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Abstract 
Urban evapotranspiration (ET) in semi-arid and arid regions is an important 

component of the urban water cycle, especially in regions that have limited freshwater 

supplies. Understanding urban evapotranspiration in these regions is necessary for 

assessing and managing water resources and ensuring that conservation strategies are 

effective and sustainable. The objective of this study is to estimate urban ET in the 

Middle Rio Grande Basin to provide an understanding of evaporative water losses in 

semi-arid to arid urban environments for future water management decisions. The focus 

of this study is on the cities of El Paso, TX, US; Las Cruces, NM, US; and Ciudad Juarez, 

CH, MX. 

Components of urban ET include vegetation and bare soil ET, open water 

evaporation, evaporation from infrastructure losses, and evaporative cooler evaporation. 

Multiple methods were used to provide an estimate of total urban ET from individual 

components, as well as total ET for each city at an average annual time scale. Average 

urban ET for the study area, including evaporation from precipitation, is approximately 

500 mm annually. Urban ET accounts for up to 60% of annual water demand and ranges 

from an average of 13 million m3 annually in Las Cruces to 91 million m3 annually in El 

Paso. Water conservation and management is crucial in water scarce environments, 

especially as urban populations increase and freshwater supplies continue to decrease in 

many regions along with shifts in climate. Water loss to ET is an important component of 

the urban water cycle and must be considered in conservation and management decisions 

for urban water supplies to remain sustainable in the future.  
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1 Introduction 
Evapotranspiration (ET) accounts for 40% to 70% of water losses from urban water 

use (Litvak, 2016; St. Hilaire, 2008) and is a crucial component in the urban water cycle 

and water balances (Kurc, 2004; Litvak, 2013), especially in regions that are facing water 

scarcity from increasing water demands and decreasing freshwater supplies (Pataki et al., 

2011). Understanding the role of urban evapotranspiration in semi-arid to arid 

environments and effectively estimating the total amount of urban evapotranspiration in 

these regions is important for water resource management and conservation, especially as 

populations continue to increase, shifts in climate become more pronounced, and water 

resources become more variable. Over the last century, global water demand has been 

increasing at rates that are double the rate of increases in population (FAO, 2019). World 

population projections suggest that approximately 70% of the world’s population will be 

living in urban areas by 2050, which will place increased demand on urban water 

resources (FAO, 2019; United Nations Department of Economic and Social Affairs, 

2018).  

Water scarcity, increased groundwater depletion and loss of agricultural land are 

predicted to continue to increase along with population growth and shifts in climate 

(United Nations, 2019), causing concerns of freshwater depletion in already water scarce 

regions. Over two billion people currently live in water scarce regions, and by the year of 

2030, water scarcity and shifts in climate may cause displacement of up to 700 million 

people in semi-arid and arid regions across the world (United Nations, 2018). Population 

and water use projections escalate concerns of water scarcity, especially in regions that 
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already have water use limitations. Understanding where water can be conserved is 

crucial for future water sustainability in these regions. 

Multiple methods have been used historically to estimate ET, including ground 

measurements (Grimmond & Oke, 1999; Nouri et al., 2016; Peters, et al., 2011), water 

balance methods (Al-Kofahi et al, 2012; Cleugh et al., 2005; Grimmond & Oke, 1999), 

potential ET estimates using meteorological data (Hargreaves & Samani, 1985; 

Mcmahon et al., 2013; Samani, 2000; FAO, 2019) and remote sensing (Nouri et al., 2014; 

Senay, 2018). Although multiple methods have been used to successfully estimate 

evapotranspiration for agricultural areas, the heterogeneity of urban land use and cover 

makes it difficult to estimate urban ET using traditional ET methods (Anderson & 

Vivoni, 2016; Grimmond & Oke, 1999; Litvak et al., 2017; Qiu, 2017). Using a 

combination of methods to estimate urban ET helps to reduce errors in estimations and 

provides a more accurate overall representation of urban ET, including the drivers and 

components that affect urban ET rates (Allen et al, 2011; Kim & Kaluarachchi, 2018; 

Reitz et al., 2017).  

The complexity of urban landcover and ecosystems along with the multiple factors 

that contribute to evapotranspiration rates leads to challenges in quantifying urban ET at 

a city scale (Litvak et al., 2017). Urban ET rates are affected by metrological variables, 

changes in vegetation types and landscapes, and urban infrastructure. Traditional methods 

of estimating urban ET are often time consuming, and the required climatological data is 

difficult to obtain, especially over large historical time periods (Al-Kofahi, 2012; 

Hargreaves, 1985; Litvak, 2017). Urban ET is not as widely studied as crop and natural 
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vegetation ET (Litvak, 2016; Raoufi & Beighley, 2017) but makes up a significant 

component of the overall water cycle and needs to be considered for more accurate 

estimates of regional water losses from evapotranspiration.  

Many of the traditional ET models were designed to estimate ET for crops and 

natural vegetation but do not apply as well to the unique landscapes and land cover of 

urban environments (Al-Kofahi, 2012; Nouri, 2016; Xie, 2009). Agricultural crops are 

generally comprised of one crop type with the same overall ET rate, and cover a large 

area with little to no impermeable surface, whereas urban landscapes are much more 

heterogeneous. The heterogeneity of urban ground cover (i.e. pavement, different soil 

types, variability in irrigation, exotic plant species, etc.) contributes to the complexity of 

estimating urban ET (Grimmond and Oke, 1999; Nouri, 2014). Previous research 

suggests that available ET estimation methods show variance in the accuracy of ET 

estimates and often contain uncertainty and biases in calculations for urban ET (Allen, 

2011; Auilar, 2018; Litvak, 2013). Previous research also suggests that traditional 

methods of estimating ET are not as reliable for estimating ET in regions with semi-arid 

to arid climates (Samani et al., 2005, Skaggs & Samani, 2005). 

