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Alcohol slows interhemispheric transmission, increases the
flash-lag effect, and prolongs masking: Evidence for a slowing of

neural processing and transmission
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Abstract

While the alcohol literature is extensive, relatively little addresses the relationship between physiological effects and behavioural
changes. Using the visual system as a model, we examined alcohol’s influence on neural temporal processing as a potential means for
alcohol’s effects. We did this by using tasks that provided a measure of processing speed: Poffenberger paradigm, flash-lag, and backward
masking. After moderate alcohol, participants showed longer interhemispheric transmission times, larger flash-lags, and prolonged
masking. Our data are consistent with the view that alcohol slows neural processing, and provide support for a reduction in processing
efficiency underlying alcohol-induced changes in temporal visual processing.
Crown copyright � 2007 Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Alcohol has widespread systemic effects on the body,
including the central nervous system (CNS), where it influ-
ences various components involved in neuronal transmis-
sion. For instance, alcohol modulates the synthesis,
storage, release, and inactivation of neurotransmitters.
The physiological effects are reflected in a variety of
changes to behaviour and cognitive performance; including
deficits in sensory and perceptual task performance (Ogden
& Moskowitz, 2004), impaired motor coordination (Draski
& Deitrich, 1996; Mangold, Laubli, & Krueger, 1996), and
difficulties in the encoding and retrieval of learned informa-
tion (Browning, Schummers, & Bentz, 1999). Many of the
observed deficits associated with alcohol seem to be related
to a breakdown in the ability to integrate information ade-
quately in a way that would allow skilled actions to occur.
For example, the reduction in driving performance comes

about because of impairment in a variety of perceptual
and motor systems, and the failure to process information
adequately. Much of the literature, while providing excel-
lent description of deficits that may occur, has not
addressed the question of the possible mechanisms that
might mediate these deficits.

One route to a better understanding of alcohol’s effects
is to look at correlations between behavioural and neural
effects. This is best accomplished by using a model system
for which there is some understanding of the neural basis of
the behaviour. Because of the existing knowledge to date of
the neural bases for various visual behaviours, the visual
system is ideal for this purpose. Thus, in the present con-
text, findings demonstrating effects of alcohol on some
visual functions while sparing others should provide a
means to isolate any selective effects of alcohol on neural
processing.

One hypothesis proposed to explain some of the effects
of alcohol is that it preferentially affects the speed of neural
processing. In the context of the present study, we will use
speed of neural processing to include the amount of time
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necessary for synaptic transmission, post-synaptic effects
leading to action potential, and transmission of the signal
along the axons. The proposal of a preferential effect is
based on data that show an apparent slowing in processing.
For example, moderate levels of alcohol decreases critical
flicker fusion (CFF) rate for both central and peripheral
viewing (Enzer, Simonson, & Ballard, 1944; Hill, Powell,
& Goodwin, 1973; Pearson & Timney, 1998; Virsu, Kykka,
& Vahvelainen, 1974), decreases sensitivity to temporal
contrast (Pearson & Timney, 1998), and increases the tem-
poral range of masking in a visual masking task (Jones,
Chronister, & Kennedy, 1998; Moskowitz & Murray,
1976). Data from electrophysiological studies demonstrate
that the latency of specific waveforms depicting neural
activity increases after alcohol, in both humans and ani-
mals. For example, Bernhard and Skoglund (1941) found
a diminution of the a-wave and a rise in the b-wave in
the amphibian electroretinogram after alcohol, Ikeda
(1963) found reduction in the response amplitude and
latency of the b-wave component to a rapidly flickering
light in the human electroretinogram, and van Norren
and Padmos (1977) demonstrated a prolongation in the
recovery of sensitivity to glare in the monkey ERG. In
humans, the latency of the early components of VEP has
generally been found to be less affected by alcohol than
the later components (Colrain et al., 1993; Rohrbaugh
et al., 1987). In contrast, the latencies of both early and late
components of the waveform have been shown to increase
after alcohol in the rat, cat, and monkey (DiPerri, Dravid,
Schweigerdt, & Himwich, 1968; Erickson, Joe Willey,
Riley, Fuster, & Lawrence, 1982; Hetzler, Oaklay, Heilbr-
onner, & Vestal, 1982).

Both the behavioural and electrophysiological data
demonstrate a detrimental effect of alcohol on processing
speed. A possible mechanism underlying these observed
changes may be a slowing in speed of neural transmission,
and/or an increase in latency of neural processing. Using
the visual system as a model, participants were tested in
visual tasks that would provide a measure of processing
speed before and after alcohol consumption: a Poffenber-
ger task, visual backward masking, and a flash-lag task.
It was expected that alcohol-induced reductions in process-
ing speed would be reflected in perceptual changes consis-
tent with a slowing of responsivity.

2. General method

2.1. Observers

All participants gave written, informed consent prior to
their inclusion in each experiment. All had normal or cor-
rected to normal vision, and no previous history of alcohol
abuse. The procedures in each experiment were approved
by the University Research Ethics Board for Health Sci-
ences Research and have therefore been performed in
accordance with the ethical standards laid down in the
1964 Declaration of Helsinki.

