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Abstract

This dissertation focuses on novel computational method for eigenvalue problems.

In Chapter 1, preliminaries of functional analysis related to eigenvalue problems

are presented. Some classical methods for matrix eigenvalue problems are discussed.

Several PDE eigenvalue problems are covered. The chapter is concluded with a sum-

mary of the contributions.

In Chapter 2, a novel recursive contour integral method (RIM) for matrix eigen-

value problem is proposed. This method can effectively find all eigenvalues in a region

on the complex plane with no a priori spectrum information. Regions that contain

eigenvalues are subdivided and tested recursively until the size of region reaches spec-

ified precision. The method is robust, which is demonstrated using various examples.

In Chapter 3, we propose an improved version of RIM for non-Hermitian eigen-

value problems, called SIM-M. By incorporating Cayley transformation and Arnoldi’s

method, the main computation cost of solving linear systems is reduced significantly.

The numerical experiments demonstrate thatRIM-M gains significant speed-up over

RIM.

In Chapter 4, we propose a multilevel spectral indicator method (SIM-M) to

address the memory requirement for large sparse matrices. We modify the indicator

of RIM-M such that it requires much less memory. Matrices from University of

Florida Sparse Matrix Collection are tested, suggesting that a parallel version of

SIM-M has the potential to be efficient.

In Chapter 5, we develop a novel method to solve the elliptic PDE eigenvalue

problem. We construct a multi-wavelet basis with Riesz stability in H1
0 (Ω). By

incorporating multi-grid discretization scheme and sparse grids, the method retains

the optimal convergence rate for the smallest eigenvalue with much less computational

cost.
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Chapter 1

Introduction

Abstract

This chapter contains a brief introduction of the spectral theory for linear operators,

eigenvalue problems of partial differential equations, matrix eigenvalue problems and

applications. At the end of the chapter, the main contributions of the dissertation

are discussed.

1.1 Functional Analysis

In this section, we present some fundamental results for spectral theory of linear

operators [1].

Let X and Y be normed spaces. An operator T : X −→ Y is said to be linear if

T (αx1 + βx2) = αTx1 + βTx2 for all α, β ∈ C, x1, x2 ∈ X

and bounded if

‖Tx‖Y ≤ C ‖x‖X for all x ∈ X

for some constant C. Here ‖·‖Y and ‖·‖X are norms defined on X and Y , respectively.

We say an operator T is continuous if, for every convergent sequence {xn} in X with

1



limit x, we have

Txn −→ Tx in Y as n −→ ∞

A linear operator is continuous if and only if it is bounded.

Definition 1.1.0.1. We denote the set of all the continuous linear operators from X

to Y by L(X, Y ). Particularly, when Y = X, we write L(X). The set L(X, Y ) is a

linear space. The norm of a bounded linear operator T : X −→ Y is defined as

‖T‖L(X,Y ) = sup
x 6=0,x∈X

‖Ax‖Y
‖x‖X

For simplicity, we use ‖T‖ to denote ‖T‖L(X,Y ).

Definition 1.1.0.2. Let X and Y be normed spaces. A sequence of linear operators

{Tn} from X to Y is said to converge uniformly to a linear operator T ∈ L(X, Y ) if

lim
n−→∞

‖T − Tn‖ = 0.

Definition 1.1.0.3. Let X be a normed space. A linear functional f : X −→ K is

a linear operator such that K = R if X is a real vector space or K = C if X is a

complex vector space. The set of all bounded linear functionals on X, denoted as X ′,

is a normed space.

Next we introduce the adjoint operator.

Definition 1.1.0.4. Let X and Y be Hilbert spaces and T : X −→ Y be a bounded

linear operator. The Hilbert adjoint operator T ∗ is defined as T ∗ : Y −→ X such that

for all x ∈ X and y ∈ Y

(Tx, y)Y = (x, T ∗y)X .

Definition 1.1.0.5. A bounded linear operator T : X −→ X is said to be

1. self-adjoint or Hermitian if T ∗ = T ,

2. unitary if T is bijective and T ∗ = T−1,

2



3. normal if TT ∗ = T ∗T .

Let X be a complex normed space and T : X −→ X be a bounded linear operator.

The following theorem gives the definition of the spectral radius of T .

Theorem 1.1.1. Let T ∈ L(X). The limit

rσ(T ) := lim
k−→∞

∥

∥T k
∥

∥

1/k

exists and is called the spectral radius of T.

Let the operator be defined as

Tz = T − zI,

where z ∈ C and I is the identity operator. If Tz has an inverse, denoted by

Rz(T ) = (T − zI)−1,

it is called the resolvent operator of T .

Definition 1.1.1.1. Let X be a complex normed space and T : X −→ X a linear

operator. A regular value z of T is complex number such that

1. Rz(T ) exist,

2. Rz(T ) is bounded, and

3. Rz(T ) is defined on a set which is dense in X.

The resolvent set ρ(T ) of T is the set of all regular values z of T . Its complements

σ(T ) := C\ρ(T ) is called the spectrum of T . The spectrum σ(T ) can be partitioned

into three disjoint set:

1. point spectrum σp(T ) is the set of z such that Rz(T ) does not exist. We call z

the eigenvalue of T .

3



2. continuous spectrum σc(T ) is the set of z such that Rz(T ) exists and is defined

on a dense set in X, but Rz(T ) is unbounded,

3. residual spectrum σr(T ) is the set of z such that Rz(T ) exists and the domain

of Rz(T ) is not dense in X.

Definition 1.1.1.2. Let z ∈ σp(T ) be an eigenvalue of some operator T . If

Tzx : Tx− zx = 0 (1.1.1)

for some x 6= 0, x is called an eigenfunction of T associated to z.

Let λ be an isolated eigenvalue of T such that there exists simple closed curves

Γ,Γ
′ ⊂ ρ(T ) enclosing λ. Moreover, both Γ and Γ

′

do not include eigenvalues of T

other than λ.

Next we give the definition of the spectrum projection which is main tool for the

recursive integral method in Chapter 2.

P :=
1

2πi

∫

Γ

R(z)dz =
1

2πi

∫

Γ

1

T − zI
dz (1.1.2)

To verify P defined above is a projection, we have

P 2 =
1

(2πi)2

∫

Γ

∫

Γ
′

R(z)R(z
′

)dzdz
′

=
1

(2πi)2

∫

Γ

∫

Γ
′

R(z)−R(z
′

)

z − z′
dzdz

′

=
1

2πi

∫

Γ

R(z)dz

In fact, P is the projection from X to the generalized eigenspace associated with λ

when T is a compact operator. The eigenvalue problems we discuss in this thesis

are related to compact operators, i.e., matrix eigenvalue problems from Chapter 2 to

Chapter 4 and elliptic PDE eigenvalue problem for Chapter 5.

Definition 1.1.1.3. Let X and Y be normed spaces. An operator T : X −→ Y is

called a compact linear operator if T is linear and for every bounded subset M of X,

T (M) is relatively compact, i.e., T (M) is compact.

4



Let T : X → X be a compact linear operator. The set of eigenvalues of T is at

most countable and 0 is the only possible accumulation point. Every spectral values

λ 6= 0 is an eigenvalue. If X is infinite dimensional, then 0 ∈ σ(T ). Also for an

eigenvalue λ 6= 0, the dimension of associated eigenspace of T is finite.

Next we define the Sobolev spaces. Let

W s,p(Ω) = {f ∈ Lp(Ω)|∂αf ∈ Lp for all |α| ≤ s}

be the Sobolev space with associated norm

‖f‖W s,p(Ω) =

(

Σ|α|≤s

∫

Ω

|∂αf(x)|pdx
)1/p

.

When p = 2, we usually write

Hs(Ω) = W s,2(Ω).

1.2 PDE Eigenvalue Problems

In this section, we introduce two PDE eigenvalue problems.

1.2.1 Laplace Eigenvalue Problem

Consider the following Laplace eigenvalue problem in Ω with Dirichlet boundary

condition

−∆u = λu, in Ω, (1.2.3)

u = 0, on ∂Ω. (1.2.4)

The variational formulation is to find λ ∈ R and non-trivial u ∈ H1
0 (Ω)

a(u, v) :=

∫

Ω

∇u · ∇vdx = λ(u, v) for all v ∈ H1
0 (Ω). (1.2.5)

5



We define the solution operator T : L2(Ω) → L2(Ω) which maps f to the solution u,

i.e., Tf = u and consequently,

a(Tf, v) = (f, v) for all v ∈ H1
0 (Ω).

Thus Laplace eigenvalue problem could rewrite as

λ(u, v) = a(λTu, v) = a(u, v) for all v ∈ H1
0 (Ω).

which is equivalent to the operator eigenvalue problem

λTu = u.

Thus λ is a Dirichlet eigenvalue of variational formulation if and only if 1
λ
is an

eigenvalue of operator T . In chapter 5, we will discuss more about Laplace eigenvalue

problem and our novel method of solving the high dimensional elliptic eigenvalue

problem.

1.2.2 Transmission Eigenvalue Problem

Let D ⊂ R
d, d = 2, 3, be an open bounded domain with a Lipschitz boundary ∂D. Let

k be the wave number of the incident plane wave ui = eikx·p, where x, p ∈ R
d, |p| = 1.

Denote the index of refraction by n(x) such that n(x) ≥ n0 > 1. The direct scattering

problem by the inhomogeneous medium D is to find the total field u(x) satisfying

∆u+ k2n(x)u = 0, in D, (1.2.6a)

∆u+ k2u = 0, in R
d \D, (1.2.6b)

u(x) = eikx·p + us(x), in R
d, (1.2.6c)

lim
r→∞

√
r

(

∂us

∂r
− ikus

)

= 0, (1.2.6d)

where us is the scattered field and r = |x|. The Sommerfeld radiation condition

(1.2.6d) is assumed to hold uniformly with respect to x̂ = x/|x|.

6



The associated transmission eigenvalue problem is to find λ := k2 ∈ C and non-

trivial w and v such that

∆w + λn(x)w = 0, in D, (1.2.7a)

∆v + λv = 0, in D, (1.2.7b)

w − v = 0, on ∂D, (1.2.7c)

∂w

∂ν
− ∂v

∂ν
= 0, on ∂D, (1.2.7d)

where ν is the unit outward normal to ∂D.

We first transform (1.2.7) into a fourth order problem. Let z = v − w ∈ H2
0 (D).

Subtracting (1.2.7a) from (1.2.7b), we have

(△+ λn(x))z = −λ(n(x)− 1)v,

which implies

(n(x)− 1)−1(△+ λn(x))z = −λv.

Applying (△+ λ) to the above equation, (1.2.7b) leads to

(△+ λ)
1

n(x)− 1
(△+ λn(x))z = 0. (1.2.8)

To obtain a mixed formulation, let y = 1
n(x)−1

(△+ λn(x))z. Hence

(∆ + λ)y = 0,

1

n(x)− 1
(∆ + λn(x))z = y.

The associated weak problem is to find (λ, z, y) ∈ C×H1
0 (D)×H1(D) such that

(∇y,∇φ) = λ(y, φ) for all φ ∈ H1
0 (D),

(∇z,∇ϕ) + ((n(x)− 1)y, ϕ) = λ(n(x)z, ϕ) for all ϕ ∈ H1(D).

In the following, we describe a simple mixed finite element method proposed in

[2]. Let a triangular mesh for D ⊂ R
2 or a tetrahedral mesh for D ⊂ R

3 be given.

Define the linear Lagrange finite element spaces

Vh = the space of the linear Lagrange elements on D,
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V 0
h = Vh ∩H1

0 (D)

= the subspace of functions in Vh with vanishing DoF on ∂D,

V B
h = the subspace of functions in Vh with vanishing DoF in D,

where DoF stands for degrees of freedom. The discrete weak formulation is to find

(λh, zh, yh) ∈ C× V 0
h × Vh such that

(∇yh,∇φh) = λh(yh, φh) for all φh ∈ V 0
h ,

(∇zh,∇ϕh) + ((n(x)− 1)yh, ϕh) = λh(n(x)zh, ϕh) for all ϕh ∈ Vh.

Let ψ1, . . . , ψK be a basis for V 0
h and ψ1, . . . , ψK , ψK+1, . . . , ψT be a basis for Vh

such that zh =
∑K

i=1 ziψi and yh =
∑T

i=1 yiψi. Let z = (z1, . . . , zK)
′ and y =

(y1, . . . , yT )
′, where ′ denotes the transpose. The matrix problem is

SK×Ty = λhMK×Ty,

ST×Kz +M
n(x)−1
T×T y = λhM

n(x)
T×Kz,

where

(SK×T )i,j = (∇ψi,∇ψj), 1 ≤ i ≤ K, 1 ≤ j ≤ T,

(SK×T )i,j = (∇ψi,∇ψj), 1 ≤ i ≤ T, 1 ≤ j ≤ K,

(MK×T )i,j = (ψi, ψj), 1 ≤ i ≤ K, 1 ≤ j ≤ T,

(M
n(x)
T×K)i,j = (n(x)ψi, ψj), 1 ≤ i ≤ T, 1 ≤ j ≤ K,

(M
n(x)−1
T×T )i,j = ((n(x)− 1)ψi, ψj), 1 ≤ i ≤ T, 1 ≤ j ≤ T.

The generalized eigenvalue problem is




SK×T 0K×K

M
n(x)−1
T×T ST×K









y

z



 = λh





MK×T 0K×K

0T×T M
n(x)
T×K









y

z



 .

