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Abstract: This paper presents the design and modeling of a two-phase resonant converter that drives
a LED lamp with a high-frequency pulsed current free of instabilities and flicker effect, fulfilling the
recommendations of the IEEE PAR 1789-2015, so that it enables visible light-based communication
at a 10 kB/s bit rate. The dynamic study of the converter takes into consideration the effect of the
reflected impedance of the output filter on the AC side. In order to evaluate the dynamic response of
the converter, a Spice model is defined. A 120 W prototype intended for street lighting applications
has been built to validate the analysis and modeling.

Keywords: light sources; LED lamps; lighting control; small-signal modeling; closed-loop systems;
phase shifters

1. Introduction

Solid state lighting (SSL) is the most recent revolution in the lighting field [1], which paves the way
to developing new capabilities such as a precise wide-range dimming and visible light communication
(VLC), compatible with the illumination service. High-performance dimming is highly desirable
to achieve energy savings. LEDs’ operation at their nominal current prevents the degradation of
light quality parameters [2]. For this reason, dimming or turning on/off the nominal current level
through the LEDs, according to a PWM pattern, modifying the average current, is preferred over the
current amplitude modulation. A fast response of the LED current controller is required to achieve
PWM dimming operation free of any flicker perception. Recently, the IEEE PAR1789 recommended
a minimum frequency of 1250 Hz to implement PWM dimming [3]. Moreover, a fast dynamic
response of the LED driver also enables the communication by light pulses, which is an interesting
feature for positioning autonomous vehicles, home automation solutions, and management of lighting
systems [4,5], among other applications [6]. This paper focuses on the analysis of the dynamic response
of a phase-controlled series-parallel resonant converter, designed as a current source, for LED lamp
driver applications. Different models have been proposed to study the dynamic response [7] of resonant
converters. The small-signal modeling of resonant converters is a complex task, taking into account
the number of reactive elements and operation modes. This work proposes a reduced-order model
of the converter, which is valid at the bandwidth of interest. The model is defined in the LT-Spice
environment providing technical insight and better understanding of the circuit. The effect of the
reflected impedance of the output filter on the AC side is analyzed and then included in the model.

The paper is organized as follows: Section 2 presents the inverter and rectifier sections of the
two-phase series-parallel resonant converter, deriving an equivalent circuit and the phase modulation
principle using the fundamental approximation. In Section 3, the reduced small-signal model is
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obtained from the envelope model of the converter. The experimental validation of the model is
presented in Section 4, finalizing with the discussion of the results.

2. Two-Phase Series-Parallel Resonant Converter

The two-phase series-parallel (LCsCp) resonant converter [8], shown in Figure 1, consists of the
resonant inverter stage loaded by a center tap rectifier [9].
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Figure 1. Two-phase LCsCp resonant converter.

The transformer with turns-ratio n:1 provides galvanic isolation. The shunt resistor Rs is the
sensor of the lamp current. The LED lamp is modeled with the dynamic resistance, rd, and the junction
voltage drop Vd, i.e., a linear model of the diode.

2.1. The LCsCp Resonant Inverter Stage

In steady state, the center tap rectifier is first modeled by an equivalent resistance Rac on the AC
side. The Fundamental Harmonic Approximation (FHA) [9] is then applied to obtain a large signal
analysis of the circuit.

The midpoint voltages va and vb in Figure 2 are represented in the complex domain by their
exponential forms,

VA,B =
2Vdc
π
·e± j(Ψ/2) (1)

where Ψ is the phase displacement between va and vb. The circuit in Figure 2 exhibits a symmetrical
structure, where the ground-connected load can be decomposed into two paralleled halves, 2Rac, along
the symmetry axis [8]. Decomposing VA and VB into their orthogonal components, it is observed that
the imaginary parts have equal amplitude and 180◦ phase displacement. Therefore, according to the
symmetric structure of the circuit, they cancel each other out,

VA,B =
2Vdc
π
· cos(Ψ/2) ± j

2Vdc
π
· sin(Ψ/2) (2)
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The resonant inverter is reduced to the equivalent circuit shown in Figure 3, where the input
voltage, VAB, is the sum of the real part of VA and VB, i.e., the common-mode voltage.
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The parallel parameters of the LCsCp inverter are summarized in Table 1.

Table 1. Parallel parameters of the LCsCp resonant inverter.

