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It is of practical significance to understand the specific impact of weather events on the operating condition of the surface
transportation system so that proactive and reactive strategies can be quickly implemented by transportation agencies to minimize
the negativity resulted from adverse weather events. Many studies have been conducted on quantifying such effects yet suffer from
limitations such as subjectively defining a time window under uncongested conditions and not being able to account for the severe
impact from weather events which result in travel time unreliability. To overcome those shortcomings in existing literature, an
integrated data mining framework based on decision tree and quantile regression techniques is developed in this study.The results
demonstrate that the approach is effective in characterizing time periods with different traffic characteristics and quantifying the
impact of rain and snow events on both congestion and reliability aspects of the transportation system. It is observed that snow
events imposemore significant impact on travel times than that from rain events. In addition, the impact fromweather events is even
more severe on travel time reliability than average delay.The impactmagnitude is directly related to the level of recurrent congestion
under study. Other insights with regard to the capability of quantile regression and future improvement on the methodological
design are also offered.

1. Introduction

It is well recognized that the transportation system may be
significantly disrupted by adverse weather events. Aside from
extreme events like floods, tornados, and hurricanes that
can be disastrous, more common weather including rain,
snow, and ice could also have apparent negative impacts
on the system. Such effects include reducing travel demand
and physical capacity, deteriorating safety condition, and
compromising travel mobility and reliability. Dey et at. and
Maze et al. have provided a detailed review and discussion on
those issues [1, 2]. There is no doubt that it is of critical value
to evaluate and understand the specific impact of weather
events on the system. Transportation agencies are seeking
to implement proactive and reactive management strategies
such that the negativity associated with adverse events could
be minimized. The scope of this study fits in the operational
aspect in that we want to quantify the effect of different

weather events involving rain and snow on both congestion
and reliability of the corridor.

Many efforts have been devoted to this topic. Ibrahim
and Hall studied the impact of adverse weather on the flow-
occupancy and speed-flow relationships on a freeway in
Canada [3]. The data in their study was collected from two
non-holiday weekdays during the mid-day period. Weather
intensity was defined in accordance with the rate of fall
and visibility for rain and snow, respectively. They found
out that heavy rain and snow had the greatest influence on
traffic operation and that heavy snow had more impact than
heavy rain. Brilon and Ponzlet analyzed three years’ worth
of loop-detector-based data with one-hour increment and
showed that snow and rain conditions caused about 7 and
4 mph reduction of speed, respectively, under uncongested
and partial dense condition on six-lane highways [4]. In
contrast, the impact was less severe for the same situation
on four-lane highways. Kyte et al. studied effects of weather
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on free flow speed on a rural interstate freeway and results
indicated the speeds during rain and snow are 6.2-10mph
slower than that during normal condition, whereas speeds
during heavy snow could drop 21.7-28mph [5]. Similarly,
Smith et al. studied the impact of rain on urban freeway
traffic flow under uncongested condition during the day-time
period and they found rainy condition led to 5-6.5% decrease
in operating speed and no differentiable effects from different
intensity levels of rainfall were observed [6]. However, it was
unclear whether it was due to the uncongested time period
they selected for the study.

From more recent studies, Agarwal et al. aimed to
quantify the impact of rain, snow, and pavement surface con-
ditions on the reduction of freeway capacities and operating
speeds in the Twin Cities area [2, 7]. The collected weather
data was classified by intensities. Based on statistical analysis,
they showed that severe rain could cause 4-7% reduction in
speed while severe snow could cause 11-15% reduction. In
addition, under low visibility condition (less than 0.25 mile),
traveling speeds could drop as high as 10-12%. They noted
that some statistics such as differences in speeds during light
and heavy rain may not be accurate due to limited sample
size. Tsapakis et al. examined how precipitation, snow, and
temperature affected urban travel times at the macroscopic
level [8]. Data from the Greater London area, UK, at AM,
Midday, and PM periods during October and December of
2009 were collected through the plate recognition method.
Similar to those previous studies, they also found snow has
more significant impact on travel times than rain and heavy
snowwas themost significant factor. In addition, the regional
differencewith respect to impactwas also observed.However,
the sample size is not sufficient as many statistics derived in
the study were not statistically significant. Yazici et al. applied
the decision tree approach to evaluate the different impacts of
weather on travel time and reliability during different times
of day and days of the week based on the data collected
from Taxi GPS in New York City [9]. However, there was no
differentiating in highway types, like freeways and arterials,
as all the records were blended together.

