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Agricultural drought assessment based on multiple soil moisture products
Jongjin Baik, Muhammad Zohaib, Ungtae Kim, Muhammad Aadil, Minha Choi

A R T I C L E I N F O
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A B S T R A C T

In this study, we evaluated three soil moisture (SM) products (Advanced Microwave Scanning Radiometer-2
[AMSR2], Advanced SCATterometer [ASCAT], and European Reanalysis Interim [ERA-interim]) across Australia
in four climate zones by comparing against the Australian Water Resources Assessment-Landscape (AWRA-L) SM
products from July 2012 to June 2017. The ASCAT SM indicated better performance than other SM products
over Australia. To evaluate the applicability and reliability for monitoring agricultural drought, an agricultural
drought index, the Soil Water Deficit Index, was estimated from three SM products and compared with three
commonly-used drought indices (atmospheric water deficit [AWD], Evaporative Stress Index, and
Reconnaissance Drought Index). Volumetric contingency tables were compiled to quantitatively assess the
performance of agricultural drought detection using various SM products compared with the AWD. All products
had reliable drought detection capability over Australia based on the results of temporal evolution and con-
tingency tables with a mean volumetric hit index of 0.700, 0.728, and 0.787 for AMSR2, ASCAT, and ERA-
interim, respectively. The slight incapability of drought detection capability of SWDI in tropical region was low
due to the variation in persistence times of moisture in the atmosphere and soil. Except arid zone, in all climate
zones, the reliability of SM products for drought detection followed the following order ASCAT > ERA-
interim > AMSR2.

1. Introduction

Droughts are recurring extreme climatic phenomena that affect
human lives in terms of water scarcity and crop production (Mishra and
Singh, 2010; Dai, 2013). Generally, drought is described as low pre-
cipitation (P) over a long period, eventually reducing soil water avail-
ability for plants (AghaKouchak et al., 2015). Droughts are mainly ca-
tegorized into four types: agricultural, hydrological, meteorological,
and socio-economic (Mishra and Singh, 2010). Various hydrological
variables have been adopted to define distinctive drought indices, such
as the Palmer Drought Severity Index (Palmer, 1965), Atmospheric
Water Deficit (AWD; Purcell et al., 2003), Standardized Precipitation
Index (McKee et al., 1993), Standardized Precipitation Evapo-
transpiration Index (Vicente-Serrano et al., 2010), Scaled Drought
Condition Index (Rhee et al., 2010), Crop Moisture Index (Palmer,
1968), Evaporative Stress Index (ESI; Anderson et al., 2007, 2011),
Reconnaissance Drought Index (RDI; Tsakiris et al., 2007), and Multi-
variate Standardized Drought Index (Hao and AghaKouchak, 2013).

These indices are based on P, evapotranspiration (ET), and vegetation,
which are related to hydrological and meteorological droughts. How-
ever, Mozny et al. (2012) found that low P affects the physical prop-
erties of soil by creating a crust that decreases infiltration and weakens
the interaction between soil and atmosphere during dry periods.
Therefore, the abovementioned indices are not suitable measures for
assessing agricultural drought that is characterized by soil water
availability and associated soil properties and plays a critical role in
crop production.

Australia is the driest continent on earth and suffers from persistent
drought events. At the start of the 21st century, a long uninterrupted
drought (called the Millennium drought) hit Australia and lasted for
most of the decade (2001–2009), severely damaging river ecosystems
and dryland agriculture (Chiew et al., 2014; Park et al., 2019). Previous
studies on drought in Australia mainly focused on meteorological
drought characterized as below-average rainfall (Tsakiris and Vangelis,
2005; Rahmat et al., 2015). However, to assess the impact of drought
on agricultural productivity and crop growth, studying agricultural
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of Oznet and cosmic-rays (CosmOz) in southeast Australia and found
reliable correlations (0.68–0.73) with surface and sub-surface SM. Si-
milarly, Holgate et al. (2016) compared various remotely sensed and
modeled SM products with in situ measurements from OzNet, OzFlux,
and CosmOz (including AWRA-L) and found that AWRA-L was better at
simulating temporal anomalies of in-situ, with a correlation range of
0.58–0.89. To assess the severity and distribution of agricultural
drought over Australia, SWDI was computed using all three SM pro-
ducts and compared with a reference drought index, i.e., the AWD
obtained from meteorological data from the BoM. The primary objec-
tives of this study are as follows: 1) to compare SM products (i.e.,
AMSR2, ASCAT, and ERA-interim) against the AWRA-L SM product, 2)
to calculate weekly SWDI from various SM products across four climate
zones in Australia and evaluate them by comparing with the commonly
used drought indices, such as AWD, ESI, and RDIst, and 3) to assess the
agricultural drought detection skills of various SM products by calcu-
lating volumetric contingency table.

