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 Preface 
Topics covered in this thesis are derived from the research I have done as a graduate 
student in the Atmospheric Sciences program (Pi chamber group) in the Department of 
Physics at Michigan Technological University. In chapter 1, an overview of the topic and 
some background information relevant to this dissertation is provided. Chapter 2 
discusses the measurement of optical blurring in a turbulent laboratory cloud chamber. It 
is based on an article (Packard et al., 2018) published in the Journal of Applied Remote 
Sensing. Chapter 3 describes a Monte Carlo Ray Tracing code I created (mcScatter) to 
explore a variety of atmospheric particle fields via scattering simulation. Chapter 4 
presents the results of these scattering simulations used to investigate the impact of 
particle (spatial) clustering on depth-dependent radiative transfer and the role of the radial 
distribution function. It is based on an article (Packard et al., 2019) published in the 
Journal of Quantitative Spectroscopy and Radiative Transfer. Chapter 5 is the extension 
of work presented in Chapter 4, and is based on a manuscript under preparation for 
submission in a peer-reviewed journal. It uses Large Eddy Simulations to generate 
laboratory-realistic spatially correlated atmospheric particle fields which are explored 
with scattering simulations. These numerical simulations suggest a laboratory cloud 
chamber experiment that could be conducted to measure the presence (and perhaps the 
severity) of particle clustering. Chapter 6 is the final chapter which briefly summarizes 
the major findings, discusses some implications and outlines intriguing lines of future 
scientific inquiry related to the studies presented in this thesis. 

For the research presented in the above articles, experiments, theoretical derivation, data 
analysis, and writing were done by me with the help of Dr. Raymond A. Shaw and co-
authors. The Large Eddy Simulations were performed by Mr. Subin Thomas, who will be 
a co-author of the manuscript in preparation for submission (e.g., chapter 5). We are 
thankful to all co-authors for their contributions in the listed publications.  
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 Abstract 
A better understanding of light transport and scattering in turbulent clouds is needed for 
more accurate remote sensing, improved imaging and signal transmission through 
atmospheric aerosol and fog, and deeper understanding of cloud optical properties 
relevant to weather and climate. In this study, we investigate the impact of light scattering 
in clouds on two problems of atmospheric relevance. 

In the first part, we examine deleterious effects of the atmosphere on remotely acquired 
images including signal attenuation and potential blurring due to forward-scattered light 
accepted by the imaging system. A prior proposed aerosol scattering model provides a 
method for calculating the contrast and spatial detail expected when imaging through 
atmospheres with significant aerosol optical depth. We compare modulation transfer 
functions obtained directly from images taken through a cloud chamber to those 
calculated from theory using measured cloud properties. We find that the significance of 
scattering-induced optical blurring depends sensitively on the properties of both the 
particles and the imaging system. The theoretical aerosol expression modulation transfer 
function capture the basic behavior of the system, with deviations likely a result of not 
accounting for broad particle size distributions. 

In the second part, we investigate how clusters and voids in the spatial distributions of 
particles within a cloud cause light transport to deviate from the exponential extinction 
law. We explore both perfectly random and correlated scattering media with a Monte 
Carlo ray tracing program, and find that the degree of non-exponential attenuation can be 
characterized by the radial distribution function. Our numerical observations regarding 
direct, diffuse and backward radiative transfer are shown to be consistent with a previous 
“cloudlet” approach, providing a bridge between the analytical cloudlet model and 
continuous correlation function approaches. Finally, we numerically explore light 
propagation through turbulent clouds with polydisperse size distributions calculated by a 
large eddy simulation of the MTU Pi Chamber. We find that both the mean and standard 
deviation of direct and diffuse forward flux change when clustering exists, and make 
suggestions for future laboratory cloud chamber experiments to detect the presence of 
spatial correlation.  
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1 Introduction 

1.1 A brief overview of our investigations into light scattering 
due to cloud aerosols 

The propagation of electromagnetic radiation through the atmosphere is an important 
phenomenology to understand comprehensively. We live in an age where remote sensors 
abound and are fielded for numerous purposes, and their performance is governed by 
radiative transfer through the absorbing, refracting and scattering medium of the 
atmosphere. A thorough and detailed understanding of the manner in which radiation 
traverses a particle-laden medium such as an aerosol-filled cloud enables the prediction 
of (and potentially improvement of) remote sensing performance. In the chapters that 
follow, we study the impact of atmospheric clouds on light propagation from several 
perspectives. 

In this work we examine, from several vantage points, how light traverses a strongly 
forward-scattering medium (i.e., a medium containing particles large compared to the 
optical wavelength). We look at the small-angle scattering of visible light as it passes 
through a cloud distribution, and how this scattering increases the optical blurring present 
in images captured by remote sensors located on the opposite (non-illuminated) side of 
expansion clouds generated in a laboratory cloud chamber. We use Monte Carlo 
scattering simulations to explore the impact of particle clustering on direct and diffuse 
(forward and backward) irradiance at various depths in virtual cloud distributions. We 
determine the ability of the radial distribution function to describe which parameters of a 
spatially-correlated particle distribution impact depth-dependent fluxes. Taking this a step 
further, we then use the Monte Carlo code to explore an experimental setup where the 
presence or absence of particle clustering could be sensed (and possibly measured). 
These investigations constitute our multi-faceted look into the phenomenology of light 
scattering due to cloud aerosols and the impact this scattering has on remote sensing 
applications. 

1.2 Optical blurring due to small-angle forward scattering 

An imaging system functions by focusing the radiation that passes through its optical 
system onto a detector which resolves the scene of interest. In an ideal scenario with 
perfect optics and a uniform medium between the image source and the imaging system, 
the ability to record a clear, sharp image is governed by the optical characteristics of the 
imaging system (e.g., aperture size, pixel dimensions). Deviations from these ideal 
conditions, referred to as optical aberrations, are often caused by imperfections in the 
physical components of the optical system due to manufacturing tolerances and other 
real-world constraints.  

Additionally, the presence of a turbulent aerosol-laden atmosphere degrades sensor 
performance. Deleterious effects of the atmosphere on remotely acquired images includes 
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absorption and scattering of light by aerosol particulates, which not only attenuates the 
signal but can cause blurring due to forward-scattered light accepted by the imaging 
system. Whether the subsequent image degradation is likely to be minor or significant, 
depending on the scenario and application, can only be determined with accurate models 
of the entire optical system. These detailed optical system models must consider both the 
remote sensor itself and the atmosphere in which it operates. Attempts have been made 
by the atmospheric and optical communities to develop these models analytically, to 
ensure a sound physical foundation, and then test them experimentally to verify their 
accuracy. Proposed aerosol scattering models, if sound, provide a method for simulating 
the contrast and spatial detail expected when imaging through atmospheres with 
significant aerosol optical depth. 

In the late 1970s, Lutomirski suggested (Lutomirski, 1978) using a modulation transfer 
function to model atmospheric degradation of an electro-optical (EO) imaging system, 
and Ishimaru proposed (Ishimaru, 1997, 1978) a modulation transfer function meant to 
include the scattering effects of a random medium. This aerosol MTF showed 
dependency on dominant particle size, among other factors. Soon after, in the 1980s, 
Kopeika and collaborators demonstrated via atmospheric experiments (Kopeika, 1987, 
1985, 1982; Kopeika et al., 1981) that spatial frequency-dependent contrast reduction 
depends on particle concentration and size parameter. Contemporaneous laboratory 
experiments, such as those performed by Kuga and Ishimaru (Kuga and Ishimaru, 1985) 
and also Volnistova and Drofa (Volnistova and Drofa, 1986), resulted in similar findings. 
Several attempts (Ishimaru, 1978; Lutomirski, 1978; Zardecki et al., 1986, 1984) were 
made to model this spatial frequency-dependent phenomenon with analytic aerosol 
modulation transfer functions using the small-angle approximation.  

Bissonnette (Bissonnette, 1992) pointed out that these proposed aerosol MTF expressions 
assume constant radiant intensity; photons reaching the aperture are not depleted by 
scattering, as the photons scattered away from the imaging sensor are assumed to be 
exactly replaced by photons scattered toward it. This supposition limits the validity of 
these proposed expressions. In response, Bissonnette proposed a method for calculating 
an aerosol MTF valid for size parameters of order one or greater (Bissonnette, 1992) 
which used a propagation model to approximate the radiative transfer equation and used a 
diffusion process for flux normal to the optical axis. He found that the cutoff frequency of 
the aerosol MTF depends strongly on particle radius, shifting toward higher frequencies 
with increasing size. Bissonnette also found the cutoff frequency to be almost 
independent of optical depth. Both of these results were found to be in agreement with 
the principal features of Kuga and Ishimaru’s MTF data, and were also favorably 
compared with Bissonnette’s atmospheric experimentation results in fog and rain. 
Discrepancies were stated to be due to transient and range-dependent variations in 
measured atmospheric conditions and uncharacterized point spread function (PSF) errors. 

In the 1990s, a number of groups continued to explore the aerosol MTF issue. 
Bruscaglioni et al. (Bruscaglioni et al., 1993) investigated the impact of source-lens 
separation on the MTF of an optical system operating in a turbid medium via Monte 
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Carlo numerical calculations. Sadot and Kopeika (D. Sadot and Kopeika, 1993) proposed 
a “practical” aerosol MTF to account for both the optical bandwidth and field-of-view 
(FOV) of an imaging sensor. Zege and Kokhanovsky (Zege and Kokhanovsky, 1994) 
suggested an analytical solution for a scattering medium with large particles, which 
compared relatively well to published Monte Carlo results.  

A flurry of activity followed (Bissonnette, 1994; Kopeika and Sadot, 1995; Dror and 
Kopeika, 1995; Ben Dor et al., 1997; Kopeika, 1997; Kopeika et al., 1998; Eismann and 
LeMaster, 2013) including a scientific debate between several publications and 
comments replying to those articles. 

Published as a comment to Sadot and Kopeika (1993), Bissonnette derived order-of-
magnitude expressions from the forward-scattering small-angle approximation to show 
that the scattering MTF is often an insignificant contributor to the overall atmospheric 
MTF except for special circumstances (Bissonnette, 1994) like precipitation, ice-crystal 
clouds, or during atmospheric events with large (e.g., tens of micrometers) particles. 

In a reply to this comment, Kopeika and Sadot suggest (Kopeika and Sadot, 1995) a 
misreading of their paper and a faulty perception of scattering phenomena on the part of 
Bissonnette. They claim that Bissonnette did not fully consider instrumentation effects 
and that his experimentation equipment was of insufficient sensitivity to draw proper 
aerosol MTF conclusions.  

Dror and Kopeika next published experimental results showing the aerosol MTF as being 
more dominant than the turbulence MTF (Dror and Kopeika, 1995). Furthermore, their 
results imply that image-restoration algorithms based on turbulence alone perform more 
poorly than if aerosol scattering effects are incorporated. 

Soon after this, Ben Dor and his collaborators highlighted the open questions in the field 
of atmospheric blurring effects. In their work (Ben Dor et al., 1997), a physical model is 
suggested which combines atmospheric properties and aspects of an imaging system like 
finite-sized detector elements, finite field-of-view of the optics, etc. They successfully 
compared a PSF predicted by their model to one measured by Bissonnette (1992), and 
explained that Bissonnette’s experiment was performed with very low levels of 
atmospheric-scattered radiation and was dominated by scattering inside his imaging 
system. Regarding the work of Dror and Kopeika (Dror and Kopeika, 1995), Ben Dor et 
al. suggest that atmospheric-scattered radiation levels during their experiment were five 
(5) orders of magnitude lower than direct radiation, far below the detection limit of their 
remote sensing system (Ben Dor et al., 1997). The authors conclude that only in extreme 
conditions (e.g., dense fog, rain, or sandstorms) would blurring be due to atmospheric 
scattering, and only then with an imaging system with a very wide instantaneous field-of-
view. 

Kopeika published a new overview of the aerosol MTF (Kopeika, 1997) which included 
practical instrumentation effects and suggested that high resolution imaging systems are 
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less impacted by aerosol scattering. Soon after, he and some collaborators published a 
comment on the Ben Dor et al. 1997 paper which had complained about the omission of 
raw experimental data in the 1995 Dror and Kopeika paper. To combat this, Kopeika and 
his co-authors included their raw experimental data in a new article (Kopeika et al., 1998) 
and defended the linear system assumptions they used to justify their use of Fourier 
transforms. They also included numerous additional references presenting experimental 
results (including satellite applications) consistent with their conclusions, in contradiction 
to the Ben Dor et al. work. They lean on what they term a “wealth of literature” and 
“everyday reality” (such as the solar aureole) to bolster their position, calling for a system 
approach which incorporates aerosol and turbulence blur. 

Eismann and LeMaster suggested that aerosol scattering is an evident but subtle 
contributing effect (Eismann and LeMaster, 2013) whose MTF is quite different from 
aperture diffraction and turbulence. They indicate an issue with other works which obtain 
an aerosol MTF by dividing a scene-derived composite MTF by the product of models 
for other MTF constituents to isolate a residual aerosol MTF. They posit two problems 
with this approach. First, they suggest that errors in the non-aerosol MTF models 
contaminate the aerosol MTF estimate. Secondly, they question the independence of 
turbulence and scattering phenomena, which would be required the MTF-division 
approach to be sound. 

More recently, in 2014 Hanafy et al. (Hanafy et al., 2014) explored the effects of 
scattering and absorption due to haze and fog on the point spread function of an imaging 
system. The detailed model proposed in that work included the effects of diffraction at 
the pupil of the imaging system and modeled the point spread function of the direct and 
scattered radiation as additive in the image plane, as did Ishimaru (Ishimaru, 1997) and 
others. Modulation transfer functions were computed numerically for a variety of 
theoretical haze and fog models (Shettle and Fenn, 1979). In a subsequent work, Hanafy 
et al. (Hanafy et al., 2015) degraded images of a spoke target with their aerosol point 
spread function (and noise) and then attempted to recover image contrast and clarity by 
inverting the effect with a Wiener filter. Their work attempted to demonstrate the 
theoretical performance improvements that can be achieved when detailed knowledge of 
the atmospheric degradation acting on remotely sensors is understood. 

One aim of our work is to (further) explore the additive blurring caused by forward-
scattered light accepted by an imaging system operating in an environment containing 
aerosol particles with a broad size distribution, such as would be expected in many 
atmospheric clouds. An aerosol modulation transfer function (MTF) is developed 
analytically from a published aerosol point spread function, providing an avenue for 
using measured atmospheric conditions to predict optical blurring. Aerosol modulation 
transfer functions are computed from knife-edge imagery taken of a binary target through 
laboratory-generated expansion clouds, and conditions measured during this 
experimentation (e.g., cloud droplet number density and size distribution) are used as 
inputs to the analytic aerosol MTF. This provides a way to compare the predicted and 
experimentally-measured aerosol MTFs and explore the closure between modulation 
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transfer functions obtained from directly-measured images and MTFs calculated from 
theory using measured cloud properties. 

The key results of this closure experiment are two-fold. First, the theoretical expression 
for the aerosol MTF is likely overly simplistic and does not account for broad particle 
size distributions. Second, the significance of optical blurring from light scattering by 
aerosol particles is found to depend sensitively on the properties of both the particles and 
the imaging system. 

1.3 Numerical light scattering in monodisperse Matérn spatially-
correlated particle fields 

Radiative transfer through particle-laden media such as clouds can be impacted by 
variations in spatial distributions of the particles. This has a multitude of applications 
ranging from predictions of optical properties of a cloudy atmosphere to biological and 
energy-generation systems (Davis and Marshak, 2004; Larsen and Vasques, 2011; Zoller 
et al., 2018). Due to ubiquitous turbulence in the atmosphere, mixing, gravitational 
settling, and inertial clustering lead to cloud particles becoming spatially-concentrated in 
some regions. These particle concentrations are referred to as clusters, and the less-
concentrated regions they create elsewhere are called voids. Clusters are consistent with 
positive spatial correlations; the strength and size of clusters or voids can be 
characterized through the use of a pair correlation function (PCF) or radial distribution 
function (RDF).  

In the vicinity of clusters, the shadowing (obstructing) particles prevent radiation from 
illuminating the shadowed particles, reducing the absorptive impact of these shadowed 
particles. In the void regions, more direct radiation traverses the medium than would 
otherwise occur with homogenous spatial particle distribution (Marshak and Davis, 
2005). The net effect of these voids and clusters is thus an increase in the direct radiative 
transfer through such a medium. Consequently, in the absorptive regime, deviations from 
Beer-Lambert attenuation should theoretically occur when particle clustering is present. 

In the scattering regime, where absorption is essentially non-existent, radiation is either 
transmitted directly (no collision with particles in the medium) or diffusely (once a 
particle is encountered, the direction of propagation changes but the photon continues to 
traverse the medium). Most publications addressing the impact of particle clustering have 
focused on a purely absorptive regime, but in this work we consider how clustering 
impacts radiative transfer in forward-scattering media.  

Davis et al. and Shaw (Davis et al., 1999; Shaw, 2003) reported atmospheric 
measurements of cloudy and clear air pockets on spatial scales ranging from km to mm, 
and as these experimental results became widely known, several publications addressed 
the causes and impact of this spatial variability. Such spatial correlations between 
particles within a turbulent cloud can be created by several mechanisms, including 
inertial clustering (Reade and Collins, 2000) and turbulent mixing (Warhaft, 2000). This 
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spatial correlation has been shown (Frankel et al., 2017; Kostinski, 2001; Larsen and 
Clark, 2014) to increase the probability of direct transmission through a dilute random 
medium, as the attenuation of incoherent radiation with depth is often sub-exponential 
due to a widening of the photon extinction probability distribution. Conversely, in cases 
where negative spatial correlations exist, super-exponential extinction (Shaw et al., 
2002a) is expected. 

Consequently, a second aim of our work was to explore via simulation the interactions 
between light and cloud distributions and investigate the impact of spatial correlation on 
direct and diffuse radiative transfer (forward and backward) in a scattering medium. This 
would help determine if deviations from commonly accepted radiative transfer 
predictions are expected and suggest an experimental setup most likely to detect such a 
phenomenon. 

To explore this problem virtually, we created a Monte Carlo Ray Tracing (MCRT) 
photon scattering program capable of generating both uniformly random (uncorrelated) 
spatial distributions as well as spatially-correlated distributions using a Matérn algorithm. 
The Matérn algorithm is mathematically tractable and has a known closed-form radial 
distribution function which makes it ideal for rigorous parametric study (Larsen et al., 
2014). In such a computer simulation, some of the physical constraints of an actual cloud 
chamber (such as physical size, maximum optical depth, particle clustering, 
instrumentation type and location) can be removed or relaxed to determine what would 
be observed if such an experiment were performed.  

Virtual particles are placed in a volume at specified locations, and numerous rays are cast 
into the scattering medium (Shaw et al., 2002a; Larsen and Clark, 2014; Frankel et al., 
2016; Banko et al., 2019). Each ray is traced until it either exits the cloud on the other 
side unscattered (e.g., direct radiation) or its path intersects a particle. New propagation 
directions are calculated via random draws from the chosen scattering phase function, 
and the modified rays continue on until they exit or are scattered again. Periodic 
boundary conditions were used to create a semi-infinite scattering medium. Direct, 
diffuse forward and backward irradiances are calculated to determine the optical depth-
dependent radiative transfer in the turbid medium. The results of our MCRT program 
were compared to two-stream flux theory for validation purposes. We also performed 
studies to determine how many rays need to be cast through each cloud realization to 
fully characterize the fluxes, as well as how many cloud realizations need to be explored 
to calculate statistically meaningful average fluxes. 

We performed parametric studies to measure the impact of particle size, number of 
clusters, mean number of particles per cluster and cluster radius. Using the depth-
dependent flux results of our scattering simulations, we described the impact of particle 
clustering on direct, diffuse and backward radiative transfer and detailed the significance 
of various particle distribution parameters. One question we sought to answer was 
whether the radial distribution function (RDF) is sufficient to capture the essential 
physics at play in a medium containing scattering (as opposed to absorbing) particles. 
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Previous work (Shaw et al., 2002a; Larsen and Clark, 2014; Frankel et al., 2017) suggests 
that deviations from the expected exponential extinction may depend on parameters in the 
radial distribution function which describes the statistics of particle clustering. In this 
work we describe the impact of particle clustering on direct, diffuse and backward 
radiative transfer and detail the significance of various particle distribution parameters. 

The Monte Carlo method (Sobol’ et al., 1974) has often been applied to investigate 
radiative transfer problems where closed form solutions are challenging or impossible. 
Monte Carlo simulations have been used to explore atmospheric radiation (Marchuk et 
al., 1980), engineering radiative transfer (Modest, 1993), and lightning within a cloud 
(Thomson and Krider, 1982), among others. Efficient radiance calculation via Monte 
Carlo methods has been discussed previously (Marshak and Davis, 2005) and a detailed 
description of its application to inhomogeneous media has been presented (Cole, 2005). 
A clear discussion can be found in Bohren and Clothiaux (2011) but numerous relevant 
publications can be found on the subject (Plass and Kattawar, 1968; Danielson et al., 
1969; Collins et al., 1972). 

In a spatially-uncorrelated medium, Monte Carlo scattering simulations are often 
constructed without assigning physical locations to particles (Marshak and Davis, 2005). 
In these simulations, the distances that rays travel before redirection are obtained via 
random draws from an analytic (usually exponential) free-path cumulative density 
function (CDF) based on the optical depth of the homogeneous medium. Modifications to 
propagation directions are obtained via random draws from an appropriate scattering 
phase function (e.g., Henyey-Greenstein or Mie) describing the angular distribution of 
light intensity scattered by a particle for a given wavelength. This process of computing 
distance traveled prior to scattering, choosing a scattering angle and re-computing 
distance traveled is repeated over and over until all rays cast into the medium exit (based 
on specified “wall” boundary conditions). 

Previously, Petty described a method for renormalizing the single scatter and extinction 
properties of an inhomogeneous cloud volume into values corresponding to a radiatively-
equivalent homogeneous medium (Petty, 2002). His method, dubbed the Independently 
Scattering Cloudlet (ISC) model, treats macroscopic “cloudlets” (a localized dense region 
of clustered scattering particles) as discrete scatterers which are analogous to individual 
cloud droplets with modified properties. This idealized geometric approach provides a 
way to utilize existing radiative transfer methods (e.g., plane parallel codes) in the case of 
spherically-congregating particle fields. 

Frankel et al. proposed a closure model (Frankel et al., 2017), based on the particle RDF, 
to capture the impact of turbulence-induced particle clustering on direct radiative 
transmission. Validation was performed by combining ray-tracing and turbulent direct 
numerical simulation (DNS). The intention of this work, assuming knowledge of local 
particle and flow statistics, was to correct traditional extinction coefficients which assume 
homogenous media. 
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These studies motivated us to compare MCRT results from spatially correlated particle 
fields to the aforementioned complementary approaches of Petty and Frankel. Our study 
yielded multiple key results. First, while particle clustering was seen to increase direct 
transmission (which is consistent with prior publications), diffuse forward radiance was 
often reduced by an offsetting amount. Second, the peak correlation value and shape of 
the RDF for our particle fields were both seen to be significant. Our MCRT results 
showed reasonable agreement with Petty’s cloudlet model (Petty, 2002), suggesting a 
connection between radiative transfer calculations based on continuous correlation 
functions (Frankel et al., 2017) and those based on cloudlet models (Petty, 2002). 

1.4 Predicting experimental measurements of light scattering in 
realistic polydisperse laboratory atmospheric clouds 

As mentioned in the previous section, radiation transfers differently through a spatially 
correlated medium than through a homogeneous medium due to void and clusters; 
photons propagate further in less thick regions and experience stronger extinction in more 
dense regions (Marshak and Davis, 2005). In a prior study (Packard et al., 2019), various 
directional components of radiative transfer through homogeneous and clustered 
monodisperse particle distributions were explored with MCRT scattering simulations. 
While direct transmission was found to increase in the presence of spatial correlation, 
diffuse forward transmission was seen to be reduced by a similar amount (nearly 
offsetting the increase in direct transmission). 

This result motivated an exploration of experimental designs which might be conducted 
to measure the presence of particle clustering in a laboratory cloud chamber such as the 
Pi Cloud Chamber (Chang et al., 2016). The previous study focused on monodisperse 
distributions with somewhat extreme Matérn clustering; small, dense collections of 
single-sized droplets were used to evaluate the role of radial distribution functions in 
predicting radiative transfer. The logical extension of this was to consider polydisperse 
distributions of discrete particles within a realistic atmospheric cloud, to gauge the extent 
of deviation from spatially homogeneous theory in more typical atmospheric conditions.  

The possibility of verifying numerical findings suggested investigating radiative transfer 
in an instrumented laboratory system such as the Pi Cloud Chamber. Our aim was to first 
use computer simulation as a surrogate laboratory to predict future experimental results in 
the Pi Chamber and develop a method for sensing particle clustering. A Large Eddy 
Simulation (LES) code was used to generate particle clouds with properties (such as 
optical thickness, particle size distribution function and spatial correlation) realistic for a 
laboratory-generated mixing cloud. Polydisperse LES-exported particle distributions 
were explored with our MCRT scattering code, and comparisons were made between 
particle fields with LES-positioned droplet locations and uniformly random distributions 
(which lacked spatial correlation). As before, directional radiative transfer components 
(e.g., direct, diffuse forward, backward and total forward flux) were compared to 
determine the impact of realistic spatial correlation in a laboratory setting.  
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A number of published laboratory investigations related to light propagating through 
turbulent media exist. Several decades ago, Kuga and Ishimaru studied image 
transmission through random distributions of polystyrene microspheres suspended in 
water (Kuga and Ishimaru, 1985), comparing experimental results with radiative transfer 
equations using the small-angle approximation. Soon after they followed this publication 
with another article (Kuga and Ishimaru, 1986) which built upon the previous one, adding 
the ability to model a layered medium with different refractive indices. Their improved 
model showed better agreement with their previous experimental results.  

In another laboratory study, Yuan et al. conducted light propagation experiments in a 
turbulent water tank, where temperature gradients were used to simulate the entrainment 
zone at the top of a convective boundary layer (Yuan et al., 2014). By heating the tank 
bottom, measuring transient temperature profiles and imaging profiles of laser light from 
various vantage points, turbulence parameters were calculated. These obtained 
parameters were used to numerically simulate light propagation in a turbulent field and 
successfully reproduce the observed light fluctuations (induced by temperature-dependent 
refractive index, not particle scattering). More recently, Pawar and Arakeri used brine 
and fresh water to create an unstable density difference, allowing them to study laser 
angle of arrival variations in a buoyancy-driven turbulent medium (Pawar and Arakeri, 
2016). 

Rodriguez-feo’s recent master’s thesis focuses on non-exponential light extinction in a 
turbulent cloud chamber (Rodriguez-feo Bermudez, 2019). In that work, numerical 
simulations are used with chamber-measured particle size distributions to predict 
extinction rate and optical depth assuming a lack of spatial correlation; these results are 
compared to direct measurements of light extinction through the turbulent laboratory 
cloud chamber. A beam splitter and two photo-diodes (one near the laser source and one 
on the opposite end of the cloud-filled chamber) are used to compare light intensities on 
each side of the turbulent cloud and compute extinction. Significant deviations from 
exponential extinction are observed, especially during larger temperature gradients.  

Of primary interest to our work was the effect that local variations in particle number 
density and optical thickness have on the mean direct and diffuse flux (which shows the 
average impact of spatial correlation) and the standard deviation that might be measured 
through a fluctuating mixing cloud. The key result of our study is that, in the presence of 
spatial correlation, differences exist in both mean flux and standard deviation about the 
mean. This suggests that an experiment in a laboratory cloud chamber such as the Pi 
Chamber could be designed to detect the presence of spatial correlation, since direct and 
diffuse forward flux appear to be impacted to a measurable extent. This finding, based on 
polydisperse particle size distributions functions achievable in the Pi Chamber, suggests 
the possibility of fruitful laboratory experimentation in the future.  
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2 Measuring the detector-observed impact of optical 
blurring due to aerosols in a laboratory cloud 
chamber 

This chapter details a comparison of modulation transfer function (MTF) predictions 
made from measured Pi chamber cloud properties and MTF measurements calculated 
from laboratory cloud chamber-capture knife edge imagery. This work was published in 
full form in the Journal of Applied Remote Sensing.1 2 

2.1 Abstract 

Deleterious effects of the atmosphere on remotely acquired images includes absorption 
and scattering of light by aerosol particulates, which not only attenuates the signal but 
can potentially cause blurring due to forward-scattered light accepted by the imaging 
system. Proposed aerosol scattering models (e.g., Ishimaru) provide a method for 
simulating the contrast and spatial detail expected when imaging through atmospheres 
with significant aerosol optical depth. This work explores closure between modulation 
transfer functions (MTFs) obtained from directly measured images and MTFs calculated 
from theory using measured cloud properties. The closure experiments are performed in a 
laboratory cloud chamber in which cloud droplet number density and size distribution are 
directly measured. Images of a binary knife-edge target were taken with an optical 
detector on the other side of a water cloud generated through reduction of pressure in the 
humidified chamber. The key results of this closure experiment are: the theoretical 
expression for the aerosol MTF is likely overly simplistic and does not account for broad 
particle size distributions. The significance of optical blurring from light scattering by 
aerosol particles depends sensitively on the properties of both the particles and the 
imaging system. 

2.2 Introduction  

The resolution of optical imaging systems is influenced not only by system parameters, 
such as lens and detector properties, but also by the atmosphere along the target-to-sensor 
slant path. Specifically, the presence of turbulence (Roggemann and Welsh, 1996; 
Ishimaru, 1997; Holst, 2008; Wyngaard, 2010a) or aerosol particles (Dror and Kopeika, 
1995; Ishimaru, 1997; Kopeika and Arbel, 1999) can degrade image contrast and 
resolution. This paper addresses the influence of aerosol and cloud particles on the 
blurring of optical images by making a comparison between theoretical expressions 

                                                 
1 Corey D. Packard, Raymond A. Shaw, Will H. Cantrell, Greg M. Kinney, Michael C. Roggemann, and 
John R. Valenzuela "Measuring the detector-observed impact of optical blurring due to aerosols in a 
laboratory cloud chamber," Journal of Applied Remote Sensing 12(4), 042404 (5 July 2018). 
https://doi.org/10.1117/1.JRS.12.042404 
2 © 2018 Society of Photo-Optical Instrumentation Engineers (SPIE). Used with permission. 
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accounting for aerosol blurring for realistic optical sensor parameters, and direct 
measurements of blurring due to controlled cloud conditions in a laboratory cloud 
chamber. This work builds on a proposed closure experiment previously published by 
Packard et al. (Packard et al., 2016) in the 2016 Proceedings of SPIE; portions of that 
conference paper have been included in this article for clarity and completeness. 

Generally speaking, particles present in the atmosphere can absorb and scatter incident 
radiation; this combination of absorption and scattering, whereby propagating energy is 
attenuated and image contrast is subsequently reduced, is referred to as atmospheric 
extinction. In the case of extinction via scattering, outgoing radiation is distributed over a 
large range of angles. Near the Rayleigh limit where particles are small compared to the 
optical wavelength (𝑎𝑎 ≪ 𝜆𝜆), the pattern of scattered light is almost isotropic (Salby, 
2012). This results in the frequent occurrence of a large angle between the direction of 
incident and outgoing radiation, often placing the scattered energy outside an imaging 
sensor’s field of view. This reduces the percentage of incident energy that arrives within 
the pupil plane and is available for imaging purposes. The severity of these energy 
extinction components depends on optical wavelength, particle size and abundance, 
scattering and absorption cross sections and efficiency factors, and refractive index. This 
extinction (attenuation) typically leads to image contrast reduction, as some energy 
radiated from the scene never arrives at the imaging sensor but additional energy 
scattered from elsewhere does reach the detector. For particles of the same order as or 
larger than the wavelength, Mie theory (Salby, 2012) shows that the fractional power 
scattered in the forward direction increases nearly monotonically with particle size. Thus, 
the light scattered (predominantly) forward by large aerosols and cloud particles is 
redirected slightly but often still lies within a sensor’s field of view and is therefore 
important to consider. This minor redirection is sometimes referred to as “small angle” 
scattering, and the impact this phenomenon has on imagery is sometimes referred to as 
the adjacency effect (Dror and Kopeika, 1995; Kopeika and Arbel, 1999) since incident 
photons are imaged by pixels adjacent to those by which they would have been detected 
in the absence of scattering. This slight shift in photon arrival angles results in image 
blurring, often explained in optical terms by a modified point spread function (PSF). 
Even idealized optical systems are unable to perfectly focus incident energy from a point 
source back to an infinitely small point; this results in focused energy from a point source 
being measured with some finite size (or spread) at the image plane (Hecht, 2002; 
Goodman, 2005). Deviations in photon arrival angle due to small-angle aerosol-driven 
forward scattering would warp a plane wave from a distant point source, thus rendering 
the focused “point” something other than that described by standard diffraction-limited 
PSFs. 

The attenuation of energy due to scattering and absorption by atmospheric aerosols is 
thought to be well understood, though there appears to be some dispute over research 
findings and the level of significance of this phenomenon (Bissonnette, 1992; McDonald 
et al., 1992; Bruscaglioni et al., 1993; D. Sadot and Kopeika, 1993; Dan Sadot and 
Kopeika, 1993; Dror and Kopeika, 1995; Kopeika and Sadot, 1995; Ben Dor et al., 1997; 
Kopeika, 1997; Kopeika et al., 1998; Eismann and LeMaster, 2013). Validating existing 
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theoretical models (Deirmendjian, 1969; Lutomirski, 1978; Kuga and Ishimaru, 1985; 
Kopeika, 1987) for image quality depends on accurate characterization of both incident 
light and particle size distribution function. Most comparison between theory and 
experiment has been performed over long pathlengths in the open atmosphere, and 
particle size distributions are not well characterized over the full propagation path. The 
necessary assumptions of statistical homogeneity in space and statistical stationarity in 
time are always in question, and are often cited when discrepancies are observed.  

Our research seeks to more rigorously control and characterize atmospheric conditions by 
generating spatially-uniform cloud conditions in a laboratory cloud chamber, such that 
the impact on optical blurring resulting from realistic aerosol and cloud particle size 
distributions  ̶  instead of previous monodisperse experiments (Kuga and Ishimaru, 1985; 
Donelli et al., 1991)  ̶  can be determined. By implementing a one-way path (with photons 
traversing only from target to sensor) with no background sources, conclusions can be 
drawn without interference from airlight, path radiance or other conflating sources of 
energy. This measurement setting provides a unique tool for closure experiments. By 
creating and characterizing a realistic aerosol-laden atmosphere, the impacts of aerosol 
scattering can be both measured directly (via imaging) and predicted indirectly (using 
measured boundary conditions as input to theoretical expressions for optical depth and 
aerosol MTF). 

This work will propose a theoretical spatial frequency-domain modulation transfer 
function (MTF) based on a point spread function (PSF) which incorporates aerosol 
scattering and aperture diffraction effects. A controlled laboratory experiment, where 
clouds are generated inside a turbulent cloud chamber, is described. Measured droplet 
size distributions are presented, and theoretical results using aerosol-driven PSF and MTF 
expressions are explored with these measured atmospheric inputs. Examples of imagery 
measured through a chamber-generated expansion cloud are included, and a methodology 
for computing an aerosol MTF from chamber-measured imagery and comparing it to 
atmospheric theory is described. Experimentally-obtained aerosol MTFs are presented 
and compared to theoretical predictions, and the impact of optical imaging system 
parameters and experimental design considerations are discussed. Specifically, the 
significant dependence of observed aerosol scattering on sensor specifications such as 
dynamic range, aperture diameter and focal length are detailed. The key result of this 
work is the development and verification of a validation strategy where aerosol-induced 
effects are experimentally obtained and compared to theoretical predictions using 
measured boundary conditions (droplet size distribution, etc.). In summary, this paper 
proposes and details the results from a closure experiment for measuring an aerosol MTF 
and comparing it to theoretical predictions predicated on measured impact variables. 

2.3 Aerosol Scattering Theory 

This section will detail the theoretical underpinnings of an aerosol scattering prediction 
model (both PSF and MTF). Relevant atmospheric physical relationships will be 
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described, and a description of the aerosol scattering impact (specifically due to clouds 
and fog) will be given. 

2.3.1 Theoretical Approach for Predicting the Impact of Aerosol Scattering 

Mie theory, when applied to scattering by atmospheric aerosols, can be used to predict 
the wavelength- and size-dependent impact of particles on scattering and absorption of 
incident energy. The resultant extinction cross section, σext, is the sum of scattering and 
absorption cross sections (Bohren and Clothiaux, 2011). This extinction parameter has 
units of area and can be expressed (van de Hulst, 1981; Ishimaru, 1997; Bohren and 
Huffman, 2004) as the multiplicative combination of physical cross sectional area (of a 
particle) and dimensionless extinction efficiency, Qext (relative to geometric cross 
section). This extinction cross section represents the fractional area of the incident beam 
removed in toto via scattering and absorption. In the visible spectrum, fog and cloud 
droplets (assuming a complex refractive index for liquid water, mH2O = 1.333 + i10-8) 
have efficiency factors of Qext ≈ Qsca ≈ 2, and Qabs ≈ 0 (Salby, 2012). The physical cross 
sectional area and efficiency factors are thus combined to calculate extinction, scattering 
and absorption coefficients (σext, σsca and σabs respectively). 

