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INTRODUCTION

It is the purpose of this paper to study some of the properties
of the general linear group and its subgroups and quotient groups.

The general linear group will be considered as the group of linear
transformations of a vector space onto itself under composition of map-
pings and as the group of nonsingular matrices under matrix multipli-
cation (chapter I). Several notations are used to denote the general
linear group. They include: GL{m,F), (Rotman, 1965, p. 155); GLH(m,q),
(Dickson, 1958, p. 76); and L(F,m), (Schenkman, 1965, p. 116).

In chapter II, the general linear group is discussed in more de-
tail. Some of its normal subgroups such as its center and its commu-
tator subgroup are introduced. The special linear group is then discussed
in more detail since the quotient group of this group by its center is
a source of simple groups of fiﬁite order. The orders of these groups
are determined in the case where the underlying field is finite. Various
notations used to denote the special linear group are: SL(m,F), (Rotman,
1965, p. 157); SLH(m,q), (Dickson, 1958, p. 82); and S(F,m), (Schenkman,
1965, p. 116).

The quotient group of the specialn linear group by its center,
called the projective unimodular group, is then shown to be simple for
all but two cases (chapter III). The projective unimodular group is,
in some cases, nof isomorphic to other known simple groups such as the
alternating groups. Several notations are used to denote the projective
unimodular group as well. They include PSL(m,F), (Rotman, 1965, p. 161);
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| LF(m,q), (Dickson, 1958, p. 87); and P(F,m), (Schenkman, 1965, p. 1l1l6).
Although all of the results of this paper are known, some of the
proofs are original, e.g., theorem 12. Those proofs which are not
original have been modified by the author in an attempt to make them
more readible. In addition to. the theory which is developed in the
text of the paper, there are three tables. These tables, using the
nonsingular matrices associated with the linear transformations, dis-
play the elements of the general linear groups of orders 6 and 48 and
the projective unimodular group of order 12, and note some of the char-
acteristics of these groups.
The following group theoretic notétion will be used where convenient.
H A G shall mean that H is a normal subgroup of G.
G/H shall be the quotient group ©f G by H where H A G.
IG:H] shall be the index of a subgroup H of G in G.
IG-l shall be the oxder of G,
Standard set theoretic notation will be used throughout.

a..=1ifi=j,aij,=oifi#j-



CHAPTER 1
LINEAR TRANSFORMATIONS AND MATRICES

In this chapter, we will develop the.fundamental concepts on which
the rest of the work is based. We will show that under proper restrictions
on the underlying vector space and under.appropriate definitions for ad-
dition, multiplication, and scalar multip}ication, the sétqof linear trans-~
formations forms an algebra. We then-definé corresponding operations for
matrices and note that the set of m byﬂmumatzices also fomms an algebra.
We then show the existence of an isomorphism between these two algebras.
In this way, we can, depending on which approach is more convenient, de-
velop the rest of the work by looking at the general linear group as a
group of linear transformations or as a group of square matrices under

matrix multiplication.

Definition 1. Let U and V be vector spaces over a field F. A mapping £

of U into V is a linear transformation of U intoc V if and only if f sat-

isfies the following:

x+y)Ef=xf+yf forall xe Uandy e U,

(ax)f = a(xf} for all a e P and x ¢ U.

Denote by L(U,V) the set of all linear transformations of U into V.

We may define addition of two elements of L(U,V) by:

(1) x(f + g) = xf + xg for all x e U.

3
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We may also define scalar multiplication of an element f of L(U,V) by

an element a of F by:

(2) x(af) = a(xf) for all xeU.

Lemma 1.1. Let U and V be vector spaces over a field F. L(U,V) is a

vector space under the operations aerinea aoove.

Proof: Let f and g be in L(U,V). If x,yeU, then
x+y)(f+qg)=(x+y)f+ (x+y)g=xf+yf+xg+yg
=xf + xg + yf + yg = x(f +g) + y(f + g).
The preceeding equalities follow directly from (1) and from definition 1.
Let f and g be in L(U,V). If aeF and xeU, then
(ax) (£ + g) = (ax)f + (ax)g = a(xf) + a(xqg)
= a(xf + xg) = a[x(f + g)].
The above equalities follow from (2) and definition 1. Therefore
(f+g}eL(U,V). L(U,V) forms an abelian group under +. The identity is
0eL(U,V) (defined by x0 = 0 for every xeU) since x(f + 0) = xf + x0 = xf
and x(0 + f) = x0 + xf = xf. The additive inverse for fcL(U,V) is -f

(defined by x(-f)

]

-(xf) for all xeU) since for xeU, x[f + (-f)]
= xf + x(-f) = xf - xf = 0. Associativity and commutativity for L(U,V)
follow from the corresponding properties in V.