For simplicity, we use λ instead of λh and write the above problem as

Ax = λBx (1.2.9)
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with

A =





SK×T 0K×K

M
n(x)−1
T×T ST×K



 , B =





MK×T 0K×K

0T×T M
n(x)
T×K









y

z



 , x =





y

z



 .

Note that (1.2.9) is non-Hermitian. In general, there exist complex eigenvalues. In

chapter 2, we will introduce a novel method of solving (1.2.9) based on spectral

projection (1.1.2).

1.3 Matrix Eigenvalue Problems

In this section, we discuss classical methods of solving matrix eigenvalue problem [3]

related the thesis.

Definition 1.3.0.1. A complex number λ is called an eigenvalue of matrix A if there

exists a nonzero vector x such that

Ax = λx

The vector x is called an eigenvector associated with λ.

Definition 1.3.0.2. A complex number λ is called a generalized eigenvalue for the

generalized eigenvalue problem

Ax = λBx,

where A,B ∈ C
n×n and B can be singular.

1.3.1 Krylov Subspaces

An important class of techniques knows as Krylov subspace methods extracts approx-

imations from the following subspace

Km = Span{v, Av, A2v, . . . , Ak−1v}
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The Arnoldi’s method tries to seek best approximation in Km by orthogonal pro-

jection onto Km for general non-Hermitian matrices. Let W be a matrix whose

columns form an orthonormal basis for Km. One only to solve the reduced eigenvalue

problem as following of size k

Â = WHAW

When comes to generalized eigenvalue problem Ax = λBx, if B is non-singular,

we could rewrite as B−1Ax = λx then apply the Krylov subspace method. However

when B is singular, the above method fails. Fortunately, we could fix it by Cayley

transformation. We will discuss more details in Chapter 3.

1.3.2 Integral Based Eigensolvers

There are needs for computing eigenvalues of a nonlinear and/or non-Hermitian eigen-

value problem that lie in a given region in the complex plane. Also the convergence

behaviors of Krylov subspace are rather complex for non-hermitian cases. Recently

integral based method has become popular, it is a hybrid method of non-linear filter-

ing (contour integrals of the resolvent ) and subspace iteration.

The original problem considered by Polizzi [4] .i.e FEAST is as follows

Ax = λBx,

A is n by n Hermitian and B is n by n positive definite matrix. The goal is to

compute all the eigenvalues and the associated eigenvectors in the specified interval

(a, b). For simplicity we assume a and b are not the generalized eigenvalues We define

the spectral projection for the generalized eigenvalue problem,

P =
1

2πi

∫

Γ

(zB − A)−1dz. (1.3.10)

Here Γ is a circle centered at (a + b)/2 with radius r = b−a
2
. Assume that there are

only k ≪ n eigenvalues inside Γ. Let Vk be a matrix whose columns are k linear
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independent random vectors and Q = PVk. Then the original problem Ax = λBx

reduces to a generalized eigenvalue problem of size k

QTAQΦ = λQTBQΦ,

where Q can only be computed by numerical quadratures.

Simple version of FEAST Algorithm:

1. Select k0 > k random matrix Vn×k0 .

2. Set Q = 0 with Q ∈ R
n×k0 and r = b−a

2

3. for j = 1, . . . , Ne

compute θj = -π/2(xj − 1) and zj =
a+b
2

+ reiθj

compute (zjB − A)Qj = V

compute Q = Q− (wj/2)R[reiθjQj]

4. solve QTAQΦ = λQTBQΦ to obtain k0 eigenvalues and eigenvectors Φk0×k0

5. compute Xn×k0 = QΦk0×k0

6. check convergence for the trace of the eigenvalues. If refinement is needed,

compute V = BX and go to step 2.

Here (xj, wj) are any quadrature points.

1.4 Application of Matrix Eigenvalue Problems in

Data Mining

Singular value decomposition (SVD) is a factorization of a real or complex matrix

A and it is a classical technique covered in almost linear algebra book. SVD has

profound impact in data mining area, e.g. Principal Component Analysis (PCA).
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PCA uses an orthogonal transformation to re-combine a set of observations such that

the first principal component has the largest possible variance, which accounts for as

much variability of data as possible. PCA has been used to reduce the redundancy

of data as pre-processing step thus make predictive models much more robust. The

famous Netflix Prize problem is to predict how well its users might like individual

movies, so that it could recommend movies to them. The problem could be modeled

as a matrix completion problem and a low rank SVD approximation is winner solution

[5].

Another important application is the PageRank algorithm to measure the impor-

tance of website pages. The most significant step in PageRank is power method for

computing the associated eigenvector of the largest eigenvalue [6].

1.5 Main Contributions

In chapter 2, we propose the recursive integral method (RIM) for transmission eigen-

values since the discrete problem (1.2.9) leads to non-Hermitian matrix eigenvalue

problem with very complicated spectrum and only a small portion of eigenvalues are

needed. By splitting the area of interest based on the spectrum projections until it

reaches the tolerance, our method is robust and suitable for parallel computation.

In chapter 3, we optimize the RIM algorithm by introducing Arnolid’s method with

Cayley transformation. Thus the RIM-C achieves comparable efficiency as ’eigs’ in

Matlab. Finally in chapter 4, we propose a new indicator function with much less

memory requirement and test it using several examples in data science. This new

version of spectral indicator method (SIM-M) shows great potential in large matrix

eigenvalue computation. Chapter 5 contains novel method which aims to solve high

dimensional elliptic eigenvalue problem efficiently in tensorized domain. We combine

the multi-wavelet basis with multi-grid method to compute the smallest eigenvalue for

high dimensional elliptic eigenvalue problem. The condition number of the resulting
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matrice does not change with mesh size and the dimension of the problem.
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Chapter 2

Recursive Integral Method for

Transmission Eigenvalues1

Abstract

Transmission eigenvalue problems arise from inverse scattering theory for inhomo-

geneous media. These non-selfadjoint problems are numerically challenging because

of a complicated spectrum. In this chapter, we propose a novel recursive contour

integral method for matrix eigenvalue problems from finite element discretizations of

transmission eigenvalue problems. The technique tests (using an approximate spec-

tral projection) if a region contains eigenvalues. Regions that contain eigenvalues

are subdivided and tested recursively until eigenvalues are isolated with a specified

precision. The method is fully parallel and requires no a priori spectral information.

Numerical examples show the method is effective and robust.

1This chapter has been published as an article in Journal of Computational Physics.

https://doi.org/10.1016/j.jcp.2016.10.001
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2.1 Introduction

The transmission eigenvalue problem [7, 8, 9, 10] has important applications in the in-

verse scattering theory for inhomogeneous media. It is nonlinear and non-selfadjoint.

Early study focused on showing that transmission eigenvalues form at most a dis-

crete set since sampling methods for reconstructing the support of an inhomogeneous

medium fail if the interrogating frequency corresponds to a transmission eigenvalue

[10]. Later, it was realized that transmission eigenvalues can be obtained from the

scattering data and used to reconstruct the physical properties of the unknown target

[8].

Recently, significant efforts have been devoted to develop numerical methods for

transmission eigenvalues [11, 9, 2, 12, 13, 14, 15, 16, 17, 18, 1]. In [11], Colton et

al. proposed three finite element methods. A mixed method based on a fourth order

formulation was developed in [2]. An and Shen [14] proposed an efficient spectral-

element method for two-dimensional radially-stratified media. A conforming finite

element method was introduced by Sun in [9], where real transmission eigenvalues are

computed as roots of a nonlinear function whose values are generalized eigenvalues

of a related fourth order problem. Using a fourth order formulation, Cakoni et al.

[16] proposed a new mixed finite element method and proved convergence based on

Osborn’s theory [19]. Li et al. [17] developed a finite element method by considering

a quadratic eigenvalue problem. Integral equations are used to compute transmission

eigenvalues as well. In [20], Cossonniére and Haddar formulated the transmission

eigenvalue problem as a nonlinear integral eigenvalue problem. The same formulation

was used by Kleefeld in [15]. To solve the nonlinear eigenvalue problem, Kleefeld

adopted the method proposed by Beyn [21] using spectrum projection. Some non-

traditional methods, including the linear sampling method [22] and the inside-out

duality [23], were proposed to search for eigenvalues using scattering data. We also

refer the readers to other methods in [24, 25, 26, 27, 12] for the transmission eigenvalue

problem and the related source problem.
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Transmission eigenvalues of a disk with n=2

Figure 2.1: Transmission eigenvalues on the complex plane: a disk with radius 1/2

and index of refraction n = 2.

Since the transmission eigenvalue problem is non-selfadjoint, finite element dis-

cretizations usually lead to non-Hermitian matrix eigenvalue problems. In addition,

the spectrum is very complicated in general (see Fig. 2.1). These characteristics

suggest that most existing eigenvalue solvers might not be suitable for transmission

eigenvalues.

In this chapter, we propose a novel recursive integral method (RIM) to compute

generalized matrix eigenvalues resulting from finite element discretizations of the

transmission eigenvalue problem. We aim at developing an eigensolver for problems

with the following features:

1) the problem is non-selfadjoint,

2) spectrum is complicated,

3) no a priori information, such as number of eigenvalues inside the given region,
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is available,

4) interior eigenvalues are needed.

Spectrum projection using contour integrals on the complex plane is a classical

approach in the operator spectral theory [28]. Recently, contour integral type methods

become popular [29, 4, 21, 30] (see also [31]). These methods use Cauchy integrals

of the resolvent to compute spectrum projections onto the generalized eigenspace

corresponding to the eigenvalues inside a simple closed curve on the complex plane

[32]. The original problem is then reduced to a subspace problem.

In contrast, RIM tests a region on the complex plane using spectrum projections.

An indicator is calculated to decide if the region contains eigenvalue(s) or not. In

the case of a positive answer, the region is subdivided and tested for eigenvalues

recursively. RIM does not actually compute eigenvalues of a subspace problem. The

eigenvalues are obtained using a series of domain decompositions, which is the major

difference from the existing integral methods.

The rest of the chapter is arranged as follows. In Section 2.2 we present RIM.

We discuss some implementation details in Section 2.3. Section 2.4 contains a com-

prehensive numerical study. We conclude in Section 2.5 with some discussions.

2.2 A Recursive Contour Integral Method

In Chapter 1.3.2, we introduced Transmission Eigenvaule problem and in this section,

we propose a novel eigensolver for (1.2.9) using spectrum projections. We start with

some classical results of the operator spectral theory (see, e.g., [28]). Let T : X → X
be a bounded linear operator on a complex Hilbert space X . The resolvent set of T

is defined as

ρ(T ) = {z ∈ C : (z − T )−1 exists as a bounded operator on X}. (2.2.1)

18



For any z ∈ ρ(T ),

Rz(T ) = (z − T )−1 (2.2.2)

is the resolvent operator of T . The spectrum of T is σ(T ) = C \ ρ(T ). We assume

that T has only point spectrum, i.e., each λ ∈ σ(T ) is an isolated eigenvalue of T . In

addition, we assume that the eigenspace associated with λ is finite dimensional. Let

α be the least positive integer such that

N ((λ− T )α) = N
(

(λ− T )α+1
)

,

where N denotes the null space. Then m = dimN ((λ− T )α) is called the algebraic

multiplicity of λ. The functions in N ((λ− T )α) are called the generalized eigenfunc-

tions of T corresponding to λ. Note that the geometric multiplicity of λ is defined as

dimN(λ− T ).

Let Γ be a simple closed curve on the complex plane C lying in ρ(T ) which contains

m eigenvalues, counting multiplicity, of T : λj, j = 1, . . . ,m. Define

P =
1

2πi

∫

Γ

Rz(T )dz.

It is well-known that P is a projection onto the space of generalized eigenfunctions

uj associated with λj, j = 1, . . . ,m. The projection P depends only on eigenvalues

inside Γ and is called the spectrum projection [28].

The following is the main idea behind RIM. Let f ∈ X be a random element.

If there are no eigenvalues inside Γ, Pf = 0. Otherwise, if there are m eigenvalues

λj, j = 1, . . . ,m, Pf 6= 0 provided that f has components in uj, j = 1, . . . ,m. Thus

Pf can be used to decide if a region contains eigenvalues of T or not. If a region

contains eigenvalue(s), it is partitioned into smaller regions. Then one computes Pf

for these small regions. The process is repeated until the size of the region is smaller

than a given precision.

Our goal is to find all the eigenvalues of T in the interior of Γ, denoted by S. Let

{zj, ωj, j = 1, . . . ,W} be a quadrature rule, where zj’s are the quadrature points on
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Γ and ωj’s are the associated weights. We approximate the projection Pf by

Pf ≈ 1

2πi

W
∑

j=1

ωjRzj(T )f . (2.2.3)

Let xj, j = 1, . . . ,W, be such that

(zj − T )xj = f , j = 1, . . . ,W.

Then we have

Pf =
1

2πi

W
∑

j=1

ωjxj. (2.2.4)

According to the above discussion, ‖Pf‖X can be used to decide if there are

eigenvalues in S, i.e.,

(i) if ‖Pf‖X 6= 0, there exists at least one eigenvalue in S;

(ii) if ‖Pf‖X = 0, there is no eigenvalue in S.

In Case (i), we divide S into subregions and recursively repeat this procedure. The

process terminates when the size of the region h(S) is smaller than the given precision

ǫ.

The algorithm of RIM is as follows.

RIM(S, ǫ,f)

Input: a region S, precision ǫ, a randomly chosen f

Output: λ, eigenvalue(s) of T in S

1. Approximate Pf by (2.2.4);

2. Decide if S contains eigenvalue(s) using ‖Pf‖X :

– No. exit.

