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Abstract 

One of the most prominent structural features associated with the ~1.1 Ga Midcontinent 

Rift (MCR) system is the >350 km long Keweenaw Fault that bisects the Keweenaw 

Peninsula, separating the MCR-related Portage Lake Volcanics (PLV) and the younger 

Jacobsville Sandstone (JS). The fault trend is NE-NNE over most of its length, but 

changes to an easterly direction along the shore of Bête Grise Bay near the end of the 

peninsula. Conventionally, the Keweenaw Fault has been considered to be a continuous 

reverse (dip-slip) fault formed by inversion of an original rift-bounding normal fault 

during the Grenville Orogeny. However, recent mapping shows that the fault in this area 

is not a single continuous feature but instead is a fault system consisting of ENE and 

ESE-trending segments with substantial strike-slip movement. This segmented fault 

geometry could have resulted in local folding of PLV and JS strata adjacent to the fault 

segments. To test this hypothesis, a paleomagnetic investigation was conducted on 

samples of PLV basaltic flows from eight sites in the Lake Medora and Fort Wilkins map 

quadrangles. The sites represent the opposite flanks of a proposed anticline with an ESE-

trending axis. All eight sites yielded reliable and consistent site-mean directions of 

characteristic remanent magnetization (ChRM). A paleomagnetic fold test conducted on 

these sites showed that after unfolding the ChRM directions are similar to the 

paleomagnetic direction expected from unfolded PLV rocks. Data from two sites also 

suggest rotations around a vertical axis consistent with strike-slip movement. 

Paleomagnetic directions obtained from three additional sites with brecciated PLV basalt 

and JS sandstone as well as a clastic dike of JS cutting PLV, are randomized within each 

site. These randomized directions provide additional evidence that paleomagnetic data 

from the PLV basalts were not affected by a later remagnetization event. Overall, the 

paleomagnetic results support the hypothesis of fault-induced folding of PLV strata in the 

study area. In addition, this research demonstrates that paleomagnetism represents a 

useful tool to investigate local structural deformation within the MCR system. 
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1.0 Introduction   

  

1.1 Midcontinent Rift System 

 

  The North American Midcontinent Rift (MCR) system represents a failed rifting 

event that occurred within the North American plate (Laurentia craton) about 1.1 billion 

years (Ga) ago (e.g., Ojakangas et al., 2001) (Figure 1). The MCR system is the only 

Precambrian rift system that is well-preserved and thus provides a unique opportunity to 

investigate significant problems of Mesoproterozoic plate tectonics and geodynamics. 

Outcrops of MCR- related rocks are only exposed in the Lake Superior region. 

However, strong magnetic and gravity anomalies indicate that the MCR system extends 

from NE Kansas northward to Lake Superior and through Michigan and NE Ohio.  

 

Figure 1. Map showing the extent of the Midcontinent Rift System (Huber, 1973). 
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Rift-related magmatism resulted in eruption of >300,000 km3 of predominantly 

mafic, mantle-derived magma and emplacement of possibly an equal amount of 

intrusive rocks (Green et al., 1987; Cannon et al., 1989; Hutchinson et al., 1990; Davis 

and Green, 1997). Based on high-precision U-Pb geochronology data, MCR magmatic 

activity is divided into a precursor stage (~1145–1140 Ma), two main pulses (~1115–

1105 Ma and ~1100–1094 Ma), and a period of diminishing volcanic activity (1087–

1085 Ma) (e.g., Davis and Green, 1997; Heaman et al., 2007; Kulakov et al., 2014). 

The Midcontinent Rift evolved from widespread but localized magmatism 

during the early stage of rifting to more intense magmatism within the down-dropped 

rift graben during the main stage, followed by sedimentary infilling during the post-rift 

sag phase (Bornhorst and Lankton, 2009). Initiation of rifting was likely associated with 

an ascending mantle plume spreading laterally at the base of the crust (Ernst and Bell, 

2010; Platt and Mitchell, 1979) causing the crust to break and separate along inwardly 

dipping, normal faults (Figure 3). The oldest igneous rocks of the MCR system include 

intrusive rocks of the Logan sills dated at 1109-2+4 Ma (Davis and Suttclife, 1985) and 

the layered series of the Duluth Complex dated at 1106.9 ± 0.6 Ma (Paces and Miller, 

1992), both located in the northwestern part of the Lake Superior region (Figure 2). 

Recent paleomagnetic data indicate that some E-W trending mafic dikes in Baraga and 

Marquette counties may also represent the early stage of the MCR (Foucher, 2018). 
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Figure 2. Generalized geologic map of the Lake Superior basin (N/R indicates 

normal/reversed magnetic polarity) (Ojakangas et al., 2001). 

The main stage of rifting was associated with eruption of large volumes of 

mantle-derived mafic magma and lesser amounts of felsic magma over the subsiding 

Archean and Paleoproterozoic crust (Green et al., 1987; Cannon et al., 1989; 

Hutchinson et al., 1990; Davis and Green, 1997). Along the Keweenaw Peninsula, these 

magmas formed a thick succession of basaltic flows and rhyolitic domes known as the 

Portage Lake Volcanics (PLV) (Section 1.2). Between eruption episodes, periods of 

erosion and weathering were sometimes long enough for sedimentary units to be 

deposited between the flows. Ten named conglomerates, including the Allouez and the 
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St. Louis conglomerates, and three named sandstone units are useful markers for 

stratigraphic correlations along the Keweenaw Peninsula.  

Emplacement of the PLV was followed by continued sagging of the rift basin 

due to the weight of overlying rocks and the plastic nature of previously melted crust 

underlying the rift, further establishing the Superior Syncline and forming the western 

part of Lake Superior (Cannon et al., 1989). While basin subsidence was occurring, 

transport of erosional and weathering products filled the basin with almost 8 km of 

clastic sediments.  In the Keweenaw Peninsula, the PLV is overlain by the Copper 

Harbor Conglomerate (CHC) consisting mostly of coarse alluvial conglomerate and 

lava flows of the 1087 Ma Lake Shore Traps, representing the last significant MCR-

related magmatic event in this area (Davis and Paces, 1990). The CHC is conformably 

overlain by the Nonesuch Formation and Freda Sandstone. 

