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 Abstract— Goal: Artificially engineering the tumor 

microenvironment in vitro as a vital tool for understanding the 
mechanism of tumor progression. In this study, we developed 
three-dimensional cell scaffold systems with different 
topographical features and mechanical properties but similar 
surface chemistry. The cell behavior was modulated by the 
topography and mechanical properties of the scaffold. 
Adenocarcinoma (MCF7), triple-negative (MDA-MB-231) and 
premalignant (MCF10AneoT) breast cancer cells were seeded on 
the scaffold systems. The cell viability, cell-cell interaction and 
cell-matrix interactions were analyzed. The preferential growth 
and alignment of specific population of cells were demonstrated. 
Among the different scaffolds, triple-negative breast cancer cells 
preferred honeycomb scaffolds while adenocarcinoma cells 
favored mesh scaffolds and premalignant cells preferred the 
aligned scaffolds. The 3D model system developed here can be used 
to support growth of only specific cell populations or for the 
growth of tumors. This model can be used for understanding the 
topographical and mechanical features affecting tumorigenesis, 
cancer cell growth and migration behavior of malignant and 
metastatic cancer cells. 
 

Index Terms—3D scaffold, breast cancer, cell adhesion, 
microenvironment, durotaxis, topotaxis. 
 

 

I. INTRODUCTION 
he cancer microenvironment is a complex system 
consisting of extracellular matrix, stromal cells, 
adipocytes, fluids and vasculature [1]. This system is 

dynamically remodeled during tumorigenesis leading to a 
constantly evolving temporal and spatial 3D structures with 
distinct physical and pathophysiological alterations conducive 
to tumors [2]. The conventional 2D cell culture systems do not 
recapitulate the 3D tumor microenvironment. The cells grow in 
monolayers, lose polarity, and have an altered shape leading to 
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changes in gene expression and splicing [3-7]. It fails to recreate 
the complex 3D intercellular signaling cascades and cell-matrix 
interactions, hypoxic conditions characteristic of tumor 
microenvironment, and communication between cells in 
different niches [8-10]. Three-dimensional systems such as 
tumor cell spheroids lack repeatability and are difficult to 
handle for animal studies [11]. The scaffolds provide a stable 
3D environment for the cells to adhere, migrate, proliferate and 
differentiate[12]. They closely mimic the microenvironment 
with hypoxia-like conditions and cellular niches. Various 
materials, both natural (e.g. Engelbreth-Holm-Swam extract, 
collagen) and synthetic (polycaprolactone, poly(lactic-co-
glycolic acid) have been used to fabricate scaffolds [13-15]. 
Recently, the adverse impact of using biological materials on 
immune cell recruitment was reported by Wolf and colleagues 
[16]. Synthetic polymer scaffolds have an advantage of being 
readily available and their production can be upscaled 
industrially [17]. Current 3D scaffold systems have limitations 
in design and connecting in vivo and in vitro conditions due to 
reductionist approaches. The synthetic material systems 
provide key information regarding cell migration and signaling 
cascades, but fail to consider the durotaxic and 
topotaxicmechanical properties and topographical cues, 
including roughness, curvature, porosity and fibrosity of the 
tumor microenvironment [18-22].  
In this study, we engineered 3D scaffolds composed of well-
defined morphologies and mechanical properties from 
polycaprolactone (PCL) using electrospinning [23, 24]. PCL is 
a synthetic, biodegradable, aliphatic polyester with slow and 
controllable degradation rates, and tunable mechanical 
properties [25]. Scaffolds with mesh, aligned and honeycomb 
morphologies (Fig. 1) were fabricated by manipulating the 
parameters used during electrospinning. Scaffolds with mesh 
morphology were designed to mimic the fibrous structure 
naturally present in the extracellular matrix of the breast tissue 
(ECM). The aligned morphology (naturally present in 
connective tissue) in scaffolds has previously been 
demonstrated to provide cues for durotaxis leading to 
differentiation, alignment of cells and as a predictor for breast 
cancer survival [26-30]. The porous honeycomb structure 
(naturally present in bones and alveolar tissue) mimicking the 
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complex architecture present in tissues has been previously 
explored for tissue engineering [31-33], fibroblast growth and 
to inhibit the growth of cancer cells [34, 35]. Here we further 
investigate and delineate the effect of scaffold morphology on 
cancer cells. Breast cancer cell lines representing ductal 
adenocarcinoma (MCF-7), triple-negative metastatic (MDA-
MB-231) and pre-malignant cancer (MCF10AneoT) were used 
to investigate the role of mechanical properties and topography 
on cancer cell adhesion and proliferation, and provide insights 
into the preferential behavior of cancer cells [36]. The scaffolds 
replicating different morphologies naturally present in the body 
helps in mimicking the conditions in vitro and explore the 
potential of topotactic and durotactic gradients of the 
extracellular matrix. 