The following arguments which complete the proof use properties
(1), (2) and definition 1. We have a(f + g) = af + ag for all acF and
£,9eL(U,V) since for each xeU,

xfa(f + g)] = alx(f + g)] = a(xf + xqg)
=a(xf) + a(xg) = x(af) + x(ag) = x(af + ag).

Also (a + b)f

af + bf for all a and b in F and feL(U,V) since for xeU,
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x[(a + b)f] = (a + b) (x£f)

=a(xf) + b(xf) = x(af + bf).
Further, (ab)f = a(bf) for all a,beF and every feL(U,V) since if xeU,

x[(ab) £f] = (ab) (xf) = alb(xf)]

= a[x(bf)] x[a(bf)].

‘Finally, x(1f) = 1(xf) xf. Thus L(U,V) is a vector space over F.

If fern(u,vV) and geL(V,W) where U, V, and W are vector spaces over

F, then we define:

(3) x(fg) = (xf)g for all xeU, and

(4) (ax)fg = [(ax)flg for all aeF.

Then for x,yeU,
(x + y)fg-= [(x + y)flg
= (xf + yflg = x(£9) + y(£9) -
So that fgeL(U,w) by (1), (3) and definition 1. Also if aeF and xeU,
then for every feL(U,V) and geL(V,W), by definition 1, (3) and (4),
(ax)fg = [(ax)flg = [a(xf)]g
= al[(xf)g] = alx(fg)].
Hence the composition mapping fg is also a linear transformation of U

into W.

Theorem 1. If U is a vector space over a field F, L(U,U) is an algebra
over F where the addition and scalar multiplication are defined as in
lemma 1.1 and the multiplication of two elements f and g of L(U,U) is

defined in (3) above-

Proof: By lemma 1.1, L(U,U) is a vector space over F. Associativity
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for multiplication follows directly from (3), while the distributive prop-

erty of composition of mappings over addition holds due to (3) and (1).
If xeU, then for all aeF and f£,geL(U,U), using (2) and (3); x[a(fg)]
= alx(fg)] = (xf)(ag) = x[f(ag)l. Similarly x[a(fg)] = x[(af)gl, by (2),

(3) and definition 1. Hence L(U,U) ig an algebra over F.

Corollary 1.1. If U and V are finite’dimensional vector spaces with
dim U = m and dim V = n, then dim L{U,V) = mn. In particular,

dim L(U,U) = m?.

For a proof of the corcllary see Herstein (1964, p. 145). We remark
only that if uy, up,...,u, is a basis for.u ;nd Vir Vyreee v is a basis
for V, then fij such that “1fij = vy and ukgij = 0 fox i, 1gism and j,
1€3%n, k#i, is the correspording basis for L(U.V).

Let M = be the set of all m by n matrices (aij) where the entries
are elements of a field F. We shall definé the sum of two elements (aij)
and (bij) of M., by:

If aeF and (aij) is in an, then we shall define scalar multiplication

as follows:

(6) afa,.) = (aaij),

The following lemma and theorem follow from these definitions using
m by n matrices Eij having zeros for all entries except the ijzﬂ-entry

which is 1, as the basis.

Lemma 2.1. M . is a vector space of dimension mn over F.
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We may also define multiplication for matrices. If (aijl is in

an and {bij) is in M, ¢+ the product is defined by:
7 (al;,Hka) = (cjy) where c,i Zalj i

Note that the product of an m by n matrix and an n by -f matrix is an m by &£

matrix.

Theorem 2. If m = n, an is an algebra over F where addition and scalar
multiplication are as in (5) and (6) and multiplication iB as defined

in (7).

Theorem 3. Let U be a vector space of dimension m over a field F. M
and L(U,U) are isomorphic as algebras over F. These algebras are isomor-
phic in many ways, however there is a unigue isomorphism defined relative

to a fixed basis for U.

