
University of Nebraska - Lincoln University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

Theses, Dissertations, and Student Research
from Electrical & Computer Engineering

Electrical & Computer Engineering, Department
of

12-2019

Pixel-Level Deep Multi-Dimensional Embeddings for Pixel-Level Deep Multi-Dimensional Embeddings for

Homogeneous Multiple Object Tracking Homogeneous Multiple Object Tracking

Mateusz Mittek
University of Nebraska-Lincoln, mmittek@gmail.com

Follow this and additional works at: https://digitalcommons.unl.edu/elecengtheses

 Part of the Computer Engineering Commons, and the Other Electrical and Computer Engineering

Commons

Mittek, Mateusz, "Pixel-Level Deep Multi-Dimensional Embeddings for Homogeneous Multiple Object
Tracking" (2019). Theses, Dissertations, and Student Research from Electrical & Computer Engineering.
113.
https://digitalcommons.unl.edu/elecengtheses/113

This Article is brought to you for free and open access by the Electrical & Computer Engineering, Department of at
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Theses, Dissertations, and
Student Research from Electrical & Computer Engineering by an authorized administrator of
DigitalCommons@University of Nebraska - Lincoln.

https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/elecengtheses
https://digitalcommons.unl.edu/elecengtheses
https://digitalcommons.unl.edu/electricalengineering
https://digitalcommons.unl.edu/electricalengineering
https://digitalcommons.unl.edu/elecengtheses?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F113&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F113&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/278?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F113&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/278?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F113&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/elecengtheses/113?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F113&utm_medium=PDF&utm_campaign=PDFCoverPages

PIXEL-LEVEL DEEPMULTI-DIMENSIONAL EMBEDDINGS FOR

HOMOGENEOUSMULTIPLE OBJECT TRACKING

by

Mateusz M.Mittek

A DISSERTATION

Presented to the Faculty of

�e Graduate College at the University of Nebraska

In Partial Fulfilment of Requirements

For the Degree of Doctor of Philosophy

Major: Electrical and Computer Engineering

Under the Supervision of Professor Lance C. Pérez

Lincoln, Nebraska

December, 2019

PIXEL-LEVEL DEEPMULTI-DIMENSIONAL EMBEDDINGS FOR

HOMOGENEOUSMULTIPLE OBJECT TRACKING

Mateusz M.Mittek, Ph.D.

University of Nebraska, 2019

Adviser: Lance C. Pérez

�e goal of Multiple Object Tracking (MOT) is to locate multiple objects and keep

track of their individual identities and trajectories given a sequence of (video) frames. A

popular approach to MOT is tracking by detection consisting of two processing

components: detection (identification of objects of interest in individual frames) and

data association (connecting data frommultiple frames). �is work addresses the

detection component by introducing a method based on semantic instance

segmentation, i.e., assigning labels to all visible pixels such that they are unique among

different instances. Modern tracking methods often built around Convolutional Neural

Networks (CNNs) and additional, explicitly-defined post-processing steps.

�is work introduces two detection methods that incorporate multi-dimensional

embeddings. We train deep CNNs to produce easily-clusterable embeddings for semantic

instance segmentation and to enable object detection through pose estimation. �e use of

embeddings allows the method to identify per-pixel instance membership for both tasks.

Our method specifically targets applications that require long-term tracking of

homogeneous targets using a stationary camera. Furthermore, this method was

developed and evaluated on a livestock tracking application which presents exceptional

challenges that generalized tracking methods are not equipped to solve. �is is largely

because contemporary datasets for multiple object tracking lack properties that are

specific to livestock environments. �ese include a high degree of visual similarity

between targets, complex physical interactions, long-term inter-object occlusions, and a

fixed-cardinality set of targets.

For the reasons stated above, our method is developed and tested with the livestock

application in mind and, specifically, group-housed pigs are evaluated in this work. Our

method reliably detects pigs in a group housed environment based on the publicly

available dataset with 99% precision and 95% using pose estimation and achieves 80%

accuracy when using semantic instance segmentation at 50% IoU threshold.

Results demonstrate our method’s ability to achieve consistent identification and

tracking of group-housed livestock, even in cases where the targets are occluded and

despite the fact that they lack uniquely identifying features. �e pixel-level embeddings

used by the proposedmethod are thoroughly evaluated in order to demonstrate their

properties and behaviors when applied to real data.

iv

DEDICATION

I dedicate this work to mymother who due to the political and economical scenery of

Poland in the early 1980s could not pursue her own doctoral degree in animal husbandry

despite her outstanding achievements in the field.

v

ACKNOWLEDGMENTS

First and foremost, I would like to sincerely thankmy adviser Lance C. Pérez for his

support during my doctoral program. Lance, without you consistently motivating me

this would would never come to completion. You gave me the biggest opportunity of my

life and for that I would like to thank you with all my heart.

It was a great honor to become amember of the Perceptual Systems Research Group

and work alongside such individuals like Jędrzej Kowalczuk, who became one of my

dearest fiends and an older-brother-like figure. �ank you for all the support and belief

you gave me.

�is work could not be completed without the advisory role of Eric T. Psota who I

would like to thank for the tremendous day-to-day patience and understanding. Eric, you

were my teacher, adviser, and a friend. �ank you.

I would also like to thank Bertrand Clarke for all the suggestions and corrections he

provided to make this work live up to the expected standards. I hope I did not fail you dr

Clarke and I apologize for all the changes I was not able to include. �ank you once again.

Without you I would not be able to ever accomplish this work.

I would also like to thank the members of my doctoral committee: Khalid Sayood,

who always stood for the academic integrity, meritocracy, and transparency, and Ashok

Samal who represented the department of Compuer Scicence and contributed

significantly to the ability of accomplishing this work.

I would like to thankmy lab mates: Jay Carlson, who was always challenging my

biases and helpedme become a batter person, and Yanfeng Liu, who inspiredme with his

positive demeanor in the pursuit of knowledge.

I would also like to thankmy friends: Johanna Shattuck and Sartaj Chowdhury who

helpedme survive the stress of pursuing a doctoral degree.

Looking back I reserve the final words of gratefulness to mymath teachers: Elżbieta

Śledziona and Elżbieta Syska.

vi

Contents

1: Introduction 1

1.1 Multiple Object Tracking . 1

1.2 Motivation: Precision Livestock Farming 3

2: Background 7

2.1 A need for novel, automated approach to Precision Livestock Farming us-

ingMachine Vision . 7

2.2 State of the Art: attempts to track livestock using cameras 13

2.3 Multiple Object Tracking . 15

2.3.1 Object Detection . 16

2.3.2 MOT as Data Association Problem 18

2.3.3 Motion, appearance, interaction, and affinity measures 25

2.4 Semantic Image Segmentation . 27

2.5 Pose Estimation using Keypoints and Part Affinity Fields 31

2.6 Embeddings . 35

2.7 Convolutional processing of images 42

2.8 Problem Statement . 53

3: Method 55

3.1 (Big) Data collection . 58

3.1.1 Pig Detection Dataset . 61

vii

3.2 Convention of image representation 63

3.3 Representation of Body Part Locations (Keypoints) 65

3.3.1 Sparse representation of keypoint locations 66

3.3.2 Dense representation of keypoint location using heatmap images 70

3.4 Pixel-level instance identification representation 73

3.4.1 Smallmanually-annotated semantic instance segmentation evalu-

ation set . 76

3.5 Class-level representation of foreground instances 77

3.5.1 Small manually-annotated foregroundmask evaluation set . . . 80

3.5.2 Multi-view alignment and foregroundmask extraction fromdepth

images . 82

3.6 Representation of Body Part Associations (Part Affinity Fields) 86

3.7 Image Augmentations . 89

3.7.1 Augmentations in color space 90

3.7.2 Augmentations in pixel coordinate space 91

3.8 Models . 94

3.8.1 OP Model: A Very Deep Multiple-Objective Convolutional Neural

Network . 96

3.8.1.1 Receptive Field . 97

3.8.2 UNET: A Deep, Symmetric Architecture with Skip-Connections . 100

3.9 Instance-Level Weakly-SupervisedMulti-Dimensional Embeddings . . . 101

3.9.1 Silhouette Coefficient: Cohesion and Separation of Multi-

Dimensional Embeddings . 102

3.9.2 Discriminative loss function for direct silhouette scoremaximization 106

3.9.3 Discriminative loss function with parametric cluster margins . . 108

3.9.4 Speed of Convergence Analysis using Silhouette Score 112

3.9.5 Speed of convergence with respect to the number of clusters . . . 114

viii

3.9.6 Speed of convergence with respect to the number of embedding

channels . 116

3.10 Training using Backpropagation . 116

3.11 Pose Estimation using Body Part Detections and Part Affinity Fields . . . 122

3.11.1 Keypoint Detection using Non-Maximum Suppression 123

3.11.2 Bipartite Matching . 125

3.11.3 Part Affinity Fields . 126

3.11.4 Augmentations of the Cost Metric 129

3.12 Semantic Instance Segmentation using Embeddings 131

4: Results 134

4.1 Receiver Operating Characteristics 136

4.2 Foreground Segmentation Evaluation 138

4.3 Evaluation of the Body Part Detector 145

4.3.1 Keypoint Detection�reshold 147

4.3.2 Spatial Accuracy of Keypoint Detection and Distance�reshold . 148

4.3.3 Keypoint peak detector smoothing kernel size 149

4.3.4 Scale (target width) selection based on the keypoint detection per-

formance . 149

4.4 Part Affinity Estimation Evaluation 152

4.5 Embeddings Analysis . 154

4.5.1 Within-instance and between-instances embedding analysis . . 155

4.5.2 Correlationwith image position, orientation, size, and color prop-

erties . 160

4.5.3 Number of Instances Estimation through Cluster Analysis of the

Embedding Vectors . 164

4.6 Pose Estimation Evaluation . 170

4.6.1 Performance ceiling due to representation 171

ix

4.6.2 Evaluation using predictions fromDeep CNNs 172

4.7 Semantic Instance Segmentation Evaluation 175

5: Conclusion 179

5.1 Challenges . 179

5.2 Approaches and contributions . 180

5.3 Recommendations . 181

5.4 Future work . 182

References 184

Appendices 205

A.1 Image blending using selective reconstruction of Laplacian Pyramids . . 206

1

CHAPTER 1

Introduction

1.1 Multiple Object Tracking

Multiple Object Tracking (MOT), or Multiple Target Tracking (MTT) is a Computer Vision

problem of locating multiple objects, and keeping track of their identities along with

their individual trajectories given a sequence of (video) frames.
1
Starting in 2012, the

field of Computer Vision experienced a disruptive shift in the processing methodology

due to the rise of Deep Learning.
2
�is shift can be characterized by a few factors: 1) the

use of large (millions of trainable parameters) parametric models due to improvements

and increased accessibility of the computational resources - namely Graphics Processing

Units (GPUs), 2) introduction of Convolutional Neural Network (CNN) architecture,
3
3)

release of software frameworks specifically designed for Machine Learning for Computer

vision such as Caffe
4
or TensorFlow,

5
and 4) availability of large-scale, annotated image

datasets such as ImageNet
6
and PASCAL VOC,

7
andmore recently MS COCO,

8

CIFAR-10,
9
CityScapes.

10
Subjectively the most impactful factor was the introduction of

the convolutional processing of images which lead to formulation of various recognizable

standard-like model architectures and training methodology. Naturally, more andmore

sophisticated tasks were undertaken by researchers and eventually industry. An example

of this progress can be seen in the evolution of the ILSVR challenges,
6
which progressed

2

from simple image-classification tasks to what we would know today as image

segmentation and steps towards total scene understanding. Interest in Computer Vision for

robotics and surveillance needs motivated rapid progress in tracking human locomotion

in natural images which became the first applications of MOT. Alongside the modern

single-image processing pipelines, camemethods for tracking in video frames to address

the difficulties inherent to the MOT problem. Methods like YOLO,
11, 12

SSD,
13
variants of

the R-CNN
14, 15

- all based on the Convolutional Neural Networks became the standard

building blocks of the custom tracking systems. Some visual applications such as

pedestrian tracking or face detection already became incorporated and widely used in

modern computer vision frameworks and Computer Vision libraries since.

�ere are twomajor approaches to MOT:

• 2D Tracking: focuses on tracking objects on an image plane. Recently, the most

popular approach is tracking by detectionwhich involves identification of pixels of

interest by various methods of segmentation and background subtraction on a

per-frame basis or optical flow using temporal windows, detecting objects of

interest by classification, andmaintaining identity of the same objects between

frames by solving theData Association problem - often through graphical models

and bipartite matching between consecutive frames.

• 3D Tracking: where the real-world, 3-dimensional coordinates and object geometry

are the primary focus.
16
In this category methods take advantage of multi-view

geometry (e.g. stereo matching) or sensing using depth sensor like Microsoft

Kinect or Intel Realsense.

Being a class of Computer Vision problems, MOT faces multiple levels of challenges

which can be categorized in twomajor domains: 1) low-level; image-capture challenges -

such as variation in light intensity, reflections, noisy images, cropping andmore. �ose

are directly related to the properties of the scene and capture device, and 2) High-level;

3

tracking challenges - related to the properties of tracked objects and their interactions

with each other and the environment such as: occlusions, natural object deformations,

appearance changes, texture, abrupt motion, camera motion (or environment motion

with respect to the camera). Problem of tracking multiple objects that are difficult to

distinguish visually is here referred to asHomogeneousMultiple Object Tracking.

Some of these challenges can be easily addressed by using different capture spectra,

such as through the use of infrared depth-sensing camera. Simultaneous capture of color

and depth images provides an additional dimension (distance from the camera) to the

image data and reduces ambiguities in terms of scale / distance. Consumer-grade

platforms like Microsoft Kinect or Intel Real Sense have proven to be a suitable choice for

a proof-of-concept applications but have inherent limitations in terms of range, the size

of the sensor, and its robustness to harsh environment or high temperature. More

sophisticated sensors, such as 3D lidars, address those problems but their high costs

make them unrealistic for wider adoption. With the modern trends in automotive

industry and rise of autonomous vehicles, it is, however, possible that robust, high quality

depth sensing cameras will become readily available for custom data capture platforms.

1.2 Motivation: Precision Livestock Farming

Currently, livestock farming is a manual labor-intensive industry and relies heavily on

herdsmen performing both the monitoring and the intervention when walking through

the facilities once or multiple times a day. �e herdsmen use their senses (hearing,

seeing, smelling, and feeling) to uncover and resolve potential problems in the pen or at

the animal level. In large scale operations with thousands of animals and vast areas, such

methodology is sensitive to the availability and capability of the herdsman, cannot ensure

consistency, and precision and is prone to human bias.
17
Due to the overwhelmingly large

set of responsibilities such personnel often simply do not have enough resources to notice

4

single events andmaintain proper record keeping in a changing environment even when

trying to provide as little as the recommended 2 seconds per day per animal.
18

Additionally, recent shifts in the standards of AnimalWelfare put increasingly more

emphasis on the quality of human-animal interaction which requires better knowledge,

skills, attitudes, and behavior when handling livestock.
19
New requirements, tough

working conditions, expected availability, and shrinking rural population strongly

indicate the need for automation and the use of technology in livestock farming.
20

When considering the dynamics of the environment in the facilities, there are many

components to the farming system that can quickly (within minutes) and drastically affect

the performance of the animal. In case of hog farming, the environment controls include

exhaust fans, feed and water distribution, heat mats and lamps, curtains, pit slats, lights.

Being able to remotely monitor and possibly control those factors on a regular interval

would reduce a chance of those controls having a catastrophic effect on the animals.

�is work addresses the problem of unobtrusive, visual tracking of multiple

group-housed animals in an attempt to widen the context of Precision Livestock Farming

by the use of Machine Learning and Computer Vision. Data sets and annotation

representations are specific to swine monitoring in the group-housed setting, using a

static, over-head camera, but the findings andmethodology are directly applicable to

other livestock animals such as beef cattle, sheep, and potentially poultry.

It has been shown that a long-termmonitoring of animal behavior has the potential

of predicting health outcomes.
21
One of the biggest challenges to ensuring the wellbeing

and efficiency of pigs is rapidly and accurately identifying compromised (sick or injured)

pigs. To date, the only method available for identification of compromised pigs is via

manual observation for visible indicators of sickness or illness (clinical symptoms). It is

However, given the quantity of pigs in modern group-housed settings, it is a daunting

task to ensure that each pig is visually inspected even as frequently as once a day. �is

work aims to describe the processes andmethodology of designing aMultiple

5

Homogeneous Object Tracking System for Precision Livestock Farming using Cameras.

Being based on a long-term research project, this work also attempts to capture the

dynamics of the development over the span of multiple years backed by multiple

publications with the emphasis on the modernMachine Learning techniques and

principles. �us, the work is focused on the development, training, and evaluation of a

deep, fully convolutional neural networks trained using back-propagation. Model

transfer is accomplished by the use of a pre-trained network front-end as a deep feature

extractor. Supervised learning is applied to the tasks where the annotated data was

available, and the weakly supervised methodology was used elsewhere. Various ideas

from the author’s experience with Generative Adversarial Networks were employed to

address missing data problems.

�e key contributions of this work are: 1) adaptation of the pose estimation method

designed for human tracking to simultaneous tracking of multiple pigs, 2) modification

of said method through the use of weakly-supervised embeddings produced by a neural

network, 3) a novel loss function allowing for fully convolutional neural network training

to produce instance-level embedding, 4) the analysis of said embeddings in the task of

semantic instance segmentation of group-housed animals, 5) method of processing

color-and-depth image pairs applied to a large scale unannotated image set to improve

the performance of the foreground estimation subtask, 6) detailed description of the data

collection and processing system animal tracking from a fixed camera without the need

for depth sensing.

6

Figure 1.1: A compelling example of a pig keypoint and orientation detector from http:
//psrg.unl.edu/Projects/Details/12-Animal-Tracking.

http://psrg.unl.edu/Projects/Details/12-Animal-Tracking
http://psrg.unl.edu/Projects/Details/12-Animal-Tracking

7

CHAPTER 2

Background

2.1 Aneed for novel, automated approach toPrecisionLive-

stock Farming usingMachine Vision

Rapid increases in pig and cattle meat production lead to increased consumer and

producer interest in animal wellbeing. Broadly speaking, health and living conditions of

farm animals is referred to as animal welfare, which is nowadays pushing forward the

standards of barn environments, food and water adequacy, and production efficiency. It

has been seen, that modern technology, namely machine vision, can provide systems for

real-time, automated, non-invasive animal behavior monitoring solutions. Parameters

such as real-time activity (feeding, drinking, lying, locomotion, aggression, and

reproductive behaviors) can be extracted from 3D and 2D image analysis. It has been

established that such automated analysis can provide farmers with support much needed

in the food production industry.
22

�us, the industry needs a scalable and cost-effective way of monitoring animals at

an individual level and in a more continuous fashion. Supplementing the staff with

precise metrics of animal and environmental performance would drastically reduce the

costs and labor required to properly maintain operations. Lowering the amount of

unnecessary direct interaction with animals will help reduce the animal stress level and

8

lowers the risk of biological contamination carried between facilities.

Precision Livestock Farming (PLF) is an engineering approach to livestock

management using automated, long-termmonitoring of individual livestock.
23–25

Systems falling under the PLF category aim to aid the producers with high-precision,

low-latency (or real time) tools capable of determining the state of the facility and the

animals on the individual level. PLF data collection platforms consist of cameras and

sensors for measuring temperature, air speed, humidity, and gas contents (e.g. amonia).

On a facility level, vibration and current sensors help monitoring the state of equipment

andmicrophone arrays can be deployed to keep track of the noise levels and potentially

detect pen-level events.

Researchers proposed a variety of technological approaches to individual animal

tracking in PLF over the last decade
26, 27

including: wearable Ultra-Wide Band (UWB)

tags,
28, 29

GPS-enabled motes,
30, 31

accelerometers / Inertial Measurement Units

(IMUs),
32–35

RFID ear tags,
36–38

and depth-sensing cameras.
39, 40

Whereas the wearables offer a solution to individual animal tracking, they have a set

of disadvantages when compared to surveillance-type systems with cameras.
40, 41

Battery-powered devices also carry an additional burden on the staff due to outages and

additional charge-level monitoring requirements. Animal farming facilities require the

monitoring equipment to withstand harsh, humid, hot, dusty environments, need to

stay attached to the observed animal, and their initial deployment is costly and scales

with the size of the operation as each individual animal needs to be equipped with a

uniquely identifiable sensor mote or tag.
42
UWB and GPS systems provide reasonable

positioning accuracy in their respective environments (indoors and outdoors) but alone

lack the ability to determine the animal’s orientation. �e use of IMUs alone allows for

very accurate estimation of the orientation but due to long-term drift do not provide

good positional accuracy due to magnification of the measurement errors through

double integration operation when estimating position from acceleration. A combination

9

of positional and inertial sensing is a very common solution to this problem and has been

used successfully in many applications. In land navigation, additional, potentially more

sparse but precise measurements of absolute position allow for closed-loop corrections.
43

Literature shows successful implementations of tracking animals using IMUs but they do

not inherently carry over any richer context such as social behaviors.

Cameras however, do carry over rich contextual information (both spatial via image

resolution and temporal in video) and allow for unobtrusive deployments allowing for

minimum human-to-animal interaction during monitoring. �e video collection system

has a multitude of advantages including the fact that individual frames are human

readable and allow for the easy evaluation / annotation of any frame. Large-scale data

sets can be easily obtained once the system such system is deployed, which leaves the

most interesting aspect of this work as a still-open question of how to process such a vast

amount of data with minimum human effort? As processing of the video frames of on a

contextual / semantic level requires more sophisticated treatment than just mere image

processing techniques, researchers started to leanmore openly to the field of machine

learning and artificial intelligence incorporating recent advancements in those rapidly

growing fields in their work.
44, 45

An image-processing pipeline of a tracking system often explicitly includes a

method of determining the pixels of interest. Such a process is referred to as segmentation

and can occur onmultiply levels of abstraction. In its most basic form, it allows for

distinguishing the foreground pixels from the background using a background

subtraction.
46
When the pixel blobs obtained through this process are spatially separated,

a connected-component algorithm can be used to obtain identification of individual

instances. Another approach is to use a separation in the pixel intensity values via

clustering if the within-cluster intensity value deviations are lower than between clusters

according to a selected similarity measure. In the current application however, it is not a

feasible approach as the objects (animals) are often close to one another or even on top of

10

each other (due to piling when animals try to stay warm) which prohibits the spatial

separation, and additionally indistinguishably similar in color to one another prohibiting

the clustering. �us, a more sophisticated, rich-feature-based and context-aware

method needs to be used when attempting to process images of group-housed animals.

�is work is a step towards addressing the broader problem of lack of automated

methods of animal behavior monitoring. Section 1.2 establishes the need for the

technology to step into the agriculture, and anticipation for the potential use of visual

tracking to predict animal health outcomes. A successful, widely adopted, easy to deploy,

and unobtrusive long-term tracking method could yield means to better understanding

of animal conditions and improve overall quality of animal handling.

�anks to a collaboration with the Department of Animal Science of University of

Nebraska-Lincoln it was possible to gain access to locations resembling swine production

facilities. �emain goal was to capture large amounts of visual data, while at the same

time, working on the ways of processing it. At that time it was anticipated that

simultaneous collection of color and depth images could be useful in the future. Use of

cameras addresses the needs for an unobtrusive, asynchronous, and unattended,

long-term data collection with minimal interference with animal-handling personnel.

Currently available methods produced by the research community are presented in

Section 2.2. To this day however, there are nomethods presented that could satisfy the

needs of the industry. With such a niche field, the amount of data available for

development of suchmethod is also fairly sparse. �us, in order to step in an attempt to

tackle this problem, one had to resort to collecting their own data. Section 3.1 describes

the process andmethodology used to collect he data for this work.

Chapter 3 is dedicated to the description of the proposedmethod of tracking by

detection using outputs of a deep, fully convolutional neural network. Additional

sub-tasks and significant earlier attempts are briefly described as well to provide reader

the broader context of work that contributed to this final presentation.

11

Figure 2.1: Lifetime of the Pig Tracking project. Lengths of the blocks represent relative
timespan of various components - often done in parallel. Total work spans over the course

of years 2016-2019.

As shown in Figure 2.1, the annotation ended up being one of the most

time-consuming phases of this project. Section 3.3.1 describes the proposed process of

annotating images in a fashion that is specific to pigs. Similar methodology however can

be used for different kinds of targets.

Our initial work on this problem involved the development of a novel iterative

EM-based clustering technique of elliptical objects in 3D space.
39, 40

In spite of being very

compelling at the time, and resulting in the US patent application,
47
this method does not

seem applicable for a widespread adoption as it imposes requirement of capturing depth

information as well as color images. Witnessing a huge shift in the field of computer

vision towards the use of CNNs inspired the author to participate and potentially

contribute to both fields: Precision Livestock Farming (PLF) andMachine Learning, in an

interdisciplinary fashion. Furthermore, we decided to reinterpret the problem from

iterative clustering in 3D to instance-level semantic image segmentation and pose

estimation in 2D, which is described in Section 2.4.

12

Switching the source domain from sparse 3D point clouds to dense color images

required a newmodel, one capable enough to accommodate necessary operations

transforming the inputs x into desired outputs y, and a deep CNN became a natural

choice. When using a parametric model y = f(x, θ) one needs to define appropriate

representations of the input x, output y and parameters θ. CNNs are indifferent in that

regard. Since their original versions date from the early 1990s, the community developed

standard formats and conventions for representing the visual domain inputs (images),

outputs, training objectives, and structure of the parameters via commonly adopted

network architectures. Section 3.2 introduces the reader to the convention of data

processing using CNNs in a broad sense, while Sections 3.3 through 3.4 describe the

problem-specific choices of representations.

Despite being extremely successful in tackling computer vision tasks, CNNs, due to

the very large number of parameters always carry a risk of over-fitting, casting a shadow

on their ability to generalize and produce useful results for unseen data. We acknowledge

those limitations in section 2.7, and present attempts to mitigate them.

When switching from 3D to 2D processing, we always kept in mind the anticipated

potential hidden in the depth of depth information. First, it was identified that the

process of training large, deep CNNs requires large amounts of data. Being however

equipped with unannotated pairs of color and depth images, author attempted to make a

good use of the sheer volume of available images by providing a reliable, high quality

ground-truth information for the subtask of foreground estimation. A relatively large

amount of paired data was processed to extract foreground (class level segmentation)

masks. Section 3.5.2 is dedicated to description of this process including the use of the

elements of multi-view geometry.

Chapter 4 presents the analysis of the method in the context of available datasets

andmetrics commonly used for evaluation of undertaken tasks.

13

2.2 State of the Art: attempts to track livestock using cam-

eras

Nasirahmadi et al.
48
studied the relationship between group lying behavior and ambient

temperature using model-based ellipse-fitting from.
49
�ey used adaptive background

subtraction
50
to separate separate parts of the image belonging to the animals from the

static elements of the scene. �e number of pigs detected in the picture and their

orientation were accurate approximately 95% of the time. �emethod is mathematically

sound andwell defined, however it does not address the ambiguity between the head / tail

position as it only aims to determine the dominant axis. �emethod seems to be able to

handle a partial occlusion but no explicit claims about occlusion handling are made in the

paper. Also, the animals used in the trials had little to no variety in terms of appearance.

