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Abstract
Ecological speciation is facilitated when divergent adaptation has direct effects on 
selective mating. Divergent sensory adaptation could generate such direct effects, 
by mediating both ecological performance and mate selection. In aquatic environ-
ments, light attenuation creates distinct photic environments, generating divergent 
selection on visual systems. Consequently, divergent sensory drive has been im-
plicated in the diversification of several fish species. Here, we experimentally test 
whether divergent visual adaptation explains the divergence of mate preferences in 
Haplochromine cichlids. Blue and red Pundamilia co-occur across south-eastern Lake 
Victoria. They inhabit different photic conditions and have distinct visual system 
properties. Previously, we documented that rearing fish under different light condi-
tions influences female preference for blue versus red males. Here, we examine to 
what extent variation in female mate preference can be explained by variation in vis-
ual system properties, testing the causal link between visual perception and prefer-
ence. We find that our experimental light manipulations influence opsin expression, 
suggesting a potential role for phenotypic plasticity in optimizing visual performance. 
However, variation in opsin expression does not explain species differences in female 
preference. Instead, female preference covaries with allelic variation in the long-
wavelength-sensitive opsin gene (LWS), when assessed under broad-spectrum light. 
Taken together, our study presents evidence for environmental plasticity in opsin ex-
pression and confirms the important role of colour perception in shaping female mate 
preferences in Pundamilia. However, it does not constitute unequivocal evidence for 
the direct effects of visual adaptation on assortative mating.
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1  | INTRODUC TION

Sensory drive—the hypothesis that sensory systems, signals and 
communication behaviour coevolve in concert with local environ-
mental conditions (Endler, 1992)—has been implicated as a mech-
anism of divergence in a number of species. Many examples come 
from aquatic environments (Cummings & Endler, 2018), as the nat-
ural attenuation of light through water results in heterogeneous 
photic environments. Vision-dependent aquatic species often pos-
sess visual systems, mating signals and mating behaviour correlated 
with the local light environment, implicating sensory drive-like pro-
cesses (e.g. guppies: Endler, 1992, sticklebacks: Reimchen, 1989; 
McDonald, Reimchen, & Hawryshyn, 1995; Boughman, 2001, 2002; 
Boughman, Rundle, & Schluter, 2005, killifish: Fuller, 2002; Fuller, 
Carleton, Fadool, Spady, & Travis, 2005; Fuller & Noa, 2010, sword-
tails: Kolm, Amcoff, Mann, & Arnqvist, 2012, surfperch: Cummings, 
2007, pygmy perch: Morrongiello, Bond, Crook, & Wong, 2010, and 
cichlids: Maan, Hofker, Alphen, & Seehausen, 2006; Seehausen et al., 
2008). Also in terrestrial systems, correlations between visual con-
ditions and communication traits have been reported (Cummings, 
Bernal, Reynaga, Rand, & Ryan, 2008; Leal & Fleishman, 2004; 
McLean, Moussalli, & Stuart-Fox, 2014).

When sensory adaptation directly affects not only ecological 
performance, but also traits related to sexual communication, assor-
tative mating may evolve. In general, theory suggests that ecologi-
cal speciation is facilitated when divergent adaptation immediately 
coincides with changes in mating patterns, such that individuals 
with the same adaptations mate among each other (Kirkpatrick & 
Ravigné, 2002). The traits that would mediate such a process have 
been labelled “magic”: powerful in driving fast speciation but as-
sumed to be rare in nature (Gavrilets, 2004; Servedio, Doorn, Kopp, 
Frame, & Nosil, 2011; Smith, 1966). Sensory adaptation might func-
tion as a magic trait, mediating not only ecological adaptation, but 
also the detection and assessment of potential mates (Boughman, 
2002; Maan & Seehausen, 2010). Alternatively, indirect selection, 
driven by variation in offspring fitness, may result in assortative 
mating among individuals with the same sensory adaptations: se-
lection against recombinant offspring would favour the evolution of 
assortative mating preferences. This process relies on the build-up 
and maintenance of linkage disequilibrium between the loci under-
lying sensory adaptation and mating preferences, and is much less 
efficient in generating reproductive isolation (Kirkpatrick & Barton, 
1997; Maan & Seehausen, 2012; Servedio & Boughman, 2017). Here, 
we aim to establish whether divergent visual adaptation directly af-
fects mating preferences in Lake Victoria cichlid fish.

Pundamilia pundamilia (Seehausen, Lippitsch, Bouton, & Heleen, 
1998) and Pundamilia nyererei (Witte-Maas & Witte, 1985) are 
two closely related species of cichlid fish found at rocky islands in 
south-eastern Lake Victoria. Similar sympatric Pundamilia species 
pairs (P. sp. “pundamilia-like” and P. sp. “nyererei-like”) also occur at 
other rocky islands in south-eastern portions of the lake (Meier, 
Marques, Wagner, Excoffier, & Seehausen, 2018; Meier et al., 2017). 
Males of the sympatric species are distinguished by their nuptial 

coloration; P. pundamilia and P. sp. “pundamilia-like” are blue/grey, 
whereas P. nyererei and P. sp. “nyererei-like” are orange/red dorsally 
and yellow on the flanks; all males have black, vertical bars on their 
flanks. Females are yellow/grey (Seehausen, 1996). The species pairs 
tend to be depth-differentiated—the blue species is found in shal-
lower waters, whereas the red species extends to greater depths 
(Seehausen, 1996; Seehausen et al., 2008). High turbidity in Lake 
Victoria results in a shift of the light spectrum towards longer wave-
lengths with increasing depth, such that the red species experiences 
very little short-wavelength light (Castillo Cajas, Selz, Ripmeester, 
Seehausen, & Maan, 2012; Maan et al., 2006; Seehausen et al., 
2008). Previous work has shown that male coloration mediates spe-
cies-assortative female preferences (Haesler & Seehausen, 2005; 
Seehausen & van Alphen, 1998; Selz, Pierotti, Maan, Schmid, & 
Seehausen, 2014; Stelkens et al., 2008).