Mie scattering theory and other atmospheric physics relationships are dependent on 
particle radius, which is important because actual atmospheric cloud droplet size 
distributions are not monodisperse. Therefore the distribution n(a) must be accounted for, 
where n(a)da is defined as the number density of droplets between a and a+da, i.e., the 
integral over the distribution, from radius of zero to infinity, results in the total droplet 
number density.  Physical predictions are often based on idealized aerosol or cloud 
droplet size distributions; in the case of fog, parametric models employing a modified 
Gamma distribution are common (Deirmendjian, 1969; Shettle and Fenn, 1979; Shirkey 
and Tofsted, 2006). Atmospheric extinction, scattering and absorption coefficients [m-1] 
are functions of the respective cross sections and particle distribution functions and must 
be integrated over the range of droplet radii. For example, the total extinction coefficient 
(Grainger, 2012) is performed with the expression 𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒(𝜆𝜆) = ∫ 𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒(𝜆𝜆,𝑎𝑎) 𝑛𝑛(𝑎𝑎) d𝑎𝑎∞

0 . The 
additive relationship between the integrated extinction coefficients can be expressed (Ben 
Dor et al., 1997) as 𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒(𝜆𝜆) = 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠(𝜆𝜆) + 𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎(𝜆𝜆). Atmospheric optical depth (Liou, 2002) is 
given as  

 𝜏𝜏(𝜆𝜆) = �𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒(𝜆𝜆, 𝑧𝑧) d𝑧𝑧 (1) 

and together these expressions shown the relationship between particle size distribution 
function n(a), scattering cross section, scattering coefficient and optical depth. Single 
scattering albedo is defined (Grainger, 2012) as  

 𝜔𝜔𝑜𝑜𝑡𝑡(𝜆𝜆) =
𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠(𝜆𝜆)
𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒(𝜆𝜆)  . (2) 
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Together, these relationships can be used to predict the atmospheric extinction and 
scattering.  

Now the combined effect of aerosol scattering and absorption with an optical system are 
considered. The total PSF for a remote sensor imaging through a scattering medium 
(Bissonnette, 1992; Ishimaru, 1997; Ben Dor et al., 1997; Hanafy et al., 2015) is given as  

 PSF𝑡𝑡(𝑟𝑟) = PSF𝑑𝑑𝑑𝑑𝑑𝑑(𝑟𝑟) + PSF𝑠𝑠𝑠𝑠𝑠𝑠(𝑟𝑟) (3) 

and can be considered an additive combination of direct and indirect (scattered) point 
spread functions. Expressions for these two separate point spread functions of an optical 
system impacted by aerosol scattering have been given (Ishimaru, 1997) as 

 PSF𝑑𝑑𝑑𝑑𝑑𝑑(𝑟𝑟) = 𝑒𝑒𝑒𝑒𝑒𝑒(−𝜏𝜏) �
𝐷𝐷
2𝑟𝑟
�
2
𝐽𝐽12 �

𝑘𝑘𝑘𝑘𝑘𝑘
2𝑓𝑓

� (4) 

and 

 PSF𝑠𝑠𝑠𝑠𝑠𝑠(𝑟𝑟) = �
1.64𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝐷𝐷
𝜆𝜆𝜆𝜆�𝑅𝑅𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠

�
2

𝑒𝑒𝑒𝑒𝑒𝑒 �−𝜏𝜏 (1 −𝜔𝜔𝑜𝑜𝑡𝑡) − �
3.28𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟
𝜆𝜆𝜆𝜆�𝑅𝑅𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠

�
2

� . (5) 

In these expressions D is aperture diameter, f is focal length, k is optical wavenumber and 
r is physical separation on the image plane from the optical axis. The term J1 in equation 
(4) refers to a first-order Bessel function of the first kind. In the second expression given 
in equation (5), R is propagation range and amode is aerosol modal radius.  

For an incoherent imaging system, the symbol ℋ represents the spatial frequency domain 
version of the system transfer function and is referred to as the optical transfer function 
(OTF). If the total point spread function of an incoherent imaging system is denoted |ℎ|2, 
then the OTF can be written (Goodman, 2005) as  

 ℋ(𝜉𝜉, 𝜂𝜂) =
ℱ{|ℎ|2}

∫ ∫ |ℎ(𝑥𝑥, 𝑦𝑦)|2 d𝑥𝑥 d𝑦𝑦∞
−∞

∞
−∞

 . (6) 

The magnitude of the OTF is called the modulation transfer function, MTF (Goodman, 
2005; Holst, 2008), expressed as 

 𝑀𝑀𝑀𝑀𝑀𝑀(𝜉𝜉, 𝜂𝜂) = |ℋ(𝜉𝜉, 𝜂𝜂)| . (7) 

Because integration is linear and superposition applies, the aerosol MTF can be written as 

 

MTF𝑡𝑡(𝑢𝑢,𝑣𝑣) = 

�
∬ PSF𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥, 𝑦𝑦) 𝑒𝑒−𝑗𝑗2𝜋𝜋(𝑥𝑥𝑥𝑥+𝑦𝑦𝑦𝑦)d𝑥𝑥 d𝑦𝑦∞
−∞ + ∬ PSF𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥, 𝑦𝑦) 𝑒𝑒−𝑗𝑗2𝜋𝜋(𝑥𝑥𝑥𝑥+𝑦𝑦𝑦𝑦)d𝑥𝑥 d𝑦𝑦∞

−∞

∬ PSF𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥,𝑦𝑦) d𝑥𝑥 d𝑦𝑦∞
−∞ + ∬ PSF𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥, 𝑦𝑦) d𝑥𝑥 d𝑦𝑦∞

−∞

� . 
(8) 
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Since both of the PSF components are circularly symmetric, we can use the Fourier-
Bessel (Hankel) transform instead and write the aerosol MTF as 

 MTF𝑡𝑡(𝑢𝑢, 𝑣𝑣) = �
ℱ𝑟𝑟{PSF𝑑𝑑𝑑𝑑𝑑𝑑(𝑟𝑟)} + ℱ𝑟𝑟{PSF𝑠𝑠𝑠𝑠𝑠𝑠(𝑟𝑟)}

∬ PSF𝑑𝑑𝑑𝑑𝑑𝑑(𝑟𝑟) 𝑟𝑟 d𝑟𝑟 d𝜃𝜃∞
−∞ + ∬ PSF𝑠𝑠𝑠𝑠𝑠𝑠(𝑟𝑟) 𝑟𝑟 d𝑟𝑟 d𝜃𝜃∞

−∞

� . (9) 

The resulting closed-form aerosol MTF, where ρ represents spatial frequency, is based on 
the Ishimaru PSFs and is given (Ishimaru, 1997) as 

MTF𝑡𝑡(𝜌𝜌)

=
�

�
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𝜋𝜋 �cos−1 �𝜌𝜌𝜌𝜌𝜌𝜌𝐷𝐷 � − �𝜌𝜌𝜌𝜌𝜌𝜌𝐷𝐷 ��1 − �𝜌𝜌𝜌𝜌𝜌𝜌𝐷𝐷 �

2
� + 𝑒𝑒𝑒𝑒𝑒𝑒 �−�
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� 𝑒𝑒−𝜏𝜏𝑎𝑎𝑎𝑎𝑎𝑎�1−𝜔𝜔𝑜𝑜𝑡𝑡 �

𝑒𝑒−𝜏𝜏𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑒𝑒−𝜏𝜏𝑎𝑎𝑎𝑎𝑎𝑎�1−𝜔𝜔𝑜𝑜𝑡𝑡 �
  
�

�
 . (10) 

2.3.2 Evaluating the Aerosol PSF and MTF using Theoretical Fog Models     

The MTF expression just obtained attempts to combine both the effects of light scattering 
by particles and diffraction by the optical-system aperture. Its behavior can be understood 
by considering idealized parametric fog models (Shettle and Fenn, 1979). We recognize 
the direct component of the aerosol PSF, given in equation (4), as an atmospherically-
attenuated Airy disk; the unattenuated version of this expression is the PSF due to 
aperture diffraction (Goodman, 2005; Hecht, 2002). Thus the PSF, when plotted as a 
function of radial distance from the optical axis, should be dominated by a Bessel 
function resulting from aperture diffraction. This can be seen in panel (a) of Figure 2.1, 
which shows the direct component of the aerosol PSF for three fog models. These plots 
assume a propagation distance of 150 m, an optical wavelength of 550 nm, and an 
imaging system with a 10 cm focal length and 2 cm aperture diameter. The parametric 
fog models (Shettle and Fenn, 1979) used for demonstration in Figure 2.1 have modal 
droplet radii of 2 μm and 4 μm for radiation fog (“moderate” and “heavy”, respectively). 
The heavy advection fog model has a modal droplet radius of 10 μm. 

The scattered component, shown in panel (b) of Figure 2.1, is at a much lower intensity 
but is spread over a much greater distance from the optical axis. The combination of these 
direct and scattered components, referred to as the total PSF, is shown (normalized) in 
panel (c) of Figure 2.1. 
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Figure 2.1. Aerosol point spread functions evaluated for 150m propagation using 
atmospheric parameters from various theoretical fog models. (a) Upper panel shows 
attenuated direct component, and (b) center panel is the aerosol-scattered component. (c) 
Lower plot shows (normalized) total point spread function. These PSF predictions 
assume λ=550nm, focal length = 10cm, aperture diameter = 2cm. 

Since the total PSF is taken as additive, and due to the superposition property of linear 
systems, it follows that the aerosol MTF can be written as a summation of these two 
components. It also follows that one of those components should be related to aperture 
diffraction, and we recognize the first term in the numerator of equation (10) as an optical 
depth-scaled version of the diffraction-limited MTF for a circular aperture (Goodman, 
2005), given here for reference as 

 ℋ(𝜌𝜌) =
2
𝜋𝜋 �

cos−1 �
𝜌𝜌𝜌𝜌𝜌𝜌
𝐷𝐷
� − �

𝜌𝜌𝜌𝜌𝜌𝜌
𝐷𝐷
��1 − �

𝜌𝜌𝜌𝜌𝜌𝜌
𝐷𝐷
�
2

� . (11) 
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Plots of the aerosol MTF given in equation (10) are shown in Figure 2.2 where panels (a), 
(b) and (c) illustrate the total, direct and scattered components (respectively).  

 

Figure 2.2. Aerosol modulation transfer function for 150m propagation using several 
theoretical fog models. (a) Upper panel shows the total MTF, (b) center panel is the direct 
component and panel (c) shows the aerosol-scattered component. These MTF predictions 
assume λ=550nm, focal length = 10cm, aperture diameter = 2cm. 

The relationship between the aperture PSF and the first term in the aerosol MTF 
numerator is evident in panel (b) of Figure 2.2, which shows a plot of the direct 
component of the aerosol MTF. The familiar shape of an aperture MTF is apparent, 
though the presence of a scaling factor reduces its contribution at all spatial frequencies. 
Recall that the diffraction-limited optical cutoff frequency for incoherent imaging, in 
cycles per milliradian (mrad), is  

 𝜌𝜌𝑜𝑜𝑜𝑜𝑜𝑜 =
𝐷𝐷
𝜆𝜆

 (12) 
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For an imaging system with central wavelength λ=550 nm and D = 2 cm, the expected 
optical cutoff frequency of 36.4 cy/mrad is evident in panels (a) and (b) of Figure 2.2. 
Panel (c) emphasizes the fact that the scattered component of the MTF is predicted to 
contribute most significantly at very low spatial frequencies. 

2.4 Experimental Methodology 

This section will detail the experimental methodology employed to study the blurring 
effects of light scattering by cloud/fog aerosol. The laboratory technique begins with the 
generation of an expansion cloud using the cloud chamber at Michigan Technological 
University (MTU). The cloud microphysical properties present in the chamber are 
measured, allowing for predictive simulation of aerosol effects. Imagery of a binary 
knife-edge test pattern is captured, with the aerosol cloud between the pattern and the 
detector. MTF curves are then computed from this measured imagery. This experimental 
method provides an avenue for comparison between MTF curves obtained directly from a 
blurred image, and predictions made using theoretical expressions that incorporate 
measured particle size distributions existing during image capture.  

2.4.1 Cloud Chamber 

Experimental verification of aerosol effects are performed using MTU’s turbulent cloud 
chamber (known as the “Pi Chamber”, depicted in Figure 2.3; see Chang et al. (Chang et 
al., 2016) for a more detailed description of its capabilities). This controllable and well-
characterized laboratory atmosphere is capable of pressures below 100 hPa and 
temperatures from -55 to +55 °C. Additionally, humidity and aerosol concentrations are 
controllable. The injection of aerosol particles is controlled with a constant output 
atomizer (e.g., from a water solution of 0.1 g/L concentration of NaCl). These 
experimental conditions can be combined to form and sustain clouds, both mixing and 
expansion clouds, in an instrumented laboratory setting for measuring the impact of 
clouds on radiation propagation.  

Phase Doppler interferometry (PDI) is used for characterizing the particle size 
distribution present in the cloud chamber after aerosol particles are injected and cloud 
droplet growth has occurred under controlled, supersaturated conditions. Past 
experiments (Chang et al., 2016; Chandrakar et al., 2016, 2017; Desai et al., 2017) have 
demonstrated the ability to create cloud droplets ranging from 10-50 μm. Turbulence can 
also be generated by Rayleigh-Benard convection, driven by a negative vertical 
temperature gradient. Past turbulence measurements have shown RMS velocity 
fluctuations of ~10 cm/s and kinetic energy dissipation rates of 1 mW/kg. These two 
effects can be used to study the optical blurring, driven by aerosol scattering and 
atmospheric turbulence (if desired), which occurs as a consequence of the chamber’s 
realistic cloud droplet size distribution and turbulent nature. 
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Figure 2.3. A cutaway schematic of the cloud chamber at Michigan Technological 
University, with one door open and the (removable) cylindrical thermal panel in place. 
The horizontal propagation path through this atmospheric chamber is approximately 2m. 
Figure from Chang et al. (Chang et al., 2016) ©American Meteorological Society. Used 
with permission. 

To create an expansion cloud, the pressure in the chamber is reduced, resulting in a 
reduction in the air temperature, and a resulting increase in the relative humidity. This 
eventually generates supersaturated conditions so that water vapor condenses on sub-
micrometer aerosol particles (cloud condensation nuclei) and result in a cloud. Air 
pressure is reduced from standard atmospheric pressure to approximately half that (~500 
hPa) over the course of several minutes. The number concentration of cloud droplets 
formed during expansion is measured with PDI. The resulting expansion clouds tend to 
be more optically dense than mixing clouds. Additionally, expansion clouds typically 
lack strong turbulence and persist for a lifetime on the order of several minutes. 

A mixing cloud can be generated by creating a negative temperature gradient between the 
bottom and top surfaces of the cloud chamber interior. Warm, saturated air rising from 
the bottom surface mixes with the cold, saturated air originating at the top surface at 
constant pressure. The method for creating the resulting cloud is analogous to walking 
outside and exhaling on a cold day. Again, NaCl particles are often used to produce an 
aerosol-laden air stream which can be diluted with as much (or little) particle free air as 
required to reach the desired number concentration. The resulting mixing cloud can 
persist for many hours, providing an avenue for studies which require large periods of 
sampling time. These strong temperature gradient conditions allow cloud droplets to 
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grow to 40 or 50 μm in diameter. The temperature gradient creates Rayleigh-Bénard 
convection, which in turn generates turbulence in the chamber. Temperature fluctuation 
measurements suggest a single major convection cell fills the chamber interior; this has 
been verified via computational fluid dynamics (CFD) simulation. Previous 
investigations into the steady, convective-turbulent cloud conditions present during these 
mixing clouds show the expected inertial subrange with -5/3 Kolmogorov scaling. 

Laser sheet imaging was performed to illuminate cloud droplet distributions in the 
chamber and photograph the resulting cloud structure. Examples are shown in Figure 2.4, 
illustrating the turbulent droplet structure in two planes (left image) as well as an 
expansion cloud distribution (right). 

 

Figure 2.4. (a) Imagery showing the chamber-generated turbulent cloud droplet structure 
in two planes using both vertical and horizontal laser sheets (λ=532nm). “Swirls” in the 
laser-illuminated cloud plane demonstrate the presence of turbulence. (b) Photograph 
showing vertical slice of an expansion cloud droplet distribution, again using a vertical 
laser sheet for aerosol illumination. Turbulence is nearly absent in expansion clouds, but 
optical depth is higher. Photo credit: Audrey Barnett. 
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2.4.2 Experimental Setup 

By capturing images using light that has propagated through a 2m x 2m x 1m turbulent 
cloud chamber, the extinction and scattering effects of the atmosphere can be studied in a 
controlled environment. Spatial (PSF) and spatial frequency (MTF) analysis can be 
performed on images taken through various optical viewports and these experiment-based 
responses can be compared to existing predictive theoretical models. 

In the experiments examined in this paper a series of expansion clouds (as well as a 
mixing cloud) was created within the cloud chamber. A monochromatic visible-light 
camera with a detector resolution of 1384x1032 and a pixel size of 6.45 μm (the FLIR 
GS3-U3-15S5M-C, formerly from Point Grey Research), was selected to image through 
the chamber. This optical system was outfitted with a 75mm focal length f/22 manual 
varifocal lens and used to image a black-and-white knife edge target, half of which was 
constructed from aluminum sheet stock painted ultra-flat (diffuse) black to prohibit light 
transmission and avoid specular reflections. The other half employed a semi-transparent 
material to diffuse the light transmitted from an LED-backlit illumination source placed 
behind the binary target.  

The knife edge target was affixed to the exterior of one viewing porthole, and the camera 
was placed against the exterior of the opposite porthole, creating a 2 meter propagation 
path through the chamber. Black cloth was draped behind the camera and all unused 
optical chamber viewports to eliminate stray light and create a one-way light 
measurement path. This setup ensured that the photons measured by the monochromatic 
camera had only passed from the target to the camera through the cloud chamber, with 
minimal stray light contaminating the imagery. This was done to closely mimic the one-
way propagation considered by Hanafy et al. where scattered airlight from other sources 
was not considered (Hanafy et al., 2015, 2014).  

An illustration of this experimental setup is shown in Figure 2.5 (left), along with 
example images taken in the presence and absence (aerosol and control, respectively) of 
an expansion cloud. Control images were taken while the cloud chamber was not 
operating (i.e., room temperature, standard pressure, no aerosols). 
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Figure 2.5. (a) Illustration of experimental setup with monochromatic camera, positioned 
outside cloud chamber near an optical viewport, focused through the expansion cloud on 
binary knife-edge target located just outside opposite viewport. (b) Representative 
example of measured control image. (c) Example of knife-edge image taken through 
expansion cloud, demonstrating attenuation due to aerosol scattering in the visible band. 

2.4.3 Experimental MTF Calculation Method 

The need for precise MTF measurements requires employing a procedure such as the 
edge spread method (Wyatt, 1991; Reichenbach et al., 1991; Dror and Kopeika, 1995; 
Tzannes and Mooney, 1995; Holst, 1998; Boreman, 2001; Nugent et al., 2010), where a 
target with a sharp black-white transition is imaged and a near-continuous MTF is 
calculated. According to Boreman, an edge spread function (ESF) can be defined as the 
convolution of the system PSF with a step function (Boreman, 2001).  

 𝐸𝐸𝐸𝐸𝐸𝐸(𝑥𝑥) = 𝑃𝑃𝑃𝑃𝑃𝑃(𝑥𝑥,𝑦𝑦) ∗ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥) (13) 

This inevitably results in a broadened black/white transition, since the PSF of an imaging 
system is always broader than a delta function. Consequently, the originally-sharp 
black/white transition is blurred into a gradient with a finite slope. A line spread function 
(LSF) can be described as the spatial derivative (in the direction of change) of the edge 
spread function.  

 𝐿𝐿𝐿𝐿𝐿𝐿(𝑥𝑥) =
𝑑𝑑
𝑑𝑑𝑑𝑑

𝐸𝐸𝐸𝐸𝐸𝐸(𝑥𝑥) (14) 

Both the ESF (directly) and LSF (indirectly via spatial gradient) can be obtained from the 
measured image. Boreman shows that the system MTF is the Fourier transform of the 
LSF (Boreman, 2001), meaning that the aerosol MTF can be calculated from the LSF 
obtained via imaging a black/white step function target:  

 𝑀𝑀𝑀𝑀𝑀𝑀(𝜌𝜌) = ℱ{𝐿𝐿𝐿𝐿𝐿𝐿(𝑥𝑥)} (15) 
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This system-level MTF includes effects from the atmosphere, lens and detector. Although 
not considered in this study, turbulence effects can also be measured simultaneously from 
this same edge imagery, another benefit of this method (Dror and Kopeika, 1995). 

2.4.4 Imaging System Considerations 

Since the aerosol MTF was to be contrasted with the aperture diffraction MTF from 
which it was developed, the lens used for the chamber imaging studies was chosen to 
allow adequate MTF sampling with the available detector pixel spacing. Since a digitized 
edge spread function (and indirectly a line spread function) would be used to compute an 
aerosol MTF, the detector cutoff frequency must be greater than the optical cutoff 
frequency to avoid aliasing. The cutoff frequency of the detector is determined by half 
the inverse of the pixel size, and the optical cutoff frequency is determined by the 
wavelength, aperture diameter and focal length. Consequently, the smallest pixel 
footprint available yields the largest detector cutoff frequency. Once a detector with a 
pixel pitch of 6.45 μm and a corresponding detector cutoff frequency of 11.6 cy/mrad 
was selected, an appropriate choice of lens had to be made to avoid aliasing in the spatial 
frequency domain. Ideally, a detector cutoff frequency double that of the lens would 
completely eliminate this unwanted aliasing, but such a lens was not available for this 
study. The f/22 aperture setting on our lens was selected, resulting in an optical cutoff 
frequency of 6.2 cy/mrad. Choosing a large f/# allowed us to approach an absence of 
aliasing, but this also minimized the aperture size and limited the largest scattering angle 
that could enter the imaging system. 

2.5 Results of Closure Experiment 

In this section the results of the cloud chamber imaging experiment are presented. 
Measurements of the aerosol size distribution are shown, as are LSF and MTF curves 
calculated from control and through-aerosol measured imagery. Theoretical predictions 
of the aerosol MTF are calculated from measured aerosol particle size distribution 
calculations, and comparisons to experimentally-measured MTF curves are discussed. 

2.5.1 Measurement of Cloud Aerosol Size Distributions 

The MTU cloud chamber was used to generate expansion clouds as well as mixing 
clouds, and of the two, the mixing cloud was observed to have the smallest optical depth. 
Since maximum aerosol influence is desired, expansion clouds were the focus of 
subsequent experimentation. We note that expansion clouds have very little turbulence, 
and thereby avoid additional optical blurring from non-aerosol sources. Phase-Doppler 
measurements of cloud particles were recorded and, for comparison to idealized 
distributions often used in optical propagation calculations, measured size distributions 
were compared to four theoretical fog models (Shettle and Fenn, 1979). Figure 2.6 shows 
measured cloud droplet size distributions for a representative expansion cloud and mixing 
cloud (for the sake of comparison), along with the parametric fog models. These 



24 

measured distributions illustrate that the cloud chamber can be tuned to produce clouds of 
varying droplet number density and modal size. Note that number concentration 
measurements of droplets with a radius below approximately 3 µm are not reliable due to 
system noise at small particle sizes, so the leading tail of measured cloud distributions is 
not reliable. Usually the points are discarded, but we show them for completeness. 
However, the larger aerosol sizes dominate the scattering effects so the small droplet 
measurement uncertainty is of small consequence. To prove this, Mie theory calculations 
were performed for the expansion cloud distribution, both as measured and without the 
first few (dubious) small-radius data points. The results were nearly identical; the 
exclusion of the smaller droplets reduced the scattering coefficient ksca and optical depth τ 
by only 0.5%. 

 

Figure 2.6. Measured expansion cloud and mixing cloud droplet size distributions shown 
along with four theoretical fog model distributions. Note that the range of measured 
droplet radii is comparable to theoretical models, but measured number concentrations in 
the expansion cloud are significantly higher (peak of 450 cm-3μm-1 vs 25 cm-3μm-1 for 
heavy radiation fog model). This results in a much larger optical depth, τ over the short 
propagation distance of the chamber. Mixing cloud data supplied by Kamal Chandrakar 
(MTU). 

Using Mie theory (Ishimaru, 1997; Bohren and Huffman, 2004) the scattering cross 
section σsca(λ,r) can be computed as a function of particle radius, r for the central 
wavelength of 550 nm in the visible spectrum. Combining these radius-dependent 
scattering cross sections (which scale as the radius squared, emphasizing larger droplets) 
with the measured droplet distribution functions yields scattering coefficients ksca for 
each expansion cloud. The known 2 meter propagation distance across the chamber is 
then used to convert scattering coefficients into optical depths, τ. Optical properties 
calculated from the measured expansion clouds are listed in Table 2-1. 
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Table 2-1. Optical Properties Calculated from Measured Aerosol Particle Size 
Distributions 

  Size Distribution Parameters 

Cloud Measurement amode [μm] amean [μm] aeff [μm] ksca [km-1] τ 

Expansion Cloud #2 7.8 7.9 8.8 513 1.03 

Expansion Cloud #3 6.2 7.4 8.4 393 0.79 

Expansion Cloud #4 5.7 6.7 7.4 291 0.58 

Note that in Table 2-1, three separate droplet radius values are listed. The first, amode, 
refers to the most numerous particle radius (or dominant radius) as found by the Phase 
Doppler histograms. This parameter is present in the aerosol PSF and MTF expressions 
described earlier. The measured expansion cloud particle distribution shown in Figure 2.6 
is slightly less smooth than that of the mixing cloud. This is a consequence of the shorter 
duration (lifetime) of expansion clouds, which can prevent their measured size 
distributions from stabilizing into perfectly smooth histograms. Additionally, the 
expansion cloud distributions exhibited a small plateau (flat region) near their peak, 
suggesting a few consecutive radius values with similar number density. Due to the 
uncertainty in the dominant particle radii calculated from the expansion clouds and the 
importance of this parameter, additional droplet radii values were calculated. These 
included the mean droplet radius (amean) and effective droplet radius (aeff), whose values 
are also listed in Table 2-1. These are two variations of radii-weighted averages often 
used to more completely describe measured droplet distributions (Miles et al., 2000). 
Assuming a droplet size distribution is characterized via histogram with a specified 
number of bins (Nbins), uniform bin width (Δa) and total droplet observations (Nt), the 
mean droplet radius (amean) is given by the expression  

 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =
1
𝑁𝑁𝑡𝑡

� 𝑎𝑎𝑖𝑖 𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜(𝑎𝑎𝑖𝑖) ∆𝑎𝑎
𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

𝑖𝑖=1

 (16) 

The effective droplet radius (aeff) is similarly calculated from a droplet size distribution as  

 𝑎𝑎𝑒𝑒𝑒𝑒𝑒𝑒 = ∑ 𝑎𝑎𝑖𝑖
3 𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜(𝑎𝑎𝑖𝑖)

𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑖𝑖=1

∑ 𝑎𝑎𝑖𝑖
2 𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜(𝑎𝑎𝑖𝑖)

𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑖𝑖=1

 (17) 

Both of these methods produced values greater than the simple histogram maximum, due 
to the positive skewness of the measured size distributions. 

2.5.2 Calculating the Control Modulation Transfer Function 

To ensure the accuracy of the knife edge MTF calculation method, control images 
(lacking the presence of cloud aerosols) were captured through the empty cloud chamber. 
The LSF was computed as the horizontal spatial gradient of the edge response across the 



26 

sharp black-white transition, as in equation (14). Next, a Fast Fourier Transform (FFT) 
operation was performed on the LSF to compute the control MTF. This imaging system 
MTF incorporates both aperture diffraction and detector pixel footprint artifacts, but the 
f/22 lens setting was chosen to ensure a diffraction-limited scenario. The measured MTF 
was expected to be dominated by the aperture diffraction shape suggested by equation 
(11), and it was, but another effect was evident as well. The measured control MTF rolled 
off at a lower spatial frequency than the ideal, theoretical diffraction-limited equation 
predicts. An investigation into this revealed the issue to be the limited dynamic range of 
the camera detector.  

During this control MTF investigation, an ideal theoretical diffraction-limited MTF was 
applied to a pristine, digital knife edge pattern with the same resolution as the actual 
monochromatic imager. The edge response was taken from the resulting blurred knife 
edge, and a horizontal gradient was applied digitally to calculate a floating point LSF. 
This ideal digital LSF was normalized to a peak of 1, then quantized to 12, 13 and 14 
bits. Subsequently, a zero-padded FFT operation was performed on both the floating 
point and quantized LSFs to compute a family of MTF curves. This was done for two 
reasons: to ensure that the FFT of the floating point LSF would reproduce an ideal 
diffraction-limited MTF, and to determine the impact of quantization on measured MTFs. 
The result of this investigation is shown in Figure 2.7.  

 

Figure 2.7. (a) Diffraction-limited LSF comparison between ideal (floating point) and 
quantized to simulate various finite bit-depth detectors. (b) Family of MTF curves 
computed from the diffraction-limited LSFs shown in (a). 

Panel (a) of Figure 2.7 shows the various LSF curves, with the dynamic range plateaus of 
each quantized curve evident. The maximum dynamic range of an analog-to-digital 
converter (ADC) with Q bits is less than 20 log10(2𝑄𝑄) decibels because of its noise floor 
(Seeber, 1998). The optical sensor used to measure the knife edge uses a 14-bit ADC 
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with a reported dynamic range between 68 and 70 dB depending on imaging mode, but 
its 16-bit images were shown to have only 212 unique integer values. The dynamic range 
limit of the detector can be seen when the measured LSF is compared to the simulated 
quantized LSFs.   

Panel (b) shows the MTF curves computed via FFT from the LSF curves, and two 
observations are noted here. First, the floating point LSF does in fact return a diffraction-
limited MTF almost indistinguishable from the original, theoretical control MTF. This 
demonstrates the ability to apply an ideal MTF and then re-calculate it from imagery 
using the line spread function method. Second, the 13-bit quantization almost exactly 
reproduces the measured control MTF, which is interesting given the apparent 12-bit 
nature of the images digitized by a 14-bit ADC. The relevance of this quantization for 
optical blurring due to aerosols will be considered in the next section. 

2.5.3 Aerosol Point Spread Function Analysis 

Prior to calculating experimental aerosol MTF curves and comparing them to theoretical 
predictions made from measured boundary conditions, we begin with an analysis of the 
expected aerosol PSF after detector quantization. As described in equation (3), the 
aerosol PSF is a combination of direct and indirect (scattered) light. The wavelength-
dependent aerosol parameters necessary for predicting its shape, which include optical 
depth, scattering coefficient, modal particle radius and (total) single scattering albedo are 
calculated from the Phase-Doppler particle size distribution measurements. The imaging 
system parameters (i.e., aperture diameter and focal length) are also important inputs as 
they can significantly impact the distribution of light on the detector. Additionally, as was 
shown in Figure 2.7, the quantization and dynamic range limitations of the detector must 
be incorporated. 

To demonstrate this, we calculate the expected PSF of the imaging system in the presence 
of expansion cloud droplets in the cloud chamber for a 2-meter propagation path. A 
dominant particle radius of 8 µm is selected as representative of the droplet distributions 
described in Table 2-1, and an optical depth of 0.75 is chosen as an intermediate 
thickness of the measured expansion clouds. Both the direct (unscattered) and indirect 
(scattered) components of the PSF are computed and shown in panels (a) and (b) of 
Figure 2.8, respectively. Next they are summed and normalized; the results of this 
operation are shown in panel (c) along with a dashed line indicating the dynamic range 
threshold of a simulated 13-bit detector. 
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Figure 2.8. (a) Direct, unscattered component of PSF whose shape is the familiar 
diffraction-limited Bessel function. (b) Indirect, scattered component of PSF which takes 
the form of a decaying exponential. (c) Normalized combination of direct and scattered 
components for a dominant droplet radius of 8μm and optical depth of 0.75, with the 
equivalent of a 13-bit ADC noise floor shown for reference. 

2.5.4 Predicted Aerosol Modulation Transfer Function 

With an aerosol PSF measured for a representative expansion cloud, predictions for the 
expected shape of the aerosol MTF can be made. Using the analytic MTF expression 
given in equation (10), which was developed from Ishimaru’s published aerosol PSF 
(Ishimaru, 1997), a theoretical spatial frequency response can be computed for expansion 
cloud conditions. This is done with two separate methods, the first of which is a direct 
calculation using the analytical aerosol MTF expression.  

The second method obtains aerosol MTF responses from a 2D Fourier Transform of the 
sampled aerosol PSFs. Care was taken to ensure that this operation yields the ideal 
theoretical MTF when the unquantized PSF is used instead of the detector ADC-limited 
version. Once the accuracy of this method was established, both the ideally-sampled and 
quantized aerosol PSFs were converted to the spatial frequency domain via FFT 
operations. These two total MTF responses (ideal and quantized), which include both 
aerosol and imaging system effects, are compared in Figure 2.9. We note the strong 
influence that the dynamic range limitations of the detector is expected to have on 
measured MTF curves. 
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Panel (a) of Figure 2.9 shows the attenuated, direct component of the MTF which falls 
off as the optical cutoff frequency is approached and differs from the diffraction-limited 
case only because of the chamber’s non-zero optical depth. Panel (b) shows the predicted 
scattering component; the aerosol-driven exponential decay occurs at very low spatial 
frequencies and is sensitive to the dominant radius of the aerosol distribution. Panel (c) of 
Figure 2.9 compares the two predicted (total) MTF curves, the ideal (solid line) and the 
quantized (dotted line). 

 

Figure 2.9. (a) Direct component of the aerosol MTF, which is an attenuated version of 
the diffraction-limited cos-1 function. (b) Indirect, scattered component of the aerosol 
MTF. (c) Ideal and 13-bit quantized versions of the total aerosol MTF for a dominant 
droplet radius of 8μm and optical depth of 0.75. 

To investigate the sensitivity of the resultant MTF shape to the bit-depth of a detector, 
several dynamic ranges were used to quantize the aerosol PSF before conversion to the 
spatial frequency domain. In addition to the previously shown 13-bit quantization, 12-bit 
and 16-bit were computed and compared to the ideal (unquantized) MTF expected based 
on scattering theory. This aerosol MTF comparison is shown in Figure 2.10. It was noted 
that with a 16-bit detector, the expected theoretical MTF shape is almost completely 
recovered. Conversely, the impact of a 12-bit quantization was to modify the aerosol 
MTF until it closely resembled an aperture diffraction-limited response with almost no 
aerosol effects evident.  
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Figure 2.10. Ideal aerosol MTF, predicted from theory, is compared to several dynamic 
range-limited simulations of various bit-depth detectors. 

The sensitivity of the (quantized) aerosol MTF response to the primary parameters used 
to describe the droplet distribution, namely dominant radius and optical depth, was also 
explored. This was done by first holding the dominant droplet radius constant and 
varying the optical depth, with no concern for the underlying changes in the particle 
distribution that would be necessary to make this combination of values physically occur. 
Next, a constant optical depth was assumed and various values of dominant droplet radius 
were used as inputs to the theoretical expressions. The results of this parametric 
sensitivity study are shown in Figure 2.11.  

 
Figure 2.11. (a) Impact of varying dominant droplet radius on [quantized] aerosol MTF, 
assuming constant optical depth.  (b) Variations in [quantized] aerosol MTF due to 
various optical depths, assuming the same dominant droplet radius. 
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In the case of varying primary droplet radius, shown in panel (a) of Figure 2.11, the ideal 
responses show little change but the quantized curves are significantly impacted. 
Additionally, the order of the curves is reversed after dynamic range limitations are 
imposed. When the optical depth is varied as shown in panel (b), the order of the curves 
is again reversed, and both the ideal and quantized MTF responses are affected by 
changes in optical depth τ. 

2.5.5 Measured Aerosol Modulation Transfer Function 

System-level aerosol MTF curves were calculated from imagery captured through 
expansion clouds created in the MTU cloud chamber. The process to obtain this 
measured aerosol MTF was the same as described in Section 2.5.2, where an LSF was 
computed by differentiating the horizontal ESF. Since the black side of the knife-edge 
was less noisy, that portion was used to create a symmetric LSF about its maximum. A 
normalized version of this symmetric LSF measured during Expansion Cloud #3 is 
shown in panel (a) of Figure 2.12. The measured aerosol MTF is obtained by performing 
an FFT operation on the measured LSF. The resulting MTF, shown in panel (b) of Figure 
2.12, incorporates all imaging system effects including those beyond ideal aperture 
diffraction and detector limitations. Additionally, the measured MTF responses for 
Expansion Cloud #2 and #4 are shown for comparison in panel (b); the three measured 
LSF curves were similar enough that only Expansion Cloud #3 was shown in panel (a) 
for the sake of clarity. 

 

Figure 2.12. (a) Normalized line spread function measured during Expansion Cloud #3 on 
March 17, 2017 through the MTU cloud chamber. (b) Measured aerosol MTFs obtained 
from imagery captured through expansion clouds. 

With a measured aerosol MTF calculated from imagery captured through the cloud 
chamber in the presence of an expansion cloud, a comparison can be made to the 
predictions made in Section 2.5.4. Figure 2.13 combines the theoretical (quantized) 
aerosol MTFs from panel (a) of Figure 2.11 together with the measured aerosol MTF 
(Expansion Cloud #3 from Figure 2.12) on the same spatial frequency axis. 
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Figure 2.13. Measured and predicted aerosol MTFs shown together for comparison. 

Given the sensitivity of the quantized theoretical expressions to the selected dominant 
droplet radius and uncertainty in the measured particle mode, the 8μm-radius prediction 
matches the measured aerosol MTF quite well. The 7.5μm and 8.5μm bit-depth limited, 
analytically-predicted curves bound the chamber measurement for spatial frequencies 
greater than 3x10-2 cycles per milliradian (see Figure 2.13). Due to the detector 
resolution, pixel pitch and the focal length of the optics, spatial frequencies below this 
value cannot be accurately measured due to the width of such a cycle. In the spatial 
frequency range that can be reliably measured by the cloud chamber imaging system, the 
predicted aerosol MTF compares reasonably well to the measured response once the 
optical sensor limitations and droplet radius (listed in Table 2-1) are considered. The 
more gradual decrease in MTF with increasing spatial frequency in the measurements 
relative to the theory seems likely to be a result of the width of the droplet size 
distribution. The theoretical curves correspond to a modal radius value, whereas the 
actual cloud has a broad range of droplet sizes. 

2.6 Summary and Discussion 

Aerosol scattering is thought to contribute to the blurring and contrast reduction found in 
measured optical images. Here we showed that a theoretical modulation transfer function 
can be computed which includes atmospheric attenuation, small-angle aerosol scattering 
(i.e., near-forward scattering of light by particles large compared to the wavelength) and 
diffraction effects. This aerosol MTF, assuming an aperture diffraction-limited case, is 
composed of two primary components. The first is a pedestal created by an attenuated 
version of the diffraction MTF whose peak magnitude depends on optical depth. As 
optical depth increases, the pedestal or base of the aerosol MTF (upon which the 
scattered component is essentially added) is lowered. The second aerosol MTF 
component is a decaying exponential located at small spatial frequencies, created by 
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scattered light spread over a portion of the image plane. The spatial frequency at which 
this indirect light ceases to contribute in a significant way is sensitive to aerosol modal 
radius. As the dominant droplet size increases, the spatial frequency extent of the 
decaying exponential increases. These two components comprise the total MTF, which 
includes both aerosol and imaging system artifacts.  

