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Abstract Prediction of aerodynamic force/heating acting on hypersonic vehicles
in flight conditions with experimental data is a critical yet challenging step in
developing hypersonic vehicles. A multi-space interrelation (MSI) theory and its
correlation algorithms have been presented. MSI considers the flight condition as an
ideal wind tunnel and then aims at detecting an inherent invariant of aerodynamic
data from different wind tunnels. The invariant detection is carried out by special
supervised self-learning schemes, adaptive space transformation (AST), and/or
parse-matrix evolution (PME). The invariant is then used to predict the aerodynamic
force/heating coefficients. The study indicates that the multi-space interrelation
theory agrees well with physical phenomena. The correlation algorithm can make
use of hypersonic wind-tunnel experimental data effectively, and the correlation
function is capable of unifying all the experimental data in an analytical form. With
the proposed theory and algorithm, one can expect to find a reliable correlation
formula with high accuracy based on plenty of wind-tunnel experimental data,
provided that the physical condition has not essentially changed.
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1 Introduction

Hypersonic vehicles hold the mission to flying faster, higher, and further, which is
always a dream of mankind. With increasing flying speed, the drag reduction and
thermal protection become two primary issues to consider when designing a new
hypersonic vehicle.

During the last decades, many wind tunnels of different types have been built up
and operated all over the world to study the aerodynamic force/heating behaviors of
hypersonic vehicles. A huge number of experimental data have been collected for
different vehicles in different conditions. However, the prediction of aerodynamic
force/heating acting on hypersonic vehicles in flight conditions with experimental
data is still a challenging step in developing hypersonic vehicles. In fact, from
subsonic to supersonic and hypersonic, with the quantitative change of flight speed,
the flow medium outside the edge of the vehicle has changed qualitatively, and the
boundary layer is dominated by shocks and thermal reactions of air and featured
with nonlinear, multi-scale, and nonequilibrium behaviors. Even worse, limited
by the experiment capability of wind tunnels, only a part of flight parameters
such as Mach number M, and/or Reynolds number Re, could be simulated with
conventional hypersonic wind tunnels, and the limitation is imposed on the accurate
prediction of vehicle performances in flight conditions [1].

Great efforts have been devoted to study the correlations of ground testing data
and the flight flying conditions. A number of methods have been proposed in
the past decades. These methods fall into two categories: (I) simplification and
correction and (I) approximation and extrapolation. The simplification might be
geometry simplification or theoretical simplification. For geometry simplification,
the target hypersonic vehicles are divided into a combination of simple shapes, e.g.,
cones, cylinders, flat plates, spheres, and wedges, for which analytical solutions
are available [2]. This method is easy to understand and have physical basis, but
it ignored the effect of interaction of simple shapes, so the predicted results are not
acceptable, especially in the area of interactions. For theoretical simplification, some
assumptions are made, and only one or two so-called key parameters are considered
to get a scale factor for prediction [3]. A common limitation of the method in
category I is that its performance depends heavily on the experience of engineers.

A number of approximation-based methods have also been presented for the
aerodynamic-coefficient prediction including least squares regression [4], artificial
neural network (ANN) [5], support vector machine (SVM) [6], and extrapolation
[7]. We have also suggested an adaptive surrogate model [8] to improve the accuracy
of approximation. In general, the prediction results of these methods are reliable
within the convex hull of known data (interpolation). However, in many cases, as
discussed above, the flight parameters could not be covered by wind tunnels. In the
sense of mathematics, the prediction of flying condition with ground testing data is a
kind of extrapolation problem. So the prediction needs to be done outside the convex
hull (extrapolation). As a result, the methods in category II have poor performance
on extrapolation, and their prediction results are not reliable.
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In this work, we propose a multi-space interrelation (MSI) theory. It suggests
analyzing the problem in a dimension-reducible, multidimensional space and could
expect to reveal the underlying relationship of testing data among different wind
tunnels. The MSI theory considers the flight condition as an ideal wind tunnel and
then aims at detecting an inherent invariant of aerodynamic data from different wind
tunnels. The invariant detection is carried out by a special supervised self-learning
scheme, adaptive space transformation (AST) [9]. The invariant is then used to
predict the aerodynamic force/heating coefficients.

2 Multi-space Interrelation (MSI) Theory

2.1 Physical Idea of MSI Theory

There are a variety of different types of hypersonic wind tunnels, even if the same
kind of wind tunnel; simulation capacity is also very different, which increases the
diversity and disorder of experimental data. Meanwhile, the flight corridor could
not be covered by experiments due to limitations of wind tunnels. However, all
the test results are still physical and inherently correlated if standing on a higher-
dimensional space. In fact, although the experiment conditions might be different
with the flight condition, far or less, as long as the results are reliable. The test data
hold the information of physical mechanisms and eventually have contributions to
the flight behavior predictions, more or less, depending on the degree of deviation
from the flight corridor.

For a certain aircraft shape, the speed, static temperature, static pressure of free
stream, model scale, and other aerodynamic parameters of wind tunnel constitute
a complete multidimensional full-parameter space of experimental data. Note that
the static pressure and height of the flight corridor have a restricted relationship
H (T, P). Hence the flight state is a special subspace of the full-parameter space.