Ahrendt et al.
42
use a model-based approach to pig tracking with a multivariate

Gaussian distribution to represent the x, y coordinates and appearance (RGB intensity).

�e authors adapt the model between frames in an EM-like fashion usingMahalanobis

distance as instance affinity measure. �emethod is compact and robust but fails to

separate instances when the animals are touching or in the presence of high number of

instances due to limited frame rate and optics. In order to challenge the frame rate,

authors had to allow for high enough variance between the frames to accommodate

model adaptation, which lead to separation problems. �e fish-eye optics were used to

allow for larger field of view in the presence of multiple animals but the amount of

introduced distortion was overwhelming for their processing algorithm. Figure 2.2

illustrates the this effect.

�e introduction of a depth sensing component helps to resolve the ambiguity

between scale and location (distance from the camera) and allows for fitting geometric

models to the 3D point clouds in the real world coordinate space. An approach utilizing

Microsoft Kinect depth-sensing camera uses an explicitly defined bounding box to isolate

14

(a) (b)

Figure 2.2: Illustration of the top-down view of the pig pen capturedwith the fish-eye lens

in the work of Ahrendt et al.;
42
before the distortion compensation algorithm is used (a)

and after (b).

the points of interest.
40
�emethod focuses on incremental inter-frame adaptation

using EM and the authors have shown an average of 20 minutes of consistent tracking

but manual initialization is required.

Matthews et al. uses depth sensing for activity monitoring of the animals.
51
�eir

method operates without the need for manual initialization and is capable of tracking

individual animal instances via performing regional grouping of surface normals with

the average reliable tracking duration of 22 seconds.

(a) Color image (b) Corresponding heightmap

Figure 2.3: Example of color (a) and corresponding, processed depth image in form of a

height map (b).

15

2.3 Multiple Object Tracking

A popular approach to MOT is tracking by detectionwhich consists of twomajor

components:
52, 53 object detection and data association. When referring to MOT, one usually

has in mind a scenario like the one shown in Figure 2.4. �e image depicts a state of an

MOTmethod for pedestrian tracking.
54
�ere is a number of pedestrians (objects) being

tracked by the method. Each pedestrian is indicated in the frame using a bounding box.

Each bounding box is also color-coded to display the unique identity of each tracked

object. It is safe to assume that that objects are in motion between the frames. �e

tracker combines the detection hypothesis from each frame and combines them into

likely progression of each object in the sequence of frames using a data association

method. Suchmethod often depends on appearance andmotionmodels. �e location of

each object across frames is tracked by the method and displayed as individual

trajectories using colored lines. It is safe to assume that the camera is stationary as the

image most likely comes from a street monitoring system.

Figure 2.4: A visual depiction of an output of a Multiple Object Tracking Method applied

to pedestrian tracking.
54

16

2.3.1 Object Detection

Growth of availability of vast data sets containing millions of annotated images and

publication of open, performance-oriented challenges can be identified as driving force

in the field of Computer Vision. �emost commonly known challenge (and data set) is

ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
6
focused on three

fundamental tasks in the field. At this point it is important to define the terms

classification, localization, and detection according to ILSVRC’s definition:

• Image classification is the task of determining a single class for the entire image.

In ILSVRC it is one out of a 1000 classes and the top 5 scoring classes are reported.

If the ground-truth class is present among the five, it is counted as full success,

failure otherwise.

• Single-object localization focuses on finding one object out of the list of

ground-truth objects present in the image along with proper (≥ 50% Intersection

over Union (IoU)) bounding box position and size.

• Object detection is the most demanding task and involves proper classification and

positioning of bounding boxes around all the objects indicated in the ground-truth

with criteria as in previous tasks.

Classic approaches implemented sliding-windowmethods operating onmultiple

scales of the images and correlating pre-trained visual object representations with the

content of the window, which can be unsuitable for online tracking scenario due to

computational complexity increasing with the number of learned representations.
55
To

overcome the complexity problem, somemethods used two-step processing with

lower-accuracy detector yielding regions of interest for more robust one.
56, 57

Another way of avoiding sliding-window approach is to explore the

frequency-domain representation of the image.
58, 59

Henriques et al.
60
use properties of

17

Figure 2.5: Object representations: top-down representation of objects as bounding boxes

or segmentationmasks
64
often used in tracking by detectionmethods (left) and a bottom-

up representation of a person as an organized collection of keypoints and their associa-

tions
65
(right).

circular matrices and operations in Fourier domain for high performance (≈ 100 frames

per second) single-object tracking.

Modern hardware however allows for using more computationally expensive

methods such as Neural Networks in (nearly) real time due to GPU processing andmake

2D convolution operation feasible. �is was exploited heavily by Sermanet et al. by using

multi-scale sliding-window approach with simultaneously learned bounding box

regressor and classifier.
61

After obtaining hypothesis of object class membership of each pixel, additional step

can be introduced to model the interaction between detected objects within the same

frame. Method presented in
62
focuses on learning complex objects as constrained

alignments of its parts and was widely used in various Computer Vision applications

includingMOT.
63

Object detection can be related to other tasks based on representation. In Figure 2.5

we are contrasting two opposite object representation methods: top down (left) starting

with region of interest proposals (bounding boxes) and bottom-up based on detecting

parts (right).

Most recently, Machine Learning-based approach, namely R-CNN
68, 69

introduced a

18

Figure 2.6: Mask R-CNN extended to estimate human pose from in images selected from

COCO data set and operating at 5 frames per second.
66, 67

multi-step Neural Network structure capable of complete Semantic Segmentation of

single images. Work presented in
64, 67

shows human pose estimation based on keypoint

detection usingMask R-CNN on single color images with real time performance when

running onmodern hardware. It is worth to mention that this recent development

combines multiple steps of the pipeline within one trainable structure yielding very

promising results in terms of both accuracy and performance.

Following reasoning by Choi et al.,
53
having high quality object detector is essential

in achieving prime tracking performance. Most recently Bergman et al.
52
argue that a

high quality object detector is all that is necessary to achieve state-of-the-art

performance in MOT.

2.3.2 MOT asData Association Problem

Resolving object correspondences between frames is the essential component of MOT

pipeline. Depending on the implementation and allowed output latency, it can allow for

filling the gaps caused by occlusions and estimation of actual motion of the tracked objects

while maintaining consistent distinct identities of the targets. In the scenario of 2D

tracking-by-detection, resolving inter-frame correspondences is formulated as the Data

Association Problem (DAP). Even though partial occlusions can be internally handled by

CNN-based object detector,
66
proper association of object in (at least) consecutive frames

19

is essential for tracking.

Before diving into graphical models considering larger time windows (both past and

future) it is worth to mention, that some tracking systems use Markovian assumption

andmaintain continuously updated state built upon the evidence from processing past

frames and adopting the model to most recent frame. Widely used single-object tracking

method known as Continuously Adaptive Mean Shift (CAM-SHIFT)
70
operated by

continuously adopting scale and position of tracked target based on evidence of the

detections. Again, it is worth to emphasize the importance of high quality detector at this

point.

MOT is often formulated as Data Association Problem (DAP).�is approach is

commonly used in tracking-by-detection methods and heavily rely on quality of object

detector and affinity measures between the detections. �e goal of DAP is to find

optimum (minimum cost) assignment in a graphG = (V,E)where vertices represented

by set V are object detections and edges represented by setE are potential edges between

vertices v1, v2 ∈ V with cost representing dissimilarity between detections

corresponding to vertices v1, v2. �is formulation is prone to major difficulties caused by

false positive and negative detections.
71

Depending on the application and computational constraints the correspondences

between the single detections and vertices in the graph can be modeled differently as well

as the global cost metric or costs associated to edges. At this point the author would like

to recommend a few literature positions which, according to his belief, represents the

evolution of Data Association Problem formulation in MOT.

SolvingMOT as DAP is often approached using temporally local matching between

each pair of consecutive frames. �is class of methods simplifies the problem to bipartite

matchingwhich can be solved using Hungarian Algorithm.72

Temporally global methods constrain the problem around batch of frames which can

better handle occlusions and provide smoother tracks.
71, 74–76

�e example difference

20

Figure 2.7: Bipartite matching between pairs of frames compared to k-partite complete

graph spanned over longer time window.
73
It is worth to mention that k-partite complete

graph is not the only formulation used in solving the DAP but is used here as a valuable

example clarifying the difference.

Figure 2.8: Minimum clique problem formulation used in GMCP
74
compared to k-partite

complete graph problem.
73

between temporally local and temporally global processing is presented in Figure 2.7.

Global optimization is significantly more computationally demanding than local, thus

somemethods formulate the tracking problem in global fashion but solve it using greedy

processing (solving trajectories one-by-one, often according to heuristic quality

prediction based on detection scores) which is vastly criticized for its suboptimal

tracking quality and yielding non-optimal tracks
53
causedmostly by occlusions and

within-sequence variations.
73
�e difference between greedy processing and global

optimization is presented in Figure 2.7 which illustrates the major difference between

presented here graphical methods: GMCP
74
and GMMCP.

73

21

�e rest of this section is dedicated to showing the evolution of DAP formulation for

tracking. It presents ancientMHT recently revisited due to the use of CNN-based

features. GMCP and GMMCP as examples of elegant, clever, andmathematically sound

problem formulation, JMC as a the most recent reinterpretation of the problemwhich

does not require 2-step processing allowing for more robust tracking, andMDPNN using

Long Short-Term recurrent neural networks and learns motion, appearance and object

interaction jointly. �ese methods were selected based on their high tracking scores

presented in recent comparative study
77
(JMC, MDPNN,MHT-DAM), elegance and

relevance (GMCP, GMMCP).

More recent revision of Multiple Hypothesis Tracking (MHT) using features

obtained from deep convolutional neural network (MHT-DAM) presented in
78
is based on

the initial proposal from 1979.
79
�emajor strength of this method lays in keeping

multiple identity hypothesis through the tracking process and resolving the past as new

information is processed. It heavily relies on optimized heuristic solver.
80
�emost likely

set of tracks is a result of solving the MaximumWeighted Indepenent Set (MWIS)
81
and

incorporating appearance modeling through deep features
68
compressed to 256-element

vectors using PCA for higher performance. Analysis of comparison betweenMHT and

MHT-DAM using deep features shows that appearance features are significantly more

important thanmovement features. And having proper appearance feature vectors makes

it less sensitive to the size of temporal window. Authors also point out that simplistic

motionmodels such as linear motion often do not represent the behavior of real tracked

objects yielding suboptimal results. �is method scores highly in recent comparison

study
77
but is potentially prone to mismatches due in homogeneous target appearance

applications due to its emphasis on appearance.

Zamir et al.
74
present a global multiple object tracking method (GMCP

1
) formulating

DAP asminimum clique problem (where complete subgraphs span over the same identity

1
Pleasant video presenting GMCP: https://www.youtube.com/watch?v=f4Muu1d7NhA

https://www.youtube.com/watch?v=f4Muu1d7NhA

22

detections over multiple frames). �e globality is achieved by incorporating 2-step

approach of slicing the sequence into temporally local sub-sequences and extracting

trajectories using tracklets and estimating linear velocity vectors and appearance

representation through averaging visible appearances. �en, the problem is solved

iteratively using Tabu search
82
using greedy method estimating global trajectories in

sequence. Occlusions are handled by adding hypothetical nodes filled up using RANSAC.

�e greedy processing is the most important disadvantage of this method.

Deghan et al.
73
criticize GMCP for using greedy processing and introduce DAP in

MOT formulated as k-partite complete graph problemwhich can be solved

simultaneously yielding optimum track assignment. Comparison of GMCP and GMMCP

is presented in Figure 2.8. On the mathematical level authors establish three major

constraints incorporating all hypothetical assignments within the considered time

window and use Binary Integer Programming (BIP) solver. Authors formulate tracklets to

lower the computational complexity but also allow for a motionmodel incorporated into

the cost metric.

Authors provide 3 constraints to formulate GMMCP as BIP which essentially builds a

f-partite complete graph (f being the number of frames) which considers all possible

associations of detections between all frames / tracklets. �ey introduce dummy nodes to

handle occlusions and represent them as integer variables instead of binary and use a

heuristic measure to determine their number, which reduces the number of constraint

equations. �ey use
83
(color histogram intersection) as their affinity measure. Authors

show superiority of their methods compared to GMCP.

It is worth to mention that both, GMCP and GMMCP are not well suited for large

time frame formulation as the problem scales by the number of frames in the time

windowwith respect to number of detections per frame and exponentially with respect to

number of frames. �emain computational complexity comes from actual memory

allocation of large scale constraint matrices and filling in the values to accommodate the

23

constraints. �us, for fixed number of targets and fixed size of the time window it can be

done once and just solved for the cost values coming from detection scores and object

affinity. �is however imposes constraints of the number of detections allowed per

frame, which requires either very accurate detector, raising the detection confidence

threshold (which can result in increased number of FNs) or using aggregation techniques

such as Non-Maximum Suppression (NMS).�ese observation come from the experience

of the author of this proposal as he implemented the GMMCP inMATLAB and applied it

to livestock tracking but did not achieve high quality results due to poorly defined visual

affinity and not incorporating motion constraints.

In
63
author propose JMC, a novel graphical method of solving MOT using DAP. As a

natural extension of their previous work in
84
authors eliminate the need for intermediate

local trajectory representation of tracklets as authors lower the emphasis onmotion

model and focus on appearance. �is is aiming towards high robustness against camera

motion. In their previous work
84
authors handled false positives using additional binary

variables at nodes for masking depending on detection confidence threshold. Here,

authors add post-processing step to remove small clusters of detections. �emain

advantage of this change is ability to use KLj-algorithm from
85
without any

modifications. �ey reframe the MOT as minimum cost subgraphmulticut problem.
84, 86

As a result all the detections corresponding to the same target can originate both inside

single frame as well as across time due to the fact that solution of a problem is based on

subgraphs and not paths (edges between single detections). Authors use deepmatching
?

for affinity measures of each detection yielded by DPM
62
object detector. �e use very

efficient solver presented in.
85

Finally, a very sophisticated method presented in
87
(MDPNN) uses Long Short-Term

Memory (LSTM) Neural Networks. Authors jointly learn target representations taking

into account appearance, motion and interaction after being inspired by recent work on

Structural Recurrent Neural Networks
88

24

Figure 2.9: Effects on different components on the continuous energy function presented

in.
89
Please keep in mind that this method is an energy minimization framework, so the

correct associations are going to carry lower energy than the erroneous ones.

Authors point out the importance of modeling the target’s motion in case of

handling occlusions as it allows for predicting the location of the target in the next frame

but also emphasize the importance of appearance as performance of graph-basedMOT

methods is bounded by design choices of similarity function.

DAP can also be solved using maximum-a-posteriori (MAP) network flow approach

which is capable of handling longer time windows. Work presented in
71
uses min-cost

flow algorithm to for pedestrian tracking scenarios. Each trajectory is modeled as

Markov chain. Each detection has associated random variable with Bernoulli distribution

trained on the data andmodeling probability of being a true or false detection. �ese

methods introduce additional graph vertices and edges modeling uncertainty between

the hidden state (true positions of targets) and the hypothesis.

Another attempt to solve the Data Association Problem is by minimizing global

energy function defined such that it captures all possible tracked targets in all frames.

In
89
authors present Continuous Energy Minimization (CEM) framework for Multiple

Object Tracking. Authors state that due to its general non-convexity the tracking problem

can not be solved globally and argue that local optima of carefully formulated objective

yield satisfying results in practice. �eir objective function explicitly encapsulates:

detection evidence, appearance, motion dynamics, persistence, and collision avoidance

(Figure 2.9) in continuous space and is differentiable. �eir object detection is based on

25

linear SVM and they use HOG
90
and HOF

91
as feature descriptors filtered by NMS.

NOMTmethod presented in
53
achieves very good performance according to,

77

mostly due to high emphasis on robust affinity measure between any two detections and

novel affinity descriptor (AFDL) which mostly focuses onmovement.

2.3.3 Motion, appearance, interaction, and affinitymeasures

Interaction between tracked objects can be modeled either explicitly or implicitly. �e

most commonmethods of explicit modeling are used in the pedestrian tracking: crowd

motion patterns
92
and social force model (groupmodel)

93
where object trajectories are

augmented by two types of forces: attraction or repulsion. In
89
authors use repulsion

based on target’s volume.
94
�ese standard models were criticized for low generality (due

to inflexible constraints imposed onmotion such as linearity) and over-simplicity making

it unable to capture more complex interactions between objects andmore data-driven,

LSTM-basedmodel was proposed.
87
�emain strength of this approach is in its ability to

model long term interactions based onmultiple clues. Implicit object interaction (mostly

repulsion) is often handled by exclusive area occupancy such that no two distinct objects

(or parts of those objects) can be present in the same frame at the same location (nor

having bounding boxes with areas overlapping above certain threshold) which is often

inherently ensured in tracking-by-detection by the detector’s output (with proper

segmentation).
71, 73, 74

In
53
authors present Near-Online Multi-Target (NOMT) tracking framework heavily

relying on their motion affinity measure with less emphasis on the appearance. Such

choice is often motivated by the need for tracking similarly looking (or even

homogeneous) objects. �ey introduce Aggregated Local Flow Descriptor (ALFD) which

encodes relative motion pattern between two detection boxes in different time frames.

Authors propose to solve the problem using temporal window τ (V t
1 ,Dt

t−τ ,At−1)→ At
.

Given the previous set of points, they identify new points and reduce their number by

26

Figure 2.10: Appearance model presented in.
87
Bounding boxes at each time step are pro-

cessed through a CNN, effectively used as a feature extractor. �ose features are then

passed into the LSTM-based appearance model for all time steps i = 1, 2, . . . , t and com-
pared with the features from the most recent frame using fully connected layer.

applying a movement threshold of at least 4 pixels. �en they calculate forward and

backward optical flow. Any point with high disagreement in forward-backward flow

(consistency measure) is terminated.

Methods described in previous section used tracklets to describe temporally local,

consistent sub-trajectories of targets. In
73
authors build tracklets by slicing the sequence

into a fixed length sub-sequences and estimating motionmodels for consistent

detections. �ey also use forward-backward consistency whenmerging tracklets into

smooth (global) trajectories. It has been shown in the literature that the use of tracklets is

a
95–97

Choi et al.
53
leverage the importance of pairwise affinity measure between any two

detections based onmotion clues for considering similarly looking targets. �emost

recent, previously mentioned work presented in MDPNN tracker
87
learns the motion

model and affinity measure between tracks using LSTM neural network in very similar

fashion to the way it does with respect to the appearance (Figure 2.10).

In
98
authors explore the relationship between spatial overlap (on an image plane)

27

and the upper bound of the appearance similarity, namely the appearance similarity

decreases with decreasing overlap. Authors explore multiple common appearance

descriptors such as bag of visual words using SURF features,
99
GIST,

100
and HOG.

90

Authors propose an efficient algorithm for affinity measure capable of real time

operation.

In
101
authors propose a Siamese CNN architecture to estimate object likelihood of

two pedestrian detections to belong to the same tracked identity. �ey combine visual

affinity (pixel values) with motion (optical flow) in their measure.

Appearance-focusedmethods used in classic tracking systems can be often

described as weak visual affinity measures such as: spatial affinity (bounding box overlap

or euclidean distance),
75, 76, 102

color histogram intersection.
74, 83

Dis(similarity) measure between two image regions is a fundamental problem of

stereo matching. �e output of the evaluation function usually produces overall cost value

or returns disparity directly. �e groundbreaking work in
103
uses neural network-based

approach to estimate the similarity score. �e network is built from two convolutional

feature extractors, concatenation layer, and a stack of fully connected layers. Presented

method outperformed previous attempts.

Concluding this section author would like to once again emphasize the importance

of the visual object representation and affinity measure due to its broader impact in the

field of Computer Vision.

2.4 Semantic Image Segmentation

Semantic segmentation allows systems to interpret image content in both the spatial and

categorical domain. As arbitrary as it seems, it is a task beyondmere texture and

color-based analysis and requires domain-specific prior knowledge stored as model

coefficients. When referring to segmentation, it is important to specify its level starting

28

from background subtraction being a single-class foreground/background identification

task, throughmulti-class case and eventually instance-level or sub-instance level. When

an image contains multiple disjoint segments of the same category, the segments can

easily be separated into unique instances. Such categories can be defined as people,

animals, inanimate objects, andmore.
8
Unfortunately, in cluttered scenes this condition

is seldom satisfied; here, one can only interpret the results as a collection of ambiguous,

inseparable blobs. Figure 2.11(a,b,c) illustrates various levels of segmentation and the

limitations of (class-level) semantic segmentation in cluttered scenes.

(a) (b)

(c) (d)

Figure 2.11: Semantic segmentation and instance-level segmentation of people (Cityscapes

dataset,
10
Hamburg image#036527): (a) original image; (b) semantic person segmentation;

(c) grouping via connected components; (d) person instance segmentation.

Instance segmentation adds to the capabilities of semantic segmentation by

distinguishing between objects of the same category. �is task is significantly more

challenging thanmere semantic segmentation as it needs to produce unique

identification of each instance such that there exists a clear boundary between them.

Implementation carries additional challenges because the specific identifiers provided by

ground truth instance labeling are permutation invariant, i.e., any permutation of

ground truth instance labels (unique colors in Figure 2.11(d)) is considered a perfect

solution.

Researchers have used a variety of different approaches to achieve instance

29

segmentation despite the inherent ambiguity of labeling. In general, they can be divided

into two classes: 1) top-down and 2) bottom-up. A top-down approach begins by isolating

the region of interest from the rest of the image prior to performing pixel-level

segmentation
66
,
104
while the bottom-upmethods attempt to assign unique “codes” to

each pixel so that clustering methods like mean-shift can separate different instances

easily
105106

.
107

Modernmethods achieve impressive results on challenging datasets like COCO,
8

Cityscapes,
10
and KITTI,

108
however, because they are specifically trained to assign a

single instance label to visible pixels, each object’s full spatial occupancy and depth

ordering— two properties that humans instinctively estimate— are not represented in

the image annotations. As a consequence, the common approach of training deep

fully-convolutional networks (FCNs) to detect and segment objects in the image
109
faces

the dilemma of an ambiguous target because there is no definitive ground truth to

provide the network during training. In the context of tracking, the main limitation

inherent to those vast instance-level segmentation datasets is the lack of temporal

context as they contain random natural images and not consecutive image frames.

As mentioned above, there are two categories of approaches to achieve instance

segmentation. �e first begins by finding the regions (often bounding boxes) that contain

each instance, and then performing pixel-wise segmentation of the dominant instance

within that region.

One of the most successful and nowadays widely adopted family of top-down

methods are based on the work proposed in 2014 by Girshick et al.
110
known as R-CNN.

Its latest incarnation, Mask R-CNN, introduced by He et al.
66
is capable of performing

instance level segmentation and keypoint detection. It extends upon Faster R-CNN
15
by

adding a branch for segmentation mask prediction in parallel with the other branches

(bounding boxes and classification). However, because it relies on a priori region

proposal, it is inherently unable to separate objects with significant bounding box

30

1 1 1 11

(a) (b) (c) (d) (e)

Figure 2.12: Instance segmentation output scenarios for two overlapping rectangles.

overlap—a common occurrence among group-housed animals

Li et al.
111
proposed a solution that uses a location-sensitive fully convolutional

network that partitions bounding boxes into a 3×3 grid, and then evaluates the likelihood

that each partition contains the correct part relative to the other partitions. Alternative

approaches using recurrent neural networks with attention have also been introduced to

iterate through the instances while keeping track of which regions have already been

processed
104
.
112

Methods relying on bounding box selection are inherently limited by an priori region

selection. When instances of similar size overlap with one another, the region selection

phase often experiences one of two types of error: either 1) due to non-maximum

suppression, the algorithm ignores the bounding box of the occluded instance (Figure

2.12(b)), or 2) the instance will be represented as a collection of separate partial instances

(Figure 2.12(c)).

As an alternative to region selection, bottom-up approaches that use pixel

embeddingmove the high-level detection stage to the end of the process
106107

.
105
A

bottom-up keypoint detection was even successfully adopted to cow tracking.
44
�e

authors identified a set of class-specific landmarks visible from a top-down view to

represent each cow’s location and orientation, and trained a fully-convolutional neural

network to detect them in images. A post-processing network was then used to convert

the annotations to per-pixel orientation classification outputs, resulting in 95% accuracy

in correctly labeling all cows in a given image. In a follow-up experiment, they applied the

31

previously trained network to a new environment and observed that it only succeeded on

only 55% of images, indicating that the network was over-fitting to a particular

environment.

2.5 Pose Estimation using Keypoints and Part Affinity

Fields

Wei et al. introduce the concept of convolutional pose machines.
113
�eir work establishes

an architecture, landmark definition and general approach to bottom-up processing

suitable for human tracking. Cao et al.
65
extend this work and propose a real-time

method of multi-person pose estimation using a combination of keypoint detection, a

novel concept of Part Affinity Fields, and well-defined post-processing step to resolve

associations between objects of interest.

Figure 2.13: Real-timemulti-person 2D pose estimation.
65

�is approach is still targeted to single-domain processing; namely: human pose

estimation where the objects of interest are people visible in single images and trained on

two popular datasets: MS-COCO andMPII.�eir findings andmethodology are however

more than adequate for other object classes. Presented qualitative results of processing

random video inputs (https://www.youtube.com/watch?v=pW6nZXeWlGM) seem very

convincing, even though the presented method does not support video processing

explicitly in its architecture as it operates in a state-less fashion and no consistency is

enforced between video frames. Due to lack of consistency enforcement, inter-frame

https://www.youtube.com/watch?v=pW6nZXeWlGM

32

object tracking (when desired) needs to be resolved using external processing. Authors

use deep convolutional neural network working as a 8-step downsampling-encoder (with

natural input size of 368× 368× 3) with multiple deep dense (using skip connections)

refinement steps operating on the downsampled, deep features (46× 46× 128). �e final

output is then produced by up-sampling back to 368× 368× 3 and post-processed

(Figure 2.13 (d, e)).

For human pose, position of the keypoints such as wrists, knees, ankles, elbows etc.

are encoded using real-valued images representing heatmap of confidence that a

keypoint of certain type exists at a particular location of the image. For each type, a

number of two dimensional Gaussian kernels centered at the locations of the keypoints

and with a pre-assumed variance (spread factor) is drawn on the image corresponding

the the keypoint’s type. �ose images are then stacked together using concatenation

along the last index forming a multi-channel composite image (Figure 2.13 (b)).

�emodel is trained in an end-to-end fashion to produce detection heatmaps. �e

joints such as arms, legs and connections between keypoints located on the head are

encoded using 2-dimensional (2 image channels per link) direction vectors defined on an

image plane normalized to unit length and drawn as a thick line (Figure 2.13 (c)). �e

method does not explicitly encode instance-level embeddings but lays the ground work

for simultaneous multiple-instance processing due to clever encoding. If however,

instances are subjected to complete occlusion of joints, it may be difficult to recover their

accurate placement. Although the method estimates the class-level foregroundmask for

background subtraction, individual instance-level masks are not explicitly produced but

rather approximated in post-processing using features representing part associations.

