
Michigan Technological University Michigan Technological University 

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech 

Dissertations, Master's Theses and Master's Reports 

2019 

ASSESSING SOIL COMPACTION FOLLOWING A WINTER TIMBER ASSESSING SOIL COMPACTION FOLLOWING A WINTER TIMBER 

HARVEST IN THE WESTERN UPPER PENINSULA OF MICHIGAN HARVEST IN THE WESTERN UPPER PENINSULA OF MICHIGAN 

Rafia Rahman 

Copyright 2019 Rafia Rahman 

Follow this and additional works at: https://digitalcommons.mtu.edu/etdr 

 Part of the Forest Management Commons 

http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/etdr
https://digitalcommons.mtu.edu/etdr?utm_source=digitalcommons.mtu.edu%2Fetdr%2F922&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/92?utm_source=digitalcommons.mtu.edu%2Fetdr%2F922&utm_medium=PDF&utm_campaign=PDFCoverPages


 
 

ASSESSING SOIL COMPACTION FOLLOWING A WINTER TIMBER HARVEST 

IN THE WESTERN UPPER PENINSULA OF MICHIGAN 

 

 

By 

Rafia Rahman 

  

 

 

A THESIS 

Submitted in partial fulfillment of the requirements for the degree of 

MASTER OF SCIENCE 

In Forest Ecology and Management 

 

 

MICHIGAN TECHNOLOGICAL UNIVERSITY 

2019 

 

 

© 2019 Rafia Rahman 

 



 
 

This thesis has been approved in partial fulfillment of the requirements for the Degree of 

MASTER OF SCIENCE in Forest Ecology and Management. 

       

                                                       College of Forest Resources and Environmental Science

  

 Thesis Advisor: Matthew C. Kelly 

 Committee Member: Evan S. Kane 

 Committee Member: Zhen Liu 

 College Dean: Andrew J. Storer 

 

 

 

 

 

 

 

 

 

 

 

 

 



iii 

Table of Contents 

Acknowledgments.......................................................................................................... v 

Abstract ......................................................................................................................... vi 

1 Introduction and Literature Review ............................................................................ 1 

1.1 Soil Compaction and Timber Harvesting .......................................................................... 1 

1.2 Study Goals and Objectives.............................................................................................. 9 

2 Methods..................................................................................................................... 10 

2.1 Study Area ...................................................................................................................... 10 

2.2 Harvest System .............................................................................................................. 13 

2.3 Study Design................................................................................................................... 13 

2.3.1 Machine Traffic ....................................................................................................... 13 

2.3.2 Slash Volume ........................................................................................................... 17 

2.3.3 Percent Rock Content ............................................................................................. 19 

2.3.4 Snow Depth ............................................................................................................. 19  

2.4 Field Work ...................................................................................................................... 20 

2.5 Lab Procedures............................................................................................................... 24 

2.6 Calculations .................................................................................................................... 25 

2.7 Data Analysis .................................................................................................................. 26 

3 Results ....................................................................................................................... 27 

3.1 Summary Statistics ......................................................................................................... 27 

3.2 Effects of Overstory Treatment ..................................................................................... 28 

3.3 Effect of 6-Wheeled vs 8-Wheeled Machines ................................................................ 29 

3.4 Mixed Effects Model Results .......................................................................................... 30 

3.4.1 Effect of Traffic Intensity on Bulk Density ............................................................... 30 

3.4.2 Effect of Rock Content on Bulk Density .................................................................. 32 

3.5 Effects of Snow Depth .................................................................................................... 32 

4 Discussion ................................................................................................................. 36 

4.1 Effects of Traffic Intensity .............................................................................................. 36 

4.2 Effects of Slash Volume .................................................................................................. 38 

4.3 Effects of Percent Rock Content .................................................................................... 40 

4.4 Winter Harvesting BMPs ................................................................................................ 40 

4.5 Limitations and Future Research ................................................................................... 41 

5 Conclusion ................................................................................................................ 43 

6. References …………………………………………………………………………………………………………………….45 



iv 

7 Appendices ................................................................................................................ 53 

 

  



v 

Acknowledgments 

I’d like to first acknowledge the McIntire Stennis Program, from the USDA National 

Institute of Food and Agriculture for the funding they provided for this research.  I express 

my deep sense of gratitude, sincere appreciation and profound regards to my reverend 

teacher and research supervisor Dr. Matthew C. Kelly, Assistant Professor, College of 

Forest Resources and Environmental Science, Michigan Technological University for his 

scholastic guidance, constant advice, innovative suggestions, constant supervision and 

inspiration, and helpful criticism in carrying out the research work and preparation of this 

thesis. 

I deem it proud gratitude and regards to my thesis committee, Dr. Evan S. Kane, Associate 

Professor, College of Forest Resources and Environmental Science, Michigan 

Technological University and Dr. Zhen Liu, Associate Professor, Civil, and Environmental 

Engineering, Michigan Technological University for their constructive suggestions and 

necessary co-operation.  

I am very grateful to my colleague Alex Helman for his help during field work. Finally, I 

express my heartiest gratitude to my parents for their blessings, inspiration, moral, co- 

operation and endless love throughout my life to reach up to this level.



vi 

Abstract 

Harvesting during winter is encouraged as a best management practice to protect soil 

during logging operations. The western Upper Peninsula of Michigan typically experiences 

early and persistent snowfall, which insulates the forest floor and prevents soils from 

freezing. The objective of this study is to assess the effects of slash volume, snow depth, 

overstory treatment, and machine traffic intensity on soil bulk density following a winter 

harvest of a northern hardwood forest on cobbly silt-loam soils.  The harvest was conducted 

at the Ford Forest in Alberta, Michigan using cut-to-length harvest systems (i.e. harvester 

and forwarder) during which the soil remained unfrozen. Four levels of machine traffic 

(high, medium, low, none) and two levels of overstory treatment (clear-cut and partial cut) 

were considered within a factorial experimental design. Samples were extracted using 

coring cylinders and separated into three depths (0-5, 5-10, 10-20 cm) prior to drying, 

sifting and weighing. Results indicate that bulk density did not differ between the no traffic 

treatment and low traffic treatment at the 0-5 cm depth. However, soil bulk density for the 

no-traffic treatment was significantly lower than soil bulk density for the medium and high 

traffic treatments at the 0-5 cm depth. There was a significant effect for traffic in all depths, 

fine and full soil, except for the 5-10 fine and full soil (which had a p-value of .06). No 

significant effects of slash volume or snow depth were detected but there was significant 

effect of percent rock at each depth.
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1 Introduction and Literature Review 

1.1 Soil Compaction and Timber Harvesting 

Soils provide many important functions within a forest ecosystem. They are a source of 

essential nutrients not only for individual trees but also for the overall forest ecosystem 

(Dominati et al. 2010). They also provide anchorage and available water necessary to 

support tree growth. However, soil properties, including soil structure, can be altered by 

anthropogenic and natural disturbances such as erosion, timber harvesting, prescribed 

burning, or wildfire (Elliot et al. 1998).  