The significance of blurring due to aerosol scattering is not agreed upon in the literature, 
and several conflicting theoretical models for predicting the impact of small-angle 
scattering exist. Various PSF models which incorporate aerosol scattering have been 
proposed, based either on theoretical solutions or analysis of measured data. Additionally, 
several authors have proposed spatial frequency domain descriptions of blurring due to 
small-angle aerosol scattering. This apparent controversy appears to focus on the severity 
of the phenomenon and shortcomings of aerosol experiments (Bissonnette, 1992; 
McDonald et al., 1992; Bruscaglioni et al., 1993; D. Sadot and Kopeika, 1993; Dan Sadot 
and Kopeika, 1993; Dror and Kopeika, 1995; Kopeika and Sadot, 1995; Ben Dor et al., 
1997; Kopeika, 1997; Kopeika et al., 1998; Eismann and LeMaster, 2013). There are 
relatively few published measurements of the impact of aerosol scattering, and they tend 
to focus on specific aspects of the full problem.  Most significantly, detailed comparisons 
between theory and measurements are challenging because characterization of conditions 
in the atmosphere is challenging, and uncertain assumptions must be made regarding 
spatial and temporal uniformity (i.e., statistical homogeneity or stationarity). 

After detailing theoretical PSF and MTF expressions to predict the impact of aerosol 
scattering on measured imagery, we proposed and showed the results from a closure 
experiment using the MTU cloud chamber. Our methodology involved capturing knife-
edge imagery through a controlled expansion cloud while also directly measuring its 
particle size distribution. Experimental aerosol MTFs were obtained from these images 
and compared to theoretical predictions made using measured atmospheric conditions 
calculated from particle size distribution histograms. Predicted MTF responses for both 
the control and aerosol scenarios were made with and without finite bit-depth detector 
limitations, and the impact of quantization and noise floor was illustrated. These 
predicted aerosol MTF curves, created with atmospheric properties based on measured 
expansion cloud distributions, were compared to MTF responses measured in the cloud 
chamber.  

According to analysis of MTF measurements performed in numerous laboratories 
(Williams and Becklund, 2010), measuring a modulation transfer function to within 5% 
of a theoretically-predicted curve demonstrates sufficient accuracy. The measured control 
MTF response (prior to quantization), obtained with a manual focus procedure, was 
within 7% of the diffraction-limited MTF that would be expected under ideal conditions 
including perfect focus, absence of lens aberrations, uniform knife-edge illumination, etc. 
After quantization was applied to incorporate finite bit-depth detector limitations, the 
theoretical control MTFs closely resembled the measured control MTF. The theoretical 
control MTF with simulated 13-bit quantization was an almost exact match when 
compared to the measured control MTF. 
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The (ideal) predicted aerosol MTFs showed only a slight sensitivity to small variations in 
dominant droplet radius, with moderate MTF response changes due to various optical 
depths. However, bit-depth quantizations of the ideal aerosol MTFs displayed high 
sensitivity to changes in droplet radius. In contrast, the ideal and quantized aerosol MTFs 
responded similarly to changes in optical depth. Our investigation revealed that the MTF 
response modifications depended on how far from the centroid of the PSF the dynamic 
range cutoff occurred and how much PSF energy was contained in the portion below the 
detector noise floor. Other things being equal, moving the noise floor cutoff closer to the 
PSF center increased the difference between the ideal and quantized MTF. Loss of all but 
the Bessel function near the PSF centroid means the resulting MTF is essentially the 
diffraction-limited control case, which is sensible given that the indirect (scattered) light 
is spread over the image plane (not well focused). Removing this scattered contribution 
diminishes the discrepancy between aerosol and control MTF. This means that with the 
expansion cloud conditions present in the chamber, aerosol scattering is an evident but 
subtle contributing effect (Eismann and LeMaster, 2013) that is significantly impacted by 
the optical imaging system used to measure it. In an atmospheric context, the significance 
of aerosol-induced blurring would depend not only on the details of the aerosols and 
propagation path length but also on the hardware configuration of the imaging system, 
especially the dynamic range of its detector.  

The (quantized) predicted MTFs matched the measured aerosol curves reasonably well, 
disagreeing by less than 10% for a single combination of droplet radius and optical depth. 
Due to the sensitivity to the droplet radius selected for the predicted curves, and the 
uncertainty of the exact dominant droplet radius for each of the three expansion clouds, 
this amount of prediction error is encouraging. Theoretical aerosol MTFs computed from 
a small range of droplet radii based on values in Table 2-1 easily bound the measured 
MTFs everywhere but below 3x10-2 cycles per milliradian, which is approximately the 
limit of reliable information from the detector footprint used for image capture. The 
authors believe that the theoretical expressions, which utilize a single, modal particle 
radius, are likely most accurate for nearly-monodisperse particle distributions. For 
strongly polydisperse distributions such as our expansion clouds, which were measured to 
have a broad distribution of droplet radii with similarly-dominant number densities, the 
choice of a single radius is apparently insufficient when sensitivity to this value is 
considered. This further explains why the various measured aerosol MTFs were similar; 
the particle distributions of the generated expansion clouds largely overlapped and often 
had several strongly-contributing adjacent radius bins. 

Overall, the concept of closure between MTFs obtained from directly-measured images 
and MTFs calculated from theory using measured cloud properties in a laboratory setting, 
has been demonstrated to be achievable and quantitatively successful. The comparison 
led to several findings: the theoretical expression for MTF is likely overly simplistic and 
does not account for broad particle size distributions; the relevance of optical blurring 
from light scattering by aerosol particles depends sensitively on the properties of both the 
particles and the imaging system; regarding the latter, the digital dynamic range was 
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found to be especially relevant, having the ability to reveal or mask aerosol blurring 
effects for realistic bit levels.  

In future experiments we intend to explore a wider range of cloud conditions, especially 
at larger values of optical depth, and for a broader range of particle sizes. Further, the 
thermal convection capability of the cloud chamber will enable exploration of the 
influence of turbulence, simultaneously with particles, thereby testing the common 
assumption of independence and additivity. On the instrumentation side, we aim to 
explore the influence of camera digital dynamic range. A higher bit depth detector would 
lead to a lower noise floor, and a larger detector cutoff frequency would allow the 
imaging aperture to be enlarged without additional aliasing. This would potentially allow 
a wider range of scattering angles to impact the aerosol measurements. 
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3 Monte Carlo Scattering Simulation: mcScatter 
A Monte Carlo scattering simulation was created in Matlab (a MathWorks product), for 
the purpose of performing experimental interactions between light and cloud distributions 
virtually. In a computer simulation, some of the physical constraints of an actual cloud 
chamber (such as physical size, maximum optical depth, particle clustering, 
instrumentation type and location) can be removed to determine what would happen if 
such an experiment were performed. The following sections in this chapter detail the 
construction of this scattering simulation, referred to as ‘mcScatter’. The various user 
inputs, modes of operation and result outputs are described.  

3.1 Overview of the mcScatter Graphical User Interface (GUI) 

A graphical user interface (GUI) was created for the mcScatter simulation. The 
application’s GUI allows users to provide a variety of inputs, including: 

 size of the virtual volume 
 number density, size (radius) and spatial distribution of the particles 
 initial photon ray positioning method and scattering phase functions 
 volume “wall” boundary conditions and subvolume resolution 
 optical wavelength, refractive index of air and scattering media 

 
Figure 3.1.  Screenshot of ‘mcScatter’ application GUI 
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The mcScatter GUI allows users to define the scattering simulation inputs, control the 
methods used to initialize and propagate rays through the particle distribution, view 
statistics calculated from the simulation output and visualize relevant results. The 
following subsections will detail the algorithmic design of the scattering simulation.  

3.2 Particle generation 

3.2.1 Uniform randomly-distributed particle locations 

The simplest ‘cloud’ that can be generated by the scattering simulation is a random 
monodisperse distribution. The user selects the desired number density and particle 
radius, and the required number of particles are inserted at uniformly-random locations 
within the user-specified spatial limits of the particle volume. A representative example 
of a monodisperse particle distribution, with approximately 1000 particles for illustration, 
is shown in Figure 3.2. 

 
Figure 3.2. Representative example of uniformly-random monodisperse particle 
distribution. 

For a more realistic ‘cloud’, a polydisperse particle distribution can be generated. A pre-
programmed particle size distribution function (based on a smoothed version of a MTU 
cloud chamber-generated expansion cloud) is selected and scaled up or down. This 
scaling factor allows a realistic composition of different particle radii while varying the 
total number of particles (to change optical depth). As with the simple monodisperse 
distribution, the polydisperse particles are placed randomly throughout the volume. The 
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pre-programmed polydisperse particle size distribution function (‘cloud1’) is plotted in 
Figure 3.3 and an example of the resultant particle distribution is shown in Figure 3.4. 

 
Figure 3.3. Particle size distribution function used for polydisperse media, referred to as 
“cloud1”. 

 
Figure 3.4. Representative example of a spatially-random polydisperse particle 
distribution, referred to as “cloud1”. 
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Note that the symbol colors in Figure 3.3 correspond to various particle sizes; these same 
symbol colors are used in Figure 3.4 (along with symbol size) to indicate particle size. 

3.2.2 Matérn spatial particle distributions 

The scattering simulation can also generate non-uniform particle locations. In this mode, 
a Matérn-based algorithm places the desired number of (monodisperse) particles 
heterogeneously throughout the volume in clusters, or groups, of particles (see Figure 
3.5). The user can specify the approximate number of clusters, average number of 
particles in each cluster, and the density or spread of the groups relative to the overall 
volume. This final input parameter controls how closely spaced the particles in each 
cluster are versus how much space separates one group from another. This allows the 
user to investigate the impact of particle clustering on light propagation through virtual 
cloud distributions. 

 
Figure 3.5. Representative example of Matérn-generated monodisperse particle 
distribution, where aerosols are clustered instead of randomly spaced throughout the 
volume. 

3.3 Subvoluming particles in the scattering media 

3.3.1 Binning particles into subvolumes 

By its very nature, mcScatter simulates a scattering medium by ray-tracing photon paths 
through a volume containing numerous particles at specified (stationary) spatial 
locations. Intersections between these photon rays and particles create scattering events, 
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and because mathematical tests are used to determine if ray-particle collisions occur, 
computational efficiency is important for minimizing simulation runtimes. Assuming a 
0.08 m2 volume, a cloud with a total optical depth (τ) of 1 would require 3.2x107 14μm-
radius particles. Testing each ray against 32 million particles to see if one or more 
aerosols lie on the ray path would be an arduous task.  

To ease this mathematical burden, a pre-processing step is performed where the cloud 
volume is divided into “subvolumes”. Each subvolume will necessarily contain only a 
small portion of the total number of particles. As a photon ray travels through the 
volume, the subvolumes it intersects are checked one at a time for particle scattering 
events, and only the particles in each individual subvolumes are considered (Pharr and 
Humphreys, 2004). By increasing the number of subvolumes, the average number of 
particles in each subvolume can be reduced to a manageable amount (perhaps 20). 

During the particle-binning process, illustrated in Figure 3.6, the scattering volume is 
divided into an equal number of subvolumes (Step 1, left). Next, particle centroids are 
used to determine the subset of particles assigned to each subvolume. Because a particle 
could have its centroid in one subvolume but its radius could extend it into an adjacent 
subvolume, 100μm margins are used to include particles centered in the immediate 
vicinity of each subvolume (Step 2, center). These margins, which consider particles that 
may be partially contained in a subvolume, mean that some particles are counted in more 
than one subvolume (Step 3, right). This ensures that scattering events are not missed. 

 
Figure 3.6. Diagram showing how particles in the volume are grouped into subvolumes. 
Dashed lines indicate “margins” that allow some subvolumes to overlap, categorizing 
some boundary-crossing particles into multiple subvolumes to ensure collisions are not 
missed.  

For example, consider a ray passing parallel but very near to a subvolume wall towards a 
particle which straddles two subvolumes. In this scenario, the ray may strike the edge of 
the particle even though its centroid is located in another subvolume. If only the centroid 
was used to determine which subvolume it belongs to, the collision would be missed. 
Employing subvolume margins (larger than the particle radius) ensures that such a multi-
counted particle, which belongs to more than one subvolume (as the red particle in the 
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rightmost diagram of Figure 3.6 indicates), is properly handled by ray-particle 
intersection testing. 

3.3.2 Creating a depth-independent 2D particle map: “littleJohn” 

The particle-binning process, which determines which particles are contained within each 
subvolume, is a pre-processing step that makes subsequent ray-tracing calculations more 
efficient by reducing the number of particles that each ray segment must be tested 
against. However, for some photon positioning modes (discussed in section 3.4.1) an 
additional pre-processing step is necessary. This added procedure creates a set of two-
dimensional particle maps in the X-Y plane, independent of depth, which together 
indicate the location of all particles in the scattering medium. These binary particle masks 
are used to inform the (x, y) origin positions of photon rays to increase the probability of 
scattering events, which reduces the number of direct rays that simply pass through the 
volume unscattered. Additionally, the number of filled cells in each binary particle mask 
(one mask for each X-Y subvolume) is used to determine how many rays to launch into 
that subvolume. This provides an avenue for importance sampling, where the most 
populated regions of the scattering medium are interrogated more often. The creation of 
these binary particle masks involves a process sometimes referred to as splatting, where 
the circular footprint of each spherical particle is accumulated in a matrix. This splatting 
process is depicted in Figure 3.7.  

 
Figure 3.7. Diagram of the process for resolving the spherical particles in an X-Y 
subvolume into a mask of filled and unfilled cells. 

The leftmost diagram shows an example of a polydisperse particle distribution, where 
diversity in aerosol radius is indicated by color. The thick outer border represents the X-
Y extent of the overall medium, and the dashed lines indicate the X-Y boundaries 
between subvolumes. It is important to note here that each subvolume has a finite Z-
extent, where Z is depth into the cloud (into the page, and thus not shown in this 2D 
depiction). Since the particle maps are depth-independent, the Z boundaries between 
subvolumes are essentially ignored during this procedure. It is as if an observer with no 
depth perception looks into the scattering medium normal to the X-Y plane and 
discretizes the positions of all particles.  
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The center diagram of Figure 3.7 enlarges an X-Y subvolume from the leftmost pictorial, 
and indicates how 3μm-wide cells are used to discretize particle positions. The black 
gridlines in this diagram show these cell boundaries; the centroid of each cell is computed 
and the equation of a circle is used to determine which cell centroids are “covered” by a 
particle in the X-Y subvolume based on its radius. Regardless of depth into the cloud, this 
process is repeated for all particles in a given X-Y subvolume until all 3μm (nominal and 
user-defined) cells are determined to be filled or empty. The result of this process, for the 
single X-Y subvolume exemplified in Figure 3.7, is shown in the rightmost illustration. 
The colors are meant to clarify the correspondence between the original spherical 
particles and the rectangular filled cells that represent them in the binary splat maps. 

Taking this example further, suppose that there are 120 subvolumes in both the X and Y 
dimensions (120 x 120). Given a sufficient number of particles in the volume, a binary 
mask showing which subvolumes contain at least one particle might resemble that shown 
on the left in Figure 3.8 (assuming a 25% border is used for blanking around the 
perimeter). If the number of filled cells in each of the center 60 x 60 X-Y subvolumes 
was counted, a numerical map could be generated to display their relative population 
density. This is shown on the right in Figure 3.8, where the rainbow colors indicate 
deviation from the average number of particles in a subvolume. This indication of relative 
particle population for each subvolume is used by the ‘littleJohn’ method to cast more 
rays into the subvolumes which have more filled cells, to achieve uniform illumination. 

 
Figure 3.8. [Left] Example of a binary mask showing which subvolumes contain at least 
one particle; note that a border of subvolumes around the perimeter of the mask is voided 
to avoid rays being cast near the “chamber” walls. [Right] Map showing the number of 
filled cells in each subvolume, colored by variance from the average subvolume particle 
density. 

An enlarged binary particle mask from a single X-Y subvolume (which would correspond 
to a single colored square pixel in the rightmost image of Figure 3.8) is shown in Figure 
3.9. Yellow pixels indicate filled cells where a particle (at some unknown depth into the 
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cloud) is present; blue pixels indicate empty cells. Illumination cast towards blue pixels 
would likely exit the cloud without scattering, contributing to the direct flux component. 

 
Figure 3.9. [Left] Example of a single particle-resolved subvolume taken from the center 
of the map shown in Figure 3.8; yellow cells indicate the presence of a particle (at any 
depth), and blue indicates the lack of particles where direct illumination would exit the 
cloud. [Right] Enlarged region of a single subvolume to illustrate particle resolution 
using 3μm cells to discretize a subvolume. 

3.4 Ray Tracing Photon Paths 

3.4.1 Initial Photon Positions 

The (x, y, z) starting point(s) of the photon-rays cast by the scattering simulation can be 
initialized in four unique ways including ‘single’, ‘robinHood’, ‘littleJohn’ and ‘random’. 
Each method starts all photon-rays in the X-Y plane where z is 0 (essentially, on the 
origin face of the cubic volume). Consequently, each ray has an initial position of (x, y, 0) 
where the user’s choice of ray positioning method determines how x and y are selected.  

The ‘single’ method initializes all rays to a starting location of (0, 0, 0). This mode is the 
simplest but least useful for scientific study, intended only for debugging purposes. 
Whichever particle the first ray strikes is struck by all rays; if the first ray misses all 
particles, no collisions will occur. 

The ‘robinHood’ method aims each ray at a different particle in the distribution, in 
descending order from largest particle to smallest. For ray n and the corresponding 
particle n, this would result in a ray starting point of (xn, yn, 0) if the intended particle 
centroid was (xn, yn, zn). This mode is extremely useful for ensuring that each ray strikes a 
particle, both for debugging purposes as well as efficiency in the case of very thin clouds 
(see Figure 3.10). With sparse particle distributions where most randomly-placed rays 
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would miss the relatively few particles, aiming directly at their centroids saves time when 
collisions are desired; ‘robinHood’ never misses.  

 
Figure 3.10. Representative example depicting five (5) photon rays cast into a volume 
using the ‘robinHood’ initial position method. Less than 50 particles were placed in the 
volume, yet each ray intersected one of the sparsely-placed spheres. 

By first calculating the X-Y coverage of the volume by the particles in the distribution 
(regardless of depth), the percentage of rays that would have passed directly through the 
volume can be incorporated statistically in a post-processing step. This allows a relatively 
small number of rays to collide with sparsely-placed particles while accounting for the 
photons that were not cast because they would not have been aligned with a particle and 
hence would never have scattered. However, this forcing of rays (only) towards particle 
centers can also be a detriment; in a natural, physical (non-virtual) experiment, light 
would interact freely with any portion of a particle encountered. By aiming all rays 
exactly at particle centroids (and not particle edges), volumetric sampling artifacts may 
occur with this photon casting method. Also, spatial depth of particles in the chamber is 
not a factor when determining initial X-Y ray locations. This means that particles 
“shadowed” by a particle between it and the illumination source may not be intersected 
even if selected, as the ray intended for it may strike the closer occluding particle 
(depending on relative particle sizes and centroid separations). 

The ‘littleJohn’ method can be thought of as a compromise between the ‘random’ and 
‘robinHood’ modes, where ray starting points are randomly generated but statistically 
informed by the spatial location of particles in the volume. Essentially an importance 
sampling technique, the ‘littleJohn’ positioning mode relies on the statistical particle 
density map (shown at right in Figure 3.8) and the binary particle cell maps (illustrated in 
Figure 3.9). The number of rays sent into each subvolume depends on the particle surface 
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area contained in that region, and the random location of rays headed into that subvolume 
are positioned inside filled cells. An overview of this process is illustrated in Figure 3.11. 

 

 
Figure 3.11. Process used by the ‘littleJohn’ ray positioning method. A random 
subvolume is selected, and the relative number of filled cells it contains is used to 
calculate the number of rays cast into that subvolume. Each of these rays is cast, in a 
random X-Y location, inside a random chosen filled cell. 

Rays are cast into each subvolume containing at least one particle, though the order of X-
Y subvolume interrogation is chosen at random without replacement (Figure 3.11, left). 
Additionally, and critically, the number of rays cast into each subvolume is weighted by 
the number of filled cells in that subvolume (refer to Figure 3.8, right). This serves the 
purpose of uniform illumination; to maintain a constant flux on a larger particle (greater 
surface area), more rays must be cast in its direction. Imagine two cloud aerosols, one the 
size of a beach ball and other with a radius of 8μm. Casting a single ray towards each 
would underemphasize the impact of the larger particle, and would violate the uniform 
illumination concept. Consequently, more rays are needed for subvolumes with more 
particle surface area to achieve a constant flux (e.g., W/m2). 

Once the particle surface area-weighted number of rays has been calculated, and the 
subvolume has been selected at random (without replacement to avoid duplication and 
over-illumination), the actual (x, y) positions of the rays are chosen. This is done by 
choosing a filled cell from the subvolume’s particle map at random but with replacement 
(as shown in the center image of Figure 3.11). The actual (x, y) position inside this filled 
cell is chosen randomly, as indicated by the right-most image in Figure 3.11. This 
increases the impact of importance sampling in this method, as rays are cast towards the 
micro-regions most likely to contain particles. However, it should be noted that since the 
cells are rectangular, they may contain a spherical particle which covers the cell centroid 
but does not fill the entire cell. Due to the randomly-selected (x, y) location in the cell, 
rays may occasionally be sent in a direction that will not induce scattering. These 
accidentally-direct rays are removed from reported statistics; afterwards, the correct 
amount of direct illumination is added based on the combined filled area of all binary 
particle maps. This accounts for all rays which would have been cast towards empty 
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space in the distribution but were not to save computations to which the answer was 
already known. As a result, compared to the ‘robinHood’ mode, the ‘littleJohn’ method is 
less accurate (and thus less efficient, as some rays accidentally pass through directly 
without scattering) but statistically “stronger” as it mitigates the volumetric sampling 
artifacts of the ‘robinHood’ method with increased randomness. 

The ‘random’ initialization method starts all photon-rays at uniformly-random locations 
in the X-Y plane defined by the origin face. Sampling artifacts are reduced or eliminated 
with this approach, and when a sufficiently large number of particles are present in the 
distribution, rays cast towards empty space (where no particles will be encountered) are 
minimized. By tracing a sufficiently large number of rays through the particle 
distribution, a faithful representation of uniform illumination can be achieved. For thick 
clouds, the ‘random’ mode is the most computationally efficient way to produce accurate 
results. For all the analysis presented in this dissertation, the (x, y, z) starting points of the 
rays cast by the scattering simulations were initialized with the ‘random’ mode.  

Currently, all four of these methods employ an initial scattering angle of zero (straight 
from the origin face toward the opposite face of the cubic volume). This starting polar 
angle is currently hardcoded to a value of 0 but could be exposed for user specification. 

3.4.2 Particle-Ray Intersection Testing 

The occurrence of a scattering event is determined by the geometrical relationship 
between rays cast through the volume and the spherical particles (including their 
scattering efficiency) it contains. The scattering medium is divided into numerous 
subvolumes, as previously described, leaving a manageable number of particles (perhaps 
20) in each subvolume. This increases the efficiency of the scattering simulation, as ray-
particle intersection testing is expedited when only a few (e.g., 20) particles must be 
checked against the ray segment instead of all the particles (e.g., 32 x 106) in the volume. 
With this in mind, the basic process involves the following steps: 

1. Determine which particles are contained in the subvolume of interest 
2. Loop over all particles in the subvolume 
3. Test each particle, independently, to see if there is a collision between the particle 

and the ray in question 
4. For the subset of particles intersected by the ray, calculate which of these ray-

scattering particles is closest to the ray origin (point of first collision) 
5. Record ray-particle collision point, to be used as the next ray origin (after a new 

scattering angle has been chosen to set the direction of the next ray segment) 

Fundamentally, this process is relatively straightforward. However, beyond lots of 
meticulous bookkeeping, a mathematically-efficient method for ray-particle intersection 
testing is needed. The mcScatter simulation is based on an analytic solution to algebraic 
equations for the implicit shapes of both rays and spheres. While a concise mathematical 
treatment has been published elsewhere (Matsuda et al., 2012), a more graphical and 
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detailed explanation is included here to aid those who wish to implement a similar 
routine.  

All the points that lie on a ray segment can be described by a set of equations, with an 
equation for each dimension. Similarly, all the points that lie on the surface of a sphere 
can be described by a single quadratic expression. For a 3D ray passing near a spherical 
particle, a set of four equations with four unknowns can be written, and the solution (or 
lack thereof) determines if a scattering collision has occurred. Figure 3.12 illustrates the 
ray-particle intersection geometry, drawn both in 3D (at right) and viewed in only two 
dimensions for clarity (left). 

 
Figure 3.12. Illustration of ray-sphere intersection test (left). Depiction of a ray passing 
through a particle in the volumetric distribution (right). 

Assuming the spherical particle under test is centered at (XP, YP, ZP) with a radius of RP 
and scattering efficiency Qsca, the set of (x, y, z) points on its 3D surface can be described 
with the expression 

 (𝑥𝑥 − 𝑋𝑋𝑃𝑃)2 + (𝑦𝑦 − 𝑌𝑌𝑃𝑃)2 + (𝑧𝑧 − 𝑍𝑍𝑃𝑃)2 − (𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠 ∙ 𝑅𝑅𝑃𝑃2) = 0 (18) 

Since the centroid and radius of the sphere are known, this single quadratic equation has 
three unknowns which together describe the (x, y, z) surface of the sphere. The three-
dimensional ray under examination can be expressed by a set of three equations, one for 
each dimension, namely 

 
𝑥𝑥 = 𝑋𝑋0 + 𝑡𝑡 ∙ 𝑑𝑑𝑑𝑑
𝑦𝑦 = 𝑌𝑌0 + 𝑡𝑡 ∙ 𝑑𝑑𝑑𝑑
𝑧𝑧 = 𝑍𝑍0 + 𝑡𝑡 ∙ 𝑑𝑑𝑑𝑑

 (19) 

In this system of ray equations, (X0, Y0, Z0) represents the ray origin, (dX, dY, dZ) are the 
normalized ray directions, and (x, y, z) is the endpoint of the ray assuming its scalar 
length is t. A positive value of t describes points that lie forward on the ray in the 
direction of its travel, while negative values of t describe the ray segment behind the ray 
origin (backward). The ray-based definitions of (x, y, z) from Equation (19) can be 
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substituted into the quadratic sphere surface described by Equation (18), leaving a single 
equation with a single unknown (i.e., t), as shown in Equation (20).  

(𝑋𝑋0 + 𝑡𝑡 ∙ 𝑑𝑑𝑑𝑑 − 𝑋𝑋𝑃𝑃)2 + (𝑌𝑌0 + 𝑡𝑡 ∙ 𝑑𝑑𝑑𝑑 − 𝑌𝑌𝑃𝑃)2 + (𝑍𝑍0 + 𝑡𝑡 ∙ 𝑑𝑑𝑑𝑑 − 𝑍𝑍𝑃𝑃)2 − (𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠 ∙ 𝑅𝑅𝑃𝑃2) = 0 (20) 

The task that remains is to determine if a valid (i.e., both real and positive) value(s) of t 
exists. Solving Equation (20) for t yields the expression 

 𝑡𝑡 =
−𝑏𝑏 ± √𝑏𝑏2 − 4𝑎𝑎𝑎𝑎

2𝑎𝑎
 (21) 

if we define a, b and c as follows: 

 
𝑎𝑎 = (𝑑𝑑𝑋𝑋2 + 𝑑𝑑𝑌𝑌2 + 𝑑𝑑𝑍𝑍2)

𝑏𝑏 = 2 ∙ [(𝑋𝑋0 − 𝑋𝑋𝑃𝑃) ∙ 𝑑𝑑𝑑𝑑 + (𝑌𝑌0 − 𝑌𝑌𝑃𝑃) ∙ 𝑑𝑑𝑑𝑑 + (𝑍𝑍0 − 𝑍𝑍𝑃𝑃) ∙ 𝑑𝑑𝑑𝑑]
𝑐𝑐 = (𝑋𝑋0 − 𝑋𝑋𝑃𝑃)2 + (𝑌𝑌0 − 𝑌𝑌𝑃𝑃)2 + (𝑍𝑍0 − 𝑍𝑍𝑃𝑃)2 − �𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠 ∙ 𝑅𝑅𝑃𝑃

2�
 (22) 

Several important distinctions can be made by examining the discriminant (b2 - 4ac). 

 If the discriminant is negative, the roots are imaginary and thus there is no valid 
intersection. 

 If the discriminant is exactly zero, yielding a single real positive root, then a 
single collision will occur (ray is tangent to spherical particle, touching its surface 
at a single point). 

 If the discriminant is positive and 𝑡𝑡 > 0, then the presence of two real positive 
roots implies a double collision. When a ray-particle collision occurs, a double 
collision is most likely as the ray enters the sphere at one location and exits at 
another. This scenario is depicted in the left-most diagram in Figure 3.12. 

When a ray intersects a particle, the collision point is recorded as the particle centroid 
(and not the point on the sphere’s surface); the subsequent ray segment begins from this 
centroid. This method simplifies bookkeeping but also assumes that any possible 
tendency to scatter light more frequently to the collision side (rather than equal 
probability from the particle center) can be safely neglected. Consecutive collisions with 
the same particle are not allowed. An illustration of a typical simulation result is shown in 
Figure 3.13, with just a subset of rays depicted for clarity. 
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Figure 3.13. Illustration of photon propagation paths recorded by a Monte Carlo 
scattering simulation; an orthographic 3D view is shown (left) along with a 2D side view 
(right). In the side view in the right-hand panel, rays originate at Z = 0 m and traverse 
through the virtual cloud towards Z = 2 m. Collimated rays (shown with solid black lines) 
are cast into the particle-laden medium, and scattering events redirect these now-diffuse 
rays (depicted with dashed blue lines). Direct rays that pass all the way through the 
medium without becoming diffuse are shown with thick red lines. 

3.4.3 Phase functions 

The scattering phase function describes the angular distribution of light intensity 
scattered by a particle for a given wavelength. This particle-induced redirection of 
radiation from the original propagation direction is not always isotropic. In the case of 
cloud droplets and visible light, the resultant size parameter yields a scattering pattern 
that is forward-dominant. One of the most accurate ways to calculate the scattering phase 
function is through Mie theory, where particles are considered dielectric spheres and the 
Pointing vector (expressed as electric and magnetic field expansion series) is integrated. 

However, it is often convenient to have an analytic formula that approximates the actual 
scattering phase function shape. The Henyey-Greenstein phase function, essentially a 
probability density function (PDF), is a common surrogate for the actual phase function 
(Henyey and Greenstein, 1941). Its analytic form allows it to be integrated to calculate a 
closed-form cumulative density function (CDF). Its parametric nature allows it to be 
employed rather simply, with sufficient accurate for many applications. 

The mcScatter software makes both Mie and HG (Henyey-Greenstein) phase functions 
available for scattering simulations, as the GUI provides users with the choice between 
them. In the case of the HG phase function, which relies solely on the asymmetry 
parameter (g), the probability density function  𝑝𝑝(cos𝜃𝜃)𝐻𝐻𝐻𝐻  can be written as 

 𝑝𝑝(cos 𝜃𝜃)𝐻𝐻𝐻𝐻 =
1
2 (1 − 𝑔𝑔2)

(1 + 𝑔𝑔2 − 2𝑔𝑔 cos𝜃𝜃)3 2⁄  (23) 
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However, since Monte Carlo simulations require a cumulative density function from 
which to randomly draw, the PDF must be integrated over all possible scattering angles 
(0° to 180°). Analytically, after solving for cos𝜃𝜃, this results in the expression 

 cos 𝜃𝜃 =
1

2𝑔𝑔
�1 + 𝑔𝑔2 − �

1 − 𝑔𝑔2

1 + 𝑔𝑔 ∙ (2 ∙ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 1)�
2

� (24) 

where rand refers to a uniform random number in the range [0-1]. During the scattering 
simulation, each time a new scattering angle is required, a random number is drawn and 
substituted into Equation (24) to generate a Δθ to add to the current polar angle of the 
ray.  

Histograms of the recorded Δθ (polar scattering angles drawn from the HG distribution) 
can be computed and compared to the closed-form analytic expressions to ensure a 
trustworthy implementation. Figure 3.14 shows such a comparison, with cumulative 
density functions on the left subplot and probability density functions on the right. Mie 
theory is used to compute an accurate asymmetry parameter, g; this is shown in the PDF 
subplot legend for comparison with the experimentally-obtained ensemble average, 𝑔𝑔 =
〈cos 𝜃𝜃〉. The target asymmetry parameter (g) used to plot the red-dashed analytic curves 
matches the experimentally-obtained 𝑔𝑔 = 〈cos 𝜃𝜃〉 ensemble average shown in the legend. 
The number of random draws (scattering events) necessary to closely match the analytic 
distributions for a given asymmetry parameter was determined to be 100,000 or more.  

 
 Figure 3.14. Cumulative density functions (left) and probability density function (right) 
computed from Monte Carlo statistics, compared to the Henyey-Greenstein analytic 
expressions (red dashed lines).  

Simulations can utilize Mie scattering phase functions instead of the commonly-
employed HG alternative. Figure 3.15 shows a representative example of a Mie scattering 
phase function calculated by mcScatter for an optical wavelength of 550nm, particle 
radius of 8μm and a (complex) refractive index of 1.3356 + j2.36 x 10-9 for the scattering 
medium (water). The Mie phase function used by mcScatter is shown along with that 
from a well-regarded software package called MiePlot (philiplaven.com). The two phase 
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functions, shown on a logarithmic scale due to the dominant forward-scattering peak near 
zero degrees, match almost exactly. 

 
Figure 3.15. Representative comparison between the Mie scattering phase function in the 
mcScatter application and an output from Philip Laven’s MiePlot. An optical wavelength 
of 550nm, droplet radius of 8 microns and a refractive index of 1.3356013 + j2.46E-09 
was used for Mie scattering calculations. 

These Mie probability density functions can be integrated over scattering angle and 
normalized to produce cumulative density functions for scattering angle generation. Like 
the HG polar angle generation method, uniform random numbers are drawn and used to 
calculate new scattering angles based on the Mie phase function results. In a polydisperse 
medium, the new scattering angle that results from each ray-particle collision is based on 
the appropriate precomputed droplet radius-specific phase function. 

It is important to note that the HG phase function, which is meant to approximate the 
more accurate Mie PDF, makes some compromises regarding emphasis of forward-, side- 
and back-scattering. Figure 3.16 shows both the Mie and HG phase functions for a 14μm-
radius water droplet (with a refractive index of 1.3356013 + j2.46x10-9) for the sake of 
comparison. Figure 3.17 illustrates the two phase functions near the forward scattering 
lobe; note the orders of magnitude difference between them near cos 𝜃𝜃 = 1. 
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Figure 3.16. Comparison of phase functions calculated with Mie theory and 
approximated by the analytic Henyey-Greenstein (using a Mie-based asymmetry 
parameter).  

 
Figure 3.17. Comparison of the forward scattering lobes of the Mie theory and analytic 
Henyey-Greenstein phase functions. 

3.4.4 Particle volume wall boundary conditions 

The boundary conditions of the particle volume side walls can be set to one of four (4) 
modes including ‘absorbing’, ‘periodic’, ‘reflective’ and ‘diffuse’. For convenience the 
six (6) walls or “faces” of the cubic volume are referred to using the following labels: 

 Origin (origination face for radiation, where photon-rays are cast from) 
 Sensor (rays are cast from the Origin face towards this opposing face) 
 Right and Left (opposite each other, orthogonal to Origin) 
 Top and Bottom (opposite each other, orthogonal to Origin) 
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Figure 3.18. Particles are contained in a cubic volume with six (6) walls or “faces”. 

The ‘absorbing’ mode treats all 6 faces of the cube as perfect absorbers with a 
reflectivity of zero. Any photon that strikes a face stops immediately at the point of 
impact; the ray ends, the path length ends, and the face struck is recorded for eventual 
reporting by the simulation output. 

The ‘periodic’ mode treats the Right, Left, Top and Bottom faces as soft boundaries. Rays 
that strike them are not terminated (as they would be with the ‘absorbing’ mode). Instead, 
the would-be termination point of the ray becomes the starting point of a new ray on the 
opposite wall. The new ray has the same scattering and azimuthal angles as the previous 
but will be cast into the volume instead of leaving the volume. This extends the possible 
path lengths that a ray can traverse. Essentially the size of the volume and number of 
particles can be extended, approximating a cloud whose lateral extent is infinite, without 
requiring an inordinate amount of memory (see Figure 3.19). Otherwise, the ray would 
have either terminated (artificially shortening the path length) or exited the particle 
volume (into a vacuum where no scattering could occur), violating the plane-parallel 
concept. When in ‘periodic’ mode, rays can terminate only on the Origin and Sensor 
faces. All analysis performed for this dissertation employed the ‘periodic’ mode. 

The ‘reflective’ and ‘diffuse’ wall conditions, like the ‘periodic’ mode, allow ray 
termination only on the Origin and Sensor walls. When one of the other four faces is 
struck by a ray, the ray is reflected back into the particle chamber. If ‘reflective’ is 
selected, the reflection angle is based on a specular wall assumption, where the incident 
and outgoing rays follow Snell’s law. For ‘diffuse’ reflections, the new angle is random 
and independent from the incident angle. Currently, both these modes are inoperable.  
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Figure 3.19. Illustration of the ‘periodic’ wall condition, where a ray wraps around until it 
terminates on the Sensor face. The solid black line segment represents the direct path, 
prior to and up until the first collision. The red dotted line shows the second path 
segment, after the first collision and until the Right face is struck. The ray wraps around 
and then is cast from the Left face at the same angle (shown with a dashed blue line). The 
Right face is struck again, and the last ray segment (shown as a magenta dash-dot line) 
begins on the Left wall and terminates on the Sensor face. For increased clarity, both a 
top view (left) and oblique perspective (right) are depicted. 