A promising extension to this method has been applied to smaller body parts -

namely hand tracking. Simon et al.
114
extends the capabilities ofOpenPose by creating a

separate model capable of recovering position of finger joints and links between them.

�emethodology and training are very similar to work on full body pose,
65
with themajor

33

difference being the target class - a pair of human hands.

Due to the need of appropriate input handling and gesture recognition for

augmented and virtual reality applications, hand tracking became a topic of interest -

especially when approached in three dimensions. Taylor et al.
115
present a

computationally efficient and accurate / robust method of tracking deformable model

with 28 degrees of freedom in the application of hand tracking for virtual andmixed

reality interaction using depth sensing. �ey use smooth model inferred through loop

subdivision
116
of the triangulated reference mesh to formulate a non-linear global

energy-based optimization problemwhich can be tackled using Levenberg method.
115

Authors indicate limitations present in previously used, single RGB camera-based

methods mostly focused on inverse kinematics labeling them as inaccurate, thus

reinforcing the use of depth information.

So far the bottom-up approaches consisted of a two-stage process. First, the images

are fed to a (fully) convolutional neural network producing the keypoint heatmaps and

potentially images with features allowing for keypoint association cost estimation - such

as part affinity fields. �en, those dense, image-like representations are transformed

into sparse, real-valued representation and an association problem is formulated and

solved. Parameters like detection thresholds or size of detection window need to be put

in place to constrain the problem and ensure reasonable outputs which renders those

methods as very flexible, yet requiring careful parameter tuning.

In work commonly known as PersonLab117 the authors reinterpret the idea of Part

Affinity Fields and differentiate between the short-range, mid-range, and long-range

offset vectors to produce more robust input to the post-processing stages. �ey

additionally generate instance-level-consistent embedding vectors and segmentation

(foreground / background) mask. �eir publication along withOpenPose are the main

inspiration of this work.

Mid-range (pairwise) offset vectors correspond to the Part Affinity Fields inOpenPose.

34

It is important to emphasize the fact that both, the mid-range and long-range offsets

heavily depend on the model’s ability to aggregate information over larger area of the

image and will depend on the size of the receptive field. �e short-range vectors however

allow for flexibility of model selection due to their locality andmake the method

potentially suitable for operation with front-end networks with limited receptive fields.

Short-range vectors are drawn as discs located around each corresponding keypoint

(x0, y0) and encoded on appropriate ground-truth image channels as pixel-coordinate

distance vectors Sk(x, y, x0, y0) = [x0, y0]− [x, y] is represented as a 2-dimensional

vector for each pixel within the disc (each point (x, y) that lies within the defined radius).

Each of this pixels is then encoded as a two-channel image, where the first channel

contains the values of the x component and the second contains the values of y. �is

information allows for locating the keypoint based even if the very center of it is

(partially) occluded and allows for more robust postion estimation. In contrast to

OpenPose, where the keypoint position would have to be estimated using information

from potentially spatially distant elements of the image, here the more local information

is explicitly trained (authors only train in 32-pixel radius around the keypoint).

Long-range offsets indicate the position of each keypoint from (virtually) every pixel

belonging to particular instance (indicated by the red lines in the middle of figure 2.14).

�is information is rarely present in the data sets used in this work and thus the most

problematic. When working with actively developed and constantly expanded datasets

such as COCO,
8
one has the comfort of using vast instance-level segmentation data.

�us, methods like OpenPose or PersonLab achieve very convincing results when visually

inspected.

35

Figure 2.14: PersonLab processing pipeline.117

2.6 Embeddings

Papandreou et al. proposed a fully supervised method of resolving pixel-level instance

membership for human tracking using well annotated datasets.
117
We consider their

work an important milestone as it simultaneously addresses the human pose estimation

and instance segmentation. As an alternative to linking keypoints using explicitly

defined association (such as part affinity fields) for pose estimation, one can think about

using dense, unsupervised features. Such approach however requires suitable,

multi-dimensional dense instance representations. When produced in a per-pixel

fashion, those representations are often referred to as pixel embeddings. �is approaches

is fairly new inMOT and it is not clear, what those embeddings should represent or

consist of in terms of physical variables. What is known however is the fact that given two

clusters, the values need to be consistent within the clusters but allow for easy

differentiation between them. An engineer would be tempted to inject hand-crafted

features like orientation parameters of the object, texture features,
118
position in the

image etc. and train a model to properly estimate them. Convolutional Neural Networks

are however capable of simultaneously learning suitable representations (and potentially

solving the clustering problem) implicitly.

�e use of embeddings for instance labeling was prominently featured in the

36

FaceNet algorithmwhich used a novel loss function to automatically generate unique

embeddings for an individual’s face— regardless of the conditions surrounding image

capture.
119
�is loss function uses three inputs simultaneously: two of the same person

(the anchor and the positive), as well as a third image of a different person (the negative)

and produces the distance value between the anchor and positive embeddings to be less

than the distance between anchor and negative. �is concept is referred to as the triplet

loss due to the number of inputs, and its use for the training of a neural network is the

main novelty of FaceNet.

To extend this concept to instance segmentation, each pixel is assigned an

embedding such that, when clustered together, pixels in the same cluster also belong to

the same instance. Figure 2.12(d) represents the ideal output of pixel embedding, where

the “red” embeddings correspond to the foreground object and the “blue” embeddings

correspond with the occluded object.

Fathi et al.
105
adopts this principle by training a network to evaluate pairwise pixel

similarity. With a brute-force approach, the amount of comparisons quickly becomes

unmanageable; to mitigate this issue, they train a separate model to generate seed points

that represent the typicality of a pixel compared to other pixels in the area. Each seed

point then generates a mask using the embedding vectors but training twomodels

separately does not allow for joint optimization.

Formulation of the loss function and input encoding for embeddings can be

challenging.
119
Also, when evaluating using external clustering steps one needs to resort

to reinforcement learning which is a powerful but time-consuming process as the loss

function gradients are propagated from a single evaluation output, which would not be a

big issue if those outputs could be evaluated quickly.

�is, pixel-pair-wise approach was criticized by Papandreou et al.
117
as sensitive to

hyper parameters, and for producing hard to predict results as the output embeddings

are not guaranteed to be separated enough for clustering. �is criticism is very much

37

applicable in the context of the COCO dataset that authors used in their

human-pose-targeted approach, as they had simultaneous access to the instance mask,

foregroundmask, and keypoint location during the training. �is prior information is

however not available in the context of this work as the keypoint-annotated images do

not include corresponding instance masks. �eir alternative encoding explores the

geometric embeddings based on the relative offsets of the keypoints encoded directly in

the image coordinate space which they acknowledge is a challenging task for a neural

network to train for.

Training for tasks requiring larger spatial requires the model to “see” and aggregate

information across substantial part of the input. Quantitatively, the measure of the size

of this context is referred to as the receptive field. Larger receptive fields can be achieved

either through downsampling / pooling, via very deep architecture, large convolutional

kernels or the combinations of the above. When the feature map needs to be brought

back to the size of the input image, downsampling introduces challenges related to

proper spatial alignment. Training large kernels introduces additional computational

complexity. �us, the up-sampling is often realized by deep networks with small kernel

sizes. Deep architectures can produce larger receptive fields at the risk of very long

training times due to the nature of the backpropagation algorithm itself that applies the

chain rule to calculate parameter updates at each step (layer). In a very deep networks the

relationship between the output error and the input becomes progressively smaller when

progressing backwards as most of the operations in the network are based on the inner

product. Since the gradient of the output of a layer with respect to its input is equal to the

linear combination of its coefficients, if those coefficients are kept at lowmagnitude,

progressing deeper backwards leads to very small gradient updates. �is problemwas

identified as one of the dominant difficulties in recurrent networks where it is referred to

as the vanishing gradient problem.120

In the work of Chen et al., commonly know as Deeplab,
121
authors present a novel

38

(a) Standard convolution with rate = 1

(b) Atrous Convolution (rate = 2)

Figure 2.15: Standard (a), and Atrous Convolution (b). Figures from.
121

concept of Atrous Convolution allowing for increasing the size of the receptive field by

introducing “holes” (“à trous” in French) between the non-zero kernel coefficients. �ey

argue that when processing large feature maps (high in resolution), the spatial context

between neighboring pixels is most likely the same. In other words, in the context of

semantic segmentation of images - pixels that are close together are most likely parts of

the same object. �emain trade-off of using Atrous Convolution is the loss in spatial

accuracy. �e difference between processing using standard convolution and Atrous

Aonvolution is presented in Figure 2.15.

A very interesting alternative idea known as Adversarial Training has been introduced

by Goodfellow for Generative Adversarial Networks (GANs).
122
Here, instead of the need

for specifying an explicit loss function, one can resort to classification based on positive

examples. In principle, GANs tackle two tasks simultaneously: 1) to perform the main

task, and 2) to evaluate the quality of the produced output. It is done by introducing two

networks: a Generator and aDiscriminator trained in alternating fashion. First, a

discriminator is trained to produce negative (or false) response for the generator’s output

39

and positive (true) for the ground truth images. �en, the generator is trained using

gradients propagated from (fixed for this step) discriminator - enforcing positive

response. �is configuration renders the discriminator as a subsitute for the

task-specific loss evaluation block. GANs were widely adopted for the task of producing

convincing synthetic images
123, 124

but their true potential lays in approximating source

domain representations.
125
As tempting as their application is to an engineer, their

training is known to be extremely difficult due to its alternating nature. Ideally, when

successfully trained, components of GAN should converge to a Nash Equilibrium (state in

which no weight update would improve the final result). �ere is however no guarantee

of that being the case. �emost common problemwith GANs ismode collapsewhich

exhibits itself via convergence to always correct but single generator’s output..

Modern literature points out a multitude of difficulties related to the stability of

GAN training and presented multitude of underlying problems and tricks allowing for

predictable training.
126
Methods yielding the most visually pleasing synthetic images

today employ the concepts ofWassertein GAN.127 Authors indicate the problem ofmanifold

learning and propose methodology allowing for more stable training that addresses the

situation when the model produces the same output every time known as themode

collapse.

Kong et al.
107
introduce a method that maps pixels to unit-length embedding vectors

on a hypersphere. For training, they randomly sample embeddings and use cosine

similarity to measure the distance between the vectors. �ey also introduce recurrent

Mean Shift
128
clustering into training, allowing the network to train end-to-end.

Brabandere et al.
106
introduce a method that does not require the embeddings to be

on a hypersphere, thus relaxing the problem, while instead encouraging

small-magnitude vectors via regularization. �eir loss function encourages clustering

without requiring the integration of mean shift in the training process, resulting inmuch

faster training and easier implementation. �emethod presented in this work is directly

40

inspired by their work.

Learned, pixel-level embeddings encapsulate instances through similarity

constraints, and potentially relieve the need for graphical post-processing. So far

however, it has not been discussed how they behave in the presence of occlusions.

Computer vision often aims to reverse-engineer scenes from images/video, and an

assignment of all visible instance parts to a single membership is a useful but still

incomplete descriptor. In contrast, the full segmentation masks and relative depth

ordering prior to image projection provides a more complete input - especially when

occlusion handling is of interest.

Instance segmentation extends the semantic segmentation by separating objects

within the same class by identifying pixels belonging to each instance in the visible parts

of the image, it does not however resolve the occluded regions. Even if the method is

capable of producing correct identificationmasks for discontinuous regions, the shape of

occluded parts are still unknown. Tackling this problem is referred to as amodal

segmentation.129 An illustration of such approach is presented in Figure 2.12(e), where the

blue region is partially occluded by the red one, and appropriate segmentation masks are

produced for the red region, the occluded part, and eventually the blue part. �emain

difficulty in this approach is the lack of data sets containing the proper annotations. Also,

conceptually it can be difficult to assess the performance of the method, as depending on

the pose, position, type of object, and amount of occlusion, it is hard to define what

should be appropriate level of correctness of of estimation of the occluded region.

Conceptually, for humans, performing this task is intuitive, but it can be unquantifiable

in the context outside of mere numerical evaluation.

Huang et al.
130
approach the segmentation problem via using a neural

network-based deep feature extractor to produce cluster-able features for the k-means

algorithm to process. �ey estimate the number of valid clusters using silhouette scoring

method,
131
and then construct final clusters based on the best score. Cluster-based

41

approach of the method presented here resembles their clustering assessment

methodology.

Amodal segmentation can be tackled using the concept of a tri-state-mask, a feature

capable of indicating which pixels belong to either of the three states: the foreground, the

background, and the intersection of the two that is occluded (and technically belongs to

the background). �is approach is limited to two levels of depth or z-ordering, and

requires appropriately annotated ground truth segmentation masks. Again, the

availability of the data set is the major limitation in this field. �ere are however

approaches attempting to address this problem via creation of synthetically occluded

regions as a composition of the existing annotated backgrounds, and instances extracted

from other images, and injected at known locations with known tri-state masks - all based

on the COCO dataset.
132
Unfortunately, this set contains annotations that highly vary in

quality of annotations of the occluded regions, and available annotations are sparse

compared to the size of the data set.

Milan et al.
133
in their work onmulti-target tracking identify three types of

occlusions:

• Inter-Object occlusions when objects of interest occlude each other,

• Scene occlusion such as caused by pillars, road signs, generally static objects in the

scene,

• Self-occlusion - being very specific to the type of tracked object and involving

extensive articulations, deformations, changes in orientation and other unusual

transformations rendering object of interest hard to detect or track.

Yang et al. estimate layer ordering as part of instance segmentation and introduce a

learned predictor based on relative detection scores, position on the ground plane, and

size.
134, 135

�ey acknowledge the benefits of full spatial segmentations of visible and

occluded parts, but their method focuses on the benefits of depth ordering for instance

42

grouping. Chen et al. attempt to fill occluded regions by selecting similar non-occluded

exemplar templates from a library;
136
this improves instance segmentation of visible

pixels.

Instance segmentation with explicit depth ordering estimation was proposed by

Uhrig et al.
137
�eirmethod exploits ground truth depth information provided by KITTI

138

and Cityscapes,
10
but it does not attempt to recover occluded segments. While each of

these methods uses the concept of occlusions to improve instance segmentation, none of

them explicitly targets the full spatial extents and depth ordering of instances. To this

day, no dataset with explicit z-ordering for animal instance segmentation exists, but

certain efforts can be made to limit the negative effects of occlusions such as:

randomization of ground-truth instance generation and explicit cluster consistency

enforcement even in the presence of partial occlusions.

Li et al.
139
investigate the concept of embedding stability in the video while training

the model on static images. In the context of video, authors argue that

foreground-background determination needs to be performed using temporal context

rather than based on single frame. �is improves model transferability as the network

does not have to be fine-tuned for specific images.

2.7 Convolutional processing of images

In computer graphics images are represented as arrays of pixels such that an image can

be defined by anm× n (image height and width respectively) matrix with values

corresponding to the encoding format of the color. �e rectangular grid of pixels with

assigned colors is referred to as raster. �is will be the kind of images considered in this

work - as opposed to the vector representation, which defines a sequence of mathematical

operations to generate the visual shapes and colors.

For the sake of clarity, when describing raster images, a common standard to

43

represent monochromatic images in the black→white spectrum is to use the 8-bit

greyscale quantization (each value represents the intensity), in case of color, a 24-bit (3

bytes) color palette is a common representation with RGB order of red, green, and blue

intensities.

When preparing images to being ingested by a neural network one will most likely

find themselves following the standardized representation from the popular machine

learning frameworks such as Caffe
4
and TensorFlow.

5
In this work the [B ×H ×W ×C]

convention will be used to represent the images, whereB is the number of examples fed

to the neural network at each iteration (also referred to as the batch size),H is the height

of each image in the batch in pixels,W is the image width in pixels,C is the number of

channels (1 for monochromatic images, 3 for RGB images, orC for a result of

concatenation of multiple feature maps along the last index). Each value is encoded using

32-bit floating-point number as both, the CPU and GPU-based operations are optimized

to use this format - that includes the binary masks containing the extreme values of 0.0

and 1.0 only.

As witnessed in the literature, currently adopted conventions in the field of machine

learning for computer vision have their roots in the shift of methodology which began

around year 2012. �at year the deep architecture proposed by Alex Krizhevsky (know as

AlexNet
2
) outperformedmost hand-crafted methods in multiple tasks of the ImageNet

Large Scale Image Recognition Challenge.
6
Unlike previously usedmethods, Krizhevsky

used a GPU and built upon the work originally presented by Le Cunn in the late 1980s.
3

His model architecture (Figure 2.17), and utilization of graphic processors became a

standard of the modern architecture and consisted of various building blocks which are

worth emphasizing:

• Dual-headed design - due to the limits of single-GPUmemory, the network was

split into two paths (heads).

• Use of convolutional layers allowed efficient parameter utilization.

44

(a) (b)

Figure 2.16: Rise of computational power of graphic gards between 2002 - 2012 (figure

from
140
) (a) and their professional counterparts between 2008 - 2016 (figure from

141
) (b)

when compared to a CPU performance.

• Use of Max Pooling layers (although heavily criticized by Geoffrey Hinton) allowed

for robustness against small-scale image translations and larger spatial spanning.

• Use of multiple inner product (dense) layers towards the output of the network

provided larger spatial context for the output via aggregating information

produced by localized convolution operations.

• Reduced width and height compensated by increased depth allowed for creation of

rich dense features on each level of processing.

Figure 2.17: AlexNet
2
deep convolutional neural network architecture propoposed in 2012.

Following the very useful summary by MathWorks,
151
one can characterize

commonly used neural networks in the context accuracy - how well do they perform the

45

Year Network Depth Size Parameters (Millions) Image Input Size

2012 alexnet
2

8 227 MB 61.0 227× 227

2014 vgg16
142

16 515 MB 138 224× 224

2014 vgg19
142

19 535 MB 144 224× 224

2015 googlenet
143

22 27 MB 7.0 224× 224

2015 inceptionv3
143

48 89 MB 23.9 299× 299

2016 squeezenet
144

18 4.6 MB 1.24 227× 227

2017 densenet201
145

201 77 MB 20.0 224× 224

2017 xception
146

71 85 MB 22.9 299× 299

2018 mobilenetv2
147

53 13 MB 3.5 224× 224

2016 resnet18
148

18 44 MB 11.7 224× 224

2016 resnet50
148

50 96 MB 25.6 224× 224

2016 resnet101
148

101 167 MB 44.6 224× 224

2017 inceptionresnetv2
149

164 209MB 55.9 299× 299

2018 shufflenet
150

50 6.3 MB 1.4 224× 224

Table 2.1: Depth, size, number of parameters, and image input size glossary of popular

neural networks used for image classification tasks.
151

task they were designed for, speed - relatively, how fast is the training / inference, and

size - howmany coefficients does the model consist of.

Figure 2.18: Illustration of data-driven low-level feature extraction: 96 convolutional ker-

nels of size 11x11x3 learned by the first convolutional layer of AlexNet for ILSVRC2012.
2

Transfer Learning is a term referring to taking advantage of model’s performance to

solve given taskA and (often after fine tuning) making it applicable for another taskB.

In the context of computer vision problems, this can be very well explained by example of

Imagenet Large Scale Visual Recognition Challenge (ILSVRC),
6
where features learned by

46

neural networks on large-scale image datasets for the task of whole image classification

were successfully used in segmentation. Even in the early days of deep learning, it was

observed, that deep classifiers, due to their convolutional architecture, learn to

decompose images into more-and-more complex structures in a bottom-up fashion. A

great example of such decomposition can be illustrated when observing the first layer of

convolutional kernels learned by AlexNet presented in figure 2.18. �is observation

allowed researchers to use pre-trainedmodels as deep feature extractors. Long et al.
109

propose Fully Convolutional Networks (FCN) by converting ImageNet-trained

high-performance, general purpose classifiers. �eir approach became widely adopted

and fully convolutional models are widely used due to their adaptation to variable image

size. ImageNet competitions also had an impact on the research community in the form

of defining standard network architectures. In the context of transfer learning, the

standarization falls even beyondmere architecture, the entire, pre-trained networks are

often used as building blocks for more complex models - most often as a source of

multi-dimensional, per-pixel defined feature vectors. �is work uses transfer learning in

exactly that sense - both the benefit of proven, working architecture and initial values of

model coefficients are borrowed from popular models.

Following the very useful summary by MathWorks,
151
one can characterize

commonly used neural networks in the context accuracy - how well do they perform the

task they were designed for, speed - relatively, how fast is the training / inference, and

size - howmany coefficients does the model consist of. Figure 2.19 illustrates accuracy as

a function of complexity of the model expressed as time complexity.

When looking at the commonly usedmodels listed in table 2.1, one needs to realize

their depth and scale. Due to the high number of trained coefficients and overall number

of layers, training suchmodels is nowadays referred to asDeep Learning. Use of such vast

models - as powerful as it is - always carries the risk of over-fitting as the data could be

stored as model weights or biases and recalled upon the input. Various techniques exist to

47

Figure2.19: RelativePareto efficiencyofneural networkmodels commonlyused in transfer

learning.
151

overcome this problem, but two deserve to be emphasized: content-preserving

transformation (augmentation) and weight regularization.

Broadly speaking, regularization is a term referring to imposing constraints on the

behavior of the optimization solver during the weight adjustment. Whereas

augmentations are introduced in the input pre-processing stages, regularizations can be

included explicitly as a part of the training loss function or as explicit operations. One of

the most popular regularization method used when training large CNNs is to constrain

magnitude of the weights usingL2
-norm penalty applied to all (or at least selected

subsets of) trainable coefficients - known widely as weight decay. It is defined by

augmenting the loss functionL(y, y′, θ) as follows:

L(y, y′, θ)′ = L(y, y′, θ) + αreg
1

N

N−1∑
n=0

‖θi‖ , (2.1)

where y is the desired output, y′ is the model prediction, n ∈ {0, . . . , N − 1} is the index

48

of the model coefficient,N is the number of trainable coefficients, θs are their values,

and αreg is the weight decay coefficient.

Example 1. Let’s consider a simple case of a line crossing the origin on a

two-dimensional plane.

y′ = ax, (2.2)

and define a loss function that could be used to minimize the mean squared error of the

model parametrized by single parameter θ0 = a, usingM number of example pairs

(xm, ym):

L(y, y′, θ) =
1

M

M−1∑
m=0

(ym − θ0xm)2, (2.3)

�en, the aforementioned regularized version of the loss function would take the form of:

L(y, y′, θ)′ =
1

M

M−1∑
m=0

(ym − θ0xm)2 + αreg ‖θ‖ , (2.4)

When applied to the training of neural networks, this technique effectively forces

the network to try to generalize intermediate representations and prevents it from

creating easily-exploitable separation boundaries that would allow the network to store

the training examples using bias coefficients. Although providing numerical stability,

regularization can lead to the vanishing gradient problem due to its sensitivity to the

hyper-parameters αreg. Historically this issue was tackled by heuristic estimation of

additional learning rate multipliers based on the network architecture i.e. the number of

layers and number of parameters at each layer. Nowadays, the optimization algorithms

such as Adam attempt to maintain adequate multipliers to ensure gradient

propagation.
152
when using standard architectures the literature often indicates standard

weight decay values within the range of (10−4, 10−2) for the multiplicative coefficients,

and no penalty for the additive ones.

49

Figure 2.20: Two common model architectures: Encoder-Decoder architecture (left) and

UNET (right). Figure from the work of Isola et al.
153

Alongside the AlexNet-like networks striving to excel in ImageNet’s classification task,

more challenging problems such as segmentation or image-to-image require outputs

values corresponding to every pixel in the input. In order to address it, a general

Encoder-Decoder architecture was introduced (Figure 2.20). Such networks consist of two

parts: encoder and decoder that can work independently but are trained jointly.

�e role of an encoder is to extract features from the input images, mapping it from

the color space to the feature space. �is process involves multiple, subsequent

two-dimensional convolution followed by sub-sampling. While the width and height of

the subsequent representations decreases along the way, the model architecture

compensates for it by increasing the number of channels. As a result, the outputs of the

encoder, i.e. the encoded representation is a relatively small (a fraction of the area of the

original image) but deep (high number of channels) feature map that is intended to

aggregate the information across the image. �e last set of operations in the encoder is

often referred to as the bottleneck layer. �e literature often loosely uses the term

compression to describe the operation of the encoder as a means to carry across the gist of

its function without much regard to the strict definition of the word.

�e decoder addresses the mapping between the feature domain‘ and image domain

and produces the output with the same dimensions as the original input. To do so,

another set of subsequent operations is employed, comprising of the convolutional

50

processing of the previous features, and an up-sampling operation. It is important to

note the twoways of how the order and realization of those operations is performed in the

field
109, 154, 155

as there are two commonly adopted building blocks of the decoder networks:

• Bilinear up-Sampling followed by convolution as used by Dosovitskiy et al.
154

Requires two steps but does not require large up-sampling kernel allocation,

• Convolution with fractional stride (also known as Convolution Transpose, or

wrongly “deconvolution”),
109
immediately creates the desired number of channels

but is known to generate checkerboard-like artifacts.
156

Model transfer and fully convolutional processing began with the work presented

in.
109
Proposed Fully Convolutional Network (FCN) architecture was trained for the task

of foreground segmentation but proposedmethod of adopting a ImageNet-trained, fixed

input sized classifier (particularly VGG-16
142
) for the segmentation task made FCN a very

impactful contribution. �e conversion was based on the observation, that the

activations of the fully-connected layers form a pattern which can be exploited to create

convolutional kernels. After that, a trainable deconvolution-based up-sampling is

introduced to bring the output to the original input dimensions and solve the specific

task. �e number of channels in the final stage corresponds to the task for which such

converted, now fully-convolutional network is designed.

An FCN is effectively a fundamental example of an encoder-decoder-style

segmentation network. Its deepest version (FCN8) combines features spanning over

large spatial extent due to the use of feature maps produced at
1
32
, 1
16
, and 1

8
image sizes.

Figure 2.21 depicts the model architecture and the features corresponding to each scale.

�e importance of accumulating features among different scales was pointed out by

Maninis et al.
157
and inspired us to use of similar model.

To tackle problems related to gradient propagation during training at the level of

network topology, architectures such as SegNet
158
or U-NET

159
introduce the concept of

51

Figure 2.21: Fully Convolutional Network obtained from converting the inner product op-

erations to convolutions.
109
�reespatial blocksof theFCNarchitectures: FCN32s, FCN16s,

and FCN8s.

skip connections. �ose architectures learn faster than traditional Encoder-Decoder

architectures due to the presence of direct gradient propagation paths. �e decoder

however cannot operate independently in those architectures based entirely on the

deepest feature map as the intermediate inputs are lost during encoding process outside

of training.