Colour vision in cichlids (and vertebrates in general) is deter-
mined by photosensory pigments in the retina, comprised of a 
light-sensitive chromophore bound to an opsin protein (Bowmaker, 
1990). In Pundamilia, wild populations of blue and red species dif-
fer in the amino acid composition of the long-wavelength-sensitive 
opsin (LWS) (Seehausen et al., 2008) and behavioural tests revealed 
that P. nyererei is more sensitive to long-wavelength (red) light and 
P. pundamilia is more sensitive to short-wavelength (blue) light (Maan 
et al., 2006). Correspondence between these factors—differences in 
the photic environment, visual system properties, male coloration 
and female colour preference—suggests that sensory drive contrib-
utes to the divergence of these two species (Maan & Seehausen, 
2010). However, experimental tests are required to establish a 
causal relationship between visual perception and mate preference.

In addition to opsin allelic variation, visual sensitivity is deter-
mined by differential usage of vitamin A1- versus. A2-based chro-
mophores and the expression levels of the opsin genes (Carleton, 
2009). Light-induced changes in opsin expression have been ob-
served in several fish species, including cichlids (Dalton, Lu, Leips, 
Cronin, & Carleton, 2015; Fuller & Claricoates, 2011; Fuller, Noa, 
& Strellner, 2010; Hofmann, O'Quin, Smith, & Carleton, 2010; 
Nandamuri, Yourick, & Carleton, 2017; Shand et al., 2008; Smith, 
Ma, Soares, & Carleton, 2012; Stieb, Carleton, Cortesi, Marshall, 
& Salzburger, 2016; Van der Meer, 1993; Veen, Brock, Rennison, 
& Bolnick, 2017). This provides an experimental opportunity to 
manipulate visual system development. Here, we aim to experi-
mentally induce variation in opsin expression and test its conse-
quences for female mate choice. Thus, we aim to induce a plastic 
response to mimic the effects of visual adaptation. We recreated 
the shallow-water and deep-water light environments of Lake 
Victoria, and reared each species in both light conditions. In a 
prior study, we found that these manipulations influenced female 
mate preference: shallow-reared females (broad-spectrum light) 
preferred blue males, whereas deep-reared females (red-shifted 
light) tended to prefer red males (Wright et al., 2017). This was not 
due to changes in male colour signalling, as nuptial colour (blue/
red) was unaffected by our light manipulations (Wright, Rietveld, 
& Maan, 2018). Here, we investigate whether the observed change 
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in female preference can be ascribed to variation in opsin expres-
sion. We also test whether female preference covaries with allelic 
variation in the LWS gene.

2  | METHODS

2.1 | Experimental fish

F1 offspring of wild-caught P. sp. “pundamilia-like” and P. sp. “ny-
ererei-like” (hereafter referred to as the blue or red species, re-
spectively), collected in 2010 and 2014 at Python Islands (−2.6237, 
32.8567) in the Mwanza Gulf of Lake Victoria, were reared in 
manipulated light environments mimicking the shallow and deep 
waters at Python Islands (described in detail below). Fish col-
lected in 2010 were first transported to the Eawag Institute at 
Kastanienbaum, Switzerland; in September 2011, they were re-
located to the University of Groningen, the Netherlands. Light 
conditions were the same for both locations—described in detail 
below. F1 families (hybrid and nonhybrid) were created opportun-
istically as reciprocal crosses, with 25 dams and 20 sires. Thirty-
two crosses (11 red × red; 7 blue × blue; 7 red × blue; 7 blue × red) 
resulted in a test population of 85 fish from 30 families (2 red × red 
and 2 red × blue crosses were full-sibs; family details provided in 
Table S1). We included hybrids because their heterozygosity (par-
ticularly at loci influencing visual properties and mate preference) 
could allow the manifestation of environment-induced effects, 
which may be obscured by strong genetic effects in the parental 
species. Hybridization occurs at low frequency at Python Islands 
(Seehausen et al., 2008) and can be accomplished in the labora-
tory by housing females with heterospecific males. Pundamilia are 
maternal mouthbrooders; to reduce the opportunity for imprinting 
(Verzijden & ten Cate, 2007), fertilized eggs were removed from 
brooding females approximately 6 days after spawning (mean ± se: 
6.3 ± 0.5 days post-fertilization; eggs hatch at about 5–6 dpf) and 
split evenly between light conditions. Fish were maintained at 
25 ± 1°C on a 12L: 12D light cycle and fed daily a mixture of com-
mercial cichlid flakes, pellets and frozen food (artemia, krill, spir-
ulina, black and red mosquito larvae). This study was conducted 
under the approval of the Veterinary Office of Kanton Lucerne 
(01/10) and the Institutional Animal Care and Use Committee of 
the University of Groningen (DEC 6205B; AVD105002016464).