Ground measurements of evapotranspiration from instruments including lysimeters, 

eddy covariance towers and flux towers can give accurate point measurements of ET that 

are useful for validating and providing insights on controlling factors as well as 

calibrating urban ET equations and methods. Although useful for ET studies, ground 

measurements are often difficult to obtain for large areas, do not capture spatial 

variability and can have uncertainties caused by calibration errors and measurement 



10 

biases over long time periods (Allen et al, 2011; Reitz, 2017). Ground measurement 

devices are often expensive to install and maintain, making widespread use inefficient 

and ground measurements impractical to use for city scale ET measurements. Variation 

in urban landscapes and landcover contributes to inaccuracies when upscaling ground 

measurements to estimate evapotranspiration for entire urban areas (Jiang, 2016, Peters, 

2011). 

Water balance methods can be used to constrain urban ET by considering each 

component of the urban hydrological cycle (Cleugh et al., 2005; Mitchell et al., 2001) but 

may not account for spatial variability in urban landscapes (Al-Kofahi et al., 2012), and 

are most often used to estimate total urban ET without providing estimates for individual 

urban ET components. Evapotranspiration equations based on meteorological data can be 

used to estimate potential urban ET when accurate meteorological data is available. 

Obtaining accurate and complete meteorological data often makes estimating potential 

ET using climate variables difficult over larger time periods.  

Multiple remote sensing models are available to estimate ET and can be processed 

for large scales, making remote sensing a common method for ET estimation. Remote 

sensing models are most commonly used for agricultural ET estimates and large areas of 

continuous vegetation. Satellite images are taken periodically, may not be usable due to 

cloud cover or satellite position and can be difficult to obtain for large study periods 

(Allen et al., 2011). The uncertainties involved with measuring urban ET and the multiple 

contributing variables in semi-arid and arid environments makes using a combination of 
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ET measurement methods necessary for obtaining the most accurate results (Litvak, 

2013).  

The main components of urban ET are: land surface evaporation and transpiration 

from urban vegetation, evaporation from open water, evaporation from infrastructure 

losses and evaporation from evaporative cooling (Cleugh et al., 2005; DeOreo et al., 

2011; Grimmond & Oke, 1999; Jiang & Weng, 2016; Liu et al., 2010; Qui et al., 2013). 

Urban vegetation is comprised of areas of vegetation that are irrigated with municipal 

water including residential and commercial landscaping, golf courses and parks. Open 

water evaporation is comprised of evaporation from swimming pools, golf course ponds 

and any other open water areas that are supplied or maintained with municipal water 

supplies. Infrastructure losses include leaks from piping systems from the source of water 

to water treatment plants, to residential and commercial users and to wastewater 

treatment plants. Evaporative cooler evaporation includes the sum of water that is lost 

due to evaporation for the purpose of cooling the air.  

Despite interest in urban ET in semi-arid and arid environments, to our knowledge 

there have been very few studies that have attempted to estimate urban wide ET in semi-

arid and arid environments.  The majority of urban ET research is focused on one urban 

ET component and larger, less complex areas of urban environments. The purpose of this 

study is to estimate urban evapotranspiration in the Middle Rio Grande basin, with focus 

on the cities of Las Cruces, New Mexico, United States; El Paso, Texas, United States; 

and Ciudad Juarez, Chihuahua, Mexico with a total population of 2.3 million. The Middle 

Rio Grande basin has a semi-arid to arid climate with an average annual rainfall of 230 
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mm.  Pumping rates for urban areas in the Middle Rio Grande basin exceed recharge 

rates and combining increased pumping with shifts in climate has resulted in changes in 

watershed dynamics, water scarcity and water rights conflicts (Hibbs et al, 2003; Sheng 

& Devere, 2005). Urban areas in Middle Rio Grande basin have water use limitations 

because annual precipitation is not sufficient in these regions to recharge aquifers and 

water from irrigation often does not infiltrate deep enough into the soil to reach the 

groundwater aquifers. The current study uses a combination of methods to estimate urban 

ET in the Middle Rio Grande basin. 
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2 Methods 

2.1 Overall Framework for Study 

The three cities in the study area are located in the middle Rio Grande basin (see 

Figure 1). A summary of climate and demographic data for each city in the Middle Rio 

Grande study area is found in Table 1.  The current study focuses on the three largest 

cities within the middle Rio Grande basin. Smaller cities in the study area were neglected 

because of their substantially smaller populations. Texas counties in the middle Rio 

Grande basin include El Paso County and Hudspeth County with a combined population 

of 703,640. The city of El Paso has a population of 683,577, accounting for 97% of the 

total population. New Mexico counties in the middle Rio Grande basin include Dona Ana 

County and Sierra County with a total population of 226,700. The city of Las Cruces has 

a population of 101,712 and the next largest city has a total population of 14,600. 

In this work, urban evapotranspiration in each city is separated into evaporation 

from open water (E, water), evaporation from evaporative cooling (E, cool), evaporation 

from infrastructure losses (E, losses) and evapotranspiration from vegetation and bare soil 

(ET, veg). Three approaches are used to estimate total urban ET and ET components for 

each city in the study area: a) independent estimation and summing of each urban ET 

component based on the analysis of remotely sensed data and water utility data (ET, ind); 

b) estimation of total urban ET based on consumptive use as derived from water utility 

data  (ET, cuse); and c) estimation of total urban ET based on seasonal water use as 

derived from water utility data (ET, season). Each of these approaches is based on 

simplifying assumptions and has its own intrinsic uncertainties, as explained in the 
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following sections. Urban ET was estimated monthly for the study period of 1993-2015, 

which captures a broad range of climate conditions, including years with above and 

below average temperatures and precipitation. Urban ET results are presented at an 

average annual time scale based on the results of the monthly ET estimates.  