U-NET is a tightly coupled, deep pair of encoder-decoder stacks with skip

connections between the corresponding down and up-sampling steps (Figure 2.20),

originally presented by Ronneberger et al.
159
�e connections are realized using

channel-wise concatenation. In its standard implementation presented in
153
it uses leaky

ReLUs on the encoder side and regular ReLUs in the decoder. �e downsampling is done

using strided convolution (as oppose to pooling layers), and upsampling is realized using

convolution with fractional strides (a.k.a. convolution-transpose). �emain advantage of

this architecture is quick gradient propagation through skip connections to the encoder

layer but at the same time, due to tight coupling the decoder cannot be used outside of the

network architecture as it relies on the data from the encoder. �e success of the U-NET

architecture encouraged us to to explore the symmetric hourglass-shaped networks with

52

skip connection in our previous contributions
160
as well as the work presented here.

Our work aims to leverage presented methods in the application to homogeneous

object tracking - particularly pigs. As opposed to the general-purpose scene

segmentation methods, it aims to solve a slightly different problem of locating,

determining the orientation of, and differentiating the instances that not only belong to

the same class and look very much alike, but also, often occupy the same space in the

image due to piling.

Review of the literature reveals that the object detection is the essential component

of the tracking by detection approach to multiple object tracking. Understanding that

representing the tracked objects merely using bounding boxes is not sufficient in

applications prone to occlusions due to the spatial overlap. �us, we decided to propose

the object representation based on semantic instance segmentation mask instead.

Additionally, characterizing our application as an attempt to distinguish multiple

homogeneous objects within the same frame, we identify that object identification using

mere class-membership is not descriptive enough. �us, in order to resolve the instance

membership for each pixel within the mask we propose to use embeddings and a

clustering algorithm. We start with an object detection method based on pose estimation

due to the limited availability of the data for our domain andmove towards semantic

instance segmentation. We identify that processing images using convolutional neural

networks has the benefit of simultaneous optimization for a specific task and learning

the representation of the features. We use two different neural network architectures

motivated by the literature and and our prior experience. In order to optimize the

weights of the neural networks we use two loss functions specifically designed for

semantic instance segmentation and train our networks for multiple tasks

simultaneously. We propose an extension of the single-frame case to a sequence of

frames using augmentations along with a modified version of the loss function for

embedding consistency across frames.

53

2.8 ProblemStatement

Pursuits of applied engineering work in the domain of animal behavior monitoring seem

justified by the needs of the industry as automated and unobtrusive solutions for animal

tracking are needed and have the potential of addressing the insufficient staff problem as

well as provide more detailed oversight of the operations and animal welfare as described

in section 2.1.

Due to the genotypical and phenotypical similarity of group-housed pigs in

production facilities, visual tracking in such scenarios can be interpreted as

HomogeneousObject Tracking and tackled accordingly. �e difficulties of processing

objects hard to distinguish from one another may be however balanced by exploiting

their elongated shapes.

�is work follows extends on our pig tracking method based on pose estimation,
160

i.e. estimation of location and relative placement of keypoints to determine position and

orientation of tracked instances. �e extension involves the task of semantic

segmentation of pigs. High accuracy and robustness however are related to the quality

and availability of labor-intensive human annotations. When compared to more popular

domains, animal tracking datasets are sparse and incomplete, thus imposing amissing

data problem.

Both tracking-by-detection, and pose estimation methods need to solve the data

association problem of joining parts of the same instance within a single image (video

frame). �us, requiring a representation and similaritymetric for evaluation. Explicitly

defined representation generation optimized in the supervised learning regime was

successfully applied to the animal tracking, semi-supervised, implicit methods are often

approach with very high dose of skepticism with no further exploration.
117

Work shown in
106
provides an example of discriminatively trainedmodel producing

pixel-level representations (embeddings) allowing for membership determination and

54

clustering of instances within a single image. �eir method relies on a formulation of a

heuristic loss function with adjustable margins but authors do not address the analogy to

the silhouette score commonly used in clustering assessment.

To our knowledge, an in-network, pixel-level semantic instance segmentation for

pig tracking using color images has not been tackled effectively yet. As opposed to more

popular problems, no dataset containing foreground or instance-level masks exists for

this application.

55

CHAPTER 3

Method

�is chapter is dedicated to a bottom-up approach of processing large scalemulti-domain

image data sets using modern computer vision andmachine learning techniques for the

task of multiple object tracking. Specifically, we are addressing relatively easy to obtain

long sequences of unannotated video captured from a static overhead-viewing camera.

We are presenting a novel method for automating the process of generating high-quality

annotations from relatively sparse dataset of static frames with annotated keypoints. No

target identity persistence among the images is ensured outside of indication of

associations between keypoints and instances within each image. �e dataset collected

and presented here contains images of group-housed pigs but the method is directly

applicable to any objects that can be geometrically defined using keypoints. �e

properties of the selected animals (pigs) make the method specifically attractive for

practical applications due to the visually-homogeneous nature of the tracked instances.

Keeping in mind practical deployments in barns, relying on depth information

cannot always be assured due to the equipment costs. As for the inexpensive sensors, the

field of view required for a production facility deployment extends beyond the

capabilities of Kinect v2 used in this work. Long-range infrared depth sensors allowing

for reliable mapping of distances greater than 8meters are still unjustifiably expensive.

Recent work on human pose estimation also indicates that depth informationmay not

56

even be necessary for reliable bottom-up tracking.
65, 113, 117

�us, we shifted the focus

toward tracking in 2D using deep neural networks. It is worth mentioning, that

conversion from two-dimensional pixel coordinates to three dimensional can still be

performed (to some extent) as long as it is possible to estimate the floor plane and camera

is static. Our method relies on both of these assumptions.

We chose to assume a down-facing, static camera setup for our work onMOT for

group-housed pigs. �is setting has two key advantages. First, animals are usually not

occluded from the top-down perspective unless they are crawling over or piling on one

another for heat preservation. Second, the size of the animals stays relatively constant

with respect to position and orientation in the image. �irdly, with the top-down view,

the artifacts can be easily mitigated if a reprojection to and from three-dimensional

coordinate system is desired. �e ability to align the depth information with their color

counterparts could be successfully used in the context of this work due to that ability.

�emain component of a 2D-tracking method based on pose estimation is the deep,

convolutional neural network producing outputs allowing for keypoint position and

instance orientation estimation. We are exploring two different model architectures.

First one resembles the successful model for real time human pose estimation by Cao et

al. and was re-implementedmostly for the purpose of reference as its substantial depth

was proven to provide high performance.
161
Second one is a U-NETmodel, similar to out

previous work
160
but differently implemented skip-connections and different depth. �e

secondmodel was anticipated to produce more consistent results and be more stable

during the training stage.

It was already indicated in
117
that training separate models for each tasks yields better

per-task results rather than using a single, joint model. Here however, multi-task models

are presented. �is choice is motivated by the memory limitations of consumer-grade

GPUs. A cost-effective, small form factor on-site computer would most likely use such

GPU for near real-time operation.

57

Section 3.1 describes the equipment, format and process of our data collection with

the emphasis of the recently published
160
publicly available subset that has been carefully

annotated using keypoints to indicate the position and orientation of each target.

In Section 3.2 we familiarize the reader with the convention used to represent the

images in the context of processing using neural networks and common image

processing libraries.

Sections 3.3 and 3.6 describe the keypoint and part association representations

(respectively). �ey are specific but not limited to the task of pose estimation like in the

work of Cao et al.
161
We present the task-specific small evaluation datasets produced in

the respective subsections as well.

Out extension to the pose estimation method by incorporation of the embeddings

begins with the representation of per-pixel instance membership described in Section

3.4.

In Section 3.7 we briefly introduce image augmentations as a method of increasing

diversity of the training data for the purpose of increasing model’s ability to generalize.

We describe both model architectures used in this work: OP and UNET in Section 3.8.

Section 3.9 addresses the main topic of this work - the deepmulti dimensional

embeddings trained under weak supervision. We explain the concepts of cohesion and

separation of clusters and attempt to tackle the problem of training a neural network for

their maximization in an end-to-end fashion. To do so we present two loss functions

Lmargin andLssmax for training and analyze their relative speed of convergence with

respect to the number of instances and number of encoding channels.

In Section 3.10 we describe conditions and the procedure used to train our deep

neural networks.

Section 3.11 describes the pose estimation method we used in our work to produce

object descriptors for the tracked targets (pigs). In Section 3.11.4 we propose changes that

can be made to the baseline method to improve part-to-instance membership matching.

58

Finally in Section 3.12 we describe our approach to semantic instance segmentation

for homogeneous targets based on processing of the multi-dimensional embeddings.

3.1 (Big) Data collection

Modern consumer-grade real-time depth cameras can serve as the backbone of an

enhanced visual tracking system.
162
A popular choice for such a camera is the Kinect v2

gaming peripheral developed byMicrosoft to track humanmovement. �e Kinect v2

comes equipped with a high-definition color image sensor, an infrared illuminator, and a

time of flight depth sensor that produces color, infrared, and depth frames, as illustrated

in Figure 3.1. In addition to facilitating depth measurement, the infrared illuminator

makes it capable of tracking day and night without the need for visible light. Due to its

low cost and high availability Kinect v2 became a capture platform for majority of the

data sets used in this work. �emain weakness of the Kinect v2 platform is its limited to

about 7meters depth sensing range. �is drawback did not impose many challenges

during the collection of the data for this work but it does render the platform insufficient

for static deployments in large commercial barns. Vast data sets containing color,

infrared, and depth image frames listed in Table 3.2 were collected using

custom-designed software / hardware solution based around Intel NUC low-footprint

computer runningWindows operating system.

Amulti-threaded application was developed in C++ to ingest images captured by the

camera at a rate of 30 Frames Per Second (FPS) and based on the amount of motion

estimated when compared to the the previous frame, the frame was either discarded or

stored. Such approach allowed for continuous operation in remote locations which do

not provide the Internet connectivity as the files were stored on high-capacity hard drives

and swapped when full.

Eeach file was stored in its respective folder structure build using chronological

59

Color Infrared Depth

Resolution: 1920× 1080 512× 424 512× 424

Encoding: JPG JPG 16-bit PNG

Typical image size: ≈ 350kb ≈ 30kb ≈ 200kb

Number of channels: 3 1 1

Data type: RGB Monochromatic Distance from camera [mm]

Table 3.1: Image formats of our large scale data sets captured usingMicrosoft Kinect v2.

Figure 3.1: Color, infrared, and depth frames captured by the Kinect v2 camera.

hierarchy such as: ‘YEAR/MONTH/DAY/HOUR/MINUTE/‘ with file named using

‘YEAR_MONTH_DAY_HOUR_MINUTE_SECOND_MILLISECOND.EXTENSION‘

pattern. �is convention is mostly consistent throughout this work and the data sets used

for training are named after date and time of the first frame occurring in the set (as

shown in Table: 3.2).

Since the files were stored directly on a filesystem, an additional index database was

created at the end of deployment for easy traversal using date and time-based indices or

frame numbers without the need of recursive directory search. It consisted of a single

table storing the core of the file name, date extracted from the name, and the frame

number in the dataset. �e total superset of all images used in this work is listed in Table

3.2.

60

N
a
m
e

D
a
t
e
s

#
S
a
m
p
le
s

D
a
t
a
t
y
p
e

C
r
e
a
t
i
o
n

2
0
1
7
-
0
3
-
0
7
-
1
7
-
1
6
-
2
5

M
a
r
7
2
0
1
7
-
M
a
r
2
3
2
0
1
7

4,
32

9,
96

5
C
o
lo
r
,
D
e
p
t
h
,
I
R

A
u
t
o
m
a
t
i
c

2
0
1
7
-
0
3
-
0
7
-
1
7
-
0
9
-
5
9

M
a
r
7
2
0
1
7
-
M
a
r
2
3
2
0
1
7

4,
26

8,
90

8
C
o
lo
r
,
D
e
p
t
h
,
I
R

A
u
t
o
m
a
t
i
c

2
0
1
7
-
0
4
-
1
9
-
2
1
-
3
0
-
2
5

A
p
r
1
9
2
0
1
7
-
A
p
r
2
8
2
0
1
8

2,
96

7,
83

7
C
o
lo
r
,
D
e
p
t
h
,
I
R

A
u
t
o
m
a
t
i
c

2
0
1
7
-
0
4
-
0
6
-
1
5
-
5
3
-
1
3

A
p
r
0
6
2
0
1
7
-
A
p
r
1
9
2
0
1
7

4,
56

1,
63

2
C
o
lo
r
,
D
e
p
t
h
,
I
R

A
u
t
o
m
a
t
i
c

2
0
1
7
-
0
5
-
0
5
-
2
1
-
5
1
-
5
4

M
a
y
0
5
2
0
1
7
-
M
a
y
1
4
2
0
1
7

86
3,

90
4

C
o
lo
r
,
D
e
p
t
h
,
I
R

A
u
t
o
m
a
t
i
c

2
0
1
7
-
0
5
-
1
8
-
2
0
-
4
3
-
2
8

M
a
y
1
8
2
0
1
7
-
M
a
y
3
1
2
0
1
7

96
9,

93
3

C
o
lo
r
,
D
e
p
t
h
,
I
R

A
u
t
o
m
a
t
i
c

2
0
1
7
-
0
5
-
1
8
-
2
0
-
4
8
-
1
7

M
a
y
1
8
2
0
1
7
-
M
a
y
3
1
2
0
1
7

2,
76

2,
06

4
C
o
lo
r
,
D
e
p
t
h
,
I
R

A
u
t
o
m
a
t
i
c

2
0
1
7
-
0
5
-
1
8
-
2
0
-
4
3
-
2
8

M
a
y
1
8
2
0
1
7
-
M
a
y
3
1
2
0
1
7

96
9,

93
3

C
o
lo
r
,
D
e
p
t
h
,
I
R

A
u
t
o
m
a
t
i
c

2
0
1
7
-
0
5
-
1
8
-
2
0
-
5
5
-
2
1

M
a
y
1
8
2
0
1
7
-
M
a
y
3
1
2
0
1
7

2,
03

5,
59

6
C
o
lo
r
,
D
e
p
t
h
,
I
R

A
u
t
o
m
a
t
i
c

2
0
1
7
-
0
6
-
0
1
-
1
5
-
5
4
-
5
1

J
u
n
0
1
2
0
1
7
-
J
u
n
0
9
2
0
1
7

1,
58

3,
26

0
C
o
lo
r
,
D
e
p
t
h
,
I
R

A
u
t
o
m
a
t
i
c

2
0
1
7
-
0
6
-
0
1
-
1
6
-
0
3
-
1
5

J
u
n
0
1
2
0
1
7
-
J
u
n
0
9
2
0
1
7

62
6,

18
2

C
o
lo
r
,
D
e
p
t
h
,
I
R

A
u
t
o
m
a
t
i
c

2
0
1
7
-
0
6
-
0
1
-
1
6
-
1
0
-
4
1

J
u
n
0
1
2
0
1
7
-
J
u
n
0
9
2
0
1
7

1,
08

4,
93

1
C
o
lo
r
,
D
e
p
t
h
,
I
R

A
u
t
o
m
a
t
i
c

2
0
1
7
-
0
7
-
1
0
-
2
1
-
3
5
-
1
5

J
u
l
1
0
2
0
1
7
-
J
u
l
2
8
2
0
1
7

2,
99

2,
28

4
C
o
lo
r
,
D
e
p
t
h
,
I
R

A
u
t
o
m
a
t
i
c

2
0
1
7
-
0
7
-
1
0
-
2
1
-
4
7
-
4
5

J
u
l
1
0
2
0
1
7
-
A
u
g
1
4
2
0
1
7

2,
65

0,
73

2
C
o
lo
r
,
D
e
p
t
h
,
I
R

A
u
t
o
m
a
t
i
c

P
I
G
S
5
0
0

O
c
t
2
0
1
6
-
A
p
r
2
0
1
7

50
0

C
o
lo
r
,
4
K
e
y
p
o
i
n
t
s

A
n
n
o
t
a
t
e
d

P
I
G
S
1
3
0
0

O
c
t
2
0
1
6
-
M
a
y
2
0
1
8

13
15

C
o
lo
r
,
4
K
e
y
p
o
i
n
t
s

A
n
n
o
t
a
t
e
d

P
I
G
S
1
6
0
0

O
c
t
2
0
1
6
-
M
a
y
2
0
1
8

16
00

C
o
lo
r
,
4
K
e
y
p
o
i
n
t
s

A
n
n
o
t
a
t
e
d

P
D
D
2
0
1
9
1
6
0

O
c
t
2
0
1
6
-
S
e
p
2
0
1
8

20
00

C
o
lo
r
,
4
K
e
y
p
o
i
n
t
s

A
n
n
o
t
a
t
e
d

M
F
G
1
1
0
E
V
A
L

O
c
t
2
0
1
6
-
M
a
y
2
0
1
8

11
0

C
o
lo
r
,
F
o
r
e
g
r
o
u
n
d

A
n
n
o
t
a
t
e
d

P
I
G
S
E
G
9
6

A
p
r
2
0
1
7
-
J
u
n
2
0
1
7

96
C
o
lo
r
,
S
e
g
m
e
n
t
a
t
i
o
n

A
n
n
o
t
a
t
e
d

T
a
b
le
3
.
2
:
I
m
a
g
e
d
a
t
a
s
e
t
s
u
s
e
d
i
n
t
h
i
s
w
o
r
k
.

61

3.1.1 Pig DetectionDataset

�emain source of annotated training data used in this work is contained in the Pig

Detections Dataset 2019
160
(last row in Table 3.2). It contains the total of 2000manually

annotated images of group housed pigs. �e dataset is divided into twomain partitions:

one containing 1600 images for model training (referred to as train subset), and another,

containing 400 images for testing. Additionally, the testing partition was subdivided into

two subsets: test:seen and test:unseen. �e test:seen subset contains images similar, but not

identical to the ones in the train as they originate from the same deployments. �e second

testing partition, test:unseen contains novel images with environment and lighting

conditions that are noticeably different than the ones from the training collection.

Most of the images originated from the massive superset of images collected using

Microsoft Kinect v2 but the depth information was not preserved. Annotations consist of

the pixel positions of 4 types of landmarks: left ear, right ear, shoulder, and tail.

Visualization of such annotation is presented in Figure 3.6 (a). To author’s knowledge this

set is the most complete, publicly available source of training data for the tasks of pose

estimation and semantic instance segmentation of group-housed pigs.

In the context of the spatially-challenging tasks presented in this work, it is

worthwhile to mention the relationship between the size of the objects of interest (pigs)

with respect to the entire visible area (image size). Distributions of the sizes of the

instances of interest are presented in figure 3.2. Assuming each instance has to be

defined as a pair of shoulder and tail like in,
160
the the number of instances properly

annotated in each subset is presented in figure 3.3. At this point it is important to notice

that the training set is dominated by rather small instances (around 220 pixels long) and

images contain rather substantial number of instances - especially compared to a small

number of large instances present in test:unseen subset.

When looking at histograms in Figures 3.2 (a) and (b), it is visible that the means are

62

only 10 pixels apart between the train and test:seen subsets, the spread of instance size is

also similar. �e test:unseen subset seems to almost contain instances with sizes that could

be represented by a uniform distribution in the range of 300− 550 pixels on top of some

samples with size similar to the other two subsets.

When considering the number of pigs annotated in the images visible in Figure 3.2,

it is apparent that the training subset mostly contains images with the number of

instances around 13− 15, while neglecting the range of 22− 27 animals per picture.

When compared to part (b) indicating the statistics for test:seen, this absence is also

visible. Also, the range of small number of instances≤ 7 however is covered in test:seen at

higher rate than in the test set. �e distribution of instances in test:unseen does not match

the histograms for the other two subsets. We recognize those properties as a sampling

bias and anticipate potential performance drawbacks in the range of small number of

instances and instances larger than 350 pixels while expecting the peak performance for

images with number of instances within the 13− 15 and instances with about 180− 200

pixels shoulder to tail distance.

(a) (b) (c)

Figure 3.2: Histograms representing the distributions of the pixel-level shoulder-to-tail

distances of all instances containing both annotated keypoints over the entire subsets:

train (a), test:seen (b), and test:unseen (c).

63

(a) (b) (c)

Figure 3.3: Histograms representing the distributions of number of instances the entire

subsets: train (a), test:seen (b), and test:unseen (c).

3.2 Convention of image representation

Following the commonly usedMachine Learning frameworks supporting the

2D-convolution operation, such as TensorFlow or Caffe, it became a standard to

represent input data in the generalized form of multi-dimensional (particularly

4-dimensional) arrays often referred to as tensors or blobs. TensorFlow, being the

framework mostly used in this work uses theB ×H ×W × C convention, whereB is

the number of elements in the batch,H is the height (or number of rows),W is the width

(or number of columns), andC is the number of channels (or number of dimensions

representing a single instance - in case of images - pixel).

Example 1. To disambiguate the meaning of the word channel among other terms and

clarify the representation of the images, let’s consider two RGB imagesA andB that are

5 pixels wide and 4 pixels tall as presented in Figure 3.4. According to the Electrical

Engineering Dictionary by Laplante,
163
the word channel refers to “the medium along

which data travel between the transmitter and receiver in a communication system”. In

the context of processing images, the word channel is generally used to refer to a specific

component of a pixel such as color intensity value or more generally, a channel number is a

specific dimension of a vector encoded at each discrete image location (pixel).

�ere are three, fully saturated distinct colors present in the imageA: blue, green,

64

A

RGB Color Red channel Green channel Blue channel

B

Figure 3.4: Two example images and their RGB decompositions with the content of each

channel visualized as white for the pixel value of 255 and black for 0.

and red. ImageB introduces a single white and a single black pixel. Using RGB encoding

and 8-bit palette, those colors can be described as three-dimensional vectors:

pred = [255, 0, 0]

pgreen = [0, 255, 0]

pblue = [0, 0, 255]

pwhite = [255, 255, 255]

pblack = [0, 0, 0]

Ourwork adopts the convention of representing images as arrays of 1×H×W ×C.

�us, each of the imagesA andB would be represented by 1× 4× 5× 3 arrays. Note the

row-first sizing like when using standard matrices as opposed to the usual column-first

description when referring to images. When simultaneous processing of multiple images

is desired, the input can be formatted into a batch containing multiple images. A batch,

containing imagesA andB would then be represented as a 2× 4× 4× 3 array as the

first index is used to indicate example in the batch. Literature refers to batches with

65

small number of examples (1− 32) as “minibatch”. In our work we feed single images

(batch sizeB = 1) to the models due to size variation between the training examples.

Since no recurrent models are used in this work, both neural networks used here can

be represented as directed acyclic graphs. �ere are two directions of traversal through

suchmodel: forward (also referred to as the “forward pass”), and backward. �e lone

pass of the input data through the model in order to obtain the output is referred to as

inference. �e backward direction is used only during the training stage and requires a

prior forward pass to occur to estimate the loss. Loss is defined using a differentiable

function that produces the value of the residual to be minimized by the solver. �e solver

is a program that implements an optimization algorithm capable of adjusting the

model’s trainable parameters to minimize the loss. At this stage it is important to explain

what the roles of data inputs are with their respective representations / encodings. �e

explanatory variables (input to the model) are going to consist only of the pre-processed,

RGB color images of pigs in the pen organized in multi-dimensional arrays. �e neural

network is responsible for producing the following outputs: 1) body part locations

(described in section 3.3), 2) body part association vectors (section 3.6), 3) foreground

binary mask (section 3.5), and 4) embedding vectors (section 3.9).

3.3 Representation of Body Part Locations (Keypoints)

A bottom-up approach to visual object tracking is via breaking down the problem into

simpler sub-problems and focusing on localizing the parts that those tracked objects are

composed of. In the field of computer vision, those parts are called keypoints and are also

known as landmarks in statistics. �ey are specific to the kind of object being tracked.

Each keypoint is defined as an inherent part of the instance that may or may not be visible

in the frame. In case of human tracking, popular datasets such as COCO
8
andMPII

164

establish encoding conventions for human instances using landmarks such as: head,

66

shoulders, elbows, wrists, ankles, knees, hips etc. with various levels of granularity. An

example of keypoints encoded by a heatmap is presented in Figure 2.14.

(a) Input image (b) Target mapping (c) Visualization

Figure 3.5: Part of the original image (a) is mapped to four-dimensional encoding of the

keypoints of interest (b), where the location of each landmark is represented by Gaussian

kernel on a separate image channel. �e colors used in the figure are merely for visual-

ization purposes. Superimposed combination presented in (c) shows the alignment of the

keypoints with respect to the true body parts visible in the image.

3.3.1 Sparse representation of keypoint locations

Following the experience from our work on the 3D-tracking with downward-facing

cameras, it seemed natural to describe and represent animal’s orientation using a line

along its back. In our work we adopted a convention of encoding animal’s position and

orientation using two-dimensional image coordinates of shoulder and tail location.

�us, assuming the presence ofN animals in the scene in the pen, the tail and shoulder

position of animal n ∈ 0, . . . , N − 1 is denoted as sn = (xshouldern , yshouldern) and

tn = (xtailn , ytailn). �emain advantages of this representation are 1) ease of annotation

with just two points for animal location and 2) simple but robust way determining

animal’s unambiguous orientation. Terms tail refers to a surface point along the center

ridge of the back that is between the left and right ham. Analogically, shoulder refers to

the center ridge of the back between the shoulder blades.

Our work on re-identification of tracked animals involved reliance on the presence

of colored and numbered ear-tags, thus creating a natural set of two additional keypoints

to be detected. Including the location of the ears, complete representation of animal

67

keypoints now also include ln = (xlen , ylen) and rn = (xren , yren) corresponding to the

left and right ear respectively. �ose features are treated with secondary priority due to

the fact that ears are often not visible in the frame - especially when occluded by the

enclosure of the feeder (when eating) or when the animal is lying down on its side (thus

self-occluding one of the ears). �ey are still useful however, for more exact orientation

determination, and when animals are ear-tagged, they can allow for unique

identification.

In to order to provide ground-truth data for the training, an interactive tool

implemented in python to allow for easy and relatively quick image annotation. For the

lack of a better name, it will be called Pig Keypoint Annotation Tool (PKAT). It contains

graphical user interface with an interactive preview of the annotated images. �e user

can define an instance (pig) by sequentially clicking on image locations representing four

keypoints (left ear, right ear, shoulder, and tail). �is operation can be repeated for each

animal visible in the scene. After completing the annotation process the script generates

output in the following format:

[image_path,[[xle0 , yle0], . . . , [xlen−1 , ylen−1]],

[[xre0 , yre0], . . . [xren−1 , yren−1]],

[[xs0 , ys0], . . . [xsn−1 , ysn−1]],

[[xt0 , yt0], . . . [xtn−1 , ytn−1]],

(3.1)

where [a, b, c] operator represents the list containing elements a, b, c the x and y

coordinates indicate the absolute pixel position in the image, and subscripts correspond

to the particular type of keypoint. Note that the subscripts allow us to keep track of the

membership of each keypoint. �e data is saved usingMATLAB file format (.mat) using

the scipy.io library. Even though the native MATLAB library is not used, the data

exchange between files saved usingMATLAB and the ones saved using scipy is seamless.