3.5 Monte Carlo scattering inputs 

The mcScatter simulation software is capable of running in many ways, with several 
modes provided to control a number of behaviors. Screenshots of the GUI are shown here 
with some description of the inputs and the intent behind them, to elucidate the potential 
user of mcScatter as to the proper settings needed to achieve a desired output. 
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Figure 3.20. Primary inputs for controlling the behavior of mcScatter simulations. 

The primary inputs of the scattering simulation, shown in Figure 3.20, are grouped 
together on the mcScatter GUI. They are described only at a high-level here in Table 3-1; 
more detail on some of the more unique modes is given elsewhere.  

Table 3-1. Description of primary mcScatter simulation inputs. 
Input Description Units 
Volume Dimensions Outer dimensions of scattering volume meters 
Number of photons Number of rays cast into the volume photons 
Scattering Phase Function Phase function to use for scattering: 

[‘Mie’, ‘HG’, ‘random’, ‘none’] 
n/a 

Azimuthal Variation Variation of azimuthal angle upon a 
scattering event: [‘random’, ‘none’] 

n/a 

Initial Photon Positioning Method of choosing the initial (x,y) 
position of each ray: [‘littleJohn’, 
‘robinHood’, ‘random’, ‘singleInit’]  

n/a 

Volume Boundary Conditions Boundary conditions to assign the virtual 
walls of chamber: [‘absorbing’, ‘periodic’, 
‘reflective’, ‘diffuse’] 

n/a 

Border subvolumes to skip Number of subvolumes around the 
perimeter of the volume to disallow ray 
casting (for the ‘littleJohn’ positioning 
method only; reducing particle mapping 
time and avoids edge-casting if ‘periodic’ 
positioning mode is not selected) 

subv. 

Desired spatial resolution for 
particle-mapping 

Edge dimension of cells used to discretize 
the particles in a subvolume (for the 
‘littleJohn’ positioning method only) 

μm 
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Desired mean number of 
particles per subvolume 

Average number of particles to target for 
each subvolume (no. of subvolume is 
increased to reach this target; used by all 
positioning modes except ‘littleJohn’) 

#/subv. 

Fractional width of photon 
launch region 

Width of chamber to allow rays to 
originate from (to avoid casting near an 
edge; used for ‘random’ positioning 
method only) 

% 

Single initial photon position Initial (x,y,z) position for all rays (for 
‘singleInit’ positioning method only) 

meters 

Several atmospheric parameters, listed in Table 3-2, are provided as inputs to the 
scattering simulation (see Figure 3.21). These are used to control the type of coherent 
light assumed for the simulation and the scattering medium into which photon rays are 
cast. 

Table 3-2. Description of atmospheric input parameters 
Input Description Units 
Optical wavelength Wavelength of light in simulation μm 
Refractive index of air Refractive index of air n/a 
Refractive index of particle [real] Real component of refractive index 

of particles in scattering medium 
n/a 

Refractive index of particle [imag] Imaginary component of refractive 
index of particles in scattering 
medium 

n/a 

 
Figure 3.21. Inputs to mcScatter simulation for atmospheric parameters. 

The last input group (Figure 3.22) controls the method of particle location generation, the 
density and size distribution of those particles. Additionally, an estimate of the total 
number of particles required to achieve the user’s specifications and the resultant optical 
depth are shown for convenience prior to running the simulation. The intention of these 
estimates is to avoid running out of memory (due to too many particles) or simulating a 
cloud with an undesirable optical depth. These inputs are summarized in Table 3-3. 
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Figure 3.22. Inputs to mcScatter simulation for spatial positioning of particles. 

Table 3-3. Inputs for controlling the particle distribution generated for scattering. 
Input Description Units 
Positioning method Method for generating spatial locations of 

particles [‘random’, ‘Matérn’, ‘Load’] 
n/a 

Particle size distribution 
function 

Either a pre-determined polydisperse cloud 
or a user-defined monodisperse cloud can 
be generated [‘cloud1’, ‘mono1’] 

n/a 

Particle size distribution 
function scale factor 

Scalar for reducing the total number of 
particles created while preserving the ratios 
between each particle radius 

n/a 

Monodisperse radius Controls the particle radius for 
monodisperse cloud simulations 

μm 

Monodisperse number density Defines number density for monodisperse 
cloud simulations 

#/cm3 

Number of parents Number of Matérn parents of particles 
(e.g., groups or clusters) 

n/a 

Mu Mean number of particles contained in 
each Matérn parent or cluster 

#/parent 

R Radius of Matérn clusters n/a 
< X, Y, Z > Extent of Matérn particle domain meters 
Load… Opens a file dialog to load a saved particle 

distribution (currently unavailable) 
n/a 

Approximate no. of particles Estimate of the total number of particles 
required by the current simulation inputs 

# 

Approximate optical depth Estimate of the total optical depth, τ, with 
the current simulation inputs 

n/a 
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3.6 Running a Monte Carlo scattering simulation 

A complete Monte Carlo simulation involves undertaking several major steps including 
particle distribution generation, dividing particles into subvolumes, and finally casting 
rays into the scattering medium and tracing their propagation paths. In a typical 
mcScatter simulation, all three steps would be enabled (via the checkboxes shown in 
Figure 3.23) and the LAUNCH button would be pressed.   

 
Figure 3.23. Controls for launching a mcScatter simulation 

These three primary tasks each require several sub-tasks, detailed here: 

Generate Particle Distribution: 
1. First, optical properties and scattering phase functions are calculated for all 

required particle radii using Mie theory. The outputs of the Mie calculations, 
which are dependent on the particle radii (and optical wavelength), include:  

 scattering coefficient, k [m-1]  

 scattering efficiency, Qsca  

 asymmetry parameter, g 

 unpolarized scattering phase function, S 

 cumulative density function (CDFS) for the phase function 

2. Next, the spatial locations of the required number of particles are generated based 
on user inputs for number density and desired degree of homogeneity. The 
outputs include (x, y, z) 3D positions and corresponding radii values for all 
particles inserted into the virtual distribution volume. The number of subvolumes 
either specified or required by various user inputs are determined here as well. 

3. Finally, a set of quantitative results are displayed in the right-most output 
window. These, described in greater detail in section 0, include the following: 

 scattering phase function method 

 azimuthal angular variation method 

 initial photon positioning method 

 modal aerosol/particle/droplet radius 
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 total number of particles 

 particle number density 

 total scattering coefficient 

 propagation range from top to bottom of the virtual cloud 

 lateral dimensions (width and height) of particle distribution 

 total optical depth 

Subvolume Particles: 
1. The X-Y-Z limits of each subvolume (and their secondary boundaries once an 

additional margin is included) are calculated. These are used to determine which 
particles are located inside each subvolume, to expedite the ray-particle 
intersection testing involved in ray-tracing a particular subvolume. 

2. During the prior step (determination of which particles are in each subvolume), 
additional particle discretization is performed if the ‘littleJohn’ initial positioning 
method has been selected due to the inputs required for this mode. These 
additional outputs include:  

 binary map indicating which subvolumes contain at least one particle 

 binary masks indicating which cells in a given subvolume are “filled” 

 numerical maps indicating the number of filled cells in each subvolume 

 numerical maps specifying the number of rays to cast into each 
subvolume based on total desired rays and number of particle cells in 
each subvolume 

Ray-Trace Photons: 
1. The ray-tracing procedure, which involves casting photons into a scattering 

medium and calculating their propagation through the virtual cloud, is complex. 
It involves a lot of bookkeeping, conditional logic and calculations along the 
way. The major functions performed by the ray-tracer for each photon cast into 
the particle distribution independently include: 

 Determining initial (x, y, 0) ray origination points 

 Determining initial polar and azimuthal ray angles 

 Tracing each ray through the subvolumes that comprise a virtual cloud 

 Searching for intersections between each ray and particles contained in 
the subvolumes they traverse 

 Calculating new scattering angles and subsequent ray directions when 
ray-particle collisions occur  
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 Following the propagation of rays through subvolumes filled with 
particles until a ray termination point is reached 

2. The primary ray-tracing outputs recorded by this sophisticated scattering 
simulation include:  

 Array of polar and azimuthal scattering angles, recorded independently 
from photon ray, to compare against intended probability distributions 

 X, Y and Z arrays recording the initial, final and intermediate collision 
positions of each photon ray 

 Array indicating which face each ray struck upon termination 
 Arrays containing the direct and diffuse forward flux and diffuse 

backward flux for comparison against two-stream theory and alternative 
Monte Carlo codes 

As the three primary steps of the scattering simulation are performed, the user is apprised 
of their status on the GUI. Figure 3.24 shows screenshots of the status portion of the GUI. 
The image on the left is seen before a simulation has begun; the right-hand image is an 
example of a status report seen while particles are being categorized into subvolumes. 

  
Figure 3.24. Status updates are reported to the user via the mcScatter GUI. 

With some minor code changes, it would be possible for a subset of these steps to be used 
individually or together for various purposes. For example, users could choose only to 
Generate Particle Distribution without performing a scattering simulation. 
  



61 

3.7 Monte Carlo scattering simulation feedback 

The mcScatter simulation provides feedback to the user regarding the specifics of 
progress including the time required for various steps. This feedback helps the user 
understand which steps are the most time consuming and aids in estimating the 
computation time remaining. An example of simulation feedback provided via the 
mcScatter GUI is shown in the two panels of Figure 3.25. 

   
Figure 3.25. Representative user feedback from scattering simulation. 
  



62 

3.8 Monte Carlo scattering statistics 

At the conclusion of the particle generation step, various simulation parameters are 
reported to the user via the mcScatter GUI. These include both the user-defined primary 
modes selected for the simulation (scattering phase function, probability distributions for 
angular variations, etc.) and cloud distribution parameters (both user-defined and 
calculated). In addition to these parameters, various statistics - recorded during the 
simulation and calculated as a post-processing steps - are reported. A representative 
example of the parametric and statistical reporting is shown in Figure 3.26. 

   
Figure 3.26. Example of mcScatter results and statistics reported to the mcScatter GUI. 

3.9 Monte Carlo scattering plots and results export 

A number of plots can be generated by the mcScatter simulation software to visualize 
results from the ray-tracing procedure. These plots include: 

 Spatial distribution of particles (see Figure 3.27) 
 Particle size distribution function (see Figure 3.3) 
 Scattering angle and free path distributions (see Figure 3.14 and Figure 3.28) 
 Two-stream flux (see Figure 3.29 and Figure 3.30) 
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Figure 3.27. Example of spatial particle distribution plot that can be generated by 
mcScatter. The number of displayed particles is limited to a maximum of 10,000 and the 
marker color(s) are determined by particle radii. 

 
Figure 3.28. Distribution of azimuthal (not scattering) angles drawn by MC process. 
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Figure 3.29. Comparison between MCRT forward and backward flux results and 
traditional two-stream theory (Bohren and Clothiaux, 2011). 

 
Figure 3.30. Various flux components recorded during a MCRT simulation, compared to 
two-stream theory. 

In addition to these plots, directional flux components (e.g., direct, diffuse forward and 
backward) are recorded at a high spatial fidelity throughout the physical depth of the 
simulated cloud for export to an Excel spreadsheet. This allows for further post-
processing, where the depth-dependent flux results from several simulations can be 
combined for better statistics. As an example, Figure 3.31 shows diffuse forward 
(normalized) flux curves for ten individual spatially correlated clouds, as well as their 
ensemble average. This demonstrates the convergence of MCRT results toward an 
ensemble mean once the results from at least ten cloud realizations have been aggregated. 
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Figure 3.31. Diffuse forward flux results from ten (10) individual cloud simulations along 
with their mean. 
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4 Light scattering in a spatially-correlated particle field: 
Role of the radial distribution function 

This chapter details predictions of direct and diffuse transmission of visible light through 
spatially correlated particle fields, focusing on the role of the radial distribution function 
in predicting deviations from radiative transfer theory for continuous media. This work 
was published in full form in the Journal of Quantitative Spectroscopy and Radiative 
Transfer.3 4 

4.1 Abstract 

Radiative transfer through particle-laden media such as clouds can be impacted by 
variations in particle spatial distributions. Due to mixing and inertial effects of droplets 
suspended in the almost always turbulent atmosphere, cloud particles are often spatially-
correlated. The correlations result in clusters and voids within the droplet field that, even 
when smaller than the photon mean free path, can lead to deviations from the exponential 
extinction law. Prior work has numerically investigated these departures from 
exponential attenuation in absorptive media; this work extends those results for a 
scattering medium. The problem is explored with a Monte Carlo Ray Tracing (MCRT) 
program capable of tracking light attenuation through both perfectly random 
(uncorrelated) and spatially correlated collections of scatterers and/or absorbers. The 
MCRT program is favorably compared to two-stream flux equations, and numerical 
exploration of the pure-absorption case is used to determine the sampling statistics 
necessary to characterize radiative transmission within the numerical simulation. Light 
transmission through fields of spatially-correlated, non-absorbing, scattering particles is 
explored. Particles are distributed following a Matérn Point Process, which allows cluster 
strength and size, as well as the usual variables of particle scattering cross section and 
number density to be varied. The results show that the degree of non-exponential 
attenuation is determined by the magnitude and shape of the radial distribution function, 
which describes correlations in discrete (non-continuous) particle distributions. 
Parametric studies revealed that the number of clusters and cluster radius, factors in the 
Matérn radial distribution function, impact direct, diffuse and backward radiative 
transfer. The Matérn RDF is shown to be consistent with a previous “cloudlet” approach, 
providing a bridge between the analytical cloudlet model and continuous correlation 
function approaches. 

                                                 
3 Packard, C.D., Larsen, M.L., Cantrell, W.H., Shaw, R.A. “Light scattering in a spatially-correlated 
particle field: Role of the radial distribution function.” Journal of Quantitative Spectroscopy and Radiative 
Transfer, 236, 106601 (2019). https://doi.org/10.1016/j.jqsrt.2019.106601 
4 © 2019 Elsevier Ltd. Used with permission. 
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4.2 Introduction 

Radiative transfer through a spatially correlated medium results in a distinct behavior, 
essentially because photons propagate further in void regions, and experience stronger 
extinction in dense regions, relative to a homogeneous medium (Marshak and Davis, 
2005). The problem has a multitude of applications, ranging from the cloudy atmosphere 
to biological and energy-generation systems (Davis and Marshak, 2004; Larsen and 
Vasques, 2011; Zoller et al., 2018). In this work, we consider distributions of discrete 
particles, with the atmospheric context as our motivating problem.  

When spatial correlations are present in the positions of perfectly absorbing particles, 
deviations from the usual exponential extinction emerge (Kostinski, 2001; Larsen and 
Clark, 2014; Frankel et al., 2017); these deviations can be both super- or sub-exponential, 
depending on the nature of the spatial correlations (Shaw et al., 2002a). Spatial 
correlations between particles within a turbulent flow can be created by several 
mechanisms, including inertial clustering (Reade and Collins, 2000) and turbulent mixing 
(Warhaft, 2000). For example, mixing and entrainment in atmospheric cloud boundaries 
leads to pockets of cloudy and clear air on spatial scales ranging from km to mm (Davis 
et al., 1999; Shaw, 2003). Recent work has suggested that, at least in the absorbing-
particle problem, the relevant clustering metric is the radial distribution function (Shaw et 
al., 2002a; Frankel et al., 2017). 

How does the situation change when we consider diffuse radiation in a scattering 
medium? Previous results were for absorbing particles or, equivalently, extinction of a 
direct beam, and we might expect that the situation with scattering is more complex. 
Nevertheless, the key geometrical argument that suggests a mechanism for the non-
exponential behavior should be general (see, e.g., Kostinski 2001; Kostinski 2002), and a 
natural follow-on question to the previous numerical work on absorbing clouds is to 
determine whether the radial distribution function can also capture the essential physics at 
play in a medium containing purely scattering particles.  

We address the problem using the ray tracing Monte Carlo radiative transfer approach 
that has been shown to be consistent with standard radiative transfer (e.g., Bohren and 
Clothiaux, 2011). This should be consistent with the findings of Mishchenko 
(Mishchenko, 2006, 2008) that even in a correlated medium the classical radiative 
transfer equation holds, as long as high-order scattering paths can be neglected and 
assumptions of ergodicity and spatial uniformity are valid. To limit the scope of the work, 
we take as context the transport of visible light in a cloud of water droplets as found in 
atmospheric applications (e.g., wavelength ~ 550 nm and droplet radius ~ 14 µm). In this 
regime, absorption is extremely weak and therefore in the remainder of this work we take 
the single scatter albedo to be exactly unity. Furthermore, we consider the regime in 
which multiple scattering does not become dominant (e.g., optical thickness of order 
unity).  
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There are several reasons motivating the use of Monte Carlo Ray Tracing (MCRT) within 
a field of discrete particles rather than the more standard (and computationally efficient) 
photon-path-distribution function. At a fundamental level, we are exploring radiative 
transfer at scales on which the notion of a continuously-distributed system becomes ill-
defined, and where discreteness effects such as sampling or ‘shot’ noise are relevant. We 
therefore take the direct approach of explicit representation of each particle. Another 
primary motivation is generality and flexibility when it comes to representing radiative 
transfer in a real system, such as the Pi Cloud Chamber (Chang et al., 2016). In that case, 
we must consider sampling of a dilute medium within a confined geometry. We find the 
possibility of future comparison between numerical computations of direct and diffuse 
radiation and measurements of these fields in a laboratory cloud chamber appealing; in 
particular, we have in mind the Pi Cloud Chamber, which is able to produce optical 
thicknesses of order unity (Chang et al., 2016). For example, the assumptions drawn into 
focus by Mishchenko merit direct experimental assessment, especially the insight that 
averaging scales play a central role (Mishchenko, 2006). Besides the finite-sample 
effects, the explicit, discrete-particle approach allows for simpler implementation of 
boundary conditions. The generality of this approach will also allow the method to be 
applied to conditions in which clustering may not be isotropic, such as in turbulent 
Rayleigh-Bénard convection. Eventually, it would be of interest to compare the discrete 
approach to the path-distribution approach for dilute, finite-size systems. 

In this work, perfectly random and correlated spatial particle distributions (generated 
using a Matérn Point Process model, having a known closed-form radial distribution 
function) are generated within a simulation volume. Then, a Monte Carlo Ray Tracing 
code – capable of simulating scattering events either through full Mie computation or 
more approximately through the Henyey-Greenstein phase function – propagates 
individual photons through the simulation volume, tracking direct, diffuse forward, and 
diffuse backward radiative fluxes from an initially collimated beam of photons entering 
the simulation volume at normal incidence. 

The paper proceeds as follows: In Sec. 2 we define the radial distribution function (RDF) 
and introduce the Matérn process as an analytic model for introducing particle spatial 
correlations via the RDF. In Sec. 3 we describe the Monte Carlo Ray Tracing (MCRT) 
code that is used to simulate light propagation through a medium containing discrete 
particles. In Sec. 4 we present results of the simulations, showing departure from 
propagation through a uniformly random particle field, and we interpret the results in the 
context of the RDF. In the concluding section we discuss the results and their possible 
implications for atmospheric radiative transfer. 
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4.3 Exploring the Matérn cluster process 

4.3.1 The influence of particle clustering on transmission through a 
scattering medium 

As noted above, deviations from exponential attenuation in traditional radiative transfer 
theory are expected when the particles in the medium are spatially correlated (Kostinski, 
2001). Inertial particles in a turbulent fluid (e.g., cloud droplets in the atmosphere) 
provide one physical scenario where these spatial correlations are known to exist (Saw et 
al., 2012; Larsen et al., 2018). Previous work (Shaw et al., 2002a; Larsen and Clark, 
2014; Frankel et al., 2017) suggests that the deviation from exponential behavior in such 
media may depend on the radial distribution function describing that statistical structure 
of particulate clustering. 

The radial distribution function 𝑔𝑔(𝑟𝑟) of a particle-laden medium quantifies the scale-
localized clustering of the particles in the medium (Landau and Lifshitz, 1980; Reade and 
Collins, 2000; Shaw et al., 2002a; Saw et al., 2012; Larsen and Shaw, 2018; Larsen et al., 
2018). It can be readily understood through its relation to the joint probability of finding a 
particle in volumes dV1 and dV2, both separated by distance r, in a system with global 
particle number density n: 

 𝑝𝑝(1,2)(𝑟𝑟) = (𝑛𝑛𝑛𝑛𝑉𝑉1)(𝑛𝑛𝑛𝑛𝑉𝑉2) 𝑔𝑔(𝑟𝑟) . (25) 

Algorithmically, 𝑔𝑔(𝑟𝑟) can be understood as the observed number of particle pairs 
separated by distance 𝑟𝑟 ± 𝛿𝛿𝛿𝛿 relative to the number of particle pairs expected at the same 
distance for a perfectly random population (Poisson distributed at all scales). 

Testing the radial distribution function dependence on radiative transmission through a 
purely scattering medium will be facilitated by generating scatterer positions within the 
simulation volume via a method that produces a known, closed-form radial distribution 
function. Particle positions in a turbulent flow-field in steady-state are often modelled 
with a decaying power-law RDF that is dependent on the Stokes number (Chun et al., 
2005). The construction of a simulation volume of scatterers with a power-law radial 
distribution function presents at least two challenges; (i) 𝑔𝑔(𝑟𝑟 → 0) = ∞, which is 
physically impossible, and (ii) the lack of a simple algorithm to place particles in a way 
that replicates a power-law radial distribution. Additionally, there are some physical 
mechanisms that cause clustering that are not expected to have a power-law form like 
particle charging (Lu et al., 2010) or convective organization (Barker, 1992). For this 
study, in lieu of generating clustered particle spatial locations for a specific physical 
mechanism (e.g., running turbulence simulations), we instead take a more general 
approach. We have opted to utilize the Matérn cluster process to distribute scattering 
particles throughout the simulation volume, which has the advantage of providing an 
analytical form for the RDF that can be explicitly adjusted to change the scale and 
magnitude of clustering. 
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The Matérn cluster process (Matérn, 1972, 1986; Martínez and Saar, 2002) is a Neyman-
Scott point process model that has several advantageous features for this work: (i) it has 
an analytically straightforward closed-form expression for its radial distribution function, 
(ii) it has a fundamental characteristic length-scale R, and (iii) it is numerically easy to 
simulate. For spatial scales larger than 2R, the Matérn cluster process radial distribution 
function is the same as that for a perfectly random distribution. Additionally, like power-
law RDFs, the RDF of the Matérn cluster process has a monotonic decrease with 
increasing spatial scale (but does not diverge at small distances like power-law RDFs). 

4.3.2 Construction and properties of a Matérn cluster process 

All Neyman-Scott point process models are constructed in the same way; (i) some 
number of “parent” particles 𝑁𝑁𝑝𝑝, are distributed in a perfectly random manner throughout 
the cloud volume V with spatial density 𝑁𝑁𝑝𝑝 𝑉𝑉⁄ , (ii) some discrete probability distribution 
function with a specified mean 𝜆𝜆𝐷𝐷 is sampled to assign how many “daughter” particles 
will be associated with each parent particle, and (iii) some continuous probability density 
function is sampled to determine how far each daughter particle is placed from its 
associated parent particle. The final collection of particles will be the ensemble of 
daughter particles generated through this process. For the Matérn cluster process, the 
discrete probability distribution in step (ii) is a Poisson distribution and the continuous 
probability distribution in step (iii) is designed to place the daughter with uniform 
probability anywhere within a sphere of radius R around the associated parent particle. 
Ultimately, a statistically homogeneous but clustered distribution with approximately 
(𝑁𝑁𝑝𝑝 ⋅ 𝜆𝜆𝐷𝐷) total particles is generated. More detail including a figure demonstrating this 
construction process in two-dimensions can be found in Larsen et al. (2014). For this 
system, the resulting radial distribution function 𝑔𝑔3𝐷𝐷(𝑟𝑟) for a 3-dimensional Matérn 
cluster process can be written (Chiu et al., 2013; Larsen et al., 2014) 

 𝑔𝑔3𝐷𝐷(𝑟𝑟) = �
3𝑉𝑉

8𝜋𝜋𝑅𝑅6𝑁𝑁𝑝𝑝
�𝑅𝑅 −

𝑟𝑟
2
�
2
�2𝑅𝑅 +

𝑟𝑟
2
� + 1    (𝑟𝑟 < 2𝑅𝑅)

1                                                             (𝑟𝑟 ≥ 2𝑅𝑅)
  . (26) 

It is important to note here that with a constant cloud volume, the Matérn radial 
distribution function (RDF) given by Eq. (26) is dependent only on the number of parent 
clusters and the cluster radius (Np and R, respectively), and does not vary with the 
average number of particles per cluster, λD. The dependence of the Matérn RDF, g(r), on 
Np and R is illustrated in Figure 4.1. 
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Figure 4.1. Dependence of theoretical Matérn radial distribution function (RDF) on 
number of clusters, Np, and cluster radius, R, given the 0.08 m3 cloud volume used in our 
simulations. Note that at distances r greater than 2R the RDF illustrates statistical 
structure equivalent to an uncorrelated distribution (g3D = 1 for r > 2R). 

4.4 Description and validation of Monte Carlo ray tracing code 

4.4.1 Overview of the MCRT code (‘mcScatter’) 

A Monte Carlo scattering simulation code, ‘mcScatter’, was created to explore the role 
that spatial correlations play in radiative transfer through a light-scattering medium such 
as an atmospheric cloud. The general structure of our MCRT code was motivated in part 
by a desire to eventually validate the numerical results with experiments in a cloud 
chamber facility (Chang et al., 2016). The virtual laboratory of a computer simulation 
allows for the relaxation of the physical constraints of an actual cloud chamber (such as 
particle clustering limits and experimental setup restrictions) to predict experimental 
results and develop an effective methodology for measuring parameters of interest.  

To match experimental conditions potentially realizable in the chamber, the numerical 
work that follows is limited to a spatial domain of 2 m x 0.2 m x 0.2 m (inspired by a 
realistic optical path through the chamber) and total optical thickness of order 𝜏𝜏∗~ 1. Our 
MCRT code, described in greater detail in chapter 3, allows for the specification of 
optical wavelength, particle size, complex index of refraction and many other boundary 
conditions. In this paper we focus our analysis in the visible spectrum with an optical 
wavelength of 550 nm, and examine relatively large but realistic cloud droplet sizes (e.g., 
radius ~ 14 µm) based on previous cloud chamber measurements (Chang et al., 2016; 
Packard et al., 2018). The resulting size parameter focuses our analysis on the forward-
scattering regime with a single scatter albedo of 1 and a scattering efficiency of Qsca ≈ 
Qext ≈ 2. 
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Approaches exist for addressing this problem directly from Maxwell’s equations 
(Mishchenko, 2008; Mishchenko et al., 2016); however, direct use of methods like the 
superposition T matrix method remain impractical for systems with large numbers of 
particles like clouds. Previous work (Cairns et al., 2000; Petty, 2002; Davis, 2006) has 
led to the development of heuristic models to quantify the radiative transmission through 
inhomogeneous particle-laden media via a variety of methods. In Sec. 5 we discuss the 
ability of these heuristic techniques to predict results similar to those found by our MCRT 
analysis. 

Others have investigated such heterogeneous systems through the development of 
numerical Monte-Carlo simulations (Marchuk et al., 1980; Marshak and Davis, 2005); a 
clear discussion can be found in Bohren and Clothiaux (2011) but numerous relevant 
publications can be found on the subject (Plass and Kattawar, 1968; Danielson et al., 
1969; Collins et al., 1972). The Monte Carlo method (Sobol’ et al., 1974) has often been 
applied to investigate radiative transfer problems where closed form solutions are 
challenging or impossible, and a detailed description of its application to inhomogeneous 
media has been presented (Cole, 2005). 

These numerical methods typically explore radiative transmission without assigning 
physical locations to particles by stochastically modeling the free-path distribution 
between successive scattering interactions. In these simulations, the distances that 
photons travel before redirection are obtained via random draws from an analytic (usually 
exponential) free-path cumulative density function (CDF) based on the scatterer 
concentration of the medium. Modifications to propagation directions are obtained via 
random draws from an appropriate scattering phase-function (e.g. Henyey-Greenstein or 
Mie) describing the angular distribution of light intensity scattered by a particle for a 
given wavelength. This process of computing distance traveled prior to scattering, 
choosing a scattering angle, and re-computing distance traveled is repeated until all rays 
cast into the medium exit (based on specified “wall” boundary conditions).  

In a ballistic ‘photon’ simulation (Shaw et al., 2002a; Larsen and Clark, 2014), particles 
are placed in a volume at specified locations, and numerous rays are cast into the 
scattering medium (Frankel et al., 2016; Banko et al., 2019). Each ray is traced until it 
either exits the cloud on the other side unscattered (direct radiation) or its path intersects 
a particle (i.e., a geometric “collision”). The path of a scattered photon proceeds similar 
to those in the standard Monte Carlo algorithm outlined above; the new propagation 
direction is chosen from a phase function and subsequent scattering events can occur 
until the particle leaves the computational volume. Details associated with the 
computational implementation of this model can be found in chapter 3. 

This type of ballistic photon simulation allows particles to be placed anywhere in the 
volume to determine the impact of their spatial correlations on radiative transfer, but this 
benefit comes at the cost of recording and tracking a multitude of particle positions and 
collision locations. Though other approaches may resolve continuous media better 
(Mishchenko et al., 2016), ballistic photon simulations are especially well-suited for 
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spatially-correlated media where analytic extinction CDFs may not be known (Shaw et 
al., 2002a). Our ballistic MCRT simulation extends the related numerical approach 
presented in Shaw et al. (2002) and Larsen and Clark (2014) to a scattering domain. 
These simulations employ explicit positions for each individual particle within the 
medium, thus allowing for geometric ray-tracing to explore an arbitrary inter-scatterer 
distribution, rather than utilize a blind draw from a static (known) distribution function.  

The simplest limiting case of this MCRT analysis occurs when simulating a cloud of 
monodisperse particles identically and independently distributed randomly within the 
simulation volume (see top panel of Figure 4.2). Such a homogeneous system can serve 
as a control, where results can be validated against standard radiative transfer theory and 
expected analytic results. After validation on this simple (homogeneous) system, the 
MCRT code can be used to analyze virtual clouds comprised of non-uniform particle 
locations generated with the Matérn process described in the previous section (with an 
example of such a clustered distribution shown in the bottom panel of Figure 4.2). 

 
Figure 4.2. Comparison between a homogeneous, uniform random particle distribution 
(top) and a Matérn-generated clustered distribution (bottom). Total cloud volume 
illustrated here and used for all scattering simulations in this works is 0.2 m x 0.2 m x 2.0 
m (0.08 m3). 
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Rays (or ‘photons’) are initialized at uniformly-random (x, y, z = 0) positions and cast in 
a normally-incident collimated beam through one side of the volume, which contains 
numerous particles at specified (stationary) spatial locations. Intersections between these 
rays and particles create scattering events that modify the direction of each photon path; 
new ray directions are determined from the scattering phase function. Figure 3.13 
illustrates a subset of rays from a typical simulation result. In the case of cloud droplets 
with typical diameters larger than the wavelength of visible light, the resultant size 
parameter yields a scattering pattern that is forward-dominant.  

The most rigorous way to calculate the scattering phase function is through Mie theory, 
where particles are considered as homogenous dielectric spheres interacting with an 
incident plane wave of light. However, it is convenient to have an analytic formula that 
approximates the actual scattering phase function shape, especially at this initial stage 
where details of the scattering are not expected to be as important for the scientific 
questions being explored. The Henyey-Greenstein phase function, essentially a 
probability density function (PDF) of scattering angle, is a common surrogate for the 
actual phase function (Henyey and Greenstein, 1941). Its analytic form allows it to be 
integrated to calculate a closed-form cumulative density function (CDF). Its parametric 
nature allows it to be employed rather simply, with sufficient accuracy for many 
applications (Thomas and Stamnes, 1996; Ishimaru, 1997; Bohren and Clothiaux, 2011). 
The mcScatter software introduced here makes both Mie and HG (Henyey-Greenstein) 
phase functions available for scattering simulations. 

As numerous rays are traced through the scattering medium, the locations of particle 
collisions and all individual ray segments are recorded. Direct and diffuse flux is 
recorded at a high spatial fidelity throughout the cloud depth, both backward and 
forward. This allows for direct, diffuse and total forward irradiance as well as backward 
irradiance to be calculated at many places within the cloud volume. Further details 
regarding the implementation of our scattering code beyond the basic phenomenological 
approach explained in this subsection can be found in chapter 3. 

4.4.2 Validation of MCRT direct beam extinction through a homogeneous 
uncorrelated medium 

Before analyzing the impact of a spatially-correlated particle field on light scattering, we 
first ensured the fidelity of our MCRT code for non-scattering particles that are 
distributed with uniform probability (no spatial correlations). Given initial downward 
irradiance on a cloud top, F0, the direct (unscattered) irradiance 𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑↓  is an exponential 
function of optical depth into the medium. By normalizing the direct, unscattered 
irradiance by the initial downwelling irradiance (where τ = 0) we get an expression for 
the normalized direct flux (Bohren and Clothiaux, 2011) which can be written as 

 𝜑𝜑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑↓ =
𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑↓

𝐹𝐹0
= 𝑒𝑒𝑒𝑒𝑒𝑒(−𝜏𝜏)  . (27) 
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To calculate normalized direct flux with our MCRT code, we uniformly divide the 
expected total optical thickness into numerous “slabs”. We represent total optical 
thickness as (𝜏𝜏∗ = 𝑐𝑐𝑐𝑐𝑐𝑐), where c is the (number) concentration of scatterers, σ is the 
effective scattering cross section of each scatterer, and z is propagation depth through 
entire cloud. We then cast Nray rays into the particle-laden medium and trace each ray to 
determine how may slabs are traversed before an absorbing particle is encountered. The 
number of rays passing each slab boundary is dependent on the total number of rays 
initially cast, but by dividing the tabulations by Nray we compute a normalized optical 
depth-dependent direct flux. These direct beam extinction results were compared to the 
expected exponential decay to validate that portion of our MCRT code. One such 
comparison, performed for a monodisperse cloud with 14 µm radius particles and a total 
optical thickness (τ*) of 1, is shown in Figure 4.3. The simulation results matched the 
theoretical predictions exactly, with the expected exponential decay appearing linear due 
to the logarithmic y-axis.  

 
Figure 4.3. Normalized direct, unscattered flux comparison between theoretical (red 
circles) and Monte Carlo results (black solid line) for a monodisperse cloud with 14 μm 
radius particles and τ* of 1. Note that the vertical axis employs logarithmic spacing to 
illustrate exponential absorption. 

4.4.3 Comparison of MCRT results to two-stream theory 

One commonly made simplification is the idealization of radiative transfer into only two 
propagation directions, forward and backward (Thomas and Stamnes, 1996; Bohren and 
Clothiaux, 2011). This two-stream approximation is most accurate in the case of isotropic 
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scattering where the phase function is uniform but can be used for anisotropic scattering 
as well with reasonable accuracy (Thomas and Stamnes, 1996). Thomas and Stamnes 
(1996) state that, when Henyey-Greenstein phase function and two-stream 
approximations have been combined and compared to other (more accurate) methods, the 
resulting deviations are typically less than 2.5%, especially when the solar illumination is 
close to normally incident. For more information on the compromises made when using 
the Henyey-Greenstein phase function and multi-stream approximations the reader is 
referred to other works (Li et al., 2015). In order to place our MCRT results in a context 
that will be familiar to most readers, in this subsection we compare them to the two-
stream theory and then to Monte Carlo results presented in the textbook by Bohren and 
Clothiaux (2011). 

Using the Henyey-Greenstein phase function and periodic boundary conditions, each ray 
cast into the scattering medium continues moving either forward or backward until it 
terminates at the top or bottom of the simulated cloud. By normalizing the number of rays 
that cross each layer boundary (in either direction) by the total number of rays cast, the 
diffuse forward and backward flux components were computed. These MCRT simulation 
results were then compared to corresponding expressions from two-stream theory, such 
as the normalized diffuse forward flux given as (Bohren and Clothiaux, 2011) 

 𝜑𝜑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑↓ =
𝐷𝐷↓
𝐹𝐹0

=
1 + (𝜏𝜏∗ − 𝜏𝜏) �1 − 𝑔𝑔

2 �

1 + 𝜏𝜏∗ �1 − 𝑔𝑔
2 �

− 𝑒𝑒𝑒𝑒𝑒𝑒(−𝜏𝜏)  (28) 

and the normalized diffuse backward flux, expressed as 

 𝜑𝜑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑↑ =
𝐷𝐷↑
𝐹𝐹0

=
(𝜏𝜏∗ − 𝜏𝜏) �1 − 𝑔𝑔

2 �

1 + 𝜏𝜏∗ �1 − 𝑔𝑔
2 �

  . (29) 

In these normalized flux expressions, g refers to the asymmetry parameter, a scalar 
characterization of the degree of anisotropy calculated as the mean cosine of the 
scattering angle. Figure 4.4 shows a comparison between two-stream theory curves for 
normalized forward and backward flux components and their Monte Carlo simulation 
counterparts. In this example, particles with a radius of 14 μm and a number density (n) 
of 400 cm−3 were used to create a homogeneous monodisperse random distribution with a 
total optical thickness (τ*) of 1 with an asymmetry parameter (g) of 0.85. 
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Figure 4.4. Flux comparison between two-stream theory and Monte Carlo (MCRT) 
results, both forward flux (rightmost black curves) and backward flux (leftmost red 
curves). Note that at their most divergent, the two-stream and MCRT flux curves differ 
by 2-3%. Also shown for validation purposes are the Monte Carlo results (circle and 
triangle symbols) given in Bohren and Clothiaux (2011), see top panel of their Fig. 6.10. 

The discrepancies evident in Figure 4.4 between our MCRT results and two-stream 
theory are consistent with those suggested in Thomas and Stamnes (1996) and shown in a 
similar comparison of two-stream theory with Monte Carlo by Bohren and Clothiaux 
(2011). These depth-dependent differences are due to the fact that two-stream theory 
approximates radiative transfer by neglecting the details that a full angular scattering 
solution includes. For validation purposes, the Monte Carlo results from Bohren and 
Clothiaux (2011) are included in Figure 4.4 for reference (circle and triangle symbols). 
We hypothesize that the slight differences between the Bohren and Clothiaux results and 
the MCRT results presented here are likely a result of details related to horizontal fluxes, 
such as the domain geometry and side-wall boundary conditions. As a further test, we 
used our MCRT code to simulate isotropic scattering (g = 0.0) and found excellent 
agreement with the transmission and reflectivity predictions of two-stream theory. 