2.2 | Experimental light conditions

Our manipulated light conditions were created to mimic the natural 
light environments of the blue and red species at Python Islands, 
Lake Victoria (described in greater detail in: Maan, Seehausen, & 
Groothuis, 2017). Briefly, we used halogen light bulbs filtered with 
a green light filter (LEE # 243, Andover, UK) in both conditions. In 
the “shallow” condition, mimicking the blue species' habitat, the 
spectrum was supplemented with blue light (Paulmann 88090). In 

the “deep” condition, mimicking the red species' habitat, short-wave-
length light was reduced by adding a yellow light filter (LEE # 015). 
Our light conditions were designed to mimic in particular the spec-
tral differences between habitats, and only partly recreated depth 
differences in light intensity (the deep condition had a light intensity 
of ~70% of that of the shallow condition; at Python Islands, light in-
tensity in the deep environment (measured in 2010) was ~35% of 
that in the shallow environment; Figure S1).

2.3 | Female preference assay

The mate preference data came from a prior study of 91 females 
(Wright et al., 2017), conducted from May 2012 to September 
2014 at the University of Groningen. In short, we used a dual-
choice preference design; for each trial, a randomly chosen, 
sexually mature, gravid female (>6 months age) was introduced 
into the centre portion of a large tank and allowed to interact 
with males housed on opposite ends of the tank. The males (one 
of each species: blue vs. red) were confined behind transpar-
ent barriers, with a PVC tube and stone for shelter. We scored 
male courtship behaviour—lateral display and quiver (McElroy 
& Kornfield, 1990), the first two behaviours in the sequence of 
the haplochromine courtship ritual (Seehausen, 1996)—and the 
corresponding female response to each male courtship event 
(positive or negative). As in prior studies of Pundamilia (Haesler 
& Seehausen, 2005; Maan et al., 2004; Seehausen & van Alphen, 
1998), positive female response was classified by an observable 
interest in male behaviour—moving towards males and/or remain-
ing engaged in interaction (i.e. still trying to gain access to the male 
through the plastic partition following male courtship). Negative 
responses were classified as a general disinterest—moving away 
and/or not responding to male behaviour. All females were PIT-
tagged (Passive Integrated Transponders, from Biomark, Idaho, 
USA, and Dorset Identification, Aalten, the Netherlands), allow-
ing blind behaviour scoring, and tested repeatedly under both 
shallow and deep light conditions, with different combinations of 
size-matched stimulus males. Behavioural scoring started when 
females entered a male interaction zone (20 cm in front of each 
male) and was paused when females left this zone, until a total of 
20 min of interaction time (combined across the two zones) was 
reached. Trials were considered successful if 20 min of interaction 
time was recorded within one hour and each male had performed 
at least three quiver displays.

Female positive and negative responses to each male courtship 
behaviour were totalled for each trial, separately for lateral display 
(LD) and quiver (Q), and female preference scores were calculated 
as the difference in the proportions of positive responses to male 
courtship between the two males. For example, LD-based prefer-
ence was calculated as follows:

Preference LD=

(

Positive to redmale LD

Total redmale LD

)

−

(

Positive to bluemale LD

Total bluemale LD

)
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The result is a measure of preference ranging from −1 to 1, with 
positive scores indicating a preference for red males and negative 
scores indicating a preference for blue males. Q-based preference 
was calculated in the same way.

2.4 | Opsin mRNA expression

Cichlids possess seven distinct classes of opsins, one rod opsin (RH1—
functions in low light) and six cone opsins that mediate colour vision 
in bright light. The cichlid cone opsins include (Carleton et al., 2008) 
the short-wavelength-sensitive opsins: SWS1 (UV), SWS2b (violet) and 
SWS2a (blue), the rhodopsin-like opsins: RH2B, RH2Aβ and RH2Aα 
(green), and the long-wavelength-sensitive opsin: LWS (red). Typically, 
cichlids express a subset of three cone opsins at a time, the relative 
proportions of which influence colour vision (Carleton, 2009). In Lake 
Victoria, all seven species studied so far express SWS2a, RH2A and 
LWS (and low amounts of SWS2b: Hofmann et al., 2009).

For opsin expression, laboratory-bred fish were sacrificed  
with an overdose of MS-222 and the eyes extracted and pre-
served in RNAlater™ (Ambion). Mean (± SE) age at sampling was 
829.2 ± 44.6 days (min/max = 186/1827 days). To maximize RNA 
yield and minimize differences due to circadian variation in opsin 
expression (Halstenberg et al., 2005), all fish were euthanized  at 
approximately the same time in the early evening (~16:00–18:00, 
n = 59 fish). A smaller number of fish (n = 17) were sampled oppor-
tunistically, from individuals that died for reasons unrelated to the 
experiment (e.g. aggression). Information on sample type (eutha-
nized vs. found dead) was not recorded for 9 fish. In total, we sam-
pled 37 males (14 from deep, 23 from shallow) and 38 females (18 
from deep, 20 from shallow); sex was not recorded for 10 fish (three 
from deep, seven from shallow). Twenty-five (of the 38) females, de-
rived from 14 dams (five red and nine blue) and nine sires (five red 
and four blue; see Table S3), were previously tested for mate prefer-
ence (Wright et al., 2017).