Disturbance from logging can have significant impacts on soils. In recent decades, 

mechanized harvest systems have become popular because of their improved productivity 

relative to hand felling systems and the benefits for worker safety (Cambi et al. 2015). 

Harvest machines, including harvesters, fellerbunchers, skidders, and fowarders, are 

commonly used to fell, transport and process timber for various purposes (Simmons, 1951; 

Akay and Sessions, 2001; Greene et al. 2013). Mechanized harvests can impact soil due to 

the high ground pressures exerted by these modern logging machines (McDonald et al. 

1995; McNabb et al. 2001). As axle load capacities increase, machines are becoming 

capable of supporting greater weight (Håkansson and Reeder, 1994).  

A specific concern associated with mechanized harvesting is soil compaction. According 

to Coder (2000), the definition of soil compaction is the translocation and resorting of 

textural components in the soil (sand, silt, and clay particles), destruction of soil aggregates, 

and collapse of aeration pores. Changes in bulk density is commonly used to measure 

soil compaction. In general, bulk density (g/cm3) increases as pore space decreases 
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(Figure 1). Finer texture soils, such as silt and clay, generally have more pore space 

and thus have lower bulk density than sandy soils (Source: DeJong-Hughes 2018). 

Figure 1. Physical effects on soil due to compaction (DeJong-Hughes, 2018) 

 

Compaction decreases air and water availability to plant roots and microscopic organisms 

as well (Bodelier et al. 1996; Startsev and McNabb, 2000; Frey et al. 2009). Soil compaction 

changes soil physical properties and structure, decreases pore space and saturated hydraulic 

conductivity (Jansson and Johansson, 1998; Grace et al. 2006), and affects site quality by 

reducing the rate of water penetration and aeration of soil, and can increase resistance to 

root penetration (Greacen and Sands,1980; Taylor & Brar 1991; Quesnel and Curran, 2000; 

Grigal 2000;  Zhao et al. 2010) and can eventually restrict plant growth (Kozlowski, 1999; 

Meyer et al. 2014). Recovering adequate pore space, water availability, and rich organic 

matter content after compaction can take long periods of time, ranging from an estimated 

seventy to one hundred forty years depending on variables such as climatic conditions, type 
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of soil and degree of compaction (Greacen & Sands, 1980; Froehlich et al. 1985; Webb et 

al. 1986). Addditionaly, harvesting disturbances can affect tree regeneration success by 

damaging tree roots, decreasing root respiration, and limiting the active rooting zone as 

well as root growth and development (Hatchell et al. 1970; Martin, 1988). 

Figure 2. Growth-limiting bulk density (g/cm3) textural triangle (source: Daddow and Warrington, 

1983) 
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The degree to which soil is compacted depends on numerous factors such as machine traffic 

intensity, slope steepness, site characteristics, harvesting machinery type, designing or 

planning of skid roads, and the caution and expertise of machine operators (Reisinger et al. 

1992; Laffan et al. 2001; Eliasson and Wa¨sterlund 2007; Demir et al. 2007; Najafi et al. 

2009; Solgi and Najafi 2014; Naghdi and Solgi 2014; Cambi et al. 2015). Additionally, soil 

deformation is linked to soil moisture, initial bulk density, soil organic matter, and ground 

elevation (Ballard, 2000; Jamshidi et al. 2008). Generally, soils with low bulk density are 

more susceptible to compaction (Hillel, 1998; Williamson and Neilsen, 2000; Powers et al. 

2005). Soils which have bulk densities ≥1.4 Mg m-3 are not that much affected by 

compaction. Although tree growth can be reduced due to compaction on clayey soils,  

Powers et al (2005) found compaction benefited tree growth in sandy soils due to increased 

water and nutrient availability. 

Machine traffic intensity (the number of machine passes on a skid trail due to tree 

harvesting) is a key factor in soil compaction as deformations generally increase with the 

increasing number of passes and may eventually lead to significant disturbance of soil 

(Mosaddeghi et al. 2000; Solgi and Najafi 2014). 

The relationship is nonlinear between soil bulk density and traffic intensity (McNabb et al. 

1997; Najafi, 2010), such that the first few passes are generally responsible for most surface 

compaction, but bulk density may increase with increasing traffic over the site according 

to the number of passes and soil depth (Hatchell et al. 1970; Brais and Camire´, 1998; 

Williamson and Neilsen, 2000; McNabb et al. 2001). Traffic intensity over a given skid 

trail can be measured using GPS technology (McMahon, 1997; Carter et al. 1999; 

McDonald et al. 2002). GPS units can be attached to each machine to track machine 
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movement.  Those data can then be analyzed to determine the number of passes over a 

given skid trail within ArcMap so that the affected areas can be identified (Zenner et al. 

2007). 

In temperate forests, harvesting in winter is typically encouraged as a best management 

practice to protect soils, particularly those composed mainly of finer texture silt or clay 

soils. Thus summer logging is generally not recommended on sensitive or poorly dained 

soils (Smith and Wass, 1976; Krag et al. 1986). When harvesting forested wetlands, 

harvesting in the winter  under frozen conditions is necessary to prevent negative impacts 

to these sensitive areas (Zasada et al. 1987).  

Similarly, placing slash (i.e. logging residue in the form of tree tops and limbs) on skid 

trails is encouraged to reduce soil disturbance, including compaction, erosion and surface 

runoff (Sawyers et al. 2012; Wade et al. 2012; Vinson et al. 2017). Slash can also play an 

important role for improving site quality by providing an organic layer for natural tree 

regeneration (Eisenbies et al. 2005), and reducing compaction caused by heavy forestry 

machines (Parkhurst, 2018). For erosion control, slash application is recommended 

(Virginia Department of Forestry [VDOF] 2011; Wade et al. 2012; Vinson et al. 2017). 

Eliasson and Wästerlund (2007) found that topsoils of strip roads in which slash was 

established did not incur any damage from compaction. On the other hand, McDonald and 

Seixas (1997) found that slash did not reduce compaction on sandy soil after the first pass 

of a rubber-tired forwarder.  

Differences in silvicultural techniques applied during harvesting can produce different 

levels of slash due to differences in harvest intensity, particularly in terms of the amount 
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of trees cut per acre (or volume removed per acre). The type of silviculture treatment being 

applied can also affect machine traffic intensity.  

Bigelow et al. (2018) applied three different selection methods in longleaf pine forest on 

coarse-textured soils including single-tree, group, and group with reserved trees. The 

authors found that according to the single-tree selection system, a greater area was affected 

by single machine passes than higher numbers of passes, on the other hand under group 

and group with reserves selection system more area was affected by high traffic areas.  

Malo and Messier (2011) studied the effect of two type of machine tracks primary (multiple 

trip) and secondary (only one trip) followed by a silvicultural system (selection cutting) to 

evaluate sugar maple (Acer saccharum Marsh.) fine root growth and reported that heavy 

machinery has an effect on physiological structure, growth and development of sugar 

maple one year after the silvicultural operation (selection logging) was completed. It was 

found from the data that the control area was less affected than both primary and secondary 

tracks for the fine root growth of sugar maple.  