4.4.4 Simulation design for correlated random media 

We emphasize here that the cluster sizes used in our analysis are smaller than the mean 
free path (as defined for a homogeneous medium), and therefore are not necessarily 
captured by a macroscopic, spatially varying mean free path. The radial distribution 
function depends on Np and R, while the expected cloud optical thickness is 
𝑁𝑁𝑃𝑃𝜆𝜆𝐷𝐷𝑉𝑉−1𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝜋𝜋𝑎𝑎2𝐿𝐿 and thus depends on Np, λD and particle radius a. It is therefore 
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possible to explore the scattering problem under the constraint of fixed total optical 
thickness τ* for varying input parameters, including those that directly influence the radial 
distribution function and therefore the magnitude and scale dependence of particle 
clustering.  

Multiple particle cloud realizations were stochastically generated for each set of input 
parameters, and the results from each individual cloud scattering simulation were 
averaged together to form the reported (mean) optical depth-dependent fluxes. Due to the 
small cross sectional area being illuminated (0.2 m x 0.2 m), we found it necessary to 
analyze ten (10) unique clouds to compile trustworthy average flux results (see Figure 
3.31). Consequently, all results shown in this work are the result of averaging the depth-
dependent flux curves of at least ten unique cloud realizations, each of which was probed 
with 100,000 rays (see Figure 3.14). 

4.5 Results 

4.5.1 Impact of particle clustering on depth-dependent flux 

In this work we investigate both the direct and diffuse radiative transfer (forward and 
backward) in a purely scattering but correlated random medium to determine expected 
deviations from commonly used radiative transfer predictions for a uniform, 
homogeneous medium. The problem depends on four parameters: Np, R, λD and particle 
radius a. While the radial distribution function contains only Np and R, the expected cloud 
optical thickness depends on Np, λD and a. For our analysis we varied these four input 
parameters while constraining the total optical thickness τ* to determine the influence of 
particle size, clustering and the radial distribution function.  

We performed numerous scattering simulations through both uncorrelated and spatially-
correlated monodisperse cloud distributions to explore the impact of spatial correlations 
on optical-depth-dependent irradiance. Mean optical depth-dependent irradiances, 
including direct and diffuse forward flux as well as backward flux, were calculated as a 
function of distance through both homogeneous and spatially correlated clouds. An 
example illustrating these various flux components is shown in Figure 4.5, with the solid 
black line indicating the homogeneous case and the red dotted line indicating a Matérn-
clustered scenario with (Np = 500, λD = 64000, R = 0.015 m). We note that the 
corresponding RDF is included as the dot-dashed red curve in Figure 4.1. 

When we consider the unscattered, direct flux traversing a simulated cloud, as shown in 
the top panel of Figure 4.5 where τ increases downward on reversed vertical axis, we see 
that direct transmission is increased when spatial correlations exist in the particle-laden 
medium. Previous publications have shown that propagation through a spatially-
correlated medium deviates from expectations of Beer-Lambert-Bouguer exponential 
attenuation (Kostinski, 2001; Shaw et al., 2002a; Matsuda et al., 2012; Larsen and Clark, 
2014; Frankel et al., 2017). Our Monte Carlo simulations, operating on clouds generated 
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using a Matérn-process radial distribution function for particle positions, show this 
expected increase in direct flux through a field of particles. For the example in Figure 4.5, 
at optical depth τ  = 1, an increase of direct transmission from 37% to more than 40% is 
observed in the Matérn-clustered results. 

 
Figure 4.5. Impact of particle clustering on depth-dependent flux curves as computed by 
our MCRT scattering simulation. Both homogeneous and Matérn correlated results were 
obtained from monodisperse (14μm particle radius) cloud realizations with a total optical 
thickness, τ*, of 1. Cluster radius, R, is 0.015 m and the number of cluster parents (Np) is 
500. The average number of particle per parent cluster (λD) is 64,000. Note that in this 
and subsequent figures, the independent variable optical depth (τ) increases downward on 
the reversed vertical axis, starting from the top of the cloud at τ = 0 and finishing at the 
exit point at the bottom of the cloud (τ = 1). 
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Note that while panel (a) of Figure 4.5 shows an increase in direct transmission for the 
clustered compared to the unclustered distribution, panel (b) indicates a similar decrease 
in diffuse forward flux. Panel (c) indicates that, for this case, the amount of backward 
flux is slightly impacted by the existence of spatial correlation. Together these results 
signify that the difference in total forward flux (direct plus diffuse) due to spatial 
correlation, shown in panel (d) to be less than 0.5%, is only distinguishable when very 
tight normalized flux axis limits are chosen. In other words, when comparing only the 
mean normalized irradiances that would be detected at the bottom of the cloud, little 
difference would be measured, although presumably a radiance measurement separating 
direct from diffuse would reveal the distinction. Decreased direct attenuation is not 
totally compensated for by increased diffuse forward radiation, though they 
counterbalance to dampen the effect of particle clustering. 

4.5.2 Impact of Matérn RDF parameters on depth-dependent flux 

The Matérn RDF expression listed in Eq. (26) demonstrates dependency on both the 
number of parent clusters (Np) and cluster radius (R). To test the hypothesis that these two 
parameters are the primary contributors to changes in depth-dependent flux for Matérn 
spatially correlated particle distributions, we simulated additional clustered clouds where 
these inputs were unchanged. The number of Matérn clusters was held constant at Np = 
500, and the cluster radius was fixed at R = 0.0075 m. While keeping Np and R constant, 
we varied the monodisperse particle radius (e.g., 9.9 μm, 14 μm and 19.9 μm) and 
changed the mean number of particles per cluster accordingly (e.g., λD = 128000, 64000 
and 32000 respectively) to maintain a total optical depth of τ* = 1 for all simulated 
clouds. To ensure that we limited our exploration to parameters of interest, we enforced a 
constant asymmetry parameter and scattering efficiency (e.g., g = 0.85, and Qsca = 2.0, 
respectively) in spite of changing particle radius.  

 

 



81 

 
Figure 4.6. Optical depth-dependent flux curves for a variety of Matérn-generated cloud 
distributions, with homogeneous particle distribution results shown for comparison. Note 
that in all three Matérn scenarios, the density of clusters and cluster radius are constant 
(e.g., Np = 500 and R = 0.0075 m, respectively). Changes in monodisperse particle radius 
and number of mean particles per cluster (λD) have almost no impact on depth-dependent 
flux curves when Np and R are held constant. 

As can be seen in Figure 4.6, the three Matérn curves appear to collapse on each other. 
This supports the hypothesis that the Np and R parameters, as with the underlying radial 
distribution function, are the driving factors impacting deviations from scattering theory 
for a homogeneous medium. 
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4.5.3 Variations in optical depth-dependent flux due to changes in Matérn 
clustering parameters 

The optical depth-dependent irradiance results previously shown in Figure 4.6 
demonstrate a lack of dependence on changes to the clustering parameters absent from 
the Matérn RDF (namely, particle radius and mean number of particles per cluster, 𝜆𝜆𝐷𝐷). 
We next investigate the impact of the parameters that are present in the Matérn RDF, 
namely cluster radius (R) and number of clusters (Np). To determine the sensitivity of 
depth-dependent irradiance to cluster radius, we held all other quantities constant; 500 
cluster parents with an average of 64,000 daughter particles of radius 14μm were inserted 
using the Matérn process. Three cluster radii were explored (R = 0.03, 0.015 and 0.0075 
meters) and compared to the homogeneous (spatially-uncorrelated) case; the results are 
shown in Figure 4.7. We see that as cluster radius decreases and the same number of 
particles are packed more densely, direct transmission is maximized and diffuse forward 
flux is minimized. Differentiation between the three Matérn curves is evident in both 
panel (a) and panel (b), illustrating the dependence on cluster radius R found in the RDF. 
We also note that there is a significant deviation of the backward diffuse flux for these 
Matérn cases as opposed to the homogeneous medium, as shown in panel (c); this 
ultimately results in a change in the total forward flux shown in panel (d). 

Similarly, we explore the relationship between the number of cluster parents (Np) and 
depth-dependent irradiance by constraining R and a, and allowing the average number of 
daughter particles per cluster, 𝜆𝜆𝐷𝐷, to increase as Np decreases to maintain constant 
expected optical thickness. The results of this investigation of constant cluster size R are 
shown in Figure 4.8. We see that decreasing Np increased the deviation from the 
spatially-uncorrelated case, supporting the notion that the optical-depth-dependent 
irradiance is impacted by a changing RDF. As can be seen from the dependence of the 
RDF expression on number of parents Np and illustrated in Figure 4.1, decreasing Np with 
fixed R leads to an increase in the magnitude of the radial distribution function for all 𝑟𝑟 <
2𝑅𝑅. Once again, in Figure 4.8 there is an observed departure of the backward flux from 
the homogeneous expectation.   
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Figure 4.7. Optical depth-dependent flux curves for a variety of Matérn-generated cloud 
distributions, with homogeneous particle distribution results shown for comparison. All 
virtual cloud distributions are monodisperse with 14 μm particle radius. Note that in all 
three Matérn scenarios, the density of clusters and mean number of particles per cluster 
are constant (e.g., Np = 500 and λD = 64000, respectively). 
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Figure 4.8. Optical depth-dependent flux curves for a variety of Matérn-generated cloud 
distributions, with homogeneous particle distribution results shown for comparison. All 
virtual cloud distributions are monodisperse with 14 μm particle radius. Note that for 
both Matérn scenarios, cluster radius is constant (e.g., R = 0.0075 m). 

The family of RDF curves shown in Figure 4.1 were created by varying Np and R, the two 
primary independent variables (beyond distance from cluster center, r); each of those 
nine RDF curves have a different 𝑔𝑔(𝑟𝑟 = 0) peak correlation value. To explore the 
relevance of the shape of the Matérn RDF beyond just the peak correlation value, we 
study the impact of various RDF curves with equivalent 𝑔𝑔(𝑟𝑟 = 0). Solving the Matérn 
RDF expression in Eq. (26) for the peak correlation value for r = 0 yields 
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 𝑔𝑔3𝐷𝐷(0) =
3𝑉𝑉

4𝜋𝜋𝑅𝑅3𝑁𝑁𝑝𝑝
+ 1. (30) 

This means that for a given set of (R, Np) input parameters, if 𝑅𝑅 is doubled (or halved) 
and 𝑁𝑁𝑝𝑝 is divided by (or multiplied by) eight, the peak correlation value 𝑔𝑔(0) will be 
unchanged. We studied the impact of three Matérn RDFs with the same peak correlation 
value with this method, and the recorded depth-dependent flux curves are shown in 
Figure 4.9. These results indicate that the impact of RDF on the radiative transfer 
depends on more than simply the peak correlation value, but also on the shape of the 
RDF itself. This confirms that both correlation strength and correlation length are 
relevant parameters. 

 
Figure 4.9. Matérn scattering results from three combinations of Np and R, both present in 
the RDF and varied together to achieve a constant RDF at g(r = 0), are compared. Note 
that λD was changed in correspondence with Np to ensure a constant τ* of 1. 
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4.6 Discussion and Conclusions 

4.6.1 Summary and interpretation of results 

The presence of absorbing particles in a medium influences the direct radiative transfer 
through the medium, and the resulting optical transmissivity is dependent on the size and 
number of particles. However, if spatial correlations exist in particle locations, the 
resulting nonuniformities can lead to both clusters and voids on scales of the same order 
as or smaller than the optical mean free path (as defined for a uniform medium). In a 
purely absorbing medium, the net effect of these voids and clusters is to increase the 
direct radiative transfer through such a spatially-correlated medium, leading to sub-
exponential extinction that deviates from the prediction of Beer-Lambert-Bouguer 
attenuation theory (Kostinski, 2001). Conversely, negative spatial correlations (e.g., 
repelling particles) can lead to super-exponential extinction (Shaw et al., 2002a). 

In the scattering-dominated limit, for which absorption is essentially non-existent, 
radiation is either transmitted directly (no interaction with particles in the medium) or 
diffusely (once a particle is encountered, the direction of propagation changes but the 
photon continues to traverse the medium). In this work, we have investigated direct and 
diffuse radiative transfer in a medium with spatially correlated scattering particles with a 
simplistic “ballistic photon” model. Our simulations explored the forward-dominant 
scattering regime that is typical of atmospheric clouds. The results are framed in the 
context of forward and backward fluxes, motivated by the commonly used two-stream 
flux equations.  

Clustering was introduced using a Matérn clustering process with an analytical RDF to 
rigorously study the impact of four independent parameters, namely the number of 
clusters Np, the cluster size R, the density of particles within a cluster λD, and the particle 
radius a. The parameter space was explored by constraining total optical depth τ* to be 1 
for all scattering simulations, and then considering various combinations of Np, λD and a 
which together comprise the inputs to cloud optical thickness. Optical depth does not 
depend on cluster radius R, but the Matérn RDF depends on both R and Np.  

We found that particle clustering does indeed increase direct transmission, but we also 
found that diffuse forward irradiance is correspondingly reduced by a similar amount 
(Figure 4.5). Additionally, we found that varying only parameters absent from the Matérn 
RDF (e.g., a and λD) had no statistical impact on depth-dependent flux recordings (Figure 
4.6). However, we determined that varying R and Np (which are present in the RDF) did 
impact the irradiance results calculated by the scattering simulations (Figure 4.7 and 
Figure 4.8, respectively). Smaller clusters resulted in greater deviations from the direct 
and diffuse forward homogeneous baseline results, as did fewer but more densely packed 
parent clusters. Both of these conclusions are consistent with the hypothesis that these 
deviations are caused by voids in the scattering medium, and the heuristic prediction of 
the Beer-Lambert-Bouguer deviations developed by Kostinski (Kostinski, 2001, 2002). 
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For a constant total number of particles in a volume, both smaller clusters (all else equal) 
and fewer clusters result in larger voids and less (forward-dominant) scattering.  

Lastly, we explored the relevance of the shape of the Matérn RDF beyond the peak 
correlation value (i.e., 𝑟𝑟 > 0) by changing R and Np in tandem to study the impact of 
various RDF curves with equivalent 𝑔𝑔(𝑟𝑟 = 0) peak values. We found that in addition to 
peak correlation value, the shape of the Matérn RDF is also significant, as evidenced by 
the varying depth-dependent flux curves in all four panels of Figure 4.9. The Monte Carlo 
scattering simulations confirm that both correlation strength and correlation length are 
relevant parameters for predicting radiative transfer in a spatially correlated particle-laden 
medium. 

Some insight can be gained from considering the relevant length scales in this radiative 
transfer problem. There are at least four scales: particle radius a, cluster size R that can be 
referred to as the correlation length scale, the photon mean free path defined for the 
volume-average properties 𝑙𝑙 ≈ 1/(𝑛𝑛𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝜋𝜋𝑎𝑎2), and the box size L. In this work L has 
been fixed and constrained to be equal to 𝑙𝑙, such that 𝜏𝜏⋆ = 1 for all cases. The clustering 
or correlation length 𝑅𝑅 in all cases explored here is smaller than 𝑙𝑙. The results show that 
both the correlation length and the strength of correlation, expressed for example through 
𝑔𝑔(𝑟𝑟 = 0) (cf., Eq. 6 for the relationship with 𝑁𝑁𝑝𝑝), determine the extent to which optical 
propagation and scattering deviate from the theoretical prediction for domain-average 
properties. 

4.6.2 Results in context with prior work 

Previous work (Petty, 2002; Larsen and Clark, 2014) has gone into detail on trying to 
understand the inter-relationships between length scales in this problem. For purely 
absorptive media, Larsen and Clark (2014) used numerical simulations to reveal that at 
least three different length-scales will be relevant – particle size, correlation length-scale, 
and optical mean-free-path between particles. The work of Petty (2002) also has 
similarities to the approach presented here, with the “cloudlets” designed in that model 
similar in structure to the individual Matérn clusters in our simulation. Petty’s approach 
employs a non-dimensional parameter 𝜏𝜏′ (referred to as the effective mean optical 
thickness of a cloudlet) to attempt to capture all relevant information about small scale 
variability necessary to resolve the deviations from expected Beer-Lambert-Bouguer 
exponential transmission. For our Matérn-clustered clouds, this 𝜏𝜏′ parameter can be 
expressed as 

 𝜏𝜏′ =
3𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎2𝜆𝜆𝐷𝐷

2𝑅𝑅2
 . (31) 

In Petty’s notation the effective optical thickness, which accounts for enhancement in 
transmission due to non-uniform distribution of liquid water, is expressed as 𝜏𝜏𝑒𝑒𝑒𝑒𝑒𝑒∗ =
𝜑𝜑(𝜏𝜏′)𝜎𝜎𝑊𝑊�  where 𝜑𝜑(𝜏𝜏′) is the optical depth reduction factor and 𝑊𝑊�  is the average liquid 
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water path. This can be written as 𝜏𝜏𝑒𝑒𝑒𝑒𝑒𝑒∗ = 𝜑𝜑(𝜏𝜏′)𝑛𝑛�𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝜋𝜋𝑎𝑎2𝐿𝐿 where 𝑛𝑛� is the domain-
averaged number density. In terms of Matérn parameters, the mean volumetric number 
density is 𝑛𝑛� = 𝑁𝑁𝑝𝑝𝜆𝜆𝐷𝐷𝑉𝑉−1, allowing us to write the effective optical thickness as 𝜏𝜏𝑒𝑒𝑒𝑒𝑒𝑒∗ =
𝜑𝜑(𝜏𝜏′)𝑁𝑁𝑝𝑝𝜆𝜆𝐷𝐷𝑉𝑉−1𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝜋𝜋𝑎𝑎2𝐿𝐿. Petty’s cloudlet optical thickness can be expressed as 𝜏𝜏′ =
3𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎2𝜆𝜆𝐷𝐷(2𝑅𝑅2)−1, but since we constrained the global optical thickness through 
constant 𝑛𝑛� we can re-write that as 𝜏𝜏′ = 3𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎2𝑛𝑛�𝑉𝑉�2𝑅𝑅2𝑁𝑁𝑝𝑝�

−1
.  

This is an intriguing result because we can now see that we have the same variable 
dependence, i.e. 𝑁𝑁𝑝𝑝 and R, as seen in our Matérn RDF in Eq. (26). Given this 
encouraging similarity, we computed 𝜑𝜑(𝜏𝜏′) and 𝜏𝜏𝑒𝑒𝑒𝑒𝑒𝑒∗  for the conditions in all of our 
simulations to compare predictions of direct, non-exponential transmission. The results of 
this comparison (see Figure 4.10) show reasonable agreement between our Monte Carlo 
results and the cloudlet model, suggesting that the Matérn RDF is consistent with the 
cloudlet approach.  

Because of the connection between the RDF and traditional, continuous correlation 
functions (Shaw et al., 2002b), this RDF-based work can serve as a bridge between the 
two approaches: radiative transfer calculations based on continuous correlation functions 
(Borovoi, 1984; Frankel et al., 2017) and those based on the analytical results from the 
clearly-visualized cloudlet model. The RDF has the advantage that it has a direct link to 
discrete particle distributions, and it is general in the sense that it can describe more than 
Matérn or cloudlet models. For example, analytical expressions exist for less defined 
forms of clustering, beyond the Matérn notion of spherical particle clouds surrounded by 
voids (e.g., modified Thomas, Gibbs systems, excluded volume, etc.). The links 
identified here open the door for exploring to what extent other RDF expressions are able 
to facilitate comparison of Monte Carlo results, and furthermore suggest that it should be 
possible to find a quantitative link between 𝜑𝜑(𝜏𝜏′) and the RDF. 
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Figure 4.10. Comparison of direct, non-exponential transmission through spatially 
correlated particle distribution. 

A renormalization technique for predicting radiative transfer for inhomogeneous clouds 
was proposed by Cairns et al. whereby single scattering parameters are modified based on 
spatial variances in scatterer concentration for use with plane-parallel calculations (Cairns 
et al., 2000). They propose that for random, purely scattering media where the correlation 
length is of the same order as the mean free path, an augmented extinction cross section 
and asymmetry parameter can be computed as 

 
𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒′ = 𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒(1 + 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟)−1 

𝑔𝑔′ = 𝑔𝑔[1 + 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟(1 − 𝑔𝑔)]−1 
(32) 

where Vrel is the relative variance of scatterer concentration. When spatially-varying 
scatterer concentration N(r) is comprised of a mean concentration 𝑁𝑁� and zero-mean 
fluctuating component η(r), as in  

 𝑁𝑁(𝑟𝑟) = 𝑁𝑁� + 𝜂𝜂(𝑟𝑟), (33) 

relative variance can be expressed as  

 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟 = 〈𝜂𝜂(𝑟𝑟)2〉 𝑁𝑁�−2 . (34) 

For our analysis, the average scatterer concentration is simply the total number of 
scatterers divided by the simulation volume. The variance calculations will depend on 
how the simulation volume is subdivided, i.e., it will be scale dependent. The number of 
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scatterers in each subvolume can be used to compute η(r) and ultimately Vrel. For 
example, when 32x106 particles are grouped into 500 parent clusters with an average of 
64,000 particles per cluster (of radius 7.5 mm), dividing the 0.08 m3 volume into ten 
subvolumes along the path of the direct beam yields a small relative variance of 1x10-2; 
division into 1000 cubic subvolumes (e.g., 10x10x10) results in a larger relative variance 
of 1.3. These values of Vrel lead to modified asymmetry parameter 𝑔𝑔′ values of 0.849 and 
0.711 (respectively) and modified scattering efficiency 𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠′  values of 1.98 and 0.87 
(respectively). In the former case, where the scattering parameters are only slightly 
augmented, the MCRT results match those of the homogeneous case (where 𝑔𝑔 = 0.85 
and 𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠 = 2.0) and do not predict the direct and diffuse forward flux deviations seen in 
the Matérn clustering simulation. In the latter case, where the scattering parameters are 
heavily modified by the calculated relative variance, total optical thickness is greatly 
reduced (from 1.0 to 0.425, due to a reduced 𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠) and none of the various flux 
components are predictive of the Matérn-based MCRT results. This serves to illustrate 
the dependence of averaging scale when considering a system of discrete particles. Here 
we have considered correlation lengths smaller than the mean free path, and it should be 
noted again that this is outside the range explored by Cairns et al. (2000). 

4.6.3 Concluding remarks and implications  

It is reasonable to consider the implications of this work for radiative transfer in the 
cloudy atmosphere, as a specific example of a particulate system that possesses spatial 
correlations over a large range of scales. The influence of spatial inhomogeneity on three-
dimensional radiative transfer has been considered in depth, for the limit in which the 
scale of the inhomogeneity is larger than the mean free path defined for the medium. The 
pioneering work of Kostinski (2001) makes clear, however, that fundamental 
assumptions of the continuum approach to radiative transfer are called into question when 
correlations in a discrete-particulate medium are considered. Indeed, in atmospheric 
clouds typical mean free paths for regimes dominated by scattering (e.g., visible light) are 
of order 100 m, so essentially the entire turbulence inertial subrange lies at smaller scales. 
Therefore, entrainment and mixing processes generate strong spatial correlations in 
droplet positions from the ~100-m energy injection scale to the ~1-mm dissipation scale, 
and inertial clustering generates spatial correlations from the ~1-cm scale down to the 
~10 µm scale of a single particle diameter (Wyngaard, 1992, 2010b). The question of 
how these sub-free-path-scale correlations might influence radiative transfer has been 
studied by several groups for the absorbing-particle limit (Kostinski, 2001; Shaw et al., 
2002a; Larsen and Clark, 2014; Frankel et al., 2017). In this work we have explored the 
regime in which light scattering is dominant, and specifically for particles larger than the 
illuminating wavelength for which forward scattering is pronounced; this is the relevant 
regime for atmospheric clouds and visible/near-IR radiation. The results of the study 
suggest that the degree to which there is a deviation from standard radiative transfer using 
the medium-averaged optical properties (e.g., mean free path) can be quantified through 
the radial distribution function. This implies that knowledge of the RDF resulting from 
inertial clustering and turbulent mixing in atmospheric clouds would be valuable (Larsen 
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et al., 2018). Treatment of the RDF is a first step, as a two-particle correlation function, 
and eventually it will be insightful to consider the possible relevance of multi-particle 
correlations on light propagation.  

This work has focused on the influence of clustering at scales below the mean free path 
of the radiation, for optical depths up to order unity. Implications for larger scales such as 
would be relevant to cloud remote sensing or energy budgets will require consideration of 
cloud organization at the full range of scales: for example, it is already widely 
appreciated that clustering on spatial scales large compared to the photon mean free path 
is of significance in practical applications. It is known, however, that the turbulent energy 
cascade stretches down to the 1 mm scale in the atmosphere, so clouds can be assumed to 
be non-uniform far below the scale of a mean free path. The next stage of this work is 
validation of the MCRT results directly with measurements in the Pi cloud chamber. 
Characterization of actual clustering strength in natural clouds will be required to put the 
chamber measurements into atmospheric context. This kind of comparison will allow the 
overall approach of MCRT methods to be assessed; although they are widely used in 
applied radiative transfer, they are known to neglect the detailed electromagnetic 
treatment that is potentially necessary for full representation of propagation in a 
correlated medium (e.g., Mishchenko et al. 2016). Experimental results will be the 
ultimate arbiter. 

In some cases presented here, the changes to direct and diffuse radiation are nearly 
compensating; do such results suggest that there is no significance to the clustering? That 
depends on the problem under consideration: for any problem depending on directional 
properties of the radiation field, the details of direct versus diffuse will be of significance. 
It is a subject that will be investigated in subsequent, combined computational and 
experimental work. Indeed, the geometry chosen in this study was originally motivated 
by the desire to explore the extent to which optical propagation through a turbulent cloud 
can be studied in the laboratory. That has the advantage of allowing well-characterized 
cloud and turbulence conditions, as well as statistically homogeneous and stationary 
conditions needed for spatial and temporal averaging. The sensitivity actually required in 
a study of this phenomenon, for realistic turbulence and clustering levels, will be the 
subject of future work, but the results presented here suggest that measurement of the 
cloud particle RDF will be a necessary step in possible experiments. 
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5 Light scattering in a turbulent cloud: Simulations to 
explore cloud-chamber experiments 

This chapter details predictions of direct and diffuse transmission of visible light through 
spatially correlated particle fields generated by Large Eddy Simulations, focusing on 
measurements that could be observed in the Pi cloud chamber. This work is in 
preparation for publication.5 

5.1 Abstract 

Radiative transfer through clouds can be impacted by variations in particle spatial 
distributions, particularly in the visible spectrum when considering larger water droplets. 
Due to mixing and inertial effects, spatial correlation often exists, resulting in clusters 
and voids within the droplet field that can lead to deviations from exponential extinction. 
Prior work has numerically investigated these departures from exponential attenuation in 
absorptive and scattering media; this work focuses on investigating the feasibility of 
detecting spatial correlation in realistic atmospheric clouds generated in a laboratory 
setting. Large Eddy Simulations (LES) are used to create atmospheric mixing clouds 
realistic for a turbulent laboratory cloud chamber. The resulting polydisperse particle 
fields, with some level of inherent spatial correlation, are explored via MCRT scattering 
simulation. The key result of this study is that differences in both mean flux and standard 
deviation about the mean differ when correlation exists, suggesting that an experiment in 
a laboratory cloud chamber could be designed to detect (and potentially measure) the 
presence of spatial correlation. While total forward flux is largely unchanged (due to 
scattering being highly forward-dominant with our size parameters), direct and diffuse 
forward flux are appear to be modified to a measurable extent. This finding, a result of 
using scattering simulations to explore chamber-realistic polydisperse particle size 
distributions functions, upholds our previously-published predictions regarding 
monodisperse cluster-induced flux deviations.  

5.2 Introduction 

Radiation transfers differently through a spatially correlated medium than through a 
homogeneous medium due to void and clusters; photons propagate further in less thick 
regions and experience stronger extinction in more dense regions (Marshak and Davis, 
2005). Properly predicting radiative transfer through inhomogeneous media has many 
applications, including the cloudy atmosphere (Davis and Marshak, 2004; Larsen and 
Vasques, 2011) where pockets of clear and cloudy air on many spatial scales can be 
formed by mixing and entrainment (Davis et al., 1999; Shaw, 2003). In recent published 
work (Packard et al., 2019), we examined various components of radiative transfer 

                                                 
5 Packard, C.D., Larsen, M.L., Cantrell, W.H., Shaw, R.A. “5 Light scattering in a spatially-correlated 
polydisperse particle field: Predicting laboratory cloud-chamber observations.” To be submitted. 
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through homogeneous and clustered monodisperse particle distributions of discrete 
particles. We found that while direct transmission is increased in the presence of spatial 
correlation, diffuse forward transmission is reduced by a similar amount (nearly 
offsetting the increase in direct transmission). 

In this work, we consider polydisperse distributions of discrete particles within a realistic 
laboratory atmospheric cloud as our motivating problem. We address the problem of 
predicting radiative transfer through both homogeneous and inhomogeneous media using 
a Monte Carlo Ray Tracing (MCRT) methodology previously shown to be consonant 
with standard radiative transfer (e.g., Bohren and Clothiaux, 2011). To limit scope, we 
focus this work on the transfer of visible light (e.g., wavelength ~ 550 nm) through an 
atmospheric cloud generated under laboratory conditions. In the visible spectrum, with 
the size of droplets in our particle size distributions, the size parameter dictates that 
absorption is practically non-existent. Consequently, in this study we assume a single 
scatter albedo of unity. Additionally, the number densities we consider (e.g., optical 
thickness near 0.1) allow us to concentrate on a regime where multiple scattering is not 
dominant. 

Our principal motivation is the use of simulation to explore experimental designs which 
could be conducted to measure the presence (and possibly the severity) of particle 
clustering in a laboratory cloud chamber such as the Pi Cloud Chamber (Chang et al., 
2016) is appealing. In a previous publication (Packard et al., 2019), we focused on 
monodisperse distributions with somewhat extreme Matérn clustering; a single particle 
size and rather small, dense collections of droplets were used for much of our analysis as 
we evaluated the role of radial distribution functions. In this work, a primary interest is 
the extent of deviation from the spatially homogeneous case expected when less extreme 
spatial correlation and realistic polydisperse size distributions are present. To represent 
radiative transfer in a real system such as the Pi Cloud Chamber, which is able to produce 
optical thicknesses near unity during short-lived expansion clouds and an order of 
magnitude smaller during long-lasting mixing clouds, we consider an atmospheric 
medium within a confined geometry. Computer simulation, acting as a surrogate 
laboratory, allows for the prediction of experimental results and development of an 
effective methodology for measuring relevant parameters absent physical limitations.  

In this work, a Large Eddy Simulation (LES) code is used to generate particle clouds with 
properties (such as optical thickness, particle size distribution function and spatial 
correlation) realistic for a laboratory-generated mixing cloud. A MCRT code, capable of 
simulating scattering events with appropriate phase functions, propagates individual 
photons from a normally incident collimated beam through the LES-based particle 
distribution while tracking direct, diffuse forward and backward radiative fluxes. Two 
types of spatial particle distributions were employed, the first using the droplet locations 
exported from the LES, and the second replacing these particle locations with uniformly 
random positions to remove any spatial correlation. Hereafter, the product from the 
former method will be referred to as “LES-positioned” since the particle locations come 
directly from LES exports; the latter method will be referenced as “random” or 
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“homogeneous” due to the lack of spatial correlation. Directional radiative transfer 
components (e.g., direct, diffuse forward, backward and total forward flux) are compared 
to determine the impact of realistic spatial correlation in a laboratory setting.  

The paper proceeds as follows: First, we describe the MCRT scattering code and its 
ability to employ particle distributions imported from LES cloud realizations. Next we 
describe our LES methodology and summarize some of the most relevant statistics of the 
numerous cloud regions extracted for our scattering simulations. Then, we presents 
results of the simulations, showing the impact of spatial correlation on radiative flux 
components. Of primary interest is the effect of particle number density and optical 
thickness variations on both the mean direct and diffuse flux (average impact of spatial 
correlation) and the standard deviation that might be measured through a fluctuating 
mixing cloud. In the concluding section we discuss the results and their implications for 
atmospheric radiative transfer measurements in a laboratory setting. 

5.3 Summary of the Monte Carlo Ray Tracing (MCRT) 
Methodology 

5.3.1 Overview of the MCRT code (‘mcScatter’) 

The Monte Carlo scattering software used for our analysis, referred to as ‘mcScatter’, is a 
ballistic photon simulation code (Shaw et al., 2002a; Larsen and Clark, 2014) created to 
explore radiative transfer through scattering media, such as light transport through an 
atmospheric cloud (Packard et al., 2019). The construction of this Monte Carlo Ray 
Tracing (MCRT) code was motivated, in part, by a desire to eventually compare 
numerical results with experiments performed in a cloud chamber facility (Chang et al., 
2016). The mcScatter software is summarized here for convenience; a more detailed 
description can be found in Packard et al. (2019) and its supplemental material (see 
chapter 3).  

Our MCRT code allows users to specify particle size, optical wavelength, complex index 
of refraction (to model various types of droplets) and many other boundary conditions. 
Here we focus our analysis on visible wavelengths (e.g., 550 nm) and examine chamber-
realistic cloud droplet sizes based on previous laboratory measurements (Chang et al., 
2016; Packard et al., 2018). The resulting size parameters concentrate our analysis on the 
single-scattering, forward-scattering dominant regime with a single scatter albedo of 
unity and a scattering efficiency of Qsca ≈ 2. Inspired by a realistic optical path through 
the chamber, the virtual spatial domain is limited to 2 m x 0.2 m x 0.2 m.  

Monte Carlo numerical methods (Danielson et al., 1969; Plass and Kattawar, 1968; 
Collins et al., 1972; Sobol’ et al., 1974) employ large numbers of random draws to 
explore challenging problems for which closed-form solutions may not exist, such as 
heterogeneous media (Marchuk et al., 1980; Marshak and Davis, 2005; Cole, 2005). 
Photons are virtually cast into a medium, scattering events are detected and new 
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scattering angles are chosen using a Mie or HG (Henyey and Greenstein, 1941; Thomas 
and Stamnes, 1996; Ishimaru, 1997) scattering phase function. This process is repeated 
until all rays exit the medium. Many Monte Carlo numerical methods avoid assigning 
physical locations to particles; instead, the distribution of free paths between consecutive 
scattering interactions is modeled stochastically via random draws from an analytic 
cumulative density function (CDF) based on the concentration of particles in the medium 
(Bohren and Clothiaux, 2011).  

Conversely, in a ballistic ‘photon’ simulation (Shaw et al., 2002a; Larsen and Clark, 
2014), particles in a volume are placed at specific locations (Frankel et al., 2016; Banko 
et al., 2019). By employing an explicit location for each particle in the medium, 
geometric ray-tracing can be used to explore any inter-scatterer distribution since 
scattering events are determined by the intersection between a photon ray’s path and a 
particle (i.e., a geometric “collision”). Since ballistic photon simulation allows for 
particle spatial distributions of any kind, there is no need for stochastic free-path 
distribution models to exist. 

Other methods, such as approaches derived directly from Maxwell’s equations 
(Mishchenko, 2008; Mishchenko et al., 2016), incorporate a detailed electromagnetic 
treatment of the problem and are especially well-suited for continuous media. However, 
even for a small atmospheric cloud (e.g., many millions of particles), methods like the 
superposition T matrix remain largely impractical. Ballistic photon simulations, in 
contrast, are well-matched for resolving generalized spatially-correlated media (Shaw et 
al., 2002a). Our ray tracing Monte Carlo radiative transfer approach is consistent with 
standard radiative transfer theory (Bohren and Clothiaux, 2011) and should be consistent 
with Mishchenko’s findings (Mishchenko, 2006, 2008) that even in a correlated medium, 
classical radiative transfer equations hold as long as high-order scattering is negligible 
and assumptions of ergodicity and spatial uniformity are valid. 

During a mcScatter simulation, ray segments are recorded as rays are traced through 
particle fields before and after the occurrence of scattering events. Direct and diffuse flux 
components, both backward and forward, are recorded at numerous physical depths in the 
virtual cloud. This allows for the calculation of direct, diffuse forward, backward and 
total forward irradiance components as a function of physical depth in the cloud. Further 
details regarding the implementation of our scattering code and comparisons with 
theoretical and other published numerical works can be found in Packard et al. (Packard 
et al., 2019). 

5.3.2 Use of the ‘mcScatter’ MCRT software with chamber-realistic particle 
distributions  

The MCRT software mcScatter can perform ballistic photon scattering simulations using 
a variety of atmospheric media including both monodisperse and polydisperse particle 
size distributions with either homogeneous or spatially correlated spatial distributions. In 
our most recent publication (Packard et al., 2019) we focused on the impact of spatial 
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correlation on depth-dependent direct and diffuse radiative transfer for monodisperse 
particle distributions. That study was enabled by a Matérn Point Process particle 
clustering algorithm which generates spatially correlated droplet distributions with user-
specified parameters (Larsen et al., 2014).  

For the current study we incorporate the additional but realistic and unavoidable 
complexity of polydisperse particle size distributions found in actual atmospheric 
conditions, and we explore the impact of spatial correlation on the order of that expected 
in our laboratory cloud chamber facility (Chang et al., 2016). Computer simulations, 
referred to as Large Eddy Simulations (LES) and described in Section 5.4, were used to 
generate realistic particle distributions; the output from these simulations was used as an 
input to the mcScatter photon simulation (rather than employing either homogeneous or 
Matérn-clustered clouds). Data files generated by the cloud chamber simulations include 
both the radius of each droplet (quantized to a finite number of size bins) and three-
dimensional position of that droplet.  

These data files were read by the mcScatter software for analysis, which has the ability to 
use or ignore the somewhat correlated particle locations from the LES-exported records. 
When the LES-positioned droplet locations are ignored, uniformly random (x, y, z) values 
are generated for ballistic photon simulation. This allows us the capability to compare 
realistic polydisperse particle clouds with either homogeneous or correlated spatial 
properties. 

