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Abstract
In this paper, we study the 3-dimensional Topp model

for the dynamics of diabetes. First, we reduce the model
to a planar quartic system. In particular, studying global
bifurcations, we prove that such a system can have at
most two limit cycles. Next, we study the dynamics of
the full 3-dimensional model. We show that for suitable
parameter values an equilibrium bifurcates through a
Hopf-saddle-node bifurcation. Numerical analysis sug-
gests that near this point Shilnikov homoclinic orbits ex-
ist. In addition, chaotic attractors arise through period
doubling cascades of limit cycles.

Key words
Dynamics of diabetes; Topp model; reduced planar

quartic Topp system; field rotation parameter; singular
point; Wintner–Perko termination principle; limit cycle;
Hopf-saddle-node bifurcation; period doubling bifurca-
tion; Shilnikov homoclinic orbit; chaos.

1 Introduction
In this paper, we carry out a global qualitative anal-

ysis, first of all, of a reduced planar quartic Topp sys-
tem which models the dynamics of diabetes [Goel, 2015;
Topp et al., 2000].

Diabetes mellitus is a disease of the glucose regula-
tory system characterized by fasting or postprandial hy-
perglycemia. There are two major classifications of dia-
betes based on the etiology of the hyperglycemia. Type 1

diabetes (also referred to as juvenile onset or insulin-
dependent diabetes) is due to an autoimmune attack on
the insulin secreting β cells. Type 2 diabetes (also re-
ferred to as adult onset or non-insulin-dependent dia-
betes) is associated with a deficit in the mass of β cells,
reduced insulin secretion, and resistance to the action of
insulin; see [Topp et al., 2000] and the references therein.

Blood glucose levels are regulated by two negative
feedback loops. In the short term, hyperglycemia stim-
ulates a rapid increase in insulin release from the pan-
creatic β cells. The associated increase in blood in-
sulin levels causes increased glucose uptake and de-
creased glucose production leading to a reduction in
blood glucose. On the long term, high glucose levels
lead to increase in the number of β-cells. An increased
β-cell mass represents an increased capacity for insulin
secretion which, in turn, leads to a decrease in blood glu-
cose. Type 2 diabetes has been associated with defects
in components of both the short-term and long-term neg-
ative feedback loops [Topp et al., 2000].

Mathematical modeling in diabetes research has fo-
cused predominately on the dynamics of a single vari-
able, usually blood glucose or insulin level, on a time-
scale measured in minutes [Topp et al., 2000]. Generally,
these models are used as tools for measuring either rates
(such as glucose production and uptake rates or insulin
secretion and clearance rates) or sensitivities (such as in-
sulin sensitivity, glucose effectiveness, or the sensitivity
of insulin secretion rates to glucose). Two model-based
studies have examined coupled glucose and insulin dy-
namics [Topp et al., 2000]. In each of these studies,
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multiple parameter changes, representing multiple phys-
iological defects, were required to simulate glucose and
insulin dynamics observed in humans with diabetes. In
doing so, three distinct pathways were found to the dia-
betic state: regulated hyperglycemia, bifurcation and dy-
namical hyperglycemia [Topp et al., 2000].

In our study, we reduce the 3D Topp diabetes dynam-
ics model [Goel, 2015; Topp et al., 2000] to a planar
quartic dynamical system and study global bifurcations
of limit cycles that could occur in this system, applying
the new bifurcation methods and geometric approaches
developed in [Broer and Gaiko, 2010; Gaiko, 2003;
Gaiko, 2012a; Gaiko, 2012b; Gaiko, 2012c; Gaiko,
2015; Gaiko, 2016; Gaiko, 2018; Gaiko and Vuik, 2018].
In Section 2, we consider the Topp model of diabetes
dynamics. In Section 3, we carry out the global qual-
itative analysis of the reduced Topp system. Finally,
in Section 4, we perform a numerical study of the full
3-dimensional Topp model getting new qualitative phe-
nomena for this model.

2 Topp Model of Diabetes Dynamics
In [Topp et al., 2000], a novel model of coupled β-

cell mass, insulin, and glucose dynamics was presented,
which is used to investigate the normal behavior of the
glucose regulatory system and pathways into diabetes.
The behavior of the model is consistent with the ob-
served behavior of the glucose regulatory system in re-
sponse to changes in blood glucose levels, insulin sensi-
tivity, and β-cell insulin secretion rates.

In the post-absorptive state, glucose is released into
the blood by the liver and kidneys, removed from the
interstitial fluid by all the cells of the body, and dis-
tributed into many physiological compartments, e. g., ar-
terial blood, venous blood, cerebral spinal fluid, intersti-
tial fluid [Topp et al., 2000].