We used real-time polymerase chain reaction (qPCR) to deter-
mine the relative amount of each cone opsin gene expressed (Wright 
et al., 2019). From preserved eyes, we removed the retina and iso-
lated total RNA using TRIzol (Ambion). We reverse-transcribed one 
microgram of total RNA using oligo(dT)18 primer (Thermo Scientific) 
and RevertAid H Minus Reverse Transcriptase (Thermo Scientific) at 
45°C to create retinal cDNA. qPCRs were set up for each of the four 
cone opsins expressed in Pundamilia (SWS2b, SWS2a, RH2A and 
LWS) using TaqMan chemistry (Applied Biosystems) and gene-spe-
cific primers and probes (Table S2). As in previous studies, we collec-
tively measured the functionally and genetically similar RH2Aα and 
RH2Aβ as RH2A (Carleton, Parry, Bowmaker, Hunt, & Seehausen, 
2005; Carleton et al., 2008; Hofmann et al., 2009; Spady et al., 
2006). Fluorescence was monitored with a CFX96 Real-Time PCR 
Detection System (Bio-Rad) over 50 cycles (95°C for 2 min; 95°C for 
15 s; 60°C for 1 min).

We used LinRegPCR (Ramakers, Ruijter, Deprez, & Moorman, 
2003) to determine the critical threshold cycle numbers (Ct) for all 

four opsin genes. This approach examines the log-linear part of the 
PCR curve for each sample, determining the upper and lower limits 
of a “window-of-linearity” (Ramakers et al., 2003). Linear regression 
analysis can then be used to calculate the individual PCR efficiency 
and to estimate the initial concentration (N0) from a line that best 
fits the data (Ramakers et al., 2003). In this way, N0 values can be 
estimated without having to assume equal PCR efficiencies between 
amplicons (Ramakers et al., 2003). All samples were run in duplicate, 
and for consistency, we applied specific quality control parameters: 
PCR efficiency 75% – 125% and Ct standard deviation ≤0.5. We 
used the mean of the duplicate N0 estimates to calculate relative ex-
pression levels for each sample (described below).

On each plate, we included a serially diluted construct containing 
one fragment of each of the four opsin genes ligated together. From 
this, we used linear regression to examine the relationship between 
log (concentration) and Ct values of the construct, enabling us to cal-
culate the slope (m) and intercept (b) of the regression. Using these 
values, we calculated relative cone opsin expression as:

where N0i/N0all is the expression for a given opsin gene relative to the 
total expression of all measured opsin genes, Cti is the critical threshold 
value for the focal sample, and b and m are the intercept and slope val-
ues derived from the construct linear regression (as detailed in: Gallup, 
2011).

2.5 | LWS sequence variation

We sequenced the LWS gene of females previously assessed for 
mate preference (Wright et al., 2017). Pundamilia from Python 
Island harbour two forms of the LWS gene: the “H” allele, with peak 
sensitivity at 559 ± 1 nm, and the “P” allele, with peak sensitivity at 
544 ± 3 nm (Seehausen et al., 2008). The “H” allele occurs predomi-
nantly in P. sp. “nyererei-like”, whereas the “P” allele occurs predomi-
nantly in P. sp. “pundamilia-like”, but hybridization results in a small 
number of “mismatched” allele types (e.g. P. sp. “nyererei-like” that 
are heterozygous or “PP”). The two alleles differ in only three amino 
acid positions (216, 230, 275), located on the fourth and fifth exons 
(Seehausen et al., 2008; Terai et al., 2006). From fin clips, we iso-
lated DNA (Meeker, Hutchinson, Ho, & Trede, 2007) and sequenced 
(Sanger sequencing, GATC Biotech) exons 4 and 5 (498 bp, including 
the 91-bp intron; forward primer: GTTTGGTGTGCTCCTCCCAT; re-
verse primer: CAGAGCCATCGTCCACCTGT; see also Figure S2). We 
categorized individuals as “H” if: 216Y, 230A, 275C and “P” if: 216F, 
230T, 275I (as in: Seehausen et al., 2008; Wright et al., 2019). All 
fish were sequenced twice, in forward and reverse directions, and 
alignments were performed in Mega 7 (Kumar, Stecher, & Tamura, 
2016), using the LWS coding sequences reported in Seehausen et al. 
(2008) as reference. For 35 individuals, we observed multiple peaks 
at one or more of the polymorphic nucleotide sites (see Figure 

N0i

N0all

=

exp
(cti−b)

m

∑

exp
(cti−b)

m
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S3), so we also categorized fish as “heterozygous”. In total, we se-
quenced 65 females (Table S4), allowing us to assign LWS genotype 
to 77 (using pedigree information). Twenty-four of these females 
were also measured for opsin expression (we were unable to geno-
type one of the 25 females that we had mate preference and opsin 
expression data for; Table S3).

2.6 | Statistical analyses

2.6.1 | Variation in opsin expression

Prior to analyses, expression data were filtered for outliers, that is 
values outside 1.5 * the interquartile range (IQR). This was done sepa-
rately for each combination of opsin/species/rearing light treatment, 
resulting in 85 samples (28 removed by filtering). The relative expres-
sion of each opsin is defined in relation to the other three opsins, 
so discarding a sample for one opsin meant the entire sample was 
discarded (22 of 28 samples were removed because of one opsin). We 
used this additional filtering step to ensure that (a) all data were con-
sistently within a natural range of expression values (as documented 
in: Carleton et al., 2005; Hofmann et al., 2009; plus our own measure-
ments of opsin expression in wild fish; Wright et al., 2019) and (b) was 
not influenced by tissue quality (fish sacrificed  vs. found dead).