5.4 Large Eddy Simulation 

5.4.1 Large Eddy Simulation Methodology 

The System for Atmospheric Modeling, referred to as SAM (Khairoutdinov and Randall, 
2003), is a Large Eddy Simulation (LES) code modified to simulate the Pi chamber at 
Michigan Tech (Chang et al., 2016). For simulating the aerosol - cloud interactions, the 
code has been coupled with HUJISBM, a spectral bin microphysics code (Khain et al., 
2004).  To simulate the cloudy Rayleigh-Bénard convection, SAM has been scaled down 
and the top and lateral boundary conditions have been modified and quantitatively 
verified against experiments (Thomas et al., 2019). For completeness, a brief description 
of the SAM model is provided below. 

The dimensions of the simulated cloud chamber are 2 m x 2 m x 1 m, with the shortest 
dimension being the height of the volume. We discretized this volume into small cubic 
boxes of side length 3.125 cm yielding 64 x 64 x 32 grid boxes. The time step was chosen 
to be 0.02 seconds, and the system was initialized with an unstable temperature and water 
vapor gradient along the direction of gravity. For the current study, we allowed the 
system to evolve and reach a steady supersaturation of 2.5%, measured as a planar 
average at the mean height in the chamber (being careful to avoid wall effects). Once this 
supersaturation point was reached (Thomas et al., 2019), we injected a single bin of cloud 
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condensation nuclei (CCN) at the center of the chamber at a rate of ~92400 particles per 
cm3 per second; all introduced CCN had a radius of 62.5 nm, representing a unimodal 
CCN distribution bin ranging from 56 nm to 71 nm. The cloud reaches a steady state by 
striking a balance between activation and removal due to sedimentation. On reaching 
steady state after 1 hour, the system is allowed to persist for another 45 simulated 
minutes. 

Turbulence in the chamber involves multiple timescales, ranging from very fast processes 
(e.g., dissipation on the order of 0.1 seconds) to slow processes like large scale 
oscillations estimated at 90-135 seconds (Niedermeier et al., 2018). The 3D data are 
output at every five minutes (at least two times longer than the largest time scale in the 
system) during this final 45 minute evolution to get statistically independent droplet 
distributions within the simulated cloud chamber.  Each of the 131,072 grid boxes (3.125 
cm on each side) contains a number of droplets which are sorted into 33 different size 
bins according to their radii. Since the spatial distribution of droplets within each grid 
box is not resolved, the current study assumes non-intersecting droplets which are 
randomly distributed within the corresponding grid box volume.  To achieve this, the 
droplets in each of the 3.125 cm cubic grid boxes are redistributed randomly inside its 
volume; care is taken to avoid droplet intersection while retaining a lack of correlation on 
sub-3.125 cm scales. 

For analysis purposes, and to better compare with previous MCRT studies, we desired to 
extract many subvolumes from the overall chamber volume, each with dimensions of 0.2 
m x 0.2 m x 2.0 m. These rectangular prisms serve as virtual cloud “subsamples” through 
which we can trace many optical paths. To this end we define a number of rectangular 
prisms, each of which comprise 3,136 adjacent 3.125 cm grid boxes – 7 wide, 7 tall and 
64 in the direction of intended photon propagation. Each of these cloud subsamples has 
dimensions of 21.875 cm x 21.875 cm x 200 cm, which is trimmed slightly to the desired 
0.08 m3 volume. To improve our statistics, we chose 24 such subvolumes along each of 
the two perpendicular lateral walls, resulting in a total of 48 cloud subsamples per cloud 
realization (see Figure 5.1). Thus the output from the LES code is a file with a record 
entry containing an (x, y, z) position and binned radius for each droplet, which serves as 
the input for our ray tracing Monte-Carlo simulation code. Note that, as shown in Figure 
5.1, no cloud subsamples are extracted from directly adjacent to a bounding surface of the 
LES volume. 
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Figure 5.1. The entire volume of the simulated cloud chamber (2 m x 2 m x 1 m) is 
depicted with a dashed rectangular prism outline. Inside this volume, 48 high aspect ratio 
cuboids are extracted for optical analysis. Each cuboid, or cloud subsample, has 
dimensions of 0.2 x 0.2 x 2.0 m; 24 subsamples are taken from each horizontal direction 
in the chamber. Here the dotted grids show the ends of the 48 cloud subsamples, with 
only a single 3D subsample (rectilinear parallelpiped) portrayed in each direction; the 
other 46 are hidden for the sake of clarity. 

5.4.2 Statistics of the LES Output 

As previously described, after the LES simulation reaches steady state, the system is 
allowed to evolve for another 45 minutes and droplet sizes and 3D spatial positions are 
output from the cloud realization every five minutes for a total of nine statistically 
independent droplet distributions (Chandrakar et al., 2016, 2017). As shown in Figure 
5.1, 48 cloud subsamples are extracted from each of the 9 cloud realizations for a total of 
432 cloud sections. Before analyzing these cloud subsamples to determine the impact of 
spatial correlation between droplet positions, we first describe the statistics of their 
atmospheric properties including mean number density, mean geometric cross section 
and total optical thickness. The variation of values for the relevant atmospheric properties 
are shown in Figure 5.2, with total optical thickness, mean number density and mean 
geometric cross section shown in the top (a), center (b) and bottom (c) panels 
respectively.  

1 m

2 m
2 m
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Here it is useful to explain that in this work, total optical thickness refers to the total 
expected optical thickness. This is computed by summing the scattering cross sections of 
all particles in the distribution, scaled by the number density for each particle size, as 
shown in the expression 

 𝜏𝜏𝑒𝑒𝑒𝑒𝑒𝑒 = �
𝑁𝑁(𝑟𝑟)
𝑉𝑉

𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝜋𝜋𝑟𝑟2𝑧𝑧 .
𝑟𝑟

 (35) 

In this estimate of total optical thickness, the scattering efficiency used in the summation 
is not computed using Mie theory but instead employs a geometric approximation (e.g., 
Qsca = 2). All references to optical thickness in this work refer to expected optical 
thickness, calculated from particle size distribution functions only without the use of a 
scattering simulation to determine actual optical thickness. 

 
Figure 5.2. Mean number density (top), mean droplet radius (center) and total optical 
thickness (bottom) calculated from all 432 LES output files. It should be noted that these 
scatter plots are not time series; the index values used for the horizontal axis come from 
having 48 subsamples extracted from each of the nine time-steps. 

Histograms of these statistics, depicted in panels (a), (b) and (c) of Figure 5.3, show total 
optical thickness, mean number density values and mean geometric cross section 
(respectively). Mean number density and total optical thickness were highly correlated 
(R2 = 0.97), as shown in panel (a) of Figure 5.4, while mean geometric cross section and 
total optical thickness were related but not as correlated (R2 = 0.49) as can be seen in the 
wider spread of points in panel (b) of Figure 5.4. 
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Figure 5.3. (a) Histogram of optical thickness from 432 LES output files. Values in the 
distribution range from 0.02 to 0.14 with an average optical thickness of 0.09, a standard 
deviation of 0.02 and a relative dispersion of 0.222. (b) Histogram of mean number 
density from 432 LES output files. Values in the distribution range from 243 to 1227 
droplets per cubic centimeter with an average of 846 #/cm3, a standard deviation of 174 
#/cm3 and a relative dispersion of 0.206.  (c) Histogram of mean geometric cross section 
from 432 LES output files. Values range from 22 to 30 μm2 with a mean of 26.4 μm2, a 
standard deviation of 1.27 μm2 and a relative dispersion of 0.048. 

 
Figure 5.4. (a) Scatter plot showing high correlation (R2 = 0.97) between mean 
volumetric number density and total optical thickness. This suggests that LES output files 
chosen based on similar number densities are highly likely to have very similar total 
optical thicknesses. (b) Scatter plot showing correlation (R2 = 0.49) between mean 
geometric cross section and total optical thickness. This suggests that LES output files 
chosen based on similar mean geometric cross section are likely to have similar but not 
exactly the same total optical thickness. 
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The horizontal axes of panels (a) and (b) in Figure 5.4 indicate that the range of number 
density values is not only larger than the range of geometric cross sections but also more 
similar to the span of expected optical thickness values (vertical axes in both panels). 
Also of interest is the similarity and dissimilarities in the nine statistically independent 
cloud realizations from which the 432 LES subsamples were extracted. To this end, a 
box-and-whisker plot is shown in Figure 5.5 to depict some relevant statistics. The 
median value of optical thickness for each cloud realization is shown with a circular 
bullseye, the solid edges of the boxes represent the 25th and 75th percentiles, and the 
dashed “whiskers” extend to the most extreme values of τ. A solid red vertical line was 
added to represent the mean optical thickness of all 432 LES cloud subsamples (e.g., 
global average value of τ). 

 
Figure 5.5. Expected optical thickness statistics shown for the nine LES cloud 
realizations (with 48 subsamples per realization). Circular bullseyes indicate median 
values, solid box edges show 25th and 75th percentiles, and dashed “whiskers” extend to 
the most extreme values. A solid vertical line was added to indicate the global mean 
optical thickness across all 432 cloud subsamples. 

5.5 Results 

5.5.1 Scattering MCRT results for LES particle clouds conditioned on 
estimated optical thickness 

As shown in the expected optical thickness histogram depicted in panel (a) of Figure 5.3, 
the mean for all 432 cloud subsamples is close to a value of 𝜏𝜏 = 0.1. With numerous 
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window (0.099 < 𝜏𝜏 < 0.101) can be used to select ten LES output files from all 
timesteps which are very similar from the perspective of total optical thickness. These ten 
LES polydisperse droplet distributions were used to run two sets of MCRT scattering 
simulations. In the first set, the spatial locations and droplet radii were used directly from 
the LES export process. Consequently, spatial correlation (on scales greater than the 
3.125 cm grid resolution) may exist due to any voids and clusters formed during the 
turbulent LES process. 

The results of this first LES set, conditioned on 𝜏𝜏 = 0.1, are shown in Figure 5.6. Each of 
the four panels show a family of curves for different flux components including total 
forward flux, backward flux, diffuse forward and direct forward flux (clockwise from 
upper left, respectively). The deviations from curve to curve indicate the effects of spatial 
variations in the polydisperse droplet distributions. 

 
Figure 5.6. Depth-dependent flux curves for ten LES polydisperse spatial distributions, 
chosen to be very near an (expected) total optical thickness of 0.1. Spatial positions come 
directly from LES output records. 

In contrast, the second set of scattering simulations employed the same LES-exported 
files but utilized only the radii values recorded for each droplet; the spatial locations 
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determined by the LES process were discarded and replaced by uniformly random 
positions to create corresponding polydisperse distributions without spatial correlation. 
The results of this second set of simulations, also conditioned on 𝜏𝜏 = 0.1, are shown in 
Figure 5.7. A much tighter grouping in the family of curves is evident and is due to the 
lack of clusters and voids in the spatial distributions. As this set of ten scattering 
simulations used the same (ten) polydisperse particle size distribution functions as the 
first set, with only droplet spatial locations being different from the LES-positioned 
results of Figure 5.6, only spatial correlation can explain these flux differences.  

These flux component results show stronger deviations within a set (i.e., from the 
ensemble average) when LES spatial positions are used compared to uniformly random 
droplet locations. 

 
Figure 5.7. Depth-dependent flux curves for ten LES polydisperse spatial distributions, 
chosen to be very near a total optical thickness of 0.1. Spatial positions are uniformly 
random. 

For reference, it may be instructive to better understand the variation in number density 
and optical thickness inside a representative LES cloud subvolume compared to its 
corresponding random counterpart (illustrated in the top and bottom panels of Figure 
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5.8). To this end, the two meter propagation path through the cloud subvolume was 
divided into four 0.5 meter slabs, and the number density and optical thickness of each 
slab were computed for both the LES-positioned and uniformly random spatial 
distributions. Panel (a) in Figure 5.9 shows the spatial correlation-created difference in 
number density for each 0.5 meter slab, while panel (b) shows the discrepancies in optical 
thickness. 

 
Figure 5.8. A random selection of 10,000 particles from each of the spatial distributions 
whose flux results are shown in Figure 5.10. The representative illustration in the top 
panel shows LES-positioned droplet locations, with high number density in the first 
meter and a large void between 1.0 and 1.2 meters. The bottom panel shows the same 
number of particles which have been placed in a uniformly random fashion. 

 
Figure 5.9. Comparison of LES-positioned and uniformly random polydisperse particle 
distributions for the four 0.5 meter slabs that comprise the two meter propagation path. 

The local variations in number density and optical thickness lead to deviations in various 
flux components. While Figure 5.6 and Figure 5.7 each portrayed a set of ten depth-
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dependent flux curves, Figure 5.10 shows a flux comparison between a single LES 
subvolume (including its polydisperse particle size distribution function and spatial 
correlation) and its uniformly random counterpart. 

 
Figure 5.10. Normalized flux components from two scattering simulations which both 
employ the same particle size distribution function. The thick yellow line results from the 
use of LES-positioned droplet locations, while the dotted black line results from the use 
of uniformly random particle positions. 

5.5.2 Impact of spatial correlation on depth-dependent flux results 

As predicted in previous works (Petty, 2002; Packard et al., 2019), spatial correlation 
typically leads to an increase in direct flux but a largely compensating decrease in diffuse 
forward flux. When backward flux is relatively unchanged, the total forward flux is also 
largely unchanged due to the offsetting nature of direct and diffuse forward flux. This is 
evident in Figure 5.11, where the dashed vertical lines show the mean flux values for 
each component. The yellow dashed lines display the means of the simulations which 
employed LES-positioned spatial records, while the black dotted lines indicate the means 
of those with uniformly random droplet locations. As can be seen in panels (a) and (b) in 
Figure 5.11, the total forward and backward flux means are nearly identical; easier to 
differentiate are the direct and diffuse forward flux means shown in panel (c) and (d), 
respectively. 
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Figure 5.11. CDF calculated from the flux results of two sets of scattering simulations, 
one with LES-positioned particles with some level of spatial correlation and the other 
with uniformly random droplet locations. Both sets of results employed the same LES-
exported particle size distribution functions (chosen for total optical thickness near 0.1), 
meaning the only difference between the two sets is the use of LES spatial positions vs. 
uniformly random positions (same droplet size distribution). Each horizontal axis is a 
different flux component, normalized by incident illumination. Mean flux values are 
shown with dashed and dotted vertical lines, and filled rectangles are created by adding 
and subtracting a standard deviation to show the variation in flux values. These filled 
rectangular regions are shown at 2 m for all flux components except backward flux, 
which is shown at 0 m (incoming face). 

Also of interest is the standard deviation of each set, which is significantly larger for the 
spatially correlated simulations. This is depicted in Figure 5.11 with filled rectangular 
regions (yellow rectangular fill for the LES-positioned set vs. grey fill for the randomly 
positioned set) created with horizontal limits one standard deviation from the mean (e.g., 
𝜇𝜇𝑠𝑠𝑠𝑠𝑠𝑠 ± 𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠). For both total forward flux and backward flux, shown in panels (a) and (b) 
respectively, the LES-positioned results have a standard deviation of 0.0002 while the 
uniformly random set has a standard deviation of 0.0001. Of more interest are differences 
in standard deviation for the direct and diffuse forward flux components, shown 
respectively in panels (c) and (d) of Figure 5.11. The standard deviation in direct flux for 
the uniformly-random set is 0.0013, while the corresponding LES-positioned set has a 
standard deviation of 0.0031 - almost 2.4 times larger. The statistics for the diffuse 
forward flux are the same, with the LES set having a standard deviation almost 2.4 times 
that of the set with no spatial correlation. 
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Even this relatively small number of scattering simulations suggest that while the means 
from the two sets may be difficult to differentiate in the absence of other information, 
deviations from their respective mean (calculated at the extremes of the volume where 
sensors could most easily be placed) are likely to be larger in the presence of spatial 
correlation. It is worth noting that in both panels (c) and (d) of Figure 5.11, the LES-
positioned mean (yellow dashed vertical line) is nearly outside the limits of the grey-
filled region. This means that the average direct and diffuse forward flux expected under 
typical cloud chamber mixing cloud conditions are almost a full standard deviation away 
from the mean expected in the absence of spatial correlation. 

5.5.3 Using ratios of flux results as an alternative analysis tool 

The deviations in flux results can be portrayed another way; the variation within each set 
of 10 simulations from the ensemble mean can be seen by dividing the flux component 
family of curves by their respective ensemble average. The standard deviation 
comparison shown in Figure 5.12 details the wider variation from mean when the LES 
spatial positions are employed (light grey fill and solid black stairstep plot) relative to the 
use of uniformly random droplet locations (indicated with dark grey fill and dotted red 
stairstep plot). Since both sets of scattering simulation results are normalized by their 
respective means, the deviations seen in the two flux distributions are depicted about 1; 
this is done to highlight the difference in standard deviation (rather than similarity or 
dissimilarity in flux means). 
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Figure 5.12. Cumulative distribution functions (CDF) computed from propagation 
endpoints of the individual flux curves from both the LES-position and random position 
sets, normalized by ensemble mean of each set. Standard deviations, computed from the 
endpoint values of each set of 10 scattering simulations, are shown above each panel. 
Since each set has been normalized by the ensemble mean, these ratios are centered about 
one. 

Another way to view the variation caused by spatial correlation is to normalize the 10 
individual LES-positioned scattering results by their uniformly random spatial 
counterpart, curve by curve, instead of their ensemble mean. Using a curve-by-curve, 
point-by-point division between LES-correlated and spatially uncorrelated results, a ratio 
can be computed which shows the depth-dependent deviation due only to droplet location 
(as particle size distributions are identical for both numerator and denominator). The 
results of these curve-by-curve ratio calculations are shown in Figure 5.13. Values of one 
indicate a perfect match at a given physical depth, suggesting negligible impact from 
spatial correlation, while values above and below one suggest increases and decreases 
(respectively) from the homogeneous case due to spatial correlation. Effects of spatial 
correlation are somewhat exaggerated for backward and diffuse forward flux since 
division by small flux numbers for the same absolute flux difference results in a larger 
deviation ratio. 
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Figure 5.13. Point-by-point ratios calculated between results from LES-positioned droplet 
locations and those where uniformly random particle locations are used, shown as a 
function of physical depth. Values of 1 indicate a perfect match at a given physical depth, 
suggesting negligible impact from spatial correlation. Values above and below 1 suggest 
increases and decreases (respectively) from the homogeneous case due to spatial 
correlation. Note that the impact of spatial correlation is much larger in the center of the 
chamber, while the ratio curves tend to converge at the propagation endpoints (since the 
effective optical thickness values are very similar).  

Examining these ratio results at the most convenient sensor locations (a depth of 2 m for 
all forward flux components, and a depth of 0 m for backward flux) allows us to estimate 
both the steady and variable impacts of spatial correlation. Positive shifts of the mean 
(ratios above 1) correspond to increases in average flux sensed at that location, while 
negative shifts (ratios below 1) indicate a reduction in average flux. Larger standard 
deviations, indicate higher fluctuations about the mean flux ratios, represent a more 
variable impact of spatial clustering. Table 5-1 summarizes the mean and standard 
deviation flux ratio values for the flux components shown in Figure 5.13. The backward 
and diffuse forward flux components are more impacted by from spatial correlation, 
while the impact on total forward and direct flux is less variable. 

Table 5-1. Mean and standard deviation of flux ratios computed from the propagation 
endpoints of the flux ratio component curves (see Figure 5.13; probable sensor locations 

are at a depth of 2 m for forward flux components, and a depth of 0 m for backward 
flux).). Values above and below 1 suggest variations in direct and diffuse radiative 
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transfer caused by spatial correlation. Means shifted away from one indicate average 
increases or decreases in flux, while standard deviation differences suggest the amount of 

variation in the impact of spatial correlation. 
 Total Forward 

Flux Ratio 
Direct Forward 

Flux Ratio 
Diffuse Forward 

Flux Ratio 
Backward 
Flux Ratio 

Mean Value 1.000 1.001 0.988 1.004 
Standard 
Deviation 0.0002 0.0042 0.0417 0.0657 

5.6 Discussion & Conclusions 

5.6.1 Summary and interpretation of results 

Radiative transfer through a dilute medium, and the resulting optical transmissivity, is 
dependent on the number and size of particles in the distribution. If spatial correlations 
exist in particle locations, clusters and voids may exist on scales of the same order as or 
smaller than the optical mean free path (as defined for a uniform medium). In the 
scattering-dominated regime where absorption is essentially non-existent, radiation is 
either transmitted directly (without any particle interaction) or diffusely (photons change 
propagation direction but continue traversing the medium).  

In this work, we have investigated direct and diffuse radiative transfer in a medium with 
spatially correlated scattering particles using a ballistic photon MCRT model. Our 
simulations explored the forward-dominant scattering regime that is typical of 
atmospheric clouds. The results are framed in the context of direct and diffuse forward 
and backward fluxes. Polydisperse LES particle distributions were generated with 
boundary conditions realizable in the Pi Cloud Chamber to aid the design of an 
experimental setup meant to measure the presence and impact of spatial correlation. 

We found much more cloud-to-cloud variation when the LES-positioned droplet 
locations were employed (as opposed to uniformly random positions). This was 
especially evident in the center of the clouds at a physical depth of one meter (see Figure 
5.6 and Figure 5.7), but the impact of spatial correlation was still apparent at the 
propagation endpoints (edges of the confined geometry). The change in mean total 
forward flux and backward flux for the ten cloud sections analyzed (chosen for their 
estimated optical thickness of 0.1) was negligible. Panels (a) and (b) of Figure 5.11 
indicate that while the standard deviation of these flux components is 1.5-2x larger, the 
means are essentially the same.  

However, the direct and diffuse forward flux results shown respectively in panels (c) and 
(d) vary in both mean and standard deviation. The standard deviation of the results set 
with LES-positioned droplets is approximately 2.5x larger than when spatial correlation 
is removed by using uniformly random particle locations. Additionally, the mean of these 
flux components are separated sufficiently such that the mean values of the LES-
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positioned results are almost a standard deviation away from the mean values from the 
uncorrelated distributions. If we denote the spatially correlated and uncorrelated direct 
flux means values (respectively) as 𝜇𝜇𝐿𝐿𝐿𝐿𝐿𝐿 and 𝜇𝜇ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜, and the standard deviation values as  
𝜎𝜎𝐿𝐿𝐿𝐿𝐿𝐿 and 𝜎𝜎ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜, we find that the direct and diffuse forward flux means are related by the 
expressions  

 𝜇𝜇𝐿𝐿𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ≅ 𝜇𝜇ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝜎𝜎ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (36) 

and 

 𝜇𝜇𝐿𝐿𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ≅ 𝜇𝜇ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 𝜎𝜎ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 . (37) 

With flux means separated by 1-2% and significantly different standard deviations, it 
seems that the direct and diffuse forward flux components are the most differentiable. 
This conclusion is consistent with the findings of a recent study (Packard et al., 2019) 
even though that work focused on monodisperse distributions and the current study 
employs realistic polydisperse distributions from large eddy simulations (LES). 

When the entire set of LES-positioned results are normalized by the uncorrelated results, 
curve-by-curve at each physical depth along the propagation path, the means of the 
resulting flux components ratios indicate the average fractional increase or decrease in 
radiative transfer due to spatial correlation. The mean flux ratios listed in Table 5-1 show 
that while the total forward flux is essentially unchanged, the flux ratios of the direct, 
diffuse forward and backward components are 1.001, 0.988 and 1.004 (respectively). 
While the backward flux has a larger percentage change than the direct flux, the absolute 
difference is very small and might require a high signal-to-noise ratio (SNR) to measure 
with confidence. The largest percentage change is the reduction in diffuse forward flux, 
due to the fact that while the absolute differences in the direct and diffuse forward flux 
are similar, the denominator is smaller for the diffuse forward (9% vs. 90% for direct). 
The flux ratio standard deviation values given in Table 5-1 suggest the variation in 
impact on flux ratio due to spatial correlation. 

Focusing on a single LES-positioned cloud subsample and a corresponding uncorrelated 
uniformly random cloud with the same particle size distribution function, we can 
examine variations in the spatial distributions themselves. Figure 5.9 shows the variation 
in mean number density and optical thickness as a function of physical depth into the 
clouds, with each two meter propagation path divided into half-meter slabs. The high 
density and low density regions apparent in the LES series in both panels help explain the 
depth-dependent flux differences seen in the other results figures, since localized 
concentration discrepancies lead to variations in direct and diffuse forward flux. The 
LES-induced increases and decreases in number density and optical thickness relative to 
the uniformly random series can be used to understand the yellow curve shown in Figure 
5.6 and Figure 5.13, where direct flux decreases (relative to the uniformly random case) 
through the first two slabs before that trend reverses during the second half of the 
propagation path. The opposite trend is evident in diffuse forward flux, which increases 
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(relative to the spatially uncorrelated case) in the first meter and then returns back during 
the second meter. 

5.6.2 Implications for future laboratory experimentation  

The flux results presented in this work suggest some possible experimental setups that 
could be successful at detecting the presence (and potentially, the severity) of particle 
clustering. In the Pi Chamber owned and operated by Michigan Technological 
University, mixing clouds can be sustained for hours and the particle size distribution 
function can be measured with Phase Doppler Anemometry (PDA) throughout the life of 
the cloud. A normally incident collimated visible light beam could be used to illuminate 
the chamber-confined cloud, and the total forward flux could be monitored on the 
opposite side of the chamber. Speed of light measurements means that a sufficiently large 
number of values can be recorded to ensure the frozen field assumption is valid. As the 
mixing cloud changes over time, the effective optical thickness (measured using the 
fractional amount of light exiting the chamber after propagating through the particle 
distribution) will vary as well. By measuring the direct and diffuse forward flux while 
monitoring total forward flux, conditioning based on total forward flux (and, as a result, 
total effective optical thickness) becomes possible. This would allow analysis of the 
statistics (e.g., mean and standard deviation) of the forward flux components for cloud 
paths with the same optical thickness (as measured using total forward flux). These 
means and standard deviations could be compared to values predicted using the measured 
particle size distribution function and a uniformly random position assumption to test the 
likelihood (and possibly estimate the magnitude) of particle clustering.  

Another possible laboratory setup for a cloud chamber experiment to explore particle 
clustering would be to employ a series of mirrors and one or more beam splitters. This 
would allow some interesting experiments to be performed. One such test might be to 
compare the flux components measured during a single (two meter) propagation path to 
values recorded after a double pass through the chamber (photons which have traversed 
the chamber and then back again for a total propagation distance of four meters). This 
would test whether the statistics of the double-pass beam can be explained by an 
increased propagation distance through the same particle distribution (homogeneous 
assumption); deviations from this would suggest a difference in optical paths such as 
variations in voids and clusters. 

A variation of this test would be to measure two different double-pass beams, one that is 
re-routed back through the same optical path and another that is redirected such that the 
second pass traverses a different region of the mixing cloud. If the cloud volume is 
indeed homogeneous, both double pass beams should register similar statistics. However, 
statistically significant differences between the two would call into question assumptions 
about the entire cloud volume being homogeneous (in terms of local number density). 
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6 Summary and Future Work 

6.1 Summary and future work concerning optical blurring due 
to aerosol scattering 

This work deals with contributions from aerosol scattering to the problem of blurring and 
contrast reduction in measured optical images. An analytic theoretical modulation 
transfer function can be computed which includes atmospheric attenuation, diffraction 
effects, and small-angle aerosol scattering which results from the near-forward scattering 
of light by particles large compared to the wavelength. This aerosol MTF, which assumes 
an aperture diffraction-limited case, is composed of two primary components. The first is 
a broad pedestal created by an attenuated version of the diffraction MTF whose peak 
magnitude is lowered as optical depth increases. The second aerosol MTF component is a 
decaying exponential located at small spatial frequencies, created by scattered light 
spread over a portion of the image plane. The spatial frequency at which this indirect 
light ceases to contribute in a significant way is reduced when aerosol modal radius 
decreases. These two components comprise the total MTF, which includes both aerosol 
and imaging system artifacts.  

The significance of blurring due to aerosol scattering is not agreed upon in the literature, 
and this apparent controversy appears to focus on the severity of the phenomenon and 
shortcomings of aerosol experiments meant to settle this debate (Bissonnette, 1992; 
McDonald et al., 1992; D. Sadot and Kopeika, 1993; Bruscaglioni et al., 1993; Dan Sadot 
and Kopeika, 1993; Kopeika and Sadot, 1995; Dror and Kopeika, 1995; Ben Dor et al., 
1997; Kopeika, 1997; Kopeika et al., 1998; Eismann and LeMaster, 2013). There are 
relatively few published measurements of the impact of aerosol scattering, and they tend 
to focus on specific aspects of the full problem. Most significantly, detailed comparisons 
between theory and measurements are challenging because characterization of conditions 
in the atmosphere is challenging, and uncertain assumptions must be made regarding 
spatial and temporal uniformity (i.e., statistical homogeneity or stationarity). 

After detailing theoretical MTF expressions to predict the impact of aerosol scattering on 
measured imagery, we showed the results from a closure experiment using the MTU 
cloud chamber. Knife-edge imagery was captured through a controlled expansion cloud 
while the particle size distribution was measured directly. Experimental aerosol MTFs 
were calculated from these images and compared to theoretical predictions made using 
the measured atmospheric conditions. Predicted MTF responses for both the control and 
aerosol scenarios were made with and without finite bit-depth detector limitations, and 
the impact of quantization and noise floor was illustrated. These predicted aerosol MTF 
curves, created with atmospheric properties based on measured expansion cloud 
distributions, were compared to MTF responses measured in the cloud chamber.  

According to analysis of MTF measurements performed in numerous laboratories 
(Williams and Becklund, 2010), measuring a modulation transfer function to within 5% 
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of a theoretically-predicted curve demonstrates sufficient accuracy. The measured control 
MTF response (prior to quantization), obtained with a manual focus procedure, was 
within 7% of the diffraction-limited MTF that would be expected under ideal conditions 
including perfect focus, absence of lens aberrations, uniform knife-edge illumination, etc. 
After quantization was applied to incorporate finite bit-depth detector limitations, the 
theoretical control MTFs closely resembled the measured control MTF. The theoretical 
control MTF with simulated 13-bit quantization was an almost exact match when 
compared to the measured control MTF. 

The (ideal) predicted aerosol MTFs showed only a slight sensitivity to small variations in 
dominant droplet radius, with moderate MTF response changes due to various optical 
depths. However, bit-depth quantizations of the ideal aerosol MTFs displayed high 
sensitivity to changes in droplet radius. In contrast, the ideal and quantized aerosol MTFs 
responded similarly to changes in optical depth. Our investigation revealed that the MTF 
response modifications depended on how far from the centroid of the PSF the dynamic 
range cutoff occurred and how much PSF energy was contained in the portion below the 
detector noise floor. Other things being equal, moving the noise floor cutoff closer to the 
PSF center increased the difference between the ideal and quantized MTF. Loss of all but 
the Bessel function near the PSF centroid means the resulting MTF is essentially the 
diffraction-limited control case, which is sensible given that the indirect (scattered) light 
is spread over the image plane (not well focused). Removing this scattered contribution 
diminishes the discrepancy between aerosol and control MTF. This means that with the 
expansion cloud conditions present in the chamber, aerosol scattering is an evident but 
subtle contributing effect (Eismann and LeMaster, 2013) that is significantly impacted by 
the optical imaging system used to measure it. In an atmospheric context, the significance 
of aerosol-induced blurring would depend not only on the details of the aerosols and 
propagation path length but also on the hardware configuration of the imaging system, 
especially the dynamic range of its detector.  

The (quantized) predicted MTFs matched the measured aerosol curves reasonably well, 
disagreeing by less than 10% for a single combination of droplet radius and optical depth. 
Due to the sensitivity to the droplet radius selected for the predicted curves, and the 
uncertainty of the exact dominant droplet radius for each of the three expansion clouds, 
this amount of prediction error is encouraging. Theoretical aerosol MTFs computed from 
a small range of droplet radii based on values in Table 2-1 easily bound the measured 
MTFs everywhere but below 3x10-2 cycles per milliradian, which is approximately the 
limit of reliable information from the detector footprint used for image capture. The 
authors believe that the theoretical expressions, which utilize a single, modal particle 
radius, are likely most accurate for nearly-monodisperse particle distributions. For 
strongly polydisperse distributions such as our expansion clouds, which were measured to 
have a broad distribution of droplet radii with similarly-dominant number densities, the 
choice of a single radius is apparently insufficient when sensitivity to this value is 
considered. This further explains why the various measured aerosol MTFs were similar; 
the particle distributions of the generated expansion clouds largely overlapped and often 
had several strongly-contributing adjacent radius bins. 
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Overall, the concept of closure between MTFs obtained from directly-measured images 
and MTFs calculated from theory using measured cloud properties in a laboratory setting, 
has been demonstrated to be qualitatively successful. The comparison led to several 
findings: the theoretical expression for MTF is likely overly simplistic and does not 
account for broad particle size distributions; the relevance of optical blurring from light 
scattering by aerosol particles depends sensitively on the properties of both the particles 
and the imaging system; regarding the latter, the digital dynamic range was found to be 
especially relevant, having the ability to reveal or mask aerosol blurring effects for 
realistic bit levels.  

In future experiments a wider range of cloud conditions could be explored, especially 
larger values of optical depth and a broader range of particle sizes. Further, the thermal 
convection capability of the cloud chamber will enable exploration of the influence of 
turbulence, simultaneously with particles, thereby testing the common assumption of 
independence and additivity. On the instrumentation side, as better sensors become 
available, it would be instructive to explore the influence of camera digital dynamic 
range. A higher bit depth detector would lead to a lower noise floor, so that the aerosol 
MTF could be measured more directly with less contamination from the electronics of the 
imaging system. Additionally, a larger detector cutoff frequency would allow the imaging 
aperture to be enlarged without additional aliasing. This would potentially allow a wider 
range of scattering angles to impact the aerosol measurements. 

6.2 Summary and future work concerning particle clustering, 
depth-dependent flux and the role of RDFs 

The influence of spatial inhomogeneity (in particle fields) on three-dimensional radiative 
transfer has been considered in depth, especially for the limit in which the scale of the 
inhomogeneity is larger than the mean free path defined for the medium. Pioneering work 
by Kostinski (2001) makes clear, however, that the validity of fundamental assumptions 
of the continuum approach to radiative transfer is questionable when correlations in a 
discrete-particulate medium are considered. In atmospheric clouds, typical mean free 
paths for regimes dominated by scattering (e.g., visible light) are of order 100 m; this 
means that, essentially, the entire turbulence inertial subrange lies at smaller scales. 
Entrainment and mixing processes generate strong spatial correlations in droplet positions 
from the ~100-m energy injection scale to the ~1-mm dissipation scale, and inertial 
clustering generates spatial correlations from the ~1-cm scale down to the ~10 µm scale 
of a single particle diameter (Wyngaard, 1992, 2010b).  

The question of how these sub-free-path-scale correlations might influence radiative 
transfer has been previously studied by several groups for the absorbing-particle limit 
(Kostinski, 2001; Shaw et al., 2002a; Larsen and Clark, 2014; Frankel et al., 2017). In 
this work we have explored the regime in which light scattering is dominant (ω ~ 1), and 
specifically for particles larger than the illuminating wavelength for which forward 
scattering is pronounced; this is the relevant regime for atmospheric clouds and 
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visible/near-IR radiation. The results of our study suggest that the degree to which there 
is a deviation from standard radiative transfer (using the medium-averaged optical 
properties, such as mean free path) can be quantified through the radial distribution 
function. This implies that knowledge of the RDF resulting from inertial clustering and 
turbulent mixing in atmospheric clouds would be valuable (Larsen et al., 2018). The 
RDF, as a two-particle correlation function, is a first step; eventually it will be insightful 
to consider the possible relevance of multi-particle correlations on light propagation.  

This work has focused on the influence of clustering at scales below the mean free path 
of the radiation, for optical depths up to order unity. This emphasis on optical thicknesses 
near τ = 1 is partially due to our desire to compare numerical predictions to laboratory 
measurements that could be made in a controlled environment such as the Pi chamber 
(Chang et al., 2016). Expansion clouds in the cloud chamber have been generated with 
measured optical depth in the range 0.5 < 𝜏𝜏 < 1.0 (Packard et al., 2016, 2018), 
motivating our focus on this region. Implications of our findings for larger scales, such as 
cloud remote sensing or energy budgets, will require consideration of cloud organization 
at the full range of scales. For example, it is already widely appreciated that clustering on 
spatial scales large in comparison to the photon mean free path is of significance in 
practical applications. It is known, however, that the turbulent energy cascade stretches 
down to the 1 mm scale in the atmosphere, so clouds can be assumed to be non-uniform 
far below the scale of a mean free path.  

One logical next step is validation of the MCRT results by direct comparison with 
measurements recorded in the Pi cloud chamber. Characterization of actual clustering 
strength in natural clouds will be required to put the chamber measurements properly into 
atmospheric context, since only with knowledge of the atmospheric boundary conditions 
can radiative transfer predictions be usefully compared to laboratory measurements. This 
kind of comparison will allow the overall approach of MCRT methods to be assessed; 
although they are widely used in applied radiative transfer, they are known to neglect the 
detailed electromagnetic treatment that is potentially necessary for full representation of 
propagation in a correlated medium (e.g., Mishchenko et al. 2016). Determining 
shortcomings in the MCRT approach will be greatly helped by having confidence in both 
measurements of atmospheric inputs (e.g., particle size distribution and particle 
clustering) and directional radiative transfer outputs (e.g., direct and diffuse flux). 
Experimental results will be the ultimate arbiter. 

In some scenarios we examined, the changes to direct and diffuse radiation are nearly 
compensating (i.e., direct flux increases and diffuse forward flux decreases are essentially 
offsetting). Do such results suggest that there is no meaningful impact on radiative 
transfer due to particle clustering? We believe the answer to this question depends on the 
problem under consideration: for any problem depending on directional properties of the 
radiation field, the details of direct versus diffuse will be of significance.  
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6.3 Summary and future work concerning the detection of 
particle clustering in Pi Chamber-generated clouds 

In our further investigations of particle clustering and how it impacts direct and diffuse 
radiative transfer, prior to a comparison between computations and experimental 
observations, we simulated radiative transfer in chamber-realistic boundary conditions to 
predict the effects of clustering and how best to conduct such a sensitive experiment. 
Subtle effects can be notoriously difficult to measure, and simulation is often an 
invaluable tool for designers of laboratory experiments. We sought to determine what and 
where measurements should be made, and performing this study numerically (rather than 
risking a series of ill-conceived experiments) was a fruitful path of inquiry. 

