanings and support decisions that influence the selection

of an artefact within a real-world context. Therefore, summative evaluations produce empirically

based interpretations that provide a basis for creating shared meanings about an artefact (Venable et

al., 2016).

5.5.2 Paradigm of Evaluations
The paradigm of evaluations is the second dimension of the FEDs Framework. This dimension answers

the question How to evaluate by referring to various evaluation methods. Venable et al. (2016)

differentiate between artificial and naturalistic evaluations for the paradigm dimension. Artificial

evaluations can be empirical and non-empirical and are mainly used to test a design hypothesis.

Artificial evaluations include:

• Laboratory experiments;

• Simulations;

• Criteria-based analysis;

• Theoretical arguments; and

• Mathematical proofs.

Naturalistic evaluations determine the performance of a solution in a real-world environment.

Evaluating a solution in a real-world context allows for all complexities that exist in a real-world

context to influence the evaluation. Naturalistic evaluations include:

• Case studies;

• Field studies;

• Field experiments;

• Surveys;

• Ethnography;

• Phenomenology;

• Hermeneutic methods; and

• Action research.

Choosing between artificial and naturalistic evaluations depends on the needs and resources of the

DSR project (Venable et al., 2016). Artificial evaluation is generally a simpler, straightforward, and less

costly form of evaluation. Artificial evaluation requires reductionist abstraction from a natural setting

and can sometimes be unrealistic. Artificial evaluation is also said to be unrealistic in the sense that it

does not involve real users, systems, or problems. Naturalistic evaluations can be more difficult as

many confounding variables must be considered. However, naturalistic evaluations allow for critical

face validity and rigorous assessment of effectiveness of an artefact.

 Chapter 5
 Development, Demonstration, and Evaluation

100

5.5.3 FEDs Evaluation Strategies
The FEDs Framework has four different strategies that can be implemented by the researcher,

namely (Venable et al., 2016):

• Quick and simple;

• Human risk and effectiveness;

• Technical risk and efficacy; and

• Purely technical.

The quick and simple strategy involves minimal formative evaluation and moves quickly to summative

and naturalistic evaluation. This strategy requires only a few evaluation episodes and is low in cost.

Additionally, the quick and simple strategy promotes quick project conclusion and might not be

reasonable to follow when faced with design risks. The human risk and effectiveness strategy uses

formative evaluations and progresses towards summative evaluations at the end of the strategy.

Formative evaluations begin with artificial formative evaluations but later change to naturalistic

formative evaluations. Towards the end of the human risk and effectiveness strategy, summative

evaluations are used to rigorously asses the effectiveness of the artefact.

Table 5-2: Summary of FED Strategies Adapted from Venable et al. (2016)

DSR

Evaluation

Strategy

About Strategy Circumstance Selection Criteria Functional

Purpose

Paradigm of

Evaluation

Quick and

Simple

Minimal formative

evaluation;

Prefers summative and

naturalistic evaluation;

Few evaluation episodes;

Low in cost;

Promotes quick project

completion.

If a small and simple

construction is needed; and

If there is low social, technical

risk, and uncertainty.

Formative

Evaluation;

and

Summative

Evaluation.

Naturalistic

Human Risk

and

Effectiveness

Starts with formative

evaluations;

Ends with summative

evaluations.

If the design risk is social or user

orientated;

If it is cheap to evaluate with

real users in real context; and

If the critical goal of the

evaluation is to establish that

the benefit of the artefact will

continue in a real-world

context.

Formative

Evaluation;

and

Summative

Evaluation.

Artificial;

and

Naturalistic.

Technical Risk

and Efficacy

Starts with formative

evaluations;

Uses formative artificial

evaluations;

Progresses to summative

artificial evaluations;

Ends with summative evaluations.

If major design risk is technically

orientated;

If its prohibitively expensive to

evaluate with real users within

a real-world context; and

If it is a critical goal to

determine if the benefits

experiences are due to the

artefact and not something

else.

Formative

Evaluation;

and

Summative

Evaluation.

Artificial;

and

Naturalistic.

Purely

Technical

Artefact

Involves no human users

at all.

If artefact is purely technical. Artificial

 Chapter 5
 Development, Demonstration, and Evaluation

101

The technical risk and efficacy strategy uses iterative artificial formative evaluations but later changes

to summative artificial evaluations. Using summative artificial evaluations allows for the efficacy of an

artefact to be determined. Towards the end of this strategy, naturalistic evaluations are used. The

purely technical strategy is only used if no human users are required. This strategy favours artificial

evaluations over naturalistic evaluations. A summary of the four strategies as well as when to choose

each strategy is provided in Table 5-2.

5.6 Incremental Prototyping Approach and Evaluation Plan
This section will report on the incremental prototyping approach for creating prototypes. An

evaluation plan for the prototypes will then be presented.

5.6.1 Incremental Prototyping
A prototype is an estimated version of a product of interest that can follow one or more dimensions.

The first dimension refers to the extent to which a prototype is physical as opposed to analytical. The

first dimension implies that a prototype can be tangible or intangible. Tangible prototypes are physical

artefacts of a product that are built for testing and experimentation whilst intangible prototypes are

used for analytical purposes and are usually mathematical, visual, or computer simulations. The

second dimension refers to the extent to which a prototype is comprehensive as opposed to focused.

Comprehensive prototypes implement the majority, if not all, of a product’s attributes.

Comprehensive prototypes can therefore be fully-scaled and fully operational versions of a product.

Focused prototypes only implement one or few attributes of a product (Ulrich & Eppinger, 2012). For

this research, an analytical, non-tangible, focused prototype will be created by means of incremental

prototyping.

Incremental prototyping involves the gradual evolution of an artefact through building individual

prototypes (Carr & Verner, 1997). Each prototype requires phases related to requirements, design,

implementation, and testing to be followed. Therefore, implying that a working version of the artefact

is produced from the first prototype onwards. Various advantages are obtained by following

incremental prototyping such as (Sarker, Faruque, Hossen, & Rahman, 2015):

• Working software is generated quickly;

• Easier to test and debug;

• Managing risk is easier; and

• Provides flexibility.

Working software is produced as each prototype must go through requirements, design,

implementation, and testing phases. Testing and debugging prototypes become easier as developers

only need to concentrate on one particular prototype that has limited code. Managing risk becomes

easier as all areas susceptible to risk are identified and handled during each iteration. In terms of

flexibility, changing an artefact’s scope and requirements becomes less costly.

5.6.2 Functional Purpose, Paradigm, and Strategies
The functional purpose of conducting the evaluations in this research is to evaluate two artefacts,

namely the theoretical MAC Model and the practical artefact (the IE Prototype). The theoretical model

must be evaluated to determine how well the model meets the requirements of recommending the

MAC. The practical artefact must be evaluated to determine if there will be any problems with the

prototype’s design.

 Chapter 5
 Development, Demonstration, and Evaluation

102

The theoretical MAC model was designed based on literature, extant systems analysis, and

questionnaires completed by experts from LexisNexis (Section 5.2). The practical artefact was

developed as a proof of concept of the MAC Model’s IE process. The practical artefact, hereafter

referred to as the IE Prototype, consists of two processes namely, the IE process and the Database

process. Evaluation of the IE Prototype will determine how well the chosen techniques and algorithms

(RO3) are in performing IE to recommend the MAC.

The evaluation strategy selected for this research is the technical risk and efficacy strategy due to the

technical nature of the research problem. The technical risk and efficacy strategy was also chosen as

it will be too expensive to solely evaluate the artefacts with real members from LexisNexis. The

technical risk and efficacy strategy focuses on formative evaluations in the start of evaluations but

progressively moves to summative evaluations. The prototypes will be evaluated by conducting

iterative formative evaluations and summative naturalistic evaluations.

The aim of having iterative formative evaluations is to detect and eliminate any potential functional

issues that the prototypes could incur. Once development of the IE Prototype has finished,

summative-naturalistic evaluations will occur. Summative-naturalistic evaluations will consist of a set

of experiments to determine the prototypes’ performance under real-world conditions. These

experiments can be made up of real-world cases that were used by legal researchers to find the MAC

for a legal dispute.

Five evaluation techniques will be followed throughout the summative-artificial evaluations:

• Analytical;

• Experiment;

• Observational;

• Descriptive; and

• Testing.

For Analytical, the practical artefact’s architecture, optimisation, and dynamic ability will be tested.

The artefact’s architecture must be evaluated to determine how well the artefact will fit into

LexisNexis’ technical architecture. The artefact must be tested to determine its bounds of optimality.

In terms of being dynamic, the code will be debugged and analysed to eliminate unnecessary

components and ensure that the artefact is compatible with other software that forms part of the

architecture. With regards to Experiment, controlled experiments will be conducted to ensure that all

properties of the practical artefact are evaluated. For Observational, a case study will be used.

Examples of previous cases used for a dispute can be obtained from LexisNexis and put through the

artefact to determine the efficiency and accuracy of the IE Prototype. Descriptive, well designed

scenarios from the observational technique can also be used to show the artefact’s use. In terms of

Testing, both functional and structural testing must be conducted to ensure that the practical

artefact’s architecture is sound and that all sections of the code work properly. Following these

techniques will in turn allow for different properties to be evaluated.

5.6.3 Evaluation Criteria
Three criteria identified by Jouili and Vansteenberghe (2013), Chen (2016), Kabakus and Kara (2017),

and Frekjmr, Hertzum, and Hornbaek (2000) can be used to evaluate the performance of the IE

Prototype (Table 5-3). The three criteria are:

• Effectiveness;

• Scalability; and

• Execution time.

 Chapter 5
 Development, Demonstration, and Evaluation

103

The first criterion, effectiveness, refers to the degree a system can achieve specific goals (Frekjmr et

al., 2000). Effectiveness of the IE Prototype can be determined by measuring the accuracy. Accuracy

refers to the closeness of agreement between an observed value and the actual value (Menditto,

Patriarca, & Magnusson, 2007). The output produced for each legal case from the IE Prototype will be

measured against the expected output. The following equations are used to determine the accuracy:

𝑋𝑖 =
𝐴𝑖

𝐵𝑖

Equation 5.6-1: Difference Ratio

Where:

 Xi = the difference ratio for a legal case I;

Ai = the CRT output for legal case I that differs from the expected CRT output for legal case I; and

 Bi = the expected CRT output for legal case i.

𝑌 =
∑ 𝐴𝑖
𝑛
𝑖=1

∑ 𝐵𝑖𝑛
𝑖=1

Equation 5.6-2: Total Difference Ratio

Where:

 Y = total difference ratio for CRTs;

Ai = the total CRT output for legal case I that differs from the expected CRT output for legal case I;

and

 Bi = the total number of CRT output for legal case i.

An ideal value for the difference ratio is 0 indicating that there is no difference between the output

and the expected output. For this research, an error margin of 10% will be applied, implying that a

difference ratio of 0.1 or less will be acceptable (Conroy, 2016).

The second criterion, scalability, refers to a system’s ability to accommodate and process an

increasing work load (Bondi, 2000). Scalability can be tested by putting different workload sizes

through the IE Prototype (Jouili & Vansteenberghe, 2013). This will require a connection to the

database to be established followed by the time taken to populate the database with data to be

recorded. Chen (2016) further states that a scalable system can result in a higher maturity. Implying

that the system can handle more users.

The third criterion, execution time, refers to the time taken to perform actions in a system or database

(Chen, 2016). For this research, execution time will be recorded for the two processes of the IE

Prototype namely, the IE process and Database process. For the IE process, time will be recorded for

extracting and creating LegalCase objects. For the Database process, time will be recorded for writing

the LegalCase objects as key-value pairs and inserting them into the database (Kabakus & Kara, 2017).

Shorter processing times can indicate an efficient and better performing system or database. This in

turn can have an impact on scalability.

All three criteria can affect each other. The effectiveness of the IE Prototype can affect the scalability

and execution times. An inaccurate IE Prototype could result in unnecessary extractions resulting in

 Chapter 5
 Development, Demonstration, and Evaluation

104

more workloads for the prototype to process. Execution time can affect the scalability as longer

execution times will mean that larger workloads will take longer to process. Table 5-3 summarises the

evaluation criteria for the IE Prototype.

Evaluation Criteria

Criteria Importance How to Test Effect on Other

Criteria

Author

Effectiveness To determine how

accurately the IE

Prototype achieves

its goals of

performing IE and

populating the

database.

Observe the

number of

extractions

obtained versus

the actual number

of extractions.

Can affect the

scalability and

execution times of

the IE Prototype.

Frekjmr, Hertzum,

and Hornbaek

(2000)

Scalability To determine the

IE Prototype’s

ability to handle

different sized

loads of data.

Parse different

sized workloads

through the IE

Prototype.

Can contribute to

maturity.

Jouili and

Vansteenberghe

(2013)

Execution Time Smaller execution

times can result in

a more responsive

system or

database.

Use different sized

workloads

Can affect

scalability.

Chen (2016)

Kabakus and Kara

(2017)

Table 5-3: Evaluation Criteria for an IE Prototype

5.7 Overview of Prototypes and Evaluation
In accordance with incremental prototyping approach, four phases were followed when creating the

IE Prototype. These four phases related to requirements, design, implementation, and testing. Two

iterations were followed to create the IE Prototype. Table 5-4 provides a summary of the evaluations

conducted.

Dimension What is addressed Evaluation Type Methods

Functional Purpose Why the IE Prototype must be

evaluated

Iterative Formative

Summative -Naturalistic

Incremental

Prototyping

Paradigm of Evaluation How the IE Prototype will be

evaluated

Artificial

Naturalistic

Laboratory

Experiments

Case Study

Table 5-4: Evaluation Summary

Table 5-5 and Table 5-6 summarises the experiments and evaluation process that were conducted for

the IE Prototype. The IE Process was implemented over an iterative formative evaluation through

three experiments and investigated web scraping, regular expressions, tokenisation, and stop-word

removal. A summative naturalistic evaluation was also conducted through two experiments of the IE

process. The Database process was also implemented over an iterative formative evaluation. The

experiments for the Database process evaluated the graph and document databases.