2.2 Independent Estimation of Urban ET Components: 
Evaporation from Open Water 

Open water evaporation includes evaporation from swimming pools, golf course 

ponds and other small urban ponds. Open water evaporation was estimated based on 

historical pan evaporation data, pan evaporation coefficients, an evaporation model and 

the surface area of open water. Monthly pan evaporation was obtained from weather 

stations in each city. Since 15% of the total months in the study period were missing pan 

evaporation data, the Hargreaves and Samani model was used to substitute for 

observations in the missing months (Hargreaves, G. H., & Samani, Z. A, 1985). The 

Hargreaves and Samani Equation requires minimum climatology data, making it a 

practical method for modeling ET. Although the Hargreaves and Samani model is used 

primarily for estimating crop evapotranspiration, calibrating the model to pan evaporation 

data will provide reasonably accurate estimates of open water evaporation (Mcmahon et 

al., 2013; USBR ET Toolbox, 2018). 

The Hargreaves and Samani model is:  

 ( )0.5 17.8ET AET K R TD TC= +   
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where KET is a calibration coefficient, RA is extraterrestrial radiation (mm/day), TD is the 

mean maximum temperature minus the mean minimum temperature (°C), and TC is the 

mean temperature (°C). Extraterrestrial radiation is calculated using a formula that 

utilizes the latitude of each city and the day of the year (Hargreaves, G. H., & Samani, Z. 

A, 1985). The calibration coefficient (KET) for each city was calibrated using daily pan 

evaporation data observations from 1993-2015 at the climate stations in each city 

(Gobierno de MÉXICO, nd; NOAA, nd; TWDB, nd; WRCC, nd). The calibration 

coefficients for each city are: El Paso KET=0.00382, Las Cruces KET=0.00358 and Ciudad 

Juarez KET=0.00338. R2 values for the calibrations ranged from 0.73 to 0.88. 

The surface area of urban open water was calculated using Google Earth Engine 

(GEE) and ArcGIS analysis of remote sensing imagery. The imagery that was used for 

open water processing included NAIP imagery obtained from the Texas Natural 

Resources Information System (TNRIS, nd) and the USDA Geospatial Data Gateway 

(USDA, nd) with one-meter spatial resolution, Landsat imagery from USGS 

EarthExplorer (USGS, nd) with a thirty-meter spatial resolution and World Imagery base 

maps (ESRI, 2018). NAIP imagery was available every two years starting in 2004 for El 

Paso and 2009 for Las Cruces and Ciudad Juarez.  It was necessary to estimate open 

water for missing years based on Landsat imagery, available NAIP years, annual changes 

in city boundaries and historical population data.  To quantify total areas of urban open 

water using Google Earth Engine, an algorithm was developed based on NDVI and color 

thresholds. This algorithm was successful in delineating 90% of small open water areas 

less than 1200 m2. Small areas that were not likely to be open water were eliminated by 
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assuming a threshold radius of 5.0 m. Shadows were reduced by using a transformation 

on red color. Open water polygons determined from the GEE algorithm were checked 

visually using ArcGIS to eliminate false positives and delineate false negatives. Open 

water areas greater than 1200 m2 were delineated by hand.  

Monthly evaporation estimates for open water were determined by multiplying the 

total open water area by the pan evaporation observations or modeled pan evaporation. 

Given the shallow nature of the open water in the three cities, it was assumed that the 

open water evaporation was equivalent to pan evaporation and a pan coefficient of one 

was applied for this study. 

2.3 Independent Estimation of Urban ET Components: 
Evaporation from Evaporative Coolers  

Evaporative coolers are commonly used in arid and semi-arid climates for air 

conditioning during the warmer months as an alternative to refrigerated cooling. Since 

detailed information on household use and consumptive water use of evaporative coolers 

in the three cities is unavailable, water use for evaporative coolers was estimated for each 

city based on results of literature, expert opinion and census data. Water use from 

evaporative coolers for residential use in El Paso was estimated as 42 m3 per household 

annually for a 186 m2 house (Tarquin, 2013). The New Mexico Office of the State 

Engineer estimates that 47 to 60 m3 of water per household is used annually for a 139 m2 

house in Las Cruces for evaporative cooling (NMOSE, nd). The average house size in the 

United States is 200 m2 (US Census Bureau, 2010) versus 131 m2 in Mexico (UN 

Population Division, 2019).  
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  To estimate evaporation from evaporative coolers, it was assumed that 70% of 

houses in El Paso (Tarquin, 2013) and Las Cruces used evaporative cooling prior to 2013, 

and 50% of houses after 2013 (L. Larocque, personal communication, June 29, 2019; A. 

Tarquin, personal communication, June 24, 2019), with 42 m3 of water use per household 

annually. For Ciudad Juarez, evaporative cooling water use is estimated at 53 m3 per 

household annually, and the assumption that 75% of households used evaporative cooling 

over the entire study period was used. It was also assumed that evaporative coolers are 

used from May through September in each city. 

2.4 Independent Estimation of Urban ET Components: 
Evaporation from Infrastructure Losses  

Infrastructure water losses include water distribution and wastewater collection 

system leaks. Annual infrastructure water losses for Las Cruces and El Paso were 

determined from water audits and water utility data. El Paso infrastructure losses were 

available for 2010 to 2017 from El Paso Water Utility water loss audits. Previous years 

were estimated using an average loss percentage of all known years. Las Cruces 

infrastructure losses were available annually for 2000-2005 and 2010-2017 from Las 

Cruces Water Utility water audit reports and the remaining years were estimated using an 

average loss percentage from all known years.  Infrastructure water losses for Ciudad 

Juarez were not available at an annual basis and were estimated at 20% of total water 

demand for the entire study period (Servicios de Ingenierίa e Informática, 2013).  