As a consequence, the geometry chosen in our study was motivated by the desire to 
explore how best to study optical propagation through a turbulent cloud in the laboratory, 
since the Pi chamber has the advantage of well-characterized and steady-state cloud and 
turbulence conditions. We used LES-generated, polydisperse particle fields to study the 
impact of droplet clustering on directional propagation of visible light, and noted that 
both mean direct and diffuse flux and the standard deviation about those means are 
impacted, even by atmospheric clouds realistic for our laboratory chamber. Even with 
less extreme particle clustering than our Matérn study, it would seem a measurable 
impact could be observed with the use of proper sensing equipment.  

For example, with a nominal (expected) optical depth of 0.1 (typical for a sustainable 
mixing cloud), direct flux was observed to increase from less than 90.5% of incident 
illumination to 90.6% when realistic clustering is present. Furthermore, the standard 
deviation of the same measurement increased from 0.0013 to 0.0031 (a factor of 2.4). In a 
similar fashion, the mean diffuse forward flux decreased from 9.15% of incident 
illumination to 9.03%, but the standard deviation increased from 0.0013 to 0.0031 (same 
factor of 2.4). Sensing equipment sensitive enough to measure the levels of illumination 
of interest, with sufficient resolution to reliably detect variations and build flux 
histograms with confidence, should be capable of discriminating between subtly different 
means with significantly dissimilar standard deviations. 

It should be noted that while our analysis employed the Henyey-Greenstein scattering 
phase function, our Monte Carlo software is capable of using full Mie scattering phase 
functions if desired. While depth-dependent flux results from these two scattering 
methods were compared, this evaluation was performed using an uncorrelated 
monodisperse particle field. Direct and diffuse forward results were essentially identical, 
though backward flux did differ (due to phase functions). A logical progression of our 
work would be to analyze polydisperse LES particle fields with the aid of Mie scattering 
phase functions to determine their impact on direct and diffuse radiative transfer 
predictions. 

Chapter 5 explained that the smallest LES grid resolution was 3.125 cm; particle 
locations within these grids were unresolved and thus given random positions within the 
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appropriate grid. During a future investigation, it may be possible to implement a 
clustering algorithm - within a grid, or perhaps several adjacent grids - for the purpose of 
adding further spatial correlation to the exported LES particle fields. Perhaps a Matérn 
process (similar to that described in chapter 4) could be used to create clusters with the 
appropriate number of particles. Results from these additionally-clustered particle fields 
could be compared to those predicted using random-within-a-grid particle positions.  

Recent investigations into free-space optical (FSO) communication through atmospheric 
scattering media (e.g., haze, fog, cloud, rain) have suggested that transmission losses and 
reductions in data rates are problematic (Khalighi and Uysal, 2014). The culprit is 
believed to be partially caused by temporal spreading of the transmitted pulses 
propagating through the atmosphere, due to scattering-induced diffusion (Shin Hong et 
al., 1977; Kim et al., 1999). The strongly attenuated ballistic signal is detected upon 
direct time-of-flight arrival, but temporally-delayed energy arrives (after this initial 
ballistic energy) as it propagated diffusely through the atmosphere. Essentially, multiply-
scattered energy arrives later than the initial (direct) ballistic energy. A common 
assumption is that this delayed signal can be described as the arrival of a slowly decaying 
late-time diffusion (LTD) tail. The temporal spread of this tail, given by the expression 
∆𝑡𝑡𝐿𝐿𝐿𝐿𝐿𝐿~𝑅𝑅2/(𝑐𝑐 ∙ 𝑙𝑙), is inversely proportional to the speed of light, c, and mean-free-path in 
the medium, l; it is proportional to the square of the propagation distance, R (Bleszynski 
et al., 2018). Through atmospheric clouds or fog, ∆𝑡𝑡𝐿𝐿𝐿𝐿𝐿𝐿 may exceed a microsecond scale; 
for the sake of comparison, ∆𝑡𝑡𝐿𝐿𝐿𝐿𝐿𝐿 in the MTU Pi chamber might range from less than a 
nanosecond (in the case of a mixing cloud) to several nanoseconds (in the case of an 
expansion cloud). 

However, recent time-dependent radiative transfer equation (RTE) analysis has revealed 
that scatterers large compared to the optical wavelength contribute to the development of 
an additional early-time diffusion (ETD) component which arrives immediately after the 
ballistic component (Bleszynski et al., 2014). This component is due to multiple small-
angle scattering inside the forward-scattering lobe of the phase function and is related to 
the optical wavelength, particle radius and mean-free-path of the medium. This ETD 
component may be several orders of magnitude shorter than the more-discussed LTD 
(Bleszynski et al., 2018); in the case of the Pi chamber, ∆𝑡𝑡𝐸𝐸𝐸𝐸𝐸𝐸 might be on the order of 
femtoseconds. The hope is that by isolating the ETD with proper high-pass filtering, 
higher FSO communication data rates and significantly less attenuation may be possible.  

In their analysis, Bleszynski et al. (2018) present time-dependent RTE predictions of the 
ETD and LTD signals and their relative intensities. A logical extension of our MCRT 
scattering code would be to preserve and export ray-traced photon paths, which would 
enable the calculation and visualization of photon travel-time distributions. By summing 
all the consecutive segments of each scattered ray, a total propagation time could be 
computed for each photon path. These path lengths, each with arrival times greater than 
that of the initial (direct) energy, could be used to create a distribution of arrival times. 
This distribution could be normalized by the total number of rays cast, which would 
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provide the ability to determine the relative strength of the ballistic (direct) and delayed 
(diffuse) transmissions as a function of scattering medium properties.  

To this point our published results have focused on two-stream flux components; periodic 
wall boundaries were used to efficiently create a semi-infinite scattering medium with a 
tractable number of particles. However, scattering angles and ray segments are recorded 
internally and could be preserved to investigate angular energy distribution and arrival 
times for comparison to time-dependent RTE predictions for similar atmospheric 
problems. While our recent work employed the HG phase function for simplicity, our 
MCRT code is capable of using an accurate Mie scattering phase function to fully 
represent the small-angle behavior induce by the forward-scattering lobe of large (relative 
to wavelength) scatterers. By placing a theoretical detector opposite the virtual 
illumination source, the ray-tracing code could use received energy (as a function of 
arrival time) to predict if the ETD and LTD “tails” are consistent with published time-
dependent RTE predictions. 
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	The relationship between the aperture PSF and the first term in the aerosol MTF numerator is evident in panel (b) of Figure 2.2, which shows a plot of the direct component of the aerosol MTF. The familiar shape of an aperture MTF is apparent, though t...
	For an imaging system with central wavelength λ=550 nm and D = 2 cm, the expected optical cutoff frequency of 36.4 cy/mrad is evident in panels (a) and (b) of Figure 2.2. Panel (c) emphasizes the fact that the scattered component of the MTF is predict...


	2.4 Experimental Methodology
	This section will detail the experimental methodology employed to study the blurring effects of light scattering by cloud/fog aerosol. The laboratory technique begins with the generation of an expansion cloud using the cloud chamber at Michigan Techno...
	2.4.1 Cloud Chamber
	Experimental verification of aerosol effects are performed using MTU’s turbulent cloud chamber (known as the “Pi Chamber”, depicted in Figure 2.3; see Chang et al. (Chang et al., 2016) for a more detailed description of its capabilities). This control...
	Phase Doppler interferometry (PDI) is used for characterizing the particle size distribution present in the cloud chamber after aerosol particles are injected and cloud droplet growth has occurred under controlled, supersaturated conditions. Past expe...
	Figure 2.3. A cutaway schematic of the cloud chamber at Michigan Technological University, with one door open and the (removable) cylindrical thermal panel in place. The horizontal propagation path through this atmospheric chamber is approximately 2m....
	To create an expansion cloud, the pressure in the chamber is reduced, resulting in a reduction in the air temperature, and a resulting increase in the relative humidity. This eventually generates supersaturated conditions so that water vapor condenses...
	A mixing cloud can be generated by creating a negative temperature gradient between the bottom and top surfaces of the cloud chamber interior. Warm, saturated air rising from the bottom surface mixes with the cold, saturated air originating at the top...
	Laser sheet imaging was performed to illuminate cloud droplet distributions in the chamber and photograph the resulting cloud structure. Examples are shown in Figure 2.4, illustrating the turbulent droplet structure in two planes (left image) as well ...
	Figure 2.4. (a) Imagery showing the chamber-generated turbulent cloud droplet structure in two planes using both vertical and horizontal laser sheets (λ=532nm). “Swirls” in the laser-illuminated cloud plane demonstrate the presence of turbulence. (b) ...

	2.4.2 Experimental Setup
	By capturing images using light that has propagated through a 2m x 2m x 1m turbulent cloud chamber, the extinction and scattering effects of the atmosphere can be studied in a controlled environment. Spatial (PSF) and spatial frequency (MTF) analysis ...
	In the experiments examined in this paper a series of expansion clouds (as well as a mixing cloud) was created within the cloud chamber. A monochromatic visible-light camera with a detector resolution of 1384x1032 and a pixel size of 6.45 μm (the FLIR...
	The knife edge target was affixed to the exterior of one viewing porthole, and the camera was placed against the exterior of the opposite porthole, creating a 2 meter propagation path through the chamber. Black cloth was draped behind the camera and a...
	An illustration of this experimental setup is shown in Figure 2.5 (left), along with example images taken in the presence and absence (aerosol and control, respectively) of an expansion cloud. Control images were taken while the cloud chamber was not ...
	Figure 2.5. (a) Illustration of experimental setup with monochromatic camera, positioned outside cloud chamber near an optical viewport, focused through the expansion cloud on binary knife-edge target located just outside opposite viewport. (b) Repres...

	2.4.3 Experimental MTF Calculation Method
	The need for precise MTF measurements requires employing a procedure such as the edge spread method (Wyatt, 1991; Reichenbach et al., 1991; Dror and Kopeika, 1995; Tzannes and Mooney, 1995; Holst, 1998; Boreman, 2001; Nugent et al., 2010), where a tar...
	This inevitably results in a broadened black/white transition, since the PSF of an imaging system is always broader than a delta function. Consequently, the originally-sharp black/white transition is blurred into a gradient with a finite slope. A line...
	Both the ESF (directly) and LSF (indirectly via spatial gradient) can be obtained from the measured image. Boreman shows that the system MTF is the Fourier transform of the LSF (Boreman, 2001), meaning that the aerosol MTF can be calculated from the L...
	This system-level MTF includes effects from the atmosphere, lens and detector. Although not considered in this study, turbulence effects can also be measured simultaneously from this same edge imagery, another benefit of this method (Dror and Kopeika,...

	2.4.4 Imaging System Considerations
	Since the aerosol MTF was to be contrasted with the aperture diffraction MTF from which it was developed, the lens used for the chamber imaging studies was chosen to allow adequate MTF sampling with the available detector pixel spacing. Since a digiti...


	2.5 Results of Closure Experiment
	In this section the results of the cloud chamber imaging experiment are presented. Measurements of the aerosol size distribution are shown, as are LSF and MTF curves calculated from control and through-aerosol measured imagery. Theoretical predictions...
	2.5.1 Measurement of Cloud Aerosol Size Distributions
	The MTU cloud chamber was used to generate expansion clouds as well as mixing clouds, and of the two, the mixing cloud was observed to have the smallest optical depth. Since maximum aerosol influence is desired, expansion clouds were the focus of subs...
	Figure 2.6. Measured expansion cloud and mixing cloud droplet size distributions shown along with four theoretical fog model distributions. Note that the range of measured droplet radii is comparable to theoretical models, but measured number concentr...
	Using Mie theory (Ishimaru, 1997; Bohren and Huffman, 2004) the scattering cross section σsca(λ,r) can be computed as a function of particle radius, r for the central wavelength of 550 nm in the visible spectrum. Combining these radius-dependent scatt...
	Table 2-1. Optical Properties Calculated from Measured Aerosol Particle Size Distributions
	Note that in Table 2-1, three separate droplet radius values are listed. The first, amode, refers to the most numerous particle radius (or dominant radius) as found by the Phase Doppler histograms. This parameter is present in the aerosol PSF and MTF ...
	The effective droplet radius (aeff) is similarly calculated from a droplet size distribution as
	Both of these methods produced values greater than the simple histogram maximum, due to the positive skewness of the measured size distributions.

	2.5.2 Calculating the Control Modulation Transfer Function
	To ensure the accuracy of the knife edge MTF calculation method, control images (lacking the presence of cloud aerosols) were captured through the empty cloud chamber. The LSF was computed as the horizontal spatial gradient of the edge response across...
	During this control MTF investigation, an ideal theoretical diffraction-limited MTF was applied to a pristine, digital knife edge pattern with the same resolution as the actual monochromatic imager. The edge response was taken from the resulting blurr...
	Figure 2.7. (a) Diffraction-limited LSF comparison between ideal (floating point) and quantized to simulate various finite bit-depth detectors. (b) Family of MTF curves computed from the diffraction-limited LSFs shown in (a).
	Panel (a) of Figure 2.7 shows the various LSF curves, with the dynamic range plateaus of each quantized curve evident. The maximum dynamic range of an analog-to-digital converter (ADC) with Q bits is less than 20,,log-10.-,,2-𝑄... decibels because of...
	Panel (b) shows the MTF curves computed via FFT from the LSF curves, and two observations are noted here. First, the floating point LSF does in fact return a diffraction-limited MTF almost indistinguishable from the original, theoretical control MTF. ...

	2.5.3 Aerosol Point Spread Function Analysis
	Prior to calculating experimental aerosol MTF curves and comparing them to theoretical predictions made from measured boundary conditions, we begin with an analysis of the expected aerosol PSF after detector quantization. As described in equation (3),...
	To demonstrate this, we calculate the expected PSF of the imaging system in the presence of expansion cloud droplets in the cloud chamber for a 2-meter propagation path. A dominant particle radius of 8 µm is selected as representative of the droplet d...
	Figure 2.8. (a) Direct, unscattered component of PSF whose shape is the familiar diffraction-limited Bessel function. (b) Indirect, scattered component of PSF which takes the form of a decaying exponential. (c) Normalized combination of direct and sca...

	2.5.4 Predicted Aerosol Modulation Transfer Function
	With an aerosol PSF measured for a representative expansion cloud, predictions for the expected shape of the aerosol MTF can be made. Using the analytic MTF expression given in equation (10), which was developed from Ishimaru’s published aerosol PSF (...
	The second method obtains aerosol MTF responses from a 2D Fourier Transform of the sampled aerosol PSFs. Care was taken to ensure that this operation yields the ideal theoretical MTF when the unquantized PSF is used instead of the detector ADC-limited...
	Panel (a) of Figure 2.9 shows the attenuated, direct component of the MTF which falls off as the optical cutoff frequency is approached and differs from the diffraction-limited case only because of the chamber’s non-zero optical depth. Panel (b) shows...
	Figure 2.9. (a) Direct component of the aerosol MTF, which is an attenuated version of the diffraction-limited cos-1 function. (b) Indirect, scattered component of the aerosol MTF. (c) Ideal and 13-bit quantized versions of the total aerosol MTF for a...
	To investigate the sensitivity of the resultant MTF shape to the bit-depth of a detector, several dynamic ranges were used to quantize the aerosol PSF before conversion to the spatial frequency domain. In addition to the previously shown 13-bit quanti...
	Figure 2.10. Ideal aerosol MTF, predicted from theory, is compared to several dynamic range-limited simulations of various bit-depth detectors.
	The sensitivity of the (quantized) aerosol MTF response to the primary parameters used to describe the droplet distribution, namely dominant radius and optical depth, was also explored. This was done by first holding the dominant droplet radius consta...
	Figure 2.11. (a) Impact of varying dominant droplet radius on [quantized] aerosol MTF, assuming constant optical depth.  (b) Variations in [quantized] aerosol MTF due to various optical depths, assuming the same dominant droplet radius.
	In the case of varying primary droplet radius, shown in panel (a) of Figure 2.11, the ideal responses show little change but the quantized curves are significantly impacted. Additionally, the order of the curves is reversed after dynamic range limitat...

	2.5.5 Measured Aerosol Modulation Transfer Function
	System-level aerosol MTF curves were calculated from imagery captured through expansion clouds created in the MTU cloud chamber. The process to obtain this measured aerosol MTF was the same as described in Section 2.5.2, where an LSF was computed by d...
	Figure 2.12. (a) Normalized line spread function measured during Expansion Cloud #3 on March 17, 2017 through the MTU cloud chamber. (b) Measured aerosol MTFs obtained from imagery captured through expansion clouds.
	With a measured aerosol MTF calculated from imagery captured through the cloud chamber in the presence of an expansion cloud, a comparison can be made to the predictions made in Section 2.5.4. Figure 2.13 combines the theoretical (quantized) aerosol M...
	Figure 2.13. Measured and predicted aerosol MTFs shown together for comparison.
	Given the sensitivity of the quantized theoretical expressions to the selected dominant droplet radius and uncertainty in the measured particle mode, the 8μm-radius prediction matches the measured aerosol MTF quite well. The 7.5μm and 8.5μm bit-depth ...


	2.6 Summary and Discussion
	Aerosol scattering is thought to contribute to the blurring and contrast reduction found in measured optical images. Here we showed that a theoretical modulation transfer function can be computed which includes atmospheric attenuation, small-angle aer...
	The significance of blurring due to aerosol scattering is not agreed upon in the literature, and several conflicting theoretical models for predicting the impact of small-angle scattering exist. Various PSF models which incorporate aerosol scattering ...
	After detailing theoretical PSF and MTF expressions to predict the impact of aerosol scattering on measured imagery, we proposed and showed the results from a closure experiment using the MTU cloud chamber. Our methodology involved capturing knife-edg...
	According to analysis of MTF measurements performed in numerous laboratories (Williams and Becklund, 2010), measuring a modulation transfer function to within 5% of a theoretically-predicted curve demonstrates sufficient accuracy. The measured control...
	The (ideal) predicted aerosol MTFs showed only a slight sensitivity to small variations in dominant droplet radius, with moderate MTF response changes due to various optical depths. However, bit-depth quantizations of the ideal aerosol MTFs displayed ...
	The (quantized) predicted MTFs matched the measured aerosol curves reasonably well, disagreeing by less than 10% for a single combination of droplet radius and optical depth. Due to the sensitivity to the droplet radius selected for the predicted curv...
	Overall, the concept of closure between MTFs obtained from directly-measured images and MTFs calculated from theory using measured cloud properties in a laboratory setting, has been demonstrated to be achievable and quantitatively successful. The comp...
	In future experiments we intend to explore a wider range of cloud conditions, especially at larger values of optical depth, and for a broader range of particle sizes. Further, the thermal convection capability of the cloud chamber will enable explorat...


	3 Monte Carlo Scattering Simulation: mcScatter
	A Monte Carlo scattering simulation was created in Matlab (a MathWorks product), for the purpose of performing experimental interactions between light and cloud distributions virtually. In a computer simulation, some of the physical constraints of an ...
	3.1 Overview of the mcScatter Graphical User Interface (GUI)
	A graphical user interface (GUI) was created for the mcScatter simulation. The application’s GUI allows users to provide a variety of inputs, including:
	 size of the virtual volume
	 number density, size (radius) and spatial distribution of the particles
	 initial photon ray positioning method and scattering phase functions
	 volume “wall” boundary conditions and subvolume resolution
	 optical wavelength, refractive index of air and scattering media
	Figure 3.1.  Screenshot of ‘mcScatter’ application GUI
	The mcScatter GUI allows users to define the scattering simulation inputs, control the methods used to initialize and propagate rays through the particle distribution, view statistics calculated from the simulation output and visualize relevant result...

	3.2 Particle generation
	3.2.1 Uniform randomly-distributed particle locations
	The simplest ‘cloud’ that can be generated by the scattering simulation is a random monodisperse distribution. The user selects the desired number density and particle radius, and the required number of particles are inserted at uniformly-random locat...
	Figure 3.2. Representative example of uniformly-random monodisperse particle distribution.
	For a more realistic ‘cloud’, a polydisperse particle distribution can be generated. A pre-programmed particle size distribution function (based on a smoothed version of a MTU cloud chamber-generated expansion cloud) is selected and scaled up or down....
	Figure 3.3. Particle size distribution function used for polydisperse media, referred to as “cloud1”.
	Figure 3.4. Representative example of a spatially-random polydisperse particle distribution, referred to as “cloud1”.
	Note that the symbol colors in Figure 3.3 correspond to various particle sizes; these same symbol colors are used in Figure 3.4 (along with symbol size) to indicate particle size.

	3.2.2 Matérn spatial particle distributions
	The scattering simulation can also generate non-uniform particle locations. In this mode, a Matérn-based algorithm places the desired number of (monodisperse) particles heterogeneously throughout the volume in clusters, or groups, of particles (see Fi...
	Figure 3.5. Representative example of Matérn-generated monodisperse particle distribution, where aerosols are clustered instead of randomly spaced throughout the volume.


	3.3 Subvoluming particles in the scattering media
	3.3.1 Binning particles into subvolumes
	By its very nature, mcScatter simulates a scattering medium by ray-tracing photon paths through a volume containing numerous particles at specified (stationary) spatial locations. Intersections between these photon rays and particles create scattering...
	To ease this mathematical burden, a pre-processing step is performed where the cloud volume is divided into “subvolumes”. Each subvolume will necessarily contain only a small portion of the total number of particles. As a photon ray travels through th...
	During the particle-binning process, illustrated in Figure 3.6, the scattering volume is divided into an equal number of subvolumes (Step 1, left). Next, particle centroids are used to determine the subset of particles assigned to each subvolume. Beca...
	Figure 3.6. Diagram showing how particles in the volume are grouped into subvolumes. Dashed lines indicate “margins” that allow some subvolumes to overlap, categorizing some boundary-crossing particles into multiple subvolumes to ensure collisions are...
	For example, consider a ray passing parallel but very near to a subvolume wall towards a particle which straddles two subvolumes. In this scenario, the ray may strike the edge of the particle even though its centroid is located in another subvolume. I...

	3.3.2 Creating a depth-independent 2D particle map: “littleJohn”
	The particle-binning process, which determines which particles are contained within each subvolume, is a pre-processing step that makes subsequent ray-tracing calculations more efficient by reducing the number of particles that each ray segment must b...
	Figure 3.7. Diagram of the process for resolving the spherical particles in an X-Y subvolume into a mask of filled and unfilled cells.
	The leftmost diagram shows an example of a polydisperse particle distribution, where diversity in aerosol radius is indicated by color. The thick outer border represents the X-Y extent of the overall medium, and the dashed lines indicate the X-Y bound...
	The center diagram of Figure 3.7 enlarges an X-Y subvolume from the leftmost pictorial, and indicates how 3μm-wide cells are used to discretize particle positions. The black gridlines in this diagram show these cell boundaries; the centroid of each ce...
	Taking this example further, suppose that there are 120 subvolumes in both the X and Y dimensions (120 x 120). Given a sufficient number of particles in the volume, a binary mask showing which subvolumes contain at least one particle might resemble th...
	Figure 3.8. [Left] Example of a binary mask showing which subvolumes contain at least one particle; note that a border of subvolumes around the perimeter of the mask is voided to avoid rays being cast near the “chamber” walls. [Right] Map showing the ...
	An enlarged binary particle mask from a single X-Y subvolume (which would correspond to a single colored square pixel in the rightmost image of Figure 3.8) is shown in Figure 3.9. Yellow pixels indicate filled cells where a particle (at some unknown d...
	Figure 3.9. [Left] Example of a single particle-resolved subvolume taken from the center of the map shown in Figure 3.8; yellow cells indicate the presence of a particle (at any depth), and blue indicates the lack of particles where direct illuminatio...


	3.4 Ray Tracing Photon Paths
	3.4.1 Initial Photon Positions
	The (x, y, z) starting point(s) of the photon-rays cast by the scattering simulation can be initialized in four unique ways including ‘single’, ‘robinHood’, ‘littleJohn’ and ‘random’. Each method starts all photon-rays in the X-Y plane where z is 0 (e...
	The ‘single’ method initializes all rays to a starting location of (0, 0, 0). This mode is the simplest but least useful for scientific study, intended only for debugging purposes. Whichever particle the first ray strikes is struck by all rays; if the...
	The ‘robinHood’ method aims each ray at a different particle in the distribution, in descending order from largest particle to smallest. For ray n and the corresponding particle n, this would result in a ray starting point of (xn, yn, 0) if the intend...
	Figure 3.10. Representative example depicting five (5) photon rays cast into a volume using the ‘robinHood’ initial position method. Less than 50 particles were placed in the volume, yet each ray intersected one of the sparsely-placed spheres.
	By first calculating the X-Y coverage of the volume by the particles in the distribution (regardless of depth), the percentage of rays that would have passed directly through the volume can be incorporated statistically in a post-processing step. This...
	The ‘littleJohn’ method can be thought of as a compromise between the ‘random’ and ‘robinHood’ modes, where ray starting points are randomly generated but statistically informed by the spatial location of particles in the volume. Essentially an import...
	Figure 3.11. Process used by the ‘littleJohn’ ray positioning method. A random subvolume is selected, and the relative number of filled cells it contains is used to calculate the number of rays cast into that subvolume. Each of these rays is cast, in ...
	Rays are cast into each subvolume containing at least one particle, though the order of X-Y subvolume interrogation is chosen at random without replacement (Figure 3.11, left). Additionally, and critically, the number of rays cast into each subvolume ...
	Once the particle surface area-weighted number of rays has been calculated, and the subvolume has been selected at random (without replacement to avoid duplication and over-illumination), the actual (x, y) positions of the rays are chosen. This is don...
	The ‘random’ initialization method starts all photon-rays at uniformly-random locations in the X-Y plane defined by the origin face. Sampling artifacts are reduced or eliminated with this approach, and when a sufficiently large number of particles are...
	Currently, all four of these methods employ an initial scattering angle of zero (straight from the origin face toward the opposite face of the cubic volume). This starting polar angle is currently hardcoded to a value of 0 but could be exposed for use...

	3.4.2 Particle-Ray Intersection Testing
	The occurrence of a scattering event is determined by the geometrical relationship between rays cast through the volume and the spherical particles (including their scattering efficiency) it contains. The scattering medium is divided into numerous sub...
	1. Determine which particles are contained in the subvolume of interest
	2. Loop over all particles in the subvolume
	3. Test each particle, independently, to see if there is a collision between the particle and the ray in question
	4. For the subset of particles intersected by the ray, calculate which of these ray-scattering particles is closest to the ray origin (point of first collision)
	5. Record ray-particle collision point, to be used as the next ray origin (after a new scattering angle has been chosen to set the direction of the next ray segment)
	Fundamentally, this process is relatively straightforward. However, beyond lots of meticulous bookkeeping, a mathematically-efficient method for ray-particle intersection testing is needed. The mcScatter simulation is based on an analytic solution to ...
	All the points that lie on a ray segment can be described by a set of equations, with an equation for each dimension. Similarly, all the points that lie on the surface of a sphere can be described by a single quadratic expression. For a 3D ray passing...
	Figure 3.12. Illustration of ray-sphere intersection test (left). Depiction of a ray passing through a particle in the volumetric distribution (right).
	Assuming the spherical particle under test is centered at (XP, YP, ZP) with a radius of RP and scattering efficiency Qsca, the set of (x, y, z) points on its 3D surface can be described with the expression
	Since the centroid and radius of the sphere are known, this single quadratic equation has three unknowns which together describe the (x, y, z) surface of the sphere. The three-dimensional ray under examination can be expressed by a set of three equati...
	In this system of ray equations, (X0, Y0, Z0) represents the ray origin, (dX, dY, dZ) are the normalized ray directions, and (x, y, z) is the endpoint of the ray assuming its scalar length is t. A positive value of t describes points that lie forward ...
	The task that remains is to determine if a valid (i.e., both real and positive) value(s) of t exists. Solving Equation (20) for t yields the expression
	if we define a, b and c as follows:
	Several important distinctions can be made by examining the discriminant (b2 - 4ac).
	 If the discriminant is negative, the roots are imaginary and thus there is no valid intersection.
	 If the discriminant is exactly zero, yielding a single real positive root, then a single collision will occur (ray is tangent to spherical particle, touching its surface at a single point).
	 If the discriminant is positive and 𝑡>0, then the presence of two real positive roots implies a double collision. When a ray-particle collision occurs, a double collision is most likely as the ray enters the sphere at one location and exits at anot...
	When a ray intersects a particle, the collision point is recorded as the particle centroid (and not the point on the sphere’s surface); the subsequent ray segment begins from this centroid. This method simplifies bookkeeping but also assumes that any ...
	Figure 3.13. Illustration of photon propagation paths recorded by a Monte Carlo scattering simulation; an orthographic 3D view is shown (left) along with a 2D side view (right). In the side view in the right-hand panel, rays originate at Z = 0 m and t...

	3.4.3 Phase functions
	The scattering phase function describes the angular distribution of light intensity scattered by a particle for a given wavelength. This particle-induced redirection of radiation from the original propagation direction is not always isotropic. In the ...
	However, it is often convenient to have an analytic formula that approximates the actual scattering phase function shape. The Henyey-Greenstein phase function, essentially a probability density function (PDF), is a common surrogate for the actual phas...
	The mcScatter software makes both Mie and HG (Henyey-Greenstein) phase functions available for scattering simulations, as the GUI provides users with the choice between them. In the case of the HG phase function, which relies solely on the asymmetry p...
	However, since Monte Carlo simulations require a cumulative density function from which to randomly draw, the PDF must be integrated over all possible scattering angles (0  to 180 ). Analytically, after solving for ,cos-𝜃., this results in the expres...
	where rand refers to a uniform random number in the range [0-1]. During the scattering simulation, each time a new scattering angle is required, a random number is drawn and substituted into Equation (24) to generate a Δθ to add to the current polar a...
	Histograms of the recorded Δθ (polar scattering angles drawn from the HG distribution) can be computed and compared to the closed-form analytic expressions to ensure a trustworthy implementation. Figure 3.14 shows such a comparison, with cumulative de...
	Figure 3.14. Cumulative density functions (left) and probability density function (right) computed from Monte Carlo statistics, compared to the Henyey-Greenstein analytic expressions (red dashed lines).
	Simulations can utilize Mie scattering phase functions instead of the commonly-employed HG alternative. Figure 3.15 shows a representative example of a Mie scattering phase function calculated by mcScatter for an optical wavelength of 550nm, particle ...
	Figure 3.15. Representative comparison between the Mie scattering phase function in the mcScatter application and an output from Philip Laven’s MiePlot. An optical wavelength of 550nm, droplet radius of 8 microns and a refractive index of 1.3356013 + ...
	These Mie probability density functions can be integrated over scattering angle and normalized to produce cumulative density functions for scattering angle generation. Like the HG polar angle generation method, uniform random numbers are drawn and use...
	It is important to note that the HG phase function, which is meant to approximate the more accurate Mie PDF, makes some compromises regarding emphasis of forward-, side- and back-scattering. Figure 3.16 shows both the Mie and HG phase functions for a ...
	Figure 3.16. Comparison of phase functions calculated with Mie theory and approximated by the analytic Henyey-Greenstein (using a Mie-based asymmetry parameter).
	Figure 3.17. Comparison of the forward scattering lobes of the Mie theory and analytic Henyey-Greenstein phase functions.

	3.4.4 Particle volume wall boundary conditions
	The boundary conditions of the particle volume side walls can be set to one of four (4) modes including ‘absorbing’, ‘periodic’, ‘reflective’ and ‘diffuse’. For convenience the six (6) walls or “faces” of the cubic volume are referred to using the fol...
	 Origin (origination face for radiation, where photon-rays are cast from)
	 Sensor (rays are cast from the Origin face towards this opposing face)
	 Right and Left (opposite each other, orthogonal to Origin)
	 Top and Bottom (opposite each other, orthogonal to Origin)
	Figure 3.18. Particles are contained in a cubic volume with six (6) walls or “faces”.
	The ‘absorbing’ mode treats all 6 faces of the cube as perfect absorbers with a reflectivity of zero. Any photon that strikes a face stops immediately at the point of impact; the ray ends, the path length ends, and the face struck is recorded for even...
	The ‘periodic’ mode treats the Right, Left, Top and Bottom faces as soft boundaries. Rays that strike them are not terminated (as they would be with the ‘absorbing’ mode). Instead, the would-be termination point of the ray becomes the starting point o...
	The ‘reflective’ and ‘diffuse’ wall conditions, like the ‘periodic’ mode, allow ray termination only on the Origin and Sensor walls. When one of the other four faces is struck by a ray, the ray is reflected back into the particle chamber. If ‘reflecti...
	Figure 3.19. Illustration of the ‘periodic’ wall condition, where a ray wraps around until it terminates on the Sensor face. The solid black line segment represents the direct path, prior to and up until the first collision. The red dotted line shows ...


	3.5 Monte Carlo scattering inputs
	The mcScatter simulation software is capable of running in many ways, with several modes provided to control a number of behaviors. Screenshots of the GUI are shown here with some description of the inputs and the intent behind them, to elucidate the ...
	Figure 3.20. Primary inputs for controlling the behavior of mcScatter simulations.
	The primary inputs of the scattering simulation, shown in Figure 3.20, are grouped together on the mcScatter GUI. They are described only at a high-level here in Table 3-1; more detail on some of the more unique modes is given elsewhere.
	Table 3-1. Description of primary mcScatter simulation inputs.
	Several atmospheric parameters, listed in Table 3-2, are provided as inputs to the scattering simulation (see Figure 3.21). These are used to control the type of coherent light assumed for the simulation and the scattering medium into which photon ray...
	Table 3-2. Description of atmospheric input parameters
	Figure 3.21. Inputs to mcScatter simulation for atmospheric parameters.
	The last input group (Figure 3.22) controls the method of particle location generation, the density and size distribution of those particles. Additionally, an estimate of the total number of particles required to achieve the user’s specifications and ...
	Figure 3.22. Inputs to mcScatter simulation for spatial positioning of particles.
	Table 3-3. Inputs for controlling the particle distribution generated for scattering.

	3.6 Running a Monte Carlo scattering simulation
	A complete Monte Carlo simulation involves undertaking several major steps including particle distribution generation, dividing particles into subvolumes, and finally casting rays into the scattering medium and tracing their propagation paths. In a ty...
	Figure 3.23. Controls for launching a mcScatter simulation
	These three primary tasks each require several sub-tasks, detailed here:
	Generate Particle Distribution:
	1. First, optical properties and scattering phase functions are calculated for all required particle radii using Mie theory. The outputs of the Mie calculations, which are dependent on the particle radii (and optical wavelength), include:
	 scattering coefficient, k [m-1]
	 scattering efficiency, Qsca
	 asymmetry parameter, g
	 unpolarized scattering phase function, S
	 cumulative density function (CDFS) for the phase function
	2. Next, the spatial locations of the required number of particles are generated based on user inputs for number density and desired degree of homogeneity. The outputs include (x, y, z) 3D positions and corresponding radii values for all particles ins...
	3. Finally, a set of quantitative results are displayed in the right-most output window. These, described in greater detail in section 0, include the following:
	 scattering phase function method
	 azimuthal angular variation method
	 initial photon positioning method
	 modal aerosol/particle/droplet radius
	 total number of particles
	 particle number density
	 total scattering coefficient
	 propagation range from top to bottom of the virtual cloud
	 lateral dimensions (width and height) of particle distribution
	 total optical depth
	Subvolume Particles:
	1. The X-Y-Z limits of each subvolume (and their secondary boundaries once an additional margin is included) are calculated. These are used to determine which particles are located inside each subvolume, to expedite the ray-particle intersection testi...
	2. During the prior step (determination of which particles are in each subvolume), additional particle discretization is performed if the ‘littleJohn’ initial positioning method has been selected due to the inputs required for this mode. These additio...
	 binary map indicating which subvolumes contain at least one particle
	 binary masks indicating which cells in a given subvolume are “filled”
	 numerical maps indicating the number of filled cells in each subvolume
	 numerical maps specifying the number of rays to cast into each subvolume based on total desired rays and number of particle cells in each subvolume
	Ray-Trace Photons:
	1. The ray-tracing procedure, which involves casting photons into a scattering medium and calculating their propagation through the virtual cloud, is complex. It involves a lot of bookkeeping, conditional logic and calculations along the way. The majo...
	 Determining initial (x, y, 0) ray origination points
	 Determining initial polar and azimuthal ray angles
	 Tracing each ray through the subvolumes that comprise a virtual cloud
	 Searching for intersections between each ray and particles contained in the subvolumes they traverse
	 Calculating new scattering angles and subsequent ray directions when ray-particle collisions occur
	 Following the propagation of rays through subvolumes filled with particles until a ray termination point is reached
	2. The primary ray-tracing outputs recorded by this sophisticated scattering simulation include:
	 Array of polar and azimuthal scattering angles, recorded independently from photon ray, to compare against intended probability distributions
	 X, Y and Z arrays recording the initial, final and intermediate collision positions of each photon ray
	 Array indicating which face each ray struck upon termination
	 Arrays containing the direct and diffuse forward flux and diffuse backward flux for comparison against two-stream theory and alternative Monte Carlo codes
	As the three primary steps of the scattering simulation are performed, the user is apprised of their status on the GUI. Figure 3.24 shows screenshots of the status portion of the GUI. The image on the left is seen before a simulation has begun; the ri...
	Figure 3.24. Status updates are reported to the user via the mcScatter GUI.
	With some minor code changes, it would be possible for a subset of these steps to be used individually or together for various purposes. For example, users could choose only to Generate Particle Distribution without performing a scattering simulation.

	3.7 Monte Carlo scattering simulation feedback
	The mcScatter simulation provides feedback to the user regarding the specifics of progress including the time required for various steps. This feedback helps the user understand which steps are the most time consuming and aids in estimating the comput...
	Figure 3.25. Representative user feedback from scattering simulation.

	3.8 Monte Carlo scattering statistics
	At the conclusion of the particle generation step, various simulation parameters are reported to the user via the mcScatter GUI. These include both the user-defined primary modes selected for the simulation (scattering phase function, probability dist...
	Figure 3.26. Example of mcScatter results and statistics reported to the mcScatter GUI.