 Chapter 5
 Development, Demonstration, and Evaluation

105

Iteration Evaluation Type Process (N) Techniques Documents

1 Iterative Formative IE Process 3 Web Scraping Information

Regular Expressions

Tokenisation

TD (PDF and

.docx)

T1 – T3

U1 – U10

Summative

Naturalistic

IE Process 2 Regular Expressions

Tokenisation

Stop-Word Removal

U1 – U10

2 Iterative Formative Database Process 1 Graph Database -

Summative

Naturalistic

Database Process 2 Document Database U1 – U10

Table 5-5: Experiment Summary

A total of 15 documents were used for testing. TD PDF and TD.docx were documents created by the

researcher to use as initial tests for performing IE. Documents T1 to T3 were legal cases obtained from

LexisNexis and used to build the MAC System. Documents U1 to U10 were unseen legal cases also

obtained from LexisNexis and used to test the MAC System.

The evaluations will use the technical risk and efficacy strategy as well as iterative formative

evaluations and summative-naturalistic evaluations. Experiments and testing will be done to

determine the IE Prototype’s effectiveness/accuracy and scalability. Execution time will be recorded

during the evaluation of the IE Prototype as more documents will be used during the evaluation as

opposed to the 15 documents for experiments.

Evaluation

Type/Strategy

Purpose How it is Done Metrics

Technical Risk and

Efficacy Strategy

To determine the

Benefits Experienced

of the Artefact

Formative and Summative

Evaluations

Effectiveness/Accuracy

Scalability

Iterative Formative

Evaluations

To detect and

eliminate any

functional issues in

prototypes

Experiments/Testing

Summative-

Naturalistic

Evaluations

To determine

prototype’s

performance under

real-world conditions

Experiments

Table 5-6: Evaluation Process

5.7.1 Iteration 1
Iteration 1 of the IE Prototype consisted of five experiments. The first experiment made use of web

scraping while the remaining four experiments performed IE directly on legal case documents. The

libraries used to run the experiments were Selenium, Tika, RE, Lxml, Neo4j, and MongoDB. The IE

Prototype addressed requirements R2, R3, R4 and R5. Tika was not investigated in Chapter 3 as it was

only used to parse the contents of a PDF document. Table 5-7 summarises the experiments that were

conducted for the formative evaluation of iteration 1 and Table 5-8 summarises the experiments that

were conducted for the summative evaluation of iteration 1.

 Chapter 5
 Development, Demonstration, and Evaluation

106

Experiment Technique Processes Result

1: Web Scraping Web Scraping Information (1) Extract Facts Unsuccessful Extraction

2: Performing IE Directly

on PDFs

Regular Expressions

Tokenisation

(1) Extract Facts Successful Extraction

Unsuccessful Extraction

3: Performing IE Directly

on .docx

Regular Expressions

Tokenisation

Stop-Word Removal

(1) Extract Facts;

(2) Integrate Facts; and

(3) Translate Facts to

Output.

Successful Extraction

Successful Extraction

but Additional Cleaning

Required

Table 5-7: Summary of Formative Evaluations for Iteration 1

Experiment Round Technique Processes Test Documents Result

4: Testing on

Unseen Legal

Cases,

Cleaning, and

Additional

Programming

First Test Regular

Expressions

Tokenisation

Stop-Word

Removal

(1) Extract

Facts;

(2)

Integrate

Facts; and

(3)

Translate

Facts to

Output.

T2 and T3 Partial Extraction

Data

Cleaning Part

2

Cleaned up to a point.

Minor inconsistencies

prevented complete

cleaning.

Additional

Programming

Improved regular

expressions to cater for

different legal cases

Second Test Successful extraction but

minor inconsistencies

prevented ideal

extraction

5: Testing on

Unseen Legal

Cases

Round 1 Regular

Expressions

Tokenisation

Stop-Word

Removal

(1) Extract

Facts;

(2)

Integrate

Facts; and

(3)

Translate

Facts to

Output.

U1-U10 CRTs extracted but

changes to the MAC

System can bring better

results

Round 2 Results improved but

CRTs without any action

are merging with other

CRTs

Round 3 Successful extraction of

CRTs

Table 5-8: Summary of Summative Evaluations for Iteration 1

A summary of the documents used in the experiments is provided in Table 5-9. The documents used

for each experiment is highlighted as well as a description of the experiment.

 Chapter 5
 Development, Demonstration, and Evaluation

107

Document Name Used in Details

TD PDF and TD.docx Experiment 2 Round 1 TD was created by the researcher to test extracting facts.

TD was in PDF format. Facts related to date, title, mobile

number, email address, and web address were to be

extracted.

Experiment 3 Round 2 TesterDoc1 was converted to MS Word .docx (TD.docx)

format to perform IE on.

T1 Experiment 2 Round 2 T1 was a legal case obtained from LexisNexis. T1 is in PDF

format and was used as a base to build the MAC System to

extract facts.

Experiment 3 Round 2 T1 was converted to a MS Word .docx file to perform IE on.

T2 Experiment 4 T2 was a legal case obtained from LexisNexis. T2 was used

to further build the MAC System as it provided a different

structure than T1.

T3 Experiment 4 T3 was a legal case obtained from LexisNexis. T3 was used

to further build the MAC System as it provided a different

structure than T1 and T2.

U1-U10 Experiment 4 U1-U10 were used as unseen cases to test the MAC

System.

Table 5-9: Summary of Test Documents used in Experiments

5.7.1.1 Iteration 1: Experiment 1: Web Scraping

The aim of using web scraping was to access legal cases from the Mylexisnexis.co.za website and

extract the facts from the legal cases online. To achieve the extraction, a script was written that could

automatically login to the Mylexisnexis.co.za website and proceed to locate and download the

required files. Two methods were used to perform the automatic login. The first method required the

login details to be sent via a Python dictionary to the Mylexisnexis.co.za website. The login details

required were the username, password, and a security token. The first method did not work as security

protocols on the Mylexisnexis.co.za website prevented the automatic login from occurring. It is likely

that submitting the security token caused the security protocols to deny access. A second method was

used to work with the security protocols. During the second method a library called Selenium was

used. Automatic login with Selenium was successful as only the username and password were

required. However, the experiment was unsuccessful as the legal case files could not be accessed as

the script was unable to locate the required HTML tags containing the legal cases.

5.7.1.2 Iteration 1: Experiment 2: Performing IE Directly on Legal Case Documents

The aim of experiment 2 was to load and extract facts from documents using the libraries Tika and RE.

Initially, facts were loaded and extracted from a PDF document created by the researcher (Appendix

H). The Tika library was used to load and parse the PDF document’s contents and the RE library was

used to create and apply regular expressions to extract specific facts from the content. Facts related

to date, title, mobile number, email address, and web address were successfully extracted.

After facts from the PDF created by the researcher were loaded and extracted, a set of three test legal

cases, referred to as T1 toT3, were then tested. The test legal cases were obtained from LexisNexis.

Following successful extraction of T1, cases T2 and T3 were ran through the program. Facts from T1

such as the case’s title, division, date, case number, before, and CRTs were extracted by using regular

expressions. However, errors were encountered when trying to extract the CRTs from T1. Multiple

attempts were made at altering the regular expressions and tokenising the text, but none were

successful. After additional research was conducted it was found that parsing PDF documents to

perform IE are not ideal as PDFs are inconsistently formatted or the text of the PDF can be images. In

 Chapter 5
 Development, Demonstration, and Evaluation

108

this case, T1, T2 and T3 were found to have inconsistent formatting. These inconsistencies made it

difficult to extract all required facts from the legal cases and as such another approach was required.

This resulted in an unsuccessful extraction of PDF formatted legal cases. Figure 5-6 illustrates the

results from performing IE on T1. Figure 5-6 shows the facts extracted for T1 namely, the title, division,

date, case number, and the judges who heard the case. The value “None” is displayed for the CRTs

that should have been extracted.

Figure 5-6: Results from Experiment One Phase Two

5.7.1.3 Iteration 1: Experiment 3: Performing IE Directly on Legal Case Documents

Experiment 3 used the libraries Lxml and RE. The first aim of Experiment 3 was to load and extract

facts from a Microsoft (MS) Word .docx formatted document. Experiment 3 first used a MS Word

.docx document that was created by the researcher. The Lxml library was used to parse the contents

of a MS Word document and the RE library was used to create and apply regular expressions on the

document’s content. Facts related to email address and dates were to be extracted. The method used

for Experiment 3 is different from Experiment 2 as a MS Word document in .docx format is parsed

instead of a PDF document. A MS Word .docx document is essentially like a zip file that contains

multiple files. The file of interest is the ‘word/document.xml’ file as it contains the text of the

document in different tags. Experiment 3 extracted the text from the ‘word/document.xml’ file and

parsed the text into a tree. The tree was then processed to look for and extract ‘paragraph’ tags. The

paragraph tags were processed, and regular expressions were applied to the paragraphs to extract

required facts. The overall process followed to perform IE on the legal documents is illustrated in

Figure 5-7.

 Chapter 5
 Development, Demonstration, and Evaluation

109

Figure 5-7: The IE Process of the MAC Model

The second aim was to clean the text and perform extraction on T1 as a MS Word .docx formatted

legal case. The cleaning process required stop-words to be removed before performing IE. It was found

that legal cases can contain large amounts of text. To avoid applying the regular expressions on all

words in the text, the required sections, namely the general data and CRTs, containing the facts for

extraction of the legal case were identified and processed separately from the rest of the text. The

general data and CRTs were successfully extracted and returned in the form of lists. However,

additional cleaning of the extracted facts was required to save the facts to a database. Figure 5-8

illustrates the results from using the Lxml and RE libraries.

Figure 5-8: Results from Experiment Two Phase Two

5.7.1.4 Iteration 1: Experiment 4: Cleaning Extracted Facts and Additional Programming

Experiment 4 required the program to run on the remaining test cases, T2 and T3, and perform

additional cleaning so that the facts could be translated into LegalCase objects and populated in the

database. When testing with T2 and T3, it was found that some facts were not being extracted or were

not extracted correctly. This occurred for two reasons, namely the regular expressions were not

designed to handle text that was in different formats, and the legal cases were inconsistently

formatted. The issue was overcome using two approaches. The first approach altered or created new

regular expressions to cater for text in the different formats. The second approach performed a second

round of cleaning in which additional stop-words were removed. Extraction of the general data and

CRTs from T2 and T3 was partially successful.

 Chapter 5
 Development, Demonstration, and Evaluation

110

Upon further inspection, it was found that the CRTs would require separate processing to be inserted

into the database. This required the section of the legal case regarding CRTs, to be isolated from the

rest of the text and have separate regular expressions created to perform the extraction. The CRTs for

T1 were successfully extracted. However, when testing T2 and T3 not all the CRTs were extracted. This

required additional regular expressions to be written and a third round of cleaning to remove

unnecessary words and characters. T2 and T3 were then retested with the result that all CRTs were

extracted but some unnecessary words were extracted and included with the CRTs. The final set of

unnecessary words and characters occurred due to the inconsistency of the legal case’s formatting,

but this should not prevent all extracted facts from being inserted into a database. Table 5-10

summarises the facts extracted from T1 to T3 where a tick indicates extraction and a tilde indicates

partial extraction.

 Legal Cases

Primary Attribute T1 T2 T3

Case Name ✓ ✓ ✓

Case Division ✓ ✓ ✓

Case Date ✓ ✓ ✓

Cases Referred To Attribute ✓ ~ ~

Table 5-10: Attributes Extracted from the Legal Cases (T1, T2, and T3)

5.7.1.5 Iteration 1: Experiment 5: Testing MAC System on Unseen Legal Cases

For Experiment 5, ten legal cases (U1 to U10), were downloaded from the Mylexisnexis.co.za website.

The purpose of using unseen legal cases was to determine how effective the IE Prototype performed

on data that it had not previously processed. Different keywords were used to return and download

the unseen legal cases. The downloaded legal cases were then converted to MS Word .docx format

and parsed through the IE Prototype. An expected number of results for the general data and CRTs

was compared to the actual results obtained and various calculations based on Equation 5.6-1 and

Equation 5.6-2 were made to determine the IE Prototype’s effectiveness. Table 5-11 summarises the

number of CRTs present in each unseen legal case that was to be extracted.

Document Number of CRTs

U1 36

U2 12

U3 28

U4 2

U5 20

U6 29

U7 16

U8 11

U9 8

U10 4
Table 5-11: Number of CRTs to be extracted from Unseen Cases

Three rounds of experiments were conducted during Experiment 5 that used the legal cases U1 to

U10. The first round of experiments parsed the unseen legal cases through the IE Prototype to obtain

and analyse the results. Round one revealed that improvements to the IE Prototype were required.

Particularly to the part of the IE process that deals with extracting the CRTs. Extractions were

categorised as being either perfectly extracted, partially extracted, or not extracted at all. Perfect

extractions implied that the specific property was extracted without any issues and contained no

unnecessary text. Partial extractions referred to properties that were extracted but contained some

unnecessary text. No extractions implied that a property was not extracted by the IE Prototype. Table

 Chapter 5
 Development, Demonstration, and Evaluation

111

5-12 summarises the number of extractions performed for the general data for all the unseen legal

cases for Rounds 1,2, and 3.