2.2. Apparatus and stimuli

All stimulus generation and data collection were con-
trolled by a VSG2/5F graphics board (Cambridge
Research Systems) installed in a Pentium III PC. Stimuli
were presented on the face of a 1900 Sony Trinitron
Multiscan 17 SeII display monitor, and all stimulus
presentation and data tabulation were under computer
control.

2.3. General procedure

Each participant completed each experiment under two
conditions, alcohol or no-alcohol, on separate days (sepa-
rated by at least 24 h). Participants expected that alcohol
might be consumed in both conditions. The orders of the
alcohol and no-alcohol conditions were counterbalanced
across participants. All testing began at either 10 am or
2 pm, and participants were asked to consume a light,
low-fat meal approximately 2 h before testing to avoid
adverse effects from consuming alcohol on an empty
stomach. It should be noted that the no-alcohol condition
should not be considered as a placebo condition in the
traditional sense since our study is designed to examine
the putative physiological effect of alcohol and not the
cognitive effects. Further, our aim in informing partici-
pants that they should expect that they might receive alco-
hol in both sessions was not to deceive, but rather to
ensure that the participant would take the necessary steps
to avoid the adverse effects of alcohol on an empty
stomach.

In the alcohol condition, the participant was served an
amount of alcohol (40% ethyl alcohol by volume) mixed
with fruit juice in a 1:4 ratio. In the no-alcohol condition,
participants received an amount of juice equal to that of
the liquid volume in the alcohol condition.

The number of drinks to be consumed by each partici-
pant was calculated using the Computerized Blood Alcohol
Calculator (CBAC, Addiction Research Foundation,
1992), based on the participant’s sex, weight, height and
age. Participants were asked to consume a number of
drinks estimated to raise blood alcohol concentrations
(BACs) in the alcohol condition to 0.08% within a period
of 20 min. BACs, determined with a breath-measuring
device (Alcometer 7410, Dræger, Inc.), were first measured
15 min after the 20-min drinking period, then every 15 min
until the minimum BAC required for testing was reached.
Data collection in the alcohol condition began upon reach-
ing a BAC of 0.06% or greater. Following completion of all
measurements, participants were asked to remain in the
care of the experimenter until their BAC fell below
0.03%. Once this level was reached, participants were
debriefed and released from the laboratory.

In the non-alcohol condition, data were obtained 15 min
after the consumption of the juice. Measurements were
obtained in an identical fashion to that described for the
alcohol condition.
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3. Experiment 1

As a first step, we were interested in obtaining data that
addressed the issue of whether the alcohol-induced impair-
ment in temporal processing is a consequence of an overall
slowing of neural transmission. Generally, data from reac-
tion time (RT) studies demonstrate an impairment of sim-
ple RT that is dose-dependant: moderate to higher
amounts of alcohol consistently cause a greater increase
(and thus a greater impairment) in reaction time for visual
stimuli (Gustafson, 1986a, 1986b, 1986c; Hernández,
Vogel-Sprott, Huchı́n-Ramirez, & Aké-Estrada, 2006;
Lemon, Chesher, Fox, Greeley, & Nabke, 1993; Tzambazis
& Stough, 2000; Wallgren & Barry, 1970; Young, 1970; see
Jellinek & McFarland, 1940 for a review), while there is lit-
tle evidence of an impairment at low doses (Wallgren &
Barry; Mitchell, 1985). In contrast, tasks in which at least
two different stimuli are presented that require different
responses (i.e., choice RT) show impairment even at low
doses of alcohol. The same pattern of impairments has also
been shown for responses to auditory stimuli (Gustafson,
1986b; Hernández et al., 2006).

Because RT consists of the time it takes for stimulus
detection and the time it takes to make the motor
response (Luce, 1986), and since these early studies did
not directly examine alcohol’s effects on the sensory com-
ponent separate from the motor component, it is not clear
from the previous RT data on which of the two compo-
nents alcohol is exerting its influence. Specifically, it might
be that alcohol’s effect is selective such that the increase in
RT is due to an increase in latency at the sensory stage or

at the motor stage. Alternatively, alcohol’s influence may
be a more global one, such that the increase in RT is due
to increases in latency for both the sensory and motor
stages.

To date, there are some data that support the possibility
that each stage could be selectively affected by alcohol. For
example, Krull, Smith, and Parsons (1994) correlated
changes between simple RT and event-related potential
(ERP) measures after alcohol consumption. They found
that both moderate and high levels of alcohol suppressed
the amplitude of the P100 portion of the waveform, as well
as the N100 portion. Moreover, the suppression in ampli-
tude was found to be correlated with the increased RT after
alcohol. Because the P100 portion of the waveform is
thought to reflect sensory processing (Picton, Hillyard,
Krausz, & Galambos, 1974), Krull et al. (1994) concluded
that the increase in RT was due to an increase in sensory
processing time. Hernández et al. (2006) had their partici-
pants respond with a key press to the omission of a recur-
ring stimulus. One key was depressed at the start of a trial
until the cessation of the stimulus, at which point partici-
pants were required to release the first key and depress a
second. Hernández et al. (2006) defined sensory RT as con-
sisting of the time between the occurrence of the last stim-
ulus and the release of the first key, while motor RT was
the time between releasing the first key and pressing the

second. Hernández et al. (2006) found that sensory reaction
time for detection of the omission of a recurring stimulus
increased after moderate doses of alcohol, while the RT
to execute the response remained unchanged.