	3.9 Monte Carlo scattering plots and results export
	A number of plots can be generated by the mcScatter simulation software to visualize results from the ray-tracing procedure. These plots include:
	 Spatial distribution of particles (see Figure 3.27)
	 Particle size distribution function (see Figure 3.3)
	 Scattering angle and free path distributions (see Figure 3.14 and Figure 3.28)
	 Two-stream flux (see Figure 3.29 and Figure 3.30)
	Figure 3.27. Example of spatial particle distribution plot that can be generated by mcScatter. The number of displayed particles is limited to a maximum of 10,000 and the marker color(s) are determined by particle radii.
	Figure 3.28. Distribution of azimuthal (not scattering) angles drawn by MC process.
	Figure 3.29. Comparison between MCRT forward and backward flux results and traditional two-stream theory (Bohren and Clothiaux, 2011).
	Figure 3.30. Various flux components recorded during a MCRT simulation, compared to two-stream theory.
	In addition to these plots, directional flux components (e.g., direct, diffuse forward and backward) are recorded at a high spatial fidelity throughout the physical depth of the simulated cloud for export to an Excel spreadsheet. This allows for furth...
	Figure 3.31. Diffuse forward flux results from ten (10) individual cloud simulations along with their mean.


	Units
	Description
	Input
	meters
	Outer dimensions of scattering volume
	Volume Dimensions
	photons
	Number of rays cast into the volume
	Number of photons
	n/a
	Phase function to use for scattering: [‘Mie’, ‘HG’, ‘random’, ‘none’]
	Scattering Phase Function
	n/a
	Variation of azimuthal angle upon a scattering event: [‘random’, ‘none’]
	Azimuthal Variation
	n/a
	Method of choosing the initial (x,y) position of each ray: [‘littleJohn’, ‘robinHood’, ‘random’, ‘singleInit’] 
	Initial Photon Positioning
	n/a
	Boundary conditions to assign the virtual walls of chamber: [‘absorbing’, ‘periodic’, ‘reflective’, ‘diffuse’]
	Volume Boundary Conditions
	subv.
	Number of subvolumes around the perimeter of the volume to disallow ray casting (for the ‘littleJohn’ positioning method only; reducing particle mapping time and avoids edge-casting if ‘periodic’ positioning mode is not selected)
	Border subvolumes to skip
	Edge dimension of cells used to discretize the particles in a subvolume (for the ‘littleJohn’ positioning method only)
	Desired spatial resolution for particle-mapping
	μm
	#/subv.
	Average number of particles to target for each subvolume (no. of subvolume is increased to reach this target; used by all positioning modes except ‘littleJohn’)
	Desired mean number of particles per subvolume
	%
	Width of chamber to allow rays to originate from (to avoid casting near an edge; used for ‘random’ positioning method only)
	Fractional width of photon launch region
	meters
	Initial (x,y,z) position for all rays (for ‘singleInit’ positioning method only)
	Single initial photon position
	Units
	Description
	Input
	Wavelength of light in simulation
	Optical wavelength
	μm
	n/a
	Refractive index of air
	Refractive index of air
	n/a
	Real component of refractive index of particles in scattering medium
	Refractive index of particle [real]
	n/a
	Imaginary component of refractive index of particles in scattering medium
	Refractive index of particle [imag]
	Units
	Description
	Input
	n/a
	Method for generating spatial locations of particles [‘random’, ‘Matérn’, ‘Load’]
	Positioning method
	n/a
	Either a pre-determined polydisperse cloud or a user-defined monodisperse cloud can be generated [‘cloud1’, ‘mono1’]
	Particle size distribution function
	n/a
	Scalar for reducing the total number of particles created while preserving the ratios between each particle radius
	Particle size distribution function scale factor
	μm
	Controls the particle radius for monodisperse cloud simulations
	Monodisperse radius
	#/cm3
	Defines number density for monodisperse cloud simulations
	Monodisperse number density
	n/a
	Number of Matérn parents of particles (e.g., groups or clusters)
	Number of parents
	#/parent
	Mean number of particles contained in each Matérn parent or cluster
	Mu
	n/a
	Radius of Matérn clusters
	R
	meters
	Extent of Matérn particle domain
	< X, Y, Z >
	n/a
	Opens a file dialog to load a saved particle distribution (currently unavailable)
	Load…
	#
	Estimate of the total number of particles required by the current simulation inputs
	Approximate no. of particles
	n/a
	Estimate of the total optical depth, τ, with the current simulation inputs
	Approximate optical depth
	4 Light scattering in a spatially-correlated particle field: Role of the radial distribution function
	This chapter details predictions of direct and diffuse transmission of visible light through spatially correlated particle fields, focusing on the role of the radial distribution function in predicting deviations from radiative transfer theory for con...
	4.1 Abstract
	Radiative transfer through particle-laden media such as clouds can be impacted by variations in particle spatial distributions. Due to mixing and inertial effects of droplets suspended in the almost always turbulent atmosphere, cloud particles are oft...

	4.2 Introduction
	Radiative transfer through a spatially correlated medium results in a distinct behavior, essentially because photons propagate further in void regions, and experience stronger extinction in dense regions, relative to a homogeneous medium (Marshak and ...
	When spatial correlations are present in the positions of perfectly absorbing particles, deviations from the usual exponential extinction emerge (Kostinski, 2001; Larsen and Clark, 2014; Frankel et al., 2017); these deviations can be both super- or su...
	How does the situation change when we consider diffuse radiation in a scattering medium? Previous results were for absorbing particles or, equivalently, extinction of a direct beam, and we might expect that the situation with scattering is more comple...
	We address the problem using the ray tracing Monte Carlo radiative transfer approach that has been shown to be consistent with standard radiative transfer (e.g., Bohren and Clothiaux, 2011). This should be consistent with the findings of Mishchenko (M...
	There are several reasons motivating the use of Monte Carlo Ray Tracing (MCRT) within a field of discrete particles rather than the more standard (and computationally efficient) photon-path-distribution function. At a fundamental level, we are explori...
	In this work, perfectly random and correlated spatial particle distributions (generated using a Matérn Point Process model, having a known closed-form radial distribution function) are generated within a simulation volume. Then, a Monte Carlo Ray Trac...
	The paper proceeds as follows: In Sec. 2 we define the radial distribution function (RDF) and introduce the Matérn process as an analytic model for introducing particle spatial correlations via the RDF. In Sec. 3 we describe the Monte Carlo Ray Tracin...

	4.3 Exploring the Matérn cluster process
	4.3.1 The influence of particle clustering on transmission through a scattering medium
	As noted above, deviations from exponential attenuation in traditional radiative transfer theory are expected when the particles in the medium are spatially correlated (Kostinski, 2001). Inertial particles in a turbulent fluid (e.g., cloud droplets in...
	The radial distribution function 𝑔(𝑟) of a particle-laden medium quantifies the scale-localized clustering of the particles in the medium (Landau and Lifshitz, 1980; Reade and Collins, 2000; Shaw et al., 2002a; Saw et al., 2012; Larsen and Shaw, 201...
	Algorithmically, 𝑔(𝑟) can be understood as the observed number of particle pairs separated by distance 𝑟±𝛿𝑟 relative to the number of particle pairs expected at the same distance for a perfectly random population (Poisson distributed at all scales).
	Testing the radial distribution function dependence on radiative transmission through a purely scattering medium will be facilitated by generating scatterer positions within the simulation volume via a method that produces a known, closed-form radial ...
	The Matérn cluster process (Matérn, 1972, 1986; Martínez and Saar, 2002) is a Neyman-Scott point process model that has several advantageous features for this work: (i) it has an analytically straightforward closed-form expression for its radial distr...

	4.3.2 Construction and properties of a Matérn cluster process
	All Neyman-Scott point process models are constructed in the same way; (i) some number of “parent” particles ,𝑁-𝑝., are distributed in a perfectly random manner throughout the cloud volume V with spatial density ,,𝑁-𝑝.-𝑉., (ii) some discrete prob...
	It is important to note here that with a constant cloud volume, the Matérn radial distribution function (RDF) given by Eq. (26) is dependent only on the number of parent clusters and the cluster radius (Np and R, respectively), and does not vary with ...
	Figure 4.1. Dependence of theoretical Matérn radial distribution function (RDF) on number of clusters, Np, and cluster radius, R, given the 0.08 m3 cloud volume used in our simulations. Note that at distances r greater than 2R the RDF illustrates stat...


	4.4 Description and validation of Monte Carlo ray tracing code
	4.4.1 Overview of the MCRT code (‘mcScatter’)
	A Monte Carlo scattering simulation code, ‘mcScatter’, was created to explore the role that spatial correlations play in radiative transfer through a light-scattering medium such as an atmospheric cloud. The general structure of our MCRT code was moti...
	To match experimental conditions potentially realizable in the chamber, the numerical work that follows is limited to a spatial domain of 2 m x 0.2 m x 0.2 m (inspired by a realistic optical path through the chamber) and total optical thickness of ord...
	Approaches exist for addressing this problem directly from Maxwell’s equations (Mishchenko, 2008; Mishchenko et al., 2016); however, direct use of methods like the superposition T matrix method remain impractical for systems with large numbers of part...
	Others have investigated such heterogeneous systems through the development of numerical Monte-Carlo simulations (Marchuk et al., 1980; Marshak and Davis, 2005); a clear discussion can be found in Bohren and Clothiaux (2011) but numerous relevant publ...
	These numerical methods typically explore radiative transmission without assigning physical locations to particles by stochastically modeling the free-path distribution between successive scattering interactions. In these simulations, the distances th...
	In a ballistic ‘photon’ simulation (Shaw et al., 2002a; Larsen and Clark, 2014), particles are placed in a volume at specified locations, and numerous rays are cast into the scattering medium (Frankel et al., 2016; Banko et al., 2019). Each ray is tra...
	This type of ballistic photon simulation allows particles to be placed anywhere in the volume to determine the impact of their spatial correlations on radiative transfer, but this benefit comes at the cost of recording and tracking a multitude of part...
	The simplest limiting case of this MCRT analysis occurs when simulating a cloud of monodisperse particles identically and independently distributed randomly within the simulation volume (see top panel of Figure 4.2). Such a homogeneous system can serv...
	Figure 4.2. Comparison between a homogeneous, uniform random particle distribution (top) and a Matérn-generated clustered distribution (bottom). Total cloud volume illustrated here and used for all scattering simulations in this works is 0.2 m x 0.2 m...
	Rays (or ‘photons’) are initialized at uniformly-random (x, y, z = 0) positions and cast in a normally-incident collimated beam through one side of the volume, which contains numerous particles at specified (stationary) spatial locations. Intersection...
	The most rigorous way to calculate the scattering phase function is through Mie theory, where particles are considered as homogenous dielectric spheres interacting with an incident plane wave of light. However, it is convenient to have an analytic for...
	As numerous rays are traced through the scattering medium, the locations of particle collisions and all individual ray segments are recorded. Direct and diffuse flux is recorded at a high spatial fidelity throughout the cloud depth, both backward and ...

	4.4.2 Validation of MCRT direct beam extinction through a homogeneous uncorrelated medium
	Before analyzing the impact of a spatially-correlated particle field on light scattering, we first ensured the fidelity of our MCRT code for non-scattering particles that are distributed with uniform probability (no spatial correlations). Given initia...
	To calculate normalized direct flux with our MCRT code, we uniformly divide the expected total optical thickness into numerous “slabs”. We represent total optical thickness as (,𝜏-∗.=𝑐𝜎𝑧), where c is the (number) concentration of scatterers, σ is ...
	Figure 4.3. Normalized direct, unscattered flux comparison between theoretical (red circles) and Monte Carlo results (black solid line) for a monodisperse cloud with 14 μm radius particles and τ* of 1. Note that the vertical axis employs logarithmic s...

	4.4.3 Comparison of MCRT results to two-stream theory
	One commonly made simplification is the idealization of radiative transfer into only two propagation directions, forward and backward (Thomas and Stamnes, 1996; Bohren and Clothiaux, 2011). This two-stream approximation is most accurate in the case of...
	Using the Henyey-Greenstein phase function and periodic boundary conditions, each ray cast into the scattering medium continues moving either forward or backward until it terminates at the top or bottom of the simulated cloud. By normalizing the numbe...
	and the normalized diffuse backward flux, expressed as
	In these normalized flux expressions, g refers to the asymmetry parameter, a scalar characterization of the degree of anisotropy calculated as the mean cosine of the scattering angle. Figure 4.4 shows a comparison between two-stream theory curves for ...
	Figure 4.4. Flux comparison between two-stream theory and Monte Carlo (MCRT) results, both forward flux (rightmost black curves) and backward flux (leftmost red curves). Note that at their most divergent, the two-stream and MCRT flux curves differ by ...
	The discrepancies evident in Figure 4.4 between our MCRT results and two-stream theory are consistent with those suggested in Thomas and Stamnes (1996) and shown in a similar comparison of two-stream theory with Monte Carlo by Bohren and Clothiaux (20...

	4.4.4 Simulation design for correlated random media
	We emphasize here that the cluster sizes used in our analysis are smaller than the mean free path (as defined for a homogeneous medium), and therefore are not necessarily captured by a macroscopic, spatially varying mean free path. The radial distribu...
	Multiple particle cloud realizations were stochastically generated for each set of input parameters, and the results from each individual cloud scattering simulation were averaged together to form the reported (mean) optical depth-dependent fluxes. Du...


	4.5 Results
	4.5.1 Impact of particle clustering on depth-dependent flux
	In this work we investigate both the direct and diffuse radiative transfer (forward and backward) in a purely scattering but correlated random medium to determine expected deviations from commonly used radiative transfer predictions for a uniform, hom...
	We performed numerous scattering simulations through both uncorrelated and spatially-correlated monodisperse cloud distributions to explore the impact of spatial correlations on optical-depth-dependent irradiance. Mean optical depth-dependent irradian...
	When we consider the unscattered, direct flux traversing a simulated cloud, as shown in the top panel of Figure 4.5 where τ increases downward on reversed vertical axis, we see that direct transmission is increased when spatial correlations exist in t...
	Figure 4.5. Impact of particle clustering on depth-dependent flux curves as computed by our MCRT scattering simulation. Both homogeneous and Matérn correlated results were obtained from monodisperse (14μm particle radius) cloud realizations with a tot...
	Note that while panel (a) of Figure 4.5 shows an increase in direct transmission for the clustered compared to the unclustered distribution, panel (b) indicates a similar decrease in diffuse forward flux. Panel (c) indicates that, for this case, the a...

	4.5.2 Impact of Matérn RDF parameters on depth-dependent flux
	The Matérn RDF expression listed in Eq. (26) demonstrates dependency on both the number of parent clusters (Np) and cluster radius (R). To test the hypothesis that these two parameters are the primary contributors to changes in depth-dependent flux fo...
	Figure 4.6. Optical depth-dependent flux curves for a variety of Matérn-generated cloud distributions, with homogeneous particle distribution results shown for comparison. Note that in all three Matérn scenarios, the density of clusters and cluster ra...
	As can be seen in Figure 4.6, the three Matérn curves appear to collapse on each other. This supports the hypothesis that the Np and R parameters, as with the underlying radial distribution function, are the driving factors impacting deviations from s...

	4.5.3 Variations in optical depth-dependent flux due to changes in Matérn clustering parameters
	The optical depth-dependent irradiance results previously shown in Figure 4.6 demonstrate a lack of dependence on changes to the clustering parameters absent from the Matérn RDF (namely, particle radius and mean number of particles per cluster, ,𝜆-𝐷...
	Similarly, we explore the relationship between the number of cluster parents (Np) and depth-dependent irradiance by constraining R and a, and allowing the average number of daughter particles per cluster, ,𝜆-𝐷., to increase as Np decreases to mainta...
	Figure 4.7. Optical depth-dependent flux curves for a variety of Matérn-generated cloud distributions, with homogeneous particle distribution results shown for comparison. All virtual cloud distributions are monodisperse with 14 μm particle radius. No...
	Figure 4.8. Optical depth-dependent flux curves for a variety of Matérn-generated cloud distributions, with homogeneous particle distribution results shown for comparison. All virtual cloud distributions are monodisperse with 14 μm particle radius. No...
	The family of RDF curves shown in Figure 4.1 were created by varying Np and R, the two primary independent variables (beyond distance from cluster center, r); each of those nine RDF curves have a different 𝑔(𝑟=0) peak correlation value. To explore t...
	This means that for a given set of (R, Np) input parameters, if 𝑅 is doubled (or halved) and ,𝑁-𝑝. is divided by (or multiplied by) eight, the peak correlation value 𝑔(0) will be unchanged. We studied the impact of three Matérn RDFs with the same ...
	Figure 4.9. Matérn scattering results from three combinations of Np and R, both present in the RDF and varied together to achieve a constant RDF at g(r = 0), are compared. Note that λD was changed in correspondence with Np to ensure a constant τ* of 1.


	4.6 Discussion and Conclusions
	4.6.1 Summary and interpretation of results
	The presence of absorbing particles in a medium influences the direct radiative transfer through the medium, and the resulting optical transmissivity is dependent on the size and number of particles. However, if spatial correlations exist in particle ...
	In the scattering-dominated limit, for which absorption is essentially non-existent, radiation is either transmitted directly (no interaction with particles in the medium) or diffusely (once a particle is encountered, the direction of propagation chan...
	Clustering was introduced using a Matérn clustering process with an analytical RDF to rigorously study the impact of four independent parameters, namely the number of clusters Np, the cluster size R, the density of particles within a cluster λD, and t...
	We found that particle clustering does indeed increase direct transmission, but we also found that diffuse forward irradiance is correspondingly reduced by a similar amount (Figure 4.5). Additionally, we found that varying only parameters absent from ...
	Lastly, we explored the relevance of the shape of the Matérn RDF beyond the peak correlation value (i.e., 𝑟>0) by changing R and Np in tandem to study the impact of various RDF curves with equivalent 𝑔(𝑟=0) peak values. We found that in addition to...
	Some insight can be gained from considering the relevant length scales in this radiative transfer problem. There are at least four scales: particle radius a, cluster size R that can be referred to as the correlation length scale, the photon mean free ...

	4.6.2 Results in context with prior work
	Previous work (Petty, 2002; Larsen and Clark, 2014) has gone into detail on trying to understand the inter-relationships between length scales in this problem. For purely absorptive media, Larsen and Clark (2014) used numerical simulations to reveal t...
	In Petty’s notation the effective optical thickness, which accounts for enhancement in transmission due to non-uniform distribution of liquid water, is expressed as ,𝜏-𝑒𝑓𝑓-∗.=𝜑,,𝜏-′..𝜎,𝑊. where 𝜑,,𝜏-′.. is the optical depth reduction factor ...
	This is an intriguing result because we can now see that we have the same variable dependence, i.e. ,𝑁-𝑝. and R, as seen in our Matérn RDF in Eq. (26). Given this encouraging similarity, we computed 𝜑,,𝜏-′.. and ,𝜏-𝑒𝑓𝑓-∗. for the conditions in...
	Because of the connection between the RDF and traditional, continuous correlation functions (Shaw et al., 2002b), this RDF-based work can serve as a bridge between the two approaches: radiative transfer calculations based on continuous correlation fun...
	Figure 4.10. Comparison of direct, non-exponential transmission through spatially correlated particle distribution.
	A renormalization technique for predicting radiative transfer for inhomogeneous clouds was proposed by Cairns et al. whereby single scattering parameters are modified based on spatial variances in scatterer concentration for use with plane-parallel ca...
	where Vrel is the relative variance of scatterer concentration. When spatially-varying scatterer concentration N(r) is comprised of a mean concentration ,𝑁. and zero-mean fluctuating component η(r), as in
	relative variance can be expressed as
	For our analysis, the average scatterer concentration is simply the total number of scatterers divided by the simulation volume. The variance calculations will depend on how the simulation volume is subdivided, i.e., it will be scale dependent. The nu...

	4.6.3 Concluding remarks and implications
	It is reasonable to consider the implications of this work for radiative transfer in the cloudy atmosphere, as a specific example of a particulate system that possesses spatial correlations over a large range of scales. The influence of spatial inhomo...
	This work has focused on the influence of clustering at scales below the mean free path of the radiation, for optical depths up to order unity. Implications for larger scales such as would be relevant to cloud remote sensing or energy budgets will req...
	In some cases presented here, the changes to direct and diffuse radiation are nearly compensating; do such results suggest that there is no significance to the clustering? That depends on the problem under consideration: for any problem depending on d...



	5 Light scattering in a turbulent cloud: Simulations to explore cloud-chamber experiments
	This chapter details predictions of direct and diffuse transmission of visible light through spatially correlated particle fields generated by Large Eddy Simulations, focusing on measurements that could be observed in the Pi cloud chamber. This work i...
	5.1 Abstract
	Radiative transfer through clouds can be impacted by variations in particle spatial distributions, particularly in the visible spectrum when considering larger water droplets. Due to mixing and inertial effects, spatial correlation often exists, resul...

	5.2 Introduction
	Radiation transfers differently through a spatially correlated medium than through a homogeneous medium due to void and clusters; photons propagate further in less thick regions and experience stronger extinction in more dense regions (Marshak and Dav...
	In this work, we consider polydisperse distributions of discrete particles within a realistic laboratory atmospheric cloud as our motivating problem. We address the problem of predicting radiative transfer through both homogeneous and inhomogeneous me...
	Our principal motivation is the use of simulation to explore experimental designs which could be conducted to measure the presence (and possibly the severity) of particle clustering in a laboratory cloud chamber such as the Pi Cloud Chamber (Chang et ...
	In this work, a Large Eddy Simulation (LES) code is used to generate particle clouds with properties (such as optical thickness, particle size distribution function and spatial correlation) realistic for a laboratory-generated mixing cloud. A MCRT cod...
	The paper proceeds as follows: First, we describe the MCRT scattering code and its ability to employ particle distributions imported from LES cloud realizations. Next we describe our LES methodology and summarize some of the most relevant statistics o...

	5.3 Summary of the Monte Carlo Ray Tracing (MCRT) Methodology
	5.3.1 Overview of the MCRT code (‘mcScatter’)
	The Monte Carlo scattering software used for our analysis, referred to as ‘mcScatter’, is a ballistic photon simulation code (Shaw et al., 2002a; Larsen and Clark, 2014) created to explore radiative transfer through scattering media, such as light tra...
	Our MCRT code allows users to specify particle size, optical wavelength, complex index of refraction (to model various types of droplets) and many other boundary conditions. Here we focus our analysis on visible wavelengths (e.g., 550 nm) and examine ...
	Monte Carlo numerical methods (Danielson et al., 1969; Plass and Kattawar, 1968; Collins et al., 1972; Sobol’ et al., 1974) employ large numbers of random draws to explore challenging problems for which closed-form solutions may not exist, such as het...
	Conversely, in a ballistic ‘photon’ simulation (Shaw et al., 2002a; Larsen and Clark, 2014), particles in a volume are placed at specific locations (Frankel et al., 2016; Banko et al., 2019). By employing an explicit location for each particle in the ...
	Other methods, such as approaches derived directly from Maxwell’s equations (Mishchenko, 2008; Mishchenko et al., 2016), incorporate a detailed electromagnetic treatment of the problem and are especially well-suited for continuous media. However, even...
	During a mcScatter simulation, ray segments are recorded as rays are traced through particle fields before and after the occurrence of scattering events. Direct and diffuse flux components, both backward and forward, are recorded at numerous physical ...

	5.3.2 Use of the ‘mcScatter’ MCRT software with chamber-realistic particle distributions
	The MCRT software mcScatter can perform ballistic photon scattering simulations using a variety of atmospheric media including both monodisperse and polydisperse particle size distributions with either homogeneous or spatially correlated spatial distr...
	For the current study we incorporate the additional but realistic and unavoidable complexity of polydisperse particle size distributions found in actual atmospheric conditions, and we explore the impact of spatial correlation on the order of that expe...
	These data files were read by the mcScatter software for analysis, which has the ability to use or ignore the somewhat correlated particle locations from the LES-exported records. When the LES-positioned droplet locations are ignored, uniformly random...


	5.4 Large Eddy Simulation
	5.4.1 Large Eddy Simulation Methodology
	The System for Atmospheric Modeling, referred to as SAM (Khairoutdinov and Randall, 2003), is a Large Eddy Simulation (LES) code modified to simulate the Pi chamber at Michigan Tech (Chang et al., 2016). For simulating the aerosol - cloud interactions...
	The dimensions of the simulated cloud chamber are 2 m x 2 m x 1 m, with the shortest dimension being the height of the volume. We discretized this volume into small cubic boxes of side length 3.125 cm yielding 64 x 64 x 32 grid boxes. The time step wa...
	Turbulence in the chamber involves multiple timescales, ranging from very fast processes (e.g., dissipation on the order of 0.1 seconds) to slow processes like large scale oscillations estimated at 90-135 seconds (Niedermeier et al., 2018). The 3D dat...
	For analysis purposes, and to better compare with previous MCRT studies, we desired to extract many subvolumes from the overall chamber volume, each with dimensions of 0.2 m x 0.2 m x 2.0 m. These rectangular prisms serve as virtual cloud “subsamples”...
	Figure 5.1. The entire volume of the simulated cloud chamber (2 m x 2 m x 1 m) is depicted with a dashed rectangular prism outline. Inside this volume, 48 high aspect ratio cuboids are extracted for optical analysis. Each cuboid, or cloud subsample, h...

	5.4.2 Statistics of the LES Output
	As previously described, after the LES simulation reaches steady state, the system is allowed to evolve for another 45 minutes and droplet sizes and 3D spatial positions are output from the cloud realization every five minutes for a total of nine stat...
	Here it is useful to explain that in this work, total optical thickness refers to the total expected optical thickness. This is computed by summing the scattering cross sections of all particles in the distribution, scaled by the number density for ea...
	In this estimate of total optical thickness, the scattering efficiency used in the summation is not computed using Mie theory but instead employs a geometric approximation (e.g., Qsca = 2). All references to optical thickness in this work refer to exp...
	Figure 5.2. Mean number density (top), mean droplet radius (center) and total optical thickness (bottom) calculated from all 432 LES output files. It should be noted that these scatter plots are not time series; the index values used for the horizonta...
	Histograms of these statistics, depicted in panels (a), (b) and (c) of Figure 5.3, show total optical thickness, mean number density values and mean geometric cross section (respectively). Mean number density and total optical thickness were highly co...
	Figure 5.3. (a) Histogram of optical thickness from 432 LES output files. Values in the distribution range from 0.02 to 0.14 with an average optical thickness of 0.09, a standard deviation of 0.02 and a relative dispersion of 0.222. (b) Histogram of m...
	Figure 5.4. (a) Scatter plot showing high correlation (R2 = 0.97) between mean volumetric number density and total optical thickness. This suggests that LES output files chosen based on similar number densities are highly likely to have very similar t...
	The horizontal axes of panels (a) and (b) in Figure 5.4 indicate that the range of number density values is not only larger than the range of geometric cross sections but also more similar to the span of expected optical thickness values (vertical axe...
	Figure 5.5. Expected optical thickness statistics shown for the nine LES cloud realizations (with 48 subsamples per realization). Circular bullseyes indicate median values, solid box edges show 25th and 75th percentiles, and dashed “whiskers” extend t...


	5.5 Results
	5.5.1 Scattering MCRT results for LES particle clouds conditioned on estimated optical thickness
	As shown in the expected optical thickness histogram depicted in panel (a) of Figure 5.3, the mean for all 432 cloud subsamples is close to a value of 𝜏=0.1. With numerous cloud subvolumes near this average (expected) optical thickness value, a very ...
	The results of this first LES set, conditioned on 𝜏=0.1, are shown in Figure 5.6. Each of the four panels show a family of curves for different flux components including total forward flux, backward flux, diffuse forward and direct forward flux (cloc...
	Figure 5.6. Depth-dependent flux curves for ten LES polydisperse spatial distributions, chosen to be very near an (expected) total optical thickness of 0.1. Spatial positions come directly from LES output records.
	In contrast, the second set of scattering simulations employed the same LES-exported files but utilized only the radii values recorded for each droplet; the spatial locations determined by the LES process were discarded and replaced by uniformly rando...
	These flux component results show stronger deviations within a set (i.e., from the ensemble average) when LES spatial positions are used compared to uniformly random droplet locations.
	Figure 5.7. Depth-dependent flux curves for ten LES polydisperse spatial distributions, chosen to be very near a total optical thickness of 0.1. Spatial positions are uniformly random.
	For reference, it may be instructive to better understand the variation in number density and optical thickness inside a representative LES cloud subvolume compared to its corresponding random counterpart (illustrated in the top and bottom panels of F...
	Figure 5.8. A random selection of 10,000 particles from each of the spatial distributions whose flux results are shown in Figure 5.10. The representative illustration in the top panel shows LES-positioned droplet locations, with high number density in...
	Figure 5.9. Comparison of LES-positioned and uniformly random polydisperse particle distributions for the four 0.5 meter slabs that comprise the two meter propagation path.
	The local variations in number density and optical thickness lead to deviations in various flux components. While Figure 5.6 and Figure 5.7 each portrayed a set of ten depth-dependent flux curves, Figure 5.10 shows a flux comparison between a single L...
	Figure 5.10. Normalized flux components from two scattering simulations which both employ the same particle size distribution function. The thick yellow line results from the use of LES-positioned droplet locations, while the dotted black line results...

	5.5.2 Impact of spatial correlation on depth-dependent flux results
	As predicted in previous works (Petty, 2002; Packard et al., 2019), spatial correlation typically leads to an increase in direct flux but a largely compensating decrease in diffuse forward flux. When backward flux is relatively unchanged, the total fo...
	Figure 5.11. CDF calculated from the flux results of two sets of scattering simulations, one with LES-positioned particles with some level of spatial correlation and the other with uniformly random droplet locations. Both sets of results employed the ...
	Also of interest is the standard deviation of each set, which is significantly larger for the spatially correlated simulations. This is depicted in Figure 5.11 with filled rectangular regions (yellow rectangular fill for the LES-positioned set vs. gre...
	Even this relatively small number of scattering simulations suggest that while the means from the two sets may be difficult to differentiate in the absence of other information, deviations from their respective mean (calculated at the extremes of the ...

	5.5.3 Using ratios of flux results as an alternative analysis tool
	The deviations in flux results can be portrayed another way; the variation within each set of 10 simulations from the ensemble mean can be seen by dividing the flux component family of curves by their respective ensemble average. The standard deviatio...
	Figure 5.12. Cumulative distribution functions (CDF) computed from propagation endpoints of the individual flux curves from both the LES-position and random position sets, normalized by ensemble mean of each set. Standard deviations, computed from the...
	Another way to view the variation caused by spatial correlation is to normalize the 10 individual LES-positioned scattering results by their uniformly random spatial counterpart, curve by curve, instead of their ensemble mean. Using a curve-by-curve, ...
	Figure 5.13. Point-by-point ratios calculated between results from LES-positioned droplet locations and those where uniformly random particle locations are used, shown as a function of physical depth. Values of 1 indicate a perfect match at a given ph...
	Examining these ratio results at the most convenient sensor locations (a depth of 2 m for all forward flux components, and a depth of 0 m for backward flux) allows us to estimate both the steady and variable impacts of spatial correlation. Positive sh...
	Table 5-1. Mean and standard deviation of flux ratios computed from the propagation endpoints of the flux ratio component curves (see Figure 5.13; probable sensor locations are at a depth of 2 m for forward flux components, and a depth of 0 m for back...


	5.6 Discussion & Conclusions
	5.6.1 Summary and interpretation of results
	Radiative transfer through a dilute medium, and the resulting optical transmissivity, is dependent on the number and size of particles in the distribution. If spatial correlations exist in particle locations, clusters and voids may exist on scales of ...
	In this work, we have investigated direct and diffuse radiative transfer in a medium with spatially correlated scattering particles using a ballistic photon MCRT model. Our simulations explored the forward-dominant scattering regime that is typical of...
	We found much more cloud-to-cloud variation when the LES-positioned droplet locations were employed (as opposed to uniformly random positions). This was especially evident in the center of the clouds at a physical depth of one meter (see Figure 5.6 an...
	However, the direct and diffuse forward flux results shown respectively in panels (c) and (d) vary in both mean and standard deviation. The standard deviation of the results set with LES-positioned droplets is approximately 2.5x larger than when spati...
	and
	With flux means separated by 1-2% and significantly different standard deviations, it seems that the direct and diffuse forward flux components are the most differentiable. This conclusion is consistent with the findings of a recent study (Packard et ...
	When the entire set of LES-positioned results are normalized by the uncorrelated results, curve-by-curve at each physical depth along the propagation path, the means of the resulting flux components ratios indicate the average fractional increase or d...
	Focusing on a single LES-positioned cloud subsample and a corresponding uncorrelated uniformly random cloud with the same particle size distribution function, we can examine variations in the spatial distributions themselves. Figure 5.9 shows the vari...

	5.6.2 Implications for future laboratory experimentation
	The flux results presented in this work suggest some possible experimental setups that could be successful at detecting the presence (and potentially, the severity) of particle clustering. In the Pi Chamber owned and operated by Michigan Technological...
	Another possible laboratory setup for a cloud chamber experiment to explore particle clustering would be to employ a series of mirrors and one or more beam splitters. This would allow some interesting experiments to be performed. One such test might b...
	A variation of this test would be to measure two different double-pass beams, one that is re-routed back through the same optical path and another that is redirected such that the second pass traverses a different region of the mixing cloud. If the cl...



	Backward Flux Ratio
	Diffuse Forward Flux Ratio
	Direct Forward Flux Ratio
	Total Forward Flux Ratio
	1.004
	0.988
	1.001
	1.000
	Mean Value
	Standard Deviation
	0.0657
	0.0417
	0.0042
	0.0002
	6 Summary and Future Work
	6.1 Summary and future work concerning optical blurring due to aerosol scattering
	This work deals with contributions from aerosol scattering to the problem of blurring and contrast reduction in measured optical images. An analytic theoretical modulation transfer function can be computed which includes atmospheric attenuation, diffr...
	The significance of blurring due to aerosol scattering is not agreed upon in the literature, and this apparent controversy appears to focus on the severity of the phenomenon and shortcomings of aerosol experiments meant to settle this debate (Bissonne...
	After detailing theoretical MTF expressions to predict the impact of aerosol scattering on measured imagery, we showed the results from a closure experiment using the MTU cloud chamber. Knife-edge imagery was captured through a controlled expansion cl...
	According to analysis of MTF measurements performed in numerous laboratories (Williams and Becklund, 2010), measuring a modulation transfer function to within 5% of a theoretically-predicted curve demonstrates sufficient accuracy. The measured control...
	The (ideal) predicted aerosol MTFs showed only a slight sensitivity to small variations in dominant droplet radius, with moderate MTF response changes due to various optical depths. However, bit-depth quantizations of the ideal aerosol MTFs displayed ...
	The (quantized) predicted MTFs matched the measured aerosol curves reasonably well, disagreeing by less than 10% for a single combination of droplet radius and optical depth. Due to the sensitivity to the droplet radius selected for the predicted curv...
	Overall, the concept of closure between MTFs obtained from directly-measured images and MTFs calculated from theory using measured cloud properties in a laboratory setting, has been demonstrated to be qualitatively successful. The comparison led to se...
	In future experiments a wider range of cloud conditions could be explored, especially larger values of optical depth and a broader range of particle sizes. Further, the thermal convection capability of the cloud chamber will enable exploration of the ...

	6.2 Summary and future work concerning particle clustering, depth-dependent flux and the role of RDFs
	The influence of spatial inhomogeneity (in particle fields) on three-dimensional radiative transfer has been considered in depth, especially for the limit in which the scale of the inhomogeneity is larger than the mean free path defined for the medium...
	The question of how these sub-free-path-scale correlations might influence radiative transfer has been previously studied by several groups for the absorbing-particle limit (Kostinski, 2001; Shaw et al., 2002a; Larsen and Clark, 2014; Frankel et al., ...
	This work has focused on the influence of clustering at scales below the mean free path of the radiation, for optical depths up to order unity. This emphasis on optical thicknesses near τ = 1 is partially due to our desire to compare numerical predict...
	One logical next step is validation of the MCRT results by direct comparison with measurements recorded in the Pi cloud chamber. Characterization of actual clustering strength in natural clouds will be required to put the chamber measurements properly...
	In some scenarios we examined, the changes to direct and diffuse radiation are nearly compensating (i.e., direct flux increases and diffuse forward flux decreases are essentially offsetting). Do such results suggest that there is no meaningful impact ...

	6.3 Summary and future work concerning the detection of particle clustering in Pi Chamber-generated clouds
	In our further investigations of particle clustering and how it impacts direct and diffuse radiative transfer, prior to a comparison between computations and experimental observations, we simulated radiative transfer in chamber-realistic boundary cond...
	As a consequence, the geometry chosen in our study was motivated by the desire to explore how best to study optical propagation through a turbulent cloud in the laboratory, since the Pi chamber has the advantage of well-characterized and steady-state ...
	For example, with a nominal (expected) optical depth of 0.1 (typical for a sustainable mixing cloud), direct flux was observed to increase from less than 90.5% of incident illumination to 90.6% when realistic clustering is present. Furthermore, the st...
	It should be noted that while our analysis employed the Henyey-Greenstein scattering phase function, our Monte Carlo software is capable of using full Mie scattering phase functions if desired. While depth-dependent flux results from these two scatter...
	Chapter 5 explained that the smallest LES grid resolution was 3.125 cm; particle locations within these grids were unresolved and thus given random positions within the appropriate grid. During a future investigation, it may be possible to implement a...
	Recent investigations into free-space optical (FSO) communication through atmospheric scattering media (e.g., haze, fog, cloud, rain) have suggested that transmission losses and reductions in data rates are problematic (Khalighi and Uysal, 2014). The ...
	However, recent time-dependent radiative transfer equation (RTE) analysis has revealed that scatterers large compared to the optical wavelength contribute to the development of an additional early-time diffusion (ETD) component which arrives immediate...
	In their analysis, Bleszynski et al. (2018) present time-dependent RTE predictions of the ETD and LTD signals and their relative intensities. A logical extension of our MCRT scattering code would be to preserve and export ray-traced photon paths, whic...
	To this point our published results have focused on two-stream flux components; periodic wall boundaries were used to efficiently create a semi-infinite scattering medium with a tractable number of particles. However, scattering angles and ray segment...
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