After 50 million years of rift evolution, rifting and associated magmatic activity 

ended without breaking Laurentia (Cannon et al., 1989). The last major tectonic event to 

affect the MCR was continental collision that culminated at about 1060 Ma but could 

have started as early as 1080 Ma (Cannon, 1994). This event is related to renewed 

northwest-directed compression from the Grenville Orogeny, which inverted the 

original rift-bounding normal faults into reverse faults (Cannon, 1994). During this 

time, the limbs of the Lake Superior Syncline broke along the Keweenaw and Isle 

Royale faults. The northwestern and southeastern limbs now form Isle Royale and the 

Keweenaw Peninsula, exposing MCR rocks related to the main and late stages of the 

rift activity (Figure 3). 
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The Keweenaw Fault represents one of the most prominent structural features 

associated with the MCR system. The fault can be traced for about 350 km, trending 

NE-NNE from northern Wisconsin to the end of the Keweenaw Peninsula, where the 

fault curves to an easterly direction along the Bête Grise Bay shore (Cannon and 

Nicholson, 2001). According to geophysical data, the fault may continue into Lake 

Superior, further changing its trend to southeast (Ojakangas et al., 2001).  The 

conventional interpretation is that the Keweenaw Fault is a continuous reverse fault 

formed by inversion of a rift-bounding normal fault.  

 

Figure 3. Schematic cross-section of the Lake Superior Basin with the conventional 

interpretation of the Keweenaw and Isle Royale Faults (Huber, 1975). 

However, new research at Michigan Tech indicates that the conventional 

interpretation is not consistent with fault geometry and field observations (Tyrrell et al., 

2018). Instead, new mapping suggests that the Keweenaw Fault is a discontinuous fault 

system consisting of (1) ESE-trending en echelon segments with SE-trending splays, 
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and (2) ENE-trending segments that appear to connect with the former to create a 

zigzag pattern (DeGraff, 2018).  In addition, field data indicate a substantial strike-slip 

component of motion. The observed folding of PLV and JS strata adjacent to the fault 

may reflect accommodation to this type of fault geometry and evolution.  

The main objective of this project is to test this hypothesis of folding related to 

the newly mapped fault system using paleomagnetic data from PLV rocks. Obtained 

paleomagnetic directions are rotated on horizontal axes to their inferred initial positions 

using dip azimuth and plunge of the basaltic flows measured in the field.  

Paleomagnetic directions thus rotated are then compared with the well-known reference 

paleomagnetic direction of PLV rocks to test whether the unfolding correction is 

consistent with the fold hypothesis. 

1.2. The Portage Lake Volcanics  

 

The ~1095 Ma Portage Lake Volcanics (PLV) along the Keweenaw Peninsula 

erupted over a period of 2 to 3 million years (Davis and Paces, 1990). These tholeiitic 

flood basalts erupted into a subsiding rift basin from a fissure system located near the 

center of present-day Lake Superior (White, 1960). Stratigraphically upwards, the PLV 

exhibit a trend to more-primitive magma compositions with negligible crustal 

contamination in the youngest flows (Paces, 1988). The PLV have been divided into 

two groups based on their TiO2 content. The low-TiO2 basalts make up to 90% of all 

PLV.  
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 The total thickness of PLV flows and interflow sediments is about 3-5 km 

(Paces, 1988). The PLV on the Keweenaw Peninsula is characterized by considerable 

changes in dip azimuths and dip angles along the strike of the peninsula, reflecting the 

curvature of the MCR. Moving from west to east along the peninsula, dip directions 

systematically vary from northwest near Houghton to northeast at the eastern tip of the 

peninsula. Some PLV flows can be traced for 30-50 km along strike, with a few that can 

be traced ~100 km. The Greenstone Flow near the PLV top has been dated to 1094 ± 

1.5 Ma (Davis and Paces, 1990), and the Copper City Flow near the PLV bottom has 

been dated to 1096 ± 1.8 Ma (Davis and Paces, 1990).  

 During post-rift compression between 1060 and 1047 Ma (Bornhorst et al., 

1988; Browning and Beske-Diehl, 1987), upward movement of burial metamorphic 

hydrothermal fluids resulted in alteration of rift-filling rocks and formation of native 

copper deposits (Bornhorst, 1997). These hydrothermal fluids also caused formation of 

hematite in vesicular and permeable flow tops of the PLV (Browning and Beske-Diehl, 

1987). Less permeable massive flow interiors remained relatively fresh and unaltered. 

This study focused on the paleomagnetic investigation of PLV flows exposed on 

the Keweenaw Peninsula and adjacent to the Keweenaw Fault. Most previous 

paleomagnetic investigations of the PLV were done more than 25 years ago (e.g., 

DuBois, 1962; Vincenz and Yaskawa, 1968; Books, 1968; 1972) and do not meet 

modern reliability criteria of paleomagnetic research. Later studies focused on copper 

mineralization (Browning and Beske-Diehl, 1987; Li and Beske-Diehl, 1993), basaltic 

lava flows in the Quincy Mine (Michels, 2013), or Midcontinent Rift curvature in the 
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Lake Superior region (Hnat et al., 2006) (Table 1). Recently, a detailed paleomagnetic 

investigation of 74 PLV flows at the tip of the Keweenaw Peninsula (Kulakov, 2014) 

isolated a primary remanent magnetization carried by magnetite or low-Ti 

titanomagnetite between ~525°C and 585°C. The group-mean direction for this primary 

component is D=289.8°, I=36.9°, α95=8.2° (D – declination, I – inclination, α95 - the 

95% radius of confidence). The computed angular dispersion of virtual geomagnetic 

poles (S = 12.7 ± 2.1°, N=65) is statistically similar to the value of S = 12° (λpaleo = 21°) 

calculated for the 1.0-2.2 Ga interval (Smirnov et al., 2011). Therefore, these 

paleomagnetic data adequately represent a time-averaged geomagnetic field. In this 

study, the paleomagnetic direction reported by Kulakov (2014) is used as a reference 

paleomagnetic direction for unfolded PLV flows. 