2. Study area and data

2.1. Study area

Australia lies between 10° and 44° S and 112°–154° E with an area of
7,692,024 km2 consisting of various ecological and climatic character-
istics (Horridge et al., 2005). Australia has witnessed lengthy and se-
vere droughts in the past and suffered the “Millennium Drought” from
2001 to 2009 (van Dijk et al., 2013). These droughts brought huge
losses to the Australian economy and a humanitarian crisis (Van Dijk
et al., 2013). Because of its geographic location and rainfall patterns,
Australia is continuously affected by droughts that remain a major
concern of hydrologic scientists and researchers (AghaKouchak et al.,
2014; Kiem et al., 2016). To evaluate the distribution and variation of
agricultural drought in various climate regions, the study area was di-
vided into four climate zones according to the Köppen Geiger Climate
Classification. The climate classification proposed by Peel et al. (2007)
and Cho et al. (2017) for Australia was followed in this study. This
classification comprises tropical, arid, temperate dry summer (DS), and
temperate non-dry summer (NDS) climates (Fig. 1).

2.2. AWRA-L SM product

AWRA-L model (http://www.bom.gov.au/water/landscape/) de-
veloped by BoM and Commonwealth Scientific and Industrial Research
Organization provides essential water resource information for
Australia, including daily SM, P, and ET at a spatial resolution of
0.05°× 0.05° (Johnston et al., 2003; Vaze et al., 2013; Viney et al.,
2014). The input forcing datasets of AWRA-L includes Australian Water

Fig. 1. Map of Australia and its four climate zones.

drought is very important. To the best of our knowledge, studies on 
agricultural drought in Australia remain scarce. Thus, in this study, we 
evaluated the potential applicability of monitoring agricultural drought 
in Australia. Agricultural drought occurs when a deficiency i n soil 
moisture (SM) [L3 L−3] starts adversely affecting crop growth and ul-
timately reducing crop yield (Panu and Sharma, 2002). Several agri-
cultural drought indices have been developed, such as the Soil Moisture 
Deficit Index (Narasimhan and Srinivasan, 2005), Soil Wetness Deficit 
Index (Keshavarz et al., 2014), Agricultural Reference Index for 
Drought (Woli et al., 2012), and Soil Moisture Drought Severity (Qin 
et al., 2015). These agricultural drought indices are either based on 
vegetation indices or SM calculated from water balances or hydro-
logical modeling. Moreover, SM time-series from satellite remote sen-
sing were directly used for defining or assessing agricultural drought 
events in the Little River Experimental Watershed in the state of 
Georgia, USA (Choi et al., 2013) and the Horn of Africa region (Ambaw, 
2013). Recently, Martínez-Fernández et al. (2015) proposed an agri-
cultural drought index, the Soil Water Drought Index (SWDI), which 
accurately reflects agricultural drought by explicitly including soil and 
water properties. Primary features of agricultural drought identifica-
tion, such as the beginning, ending, duration, and severity, can be ef-
ficiently determined using SWDI (Martínez-Fernández et al., 2016).

One of the important parameters of SWDI is SM, which plays a 
critical role in the hydrological cycle between the land surface and 
atmosphere (Owe et al., 2001; Bateni and Entekhabi, 2012). The Global 
Climate Observing System recognized SM as an “Essential Climate 
Variable,” signifying its influence o n P , E T, i nfiltration, an d runoff 
(Brocca et al., 2011). SM products are frequently used to predict hy-
drological extremes such as floods (Massari et al., 2018) and droughts 
(Martínez-Fernández et al., 2015). Similarly, they have been used to 
predict landslides (Brocca et al., 2012) and dust outbreaks (Kim et al., 
2017). SM products are generally obtained by three different methods: 
in situ measurements, satellite remote sensing, and hydrological mod-
eling (Entekhabi et al., 2010; Kerr et al., 2010). Many remote sensing 
platforms and hydrological models have been developed to provide SM 
on diverse spatial and temporal scales (Wagner et al., 2012; Dorigo 
et al., 2015). The most prominent currently operating missions are Soil 
Moisture Active and Passive (SMAP), Soil Moisture and Ocean Salinity 
(SMOS), Advanced SCATterometer (ASCAT), Advanced Microwave 
Scanning Radiometer-2 (AMSR2), European Reanalysis Interim (ERA-
interim), and Global Land Data Assimilation System (GLDAS) (Rodell 
et al., 2004; Entekhabi et al., 2010; Kerr et al., 2010; Dee et al., 2011; 
Wagner et al., 2013; Parinussa et al., 2015; Kim et al., 2018). De-
pending on different l and c overs a nd c limate z ones, S M products 
computed from various satellite missions and models yield dissimilar 
results compared to reference datasets (Kim et al., 2017; Albergel et al., 
2013; Brocca et al., 2011).

Considering the uncertainty of various SM products in different land 
uses and climate conditions, the distribution of agricultural drought 
from multiple SM products in various climate zones across Australia 
was evaluated and compared for the first time in this study. SWDI from 
various SM products was calculated to assess agricultural drought and 
compared with AWD across Australia. We used two satellite-based 
(AMSR2 and ASCAT, passive and active sensors, respectively) and one 
modeled (ERA-interim) SM product to estimate SWDI. Although, point-
scale validation of these products in Australia has been carried out 
several times (Su et al., 2013; Parinussa et al., 2015; Balsamo et al., 
2015; Holgate et al., 2016). However, uneven distribution of point-
based SM observations across the various climate zones make the va-
lidation biased.