Result Round 1 and 2 Frequency (n) Round 3 Frequency (n)

Name extracted perfectly 8 8

Name extracted partially 1 1

Name not extracted 1 1

Division extracted perfectly 8 9

Division extracted partially 0 0

Division not extracted 2 1

Date extracted perfectly 8 9

Date extracted partially 0 0

Date not extracted 2 1

Case Number extracted perfectly 5 9

Case Number extracted partially 0 0

Case Number not extracted 5 1

Table 5-12: Number of Extractions for General Data of Unseen Legal Cases

During the first and second round the frequency for the primary attribute extractions remained

constant. For the first and second rounds most of the name, division, and date properties were

extracted perfectly. Each of these properties had 8/10 perfect extractions. The extraction for the case

number was split evenly between being perfectly extracted and not extracted at all. During the third

round, minor changes to the IE Prototype were made to improve the extraction. The result of the third

round saw better results for the name, division, and date attributes. A big change was seen with the

number of case number attributes that were extracted. There was an increase from 5 to 9 case

numbers extracted. Following these extractions are the CRT extractions for the first round that are

summarised in Table 5-13. The first round’s CRT extraction results were mixed. Some unseen legal

cases had large differences between the expected number of CRTs to be extracted and the actual

number of CRTs that were extracted. This required the IE Protype’s code to be inspected, altered, and

run through the unseen legal cases for a second round. Upon inspection of the results, it was found

that the many CRTs had merged into one line. The cause for the merge was due to keywords in the

CRT not being catered for in the IE Protype. This resulted in the IE Protype processing multiple CRTs

as one CRT. To resolve the issue, the list of keywords used by the IE Protype was extended to include

the keywords that were not catered for. Legal case U10 would not be processed by the IE Protype as

there were issues in parsing the document through the function that extracts the

‘word/document.xml’ file. Table 5-13 shows the difference ratio for each unseen legal case during the

first round. It was observed that 30% (n=3) of unseen cases approximated a difference ratio of 1, 20%

(n=2) of unseen legal cases approximated a difference ratio of 0.625. The remaining unseen legal cases

all had different values for their difference ratios. Using Equation 5.6-2, a total difference ratio of 0.403

was observed. This indicates that 40% of observed unseen legal case CRTs extracted were different

from what was expected.

 Chapter 5
 Development, Demonstration, and Evaluation

112

Legal Case Number of CRTs CRTs Extracted Difference Difference Ratio

U1 36 26 10 0.28

U2 12 0 12 1.00

U3 28 5 23 0.82

U4 2 0 2 1.00

U5 20 21 1 0.05

U6 29 28 1 0.03

U7 16 6 10 0.63

U8 11 10 1 0.09

U9 8 3 5 0.63

U10 4 0 4 1

Table 5-13: Result of Round 1 Extraction for CRTs

During the second round, the unseen cases were parsed through the IE Protype again to determine if

the results had improved. During the second round, there was a small improvement in the results. In

particular, legal case U1’s number of CRTs extracted increased from 26 to 33. However, the remaining

unseen cases’ number of extractions remained the same from round one. Table 5-14 summarises the

results obtained from the second round of extracting CRTs.

Legal Case Number of CRTs CRTs Extracted Difference Difference Ratio

U1 36 33 3 0,08

U2 12 0 12 1,00

U3 28 5 23 0,82

U4 2 0 2 1,00

U5 20 21 1 0,05

U6 29 28 1 0,03

U7 16 6 10 0,63

U8 11 10 1 0,09

U9 8 3 5 0,63

U10 4 0 4 1

Table 5-14: Result of Round 2 Extraction for CRTs

Upon further inspection it was found that in addition to some more keywords not catered for, CRTs

were once again merging with each other. When inspected, it was found that the merged CRTs were

those who had no action taken on them. This resulted in the prototype being updated to cater for the

different keywords and cater for CRTs that had no action. To ensure that CRTs with no action were

extracted, an additional pre-processing step was required. During this step, additional regular

expressions were created to identify and mark the CRTs that had no action. It was observed that 30%

(n=3) unseen legal cases had a difference ratio of 1, 20% (n=2) of unseen legal cases had a difference

ratio of 0.625. The remaining difference ratios were difference for the rest of the unseen legal cases.

A total difference ratio of 0.361 was observed. This indicates that 36% of observed unseen legal case

CRTs extracted were different from what was expected. A third round was then conducted on the

unseen legal cases.

The results obtained from the third round indicated an improvement with the IE Prototype. All CRTs

for each unseen legal case were extracted as seen in Table 5-15.

 Chapter 5
 Development, Demonstration, and Evaluation

113

Legal Case Number of CRTs CRTs Extracted Difference Difference Ratio

U1 36 35 1 0.03

U2 12 12 0 0.00

U3 28 28 0 0.00

U4 2 0 2 1.00

U5 20 24 4 0.20

U6 29 33 4 0.14

U7 16 15 1 0.06

U8 11 12 1 0.09

U9 8 8 0 0

U10 4 0 4 1

Table 5-15: Result of Round 3 Extractions for CRTs

It was observed that 30% (n=3) of unseen legal cases had a difference of 0 while the remaining unseen

legal cases had a range of difference ratios. A total difference ratio of 0.006 was observed. This

indicates that 0.6% of observed unseen legal case CRTs extracted were different from what was

expected.

When inspecting the results of the third round, it was found that some extractions exceeded the actual

number of CRTs in a case. Examples of this is evident with unseen legal cases U5, U6, and U8. Upon

further inspection it was found that the reason for the extra extractions was due to the layout of a

particular phrase that is sometimes found in the CRT section of a legal case. This phrase contains

formatting that is also used when writing legal citations and as a result was included by the IE

Prototype when processing the CRT section. To resolve this issue, these phrases were identified and

removed. Figure 5-9 illustrates the number of extractions for each unseen legal case for the three

rounds.

Figure 5-9: Comparison of Extraction for Different Rounds

5.7.2 Iteration 2
The second iteration of the IE Prototype consisted of two formative experiments which were

conducted to setup and test the Database process of the IE Prototype. The first experiment

investigated the setup of a graph database and the second experiment investigated the setup of a

document database. Table 5-16 summarises the experiments conducted for iteration 2.

0

10

20

30

40

U1 U2 U3 U4 U5 U6 U7 U8 U9 U10

N
u

m
b

er
 o

f
Ex

tr
ac

ti
o

n
s

Unseen Legal Cases

Comparison of Extraction for Different
Rounds

Round 1 Round 2 Round 3

 Chapter 5
 Development, Demonstration, and Evaluation

114

Experiment Part Test Documents Result

1: Setup of Graph

Database

- - Unsuccessful, nodes were

being inserted as blank nodes

with relationships

2: Setup of Document

Database

Part 1 U1-U10 General data inserted

correctly but CRTs not inserted

correctly

Part 2: Inspecting Code

to Make Changes

Successful insertion of general

data and CRTs

Table 5-16: Summary of Experiments Conducted for Iteration 2

5.7.2.1 Iteration 2: Experiment 1

Experiment 1 used the Python library provided by Neo4j and the Neo4j desktop application to locally

create and connect to a graph database. During the first phase, dummy data was created and inserted

into the graph database as nodes. The insertion of the data was successful. However, errors were

encountered when trying to create the nodes with relationships. Blank nodes would be created with

a label assigned to the relationship. Multiple attempts were made to resolve the error, but no solution

could be found.

5.7.2.2 Iteration 2: Experiment 2

Experiment 2 consisted of two parts and used the Python library provided by MongoDB and the

MongoDB Compass desktop application to locally create and connect to a document database. The

data that was output from the extraction process was in the form of a list containing LegalCase objects.

During part 1, the data to be inserted into the document database was converted to a Python

dictionary to allow the data values to be associated with keys and allow for the keys and values to be

searchable. Figure 5-10 illustrates how a LegalCase object is stored in document form.

Figure 5-10: A Legal Case Stored as a Document

The data of a LegalCase object was inserted into the dictionary and an embedded approach was taken

to insert the CRTs for a legal case. The CRTs were embedded into the document as a list containing

Python dictionaries to store the CRTs. Initially, the data of a LegalCase object was successfully inserted

into the document database. However, the CRTs were not inserted correctly as all CRTs extracted were

being assigned to each LegalCase object. This issue was resolved in part 2 of the experiment. Upon

 Chapter 5
 Development, Demonstration, and Evaluation

115

inspection during part 2, it was found that the update function applied to the list storing the CRTs was

being applied to all instances where the list was used instead of the list being reset for a new LegalCase

object. The update was changed to create a new empty list when a new LegalCase object was being

processed. This resulted in the data being inserted correctly. Figure 5-11 illustrates how MongoDB

created the schema to store the data. This is similar to the example illustrated in Figure 3-13.

Figure 5-11: Screenshot of a Document in MongoDB

5.7.3 Analysis of Findings from Experiments
During the first iteration, five experiments were conducted that investigated web scraping and

performing IE directly on documents in PDF and .docx formats. It was found that PDF documents can

be inconsistently formatted resulting in poor extraction results. The use of a .docx formatted

document is better as the paragraph tags that store text in XML can be accessed and processed. It was

found that legal cases contained differently formatted text or sometimes had inconsistencies -

highlighting problem 2 from Table 3-15 identified by Gurusamy and Kannan (2014). Facts could be

extracted but the text had to be cleaned before ideal extraction could occur -highlighting problems 3

and 4 from Table 3-15 identified by Gurusamy and Kannan (2014). It was also found that some CRTs

had no action taken on them. Separating a legal case into two parts allowed for primary attributes and

 Chapter 5
 Development, Demonstration, and Evaluation

116

CRTs to be extracted. Facts were successfully extracted from the test documents (T1, T2, and T3) but

three rounds were used to process and extract the unseen legal cases (U1 to U10). It was observed

that U1 to U10 had a total difference ratio of 0.006 implying that 0.6% of the number of observed

CRTs from unseen legal cases were different from what was expected. This is a good value as 0 is the

ideal value to obtain. It was also observed that some CRTs had no actions and were in different

formats.

During the second iteration implementation of the graph database was unsuccessful. Nodes were

being inserted as blank nodes even though data was being parsed into them. No solution could be

found for this issue which resulted in the implementation of the document base. Implementing the

document database was successful. The document database was used to store LegalCase objects in

the form of documents (Figure 5-10). A limitation of the experiments was that only MS Word .docx

formatted documents could be processed by the IE Prototype.

5.8 Conclusions
This chapter reported on the third and fourth activities of the DSR methodology namely, Design and

Development, and Demonstration. The FEDS Framework and Technical Risk and Efficacy strategy were

used to develop an evaluation plan for the proposed MAC Model. Incremental prototyping allowed

for an IE Prototype to be created through iterations. The IE Prototype consisted of two processes

namely, the IE process and the database process. Technical issues and security protocols prevented

the use of web scraping to access and extract legal cases online. Different options of performing IE

directly on the legal cases were investigated during the experiments. The inconsistent formatting of

PDF documents prevented ideal IE and as such, MS Word .docx formatted documents were used. The

IE Prototype used a combination of regular expressions and NLP techniques such as tokenisation and

stop-word removal to process and extract facts from legal cases. Graph and document databases were

investigated as options to represent the Information Storage process of the proposed MAC Model.

Technical issues with the Neo4j graph database vendor prevented complete implementation of the

graph database. However, the document database was successfully implemented and used to store

the processed legal cases. The design and development of the IE Prototype partially addressed the

main research objective:

• RoM : To develop an information extraction model to recommend the Most Applied Case for a

field of law.

In completing this chapter, three deliverables were produced namely, an evaluation plan (Table 5-6),

a developed and evaluated prototype, and a solution to the problem in the form of two artefacts. The

two artefacts are results of the MAC Model (Section 5.2) and IE Prototype. Table 5-17 summarises the

processes of the MAC Model. The following chapter will report on the evaluations conducted.

MAC Model Processes Literature Figure Table

IR Section 3.2

Section 3.3

Figure 3-3 Table 3-2

IE Section 3.4

Section 3.5

Section 3.6

Section 3.7

Figure 3-5 Table 3-3

Information Storage Section 3.8 Figure 5-3

Figure 5-10

Table 3-11

Query-Independent Ranking Section 3.9 - Table 3-12

Table 5-17: Summary of the MAC Model Linked to Literature, Figures and Tables

 Chapter 6
 Analysis of Evaluation Results

117

 Chapter 6: Analysis of Evaluation Results

6.1 Introduction

The previous chapter addressed the third and fourth activities of the DSR methodology namely, Design

and Development, and Demonstration of the artefacts. The previous chapter also presented an

evaluation plan to evaluate the proposed IE model and MAC System. This chapter reports on the fifth

DSR activity namely, Evaluation (Figure 6-1). An evaluation of the IE Prototype was setup using 50 legal

cases (Section 6.2) followed by an evaluation of the IE Prototype’s scalability (Section 6.3). The

research objective addressed in this chapter is:

• RO4: Identify the criteria that can be used to evaluate the proposed model.

Figure 6-1: Chapter 6 DSR Activities

6.2 IE Prototype Evaluation using 50 Legal Cases
To evaluate the IE Prototype, legal cases had to be processed by means of a summative evaluation.

For the evaluation, 50 legal cases were deemed sufficient for testing the proof-of-concept. The legal

cases were obtained through the process provided in Figure 5-7 and named as F1 to F50. Therefore,

the 50 legal cases were selected based on the legal cases being case law for the periods 1996 to 2018,

for all fields of law within the ALL SA legal journals. For the purpose of this evaluation, a legal case was

referred to as a ‘source case’. The aim of the test was to determine the IE Prototype’s effectiveness,

scalability, and execution time.

 Chapter 6
 Analysis of Evaluation Results

118

6.2.1 Procedure
The steps that were followed to conduct the evaluation were as follows:

1. Download and format source cases;

2. Establish a connection to the database;

3. Parse the 50 .docx formatted source cases into the IE Protype; and

4. Analyse the results obtained.

Establishing a database connection required an instance of MongoDB to be created and connected to

the MongoDB Compass desktop application. To analyse the results, categories were required to

classify each source case as a whole and the CRTs extracted from the source case. The categories used

to classify a source case were:

• Perfectly extracted – this means that the case was perfectly extracted;

• Partially extracted - this means that the case was partially extracted; and

• Not - this means that the case was not extracted at all.