 

Table 1. Paleomagnetic results obtained from the Portage Lake Volcanics. D - 

declination: I - inclination; α95 - radius of the 95% confidence circle; k is the precision 

parameter (Fisher, 1953), N is the number of sites, *samples, NL= not listed.  
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1.3. Site Descriptions  

 

 Samples for paleomagnetic research presented here were collected from eleven 

sites (PM01-11) near the Keweenaw Fault along the shore of Bête Grise Bay in the Lake 

Medora and Fort Wilkins map quadrangles (Figure 4, Table 2). An additional nine sites 

(PM12-20) collected in the same area (Figure 4) have not been investigated in this study.  

 Sites PM01-05 and PM09-11 sample basaltic PLV flows (Figure 5). Structural 

interpretations described below are based on work by J. DeGraff and his students 

(DeGraff, 2018; Tyrell et al., 2018). North-dipping flows at sites PM01, PM04, and PM05 

represent one structural domain (Domain A) defined as a group of sites with a similar 

structural rotation. Together with the north-dipping flow at site PM10 (Domain B), they 

may represent either the north flank of a single EW-trending anticline or the northern 

flanks of two parallel anticlines separated by a fault (J. DeGraff, personal 

communication). South-dipping flows at sites PM09 and PM11 (Domain C) represent the 

south flank of the same anticline containing PM10 on its north flank. Southeast-dipping 

sites PM02 and PM03 (Domain D) represent the same anticline as sites PM9-11; however, 

they are near the plunging axis where layer strike is different from the other sites. Their 

dip azimuth is SE, whereas it is SSE at PM09 and PM11.  

 Sites PM06 and PM07 sample sandstone and basalt from different parts of a fault 

breccia zone, and site PM08 samples a clastic dike interpreted to be injected during fault 

movement.   
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Figure 4. Map of the study area. (a) Lake Medora and Fort Wilkins map quadrangles. 

The Keweenaw Fault is shown by the red dashed line. (b) and (c) sample locations and 

rock types of sites PM01-PM20 (Cornwall, 1954).  
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Table 2. Sampled sites. Lat, Long: site coordinates; Dip A: Dip Azimuth, P: Plunge, 

UR/OT: upright/overturned outcrop; N: Number of sampled cores.  
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Figure 5. Images of sampled outcrops of PLV basalt at sites PM01-PM04. 
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Figure 5 cont. Images of sampled outcrops of PLV basalt (PM05), JS fault breccia 

(PM06), PLV fault breccia (PM07), and a JS clastic dike (PM08).  

2.0 Methods 

 

2.1 Sample Collection 

 

Twenty sites (PM01-PM20) were sampled with a minimum of six independently 

oriented cores per site. The sampling sites were checked for the presence of a lightning-

induced isothermal remanent magnetization (IRM) at topographic highs. This was 

accomplished by checking if a magnetic compass needle was deflected by ≥5° when the 

compass was moved vertically down from a ~1-meter height to the outcrop surface. In the 
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case of a noticeable deflection, the spot was not used for sampling. The cores were 

collected using a Pomeroy Model D261-C power drill and BSS-1E drill bit. The cores 

were oriented using a Pomeroy Orienting Fixture clinometer and Brunton Compass; the 

magnetic azimuth, sundial, and hade of the borehole were measured for each core (Figure 

6). The bedding down-dip azimuth and dip angles of the sampled PLV lava flows were 

also measured at each site (Table 2). 

 Cylindrical specimens 13 mm in height and 15 mm in diameter were cut from each 

core to be used for thermal demagnetization (Section 2.2). In addition, 300-500 mg of 

each core was crushed to a fine powder for thermomagnetic analysis (Section 2.3). Small 

chips of each core were made for magnetic hysteresis analyses approximately 1 mm3 

(Section 2.4). To avoid weathering alterations, all the specimens were prepared from the 

bottom of each core.  

 

Figure 6. The Pomeroy Orienting fixture with a Brunton compass used to orient the 

core samples. 
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2.2 Thermal Demagnetization 

 

Magnetic remanence measurements were conducted using a 2G Enterprises 760-

R superconducting rock magnetometer (SRM) in a magnetically shielded room (Figure 

7). Before measurements, the SRM software (PAcquire v.3.70) was used to create a 

special file for each specimen. The file contains information about the specimen volume 

and the core orientation along with the plunge and bearing of outcrop the sample was 

drilled from. The software used this information to convert the measured remanence 

directions to the geographical coordinates automatically.  

 

Figure 7. The 2G Enterprise 760-R superconducting rock magnetometer in Michigan 

Tech’s Earth Magnetism Laboratory. 

 

After measurement of their natural remanent magnetization (NRM), specimens 

were cycled through the Verwey transition at ~120 K (Verwey, 1939) by immersing them 
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into liquid nitrogen to reduce a viscous magnetization component carried by larger 

magnetite grains (Schmidt, 1993). After the low-temperature demagnetization procedure, 

samples were put through a series of heating steps to thermally demagnetize their NRM 

using an ASC TD-48SC thermal specimen demagnetizer flushed with nitrogen gas (Figure 

8). Thermal demagnetization was performed until the samples' magnetic intensity was 

reduced to noise levels or becomes too erratic.  

 

Figure 8. The ASC TD-48SC thermal specimen demagnetizer in Michigan Tech’s 

Earth Magnetism Laboratory. 