– Yes. compute the size h(S) of S,
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- if h(S) > ǫ, partition S into subregions Sj, j = 1, . . . N .

for j = 1 to N

RIM(Sj, ǫ,f)

end

- if h(S) ≤ ǫ, output the eigenvalues and exit.

In practice, we do need a threshold δ0 to distinguish between ‖Pf‖X 6= 0 and

‖Pf‖X = 0. We postpone the discussion to the next section.

Note that the finite element discretization in Section 1.2.2 leads to a generalized

matrix eigenvalue problem (1.2.9). The corresponding resolvent is defined as

Rz(A,B) = (zB − A)−1 (2.2.5)

for z in the resolvent set of the matrix pencil (A,B). The spectrum projection onto

the generalized eigenspace corresponding to eigenvalues enclosed by Γ is

P (A,B) =
1

2πi

∫

Γ

(zB − A)−1dz. (2.2.6)

For any vector f ∈ C
n, we need to compute

Pf =
1

2πi

∫

Γ

Rz(A,B)fdz

≈ 1

2πi

W
∑

j=1

ωjRzj(A,B)f

=
1

2πi

W
∑

j=1

ωjxj, (2.2.7)

where xj’s are the solutions of the following linear systems

(zjB − A)xj = f , j = 1, . . . ,W. (2.2.8)

If there are no eigenvalues inside Γ, then P = 0 and thus Pf = 0 for all f ∈ C
n.
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2.3 Implementation

In this section, we discuss the implementation of the matrix version of RIM. We

choose the search region S to be a rectangle on the complex plane. In particular, we

assume that the width and length are of similar sizes. Otherwise, one can pre-divide S

into smaller rectangles. We call S admissible if the indicator δS := |PSf | > δ0, where

δ0 is the threshold value we shall specify later. We divide an admissible rectangle S

into non-overlapping sub-rectangles and compute the indicators until the regions are

smaller than the given precision ǫ > 0.

There are several key points in the implementation:

(1) a suitable quadrature rule for (2.2.3),

(2) a mechanism to solve (2.2.8),

(3) a suitable threshold δ0.

For (1), we use the midpoint of each edge of S as the quadrature point and four

points in total. It is every coarse. However, the numerical examples show that it

is enough. In fact, the indicator does not need to be computed exactly. Note that

other contour integral methods use more quadrature points. For example, twenty-five

quadrature points are used in [21].

For (2), to solve the linear systems (2.2.8), MATLAB “\” is used in the current im-

plementation. It is efficient for systems of tens of thousands unknowns in MATLAB.

Note that other iterative solvers, such as ”lsqr” in Matlab also works.

According to the algorithm in the previous section, we first pick up a random

vector f and calculate Pf . If the norm of Pf is zero, there is no eigenvalue inside

the region. Otherwise, there are eigenvalues inside. In practice, the norm of Pf is

never zeros due to quadratures, linear solvers, and machine precision. Consequently,

for (3), we need to choose a suitable value δ0. We denote by R(P ) the range of P ,

which coincides with the finite dimensional generalized eigenspace associated with the
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eigenvalues inside Γ. Let φj, j = 1, . . . ,M , be an orthonormal basis of R(P ). Let f

be a randomly chosen vector and

Pf = f |R(P ) =
M
∑

j=1

ajφj, (2.3.9)

where aj = (f ,φj). To decide if a region contains eigenvalues, the following two

elements need to be considered:

(i) |Pf | can be relatively small when there is an eigenvalue(s) in S.

(ii) |Pf | can be relatively large when there is no eigenvalue in S.

Case (i) can happen if
∣

∣f |R(P )

∣

∣ is small, i.e.,
∑M

j=1 a
2
i is small. Our solution is to

normalized Pf and project once again. The indicator is set to be

δS =

∣

∣

∣

∣

P

(

Pf

|Pf |

)∣

∣

∣

∣

. (2.3.10)

Remark 2.3.0.1. Analytically, P 2f = Pf . Numerically, they are not the same. In

particular, we approximate the spectrum projection using just four quadrature points.

Case (ii) happens if there exists eigenvalue(s) lies outside S but close to it. In

fact, this must happen when RIM zooms into the neighborhood of an eigenvalue.

Fortunately, RIM has an interesting self-correction property. This property will be

illustrated in the next section.

Here are some details of the implementation:

1. A rectangular search region S.

2. Matlab ”\” for the linear systems.

3. One quadrature point for each edge of S.

4. One random vector f .

5. Projections are computed twice using (2.3.10).
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6. δ0 = 1/10, i.e., if δS > 1/10, S is admissible.

The matrix version of RIM is as follows.

M-RIM(A,B, S, ǫ, δ0,f)

Input: matrices A,B, region S, precision ǫ, thresh hold δ0, random vector f .

Output: generalized eigenvalue(s) λ inside S

1. Compute δS using (2.3.10).

2. Decide if S contains eigenvalue(s).

– If δS < δ0. Exit.

– Otherwise, compute the size h(S) of S.

- if h(S) > ǫ, partition S into subregions Sj, j = 1, . . . N .

for j = 1 to N

M-RIM(A,B, Sj, ǫ, δ0,f).

end

- if h(S) ≤ ǫ,

set λ to be the center of S.

output λ and exit.

2.4 Numerical Examples

We present some examples to show the performance of RIM. All the computation

is done using Matlab on a Macbook Pro with a 3G Hz Intel Core i7 and 16GB 1600

MHz DDR3 memory.

Remark 2.4.0.1. By ”exact eigenvalues”, we mean the generalized eigenvalues of

(1.2.9), which are the finite element approximations of the transmission eigenvalues.

These ”exact” generalized eigenvalues are obtained by ”eigs” in MATLAB.
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2.4.1 Effectiveness

Example 1: We consider a disc D with radius 1/2 and the index of refraction

n(x) = 16. A triangular mesh with h ≈ 0.05 is used to generate two 1018 × 1018

matrices A and B. We consider a search region S = [3, 9] × [−3, 3]. The exact

eigenvalues in S are

λ1 = 3.994539, λ2 = 6.935054, λ3 = 6.939719.

With ǫ = 10−3, RIM successfully returns 3 eigenvalues

λRIM
1 = (3.994629± 10−3)± 10−3i,

λRIM
2 = (6.935059± 10−3)± 10−3i,

λRIM
3 = (6.939941± 10−3)± 10−3i,

where i =
√
−1.

As the second search region, we choose S = [22, 25] × [−8, 8]. Two exact eigen-

values in S are

λ1 = 24.158567 + 5.690114i, λ2 = 24.158567− 5.690114i.

RIM outputs the following

λRIM
1 = (24.158813± 10−3)− (5.690308± 10−3)i,

λRIM
2 = (24.158813± 10−3) + (5.690063± 10−3)i.

In Fig. 2.2, we show how RIM explores the region S = [0, 30]× [−6, 6]. There are

16 eigenvalues in S including two complex ones. RIM finds all of them successfully.

Example 2: Let D be the unit square and n = 16. The matrices A and B are

1298× 1298. The first search region is S = [6, 9]× [−1, 1]. The exact eigenvalues are

λ1 = 6.049528, λ2 = 6.051180, λ3 = 8.368568.

RIM gives the following eigenvalues

λRIM
1 = (6.049316± 10−3)± 10−3i,
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Figure 2.2: The regions explored by RIM with S = [0, 30]× [−6, 6] for Example 1.

There are 16 eigenvalues. Some of them are clustered.

λRIM
2 = (6.051270± 10−3)± 10−3i,

λRIM
3 = (8.368652± 10−3)± 10−3i.

The second search region is S = [20, 21]× [−6, 6]. The exact eigenvalues are

λ1 = 20.573786 + 5.127225i,

λ2 = 20.573786− 5.127225i.

The eigenvalues computed by RIM are

λRIM
1 = (20.573730± 10−3)− (5.127441i± 10−3)i,

λRIM
2 = (20.573730± 10−3) + (5.126465i± 10−3)i.

Example 3: Let D be the L-shaped domain defined by

(−1, 1)× (−1, 1) \ [0, 1]× [−1, 0]
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and n = 16. The matrices A and B are 978 × 978. The search region is S =

[2, 3]× [−1/2, 1/2]. The exact eigenvalues are

λ1 = 2.210247, λ2 = 2.50668, λ3 = 2.979671.

RIM computes the following eigenvalues

λRIM
1 = (2.210236± 10−3)± 10−3i,

λRIM
2 = (2.506683± 10−3)± 10−3i,

λRIM
3 = (2.979706± 10−3)± 10−3i.

Example 4: We consider a 3D problem. Let D be the unit ball with the index of

refraction n = 4. A tetrahedral mesh with the mesh size h ≈ 0.05 is given. The mixed

finite element method using the linear Lagrange elements leads to a 42606 × 42606

generalized matrix eigenvalue problem. Let S = [10, 11] × [−1/2, 1/2]. There are

three exact eigenvalues in S:

λ1 = 10.345551, λ2 = 10.357927, λ3 = 10.369776.

RIM computes the following

λRIM
1 = (10.346875± 10−3)± 10−3i,

λRIM
2 = (10.353125± 10−3)± 10−3i,

λRIM
3 = (10.371875± 10−3)± 10−3i.

These values are consistent with those given on Page 4 of [15]. Note that we actually

compute the square of the transmission eigenvalues, i.e., κ21,S2,4 ≈ 9.8696.

Example 5: Let D be the unit cube with the index of refraction n = 16. Again

we generate a tetrahedral mesh with h ≈ 0.05. The generalized eigenvalue problem

is 46735× 46735. Let S = [4, 5]× [−1/2, 1/2]. The eigenvalue in S is

λ1 = 4.328288.
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RIM outputs

λRIM
1 = (4.328125± 10−3)± 10−3i.

Example 6: Let D be given by

(0, 1)× (0, 1)× (0, 1) \ [0, 1/2]× [0, 1/2]× [0, 1/2]

with the index of refraction n = 16. The generalized eigenvalue problem is 13335 ×
13335. Let S = [4, 5]× [−1/2, 1/2]. The eigenvalues in S are

λ1 = 12.249750, λ2 = 13.102771.

RIM outputs

λRIM
1 = (12.249725± 10−3)± 10−3i

and

λRIM
2 = (13.102753± 10−3)± 10−3i.

For above examples in 2D or 3D, RIM returns all eigenvalues in a given region

correctly.

2.4.2 Robustness

We demonstrate the robustness of RIM related to the use of one random vector and

one quadrature point on each side of the rectangle S. We test three cases.

(i) S contains eigenvalues. Let

S1 = [3.9, 4.1]× [−0.1, 0.1], S2 = [24.1, 24.2]× [5.6, 5.7]

for Example 1, and

S3 = [6.04, 6.06]× [−0.01, 0.01], S4 = [20.5, 20.6]× [5.1, 5.2]

for Example 2. Each region has an eigenvalue inside. We compute the indicators

for 100 random vectors. The results are shown in Table 2.1. The first column shows
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the regions. The second, third, fourth, and fifth columns are the average, minimum,

maximum, and the standard deviation of the indicators, respectively. We can see that

different random vectors give similar indicators. The standard deviation is very small.

In other words, the algorithm is tested 100 times using different random vectors. RIM

produces the correct results.

Table 2.1: The indicators for different regions with eigenvalues inside.

S average min max std.

S1 0.63662546 0.63662432 0.63662669 2.42494379e-07

S2 0.82076270 0.82076270 0.82076270 3.48933530e-11

S3 0.63667811 0.63662296 0.63674302 4.23597573e-05

S4 0.53606809 0.53606809 0.53606809 5.68226051e-11

Remark 2.4.0.2. Table 2.1 shows that there is no big difference between choosing one

random vector and many different random vectors. Note that RIM is not a subspace

method. There is no need to know how many eigenvalues inside Γ and choose more

random vectors to generate a subspace problem.

(ii) S contains no eigenvalue. Let S5 = [3.7, 3.9]×[−0.1, 0.1] and S6 = [24.0, 24.1]×
[5.6, 5.7] for Example 1. Let S7 = [6.02, 6.04]× [−0.01, 0.01] and S8 = [20.4, 20.5]×
[5.1, 5.2] for Example 2. These regions do not have eigenvalues inside. Again, we

test the algorithm 100 times. Each time, we use one random vector, which is different

from time to time. In Table 2.2, it can be seen that the indicators are very small,

indicating that there are no eigenvalue(s) in these regions.

(iii) S has an eigenvalue on its edge or at a corner. For Example 1, we choose

two rectangles

S13 = [3.99, 4.00]× [−0.01, 0.00] and S14 = [3.99, 4.00]× [0.00, 0.01]
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Table 2.2: The indicators for different regions with no eigenvalues inside.

S average min max std.

S5 0.04778437 0.04778398 0.04778539 1.48221826e-07

S6 0.02227906 0.02227906 0.02227906 6.92810353e-12

S7 0.04143107 0.03354195 0.04701297 4.44534110e-03

S8 0.01615294 0.01615294 0.01615294 4.94631163e-11

sharing an edge. Since the eigenvalue λ1 = 3.994690 is real, it is on the boundary of

S. In Table 2.3, we show the indicators. We can see that both regions are admissible.

Next, we choose S15 and S16 such that the sharing edge goes through an complex

eigenvalue. The indicator for S16 is smaller than 1/10. However, this is fine since S15

is admissible and we will catch the eigenvalue.