Adequate data is not available for the fate of water from infrastructure losses 

(groundwater recharge or evaporative), and for this study it is therefore assumed that 
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infrastructure losses are either 0% or 100% evaporative and are presented as a range in 

urban ET results. Water from slow leaks in infrastructure is likely evaporated from soil or 

used by vegetation and transpired, especially when water tables are lower than urban 

water infrastructure and the rate at which water would return to underground aquifers 

does not exceed the rate that water evaporates in semi-arid to arid climates. Further 

research is necessary to determine percentages of evaporative losses from infrastructure 

losses to accurately determine ET from infrastructure losses.  

2.5 Independent Estimation of Urban ET Components: 
Evapotranspiration from Vegetation and Bare Soil 

To estimate urban ET from vegetation and bare soil, the Operational Simplified 

Surface Energy Balance (SSEBop) approach was used to construct monthly ETa (actual 

evapotranspiration) maps for each of the three cities in the study area. SSEBop maps for 

the Upper Rio Grande River Basin were obtained from the USGS SSEBop 

Evapotranspiration: Early Warning and Environmental Monitoring Program (Senay et al., 

2018). Monthly actual evapotranspiration totals for the Upper Rio Grande River Basin 

(1984-2015) were calculated by the USGS using the SSEBop model to quantify and map 

total ET using Landsat images and the associated weather datasets (Senay et al., 2018). 

ET maps obtained from the USGS were clipped to the three urban boundaries within the 

current study area to construct monthly ET maps using the USGS calculated ET data. The 

SSEBop data was analyzed on a monthly time scale from 1993-2015 using ArcGIS 10.6 

for each of the three study area cities. SSEBop urban ET maps for January 2015 and July 

2015 are shown in Figure 2 and Figure 3.  
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ET totals from the SSEBop calculations include ET from precipitation and open 

water, making it necessary to subtract precipitation and open water totals from the 

monthly ET totals to obtain urban vegetation and bare soil ET estimates. Given total ET 

from SSEBop results and evaporation totals from precipitation and open water, it was 

possible to estimate ET from vegetation and bare soil using the following equation: 

ET 
SSEBop 

= ET 
veg 

+ E 
water

+ E 
precip 

 

City boundaries were obtained from Paso del Norte Mapa and the Texas Natural 

Resources Information System (PdnMapa, nd; TNRIS, nd). City boundaries were edited 

in ArcGIS to remove natural areas not irrigated with urban water and agricultural districts 

based on satellite imagery and water utility service area boundaries to obtain a more 

accurate estimate of urban evapotranspiration. Irrigation canal images from satellite 

imagery were used to help verify agricultural areas within urban boundaries. Agricultural 

areas were easy to separate for Las Cruces and Ciudad Juarez, as they were confined to 

areas near the Rio Grande River. Defining urban boundaries for El Paso is more 

complicated due to agricultural areas within residential sections of the urban boundaries. 

Urban development over the 1993-2015 study period made it necessary to consider land 

use changes annually, and urban borders were modified accordingly at an annual time 

scale to capture changes from agricultural to urban land use with the assumption that 

urban borders did not change at a monthly time scale.  

Linear features caused by scan line correction errors with the Landsat 7 sensor were 

present in 20% of SSEBop images. Linear features were filled by interpolation from 
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temporally adjacent images by USGS (Senay, G., personal communication, July 2, 2019) 

and were therefore included in the annual SSEBop ET totals with the assumption that the 

linear features appear at different times in different locations and therefore provided 

accurate estimates at an annual scale.   

2.6 Estimation of Total Urban ET based on Consumptive Water 
Use  

To estimate consumptive use ET, urban water use data was collected from the water 

utility companies and categorized to ensure that water user categories were equal for each 

city. Water pathways were traced from the water source to the wastewater treatment plant 

effluent users. Water pathways included urban water sources, water treatment plants, 

urban water users, wastewater treatment plants, and wastewater treatment plant effluent 

users. A sample water pathway for Las Cruces is shown in Figure 4. Consumptive water 

use in each city was assumed to be equal to total urban ET, assuming that water 

contained in products exported from and other minor consumptive uses in the cities are 

negligible. Modeling and extrapolation were used to fill gaps from missing water utility 

data using water use coefficients and known data from water utilities, water audits, water 

utility annual reports, and annual population data. 

Consumptive water use calculations were based on water utility data on monthly 

surface and groundwater extractions; residential, commercial, and industrial urban water 

use; wastewater effluent, and infrastructure losses. Water utility bulk water sales to and 

wastewater from communities outside of the study area were eliminated from the urban 

areas consumptive use estimates. Water used for industrial cooling, irrigation of urban 
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landscapes (schools, parks, golf courses), and unbilled purposes such as firefighting and 

street cleaning were assumed to be 100% evaporative. Infrastructure losses are presented 

as a range from 0% to 100% evaporative. Self-supplied water and associated wastewater 

data was not readily available for each city and was not included in urban consumptive 

use estimates. Recycled wastewater effluent used for industrial cooling and irrigation of 

parks, schools and other irrigated areas within the cities were included in urban 

consumptive use. Recycled wastewater data was available from El Paso and Las Cruces 

water utilities. Wastewater for Ciudad Juarez is used for urban irrigation as well as 

agricultural irrigation. Percentages of known wastewater urban reuse for Ciudad Juarez 

are assumed to be 100% evaporative and the unknown percentages of wastewater use are 

assumed 100% agricultural and are not included in the urban ET estimates. 

2.7 Estimation of Total Urban ET based on Seasonal Water Use  

Monthly water utility data was analyzed to separate evapotranspirative water use 

from non-evapotranspirative water use, based on the assumptions that a) water used in 

December, January and February (“cool” season) for each year was for non-

evapotranspirative water use (primarily indoor use) only, b) the monthly non-

evapotranspirative water use was constant through the year, c) the difference between 

non-evapotranspirative water use and wastewater treatment plant effluent during the cool 

season accounts for infrastructure losses and evapotranspirative water use that is not 

seasonal (industrial cooling, mining, etc.) and d) evapotranspirative water use can be 

calculated by subtracting the constant non-evapotranspirative water use from the total use 

for the months of March through November (“warm” season). This assumption implies 
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that irrigation and evaporative cooler use occur only during the warm season and that 

evaporation from open water is negligible during the cool season. Wastewater treatment 

plant effluent contributes to overall urban evapotranspiration when used for industrial 

processes and irrigation of urban vegetation. 