Twenty-three demagnetization steps were performed on a set of specimens 

representing all the samples. To increase the confidence in the obtained results, for many 

samples, a second specimen was thermally demagnetized with a reduced number (10-12) 

of temperature steps within the unblocking temperature range of their characteristic 

remanent magnetization (ChRM). After each temperature step, the X, Y, and Z 
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components of the remaining magnetic remanence measured by the SRM were 

automatically re-calculated by the PAcquire v.3.70 software into the total moment and 

magnetization, as well as the declination and inclination in the core, bedding, and 

geographic coordinates. The measured paleomagnetic data were processed using the 

PaleoMag v 3.1b1 software. The demagnetization data were plotted on vector end-point 

and equal area plots for visual inspection and identification of magnetization components 

(Figure 9).   

 

Figure 9. Examples of demagnetization behavior measured from a site PM01 sample. (a) 

Vector end-point diagram (red/blue symbols show the endpoint projections on 

vertical/horizontal plane). (b) Equal-area plot showing the directions of magnetic 

remanence after each demagnetization step. NRM=Natural Remanent Magnetization.  

Most measured samples showed a two-component NRM (Figure 9a). A “soft” low-

temperature component was typically removed by 500-540 °C. The characteristic 
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remanent magnetization (ChRM) component was identified by a straight linear 

demagnetization trajectory toward the origin on a vector end-point diagram (Figure 9a). 

The remanence directions were calculated using the principal component analysis 

on linear segments of the demagnetization trajectories (Kirschvink, 1980). The best-fit 

line was used if it was defined by at least four successive demagnetization steps with less 

than 10° maximum angular deviation (MAD). The ChRM directions were then averaged 

at the site level using Fisher statistics (Fisher, 1953). 

2.3 Thermomagnetic Analyses 

 

To analyze the magnetic mineral composition, an AGICO MFK-1FA magnetic 

susceptibility meter (Kappabridge) with a CS-3 Furnas Apparatus and a CS-L cryostat 

was used (Figure 10). The 300-500 mg powdered samples are placed into a quartz tube 

with a thermocouple to measure the temperature of the samples. Each sample underwent 

three temperature steps.  

First, the sample is cooled to approximately -192°C using the cryostat and liquid 

nitrogen for the initial low-temperature step. Once the sample was cooled to this 

temperature, all excess liquid nitrogen was flushed from the system using argon to avoid 

oxidation. The samples' magnetic susceptibility was then measured by the Kappabridge 

as the sample was heated back to 0°C. The next high-temperature step used the CS-3 

Furnace Apparatus. The sample was heated to approximately 700°C at 5°C steps in the 

argon flushed furnace to avoid oxidation. The sample was then measured as it cooled back 

to room temperature. The second low-temperature step followed the same procedure as 
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the first. The cryostat was replaced, and the sample was cooled back to approximately -

192°C and measured as it heated back to room temperature.  

The low and high-temperature thermomagnetic curves were corrected by 

subtracting the empty Cryostat and Furnace curves. The data were then normalized by the 

specimen mass. These corrections were done using the Cureval 8.0.2 software. These 

corrected thermomagnetic curves were used to identify magnetic minerals based on Curie 

temperature analysis.  

 

Figure 10. The AGICO MFK1-FA Kappabridge in the Michigan Tech Earth Magnetic 

Laboratory. 

2.4 Magnetic Hysteresis Analyses  

 

Magnetic hysteresis measurements were conducted with a MicroMag Model 2900 

Alternating Gradient Field Magnetometer (AGFM) (Figure 11). The AGFM measures 

both induced and remanent magnetic moments imparted in a specimen as a function of 
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the applied magnetic field strength (Graham, 2000). Magnetic hysteresis measurements 

are used to evaluate the magnetic domain state and grain-size distribution, and to identify 

magnetic mineral phases in a sample. 

 

Figure 11. The MicroMag Model 2900 Alternating Gradient Field Magnetometer 

(AGFM) in Michigan Tech’s Earth Magnetism Laboratory. 

 

For measurement, a small specimen (rock chip) is placed on the AGFM sample 

holder stage (about 3 x 3 mm2 in size) using a small amount of diamagnetic silicone grease 

(Dow Release Compound 7) as adhesive. Next, the specimen is placed between the poles 

of a water-cooled electromagnet that can create magnetic fields within a -1.4 to 1.4 Tesla 

range. The applied field intensity is measured by a Hall probe. The AGFM has two 

additional gradient field coils that create a periodically varying gradient magnetic field in 

the specimen region to vibrate the specimen. The amplitude of this vibration, proportional 
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to the specimen’s magnetic moment, was measured by a piezoelectric transducer built-in 

the sample holder.  

Before each measurement, the sample holder stage was cleaned with isopropanol 

to remove any possible contaminants. The AGFM was calibrated using an yttrium iron 

garnet sphere standard with a magnetic moment of 77.64 µAm2. After calibration, an 

empty probe was measured to use later to compensate for the background signal.   

Magnetic hysteresis measurements were done in two steps. For the first step, the 

induced magnetic moment (M) of a specimen was measured as a function of the applied 

magnetic field (H). The field H cycled between ±1.0 T (with the field increments of 10 

mT) depending on the sample characteristics. After the measurement was finished, the 

empty probe signal was subtracted from the raw data using the AGFM software. The same 

software was used to remove the diamagnetic and paramagnetic signals to filter out the 

ferromagnetic signal. The adjusted M(H) curve (called a hysteresis loop) allows to 

determine three magnetic hysteresis parameters: the saturation magnetization (Ms), 

saturation remanent magnetization (Mrs), and coercive force (Hc) (Figure 12). 
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Figure 12. An example of a magnetic hysteresis loop (blue line), M(H), where H is the 

applied magnetic field, and M is the induced magnetic moment. Ms: Saturation 

magnetization; Mrs: Saturation remanent magnetization; Hc: Coercive force.  