Since we are primarily concerned with the evolution
of fasting blood glucose levels over a time-scale of days
to years, glucose dynamics are modeled with a single-
compartment mass balance equation

Ġ = a− (b+ cI)G. (2.1)
Insulin is secreted by pancreatic β-cells, cleared by

the liver, kidneys, and insulin receptors, and distributed
into several compartments, e. g., portal vein, peripheral
blood, and interstitial fluid. The main concern is the
long-time evolution of fasting insulin levels in periph-
eral blood. Since the dynamics of fasting insulin levels
on this time-scale are slow, we use a single-compartment
equation given by

İ =
βG2

1 +G2
− αI. (2.2)

Despite a complex distribution of pancreatic β cells
throughout the pancreas, β-cell mass dynamics have
been successfully quantified with a single-compartment
model

β̇ = (−l +mG− nG2)β. (2.3)

Finally, the Topp model is

Ġ = a− (b+ cI)G,

İ =
βG2

1 +G2
− αI,

β̇ = (−l +mG− nG2)β

(2.4)

with parameters as in [Topp et al., 2000].
Using small parameters l, m, n and relabelling the

variables, the fast dynamics can be described by a pla-
nar system

ẋ = a− (b+ c y)x,

ẏ =
βx2

1 + x2
− α y.

(2.5)

By rescaling time, this can be written in the form of
a quartic dynamical system:

ẋ = (1 + x2)(a− (b+ c y)x) ≡ P,

ẏ = βx2 − α y(1 + x2) ≡ Q.

(2.6)

Together with (2.6), we will also consider an auxiliary
system (see [Bautin and Leontovich, 1990; Gaiko, 2003;
Perko, 2002])

ẋ = P − γQ, ẏ = Q+ γP, (2.7)

applying to these systems new bifurcation methods and
geometric approaches developed in [Broer and Gaiko,
2010; Gaiko, 2003; Gaiko, 2012a; Gaiko, 2012b; Gaiko,
2012c; Gaiko, 2015; Gaiko, 2016; Gaiko, 2018; Gaiko
and Vuik, 2018] and carrying out the qualitative analysis
of (2.6).

3 Bifurcation Analysis of the Reduced System
Consider system (2.6). Its finite singularities are deter-

mined by the algebraic system
(1 + x2)(a− (b+ c y)x) = 0,

βx2 − αy(1 + x2) = 0

(3.1)

which can give us at most three singular points in the
first quadrant: a saddle S and two antisaddles (non-
saddles) — A1 and A2 — according to the second
Poincaré index theorem [Bautin and Leontovich, 1990;
Gaiko, 2003]. Suppose that with respect to the x-axis
they have the following sequence: A1, S, A2. System
(2.6) can also have one singular point (an antisaddle) or
two singular points (an antisaddle and a saddle-node) in
the first quadrant.

To study singular points of (2.6) at infinity, consider
the corresponding differential equation

dy

dx
=

βx2 − α y(1 + x2)

(1 + x2)(a− (b+ c y)x)
. (3.2)

Dividing the numerator and denominator of the right-
hand side of (3.2) by x4 (x ̸= 0) and denoting y/x by u
(as well as dy/dx), we will get the equation

u2 = 0, where u = y/x, (3.3)

for all infinite singularities of (3.2) except when x = 0
(the “ends” of the y-axis); see [Bautin and Leontovich,
1990; Gaiko, 2003]. For this special case we can di-
vide the numerator and denominator of the right-hand
side of (3.2) by y4 (y ̸= 0) denoting x/y by v (as well
as dx/dy) and consider the equation

v2 = 0, where v = x/y. (3.4)
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Figure 1. Lyapunov diagram of attractors for the Topp model as a
function of the parameters a and l, where α = −0.2 is kept fixed.
See Table 1 for the color coding. The Hopf-saddle-node bifurcation is
located at the point (a, l) = (0.2, 1).

According to the Poincaré index theorems [Bautin and
Leontovich, 1990; Gaiko, 2003], the equations (3.3) and
(3.4) give us two double singular points (saddle-nodes)
at infinity for (3.2): on the “ends” of the x and y axes.

Using the obtained information on singular points and
applying geometric approaches developed in [Broer and
Gaiko, 2010; Gaiko, 2003; Gaiko, 2012a; Gaiko, 2012b;
Gaiko, 2012c; Gaiko, 2015; Gaiko, 2016; Gaiko, 2018;
Gaiko and Vuik, 2018], we can study now the limit cycle
bifurcations of system (2.6).