Proof: Let Uy, Ups =eey Uy be a basis for U. Let feL(U, U) and

Zblu be any element in U. Then xf *(Zb u ) f = Zb (u;f). Thus
i=1 i=1
the action of £ on U is uniquely determined by the actlon of f on the

. m
basis Upr Ugrene . If feL(Uu,U), uif = ;;;aijuj,;lﬁism; aijeF. Define
a mapping from L(U,U) to Mmm by ﬁ:f+(aij). This mapping is onto since

m
if (aij)stm, then there-:exists an fEL(U,U) such that uif== g;aijuj'
1<ism where the aijaF are uniquely determined by the basis and £.

g(f + g) = @(f) + @(g) since if (aij) is the matrix associated with £
relative to Wpr Uys seny Yy and if (bij) is the matrix associated with
g relative to the same basis, then for each i, l<i<m,

ljuj JZib u- Z(a 3 )uj.

ui(f+g)=uf+ug‘—zl
j=
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If a € F, then #(af) = af(f) since for each i, 1 < i < m,

m
u; (af) = a(u;f) = ai aijuj = Z (aaij)uj.
J=1 =1

To see that multiplication is also preserved under ¢,

m m
(u;)fg = (uif)g (z alJu g = Z aij(z bjkuk) = Z { Z alJ jk
j=1 j=1 k=1
Thus @(fg) =

@(£)g(g) by (7). We conclude that ¢ is a homomorphism
of L(U,U) onto Myy,. The unique determination of £ by the ajj, 1 <i <m,

15 3j<m assures that ¢ is one-to-one and is an isomorphism.



CHAPTER II
THE GENERAL LINEAR GROUP AND RELATED GROUPS
We now begin our discussion of the general linear group and certain
of its subgroups and Quotient groupé. When the field is finite, we will
determine the order of these groups and the characteristics and order
of their centers. We also include Qome_of,the interesting theorems relat-

ing these groups.

Definition 2. Let U be a finite dimensional vector space over a field

F. £ € L(U,U) is nonsingular (or regular) if and only is f is invertible,

i.e., there exists g € L(U,U) such that fg = gf‘= I.

It is clear that the set of all nonsingular linear transformations

actually form a group under composition.

Definition 3. Iet U be a vector space of dimension m over F. The general

linear group, denoted GL(m,F) is the group of nonsingular elements of

LU,U) under multiplication as defined in (6).

The matrix @(f) where f is a nonsingular linear transformation
and @ is an isomorphism described in theorem 3 is also called nonsingular.
The image of GL{(m,F) in Mom is thus the group of nonsingular matrices.
We will frequently identify GL(m,F) with this group of m by m nonsingular

matrices over F.
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Theorem 4. An element of M is nonsingular if and only if its deter-

minant is nonzero.

Proof: If A € My, is nonsingular, then there exists a B ¢ M such that
A-B = I. Thus det (A-B) = det I or det A-det B = det I = 1. We conclude
det A # 0. If det A ¥ 0, a standard proceedure allows the computation

of a matrix B such that AB = I. See Shields (1968, p. 145) for the details.

When F is of finite order g = p%, a > 1, the notation generally used
for the general linear group is GL{(m,qg). Examples of GL(2,g) for g = 2
and 3, using the nonsingular matrices associated with the linear trans-

formations are given in tables 1 and 2.

}
For the remainder of this chapter, we shall be primarily concerned
with general linear groups over finite fields.

m-1
Theorem 5. The order of GL(m,q) is J] (g™ - ql).
i=0

Proof: Let U be an m dimensional vector space over a field F of order q.
Consider the basis e¢; = (1,0,...,0), e; = (0,1,0,...,0),..., e, = (0,0,...,1)

m
for U. Let uj,uy,...,u, be another basis for U. Then u; = %g& ajje4

= (aii,aiz,...,aim) for each i, 1 5 i % m} this representation is unique.
Hence there is associated with every change of basis for U a linear trans-
formation. Further, since we are mapping a basis to a basis, the linear
transformation is nonsingular. Conversely every nonsingular linear trans-

formation applied to €11€271-+- s yields a basis for U, since for i = 1,...,m

m
v = E ai

)

1 :e: is a basis for U. In order to obtain the order of GL(m,q)
=i .