Stone (2002) conducted an experiment that examined the effects of winter logging on soil 

disturbance and regeneration success on clay soils of four aspen-dominated stands in 

Western Upper Michigan. The results showed that a large skidder was responsible for deep 

rutting on 20% of sites that received a thinning that removed 7.8 m2 ha–1 (34 ft2 ac–1) of 

basal area, and on 38% of clearcut sites. The authors also found that 45% of clearcuts did 

not have aspen regeneration after the first growing season and 82% had less than the 

recommended minimum of 15,000 suckers ha–1 (6,000 ac–1). 

Bates et al. (1993) carried out a study that looked at harvesting effects on quaking aspen 

regeneration in northern Minnesota and found that regeneration of aspen is affected by 
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equipment traffic and harvest season. In that study, regeneration vigor associated with 

variables such as stem density, stem height growth, and crown closure, all of which were 

greater following winter harvesting. The authors also reported that aspen regeneration was 

reduced significantly following the summer harvesting and with increased traffic in the 

harvest sites. The results from this study suggest that comparatively fine-textured and 

poorly drained soils are more prone to regeneration problems for aspen once harvested 

initially in summer but the most vigorous regeneration happens following winter 

harvesting.  

Zenner et al. (2007) also investigated soil disturbance due to ground-based logging 

operations within a quaking aspen stand. Different levels of traffic intensity were applied 

to measure effects of machine traffic on aspen regeneration, growth, recovery on this site 

as well as resistance capacity to penetration within the top 15 cm of soil for three years 

after clearcutting. The result showed that within the 0-5 cm depth, soil can recover from 

disturbance three years after the harvest, but partial recovery was found within the top 

10cm depth during four or less machine passes and recovery was very limited for 10-15 

cm soil depth within a three-year period. Skidding traffic intensity significantly reduced 

height, density of aspen sucker, growth, dbh, and basal diameter compared with control 

areas but resistance to penetration was not significantly different. 

Naghdi et al. (2018) found that machine traffic has an effect on soil pore space and bulk 

density. They sampled skid trails immediately after a skidding operation and again one 

year later to evaluate recovery of soil physical properties. The authors measured soil bulk 

density across three levels of traffic intensity and two levels of slope steepness. Data 

showed that bulk density and microporosity were greater due to the use of harvest 
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machinery whereas microporosity and total porosity were less for top ten cm of soil depth 

compared with the areas that were not harvested. The compacted soil did not show any 

significant recovery after one year. Rather, further decrease in microporosity was reported.  

Williamson and Neilson (2000) studied soil compaction and how the soil profile can be 

disturbed in a skid trail due to the operation of heavy ground-based logging machines. Six 

forest areas (dry and wet forests) were selected to evaluate. The authors reported that 

compaction restricts root growth and reduces forest productivity. It was observed that 

machine forces displaced topsoils rather than causing compaction in situ on the wettest 

soils logged.  

Parkhurst et al. (2018) conducted a study within a pine stand and observed that the heavier 

skidder was responsible for higher bulk density, reduced macroporosity, and more visible 

ruts than the lighter dozer and the amount of disturbance to a given site may increase with 

the increased machine size. They also found that providing slash cover had limited effect 

on changes in bulk density and porosity than using the forest floor for overland skidding. 

In addition, they found that mechanical resistance data contradicted the machine size 

finding because the effects from the heavy skidder and light dozer were similar in size in 

the surface depth category.  

Zasada et al. (1987) showed that winter logging is suitable because accessing floodplains 

is easier during the winter season while logging, as well as transport, but during summer 

season these areas are not accessible when rivers and poorly drained areas are no longer 

frozen. They also observed that tree regeneration can be protected from physical damage 

by logging with a good snowpack as the upper layer of the snowpack was disturbed and 

mixed with logging debris, the lower part of the snowpack was compacted but not mixed.  
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1.2 Study Goals and Objectives 

The western upper peninsula of Michigan typically experiences early and persistent 

snowfall, which insulates the forest floor and prevents soils from freezing. This study was 

conducted to assess post-harvest soil compaction following a winter harvest of northern 

hardwoods on cobbly silt-loam soils.  The harvest included both clearcuts and various 

partial cuts (e.g. shelterwood, singletree-selection). The cover type was northern 

hardwoods, with a very large component of sugar maple (Acer saccharum Marsh.). The 

objective of the study was to assess the effects of machine traffic, slash volume, snow 

depth, and percent rock content on soil bulk density following operation of a cut-to-length 

harvest system (i.e. harvester and forwarder) during which the soil remained unfrozen. 
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2 Methods 

2.1 Study Area 

This study was conducted following a winter timber harvest at Michigan Technological 

University’s Ford Forest, located in Alberta, Michigan during the months of February and 

March of 2017. This site consists primarily of northern hardwoods, dominated by sugar 

maple (Acer saccharum Marsh), with some yellow birch (Betula alleghaniensis), basswood 

(Tilia Americana), red maple (Acer rubrum), balsam fir (Abies balsamea), black cherry 

(Prunus serotine), ironwood (Ostrya virginiana), and american elm (Ulmus Americana).  

 

 

Figure 3. Study site located in Alberta, MI at Michigan Technological University’s Ford Forest. 
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The harvest occurred as part of the Northern Hardwood–Silvicultural Experiment for 

Enhancing Diversity (NH-SEED), which included both clearcuts and various partial cuts 

(e.g. shelterwood, singletree-selection). 

The site consists mainly of the Champion soil series (taxonomic class: coarse-loamy, 

mixed, superactive, frigid Oxyaquic Fragiorthods), with relatively small areas of Tacoosh, 

Witbeck, and Michigamme soils series (Figure 4). The champion series is characterized by 

well-drained to moderately well-drained cobbly silt loam soils. According to the Natural 

Resources Conservation Service, gravel content ranges from 0 to 10% for A, E, and B 

horizons; and from 5 to 35% in the 2B and 2C horizons whereas cobble and stone content 

range from 0 to 35% for A, E, and B horizons and from 0 to 15% in the 2B and 2C horizons. 

The Michigamme series consists of moderately deep, well-drained soils that are formed by 

igneous or metamorphic bedrock. In this soil series, the upper part of the solum is 

moderately permeable but slow or very slow in the lower part.  

According to the National Oceanic and Atmospheric Administration (NOAA), during 

winter, average minimum temperature is about 7.1°F, and the average maximum 

temperature is 23.7°F. Weather data for this study site during the harvest period, which 

started Feb 6, 2017, and ended March 26, 2017, varied on a daily basis. The average 

snowfall was 0.75 inch per day within the period. Snow depth data was also collected for 

each day during the harvest where the average snow depth was about 11 inch. The range 

of snow depth was recorded from 1 to 27 inch and the maximum snow depths were found 

at the beginning of the harvest time and these data were collected also before the machine 

passes and became lower during the last days in March. The average data were found for 

maximum and minimum temperatures of about 31.7°F and 13.5°F. 
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Figure 4. Soil series map for Study area (Source: WSS, NCRS-USDA), where 15B=  Champion 

cobbly silt loam with 1 to 8% slope, 15D = Champion cobbly silt loam with 8 to 15% slopes, 15E 

= Champion cobbly silt loam with the slope range of 15 to 35%, 20 = Carbondale and Tacoos muck 

with 0 to 1% slopes, 26 = Witbeck muck with 0 to 2% slopes, 78E = Champion-Michigamme 

cobbly silt loams with 15 to 35 % slopes 
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2.2 Harvest System 

The harvest was conducted using two cut-to-length harvest systems, each comprising a 

harvester and a forwarder. The two harvesters were different, one was a 6-wheeled 

PONSEE Bear and the other was an 8-wheeled PONSEE Ergo. The harvester fells trees 

and processes them into logs and the forwarder transports the logs from the harvest area to 

the road or landing, where they are picked up by a log truck and brought to a mill. 