68

PKAT draws convenient blue lines between the ears and along the back for each

annotated target. It also displays white circles with text indicating which keypoint is

being placed. �e user enters the annotation using the left mouse button and can remove

the last one using a right click. Pressing spacemoves to the next image, randomly selected

from the entire superset of the images. If at least one full annotation is provided (i.e. four

keypoints are indicated) before pressing space, the annotation index is augmented with

the new entry. Figure 3.6 (a) shows the interface with fully annotated sample scene.

For tracking annotation, only shoulder and tail locations are indicated and a

separate but very similar tool had to be designed. �e Pig Tracking Annotation Tool

(PTAT) is different from PKAT as it preserves the identity of each pig and traverses

images by a regular interval. �emain in the user interface difference is the per-instance

previous state slightly visible in the bottom left corner of figure 3.6. User indicates

position of shoulder followed by the tail using left mouse button. Right mouse button

removes previously marked location, and allows for correction. After the entire image is

annotated, the user can press the spacebar button to move to the next frame. �e

tracking annotation entries are formatted as follows:

[image_path,[[xs0 , ys0], . . . [xsn−1 , ysn−1]],

[[xt0 , yt0], . . . [xtn−1 , ytn−1]],

When annotating images, one can follow a set of general-practice rules to avoid

introducing erroneous data. �e rules followed in this work apply to both keypoint and

tracking annotations and can, be summarized as follows:

• Always try to place the keypoint exactly on the actual physical part of the target

(seems obvious but needs to be emphasized).

• Use the relative orientation with respect to the target - e.g. the left ear is the one

located on the left hand side of the animal’s body - regardless of the orientation of

69

(a) (b)

Figure 3.6: PTAT (a), and PKAT (b). Note the animal with label 0 in the left image - its
state in the previous frame is indicated by semi-transparent line and previously marked

placements of shoulder and tail.

the image.

• Only proceed if more than one target can be annotated in the image.

• Always mark all keypoints or do not indicate the target.

• Only indicate the visible parts - unless it could be clearly determined. Avoidmarking

keypoints on the fixed parts of the environment.

Figure 3.6 (b) represents a proper example of following the annotation rules in PTAT.

Two animals by the feeder (bottom, right-hand side of the image) were not annotated

because their ears would have to be placed on the feeder itself which could lead to making

the trainedmodel learn the visual representation of the ears to be on the metal body of

the feeder. It is worth to noting that PIGS500, PIGS1300, and PIGS1600 (Table 3.2) were

annotated using the samemethodology but usingMATLAB environment instead.

Formally, keypoint locations can be represented by a matrix. Consider an image that

isw pixels wide and h pixels tall and a set of keypoint annotations like described above

represented as anN × 2kmatrix P , whereN is the number of annotated objects and k is

the number of keypoints used to annotate each object. In the case of selected application

70

k = 4 as we chose to encode 4 types of keypoints: left ear, right ear, shoulder, and tail. �e

format of matrix P is presented in Equation 3.2.

Each row represents 4 pairs of coordinates such that columns 1− 2 represent the

x, y position of the left ear, 3− 4 represent the position of the right ear, 5− 6 represent

the position of the shoulder and finally 7− 8 represent the position of the tail. Per-object

annotations contained in each row will referenced using Pi, where i = 0, 1, . . . , N − 1 is

the index of individual object (pig).

P =

xle0 yle0 xre0 yre0 xs0 ys0 xt0 yt0

xle1 yle1 xre1 yre1 xs1 ys1 xt1 yt1
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

xleN−1
yleN−1

xreN−1
yreN−1

xsN−1
ysN−1

xtN−1
ytN−1

(3.2)

Extension of this representation to tracking assumes that the index i uniquely

identifies the object within the entire sequence and not only within the frame.

3.3.2 Dense representation of keypoint location using heatmap images

Even when following the strictest rules, there always exist uncertainties inherent to the

manual annotation of body part locations introduced by the human error. To increase

robustness and allow for reasonable tolerance, the keypoint locations were encoded using

2-dimensional Gaussian kernels instead of single-pixel binary values or sharp-edged

discs. �is decision wasmade because to remain consistent with our previousmethods of

keypoint encoding
160
which were motivated by Cao et al.

65

While a bivariate Gaussian kernel is described by a mean vector µ = [x, y] and a

2× 2 covariance matrix, here the off-diagonal elements are zeroed-out, and the same

parameter σ2
kp
is used to describe the spread along x and y direction. �is represents the

assumption that the annotator does not favor any particular direction of error, no bias is

71

introduced along the diagonal directions. �us, generation of ground-truth heatmaps as

visible in Figure 3.5 only requires center coordinates and predefined uncertainty

expressed as σ2
kp
. �e covariance matrix is then obtained by σ2

kp
· I, where I is the 2× 2

identity matrix. �e value of σ2
kp

= 5was chosen arbitrarily and does not vary with

respect to the image resolution or the size of the tracked objects. �is decision is

motivated by reduction of the number of hyper-parameters. Note that in our prior work

we varied the standard deviation in keypoint encoding in a per-animal fashion

depending on its size.
160
Fixed spreading factor has been however used successfully in the

literature.
65, 113, 114, 161

�e resulting encoding is represented as four h× w × 1 heatmaps, which are

channel-wise concatenated (stacked) producing a h× w × 4 ground truth input for

training - similar to the mapping presented in Figure 3.5 (b). Eachmajor color is placed

on a separate channel. It is worth mentioning, that such encoding allows us to indicate

different body parts in a very similar (or even identical) location. �is ability is motivated

by the physical closeness of the pigs visible inmultitude of examples in the dataset, where

one animal’s tail can be very close to another’s ear. Taking into account variability in the

annotation, our methodmakes the encoding of such situations possible.

To create the dense image-like representation of the aforementioned keypoint

location using heatmaps from the sparse representation from annotations like presented

in Equation 3.2 we use bivariate Gaussian kernel. For the general case, the multi-variate

Gaussian kernel density is expressed as follows:

p(x;µ,Σ) =
1

(2π)n/2|Σ|1/2
exp

(
−1

2
(x− µ)TΣ−1(x− u)

)
, (3.3)

where x is the n-dimensional vector for which the density is estimated, µ is the

n-dimensional vector representing the center of the distribution, andΣ is a

positive-definite n× n covariance matrix of the distribution.

72

In our encoding we decided to have the peaks of the distributions to assume value 1,

thus we normalize by the value of the peak:

ppeak(µ,Σ) = p(µ;µ,Σ) =
1

(2π)n/2|Σ|1/2
. (3.4)

We arrive at the radial function for estimating the heatmap value at location x given

assumedΣ and keypoint position µ:

h(x;µ,Σ) = exp

(
−1

2
(x− µ)TΣ−1(x− u)

)
. (3.5)

Procedure described by Algorithm 1 shows the process of producing a h× w

heatmap image given the annotations in a form of a row Pi of a matrix P for a keypoint

ki ∈ [0, 1, 2, 3, 4], and the assumed σ2 = σ2
kp
.

Algorithm 1 Create per-instance keypoint heatmap image
1: procedure KeypointLocationHeatmap(Pi, ki, σ2

,w, h)
2: H = zeros(h,w)
3: µ = [Pi[2ki], Pi[2ki + 1]]
4: Σ = diag(σ2, σ2)
5: for x ∈ [µx − 3σ, µx − 3σ + 1, . . . , µx + 3σ] do
6: for y ∈ [µy − 3σ, µy − 3σ + 1, . . . , µy + 3σ] do
7: H[y, x] = h([x, y], µ,Σ)

returnH

In bottom-up tracking by detection, even if body parts are detected correctly, they

must be associated with one another in order to identify individual object instances. A

naive approach relying only on the locations of the body part detections would associate

each body part with the nearest neighbor in terms of Euclidean distance using bipartite

matching such as in the Hungarian algorithm or a greedy algorithm ordered by the

strength of detections. However, due to elongated shapes of pigs, such approach would

fail in cluttered environments as illustrated in Figure 3.7.

To address this problem, additional features are introduced to the ground-truth

73

instance representations in the form of body part association vectors, implemented here

as Part Affinity Fields.
65
We also explore matching keypoints using cost calculated using

embeddings.

(a) Annotated image (b) Nearest-neighbor euclidean distance grouping

Figure 3.7: Properly annotated two object instances of pigs are depicted in (a). A failure

case of association using naive nearest-neightbor matching based on euclidean distance

between coordinates is shown in (b).

3.4 Pixel-level instance identification representation

It is important to mention that even though the data sets with instance-level annotations

exist for variety of problems such as pedestrian tracking, human pose estimation, and

various segmentation tasks for natural images, there is yet to be published a suitable

training set for MOT, pose estimation or image segmentation for pigs. �us, we

attempted to generate a synthetic dataset. �is section describes the transformation of

keypoint and body part association annotations into representations for individual pigs

first, and then the entire image.

Here, per-instance masks are drawn and labeled based on the annotations from the

PDD2019 dataset in an attempt to overcome the lack of ground-truth masks. �e goal is

to generate a map of desired pixel membership; i.e. such an image, in which each pixel

contains an integer value of the index of the instance (pig) to which such pixel belongs.

Please refer to figure 3.8.

74

(a) (b) (c) (d)

Figure 3.8: Stages of generating pixel-id image Iid with the input image (a), union of
Imask0 , Imask1 (b), Iid with different values assigned to each instance (c), overlay for vi-
sualization purposes (d). Strokes around the circles and lines are presented only for vi-

sualization purposes, also, instances like in (b) are never merged together prior to the

combine_ids(IDs) operation.

�emask can be generated for any image I ofH ×W × C dimensions when

accompanied with a set of annotations forN pigs P = {P0, . . . , PN−1}, where each Pi is

a 4× 2matrix containing x, y coordinates of all four keypoints.

Pi = [xlei , ylei , xrei , yrei , xshoulderi , yshoulderi , xtaili , ytaili] (3.6)

In order to to generate the approximate maskMi for each annotated target, the

dimensions of the image I need to be known and referenced asw, h for width and height

respectively. For each tracked object indexed by i, its identification image is generated as

presented in Algorithm 2.

Algorithm 2 Create approximate semantic instance segmentation mask from keypoints.

1: procedure ApproximateInstanceMask(Pi, h,w, rear, rshoulder, rtail, t)
2: Mi ← zeros(h,w)
3: (xlei , ylei) = (Pi[0], Pi[1])
4: (xrei , yrei) = (Pi[2], Pi[3])
5: (xsi , ysi) = (Pi[4], Pi[5])
6: (xti , yti) = (Pi[6], Pi[7])
7: Mi ← drawFilledCircle(IDi, (xlei , ylei), rear)
8: Mi ← drawFilledCircle(IDi, (xrei , yrei), rear)
9: Mi ← drawFilledCircle(IDi, (xsi , ysi), rs)
10: Mi ← drawFilledCircle(IDi, (xti , yti), rt)
11: Mi ← drawThickLine(IDi, (xsi , ysi), (xti , yti), t) returnMi,

wherew, h are the width and height of the image to be drawn (in pixels), zeros(h,w)

instantiates the h× wmatrix filled with zeros, rear is the radius of the circle indicating

75

left and right ear, t is the thickness of the line drawn along the back, and

drawFilledCircle(image, point, radius) draws the circle with unit color, and

drawThickLine(image, pointfrom, pointto, thickness) draws a line with unit color.

Formally, for each pixel with coordinates x, y theMi image is defined as:

Mi[y, x] =

1, if
√

(x− xlei)2 + (y − ylei)2 ≤ rear, or

1, if
√

(x− xrei)2 + (y − yrei)2 ≤ rear, or

1, if
√

(x− xshoulderi)2 + (y − yshoulderi)2 ≤ rshoulder, or

1, if
√

(x− xtaili)2 + (y − ytaili)2 ≤ rtail, or

1, if dline(x, y, xshoulder, yshoulder, xtail, ytail) ≤ t

0, otherwise

, (3.7)

where dline(x, y, x0, y0, x1, y1) is the distance between the point (x, y) and a straight

line drawn between (x0, y0) and (x1, y1) expressed as:

dline(x, y, x0, y0, x1, y1) =
|(y1 − y0)x− (x1 − x0)y + x1y0 − y1x0|√
(xshoulderi − xtaili)2 + (xtaili − xshoulderi)2

. (3.8)

�en having an ordered collection of IDs = [M0, . . . ,Mn−1] a composite image

representing the approximate ground truth labels for semantic instance segmentation

can be generated using procedure like the one presented in Algorithm 3:

Algorithm 3 Create a single-channel, integer-encoded composition of approximate se-
mantic instance segmentation masks.

1: procedure CombineIds(IDs, height,width)
2: Iid ← zeros(height, width)
3: for i = 0, . . . , n− 1 do
4: Imaski ← true(IDi > 0)
5: Iid ← Iid · (1− Imaski) + (i+ 1) · IDi

return Iid,

where the true(condition) operation writes value of 1 to all pixels satisfying the

condition and 0 everywhere else.

76

(a) (b) (c)

Figure 3.9: Illustration of the effect of randomization of the order ofmasks prior to gener-

ation of the composite ground-truth for semantic instance segmentation. A cropped im-

age showing two overlapping animals (a), a case in which the horizontally oriented animal

is drawn on top of the diagonally oriented one (b) and another case where the diagonally

oriented animal is drawn on the top (c). �e colors are incidental and merely indicate the

relative membership of pixels (same color - same instance). Image was captured inMarch

2017.

As a result an image with values 0, . . . , N is produced, where the background pixels

(pixels which do not belong to any object of interest) have the value of 0, and each

instance i is labeled with i+ 1 value. With the z-ordering being unavailable in the used

data sets, an additional operation is introduced to shuffle the oder of instances in the

IDs list before invoking the CombineIds() procedure. �e effect of randomization is

depicted in Figure 3.9. �is is motivated by the fact that in most cases, instances are not

occluded. It is anticipated that randomization would yield outputs that correspond to the

true z-order of instances presented in the image at the cost of small positive lower-bound

bias of the loss value.

3.4.1 Smallmanually-annotated semantic instance segmentation evalu-

ation set

In Section 3.9 we describe the concept of multi-dimensional embeddings produced by the

neural network for the task of semantic instance segmentation of pigs. As stated in

Section 2.8, the main challenge of approaching this problem is the lack of ground-truth

77

data containing instance segmentation masks. We overcome this problem by generating

a synthetic representation based on the annotations available in PDD2019 dataset for the

task of pose estimation.

Section 3.4 describes our method of generating a synthetic representation of the

ground truth of the semantic instance segmentation labels for pigs. We decided that the

automatic process described in Section 3.4 is appropriate for training as the labels can be

generated quickly. We also use those approximate labels when analyzing the

performance of our semantic instance segmentation method in Section 4.7 of Chapter 4.

Additionally, in order to provide more accurate ground-truth instance labels for

evaluation, we constructed a small dataset of 96 images. Let’s call it PIGSEG96. �e data

set consists of three subsets, each containing 32 examples. Each example contains a

1920× 1080 color image captured usingMicrosoft Kinect v2 camera paired with a

manually created 1920× 1080 image indicating desired ground-truth labels for each

pixel. To produce this dataset we traced the outlines of pigs in color images using GIMP -

similarly to the method used to produce MFG110EVAL dataset described in Section 3.5.1.

Sample images from the three subsets of PIGSEG96 dataset are presented in Figure

3.10. Please note that the actual colors representing the labels are incidental.

3.5 Class-level representation of foreground instances

To determine the area of interest within each image, one needs to identify which pixels

belong to the elements of the environment and which belong to the tacked or segmented

objects. Such determination is a common subtask of pose estimation and segmentation

methods as it limits the number of pixels required to process by removing the

background and defines the useful image region i.e. parts of the image containing objects

of interests. Use of the word class is intentional and refers to a binary classification

interpretation with two available alternatives pig and no-pig.

78

A B C

14 pigs 10− 11 pigs 4 pigs

April 2017 June 2017 June 2017

Figure 3.10: Sample images from PIGSEG96 dataset for semantic instance segmentation

of pigs evaluation. Each image represents a single sample from one of the three subsets

(A, B, C in columns). Color images are presented in the top row. Corresponding labeling

images are presented underneath (with black background). Number of pigs and date of

collected in presented underneath.

(a) Image I (b) MaskM (c) Foreground Ifg (d) Background Ibg

Figure 3.11: Image composition in the context of equation 3.9. Input image shown in (a), a

corresponding example of a foreground binarymaskM in (b), foreground image obtained

by Ifg = I ·M in (c), and background image Ibg = I · (1−M) in (d).

After obtaining proper coordinates of object keypoints and solving the instance

associations, one would like to be equipped with a binary mask allowing for

single-instance isolation. �us, an attempt was made to approximate suchmask using

background subtraction. Given image I consisting of foreground Ifg and background Ibg

pixels an image can be understood as a composition of foreground and background as:

I = Ifg ·M + Ibg · (1−M), (3.9)

whereM is the binary mask.

79

Such (de)composition is depicted in (Figure 3.11). In this work, the binary

foreground segmentation maskM is encoded a single image channel as visible in figure

3.11 (b), with unit value indicating the pig and 0 indicating the background.

As previously mentioned, the PDD2019 set does not contain foregroundmasks for

the pigs. �us, the ground-truth images containing binary masks indicating the pixels

belonging to the pigs in the images need to be additionally annotated or estimated. We

considered three ways to provide ground-truth data for foreground estimation training:

1. An entirely manual annotation method using a image manipulation programwas

used to produce a small test dataset described in Section 3.5.1 with an overview

depicted in Figure 3.12. Although capable of achieving arbitrarily high level of

quality (based entirely on the visual inspection), we considered this method to be

too time consuming and labor intensive and proceeded only up to the number of

110 images;

2. An automatedmethod using available keypoint annotations to draw thick lines

along the backs of the animals (and optionally circles covering areas of ears) as

estimates of the foregroundmasks. �is method is described in Section 3.4 and

was used to produce ground-truth for the both class, and instance-level masks. �e

main disadvantage of this method is its inability to accurately cover the area of

animals that are not oriented straight;

3. A semi-automatedmethod of converting the depth images into foregroundmasks

from available image data sets captured usingMicrosoft Kinect v2, and pairing it

with the corresponding color images. �is method relies on our knowledge about

each, specific pen environment such as: which parts of the image should be

excluded from processing, and coefficients of a plane equation defining the surface

of the floor in the pen;�is method is described in Section 3.5.2.

80

3.5.1 Smallmanually-annotated foregroundmask evaluation set

To build a test data set for the segmentation task, a sample of 110 images was

constructed. 10 images were uniformly sampled and annotated for 11 data collection

system deployments we conducted over the span of more than 2 years (fromOctober 2016

to May 2018). �e annotation was performedmanually by drawing white shapes using

pencil tool in GIMP resulting in 110 binary masks. �e purpose of this set is to inspect the

suitability of trainedmodels across different pig pen environments using Receiver

Operating Characteristics (ROC) analysis. �us, let’s call itMFG110EVAL for

Manually-annotated set of ForeGroundmasks containing 110 images for EVALuation.

Results for our models are presented in Section 4.2 in Chapter 4. An overview of this set is

presented in Figure 3.12.

Subsets (a)-(i) were all collected using Kinect v2 camera and contain paired color and

depth images. Subset labeled by (a) contains images with 15 pigs from one of our earliest

deployments of the Kinect v2 systems in 2016 at Union Farms in Ulysses, NE. Subsets (b)

and (c) were collected in near-ideal conditions as the camera orientation was facing

directly down with the image centered in the middle of the pen. Subsets (d)-(h) contain

images of larger animals and the cameras had to be installed at an angle due to mounting

on the wall instead of the ceiling. Subset (i) contains pictures of 6 small pigs during a viral

challenge. Most recent subsets (j) and (k) represent images captured without the depth

information using a camera with heavily distorting optics.

81

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

Figure 3.12: Overview of the nature of images in the MFG110EVAL set. Color images on

the topwith respective, hand-annotated segmentationmasks on the bottom. Deployment

dates: October 2016 (a), March 2017 (b), March 2017 (c), April 2017 (d), May 2017 (e), May

2017 (f), June 2017, (g), July 2017 (h), October 2017 (i), April 2018 (j), May 2018 (k).

82

3.5.2 Multi-viewalignmentand foregroundmaskextraction fromdepth

images

Availability of the datasets containing annotated imagemasks for semantic segmentation

of group-housed animals is extremely limited. �us, in order to provide data for our we

attempted to construct a synthetic sets of images with data that approximates

foregroundmasks. We chose to use the color-and-depth image pairs captured by

Microsoft Kinect v2. Table 3.2 provides a list of subsets containing depth information.

We picked 120000 color and depth image-pairs from 12 subsets, 10000 images pairs

each. �e images were selected randomly (uniformly) from each deployment. Color

images were mapped (transformed) to the depth image coordinate spaces, and the depth

images were processed as described below. �emain goal of this set was to provide

medium-scale training data at relatively low cost without the need for manual

annotation. �is aspect of presented work constitutes the attempt to leverage the use of

massive data available to the author.

It is advised that the reader refers to Figure 3.13. �e described method produces a

foregroundmask (f) from the depth image (b) given the penmask (d) and parameters

describing the pen floor, such that the obtained foregroundmask is aligned with the

color image (a) and is adequate (according to human judgment) to determine which

pixels in the color image belong to pigs and which do not.

83

(a) (b)

(c) (d)

(e) (f)

Figure 3.13: Intermediate steps of the depth to binary mask conversion process: color

image for reference (a), input depth image (b), height map with aigned coordinates (c),

deployment-specific extractionmask (d),maskedheightmap (e), output instance segmen-

tation mask (f).

Given a data set ofN pairs of color (rgb) and depth images xi = {xirgb, xid} ∈ X,

where i = 1 . . . N under the assumption that each image xi contains objects of interests

that could be extracted using background subtraction, the goal is to estimate the function

M = f(xirgb, θ|xid) using depth information available in xid where θ is the set of

parameters obtained using plane fitting process.

84

�e process of extraction of the foregroundmask from depth images is visualized in

the figure 3.13. �e first step is conversion from raw depth image (3.13 a) to a height map

(3.13 b). It is done by subtracting the depth data from the floor height. �e floor height

image is deployment-specific and is estimated by solving an approximation function

d ≈ f(x, y). Plane fitting is formulated as an optimization problem in the form of

d = HA, whereH is the transformationmatrix andA is the row-concatenation of

manually sampled fixed floor points (unoccupied by the objects of interest) points in the

form of pi = [x2i , xi, y
2
i , yi, 1]. �e quadratic form is used to accommodate lens

imperfections. �eH matrix can be then obtained by using the Least Squares solution:

H = (AAT)−1ATd, (3.10)

where

A =

x21 x1 y21 y1 1

x22 x2 y22 y2 1

. . .

x2n xn y2n yn 1

, and d =

d1

d2

. . .

dn

(3.11)

�is approximation works acceptably well for the images with camera facing down

and the floor height can be estimated for every pixel on an image plane as

f ′ = [x2, x, y2, y, 1]H. Doing so for all pixels results in an image representation of the

floorplane (distance of the floor from the camera). After subtracting the values in the

depth image from floorplane image, the result looks like in figure 3.13 (c) - which should

now contain all objects of interest above zero.

Due to different optical parameters of the color and depth sensor, an alignment step

needs to be introduced to match the pixel coordinates of objects visible by both cameras.

It is done using properties of projective geometry. Each camera’s intrinsic parameters

can be briefly characterized by aK matrix. Depending on the lens and physical

realization of the sensors, each particular device only roughly follows the general

85

specifications and thus, the camera matrix should be adjusted for each application.

�e popular convention describes the intrinsic camera parameters as follows:
165

K =

fx s x0

0 fy y0

0 0 1

 (3.12)

, where fx, fy is the focal length in pixels, s is the axis skew factor (usually 0), and x0, y0

are the coordinates of the principal point offset (usually the middle of the image).

�e sensor used to collect most images in datasets listed in table 3.2 was Microsoft

Kinect V2. �is sensor contains two cameras: 1080p color camera and a 512× 424

infrared camera. Kinect also contains embedded processor performing the analysis of a

structured light pattern projected onto a scene. �e analysis is based on the observation

of the relative spatial shift (disparity) of the pattern which allows for estimation of

distance to the camera (depth). Hence the images post processed by Kinect sensor are

commonly referred to as depth images.

�e base camera parameters used in this work are:

KRGB =

1081.37 0 959.530

0 1081.37 507.5

0 0 1

 (3.13)

KIR =

365.402802 0 261.696594

0 365.402802 202.522202

0 0 1

 (3.14)

, and

�e rest of the pipeline involves binary masking by the area of interest which allows

avoiding structures and obstacles present in the picture which could occupy the same

86

height in space. �e actual mask needs to be manually created in a per-deployment

fashion, similarly to the the selection of points belonging to the floor-plane. Example of

suchmask s presented in figure 3.13(d), where area containing the objects of interest is

marked as a polygon with unit values. Result of binary masking is presented in figure 3.13

(e). �e final segmentation mask (presented in figure 3.13 f) is then obtained by simple

thresholding within the range of interest (e.g. everything above the floor and less than

maximum height of the object).

�e above process requires a manually defined binary mask and involves a relatively

small number of deployment-specific hyper-parameters. �ose include: theK matrix of

the specific Kinect v2 unit capturing the image pairs, and height bounds defining the

range of z coordinate above the floor within which the pigs instances are contained.

Assuming static camera placement and orientation, the required transformations have to

be computed only once per subset. Extraction of binary masks using the described

process allows for productions of much needed ground-truth for the foreground

estimation tasks but due to its automatic nature can introduce small artifacts caused by

unwanted cameramotion or presence of unexpected objects in the scene (such as people).

3.6 Representation of Body Part Associations (Part Affinity

Fields)

Following the work on the bottom-up pose estimation method referred to as theOpenPose

method,
65, 113, 114, 161

the underlying neural network model can be trained to produce

additional features allowing for easier aggregation of the instance graph. Researchers

behind OpenPose used landmarks and proposed the concept of Part Affinity Fields (PAF) as

a way to encode connections between landmarks using additional image channels. Being

developed for the human pose tracking, PAF were naturally defined along the human

limbs but here the concept is applied to pigs and defined over arbitrarily selected

87

keypoints, following our prior work.
160
�eword field corresponds to the fact, that PAF

can be understood as two-dimensional vector fields defined for a pair pair keypoint types

on a discrete space of image pixels.

Joining the keypoints along the part affinity field vectors outside of the neural

network will be regarded here as a form of post-processing.

(a) Left ear→ Right ear (b) Left ear→ Shoulder

(c) Right ear→ Shoulder (d) Shoulder→ Tail

Figure 3.14: Visualizationof the encodingof 2-dimensional PartAffinity Fieldsusing color-

mapped lines.

While when using 4 keypoints, the total number of PAF that can be defined is(
4
2

)
= 6, i.e. if we encoded an association between each type of keypoint. Following our

prior work
160
we decided to use only four associations to avoid redundancy. Each type of

association is encoded using a pair of images representing the the x and y components of

the association vectors - thus forming a representation known as Part Affinity Fields.

Selected associations consist of:

• Images 0-1: Left Ear→ Right Ear (Figure 3.14a.),

88

• Images 2-3: Left Ear→ Shoulder (Figure 3.14b.),

• Images 4-5: Right Ear→ Shoulder (Figure 3.14c.),

• Images 6-7: Shoulder→ Tail (Figure 3.14d.).