Based on extensive review of existing literature, it seems
there have been a sufficient number of studies conducted to
understand the operational impact of rain and snow events.
However, there are some shortcomings in previous studies.
First, many studies were conducted either in a subjectively
defined time window such as free-flow condition [5], or by
using the whole years’ data as in [2, 7]; however, there may
be significant differences in terms of the degree of impact
under different congestion levels at different times of day [10].
Consequently, the derived information is quite limited since it
is not representative and applicable to periods with different
traveling characteristics. For instance, commuters are more
interested in knowing how weather will impose excessive
delay on their way to work when the traffic is often congested.
Thus, it is desirable to have a comprehensive evaluation on
weather’s impact across different times through the day and
week.

In addition, adverse weather often has an asymmetric
influence where more severe conditions usually have more
serious outcomes, yet most studies are only conducted in

terms of the average effect. Therefore, those studies only
convey a partial view of the complete picture as the mean
may underestimate the actual effect. In this case, the whole
distribution of travel time can provide a more comprehensive
perspective. This is pertinent to the concept of travel time
reliability (TTR), which has received extensive attention
from the transportation field and has been proved to be an
important component in both quantifying corridor/system
performance from the perspective of transportation agencies
and making trip-related decisions from the general public’s
point of view [11–15]. However, represented by SHRP 2 stud-
ies, most of the existing reliability related research focused on
all the non-recurring events where weather as a whole is one
of the factors under investigation [14, 16, 17] at a subjectively
defined time window [18]. Although different weather events
at different time periods were separately evaluated in [9],
the reliability concept in their study is closer to inter-vehicle
variability instead of at the operational level. In this regard,
there is still a need to evaluate travel time distributions at
various time periods.

The goal of the study is to propose an integrated data
mining framework to quantify the impact of various weather
events on not only congestion but also reliability aspect of the
transportation system at different time periods with varying
traffic characteristics. Accordingly, the first objective is to
propose a pattern recognition algorithm such that the raw
travel time data can be classified into different groups where
observations in the same group are more homogeneous
than observations across groups. The decision tree-based
approach explored in [9] is deemed suitable for this purpose.
Next, the quantile regressionmethodwhich has the flexibility
to quantify the impact of weather events on any part of travel
time distribution is adopted for each classified time period.
The reminder of the paper is organized as follows. The next
section selects an Interstate corridor as the case study site and
introduces the travel time and weather data for the study.The
third section applies a classification tree to obtain classes with
different traffic characteristics under normal conditions and
discusses the results.The fourth section describes the quantile
regression method and uses it to quantify the separate effects
from rain and snow on mobility and reliability. The final
section draws conclusions on the findings of this study and
suggests further research.

2. Data Description

Interstate 71/75 in the Northern Kentucky urban area in
Figure 1 is chosen as the study site. As part of a SHRP 2
pilot testing effort, a variety of datasets from many sources
including speed sensors, GPS-based probe data, incident
logs, and geometry information have been collected for
the corridor. The non-holiday weekday speeds from 2013
and 2014 collected through 8 radar sensors which cover
8 miles are used. The original data is aggregated into 5-
minute increment, which is regarded sufficient in measuring
the short-term travel time variation [11]. The section under
study has five lanes per direction starting from the south
end and gradually reduces to three lanes per direction to
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Figure 1: Study site.

the north end, and the associated AADT ranges between
147603 and 193399 vehicles. Based on existing conditions,
the northbound direction of the corridor is often congested,
especially during AM peak when heavy commuting traffic
going into the Cincinnati area across the river. Therefore,
the study will specifically focus on this direction. In order
to conduct the analysis, the sensor-level data is further
aggregated into corridor level by using the midpoint-based
estimation method [19].

Meanwhile, historical weather records are obtained from
https://www.wunderground.com/ which collects the data
from weather sensors at Cincinnati/Northern Kentucky
International Airport, which is about 1.5 miles away from
the corridor of interest. The data includes rich weather
information such as temperature, wind speed, direction, vis-
ibility, weather type, precipitation, etc. Preliminary analysis
indicates wind and visibility have negligible impact on the
congestion and reliability of the corridor; hence, they are
not considered in current analysis. However, it is advised
to include them, should they present any apparent impact
depending on the location of the study. Accordingly, the rain
and snow will be the focus of the current study. It should be
noted that the amount of precipitation in the obtained data
is added up cumulatively within the same hour, if there are
multiple entries during rain or snow conditions, and then
reset to zero in next hour. This means the value from the last
entry should be used for that hour. Also, if the time difference
between the last entries of two consecutive hours is not equal
to one hour, then the precipitation is proportionately adjusted
to get the hourly rate.