The available RT data indicate that alcohol causes an
increase in sensory processing time. What should be noted,
however, is that the kind of tasks employed in the past
studies can only suggest that the increase in RT is due to
an increase in sensory processing latency, because they
did not take measures to control for the motor component
of RT. Consequently, it is quite possible that an increase in
motor processing time could also be contributing to the
observed RT measures. A more informative approach
would be to factor out the sensory and motor processing
times and obtain data of alcohol’s effects on transmission
speed only. We did this by using a technique first developed
by Poffenberger (1912). The technique involves presenting
visual targets to either the left or the right visual field
and recording manual reaction times to these presenta-
tions. When the hand of response and visual field of presen-
tation are on the same side (ipsilateral; the uncrossed
condition), the process underlying the response is con-
tained entirely in one hemisphere and along a direct path-
way. If, however, the hand of response is opposite to the
visual field of presentation (contralateral; crossed condi-
tion), one hemisphere receives the visual signal and the
other must execute the motor output, and as such the pro-
cess underlying the response requires interhemispheric
transfer.

Assuming that transmission of simple sensory informa-
tion and the initiation of uncomplicated movements are
conducted over fixed neuroanatomical pathways; an esti-
mate of interhemispheric transfer time can be obtained sim-
ply by subtracting the reaction time for uncrossed
conditions from the reaction time for crossed conditions
(crossed-uncrossed difference; CUD). Since both the sen-
sory stimulation and the required motor response are iden-
tical in both the crossed and uncrossed conditions, it can be
assumed that both sensory and motor processing time are
factored out in the calculated CUD and what is extracted
is a measure of speed of neural transmission independent
of the separate processing components.

To date, while there are some data on the effects of
chronic alcohol consumption on interhemispheric transfer
time (Schulte, Pfefferbaum, & Sullivan, 2004); there are
no data on the effects of acute alcohol consumption. To
that end, we used the Poffenberger paradigm in order to
obtain a gross indication of alcohol’s effects on transmis-
sion speed. If the apparent temporal disruption is due to
an overall reduction in transmission speed, participants
should demonstrate an increase in CUD.

3.1. Method

3.1.1. Observers

A group of 24 adults (19–31 years) participated in the
experiment.
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3.1.2. Apparatus and stimuli

Stimuli consisted of a rectangular bar 0.5�h by 0.1�w,
which was viewed at a distance of 150 cm. Although no
effect of retinal eccentricity on CUD has been reported, it
was included as a main factor in order to explore any pos-
sible interactions between retinal eccentricity and alcohol
on CUD. The target was presented 0.5�, 1.5�, 3�, or 5� to
the left or right of a central fixation point, and all testing
was conducted in a darkened room.

3.1.3. Procedure

The experimental design and procedures for administra-
tion of alcohol have already been described.

Participants were told that on each trial a target bar
would be presented, either to the left or to the right of a fix-
ation point. They were instructed to respond as quickly as
possible to the onset of the target bar by button press of a
response box with the index finger of their dominant hand
(as determined by the Modified Edinburgh Handedness
survey). The response box was located directly in front of
the participant, aligned with the midline of his or her body.
A single trial consisted of the onset of a centrally located
fixation point, the duration of which was varied randomly
between 1000 and 1500 ms from trial to trial in order to
discourage anticipatory responses. Immediately following,
the target was presented for 100 ms at one of the four posi-
tions: 0.5�, 1.5�, 3�, or 5� in each hemifield. Participants
were required to respond within 800 ms, after which the
next trial began. The starting position of their hand was
aligned with the midline of his or her body. It was decided
a priori to exclude trials in which participant’s RT was less
then 100 ms and greater then 700 ms, as these were
assumed to reflect anticipatory and inattentive responses,
respectively. Each of the four positions was presented 120
times per visual hemifield, for a total of 480 trials for each
position per experimental session on each of the two test
days. Nine of the 24 participants were tested on an earlier
version of the task in which each of the four positions was
presented 30 times per visual hemifield, for a total of 60
trials for each position, and 120 trials per experimental
session on each of the two test days.

3.2. Results

Measurements were made in the window between
0.06% and the target of 0.08% on the rising and falling
portion of the BAC curve. Mean BAC measures at the start
and end of the experimental session were Mstart =
0.07% (SD = 0.014), and Mend = 0.07% (SD = 0.019),
respectively.

RT data in the alcohol-free and after alcohol conditions
are shown in Fig. 1. Consistent with data from previous
studies, a 2 (alcohol vs. no-alcohol) · 2 (cross vs.
uncrossed) · 4 (target positions) repeated measures
ANOVA show a main effect of alcohol: RT increased after
alcohol consumption for both uncrossed and crossed con-
ditions [F (1, 23) = 6.83, p = 0.016]. Within both the

alcohol and no alcohol condition, moreover, RT were
longer for the longer, crossed path and shorter for the
shorter, uncrossed path [F (1,23) = 18.74, p < 0.0001].