For each pair of body parts denotedLi,j = [[xi, yi], [xj, yj]], the corresponding part

affinity is calculated as a 2-dimensional unit vector representing a displacement

direction in the image space:

~di,j =
1√

(xi − xj)2 + (yi − yj)2
·

 xj − xi

yj − yi

 (3.15)

To produce ground-truth inputs for training of a deep CNN,
~di,j needs to be

formatted as image-like inputs. �us, a 2-channel map is created for each represented

association. Manually indicated body part location annotations (as described in section

3.3) are used as the data source (figure 3.7 (a)), and approximatemasks are produced by

drawing thick lines between the annotated body parts. Each association can be visualized

as in Figure 3.14 using angle→ color mapping like in Figure 3.15.

We use dense representations like the one presented in Section 3.4. Our procedure

to generate the values of the 2-channel image representing the Part Affinity Fields

between two keypoints is presented below:

2D vector→ color

Figure 3.15: Color-wheel used for visualization of the 2D directional vectors.

89

As visible in equation 3.15, we normalize the values by the magnitude of the vector -

thus encoding only the direction of the association and not the magnitude. Papandreou

et al.
117
used similar method but preserved the magnitude of the vectors to encode the

exact value of the distance between keypoints in the image coordinate space. Our

previous contribution used such encoding with additional scaling with respect to the

image / patch size successfully.
160
It is worth noting that a special care needs to be taken

when using features sensitive to scale. Certain techniques of image augmentation and

preprocessing steps (particularly image rotation) distort such encodings. On the other

hand, the unit direction vectors are scale-invariant and their coordinates are bound

within the (−1, 1) range.

Another difference from out previous approaches is the lack of additional reverse

associations.
160
In other words, we do not encode the Left Ear← Right Ear in addition to

the Left Ear→ Right Ear. Previously we considered associations between: Left Ear←

Right Ear, Left Ear← Shoulder, Right Ear← Shoulder, and Shoulder← Tail. �eir goal

was to increase robustness via consistency enforcement. Upon further inspection it was

determined that they were identical to their reversed counterparts. Dropping their

support aims to reduce the number of model parameters required to encode the

associations and decrease the training complexity.

3.7 Image Augmentations

When training large scale (millions of parameters) models, there exists a significant risk

of over-fitting, which can be observed whenmodel approximates the training data very

well but does not generalize, thus generates poor estimates for previously unseen inputs.

When processing natural images and generalization is of interest, it is important to

attempt making the model immune to content-independent variations such as camera

angle, lighting conditions, etc. �is is often explicitly handled using augmentation

90

(a) (b)

Figure 3.16: RGB and HSV Color models
166

techniques. It can be understood as introduction of artificially generated

content-preserving transformations into the input such that they say within the

boundaries of plausibility.

3.7.1 Augmentations in color space

To address different lighting conditions, exposure settings, image sensor’s color capture

accuracy and different noise properties of capture equipment, a color-space,

content-preserving transformations can be applied. A commonmethod is to introduce

perturbations in Hue, Saturation, and lightness (Value) in the HSV color space.

When capturing an image using standard image sensor, obtained pixel colors are

encoded using RGB (Red, Green, Blue) color scheme. �ere exist however, other popular

methods of encoding pixel colors such as CMYK (Cyan, Magenta, Yellow, blacK -

commonly used when preparing images for printing as the color encoding corresponds to

the used ink cardridges) or HSV.

Here, due to the use of images captured from various data collection deployments

over long periods of time, no additional variations in color space are introduced except

for random greyscale conversion. �emain reason behind the need for the network to

perform in greyscale is the presence of colored ear-tags. In each deployment a set of

differently colored and numbered ear tags was used, and it suspected that it would be

91

easy for a neural network to recognize colored, round objects in the image and train for

those as ear representations explicitly. To mitigate this potential problem, color

information is reduced when converting images to greyscale. It is argued, that such

transformation is content-preserving as the presence of the ear is not eliminated.

Conversion of sRGB-encoded imageCsrgb to greyscale is a one-way operation

commonly defined as transformation to the encoding of linear luminance Ylinear. OpenCV

- the library used in this work uses that common conversion defined as follows:

Ylinear = 0.2126Rlinear + 0.7152Glinear + 0.0722Blinear,where (3.16)

Rlinear

Glinear

Blinear

←

C
srgb

12.92
for Csrgb ≤ 0.04045(

C
srgb

+0.055

1.055

)2
.4 for Csrgb > 0.04045

(3.17)

In our example preprocessing procedure we randomly convert the input image to

greyscale with the probability of 50% using the exact formula presented above.

3.7.2 Augmentations in pixel coordinate space

Our goal is to produce a method applicable for scenarios beyond the exact ones from our

data set. Particularly, we are using a relatively small dataset of 1600 annotated training

images in an attempt to train a robust object detector for homogeneous objects for

multiple object tracking. Due to the lack of frame-by-frame data with preserved instance

identity, we are decided to introduce small perturbations to the available annotated

images to simulate diversity using augmentations. �e key factors to success when

applying augmentations are: plausibility and content-preservation.

In order to not waste the capacity of the model to learn to handle improbable

transformations (Figure 3.17 (d)) one should define a set of possible transformations that

92

are applicable and correspond to the effects observed in the data. Content preservation

constraints the selection of available transformations to the ones that do not disturb the

content of the image. In our case transformations drastically changing the appearance of

animals would be considered not content-preserving.

We decided to resort to the set of affine transformations such as: translation,

rotation, scaling, shearing, and warping. �ey are expressed in the form of 3× 3

transformationmatrices, and operate on homogeneous pixel coordinate vectors [x, y, 1].

Additionally, common transformations include horizontal and vertical flipping

(mirroring). �ese techniques accommodate variations in camera parameters and

capture angles along with deformations of objects of interest.

T (∆x,∆y) =

1 0 0

0 1 0

∆x ∆y 1

 (3.18)

R(α) =

cos(α) − sin(α) 0

sin(α) cos(α) 0

0 0 1

 (3.19)

S(sx, sy) =

sx 0 0

0 sy 0

0 0 1

 (3.20)

SH(shx, shy) =

1 shy 0

shx 1 0

0 0 1

 (3.21)

(3.22)

A single transformation encapsulating all desired augmentations can be calculated

93

(a) (b) (c)

(d) (e) (f)

Figure 3.17: Extreme examples of augmentation transformations: original image from

2017-03-07-17-16-25 deployment (a), image translated by∆x = 300,∆y = 300 (b), image
scaled by sx = 0.5, sy = 0.5 (c), image sheared by shx = 0.5, shy = 0.5 (d), image rotated
by α = π

4
(e), image augmented by random combination of transformations (f).

as the matrix in-order multiplication. �us, the applied final transformation often looks

as follows:

H(sx, sy, shx, shy, α,∆x,∆y) = S(sx, sy)SH(shx, shy)R(α)T (∆x,∆y) (3.23)

Such representation allows for easy application by inner product of n× 3 homogeneous

pixel coordinates matrix and the transformationmatrixH ; e.g. x̂ = xH.

�ose methods were however widely used in the literature and had proven effective

as a tool to increase model’s ability to generalize. Author’s previous experience with

training neural networks also had proven augmentations as a useful tool to overcome

challenges imposed by limited amount of training data.
160

Availability of the dataset containing frame-by-frame tracking information would

allow for estimation of the necessary parameters. Unfortunately due to lack of thereof,

here we decided to select the parameters arbitrarily according to our judgement. �e

chosen values are presented in Table 3.3. Note that both the input image and

94

Parameter Value / Range Description

pgrey 0.5 Probability of converting the image to greyscale

∆x,∆y U(−5, 5) Random shift in x, y pixel coordinates
α U(−0.5◦, 0.5◦) Random rotation angle (in degrees)

sx, sy U(0.99, 1.01) Random image size scaling factor

shx, shy U(−0.05, 0.05) Random shearing coefficient

pfliplr 0.5 Probability of flipping the image along the x-axis

pflipud 0.5 Probability of flipping the image along the y-axis

Table 3.3: Values of the hyper-parameters used for augmentation of the training exam-

ples during training. U(a, b) defines sampling from a uniform distributionwith the lower

bounded between< a, b > (inclusive).

ground-truth information are exposed to the same transformations.

�e shearing (warping) is the most questionable transformation among the ones

presented and is not deeply explored. �e selected shearing coefficients are kept low in

our experiments as visible in Table 3.3.

3.8 Models

�is section is dedicated to the description of the two deep, convolutional neural network

architectures used in this work. �e first one will be referred to asOP as it is directly

inspired by the line of work presented in the Convolutional Pose Machines,
113
and the

OpenPose
65, 161

human pose estimation method. Decision to include this architecture in

this work was motivated by the author’s fascination with the method’s performance in

simultaneous multi-target human pose estimation task which could be attributed to the

model’s properties. �e training methodology presented in the related work also

attempts to leveragemodel transfer using pre-existing image classification network in an

attempt to lower the required training time. While being very deep, the OPmodel was

shown to be capable of producing high quality results. However, the number of trainable

parameters may end up being detrimental to the overall performance due to training

difficulties.

95

We would like to point the reader to “A guide to convolution arithmetic for deep learning”

by Dumoulin et al.
167
It contains the description of the building blocks of modern deep

convolutional neural networks such as two-dimensional convolution, pooling and

deconvolution (convolution with fractional stride). Provided description is complete we

did not find the need to duplicate their description here.

Main inspiration: OpenPose (OP)
161

UNET
159

Description: Section 3.8.1 Section 3.8.2

Visualization: Figure 3.18 Figure 3.20

Embeddings: Weakly-supervised Weakly-supervised

Batch normalization: No Yes

Max downsampling: 8× 64×
Input size (W): 368− 1024 Fixed 512
Input context: 368× 368 patches Entire image

Weight normalization: L2 None

Skip connections: Dense-only Size-matched feature maps

Pre-trained front-end: VGG-16
142

None

Downsampling: Max-pooling Strided convolution

Up-sampling: Fixed, bilinear Trained, convolution transpose

Table 3.4: Summary of two presented architectures: very deep, OpenPose-inspired net-

work and a 64× downsampling UNETmodel with skip connections.

�e secondmodel is based on the UNET architecture
159
and resembles the network

used in author’s prior contributions.
160
�emain strength of this architecture is its

robustness against common problems in training such as vanishing gradient. Author

explores the residual approach, recently adopted batch normalization operations, and

decided on fixed input size which are intended allow for easier training.

Due to substantial differences between the OP and UNETmodels, the author does

not attempt to make a point of evaluating superiority of one model family over the other

but rather present their performance alongside their advantages and drawbacks.

96

3.8.1 OP Model: A Very Deep Multiple-Objective Convolutional Neural

Network

We decided to follow the model design used in the work on the Convolutional Pose

Machines.
113
We base our design on the model introduced by Cao et al.

65
We extend on

their network by introducing blocks responsible for producing dense, multi-dimensional

pixel embeddings. �us, our model produces the following outputs: 1) keypoint heatmaps

(described in Section 3.3), 2) part affinity fields (described in Section ??), 3) foreground

mask (described in Section 3.5), and 4) pixel embeddings (described in Section 3.9)

allowing for cluster-based processing.

Figure 3.18: Deep Fully Convolutional Neural Network Architecture for simultenaousmul-

tiple instance estimation of body part location, parf affinity fields, multi-dimensional

pixel embeddings, and foreground segmentation mask based on VGG-16 and 7 (6+1) stage

approach inspired by OpenPose.

�e network presented in Figure 3.18 was designed to process 3-channel RGB input

images and estimate 25-channel output representing the estimates of:

• Channel 0-3: Body Part Detection Heatmaps,

• Channel 4-11: Part Affinity Fields,

97

• Channel 12-23: Pixel Embeddings,

• Channel 24: Foreground SegmentationMask.

�e network was designed around the VGG-16
142
architecture as opposed to the use of

SegNet-based hour-glass model in previous contributions.
160
Both approaches use a max

pooling operation in processing eventually producing deep, but spatially small

representations. Here however, most of the processing is performed using very deep,

convolutional blocks operating on 8× downsampled representations as opposed to

performing simultaneous upsampling and feature refinement.

To remove the burden of upsampling from the network, here a bilinear method is used

and the upsampling kernels are not trainable.

Our model also uses skip connections as a means to improve backpropagation

performance due to more pronounced gradient access and feature-reuse without the

need for increasing the number of network coefficients.
145
�e use of the skip

connections is limited to reusing the outputs of Stage 0 after the VGG-16 blocks.

3.8.1.1 Receptive Field

For spatially challenging tasks it is important to consider the size of the receptive field. �e

receptive field can defined as the area that the network “sees” when creating an output

pixel and corresponds to the window of aggregation of information that can be used to

produce this output. More formally, it represents the width of a square region of the

input image that affects the output pixel.
160

After the input layer, the output of each convolution operation is called the feature

map. To derive the size of the receptive field in a layered architecture containing

downsampling operations such as strided convolutions and pooling layers, one needs to

consider the effective stride length of each layer.

98

Following the convention from Psota et al.,
160
we define the following properties

required to calculate the size of the receptive field: sl, sl
effective

, dl, wl, and rl:

sl
effective

= sl−1 · sl, (3.24)

where l is the layer index, sl is the stride length at the layer l, and sl
effective

is the stride

length between the adjacent coordinates in the feature map. For the input “layer”, s0 = 1.

All convolutional kernels in this network have the sl = 1, all pooling layers have the

sl = 2, and the final upsampling layers have sl = 0.125 as in our model they up-sample

feature maps by the factor of 8.

rl = rl−1 + (wl · dl − 1− 1)/2 · sl−1
effective

, (3.25)

wherewl is the is the width of the convolutional kernel at layer l, dl is the atrous dilation

rate,
121
and rl is the size of the receptive field at layer l (calculated recursively). In the

proposed network, convolutional kernels have sizewl = 3 in the vgg, link, and first 3

parts of the stage0 stages,wl = 1 in the last 2 operations in stage0 and last two

operations in each later stage (1-5), andwl = 7 in the first 5 operations of stages (1-5).

Calculation of the receptive field for all layers of the proposed network is presented

in Table 3.5. Please note the elements in the Type column are: I - being the input,Ch×w,s

being the 2D convolution operation with h× w kernels strided by s pixels, and US8 is the

final upsampling step. As visible in Table 3.5, due to large depth and the use of 7× 7

kernels, the network exhibits large receptive field - particularly when compared to the

model by Psota et al.
160
�is choice is motivated by the need for spatially-intensive

embedding estimation, which is intended to aggregate information from large portion of

the image in order to produce distinct values for each cluster. Both the spatial accuracy for

the task of keypoint detection, and large receptive field are highly desired. T we decided

not to use atrous convolution and resort to deep architecture instead.

99

When comparing the spatial extent of the network’s visibility represented as the

receptive field to the distributions of the sizes of the instances of interest presented in

figure 3.2 (section 3.1.1), it was determined that the receptive field is of sufficient size to

tackle the semantic instance segmentation task using available training data.

Figure 3.19: Visualization of the proposed network’s final stage receptive field.

l Type sl sl
effective

wl rl
0 I 1 1 1 1

1 C3×3,1 1 1 3 3

2 C3×3,2 2 2 3 4

3 C3×3,1 1 2 3 6

4 C3×3,2 2 4 3 8

5 C3×3,1 1 4 3 12

6 C3×3,1 1 4 3 16

7 C3×3,2 2 8 3 20

8 C3×3,1 1 8 3 28

9 C3×3,1 1 8 3 36

10 C3×3,1 1 8 3 44

11 C3×3,1 1 8 3 52

12 C3×3,1 1 8 3 60

13 C3×3,1 1 8 3 68

14 C3×3,1 1 8 3 76

15 C1×1,1 1 8 1 84

16 C1×1,1 1 8 1 84

17 C7×7,1 1 8 7 84

18 C7×7,1 1 8 7 108

19 C7×7,1 1 8 7 132

20 C7×7,1 1 8 7 156

21 C7×7,1 1 8 7 180

22 C1×1,1 1 8 1 204

23 C1×1,1 1 8 1 204

24 C7×7,1 1 8 7 204

25 C7×7,1 1 8 7 228

26 C7×7,1 1 8 7 252

l Type sl sl
effective

wl rl
27 C7×7,1 1 8 7 276

28 C7×7,1 1 8 7 300

29 C1×1,1 1 8 1 324

30 C1×1,1 1 8 1 324

31 C7×7,1 1 8 7 324

32 C7×7,1 1 8 7 348

33 C7×7,1 1 8 7 372

34 C7×7,1 1 8 7 396

35 C7×7,1 1 8 7 420

36 C1×1,1 1 8 1 444

37 C1×1,1 1 8 1 444

38 C7×7,1 1 8 7 444

39 C7×7,1 1 8 7 468

40 C7×7,1 1 8 7 492

41 C7×7,1 1 8 7 516

42 C7×7,1 1 8 7 540

43 C1×1,1 1 8 1 564

44 C1×1,1 1 8 1 564

45 C7×7,1 1 8 7 564

46 C7×7,1 1 8 7 588

47 C7×7,1 1 8 7 612

48 C7×7,1 1 8 7 636

49 C7×7,1 1 8 7 660

50 C1×1,1 1 8 1 684

51 C1×1,1 1 8 1 684

52 US8× 0 1 8 684

53 O 1 1 1 687

Table 3.5: Receptive field of each layer of proposed network.

In order to verify the size of the receptive field presented in Table 3.5 via visual and

numerical inspection, the OP network was initialized with randomweights and fed with

two input images: I0, I1 initialized with zeros, with dimensions 512× 1024 for height

100

and width respectively. I1 was augmented by setting a value of 1.0 at the 0, 0 pixel

coordinates. Both images were fed through the neural network and their difference was

calculated as Idiff = ‖I0 − I1‖. �is resulting image (after normalization and cropping) is

presented in Figure 3.8.1.1. �emaximum x coordinate with non-zero value is

xmax = 687 and a red, dashed line was drawnmarking the boundary. �is operation can

be understood as calculating gradient of the output with respect to the input and finding

the right-most pixel with non-zero value.

3.8.2 UNET: ADeep, Symmetric Architecturewith Skip-Connections

After preliminary evaluation of the OPmodel presented in Section 3.8.1, an alternative

UNET architecture resembling the model we used previously
160
was trained to address

the long training time of the OPmodel. Its main purpose is to provide a context to the

criticism of the use of unsupervised embeddings stated in
117
and relate the findings in

this work to our previous contribution.
160

Figure 3.20: UNET-based Multi-Objective Model Architecture with skip connections and

up to 64× downsampling deep features.

As visible in figure 3.20, presented model significantly downsamples the feature

101

maps, eventually producing 8× 8× 512 deep representation spanning vast spatial

extent. �emodel then up-samples the deep features in a multi-stage fashion while

re-using previously computed feature maps at matching scales. We use convolution with

fractional stride for upsampling. �e intermediate feature maps are brought to the

original size of 512× 512 pixels and concatenated with the input. �e final outputs are

generated using 3× 3 convolution followed by activation functions matching the tasks as

follows: sigmoid for foreground and keypoints, tanh for embeddings and part affinity

fields. �e reasoning behind this selection follows the output domain of the activation

functions: 0− 1 for sigmoid, and−1− 1 for tanh. We train this UNETmodel to produce

the same types of outputs as the OPmodel described in Section 3.8.1.

3.9 Instance-Level Weakly-Supervised Multi-Dimensional

Embeddings

We identified the need for encoding homogeneous object instances such that they can be

easily detected in the images based on the per-pixel instance membership. We decided to

explore the use of embeddings due to their independence from geometric

representations and potential robustness against partial occlusions. We are using said

embeddings to perform semantic instance segmentation and pose estimation of the

group-housed homogeneous animals.

�emain purpose of generating embedding vectors is to use them for instance-level

segmentation through clustering. Generally speaking clustering is an unsupervised

method of pattern-based classification of feature values into clusters. It can be

understood as discovering natural structure in the data and appropriate grouping.
168
We

are exploring creation of such easy to cluster features (embeddings) using neural

networks.

We desire certain properties of those embeddings with respect to their closeness

102

(cohesion) and separability. Ideally, the produced feature values could easily be grouped

into distinct sets, cohesive within the instances and easily separable from the others. Like

previously mentioned, the prior value of the desired embedding values is unknown, but

certain constraints can be enforced given the ground-truth data and appropriate loss

function. �is section describes our weakly-supervised approaches to implicit generation

of such cluster-able embeddings using deep CNNs through the formulation of

differentiable objective functions. Section 3.9.1 provides formal explanation of the

cohesion and separation metrics. Section 3.9.3 describes a successful, heuristic,

parametric method adopted in the literature for the task of semantic instance

segmentation while in section 3.9.2 we present a different implementation, directly

maximizing the silhouette score of the clustering.

3.9.1 Silhouette Coefficient: Cohesion and Separation of Multi-

Dimensional Embeddings

In cluster analysis, a common instance labeling evaluation method is through the

interpretation of consistency properties of produced clusters using Silhouettes.
131
Among

other scoring measures, Silhouette score (also known as Silhouette width) are known to

performwell in literature.
168, 169

Silhouette measures the similarity (cohesion) of values

within the cluster when compared among the clusters (separation). �e silhouette score

of features can be calculated for the output of virtually any clustering algorithm (e.g.

k-means). �e shilhouette coefficient of point i takes values in the [−1, 1] interval, and is

defined as:

s(i) =

1− a(i)/b(i), if a(i) < b(i),

0, if a(i) = b(i),

b(i)/a(i)− 1, if a(i) > b(i),

(3.26)

103

or equivalently:

s(i) =
b(i)− a(i)

max{a(i), b(i)}
, if |Ci| > 1, (3.27)

a(i) =
1

|Cn| − 1

∑
j∈Cn,i 6=j

d(i, j), (3.28)

where a(i) is represents the average dissimilarity, i.e. mean distance between point i and

every other point j 6= iwithin the same cluster, n is the cluster index,Cn is the set of all

points belonging to cluster n, |Cn| is the cardinality of that set, and values in d(i, j) are

calculated using a dissimilarity measure between points i and j.

b(i) = min
k 6=i

1

|Ck|
∑
j∈Ck

d(i, j), (3.29)

where b(i) represents the smallest average distance of point i to all points in all other

clusters, and k is the cluster index that i does not belong to.

Values of s(i) close to 1 indicate membership to a well separated cluster, coefficients

around 0 indicate that the point may belong to multiple clusters (or any other cluster

without making cohesion or separation any worse
169
), while−1 indicates wrong labeling

of the point.

Example 1. To gain intuition behind the separation and cohesion properties and their

relationship to the silhouette score, please consider the examples presented in Figure

3.21. Figure shows a 2-dimensional feature space centered around the origin. �ere are

few hundreds of points being displayed. �e ground-truth labels are indicated by distinct

colors. �e progression is presented in the order from top-left to bottom-right with the

increase in silhouette score at each step.

In this work, the silhouette scores are used to evaluate the clustering based on the

embedding vectors produced by a neural network. Is is important to mention the

104

Poor cohesion Poor cohesion

Poor separation Better separation

ssavg < 0 ssavg ≈ 0

Better cohesion Very good cohesion

Good separation Very good separation

ssavg ≈ 0.6 ssavg ≥ 0.8

Figure 3.21: Examples of four clustering situations with respect to cohesion, separation

and average silhouette score savg.

feasibility of this metric when working with image data. Since, the calculation of

per-point measures a(i), b(i) requires a distance measure d(i, j) defined between any

two points, let’s consider the storage needs for distance matrix for few of the image sizes

105

presented in Table 3.6. �e growth of presented values with respect to the image size

suggests the need for a way of determining which parts of the image could be excluded

from evaluation due to memory constraints.

Image size (H ×W) dMatrix Size # of Elements Memory @float32

46× 46 2116× 2116 4, 477, 456 ≈ 17MBytes
64× 64 4096× 4096 16, 777, 216 64MBytes

128× 128 16384× 16384 268, 435, 456 1, 024MBytes
256× 256 65536× 65536 4, 294, 967, 296 16, 384MBytes
512× 512 262144× 262144 68, 719, 476, 736 262, 144MBytes

Table 3.6: Minimum memory requirement assessment for a complete distance matrix d
calculation for typical image sizes.

Consider using the Euclidean Distance between the embedding vectors as an

underlying (dis)similarity metric when computing d(i, j). �en, to produce an array

containing distances between each pixel pair, one can explore the matrix representation

of the Euclidean distance between two vectors. Given two vectors ~A, ~B, the matrix

representing the squared distance can be computed as:

D2(~A, ~B) =
∑

columns

~A ~A− 2 · ~A~BT + (
∑

columns

~B ~B)T , (3.30)

which comes from the expansion of:

(x− y)2 = x2 − 2xy + y2 (3.31)

It is worthwhile to mention a peculiar implementation detail regarding numerical

stability of this method. It was observed, that due to limited precision of 32-bit floating

point arithmetics,D2
can contain extremely small magnitude values for near-exact

points. �us, computing squared root and attempting to proceed with further processing

of those values generates numerical errors such as infinities or “not-a-number”

warnings. To overcome this, the values are often bottom clamped to 0 or a small bias term

in the range of (10−10, 10−6) is added before taking a square root.

106

3.9.2 Discriminative loss function for direct silhouette scoremaximiza-

tion

Inspired by the work of De et al.
106
on semantic instance segmentation using

embeddings, we decided to explore the idea of training a neural network to produce

features that maximize the Silhouette index directly. �is section describes formulation

of a loss function for direct Silhouette score maximization for the purpose of training a

deep CNN to produce easily cluster-able embedding vectors for the task of semantic

instance segmentation.

Given the distance matrixD ≈
√
D2(y′

emb
, y′

emb
) defined for all embedding vectors

produced by the neural network, and the ground truth cluster assignment image ID, one

could formulate a differentiable loss function attempting to maximize the silhouette

score of the clusters produced by the network. Since the value of 1 represents the best

per-pixel score, a loss function component maximizing it could be as simple as:

Lssmax(y
′
emb
, yid) =

1

H ·W

H−1∑
y=0

W−1∑
x=0

(1− s[y, x])2, (3.32)

whereW,H are the width and height of the image respectively, x, y are the coordinates in

the image, and s[y, x] is the silhouette score calculated for each pixel as presented above

in (3.27).

�e actual calculation of the a(i), b(i) parts required to obtain the score however is

not trivial to implement. However it can be accomplished using matrix algebra as follows

(please consider the following equations as a form of pseudo-code):

107

M = [1(ID[i] == ID[j])]W ·H×W ·H ,∀i 6= j ∈ [0, . . .W ·H] (3.33)

Wa = 1/

(∑
rows

M − 1

)
(3.34)

Vb =
∑
rows

M (3.35)

Wb = 1/ ([Vb, Vb, . . . ,W ·H times])� (1−M) + b+
max
�M (3.36)

a = (D � (1− I)�M)×Wa (3.37)

b = (D �Wb)×M, (3.38)

whereM is the binary matrix indicating which distance comparisons are within the

same clusters (1), and which are between clusters (0) - based on the ground truth cluster

assignment image ID,Wa are the weights representing the inverse of the number of

points in a cluster in (3.28), Vb is the vector representing the number of elements in each

cluster for each point that it contains,Wb are the weights representing the inverse of the

elements in every other cluster in (3.29), b+
max

is the artificially introduced absolutely

maximum value of b introduced to never activate usingmin function in (3.27), I is the

identity matrix, and finally a, b are the per-pixel intermediate values for (3.27).