173

we need only count the number of possible bases for U. 1In constructing
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a basis u1'u2""’um for U, there are qm - 1 possible vectors to choose
for u, since we must exclude the zero vector. Having chosen uy .U,
must be chosen so that it does not lie in the linear span of u,, so as

to be independent of u Thus there are qm - q choices for u,. Next,

1°
ﬁ3 must be chosen such that it does not lie in the linear span of u,
and u,. So a total of q2 vectors must be excluded, leaving - - q2
choices for uj. In general, when picking the basis element ui, there
are g% - qi"l choices. Thus there are (g = 1) (" - )+~ (" - qm_l)
possible bases for U. Correspondingly, the order of GL(m,q) is

(@ - (™ - @ (g® -~ 1), For example, |GL(3,2)| = 168 and

lGL(2,49) | = (49° - 1) (492 - 49) = 5,644,800.

An element A ¢ Mmm which has determinant 1l is said to be unimodular.
The set of these unimodular matrices forms a subgroup of GL(m,F) since

if A,B ¢ Mmm where A and B are unimodular, then det AB = det A*det B = 1.

If B is unimodular, then det BR~L

= det B°det Bfl = 1 and
det B™1 = (det B)~l = 1. Hence det AB™l = det A*det B~l = 1. This ar-

gument establishes that the set of unimodular matrices form a subgroup

of GL(m,F).

Definition 4. The multiplicitive group of all m by m unimodular matrices

over a field F is the special linear group, denoted SL(m,F).

Theorem 6. SL(m,F) A GL(m,F).

Proof: Consider the following mapping, let ®(x) = det x for all

x € GL(m,F). ? is clearly a homomorphism of GL(m,F) onto the nonzero
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elements of F since for any square matrices A and B, det AB = det A-+det B.
The kerxnel of & is SL(m,F) since SL{m,F) consists of all the unimodular
matrices. Thus SL(m,F) A GL(m,F).

m .

]-[ q‘m_, ql

Corollary 6.1. The order of SL(m,gq) = _,Jf_Q_____i__, :
Aé:;q -

Proof: Recall the mapping ¢ of GL(m,g) ento the multiplicative group of
the nonzero elements of F described in theorem 6. This group has order
g - 1 when F is finite. So [SL{m,q) :GL(m,qj] =g - 1 and

m
lstm,q| = (JT <™ - qt)/(qg - 1.

i=0

Definition 5. Let X be a nonzero element of F and i # j integers between

1 and m. A transvection Bij(?{) = Eij‘&)‘ +\ I whea.;e Eij_(A) is an m by m

matrix with A as- its ij—t-}-l- entry and gero elsewhere and I is the identity

vy
matrix.

Theorem 7. SL{m,F) is generated by ti'xe;:aqé-;ﬁfcmansvections.

ggg_gg: Every element x of GL(m,F) can be written x = UD(n) where U is

a product of transvections and D(ﬁ) is the di‘agcna(l matrix with diagonal
entries 1,l,...,l,u (Rotman, 1965, p. 158). ‘If x ¢ SL(m,F),

det x = det [UD(ﬁ)] = det U-det D(ﬁ)? ﬁ;,sq that if x is unimodular,

D(u) = D(1) .= I and so x = U is a produset of trapsvections.

Theorem 8. The commutator subgroup G' of GL(m,q) is SL{m,g) when m 2 3

orm= 2and q 2 3.
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Proof: G' is generated by elements of the form x"ly'lxy, where

X,Y € GL(m,q). Using the determinant map ¢ of theorem 6, <I>(x-1y-1xy)

= (det x)~1l(det y)-ldet xdet y = 1. So that G'C SL(m,q). To show that
SL(m,q) € G', we need only show that every:transvection is contained
in G' since SL(m,q) is generated ‘by transvections by theorem 7.

Case I. m = 2. Let a,b,A be nonzexo elements of F. Then

R I I T IR P o [ P THRY
_ (1 ab™Ix - ’A) .

0 1

So that all tramsvections B,,(al = Blzf(ab—l - L)X] can be generated
-1

in G' as long as there exist a and b in F such that ab -1#0, i.e.,
a # b. Clearly this is true for all fields of order greater than 2.
Bﬁi (o) can be realized in a similar manner. Since the transvections are

contained in G', SL(2,q9) C G' for g 2z 3 so that SL(2,q) = G'. The com~-

mutator subgroup for GL(2,2) is not SL(2,2). See table 1.