Fig. 2 shows average CUD (crossed RT � uncrossed
RT) before and after alcohol as a function of retinal eccen-
tricity of stimulus presentation. A 2 (alcohol vs. no-alco-
hol) · 4 (target position) repeated measures ANOVA with
CUD as the dependant variable confirmed that we found
a main effect of alcohol [F (1, 23) = 4.52, p = 0.044], which
did not differ across the four target positions, indicating a
slowing of interhemispheric transmission when using an
RT measure. Moreover, while presentation position had
an effect on RT [F (3,69) = 3.51, p = 0.029; alcohol and
no alcohol at 0.5 and 3� (crossed condition), and alcohol
at 0.5 and 3�, 1.5, and 3� (uncrossed condition)], it had
no effect on CUD. The finding that RT increased with
increasing retinal eccentricity is in agreement with the
results of previous investigations on the effect of stimulus
eccentricity and RT (e.g., Berlucchi, Heron, Hyman,
Rizzolatti, & Umiltà, 1971).

4. Experiment 2

The data from our first experiment suggest a slowing in
transmission speed. It is also quite possible that neuronal
processing time itself is increased by alcohol. One way in

Fig. 1. Mean (± SEM) RT for all stimulus presentations plotted as a
function of alcohol and no-alcohol.

Fig. 2. Average CUD (± SEM) as a function of target position for both
alcohol and no alcohol conditions.
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which this could be manifested is as an increase in neuronal
latency: slower processing at the neuron and slower trans-
mission of information along the axon. In order to address
this possibility, a task is required that provides some mea-
sure of neuronal latencies. One example of such a task is
the flash-lag effect (FLE), which is generally accepted as a
psychophysical measure of neuronal latency.

In the flash-lag task, observers compare the position of a
continuously moving stimulus to the position of a brief
flash of light. When the moving stimulus and the flashed
stimulus are physically aligned in space and time, observers
nonetheless perceive the moving stimulus as being in front
of the flash (MacKay, 1958; Metzger, 1932; Nijhawan,
1994; Walker & Irion, 1982). In order to perceive the two
stimuli as being aligned, the flash must be delivered earlier,
at a moment when the moving stimulus has not yet reached
the flash’s position. This illusory spatial offset has been
demonstrated with different types of stimuli (Nijhawan &
Khurana, 2000), for visual motion, and stimulus attribute
changes (e.g., colour, contrast, entropy; for a recent
reviews, see Krekelberg & Lappe, 2001; Nijhawan, 2002;
Whitney, 2002).

Nijhawan (1994) was the first to also report on the linear
speed dependence of the flash lag effect: the magnitude of
the FLE increases as a linear function of the velocity of
the moving stimulus. This linearity simply reflects the fact
that the difference in latency is independent of speed (Kre-
kelberg & Lappe, 2001), and that the slope of the speed
dependence can be used to express spatial offsets as equiv-
alent temporal delays. Thus, although the stationary stim-
ulus appears to increasingly lag behind the progress of a
moving stimulus increasing in speed, the temporal delay
between the two is constant. Moreover, as the moving stim-
ulus increases in speed, any temporal delays will be
reflected in the lag between the two; the magnitude of the
slope provides the magnitude of the temporal delay demon-
strated by the spatial offset of the lag.

Although a variety of explanations have been proposed
(e.g., motion extrapolation, sensory postdiction; Khurana
& Nijhawan, 1995; Nijhawan, 1994, 1997, 2002; Eagleman
& Sejnowski, 2000), a generally accepted view is that the
perceived offset is caused by differential neuronal latencies
for moving and flashed stimuli: moving stimuli are pro-
cessed faster than stationary flashes (Brenner & Smeets,
2000; Eagleman & Sejnowski, 2000; Krekelberg & Lappe,
1999; Metzger, 1932; Purushothaman, Patel, Bedell, &
Ogmen, 1998; Whitney & Cavanagh, 2000; Whitney, Cav-
anagh, & Murakami, 2000; Whitney & Murakami, 1998;
Whitney, Murakami, & Cavanagh, 2000). With this differ-
ence in latency, the flash reaches awareness when the mov-
ing object is already farther along its trajectory. Therefore,
the flash appears to lag behind the already processed, mov-
ing object.

Findings from some physiological studies support the
notion that the FLE is a psychophysical manifestation of
differential latencies. Intracellular recordings demonstrate
that moving stimuli are processed within the visual system

at a different rate from stimuli presented for a very brief
period of time. These differences in the rate of processing
can be found at both the lateral geniculate nucleus
(LGN) and the cortical level. For example, LGN neurons
were found to respond with shorter delays to moving than
for flashed light bars (Orban, Hoffmann, & Duysens, 1985).
Measuring at the cortical level, Jancke, Erlhagen, Schöner,
and Dinse (2004) presented moving and stationary flashed
stimuli while recording from neurons in the primary visual
cortex of the cat. Jancke et al. found that response latencies
to moving light bars were significantly shorter than the
response latencies from the same neurons for the presenta-
tion of stationary flashed stimuli. Their findings demon-
strate differential processing, as well as providing indirect
support for the differences in processing time that lead to
a perceived spatial offset.