Parallel Resonant Frequency Parallel Characteristic Impedance Parallel Quality Factor

ωp = 1√
LCp/2 Zp = ωpL = 2

ωpCp
Qp = 2Rac

Zp

From the circuit in Figure 3, the phasor of the output current on the AC side of the converter
is obtained,

Iac =
4Vdc cos(Ψ/2)

πZp

1

Qp

[
1−

(
ω
ωp

)2
+

Cp
2Cs

]
− j

(
ωp
ω ·

Cp
2Cs
−

ω
ωp

) (3)

Since LEDs are current-driven devices, current source behavior of the driver circuit is highly
desirable. For the LCsCp resonant inverter, the current source behavior is achieved by fixing the
switching frequency at ω = Ωo,

Ωo = ωp

√
1 + Cp/2Cs (4)

Working at Ωo, it is possible to achieve the zero voltage switching (ZVS) mode of the transistors
of the converter, minimizing the switching loss. Upon substitution of (4) into (3), it can be verified that
the phasor of the output current on the AC side has no dependence on the load, while it is modulated
with Ψ.

Iac = − j
4Vdc

√
1 + Cp/2Cs

πZp
cos(Ψ/2) (5)

2.2. Center Tap Rectifier

Next, Rac for the model and the LED current, Io, are calculated. The center tap rectifier with an LC
filter at the output is shown in Figure 4, where ro includes both the dynamic resistance of the LED lamp,
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rd, and the shunt resistor, Rs, so that, ro = rd + Rs. The rectifier stage removes the high-frequency ripple
generated by the operation of the inverter. Under this consideration, the low ripple approximation is
used [9]. Thus, the rectifier section is modeled at low frequency by its averaged variables.
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Taking into account that the rectifier and filter impose a square waveform for the current on the
primary side of the transformer [9], the first harmonic of the square waveform is used to obtain the
relationship between the amplitude of the AC side current, Îac, and the DC side current, Io,

Io =
nπ
4
·Îac (6)

On the other hand, the output voltage, Vo, is the voltage across the LED lamp and the shunt resistor
Rs. Carrying out the power balance between the AC and DC sides of the converter, Vo is obtained,

Vo =
2V̂ac

nπ
= ro·Io + Vd (7)

From (7) and (8), the large-signal lamp model is represented on the AC side by,

V̂ac =
n2π2

8
ro·Îac +

nπ
2
·Vd (8)

From (9), the impedance seen from the AC side in steady-state, Rac, is:

Rac =
π2

8
n2

(
ro +

Vd
Io

)
=
π2

8
n2Ro (9)

Since the LED lamp is connected on the DC side, working with (5) and (6), the DC output current
is obtained as a function of the inverter parameters:

Io =
2nVdc

√
1 + Cp/2Cs

Zp
cos(Ψ/2) (10)

From (10), (5) and Figure 1, it can be observed that the proposed converter enables control of the
LED lamp current by adjusting the phase displacement angle, Ψ, between the midpoint voltages va

and vb. In this approach, the switching frequency of the converter is constant at Ωo, which simplifies
the control circuit and optimizes the magnetic components’ design.
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3. Envelope Model of the Resonant Inverter Stage

Low-frequency perturbations cause the modulation of voltage and current waveforms in the
resonant circuit [10]. Assuming the FHA, the general form of any modulated waveform is given in (11),

x(t) = A(t) cos[ωt + φ(t)] (11)

Given that the control of the converter is performed at constant switching frequency, the variation
of the control parameter Ψ(t) results in the amplitude modulation of all the variables [10],

x(t) = Re
[
A(t)·e jωt

]
(12)

Using (12), the time-varying amplitude of the current and voltage phasors are defined with (13)
and (14), assuming constant switching frequency, ω = Ωo,

i(t) = Re[I(t)·e jΩot] (13)

v(t) = Re[V(t)·e jΩot] (14)

Upon substitution of (13) and (14) into the equations of the inductor voltage and capacitor current,
the envelope model of the resonant circuit components is obtained [8].

L
dI(t)

dt
+ jΩoLI(t) = V(t) (15)

C
dV(t)

dt
+ jΩoCV(t) = I(t) (16)

From (15) and (16), it can be seen that the envelope model of the reactive components incorporates
an imaginary resistor [11]. The imaginary resistor represents the steady-state impedance of the
corresponding reactive element at the switching frequency.

The input voltage to the resonant circuit is obtained considering that the control angle, Ψ(t), is
time-dependent, and it modulates the amplitude of the input voltage.

vab(t) = Re
[4Vdc
π

cos(Ψ(t)/2)·e jΩot
]

(17)

Therefore, the voltage source applied to the envelope model is given by,

Vab(t) =
4Vdc
π

cos(Ψ(t)/2) (18)

Finally, applying (15), (16) and (18) to the circuit of Figure 3, the envelope model of the LCsCp

resonant inverter stage is obtained,
Observing Figure 5, it is possible to reduce the order of the model by assuming that the switching

frequency Ωo is much higher than the frequency of any perturbation. In this way, L and Cs along with
the associated imaginary resistances can be lumped in an equivalent inductor in series connection with
the steady-state Cs impedance as shown next,

1
(s + jΩo)Cs

≈
s

Ω2
oCs

+
1

jΩoCs
= sL

(
ωs

Ωo

)2
+

1
jΩoCs

(19)

where, ωs is the resonant frequency of the series branch L-Cs.