Case II. m 2 3. For Ej_j and Egy, Elj St stEit' The following
is true:
. -1 1
B. . . .. . B - G
lj(u)BJk(A)B ) Bjk()\) (u) ()\)B J( u)BJk( A)

]

Iz + E; ()J)JII + E (A)]II + E; (—u)J[I + Ejk(-A)]

[]

Iz + Eij(}l) + Ejk_(M + Eik(yMJII + Eij (=u) + Ejk(.‘“ + E; (uA)]

1l

I+ Ei.(-u) + Ej (-A) + Ej, GuA) + Eij(u) + 0 + E;y (=d)

+

O+ Ey () +0+0+0+E (A) +0+0+E, w2
ZAZ).

1l

E,

So that any transvection By (@) = I + Eik (¢) can be realized by a commu-
tator of appropriate transvections. Hence SL(m,q) C G' for m z 3 and

SL(m,q) = G'.
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Theorem 9. The center of GL{m,g) is of order q — 1 and consists of

scalar multiples of the identity matrix.

For a proof of this theorem, see Rotman (1965, p. 158).

Corollary 9.1. The center of SL{m,F}, which we denote 25, consists

of all scalar matrices kI with k™ = 1.

Proof: Since SL{m,F} A GL(m,F}, Z

o = SL(m,F) M 2, where 2 is the center

of GL(m,F). Thus X ¢ %, must be a scalar multiple of the identity
matrix. Since every x € SL{(m,F) must be unimodular, it follows immed-

iatély that ¥™ = 1.

Corollary 9.2. 1If Z, is the center of §L(m,q) then IZOI = d, where

d= (m,g-l).

Proof: By coroliary 9.1 we must determine the number of elements x ¢ F
such that x™ = 1. Lét p be a primitive element of F. Then p has order
g=l. Define 1 sp,(q'l}xd, where 4 = (m,g~1). There are exactly d dis-
tinet powers of T and (fi)m = 1 for each i, since

(T

(eelyim/d o (1)ic o

where cd = m.

We shall now prove that if (pt)m = 1, then pt is a power of rt.
s

Since (m/d4, g-1/d) = 1, there are integérs a and b with am/d + b(g-1}/d = 1.
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Then since 1 = p A 1)/% ang [pla-Di/dm - 4,

Tlm

o (a-1) im/d
(rimyan/a + b(g-1)/d _ pp(a-1)im/d)1

riam?/d ¢ (g-1)imb/d - ,;(g-1)im/d

i am2
In particular if i = 4, tam /d (7™2)™ = 1, Substituting
t = (g-1)im/4 we have Tbt = pt. So there are exactly 4 = (m, g-1)

elements in Z,.
The next group to be introduced is the quotient group of SL(m,F)
by its center z,. This is a group of considerable interest. We shall

discuss its properties in more detail in chapter III.

Definition 6. The projective unimodular group PSL(m,F) is the group

SL(m,F)/Zg.

m
Theorem 10. |PSL(m,q)| = J][d™ - q'/d(q - 1), where d = (m, g-1).
i=0

Proof: The theorem follows directly from definition 6.
m
|psutm,@) | = |sLm,@) |/]2| = T{d® - al/d(a-1).
i=0
At this point let us note an interesting relationship between PSL(m,q)

and the following groﬁp of mappings of the field F.

Definition 7. If F is a field, LF(F) is the group of all unimodular

linear transformations x *(ax + b)/(cx + d) under composifion of mappings

where a,b,c,d ¢ F and ad - bc = 1.
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Theorem 11. PSL(2,F) = LF(F).

b
Proof: 1If (2 d) € SL(2,F), define a mapping © as follows:

b
) (a ) + {x > (ax + b)/(cx + 4)}.
cd
If (ab) d(AB) lements of SL(2,F), th
c d an CD are elements o ’ ’ en
(ab)(AB) (aA+bC aB+bD)
) =0
cd/ \CD CA+ cC cB+ dD
[(aA + bC)x + aB + bD]/[(cA + cC)x + cB + dD]
_ ab A B
_e(cd)e(CD)'

Thus € is a homomorphism. It is onto since for any f ¢ LF(F), the

pre-image of f(x) = (ax + b)/(cx + d) is the matrix (2 g). The kernel

of 8 is {(a.b) € SL(2,F): © (a b) = {x > x}} . But this means
cd cd
(ax + b)/(cx + d) = x so that a = d and ¢ = b = 0. So that we have
ao

elements of the form (0 a) which by corollary 9.1 is 2,. Then by the

first isomorphism theorem, PSL(2,F) = SL(2,F)/Zo = LF(F).