A source case was assigned one of the above categories based on whether all cases, some of the cases,

or none of the cases were extracted. This means that if source case A had five CRTs of which three

CRTs were perfectly extracted and two were partially, then source case A was categorised as partially

extracted.

Similarly, the categories used to classify a CRT were:

• Perfectly extracted – this means that all four attributes were extracted;

• Partially extracted – this means that only 1 to 3 attributes were extracted; and

• Zero – this means that zero attributes were extracted.

For each partial or no extraction further investigation to the possible reason were conducted, and the

resulting reasons were grouped into themes of similar occurring reasons.

6.2.2 General Results
It was observed that from the 50 source cases (F1 to F50), 697 CRTs were expected to be extracted.

However, the actual number of CRTs extracted was 731. The reason for having an additional 34 CRTs

was due to instances of extra lines, splitting of CRTs, and noise.

From the analysis, three additional categories to Perfect, Partial, and Not were discovered namely,

extra lines, splits, and noise. Instances of extra lines of text that were similarly formatted to CRTs were

detected and extracted as a CRT. There were instances during the extraction where a CRT would be

split into two parts, resulting in an additional CRT being extracted. It was also observed that there

were instances of phrases in the source cases that were formatted like CRTs and this resulted in noisy

facts being extracted. Noisy facts refer to phrases that were formatted like CRTs that were extracted.

Table 6-1 summarises the expected number of CRTs with the actual number of CRTs extracted along

with the difference ratios calculated for the 50 source cases.

 Chapter 6
 Analysis of Evaluation Results

119

Table 6-1: Difference Ratios for 50 Test Cases

Case Nr CRTs

Nr CRTs

Extracted

Absolute

Difference

Difference

Ratio

F1 45 46 1 0,02

F2 5 5 0 0

F3 42 43 1 0,02

F4 5 4 1 0,2

F5 6 6 0 0

F6 2 2 0 0

F7 15 11 4 0,27

F8 7 8 1 0,14

F9 5 5 0 0

F10 1 2 1 1

F11 7 8 1 0,14

F12 3 3 0 0

F13 15 18 3 0,2

F14 9 10 1 0,11

F15 33 33 0 0

F16 5 4 1 0,2

F17 6 8 2 0,33

F18 23 23 0 0

F19 8 4 4 0,5

F20 10 25 15 1,5

F21 10 10 0 0

F22 11 27 16 1,45

F23 23 24 1 0,04

F24 10 19 9 0,9

F25 23 19 4 0,17

F26 26 25 1 0,04

F27 12 13 1 0,08

F28 6 6 0 0

F29 15 15 0 0

F30 15 19 4 0,27

F31 18 19 1 0,06

F32 11 12 1 0,09

F33 6 6 0 0

F34 7 9 2 0,29

F35 10 11 1 0,1

F36 17 17 0 0

F37 27 21 6 0,22

F38 10 10 0 0

F39 75 60 15 0,2

F40 5 5 0 0

F41 6 6 0 0

F42 8 8 0 0

F43 13 13 0 0

F44 13 13 0 0

F45 12 11 1 0,08

F46 6 5 1 0,17

F47 15 17 2 0,13

F48 19 23 4 0,21

F49 13 17 4 0,31

F50 3 3 0 0

Totals 697 731 110

 Chapter 6
 Analysis of Evaluation Results

120

Of the 50 source cases, it was found that 96% (n=48) of the source cases were categorised at partially

extracted and 4% (n=2) were categorised as noisy cases. It was found that 19 partially extracted cases

resulted in 19 instances of a case being split. Table 6-2 summarises the source cases that that were

categorised.

Nr Perfects 0

Nr Partials 48

Nr Not Extracted 0

Nr Extra Lines 0

Nr Splits 0

Nr Noise 2

Total 50
Table 6-2: Number of Source Cases Categorised

Analysis of the attributes of CRTs extracted was also conducted. Appendix J provides a detailed table

of the results of the CRTs that were extracted. The four attributes that are found in a CRT namely, title,

date, journal, and action were analysed and classified based on the description in Section 6.2.1. Table

6-3 provides a summary of all 731 CRTs attributes extracted.

Attribute Category Frequency

CRT Title

Perfectly extracted CRT Titles 196

Partially extracted CRT Titles 353

Titles not extracted 99

Extra instances 25

Split instances 19

Noise instances 39

Expected Nr of CRT Title Extractions 731

Actual Nr of CRT Title Extractions 731

CRT Date

Perfectly extracted CRT Dates 604

Partially extracted CRT Dates 0

CRT Dates not extracted 44

Extra instances 25

Split instances 19

Noise instances 39

Expected Nr of CRT Date Extractions 731

Actual Nr of CRT Date Extractions 731

CRT Journal

Perfectly extracted CRT Journals 531

Partially extracted CRT Journals 4

CRT Journals not extracted 113

Extra instances 25

Split instances 19

Noise instances 39

Expected Nr of CRT Journals Extractions 731

Actual Nr of CRT Journals Extractions 731

CRT Action

Perfectly extracted CRT Actions 292

Partially extracted CRT Actions 3

CRT Actions not extracted 353

Extra instances 25

Split instances 19

Noise instances 39

Expected Nr of CRT Actions Extractions 731

Actual Nr of CRT Actions Extractions 731
Table 6-3: Summary of CRT Attributes Extracted

 Chapter 6
 Analysis of Evaluation Results

121

It was found that many of the titles contained an extra word in it, therefore preventing the title from

being perfectly extracted. As a result, 48% (n=353) of CRT titles were partially extracted while 26%

(n=196) were perfectly extracted. For CRT dates it was observed that 82% (n=604) of the dates were

perfectly extracted while 6% (n=44) of the dates were not extracted. For CRT journals it was observed

that 72% (n=531) of the journals were perfectly extracted while 15% (n=113) of the journals were not

extracted. During the analysis, two discoveries were made. The first discovery was that there were

instances of CRTs merging with other CRTs in a source case. This resulted in 11 CRTs merging into six

partially extracted CRTs. The second discovery was that a total of eight CRTs were not recognised by

the IE Prototype and as a result not extracted. These two discoveries possibly contributed to the low

extraction of the facts, particularly the CRT actions. It was observed that 48% (n=352) of the actions

were not extracted while 40% (n=292) of the actions were perfectly extracted.

Based on the guide provided by Conroy (2016) a 10% margin of error will be applied to the results.

6.2.3 Effectiveness Results
Effectiveness was measured by determining the accuracy of the IE Prototype. Equation 5.6-1 and
Equation 5.6-2 were used to determine the accuracy. Table 6-4 summarises the ranges of difference
ratios calculated for the 50 source cases.

Difference Ratio Range Count of Instances Percentage

0's 19 38

1 1 2

0,01 to 0,09 7 14

0,1 to 0,5 19 38

0,6 to 0,9 1 2

1 to 1,5 3 6
Table 6-4: Summary of Difference Ratio Ranges for 50 Source Cases

It was observed that 38% (n=19) of the source cases had a difference ratio of 0. Another 38% (n=19)

of source cases had a difference ratio between 0.1 to 0.5. A total difference ratio of 0,157 was

observed for all source cases. This indicates that 16% of the number of source cases extracted were

found to be different from what was expected. Using a 10% margin of error results in 56% (n=28) of

the source cases falling within the margin of error and 44% (n=22) of the source cases falling outside

of the margin of error.

Equation 5.6-1 and Equation 5.6-2 were also applied to the perfectly extracted CRT attributes. Table

6-5 summarises the difference ratios for the perfectly extracted attributes.

Attribute Frequency Difference ratio

Titles 196 0.73

Number of CRT Dates 604 0.17

Number of CRT Journals 531 0.27

Number of CRT 292 0.60

Table 6-5: Difference Ratios for Perfectly Extracted Attributes

For CRT titles, a difference ratio of 0.731 was observed. Indicating that 73% of the number of the

extracted CRT titles were different from what was expected.

For CRT dates, a difference ratio of 0.173 was observed. Indicating that 17% of the number of the

extracted CRT dates were different from what was expected.

 Chapter 6
 Analysis of Evaluation Results

122

For CRT journals, a difference ratio of 0.273 was observed. Indicating that 27% of the number of the

extracted CRT journals were different from what was expected.

For CRT actions, a difference ratio of 0.600 was observed. Indicating that 60% of CRT actions extracted

were different from what was expected.

Considering all the perfectly extracted properties resulted in a total difference ratio of 0.444.

Indicating that 44% of the number of extractions observed were different from what was expected. In

addition, it was found that 3.4% (n=25) of the CRTs analysed contained extra lines, 2.6% (n=19)

contained CRTs that were split into separate lines, and 5.3% (n=39) contained noisy information.

From the results obtained, it is seen that although 56% of CRTs extracted fall within the 10% margin

of error, the accuracy of the attributes of the CRTs extracted can be improved. Factors contributing to

a poor accuracy include presence of the extra lines, noisy data, and the presence of different

formatted CRTs.

6.3 Scalability and Execution Time Evaluation
An evaluation was conducted to measure the IE Prototype’s scalability. The scalability of the IE

Prototype was evaluated in conjunction with measuring execution times as discussed in Section 5.6.3

to determine how well the IE Prototype could process an increasing amount of source cases. Scalability

is important because in a real-world setting an unlimited amount of source cases could be parsed

through the prototype and processing should occur quickly. Evaluating the scalability required both

parts of the IE Prototype to be tested namely, the IE process and Database process.

6.3.1 Procedure
To test the scalability of the IE Prototype, the following procedure was followed:

1. Obtain source cases (Figure 5-7);

2. Organise source cases into batches;

3. Connect to the document database;

4. Parse source cases into the IE Prototype; and

5. Record extraction and insertion times.

The process illustrated in Figure 5-7 was followed, source cases were downloaded, converted, and

parsed through the IE Prototype. A total of 102 source cases were used and organised into batches of

10 source cases. To measure the amount of time taken to insert the LegalCase objects into the

database, a connection to the document database had to be established. The connection was made

before the IE process could begin to avoid potentially wasting time after the IE process completed.

The source cases were then parsed into the IE Prototype in increasing batches of 10 source cases at a

the time. Two sets of recordings were taken. The first set of recordings were for time taken to perform

the IE process on the source cases and create LegalCase objects. The second set of recordings was for

time taken to insert the LegalCase objects as key-value pairs into the document database.

6.3.2 Scalability and Execution Time Results
Execution time refers to the total time taken to extract source cases and insert the source cases into

the database. Table 6-6 summarises the time taken by the IE Prototype to extract the source cases

and create LegalCase objects. The LegalCase objects were created after the required facts of a source

case were extracted. It was observed that extraction time increased when the amount of source cases

increased.

 Chapter 6
 Analysis of Evaluation Results

123

Batch Nr Files Time (seconds)

1 12 0.3

2 22 0.6

3 32 1.2

4 42 8.9

5 52 9.3

6 62 9.7

7 72 9.9

8 82 12.1

9 92 17.3

10 102 19.1
Table 6-6: Time taken to Extract the Source Cases

It was observed that for the 10 batches totalling 102 files, an average of 8.8 seconds was taken to

extract the source cases. Since each source case does not have a set word limit it can result in a source

case containing either few or many pages of information. This can cause extraction times to vary and

in the instance of a source case having many words it can mean more processing is needed to locate

the required facts from the source case. Another reason for an increasing time could be the lack of

CPU processing power on the researcher’s machine. Newer CPUs should be more advanced and can

process information much faster than the CPU used on the researcher’s machine.

Table 6-7 summarises the time taken to insert the LegalCase objects as key-value pairs into the

document database. It was observed that the insertion time varied for populating the document

database. Insertions into the document database were quick with an average of 0.10 seconds but no

pattern could be found for the insertion times.

Nr LegalCase Objects DB Insertion Time (seconds)

12 0.01

22 0.08

32 0.02

42 0.03

52 0.07

62 0.36

72 0.05

82 0.11

92 0.19

102 0.08
Table 6-7: Time taken to Insert Legal Case objects

The insertion times did not consecutively increase as each batch of source cases increased. It was

observed that the longest time taken to insert LegalCase objects was 0.36 seconds for 62 Legal Case

objects whilst the shortest time taken was 0.01 seconds for 12 LegalCase objects. The quick and

unpredictable time is possibly due to the scaling method used by MongoDB which allows for large sets

of data to be easily catered for. It is possible that the researcher’s machine could have had a small

impact on the insertion results. However, the results in Table 6-7 reveal that it would have been a

negligible impact.

The processing time for extraction was satisfactory as the IE Prototype performed efficiently until 32

source cases were processed. It can be concluded that although the IE Prototype can process 32 source

 Chapter 6
 Analysis of Evaluation Results

124

documents in 1.2 seconds, processing should be done on a more powerful machine to ensure quick

results. Especially since real-world settings could require more than 32 source documents to be

processed. The document database’s performance was also satisfactory well when inserting the

batches of LegalCase objects. However, implementation should be performed on an external machine

to ensure that all resources are allocated to the insertion process.

6.4 Conclusions
This chapter reported on the fifth activity of DSR namely, Evaluation. The IE process of the theoretical

MAC Model was implemented in the form of the practical artefact, the IE Prototype. The IE Prototype

was evaluated in terms of its effectiveness and scalability. The evaluation of the IE Prototype

addressed the following research objective:

RO4: Identify the criteria that can be used to evaluate the proposed model.

The relevant criteria identified were effectiveness, accuracy, and scalability. For this reason the IE

prototype was evaluated using these criteria. Based on the results from the evaluation, the majority

of source cases extracted were categorised as partial extractions. Half of the source cases had

difference ratios of 0 while the other half had difference ratios in the range 0.1 to 0.5. The results

indicate that the accuracy of the IE Prototype needs to be improved. Changes to the IE Prototype that

cater for more formats of CRTs could result in more source cases and CRTs being perfectly extracted.