In this study, AWRA-L, which is the SM product of the Bureau of 
Meteorology (BoM; Vaze et al., 2013), was used as the reference SM 
data to compare the performance of other SM products on a grid based 
over Australia from July 2012 to June 2017. The AWRA-L was used as a 
reference dataset because of its reliability, as reported by Renzullo et al.
(2014). They evaluated AWRA-L SM products against in situ networks
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electromagnetic signals from Earth in the form of C-band pulses using
two sets of three antennas (Wagner et al., 2013). The backscattering
signals mainly depend on vegetation and surface roughness; thus, the
SM product from active microwave sensors is influenced by these fac-
tors (Verhoest et al., 2008; Brocca et al., 2011). The ASCAT SM product
is estimated based on the degree of saturation ranging from 0% for dry
land to 100% for wet land (Su et al., 2013). The volumetric SM from
ASCAT (https://eoportal.eumetsat.int) was calculated by multiplying
the degree of saturation by porosity values derived from the Harmo-
nized World Soil Database (HWSD) (Saxton et al., 1986; Kim et al.,
2017).

2.5. ERA-interim SM product

The European Centre for Medium-Range Weather Forecasts
(ECMWF) Interim Reanalysis (ERA-interim) is a global land atmo-
spheric reanalysis product (https://apps.ecmwf.int). The Tiled ECMWF
Scheme of Surface Exchanges over Land provides a land surface analysis
model of ERA-interim for estimating hydrological variables (Dee et al.,
2011). ERA-interim produces SM for four different layers (0–7 cm,
7–28 cm, 28–100 cm, 100–289 cm) from the surface to deep root zone
(Albergel et al., 2013). In this study, we used the top layer daily ERA-
interim SM products at a 0.25° degree spatial resolution to calculate
SWDI.

3. Methodology

3.1. Rescaling soil moisture products

SM products from various sources (satellite and land surface
models) typically exhibit a wide dynamic range due to systematic biases
(Koster et al., 2009; Entekhabi et al., 2010), which prevents fair com-
parison between SWDI values computed from individual original SM
products. Rescaling techniques not only adjust the mean and standard
deviation of the selected datasets to a common reference for fair com-
parison, but also account for both vertical and horizontal differences
(Reichle and Koster, 2005; Reichle et al., 2008; Yilmaz and Crow, 2013)
caused by SM obtained from different sources (satellite and models) as
well as different sensors (active and passive), wavelengths (X-band and
C-band), and units (volumetric SM and degree of saturation). Moreover,
a rescaling technique for SWDI comparison has been used in various
studies such as Albergel et al. (2008), Draper et al. (2009), and Brocca
et al. (2010). In this study, a linear rescaling approach (Draper et al.,
2009; Brocca et al., 2010) was used to force the AMSR2, ASCAT, and
ERA-interim data to have the same mean and standard deviation as that
of AWRA-L:

= × +SM SM SM SM( )R X X
SM

SM
AWRA L

AWRA L

X (1)

Here, SMR is the linearly rescaled SM product, and X denotes the SM
product of AMSR2, ASCAT, or ERA-interim. SMX and SMX are the mean
and standard deviation of those three SM products, respectively.
Finally, SMAWRA L and SMAWRA L are the mean and standard deviation of
the AWRA-L SM product, respectively.

3.2. Soil Water Deficit Index (SWDI)

SWDI represents the drought condition by estimating the associated
moisture deficit. Positive values of SWDI indicate that the SM content is
greater than the field capacity (fc) and that excess water is available to
plants, whereas negative values indicate a range of drought conditions.
For example, the initial water stress at the start of a drought will be
witnessed as the SWDI falls below zero (Mishra et al., 2017). The ca-
tegory of drought varies based on the magnitude of the negative values
(Martínez-Fernández et al., 2015): 0 to −1 for mild drought, −2 to −5

Availability Project meteorological grids, which provided daily rainfall, 
minimum and maximum air temperature, and solar radiation. The SM 
products from AWRA-L are computed by water balance on each grid 
considering two hydrological response units (HRU s): shallow-rooted 
vegetation, which has access only to the two upper soil layers (i.e., the 
top layer [0–10 cm] and shallow root zone layer [10–100 cm]), and 
deep-rooted vegetation, which also has access to a deep root zone layer 
(100–600 cm). Soil properties were obtained using pedotransfer func-
tions in different layers (Johnston et al., 2003). Daily P  products are 
calculated from more than 6,500 rain gauge stations installed by the 
BoM throughout Australia, while potential evapotranspiration (PET) is 
calculated using the equations of Penman (1948) (Jones et al., 2009). 
AWRA-L also provides the actual evapotranspiration (AET) products, 
which are misrepresented in major urban and irrigated croplands due to 
a lack of information about the impervious layer and irrigated crops in 
HRUs (Van Dijk and Bruijnzeel, 2001). In this study, the top layer SM, 
P, PET, and AET products from the AWRA-L model were used after up-
scaling to 0.25° × 0.25° to match its spatial resolution to other pro-
ducts. The SM product from AWRA-L was used as a reference to com-
pare the SM of AMSR2, ASCAT, and ERA-interim, and P, AET, and PET 
were used to estiamte the other reference drought indices, such as 
AWD, The choice of AWRA-L SM as a reference for comparison of other 
SM products aligns with our research goal, the evaluation of SWDI 
based on respective SM products in different c limate z ones. SM ob-
servations in Australia have limited spatial coverage across various 
climate zones. Most hydrological observations in Australia are per-
formed in coastal regions in the southeast and southwest, with many 
areas in the interior being relatively poorly covered, especially the in-
terior arid and desert areas. Moreover, previous studies also reported 
the reasonable accuracy of AWRA-L with in situ measurements. Hence, 
these two reasons support our decision to select the AWRA-L, which 
integrate multiple sources i.e., in situ and remotely sensed datasets in a 
hydrological model framework, as the gridded reference dataset over 
Australia in this study.