 

 A                                                                            B 

Figure 5. A showing a forwarder as part of a cut to length system and B showing a harvester 

(PONSEE bear) 

 

2.3 Study Design  

Soil samples were collected from ford forest, Alberta, MI and later analyzed to measure 

the effects of various factors on soil bulk density. Those factors include machine traffic, 

slash volume, rock content, and snow depth, and are explained in greater detail below.  

2.3.1 Machine Traffic  

GPS units were used to collect waypoints every 3 seconds for each harvest machine during 

the entire harvest.  Those GPS data were then used within an ArcGIS to analyze the number 

of passes over a given skid trail.  Six sample plots were established for each level of 

machine traffic (3) within each type of overstory treatment (2) resulting in 18 total plots. 
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Each plot was defined as a section of skid trail 20 m in length.  Machine traffic was defined 

in terms of number of machine passes and grouped into three categories: 

o High traffic (>= 8 passes) 

o Medium Traffic (4 – 7 passes) 

o Low traffic (1 – 3 machine passes) 

 

 

Figure 6. Treatment design of this research where factor A represents three levels of machine traffic 

and factor B represents overstory treatment with clearcut and partial cut 
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Figure 7. Showing all skid trails and the different levels of traffic (high, medium, low) 

 

Sample plots were stratified equally into one of two overstory treatments - partial cut and 

clearcut.  Stratifying the sampling by overstory treatment was meant to account for 

potential differences in slash volume.  All segments of skid trails were identified and 

partitioned into 20-meter segments. Next, three segments were selected randomly from the 

total population of skid trail segments for each combination of machine traffic level and 

overstory treatment. The random selection was done using a random number generator 

within MS Excel. 
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 Figure 8. Map showing the location of the study site with the sample plots. 



17 

Within each plot, 6 sample points were located along each side of the skid trail, within the 

tire tracks, for a total of 12 points per plot.  Points were spaced two meters apart. 

Additionally, 31 samples were collected randomly from locations within the harvest area 

where machines did not travel.  These areas were identified within ArcGIS as areas where 

no machines traveled, according to the GPS data. Thus, these samples represent a “no 

traffic” treatment level. 

2.3.2 Slash Volume 

Slash is defined as woody debris from unutilized tree limbs and tops that were either 

intentionally placed on the skid trail or happened to fall on the skid trail during the harvest 

operation.  Slash volume was measured by first visually estimating a packing ratio of 

woody material within a three-dimensional space over a square meter area surrounding the 

sample point.  To estimate the volume of the three-dimensional space over a given point, a 

square meter quadrat was used to establish length and width, while the height of the highest 

piece of woody material within the quadrat was used to estimate the total volume of the 

space. 

Packing ratios were visually estimated with the help of a field guide. The field guide 

included images of six different levels of slash volume for which volumes and packing 

ratios were fully measured. The field guide was developed prior to sampling. At each of 

the six points chosen to create the field guide, height of the highest piece of slash within 

the square-meter quadrat was measured. Next, all slash within the quadrat was cut, 

removed, and weighed using a luggage scale. Thus, for each of the six representative plots, 

the density of slash was measured in units of m3/m2.  
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Next, this density was compared to the density of sugar maple wood with 23 percent 

moisture content (MC), which is roughly 706.5 kg/m3 (Simpson and TenWolde, 1999). 

This MC represented the mean MC of all wood samples measured in the field during the 

development phase of the field guide using a handheld moisture content meter.  Therefore, 

the packing ratio was the ratio of the measured slash density to 706.5 kg/m3.   

The images and measured packing ratios found in field guide were used to help visually 

estimate packing ratio for each sample point. This estimated packing ratio was then applied 

to the three-dimensional space above square meter, as determined by the height of the 

highest piece of woody debris, to calculate slash volume in terms of m3/m2. 

A                                                                    B 

Figure 9. Estimating the packing ratio using a square meter quadrat and packing ratio field guide 

was developed by calculating packing ratio as volume of slash / volume of 3-dimensional space to 

use as a reference later for each sample point  
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2.3.3 Percent Rock Content 

Rock has density of 2.65 g/cm3 (NRCS, USDA). It was reported that rock fragment content 

negatively influences fine soil bulk density (Stewart et al. 1970; Torri et al. 1994). 

Therefore, percent rock content was measured for this study to identify potential effects of 

rock content on soil bulk density in different depth of soil (0-5 cm, 5-10 cm, 10-20 cm). 

Additional Data related to rockiness were collected during field sampling which includes 

number of attempts at each sample point, depth to rock or root obstruction for each failed 

attempt, number and percent cover of surface rocks within a square meter plot around the 

sample point.  

2.3.4 Snow Depth  

Daily snow depth data collected in the village of Alberta, MI and reported to NOAA were 

used to assess impacts of snow depth on soil bulk density. The snow depth on the day that 

a skid trail was first traversed, according to the GPS data, was used for all samples in a 

given plot. Snow depth was generally greatest at the start of the harvest, but decreased 

substantially at various point throughout the harvest due to periods of warm temperatures 

(Appendix 16) 



20 

 

 

Figure 10. Representation of snow depth and the underlying unfrozen soil during one of the harvest 

days 

 

 

2.4 Field Work 

At each sample point, soil was extracted using a slide hammer and a 20 cm x 5 cm core 

sampler.  The sample was divided into three depths using liners that fit within the cylinder. 

Soils within each depth were placed into plastic bags labeled with the plot and point 

number, and the soil depth (0-5 cm, 5 - 10 cm, 10 - 20 cm). 
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                            A 

    B 
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     C 

     

    D 
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      E 

Figure 11. A B showing soil samples were extracting using a slide hammer and a 20 cm corer.  

Samples were separated into different depths (0-5, 5-10, 10-20 cm) and C, D and E showing the 

skid trail, 12 sample points taken at 2 meters intervals along each side of the wheel tracks /ruts 
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2.5 Lab Procedures  

Bulk density (g/cm3) was measured for depths 0-5 cm, 5-10 cm, and 10-20 cm for all 

samples. Soil samples were kept in a refrigerator in separate plastic bags maintaining a 

specific temperature after collecting the samples. An aluminum tray was used to weigh full 

soil samples with different depth and the measurement units were in grams.  