II. MATERIALS AND METHODS 

A. Fabrication of Scaffolds 
All the materials were used as procured unless specified 

otherwise. Polycaprolactone (PCL): (Mw~70,000 GPC; 
Scientific Polymer Products, USA) was used to obtain a sol-gel 
consisting of 20% PCL in chloroform (Sigma Aldrich, USA) 
for electrospinning. The voltage, rotational speed of the rotating 
collector and the polymer feed rate were varied as indicated in 
table 1 (EM-DIG and EM-RTC; IME Technologies, 
Netherlands). Humidity, temperature, polymer fluid volume 
and tip-collector distance were constant.  

B. Characterization of Scaffolds 
The scaffolds were prepared by sputter coating with a 5 nm 

thick coating of Au/Pd for field emission scanning electron 
microscope (FESEM; Hitachi S-4700 FE-SEM). Fiji[37] was 
used for image analysis. The surface chemistry of the scaffolds 

was characterized using Attenuated Fourier Transform Infrared 
Spectroscopy (ATF-FTIR, Thermo Scientific™, Nicolet™ 
iS50) with a deuterated triglycine sulfate detector element.  The 
measurements range of 400–4000cm−1 at a resolution of 
4cm−1 with 256 scans was used. The mechanical properties of 
the scaffolds were determined by using a dynamic mechanical 
analyzer (TA Instruments™, DMA Q800) under uniaxial strain 
ramp at isothermal conditions (37°C). The Young’s modulus 
was determined from the linear region of the stress-strain plot, 
uniaxial stiffness was determined from the force-displacement 
curve. The modulus of toughness and modulus of resilience 
were calculated from the area under the curve and area under 
the linear region of the stress-strain curve respectively. 

C. Cell Culture, Seeding, Viability and Immunochemistry 
Breast ductal adenocarcinoma cancer cells (MCF7/ATCC® 
HTB-22™) and triple-negative malignant basal breast cancer 
cells (MDA-MB-231/ATCC® HTB-26™) were procured from 
American Type Cell Culture (ATCC). The premalignant cancer 
cell line, MCF10AneoT, was acquired from the Animal Model 
and Therapeutics Evaluation Core (AMTEC), Barbara Ann 
Karmanos Cancer Institute, Wayne State University. All cells 
were maintained under standard culture conditions and seeded 
on scaffolds as previously reported [33]. The scaffolds of 
0.25cm2 and 0.5cm2 area (1500 cells) were used for cell 
viability and immunocytochemistry respectively following 
sterilization in ethanol and irradiation in UV. The cell viability 

TABLE I 
PARAMETERS USED FOR ELECTROSPINNING SCAFFOLDS 

Type of 
Scaffold 

Voltage 
(kV) 

Rotational  
Speed (RPM) 

Polymer Feed Rate 
(µL/min) 

Mesh 11 150 4 
Aligned 11 275 4 
Honeycomb 10 300 3 
    

 

 
Fig. 1.  Field emission scanning electron microscopic (FESEM) images of the PCL scaffolds exhibiting different morphologies. The low magnification images 
(A,C,E) are present on the top while the high magnification images (B,D,F) are present in the bottom.  
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(n=9) was analyzed using CellTiter-Blue® Cell Viability Assay 
(Promega, Madison, WI). Cells on tissue culture treated plates 
in similar conditions served as positive controls (n=3). The 
fluorescence intensity was measured after 4 hours (Beckman 
Coulter DTX 880 Multimode Detector, ex/em 560nm/590nm).   
Fixed samples were permeabilized with Triton-X 100 and 
stained with Alexa Fluor® 594 Phalloidin (Invitrogen, USA) 
and DAPI (4’,6-diamidino-2-phenylindole) (Life Technologies, 
USA) for visualizing the cytoskeletal F-Actin and A-T regions 
of the nucleus, respectively, according to the manufacturer’s 
protocols. 