2.3. AMSR2 SM product

AMSR2 on the panel of Global Change Observation Mission 1-Water 
is a passive microwave sensor launched by the Japan Aerospace 
Exploration Agency (JAXA) in 2012. AMSR2 carries the legacy of 
AMSR-Earth observing system with some technical improvement and 
performance advancements, such as an additional frequency introduced 
to reduce radio frequency interference (Parinussa et al., 2015; Wu et al., 
2016; Cho et al., 2017). The Land Parameter Retrieval Model (LPRM) 
and JAXA algorithms were developed for SM retrieval from AMSR2. 
The LPRM algorithm was established by Vrije Universiteit Amsterdam, 
with assistance from the National Aeronautics Space Administration 
(NASA), using a simple radiative transfer model to observe the 
brightness temperature for estimation of SM (Mo et al., 1982). The 
LPRM descending SM that crosses the equator at 1:30 a.m. produces 
more appropriate results over Australia than the ascending SM product 
due to the minimum diurnal change in temperature and low vegetation 
(Lei et al., 2015; Cho et al., 2017). In this study, we used daily AMSR2 
Level-3 descending LPRM X-band (10.7 GHz) SM products (https://
hydro1.gesdisc.eosdis.nasa.gov) at 25 km spatial resolution to calculate 
SWDI over Australia.

2.4. ASCAT SM product

ASCAT is an active sensor on board Meteorological Operational 
Platform (MetOP) satellites. Currently, three different MetOP missions 
are operating: MetOP-A launched in 2006, MetOP-B launched in 2012, 
and MetOP-C launched in November 2018. ASCAT is in the C-band 
(5.3 GHz) and provides hydrological land surface variables at a 25 km 
by 50 km resolution that covers approximately the entire globe in 1.5 
days (Brocca et al., 2010). It measures the backscattered

https://hydro1.gesdisc.eosdis.nasa.gov/
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for moderate drought, −5 to −8 for severe drought, and −10 or below
for extreme drought. To exploit its capability to represent agricultural
drought, we used SWDI to translate remotely-sensed and modeled SM
products into a quantified severity of agricultural drought across Aus-
tralia. The water deficit is absolute (i.e., has reached the wilting point,
or wp) when the SWDI is less than or equal to −10 (Martínez-
Fernández et al., 2015; Sánchez et al., 2018). SWDI can be calculated as
follows:

= ×SWDI 10fc

AWC (2)

=AWC fc wp (3)

where, θ is SM content (m3/m3), θfc is SM at fc (m3/m3), θwp is SM at wp
(m3/m3), and θAWC is the available water content, which accounts for
the distinction between θfc and θwp. fc and wp are the main soil water
attributes that play an important role in crop water requirements and
are helpful in determining agriculture drought. These soil properties
were derived from the NASA Spatial Data Access Tool at a resolution of
0.25°× 0.25° for Australia. Satellite and model-based SM products
(AMSR2, ASCAT, and ERA-interim) were processed to estimate weekly
SWDI values across Australia from July 2012 to June 2017.

3.3. Reference drought indices

3.3.1. Atmospheric water deficit (AWD)
AWD is solely based on atmospheric water balance, and calculated

using P and ET (Purcell et al., 2003; Torres et al., 2013). This drought
index is very common and widely used because of the extensive
availability of P and ET datasets. AWD is calculated as follows:

=AWD P PET_ _Sum days Sum days( 7 ) ( 7 ) (4)

where, P(Sum_7days) and PET(Sum_7days) are the running sum of seven
consecutive days of P and PET, respectively. The drought threshold for
weekly AWD is 0mm (Purcell et al., 2003). AWD was used to assess the
SWDI from various SM products and in various climate zones for the
period July 2012 to June 2017.

3.3.2. Evaporative Stress Index (ESI) and Standardized Reconnaissance
Drought Index (RDIst)

ESI and RDIst are used to evaluate the fluctuation of SWDI for
agricultural drought along with the AWD. They were also calculated at
weekly time scale, same as SWDI and AWD. The ESI captures the water
availability and moisture stress of a surface (Choi et al., 2013, Eq. (5)).
It is computed based on standardized anomalies in the ratio of actual
and potential evapotranspiration (fPET) (Anderson et al., 2007, 2011)
and is typically used to assess hydrological and agricultural drought.
ESI anomalies are expressed as pseudo z-scores normalized to a mean of
0 and a standard deviation of 1 (Eq. (6)). More detailed descriptions of
the ESI are given by Anderson et al. (2007, 2011).