  A                                                                         B 

   C                                                                      D                                                                                                                                                                                                                                                                               

 

Fig 12. A and B (collected samples from research site with three subgroups according to depth 0-5 

cm, 5-10 cm, and 10-20 cm), C (samples in the oven to remove the moisture content), D (scale for 

measuring the weight of soil for each depth)  
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After weighing the full soil with moisture content, the specific temperature in the oven was 

maintained to remove the soil moisture content and that was 175-degree Fahrenheit and all 

the data were recorded. Then wooden rolling pin and spoon were used to grind the soil and 

using a sieve, the rocks were extracted from the sieve for different depth of soil samples. 

After this, rocks and fine soil were separated to weigh again and record the data. The weigh 

was taken for both rock and soil. Once drying, sifting, weighing were done all data were 

recorded again for bulk density calculation. The sieve size grade (#10) was used in lab to 

separate fine soils from rocks and larger particles. 

2.6 Calculations 

Calculations were performed after collecting lab data to determine soil bulk density for fine 

sediment and the full soil sample. In addition, calculations were conducted to determine 

rock volume, percent rock content, and slash volume. 

Volume calculations for cylinder liners: 

• 10-20 cm liner:  h=9.65 cm,  r= 2.413 cm ,  πr2h = 176.56 cm3 

• 0-5 and 5-10 cm liners:  h = 5.08 cm, r = 2.286 cm, πr2h =   83.39 cm3 

The volume of Soil (cm3): 

• Volume of Cylinder – Volume of Rock (ml)  

The volume of Rock (cm3):  

• 0.2376+0.3962*weight of Rock (Premer, 2016) 

Percentage of Rock Volume (%): 

• Volume of rock/ (Volume of Soil + Volume of Rock) 

Fine Soil Bulk Density (g/cm3): 

• Fine Soil Weight (g)/Volume of Soil (cm3) 
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Soil Bulk Density (g/cm3):  

• Weight of Dry Soil (g)/Volume of Cylinder (cm3) 

Slash Volume (kg/m3):  

• 1m x 1m x Height of slash(m) x (Packing Ratio/100) 

 

2.7 Data Analysis  

Data were analyzed using a mixed-effects model where the dependent variable (y) was soil 

bulk density, and independent fixed variables included machine traffic, slash volume, and 

overstory treatment, while percent rock content was included as a random variable.  This 

model was fit for each depth of soil, and for total and fine soils. SAS version 9.4 was used 

to run the model. A separate regression analysis was run to estimate the effects of snow 

depth on bulk density. 

Descriptive statistics were calculated using Microsoft excel to summarize the results. 

Additionally, one-way analysis of variance tests (ANOVA) was used to compare slash 

volume between partial and overstory treatments and to compare soil bulk density between 

6 and 8-wheeled harvesters. 
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3 Results  

The primary objective of this research was to assess the effects of machine traffic, slash 

volume, percent rock content, overstory treatment and snow depth on soil bulk density. 

Data were collected from a total of 247 sample points across 18 plots (i.e. sections of skid 

trail) and 31 points that received no machine traffic.  

3.1 Summary Statistics 

According to Table 1, the mean of fine soil bulk density was greater (1.50 g/cm3) in 5-10 

cm depth than 0-5 cm (1.20 g/cm3) and 10-20 cm (1.44 g/cm3). Bulk densities for the full 

soil sample (including rock and cobble) were 1.12 g/cm3, 1.36 g/cm3 and 1.28 g/cm3 in 0-

5 cm, 5-10 cm, and 10-20 cm soil depth, across all levels of machine traffic. 

Variables related to rockiness such as attempts and average depth of failed attempts in each 

sample point, number of surface rocks, percent rock cover, and percent rock content in the 

soil were also measured in this study (Table 1). The upper layer of soil (0-5 cm depth), 

showed less rock content than soils at greater depths. The average percentage of rock 

volume in 0-5 cm was 6% compared with 10% in 5-10 cm and 10-20 cm soil depths. The 

range of percent surface rock cover varied from 0 to 26. The results also showed that the 

mean number of surface rocks was 1.13 with a range of 0 to 15.  A number of sample points 

required multiple attempts to drive the cylinder in the ground to collect a soil sample due 

to the presence of rocks or other obstructions in the soil. The number of attempts and 

average depth of failed attempts were counted for each sample point. The range of number 

of attempts varied from 1 to 13, with an average of 1.95 attempts per sample point.  The 
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depth at which a failed attempt was abandoned ranged from 1 cm to 19 cm, with an average 

of 11.15 cm. 

Table 1. Descriptive Statistics for each variable showing the mean value 

 

3.2 Effects of Overstory Treatments 

Results showed no significant difference between mean bulk density of soils under the two 

overstory treatments (clearcut and partial cut) on bulk density (Figure 13). The mean bulk 

densities were 1.22 g/cm3 and 1.24 g/cm3 for clearcut and partial cut harvest system in the 

0-5 cm depth. It was 1.49 g/cm3 and 1.52 g/cm3 in 5-10 cm for clearcut and partial cut 

respectively. Only clearcut treatment plot showing a slightly higher mean bulk density 

(1.54 g/cm3) than partial cut (1.37 g/cm3) in 10-20 cm depth and interestingly no treatment 

samples showing slightly higher bulk density than partial cut. Data were also collected 

from no treatment area where the mean bulk densities were 1.02 g/cm3, 1.47 g/cm3 and 

1.40 g/cm3 in 0-5, 5-10 and 10-20 cm soil depth.  

Variable Depth Mean
Standard 

Deviation
Minimum Maximum

Full Soil Bulk Density (g/cm3) 0-5 cm 1.12 0.21 0.47 1.75

5-10 cm 1.36 0.24 0.75 2.09

10-20 cm 1.28 0.21 0.40 1.81

Fine Soil Bulk Density (g/cm3) 0-5 cm 1.20 0.27 0.5 2.26

5-10 cm 1.50 0.34 0.8 2.47

10-20 cm 1.44 0.33 0.4 2.49

Percentage of Rock volume 0-5 cm 0.06 0.06 0.00 0.37

5-10 cm 0.10 0.09 -0.01 0.52

10-20 cm 0.10 0.09 0.00 0.42

Attempts 1.95 1.69 1 13

Avg. Depth of Failed Attempts 11.15 5.20 1 19

# of surface rocks 1.13 2.07 0 15

% rock cover 1.20 3.31 0 26

Average Snow Depth (inch)
10.50 5.19 1 19

Average slash volume (kg/m2) 0.0098 0.00 0.0 0.15
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Mean slash volumes were compared between the two silvicultural techniques used in this 

study (clearcut and partial cut) and no significant difference was detected (Appendix 17).  

Figure 13. Showing the effect of overstory treatment on bulk density at three different soil depth 

 

3.3 Effect of 6-Wheeled vs 8-Wheeled Machines 

Both a six-wheeled harvester and eight-wheeled harvester were used during the harvest. 