�is formulation was implemented using TensorFlow5machine learning framework,

where all of the operations are defined along with accompanying derivative function.

�is allows for automatic differentiation using the chain rule and training directly using

back-propagation. �emethod was compared to silhouette scoring function available in

sklearn.metrics170 python package and validated using side-by-side comparison. Is is

however important to again mention certain aspects of numerical stability.

First, the memory requirements for estimation of both a(i) and b(i) over a

moderately sized image, say 512× 512 are currently beyond reasonable expectations, as

visible in Table 3.6. �us, a (random) sub-sampling of the ground truth (yid) and

108

embedding feature maps (y′
emb
) can be successfully introduced at the price of the speed of

convergence. One can focus on evaluating the scores only for the area of interest, if the

appropriate mask is available. A parameter pssmax ∈ (0, 1) represents the ratio of number

of pixels processed over the number of pixels belonging to the foreground. Is is

important to note that number of elements in each cluster is required to be greater or

equal to 1, which is not necessarily always satisfied when sub-sampling without

additional care in pre-processing of images. �ese operations must be carefully

implemented to avoid divisions by zero.

Presented loss function does not enforce any particular value structure on the

produced clusters aside from the fact that the mean intra-distance must be smaller than

the smallest inter-distance. As a contrast, the loss function presented in
106
introduces a

minimummargin component to their hinged loss allowing for potentially more

predictable separation of clusters enforced to spread nomore than the value of that

margin.

To summarize, presented implementation of the silhouette score, and the following

loss functionLssmax provide differentiable, direct, per-pixel values allowing for training

using back propagation.

3.9.3 Discriminative loss functionwith parametric clustermargins

To contrast with the (non-parametric) clustering score maximization described in

Section 3.9.2, a loss function based on the work presented in
106
is presented in this

section. �eir weakly-supervised approach to representation learning via discriminative

loss function is based on a concept of triplet loss by Schroff et al.
119
�ey address the face

recognition problem using deep learning by referencing a dataset of positive and

negative examples for person identification, and train a model to be able to generate same

and different responses. When provided with two images, the network can assess the if

they are of the same person in a regardless of the pose and lighting conditions. �e key

109

ingredient of their success is the use of triplet-loss function used for training.

�e triplet loss (conceptually depicted in Figure 3.22b) is defined as:119

||f(xai)− f(xpi)||22 + α < ||f(xai)− f(xni)||22, (3.39)

where each training example xi = {xai , x
p
i , x

n
i } consists of three elements: the anchor

node xai , the positive match with respect to the anchor node x
p
i , and a negative match x

n
i ,

and α is a margin enforced between the positive and negative pairs.

(a) (b)

Figure 3.22: Model architecture (a) and conceptual representation of the triplet loss
119
(b).

For multiple object detection, it would not be sufficient to simply rely on a simple

triplet loss due to the fact that it is defined to differentiate two opposite examples with an

anchor node. �e idea however, can be extended to multiple instances using the same

principles. What is desired is the cost function that uses a reference image indicating

which pixels belong to which instance and not be limited by number of instances in any

other way than the memory required for intermediate representations. Such extensions

was successfully accomplished by De et al.
106
�ey expand the concept of the triplet loss

from a binary to a multi-category case for the task of semantic instance segmentation.

�e rest of this section is dedicated to the formulation and implementation of such loss

function.

Presented discriminative loss has three components: 1) the intra-cluster cost

Lmargin_var(y
′
emb
, yid) associated with distance between eachmember and cluster mean, 2)

inter-cluster costLmargin_dist(y
′
emb
, yid) penalizes the closeness of the means of different

clusters, and 3) embeddingmagnitude penaltyLmargin_reg(y
′
emb

).

110

Figure 3.23: Graphical representation of the pointer-to-cluster-mean attraction compo-

nent of the Lmargin_var as intra-cluster pull force (cohesion), and the inter-cluster push force rep-
resented byLmargin_dist (separation). Boundaries depicted by the dotted lines are the hinged
margins φvar (smaller radii) and φdist (larger radii). Figure fromDe et al.

106

Lmargin(y
′
emb
, yid) = Lmargin_var(y

′
emb
, yid)

+ Lmargin_dist(y
′
emb
, yid)

+ αregLmargin_reg(y
′
emb
, yid),

(3.40)

�e first part of the loss represents the within-cluster variance:

Lmargin_var(y
′
emb
, yid) =

1

K

K∑
k=1

1

nk

nk−1∑
i=0

[‖µk − y′emb[yk,i, xk,i]‖ − φvar]
2

+ , (3.41)

whereK is the total number of clusters, k is the instance number as defined in yid, nk is

the total number of pixels belonging to cluster k (number of pixels in yid having value of

k), µk isC-dimensional vector representing the mean value of embedding vectors

calculated over all pixels in y′
emb

corresponding to pixels in yid with value of k, yk,i, xk,i are

lists of all y and x (respectively) image coordinates corresponding to i ∈ 0 . . . nk pixel

number belonging to cluster k.

�emean cluster representation’s value on channel c given output embedding y′
emb

111

and reference cluster membership yid is obtained as:

µk[c] =
1

nk

H−1∑
y=0

W−1∑
x=0

y′
emb

[y, x, c], if yid[y, x] == k, (3.42)

where nk is the number of k-valued pixels in yid,W,H are the width and height of the

image, and k is the cluster index.

�e second component represents the average distance between cluster means:

Lmargin_dist(y
′
emb
, yid) =

1

K(K − 1)

K∑
k=1

K∑
l=1,l 6=k

[2φdist − ‖µk − µl‖]2+ (3.43)

which is calculated pair-wise for each pair of clusters, whereK is the total number of

clusters, k, l are the indices of the first and second cluster in considered pair respectively,

and µk, µl are cluster means.

Finally, the embeddingmagnitude penalty is defined as:

Lmargin_reg(y
′
emb

) =
1

K

K∑
k=1

‖µk‖ , (3.44)

which penalizes the magnitudes of cluster means.

�e φvar and φdist are the cohesion and separation margins. In
106
authors advise

using φdist > 2φvar to encourage each embedding to be closer to all embeddings of its own

cluster than to any other cluster. �e conceptual depiction of this loss function is

presented in Figure 3.23.

Is is important to mention the [x]+ hinge operator (positive part) used in the above

description, which is equivalent and can be implemented asReLU(x) operation available

in machine learning frameworks. �e purpose of that component in this context is to

avoid activating for elements which already satisfy certain criteria, such as falling below

112

certain margin φ. ReLU(x) is defined as:

ReLU(x) =

 x, for x > 0

0, for x ≤ 0
(3.45)

�emain advantage of this formulation is a fairly lowmemory footprint as it does

not require per-pixel-pair distance. Instead, it uses per-pixel distance to the cluster

mean which requiresH ·W × C ×K array at most. Table below shows the memory

requirements for the larges array used in the estimation of described loss function for

number of embedding channelsC = 12 and number of clusterK = 32, which represent

the values used in this work.

Image size (H ×W) # of Pixels C K # of elements Size @float32

46× 46 2116 12 32 812, 544 ≈ 3MBytes
64× 64 4096 12 32 1, 572, 864 6Mbytes

128× 128 16384 12 32 6, 291, 456 24Mbytes
256× 256 65536 12 32 25, 165, 824 96Mbytes
512× 512 262144 12 32 100, 663, 296 384Mbytes

Table 3.7: Memory requirement for per-pixel, per-cluster storage for 32 instances with 12-

dimensional embeddings for common image sizes.

De et al.
106
suggest that having a controllable margin, the instance segmentation

algorithm can be as simple as picking a random point, thresholding around the φvar and

assigning the first label to all points falling within the threshold. �en we can remove the

labeled points and proceed with another randomly selected point until samples are

exhausted.

3.9.4 Speed of Convergence Analysis using Silhouette Score

In Section 3.9.2 we are proposing a novel loss function for training multi-dimensional

embeddings for the task of semantic instance segmentation. We contrast that loss

function with the approach by De et al.
106
who proposed a discriminative loss function

for semantic instance segmentation described in Section 3.9.3. �e PIGSEG96 dataset

113

(described in Section 3.4.1) is used for the analysis and it contains images of pig-shaped

clusters.

We are using the single example over-fitting approach presented by De et al.106 to

illustrate the convergence properties of the two loss functions. We are using

hyper-parameters listed in Table 3.8 and run our experiments for the same initial values

for each loss function. We use silhouette score with respect to the number of

optimization iterations as our metric. Figure 3.24 (a) illustrates thatLmargin converges

significantly faster for the same learning rate of the optimizer. When observing the

values ofLmargin during optimization usingLssmax (red curve in Figure 3.24b) it is visible

that at the early stages of optimization the loss functions are in agreement.

(a) (b)

Figure 3.24: Depiction of the speed of convergence of the two considered loss func-

tions: Lssmax andLmargin when using the over-fittingmethod for all examples in PIGSEG96
dataset. Silhouette score with respect to the number of optimization iterations calculated

for all examples when training using both losses (a), and the value of Lmargin with respect
to optimization iteration for all examples when trained using both losses (b).

In order to determine the cause of such significant difference betweenLmargin and

Lssmax in terms of convergence, we also captured the values of theLmargin_var and

114

Lmargin_dist components of theLmargin loss function while optimizing using either of the

losses. �e results are presented in Figure 3.25.

When looking at Figure 3.25 (b) representing the comparison of theLmargin_dist when

optimizing using either of the loss functions, it is visible that both functions are in

agreement and the component responsible for separation is correctly implemented in

Lssmax. When investigating Figure 3.25 which depicts theLmargin_var component of the

Lmargin loss, it is visible that the cohesion is not handled correctly byLssmax.

(a) (b)

Figure 3.25: Values of the components of theLmarginwith respect to the optimization itera-
tions ofLssmax (red curves) andLmargin (green curves); Within-cluster variance component
Lmargin_var (a), and between-cluster means distance componentLmargin_dist (b).

3.9.5 Speed of convergencewith respect to the number of clusters

�e complete the analysis and determine the properties of theLssmax andLmargin loss

functions, we varied the number of clusters present in the population and performed the

optimization like in Section 3.9.4. Table 3.9 contains the numerical results of this analysis

115

Parameter Value Description

W 64 Target width of the input images

C 2 Number of embedding channels

itmax 200 Maximum number of iterations

k ∈ {4, 10, 11, 14} Number of clusters

ssconverged 0.85 Minimum silhouette score to consider convergence

Solver Adam
152

Optimization solver

λmargin 1.0 Learning rate forLmargin
φdist 1.0 (A), 2.0 (B) Between-clusters margin forLmargin
φvar 0.4 (A), 0.0 (B) Within-cluster margin forLmargin
αreg 10−4 Weight of the regularization term forLmargin
λssmax 1.0 Learning rate forLssmax
pssmax 1.0 Proportion of foreground points to be processed byLssmax

Table 3.8: Hyper-parameters used for optimization of Lmargin and Lssmax using the over-
fitting method.

for the number of clusters k = 2, 3, . . . , 14. Figures 3.26 (a) and (b) show the optimization

progress measured by the silhouette score with respect to the iteration number forLssmax

andLmargin respectively. Figure 3.26 (c) indicates that theLmargin always exhibits higher

rate of convergence when compared toLssmax - regardless of the number of clusters k.

(a) (b) (c)

Figure 3.26: Evaluation of the speed of convergence expressed as silhouette score with re-

spect to the number of clusters k. Curves of the silhouette score with respect to the itera-
tion for optimizationusingLssmax (a), andLmargin (b). Comparison of the convergence rates
for with respect to the number of clusters k (c) for Lssmax (red curve), and Lmargin (green
curve).

116

Number of clusters k Rate forLssmax Rate forLmargin
2 0.0418 0.2713
3 0.0210 0.1258
4 0.0112 0.1073
5 0.0055 0.0849
6 0.0078 0.0638
7 0.0078 0.0539
8 0.0022 0.0531
9 0.0055 0.0493
10 0.0052 0.0520
11 0.0055 0.0486
12 0.0032 0.0473
13 0.0023 0.0411
14 0.0030 0.0332

Table 3.9: Rate of convergence expressed in termsof silhouette score for both loss functions

for number of clusters k = 2, 3, . . . , 14.

3.9.6 Speed of convergence with respect to the number of embedding

channels

We also varied the number of embedding channelsC in order to determine the

convergence properties of both loss functions. Numerical results of this analysis are

listed in Table 3.10 forC = 2, 3, . . . , 62. We initially found a case forLssmax converging

faster thanLmargin (for mode A with φvar = 0.4, φdist = 2.0) but reduction of the margins

to mode B with φvar = 0.0, φdist = 1.0 quickly indicated thatLmargin is always a preferred

choice overLssmax from the speed of convergence point of view. �is finding is illustrated

in Figure 3.27.

Figures 3.27 (a) and (b) present the optimization curves forLssmax andLmargin (mode

A) respectively.

3.10 Training using Backpropagation

All models presented in this work have the benefit of being end-to-end trainable which

allows for training using backpropagation. �e end-to-end trainability can be defined as

the situation in which the loss can be calculated immediately after the forward pass given

the ground-truth data. It is possible due to the fact, that the loss functions is

117

(a) (b) (c)

Figure 3.27: Evaluation of the speed of convergence expressed as silhouette score with re-

spect to the number of channelsC.

C Rate forLssmax Rate forLmargin A Rate forLmargin B C Rate forLssmax Rate forLmargin A Rate forLmargin B
2 0.0034 0.0391 0.0758 33 0.0330 0.0271 0.0516
3 0.0064 0.0443 0.0891 34 0.0291 0.0264 0.0515
4 0.0084 0.0447 0.0897 35 0.0266 0.0272 0.0516
5 0.0159 0.0457 0.0861 36 0.0300 0.0264 0.0481
6 0.0170 0.0478 0.0830 37 0.0251 0.0257 0.0480
7 0.0201 0.0445 0.0893 38 0.0300 0.0257 0.0482
8 0.0216 0.0443 0.0785 39 0.0277 0.0258 0.0482
9 0.0228 0.0446 0.0773 40 0.0266 0.0244 0.0482
10 0.0193 0.0445 0.0692 40 0.0266 0.0244 0.0482
11 0.0222 0.0398 0.0759 41 0.0253 0.0252 0.0483
12 0.0250 0.0376 0.0683 42 0.0310 0.0238 0.0483
13 0.0283 0.0398 0.0679 43 0.0310 0.0238 0.0483
14 0.0271 0.0400 0.0674 44 0.0294 0.0238 0.0484
15 0.0289 0.0379 0.0669 45 0.0277 0.0226 0.0484
16 0.0301 0.0361 0.0612 46 0.0282 0.0233 0.0484
17 0.0274 0.0362 0.0608 47 0.0307 0.0227 0.0456
18 0.0245 0.0363 0.0606 48 0.0260 0.0228 0.0457
19 0.0287 0.0347 0.0605 49 0.0283 0.0222 0.0456
20 0.0293 0.0350 0.0606 50 0.0251 0.0223 0.0457
21 0.0309 0.0348 0.0604 51 0.0321 0.0222 0.0457
22 0.0236 0.0305 0.0552 52 0.0266 0.0223 0.0457
23 0.0262 0.0308 0.0555 53 0.0256 0.0223 0.0459
24 0.0218 0.0309 0.0556 54 0.0312 0.0208 0.0431
25 0.0296 0.0310 0.0553 55 0.0289 0.0204 0.0432
26 0.0295 0.0299 0.0557 56 0.0298 0.0209 0.0432
27 0.0253 0.0299 0.0515 57 0.0294 0.0209 0.0409
28 0.0236 0.0288 0.0513 58 0.0282 0.0204 0.0433
29 0.0289 0.0300 0.0514 59 0.0284 0.0204 0.0434
30 0.0345 0.0301 0.0515 60 0.0327 0.0201 0.0410
31 0.0276 0.0281 0.0515 61 0.0327 0.0201 0.0408
32 0.0265 0.0272 0.0516 62 0.0266 0.0197 0.0410

Table 3.10: Rate of convergence for Lssmax and Lmargin (configuration variants A and B,
please refer to Table 3.8) for variable number of clustersC = 2, 3, . . . , 62.

differentiable and no external post-processing is required to assess the residual with

respect to the output and ground truth.

As our networks are designed to estimate multiple different types of outputs, it’s

118

Image Keypoints Part Affinity Fields ForgroundMask Pixel ID

x ykps ypaf yfg yid
3 Channels 4 Channels 8 Channels 1 Channel 1 Channel

Section 3.2 Section 3.3.2 Section 3.6 Section 3.5 Section 3.4

Table 3.11: Input x and the corresponding ground-truth information provided for training
using backpropagation (in columns). First row shows a small visual representation of the

data. Names of the features are provided in the second row, followed by the mathemati-

cal symbols used in the rest of this section. Fourth row indicates the number of channels

used by the feature. �e Section number indicating the description of particular feature is

provided in the last row.

objective consists of minimizing a composite loss function (Equation 3.47). Generally, for

the model f(x|θ) = y′ the training procedure is aimed to adjust the model coefficients θ

in the presence of ground-truth data y:

θ = arg minL(f(x|θ), y, θ), (3.46)

whereL(y′, y) is the loss function. Here, the loss functionL(y′, y) consists of 5

components:

L(y′, y, θ) = αkpsLkps(y
′
kps
, ykps)

+ αpafLpaf(y
′
paf
, ypaf)

+ αembLemb(y
′
emb
, yid)

+ αfgLfg(y
′
fg
, yfg)

+ αregLreg(θ),

(3.47)

where αkps, αpaf, αemb, αfg, αreg are the learning rate coefficients for the body part

detections, part affinity fields, embeddings, foreground, and the regularization term.

119

�e loss functions are responsible for defining error in: Lkps - body part detection,Lpaf -

part affinity fields,Lemb - embeddings,Lfg - foregroundmask, andLreg - weight

regularization. Table 3.11 provides a visualization of the input and ground-truth data

provided for the training.

Body part detections, part affinity fields and foregroundmask are all trained using

maskedmean squared error as:

LmMSE(y
′, y,m) =

1∑
m

∑
m�

(
(y − y′)2

)
, (3.48)

wherem is the binary mask defined in the area where training needs to occur, thus

∑
m

is the effective number of pixels to which the loss is applied, and� is the element-wise

multiplication operator.

Example 1. Consider the case of training the foregroundmask like presented in Figure

3.28. Equation 3.48 provides the means to train the model only with respect to the

specific, selected part of the image. Figure 3.28 (c) shows the desired confident ground

truth value yfg that is only valid within the region defined by a maskm (Figure 3.28 b).

Use of selective loss function allows to only penalize the errors within the area for which

the data is certain.

(a) (b) (c)

Figure 3.28: Exampleof selective foregroundmaskestimation trainingwith the input image
x (a), training maskm (b), and expected yfg (c).

Embedding loss is defined using different loss as the actual target values in yid are

represented to only indicate the cluster membership and not the specific values of the

120

embedding vectors. Loss functions for the embedding training are described in sections

3.9.2 and 3.9.3 and provide error values related to the separation and cohesion properties

of the embedding clusters and not the actual values. �us, we consider our approach to

training such embeddings as a weakly-supervised approach.

Porposedmodel are Directed Acyclic Graphs, thus they can be represented as a

superposition or its layers as:

y′ = fl−1(. . . f1(f0(x0, θ0), θ1) . . . , θl−1), (3.49)

where y′ is the output produced by the model, l is the number of operations, θ contains

trainable model parameters, and fl(xl, θl) are the operations performed by the model

(loosely speaking layers or nodes in DAG). Given ground truth data y, and the loss

functionL(y, y′), the role of the optimizer is to adjust parameters θ along the direction

yielding decrease in the loss function. Due to the complexity of the model, and its

non-linearity, this cannot be done in a single step and needs to be performed iteratively.

Generally, model adjustment using gradient descent algorithm is represented as:

θt+1 = θt − αt
∂L

∂θt
, (3.50)

where t is the time step or number of iteration, αt ∈ R+ is the learning rate, θ contains

model parameters,
∂L
∂θt

represents the positive gradient of the loss functionLwith respect

to parameters θ at time t.

�e backpropagation algorithm then uses the superposition interpretation of the

model and applies chain rule to adjust model weights - backwards - from the loss function

L(y, y′) all the way to the first subset of coefficients θ0, while for each operation fl(xl, θl)

estimating approximate residual terms with respect to both, model coefficients and

inputs.

Modernmachine learning frameworks provide a variety of optimization solvers

121

Figure 3.29: Speed of convergence of popular optimization methods over the MNIST

dataset indicating superior performance of Adam optimizer. Figure from.
152

based on the Stochastic Gradient Descent method. �e stochasticity comes from the fact,

that adjustments are performed based on small subsets of examples and the ensemble.

�us, a learning rate αt is generally small when training neural networks and the

procedure spans over extended periods of time. �emain differences between them

involve the use ofmomentum and adaptability of the learning rate αt depending on the

training progress. Adaptation of the learning rate is a research topic on its own. We used

the starting learning rate α = 10−4.

Amongmany optimizers available in the modernmachine learning frameworks,

Adam,
152
AdaGrad

171
and RMSProp

172
are often selected by researchers as they maintain

adaptive, per-parameter learning rates, which improves stability in the presence of

sparse gradients based on the mean of recent weight gradients when compared to base

Stochastic Gradient Descent. We selected the Adam optimizer to train all presented

models as it was shown in the literature to combine the best properties of AdaGrad and

RMSProp and is well-suited for problems with sparse gradients (such as the ones

produced by selective masking or loss functions defined only in the part of the image). A

comparison of popular optimization methods using the MNIST
173
dataset is presented in

122

figure 3.29.

We trained each of our models until convergencewhich we define as the state in which

the loss with respect to the training examplesLtrain is lower or equal than the loss with

respect to the testingLtest examples. We used samples from the test:seen to calculateLtest

using a different, randomly selected example after every training iteration. We used

batch size of 1 and obtained curves forLtrain andLtest and applied a windowed-average to

determine the stop conditions. �e time necessary to train each model varied between

days to about a week. �e extensive period of time required for training is mostly

attributed to the on-the-fly example generation. We used augmentation techniques as

described in Section 3.7.

3.11 Pose Estimation using Body Part Detections and Part

Affinity Fields

We present twomain object detection methods in this work: one using pose estimation

and another using semantic instance segmentation. Pose Estimation is a task of defining

and object through the position and arrangement of its parts in the image. We perform

this based on the body part locations (keypoints / landmarks) and the associations

between them based on the outputs of our neural networks. �is section describes the

performance of our models’ ability to determine the location of pig body parts (left ear,

right ear, shoulder, and tail) based solely on the input images of pigs in a pen with respect

to manually annotated ground-truth.

We are presenting twomethods of pose estimation for pigs based on the work of Cao

et al.
161
referred to asOpenPose, and our prior contributions.160 �osemethods are 1) our

reimplementation of the OpenPose method for pigs and 2) a Hybrid method that still

relies on keypoints but the matching is done based on the similarity in the embedding

space.

123

Both of our pose estimation methods start with inferring the location of keypoints

from the color images. �e inference is performed using either of our neural networks

OP or UNET. Each of our networks produces a real-valued image y′
kps
with values between

0 and 1 (keypoint detection heatmap). �is heatmap is a dense representation of the

predicted locations of keypoints in the form of a two-dimensional estimate of a likelihood

conditioned of the input image. �e location in the image (in pixels) corresponds to the

spatial component, and the value of the pixel corresponds to the likelihood of the

presence of a keypoint at that location. In order to produce a sparse representation of the

detected keypoint locations, we perform non-maximum suppression parametrized by

the threshold thkp.

Following the methodology presented in,
160, 161

tracking by detection begins with

processing body part location heatmaps obtained by passing an image though the neural

network. Let’s agree, that a set y′ = {y′
kps
, y′

paf
} = f(x) are respectively, the body part

location heatmap and part affinity fields estimations. In order to use the bipartite

assignment method to determine which keypoint belongs to which instance, first, each

part location needs to be extracted from the h× w × 4 dense representations in y′
kps
.

Precise estimates of the keypoints are represented by the peaks in the heatmaps. A

visualization of keypoint location heatmaps is presented in Figure 3.30.

3.11.1 Keypoint Detection usingNon-MaximumSuppression

�e goal of this step is to convert the dense, image-like encoding of the likelihood of the

presence of the sub-instance landmarks into a sparse, image coordinate-based

representation allowing for further processing. To find the sparse coordinates of the

peaks in the heatmaps produced by the network, a local max response filter (Equation

3.51) can be applied to the image - this method is known as non-maxima suppression and

can be described as determination of the set of x, y coordinate pairs for which the

124

(a) (b) (c)

(d) (e)

Figure 3.30: Visualization of the keypoint heatmaps produced by the UNETssmax network

based on the example 2 of the PIGSEG96 dataset. Input image (a), heatmap for the left ear
(b), right ear (c), shoulder (c), and tail (d). Greyscale encoding of the values: 0: black, 1:
white.

heatmap value is spatially local maximum:

{peaksp} =
{
{x, y} if y′

kps,p[y, x] == max(R(x, y, y′
kps,p, r))

}
, (3.51)

where {peaksp} is the resulting set of coordinates, p ∈ {l, r, s, t} is the label of the body

part (corresponding to the left ear, right ear, shoulder, and tail respectively), x, y are the

coordinates in the image,R(x, y, I, r) is the region extraction operation defined as

follows:

R(x, y, I, r) = I

[
y − r − 1

2
, . . . , y +

r − 1

2
, x− r − 1

2
, . . . , x+

r − 1

2

]
∀x ∈ [

r − 1

/
2, . . . w − r − 1

2
],∀y ∈ [

r − 1

2
, . . . h− r − 1

2
],

(3.52)

wherew, h are the width and height of the image I, and r is the odd-number

representing the size of the sliding window of the peak detector. Confidence of the

detection is determined by the height of the peakmax(R(x, y, I ′
kps
, r)).

Example 1. To better understand the concept of the non-maximum-suppression

125

consider the following example. Let’s assume a 21× 21 image containing a heatmap as

visible in Figure 3.31 (a). �ere are two smooth hot spots with the centers (peaks) at the

pixel coordinates of (5, 5)and(17, 17). In order to obtain the sparse positions of those

peaks, let’s apply a sliding-window-based non-maximum suppressor like the one

described in Equation 3.51. �e output (Figure 3.31 (b)) is a binary image and each

non-zero pixel is considered as a position of the detected peak.

(a) (b)

Figure 3.31: Visualization of the input (a) and the output (b) of the localmax response filter

(non-maximum-suppressor) with the size of the sliding window r = 11. Dimensions of
the images are 21× 21. Red square represents the sliding window operation.

First stage of processing is complete when peaks for all body parts are estimated

according to equation 3.51 with the resulting superset

peaks = {peaksl, peaksr, peakss, peakst}.