CHAPTER III
THE SIMPLICITY OF THE PROJECTIVE UNIMODULAR GROUP
In this chapter, we will be concerned mainly with the simplicity
of the projective unimodular group. We begin by showing that PSL(2,F)
is simple for those cases when the order of F is greater than 3. We
then show that PSL(3,F) is simple as the first step for an induction

proof that PSL(m,F) is simple for all m 2 3.
The following lemma can be proved using the method of theorem 8.

Lemma 12.1. If a normal subgroup H of SL(2,F) contains a transvection

Bij (A), then H = SL(2,F).
Theorem 12. The group PSL(2,F) is simple except when IFl £ 3.

Proof: Since IPSL(2,2)I = 6 and IPSL(2,3)| = 12, and there are no simple
groups of order less than 60, these groups are not‘simple

Let H be a norxrmal subgroup of SL(2,F) which contains a matrix not
in Zo’ tﬁe center of SL(2,F). By the correspondence'theofem, it suffices
to show that H = SL(2,F), since if we let w:SL(2,F) > SL(2,F)/2, where
m is the natural map,m defines a one-to-one correspondence between the
set of those subgroups of SL(2,F) containing Zo and the set of all sub-
groups of SL(2,F)/Z,.

Suppose H contains a matrix A =(r z) where r # *1.
s

17
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If S = (i 2) ;, then due to the fact that H A SL(2,F), H also contains
SAS — 3
( )2 1 - t2 1

Since det A =1 = rt, t # +1 and 1 - t2 # 0. This last matrix is thus
a transvection and so H = SL(2,F) by lemma 12.1.

To complete the proof, we have only to produce a matrix in H whose
first row is (r 0) where r # +1.

H contains an element M not in Z, of the form

M=(2g),ad—bc=l.

Ifb=0, a=d=1, ¢ # 0, then M 1is a transvection. If b = 0,

2

# 0, them M° is a transvection. If b =0, a d = ii,

o
[l
jol}
{

i
et

-
Q

Q
[
[
&
0]
=}

M € Z, contrary to assumption.

If b # 0, then

(o e allar 1) = fan a%s)=c

o

-1 o
0 a)' then H contains

so that C ¢ H. Let T = (

-2
= -1c-1 = * ;
U= TCT ~C (-(a +d) (% - 1)/ @2)'

U will be the desired matrix ifkce_2 # *1. This is equivalent to a4 # 1.

If [FI > 5 or F is infinite, such a nonzero o does exist since ot -1

has at most 4 roots. If |F| = 4, then every a e F satisfies ad = O

4 - 1 is true for all

2

so that if o # 1, then ot # 1. For |F| =5, a

2 2

a # 0 so that a“ = 1 oxr a° = =1. Choose g such that a“ = -1. Then

U= (“l 0) where A= -(a + d) (a® - 1)/b # 0. Since U ¢ H, then U2

A -1
-1 0 2

is also in H, butU2 = ( X l) and U is a transvechion. i ..
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lemma 13.1. ILet H A SL{(m,F), and let A¢ H. If A is similar to

Where C' is an (m - 1) by (m - 1) matrix, then there is a nonzero ¥ £ F

such that H contains

-1
=)

wlp

Cl - Cl .2

Ha; Wa, . . .y

For proof of the lemma see Rotman (1965, p. 159).
Theorem 13. PSL({3,F) is simple for every field F.

Proof: Let H be a nomal subgroup of SL(3,F) which contains Z,, and

let A & H be a scalar matrix. There are three possible canonical forms

for A:

i) a direct sum of three 1 by 1 companion matrices;
ii) a direct sum of a 2 by 2 and a 1 by 1 companion matrix;

iii) a 3 by 3 companion matrix.

Case (i). A is similar to
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where D is nonscalar. Therefore ac™l # 1. By lemma 13.1, Dg H. If

b O
OO
N o)

then

~lD~l

BDB

1 0 o\
, 0 1 0 cH,
but this is a transvection, so by lemma 12.1, H = SL{3,F).

Case (il). A is similar to
1 0 ¢
g 1 1

Now the characteristic polynomial of M is (x - 1)3. Since M # I and
M satisfies (x - 1)2, the minimum polynomial of M'is (x - 1)2. Since
the characteristic roots of M are all equal to 1, they lie in F, so
by Rotman (1965, p. 72), M is similar to its Jordan canonical form
0
0

a ;
J = 1 )'. If we write the characteristic polynomial (x - 1)3
0

O O

b
in the form (—l)(x3 - 3x2 + 3x - 1), then the trace of J is 3 and the

detexminant of J is 1. Thus a + a + b = 3 and aab = 1. Solving these

simultaneously yields (a - l)(2a2 -a=-1) =0, so that a=1 and b = 1,

s8¢ that J = (

O
oOR O
OO

) . By lemma 12.1, this transvection is in H so
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=]
i

SL(3,F).