The mean bulk densities for skid trails used by six-wheeled machine averaged over all 

levels of machine traffic were 1.20 g/cm3, 1.48 g/cm3, and 1.57 g/cm3 for 0-5 cm, 5-10 

and 10-20 cm soil depths, respectively.  The mean bulk densities for skid trails used by 

eight-wheeled machine averaged over all levels of machine traffic were 1.25 g/cm3, 1.52 

g/cm3, and 1.38 g/cm3 for 0-5 cm, 5-10, and 10-20 cm soil depths, respectively (Figure 

14). One- way ANOVA analysis was conducted to test for differences in bulk density 

between the two machine types at each soil depth. The results showed that there was no 

significant effect was found on bulk density for 0-5 and 5-10 soil depth but at 10-20 cm 
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depth there is significant difference due to six and eight-wheeled machines (Appendices 7-

9).  

Figure 14. Comparison of soil bulk densities for skid trails used by 8- and 6-wheeled harvesters 

 

3.4 Mixed Effects Model Results 

Mixed effects models were run for both full and fine soils, and at each depth (0-5, 5-10 and 10-20 

cm). Results show a significant effect of machine traffic and rock content for all models at the alpha 

= 0.05 level except for the 5-10 full soil – the p-value for traffic for that model was 0.07 

(Appendices 1-6). 

3.4.1. Effect of Traffic Intensity on Bulk Density 

The mean bulk densities were greater at the 5-10 cm depth compared to 0-5 cm where the means 

were 1.48 g/cm3, 1.55 g/cm3, 1.49 g/cm3 and 1.48 g/cm3 for low, medium, high and no traffic 

respectively. There was no significant difference between low and no traffic. Again, medium traffic 

intensity also showing the highest bulk density at 5-10 cm soil depth. At the 10-20 cm depth, the 
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no traffic treatment was not significantly different than the low and high traffic treatment area but 

it was significantly different than the medium traffic treatments for 10-20 cm depth.  

Mixed effects models were run in SAS to understand effects of various on bulk density for each 

depth of soil. Within SAS, PROC MIXED was used to fit a mixed model that included machine 

traffic, overstory treatment and slash volume as fixed effects and percent rock content as a random 

effect. Given that machine traffic was a significant factor in all but two model (5-10 fine and full 

soil). Bonferroni method was used to determine differences between pairs of machine traffic levels. 

For 0-5 cm depth, both fine soil and full soil resulted in significant differences in mean bulk density 

density between no traffic and both medium and high levels of machine traffic. In the 5-10 cm 

depth, differences in bulk density among traffic levels for full and fine soil were not 

significantly different at the α =.05 level, though just barely (P-value = 0.06 for both fine 

and full soils at 5-10 cm). On the other hand, there was a difference between high and low 

and low and medium traffic in the 10-20 cm depth. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



32 

Figure 15. Relationship between bulk density and traffic intensity in three different depth (0-5 cm, 

5-10 cm and 10-20 cm)  

 

 

 

3.4.2 Effect of Rock Content on Bulk Density 

To evaluate the effect of rock content on bulk density, an analysis was run in SAS using a 

mixed effects model where percent rock content was included as a random effect variable. 

The results show that rock content was a significant positive factor for predicting bulk 

density in this study.  The effect of percent rock content was significant for 0-5 cm, 5-10 

cm and 10-20 cm soil depth for both full and fine soil (Appendices 1-6).   

3.5 Effects of Snow Depth 

A simple linear regression was used to relate bulk density to snow depth in SAS using Proc 

GLM method. The results showed no significant relationship for the 0-5 and 5-10 cm depth 

for both full and fine soils also at 10-20 cm depth for full soil, but there was a significant 
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effect at the 10-20 depth for fine soil.  However, the effect was positive because bulk 

density increased as snow depth increased.  

10-20 Fine: 

Parameter Estimate Standard 

Error 

t Value Pr > |t| 

Intercept 1.309040637 0.05149421 25.42 <.0001 

SnowDepth 0.013554175 0.00439900 3.08 0.0023 

 

R-Square Coeff Var Root MSE BD_1020_Fine Mean 

0.042479 23.05119 0.334556 1.451359 
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10-20 Full: 

Parameter Estimate Standard 

Error 

t Value Pr > |t| 

Intercept 1.236833685 0.03257732 37.97 <.0001 

SnowDepth 0.004387303 0.00278299 1.58 0.1164 

 



35 

R-Square Coeff Var Root MSE BD_1020_Full Mean 

0.011480 16.49804 0.211653 1.282900 
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4 Discussion 

4.1 Effects of Traffic Intensity  

According to the results, mean bulk density within skid trails that experienced low machine 

traffic levels (1-3 passes) was not significantly greater than the mean bulk density for areas 

that experienced no traffic at the 0-5 cm depth. However, compared to the no traffic level, 

bulk density at the medium traffic level (5-7 passes) was 24% greater, and 17% greater for 

the high traffic level (>8 passes) for the full soil samples (including rock content) which 

were significant.  This result suggests that compaction was significant in the upper layer of 

the soil once traffic exceeded 3 machine passes. At the 5-10 cm depth, significant 

differences in bulk density occurred between none and high level machine traffic, 

suggesting that compaction occurs after 7 machine passes at that depth for both full and 

fine soils. These results correspond with similar findings on the effects of machine traffic 

on soil bulk density, which are well-documented.   

Jourgholami et al. (2014) observed that most of the changes in bulk density and total 

porosity happened after fewer than five passes, but significant changes of increases in 

penetration resistance occurred even after ten passes. On the other hand, Jansson and 

Johansson (1998) found at 40 to 50 cm depth of a silt loam soil, bulk density becomes 

higher with the increasing intensity of traffic (4-8 passes) and this happened for both a 

wheeled machine and a tracked machine. The tracked machine, in contrast, caused 

compaction at 5 cm depth. The maximum in comparison compaction (42%) occurred at 10 

cm depth following eight passes with the tracked machine, whereas with the wheeled 

machine maximum relative compaction (37%) occurred at 15 cm depth after six passes. 
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Agherkakli et al. (2010) proved that post-logging soil bulk densities were greatly higher 

than pre-logging bulk densities. They used two level of slopes (SC1, < 20% and SC2, > 

20%) and three levels of traffic intensity (one, five and nine traffics) for their study and 

observed the increment of bulk density in terms of percentage in SC1was 3%, 6% and 8% 

at the one, five and nine traffic frequency, respectively.  In SC1 and SC2, the percentage 

of change in bulk density after the first traffic was 17.6% and 21%, respectively. After first 

few machines passes the majority of compaction occurs, it becomes less in later on (Han 

et al., 2006; Wallbrink et al., 2002). Rab and Dignan (2002) reported that about 3% more 

topsoil disturbance was related to ‘wet season’ logging.  

In general, the effect of traffic intensity on soil bulk density decreases with increasing soil 

depth (Koolen et al., 1992) and with increasing number of passes, which is reflected in the 

results of this study. Williamson and Neilsen (2000) conducted a study of six clay to 

gravelly sandy soils and found that the uppermost (10 cm) portion of soil experienced 62% 

of soil compaction after a single machine pass, with little increase after following traffic. 