ωs =
1
√

LCs
=

Ωo√
1 + 2Cs/Cp

(20)
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Then, after grouping terms, the envelope model of the series branch is further reduced to the
equivalent inductance, Lrd, in series with an imaginary resistor, jXrd, defined as follows:

Lrd = L
(

1 + Cp/Cs

1 + Cp/2Cs

)
(21)

Xrd =
ΩoL

1 + Cp/2Cs
(22)

In this way, the model shown in Figure 5 is simplified, resulting in the one in Figure 6.
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It should be noted that the reduced-order model incorporates the main dynamic effect of the
capacitance Cs at low frequency, which is expressed by the new inductance Lrd.

3.1. Real and Imaginary Subcircuits in the Model

According to the procedure explained in [11], the complex circuit in Figures 5 and 6 can be
simulated with Spice if the circuit is split into its real and imaginary parts. The corresponding real and
imaginary subcircuits are shown in Figures 7 and 8 respectively. Voltages and currents are obtained by
composing the ones in the real and imaginary circuit, e.g., Iac. This method is also used for the analysis.
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The envelope of the output current on the AC side is calculated composing its orthogonal components.

Iac = |Iac| =
√

I2
1ac + I2

2ac (23)

Once the envelope of the output current on the AC side is obtained, the calculation of the DC
output current is straightforward applying (6) as represented in Figure 9.
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3.2. Small-Signal Envelope Model

Perturbing and linearizing (23), the small-signal component of the AC side load current envelope
is obtained,

îac =
I1ac

Iac
·î1ac +

I2ac

Iac
·î2ac (24)

In (24), î1ac and î2ac are the small-signal components of I1ac and I2ac. Solving the circuits in
Figures 7 and 8, the steady-state components of the output current, I1ac and I2ac, are obtained. From (5),
at frequency Ωo where the inverter behaves as a current source, the phasor of the steady-state output
current is purely imaginary, i.e., I1ac = 0 and, therefore, Iac = I2ac, so that,

îac = −î2ac (25)

The small-signal current obtained in (25) is applied to the input impedance of the loaded output
filter, zif, as shown in Figure 10.
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In order to obtain the linear small-signal plant of the resonant inverter, the modulation signal, Ψ,
has to be perturbed [11], which results in perturbation of the input voltage. Then, the small-signal
perturbation, φ, is added to Ψ:

Ψ(t) = Ψo + φ (26)

Substituting (26) into (17) and extracting the small-signal component,

v̂ab = −φ·
2Vdc
π
· sin

(Ψo

2

)
(27)

The AC side small-signal load impedance is the input impedance of the output filter reflected on
the AC side,

zac =
n2π2

4
zi f (28)

The resulting small-signal reduced-order model of the phase-controlled LCsCp resonant converter
is shown in Figure 11.
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Splitting the model of Figure 11 into real and imaginary sub-circuits, the small-signal components
î1ac and î2ac are calculated. Upon substitution of î2ac into (25), the control-to-output current transfer
function in the AC side is obtained.

4. Experimental Results

The experimental prototype and lamp setup are shown in Figure 12.
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Figure 12. Experimental prototype and lamp composed of four LED arrays BXRA-C2000. Case size is
16 cm × 10 cm × 5 cm.

The lamp consists of four BXRA-C2000 LED arrays in series connection with a nominal current
Io = 1.75 A, output power Po = 120 W, output voltage Vo = 68.6 V and equivalent DC load, and
Ro = 39.2 Ω. The control angle under nominal conditions is Ψo = 45◦, which provides full control
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capability. The input DC voltage is Vdc = 400 V. The transformer’s turns ratio is chosen to be n = 2,
which implies that Rac = 193.4 Ω. The capacitor ratio is Cp/Cs = 0.1.

After collecting all the input data, the step-by-step design sequence of the converter is as follows:
Upon substitution of n, Vdc, Ψo and Io into (10), the characteristic impedance is obtained, Zp = 433 Ω.
From Table 1, the parallel quality factor is Qp = 0.894. The resulting value of the quality factor produces
48◦ phase lag of the current referred to the voltage in the transistors, which is enough for ensuring
the ZVS mode under all operating conditions. The switching frequency is set at Ωo = 2π (100 kHz).
From (4), the parallel resonant frequency is ωp = 2π (97.6 kHz). Finally, the reactive components are
L = 705 µH, Cp = 7.5 nF and Cs = 75 nF. The output filter components are Lo = 150 µH and Co = 3.3 µF.
The use of electrolytic capacitors, even in the power factor correction stage, is avoided in order to
achieve high circuit reliability [12]. The resonant inverter stage was implemented using IRF840LC
MOSFET transistors. The resonant inductors were built using the ferrite core RM10 of material 3C90.
The experimental lamp current and voltage under nominal conditions are shown in Figure 13, where
PhA and PhB are the signals for driving phases A and B of the converter.
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Figure 13. Lamp current, lamp voltage and control signals in steady state.