Table 2.3: The indicators when the eigenvalue is on the edge of the search region.

domain indicator

S13 = [3.99, 4.00]× [−0.01, 0.00] 0.52275012

S14 = [3.99, 4.00]× [0.00, 0.01] 0.52275012

S15 = [24.158813, 24.17]× [5.68, 5.70] 0.48810370

S16 = [24.15, 24.158813]× [5.68, 5.70] 0.08569820

Next we consider the case when an eigenvalue is a corner of the search region. We

know from above that search regions S17, S18, S19, and S20 (see Table 2.4) sharing a

corner, which is an eigenvalue.

The choice of the threshold value δ0 is important to the robustness of RIM. Note

that approximation of the contour integral, including the quadrature and the linear

solver, introduces some errors, especially when eigenvalues are close to Γ or even on
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Γ. In fact, this is the case whenever the search region is close to the eigenvalues. The

algorithm uses the threshold value 1/10 based on experiments. The above examples

show that the choice is effective.

Table 2.4: The indicators when the eigenvalue is a corner of the search region.

domain indicator

S17 = [3.994539, 4.01]× [−0.01, 0.0] 0.70164096

S18 = [3.98, 3.994539]× [−0.01, 0.0] 0.91502267

S19 = [3.98, 3.994539]× [0.00, 0.01] 0.25047335

S20 = [3.994539, 4.01]× [0.00, 0.01] 0.25047335

S21 = [24.152, 24.158567]× [5.688, 5.690114] 0.43892705

S22 = [24.152, 24.158567]× [5.690114, 5.700] 0.12732395

S23 = [24.158567, 24.161]× [5.690114, 5.700] 0.12732395

S24 = [24.158567, 24.161]× [5.688, 5.690114] 0.19531957

2.4.3 Self-correction Property

The choice of threshold value is related to a nice property of RIM, which we call

the self-correction property. Consider the case when S is not admissible but close

to an eigenvalue. At some quadrature points, the linear systems are ill-conditioned.

In addition, the quadrature rule might not be sufficiently accurate. RIM might

take such region as admissible at first. Fortunately, after a few subdivisions, RIM

discards these regions. We demonstrate this interesting self-correction property using

two example.

We use matrices A and B from Example 1 and focus on the eigenvalue 3.994539.

We choose the initial search region S = [4.0, 4.2] × [0, 0.2]. Note that there is no
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eigenvalue in S and 3.994539 is right outside S. At first, RIM computes

δS = 0.11666587, (2.4.11)

indicating that S is admissible. RIM continues to explore S by partitioning it into

four rectangles

S1
1 = [4.0, 4.1]× [0, 0.1], S1

2 = [4.0, 4.1]× [0.1, 0.2],

S1
3 = [4.1, 4.2]× [0, 0.2], S1

4 = [4.1, 4.2]× [0.1, 0.2].

The indicators are

δS1

1
= 0.10687367, δS1

2
= 0.00609138,

δS1

3
= 0.00561028, δS1

4
= 0.00182170.

RIM discards S1
2 , S

1
3 , and S

1
4 and retains S1

1 as admissible.

The four rectangles by partitioning S1
1 are

S2
1 = [4.0, 4.05]× [0.0, 0.05], S2

2 = [4.0, 4.05]× [0.05, 0.10],

S2
3 = [4.05, 4.10]× [0.0, 0.05], S2

4 = [4.05, 4.10]× [0.05, 0.10].

The indicators are

δS2

1
= 0.08957100, δS2

2
= 0.00579253,

δS2

3
= 0.00494816, δS2

4
= 0.00169435.

At this stage, RIM discards all the regions. Let us see one more level. Suppose S2
1

is subdivided into

S3
1 = [4.0, 4.025]× [0, 0.025], S3

2 = [4.0, 4.025]× [0.025, 0.05],

S3
3 = [4.025, 4.05]× [0, 0.025], S3

4 = [4.025, 4.05]× [0.025, 0.05],

with the following indicators

δS3

1
= 0.06258907, δS3

2
= 0.00519080,
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δS3

3
= 0.00388825, δS3

4
= 0.00146650.

RIM will eventually discard all the subregions and concludes that there are no eigen-

values in S.

The same experiment is conducted for S = [24.16, 24.96] × [5.30, 6.10], a search

region close to a complex eigenvalue λ = 24.158567 + 5.690308i. Indicators are given

in Table. 2.5. RIM does eventually conclude that there are no eigenvalues in the

region.

Table 2.5: The indicators for S = [24.16, 24.96]× [5.30, 6.10].

S1

1
= [24.16, 24.56]× [5.30, 5.70] 0.825

S1

2
= [24.16, 24.56]× [5.70, 6.10] 0.195

S1

3
= [24.56, 24.96]× [5.30, 5.70] 5.418e-11

S1

4
= [24.56, 24.96]× [5.70, 6.10] 4.119e-11

S2

1
= [24.16, 24.36]× [5.30, 5.50] 9.216e-11

S2

2
= [24.16, 24.36]× [5.50, 5.70] 0.368

S2

3
= [24.36, 24.56]× [5.30, 5.50] 8.712e-14

S2

4
= [24.36, 24.56]× [5.50, 5.70] 5.870e-11

S3

1
= [24.16, 24.26]× [5.50, 5.60] 1.742e-11

S3

2
= [24.16, 24.26]× [5.60, 5.70] 0.781

S3

3
= [24.26, 24.36]× [5.50, 5.60] 1.476e-13

S3

4
= [24.26, 24.36]× [5.60, 5.70] 6.755e-11

S4

1
= [24.16, 24.21]× [5.60, 5.65] 6.558e-10

S4

2
= [24.16, 24.21]× [5.65, 5.70] 0.280

S4

3
= [24.21, 24.26]× [5.60, 5.65] 1.378e-13

S4

4
= [24.21, 24.26]× [5.65, 5.70] 8.229e-11

S5

1
= [24.16, 24.185]× [5.65, 5.675] 1.159e-08

S5

2
= [24.16, 24.185]× [5.675, 5.70] 0.156

S5

3
= [24.185, 24.21]× [5.65, 5.675] 4.000e-13

S5

4
= [24.185, 24.21]× [5.675, 5.70] 8.648e-11

S6

1
= [24.16, 24.185]× [5.65, 5.675] 5.574e-06

S6

2
= [24.16, 24.1725]× [5.6875, 5.70] 0.095

S6

3
= [24.185, 24.21]× [5.65, 5.675] 4.304e-12

S6

4
= [24.185, 24.21]× [5.675, 5.70] 2.628e-11

33



2.4.4 Close Eigenvalues

RIM can separates nearby eigenvalues provided the precision ǫ is less than the dis-

tance between them. For Example 1, there are two close eigenvalues

λ1 = 6.935054, λ2 = 6.939719.

With ǫ = 3.0 × 10−2, RIM fails to separate the eigenvalues and outputs only one

eigenvalue

λRIM
1 = 6.942500± 3× 10−2(1± i).

However, with ǫ = 10−4, RIM separates the eigenvalues

λRIM
1 = 6.935127± 10−4(1± i),

λRIM
2 = 6.939717± 10−4(1± i).

2.5 Conclusion

In this chapter, we propose a novel recursive integral method RIM for eigenvalue

problems and employ it to compute transmission eigenvalues. The method can effec-

tively find all eigenvalues in a region with no a priori spectrum information. The key

difference between RIM and other contour integral based methods in the literature

is that RIM only tests if a region contains eigenvalues or not.

In the next few chapters, we are going to discuss some improvements on RIM.

34



Chapter 3

Recursive Integral Method with

Cayley Transformation 1

Abstract

In the last chapter, we proposed the recursive integral method (RIM) for comput-

ing all eigenvalues in a region on the complex plane. In this chapter, we propose

an improved version of RIM for non-Hermitian eigenvalue problems. Using Cayley

transformation and Arnoldi’s method, the computation cost is reduced significantly.

Effectiveness and efficiency of the new method are demonstrated by numerical exam-

ples and compared with ’eigs’ in Matlab.

3.1 Introduction

We consider the non-Hermitian eigenvalue problem

Ax = λBx, (3.1.1)

where A and B are n × n large sparse matrices. Here B can be singular. Such

eigenvalue problems arise in many scientific and engineering applications [33, 3, 1] as

1This chapter has been published as an article in Numerical Linear Algebra with Applications.

https://doi.org/10.1002/nla.2199
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well as in emerging areas such as data analysis in social networks [34].

The problem of interest in this chapter is to find (all) eigenvalues with less com-

putation resource in a given region S on the complex plane C without any spectral

information, i.e., the number and distribution of eigenvalues in S are not known.

In last chapter, we developed an eigenvalue solverRIM (recursive integral method).

RIM, which is essentially different from all the existing eigensolvers, is based on spec-

tral projection and domain decomposition. As introduced in chapter 2, the indicator

is defined as δS =
∣

∣

∣
P
(

Pf

|Pf |

)∣

∣

∣
in (2.3.10). To compute δS, one needs to solve many

linear systems

(A− zjB)xj = f (3.1.2)

parameterized by zj. In the original RIM , the Matlab linear solver ‘\’ is used to

solve (3.1.2). This is certainly not efficient.

Thus in this chapter, we propose a new version ofRIM, calledRIM-C, to improve

the efficiency. The contributions include: 1) Cayley transformation and Arnoldi’s

method to speedup linear solves for the parameterized system (3.1.2); and 2) a new

indicator to improve the robustness and efficiency. The rest of the chapter is arranged

as follows. In Section 3.2, we present how to incorporate Cayley transformation and

the Arnoldi’s method into RIM. In Section 3.3, we introduce a new indicator to

decide if a region contains eigenvalues. Section 3.4 contains the new algorithm and

some implementation details. Numerical examples are presented in Section 3.5. We

end up the chapter with some conclusions and future works in Section 3.6.

3.2 Cayley Transformation and Arnoldi’s Method

3.2.1 Cayley Transformation

The computation cost of RIM mainly comes from solving the linear systems (3.1.2)

to compute the spectral projection Pf . In particular, when the method zooms in

around an eigenvalue, it needs to solve linear systems for many close zj’s. This is
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done one by one in the first version of RIM [35]. It is clear that the computation

cost will be greatly reduced if one can take the advantage of the parametrized linear

systems of same structure.

Without loss of generality, we consider a family of linear systems

(A− zB)x = f , (3.2.3)

where z is a complex number. When B is nonsingular, multiplication of B−1 on both

sides of (3.2.3) leads to

(B−1A− zI)x = B−1f . (3.2.4)

Given a matrix M , a vector b, and a non-negative integer m, the Krylov subspace is

defined as

Km(M ; b) := span{b,Mb, . . . ,Mm−1b}. (3.2.5)

The shift-invariant property of Krylov subspaces says that

Km(aM + bI; b) = Km(M ; b), (3.2.6)

where a and b are two scalars. Thus the Krylov subspace of B−1A − zI is the same

as B−1A, which is independent of z.

The above derivation fails when B is singular. Fortunately, this can be fixed by

Cayley transformation [36]. Assume that σ is not a generalized eigenvalue and σ 6= z.

Multiplying both sides of (3.2.3) with

(A− σB)−1, (3.2.7)

one obtains that

(A− σB)−1f = (A− σB)−1(A− zB)x

= (A− σB)−1(A− σB + (σ − z)B)x

= (I + (σ − z)(A− σB)−1B)x.
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Let M = (A− σB)−1B and b = (A− σB)−1f . Then (3.2.3) becomes

(I + (σ − z)M)x = b. (3.2.8)

From (3.2.6), the Krylov subspace (I + (σ − z)M) is the same as Km(M ; b).

3.2.2 Analysis of the Pre-conditioners

Now we look at the connection between two pre-conditioners B−1 and (A − σB)−1.

Assume that B is non-singular. Let λ be an eigenvalue of B−1A. Then θ =
λ− z

λ− σ
is

an eigenvalue of

(A− σB)−1(A− zB).

The spectrum of B−1A might spread over the complex plane such that Krylov sub-

space based iterative methods may not converge. However, after Cayley transforma-

tion, when λ becomes large, θ will cluster around 1 (see Fig. 3.1 for matrices A and B

of Example 1 in Section 5). Similar result holds when B is singular. Note that when

λ approaches σ, θ will be very large in magnitude. When λ approaches z, θ goes to

zero. When λ is away from σ and z, θ is O(1). The key here is that the spectrum

of (3.2.8) has a cluster of eigenvalues around 1 and only a few isolated eigenvalues,

which favors fast convergence in Krylov subspace.

3.2.3 Arnoldi Method for Linear Systems

The computation cost can be significantly reduced by exploiting (3.2.8). Consider

the orthogonal projection method for

Mx = b.

Let the initial guess be x0 = 0. One seeks an approximate solution xm in Km(M ; b)

of dimension m by imposing the Galerkin condition [37]

(b−Mxm) ⊥ Km(M ; b). (3.2.9)
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Figure 3.1: Matrices A and B are from Example 1 in Section 5. Left: Spectrum of

original problem. Right: Spectrum after Cayley transformation.

The basic Arnoldi’s process (Algorithm 6.1 of [3]) is as follows.

1. Choose a vector v1 of norm 1

2. for j = 1, 2, . . . ,m

– hij = (Mvj,vi), i = 1, 2, . . . , j,

– wj =Mvj −
∑j

i=1 hijvi,

– hj+1,j = ‖vj‖2, if hj+1,j = 0 stop

– vj+1 = wj/hj+1,j.

Let Vm be the n×m orthogonal matrix with column vectors v1, . . . ,vm and Hm

be the m × m Hessenberg matrix whose nonzero entries hi,j are defined as above.

From Proposition 6.6 of [3], one has that

MVm = VmHm + vm+1hm+1,me
T
m (3.2.10)

such that

span{col(Vm)} = Km(M ; b).