Given that the FLE is almost certainly an expression of
neuronal latency of visual processing, examination of the
FLE under alcohol and no-alcohol conditions should pro-
vide further understanding of alcohol’s effects on process-
ing speed. To our knowledge, no study has been
conducted that examines the effects of alcohol on the
FLE. If it is the case that alcohol acts to increase neuronal
latency for both the flash and the moving stimulus, then
participants should demonstrate an FLE increased in mag-
nitude after alcohol.

4.1. Method

4.1.1. Observers

Participants were six volunteers, aged 21–34 years. Two
additional male participants were disqualified due to diffi-
culties in performing the task after alcohol consumption.

4.1.2. Apparatus and stimuli

A chin and headrest were used to maintain a constant
viewing distance of 80 cm and to prevent excessive head
movements. Participants viewed the display binocularly.
The stimulus display employed in the present experiment
is presented in Fig. 3. The background screen luminance
was 1 cd m2. The moving stimulus consisted of a pair of
vertically aligned bars (40 cd m2) that were translated hor-
izontally 3� above a fixation cross. The distance between

3˚3˚

Fig. 3. Schematic of stimulus display used in the flash lag task (flashed
target bar = grey, moving bars = black).
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the bars was constant at 1�, and they moved concurrently
at 6 different velocities (2.75, 4, 5.25, 6.5, 7.75, 9� s�1), with
only one velocity measured in a run. On each trial, the
motion of the bars was randomly presented as either mov-
ing from the left to the right, or right to left. A bar equal in
size to one of the pair of vertically aligned bars of the mov-
ing stimulus was flashed for one video frame (10 ms)
between the moving bars.

4.1.3. Procedure

The experimental design and procedures for administra-
tion of alcohol have already been described.

Target spatial thresholds (the minimum amount of offset
required in order for a percept of alignment between the
moving bar and flash) were determined using a dual ran-
dom interleaved staircase design. Participants indicated
whether the flash appeared spatially offset to the left or
right of the moving bar by pressing a button on a two-
choice response box. Initial presentation of the flash was
at centre, and a response of a perceived spatial offset shifted
the bar in 0.4 min increments to the left or right of fixation
(depending on the direction of motion of the moving bar).
The flash was presented for 10 ms, and the velocity of the
moving bar ranged from 2.75� s�1 to 9� s�1, in increments
of 1.25� s�1. Each velocity was measured in a separate
run. Testing was continued until seven response reversals
had occurred on each staircase, and the spatial and tempo-
ral offset was taken as the average of the final six reversals
on both staircases. Each velocity was tested three times,
with the final average of the three runs making up the
FLE for that particular bar velocity.

4.2. Results

Measurements were made in the window between 0.06%
and the target of 0.08% on the rising and falling portion of
the BAC curve. Mean BAC measures at the start and end
of the experimental session were 0.0795% (SD = 0.019) at
the start, and 0.0667% (SD = 0.011) at the end of the
session.

Fig. 4 shows the data in units of spatial lag (min of arc)
averaged across all six participants for both the alcohol and
no-alcohol conditions. Spatial offset thresholds were plot-
ted as a function of the six different bar velocities. Consis-
tent with past findings, a 2 (alcohol vs. no-alcohol) · 6 (bar
velocities) repeated measures ANOVA confirmed that par-
ticipants demonstrated a typical flash-lag effect in which
the amount of spatial offset increased as a linear function
of bar velocity (Nijhawan, 1994) under both the alcohol
and no-alcohol conditions [F (5,25) = 26.43, p < 0.0001].
In addition, participants demonstrated a larger FLE after
alcohol [F (1,5) = 9.51, p = 0.027]. No significant alco-
hol · bar velocity interaction was found [F (5,25) = 1.56,
p = 0.209].

In order to determine the delay in processing time, the
spatial lag data were converted into temporal units (see
Fig. 5). On average, the flashed bar lagged the moving ones

by 36.35 ms without alcohol and by 43.39 ms with alcohol
[F (1,5) = 10.88, p = 0.021]. Further inspection of the data
suggests that alcohol seems to have a greater effect for tar-
gets that move at slower velocities. This apparent effect of
bar velocity, however, was not significant [F (5,25) = 1.36,
p = 0.272], nor was there a significant alcohol · bar veloc-
ity interaction [F (5, 25) = 1.92, p = 0.127].

Taken together, these data demonstrate an increase in
the magnitude of the FLE after alcohol, as manifested by
a vertical shift in the flash-lag function, suggesting an alco-
hol-induced overall reduction in speed of processing for
both the flash and the moving stimulus.

Given that the FLE is an expression of neuronal latency,
the examination of the FLE under alcohol and no-alcohol
conditions provides convergent evidence for a preferential
effect of alcohol on processing speed. Specifically, these
data show that alcohol seems to cause an increase in the
neuronal latency to process visual information.

5. Experiment 3

Another way to investigate the dynamic properties of
the visual system is to use visual masking. Masking occurs
whenever the visibility of one stimulus, the target, is
reduced by the presence of another stimulus, the mask.