3.0 Results 

 

3.1 Paleomagnetism  

 

Almost all samples from sites representing basaltic flows of Portage Lake 

Volcanics (PM01-05, PM09-11) manifested a two-component NRM. A low temperature, 

soft component was removed by temperatures not exceeding 500°C. The characteristic 

remanent magnetization component (ChRM) was identified by a straight linear 

demagnetization trajectory toward the origin on a vector endpoint diagram. The ChRM 
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was typically demagnetized between 530-540°C and 680-690°C (Figure 9). For most 

samples, paleomagnetic ChRM directions were measured from two specimens per sample. 

Calculated site-mean directions are shown in Tables 3-13. 

 

Table 3. Paleomagnetic results for Site PM01. Core A/Core P: Core azimuth/plunge; 

NRM: Natural remanent magnetization; ChRM Decl/Incl: Declination and inclination of 

characteristic remanent magnetization after core orientation and structural attitude 

corrections. 
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Table 4. Paleomagnetic results for Site PM02. Core A/Core P: Core azimuth/plunge; 

NRM: Natural remanent magnetization; ChRM Decl/Incl: Declination and inclination of 

characteristic remanent magnetization after the core orientation and structural attitude 

corrections. 
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Table 5. Paleomagnetic results for Site PM03. Core A/Core P: Core azimuth/plunge; 

NRM: Natural remanent magnetization; ChRM Decl/Incl: Declination and inclination of 

characteristic remanent magnetization after the core orientation and structural attitude 

corrections. 
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Table 6. Paleomagnetic results for Site PM04. Core A/Core P: Core azimuth/plunge; 

NRM: Natural remanent magnetization; ChRM Decl/Incl: Declination and inclination of 

characteristic remanent magnetization after the core orientation and structural attitude 

corrections. 

 

Table 7. Paleomagnetic results for Site PM05. Core A/Core P: Core azimuth/plunge; 

NRM: Natural remanent magnetization; ChRM Decl/Incl: Declination and inclination of 

characteristic remanent magnetization after the core orientation and structural attitude 

corrections. 
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Table 8. Paleomagnetic results for Site PM06. Core A/Core P: Core azimuth/plunge; 

NRM: Natural remanent magnetization; ChRM Decl/Incl: Declination and inclination of 

characteristic remanent magnetization after the core orientation and structural attitude 

corrections. 

 

Table 9. Paleomagnetic results for Site PM07. Core A/Core P: Core azimuth/plunge; 

NRM: Natural remanent magnetization; ChRM Decl/Incl: Declination and inclination of 

characteristic remanent magnetization after the core orientation and structural attitude 

corrections. 
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Table 10. Paleomagnetic results for Site PM08. Core A/Core P: Core azimuth/plunge; 

NRM: Natural remanent magnetization; ChRM Decl/Incl: Declination and inclination of 

characteristic remanent magnetization after the core orientation and structural attitude 

corrections. 

 

Table 11. Paleomagnetic results for Site PM09. Core A/Core P: Core azimuth/plunge; 

NRM: Natural remanent magnetization; ChRM Decl/Incl: Declination and inclination 

of characteristic remanent magnetization after the core orientation and structural attitude 

corrections. 
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Table 12. Paleomagnetic results for Site PM10. Core A/Core P: Core azimuth/plunge; 

NRM: Natural remanent magnetization; ChRM Decl/Incl: Declination and inclination of 

characteristic remanent magnetization after the core orientation and structural attitude 

corrections. 

 

Table 13. Paleomagnetic results for Site PM11. Core A/Core P: Core azimuth/plunge; 

NRM: Natural remanent magnetization; ChRM Decl/Incl: Declination and inclination of 

characteristic remanent magnetization after the core orientation and structural attitude 

corrections. 
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Site PM01 samples (N=27) yielded well-grouped ChRM directions except for 

sample PM01D, which was excluded from the site-mean calculation (Figure 13). ChRM 

directions for site PM02 are all well-grouped although sample PM02A showed more 

northerly directions (Figure 14). Nevertheless, all PM02 directions (N=11) were used to 

calculate the site-mean. Most ChRM directions from site PM03 samples have consistently 

very shallow inclination and NNW declination. However, ChRM directions from samples 

PM03C and PM03D are very different, with an inclination of ~60° and westerly 

declination (Figure 15). Potentially, these samples were collected from a block that was 

not in situ and, therefore, they were excluded from the site-mean calculation. Samples 

from sites PM04 (N=12), PM05 (N=7), PM09 (N=6), PM10 (N=5), and PM11 (N=5) 

yielded well-grouped directions within each site (Figures 16-20). 
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Figure 13. Equal-area plot of paleomagnetic characteristic directions for Site PM01 in the 

core (A) and geographic (B) coordinates (see text). Highlighted data points were used to 

calculate the site-mean direction. (C, D). Representative vector end-point diagram 

showing thermal demagnetization before (C) and after (D) correction for core and 

structural orientation. The numbers show temperatures of selected temperature steps. 
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Figure 14. Equal-area plot of paleomagnetic characteristic directions for Site PM02 in the 

core (A) and geographic (B) coordinates (see text). Highlighted data points were used to 

calculate the site-mean direction. (C, D). Representative vector end-point diagram 

showing thermal demagnetization before (C) and after (D) correction for core and 

structural orientation. The numbers show temperatures of selected temperature steps. 
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Figure 15. Equal-area plot of paleomagnetic characteristic directions for Site PM03 in the 

core (A) and geographic (B) coordinates (see text). Highlighted data points were used to 

calculate the site-mean direction. (C, D). Representative vector end-point diagram 

showing thermal demagnetization before (C) and after (D) correction for core and 

structural orientation. The numbers show temperatures of selected temperature steps. 
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Figure 16. Equal-area plot of paleomagnetic characteristic directions for Site PM04 in the 

core (A) and geographic (B) coordinates (see text). Highlighted data points were used to 

calculate the site-mean direction. (C, D). Representative vector end-point diagram 

showing thermal demagnetization before (C) and after (D) correction for core and 

structural orientation. The numbers show temperatures of selected temperature steps. 
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Figure 17. Equal-area plot of paleomagnetic characteristic directions for Site PM05 in the 