Besides weather, other non-recurring events such as
crashes, non-crash incidents, planned road work activities,
and sport and festival events that occurred in 2013 and 2014
are also collected and processed. Then, travel times at time
periods when those events occurred are excluded so that the
rest of the intervals are only affected by weather events.

3. Travel Time Classification

It is clear that traffic patterns vary at different times of day and
days of the week and the impact fromweather could also vary
as traffic pattern changes. Therefore, it is important to first
evaluate the traffic characteristics fromdifferent time periods.
Normally, it is conducted by traffic practitioners based on
their local experience, such as choosing 6:00-9:00am as the
AM peak period. This may be subjective and not accu-
rately defining the traffic transitioning boundaries. Hence,
an appropriate classification method is desired so that the
unique traffic flow pattern can be maintained. In this study,
a popular non-parametric data mining technique called
classification and regression tree (CART) is adopted [20].
First, since it is non-parametric, no assumption regarding
the underlying distribution of the response variable is made
during the model development. This feature is particularly
appealing to our study as travel times are often non-normally
distributed and skewed to the right. Second, the method is
robust in dealing with situations like missing variables and
outliers. In addition, it is relatively simple to understand and
use and can generate easily interpretable results.

https://www.wunderground.com/
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Table 1: Number of travel time samples under different weather conditions.

Time Periods Clear Light Rain
(<0.25 in/h)

Heavy Rain
(>0.25 in/h)

Light Snow
(<0.1 in/h)

Heavy Snow
(>=0.1 in/h)

18:40-6:25, weekdays 63322 4655 472 2249 65
6:25-9:05, Mon/Fri 5811 438 11 233
6:25-9:05, Tue-Thu 8796 652 79 251
9:05-14:50, weekdays 29609 1800 249 1212
14:50-18:40, Mon-Wed 11580 768 192 365 4
14:50-18:40, Thu-Fri 7538 592 56 278 30

Here only travel time data under clear weather condition
is selected as input for CART.This is to exclude the abnormal
impact from rain or snow conditions as they may skew the
regular traffic patterns under recurring condition. The travel
time to be grouped is used as the dependent variable and
the time of day in 5-min increments and day of week serve
as independent variables. To build the tree that distinguishes
among classes, starting from the root node which uses the
whole travel time dataset, the CART method employs a
binary partitioning procedure to iteratively split the data
into subsets in a top-down manner so that data points in
each subset become more and more homogeneous. The Gini
impurity (GI) index, which measures such homogeneity, is
used as the splitting criterion and the optimal cutting point
between two sub-groups are determined when the GI is
minimal [20].The partitioning procedure is repeated until all
the terminal nodes are reached, a condition where GI cannot
be further reduced.

Often, the final treemay contain a large number of classes,
which makes it challenging for transportation practitioners
to meaningfully interpret the results and transfer the gained
knowledge to real-world applications.Therefore, a tree prun-
ing procedure is necessary. In order to havemore flexibility in
the practice, we use the pruning function that allows users to
specify the number of final classes in the pruned tree through
the tenfold cross-validation method by using tree package in
R environment [21].

The travel time trends during clear conditions at different
times of day and days of the week are presented in Figure 2.
It can be observed that the recurring congestion occurs at
AM peak during weekdays and at PM peak on Thursdays
and Fridays. Also, the congestion issue in the morning seems
more severe on Tuesday-Thursday than on Monday and
Friday. Based on the classification results, CART seems to
generate time periods that align well with the changing traffic
pattern.The first split happens at 6:25 before which the traffic
is under free-flow condition. After 6:25, the congestion starts
to build. The congestion situation peaks at 6:50-8:40 period,
and this period can be further classified into three groups
based on day of week and the Tuesday-Thursday group is the
most congested. After 8:40, the congestion starts to dissolve
and the traffic comes back to normal after 9:05am. For the
PM peak, a different pattern is observed during 14:50-18:40
when traffic condition is worse onThursday and Friday than
the three other weekdays.