Fig. 4. Average spatial offset thresholds as a function of the six different
bar velocities for both alcohol and no alcohol conditions.

Fig. 5. Temporal offset plotted as a function of bar velocity for both
alcohol and no alcohol conditions.
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The magnitude of the masking effect is dependent on the
amount of time separating the onset of the target and the
onset of the mask. By varying the onset asynchrony (i.e.,
SOA), the temporal relationship between the neural
response to the target and the neural response to the mask
can be manipulated. When the response to the mask inter-
acts with the response to the target, the effect is measured
psychophysically as masking. Given that masking provides
a measure of temporal processing, examination of the
masking effect under alcohol and no-alcohol conditions
should provide further understanding of alcohol’s effects
on processing speed.

There is both behavioural and electrophysiological evi-
dence for the efficacy of using a masking protocol. Neuro-
nal recordings have found effects of visual masks at
different levels in the visual pathway. Single unit record-
ings in V1 of the macaque revealed a reduction in the
transient onset-response and after-discharges associated
with the addition and removal, respectively, of a cycling
stimulus (Macknik & Livingstone, 1998), and the effect
was shown to be larger at later levels of visual processing:
the duration, peak firing rate, and stimulus selectivity
were reduced (Kovács, Vogels, & Orban, 1995; Rolls &
Tovée, 1994; Rolls, Tovée, & Panzeri, 1999; Tovée &
Rolls, 1995) as target visibility was reduced by the mask.
These findings suggest an increasing interference of neural
processing for the target by the mask, which corresponds
to decreased target visibility shown behaviourally in
humans (Macknik & Livingstone, 1998). In terms of
behavioural evidence, there are many experiments that
demonstrate the interaction between the mask and target
on responses (Breitmeyer, 1984; Enns & Di Lollo, 2000),
but the evidence on the associated changes in cerebral
activity is sparse. The few studies done, however, provide
converging evidence with the electrophysiological findings:
both performance and cerebral activation decrease as the
target and mask get temporally closer (Bacon-Macé,
Macé, Fabre-Thorpe, & Thorpe, 2005; Grill-Spector,
Kushnir, Hendler, & Malach, 2000).

To date, only two studies have used visual masking in an
attempt to obtain a clearer understanding of alcohol’s
effects on the dynamics of visual processing. Jones et al.
(1998), and Moskowitz and Murray (1976), using back-
ward masking with noise or structure, respectively, found
that an increase in temporal separation between the target
and the mask was necessary after alcohol consumption,
which they took as a demonstration of alcohol causing a
reduction in the speed of processing. A closer examination
of both the tasks show that the processing demands made
on the participants could be construed as occurring at later
levels. Specifically, the masking protocol also provides a
means to indirectly explore alcohol’s effects on the interac-
tion between the processing demand of the task and the
speed of processing. One way to manipulate the demands
made on processing is to vary the type of response required
from the participant. For example, the processing demands
for discriminating a target are greater than the demands for

simply detecting a target: Jones et al. required that partici-
pants discriminate between two bars and identify which of
the two had an extra feature, and Moskowitz and Murray
had participants discriminate a letter from an array of four.
Since the processing demands are generally greater for dis-
crimination, it is not clear from these data whether early
levels of processing also experience a decrease in the rate
of processing, or even whether alcohol causes an overall
slowing in total processing speed.

The existing literature suggests that overall processing
efficiency is reduced after alcohol (Gustafson, 1986a,
1986b, 1986c; Hernández et al., 2006; Lemon et al., 1993;
Maylor, Rabbitt, James, & Kerr, 1990, 1992; Tzambazis
& Stough, 2000; Wallgren & Barry, 1970). Further, there
are some data that show a reduction in processing effi-
ciency for information with low processing demands (May-
lor et al., 1990; Tzambazis & Stough, 2000). What is not
apparent, however, is whether the demonstrated reduction
of overall processing efficiency is a consequence of a chain
reaction that commences with alcohol exerting its influence
at the lowest levels of information processing, or whether
the effects occur at a higher level.

In order to address this, participants were required to
complete two types of masking tasks that differed with
respect to the processing demands placed on the partici-
pant. In the low-level task (LLT), participants were
required to simply detect the target; the higher-level task
(HLT) required both detection and identification of the ori-
entation of the target. The rationale was that if alcohol was
affecting processing at the lowest levels, then performance
on both tasks should be impaired. If only higher level pro-
cessing was affected, then only the second task would show
a deficit.

5.1. Method

5.1.1. Observers

Participants were twelve volunteers, aged 21–34 years.
One participant was excluded because performance in the
discrimination task hovered around chance (i.e., 25%).

5.1.2. Apparatus and stimuli

The screen luminance was 10 cd m2, and four fixation
crosses spaced 1� apart boxed in the central viewing area.
The target stimulus was a disc with a diameter of 1�,
containing a square-wave grating pattern with a spatial
frequency of 5 cycles per degree (cpd). The target was
presented for 10 ms, followed by a masking stimulus that
was a 2� square. It contained a random pattern of black
and white dots, with 100% contrast between the dots.
The mean luminance of the masking stimulus was
50 cd m�2. The mask was displayed on the screen for
100 ms.