Seasonal water use ET estimates calculate urban ET based on differences in monthly 

water demand and to estimate total urban ET it is necessary to add wastewater treatment 

plant effluent for evapotranspirative water use to seasonal water use estimates. The 

separation of the months into a cool season (December to February) and a warm season 

(March to November) were justified with a t-test analysis of monthly water use in all 

three cities over the study period. The mean water use for the months of December, 

January and February were found to be similar at a 5% confidence level and the mean 

water use for February vs. March as well as November vs. December were found to be 

different at a <1% confidence level. In addition, when mean wastewater effluent for the 

three cities for December, January and February were compared to mean wastewater 

effluent for the remainder of the year, the means over the two seasons were found to be 

equal with a <1% confidence level, confirming that there is no significant difference in 

wastewater effluent seasonally and implying that monthly indoor water use is relatively 

constant. 

2.8 Estimation of Urban ET Rates based on Urban Land Area 

Urban areas were estimated as the area served by the respective water utilities in the 

three cities. These areas were determined every year by taking the areas within the 
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political boundaries for each city (see Table 1) and subtracting undeveloped areas that 

appeared to consist of natural vegetation and thus were unlikely to be served by the water 

utilities. The undeveloped areas were determined with a Google Earth Engine (GEE) 

algorithm that uses Landsat 5 & 7 images and National Land Cover Database (NLCD) 

data to train a classifier to estimate developed urban land areas served by water utilities 

of each city. The NLCD, created by the Multi-Resolution Land Characteristics (MRLC) 

Consortium, provides land cover and land cover change data for the United States at a 30 

m resolution (MLRC, nd). The GEE algorithm is based on the assumption that urban 

areas served by water utilities fall within four NLCD classification: developed open 

space; developed, low intensity; developed, medium intensity; and developed, high 

intensity. The GEE algorithm was successful in delineating >90% of developed urban 

areas when compared to El Paso and Las Cruces NLCD maps. 
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3 Results and Discussion 

3.1 Total Urban ET by City and Method 

Table 2 presents a comparison of average annual urban ET in million m3 for each 

city in the study area. The fate of water from urban infrastructure losses is not widely 

studied, and insufficient data to calculate the total amount of water that evaporates from 

infrastructure losses makes it necessary to present the results as a possible ET range with 

0% or 100% of infrastructure losses included in evaporative totals. The totals from each 

ET method are relatively similar for each city, indicating that the annual ET estimates for 

the three cities are robust. Although Ciudad Juarez has a substantially higher population 

(see Table 1), El Paso and Ciudad Juarez have similar upper range ET estimates. If 

infrastructure losses are not included in ET totals, average annual ET for Ciudad Juarez is 

significantly lower than El Paso. Las Cruces has the smallest overall annual ET for the 

study area, which can be explained by small land area compared to El Paso and Ciudad 

Juarez.   

Table 3 presents ET results in m3 per capita for each ET method and average annual 

total m3 per capita water demand. Based on m3 per capita, El Paso and Las Cruces have 

similar ET and total demand per capita, both of which are roughly twice that for Ciudad 

Juarez. The much lower per capita demand for Ciudad Juarez explains why the total ET 

for Ciudad Juarez and El Paso are similar, even though the population of Ciudad Juarez is 

roughly twice that of El Paso. Based on water demand for the current study period, 

annual m3 per capita water demand is 235 m3 for El Paso, 283 m3 for Las Cruces and 135 
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m3 for Ciudad Juarez. Average water use per capita is based on total urban water demand, 

and annual ET per capita is a significant portion of overall water demand per capita.  

 On average, the United States per capita public water consumption is 135 m3 yr-1, 

New Mexico water consumption is 148 m3 yr-1 (CSG, 2018), Texas water consumption is 

152 m3 yr-1 (USGS, 2018), average Mexico water consumption is 134 m3 yr-1 (Gobierno 

de MEXICO, 2015) and water consumption for the northwest region of Mexico is 103 m3 

yr-1 (National Water Commission, 2017). Differences in per capita water consumption 

may arise from factors including availability of fresh water, differences in water use 

regulations and income disparities between cities.  

Figure 5 presents average monthly water demand in million m3 per month for each 

city, with non-evaporative baselines based on average January, February and December 

water use. Figure 6 presents average monthly water demand per capita for each city. 

These results show that the differences between cool weather water use (during January, 

February and December) and warm weather water use (March through November) are 

substantial for each city, but the fraction of warm weather use for Ciudad Juarez is 

substantially smaller than that of the US cities. This result underscores the results in 

Table 3, where it is shown that the fraction of ET out of total water use and per capita 

total demand are much lower for Ciudad Juarez.  Seasonal water use estimates assume 

that the average water use in January, February and December is the baseline for non-

evaporative use for each month and can be used to determine the evaporative water use 

for March through November. Previous research suggests that warm weather water use 

accounts for 40% to 70% of urban water use in semi-arid and arid climates (DeOreo, 
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2011; Litvak et al., 2016; Mini et al., 2014; St. Hilaire et al., 2008), which suggests that 

the results for the current study area are reasonable.  

Figure 7 presents the average annual evapotranspiration for each city in million m3 

from 2001-2015 to show variability in ET at an annual time scale. Annual ET estimates 

in Figure 7 present annual urban ET using the assumption that infrastructure losses are 

100% evaporative. The same temporal trends are seen when infrastructure losses are not 

included in ET totals. The years with lower ET correspond primarily to the low, imported 

surface water availability years of 2003-2005 and 2012-2014 and, to a lesser extent, years 

with higher local precipitation. Understanding the effects of climate and water 

availability on urban evapotranspiration is important for future predictions of urban ET 

and its role in urban water management. 