39



Let xm = Vmy. The Galerkin condition (3.2.9) becomes

V T
mb− V T

mMVmy = 0. (3.2.11)

Since V T
mMVm = Hm (see Proposition 6.5 of [37]), the following holds:

Hmy = V T
mb.

From the construction of Vm, v1 =
b

‖b‖2
. Let β = ‖b‖2. Then

y = βH−1
m e1.. (3.2.12)

Consequently, the residual of the approximated solution xm can be written as

‖b−Mxm‖2 = hm+1,m|eTmy|. (3.2.13)

Due to the shift invariant property, one has that

{I + (σ − z)M}Vm = Vm(I + (σ − z)Hm) + (σ − z)vm+1hm+1,me
T
m. (3.2.14)

By imposing a Galerkin condition similar to (3.2.9), we have that

V T
mb− V T

m{I + (σ − z)M}Vmy = 0, (3.2.15)

which implies

{I + (σ − z)Hm}y = βe1. (3.2.16)

From (3.2.13), one has that

‖b− {I + (σ − z)M}xm‖2 = (σ − z)hm+1,m|eTmy|. (3.2.17)

Matrix M is an n× n matrix and Hm is an m×m upper Hessenberg matrix such

that m ≪ n. Once Hm and Vm are constructed by Arnoldi’s process, they can be

used to solve (3.2.16) for different z’s with residual given by (3.2.17). The residual

can be monitored with a little extra cost.
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Next we explain how the Arnoldi’s process is incorporated in RIM. To solve

(3.1.2) for quadrature points zj’s, one chooses a proper shift σ. Following (3.2.8), one

has that

(I + (σ − zj)M)xj = b, (3.2.18)

where M = (A− σB)−1B and b = (A− σB)−1f .

From (3.2.14) and (3.2.16),

yj = β(I + (σ − zj)Hm)
−1e1, (3.2.19)

xj ≈ Vmyj,

Pf ≈ 1

2πi

∑

wjVmyj. (3.2.20)

Hence the Krylov subspace for M = (A− σB)−1B can be used to solve many linear

systems associated with zj’s close to σ.

3.3 An Efficient Indicator

Another critical problem of RIM is to how to define the indicator δS. As seen above,

the indicator in [35] defined by (2.3.10) is to project a random vector twice. One

needs to solve linear systems with different right hand sides, i.e., f and Pf/|Pf |.
Consequently, two Krylov subspaces, rather than one, are constructed for a single

shift σ.

In this section, we propose a new indicator that avoids the construction of two

Krylov subspaces. The indicator stills needs to resolve the two problems (P1 and

P2) in Section 1. The idea is to approximate |Pf | with different sets of trapezoidal

quadrature points by taking the advantage of the Cayley transformation and Arnoldi’s

method discussed in the previous section.

Let Pf |n be the approximation of Pf with n quadrature points. It is well-known

that trapezoidal quadratures of a periodic function converges exponentially [38] i.e.,

|Pf − Pf |n| = O(e−Cn),
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where C is a constant depending on f . The spectral projection satisfies

Pf |n











6= 0 if there are eigenvalues inside S,

≈ 0 no eigenvalue inside S.

For a large enough n0, one has that

|Pf |2n0
|

|Pf |n0
| =















|Pf |+O(e−C2n)

|Pf |+O(e−Cn)
if there are eigenvalues inside S,

O(e−C2n)

O(e−Cn)
= O(e−Cn) no eigenvalue inside S.

The new indicator is set to be

δS = |Pf2n0
|/|Pfn0

|. (3.3.21)

A threshold value δ0 is also needed to decide if there exists eigenvalue in S or not. If

δS > δ0 := 0.2, S is said to be admissible, i.e., there exists eigenvalue(s) in S. The

value 0.2 is chosen based on numerical experimentation. Due to (3.2.19) - (3.2.20),

the computation cost to evaluate the new indicator is not expensive.

3.4 The New Algorithm

Now we are ready to give the algorithm in detail. It starts with several shifts σ’s dis-

tributed in S uniformly. The associated Krylov subspaces Km(M ; b) are constructed

and stored. For a quadrature point z, the algorithm first attempts to solve the linear

system (3.2.3) using the Krylov subspace with shift σ closest to z. If the residual

is larger than the given precision ǫ, a Krylov subspace with a new shift σ is con-

structed, stored and used to solve the linear system. Briefly speaking, the algorithm

constructed some Krylov subspaces with different σ’s. These subspaces are then used

to solve the linear system for all quadrature points zj’s. From (3.2.19) and (3.2.20),

instead of solving a family of linear systems of size n, the algorithm solves linear

systems of reduced size m for most zj’s. This is the key idea to speed up RIM. We

denote this improved version ofRIM byRIM-C (RIM with Cayley transformation).
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Given a search region S and a normalized random vector f , we compute the

indicator δS using (3.3.21). Without loss of generality, S is assumed to be a square.

We set n0 = 4 in (3.3.21). If δS > 0.2, S is divided uniformly into 4 regions. The

indicators of these regions are computed. This process continues until the size of the

region is smaller than d0.

Algorithm RIM-C:

RIM-C(A,B, S,f , d0, ǫ, δ0,m, n0)

Input:

• A,B: n× n matrices

• S: search region in C

• f : a random vector

• d0: precision

• ǫ: residual threshold

• δ0: indicator threshold

• m: size of Krylov subspace

• n0: number of quadrature points

Output:

• generalized eigenvalues inside S

1. Choose several σ’s uniformly in S and construct Krylov subspaces

2. Compute δS using (3.3.21).

Let z be a quadrature point.

• Check if the linear system can be solved using the existing Krylov subspaces

with residual less than ǫ.
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• Otherwise, choose a new σ, construct a new Krylov subspace to solve the

linear system.

3. Decide if each S contains eigenvalues(s).

• If δS =
|Pf |2n0

|
|Pf |n0

| < δ0, exit.

• Compute the size of S, h(S).

- If h(S) > ǫ0, uniformly partition Si into subregions Sj, j = 1, . . . 4

for j = 1 to 4

call RIM-C(A,B, Sj,f , d0, ǫ, δ0,m, n0)

end

- Otherwise, output the eigenvalue λ and exit.

3.5 Numerical Examples

In this section, RIM-C (implemented in Matlab) is employed to compute

all the eigenvalues in a given region. To the authors’ knowledge, there

exists no eigensolver doing exactly the same thing. We compare RIM-C

with ‘eigs’ in Matlab (IRAM: Implicitly Restarted Arnoldi Method [39]).

Although the comparison seems to be unfair to both methods, it gives

some idea about the performance of RIM-C.

The matrices for Examples 1-5 come from a finite element discretization

of the transmission eigenvalue problem [2, 9] using different mesh size h.

Therefore, the spectra of these problems are similar. For Matlab function

‘eigs(A,B,K,SIGMA)’, ‘K’ and ‘SIGMA’ denote the number of eigenvalues

to compute and the shift, respectively. For RIM-C, the size of Krylov

space is set to be m = 50, d0 = 10−9, ǫ = 10−10, δ0 = 0.2, and n0 = 4. All

the examples are computed on a Macbook pro with 16 Gb memory and 3

GHz Intel Core i7.
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Example 1: The matrices A and B are 1018× 1018 (mesh size h ≈ 0.1).

The search region S = [1, 11] × [−1, 1]. For ‘eigs’, the ‘shift’ is set to

be 5.5. For this problem, it is known that there exist 5 eigenvalues in

S. Therefore, ‘K’ is set to be 5. Note that RIM-C does not need this

information. The results are shown in Table 3.1. Both RIM-C and ‘eigs’

compute 5 eigenvalues and they are consistent. ‘eigs’ uses less time than

RIM-C.

Table 3.1: Eigenvalues computed and CPU time by RIM-C and ‘eigs’ for Example

1.

RIM-C ‘eigs’

Eigenvalues 3.994539018848445 3.994539018856096

6.939719143800903 6.939719143804773

6.935053985873570 6.935053985844678

10.654665853490588 10.654665853441946

10.658706024650019 10.658706024609756

CPU time 0.284922s 0.247310s

Example 2: Matrices A and B are 4066× 4066 (mesh size h ≈ 0.05). Let

S = [20, 30]× [−6, 6]. For ‘eigs’, ‘shift’ is set to be 25. Again, it is known

in advance that there are 3 eigenvalues in S. Hence ‘K’ is set to be 3. The

results are shown in Table 3.2. Both methods compute same eigenvalues

and ‘eigs’ is faster.

Example 3: Matrices A and B are 16258 × 16258 matrices (mesh size

h ≈ 0.025). Let S = [0, 20] × [−6, 6]. There are 10 eigenvalues in S. It

is well-known that the performance of ‘eigs’ is highly dependent on ‘shift’.

In Table 3.3, we show the time used by RIM-C and ‘eigs’ with different

shifts ‘shift =5, 10, 15’. Notice that when the shift is not good, ‘eigs’ uses

much more time. In practice, good shifts are not known in advance.
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Table 3.2: Eigenvalues computed and CPU time by RIM-C and ‘eigs” for Example

2.

RIM-C ‘eigs’

Eigenvalues 23.803023938395199 23.803023938403236

± 5.682304314876092i ± 5.682304314840053i

24.737027497006540 24.737027497003453

24.750959635036583 24.750959635022376

25.278145187465789 25.278145187457707

25.284501515028143 25.284501515036474

CPU time 0.558687s 0.333513s

Table 3.3: CPU time used by RIM and ‘eigs’ with different shifts for Example 3.

RIM-C ‘eigs’ shift=5 ‘eigs’ shift=10 ‘eigs’ shift=15

CPU time 2.571800s 0.590186 7.183679s 0.392902s

Example 4: We consider a larger problem: A and B are 260098×260098.

Let S = [0, 20]× [−6, 6] (mesh size h ≈ 0.00625). There are 17 eigenvalues

in S. The results are in Table 3.4. This example, again, shows that for

larger problems without any spectrum information, the performance of

RIM-C is quite stable and consistent. However, the performance of ‘eigs’

varies a lot with different ‘shifts’.

Table 3.4: CPU time used by RIM and ‘eigs’ with different shifts for Example 4.

RIM-C ‘eigs’ shift=5 ‘eigs’ shift=10

CPU time 104.228413s 1696.703477s 272.506573s

Example 5: This example demonstrates the effectiveness and robustness

of the new indicator. The same matrices in Example 3 (16258×16258) are
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used. Consider three regions S1, S2 and S3. S1 = [18.4, 18.8] × [−0.2, 0.2]

has one eigenvalue inside. S2 = [14.6, 14.8]×[−0.1, 0.1] has two eigenvalues

inside. S3 = [19.7, 19.9] × [−0.1, 0.1] contains no eigenvalue. Table 3.5

shows the indicators of these three regions computed using (3.3.21). It is

seen that the indicator is different when there are eigenvalues inside the

region and when there are no eigenvalues.

Table 3.5: Indictors: S1 and S2 contain at least one eigenvalue, S3 contains no eigen-

value.

# of quadrature points PfS1
PfS2

PfS3

4 0.0210361614 0.0002565318 0.0011737026

8 0.0209817055 0.0002585042 0.0000442384

δS 0.997411 0.992370 0.037691

Table 3.6 shows the means, minima, maxima, and standard deviations of

indicators of these three regions computed using 100 random vectors. The

indicators are consistent for different random vectors.

Table 3.6: Means, minima, maxima, and standard deviations of indicators using 100

random vectors.

S mean min. max. std. dev.

S1 0.99848393687 0.66250246918 1.43123449889 0.08740952445

S2 0.99926772105 0.92600650392 1.14648387384 0.01788832121

S3 0.03763601782 0.03734608324 0.03775912970 0.00010228556

Example 6: The last example shows the potential of RIM-C to treat

large matrices. The sparse matrices are of 15,728,640× 15,728,640

arising from a finite element discretization of localized quantum states in
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Figure 3.2: Distribution of eigenvalues in (2, 3) for Example 6.

random media [40]. RIM-C computed 136 real eigenvalues in (2, 3), shown

in the right picture of Fig. 3.2.

3.6 Conclusions

This purposes of this chapter is to compute (all) the eigenvalues of a

large sparse non-Hermitian problem in a given region. We propose a new

eigensolver RIM-C, which is an improved version of the recursive integral

method using spectrum projection. RIM-C uses Cayley transformation

and Arnoldi method to reduce the computation cost.

To the authors’ knowledge, RIM-C is the only eigensolver for this par-

ticular purpose. As we mentioned, the comparison of RIM-C and ‘eigs’

is unfair to both methods. However, the numerical results do show that

RIM-C is effective and has the potential to treat large scale problems.

In next chapter, we are going to introduce the multilevel spectral indicator

method (SIM-M) based on RIM-C for its efficient memory.
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Chapter 4

A Memory Efficient Multilevel

Spectral Indicator Method 1

Abstract

In last chapter, we proposed the improved version ofRIM ,theRIM-M for

computing all eigenvalues in a region on the complex plane. In this chapter,

by a special way of using Cayley transformation and Krylov subspaces, a

memory efficient multilevel eigensolver for large sparse eigenvalue problems

is proposed. This method is fast, uses little memory, and is particularly

suitable to compute many eigenvalues. The method is implemented in

Matlab and tested by various matrices.

Keywords: Spectral indicator method, Non-Hermitian sparse eigenvalue

problems

4.1 Introduction

Many efficient eigensolvers are proposed in literature for large sparse Her-

mitian (or symmetric) matrices. In contrast, for non-Hermitian problems,

1This chapter has been submitted.
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there exist fewer methods including the Arnoldi method, Lanczos method

and Jacobi-Davidson method [41]. Unfortunately, these methods are still

far from satisfactory as pointed out in [3]: “In essence what differenti-

ates the Hermitian from the non-Hermitian eigenvalue problem is that in

the first case we can always manage to compute an approximation whereas

there are non-symmetric problems that can be arbitrarily difficult to solve

and can essentially make any algorithm fail.”