McNabb et al. (2001) showed that after three machine passes, the increasing rate of bulk 

densities were 10%, 7% and 4% at five, ten, and twenty cm soil depths respectively on a 

medium-textured soil. Other authors also recorded similar decreasing patterns at depths 

down to 30 cm (Han et al., 2009; Williamson and Neilsen, 2000). In the current study, bulk 

density increased significantly after three machine passes in the 0-5 cm depth and after 7 

passes for the 5-10 cm depth.  

According to the growth limiting bulk density textural triangle (Figure 2) (Daddow and 

Warrington, 1983), bulk density for a silt-loam soil occurs between 1.4 and 1.47 g/cm3. In 

this study, we found that mean bulk densities at the 0-5 cm soil depth were not greater than 
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1.3 g/cm3, which is lower than the threshold for root growth restriction.  However, mean 

bulk density was highest for medium traffic intensity at 5-10 cm (1.55 g/cm3) and 10-20 

cm (1.55 cm3) soil depth which could limit tree growth.  

4.2 Effects of Slash Volume  

There was no significant effect of slash volume on bulk density, according to the data 

collected in this study. However, McDonald and Seixas (1997) conducted a study where 

two levels of traffic, three slash densities and two soil moisture contents were measured to 

quantify soil compaction. They found soil compaction did not reduce after one forwarder 

pass on dry, loamy sand soils due to slash, but it was noticed for additional passes, where 

slash did provide some protection. Results from that study indicated that slash cover is 

mostly beneficial on wet soils. However, another previous study was conducted to identify 

the effect of machine passes, soil moisture, and slash on penetration resistance in a fine 

loamy to loam soil using a cut-to-length harvest system (Han et al. 2006). The authors 

found that slash does not have any significant effects with an increasing number of machine 

passes and suggested that moist soil may require a high amount of slash to protect it from 

long term negative impacts of soil compaction. Slash may also it possibly help to reduce 

ruts as well (Han et al. 2006). Similarly, no effect of slash volume on bulk density was 

detected for the current study at 0-5, 5-10 and 10-20 cm soil depth. 

Hutchings et al. (2002) reported that soil compaction occurs with normal harvesting 

operations. In that study, they suggested creating slash mat rather than working on bare 

soil in a clay loam soil in order to decrease compaction. Another report showed that 

compaction was reduced by 12.9% at a 10 cm soil depth and by 4.5% at 20 cm in a silty 

clay soil after generating a 10 cm thick slash mat on strip roads (Eliasson and Wästerlund, 



39 

2007). In another study, Han et al. (2009) investigated soil compaction on an Andisol soil 

in a mixed coniferous forest using a cut-to-length and whole-tree harvesting system. 

Avoiding the negative effect on soil compaction, they suggested leaving an amount of 7–

40 kg/m2 of slash on the ground.  Labelle and Jaeger (2012) also recommended leaving as 

a minimum of 15–20 kg/m2 of slash over highly vulnerable soils and concluded that, 

although slash mats lose a small amount of capability to distribute the applied loads with 

increasing machine passes, they are still useful at high traffic frequencies, for example, 12 

forwarder cycles. Leaving slash on the ground is hence a useful practice to reduce soil 

compaction, However, Eliasson and Wästerlund (2007) did not find any major decrease of 

rut depth after one, two and five machine passes on top of a 10-20 cm thick slash mat in a 

silty clay forest soil in Sweden.  

Akay et al. (2007) suggest that woody material other than slash, such as chip and sawdust 

also help to decrease soil compaction. It was not suggested to remove slash cover 

completely if soil needs protection from post-harvesting erosion (Rice and Datzman, 1981; 

Edeso et al., 1999). Parkhurst et al. (2018) reported that providing slash cover had limited 

effect on changes in bulk density and porosity than using the forest floor for overland 

skidding. In our study, though clearcut and partial cut were applied as two overstory 

treatments to notice if there is any significant effect of slash volume on soil compaction, 

we did not find any significant effect of slash on soil bulk density. As we know that slash 

continues to breakdown over time, it can assume that slash will add more organic matter 

to the ground of this research site and help to regenerate trees also add benefits to some 

habitat of micro-organism community as well.  
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4.3 Effects of Percent Rock Content 

Houston and Walsh (1993) investigated the differences in rock correction methods 

designed for compaction of clayey soils in laboratory. They observed very significant 

differences in maximum dry density using scalp‐and‐replace procedures compared with 

the rock correction equations when soil fines are clay. Rücknagel et al. (2013) reported fine 

earth (A soil which can be passed through a 2-millimeter sieve without grinding its primary 

particles) in gravelly soils is less vulnerable to compaction. They also observed that a 

maximum gravel content of around 25% by volume, fine earth bulk density remained 

nearly constant although the total bulk density of the soil gradually increased. 

4.4 Winter Harvesting BMPs 

The uniqueness of this study is that, although harvesting is generally preferred and 

recommended in northern hardwood stands in the Western UP, there has been little 

research on the effects of harvesting in the winter on soil compaction in this region. 

However, in light of the findings that medium and high levels of machine traffic resulted 

in higher bulk densities in this study, winter harvests can still impact soils.  It is possible 

that winter harvesting resulted in less impacts on soils (compaction, rutting, disturbance) 

than summer harvesting. However, we do not have data with which to compare the effects 

of season, as we did not collect data of summer harvesting from our study site, or a similar 

site. Zasada et al. (1987) showed that winter logging is may be preferred to summer because 

of easier access to different surfaces of floodplains as river and poorly drained areas 

become frozen. They also observed that tree regeneration can be protected from physical 

injury by logging with a good snowpack.  
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Stone (2002) conducted an experiment that examines the effects of winter logging on soil 

disturbance and regeneration in Western Upper Michigan and reported that drier soil 

conditions can minimalize soil compaction and rutting. Stone (2002) also suggested that 

plowing snow from skid trails might be a solution that will permit the soil to freeze and 

improve compaction and rutting and the time of plowing and cost also could be 

economically advantageous to save equipment maintenance and fuel costs. That might not 

be practical as the forest floor has many obstacles, such as stumps, rocks and uneven terrain 

that would make plowing skid trails difficult (unlike plowing roads which are flat and 

generally free of any stumps or other obstructions). Not only that, removing snow from the 

skid trail can also cause disturbance to soil nutrients during plowing as the uppermost soil 

layer becomes disturbed with the blade of the snowplow. 

4.5 Limitations and Future Research 

Though we did not find any effect of snow depth on bulk density at 0-5 cm and 5-10 cm 

soil depth but our data showed that there is significant effect at 10-20. It was expected that 

greater snow depth would protect soils, leading to lower bulk density. However, this study 

did not control for snow depth, and thus snow depth for the randomly selected plots seemed 

to cluster around 15 inches, with little variability. In addition, soil moisture content was 

measured periodically from non-skid trail areas during the harvest, resulting in a range of 

roughly 35 to 50% moisture content, however soil moisture content was not measured from 

sampling plots at the time those segments of skid trail were traversed by the logging 

machines.  For this reason, moisture content data were not included in this study. However, 

previous research has shown that soil moisture content can be a significant factor affecting 

soil compaction during harvest operations. Finally, although the higher bulk densities 
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found in the 5-10 cm appear to exceed the threshold at which root growth could be limited, 

future research is needed to further determine if the compaction observed in these skid 

trails has any significant effect on tree growth.  Thus, it is recommended that future 

research look at measuring the growth rate of trees from both high and low traffic areas of 

this study site.  
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5 Conclusion 

This study assessed the effects of percent rock content, slash volume, traffic intensity, 

overstory treatment and snow depth on bulk density in Ford Forest, Alberta, Michigan.  