core (A) and geographic (B) coordinates (see text). Highlighted data points were used to 

calculate the site-mean direction. (C, D). Representative vector end-point diagram 

showing thermal demagnetization before (C) and after (D) correction for core and 

structural orientation. The numbers show temperatures of selected temperature steps. 
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Figure 18. Equal-area plot of paleomagnetic characteristic directions for Site PM09 in the 

core (A) and geographic (B) coordinates (see text). Highlighted data points were used to 

calculate the site-mean direction. (C, D). Representative vector end-point diagram 

showing thermal demagnetization before (C) and after (D) correction for core and 

structural orientation. The numbers show temperatures of selected temperature steps. 
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Figure 19. Equal-area plot of paleomagnetic characteristic directions for Site PM10 in the 

core (A) and geographic (B) coordinates (see text). Highlighted data points were used to 

calculate the site-mean direction. (C, D). Representative vector end-point diagram 

showing thermal demagnetization before (C) and after (D) correction for core and 

structural orientation. The numbers show temperatures of selected temperature steps. 
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Figure 20. Equal-area plot of paleomagnetic characteristic directions for Site PM11 in the 

core (A) and geographic (B) coordinates (see text). Highlighted data points were used to 

calculate the site-mean direction. (C, D). Representative vector end-point diagram 

showing thermal demagnetization before (C) and after (D) correction for core and 

structural orientation. The numbers show temperatures of selected temperature steps. 
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After core and structural orientation corrections were applied, site-mean directions 

for Sites PM01, PM03, PM04, PM05, PM10, and PM11 had northeasterly declinations 

ranging from 300° to 330° and shallow-to-intermediate inclinations ranging from 23° to 

32°. These directions are similar to group-mean directions published for the Portage Lake 

Volcanics in prior studies (Table 1). However, corrected site-mean directions for Sites 

PM02 and PM09 have northerly declinations and shallow (PM09) to intermediate (PM02) 

inclinations (Table 2; Figures 14b,18b).  This is unlikely to result from a recent viscous 

magnetization overprint because uncorrected values for Site PM09 have negative 

inclinations (i.e., opposite to the recent field direction), and ChRM directions for both 

sites are based on the magnetically hard portion of the unblocking temperature spectra.  

 Five of six measured samples from Site PM06 yielded noisy but still interpretable 

thermal demagnetization vector plots (Figure 21b). The ChRM component was defined 

over the 550-700°C range and is primarily carried by hematite. However, ChRM 

directions are scattered over the equal-area plot (Figure 21a); therefore, no site-mean 

direction was calculated. Samples from Site PM07 showed a two-component NRM with 

a well-defined ChRM defined over the 550-700°C range (Figure 22). Similar to Site 

PM06, a substantial portion of the ChRM is carried by hematite. A single sample from 

Site PM08 yielded a two-component NRM with most of the ChRM demagnetized within 

the 100-350°C temperature range (Figure 23). The direction of this ChRM is close to the 

present field direction in the area so that it was interpreted as a viscous overprint by the 

recent geomagnetic field.  
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Figure 21. Equal-area plot of paleomagnetic characteristic directions for Site PM06 (A) 

and a typical vector end-point plot (B) (see text).  

 

Figure 22. Equal-area plot of paleomagnetic characteristic directions for Site PM07 (A) 

and a typical vector end-point plot (B) (see text). 
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Figure 23. Equal-area plot of paleomagnetic characteristic direction for Site PM09 (A) 

and the corresponding vector end-point plot (B) (see text). 

3.2 Thermomagnetic Analyses 

 

For all sites representing basaltic flows (PM01-05, PM09-11), low-field magnetic 

susceptibility versus temperature curves revealed the presence of a magnetic phase with 

Curie temperatures in a range of 570 °C to 585 °C, indicating magnetite to low-Ti 

titanomagnetite as a magnetic carrier (Figure 25,26).  The thermomagnetic curves were 

non-reversible for all sites except PM04, which exhibited nearly-reversible behavior. For 

all eight sites, an increase of room-temperature magnetic susceptibility, after the high-

temperature step, was observed. This increase varied from approximately 9% for site 

PM04 to 1240% for site PM10. 

The presence of a characteristic peak at approximately -153 °C, associated with 

the Verwey transition (Verwey, 1939), confirms the presence of nearly-stoichiometric 
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magnetite in the samples of sites PM04 and PM05. Much smaller inflections of the first 

low-temperature curves at about the same temperature, -153 °C, suggest that some 

magnetite is also in samples from sites PM03, PM09, PM10. However, the principal 

magnetic carrier at these sites and sites PM01, PM02, and PM11 is likely low-Ti 

titanomagnetite, which does not undergo phase transitions at cryogenic temperatures.  

In addition, high-temperature thermomagnetic curves for all sites except PM05, 

indicate the presence of another ferromagnetic phase with a Curie temperature up to 700 

°C (notably in PM03 and PM11) (Figure 24,25). This mineral phase was interpreted as 

hematite. Although presence of hematite is not always well-expressed on low-field 

thermomagnetic curves, this high-temperature observation is consistent with NRM 

demagnetization curves that clearly show an NRM component carried by a magnetic 

mineral with Curie temperatures above 650 °C. The thermomagnetic curves between 

600°C and 700°C are irreversible, indicating that hematite is transformed into another 

phase by heating.   

All PLV sites exhibit a noticeable Verwey transition on the second low-

temperature run curves, which indicates neoformation of magnetite by heating during the 

high-temperature run.  The most likely mechanisms for this are reduction of hematite to 

magnetite and heating-induced magnetic transformation of clays (e.g., Hirt et al., 1993; 

Kosterov and Prévot, 1998; Tarduno and Smirnov, 2004).  