Spectral projection is a classical tool in functional analysis to study, e.g.,

the spectrum of operators [28] and the finite element convergence theory

for eigenvalue problems of partial differential equations [1]. It has been

used to compute matrix eigenvalue problems in the method by Sakurai-

Sugiura [29] and FEAST by Polizzi [4]. For example, FEAST uses spectral

projection to build subspaces and thus can be viewed as a subspace method

[42]. In contrast, SIMs only use the spectral projection to define indicators

and do not actually solve any subspace problem.

In the last two chapters, we proposed RIM and its improved version RIM-

M based the spectral projection. In this chapter, we propose a new member

of SIMs, called SIM-M. Firstly, by proposing a new indicator, the memory

requirement is significantly reduced and thus the computation of many

eigenvalues of large matrices becomes realistic. Secondly, a new strategy

to speedup the computation of the indicators is developed. Thirdly, other

than the recursive calls in the first two members of SIMs [35, 43], a mul-

tilevel technique is used to further improve the efficiency. Moreover, a

subroutine is added to find the multiplicities of the eigenvalues. The rest

of the chapter is organized as follows. In Section 4.2, we propose a new

eigensolver SIM-M with the above features. The algorithm and the imple-

mentation details are discussed as well. The proposed method is tested by

various matrices in Section 4.3.
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4.2 Multilevel Memory Efficient Method

In this section, we make several improvements of RIM-C and propose a

multilevel memory efficient method, called SIM-M.

4.2.1 A New Memory Efficient Indicator

In view of (3.3.21), the computation of the indicator needs to store Vm.

When R contains a lot of eigenvalues, many Krylov subspaces are needed

and the method becomes memory intensive.

Definition 4.2.0.1. A (square) region R is resolvable if the linear systems

(2.2.8) associated with all the quadrature points for ∂R can be solved up to

the given residual ǫ0 using the Krylov subspace related to a shift σ. It is

said to be unresolvable if R is not resolvable.

Assume that R is resolvable. Since IR in (3.3.21) is defined as a ratio, we

propose a new indicator by dropping Vm in (3.2.20):

ĨR =
‖∑2n0

j=1wjyj‖
‖∑n0

j=1wjyj‖
. (4.2.1)

In fact, IR =
‖Vm

∑2n0

j=1
wjyj‖

‖Vm

∑n0

j=1
wjyj‖

=
‖
∑2n0

j=1
wjyj‖

‖
∑n0

j=1
wjyj‖

= ĨR we have

‖Vm
n0
∑

j=1

wjyj‖ = (

n0
∑

j=1

wjyj)
TV T

mVm

n0
∑

j=1

wjyj = ‖
n0
∑

j=1

wjyj‖

since V T
mVm is identity matrix from the construction of Krylov subspace.

Consequently, there is no need to store Vm’s (n×m matrices) but to store

much smaller m×m (m = O(1)) matrices Hm’s.

As before, we use a threshold to decide whether or not eigenvalues exist

in R. From (3.2.20), if there are no eigenvalues in R, the indicator IR =

O(e−Cn0). In the experiments, we take n0 = 4. Assume that C = 1,
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we would have that IR ≈ 0.018. It is reasonable to take δ0 = 1/20 as the

threshold. However, it is still ad-hoc. Nonetheless, the numerical examples

show that the choice is rather robust.

Definition 4.2.0.2. A (square) region R is admissible if IR > δ0.

4.2.2 Speedup the Computation of Indicators

To check if a linear system (2.2.8) can be solved effectively using a Krylov

space Kσ
m(M ; b), one need the compute the residual (3.2.17) for many zj’s.

In the following, we propose a fast method for it. First rewrite (3.2.16) as
(

1

σ − zj
I +Hm

)

yj =
β

σ − zj
e1. (4.2.2)

Assume that Hm has the following eigen-decomposition Hm = PDP−1

where

D = diag{λ1, λ1, . . . , λm}.

Then (4.2.2) can be written as

P

(

1

σ − zj
I +D

)

P−1yj =
β

σ − zj
e1,

whose solution is simply

yj = P

(

1

σ − zj
I +D

)−1

P−1 1

σ − zj
e1

= P (I + (σ − zj)D)−1 P−1e1.

Hence

eTmy = eTmP (I + (σ − zj)D)−1 P−1e1

= rmΛc1, (4.2.3)

where rm is the last row of P , c1 is first column of P−1, and

Λ = diag

{

1

1 + (σ − zj)λ1
,

1

1 + (σ − zj)λ2
, . . . ,

1

1 + (σ − zj)λm

}

.
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In fact, this further reduces the memory requirement since only threem×1

vectors, rm, c1, and Λ are stored for each shift σ.

4.2.3 Multilevel Technique

Both RIM and RIM-C use recursive calls. However, a multilevel technique

is more efficient and suitable for parallelization. In SIM-M, the following

strategy is employed.

At level 1, R is divided uniformly into smaller squares R1
j , j = 1, . . . , N1.

Collect all quadrature points z1j ’s and solve the linear systems (2.2.8) ac-

cordingly. The indicators of R1
j ’s are computed and squares containing

eigenvalues are chosen. Indicators of the resolvable squares are computed.

Squares containing eigenvalues are subdivided into smaller square. Squares

that are not resolvable are also subdivided into smaller squares. These

squares are left to the next level. At level 2, the same operation is carried

out. The process stops at level K when. the size of the squares is smaller

than the given precision.

4.2.4 Multiplicities of Eigenvalues

The first two members of SIMs only output the eigenvalues. A new function

to find the multiplicities of the eigenvalues is integrated into SIM-M.

Definition 4.2.0.3. An eigenvalue λ is said to be resolved by a shift σ

if the small square at level K containing λ is resolvable using the Krylov

subspace Kσ
m.

When the eigenvalues are computed, a mapping from the set of eigenvalues

Λ to the set of shifts Σ is also established. Hence, for a shift σ, one can

find the set of all eigenvalues that are resolved by σ, denoted by

Λσ = {λ1, . . . , λn}.
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For k random vectors f1, . . . ,fk, generate k Krylov subspaces Kσ
m(M, bi),

i = 1, . . . , k. For each λ ∈ Λσ, compute the spectral projections of

f1, . . . ,fk using the above Krylov subspaces. Then the number of sig-

nificant singular values of the matrix [Pf1, . . . , Pfk] is the multiplicity of

λ.

Remark 4.2.0.1. In fact, the associated eigenvectors can be obtained with

little extra cost by adding more quadrature points. However, it needs too

much memory to store them.

4.2.5 Algorithm for SIM-M

Now we are ready to present the new algorithm SIM-M.

SIM-M(A,B,R,f , d0, ǫ, δ0,m, n0)

Input:

∗ A,B: n× n matrices

∗ R: search region in C

∗ f : a random vector

∗ d0: precision

∗ ǫ: residual tolerance

∗ δ0: indicator threshold

∗ m: size of Krylov subspace

∗ n0: number of quadrature points

Output:

∗ generalized eigenvalues λ’s inside R

1. use the center of R as the first shift and generate the associated Krylov

subspaces.

2. pre-divide R into small squares of size h0: Rj, j = 1, . . . , J (these are

selected squares at the initial level).
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3. for j = 1 : J do

∗ For all quadrature points for Rj, check if the related linear systems

can be solved using any one of the existing Krylov subspaces up

to the given residual ǫ0. If yes, associate Rj with that Krylov

subspace. Otherwise, set the shift to be the center of Rj and

construct a Krylov subspace.

4. calculate the number of the levels, denoted by K, needed to reach the

precision d0.

5. for k = 1 : K

∗ for each selected square Rk
j at level k, check if Rk

j is resolvable.

· if yes, compute the indicator for Rk
j and mark it when the indi-

cator is larger than δ0, i.e., R
k
j contains eigenvalues.

· if Rk
j is not solvable, mark Rk

j and leave it to next level.

∗ divide marked squares into four squares uniformly and move to

next level.

6. post-processing the marked squares at levelK, merge eigenvalues when

necessary, show warnings if there exist unsolvable squares.

7. output eigenvalues (and the multiplicities).

4.3 Numerical Examples

We show some examples for SIM-M. All the test matrices are from the

University of Florida Sparse Matrix Collection [44] except the last example.

The computations are done using MATLAB R2017a on a MacBook Pro

with 16 GB memory and a 3-GHz Intel Core i7 CPU.
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4.3.1 Directed Weighted Graphs

The first group contains four non-symmetric matrices, HB/gre 115, HB/-

gre 343, HB/gre 512, HB/gre 1107. These matrices represent directed

weighted graphs.

Table 4.1: Comparison between SIM-M and eig of Example 1

gre 115 gre 343 gre 512 gre 1107

SIM-M 3.4141s 10.2917s 14.7461s 40.2252s

eig 0.0076s 0.0918s 0.2391s 1.0947s

SIM-M/eig 4.5095e+02 1.1209e+02 61.6705 36.7453

We compute all eigenvalues using SIM-M and compare the results with

Matlab eig in Table 4.1. The first row represents the four matrices. The

second row contains CPU times (in seconds) used by SIM-M. The numbers

in the third row are the CPU times used by Matlab eig. The fourth row

shows the ratios by the two methods. For smaller matrices, SIM-M is

much slower. However, there is a clear trend that the ratio gets smaller as

the size of the matrices become larger. In Fig. 1, we show the eigenvalues

computed by SIM-M and Matlab eig, which coincide each other.

4.3.2 Electromagnetics Problem

The second example, Bai/qc2534, is a sparse 2534×2534 matrix modeling

H2+ in an electromagnetic field. The full spectrum, computed by Matlab

eig, is shown in Fig. 2(a), in which the red rectangle is R1 = [−0.1, 0] ×
[−0.125, 0.025]. In Fig. 2(b), the eigenvalues are computed by SIM-M in

S1, which coincide with those computed by Matlab eig. The red rectangle

is Fig. 2(b) is R2 = [−0.04, 0] × [−0.04, 0]. Eigenvalues in R2 computed

by SIM-M are shown in Fig. 2(c). The rectangle in Fig. 2(c) is R3 =
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Figure 4.1: Eigenvalues computed by SIM-M and Matlab eig coincide. (a) HB/-

gre 115. (b) HB/gre 343. (c): HB/gre 512. (d): HB/gre 1107.

[−0.02, 0] × [−0.03,−0.02]. Eigenvalues in R3 computed by SIM-M are

shown in Fig. 2(d).

Table 4.2 shows the time used by Matlab eig to compute all eigenvalues

and by SIM-M in R1, R2 and R3. There are 88, 23 and 7 eigenvalues in

R1, R2 and R3, respectively.
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Figure 4.2: QC2534. (a): Full spectrum by Matlab eig (the rectangle is R1). (b):

Eigenvalues by SIM-M in R1 (the rectangle is R2). (c): Eigenvalues by SIM-M in R2

(the rectangle is R3). (d): Eigenvalues by SIM-M in R3.

Table 4.2: Comparison between SIM-M and eig of Example 2

Matlab eig SIM-M(R1) SIM-M(R2) SIM-M(R3)

24.3786s 14.7445s 3.7005s 0.54645s
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4.3.3 DNA Electrophoresis

The third example is a 39, 082 × 39, 082 matrix arising from DNA elec-

trophoresis. We consider a series of nested domains

R1 = [0.230, 0.270]× [−0.0005, 0.0005],

R2 = [0.250, 0.270]× [−0.0005, 0.0005],

R3 = [0.250, 0.260]× [−0.0005, 0.0005],

R4 = [0.254, 0.256]× [−0.0005, 0.0005],

and use SIM-M to compute eigenvalues inside them. It is not possible to

use Matlab eig to find all eigenvalues due the memory constraint. In stead,

one can use Matlab eigs since the matrices are sparse.

In Table 4.3, time and number of eigenvalues is each domain are shown.

Table 4.3: Comparison between SIM-M and eigs of Example 3

eigs(A,1000) R1 R2 R3 R4

# of eigenvalues 1000 105 31 31 8

time 1732.4396s 588.3552s 299.4242s 214.0637s 47.8098s

Remark 4.3.0.1. Numerical results in the above two subsections indicate

that a parallel version of SIM-M has the potential to be faster than the

classical methods.

4.3.4 Quantum States in Disordered Media

The test matrices are sparse and symmetric arising from localized quantum

states in random or disordered media [40]. The matrices A and B are of

1, 966, 080× 1, 966, 080. We consider three nested domains given by

R1 = [0.00, 0.60]× [−0.05, 0.05],
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R2 = [0.00, 0.50]× [−0.05, 0.05],

R3 = [0.00, 0.40]× [−0.05, 0.05],

In Table 4.4, time and number of eigenvalues is each domain are shown.

Time of eig(A, B, 200) are also shown for reference.

Table 4.4: Comparison between SIM-M and eigs of Example 4

eigs(A, B, 200) R1 R2 R3

# of eigenvalues 200 36 7 3

time 2469.8730s 573.1088s 112.1876s 58.9957s

Remark 4.3.0.2. The matrices are quite large for a laptop using Matlab.

Matlab eigs are not able to handle many eigenvalues (e.g., 10, 000) due to

the memory limitation and return the following message

>> eigs(A,B,10000,’sm’)

Error using zeros

.... exceeds maximum array size preference...