The IE Prototype performed satisfactory in terms of scalability with an average processing time of 8.87

seconds for 102 cases. Table 6-8 summarises all the results obtained from the experiments.

Results Source Cases

Categories

Source Cases

Categorised (n=50)

CRT Attribute CRT Perfect

Extractions

(n=731)

General Results Perfect Extracted 0 CRT Titles 196

Partially Extracted 48 CRT Dates 604

Not Extracted 0 CRT Journals 531

Nr Extra Lines 0 CRT Actions 292

Nr Splits 0

Nr Noise 2

Effectiveness

Difference Ratio

Range

Count of Instances

(n=50) Percentage

Total difference

ratio of source

cases

0 19 38 0,157819225

1 1 2

0,01 - 0,09 7 14

0,1 - 0,5 19 38

0,6 - 0,9 1 2

1 - 1,5 3 6

Scalability

Average IE

processing time (s)

Average insertion

time (s)

Longest insertion

time (s)

Shortest

insertion time

(s)

8.87 0.10 0.361 0.009

Table 6-8: Summary of Experiment Results

In completing this chapter, two deliverables were achieved. The first deliverable is the evaluated

prototype, and the second deliverable is the findings from the evaluations (Table 6-8). The next

chapter will conclude this research.

 Chapter 7
 Conclusions

125

 Chapter 7: Reflection, Conclusions, and Future Work

7.1 Introduction

The previous chapter addressed the fifth DSR activity of the DSR methodology namely, Evaluation. The

MAC Model and the MAC System were evaluated, and the results were discussed. This chapter

concludes the research by reviewing the ROs to determine whether the research is successful. This

chapter will report on the sixth DSR activity of the DSR methodology namely, Communication (Figure

7-1). The RQ of this research was:

RQ: What techniques can be incorporated into a model that recommends the Most Applied

Case (MAC) for a field of law?

RQ-Context: What text processing techniques can be used to process legal cases at LexisNexis?

The main research objective (ROM) of this research was:

To develop an information extraction model to recommend the Most Applied Case for a field of

law.

The DSR methodology was used throughout this research in the development of the theoretical and

practical artefacts being the MAC Model and the IE Prototype. The fulfilment of the ROs through the

DSR activities will be reported on followed by the theoretical and practical contributions of this

research. Throughout the research various problems and limitations were experienced that indicated

potential future research.

Figure 7-1: Chapter 7 DSR Activities

 Chapter 7
 Conclusions

126

7.2 Fulfilment of Research Objectives
This research revealed that a combination of techniques can be used to create a prescriptive MAC

Model to recommend the MAC for a field of law. Prescriptive models provide descriptions of possible

future solutions and aid in constructing artefacts (Johannesson & Perjons, 2012). The MAC Model was

designed based on the informal process provided by legal researchers at LexisNexis to recommend the

MAC. The MAC Model consisted of four processes that used the techniques investigated in the

literature review. The main research objective for this research was:

To develop an information extraction model to recommend the Most Applied Case for a field

of law.

To fulfil the main research objective the following sub-objectives were derived and addressed:

RO1: Identify the problems experienced when processing text as identified by literature and

within a real-world context.

RO2: Identify the attributes of a court case that can be used to aid in recommending the MAC.

RO3: Determine what techniques and algorithms can be used to recommend the MAC.

RO4: Identify the criteria that can be used to evaluate the proposed model.

The first research objective, RO1, was to identify the problems experienced when processing text as

identified by literature and within a real-world context. The identification of problems helped in

defining the research problem of recommending the MAC (Table 4-4). The problems were identified

by means of the sources consulted in the literature review, and include ambiguity, special formats of

text, abbreviations, and acronyms. The absence of pre-processing tasks can also make processing text

difficult. These problems were experienced during the development of the IE Prototype during which

pre-processing tasks were required, and special formats and abbreviations were continuously

encountered. In terms of processing text, no IE techniques were used at LexisNexis.

The second research objective, RO2, was to identify the attributes of a court case that can be used to

aid in recommending the MAC. The informal manual process used to recommend the MAC aided in

identifying the attributes required (Table 4-2). Consulting with the experts and analysing the legal cases

also contributed to identifying the attributes. The result of the informal process, consultation, and

analysis was a set of attributes that were to be extracted to create a LegalCase object.

The third research objective, RO3, was to determine what techniques and algorithms can be used to

recommend the MAC. The informal manual process used to recommend the MAC helped guide the

researcher on the type of techniques to investigate. A critical analysis of these techniques was

investigated in the literature review. The techniques required to recommend the MAC would be a

combination of IR, IE, information storage, and query-independent ranking. Five IR models were

analysed and compared (Table 3-1 and Table 3-2) to determine which would be suitable to use in an

IE model. Four categories of IE techniques were investigated namely, general IE techniques, web

scraping, NLP, and regular expressions (Table 3-3). The use of the IE techniques depended on the end-

goal of the user. To recommend the MAC, experiments investigating web scraping and regular

expressions were conducted. For information storage, two types of NoSQL databases were analysed

namely, graph and document databases (Table 3-11). Being NoSQL databases meant these two types

of databases were schema-free and allowed for flexibility and scalability.

The fourth research objective, RO4, was to identify the criteria that can be used to evaluate the

proposed model. The MAC Model was created, and a prototype of the IE process was implemented in

iterations. Based on the functionality that the model had to perform, it was decided that the prototype

should be effective, accurate, and scalable. The prototype had to extract facts as accurately as possible

 Chapter 7
 Conclusions

127

and do so quickly even if many legal cases were parsed. The prototype was then evaluated based on

the set of criteria. Table 7-1 summarises the reflection of the research based on the DSR guidelines

(Table 2-1).

Guideline Reflection
Guideline 1: Problem Relevance Finding the MAC is a long manual process with no systems or

automated processes in place. The MAC Model represents an

automation of the manual process and can reduce legal researchers’

research times.
Guideline 2: Research Rigor Methods must be applied to construction and evaluation of the

artefact being designed. A literature review, extant systems analysis,

consultation with experts, incremental prototyping and experiments

were used to construct and evaluate the MAC Model and its IE

Prototype.
Guideline 3: Design as a Search

Process
Designing an artefact must be an iterative process. All options should

be used until a final, accepted artefact is achieved.
Guideline 4: Design as an Artefact A prescriptive model called the MAC Model was the artefact created

to recommend the MAC.
Guideline 5: Design Evaluation An evaluation plan consisting of strategies and methods was

designed to iteratively evaluate the prototype produced from the

artefact.
Guideline 6: Research Contributions Theoretical and practical contributions were made. Theoretical

contributions include amongst others, the set of problems faced in

the legal domain and challenges in processing text in the legal

domain, and an IE model to recommend the MAC. The practical

contribution consisted of the IE Prototype of the MAC Model that

implemented the IE and Database Processes (Section 7.3).
Table 7-1: Reflection of the Research and DSR Guidelines

7.3 Research Contributions
The research contributions for this research were categorised as theoretical contributions and practical

contributions. This section will report on both contributions. The MAC Model is both a theoretical and

practical contribution. The theoretical contribution of the MAC Model consists of the theory that

researchers can use while the practical contribution is for legal experts who work in the industry, and

can apply the MAC Model to help automate and implement such processes.

7.3.1 Theoretical Contributions
The theoretical contributions of this research are:

• D1-Problems and challenges of processing text in the legal domain;

• D2- Attributes of a court case to recommend the MAC;

• D3- A MAC Model to recommend the MAC, consisting of:

o IR techniques;

o IE techniques;

o Info Storage techniques; and

o Query-independent ranking algorithms.

Problems included large amounts of time spent on searching for useful information, no formal

processes to find the MAC, the lack of IE techniques to facilitate finding information, and the lack of

query-independent ranking algorithms. Processing text in the legal domain was a challenge,

particularly regarding the CRTs of a legal case. Upon inspection, it was found that CRTs can have

 Chapter 7
 Conclusions

128

multiple formats, and in some instances no format was followed to represent the CRT. This required

IE techniques to cater for multiple instances.

The informal process to recommend the MAC and analysis of the legal cases revealed that specific

attributes can be extracted to aid in recommending the MAC. The attributes were a combination of

general data and all CRTs found in a legal case. From the general data, the important attributes were

the legal case’s division and case number. As discussed in Section 4.3.2 the division can influence the

supremacy a legal case has while the case number can be used to uniquely identify the legal case. From

the CRTs, the title, year, journal, and action were extracted. The action determined how valuable the

CRT would be in a defence case.

Based on the literature review and findings from the experts at LexisNexis, a set of requirements were

derived for a prescriptive model to recommend the MAC (Table 4-5 and Table 4-6). This model was

called the MAC Model (Figure 5-2). The MAC Model consisted of four processes and used multiple

techniques derived from the informal manual process to recommend the MAC and a literature review.

The analysis of the literature revealed that IR, IE, information storage, and query-independent ranking

could be integrated to recommend the MAC for a field of law. A vector space model could be used to

support the retrieval of legal cases. Regular expressions were used in conjunction with NLP techniques

to perform the IE (Table 3-3). Two NoSQL databases namely, graph and document databases were

investigated as options for information storage (Table 3-11). The ability to create relationships

between data without the need for primary or foreign keys made graph databases ideal. However,

technical issues with the graph database vendor prevented successful implementation and resulted in

the implementation of a document database. An adaption of a query-independent ranking algorithm

would be suitable for performing the ranking on legal cases to return the MAC. During the literature

review, four types of query-independent ranking algorithms were reviewed (Table 3-12).

7.3.2 Practical Contributions
The practical contributions of this research are the MAC Model, the IE Prototype that consisted of the

IE and Database process, and the three-tier architecture for the MAC System. The MAC Model

integrates the concepts investigated in the literature review into a three-tier architecture. Concepts

integrated were IR, IE, information storage, and query-independent ranking. As part of the MAC

Model, an IE Prototype was implemented that processed and stored legal cases as LegalCase objects.

The IE Prototype was developed through multiple iterations of experiments and evaluated. The results

of the evaluation present opportunities for future researchers to explore.

The three-tier architecture of the MAC Model demonstrated how the model could be locally

implemented without the use of any external servers and also mapped to the LexisNexis’ architecture.

For testing purposes, a local setup was enough but for commercial purposes the server-side

implementation should be implemented externally.

7.4 Problems Experienced and Limitations of Study
Three different problems were experienced throughout the research. The first problem encountered

was the security protocols on the Mylexisnexis.co.za website. These security protocols prevented the

use of web scraping. The second problem encountered was the inconsistent formatting of PDF

documents. The inconsistency prevented PDF formatted legal cases from being completely processed

during the experiments. The third problem encountered was technical issues with the graph database

vendor used. This prevented the successful implementation of a graph database.

Five limitations were experienced during the research. The MAC Model was not evaluated to

determine how well it met its requirements. The MAC Model’s architecture was not tested to

determine how well it fit into LexisNexis’ technical architecture. The IE Prototype only processes legal

 Chapter 7
 Conclusions

129

cases that are in .docx format. LexisNexis was unable to provide the legal cases in .docx format which

resulted in the researcher having to convert legal cases from PDF format to .docx format. The focus of

the research was on creating the MAC Model and implementing the IE process. Therefore, not all

processes of the model were implemented.

7.5 Future Research
The results from the evaluation of the IE Prototype provide areas for future work. The IE Prototype can

be adapted to cater for different formats of legal cases, not only .docx formats. This can be useful as

not all legal cases would be formatted to a particular document type. An adaption and implementation

of a query-independent ranking algorithm can be explored to perform the ranking of legal cases. Lastly,

The IE Prototype can be extended to include machine learning to perform the IE process. This can

result in an IE Prototype that learns to recognise different formats of legal citations and brings about

better accuracy for extraction. This would require a training set of legal cases to be created and used

on a machine learning model.

7.6 Summary
This research produced two solution artefacts based on the DSR methodology and DSR guidelines

(Table 2-1) namely:

• The MAC Model (theoretical artefact); and

• The IE Prototype (practical artefact).

The MAC Model was developed as a prescriptive model to provide a possible solution to the problem

of recommending the MAC for a field of law. The MAC Model uses three-tier architecture and consists

of four processes to recommend the MAC. The techniques recommended to implement the MAC

Model are the Vector Space Model for IR, a combination of regular expressions and NLP for IE, a graph

or document database for Information Storage, and the PageRank algorithm for query-independent

ranking.

The IE Prototype was developed as a proof-of-concept implementation of the MAC Model’s IE process.

The IE Prototype was evaluated to determine how effective, accurate, and scalable it was. The results

of the evaluation revealed that 96% of the extractions from the IE Prototype were classified as partial

extractions. Improvements should be made to the IE process to increase the effectiveness so that there

are only perfect extractions. The IE Prototype was able to process up to 102 legal cases at a given time

which was deemed satisfactory considering that documents can contain any amount of text.

--The end--

130

References
Abdelmagid, M., Ahmed, A., & Himmat, M. (2015). Information Extraction Methods and Extraction

Techniques in the Chemical Document’s Contents: Survey. ARPN Journal of Engineering and Applied
Sciences, 10(3), 1068–1073. Retrieved from
www.arpnjournals.com/jeas/research_papers/rp_2015/jeas_0215_1562.pdf

Al-Anzi, F. S., & AbuZeina, D. (2018). Beyond Vector Space Model for Hierarchical Arabic Text Classification: A
Markov Chain Approach. Information Processing and Management, 54(1), 105–115.
http://doi.org/10.1016/j.ipm.2017.10.003

Barrett-Grant, K., & Heywood, M. (2003). Introduction to the Legal System. In K. Barrett-Grant, D. Fine, M.
Heywood, & A. Strode (Eds.), HIV/AIDS and the Law: A Resource Manual (3rd ed., pp. 45–62). Cape
Town, South Africa: AIDS Law Project and AIDS Legal Network. Retrieved from
https://section27.org.za/wp-content/uploads/2010/04/03Manual.pdf

Beagle Inc. (2018). Beagle: We sniff out the fine print so you don’t have to. Retrieved April 10, 2018, from
https://www.beagle.ai/

Binkley, D., & Lawrie, D. (2009). Information retrieval applications in software maintenance and evolution.
Encyclopedia of Software Engineering, 10. http://doi.org/10.1081/E-ESE-120044704

Bird, S., & Loper, E. (2002). NLTK: The Natural Language Toolkit. In Proceedings of the 42nd Annual Meeting
of the Association for Computational Linguistics (pp. 1–4). Philadelphia, United States of America.
http://doi.org/10.3115/1118108.1118117

Black, H. C., Nolan, J. R., Nolan-Haley, J. M., Hicks, S. C., & Brandi, M. N. (1990). Black’s Law Dictionary. (B. A.
Garner, Ed.) (6th ed.). Saint Paul: West Publishing Co.