Owing to the limited sample size of travel times that are
affected by weather events, especially heavy rain and snow,
a large number of classifications may keep us from having
enough samples in some groups with shorter time spans to
ensure the results are statistically significant. Therefore, with
reference to the weather data and traffic patterns, the groups
with similar operating conditions are further consolidated
together and six final groups are included for further analysis.
The boundary points of these groups are also shown in
Figure 2. It should be noted that the number of groups can
vary but it balances with available data.

After groups are determined, the weather data in each
group is obtained. The criteria applied in previous research
are also used to determine the intensity of rainfall and
snowfall for consistency purpose [2, 6, 8]. The sample size
associated with each weather type in each group is shown
in Table 1. As there are so few travel time samples associated
with heavy snow conditions, the light snow and heavy snow
data are integrated together and referred to as snow events
from hereafter. In addition, the non-parametric two-sample
Kolmogorov-Smirnov (K-S) test is conducted to see whether
distributions of travel time under clear and weather events
within the same group are significantly different from each
other. Unlike many statistical tests, the K-S test does not
require the data to follow the Gaussian distribution. Accord-
ingly, the null hypothesis of this test is the two travel time
distributions follow the same probability distribution and the
alternative hypothesis is the two travel time distributions do
not follow the sameprobability distribution.According to test
results, there is not enough evidence at 5% significance level
to reject the null hypothesis, meaning the distributions under
light and heavy rain conditions are not distinct from each
other in Monday/Friday 6:25-9:05 and Tuesday-Thursday
6:25-9:05 time periods as well as the distributions between
clear and heavy rain conditions in Thursday-Friday 14:50-
18:40 time period. These three time periods each have 11, 79,
and 56 samples for the heavy rain scenario, indicating they
may not be sufficient to draw valid conclusions. Therefore,
the light and heavy rain are also combined in the following
analysis.

4. Regression Analysis

In previous studies, the dummy variable multiple regression
(MR) method was applied to quantify the effects from
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Figure 2: Travel time groups by time of day and day of week.

weather on the traffic flow characteristics [5, 22]. With
reference to the available variables included in current study,
the model can be expressed as follows:

𝑇𝑟𝑎V𝑒𝑙 𝑡𝑖𝑚𝑒 = 𝑎 + 𝑏 ⋅ 𝑟𝑎𝑖𝑛 + 𝑐 ⋅ 𝑠𝑛𝑜𝑤 (1)

where 𝑟𝑎𝑖𝑛 and 𝑠𝑛𝑜𝑤 are dummy variables and equal to 1 if
the event occurs and 0 otherwise; 𝑎 is the intercept of the
regression equation, which takes value of average travel times
under clear conditions; 𝑏 and 𝑐 are coefficients of variable 𝑟𝑎𝑖𝑛
and 𝑠𝑛𝑜𝑤 variable and represent the increase in travel time if
rain and snow event happens, respectively.

Accordingly, the MR model is only able to represent
the average relationship between the response variable and
explanatory variables. However, we know weather events
often have an asymmetric impact on travel times as more
adverse weather events usually lead to much worse con-
gestion condition, thus excessively longer travel time. As
a result, it is expected that weather events would have a
more pronounced impact on the higher percentiles, such as
the 95th percentile travel time, than the conditional mean
which dilutes such impact. Thus, MR only conveys a partial
picture on the whole distribution of travel times. On the
other hand, different effects from different weather events
suggest the travel times under each condition have unequal
variation or are heteroscedastic, which violates the basic
homoscedasticity assumption made by MR.

In contrast, quantile regression (QR) relaxes such
assumption and can be applied to describe the relation
between any part of the distribution of the response variable
and explanatory variables [23, 24]. In this regard, the quantile
regression (QR) method is more suitable in quantifying the
more severe aspects of weather and how the effects are
different across the distribution.

Now suppose the cumulative distribution function of
travel time is 𝐹 where 𝐹(𝑡) = 𝑃(𝑇 < 𝑡); then the 𝜏-th quantile
or percentile travel time would be

𝑄 (𝜏) = 𝐹−1 (𝜏) , ∀𝜏 ∈ (0, 1) (2)

Accordingly, 𝑄(𝜏) can be mathematically formulated as

𝑄 (𝜏) = 𝑎𝜏 + 𝑏𝜏 ⋅ 𝑟𝑎𝑖𝑛 + 𝑐𝜏 ⋅ 𝑠𝑛𝑜𝑤 (3)

where 𝑎
𝜏
is the intercept which is the 𝜏-th percentile travel

time under clear condition; 𝑏
𝜏
and 𝑐
𝜏
are the coefficients that

represent the increase in the 𝜏-th percentile travel time under
rain and snow, respectively.