In contrast, SIM-M uses little memory in addition to build a Krylov sub-

space. Consequently, one can use SIM-M to compute many eigenvalues

at the cost of more time. Again, a parallel version would certain help to

improve the speed.
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Chapter 5

A New Fast Method of

Solving the High Dimensional

Elliptic Eigenvalue Problem 1

Abstract

In this chapter, we develop a novel method to solve the elliptic PDE eigen-

value problem. The univariate multi-wavelet approach provides a simple

diagonal preconditioner for second order elliptic problems, which gives an

almost constant condition number for efficiently solving the corresponding

linear system. Here, we shall consider a new fast numerical approach for

approximating the smallest elliptic eigenvalue by using the multi-wavelet

basis in the multi-grid discretization scheme. Moreover, we develop a new

numerical scheme coupled with sparse grids method in the calculation.

This new approach saves storage in degrees of freedom and thus is more

efficient in the computation. Several numerical experiments are provided

for validating the proposed numerical scheme, which show that our method

1This chapter has been published as an article in Applied Mathematics and Computation.

https://doi.org/10.1016/j.amc.2019.03.035
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retains the optimal convergence rate for the smallest eigenvalue approx-

imation with much less computational cost comparing with ’eigs’ in full

grids.

Keywords: Multi-grid Discretization, Riesz Basis, Multi-wavelet, Elliptic

Eigenvalue, Sparse Grids.

5.1 Introduction

The elliptic eigenvalue problem is widely used in many practical applica-

tions such as vibration models, nuclear magnetic resonance measurements,

quantum mechanics and construction of heat kernels, etc [1, 45].Here we

consider the high-dimensional elliptic eigenvalue problem, where standard

approaches fail due to the exponentially increasing degrees of freedom w.r.t

dimension d.

Algebraic methods [41, 43] fail to handle the matrix from a standard dis-

cretization even for moderate values of dimension d. Recently, several

approaches have been developed to overcome this challenge. The idea is to

assume that the solution could be well approximated by a low rank approx-

imation in the tensor format. Hackbusch [46] investigated and provided

the error estimate for low rank tensor approximation of elliptic eigenvalue

problems in high dimension. However, as the rank often grows rapidly after

each iteration, repeating the low rank truncations is needed. Kressner [47]

proposed a low-rank tensor variant of locally optimal block preconditioned

conjugate gradient (LOBPCG) based on hierarchical Tucker decomposi-

tion. However, specific preconditioner has to be constructed for better

numerical performance.

Sparse grids method is a novel numerical approach in high dimensional ap-

proximation, which is closely related to hyperbolic crosses [48]. The main
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philosophy is seeking a proper truncation of the tensor product hierarchical

base, which reduces the degrees of freedom from O(Nd) to O(N | logN |d−1),

where N is the number of uniform mesh in each direction. Sparse grids

techniques have been integrated with finite differences [49], discontinuous

Galerkin method [50], and etc. for high dimensional partial differential

equations (PDEs).

The fundamental work of wavelet could be traced back to Daubechies [51].

By considering multiple generating functions, we could construct multi-

wavelet with symmetry, compact support, continuity and orthogonality

simultaneously [52]. Wavelet methods for PDEs have been studied for

its best N-term approximation and compression properties [53, 54]. The

adaptive wavelet method has been applied for Poisson’s equation in high

dimensionality [55]. With its well-crafted multi-wavelet, a simple diagonal

preconditioner could be attained such that the preconditioned stiffness

matrix has a almost constant condition number.

Two-grid discretization scheme for elliptic eigenvalue problem was first in-

troduced by Xu and the corresponding convergence analysis for the small-

est eigenvalue has been well established [56], the underlying idea is to

reduce the original eigenvalue problem on the fine grid to an eigenvalue

problem on a coarser grid and linear algebraic system on the fine grid.

Some acceleration techniques and convergence analysis for other eigen-

values have been investigated in [57, 58]. Li [59] applied the adaptive

finite element method based multi-scale discretization scheme for elliptic

eigenvalue problem. Yang [60] considered shifted-inverse iteration based on

the multi-grid discretizations and established the convergence for arbitrary

eigenvalues under mild conditions. For our method, we adopt the two-grid

discretization scheme and extend to multi-grid discretization formulation.

Following the basic idea of two-grid discretization scheme, we could reduce
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the original eigenvalue problem on fine grid to an eigenvalue problem on

a much coarser grid and linear algebraic systems on several nested finer

grids. Thus, the main computational cost is solving the linear algebraic

systems, we will discuss how to precondition these linear algebraic systems

in details latter. Although the theoretical conclusion is only valid for the

smallest eigenvalue in our method, we observe the optimal convergence

rate for other eigenvalues. The theoretical analysis will be left for future

study.

In this chapter, we shall consider the multi-wavelet basis coupled with

sparse grids methods for approximating the second order elliptic eigenvalue

problems. We shall discuss preconditioning techniques for the correspond-

ing linear algebraic system. The rest of this paper is organized as follows:

In Section 5.2 the construction of multi-wavelet and Riesz basis will be dis-

cussed. In Section 5.3 multi-grid discretization scheme with sparse grids

is provided. Several numerical experiments are presented to validate the

theoretical conclusions in Section 5.4.

5.2 Background

5.2.1 Univariate Orthonormal Multi-wavelet

In this subsection, we will introduce the intertwining multi-resolution anal-

ysis [52] and review the construction of univariate orthonormal multi-

wavelet basis on L2(R), then we shall construct the univariate orthonormal

multi-wavelet basis on L2([0, 1]) with vanishing boundary condition, where

L2([0, 1]) refers to square-integrable function space on [0, 1].

A multi-resolution analysis of multiplicity r is a nested sequence of closed

linear subspaces (Vp) in L
2(R) satisfying as follows:
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(a) f ∈ Vp iff f(2−p) ∈ V0 for p ∈ Z,

(b) V0 ⊂ V1,

(c) ∩p∈ZVp = {0},

(d) ∪p∈ZVp = L2(R),

(e) There are r functions {φ1, φ2, ..., φr} such that the collection {φs(· −
n)|s = 1, ..., r and n ∈ Z} is a Riesz basis for V0.

Furthermore, if the fifth condition above could form an orthogonal basis

of V0, then we call (Vp) an orthogonal multi-resolution analysis.

Lemma 5.2.1. If (Vp) is a multi-resolution analysis generated by com-

pactly supported scaling functions [52], then there is some pairs of integer

(q,n) and some orthogonal multiresolution analysis (Ṽp) such that

Vq ⊂ Ṽq ⊂ Vq+n.

We denote the generator of V0 as {φ1, φ2, ..., φr} i.e. V0 = span{φj(· − i) :

j ∈ {1, 2, · · · , r}, i ∈ Z}, then V1 = span{φj(2 · −i) : j ∈ {1, 2, · · · , r}, i ∈
Z}, etc. Once (Ṽq) is constructed, we define the multi-wavelet subspace

W̃l as the orthogonal complement of Ṽl−1 in Ṽl with respect to the square-

integrable inner product on R.

Example: Piecewise linear orthonormal scaling functions.

Now we consider piecewise linear multi-wavelet, i.e. V0 ⊂ Ṽ0 ⊂ V1.

Start from

H(x) =











1− |x| if |x| ≤ 1,

0 otherwise.

Let (Vp) be the multi-resolution analysis generated by {φ1, φ2}, here φ1 =
√
3H(2x) and φ2 =

√
3H(2x− 1). Following from [52], we shall construct

the scaling functions Φ̃ = (φ̃1, φ̃2, φ̃3) shown in Figure 5.1. Figure 5.2 plots

the corresponding wavelet functions.
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Figure 5.1: Piecewise-linear orthonormal scaling functions φ̃1, φ̃2, φ̃3.
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Figure 5.2: Piecewise-linear orthonormal wavelets ψ̃1, ψ̃2, ψ̃3.

The collection {φj,l,i := 2l/2φ̃j(2
l · −i) : j ∈ {1, 2, · · · , k}, i ∈ Z} and

{ψj,l,i := 2(l−1)/2ψ̃j(2
(l−1) · −i) : j ∈ {1, 2, · · · , k}, i ∈ Z} are orthonormal

bases for Ṽl and W̃l, i.e. the piecewise linear multi-wavelet introduced

above with k = 3. Thus we have the hierarchical decomposition

Ṽlk = Ṽl0 ⊕ W̃l0+1 ⊕ W̃l0+2 · · · ⊕ W̃lk l0 ≥ 0,

L2(R) = Ṽl0 ⊕ W̃l0+1 ⊕ W̃l0+2 · · · l0 ≥ 0.

However, the construction above is for L2(R). As for multi-wavelet on

L2([0, 1]) with vanishing boundary condition, the construction is nontrivial

in general [52]. Fortunately, we still retain multi-wavelet basis on L2([0, 1])

with vanishing boundary condition by restricting multi-wavelet basis of

L2(R) on [0, 1] for certain types of multi-wavelet, i.e. the piecewise linear

multi-wavelet.
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Now we shall define the multi-wavelet basis on L2([0, 1]) as following

Ψ := {ψλ : λ ∈ Λ} = {φj,1,i|[0,1]}
⋃

(
⋃

l>1

{ψj,l,i|[0,1])}.

So Ψ is the union of Ṽ1|[0,1] and W̃l|[0,1] for all l > 1 indexed by λ. λ is the

triple indexes (j, l, i) and Λ is collection of all valid triples (j, l, i). Here we

use |λ| to denote l, the level information of multi-wavelet basis.

5.2.2 Riesz Basis in Energy Norm

We shall consider the following elliptic eigenvalue problem in d (d=1, 2, 3)

dimension of Ω = (0, 1)d:

−∆u = λu, in Ω, (5.2.1)

u = 0, on ∂Ω. (5.2.2)

Define the bilinear form as follows

a(u, v) :=

∫

Ω

∇u · ∇vdx (v ∈ H1
0 (Ω)). (5.2.3)

We use H1
0 (Ω) to denote Sobolev function space with vanishing trace.

Next we will demonstrate some properties with the basis above, namely,

the Riesz basis in energy norm.

Lemma 5.2.2. The bilinear form a(u, v) is symmetric positive definite

and elliptic in the sense that

||v||2a := a(v, v) ∼ ||v||2H v ∈ H1
0 (Ω). (5.2.4)

Here ∼ means that both quantities can be uniformly bounded by constant

multiples of each other and || · ||H is the corresponding Sobolev norm. Now

we consider the one dimensional case, the multi-wavelet basis defined in
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last section satisfies Jackson and Bernstein estimates [61], thus we have

the following estimation

||v||2a ∼ ||2|λ|〈v, ψλ〉L2(0,1)||2l2(λ∈Λ) ∀v ∈ H1
0 (0, 1). (5.2.5)

Define an infinite diagonal matrix D± as following

(D±)λ,λ̃ := 2±|λ|δ(λ,λ̃). (5.2.6)

Where δ(λ,λ̃) is the Kronecker Delta function.

Also we denote v := 〈v, ψλ〉L2(0,1) as an infinite vector indexed by λ ∈ Λ.

Then (5.2.5) is equivalent to

||v||a = ||vTΨ||a ∼ ||D+v||l2 , (5.2.7)

Next, we shall scale the multi-wavelet basis Ψ as following

||vTΨ||a = ||(D+v)TD−Ψ||a ∼ ||D+v||l2 , (5.2.8)

which means there exists 0 < c ≤ C such that

c||D+v||l2 ≤ ||(D+v)TD−Ψ||a ≤ C||D+v||l2 . (5.2.9)

Theorem 5.2.3. Given the Riesz basis D−Ψ for the energy norm || ·
||a, the condition number κD−Ψ of the Gramian matrix (D−φλ,D

−φλ̃) :=

(D−φλ,D
−φλ̃)a:

κD−Ψ ≤
(

C

c

)2

(5.2.10)

where c and C are constants defined in (5.2.9).

The Gramian matrix (D−φλ,D
−φλ̃) is equal to D−(ψλ, ψλ̃)aD

−, which

shows the condition number of the finite discretized bilinear form (ψλ, ψλ̃)a

preconditioned by the application of D− of (5.2.6) is indeed uniformly

bounded. Furthermore, D− can be simplified by just computing the diag-

onal entries of (ψλ, ψλ̃)a since by applying (5.2.5) we have as following

||ψλ||2a ∼ ||2|λ|〈ψλ, ψλ̃〉L2(0,1)||2l2(λ̃∈Λ) = 22|λ| (5.2.11)
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(ψλ, ψλ̃δ(λ,λ̃))
−1

2

a ∼D− (5.2.12)

Thus we shall use the diagonal of the stiffness matrix to construct the

preconditioner D−.

We will demonstrate the condition number of the stiffness matrix and the

uniform boundedness of preconditioned stiffness matrix with precondition-

ing in (5.2.12). Here DOFs denotes degrees of freedom and CN denotes

condition number. For the experiment, we consider d = 1 and take linear

multi-wavelet basis as example. Tables 5.1-5.2 compare the condition num-

ber of original stiffness matrix and preconditioned stiffness matrix. From

Table 5.2, one can observe that the condition number of the preconditioned

stiffness matrix is almost a constant which agrees with our theoretical re-

sults, while the condition number of the original problem shown in Table

5.1 increases by 4.

Level=|λ| 3 4 5 6 7 8 9 10

DOFs 47 95 191 383 767 1535 3071 6143

CN 5.2E3 2.1E4 8.4E4 3.4E5 1.4E6 5.4E6 2.2E7 8.6E7

Table 5.1: Condition number of 1D stiffness matrix (linear multi-wavelet).