D. Statistical Analysis 
Mechanical characterization of the scaffold was represented as 
mean ± SD (standard deviation). For cell viability, descriptive 
statistics was represented as mean ± SEM (standard error of 
mean). OriginPro 2018b and IBM® SPSS statistics V25 was 
used for statistical evaluation of cell proliferation. One-way 
ANOVA followed by post-hoc Tukey’s HSD test was used to 
calculate significance (p<0.05) between days and difference 
between cell lines for each scaffold morphology. 

III. RESULTS 

A. Topographical Characterization 
From the FESEM images (Fig. 1), the formation of three 

distinct topographies can be inferred. The mesh scaffolds (Fig. 
1A) have randomly oriented fibers, densely packed forming a 
3D structure. The change in contrast (Fig. 1B) of the mesh like 
network indicates different layers. The aligned scaffolds had 

fibers tightly packed along an identical orientation. The 
scaffolds exhibited alternating regions of larger and smaller 
diameter fibers (Fig. 1C). A high concentration of overlapping 
aligned fibers in a tight network is visible in the high 
magnification (Fig. 1D). A low magnification image of the 
honeycomb scaffolds (Fig. 1E) composed of interlocking fibers 
in a specific pattern forming asymmetrical elongated 
honeycomb like structures. The structures had a long-range 
order and high aspect ratio. Densely packed fibers along the 
walls and aligned fibers at the bottom is visible in the high 
magnification image (Fig. 1F) of the boundary of the pores. The 
degree of alignment was the lowest in the mesh scaffolds (Fig. 
2A) and highest in aligned scaffolds (Fig. 2B). The honeycomb 
morphology had a degree of alignment spread over a broad 
range of angles and a higher alignment of fibers than mesh but 
less than the aligned morphology (Fig. 2C). The fibers in mesh 
morphology had little depth with uniform topography (Fig. 2D), 
while the aligned morphology had fibers with a pattern 
resembling grids forming grooves (Fig. 2E). The porous 
structures were well defined and present throughout the 
honeycomb morphology forming distinct regions (Fig. 2F). 

B. Surface Chemistry 
Surface characterization of the chemical bonds on the 

scaffolds was done using ATR-FTIR (Fig. 3A and S1). As the 
incident beam was focused on a larger surface area, it cannot be 
used to compare between the isotropic nature of the fibers in 
different scaffold morphologies. The stretching of the C-O and 
C-C bonds in the crystalline phase causes a peak at 1294cm−1. 
The high electric field applied causes the PCL chains to orient 

 
Fig. 2. The degree of alignment and 3D topography scan of different morphologies of the scaffolds was characterized using the directionality plugin in ImageJ 
from the FESEM images used in figure 1 as seen in the inlay (n=5).  A) The mesh fibers had a high dispersion of fibers with low degree of alignment. B) The 
aligned fibers had a high concentration of fibers in a narrow angle range with little deviation in other directions. C) The honeycomb scaffolds had a broader range 
of deviation compared to the aligned scaffold but a much narrower distribution than the mesh scaffolds. D) The fibers in mesh had little depth profile. E) The fibers 
in aligned morphology had aligned fibers forming a pattern resembling grids F) The fibers in the honeycomb morphology had well defined porous structure forming 
distinct regions.  
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along a direction accentuating the crystalling phase of PCL[38]. 
The peaks at 2942cm−1 and 2865cm−1 represent asymmetric and 
symmetric stretching of the CH2 group. The peak at  1723cm−1 
corresponds to C=O vibration of ester. The bands at 1239cm−1 
and 1165cm−1 are associated with asymmetric and symmetric 
stretching of the ester COO group. The peak at 1365cm−1 
correspond to the CH2 band vibrations while the O–C vibrations 
and CH2 vibration occur at 961cm−1 and 732cm−1 respectively. 