=f AET
PETPET (5)

=ESI
f f

f( )
PET PET

PET (6)

where fPET and f( )PET are the mean and standard deviation of fPET,
respectively.

The RDI proposed by Tsakiris et al. (2007) is based on the ratio of P
to PET estimation (Eq. (7)), and it is an ordinary and comprehensive
index for assessment of meteorological drought (Tigkas et al., 2017). In
this study, RDI has been used as a reference drought index because it
requires few datasets and has high sensitivity and resilience (Thomas
et al., 2016). In various recent studies (e.g. Labedzki, 2007; Vicente-
Serrano et al., 2012; Tigkas and Tsakiris, 2015; Chen et al., 2016), RDI
was under active consideration for drought assessment in agriculture
(Tigkas et al., 2017) as well as in arid and semi-arid areas (Thomas
et al., 2016).

=RDI P
PET (7)

Assuming the value of RDI follow the normal distribution (Tsakiris
and Vangelis, 2005), the standardized RDI (RDIst) is calculated as;

=RDI RDI RDI
RDI( )st (8)

Where, RDI is mean of RDI value, and RDI( ) is the standard deviation
of RDI.

3.4. Statistical analysis of soil moisture products

SM products from AMSR2, ASCAT, and ERA-interim exhibit dis-
similar characteristics over the same region and produce diverse results
compared to reference datasets (Brocca et al., 2011; Kim et al., 2017).
In this study, AMSR2, ASCAT, and ERA-interim SM products were as-
sessed against the AWRA-L SM dataset at grid-scale across Australia
using common statistical performance metrics, such as Bias, Root Mean
Square Error (RMSE), Pearson's correlation coefficient (R), and Index of
Agreement (IOA) as follows:
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where M and M are the daily and full study period average of soil
moisture, respectively, which are from AMSR2, ASCAT, and ERA-in-
terim. O and O are the daily and full study period average of reference
soil moisture obtained from AWRA-L, respectively, i is the number of
weeks, and n is total number of weeks.

AghaKouchak and Mehran (2013) demonstrated that volumetric
contingency tables can detect the accuracy of P when the threshold
value is ‘greater than zero’ in grids. In this study, the volumetric con-
tingency tables were employed for assessing the drought detection
capability of SWDI.

Fig. 2. Box plot of weekly mean soil moisture according to
four SM products in different climate zones for the period
from July 2012 to June 2017.



Fig. 3. Time series of daily precipitation estimated from AWRA-L (top panel of each inset) and daily SM of four SM products (middle and lower panel of each inset for
original and rescaled SMs, respectively) for four climate zones (a through d) and the average across Australia (e) for the period from July 2012 to June 2017.



The quantitative performance of these tables is based on the volume
of a product on each pixel compared with the volume of the reference
product on that pixel (AghaKouchak et al., 2011). Three extended vo-
lumetric contingency tables, Volumetric Hit Index (VHI), Volumetric
False Alarm Ratio (VFAR), and Volumetric Miss Index (VMI), were
evaluated for weekly SWDI against AWD in this study.

VHI is the volume of correctly detected SWDIs divided by the sum of
the volume of correctly detected SWDIs and missed AWD (Eq. (13)).
The range of VHI varies from 0 to 1, where 1 indicates definite drought.
Both products captured drought when SWDI and AWD were less than
zero; this was considered a drought hit, and VHI was scored one.
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Here, t (0 for AWD and −10 for SWDI) is the above-mentioned
threshold value in Section 3.

VFAR is the ratio of volume of false detection by SWDI to the sum of
SWDIs (Eq. (14)). Here, the SWDI value was less than zero, but AWD
was greater than zero. Therefore, SWDI falsely detected a drought event
in reference to an AWD value.
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VMI is the ratio of volume of missed AWD by SWDI to the sum of
missed AWD and correctly detected SWDI (Eq. (15)). Here, SWDI de-
tected a value greater than zero, indicating no drought, but AWD de-
tected a value less than zero. Thus, SWDI missed the drought value on
that pixel compared to AWD.
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The VFAR and VMI values ranged from 0 to 1, with 0 representing a
perfect score.

4. Results and discussion

4.1. Inter-comparison of SM products across Australia for various climate
zones

Fig. 2 shows the box plots of all four original SM products as a visual
interpretation of median and range of SM values in Australia and its
different climate zones. ERA-interim showed higher SM content in all
climate zones but exhibited a particularly low dynamic range. Both
ASCAT and AWRA-L showed low median values in all climate zones. All
SM products had a substantial dynamic range in tropical and temperate
NDS zones that might be explained by the high seasonal variation of
precipitation associated with an intensified hydrological cycle (Held
and Soden, 2006; Zohaib et al., 2017). This result is in consistent with
Rowell et al. (1995) for tropical regions, which showed high variability
of SM in tropical climate zones of Northern Africa. The low SM varia-
bility in the arid zone was captured by all products, with median values
of 0.11m3/m3, 0.06m3/m3, 0.18m3/m3, and 0.05m3/m3 for AMSR2,
ASCAT, ERA-interim, and AWRA-L, respectively. In the temperate DS
zone, SM contents were relatively higher than those in the arid zone
despite similar P patterns; this phenomenon might be attributed to soil
texture and temperature differences between these two zones (Ulaby
et al., 1978; Entekhabi et al., 1994).