5.1.3. Procedure

The experimental design and procedures for administra-
tion of alcohol were identical to that already described.
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Low-level task. In the low-level task, participants were
required to indicate whether they saw the vertically ori-
ented target that was presented some time before the mask
(see Fig. 6). Participants were tested at 10 SOA values of
10 ms to 100 ms in 10 ms increments, as well as a run in
which only the target was presented without the mask.
The order in which the SOA values were administered
was random for each participant. Participants initiated
each experimental run by pressing a button in response
to a tone. Contrast thresholds were obtained using a dual
random interleaved staircase procedure, with initial con-
trast set at 10%. The participant’s contrast threshold was
calculated as the average of the final eight reversals on both
staircases. If the contrast in any experimental run was at
100% and the participant continually gave a negative
response, the run was manually terminated after approxi-
mately eight negative responses in each staircase. The
SOA value in which this occurred was re-tested once all
other experimental runs were complete.

Higher-level task. For the second task, participants were
required to make a decision regarding target orientation.
There were four possible target orientations: vertical,
horizontal, right-oblique, and left-oblique. A method of
constant stimuli with a four-alternative forced choice
procedure was used to measure the percentage of correct
identifications as a function of SOA (see Fig. 7). In a
run, each orientation was presented 25 times at a specific
SOA, for a total of 100 presentations. In total, there were
10 experimental runs in the orientation task with SOA val-
ues of 10–100 ms in 10 ms increments. The SOA value for
every run was chosen at random. The grating contrast of
the target was held constant at 10%, with the expectation
that at low SOA values it would be undetectable, and at
high SOA values it would be easily detected. The partici-
pant initiated each run with a button press in response to
a tone, causing the first stimulus to be presented on the
screen. The participants were required to indicate the target
orientation by pressing the appropriate button on a four-
choice response box. At the end of each experimental
run, the percent correct for each orientation was calcu-
lated, as well as an average percent correct across all
orientations.

5.2. Results

Measurements were made in the window between 0.06%
and the target of 0.08% on the rising and falling portion of
the BAC curve. Mean BAC measures at the start and end
of the experimental session were Mstart = 0.067% (SD =
0.009), and Mend = 0.07% (SD = 0.014), respectively.

Initially, performance for each orientation in the HLT
was assessed separately with a 4 (orientation) · 10 (SOA)
repeated measures ANOVA. Because there were no differ-
ences (no alcohol: p = 0.540; alcohol: p = 0.403), data were
collapsed across orientations in the HLT for both alcohol
and no alcohol conditions. Frequency-of-seeing curves
were plotted for the combined forced choice data for the
HLT, and the threshold data for the LLT. Under both
alcohol and no alcohol conditions, performance improved
as SOA increased for both the LLT and HLT, consistent
with other findings.

Low-level task. Fig. 8 shows average contrast required
for target detection as a function of SOA. As can be seen
from the group data, as SOA increased, contrast required
for detection decreased. In order to determine whether
there were any SOA values in which there was no effect
of the mask, a single sample t-test comparing the average

Fig. 6. Stimulus display for low level task.

Fig. 7. Stimulus display for the higher-level task.

Fig. 8. Percent contrast at threshold plotted as a function of SOA for both
alcohol and no alcohol conditions in the low level task.
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threshold for detection when no mask was presented with
the average thresholds at each SOA was computed. Target
visibility was greatest (and thus the effect of the mask on
processing was the least) when the target was presented
100 ms before the mask; all other SOAs resulted in a signif-
icant masking effect. Further, participants demonstrated
contrast thresholds that varied with SOA, indicating a
masking effect [F (8, 88) = 40.53, p < 0.001] overall with
or without alcohol. There was no overall effect of alcohol
on target detection (p = 0.08), likely due to the little or
no effects at the higher SOAs, which is reflected in a signif-
icant interaction between SOA and alcohol [F
(8,88) = 2.31, p = 0.027].

Alcohol had the greatest effect on masking SOA values
of 30, 40, and 50 ms [F (1,11) = 4.92, p = 0.049]. These
data demonstrate alcohol induced changes in a detection
task for short SOAs, suggesting that temporal processing
is reduced after alcohol at lower levels of processing. This
finding is consistent with findings from previous studies
that indicate that early levels of processing are sensitive
to the influence of alcohol.

Higher-level task. Fig. 9 shows the average percentage of
correct identifications as a function of SOA for both alco-
hol and no alcohol conditions. The group data show a
masking effect: as SOA increased, percentage of correct dis-
criminations increased [F (9, 99) = 52.82, p < 0.0001]. In
order to determine the extent to which complete masking
occurred even in the absence of alcohol across SOAs, com-
parisons were made between chance performance (25%)
and the average percentage of correct discriminations in
the no alcohol conditions at each SOA using a single sam-
ple t-test. Complete masking (i.e., chance performance)
occurred at SOA values of 10 ms and 20 ms, at all other
SOA values participants’ performance was above chance
levels.