Table 4 presents the average annual evapotranspiration rate for each city in mm from 

1993-2015. Based on ET rates in mm, Las Cruces has the lowest annual average ET rate 

and El Paso and Ciudad Juarez have higher, but similar annual average ET rates when 

comparing ET without infrastructure losses. It is surprising to see that Ciudad Juarez 

water use is higher than El Paso by observing per capita ET and multiple factors may 

contribute to similarities and differences between the cities. 

Similar lower range ET rates between El Paso and Ciudad Juarez can be explained 

by observing ET rates from individual components. Vegetation ET is the largest 

component for each city and comparing the overall vegetation coverage and vegetation 

ET for each city helps to explain the similarities for El Paso and Ciudad Juarez. El Paso 
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and Ciudad Juarez have similar overall vegetation ET as well as similarities in large 

vegetation areas including parks, golf courses, sports fields and urban drainage areas. 

Large vegetation areas are irrigated with municipal water, self-supplied water from 

private wells and wastewater treatment plant effluent. Self-supplied well water is not 

accounted for in urban ET estimates, due to lack of total self-supplied well water use data 

for each city. Water from infrastructure losses may also contribute to vegetation and bare 

soil ET. Las Cruces has the smallest vegetation ET, which helps to explain why overall 

ET rates for Las Cruces are smaller than El Paso and Ciudad Juarez. 

Accounting of wastewater treatment plant effluent to irrigation is imperfect and may 

play a role in urban vegetation ET differences between cities. Differences in water use 

behavior driven by conservation for the three cities may also contribute to differences in 

urban ET rates, but more research is necessary to determine annual changes in water use 

behavior. Finally, SSEBop ET analysis has been shown to work well for agricultural ET 

estimates but has not been widely used for urban ET estimation. The complexity of urban 

ET, urban land areas and water use behaviors between the three cities contribute to 

similarities and differences in ET rates. 

3.2 Total Urban ET by Components 

A comparison of individual ET components in million m3 at an average annual 

scale is presented in Figure 8. Vegetation and bare soil ET is the largest ET component 

for each city and accounts for 88-92% of total component ET for El Paso, 76-91% for 

Las Cruces and 55-81% for Ciudad Juarez. After vegetation and bare soil, infrastructure 
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losses and evaporative cooling are the next largest components of urban ET for each city. 

Infrastructure losses are highest for Ciudad Juarez and account for 32% of urban ET if 

considered 100% evaporative. Open water evaporation accounts for 2% of total urban ET 

for El Paso and Las Cruces and less than 1% of total urban ET for Ciudad Juarez. Of the 

four main urban ET components, open water evaporation is the smallest contributor for 

each city.  

Several assumptions on urban evaporative water use were made when estimating 

individual ET components. Commercial and public urban vegetation is irrigated with a 

combination of treated water from water utilities, wastewater treatment plant effluent and 

water from self-supplied wells. Self-supplied water data was not readily available and 

therefore was not included in total ET estimates but likely contributed to vegetation and 

bare soil totals from remote sensing. Self-supplied water users also likely have septic 

systems for wastewater discharge, which would be partially evaporative. Wastewater 

treatment plant effluent reuse data was not readily available for each city, and only 

known totals to urban evaporative uses were included in urban ET estimates. If the end 

user for wastewater treatment plant effluent was unknown, it was assumed non-

evapotranspirative. In Ciudad Juarez, wastewater effluent is commonly used for 

agricultural purposes but for the purpose of estimating urban irrigation, the wastewater 

effluent used agriculturally was not added to the urban ET estimates. Wastewater effluent 

data in Ciudad Juarez was not available prior to the year of 2000 and likely contributed a 

significant amount to urban ET, but without adequate data, it was not included in urban 

ET estimates.  
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To estimate urban ET from vegetation and bare soil, urban boundaries were 

determined annually. Urban boundaries include the area of each city that is within the 

water utility service area and small cities that receive water and treat wastewater using 

the city water utility. There was ambiguity when determining urban boundaries in areas 

of cities that were mixed urban and agricultural use, which may have led to 

underestimation of vegetation and bare soil ET.  

Infrastructure losses can account for a significant portion of total urban water use. 

Understanding the fate of water from infrastructure losses is important in understanding 

the magnitude of evaporative water loss from aging and insufficient infrastructure. The 

fate of water from urban infrastructure losses is not widely studied, and insufficient data 

to calculate the total amount of water that evaporates from infrastructure makes it 

necessary to present the results as a possible ET range. It is likely that small, constant 

leaks do not infiltrate deep enough into the soil to contribute to groundwater recharge in 

semi-arid to arid climates and are evaporated from the soil or used by vegetation. Water 

from large leaks, for example pipe breaks, is likely to be a combination of evaporation 

and runoff that may result in surface water recharge. If infrastructure losses are 

evaporative, it is likely that the results from SSEBop would include evaporative water 

from infrastructure losses. Due to insufficient data on infrastructure losses, the 

assumption that leaks are not included in SSEBop evaporative totals was used. This 

assumption may lead to an overestimation of vegetation and bare soil ET. Future studies 

on infrastructure losses, recharge and evaporation are necessary to accurately estimate ET 

from infrastructure losses. 
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Ciudad Juarez has a large percent of infrastructure losses due to aging and 

insufficient infrastructure (Chavez, 2000; Quadri De La Torre, 1999). Infrastructure loss 

data is not available annually for Ciudad Juarez and was assumed as 20% of water 

demand for the entire study period. Ciudad Juarez infrastructure losses were reported as 

15% to 50% of urban water supply in previous studies (Chavez, 2000; Salas Plata 

Mendoza, 2014), and using an estimate of 20% for each month throughout the study 

period may be under or over estimating urban ET from infrastructure losses. 