As shown in Fig. 2, the wide range of median values of individual
SM products in their original scale will lead to erroneous detection and
biased comparisons of droughts when using multiple SM products.

Fig. 4. Spatial distribution of (a) mean SM from four SM products on their original scale, (b) rescaled SM to AWRA-L, and (c) annual precipitation over Australia.



Therefore, AMSR2, ASCAT, and ERA-interim SM need to be rescaled
against a reference SM product (i.e., AWRA-L) to present an unbiased
comparison while maintaining the relative magnitudes of mean and
standard deviation of each product (Draper et al., 2009; Brocca et al.,
2010, 2011).

The spatially-averaged time-series of daily P and daily SM products
(AMSR2, ASCAT, and ERA-interim) were compared against AWRA-L
SM in four climate zones (tropical, arid, temperate DS, and temperate
NDS) and entire Australia in Fig. 3. Generally, all SM products follow
the P events closely in Australia and its climate zones (except in the arid
climate zone) and show inconsistent temporal patterns. However, the
dynamic ranges of the AMSR2 and ERA-interim showed substantial
positive biased compared to the AWRA-L SM. The original AMSR2 SM
product overestimated values relative to the AWRA-L SM in all climate
zones. However, the amplitude and variations of rescaled AMSR2 SM
products matched well with the AWRA-L SM. Moreover, both original
and rescaled AMSR2 SM showed prompt reactions to P events in all
climate zones. This pattern was similar to the swift reaction of AMSR2

SM from the LPRM algorithm, which overestimated the JAXA soil
moisture for low P events (Kim et al., 2015).

The original ERA-interim SM also overestimated the results relative
to the AWRA-L SM and exhibited a narrow range over Australia and its
climate zones (Figs. 2 and 3). This is caused by the omission in the ERA-
interim assimilation system to account for ground-based P. Rather, in
situ measurements of T and humidity were used to account for rain
events (Albergel et al., 2012). However, the mean and amplitude of
variations matched well with the AWRA-L SM after linear rescaling. As
expected, both original and rescaled ASCAT SM products matched well
with the AWRA-L SM product in Australia. This is because ASCAT SM
was assimilated into the AWRA-L model to generate daily top-layer and
shallow root-zone SM estimates (Renzullo et al., 2014). Moreover,
Holgate et al. (2016) showed that the ASCAT SM corresponded well
with the in situ sites spread across all of Australia but was worse in the
arid climate zone. Furthermore, the arid climate zone typically exhibits
low SM values for all products compared to other climate zones due to
the low P and underlying surface conditions along with high

Fig. 5. Spatial distribution of performance statistics for rescaled SM products.



temperature. As most of Australia is covered by arid zones, i.e., 70%
(Fig. 1), spatially-averaged daily SM over Australia remained low, and
fewer SM fluctuations were observed.

Fig. 4 presents the spatial distributions of the mean from various SM
products during the study period. The mean distribution of the AWRA-L
SM showed lower variability of SM over the entire Australia in com-
parison with those of other SM products (Fig. 4a). In particular, the
AWRA-L SM was missing values for the northwestern part of Australia.
This may be because most of the precipitation network was located in
coastal regions as well as the southeast and southwest parts of the
country, and was lacking in the interior arid and desert areas
(Tregoning et al., 2012). Therefore, the northwest (i.e., the interior arid
and desert areas) of Australia led to errors in hydrological responses in
the AWRA-L model due to the absence of precipitation datasets
(Fig. 4c). Overall, we observed that the central part of Australia has low
SM contents (arid regions), while the northern (tropical) and south-
eastern parts of Australia (temperate NDS) had higher contents for all
three SM products during the study period. The range of SM values for
original SM products (i.e., AMSR2, ASCAT, and ERA-Interim) differed
considerably from that of the AWRA-L (Fig. 4a), whereas those of re-
scaled SM products (Fig. 4b) exhibited a similar tendency to that of the
AWRA-L and also followed the pattern of P (Fig. 4c). Further analysis
will be performed with the rescaled SM products to produce an un-
biased comparison of agricultural drought indices based on various SM
products.

Fig. 5 shows the spatial maps of statistical comparisons (Bias, RMSE,
IOA, and R) between rescaled SM products (i.e., AMSR2, ASCAT, and
ERA-interim) and AWRA-L SM over Australia. As shown in Fig. 5, the
ASCAT and ERA-interim exhibited reasonable performance (lower bias
and RMSE and higher IOA and R), whereas, the AMSR2 showed poor
performance in Australia compared to the two other SM products
(ASCAT and ERA-interim). This is likely explained by the low surface
temperature susceptibility of the active sensor, as addressed by Kim
et al. (2018). In the tropical regions of Australia, ASCAT had reasonable
performance than the AMSR2. The reason for the disparity of AMSR2 in
the tropical zone may be because the SM estimated from the passive
microwave sensor may produce uncertainties in densely vegetated
areas because of the effect of higher vegetation water content (Scipal
et al., 2008; Dorigo et al., 2010; Al-Yaari et al., 2014; Kim et al., 2018).