Case (iii). A is similar to a 3 by 3 companion matrix,

0 0 a
C = (1 0 b |, a# 0 since A is nonsingular, and by le 13.1, H contains
0 1 ¢ B ’ o, owheL :
. (0 0 u-la) :
c*=l1 0 p]. .y
0 u c

Therefore, H contains the commutator

-1

- at 1 0.\ f1 0 o\fo o xlla\(1 0 o
D= C* By (-1)C*Byy (1) = |-ca™ 0 *1J|{~11 of{2 0 »TBJ|1 1 O
pa™l o0/ \o o 1/ \o 1 ¢ o 0 1
—ba—l_i 1 1 0\fo o0 u:ia 1 0 -p"lay
=| =ca 0 10 pol=f1 2 90 ).
pa~t o o /\p n ¢ 0 0o 1
a4 1 0 yi
Since D ¢ H, D = |=-1 1 *p“l € H also.
0 0 1
10 o
H also contains B,, (1)DB (---l)D"‘l = {Q 1 -u”la and since u # Q,
21 21 \a o 1

this is a transvection so that H = SL(3,F).

0 .
Lerma 14.1. ILet H A SL(m,F) and let H contain (3 B) , where B is a k by k

I0
matrix that is not scalar. Then H contains a matrix (0 D) , where I

is an identity matrix and D is a k by k matrix that is not scalar.

A0

0 B) ¢ H, then if B is a

Proof: Since H A SL(m,F) we know that if (
diagonal matrix and is not scalar, then B = (bl,..bk),‘such,that bi # bj

. . . N - - -1
for some i,5, 15isk,1%3j5k. Since B7IB, (1)7!BB;;(1)= B; (1 = b; b))

which is not scalar, we use
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a™l o I 0 A O\[I 0 = (I O

( 0 B‘l)(o B-.U)—l)(o B)(O B--UJ) '(0 D)
ij 1]

- -1 -1 .
and D =B Bij(l) BBij(l) is not scalar

If B = (bij) is not diagonal, then use D = (dij) where dij =0

if i # 3, dii # 0 for each i and d; 4 # djj for any i,j, 1 5 i 5 k,

1p-1Bp = xI. Then BD = xDB, so that

1% 3% k. Assume B~
BD = (cjp)s Cin = Pipdhn’

d.

DB = (ajp), ajy = d;;bsy.

Therefore BD = xDB if and only if bihdhh = xd..b

1iPin for each i,h. When

i=h, x=1, so bihdhh = diibih' when i # h, not all bih are zero

therefore dy = dii for some i,h which contradicts d; # &y, for any

i,h. Therefore

A6 G662

and E is not scalar.

Lemma 14.2. Suppose that PSL(m,F) is simple, for some fixed m > 3.
If a normal subgroup H of SL(m,F) contains a nonscalar matrix, then

H = SL(m,F).

Proof: If PSL(m,F) is simple, then Z

o the center, is a maximal normal

subgroup of SL(m,F). Since H and Z, are both normal in SL(m,F), then

HZy is the smallest subgroup of SL(m,F) containing H and Z,. But for

-1
hz_ ¢ HZO, ghzog

o = ghg"lzo'e HZ, for all g ¢ SL(m,F). Hence HZ, is

a normal subgroup which contains Z  but since Z, is maximal, HZ, = SL(m,F).
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It follows that H must contain A, a scalar multiple of a transvection

ouoO0 O0...0

0aoaO O0...0

00a O0...0
A = .

and its inverse

o~ —pa—z 0O O0...0
0 el 0 o0...0
N 0 o ot o...0
AT = ) ) )
.- )
0 0 0 0...a%

If |F|

2 then A is a transvection and by Lemma 12.1 H = SL(m,F).
If |F| 2 3 then there is a nonzero B € F with -ua"2 + B # 0. Now at

is similar to B where

ot —ua_z +8 0 0...0

0 a 0 0 ...0

0 0 lo...o0
B = .

o
IS
IS
o
.
L]
o

since for

b
—apofz/(--uof2 + B) <j)

O I

alp=DB. BeH by lemma 13.1 as long as m 2 3. But AB = By, (aB),

[

H contains a transvection, and so H = SL(m,F).
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Theorem 14. PSL(m,F) is simple for every field F and all m 2 3.