Using linear mixed modelling (lmer function in the lme4 package: 
Bates, Maechler, Bolker, & Walker, 2014), we explored how opsin 
expression was influenced by the effects (and interactions) of rear-
ing light (deep vs. shallow), species (blue, red, hybrid) and sex (male 
vs. female) as: expression~light*species*sex. Random effects included 
maternal and paternal identity and age to account for: (a) shared par-
entage among sampled fish (see Table S1) and (b) age differences at 
sampling (all fish were sexually mature adults but age ranged from 
183 to 2,601 days). The optimal random effect structure was deter-
mined by AIC comparison (Sakamoto, Ishiguro, & Kitagawa, 1986), 
and the significance of fixed effect parameters was determined by 
likelihood-ratio tests (LRT) via the drop1 function. Minimum ade-
quate statistical models (MAM) were selected using statistical sig-
nificance (Crawley, 2002; Nakagawa & Cuthill, 2007). We used the 
ANOVA function in the car package (Fox et al., 2017) to estimate the 
parameters of significant fixed effects, with Kenward–Roger degrees 
of freedom (Halekoh & Højsgaard, 2014; Kenward & Roger, 1997). In 
the case of more than two categories per fixed effect parameter (i.e. 
species), we used the post hoc Tukey tests (glht—multcomp package: 
Hothorn, Bretz, & Westfall, 2008) to obtain parameter estimates 
and report P-values adjusted for multiple comparisons.

2.6.2 | Relationship between female preference and 
visual properties

To examine the relationship between opsin expression and fe-
male preference behaviour, we used the same linear mixed mod-
elling approach described above for the subsample of females 

measured for opsin expression (Table S3). Thus, we tested: female 
preference~expression*rearing light*test light. Random effects in-
cluded the following: female identity, male identity, parental identity 
and observer identity to account for: (a) repeated testing of females, 
(b) repeated usage of stimulus males, (c) shared parentage among 
test females (Table S1), and (d) multiple scorers of behaviour.

We also examined the correlation between LWS allelic variation 
and female preference behaviour as: preference~genotype*rearing 
light*test light. Our data set was not large enough to include the in-
teraction of all four variables in the same model (opsin expression, 
LWS genotype, rearing light and testing light), so we examined the 
combined influence of both visual properties in a simplified model: 
preference~expression*genotype.

3  | RESULTS

3.1 | Species differences in opsin expression

Independent of our light treatments, we found species differences in 
opsin expression. LWS expression differed significantly among the 
species (F2,18.25 = 5.07, p = .017; Figure 1a). Contrary to expectation, 
LWS expression was highest in the blue species (Tukey's post hoc 
blue vs. red: Z = 3.50, p = .001, blue vs. hybrid: p = .25) and lowest 
in the red species (vs. hybrids: Z = −2.62, p = .023). RH2A expression 
also differed (F2,23.08 = 12.43, p < .001; Figure 1a); post hoc showed 
that it was lowest in the blue species, differing significantly from the 
red species (Z = −5.39, p < .001) and hybrids (Z = −4.74, p < .001). The 
red species and hybrids did not differ in RH2A expression (p = .12). 
A weak trend indicated species differences in SWS2a expression 
(F2,16.92 = 2.71, p = .095); post hoc revealed higher SWS2a expres-
sion in the blue species compared to hybrids (Z = 2.52, p = .03), but 
all other comparisons were nonsignificant (p > .3). Finally, SWS2b 
expression did not differ among species (p = .44). These observa-
tions closely resemble the species-specific expression patterns of 
wild-caught males from the same location (Figure 1b).

3.2 | Sex-specific opsin expression

We also found differences in opsin expression between males 
and females, but only for the short-wavelength-sensitive opsins 
(Figure 2a). For SWS2a, we found an interaction of species and sex 
(F2,34.21 = 3.69, p = .035); post hoc tests showed that red males ex-
pressed more SWS2a than red females (Z = 3.93, p = .0012, Figure 2b) 
although there were no sex differences in the blue species or in the 
hybrids (p > .9). Overall, independent of species, males expressed 
more SWS2a than females (F1,54.99 = 4.72, p = .034), whereas females 
tended to express more SWS2b than males (F1,65.57 = 3.72, p = .057). 
There were no sex differences in RH2A or LWS expression (p = .44 
and p = .73, respectively). The reported species differences (above) 
and light-induced effects (below) are independent of sex (sex was 
included as a covariate in all models).
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3.3 | Rearing light influences opsin expression

Rearing light significantly influenced opsin expression (Figure 3a): 
deep-reared fish had higher LWS expression (F1,64.86 = 7.53, p = .007) 
and lower SWS2a expression (F1,55.87 = 6.99, p = .01) than shallow-
reared fish. RH2A (p = .38) and SWS2b (p = .39) were not influenced by 
rearing light. For SWS2b, we found a significant interaction between 
rearing light and species (F2,53.69 = 3.49, p = .038), though Tukey's post 
hoc showed no differences for any of the pairwise between-treat-
ment, within-species comparisons (p > .43). For the other three opsins, 
we found no interactions between rearing light and species, indicating 
similar responses across species (p > .15). However, Figure 3b sug-
gests stronger effects of the rearing environment in P. sp. “nyererei-
like”. Tukey's post hoc supported this: deep-reared P. sp. “nyererei-like” 
had lower SWS2a expression (Z = −3.69, p = .002) and tended to have 
higher LWS expression (Z = 2.82, p = .051), in comparison with their 
shallow-reared counterparts. Together, these results show that our 
light manipulations significantly influenced patterns of opsin expres-
sion, especially in P. sp. “nyererei-like”.

3.4 | Does female mate preference covary with 
opsin expression?