Moreover, the swift reaction of AMSR2 SM to low P events also causes
temporal inconsistencies with AWRA-L SM (Fig. 3). The temporal pat-
tern of AMSR2 in the temperate DS and NDS zones showed higher bias
and RMSE than other climate zones. These regions of the study area are
densely populated and have urban infrastructure that hinders SM esti-
mation, resulting in higher bias and RMSE (Holgate et al., 2016). The
spatial distribution of R and IOA indicated that ASCAT SM products had
poor performance in arid regions and good performance in tropical
regions (Fig. 5). These results are similar to previous studies of Kim
et al. (2018) and Wagner et al. (2013), who reported that surface
roughness and subsurface heterogeneity highly influenced ASCAT SM
estimation.

4.2. Agricultural drought analysis over Australia

The weekly SWDI time-series is derived based on three rescaled SM
products (i.e., AMSR2, ASCAT, and ERA-interim). First, the SWDI was
calculated at a daily time step and then was aggregated into a weekly
temporal scale (Fernendez et al., 2016; Mishra et al., 2017). The weekly
SWDI obtained from the rescaled SM products was compared with the
weekly AWD over Australia and its four climate zones to evaluate the
spatial severity pattern of the agricultural drought (Fig. 6). The overall
SWDI distribution for three rescaled SM products during the study
period suggested that the arid zone was largely affected by agricultural
drought, indicating severe to extreme agricultural drought based on the
classification of SWDI values for drought categories (Martínez-Fernánde
et al., 2015). Generally, the temperate DS, temperate NDS, and tropical
zones were under severe drought from 2012 to 2017.

Fig. 7 shows a temporal comparison of SWDI with AWD, ESI, and
RDIst in different climate zones of Australia. Despite the different
drought index values, their temporal patterns match well across all
climate zones (Fig. 7a–d). In general, the SWDIs estimated from three
rescaled SM products considerably followed the drought cycles of AWD
and ESI. However, the AMSR2-SWDI indicated abrupt variability in the
winter season compared to other SWDI values in all climate zones
(Fig. 7a–d). This can be explained by the high sensitivity of AMSR2 SM
to small variations in precipitation (Su et al., 2013; Cho et al., 2017).
Overall, the temporal patterns of all drought indices (either meteor-
ological or agricultural) followed the temporal pattern of precipitation

Fig. 6. Spatial distribution of (a) Soil Water Deficit Index (SWDI) using the rescaled SM products and (b) Atmospheric Water Deficit (AWD) using AWRA-L data. All
values were averaged for the period from July 2012 to June 2017.



found in Mohammed and Scholz (2017). For the tropical zone (Fig. 7a),
all drought indices captured an increasing trend (extreme to non-
drought condition) in the rainy season and a decreasing trend (non- and
extreme-drought condition) in the non-rainy season over the study
period. This phenomenon demonstrated that the fluctuation in drought
conditions depends on the amount of heavy precipitation (Kim et al.,
2015).

The SWDI is all climate zones of Australia (Fig. 7a–d) ranged from
approximately −15 to −3 and was rarely surpassed. Fig. 7e shows that
the mean SWDI for all climate zones in Australia was below −10 (se-
vere to extreme drought conditions). Both SWDI and AWD are below
the threshold line of severe drought (SWDI< -10 and AWD<0), which
indicate that Australia is suffering from a continuous drought condition
during the study period.

Specifically, for the tropical and temperate NDS zones (Fig. 7a and
d), SWDI and AWD showed similar drought patterns (moderate to se-
vere drought conditions) for most of the study period. Moreover, RDIst
and ESI showed a duration cycle of weak drought compared with arid
and temperate DS zones. For the arid and temperate DS zones, drought

conditions appeared as consecutive patterns (SWDI≤−10, AWD<0,
and negative RDIst and ESI) and intermittent patterns (short periods of
severe drought and long periods of extreme drought), respectively. This
might be explained by the small amount of precipitation and high
temperature, which led to more extreme drought conditions in arid and
temperate DS zones than other zones (Mohammed and Scholz, 2017).
This tendency could therefore be referred to as “water limited” com-
pared to tropical and temperature NDS zones. Moreover, the difference
between AET and PET is relatively large over the arid zone, and actual
evapotranspiration is approximately 10% of the potential evapo-
transpiration (Nagler et al., 2007) except for the few days after ample
precipitation. Thus, the variation of the ESI in arid and temperature
NDS zones was lower than in other zones.

4.3. Assessment of drought detection

Fig. 8 shows the spatial distribution of extended volumetric con-
tingency tables to assess the drought detection capability of SWDIs
calculated from three rescaled SM products against AWD at a weekly

Fig. 7. Time series of weekly precipitation from AWRA-L (upper), the weekly Soil Water Deficit Index (SWDI) from three rescaled and AWRA-L SM products (middle),
and weekly Atmospheric Water Deficit (AWD), Evaporative Stress Index (ESI), and standardized Reconnaissance Drought Index (RDIst) from AWRA-L (lower) for four
different climate zones (from a to d) and the average across Australia (e).