The above equation can be estimated by solving the
following minimization problem correspondingly.

argmin
𝑛

∑
𝑖=1

𝜌
𝜏
(𝑡
𝑖
− (𝑎
𝜏
+ 𝑏
𝜏
⋅ 𝑟𝑎𝑖𝑛
𝑖
+ 𝑐
𝜏
⋅ 𝑠𝑛𝑜𝑤

𝑖
)) (4)

where 𝜌
𝜏
is the loss function and is defined by

𝜌
𝜏 (𝛼) =
{
{
{

(𝜏 − 1) ⋅ 𝛼, 𝛼 < 0
𝜏 ⋅ 𝛼, 𝛼 ≥ 0

(5)

Equations (4) and (5) can be reformulated into a standard
linear programming problem,which can be easily solvedwith
the simplex method.

The regression models including MR and QR are both
implemented to analyze the effects from the rain and snow
events for each individual time period obtained from the
classification analysis. The impact of different weather events
on the whole distribution of travel time during 6:25 -9:05 on
Monday and Friday is shown in Figure 3 as an example.The
x-axis corresponds to the percentiles of interest, ranging from
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Table 2: Analysis results from regression models.

Time Periods Model Travel time under clear
condition (min)

% increase in travel time
under rain condition

% increase in travel time
under snow condition

18:40-6:25, weekdays
Mean 7.8 4.1 19.5
80th 7.9 4.3 18.7
95th 8.0 10.5 98.6

6:25-9:05, Mon/Fri
Mean 9.5 35.1 39.9
80th 11.2 37.8 60.2
95th 13.7 77.1 92.4

6:25-9:05, Tue-Thu
Mean 11.3 22.5 47.2
80th 13.0 28.7 36.8
95th 17.0 54.0 209.1

9:05-14:50, weekdays
Mean 7.9 7.0 13.6
80th 7.8 8.6 11.0
95th 8.7 25.5 59.0

14:50-18:40, Mon-Wed
Mean 8.1 13.7 14.0
80th 8.0 29.4 16.9
95th 10.6 37.2 46.5

14:50-18:40, Thu-Fri
Mean 9.1 15.2 26.5
80th 10.2 16.9 50.3
95th 13.9 27.9 61.6

the 5th to the 95th percentile. The solid red line represents
the conditional mean outputted by the MR method, while
dashed red lines show the 5th and 95th confidence interval
of the mean. Meanwhile, the dashed dot line represents the
percentile values and the shaded area shows the correspond-
ing 5th and 95th confidence interval. According to MR, the
average travel time under clear conditions is 9.5 minutes, and
itwill take 3.3 or 3.8minutes longer if it rains or snows. In con-
trast, the quantile regression plot shows the increase in travel
time at a given percentile if a weather event occurs. For exam-
ple, if there will be snow during this time period, then the 95th
percentile travel time will increase 12.65 minutes, in addition
to 13.7 minutes under clear condition. As a result, MR under-
estimates such negative impact. In fact, based on the locations
of mean regression lines and quantile regression lines, it
can be observed that MR overestimates the impact from the
weather at lower percentiles (below red line) while it under-
estimates the impact at higher percentiles (above red line).

Next, we specially focus on the 80th and the 95th per-
centile travel time as the former is suggested to transportation
agencies for project improvement evaluations [11], while the
latter is of particular interest to travelers in their trip choice
decision-making [12]. The results are reported in Table 2
where the last two columns are percentage of increase in
travel time compared to that during clear weather condition.

Based on Table 2, the magnitude of negative impact
on the average travel time is directly correlated to the level
of recurrent congestion. Here, we consider the first, fourth,
and fifth time periods in Table 2 are in free-flow condition
and the second and sixth time periods are in moderately
congested condition, while the third time period represents
heavily congested situation. Accordingly, the mean effect

from rain on three congestion levels is 4-14%, 15-35%, and
22.5%, respectively.The percent increase in travel time during
heavily congested conditions is not that significant, and this
is possibly due to traffic already traveling at a very low
speed, making the additional effect from rain less dramatic.
In addition, compared to rain, snow events usually have a
more severe impact on the operation condition. It can result
in 14-20%, 20-40%, andmore than 40% increase in travel time
in free-flow, moderately, and heavily congested condition,
respectively.