A subset of females (n = 25) tested for mate preference (Wright 
et al., 2017) allowed us to explore the link between light-induced 
variation in opsin expression and variation in female preference be-
haviour. Opsin expression, as an individual effect, never influenced 
female preference (p > .21 for both preference measures; for all fe-
males combined). This was also true for each female species group 
separately (blue: p > .36; red: p > .18; hybrid: p > .44). The fact that 
females were tested under different light conditions did not impact 
this result; there was no effect of test light (p > .42).

The repeatability of individual preference behaviour in our prior 
study was low (RLD = 0.103; RQ = 0.07; females were tested multi-
ple times; see Figure S4); thus, subtle relationships between female 
preference and opsin expression may have been masked by with-
in-female variation. Therefore, we also calculated mean preference 
scores for each female and repeated the analyses. This yielded a 
weak positive relationship between LWS expression and mean 

F I G U R E  1   Opsin expression—(a) Opsin expression profiles of laboratory-reared fish, showing higher LWS and lower RH2A expression in 
blue fish compared to red fish. These patterns closely mimicked those of (b) wild-caught males from Python Island. Opsin expression data 
for wild fish are from Wright et al., 2019, and based on males only; females were not sampled because they are difficult to identify with 
certainty in the field. Sample sizes are given above each bar, and error bars represent ± standard error. ***indicates p < .001, **indicates 
p < .01, *indicates p < .05, • indicates p < .1
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quiver preference (r = 0.356, df = 23, p = .085; Figure 4a) and a weak 
negative relationship between RH2A expression and mean quiver 
preference (r = −0.341, df = 23, p = .094; Figure 4c). Importantly, 
these relationships were not caused by the light manipulation: sim-
ilar trends were present in both deep- and shallow-reared females 
(Figure 4b,d; the interactions of rearing light and LWS/RH2A ex-
pression were both nonsignificant, p > .45). A causal effect of the 
light manipulation would be evidenced by a shift along the y-axis 
(the intercepts of the slopes for deep-reared females should have 
been higher than the intercepts of the slopes for shallow-reared 
females; they were not). Moreover, the two relationships are oppo-
site to those observed across the blue and red species: higher LWS 
expression and lower RH2 expression are characteristic for blue 
rather than red females (see above) but are associated with pref-
erence for red males in the experimental females. This implies that 
these trends do not explain the species difference in preference. 

Finally, preference did not covary with expression of SWS2b or 
SWS2a (p > .17).

3.5 | Distribution of LWS genotypes

Of the 91 females tested for preference behaviour (Wright et al., 
2017), we were able to assign LWS genotype to 77 (Figure 5). All 
blue females (both parents blue) were homozygous “PP” (n = 20). 
Within the red females (both parents red), twelve were “HH” but 
ten were heterozygous. Thirty-one hybrid females were heterozy-
gous, whereas four hybrids (all with blue dam, red sire) were ho-
mozygous “PP”. Genotypes were distributed equally between both 
light treatments (Figure 5). Opsin expression for each genotype/
species combination is presented in the supplementary information 
(Figure S5).

F I G U R E  3   Light-induced changes in opsin expression—(a) The relative expression of long (LWS) and short-wavelength (SWS2a) opsins 
was significantly influenced by our light manipulations. (b) P. sp. “nyererei-like” was most strongly influenced. Sample sizes are indicated above 
each bar, and error bars represent ± standard error. **indicates p < .01, *indicates p < .05, and • indicates p < .1
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3.6 | Does female mate preference covary with 
LWS genotype?

LWS genotype did not covary with preference (p > .41 for both pref-
erence measures; also true for mean preference scores, p > .12). 
However, there was a difference between test light conditions: fe-
male preference (LD) was influenced by an interaction between LWS 
genotype and test light (F2,201.47 = 4.79, p = .009; Figure 6a). Tukey's 

post hoc revealed a significant difference between “HH” and “PP” 
genotypes when tested in shallow light (Z = 2.89, p = .041): “PP” fe-
males preferred blue males (the intercept differed significantly from 
zero; 95% CI [−0.121, −0.007]), whereas “HH” females preferred 
red males (95% CI [0.0004, 0.1809]). All other comparisons, includ-
ing those from deep test light, were nonsignificant (p > .17). Quiver 
preference was unaffected (the same interaction was nonsignificant, 
p = .52), though the trends were similar (Figure 6b).

F I G U R E  5   Distribution of LWS genotypes between species and light treatments—LWS genotypes for 77 females. Sample sizes are 
indicated in each bar
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At Python Island, LWS genotype is nearly fixed in each spe-
cies (Seehausen et al., 2008). Thus, the interaction between LWS 
genotype and test light may be due to other species-specific ge-
netic factors. We tested the influence of species * test light on fe-
male preference (we had several combinations of LWS genotype 
and species identity among our tested females; see Figure 3) but 
found that the interaction was nonsignificant (LD: p = .15, Q: 
p = .9; Figure S6). We also analysed the combined effects of LWS 
genotype and opsin expression on preference, but again found no 
significant interaction effects (all p > .32). Together, these results 
may indicate that LWS genotype, more than opsin expression or 
other species-specific genetic factors, contributes to species dif-
ferences in female preference.

4  | DISCUSSION

Sensory drive, the hypothesis that sensory perception, commu-
nication signals and behaviour coevolve in concert with the local 
environment, has been implicated as a diversifying mechanism in 
several fish species. To experimentally test for a causal relationship 
between species differences in visual perception and mate prefer-
ence, we reared two species of Lake Victoria cichlids—P. sp. “punda-
milia-like” and P. sp. “nyererei-like”—in light environments resembling 
the shallow and deep photic conditions of Lake Victoria. In this way, 
we aimed to induce changes in opsin expression, thereby mimick-
ing aspects of divergent visual adaptation. We had previously shown 
that these light manipulations influence female mate preference, and 
here, we examined to what extent this can be attributed to changes 
in opsin expression.