Four levels of traffic intensities (none, low, medium, high) and two levels of overstory 

treatments (partial and clearcut) were used to assess the effects where the dependent 

variable was bulk density, fixed variables were slash volume, traffic intensity and random 

variable was percent rock content. Separate linear regressions were also run to calculate 

the effect of snow depth on bulk density at each depth (0-5, 5-10, 10-20 cm). 

For 0-5 cm depth, mean soil bulk density for both medium and high levels of machine 

traffic were significantly greater than the mean bulk density of soils from areas that 

experienced no machine traffic. However, no significant difference was detected between 

low traffic and no traffic.  Thus, at the 0-5 cm depth, more than three passes can cause 

increased compaction, however this compaction may not be enough to limit root growth. 

There was a difference between high-low and low-medium traffic in 10-20 cm depth, 

suggesting that passes over 7 can result in higher compaction at this depth. The percent 

rock content has a positive significant effect on bulk density, but no effect was detected for 

slash volume and snow depth, except at the 10-20 cm depth where snow depth seems to 

have some effect. 

From this study the suggestion for foresters and loggers is, 1) though winter harvesting is 

generally preferred in order to protect soils, managers still need to be aware of potential 

impacts to soil for main skid trails that receive higher levels of traffic,  2) although no effect 

of slash volume on mitigating compaction was detected, it is still recommended to place 

slash on skid trails during harvest operation due to the benefits of slash reported from 
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previous studies, and 3) more research is needed for effects of snow as we noticed 

counterintuitive result at 10-20 cm but not at 0-5 and 5-10 cm depth.  At 10-20 cm depth, 

data showed a significant positive relationship between snow depth and bulk density only 

for fine soil.  
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7 Appendices  

 

Appendix 1. 0-5 fine soil 
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Appendix 2. 0-5 full soil  
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Appendix 3. 5-10 fine soil 
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Appendix 4. 5-10 full soil 
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Appendix 5. 10-20 fine soil 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



58 

Appendix 6. 10-20 full soil 
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Appendix 7. Relation of eight and six wheeled machine on bulk density in 0-5 cm soil depth 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Anova: Single Factor

SUMMARY

Groups Count Sum Average Variance

8W 132 164.8235 1.248663 0.050932

6W 84 100.6058 1.197689 0.109928

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 0.133385 1 0.133385 1.807043 0.180287 3.88528

Within Groups 15.79614 214 0.073814

Total 15.92952 215
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Appendix 8. Relation of eight and six wheeled machine on bulk density in 5-10 cm soil depth 

 

 

 

 

 

 

 

 

 

 

Anova: Single Factor

SUMMARY

Groups Count Sum Average Variance

8W 125 189.8607 1.518885 0.082283

6W 82 121.7242 1.484441 0.14674

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 0.058747 1 0.058747 0.545209 0.461126 3.88722

Within Groups 22.08907 205 0.107752

Total 22.14782 206
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Appendix 9. Relation of eight and six wheeled machine on bulk density in 10-20 cm soil depth 

 

 

 

 

 

 

 

 

 

Anova: Single Factor

SUMMARY

Groups Count Sum Average Variance

8W 132 182.0239 1.378969 0.091216

6W 84 131.4698 1.565116 0.135989

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 1.778741 1 1.778741 16.38169 7.24E-05 3.88528

Within Groups 23.23634 214 0.108581

Total 25.01508 215
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Appendix 10. Comparison among different level of traffic intensities in Bonferroni at 0-5 cm depth 

for fine soil 
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Appendix 11. Comparison among different level of traffic intensities in Bonferroni at 0-5 cm depth 

for full soil 
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Appendix 12. Comparison among different level of traffic intensities in Bonferroni at 5-10 cm 

depth for fine soil 
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Appendix 13. Comparison among different level of traffic intensities in Bonferroni at 5-10 cm 

depth for full soil  
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Appendix 14. Comparison among different level of traffic intensities in Bonferroni at 10-20 cm 

depth for fine soil 
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Appendix 15. Comparison among different level of traffic intensities in Bonferroni at 10-20 cm 

depth for full soil  
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Appendix 16. Weather data of the research the site between February 2, 2017 to March 26, 2017 

Date Snow Snow Depth 
Temperature 

MAX  
Temperature 

MIN 

2/6/2017 1.2 19 18 11 

2/7/2017 2.1 20 22 13 

2/8/2017 9.6 27 24 6 

2/9/2017 1.2 28 10 -4 

2/10/2017 0.4 27 16 -4 

2/11/2017 0 26 33 14 

2/12/2017 0.4 25 33 21 

2/13/2017 0 24 28 7 

2/14/2017 0 22 45 20 

2/15/2017 0.1 22 35 14 

2/16/2017 0 21 18 -1 

2/17/2017 0 21 29 10 

2/18/2017 0 18 55 29 

2/19/2017 0 16 55 25 

2/20/2017 0 13 51 29 

2/21/2017 0 11 49 38 

2/22/2017 0 9 56 35 

2/23/2017 2.3 10 49 26 

2/24/2017 0 10 32 19 

2/25/2017 9.2 16 19 13 

2/26/2017 1.2 16 20 9 

2/27/2017 2.3 17 28 -1 

2/28/2017 0.7 15 40 13 

3/2/2017 1.4 15 35 -1 

3/3/2017 0.1 15 23 -6 

3/4/2017 0 14 18 -8 

3/5/2017 0 13 34 11 

3/6/2017 0 8 41 34 

3/7/2017 0 3 50 27 

3/8/2017 0.2 3 42 15 

3/9/2017 2.2 4 19 14 

3/10/2017 0 3 23 0 

3/11/2017 0 3 8 0 

3/12/2017 0 3 15 0 

3/13/2017 0 3 18 2 

3/14/2017 0 3 19 -6 

3/15/2017 0 3 28 1 
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3/16/2017 0 3 28 2 

3/17/2017 0 2 43 25 

3/18/2017 1.3 2 33 30 

3/19/2017 0 1 32 23 

3/20/2017 0 1 40 24 

3/21/2017 0 1 48 25 

3/22/2017 0 1 26 2 

3/23/2017 0 1 35 10 

3/24/2017 0 1 32 26 

3/25/2017 0 1 35 30 

3/26/2017 0 0 33 28 
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Appendix 17. Comparison between mean slash volumes of clearcut and partial cut 

 

 

 

 

 

Anova: Single Factor

SUMMARY

Groups Count Sum Average Variance

Partial cut 109 1.61502 0.014817 0.009358

Clearcut 109 3.81525 0.035002 0.036597

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 0.022206 1 0.022206 0.966456 0.326665 3.88487

Within Groups 4.963079 216 0.022977

Total 4.985286 217
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