C. Mechanical Properties 
 

The mechanical characterization of the scaffolds (Table 2) 
was done using DMA at isothermal conditions (Fig. 3B). The 
stress-strain behavior of the scaffolds was unique to each 
morphology. The honeycomb scaffold has the highest average 
ultimate strength and stiffness. The aligned scaffolds have 
mechanical properties comparable to the honeycomb scaffolds 
with respect to the Young’s modulus and stiffness, however the 
modulus of toughness is lower than honeycomb scaffolds. The 
mesh scaffolds have relatively poor strength and toughness. All 
three morphologies have a non-significant difference in strain 
at failure. 

D. Immunocytochemistry 
Breast cancer cell lines representing various stages of cancer 

progression (adenocarcinoma, premalignant, triple-
negative/metastatic) were used to evaluate the behavior of 
cancer cells on different topographies and mechanical 
properties of the scaffold. The cells were stained and fixed on 
days 1, 2 and 3. Qualitative analysis of the behavior of the cells 
to changes in morphology of the scaffold was assessed by 
immunocytochemistry on fixed cells on days 1, 2, and 3 after 
seeding. High magnification images of some of the phenotypes 
used for characterizing the behavior of the scaffolds is shown 
in figure S2. 
 
1) MCF7 

From Fig. 4 and S3, the cells were clumped on all three 
morphologies on day 1 with extensive clumping in the aligned 
scaffolds. In the mesh morphology, on days 2 and 3, cells 
infiltrated the scaffold and were spread affecting imaging. In 
the aligned scaffold, on days 2 and 3 oriented along the 
direction of alignment of the fibers and were spread out with an 
elongated morphology. The honeycomb scaffold had a high 
concentration of cells in the pores and almost negligible number 
of cells on the boundary of the pores on day 2. On day 3, the 
cells infiltrated the layers of fibers and were present in between 
the fibers (blurred regions between the fibers). Based on the 
cellular distribution, morphology and orientation (day 3), it 
appears that the cells responded to the nanotopographical cues, 
distinctive of the morphologies of the scaffolds. 
 
2) MDA-MB-231 
 

TABLE II 
MECHANICAL PROPERTIES OF THE DIFFERENT MORPHOLOGIES OF THE 

SCAFFOLD 

 Mesh Aligned Honeycomb 

Young’s 
Modulus (MPa) 

0.155 ± 0.01 
 

0.560 ± 0.12 
 

0.569 ± 0.14 
 

Modulus of 
Resilience 

1.603 ± 0.64 
 

2.945 ± 0.59 
 

5.547 ± 0.04 
 

Ultimate Tensile 
Strength (MPa) 

0.818 ± 0.12 
 

1.549 ± 0.07 
 

2.341 ± 0.14 
 

Strain at Failure 
(%) 

    104.512 ±      
       1.09 

 

106.736 ± 
5.99 

 

107.512 ± 
4.60 

 
Modulus of 
Toughness 

76.473 ± 
10.63 

 

136.885 ± 
9.41 

 

189.273 ± 
28.40 

    

 