Applying the definition of a field rotation parameter
[Bautin and Leontovich, 1990; Gaiko, 2003], to system
(2.6), let us calculate the corresponding determinants for
the parameters a, b, c, α, and β, respectively:

∆a = PQ′
a−QP ′

a = −(1 + x2)(βx2−α y(1 + x2)),

∆b = PQ′
b−QP ′

b = x(1 + x2)(βx2−αy(1 + x2)),

∆c = PQ′
c−QP ′

c = xy(1 + x2)(βx2−α y(1 + x2)),

∆α = PQ′
α−QP ′

α = −y(1 + x2)2(a−(b+ c y)x),

∆β = PQ′
β−QP ′

β = x2(1 + x2)(a−(b+ c y)x).

It follows that in the first quadrant the signs of ∆a, ∆b,
∆c depend on the sign of βx2−α y(1+x2) and that the
signs of ∆α and ∆β depend on the sign of a− (b+ c y)x
on increasing (or decreasing) the parameters a, b, c, α,
and β, respectively.

Therefore, to study limit cycle bifurcations of system
(2.6), it makes sense together with (2.6) to consider
also the auxiliary system (2.7) with field-rotation para-
meter γ :

∆γ = P 2 +Q2 ≥ 0.

Using system (2.7) and applying Perko’s results

[Gaiko, 2003; Perko, 2002], we will prove the follow-
ing theorem.

Theorem 3.1. The reduced Topp system (2.6) can have
at most two limit cycles.

Proof. In [Broer et el., 2007; Broer and Gaiko, 2010; Li
and Xiao, 2007; Zhu et al., 2002], where a similar quartic
system was studied, it was proved that the cyclicity of
singular points in such a system is equal to two and that
the system can have at least two limit cycles; see also
[Gaiko, 2016; Gaiko and Vuik, 2018; Gonzalez-Olivares
et al., 2011; Lamontagne, 2008] with similar results.

Consider systems (2.6)–(2.7) supposing that the cyclic-
ity of singular points in these systems is equal to two and
that the systems can have at least two limit cycles. Let us
prove now that these systems have at most two limit cy-
cles. The proof is carried out by contradiction applying
Catastrophe Theory; see [Gaiko, 2003; Perko, 2002].

We will study more general system (2.7) with three pa-
rameters: α, β, and γ (the parameters a, b, and c can be
fixed, since they do not generate limit cycles). Suppose
that (2.7) has three limit cycles surrounding the singular
point A1, in the first quadrant. Then we get into some
domain of the parameters α, β, and γ being restricted by
definite conditions on three other parameters, a, b, and c.
This domain is bounded by two fold bifurcation surfaces
forming a cusp bifurcation surface of multiplicity-three
limit cycles in the space of the parameters α, β, and γ.

The corresponding maximal one-parameter family of
multiplicity-three limit cycles cannot be cyclic, other-
wise there will be at least one point corresponding to
the limit cycle of multiplicity four (or even higher) in the
parameter space.

Extending the bifurcation curve of multiplicity-four
limit cycles through this point and parameterizing the
corresponding maximal one-parameter family of multi-
plicity-four limit cycles by the field rotation parameter,
γ, according to the Perko monotonicity theorem [Gaiko,
2003; Perko, 2002], we will obtain two monotonic
curves of multiplicity-three and one, respectively, which,
by the Wintner–Perko termination principle [Gaiko,
2003; Perko, 2002], terminate either at the point A1 or
on a separatrix cycle surrounding this point. Since on our
assumption the cyclicity of the singular point is equal to
two, we have obtained a contradiction with the termina-
tion principle stating that the multiplicity of limit cycles
cannot be higher than the multiplicity (cyclicity) of the
singular point in which they terminate.

If the maximal one-parameter family of multiplicity-
three limit cycles is not cyclic, using the same principle,
this again contradicts the cyclicity of A1 not admitting
the multiplicity of limit cycles to be higher than two.
This contradiction completes the proof in the case of one
singular point in the first quadrant.

Suppose that system (2.7) with three finite singulari-
ties, A1, S, and A2, has two small limit cycles around,
for example, the point A1 (the case when limit cycles
surround the point A2 is considered in a similar way).
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Figure 2. As Figure 1, but for α = −0.1. The Hopf-saddle-node
bifurcation is located at the point (a, l) = (0.1, 1).

Color Lyapunov exponents Attractor type

Red 0 > λ1 ≥ λ2 ≥ λ3 stable equilibrium
Green 0 = λ1 > λ2 > λ3 periodic attractor (node)
Blue 0 = λ1 > λ2 = λ3 periodic attractor (focus)
Grey 0 = λ1 = λ2 > λ3 2-torus attractor
Black λ1 > 0 > λ2 ≥ λ3 chaotic attractor
White no attractor detected

Table 1. Color coding for the Lyapunov diagrams presented in Fig-
ures 1 and 2.