The effect of alcohol on the percentage of correct
responses increased as SOA values increased from 30 to
100 ms [F (7, 77) = 44.37, p < 0.001], indicating that a
masking effect was present. Further, there was a main effect
of alcohol [F (1,11) = 14.66, p = 0.003], showing that alco-
hol slowed the ability to discriminate target orientation as

SOA increased by approximately 10 ms. That is to say,
akin to the low-level task, the data show that SOA must
be increased by 10 ms in order to produce the same level
of performance with alcohol to the level of performance
without alcohol; both the alcohol and no alcohol functions
overlap if the no alcohol function is shifted by 10 ms to the
right.

6. Discussion

Findings from previous studies have demonstrated the
widespread systemic effects of alcohol on the body and
CNS. These effects have been shown to occur both phys-
iologically and behaviourally. The present series of exper-
iments provides a demonstration of the use of the visual
system as a model system to reveal a link between alco-
hol-induced changes in the physiological mechanisms
underlying visual functions and alcohol-induced percep-
tual changes. While it is certain that alcohol’s influences
on visual functions are multiply determined, one candi-
date mechanism is alcohol-induced changes in the rate
of neural processing. In tasks that provide a measure of
processing and transmission speed, participants demon-
strated larger CUDs, a larger FLE, and prolonged mask-
ing after alcohol consumption. It should be noted that
because SOA values beyond 100 ms were not measured
in our higher-level masking task, it is unclear whether
or not performance after alcohol ever recovers to the
no-alcohol level of performance, or whether the decrease
in percent correct is due to a fundamental property of
alcohol unrelated to time. Further investigation is
required to address this issue. Nevertheless, our data are
consistent with the view that alcohol impairs the speed
of neural processing and transmission.

The data from the present series of experiments suggest
that alcohol may exert its effects to a greater degree on
functions largely reliant on processing speed. Support for
this suggestion comes from two lines of evidence from
the visual system. First, functions that the parvocellular
pathway is responsible for seem to be affected very little,
or not at all, by alcohol. For example, there are relatively
small effects on acuity and spatial contrast sensitivity,
and the ability to recognize objects is scarcely changed after
alcohol. Second, there are data that show a greater effect of
alcohol on rapid temporal processing; which is a property
of the magnocellular pathway. For example, Pearson and
Timney (1998) found that after alcohol, decreases in con-
trast sensitivity increase progressively as a function of tem-
poral frequency, with small decreases at low temporal
frequencies, and large decreases at high temporal frequen-
cies. Given that it is more likely that the lower temporal
frequencies are mediated by the parvocellular path, Pear-
son and Timney’s finding suggest that with respect to speed
of processing, alcohol has greater effects when rapid tem-
poral processing is required, and that processing speed
and transmission efficiency along the magnocellular path-
ways are more affected.

Fig. 9. Percent correct identifications plotted as a function of SOA for
both alcohol and no alcohol conditions in the higher-level task.

S.A. Khan, B. Timney / Vision Research 47 (2007) 1821–1832 1829



Additional support for the view that alcohol may exert
its effects to a greater degree on mechanisms of processing
speed, and as such, on the magnocellular pathway, may be
found from an examination of the ‘‘perception for action’’
component of the dorsal stream. Visuomotor processing,
which is responsible for our ability to coordinate and use
visual information in order to perform appropriate motor
actions (i.e., perception for action), occurs in the magnocel-
lular pathway. To date, there are some behavioural data
demonstrating alcohol’s effects on visuomotor processing
(Timney & Johnston, 2003). For example, Timney & John-
ston showed that in a simple manual prehension task, par-
ticipants demonstrated changes to reaching behaviour after
alcohol. Grasping, on the other hand, was not affected.
Kirkpatrick (2005), Kade, Steeves, Goodale, and Timney
(2005), and Johnston and Timney (unpublished data),
moreover, demonstrated that alcohol adversely affects
motor responses that are amended during execution due
to changes in visual information.

The behavioural measures obtained in the present series
of studies are not constrained to the visual modality.
IHTT, the masking effect, and the flash-lag effect have all
been demonstrated in the auditory and somatosensory
domains, as well as cross-modally (Alais & Burr, 2003;
Axelrod, Thompson, & Cohen, 1968; Clarke & Geffen,
1990; Fink, Ulbrich, Churan, & Wittmann, 2006; Gesche-
ider, 1966; Hirsh & Sherrick, 1961). From this, a central-
timing mechanism independent of sensory modality has
been proposed as the mechanism mediating all of the afore-
mentioned measures (Fink et al., 2006). By extension, it
seems feasible that the observed reduction in both trans-
mission and processing speed shown in the present series
of experiments should also be observed in a comparable
fashion across other sensory modalities. To our knowledge,
there are no studies investigating alcohol’s effects on tem-
poral aspects of neural processing in other modalities using
these behavioural measures. Data across modalities would
provide support of an effect of alcohol on an over-arching
central timing mechanism.

In summary, the data from the experiments described
herein suggest that while alcohol does affect the higher inte-
grative functions, this effect has its origins at the lowest lev-
els. The observed slowing of responsiveness after alcohol
may be a consequence of changes in processing that result
from information transmitted through the system too
slowly, along with an overall slowing in processing. More-
over, this reduction in transmission and processing efficiency
appears to originate at stages of processing of information
that exert minimal to low demands on the processing system.
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