Level=|λ| 3 4 5 6 7 8 9 10

DOFs 47 95 191 383 767 1535 3071 6143

CN 28.85 29.92 30.64 31.24 31.68 32.05 32.33 32.57

Table 5.2: Condition number of 1D preconditioned stiffness matrix (linear multi-

wavelet).

Next we consider the arbitrary d dimensional case and its Riesz basis on
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H1
0 (Ω). Similarly, we define the tensor product basis

Ψ̂ := {ψλ := ⊗d
m=1ψλm

: λ ∈ Λ :=
d
∏

m=1

Λm}, (5.2.13)

and D−
d is defined similar to (5.2.12). Ψ̂ is the orthonormal basis for

L2(Ω) and D−
d Ψ̂ is Riesz basis for H1

0 (Ω). D
−

d a(ψλ,ψλ̃)D
−

d shares the

same condition number with D−a(ψλ, ψλ̃)D
− in one dimension [55].

Remark 5.2.3.1. The significance of orthonormality in Ψ lays the founda-

tion that D−

d a(ψλ,ψλ̃)D
−

d has uniform condition w.r.t dimension d. If

we choose non-orthonormal multi-wavelet basis, condition number of the

preconditioned D−

d a(ψλ,ψλ̃)D
−

d will grows exponentially w.r.t dimension

d [55].

5.2.3 Sparse Grids for Multi-wavelet Basis

In this subsection, we shall introduce multi-wavelet basis for full grids and

sparse grids in d dimensionality. Ψ̂ is defined as the tensor product of the

one-dimensional hierarchical decomposition [62]. We consider the finite

element space for computation purpose. Define the full grids (FG) Ψ̂f
l of

level l

Ψ̂
f
l := {ψλ ∈ Ψ̂ : ||λ||l∞ <= l},

Here λ = (λ1, λ2, ..., λd), ||λ||l∞ = maxdi=1 |λi|. By contrast, the sparse

grids, which is based on a selection of full tensor product of hierarchical

basis, could significantly reduce degrees of freedom, while keeps almost the

same accuracy.

Similar to full grids, we define the sparse grids (SG) Ψ̂s
l of level l

Ψ̂s
l := {ψλ ∈ Ψ̂ : ||λ||l1 <= l}.

Here we denote ||λ||l1 =
∑d

i=1 |λi|. In fact, with sparse grids method the

degree of freedoms could be reduced from orderO(h−d) toO(h−1| log2 h|d−1)
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for d-dimensional problems [50], where h is the size of uniform mesh in each

dimension.

Level 3 4 5 6 7 8

DOFs 2209 9025 36481 146689 588289 2356225

Condition Number 28.8 29.9 30.6 31.3 - -

Table 5.3: Condition number of 2D FG preconditioned stiffness matrix (linear multi-

wavelet)

Level 3 4 5 6 7 8

DOFs 625 1537 3649 8449 19201 43009

Condition Number 28.7 29.8 30.5 31.1 31.6 31.9

Table 5.4: Condition number of 2D SG preconditioned stiffness matrix (linear multi-

wavelet)

Tables 5.3-5.4 report the condition number from full grids (FG) and sparse

grids (SG) for two dimensional problem after applying diagonal precondi-

tioning. The condition numbers of preconditioned stiffness matrix for two

dimensional problem are the same as the one dimensional case shown in

Table 5.2. Furthermore, the savings of DOFs in SG methods are significant

compared with FG methods.

Remark 5.2.3.2. We denote ”-” for the limitation of computational resource

in Table 5.3.
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5.3 Multi-Grid Discretization Scheme with

Sparse Grids

In this section, we adopt two-grid discretization scheme and refer more

details in [56]. We propose the multi-grid discretization scheme with multi-

wavelet basis in sparse grids for approximating the smallest eigenvalue.

The algorithm is summarized as following:

(a) Solve an eigenvalue problem on an initial coarse grid: choose an ini-

tial level l0, find the smallest eigenvalue λl0 and ul0 ∈ Ψ̂s
l0
such that

||∇ul0 ||L2
= 1, and,

∫

Ω

∇ul0 · ∇vdx = λl0(ul0 , v) (∀v ∈ Ψ̂s
l0
).

And i⇐ 0.

(b) Let i ⇐ i + 1, solve a linear algebraic system on a finer grid: find

uli ∈ Ψ̂s
li
such that

∫

Ω

∇uli · ∇vdx = λli−1
(uli−1

, v) (∀v ∈ Ψ̂s
li
), (5.3.14)

and compute the Rayleigh quotient

λli =
||∇uli ||2L2

||uli ||2L2

.

(c) If i ≤ Max then goes to 2, else stops. Here Max denotes the max

level information.

The eigenpair (λlMax
, ulMax

) is approximation of original problem in Ψ̂s
lMax

.

Our contribution is to utilize (5.3.14) with fast method. We have the

following algebraic systems after discretizing (5.3.14)

Alixli = fli−1
. (5.3.15)
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A diagonal preconditioner Dli by (5.2.12) could be easily constructed as

Dli = (diag(Ali))
−1/2 such that the condition number of DliAliDli is uni-

formly bounded as we demonstrate in Tables 5.2-5.4.

Multiply Dli to both sides of (5.3.15), and rewrite the equation as

DliAliDliD
−1
li
xli = Dlifli−1

. (5.3.16)

Denote Ãli = DliAliDli , x̃li = D−1
li
xli and f̃li−1

= Dlifli−1
, then (5.3.16) is

equivalent to

Ãli x̃li = f̃li−1
. (5.3.17)

After we solve (5.3.17) with iterative methods such as generalized minimal

residual method (GMRES), we retain the solution of (5.3.15).

5.4 Numerical Experiments

In this section, we provide multi-dimensional numerical results to demon-

strate the performance of our method. Numerical experiments have been

carried out with linear and cubic finite elements. According to theoretical

conclusions, we expect the convergence rates as O(h2p) for the smallest

eigenvalue, where p is the the order of basis. The mesh size is denoted as

h =
1

2l
, where l is the level information of finite multi-wavelet basis. All

the calculations are performed with MATLAB R2017a on Dell Worksta-

tion equipped with Windows 10 system, two Intel Quad-Core Xeon X5697

3.59 GHz CPUs and 48 GB of main memory.

5.4.1 Two Dimensional Test

We solve the following two-dimensional problem with constant coefficient

on Ω = (0, 1)2

−∆u = λu, in Ω,
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u = 0, on ∂Ω.

The exact eigenvalues are given by λ = π2(k2x+ k2y) and the eigenfunctions

are sin(kxπx) sin(kyπy) with kx = 1, 2, 3, . . . and ky = 1, 2, 3, . . . . We

test our method and compare our results with the conventional method,

namely, full grids methods using ”eigs” command in Matlab. We compare

several numerical performance like convergence rate, computational cost

(in seconds) and degrees of freedom (DOFs).

The comparison between the full grids method and our proposed method

with piecewise linear basis is presented in Tables 5.5-5.6. The reduction

of DOFs due to sparse grids is dramatic. Furthermore, the diagonal pre-

conditioning technique plays another significant role for speeding up. Al-

most constant ratio between computational cost and degrees of freedom is

achieved in Table 5.6. The new method also retains optimal convergence

order for the smallest eigenvalue, which is second order for piecewise linear

basis.

Level 4 5 6 7 8 9

DOFs 4417 11137 26881 62977 144385 325633

Cost 0.29 1.81 11.2 59.4 402.9 -

Error 2.31e-3 5.78e-4 1.45e-4 3.61e-5 9.03e-6 -

Conv.Rate 2.00 2.00 2.00 1.99 -

Table 5.5: 2D SG method using ”eigs” for first eigenvalue (linear multi-wavelet)

Furthermore, we conduct experiments for the other eigenvalues’ approxi-

mation in Tables 5.7-5.8 and we observe the optimal convergence rates by

using both linear and cubic finite elements.

Remark 5.4.0.1. The convergence rate drops when the error is less than

10−10, one reason for this phenomenon is that the iterative method in
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Level 4 5 6 7 8 9

DOFs 4417 11137 26881 62977 144385 325633

Cost 0.23 0.63 1.47 4.18 10.53

Error 2.31e-3 5.78e-4 1.45e-4 3.62e-5 9.09e-6 2.31e-6

Conv.Rate 2.00 2.00 2.00 1.99 1.98

Table 5.6: 2D SG method with multi-grid scheme for first eigenvalue (linear multi-

wavelet)

Level 4 5 6 7 8 9

DOFs 4417 11137 26881 62977 144385 325633

Cost 0.21 0.57 1.39 4.04 10.54

Error 9.48e-2 2.37e-2 5.92e-3 1.48e-3 3.71e-4 9.38e-5

Conv.Rate 2.00 2.00 2.00 2.00 1.98

Table 5.7: 2D SG method with multi-grid scheme for 5th eigenvalue (linear multi-

wavelet)

Level 3 4 5 6 7

DOFs 1153 2817 6657 15361 34817

Cost 0.08 0.19 0.44 1.1

Error 4.98e-3 1.19e-4 1.35e-6 1.91e-8 3.27e-10

Conv.Rate 5.37 6.47 6.14 5.87

Table 5.8: 2D SG method with multi-grid scheme for 20th eigenvalue (cubic multi-

wavelet)

MATLAB like GMRES may fail to converge if the tolerance is too small.
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5.4.2 Three Dimensional Test

Next we solve three-dimensional problem with constant coefficient on Ω =

(0, 1)3

−∆u = λu, in Ω,

u = 0, on ∂Ω.

The exact eigenvalues are given by λ = π2(k2x + k2y + k2z) and the eigen-

functions are sin(kxπx) sin(kyπy) sin(kzπz) with kx, ky, kz = 1, 2, 3 . . . .

We perform numerical experiment to compute the smallest eigenvalue in

piecewise linear basis and result is presented in Table 5.9.

Level 2 3 4 5 6 7

1DOFs 2015 6191 17567 47231 122111 306431

Cost 0.32 0.26 0.69 1.99 6.28

Error 5.57e-2 1.39e-2 3.48e-3 8.70e-4 2.18e-4 5.49e-5

Conv.Rate 2.00 2.00 2.00 2.00 1.99

Table 5.9: 3D SG method with multi-grid scheme for first eigenvalue (linear multi-

wavelet)

Similarly, we compute non-first eigenvalues in both linear and cubic basis

in Tables 5.10-5.11.
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Level 2 3 4 5 6 7

DOFs 2015 6191 17567 47231 122111 306431

Cost 0.10 0.22 0.61 1.80 5.82

Error 6.33e-1 1.58e-1 3.95e-2 9.87e-3 2.47e-3 6.16e-4

Conv.Rate 2.00 2.00 2.00 2.00 1.99

Table 5.10: 3D SG method with multi-grid scheme for 5th eigenvalue (linear multi-

wavelet)

Level 2 3 4 5 6

DOFs 5215 15807 44415 118527 304639

Cost 0.32 1.05 3.15 9.94

Error 1.57e-4 2.57e-6 3.93e-8 6.16e-10 1.36e-11

Conv.Rate 5.93 6.03 6.00 5.50

Table 5.11: 3D SG method with multi-grid scheme of 5th eigenvalue (cubic multi-

wavelet)

5.4.3 2D L-shaped Domain Test

Finally, we solve two-dimensional problem with constant coefficient on

Ω = (0, 1)2\(1/2, 1)× (0, 1/2)

−∆u = λu, in Ω,

u = 0, on ∂Ω.

For the L-shaped domain, the first eigenvalue can not be obtained exactly.

To study the convergence rate, we use the relative error calculated with

reference eigenvalue. We study the convergence rate of the first eigenvalue.

As we know, the first eigenfunction only has H5/3 regularity [1]. In Table

5.12, we observe the superconvergence as second order. However, at the

finest level l = 10, the first eigenvalue is 38.69 for our method while the
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reference eigenvalue is around 38.56 by finite element method [1, p. 71]. In

Figure 5.3, we plot first eigenfunction for this test.

Level 5 6 7 8 9 10

DOFs 8086 19603 46095 105994 239620 534525

Cost(s) 0.21 0.44 1.16 2.76 7.74 19.21

Relative Error 3.45e-4 8.93e-5 2.26e-5 5.72e-6 1.45e-6 3.67e-7

Conv.Rate 1.95 1.98 1.98 1.98 1.98

Table 5.12: 2D SG method with multi-grid scheme for L-shape problem (linear multi-

wavelet)
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Figure 5.3: First eigenfunction of L-shaped domain

The phenomenon of superconvergence will be left for further study. Fur-

thermore, in [63], non-overlapping domain decomposition method is pro-

posed to solve Poisson problem with irregular domain, we will consider

this technique for elliptic eigenvalue problem with more general domain in

the future.
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5.5 Conclusion

In this chapter, we develop a novel method for high dimensional elliptic

eigenvalue problem on the tensorized domain. The theoretical convergence

rate for the smallest eigenvalue is verified by the numerical experiments and

our method achieves almost the same order in accuracy as the ”eigs” with

far less time due to the integration of multi-grid discretization scheme, well-

constructed multi-wavelet basis, and sparse grids techniques. Furthermore,

we observe the empirical convergence for other eigenvalues, which will be

left for future investigation.
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Appendix A

Copyright Documentation

A.1 Copyright Documentation of Chapter 2
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A.2 Copyright Documentation of Chapter 3
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A.3 Copyright Documentation of Chapter 4

A Memory Efficient Multilevel Spectral Indicator Method has not yet been

published (up to date),there is no need to obtain copyright documentation.

A.4 Copyright Documentation of Chapter 5
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