Then we get into some domain in the space of the param-
eters α, β, and γ which is bounded by a fold bifurcation
surface of multiplicity-two limit cycles.

The corresponding maximal one-parameter family of
multiplicity-two limit cycles cannot be cyclic, otherwise
there will be at least one point corresponding to the limit
cycle of multiplicity three (or even higher) in the param-
eter space. Extending the bifurcation curve of multiplici-
ty-three limit cycles through this point and parameteriz-
ing the corresponding maximal one-parameter family of
multiplicity-three limit cycles by the field rotation para-
meter, γ, according to the Perko monotonicity theorem
[Gaiko, 2003; Perko, 2002], we will obtain a monotonic
curve which, by the Wintner–Perko termination princi-
ple [Gaiko, 2003; Perko, 2002], terminates either at the
point A1 or on some separatrix cycle surrounding this
point. Since we know at least the cyclicity of the singu-
lar point which on our assumption is equal to one in this
case, we have obtained a contradiction with the termina-
tion principle.

If the maximal one-parameter family of multiplicity-
two limit cycles is not cyclic, using the same principle,
this again contradicts the cyclicity of A1 not admitting
the multiplicity of limit cycles higher than one. More-
over, it also follows from the termination principle that

either an ordinary (small) separatrix loop or a big loop,
or an eight-loop cannot have the multiplicity (cyclicity)
higher than one in this case. Therefore, according to the
same principle, there are no more than one limit cycle in
the exterior domain surrounding all three finite singular-
ities, A1, S, and A2.

Thus, taking into account all other possibilities for
limit cycle bifurcations (see [Broer et el., 2007; Broer
and Gaiko, 2010; Li and Xiao, 2007; Zhu et al., 2002]),
we conclude that system (2.7) (and (2.6) as well) cannot
have either a multiplicity-three limit cycle or more than
two limit cycles in any configuration. The theorem is
proved. �

4 Analysis of 3-Dimensional Topp Model
In this section, we study numerically the dynamics of

the 3-dimensional Topp model (2.4) getting new qualita-
tive phenomena for this model. Our particular interest is
to identify the bifurcations leading to chaotic dynamics.
We fix the following parameter values:

b = 1, c = 1, m = 2, n = 1.

The remaining parameters α, a, and l will be used for
bifurcation analysis.

We start by studying equilibrium solutions and their
stability. The Topp system (2.4) has at most three equi-
libria which are given by

E1 = (a, 0, 0),

E2,± =

(
ξ±,

a− ξ±
ξ±

,
α(a− ξ±)(1 + ξ2±)

ξ3±

)
,

where ξ± = 1 ±
√
1− l. Note that E2,− and E2,+

coalesce in a saddle-node bifurcation which occurs for
l = 1.

Now assume that l = 1. In this case it follows that

E2,+ = E2,− = (1, a− 1, 2α(a− 1)).

A straightforward calculation shows that the characteris-
tic polynomial of the Jacobian matrix of (2.4) evaluated
at E2,± is given by p(λ) = −λ(λ2 − Tλ + D), where
T = α+a and D = α(2a−1). Note that λ = 0 is a zero
of p(λ); indeed this is the eigenvalue associated with the
saddle-node bifurcation. For 0 < a < 1

2 and α = −a it
follows that T = 0 and D > 0, which implies that p(λ)
also has two imaginary zeros λ = ±i

√
−a(2a− 1). In

conclusion, in the three-dimensional (α, a, l)-parameter
space there is a plane of saddle-node bifurcations given
by l = 1 and a line segment of Hopf-saddle-node bifur-
cations given by (−α, α, 1) where −1

2 < α < 0.
The possible unfoldings of the Hopf-saddle-node

(HSN) bifurcation are presented in Kuznetsov (2004).
The HSN bifurcation is a codimension-two bifurca-
tion which forms an organizing centre in the two-
dimensional (a, l)-parameter plane. From the HSN
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a Shilnikov homoclinic orbit formed by the intersection of one-
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ods of the newly born (unstable) periodic orbits tend to infinity as
l → l∞ ≈ 0.978.

point typically other bifurcation curves emanate, such as
Hopf-Neı̆mark-Sacker bifurcations which lead to quasi-
periodic attractors. In addition, Shilnikov homoclinic bi-
furcations can occur subordinate to a HSN bifurcation
[Broer & Vegter (1984)]. In certain cases, Shilnikov
homoclinic are associated with the existence of chaotic

dynamics and strange attractors. The HSN bifurcation
and related Shilnikov bifurcations occur in many at-
mospheric models [Broer et al. (2002), Broer & Vitolo
(2008), Crommelin et al. (2004), Sterk et al. (2010), Van
Veen (2003)].