time scale. In addition, the mean values of those extended volumetric
contingency tables summarized for each climate zone and entire Aus-
tralia are provided in Table 1. VHI shows that the SWDIs of all three SM
products have acceptable drought detection capability over Australia
(0.700–0.787, with an average of 0.738, Fig. 8 and Table 1). In addi-
tion, the average VHI for arid and temperate zones showed reasonable
values (0.690–0.820), whereas the average VHI for the tropical zone
shows 0.437 for the AMSR2, 0.571 for the ASCAT, and 0.576 for the
ERA-interim (Table 1). VFAR specifies the volume of drought detected
falsely when SWDI identifies drought, while AWD does not signify
drought. The spatial distribution of VFAR showed that the values close
to zero specifying drought were not detected falsely by SWDI except in
the southwest, i.e., in the temperate NDS zone. The VFAR values for all
three products range from 0.020 to 0.114 over four climate zones with a
mean of 0.035, 0.040, and 0.029 for AMSR2, ASCAT, and ERA-interim,
respectively. VMI identifies the number of drought events missed vo-
lumetrically by SWDI compared to AWD. The spatial patterns of VMI for
all products resembled the inverse of VHI, i.e., high misses in tropical
zones. In the tropical zone, the average VMI values for AMSR2, ASCAT,
and ERA-interim were 0.563, 0.429, and 0.426, respectively. Similarly,
other climate zones also had low mean VMI values ranging from 0.210
to 0.333 (Table 1). Generally, all products showed a moderate VHI, low
VFAR, and moderate VMI in the tropical zone, indicating a high number
of misses in this climate zone. This can be explained by the SM-P-ET

Fig. 8. Spatial distribution of extended volumetric contingency tables (volumetric hit index (VHI), volumetric false alarm ratio (VFAR), and volumetric miss index
(VMI)) for Soil Water Deficit Index (SWDI) using three rescaled SM products against Atmospheric Water Deficit (AWD) using AWRA-L.

Table 1
Average values of various extended volumetric contingency tables over
Australia and its four climate zones for the period from July 2012 to June 2017.

Climate zone Product VHI VFAR VMI

Australia
AMSR2 0.700 0.035 0.300
ASCAT 0.728 0.040 0.272
ERA-Interim 0.787 0.029 0.213

Tropical
AMSR2 0.437 0.067 0.563
ASCAT 0.571 0.070 0.429
ERA-Interim 0.576 0.045 0.426

Arid
AMSR2 0.690 0.021 0.333
ASCAT 0.707 0.030 0.304
ERA-Interim 0.796 0.020 0.210

Temperature (dry summer)
AMSR2 0.780 0.036 0.239
ASCAT 0.820 0.040 0.185
ERA-Interim 0.819 0.031 0.186

Temperature (non-dry summer)
AMSR2 0.730 0.114 0.289
ASCAT 0.801 0.102 0.216
ERA-Interim 0.781 0.084 0.233

*VHI: Volumetric Hit Index, VFAR: Volumetric False Alarm Ratio, VMI:
Volumetric Miss Index.



5. Summary and conclusion

This study was carried out to evaluate the variation and distribution
of agricultural drought from various SM products across Australia and
its four climate zones (i.e., tropical, arid, temperate DS, and temperate
NDS) from July 2012 to June 2017. We estimated SWDI as an agri-
cultural drought index from two satellite remote sensing SM products
(AMSR2 and ASCAT) and one model SM products (ERA-interim). First,
the SM products were compared on a grid scale against the AWRA-L as
a reference SM product. Second, the SWDIs calculated based on all SM
products and soil characteristics (i.e., fc and wp) were compared with
the AWD index derived from P and PET of AWRA-L. The three SM
products (AMSR2, ASCAT, and ERA-interim) captured the temporal
pattern of AWRA-L satisfactorily in Australia. However, AMSR2 and
ERA-interim showed high positive bias. The systematic bias was re-
moved by linearly rescaling three SM products against AWRA-L to en-
able fair comparison of agricultural drought using various SM products.
The trends in rescaled SM products from AMSR2, ASCAT, and ERA-
Interim agreed with the AWRA-L, although the AMSR2 SM indicated
slight variation by showing prompt reactions to low precipitation
events. In addition, the difference between ASCAT SM and AWRA-L for
arid regions could be caused by the limitation of active microwave
sensors in estimating SM due to surface roughness, subsurface hetero-
geneity, and inherent errors in the retrieval algorithm.

The results of SWDIs from three SM products were compared with
the AWD, ESI, and RDIst drought indexes, estimated from the AWRA-L
for entire Australia and its climate zones. The SWDI tended to reflect
the AWD, ESI, and RDIst. Based on a comparison of all regions of
Australia, the SWDI average was below −10. This result indicates that
most regions in Australia have suffered from extreme drought condi-
tions.

The performance of each SWDI was examined against AWD using
extended volumetric contingency tables was examined for Australia and
its four climate zones. All SM products showed acceptable drought
detection skills at about 70% on average. The results of extended vo-
lumetric contingency tables presented performance in order from best
to worst as ASCAT, ERA-interim, and AMSR2 in the three climate zones
other than the arid zone, which followed the best-worst order of ERA-
interim, ASCAT, and AMSR2. Overall, the ranking of these three data-
sets indicates their tendency to produce better SM products and SWDIs
for Australia (ASCAT > ERA-interim > AMSR2).
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