Proof: 'The theorem is proved by induction on m, where m > 3. Theorem 13
completed the initial step where m = 3. Let H A SL{(m,F), where m > 3
and H properly contains Z,- Now H contains a nonscalar matrix A, and

A is similar to a direct sum of companion matrices

by lemma 13.1, this matrix lies in H if we adjust the last row and column.

If £t > 1, then lemma 14.1 gives a matrix in H of the fomm (g g),

where D is a k by k matrix that is not scalar. We may assume that

o

k 2 3: if for example, k = 2, then let

1 0 ©
D= 0 a b]).
0 ¢ d

*
Let 8 be the following isomorphic copy of SL(k,F) in SL(m,F):

o* - {(é 3) s Ue SL(k,’F)} .

10

* *
Now S*" N HA S a.nd(OAD

) is a nonscalar matrix in this intersection.
. . . . s . *
Since PSL(k,F) is simple, by induction, lemma 14.2 gives s*NE=-s

so that H contains a transvection.

The last case is when t = 1, i.e., the original matrix A is sim-

ilar to a companion matrix. Thus H contains an adjusted companion matrix



0 ... 0 a

4]

1 0 ...0 a%

0 1 ...0 as
C = . .

(3
1]

O 0 ... 1 a,m

where U = al"l. Our multiplication is easier if we think of C as a

linear transformation; there is a basis o) = 1,0,...,0 a5 = 0,1,0,...,0

cesy am = 0,0,...,1 with

Cal = a2,
Ca%_l = Opos
O = a0y

The inverse of C also lies in H; since Cc—lai = 0y its action is given by

-1

C 7oy = majuoy = aglop < o.ee. = ApgHOy o T BglGy gt Hag,
C 0‘-2 = al
-1, o
C am__l“ am_z

-1 _ -1
Coop = W "0 -

If B is the transvection 821(1), then

1 0 0O
B = 1 1 a ?

0 0 I

and Bal = 0 + 0q and Boy = oy for 1 2 2. The transformation

D = BeB™lc™l acts as follows:

#

Dal al + Qs + azHa,

Dagy = ag - O3 ; Da; = oy for i 2 3.
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The matrix of D relative to the basis of o is in H, and

Uuo
1f s* = {(o 1): Ue SL(3,F>} , then s* = SL(3,F) and B N S" 4 s*. Since
H N s* contains D, a nonscalar matrix, HMN s* = s*, by lemma 14.2.

Therefore, S* C H and H contains a transvection.

Further investigation of PSL(m F) shows that not only do these
simple groups reproduce other simple groups, i.e., table 3 shows that
PSL(2,3) = 2‘3‘4, but others such as PSL(3,4) which has order 20,160 is
not isomorphic to Ag which is also simple and of order 20,160 (Rotman,

1965, p. 172).
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GL(2,2}
Element Order
(1 0) U
01 1
(1 1) .....
01 2

O H
o
pa—— g ) g f S—
.
L1 ]
L]
L]
'
L
»*
»
L]
L]
*
*
»
*
s
L

O
£

Lo Jdfroy 11y (o1
The commutator subgroup is: {(o 1) ! (l 0) ! (1 l)}'

By noting the order of the elements, it is clear that GL(2,2) = S,
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GL(2,3)

PABLE 2

S T T T~ S em S S

- e S

' - R i R L P S R A R R

o

5

L

&~

m

g

T — ————— \\lﬂ. p—— 2

— S p——— c———— ——— ——— ————

m ~N 3 e -l O =~ [ B o~ QO o~ N ~N O O~ o~ o N e~ .W
g - N o~ N ~ o N [ ) ~ - O N~ ] —~ O N~ N O .MM
M

-~

Y

=
|
]
[0}
4]
-
M
m +
pp——— mr—, pm— prrre— ———— ——n pa——— —, par——, ——— — o —
m -l O e O ™ ~— - O - O ™~ O - N -~ o N NN N m
.mU. - O ~ - O o N NN O N o~ —~ - N ~N O N O o N m
4]
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the group SL(2,3).



Table 3

PSL(2,3)

Element
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&
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i

. *
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*

. .

0

.
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