Bondi, A. B. (2000). Characteristics of scalability and their impact on performance. Proceedings of the Second
International Workshop on Software and Performance - WOSP ’00, 195–203.
http://doi.org/10.1145/350391.350432

Buschmann, F., Maunier, R., Rohnert, H., Sommerlad, P., & Stal, M. (1996). Pattern-Oriented Software
Architecture Volume 1: A System of Patterns (1st ed.). New York, United States: John Wiley & Sons.

Carr, M., & Verner, J. (1997). Prototyping and Software Development Approaches. Retrieved from
https://www.google.com.my/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0C
CkQFjAA&url=http://www.cb.cityu.edu.hk/is/getFileWorkingPaper.cfm?id=55&ei=73eDU6aCBo7PlAXN
ooGQBg&usg=AFQjCNFCEFbDyv9tNk_YuH0VpPfavJPs2A&sig2=wimyHPVpHpp

Ceri, S., Bozzon, A., Brambilla, M., Della Valle, E., Fraternali, P., & Quarteroni, S. (2013). The Information
Retrieval Process. In Web Information Retrieval (pp. 13–27). Berlin, Germany: Springer-Verlag Berlin
Heidelberg. http://doi.org/10.1007/978-3-642-39314-3

Chen, S., Gulati, S., Hamid, S., Huang, X., Luo, L., Morisseau-Leroy, N., … Zhang, C. (2003). A Three-tier System
Architecture Design and Development for Hurricane Occurrence Simulation. In Proceedings, ITRE 2003 -
International Conference on Information Technology: Research and Education (pp. 113–117). Newark,
New Jersey, United States of America. http://doi.org/10.1109/ITRE.2003.1270584

Chen, Y. (2016). Comparison of Graph Databases and Relational Databases When Handling Large-Scale Social
Data. University of Saskatchewan.

Chopra, A., Prashar, A., & Chandresh, S. (2013). Natural Language Processing. International Journal of
Technology Enhancements and Emerging Engineering Research, 1(4), 131–134.

131

Choudhary, L., & Burdak, B. S. (2012). Role of Ranking Algorithms for Information Retrieval. International
Journal of Artificial Intelligence & Applications, 3(4), 203–220. http://doi.org/10.5121/ijaia.2012.3415

Chowdhary, K. . (2012). Natural Language Processing. Jodhpur,India: MBM Engineering College. Retrieved
from http://www.krchowdhary.com/me-nlp12/nlp-01.pdf

Chowdhury, G. (2003). Natural Language Processing. Annual Review of Information Science and Technology,
37(1), 51–89. http://doi.org/10.1002/aris.1440370103

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., & Kuksa, P. (2011). Natural Language
Processing (almost) from Scratch. The Journal of Machine Learning Research, 12, 2493–2537.
http://doi.org/10.1.1.231.4614

Conroy, R. (2016). Sample Size: A Rough Guide. Dublin, Ireland: Royal College of Surgeons in Ireland.
http://doi.org/10.1080/08897077.2011.640215

Cornuéjols, A., Wemmert, C., Gançarski, P., & Bennani, Y. (2018). Collaborative Clustering: Why, When, What
and How. Information Fusion, 39, 81–95. http://doi.org/10.1016/j.inffus.2017.04.008

Croft, W. B., Metzler, D., & Strohman, T. (2015). Information retrieval in practice. New York, United States:
Pearson. Retrieved from ciir.cs.umass.edu/downloads/SEIRiP.pdf

Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V., Ursu, C., Dimitrov, M., … Aswani, N. (2017).
Developing language processing components with GATE (a user guide). University of Sheffield. Sheffield,
South Yorkshire, England: University of Sheffield, England. Retrieved from
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.122.1949&rep=rep1&type=pdf

Daly, L. (2011). High-performance XML parsing in Python with lxml. Retrieved October 25, 2017, from
https://www.ibm.com/developerworks/library/x-hiperfparse/index.html

De Marzi, M. (2012). Neo4j Internals. Retrieved November 16, 2018, from https://dzone.com/articles/neo4j-
internals

de Villiers, M. R. (2005). Interpretive Research Models for Informatics: Action Research, Grounded Theory,
and the Family of Design-and-Development Research. Alternation, 12(2), 10–52. Retrieved from
http://alternation.ukzn.ac.za/Files/docs/12.2/02 deV.pdf

Dessau, L., & Wodak, T. (2003). Seven Steps To Clearer Judgment Writing. Sydney, Australia: Education
Monograph. Retrieved from mja.gov.in/Site/Upload/GR/7Steps_2ClearerJudgmentWriting.pdf

eBravia. (2018). eBravia: Our Solutions. Retrieved April 10, 2018, from https://ebrevia.com/#our-solutions

EliteDataScience. (2017). 5 Tasty Python Web Scraping Libraries. Retrieved October 25, 2017, from
https://elitedatascience.com/python-web-scraping-libraries

Equivo. (2012). Equivio Zoom: The E-Discovery Platform for Predictive Coding and Analytics. Kensington,
United States: Equivo. Retrieved from http://www.equivio.com/files/files/Product Brief - Equivio
Zoom.pdf

Firdhous, M. (2010). Automating Legal Research through Data Mining. International Journal of Advanced
Computer Science and Applications, 1(6), 9–16.

Frekjmr, E., Hertzum, M., & Hornbaek, K. (2000). Measuring Usability: Are Effectivness, Efficiency, and
Satisfaction Really Correlated? CHI Letters, 2(1), 345–352.

Galgani, F., & Hoffmann, A. (2010). LEXA : Towards Automatic Legal Citation Classification. In J. Li (Ed.),
Advances in Artificial Intelligence 23rd Australasian Joint Conference Adelaide Australia, December 2010
Proceedings. Adelaide: Springer-Verlag New York Inc. http://doi.org/10.1007/978-3-642-17432-2_45

132

Garlan, D., & Shaw, M. (1993). An Introduction to Software Architecture. Advances in Software Engineering
and Knowledge Engineering, 1(January), 1–39. http://doi.org/10.1142/9789812798039_0001

Gleich, D. F. (2014). PageRank beyond the Web. SIAM Review, 57(3), 321–363.
http://doi.org/10.1137/140976649

Glez-Peña, D., Lourenço, A., López-Fernández, H., Reboiro-Jato, M., & Fdez-Riverola, F. (2013). Web Scraping
Technologies in an API World. Briefings in Bioinformatics, 15(5), 788–797.
http://doi.org/10.1093/bib/bbt026

Gormley, C., & Tong, Z. (2015). Elasticsearch: The Definitive Guide [2.x]. Retrieved April 28, 2017, from
https://www.elastic.co/guide/en/elasticsearch/guide/current/intro.html

Goyvaerts, J., & Levithan, S. (2009). Regular Expressions Cookbook. (A. Oram, Ed.) (1st ed.). Sebastopol,
United States: O’Reilly Media, Inc.

Gregor, S., & Hevner, A. R. (2013). Positioning and Presenting Design Science Research for Maximum Impact.
MIS Quarterly, 37(2), 337–355. http://doi.org/10.2753/MIS0742-1222240302

Gupta, V., & Lehal, G. S. (2009). A Survey of Text Mining Techniques and Applications. Journal of Emerging
Technologies in Web Intelligence, 1(1), 17. http://doi.org/10.4304/jetwi.1.1.60-76

Gurusamy, V., & Kannan, S. (2014). Preprocessing Techniques for Text Mining. In RTRICS. Retrieved from
https://www.researchgate.net/profile/Vairaprakash_Gurusamy/publication/273127322_Preprocessing
_Techniques_for_Text_Mining/links/54f8319e0cf210398e949292.pdf?inViewer=0&pdfJsDownload=0&
origin=publication_detail%5Cnhttps://www.researchgate.net/publication/2

Hachey, B., & Grover, C. (2005). Automatic Legal Text Summarisation: Experiments with Summary
Structuring. In Proceedings of the 10th international conference on Artificial intelligence and Law (pp.
75–84). Bologna, Italy: ACM New York. http://doi.org/10.1145/1165485.1165498

Han, Jiawei, Kamber, Micheline, Pei, J. (2012). Data Mining Concepts and Techniques. PhD Proposal (Third
Edit, Vol. 3). http://doi.org/10.1017/CBO9781107415324.004

Hevner, A., March, S., Park, J., & Ram, S. (2004). Design Science Research in Information Systems. MIS
Quarterly, 28(1), 75–105. Retrieved from
https://pdfs.semanticscholar.org/fa72/91f2073cb6fdbdd7c2213bf6d776d0ab411c.pdf

Hevner, A. R. (2007). A Three Cycle View of Design Science Research. Scandinavian Journal of Information
Systems, 19(2), 87–92. http://doi.org/http://aisel.aisnet.org/sjis/vol19/iss2/4

Hopcroft, J., Motwani, R., & Ullman, J. (2006). Introduction To Automata Theory, Languages, and
Computation (3rd ed.). Boston: Addison-Wesley Longman Publishing Co., Inc. Retrieved from
http://ieeexplore.ieee.org/document/5392601/

Houlihan, D. (2017). ROSS Intelligence and Artificial Intelligence in Legal Research. Boston. Retrieved from
http://bluehillresearch.com/ross-intelligence-and-artificial-intelligence-in-legal-research/

Ifijeh, G. I. (2010). Information explosion and University Libraries: Current Trends and Strategies for
Intervention. Chinese Librarianship: An International Electronic Journal, Dec. 2010(30), 1–15. Retrieved
from http://www.iclc.us/cliej/cl30doraswamy.pdf

Iida, R., Inui, K., & Matsumoto, Y. (2006). Exploiting syntactic patterns as clues in zero-anaphora resolution. In
Proceedings of the 21st International Conference on Computational Linguistics and the 44th annual
meeting of the ACL ACL 06 (pp. 625–632). Sydney, Australia. http://doi.org/10.3115/1220175.1220254

Ikonomakis, M., Kotsiantis, S., & Tampakas, V. (2005). Text classification using machine learning techniques.
WSEAS Transactions on Computers, 4(8), 966–974. Retrieved from

133

http://www.math.upatras.gr/~esdlab/oldEsdlab/en/members/kotsiantis/Text Classification final
journal.pdf%5Cnhttp://www.scopus.com/inward/record.url?eid=2-s2.0-
23444448953&partnerID=40&md5=11a5f24b7ee05d580eccaf940e3499e4

Indurkya, N., & Damerau, F. (2010). Handbook of Natural Language Processing (2nd ed.). Chapman &
Hall/CRC.

Ingersoll, G. (2015). 5 open source natural language processing tools. Retrieved September 18, 2017, from
https://opensource.com/business/15/7/five-open-source-nlp-tools

Jain, A., Sharma, R., Dixit, G., & Tomar, V. (2013). Page Ranking Algorithms in Web Mining, Limitations of
Existing methods and a New Method for Indexing Web Pages. In Proceedings - 2013 International
Conference on Communication Systems and Network Technologies, CSNT 2013 (pp. 640–645). Gwalior,
India: IEEE. http://doi.org/10.1109/CSNT.2013.137

jARVEST. (2017). jARVEST. Retrieved October 25, 2017, from https://sing.ei.uvigo.es/jarvest/manual.html

Jemini, M. (2018). Creation of Adjacency Matrix. Retrieved November 17, 2018, from
https://www.includehelp.com/ds/creation-of-adjacency-matrix.aspx

Jiang, J. (2012). Information Extraction from Text. In C. Aggarwal & C. Zhai (Eds.), Mining Text Data (pp. 11–
41). Boston: Springer,Boston, MA. http://doi.org/10.1007/978-1-4614-3223-4

Johannesson, P., & Perjons, E. (2012). A Design Science Primer (1st ed.). Lexington: CreateSpace Independent
Publishing Platform.

Jouili, S., & Vansteenberghe, V. (2013). An empirical comparison of graph databases. In Social Computing
(SocialCom) (pp. 708–715). Alexandria, United States: IEEE. http://doi.org/10.1109/SocialCom.2013.106

Kabakus, A. T., & Kara, R. (2017). A performance evaluation of in-memory databases. Journal of King Saud
University - Computer and Information Sciences, 29(4), 520–525.
http://doi.org/10.1016/j.jksuci.2016.06.007

Katz, W. (2002). Introduction to Reference Work (1st ed.). New York, United States: McGraw-Hill.

Kaza, S., Hu, P. J., & Chen, H. (2011). Designing , Implementing , and Evaluating Information Systems for Law
Enforcement — A Long-Term Design-Science Research Project. Communications of the Association for
Information Systems, 29(28).