4.1 | Environmental light influences 
opsin expression

Our results show that relative opsin expression is influenced by the 
light environment experienced during development. In particular, it 
is the opsins at either end of the light spectrum that are affected: 
deep-reared fish expressed more LWS, and shallow-reared fish ex-
pressed more SWS2a. This follows previous work showing plasticity 
in cichlid visual development (Hofmann et al., 2010; Nandamuri et 
al., 2017; Smith et al., 2012; Van der Meer, 1993). In contrast with 
prior studies, however, our light manipulations were relatively sub-
tle, mimicking the natural spectral (and partly intensity) differences 
in Lake Victoria. More extreme light conditions (in either spectra 
or intensity) would probably induce even greater changes in opsin 
expression and could be used to explore scenarios of future envi-
ronmental change or range expansion (e.g. to greater depths). Our 
results are also consistent with the expression patterns of wild-
caught fish (see Figure 1b).

When examining species-specific responses to the light manip-
ulations, we found stronger effects in the red species, again at the 
spectrum extremes. Shallow-reared P. sp. “nyererei-like” expressed 

more SWS2a and tended to express less LWS, whereas P. sp. “pun-
damilia-like” and hybrids did not differ significantly between light 
conditions. This suggests that opsin expression in the red species 
is more plastic. Seehausen et al. (2008) reported that the depth 
range of P. sp. “nyererei-like” at Python Island is 0–5 m, whereas P. 
sp. “pundamilia-like” occurs no deeper than 2 metres. Thus, opsin 
plasticity in the red phenotypes could be related to the fact that 
they naturally experience a wider range of light environments (as 
shown in figure 4 in: Castillo Cajas et al., 2012). It is also possible 
that plasticity in opsin expression contributed to the origin of the 
red species: individuals with greater visual plasticity might have 
been more likely to colonize and persist in the deeper waters not 
exploited by the blue phenotypes. Other studies have also re-
ported differences in the plasticity of opsin expression between 
different cichlid species (Hofmann et al., 2010; Nandamuri et al., 
2017) and shown that experimentally induced variation in LWS ex-
pression influences cichlid visual sensitivity to red stimuli (Smith et 
al., 2012). Together, these studies suggest a broader role for visual 
plasticity in cichlid visual adaptation and speciation. This plasticity 
may aid visual performance in a new or changing environment, for 
example when fish move between habitats (i.e. depths or different 
locations) or when confronted with environmental change (either 
natural or human-induced). How and to what extent opsin expres-
sion plasticity contributes to visual performance in a new environ-
ment is the subject of ongoing work.

4.2 | Opsin expression is weakly correlated with 
female preference

To test for a causal link between changes in opsin expression and 
female preference behaviour, we used 25 females that were each 
tested multiple times for blue-red preference. Based on prior work 
(Carleton et al., 2005; Hofmann et al., 2009), we expected that, 
across Pundamilia populations, the red species expressed more LWS 
and the blue species more SWS. On this assumption, we designed 
this experiment to manipulate opsin expression and test its effect on 
female mate preference. We now know that in our study population 
(Python Island), the blue species expresses more LWS than the red 
species (see Figure 1 and Wright et al., 2019), implying a mismatch 
between species-specific opsin expression and species-specific pref-
erence: high LWS expression, presumably causing greater red sensi-
tivity, is associated with preference for blue males. Correspondingly, 
we found no relationship between individual-level preferences and 
opsin expression.

When considering mean preference scores per female, we 
found weak correlations for both LWS expression and RH2A ex-
pression, indicating that opsin expression may influence female 
preference behaviour. However, this does not explain the species 
difference in preference. This is because the relationships are op-
posite to those observed across the two species: high LWS and 
low RH2A expression, associated with preference for red males in 
the experimental females, are characteristic of the blue species. 
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This suggests a possible influence of relative opsin expression on 
female preference that is not caused by other species-specific 
factors that are linked to opsin expression. If it were, such spe-
cies-specific factors should have resulted in a negative correlation 
between LWS expression and female preference for red males. 
In line with this, the preference–expression relationship was not 
influenced by species identity or LWS genotype (see Figure S7). 
Importantly, deep- and shallow-reared females displayed similar 
relationships between expression and preference, in both inter-
cept and slope. This implies that, although rearing light influenced 
both female preference (shallow-reared females preferred blue 
males, and deep-reared females preferred red males; Wright et 
al., 2017) and opsin expression (deep-reared fish expressed more 
LWS and less SWS2a), evidence for a causal link between opsin 
expression and preference is lacking. Thus, we do not find sup-
port for the hypothesis that variation in opsin expression serves 
as a “magic trait” in Pundamilia speciation, pleiotropically affecting 
both visual perception and mate choice.

This, of course, does not mean that opsin expression has no in-
fluence on female preference behaviour at the individual level; our 
results suggest that it might. Additional work is needed to explore 
this further, as our findings are based on a small sample size—we had 
opsin expression and mate preference data for only 25 females. This 
is enough to conclude that differences in opsin expression do not 
explain the species difference in female mate preference, but not to 
explore individual variation within species.