 
Fig. 4. Fluorescent microscope images of Adenocarcinoma cells (MCF7) on 
different morphologies of the PCL scaffold on days 1, 2 and 3. The nuclei 
were stained with DAPI (blue) and the F-actin filaments were stained with 
Alexa Fluor® 594 Phalloidin (red). The overlapping of the blue and red and 
dispersion by the fibers causes some of the cells to be seen pink in color. 
Images captured at 10X magnification.  
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Fig. 3. The surface and mechanical characterization of the PCL scaffolds of 
different morphologies was done. A) Surface characterization was done 
using ATR-FTIR spectroscopy. The peaks distinctive to the molecular bond 
orientations present in PCL were identified. All the morphologies had similar 
surface chemistry. B) The mechanical properties of the scaffolds was 
characterized using DMA at isothermal conditions (37°C) and represented as 
stress-strain graph. 
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From Fig. 5 and S4, the cells were distributed across the mesh 
scaffold without any orientation on all three days. In the aligned 
scaffold, the cells lacked alignment on day 1, but were spread 
out. Cell alignment and elongation was along the fiber 
alignment on day 2. On day 3, the cells infiltrated the layers 
(blurred background) on day 3. There was little cellular 
alignment in the honeycomb on day 1. However, this improved 
on day 2 and the cells infiltrated the scaffolds with preferential 
attachment to the walls rather than the underlying layers of the 
pores. Clumping was not observed in any of the morphologies.   
3) MCF10AneoT 

From Fig. 6 and S5, the cells appear clumped in all the scaffold 
morphologies for all days with infiltration. In the mesh scaffold, 
the clumping was localized and lacked cellular orientation. In 
the aligned scaffolds, the cells were spread out with minimal 
cellular alignment on days 1 and 2 but, appear to align along the 

fibers on day 3. In the honeycomb scaffold, cell infiltration was 
observed after day 1, with increased infiltration on days 2 and 
3. The cells on day 3 did not present the clumping observed on 
day 2. 
 

E. Cell Viability 
 The cell viability on scaffolds on days 1, 2 and 3 were 

analyzed by characterizing the reduction of resazurin to 
resorufin. MCF7 had a significant increase in cell number 
across all scaffold morphologies on all days (Fig. 7A). The 
number of viable cells was lowest in the positive control with 
non-significant increase for each day. While the MDA-MB-231 
cells had a statistically significant increase in cell viability over 
all the days on all the morphologies (Fig. 7B), the positive 
control was the most favorable. The viability of MCF10AneoT 
cells (Fig. 7C) was not uniform. The increase in cell number 
was more pronounced from day 1 to day 2 in the mesh and 
aligned scaffolds and from day 2 to day 3 in honeycomb 
scaffolds with non-significant increase in the positive control. 
The increase in cell number for MDA-MB-231 and MCF7 was 
uniform in all scaffold morphologies. 

IV. DISCUSSION 
The parameters used for electrospinning were varied to form 

fibrous scaffolds with different morphologies from the same 
polymer blend eliminating variability introduced by using 
different materials or processing. The applied electric field 
determines the initial elastic stress and the bending instabilities 
in the jet [39] and to control the spatial deposition of fibers 
essential in creating the topographical features [40]. The 
rotational velocity of the collector helps in controlling the 
orientation, diameter and alignment[41]. However, the critical 
rotational velocity is determined by the applied average electric 
field. A lower rotational speed of the collector yields less 
alignment whereas higher rotational speed yields fibers with 
orientation perpendicular to the electric field vector. The 
average electric field was increased along with the rotational 
speed to fabricate novel three-dimensional honeycomb shaped 
scaffolds. The dense fiber network helps to mimic conditions of 
tumor-induced angiogenesis as reported by Bauer and 
colleagues [42, 43]. 

The mesh scaffolds behave like an elastomer owing to the 
low rotational velocity of the collector and voltage applied 
during electrospinning [44]. The aligned scaffolds have better 
orientation in the microcrystalline regions because of their 
morphology increasing the Young’s modulus of the scaffold 
[45, 46]. The honeycomb structure by design has superior 
mechanical properties than other morphologies. This is due to 
loss in morphology with increasing strain and the fibers 
aligning in the direction of stress.  