 Interestingly, sites PM01, PM04, and PM05 from structural domain A (north-

dipping lava flows) exhibit similar behavior during heating.  Their thermomagnetic curves 
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exhibit an increase in magnetic susceptibility upon heating from 200 to 500°C, indicating 

the presence of titanomagnetite with varying amounts of titanium. Upon cooling, the 

increased magnetic susceptibility disappears, which, along with the greater peak of the 

Verwey transition on the post-heating low-temperature run, suggests temperature-induced 

unmixing of homogeneous titanomagnetite into Ti oxide and low-Ti magnetite phases 

(e.g., Smirnov et al., 2005). The similarity in this behavior is greatest for sites PM04 and 

PM05, which may indicate that they sample the same basaltic flow. Site PM01 may belong 

to the same flow or to a co-genetic flow erupted shortly before or after.  In contrast, Site 

PM10 (structural domain B) from a north-dipping flow exhibited a very different 

thermomagnetic behavior and, therefore, is likely to belong to a different lava flow.  

 Sites PM02 and PM03 from structural domain D (southeast-dipping lava flows) 

exhibit different thermomagnetic behavior and thus are likely to belong to two different 

flows. The more expressed Hopkinson peak, approximately 585 °C, for site PM03 may 

indicate presence of finer magnetic grains that are closer to a single-domain state.  

Sites PM09 and PM11 from structural domain C (south-dipping lava flows) are 

characterized by very similar thermomagnetic behavior, indicating that they represent the 

same lava flow or co-genetic lava flows. They are certainly different from the flows at 

sites PM02 and PM03.  

Overall, thermomagnetic results from the PLV sites are consistent with the results 

reported by prior investigations of the Portage Lake Volcanics. 
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A sample from site PM06 (brecciated sandstone) shows irreversible 

thermomagnetic behavior (Figure 26A). The initial low-temperature run and the heating 

leg suggest presence of low-Ti titanomagnetite together with a substantial amount of 

hematite, which converts into fine-grained magnetite upon the temperature treatment.  A 

sample from site PM07 (brecciated basalt) shows thermomagnetic behavior similar to that 

of sites PM04 and PM05 (Figure 26B). Magnetite seems to be the dominant magnetic 

mineral, with some titanomagnetite indicated by a bump on the heating curve between 

200 and 450°C. No thermomagnetic analyses were performed on the single sample of site 

PM08 (clastic dike).  
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Figure 24. Temperature dependency of low-field magnetic susceptibility for sites 

representing lava flows of the PLV: PM01 (A), PM02 (B), PM03 (C), and PM04 (D). L1 

and L2 denote the first and second low-temperature runs (see text).  
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Figure 25. Temperature dependency of low-field magnetic susceptibility for sites 

representing lava flows of the PLV: PM05 (A), PM09 (B), PM10 (C), and PM11 (D). L1 

and L2 denote the first and second low-temperature runs (see text).  
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Figure 26. Temperature dependency of low-field magnetic susceptibility for sites PM06 

(A) and PM07 (B). L1 and L2 denote the first and second low-temperature runs (see text).  

3.3 Magnetic Hysteresis Analyses 

 

Hysteresis measurements suggest a pseudo-single domain (PSD) magnetic carrier 

in all samples (Figure 27,28,31). Relatively high coercivities for samples from some flows 

suggest the presence of hematite (Figure 29,30). Wasp-waisted hysteresis loops of some 

samples (PM03, PM06, and PM07) indicate the presence of magnetic phases with 

different coercivities such as magnetite and hematite (Tauxe et al., 1996). 
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Figure 27. Magnetic hysteresis loops (after paramagnetic slope correction) measured 

from sites representing lava flows of the PLV PM01 (A), PM02 (B), PM03 9C), and PM04 

(D). 
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Figure 28. Magnetic hysteresis loops (after paramagnetic slope correction) measured 

from sites PM05 (A) and PM11 (D) representing lava flows of the PLV, and sites PM06 

(B) and PM07 (C) representing fault breccia along a segment of the Keweenaw Fault 

system. 
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Figure 29. Backfield demagnetization curves for sites PM01-PM04. Non-saturated 

curves A and C indicate presence of hematite. 
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Figure 30. Backfield demagnetization curves for sites PM05-PM07 and PM11. Non-

saturated curves B and C indicate presence of hematite. 
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Figure 31. The Day plot showing hysteresis data for sites PM01-PM07 and PM11. The 

data suggests that magnetic carriers within the samples are mainly single-domain or 

pseudo-single-domain. SD single-domain, PSD pseudo-single-domain, and MD multi-

domain. 

4.0 Discussion 

 

 Thermomagnetic analyses of the PLV basaltic flows (Sites PM01-PM05 and 

PM09-PM11) indicate that their principal magnetic carriers are magnetite, 

titanomagnetite, and hematite. These minerals are identified by their Curie temperatures 

as well as by the presence of the Verwey transition at -153°C in some samples. Hematite 
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likely formed during rift inversion as a result of hydrothermal fluid activity (e.g., 

Browning and Beske-Diehl, 1987). Observed irreversibility of the thermomagnetic curves 

indicates that the lava flows have not experienced major re-heating since the termination 

of rifting. This conclusion is further supported by the irreversibility of the thermomagnetic 

curves for Sites PM06-08. Magnetic hysteresis analyses reveal pseudo-single domain 

(PSD) characteristics for all samples, which implies that they are able to retain a 

paleomagnetic signal for billions of years. This result provides additional confidence in 

the primary nature of the paleomagnetic signal recorded by the flows. Overall, these rock-

magnetic results are consistent with the findings reported for PLV lava flows in prior 

studies (e.g., Browning and Beske-Diehl, 1987; Li and Beske-Diehl, 1993; Hnat et al., 

2006; Michels, 2013; Kulakov, 2014).  