Khaso, M. (2016). How Much Data is Produced Every Day? Retrieved May 16, 2017, from
http://www.northeastern.edu/levelblog/2016/05/13/how-much-data-produced-every-day/

Kolosovskiy, M. (2009). Data Structure for Representing a Graph: Combination of Linked List and Hash table.
ArXiv.Org. Retrieved from http://arxiv.org/abs/0908.3089

Krapivin, M., & Marchese, M. (2008). Focused page rank in scientific papers ranking. Lecture Notes in
Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 5362 LNCS, 144–153. http://doi.org/10.1007/978-3-540-89533-6-15

Kuchling, A. . (2018). Regular Expression HOWTO. Retrieved September 28, 2018, from
https://docs.python.org/2/howto/regex.html

Kumari, T., Gupta, A., & Dixit, A. (2014). Comparative Study of Page Rank and Weighted Page Rank Algorithm.
International Journal of Innovative Research in Computer and Communication Engineering, 2(2), 2929–
2937.

Lamkanfi, A., Demeyer, S., Soetens, Q. D., & Verdonck, T. (2011). Comparing Mining Algorithms for Predicting
the Severity of a Reported Bug. Proceedings of the European Conference on Software Maintenance and

134

Reengineering, CSMR, 249–258. http://doi.org/10.1109/CSMR.2011.31

LAW.gov. (2016). Sentencing Guidelines. Retrieved March 25, 2017, from
https://www.loc.gov/law/help/sentencing-guidelines/southafrica.php#Guidelines

LexisNexis. (2016). Legal Citator. Retrieved April 28, 2017, from https://www.mylexisnexis.co.za/Index.aspx#

LexisNexis. (2017a). About Us - LexisNexis. Retrieved May 11, 2017, from https://www.lexisnexis.com/en-
us/about-us/about-us.page

LexisNexis. (2017b). Casebase Case Citator Online - Legal Reference | LexisNexis. Retrieved May 13, 2017,
from http://www.lexisnexis.com.au/en-AU/products/CaseBase-Case-Citator-online.page

Liddy, E. (2001). Natural Language Processing. Encyclopedia of Library and Information Science (2nd ed.).
New York, United States: Marcel Decker, Inc. http://doi.org/10.1017/S0267190500001446

Liu, B. (2011). Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data. (M. Carey & S. Ceri, Eds.)
(2nd ed.). New York, United States: Springer-Verlag New York Inc.

LXML. (2017). lxml - Processing XML and HTML with Python. Retrieved October 25, 2017, from
http://lxml.de/index.html

Manning, C., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S., & McClosky, D. (2014). The Stanford CoreNLP
Natural Language Processing Toolkit. In Proceedings of 52nd Annual Meeting of the Association for
Computational Linguistics: System Demonstrations (pp. 55–60). Baltimore, Maryland, United States of
America. http://doi.org/10.3115/v1/P14-5010

March, S. T., & Storey, V. C. (2008). Design Science in the Information Sytems Discipline: An Introduction to
the Special Issue on Design Science Research. MIS Quarterly, 32(4), 725–730.
http://doi.org/192.96.15.27

Marr, B. (2016). How Big Data Is Disrupting Law Firms And The Legal Profession. Retrieved May 15, 2017,
from https://www.forbes.com/sites/bernardmarr/2016/01/20/how-big-data-is-disrupting-law-firms-
and-the-legal-profession/#1c90a1d97c23

Martin, P. W. (2013). Basic Legal Citation. Ithaca: Legal Information Institute.

Marzagão, T. (2013). Web Scraping with Selenium - part 1. Retrieved October 25, 2017, from
http://thiagomarzagao.com/2013/11/12/webscraping-with-selenium-part-1/

Mason, R. (1986). Four Ethical Issues of the Information Age. MIS Quarterly1, 10(1), 5–12.
http://doi.org/10.2307/248873

Menditto, A., Patriarca, M., & Magnusson, B. (2007). Understanding the meaning of accuracy, trueness and
precision. Accreditation and Quality Assurance, 12(1), 45–47. http://doi.org/10.1007/s00769-006-0191-
z

Meyer, M., Helfert, M., Donnellan, B., & Kenneally, J. (2012). Applying Design Science Research for Enterprise
Architecture Business Value Assessments. In Design Science Research in Information Systems. Advances
in Theory and Practice (pp. 108–121). Las Vegas, Navada: Springer, Berlin, Heidelberg.
http://doi.org/10.1007/978-3-642-29863-9_9

Molloy Librarian. (2017). Databases & Finding Articles: Boolean Searching. Retrieved October 31, 2017, from
https://molloy.libguides.com/c.php?g=58070&p=373272

MongoDB. (2018a). Introduction to MongoDB. Retrieved November 21, 2018, from
https://docs.mongodb.com/manual/core/document/

MongoDB. (2018b). MongoDB Architecture Guide. New York, United States: MongoDB, Inc. Retrieved from

135

https://jira.mongodb.org/secure/attachment/.../MongoDB_Architecture_Guide.pdf

MongoDB. (2018c). Top 5 Considerations When Evaluating NoSQL Databases. New York, United States:
MongoDB, Inc. Retrieved from
https://webassets.mongodb.com/_com_assets/collateral/10gen_Top_5_NoSQL_Considerations.pdf?_g
a=2.206650074.837077773.1542003309-1760698149.1541612457

Moniruzzaman, A., & Hossain, S. (2013). NoSQL Database: New Era of Datbases for Big Data Analytics -
Classification, Characteristics and Comparison. International Journal of Database Theory and
Application, 6(4), 43–45. http://doi.org/10.1016/S0262-4079(12)63205-9

Myers, D., & McGuffee, J. W. (2015). Choosing Scrapy. Journal of Computing Sciences in Colleges, 31(1), 83–
89. Retrieved from https://www.researchgate.net/publication/314179276_Choosing_Scrapy

Myers, M., & Venable, J. (2014). A set of ethical principles for design science research in information systems.
Information Management, 51(6), 801–809. http://doi.org/10.1016/j.im.2014.01.002

NLTK Project. (2017). Natural Language Toolkit — NLTK 3.2.5 documentation. Retrieved October 9, 2017,
from http://www.nltk.org/

Parmar, R., & Roy, S. (2018). MongoDB as an Efficient Graph Database: An Application of Document Oriented
NOSQL Database. Advances in Parallel Computing, 29(February), 331–358. http://doi.org/10.3233/978-
1-61499-814-3-331

Peffers, K., Tuunanen, T., Rothenberger, M. A., & Chatterjee, S. (2007). A Design Science Research
Methodology for Information Systems Research. Journal of Management Information Systems, 24(3),
45–77. http://doi.org/10.2753/MIS0742-1222240302

Piskorski, J., & Yangarber, R. (2013). Information Extraction: Past, Present and Future. In T. Poibeau, H.
Saggion, J. Piskorski, & R. Yangarber (Eds.), Multi-source, Multilingual Information Extraction and
Summarization (pp. 23–50). Berlin: Springer-Verlag Berlin Heidelberg. http://doi.org/10.1007/978-3-
642-28569-1

Pokorný, J., Valenta, M., & Kovačič, J. (2017). Integrity constraints in graph databases. Procedia Computer
Science, 109(2016), 975–981. http://doi.org/10.1016/j.procs.2017.05.456

Prakash, J., & Kumar, R. (2015). Web Crawling through Shark-Search using PageRank. In International
Conference on Intelligent Computing, Communication & Convergence (Vol. 48, pp. 210–216). Elsevier
Masson SAS. http://doi.org/10.1016/j.procs.2015.04.172

Prasse, P., Sawade, C., Landwehr, N., & Scheffer, T. (2015). Learning to Identify Regular Expressions that
Describe Email Campaigns. Journal of Machine Learning Research, 16, 3687–3720.

Programiz. (n.d.). Adjacency List. Retrieved November 17, 2018, from
https://www.programiz.com/dsa/graph-adjacency-list

Rabin, M. O., & Scott, D. (1959). Finite Automata and Their Decision Problems. IBM Journal of Research and
Development, 3(2), 114–125. http://doi.org/10.1147/rd.32.0114

RAVN Systems. (2016). The Power of Understanding Artificial Intelligence in The Legal World (White Paper).
London, England: RAVN Systems. Retrieved from https://www.ravn.co.uk/ravn-publishes-white-paper-
power-understanding-ai-legal-world/

Richardson, L. (2015). Beautiful Soup Documentation. Retrieved October 25, 2017, from
https://www.crummy.com/software/BeautifulSoup/bs4/doc/

Robinson, I., Webber, J., & Eifrem, E. (2015). Graph Databases. (M. Beaugureau, Ed.)Joe Celko’s Complete
Guide to NoSQL (2nd ed.). Sebastopol, United States: O’Reilly Media, Inc. http://doi.org/10.1016/B978-

136

0-12-407192-6.00003-0

Roshdi, A., & Roohparvar, A. (2015). Review : Information Retrieval Techniques and Applications.
International Journal of Computer Networks and Communications Security, 3(9), 373–377.

Sarker, I. H., Faruque, F., Hossen, U., & Rahman, A. (2015). A survey of software development process models
in software engineering. International Journal of Software Engineering and Its Applications, 9(11), 55–
70. http://doi.org/10.14257/ijseia.2015.9.11.05

Scrapy. (2016). Scrapy at a glance — Scrapy 1.4.0 documentation. Retrieved October 25, 2017, from
https://doc.scrapy.org/en/latest/intro/overview.html

Singh, H., & Sharma, R. (2012). Role of Adjacency Matrix & Adjacency List in Graph Theory. International
Journal of Computers & Technology, 3(August 2012), 179–183. http://doi.org/10.24297/ijct.v3i1c.2775

Singh, S. (2018). Natural Language Processing for Information Extraction. CoRR, 1–24. Retrieved from
http://arxiv.org/abs/1807.02383

Soanes, C., & Stevenson, A. (2004). The Concise Oxford English Dictionary. Oxford University Press.

Sumathy, K., & Chidambaram, M. (2013). Text Mining: Concepts, Applications, Tools and Issues–An Overview.
International Journal of Computer Applications, 80(4), 29–32. http://doi.org/10.5120/13851-1685

The Apache OpenNLP Development Community. (2011). Apache OpenNLP Developer Community. Retrieved
October 9, 2017, from http://opennlp.apache.org/docs/1.8.2/manual/opennlp.html#intro.cli.toolslist

Ulrich, K. T., & Eppinger, S. D. (2012). Product Development and Computer Aided Design. (L. H. Spell,
Ed.)Manual of Engineering Drawing (5th ed.). New York, United States: McGraw-Hill.
http://doi.org/10.1016/B978-0-7506-8985-4.00002-4

University of Massachusetts. (2002). Challenges in Information Retrieval and Language Modeling. Report of a
Workshop held at the Center for Intelligent Information Retrieval (Vol. 37). Amherst, Massachusetts.
Retrieved from http://doc.utwente.nl/66226/

Vargiu, E., & Urru, M. (2012). Exploiting Web Scraping in a Collaborative Filtering-Based Approach to Web
Advertising. Artificial Intelligence Research, 2(1), 44–54. http://doi.org/10.5430/air.v2n1p44

Venable, J., Pries-Heje, J., & Baskerville, R. (2012). A Comprehensive Framework for Evaluation in Design
Science Research. Design Science Research in Information Systems. Advances in Theory and Practice,
7286(2012), 423–438. http://doi.org/10.1007/978-3-642-29863-9_31

Venable, J., Pries-Heje, J., & Baskerville, R. (2016). FEDS: A Framework for Evaluation in Design Science
Research. European Journal of Information Systems, 25(1), 77–89. http://doi.org/10.1057/ejis.2014.36

Vijayarani, S., Ilamathi, J., Nithya, M., Ilamathi, M. J., Nithya, M., Professor, A., & Research Scholar, M. P.
(2015). Preprocessing Techniques for Text Mining - An Overview. International Journal of Computer
Science & Communication Networks, 5(1), 7–16. http://doi.org/10.1016/j.procs.2013.05.286

Vogel, L. (2016). Regular Expressions in Java-Tutorial. Retrieved September 28, 2018, from
http://www.vogella.com/tutorials/JavaRegularExpressions/article.html

Wagh, R. S. (2014). Exploratory Analysis of Legal Documents using Unsupervised Text Mining Techniques.
International Journal of Engineering Research & Technology, 3(2), 2264–2267. Retrieved from
http://www.ijert.org/view-pdf/8360/exploratory-analysis-of-legal-documents-using-unsupervised-text-
mining-techniques

Web-Harvest. (2017). Web-Harvest Project Home Page. Retrieved October 25, 2017, from http://web-
harvest.sourceforge.net/index.php

137

Webbers Attoryneys, Notaries, C. (2017). Special Courts. Retrieved September 18, 2017, from
http://www.webberslaw.com/special-courts/

White, J. P. (2009). Effects of the Information Explosion on Information Literacy. Retrieved May 15, 2017,
from http://jacquelinepwhite.wordpres.com/2009/09/28/effects-of-the-information-explosion-on-
information-literacy/

Yambu. (2018). Tribunals in South Africa. Retrieved September 25, 2018, from
https://www.yambu.co.za/tribunals/

Yin, R. K. (2014). Case Study Research: Design and Methods 5th Edition (5th ed.). London, England: SAGE
Publications, Inc.

Young, B. (2010). The Role of Stakeholder Perceptions during IT- Enabled Change : An Investigation of
Technology Frames of Reference in a Sales Process Innovation Project. Atlanta, Georgia: Georgia State
University. Retrieved from http://scholarworks.gsu.edu/cis_diss/40

Zhang, Z. (2017). Graph Databases for Knowledge Management. IT Professional, 19(6), 26–32.
http://doi.org/10.1109/MITP.2017.4241463

138

Appendices

Appendix A: Visualisation of Research Problem

Repeating the above process will result in a table resembling the following:

Law field Case Points

Labour A 2

Tax A 1

Labour B 1

Divorce B 1

Criminal C 0

Tax C 0

Family D 0

Criminal D 0

Return the Most Applied Case. In this example, the Most Applied Case for Labour Law is from Case A. Return

the rest of the cases followed by each case’s ranking.

139

Appendix B: Responses from LexisNexis

First Questionnaire
Based on research conducted, a preliminary set of requirements for the proposed system are:

• Use of text mining in conjunction with (Gupta & Lehal, 2009):

o Information retrieval;

o Topic tracking;

o Summarisation;

o Categorisation; and

o Machine learning.