Infrastructure losses are often more prevalent in months with increased water demand, 

and pipe breaks would cause a large increase in the amount of water lost to infrastructure 

losses. If water from leaks is considered runoff, the water would likely run off to 

irrigation canals and evaporative losses would be present. Insufficient data on the fate of 

water from infrastructure losses adds uncertainty to ET estimates from leaks.  

Evaporation from evaporative cooling is not widely studied, and estimates for 

evaporative cooling may be underestimates as a result of the assumptions used for the 

current study. The number of months that households use evaporative cooling and the 

efficiency of evaporative coolers varies, but insufficient data on evaporative cooling 

made it necessary to assume set months of use and efficiency for the entire study period. 

For the current study it is assumed that evaporative coolers are used from May through 

September and the remaining months have zero evaporative losses from evaporative 

coolers. The number of households using evaporative cooling is estimated for each city 

and the household sizes remain constant for the current study. Evaporative cooling as an 

individual component of urban ET focuses on residential cooling and does not include 
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commercial and industrial cooling due to lack of data available for the study area. 

Evaporative cooling is common in semi-arid to arid regions, and further research is 

necessary to determine urban water lost to evaporation from evaporative cooling in semi-

arid to arid regions, especially as populations increase and climate projections predict 

future climate shifts.  

Open water area was calculated annually and used to calculate monthly 

evaporation with the assumption that open water area remains constant at an annual scale. 

Open water types between cities vary, with El Paso and Las Cruces having a larger 

percentage of swimming pools and urban ponds than Ciudad Juarez. On average, 

swimming pools are 43% of open water in El Paso, 65% in Las Cruces and 7% in Ciudad 

Juarez. In the original Hargreaves and Samani equation, a calibration coefficient of 

0.0023 is used, and this calibration coefficient has been used in previous literature for 

New Mexico and Texas (Al-Kofahi, 2012; Henggeler, 1996), but for the purpose of this 

study the coefficient was calibrated to pan evaporation data for each city for more 

accurate open water evaporation results. Given the shallow nature of the open water in 

the three cities, it was assumed that the open water evaporation was equivalent to the pan 

evaporation when estimating open water evaporation, which may result in overestimates. 

The Hargreaves and Samani method is based on historical climate data and may not be as 

effective in estimating urban ET in the future due to predicted shifts in climate. Despite 

issues that arise when estimating evaporation from open water, it is a very small 

component of overall urban ET and does not change significantly if different assumptions 

are used. 
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4 Conclusions 
Understanding and effectively estimating urban evapotranspiration is important for 

water resource management and predicting the impacts of urban ET as increasing urban 

populations and shifting climate patterns affect watershed dynamics and availability of 

fresh water.  The Middle Rio Grande basin is a water scarce region, and exploring all 

water conservation opportunities is important for future water sustainability. The results 

of this study will be used to support a larger water balance model for the Middle Rio 

Grande basin by providing a time series of urban ET from 1993-2015. The broader model 

will be used for future water resource decision making including the impacts of urban 

water conservation in water scarce regions.  

Urban water conservation and management is crucial for protecting water resources 

in water scarce regions and ensuring that fresh water will be available for future use. 

Urban ET makes up more than half of urban water use and is an important component of 

the water cycle. Improving the accuracy of urban ET estimation methods and providing 

accurate estimates of urban ET for semi-arid to arid environments is important for urban 

water sustainability, especially when freshwater depletion in these regions is a possibility. 

Urban ET was estimated for El Paso, TX, US; Las Cruces, NM, US and Ciudad 

Juarez, CH, MX with the assumption that the main drivers for evapotranspiration are 

vegetation and bare soil, open water, infrastructure losses and evaporative cooling. 

Vegetation and bare soil ET is the largest ET component for each city and will be the 

most effective area of focus for future urban water conservation. Understanding the 

amount of water lost to ET for each driver is important for understanding how water is 
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used for each city and where water conservation efforts can be most effective. Multiple 

methods of ET estimation were used to provide average annual ET estimates. Overall, the 

ET method estimates were similar for each city, with varying degrees of each other, and 

can be used to separate overall ET components.  

On average, water lost to urban ET is between 50 to 63% of total urban water 

demand for the study area. Previous research suggests that outdoor water use accounts for 

50% to 70% of urban water use in semi-arid regions in the southwestern United States 

(DeOreo, 2011; Litvak et al., 2016; Mini et al., 2014) and urban landscaping accounts for 

40% to 70% of residential water use (St. Hilaire et al., 2008). Estimates from previous 

research on urban water use are similar to the results of the current study.  

Average urban ET including precipitation is 500 mm annually for the study area. 

Previous research on agricultural ET in the Middle Rio Grande basin estimates an 

average annual ET for pecan crops as 498 to 1,259 mm (Samani, et al., 2000), 386 to 

1217 mm for Alfalfa and 350 to 879 mm for cotton (Ahadi et al., 2013). Average annual 

reservoir evaporation for the Middle Rio Grande basin is 2450 mm yr-1 based on annual 

evaporation from Caballo and Elephant Butte Reservoirs, 1993 to 2015 (NOAA, n.d.), 

and the US Bureau of Reclamation suggested pan coefficient of 0.70. Reporting ET in 

mm allows for comparison of the intensity of water demand between different water use 

types and provides a means to scale urban ET to urban areas with similar climates based 

on land surface areas. 
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While the results of the current study appear robust based on the relative agreement 

between methods, there are sources of uncertainty that may need to be addressed in future 

research. The fate of water from infrastructure losses in semi-arid and arid environments 

is unclear and further research is necessary to determine the magnitude of losses that 

contribute to urban ET. SSEBop remote sensing results have been validated for 

agricultural and natural area estimates of ET but are not commonly used for estimates of 

urban ET. For this study, it was assumed that the methods used to derive ET from 

satellite imagery were also applicable to urban landscapes. The complexity of water 

distribution within cities and the urban boundaries used to capture urban ET were 

ambiguous and added to the uncertainties with vegetation and bare soil estimates. The 

complexity of water distribution and evaporative use for urban water sectors led to 

uncertainty with consumptive use, especially in El Paso due to gaps in water utility data. 