 Based on similar characteristic features of thermomagnetic curves, Sites PM01, 

PM04, PM05 probably represent the same lava flow or two co-genetic flows. This 

interpretation is corroborated by the similarity of site-mean paleomagnetic directions from 

Sites PM01, PM04, and PM05 (Table 14; Figure 32). The similarly north-dipping flow 

sampled at Site 10 is most likely not related to flows at these sites.  Sites PM09 and PM11 

may represent one, or two co-genetic flows. Sites PM02 and PM03 likely belong to two 

unrelated lava flows. While these interpretations are somewhat tentative, the use of rock 

magnetic characteristics to fingerprint individual lava flows represents a promising 

direction for future work.    

 All eight sites that sampled PLV basaltic flows yielded reliable ChRM directions 

generally defined within the ~540°C-700°C unblocking temperature range (Figures 13-
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20). In PLV rocks, remanence carried by hematite (unblocked above 600°C) has been 

considered to be a secondary component formed by hydrothermal activity during post-rift 

compression, and remanence carried by magnetite (unblocked within ~540°C-590°C) has 

been considered to be the primary component acquired during initial cooling of lava flows 

(e.g., Browning and Beske-Diehl, 1987). However, the difference between these two 

directions is very small and, even if present, would not be relevant for the purposes of this 

project. Data obtained in this study show no difference in paleomagnetic direction carried 

by titanomagnetite/magnetite and hematite in the same sample.  

 

Table 14. Structurally corrected paleomagnetic directions of sites PM01-PM11. Geogr. D 

and I represent the paleomagnetic direction for sites, Tilt D and Tilt I represent the tilt-

corrected paleomagnetic direction for sites, α95 is the 95% confidence circle around the 

site-mean direction, and N is the number of samples used for site mean direction.  

 After applying the structural correction for bedding orientation, paleomagnetic 

directions from Sites PM01, PM03, PM04, PM05, PM10, and PM11 plot close to the 
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group-mean paleomagnetic direction reported for the PLV by Kulakov (2014) and 

Browning and Beske-Diehl (1987) (Table 14; Figure 32). These results constitute a 

positive fold test (Butler, 1992) and thus support the hypothesis of fault-induced folding 

of the PLV in the area. 

 

Figure 32. Equal-area plot with a summary of paleomagnetic results. Red stars: site-mean 

directions and their 95% confidence circles obtained in this study; Grey circles: site-mean 

directions reported in Kulakov (2014); Blue circle: group-mean direction with 95% 

confidence circle from Kulakov (2014); Magenta square: group-mean direction with 95% 

confidence circle from Browning and Beske-Diehl (1987).  
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Site-mean directions for PM01, PM03, PM04, PM05, PM10, and PM11 plot on 

the northerly-declination side of the site-mean distribution reported by Kulakov (2014) 

(Figure 32). This reflects the fact that the data from 4-6 lava flows do not represent the 

full range of secular variation of the geomagnetic field. It is important to consider this 

limitation when using the data to estimate potential rotations around the vertical axis, as 

discussed below. 

 

Figure 33. Site-mean paleomagnetic directions for sites PM02 and PM09 and their 95% 

confidence circles (red stars, circles). Group-mean directions with 95% confidence circles 

from Browning and Beske-Diehl (1987) (magenta square, circle) and Kulakov (2014) 

(blue circles).  Dashed lines show an estimate of vertical-axis rotation at sites PM02 and 

PM09. Available data allow a 50°-105° range of possible rotation.  
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Paleomagnetic directions obtained from Sites PM02 and PM09 have inclinations 

within the range typical for PLV rocks; however, their declinations noticeably deviate 

clockwise from the reference directions (Figures 32 and 33). This difference in declination 

is unlikely to be caused by later remagnetization (see Section 3.1). A probable scenario 

explaining the declination difference is clockwise rotation of rocks at these sites around a 

vertical axis. The magnitude of rotation can be estimated by comparing site-mean 

declinations with the group-mean declination (D = 290°) reported by Kulakov (2014). The 

data suggest that rocks at Sites PM02 and PM09 could have rotated clockwise by about 

70° (Figure 33). Such a rotation is generally consistent with inferred dextral strikeslip 

along the Keweenaw fault in this area. However, the available data allow rotation to vary 

within a 50° to 105° range when uncertainties are considered (Figure 33). A smaller 

clockwise rotation could have affected paleomagnetic directions from Sites PM03 and 

PM11 as they also plot slightly outside the site-mean distribution from Kulakov (2014) 

(Figure 32). All four potentially rotated sites (PM02, PM03, PM09, and PM11) are from 

the south-dipping side of the anticline, which may have a structural significance not yet 

understood and in need of further investigation. Additional paleomagnetic investigations 

of nearby sites are needed to test these hypotheses and to evaluate the amount of rotation 

more precisely.  

 Paleomagnetic data obtained from Sites PM06 and PM07 (brecciated zone along 

the fault segment) show randomized ChRM directions within each site. While the data do 

not seem to have any bearing on fault kinematics, they indicate no significant post-faulting 

remagnetization event that could have affected the paleomagnetic signal in the basaltic 
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flows of Sites PM01-05 and PM09-11. This observation lends additional confidence to 

the interpretations discussed above.  

5.0 Conclusion 

 

Rock magnetic and paleomagnetic results obtained in this study support the 

hypothesis of folding of the Portage Lake Volcanics associated with dextral strike-slip 

along the Keweenaw Fault system in this area. The number of samples for some sites was 

relatively small and the investigated area represents only a small part of the Keweenaw 

Fault system. Therefore, future rock magnetic and paleomagnetic investigations should 

include additional samples for some sites presented here as well as additional sites along 

the extent of the fault system. Additional samples at existing and new sites have been 

already collected as a part of this study and will constitute the basis for the next stage of 

the project. One of the most interesting results of this research that needs to be addressed 

further is to test the idea of vertical axis rotations along the fault using paleomagnetic 

declinations.  

Another important outcome of this project is the demonstration that rock magnetic 

and paleomagnetic investigations represent a useful tool to study the tectonics of the 

Midcontinent Rift system at both global and regional levels.  
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