2.2 Variations and Invariant

There are two levels of cognition for physical laws: variation trend and invariant
(Fig. 1). The first level is to find the variation trend of objective value (e.g.,
coefficient of drag Cp) with respect to relevant parameters (e.g., M, Re, Ty, Py,
s, etc.). But a better way is to find some invariant to describe an object or system
to make prediction. For example, there might be many ways to describe an ellipse.
But only if an invariant relation such as “The sum of the distances from any point
(P) on a given ellipse to its two foci (Fy, F») is a constant” is detected, its essential
property is grasped.
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Fig. 1 Two levels of cognition for an object or system

The invariant relation has a great recovery capability. For example, once the
above invariant relation is detected, it can help recover the entire ellipse from a
small part of the ellipse. That is, although only a part of an ellipse (e.g., the lower-
left 1/4 part) is known, we can predict (recover) the rest of it. The recover process
is similar to data correlation, in which the objective is also to predict the unknown
part by using the information of the known part.

2.3 Optimization Methods for MSI Correlation

An intelligent functional optimization, parse-matrix evolution (PME), is recom-
mended to automatically select proper parameters (dimension reducing) and detect
their analytical relationship with the target value (aerodynamic force/heating coef-
ficient, coefficient of drag Cp for example). PME can optimize the function
structure of model (f) as well as its parameters (e.g., A1, A2). That is, PME can
determine which function structure such as power, exponential, logarithm, sine,
their combinations, etc. is the best fit model according to the test data. No previous
assumptions on the function structure are necessary any more. This makes it easy to
use and rely little on the experience of practical engineers.

As discussed above, invariant is a better way for prediction. The MSI theory
considers the flight condition as an ideal wind tunnel and then aims at detecting
an inherent invariant of aerodynamic data from different wind tunnels (Fig. 4).
To detect the underlying invariant of the test data from different wind tunnels, a
special supervised self-learning scheme, adaptive space transformation (AST) [9],
is proposed.
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2.4 Philosophy of MSI Theory

Einstein’s formulas of mass-energy equivalence (E = mc™2), Newton’s law of
motion (F = ma), and Kepler’s law of planetary motion (a"3/T"2 = K) are all
simple and elegant. In Chinese Taoist philosophy, there is a well-known principle
that says “Great truths are always simple.” As for the aerodynamic force/heating,
the prediction model must not be too complex. The model of conventional modeling
methods including spline fit, multivariate polynomial regression artificial neural net-
work (ANN), and support vector machine (SVM) involves many hidden coefficients,
which are adjusted to compromise the data variations, but too complex to describe
a physical law.

In MSI methods (PME and AST), the model complexity is controlled in real-time
in the functional optimization process of target model.

3 Implementation of MSI Correlation

There are three essential factors to implement the MSI: theory, data, and algorithm.
The theory and algorithm have been presented in the above section. However,
the data plays a decisive role in the process of variation trend (and/or invariant)
detection. First, to get a reliable correlation model for prediction, the data must carry
enough information to describe the variation trend brought by different physical
mechanisms such as real-gas effect, scale effect, Reynolds effect, etc. Second, the
accuracy of data is also decisive, which sometimes leads the MSI correlation to
success or failure.

4 Applications

The MSI correlation methods have been applied to many practical aerodynamic
force/heating prediction problems. Here two examples are presented. One is on
aerodynamic force prediction, and the other is on aerodynamic heating prediction.

To predict the drag of a sharp cone with 10-degree half-angle, 200 learning cases
are used for training AST, and another 800 cases are used to test the performance
of AST, where most of test points lie outside of the convex hull of the learning
data (blue in Figs. 2 and 3). The comparison results show that it has much better
predictions than ANN and ¢-SVR [9].

The second example is trying to detect an invariant for aerodynamic heating of a
sharp cone, which can hopefully unify the data distributions from different type
of wind tunnels. Two sharp cones with half-angle 7° are used for experiments.
One is about 1.2 m long, tested in JF12. The freestream is typically calorically
perfect gas. The other is about 0.6 m, tested in JF10. The freestream is typically
chemical/thermal nonequilibrium. The original data distributions are separated
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Fig. 2 A best correlation model by MSI and its performance on cone-drag prediction
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Fig. 3 Prediction deviation of ANN and e-SVR, inside (red) and outside (blue) the convex hull

(Fig. 4a). In MSI method, 11 parameters including data distribution Ty, Py, Ho,
Hy, p, p, u, M, T, Rer, and Re, are set for inputs of PME, and the target is to find
a best model to unify all these data. PME reached at a simple and elegant formula
St=a+ ﬁ. With this correlation formula, the data distributions could be well
unified (Fig. 4b). The correlation performance of MSI is much better than other

existing methods in literatures (Fig. 5a, b) [10].

5 Conclusion

A multi-space interrelation (MSI) theory and its correlation algorithms have been
presented. MSI considers the flight condition as an ideal wind tunnel and then aims
at detecting an inherent invariant of aerodynamic data from different wind tunnels.
The invariant detection is carried out by special supervised self-learning schemes,
adaptive space transformation (AST), and/or parse-matrix evolution (PME). The
invariant is then used to predict the aerodynamic force/heating coefficients. The
study indicates that the multi-space interrelation theory agrees well with physical
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Fig. 4 Data correlation of test data from different wind tunnels. (a) Original data distribution;

(b) correlated data distribution
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Fig. 5 Correlation performance of other methods. (a) Conventional method, St Re} = C;

(b) boundary layer out-edge method St.+/Rey = C

phenomena. The correlation algorithm can make use of hypersonic wind-tunnel
experimental data effectively, and the correlation function is capable of unifying all
the experimental data in an analytical form. With the proposed theory and algorithm,
one can expect to find a reliable correlation formula with high accuracy based on
plenty of wind-tunnel experimental data, provided that the physical condition has
not essentially changed.
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