• Text mining algorithms that could be implemented include (Lamkanfi, Demeyer, Soetens, &

Verdonck, 2011):

o Naïve Bayes;

o K-nearest neighbour; and

o Support vector machines.

• Documents should be pre-processed by means of Document Representation (Ikonomakis et al.,

2005).

Questions

1. Experts:

a. Who are the ultimate experts of this project and what are their roles?

Technical Development: Lee Adriaanse (Technical Research and Compliance Manager) and Leon

Rajindrapersad (Online and Mobile Solutions Architect)

Law Reports and Content Experts: Cindy Naidoo (Senior Editor – Judgments Online) and Rene’ Devprasad

(Managing Editor – Law Reports)

LegalCitator (Part of Law Reports): Adv Christopher Rodel (LegalCitator Editor) and Marcus Jones (Editor &

Key Background Knowledge on development of the LegalCitator)

b. Who will be the end-users of the system that uses my algorithms?

2. Existing systems:

a. What existing systems does LexisNexis have in place that relate to searching for citations?

We currently use ElasticSearch and also have a specialised product called the LegalCitator which provides an

analysis of judgments reported by LexisNexis.

b. What algorithms does LexisNexis’ existing system use?

LexisNexis whatever algorithms are offered by COTS packages. It doesn’t currently use any

particular algorithm for data mining, entity extraction or dark data research. We are currently

embarking with our search providers on an entity extraction exercise using Stanford NLP, NLTK

and OPENNLP

c. Does LexisNexis’ existing system make use of any artificial intelligence techniques such as

text mining?

See above. We’ve experimented a bit with KNIME for prototyping.

d. What functions does the existing system currently perform?

Basic Search

140

e. What functions does the existing system not perform that you would like it to do?

Entity Extraction, Sentiment Analysis with Machine Learning capabilities.

f. Is there any documentation related to the existing system in LexisNexis that I can read

through?

Standard ElasticSearch documentation available online.

3. What related systems are available on the market?

Watson, Beagle, ROSS Intelligence, Equivio, Premonition, eBravia, Cognitiv+ - the list is extensive

4. Data:

a. What data do you have available?

Case Law and Legislation – xml format

b. How will I access the data?

We’ll organise through sFTP site.

c. What format is the data in?

XML

d. What processes are followed to collect the data?

Will discuss on your visit.

5. Who should I contact if I have any queries? Cindy Naidoo or Lee Adriaanse will be able to assist or

help you take your queries forward to the necessary parties.

Second Questionnaire
Follow-up questions to Round One

1. What processes are followed to collect the data?

a. Who enters/submits the data? Various Editors who are responsible for the different Law

Reports publications, followed by the designated LegalCitator Editor.

b. How is the data captured?

i. For LegalCitator – inside of a desktop LegalCitator Editor application

ii. For other series – in a word document that is styled and eventually converted to xml

c. How often is the data entered/submitted? The time frames vary, depending on the

publications. Some data is updated daily and some monthly, by the Law Reports Editors and

our Electronic Publishing Team. Thereafter, the LegalCitator Editor does his updates on a

monthly basis.

2. How will I access the data? Access to our live site has been created for you. We will also be able to

send you copies of the relevant files in word or pdf format if necessary.

3. Who will be the end-users of the updated LegalCitator system? Internal (staff) and external

customers.

Round Two Questions

LegalCitator questions:

141

1. What is your ultimate end-goal for the system? The goal is to make this product as user friendly as

possible, saving the customer as much research time as possible. – while drawing as much value out

of our current content set for our customers.

2. How do users of the LegalCitator use the system? i.e. do they just search for legal documents, find

what they need and present it as part of their defence? The information found on the LegalCitator

would need to be worked into a legal practitioner’s argument before presenting.

Information Retrieval and Data questions:

Information Retrieval (IR) is a process that deals with the representation, storage, and searching of a

collection of data in response to a request from a user (Roshdi & Roohparvar, 2015).

1. What IR processes does LexisNexis follow?

a. No formal process. Visual pattern identification and document meta-data markup

2. Where does LexisNexis store the Case Law and Legislation data?

a. Reference to the content in SQL DB. The content itself is an xml file on a file share locally and

this is replicated to the production environment at our Vodacom data centre

3. How does LexisNexis store the Case Law and Legislation data?

a. XML File format

4. If Case Law and Legislation data is converted from XML format, what processes are followed to do

the conversion?

a. Its converted to XML from a word document, using Word Styles which are mapped to XML

elements in a tool called LMT – Link Management Tool

Text Mining questions:

Text mining follows the process of extracting information from unstructured pieces of text and converting

the information into knowledge. Pieces of text include, amongst others, emails and full-text documents

(Gupta & Lehal, 2009).

1. Are the Case Law and Legislation data structured, unstructured, or semi-structured?

a. Semi-structured

2. How do you think text mining will benefit the LegalCitator system?

a. It will get more untreated product to the client more quickly

3. Why do you require the system to support entity extraction and sentiment analysis?

a. For the process of supporting the LegalCitator product and to assist in treating the vast

amounts of untreated case law series.

General information questions:

1. What are the key factors that will be used to determine if the project is a success?

a. Process and extract ALL SA legal cases

b. Save extracted legal cases for future use

c. Help in recommending the MAC

2. What are the types of data collected? i.e. documents, images, keywords etc.

a. Information, keywords, phrases

b. ???? uncertain if you mean collected from your process or the input to your process

3. How much Case Law and Legislation data do you have?

a. 100 000 Law Reports

4. From what time-period does the data start?

a. 1994 onwards

142

5. Have you looked at using a system that is on the market? i.e. Watson or Beagle

a. We’ve investigated it.

Email Responses – August 2017
1. What process is followed to categorise a legal case? i.e. categorising a case as being Criminal

Law. Here, the person summarising the judgment for us decides which category of law it would

fit into after reading through and summarising the case. Key words pertaining to that particular

category are allocated to each judgment.

o Is this process done manually? If yes, what steps are followed to do the categorisation? At the

moment, yes, it is done manually. The summariser, with a legal background and legal

knowledge, would read through the judgment in order to determine what area of law it

would fit under.

o If the process is not done manually, what system is used to do the categorisation?

2. What process is followed to enter a case’s data into the database? i.e. does a document first

have to be created containing the relevant data, then added to a database? Yes. Each judgment

is “styled” into a specific LexisNexis Law Reports structure, using a template. The document is

then proofread, keywords and summaries are added, additional work such as adding parallel

citations is done. Once this is completed, the hard copy version of for example, the All SA Law

Reports is sent out to the printers and then using the same word files that were worked on to

create this, the Electronic Product Team builds each judgment onto our live site.

To add a case to the BLC database we do use a manual process of entering the data from the Word

documents into the BLC editor, which happens after the process Cindy has explained.

3. With regards to the databases used for the BLC, what is the difference between the BLC

Database and Gracie Database? The Gracies Database is basically a subject-index database. The

editor would refer to permanent headings in this database (areas or categories of law) and

capture and break down key words from a judgment even further, thereafter attaching these

keywords to the case in question as listed in the Gracies database – on the BLC database

however, the Editor adds in a lot more info, such as the case details, case history etc. All of this

info is ultimately pulled together and displayed in BLC search results.

4. Would it be possible to obtain a diagram of the tables and their respective fields within the BLC

and Gracie Database? For this, Christopher Rodel would be able to assist you. (Hi Chris – please

add to this for me)

 I’ve attached the BLC schema for you, which should assist.

Follow up Questions
1. When reading through a case, how does the summariser determine the field of law? i.e. looks for key

words? Does a word count of certain words play any role? Are any special techniques used?

2. Which database is the final version of a case stored on? Is it the BLC database or Gracies database?

3. Which database is a case accessed from when LexisNexis staff and external users request a case?

4. With regards to the second question, where is a case taken from before you start the process of

‘entering a case into the database’ -which database is the case sitting on?

5. With regards to the second question, what data is added to a case apart from the keywords,

summaries, and parallel citations?

6. Is a case stored on a relational database or is a case stored as one ‘document object’ in a database?

143

7. In the second question’s answer you refer to a “live site”, is this the mylexisnexis.com site?

Additional Questions
Architecture

I’d like to get an understanding of the architecture used for the LegalCitator. I’ve done a rough diagram of my

current understanding (See attached file).

1. Is my diagram correct?

a. If no, what information am I missing?

2. Does LexisNexis use any Application Servers, Web Servers, and Database Servers for the LegalCitator?

a. If yes, what are the names of these servers?

b. What role do these servers play in returning information to a user who is:

i. using the LegalCitator?

ii. Using the Mylexisnexis.com website?

3. On which database are the judgements stored?

Legal Citations

1. I am not sure if there is a ‘world standard’ that all law organisations must use with regards to legal

citations. Does LexisNexis use a specific style of legal citations?

a. Would you be able to point me to any resources that explain how to interpret/use the

citation principles?

2. What are parallel citations?

a. Are parallel citations different from ‘normal’ legal citations?

LexisNexis Abroad

Do LexisNexis branches overseas use the same legal software/systems like the LexisNexis branch in South

Africa. i.e. LexisNexis in South Africa uses the LegalCitator, would LexisNexis in USA use a different product?

144

Appendix C: Ethics Clearance

 Chapter 7
 Conclusion

145

Appendix D: Parts of a Legal Case

 Chapter 7
 Conclusion

146

Appendix E: The BLC Schema

 Chapter 7
 Conclusion

147

 Chapter 7
 Conclusion

148

 Chapter 7
 Conclusion

149

 Chapter 7
 Conclusion

150

Appendix F: Project Plan

Task Description Deliverable Estimated Deadline

Introduction Chapter 1 June 2017 – July 2017

Literature Study Chapter 2,3,4 August 2017 – October 2017

Complete Chapters 1,2,3 Chapter 1,2,3 End of 2017

Start draft of Chapter 5 Chapter 5 draft December 2017

Design and Development Chapter 5 October 2017 – January 2018

Evaluation Chapter 6 January 2018 – February 2018

Conclusion Chapter 7 March 2018

Completion of Chapters First Draft Submission May 2018

Amendments to Chapters Second Draft Submission October 2018

Amendments to Chapters Final Submission November 2018

 Chapter 7
 Conclusion

151

Appendix G: Screenshots from LegalCitator

 Chapter 7
 Conclusion

152

Appendix H: Test Document Used for Regular Expression Testing

This test made use of the Python libraries RE and Apache Tika to extract data from a PDF document.

The following data was extracted:

• “Date: 2018-03-17;

• “Title: Testing Apache Tika Library;

• Website address “https://cbrownley.wordpress.com/2016;

• Telephone number “0123456789”; and

• Email address testingone@mandela.ac.za.

mailto:testingone@mandela.ac.za

 Chapter 7
 Conclusion

153

Appendix I: Complete Details of Test Documents
Test Documents Used in Experiments

Document Name Full Name Used in Details

TesterDoc1 TestV2 Experiment 2

Part 1

TesterDoc1 was created by the researcher

to test extracting facts. TesterDoc1 was in

PDF format. Facts related to date, title,

mobile number, email address, and web

address were to extracted.

Experiment 3

Part 2

TesterDoc1 was converted to MS Word

.docx format to perform IE on.

T1 Minister of Basic

Education and

others v Basic

Education for All

and others [2016]

1 All SA 369 (SCA

Experiment 2

Part 2

T1 was a legal case obtained from

LexisNexis. T1 is in PDF format and was

used as a base to build the MAC System to

extract facts.

Experiment 3

Part 2

T1 was converted to a MS Word .docx file

to perform IE on.

T2 Azisa (Pty) Ltd v

Azisa Media CC

and another

[2002] 2 All SA 488

(C)

Experiment 4 T2 was a legal case obtained from

LexisNexis. T2 was used to further build

the MAC System as it provided a different

structure than T1.

T3 Cliff v Electronic

Media Network

(Pty) Ltd and

another [2016] 2

All SA 102 (GJ)

Experiment 4 T3 was a legal case obtained from

LexisNexis. T3 was used to further build

the MAC System as it provided a different

structure than T1 and T2.

U1 Equal Education v

Minister of Basic

Education [2018] 3

All SA 705 (ECB)

Experiment 4 U1-U10 were used as unseen cases to test

the MAC System.

U2 Food and Allied

Workers Union

and others v

Scandia

Delicatessen CC

and another

[2001] 3 All SA 342

(

U3 Hoho v S [2009] 1

All SA 103 (SCA)

U4 Kate%u2019s

Hope Game Farm

(Pty) Limited v

Terblanchehoek

Game Farm (Pty)

Limited [1997] 4

All SA 185 (A)

U5 Ketler Investments

CC t_a Ketler

Presentations v

Internet Service

Providers%u2019

 Chapter 7
 Conclusion

154

Association [2014]

1 Al

U6 Minister of Home

Affairs and others

v Somali

Association of

South Africa,

Eastern Cape

(SASA EC) and

U7 Movie Camera

Company (Pty) Ltd

v Van Wyk and

another [2003] 2

All SA 291 (C)

U8 Pioneer Foods

(Pty) Ltd v

Bothaville Milling

(Pty) Ltd [2014] 2

All SA 282 (SCA)

U9 Standard Bank of

South Africa

Limited v Harris

and others [2002]

4 All SA 164 (SCA)

U10 National Director

of Public

Prosecutions v

Mohunram and

others [2007] 4 All

SA 704 (SCA)

 Chapter 7
 Conclusion

155

Appendix J: 50 Cases CRT

 Chapter 7
 Conclusion

156

Appendix K: ICCECE’18 Conference Paper

 Chapter 7
 Conclusion

157

 Chapter 7
 Conclusion

158

 Chapter 7
 Conclusion

159

 Chapter 7
 Conclusion

160

 Chapter 7
 Conclusion

161