We take cross sections in the parameter space by fix-
ing α and study bifurcations and routes to chaos in the
(a, l)-plane. The Lyapunov diagram in Figure 1 shows
a classification of the dynamical behaviour of the Topp
model in different regions of the (a, l)-parameter plane
where α = −0.2 is kept fixed. The diagram suggests that
periodic attractors and chaotic attractors with a positive
Lyapunov exponent occur for regions in the parameter
plane with positive Lebesgue measure. For other values
of −1

2 < α < 0 the Lyapunov diagrams look qualita-
tively similar, see Figure 2 for the case α = −0.1.

Now we fix the parameters α = −0.2 and a = 0.33
and perform a more detailed bifurcation analysis by
varying the parameter l. For l = 0.9999 the equilib-
rium E2,− is stable. Continuation with decreasing l
shows that E2,− becomes unstable through a supercrit-
ical Andronov–Hopf bifurcation which occurs for l ≈
0.99852. Next, we continue the periodic orbit born at the
Andronov–Hopf bifurcation. For l ≈ 0.995641 the pe-
riodic orbit becomes unstable through a period doubling
bifurcation. Presumably this is the first period doubling
of an infinite cascade.

Continuation of the periodic orbit beyond the first
period doubling bifurcation reveals the following phe-
nomenon. The unstable periodic orbit bifurcates fur-
ther through a rapid succession of saddle-node bifurca-
tions. Presumably, infinitely many saddle-node bifurca-
tions occur. The newly born periodic orbits themselves
may bifurcate through period doubling bifurcations. Fig-
ure 3 shows a bifurcation diagram in which the period of
the orbit is plotted as a function of the continuation pa-
rameter l. Clearly, the diagram suggests that the periods
of the periodic orbits born through the saddle-node bi-
furcations tend to infinity.

The phenomenon depicted in Figure 3 can be explained
as follows. During the continuation the periodic or-
bits born through the saddle-node bifurcations become
arbitrarily close to an equilibrium. Hence, this bifur-
cation sequence leads to a homoclinic orbit. Figure 4
shows a periodic orbit which has a striking resemblance
to a Shilnikov homoclinic orbit which is formed by an
intersection of the one-dimensional unstable manifold
and the two-dimensional stable manifold of the equilib-
rium E2,+. Indeed, it is expected that these Shilnikov
homoclinic orbits occur along a curve in the (a, l)-
plane which emanates from the HSN bifurcation point
[Kuznetsov (2004)]. Likewise, there may also be curve
emanating from the HNS point along which there are
Shilnikov homoclinic orbits which are formed by the
one-dimensional stable manifold and two-dimensional
unstable manifold of the equilibrium E2,−. The numer-
ical computation of these curves and performing a more
detailed bifurcation analysis will be pursued in our forth-
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for the parameters (α, a, l) = (−0.2, 0.35, 0.994). The inset
shows a magnification of the attractor enclosed by the box.

coming work.
Finally, we explore the chaotic regime for 0.994775 <

l < 0.993466. From the flow of the Topp model we nu-
merically compute a Poincaré map by computing the in-
tersections of the integral curves with the plane G = 0.9.
Figure 5 shows a bifurcation diagram of the Poincaré
map. The period doubling bifurcations of periodic at-
tractors are clearly visible. After what is presumably an
infinite cascade of period doublings we find chaotic at-
tractors. Figure 6 shows a chaotic attractor for the pa-
rameter values (α, a, l) = (−0.2, 0.35, 0.994). In Fig-

ure 7 the corresponding attractor of the Topp flow is
shown.

The attractor in Figure 6 seems to have the geomet-
ric structure of a “fattened curve”. In fact, we conjec-
ture that the attractor is Hénon-like, which means that
the attractor is the closure of the 1-dimensional unsta-
ble manifold of a fixed point. For the classical Hénon
map the existence of such attractors has been proven by
Benedicks and Carleson (1991). In turn this would imply
that the attractor in Figure 7 is formed by the closure of
the unstable manifold of a periodic orbit of saddle type.

Hénon-like attractors appear in many applications
which range from climate models [Broer et al. (2002),
Broer et al. (2011)] to control systems [Ghane et
al. (2019)]. Their occurrence in the Topp model will be
investigated in more detail by the authors in forthcoming
work.
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