From Figure 13, the driver performance under nominal conditions can be verified. The current of
the LED lamp is Io = 1.62 A. The phase displacement angle, Ψ, between the drive signals PhA and PhB
is Ψ = 42.3◦. The efficiency of the proposed driver is 92%.

4.1. Validation of the Converter Dynamic Model

The core of the control circuit is a phase modulator [13], which is implemented using a sawtooth
carrier (leading edge) signal, a comparator and two monostable multivibrators. The control voltage, vc,
and the carrier are compared, generating a PWM signal that triggers the drive signals of phases A and
B of the converter. The waveforms are shown in Figure 14.

The LT-Spice description of the real and imaginary sub-circuits of the small-signal model are
shown in Figure 15. The dynamic resistance of the LED lamp is rd = 5 Ω. The shunt resistor is Rs

= 0.5 Ω, so the dynamic output resistance is ro = 5.5 Ω. The ESR of the output filter components
is considered. The input voltage for the AC simulation of the model is defined by (27), taking into
account that the gain of the phase modulator is Gφ= −0.7 rad/V, and the amplitude of the perturbation
is vc = 500 mV.

The open-loop control-to-output current AC characterization, shown in Figure 16, has been carried
out injecting a constant amplitude perturbation signal, vc = 0.5 V, between 51.2 Hz and 51.2 kHz, using
an Agilent 35670A Dynamic Signal Analyzer. From Figure 16, it can be observed that the proposed
model and the experimental results are in good agreement up to 30 kHz, verifying a first-order
dominant behavior of the resonant converter.
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The experimental bandwidth ωH = 2π (9 kHz) is wide enough to implement the PWM dimming
at a frequency fPWM = 2 kHz, which exceeds the recommendation regarding the minimum frequency
for avoiding flicker perception given by the IEEE PAR 1789. The result is in good agreement with (29).

ωH =
1

roCo
(29)

The reflected impedance of the output filter on the AC side produces a peak of resonance, whose
position is given by,

ω f =
2

nπ
√

LoCp
(30)

In order to preserve the first-order behavior of the converter and achieve wide bandwidth, the
converter should be designed to fulfill ωH < ωf.
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4.2. PWM Control of the Lamp Current

As stated previously, the converter enables the implementation of the PWM control of the lamp
current. The off-time is achieved by imposing Ψ = 180◦. A good feature of the phase-shifted mode
PWM is that the resonant tank is not fully discharged, which prevents uncontrolled on/off transient
oscillations of the converter variables. The experimental waveform for 50% dimmed operation is
shown in Figure 17. The current during the on-time is the nominal one of the LED lamp, Io = 1.7 A,
which assures the quality of the light, without any chromatic modification. The average current of
the lamp is 0.86 A, and the power is 59 W, verifying the operation at 50% of the nominal power.
The efficiency of the proposed driver, measured at 50% of the nominal current, is 87%.
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The converter bandwidth, close to 10 kHz, also enables data transmission, as is shown in Figure 18.
The bit rate depends on the bit codification. For example, a light-based Amplitude-Shift Keying ASK
modulation with an on-off keying codification can be implemented by switching the lamp current
between two levels, as is shown in Figure 18. This on-off keying codification achieves a bit rate that is
twice the frequency of the signal as two bits are transmitted during a cycle of the signal. In order to
achieve the minimum degradation of the light quality during data transmission, the level of “1” and
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“0” were fixed at 1.7 A and 1 A, respectively. At these levels, the average current of the lamp is 1.3 A
and the power is 92 W, close to the nominal conditions. During data transmission, the efficiency of the
driver is approximately equal to the value under nominal conditions.Electronics 2019, 8, x FOR PEER REVIEW 12 of 13 
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5. Discussion

The small-signal model obtained from the reduced envelope model of the two-phase
phase-shift-modulated LCsCp resonant converter, proposed as a driver for high-power LED lamps, has
been validated with simulation and experimentally up to tens of kHz frequency. The output filter after
the rectifier stage imposes on the converter control-to-output dominant single pole, so that a simple
adjustment of the output capacitance in consistency with the load is enough to meet the IEEE PAR 1789
recommendations to perform wide-range PWM dimming, preventing any flicker perception, and to
implement a VLC protocol using multilevel modulation. Experimental results show a ASK modulation
capability up to 10 kB/s. Since no excessive variation of the resonant tank energy occurs during
the phase-shift modulation transients, sharp amplitude modulation transients with no significant
over-shoots or oscillations are achieved.
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