4.3 | Female preference covaries with 
LWS genotype

This study was specifically designed to test the causal link between 
opsin expression and female mate preference. To test the contribu-
tion of LWS genotype to mate preference would have required a 
larger test population of females with segregating alleles. Given the 
importance of LWS allelic variation in these species, we also geno-
typed the females tested for mate preference. We found an environ-
ment-dependent relationship between LWS genotype and female 
preference (see Figure 6 and Figure S6). When tested in broad-
spectrum light, “HH” females (all P. sp. “nyererei-like”) preferred red 
males, whereas “PP” females (predominantly P. sp. “pundamilia-like”) 
preferred blue males. LWS is nearly fixed in each species at Python 
Island (Seehausen et al., 2008), and prior work in Pundamilia has also 
documented species-assortative female preferences for male colour 
in broad-spectrum light (Haesler & Seehausen, 2005; Seehausen & 
van Alphen, 1998; Selz et al., 2014). However, the prior studies did 
not consider LWS genotype. Thus, our results may be due to two 
factors: 1) LWS genotype is causally linked to visual perception and 
preference determination or 2) the variation we observe is due to 
other species-specific factors unrelated to visual perception. In our 
sample, LWS genotype was not synonymous with female species 
identity—there were 10 red-type females that were heterozygous 
for LWS and 4 hybrids that were homozygous “PP” (Figure 3). We 

tested the influence of species * test light on female preference, 
but the interaction was nonsignificant, in contrast to the LWS * test 
light interaction (see Figure S6). This suggests that the latter is not 
driven by species-specific preference loci unrelated to visual per-
ception. These results are, of course, correlational; to confirm a role 
for LWS, future studies should directly target and manipulate LWS 
genotypes.

4.4 | Low repeatability in female 
preference behaviour

Opsin expression was (weakly) correlated with mean preference 
scores but not with individual-level preference scores (see above). 
In addition to the small sample size, we attribute this discrepancy 
to the low repeatability in female preference, which may have 
masked a relatively subtle relationship with opsin expression. 
Previous work in Pundamilia reported higher female preference re-
peatability (R = 0.59; Haesler & Seehausen, 2005), but this was for 
females reared and tested under white light. Females in our study 
were reared and tested in manipulated light conditions; the spec-
tra of our light treatments mimicked natural conditions but differed 
dramatically from the standard aquarium lighting (see Figure S1). 
This may have influenced repeatability scores. Also in contrast to 
prior work (Dijkstra, Zee, & Groothuis, 2008; Haesler & Seehausen, 
2005; Seehausen & van Alphen, 1998; van der Sluijs et al., 2008), 
we limited the opportunity for maternal imprinting (Verzijden & ten 
Cate, 2007; Verzijden, Korthof, & Cate, 2008) by removing fish from 
brooding females at 5 – 6 days post-fertilization, possibly reduc-
ing preference strength. Finally, we are now aware of light-induced 
survival differences in our laboratory population: when reared in 
“unnatural” light conditions, while all other parameters are kept 
the same, both species survive at a lower rate (~40% reduction at 
12 months) than their “naturally” reared counterparts (Maan et al., 
2017). Nonrandom survival could have generated a population of 
relatively flexible test females, exhibiting weak species specificity in 
behaviour including mate choice. It is also possible that our experi-
mental design poorly estimated mate choice. This seems unlikely, 
however: pilot studies suggest that the preference scores measured 
in our experimental set-up do predict subsequent spawning deci-
sions (see Figure S8).

4.5 | Sexually dimorphic opsin expression

We found that males had higher SWS2a expression, whereas fe-
males tended to express more SWS2b (Figure 2a). These patterns 
were largely independent of our light treatments (discussed above) 
and were consistent between P. sp. “pundamilia-like” and P. sp. “nyer-
erei-like” (but perhaps more pronounced in P. sp. “nyererei-like”). Sex 
differences in opsin expression have been observed in other taxa, 
for example butterflies (Arikawa, 2005; Everett, Tong, Briscoe, & 
Monteiro, 2012; McCulloch, Osorio, & Briscoe, 2016; Sison-Mangus, 
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2006) and birds (Bloch, 2015), but we are aware of only one ex-
ample in fish (guppies; Laver & Taylor, 2011) and none in cichlids. 
Possibly, these observed differences are related to ecological dif-
ferences between the sexes: males defend territories at the lake 
bottom, whereas females of P. sp. “nyererei-like” often shoal in the 
water column (Seehausen, 1996). It is possible that higher SWS2b 
expression helps females forage on small prey items; in sticklebacks 
(Rick, Bloemker, & Bakker, 2012) and Lake Malawi cichlids (Hofmann 
et al., 2009; Jordan, Howe, Juanes, Stauffer, & Loew, 2004), UV vi-
sion contributes to foraging performance. Given the novelty of this 
result, sexually dimorphic opsin expression in cichlids deserves more 
attention.

5  | CONCLUSION

In this study, we aimed to explore the causal relationship between 
divergent visual adaptation and divergent female mate preferences 
in Pundamilia cichlid fish. Direct effects of visual system variation 
on preference could serve as a powerful mechanism of rapid eco-
logical speciation. We found light-induced changes in relative opsin 
expression, indicating that phenotypic plasticity may contribute to 
visual adaptation in cichlid fish. Female preference was weakly cor-
related with relative opsin expression, but evidence for a causal link 
between the two was lacking. We also found that LWS genotype 
covaried with female preference, when tested in broad-spectrum 
light environments. Together, our results are consistent with a role 
of visual perception in shaping female preference for differently col-
oured males, but fall short of demonstrating a causal link. Moreover, 
our findings suggest that different components of the visual system 
might affect female choice in different ways. Further manipula-
tive, QTL mapping or GWAS studies are required to elucidate these 
effects.
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