Future research is necessary to address these uncertainties. 

The methods used to estimate urban ET for this study have been applied to three 

cities that vary substantially in size and population with relative agreement for each city. 

Water use per capita is significantly larger in Las Cruces and El Paso than in Ciudad 

Juarez, which has the largest overall population. ET rates for El Paso and Las Cruces are 

similar on a per capita basis, which helps to quantify the difference in water use between 

the United States and Mexico. Observing differences in water use and evapotranspirative 

losses between cities suggests that water use implications may be different between the 

United States and Mexico, and the focus of water conservation and management plans for 

this region may need to adjusted accordingly. Although the results of this study use data 
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from specific cities that may have unique characteristics, the relative agreement between 

methods suggest that they are transportable and can provide ET estimates for urban areas 

with similar climates.  
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A Figures and Tables 
A.1 Figures 

 

 

Figure 1. Middle Rio Grande study area including the cities of Las Cruces, New Mexico, 
US; El Paso, Texas, US; and Ciudad Juarez, Chihuahua, MX. 
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Figure 2. Urban ET map for January, 2015, using the Operational Simplified Surface 
Energy Balance (SSEBop) developed by the USGS for the Rio Grande basin. ET maps 
obtained from the USGS were clipped to the city borders for Las Cruces, NM, US; El 
Paso, TX, US; and Ciudad Juarez, CH, MX to obtain urban ET for the Middle Rio 
Grande basin study area. 
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Figure 3. Urban ET map for July, 2015, using the Operational Simplified Surface Energy 
Balance (SSEBop) developed by the USGS for the Rio Grande basin. ET maps obtained 
from the USGS were clipped to the city borders for Las Cruces, NM, US; El Paso, TX, 
US; and Ciudad Juarez, CH, MX to obtain urban ET for the Middle Rio Grande basin 
study area. 
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Figure 4. Simplified water pathway for Las Cruces, NM, USA, showing how water is 
traced from the urban water source to the wastewater treatment plant effluent use. 

 



52 

 
Figure 5. Average total urban water demand and non-evapotranspirative water demand, 
million cubic meters per month from 1993-2015. 
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Figure 6. Average urban water demand, cubic meters per capita per month 1993-2015. 
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Figure 7. Annual evapotranspiration comparison in million m3 for each city, 2001-2015. 
To compare annual changes in urban ET, average ET from all methods was used. ET 
totals include ET from infrastructure losses. 
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Figure 8. Average annual evapotranspiration comparison of urban ET components in 
million cubic meters, 1993-2015. 
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A.2 Tables 

 

Table 1. Summary of climate and demographic data for each city in the Middle Rio Grande 
study area. 

City 

Average 
Temperature 

Range 
(° Celsius) 

Average 
Precipitation  

(mm) 

Areas 
According 
to Political 
Boundaries  

(km2) 

Population 

Las Cruces, NM, US 8.5 to 25.4 236 198 101,712 

El Paso, TX, US 11.0 to 25.3 236 664 683,577 

Ciudad Juarez, CH, MX 9.0 to 25.9 235 321 1,423,166 

Sources: Temperature (NOAA), Precipitation (NOAA & Government of MX 
Meteorological Service), Area (US Census Bureau & Google Maps) & Population (US 
Census Bureau, 2017 & The Borderplex Alliance, 2016) 

 

Table 2. Average annual comparison of ET methods in million cubic meters, 1993-2015. 
Lower range of ET assumes zero evaporation from infrastructure losses and upper ranges 
assumes 100% evaporation from infrastructure losses. 

Method El Paso, 
TX, US 

Las Cruces, 
NM, US 

Ciudad Juarez, 
CH, MX 

Total Components ET 106 - 110 14 - 17 69 - 102 

Consumptive Use ET 80 - 84 11 – 14 61 – 96 

Seasonal Water Use ET 86 - 91 11 - 14 62 – 97 

Average ET 91 - 95 13 - 15 64 – 98 
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Table 3. Average annual ET and average overall water demand comparison in cubic meters 
per capita, 1993-2015. 

Method El Paso, 
TX, US 

Las Cruces, 
NM, US 

Ciudad Juarez, 
CH, MX 

Total Components ET 175 – 183 174 – 208 59 – 86 

Consumptive Use ET 131 – 139 134 – 168 46 - 72 

Seasonal Water Use ET 142 – 149 136– 169 47 - 74 

Average Water Demand 235 283 135 

 

Table 4 Average annual comparison of ET rates for each method in millimeters, 1993- 
2015. Lower range of ET assumes zero evaporation from infrastructure losses and upper 
ranges assumes 100% evaporation from infrastructure losses. 

Method El Paso, 
TX, US 

Las Cruces, 
NM, US 

Ciudad Juarez, 
CH, MX 

Total Components ET 281 - 295 138 - 179 304 - 498 

Consumptive Use ET 247 - 262 161 - 202 328 - 519 

Seasonal Water Use ET 267 - 282 163 - 204 337 - 527 

Average ET 265 - 280 154 - 195 323 - 515 
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	4 Conclusions
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	On average, water lost to urban ET is between 50 to 63% of total urban water demand for the study area. Previous research suggests that outdoor water use accounts for 50% to 70% of urban water use in semi-arid regions in the southwestern United States...
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	While the results of the current study appear robust based on the relative agreement between methods, there are sources of uncertainty that may need to be addressed in future research. The fate of water from infrastructure losses in semi-arid and arid...
	The methods used to estimate urban ET for this study have been applied to three cities that vary substantially in size and population with relative agreement for each city. Water use per capita is significantly larger in Las Cruces and El Paso than in...
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