In terms of travel time reliability which is represented by
80th and 95th percentile travel times, we can see more signif-
icant impact from weather events than that on the average
travel time. For example, compared to the average impact
of rain in the heavily congested condition, the percentage of
increase is now 28.7% for 80th percentile travel time and 54%
for 95th percentile travel time. In other words, during rainy
conditions, to ensure 19 out of 20 times are on-time arrivals,
travelers should add half of what they normally allocate
when there is no weather event. Also, snow would have
a more serious impact on travel time reliability compared
to rain, especially at the right tail of the distribution. Still
taking the heavily congested condition for example, the 95th
percentile travel time is two times more if it is snowing
compared to clear weather condition. In other words, it will
take 51 minutes to ensure 95% chance of making on-time
arrival, whereas it normally only takes 17 minutes to meet
that requirement. Apparently, some snow events have caused
enormous disruptions on the reliability of corridor operation.

In order to better understand the traffic pattern during
inclement weather condition, the effect of a blowing snow
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Figure 3: Regression results.
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event that occurred onMarch 5, 2013, is illustrated in Figure 4.
The grey solid line in the graph represents travel time and red
dashed line represents precipitation. At first light rain started
at 14:05 and it gradually became heavy rain at 18:55, which
then quickly turned to heavy snow at 19:15 and lasted for
35 minutes before changing to light snow, which continued
onto next day until 6:55. Under the weather impact, the
travel time on the corridor ascent dramatically 10 minutes
after heavy snow happened and the severe congestion lasted
for 4 hours before travel time started to decline and was
not completely back to normal until at 8:00. It should be
noted that when the intensity of snow decreases, it does not
necessarily mean the operating condition improves. This is
attributable to the following: (1) it takes time to completely
dissipate the queue previously built up at downstream during

the event; (2) in the meantime, the accumulated snow on
the ground significantly reduces the operating speed, which
in essence reduces the capacity of the highway. As a result,
simply labeling travel times that are in between the start
and end of a weather event as affected by weather and using
precipitation to categorize the intensity of rain and/or snow
may not completely capture the true impact of some adverse
weather events, thus underestimating their effects on the
operation condition.

5. Conclusion

In this study, a data-driven approach was developed to
quantify the impact of weather events on travel time and
reliability. We first applied decision tree to automatically
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classify the time of day and day of week into different groups
based on the speed profile. The goal is to create groups
so that traffic characteristics are homogeneous within the
group while being distinct across the groups. This helps
to establish more representative baseline conditions and
thus more accurately separate the weather impact from the
recurrent congestion in each group. After that, the impact
of weather events was determined quantitatively for each
group by using multiple regression and quantile regression.
We used quantile regression because it was able to evaluate
the impact on the whole travel time distribution, whereas
multiple regression was only able to reflect the impact on
average travel time. For example, quantile regression can
estimate the additional time needed due to rain or snow
events for the 80th or the 95th percentile travel time, which
are frequently used as measures of travel time reliability. The
analysis demonstrated the effect of weather events on travel
time reliability is more significant than that on average travel
time.

Understanding the impact of weather events on traf-
fic operation is important for transportation agencies to
determine weather-responsive management strategies and
for travelers to plan their trips. The established approach
only requires speed and incident data, which are readily
available to transportation agencies. It can be easily applied
to a corridor to understand the effect of weather events on
the corridor traffic. It can also be scaled to the regional
network level to identify the road sections experiencing the
most adverse impact of weather events. The analysis can
help transportation agencies to deploy weather-responsive
management strategies at critical spots as well as to eval-
uate their effectiveness after deployment. As an example,
winter maintenance can consider the varying degrees of
snow impact while prioritizing snow plowing routes. The
quantitative analysis can be helpful to the general public as
well. The 80th percentile travel time can be disseminated to
travelers for route planning purpose. When there is a snow
event, freight carriers can use the 95th percentile travel times
under snow conditions to determine an optimal route and/or
time to ensure just-in-time deliveries.

As more data accumulate over time, the developed
approach can be refined by including different intensity levels
of rain and snow events. In addition, the actual impact of a
weather event can linger longer than its duration; therefore,
it is desirable to develop an approach to address this issue in
the future research.
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