 
Fig. 5. Fluorescent microscope images of triple negative breast cancer cells 
(MDA-MB-231) on different morphologies of the PCL scaffold on days 1, 2 
and 3. The nuclei were stained with DAPI (blue) and the F-actin filaments 
were stained with Alexa Fluor® 594 Phalloidin (red). The overlapping of the 
blue and red and dispersion by the fibers causes some of the cells to be seen 
pink in color. Images captured at 10X magnification.  
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Fig. 6. Fluorescent microscope images of premalignant breast cancer cells 
(MCF10AneoT) on different morphologies of the PCL scaffold on days 1, 2 
and 3. The nuclei were stained with DAPI (blue) and the F-actin filaments 
were stained with Alexa Fluor® 594 Phalloidin (red). The overlapping of the 
blue and red and dispersion by the fibers causes some of the cells to be seen 
pink in color. Images captured at 10X magnification.  
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The cell viability, cell-cell interaction and cell-scaffold 
behavior were influenced by the topographical features and 
mechanical properties of the scaffolds. The MCF7 cells 
proliferated well in all the scaffolds tested without any 
preference to a particular topographical feature. This agrees 
with the findings by Chaudhuri et al. on the inhibition of Rho-
ROCK-Myosin signaling in malignant cells leading to 
proliferation of adenocarcinoma irrespective of the topography 
[47]. However, the cells preferred elastomeric scaffolds with 
low Young’s modulus and stiffness (mesh) over compared to 
the honeycomb and the positive control. This agrees well with 
the experimental investigation on mechanical properties of the 
MCF7 cells through atomic force microscopy measurements by 
Li et al.[48] and durotaxis studies by Cavo et al.[49]. The triple-
negative cells on the other hand thrived in scaffolds with high 
matrix stiffness, as expected due to regulation of the YAP (Yes-
associated protein)/TAZ (transcriptional coactivator with PDZ-
binding motif) and subsequent activation of the Hippo cascade 
[50]. The stiffness of the positive control (tissue culture plate 
~10GPa) plays a major role in the cellular viability and agrees 
well with the findings by Mah et al.[51]. On the honeycomb and 
aligned scaffolds, the cell alignment and infiltration were 
guided by the topography and mechanical properties of the 
scaffold, demonstrating extensive cellular infiltration and 
alignment. The stiffness of the scaffolds also positively 
enhances the migration potential of the metastatic cells as 
reported by Lin et al.[52] and can drive tumor progression 
through a TWIST1-G3BP2 mechanotransduction pathway [53]. 
The premalignant cells preferred the aligned scaffolds and 
infiltrated and aligned along the orientation of the fibers. The 
topographical cues provided by the aligned scaffolds helps in 
cell spreading and can also impact tumor progression and 
metastasis [54]. However, there was a certain amount of 
clumping in the cells in all the morphologies. This clumping is 
directly correlated to the metastatic potential of the cells where, 
the clumped cells form protrusions followed by invasion[55, 
56]. The increased viability and spreading of the premalignant 
cells in stiffer scaffolds are consistent with the observations 
made by Rubashkin et al.[57]. Thus, it can be concluded that 
the cells respond to changes in scaffold topography and 

mechanical properties based on the stage of cancer, effectively 
providing a suitable in vitro model. The scaffold provides an 
ideal platform for studying breast cancer metastasis or for 
localized therapy to inhibit the growth of metastatic cells. The 
efficient scaffold design also allows the system to be easily 
adopted for the study and treatment of other cancers through the 
respective durotaxic and topotaxic gradients [58].  

V. CONCLUSION 
Three-dimensional scaffolds with different topographies and 

mechanical properties were fabricated using electrospinning 
from polycaprolactone (PCL) with similar surface chemistry. 
Adenocarcinoma, triple-negative and premalignant breast 
cancer cells were seeded on scaffolds with different 
morphologies and characterized. Cell-cell and cell-scaffold 
interaction was qualitatively analyzed and the cell viability 
across all the days were quantitatively assessed. The triple-
negative cells preferred honeycomb scaffolds with higher 
stiffness and strength, while adenocarcinoma cells proliferated 
favorably on mesh scaffolds with low elastic modulus and 
premalignant cells favored aligned scaffolds with high stiffness 
and greater contact guidance. The current study can be used to 
design scaffolds which can mimic the tumor microenvironment 
and for selectively modeling cancer cell population in an in 
vitro 3D system.  

SUPPLEMENTARY MATERIALS 
The accompanying supplementary materials includes ATR-

FTIR showing similar surface properties for the different 
scaffolds presented and additional images of cells on scaffolds. 
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