3.11.2 BipartiteMatching

Like in the work of Cao et al.,
65, 161

the presented pose detection method revolves around

greedy, sequential bipartite matching of the detected keypoints. In our approach we only

resolve the matching between the shoulders and tails. �us, our we only use the peakss

and peakst subsets of the detected keypoint locations.

126

Tomatch all detected shoulders to all detected tails we formulate a linear sum

assignment problem and solve it using Hungarian Algorithm. We define two partitions,

one for the shoulders and another for the tails. We obtain keypoint location estimates

using the neural network like described in Section 3.11.1. We use the matching costs

based on the features from the neural networks using Part Affinity Fields (Section 3.11.3)

and Embeddings (Section 3.11.4). �e following paragraph describes the general case of

the bipartite matching problem.

Having two partitionsA andB with their respective number of instances nA, nB, a

problem instance is described by a cost matrixC, whereC[i, j] is the cost of assigning

element i from partitionA to element j from partitionB. �e goal is to find a complete

assignment of all elementsAi∀i ∈ [0, . . . nA − 1] to all elementsBj∀j ∈ [0, . . . , nB − 1]

with minimum total cost. Formally, a booleanmatrixX is estimated such that

X[i, j] = 1 if the algorithm determined thatAi should be associated withBj, and

X[i, j] = 0 if not. �e optimal assignment then has the cost:

min

nA−1∑
i=0

nB−1∑
j=0

Ci,jXi,j (3.53)

3.11.3 Part Affinity Fields

Next step involves processing based on the part affinity fields estimates from y′
paf
to

estimate the matching cost of keypoint matching using bipartite matching. �e output

y′
paf
is formatted in a dense image-like fashion as a channel-wise concatenation of the

images composed x and y coordinates of the of the ~di,j vectors as presented in figure 3.14.

�e associations estimated by the neural network are: {{l→ r}, {l→ s}, {s→ t}} and

should correspond to the direction of vectors drawn between the estimated keypoint

locations.

First, the assignments between shoulders and tails are resolved as a solution of

127

(a) (b) (c)

(d) (e) (f)

Figure 3.32: Input image with overlaid annotations (a), heatmap of the head keypoint (b),

heatmapof the tail keypoint (c), PCAvisualizationof theembeddingsy′
emb

(c),x component
of the part affinity field between shoulder and tail (e), y component of the part affinity field
between shoulder and tail (f). True position of the shoulder is indicated by the red arrow

and the true position of the tail is indicated using the yellow arrow. Outputs generated by

the OPmargin network. Image was captured in May 2017.

linear sum assignment problem using Hungarian Algorithm like described in section

3.11.2. To provide values for the matrixC, the part affinity field estimates y′
paf
need to be

sampled, and a dissimilarity metric needs to be defined, such that it provides low values

(or close to 0) for a proper match, and high values for improper assignment. Figure 3.32

presents an example of the data used in the processing.

For each assignment defined as {p, q}, the location estimates of corresponding parts

peaksp, peaksq are considered in in descending order of confidence. For each pair of

considered source and destination keypoints

~k0 = [x0, y0] ∈ peaksp, ~k1 = [x1, y1] ∈ peaksq, the part affinity field is sampled at

128

locations:

~sps =

 x0

y0

+
s

smax ·
∥∥∥~k1 − ~k0∥∥∥ ·

 x1 − x0

y1 − y0

 , (3.54)

where ~sps is a 2-dimensional vector with elements corresponding to the x, y coordinates

in y′
paf
, s is the step number∈ [0, . . . , smax], and smax is the number of sampling points

along the vector
~di,j = ~k1 − ~k0.

After obtaining the sampling coordinates, the part affinity estimate image is

sampled at each location indicated by the ~sps resulting in a set of:

Di,j =
{[
y′
paf

[~sp0[1]], y′
paf

[~sp0[0], l]
]
, . . . ,

[
y′
paf

[~spsmax [1]], y′
paf

[~spsmax [0],m]
]}
, (3.55)

where i, j correspond to indices in peaksp, and peaksq respectively, and l,m are the

channel numbers in y′
paf
corresponding to corresponding to x and y coordinates of the

vector for affinity between parts p and q,

Normalized dot product (cosine similarity) was selected as a metric of similarity

between the detected displacement of peak i and j. �us, the similarity between the

estimated part affinity fields and a vector indicating the direction of those keypoints is

expressed as:

cosine(~di,j, ~Di,j[s]) =
~di,j · ~Di,j[s]∥∥∥~di,j∥∥∥∥∥∥ ~Di,j[s]

∥∥∥ , (3.56)

which takes values cosine(~v0, ~v1) ∈ [−1, . . . , 1]with 0 being the value for orthogonal

vectors,−1 for vectors of the same orientations but opposed directions, and 1 for a pair

of vectors with exactly the same direction and orientation.

To transform cosine similarity to a dissimilaritymetric, a mapping to angle in

degrees was chosen, such that:

dissimilarity
cosine

(~di,j, ~Di,j[s]) =
1

π
arccos

(
cosine(~di,j, ~Di,j[s])

)
, (3.57)

129

which relies on the fact, that arccos(α) ∈ {0, . . . , π}, thus the final dissimilarity metric is

bounded between 0, 1.

�e cost for all sampled points can be obtained by averaging:

C[i, j] =
1

smax

smax∑
s=0

dissimilarity
cosine

(~di,j, ~Di,j[s]) (3.58)

Now, the cost matrixCi,j can be constructed and solved for optimal assignment,

producingXi,j. �e entire procedure is first performed to determine all optimal

assignments in the following order: shoulder→ tail assignments, followed by left ear→

shoulder, right ear→ shoulder, and finally left ear→ right ear. �is order was selected

arbitrarily in a fashion similar to the original OpenPose method.
161
We identified that

shoulder and tail are keypoints that are very pronounced and fully define the position and

orientation of the animal in our application. �e other two selected keypoints: left ear

and right ear are often occluded and thus we treat themwith a secondary priority.

3.11.4 Augmentations of the CostMetric

�e complexity of the described procedure for producing cost matrix entries for all

pairwise combinations of detected body parts may result in extensive processing time

mostly due to the multi-step part affinity fields sampling procedure for each pair. If the

network is trained to produce the foregroundmask estimates y′
fg
, it can be used for

multiple purposes: first, all keypoints should belong to the foreground, second, all part

affinities must not pass through background areas as in our case, the instances are

defined as continuous regions in the image. �e only exception for that rule is the

presence of partial occlusion creating discontinuous regions. In that situation however,

the occluder should also belong to the foreground. To address both proposed

improvements, each heatmap and part affinity field estimate can be element-wise

130

multiplied by the estimated foreground binary mask.

y∗
kps,ck

= y′
fg
� ykps,ck ∀ck ∈ [0, . . . , Ck − 1] (3.59)

y∗
paf,cp = y′

paf
� ypaf,cp ∀cp ∈ [0, . . . , Cp − 1], (3.60)

where y∗
kps,ck

, y∗
paf,cp

are the resulting, masked estimates of the body part location

heatmaps and part affinities respectively,� is the element-wise multiplication

operation, ck, cp are the channel indices for the body part location and part affinity maps

respectively, andCk, Cp are the numbers of channels in each map.

It is important to stress that suchmethod heavily relies on the network’s capabilities

of estimating the foregroundmask and is particularly sensitive to false-negative values as

the element-wise multiplication effectively removes potential candidates. Special caution

is advised due to that sensitivity.

Additional terms can be introduced to the bipartite matching cost metricC. We

propose the dissimilarity based on the embedding vectors produced by the neural

network in y′
emb
. Since the network is trained to produce embedding vectors that are

consistent within a single instance but different among instances, a distance metric

could be derived from those embeddings directly. A sampling procedure at points

obtained as presented in equation 3.54 can be used for this task. Please note, that if

sampling only at the estimated locations of keypoints and not across the line joining

them, the value of smax = 2 can be used. Substitution of the part affinity field-based cost

for the one based on the embedding vectors is used in this work and referred to in

chapter 4 as theHybridmethod. Please refer to Figure 3.32 (d) which depicts the output of

the multi-dimensional embeddings used for matching in this scenario.

131

3.12 Semantic Instance Segmentation using Embeddings

�is section focuses on the use of embeddings in an attempt to segment images of

homogeneous group-housed animals into groups of pixels containing individual animals

given the input images. As described before in Section 3.9 those embeddings are a result

of image transformationmodeled by a neural network allowing for easy clustering.

K-means was selected as the underlying clustering mechanism due to its relatively high

performance to complexity ratio and wide adoption. We used the implementation

available in scikit.cluster python package.174

�ere are however a few drawbacks of this clustering method: 1) it requires the

number of cluster k to be known prior to clustering, and 2) its clustering performance

heavily relies on the initialization of the cluster centroids
175
(even with correct k

provided). To address concerns regarding the first issue, an attempt of guessing the

number of clusters is presented in section 4.5.3, but it is argued that for the described

application of pig tracking, it is safe to assume that the number of instances (clusters)

will be known. Cluster initialization issue however is not addressed directly as it is out of

scope of this research.

Figure 3.33 shows the input (a) and intermediate outputs generated during the

described process. First, the preprocessed image is fed forward through a neural network

to obtain the foregroundmask estimate y′
fg
and the embedding vectors y′

emb
. �en, the

foregroundmask is thresholded based on the thfg parameter. �e foreground-masked

embedding vectors are then clustered using the k-means algorithm producing labeling

used to separate pig instances.

When instance image extraction is of interest, additional smoothing of the instance

mask can be applied. Four examples of what could be considered a successful extraction

and four for the failure are presented in figure 3.34. When looking at successful examples

in the context of presented processing pipeline, it is visible, that pigs that are isolated and

132

(a) (b)

(c) (d)

Figure 3.33: Visualization of the intermediate representations of our approach to seman-

tic instance segmentation using embeddings. Input image (a), estimate of the semantic

(foreground) segmentation mask (b), PCA visualization of the embeddings masked by the

foreground (c), labels assigned to each out of the 14 segmented pigs (d).

oriented such that their backs are straight are more likely to produce proper outputs. On

the other hand, pigs laying down in a group or an unlikely textured one will more likely

fail.

133

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.34: Examples of successful (a-d) and unsuccessful (e-h) attempts to instance seg-

mentation using proposedmodel.

134

CHAPTER 4

Results

Ourmethod can be understood as a sequence of tasks, each with a set of

hyper-parameters. Conceptually, those tasks can be considered in the following order:

foregroundmask estimation, body part detection, part association estimation, pose

estimation, and instance segmentation. �is chapter contains results of qualitative and

quantitative evaluation of our method performing those tasks. To reduce the search

space of hyper-parameters controlling howmethods we take a greedy approach to

discover the best performing set of parameters at each step through appropriate

performance analyses. Selected parameters then get fixed and used in consecutive tasks.

We are using two neural network architectures in this work: OpenPose-like network

(OP) motivated by the systems developed for human pose estimation, and a UNET as it

belongs to the family of segmentation-friendly networks which has been successfully

used in our previous contributions.
160

Section 4.1 is dedicated to recalling the concept of Receiver Operating Characteristics

curves and statistics used for per-instance or per-pixel performance assessment. �ese

metrics appear throughout the chapter and are heavily emphasized in Section 4.2 - which

assesses the performance of the estimated foregroundmasks. �e ability to determine

which pixels belong to the objects of interest (pigs in this work, i.e. the foreground) and

which are part of the (static) background in a per-image fashion is a major factor

135

affecting most of the sub-tasks that contribute to the operation of the method.

Being inspired by and heavily borrowing frommethods used in human tracking, our

methods detect keypoints as one of the sub-tasks in order to (at least) identify the

number of instances visible in the picture. Evaluation of the keypoint detection is

presented in Section 4.3.

Like in the work of Cao et al.
161
and our previous approaches,

160
the associations

between keypoints (Part Affinity Fields) are explicitly modeled using the outputs of the

neural network and constitute the essential component of the pose estimator. In Section

4.4 we present the evaluation of Part Affinity Fields produced by each of our neural

networks: OP and UNET.

Our networks also produce pixel-level embedding vectors. �ose are used in two

scenarios: 1) as an alternative to Part Affinity Fields in our pose estimation method (the

Hybrid pose estimation method), and 2) as features used in Semantic Instance

Segmentation using k-means clustering. Section 4.5 contains the analysis of the

properties and performance of the embedding vectors produced by our neural networks:

OP and UNET.We used two loss functions to produce those embeddings: 1) a

discriminative loss function with parametric cluster margins
106
(method described

Section 3.9.2), and 2) our novel approach using silhouette score maximization (method

described in Section 3.9.3).

Culmination of this chapter is in the final two sections: 4.6 and 4.7. �e former

presents the analysis of the pose estimation in three scenarios: 1) study of the effects of

the selected representations, 2) pose estimation using keypoints and part affinity fields

(OpenPose method) for the comparative performance baseline, and 3) ourHybrid pose

estimation method using keypoints and embedding vectors. We use evaluation metrics

established in our previous work
160
and present the performance of four neural networks:

OPmargin, OPssmax, UNETmargin, and UNETssmax.

136

4.1 Receiver Operating Characteristics

Mask estimation and keypoint detection can be interpreted as binary classification tasks.

�us, a useful metric for assessment of their performance is through the Receiver

Operating Characteristic (ROC) curve. �e ROC curve represents detection performance

given the applied decision threshold. Given that the output of the classifier is a real

valued number between 0 and 1, where 0 represents false or lack of detection and 1

represents true or presence of detected object, and those values estimate the probability

distribution of the detection, one can apply ROCmethodology.

Let’s consider a binary constant Y ∈ {0, 1} representing the ground-truth, a

real-valued variable h representing the output of the probability model, and a real-valued

threshold variable t, the detector’s output Y ′ assumes the following values:

Y ′ =

 P, if h ≥ t

N, otherwise
(4.1)

Informally, the ROC analysis consists of varying the threshold t between 0 and 1 to

determine the number of agreements and disagreements between Y and Y ′. Table 4.1

shows all possible outcomes for the binary case. �e TP and TN indicate two types of

agreement (successfully detected and successfully rejected respectively). �e

disagreements are represented by FP (failed to reject) and FN (failed to detect).

Y ′
Y

P N

P TP FP
N FN TN

Table 4.1: Four considered detection outcomes for true values Y , and predicted values Y ′.

Outside of the Table 4.1, symbols TP, FP, FN, and TN will refer to the number of

events. Statistical metrics required for this analysis are: sensitivity and specificity.

137

Sensitivity, also known as True Positive Rate (TPR) or recall is defined as:

TPR =
TP

TP + FN
, (4.2)

where TP is the number of true positives, i.e. the elements that have been properly

classified, FN is the number of inccorrectly classified positives. FN corresponds to Type

II statistical error and is also referred to as amiss.

Specificity, also referred to as True Negative Rate (TNR) or specificity is defined as:

TNR =
TN

TN + FP
, (4.3)

where TN is the number of properly classified negatives, and FP is the number

incorrectly classified negatives.

An ROC curve is defined by plotting the False Positive Rate (FPR) on the x-axis and

true positive rate on the y-axis. FPR is defined as:

FPR = 1− TNR =
FP

FP + TN
(4.4)

Another metric commonly reported in literature is the Positive Predictive Value

(PPV) referred to as precision:

PPV =
TP

TP + FP
(4.5)

�e F1 statistic, also referred to as F-score or F-measure is a harmonic mean of

precision and recall and assumes 1 for perfect precision and recall, and 0 for worst. F1 is

defined as:

F1 = 2 · PPV · TPR
PPV + TPR

=
2TP

2TP + FP + FN
(4.6)

138

4.2 Foreground Segmentation Evaluation

Both of our neural networks (OP and UNET) were trained to produce multiple outputs:

keypoint location heatmaps, part affinity fields, embedding vectors and foreground

masks. Foregroundmask indicate which pixels belong to the objects of interest (pigs) and

which pixels belong to the background (elements of the environment, floor, pen, walls

etc.). �e analysis presented in this section is trying to answer four questions: 1) is there a

benefit to the use of foregroundmasks extracted from depth images?; 2) which model

produces better foregroundmask estimations under ideal conditions, and 3) what are the

optimal decision threshold values for foreground detection for each model?; and 4) at

which scale does the OPmodel yields best foregroundmask estimates.

To answer those questions we decided to resort to the ROC curve analysis, the F1

statistic (both explained in section 4.1), and the manually annotated evaluation dataset

(MFG110EVAL) described in Section 3.5.1. �is data set was created to represent the

deployment of the data collection systems used in this work accurately. We evaluated the

performance foreground estimation in three cases:

1. OP0: In this case we trained the foreground estimator part of the OPmodel

(Section 3.8.1) using only the synthetic foregroundmasks created from instance

annotations as described in Section 3.5,

2. OP1: In this case we trained the foreground estimator part of the OPmodel using

both the synthetic masks created from instance annotations and the ground truth

foregroundmasks extracted from depth images as described in Section 3.5.2.

3. UNET: In this case we trained the UNETmodel (described in Section 3.8.2) using

ground truth foregroundmasks extracted from depth images just like in the OP1

case.

139

For the OPmodel in OP0 and OP1 cases, the images were fed-forward at four scales,

each determined by the ratio of the parameterW representing the desired width of the

image at the model’s input to the width of the input image. �e heightH is adjusted

per-example based on the original image size and the determined scale as presented in

the example below.

Example 1. Consider a color image that iswidth = 1920 pixels wide and height = 1080

pixels tall represented, and a desired, target widthW = 1024. �en the scale s and

inferred heightH are calculated as proportions:

s =
W

width
=

1024

1920
≈ 0.53 (4.7)

H = height · s =
height ·W
width

=
1080 · 1024

1920
= 576 (4.8)

A set of target widths was chosen to be: {W} = {368, 512, 736, 1024}which was

motivated by the following rationale. First,W = 368was the size of the training patch,

W = 512 is a medium-resolution standard image size that is divisible by 8,W = 736 is

twice the size of the training patch, andW = 1024 represents the largest, high

resolution image size that can be processed on an a single GPU with 8GB of graphic

memory given the proposed architecture. UNET was trained usingW = 512 and is

tested with it as well. Each curve is estimated using a set of 100 threshold values between

0 ≤ threshold ≤ 1, spaced by 0.01. �is granularity allows for smooth curve visualization

and optimal threshold estimation.

�e corresponding ROC curves are presented in Figure 4.1. For each target widthW ,

the optimal threshold thoptim was determined as the point on the ROC curve that has the

smallest distance to the point (0, 1). �is provides the best balance between the ability to

accurately detect, and reject a foregroundmembership hypothesis. Additionally, the Area

140

under Curve (AUC) was calculated to assess the general performance of the detector. A

perfect detector would haveAUC = 1.

When comparing the AUC values reported in Figures 4.1 (a) and (b) for the OP0 and

OP1 cases respectively, it is visible, that even the worst case for OP1 (0.92 atW = 368)

outperforms the best case for OP0 (0.85 atW = 1024). Based on this finding we

determined that it is beneficial in our case to use foregroundmasks extracted from the

depth images. �e following analyses were performed using models trained using

foregroundmasks like in the OP1 case. �is means that we used both the synthetic

ground truth masks generated from annotations and the masks extracted from depth

images.

When looking at Figure 4.1 (b) it is apparent that the best operating conditions of the

OPmodel trained like in the OP1 case determined by the highest AUC of 0.96 are the

target widthW = 1024 and detection threshold th = 0.67.

When comparing Figures 4.1 (b) and (c) based on the AUC, it is visible that the OP

model trained in OP1 case provides higher AUC (0.96 atW = 1024) than the UNETmodel

(0.91) for the task of foregroundmask estimation. �us, it is determined that under ideal

conditions of optimal scale and threshold selection, the OPmodel trained like in OP1 case

outperforms the UNETmodel in the task of foregroundmask estimation.

Figure 4.1 also indicates that the best detection threshold for our UNET network is

0.01.

141

(a) (b)

(c)

Figure 4.1: Foregroundmask extraction evaluation using ROC curves for the three consid-

ered cases: OP0 (a), OP1 (b) and UNET (c). Evaluated usingMFG110EVAL dataset.

142

Subset W thoptim Precision Recall F1

A 368 0.59 0.43 0.81 0.56

A 512 0.59 0.47 0.80 0.59

A 736 0.56 0.52 0.84 0.64

A 1024 0.60 0.57 0.86 0.69
B 368 0.39 0.18 0.75 0.29

B 512 0.49 0.22 0.82 0.35

B 736 0.72 0.35 0.81 0.49

B 1024 0.76 0.41 0.84 0.55
C 368 0.42 0.29 0.77 0.42

C 512 0.58 0.42 0.81 0.56

C 736 0.59 0.46 0.84 0.59

C 1024 0.67 0.47 0.83 0.60
D 368 0.35 0.62 0.75 0.68

D 512 0.39 0.65 0.79 0.71

D 736 0.44 0.69 0.83 0.75
D 1024 0.55 0.68 0.83 0.75
E 368 0.52 0.19 0.78 0.31

E 512 0.55 0.22 0.77 0.34
E 736 0.59 0.20 0.70 0.32

E 1024 0.63 0.22 0.69 0.33

F 368 0.47 0.59 0.81 0.69
F 512 0.33 0.54 0.81 0.65

F 736 0.38 0.55 0.73 0.63

F 1024 0.44 0.56 0.74 0.64

G 368 0.47 0.77 0.87 0.82
G 512 0.40 0.71 0.82 0.76

G 736 0.41 0.65 0.78 0.71

G 1024 0.53 0.69 0.77 0.72

H 368 0.52 0.78 0.80 0.79

H 512 0.49 0.76 0.80 0.78

H 736 0.54 0.79 0.80 0.80

H 1024 0.58 0.80 0.82 0.81
I 368 0.41 0.06 0.79 0.12

I 512 0.54 0.09 0.80 0.15

I 736 0.66 0.15 0.84 0.25

I 1024 0.69 0.18 0.85 0.30
J 368 0.30 0.51 0.71 0.60

J 512 0.33 0.58 0.76 0.66
J 736 0.36 0.58 0.73 0.65

J 1024 0.40 0.59 0.73 0.65

K 368 0.36 0.39 0.82 0.53

K 512 0.37 0.45 0.87 0.59

K 736 0.39 0.49 0.83 0.61
K 1024 0.36 0.47 0.81 0.59

TOTAL 368 0.46 0.43 0.75 0.55

TOTAL 512 0.46 0.45 0.76 0.56

TOTAL 736 0.49 0.47 0.74 0.57

TOTAL 1024 0.53 0.49 0.75 0.59

Table 4.2: Foreground detector performance of theOPmodelwhen trained only using syn-

theticmasks generated fromannotations -OP0 case. MFG110EVALdatasetwasused in the

evaluation.

143

Subset W thoptim Precision Recall F1

A 368 0.67 0.62 0.86 0.72

A 512 0.74 0.72 0.89 0.79

A 736 0.76 0.78 0.91 0.84

A 1024 0.72 0.82 0.94 0.88
B 368 0.48 0.33 0.78 0.46

B 512 0.61 0.48 0.91 0.63

B 736 0.74 0.66 0.94 0.78

B 1024 0.75 0.73 0.95 0.82
C 368 0.59 0.55 0.88 0.67

C 512 0.66 0.65 0.91 0.76

C 736 0.73 0.74 0.93 0.82

C 1024 0.72 0.76 0.95 0.85
D 368 0.52 0.80 0.90 0.85

D 512 0.53 0.86 0.94 0.89

D 736 0.58 0.87 0.95 0.90

D 1024 0.58 0.87 0.94 0.91
E 368 0.79 0.32 0.91 0.47

E 512 0.79 0.42 0.93 0.58

E 736 0.81 0.49 0.94 0.64

E 1024 0.81 0.59 0.95 0.73
F 368 0.75 0.69 0.88 0.77

F 512 0.79 0.73 0.85 0.78

F 736 0.78 0.76 0.86 0.81
F 1024 0.75 0.75 0.85 0.80

G 368 0.78 0.79 0.92 0.85
G 512 0.73 0.81 0.88 0.84

G 736 0.74 0.83 0.86 0.84

G 1024 0.62 0.80 0.85 0.83

H 368 0.87 0.87 0.94 0.90
H 512 0.86 0.85 0.92 0.89

H 736 0.84 0.84 0.93 0.89

H 1024 0.80 0.87 0.91 0.89

I 368 0.27 0.13 0.87 0.22

I 512 0.65 0.38 0.94 0.54

I 736 0.66 0.49 0.95 0.65

I 1024 0.65 0.55 0.96 0.70
J 368 0.73 0.67 0.84 0.74

J 512 0.61 0.78 0.89 0.83

J 736 0.55 0.80 0.91 0.85

J 1024 0.50 0.82 0.92 0.86
K 368 0.69 0.56 0.90 0.69

K 512 0.70 0.68 0.93 0.79

K 736 0.73 0.72 0.92 0.81

K 1024 0.73 0.75 0.93 0.83
TOTAL 368 0.73 0.64 0.87 0.74

TOTAL 512 0.72 0.70 0.89 0.78

TOTAL 736 0.71 0.74 0.90 0.81

TOTAL 1024 0.67 0.76 0.91 0.83

Table 4.3: Foregrounddetectorperformanceof theOPmodelwhen trainedonboth the syn-

thetic foregroundmasks generated fromannotations and the foregroundmasks extracted

from the depth images - OP1 case. MFG110EVAL dataset was used in the evaluation.

144

(a) (b) (c)

Figure 4.2: Interesting cases of foreground masks depicted by sample images (top) and

their corresponding ground-truth masks(bottom) from the MFG110EVAL data set: subset

E for which performance improved most drastically (a), subset D for which the OP model

in OP1 case achieved the highest F1 score (b), and subset H for which all cases achieved

high F1 score.

Subset W thoptim Precision Recall F1

A 512 0.01 0.83 0.88 0.85

B 512 0.02 0.73 0.97 0.83

C 512 0.02 0.76 0.95 0.84

D 512 0.01 0.76 0.77 0.77

E 512 0.01 0.63 0.85 0.72

F 512 0.01 0.75 0.65 0.69

G 512 0.01 0.82 0.74 0.77

H 512 0.01 0.83 0.84 0.84

I 512 0.01 0.50 0.96 0.65

J 512 0.01 0.74 0.60 0.66

K 512 0.01 0.74 0.85 0.79

TOTAL 512 0.01 0.75 0.76 0.75

Table 4.4: Performance of the foreground detector of the UNET model when trained on

both the synthetic foreground masks generated from annotations and the foreground

masks extracted from the depth images - UNET case.

Numerical results for all cases are presented in Tables 4.2 and 4.3, and 4.4 for the

OP0, OP1, and UNET cases respectively.

It is important to remember we used the MFG110EVAL data set in this section which

was created from images captured across 11 deployments, where each deployment can be

considered as a separate subset. Please refer to Figure 3.12 in Section 3.5.1 for more detail.

145

Both, the overall and per-subset statistics are provided in order to determine the

applicability of the models for specific types of deployments. In order to determine the

optimal (or at least best given the test set) scale selection and decision threshold, the

tables also contain those parameters.

When comparing the per-subset results in Tables 4.2 and 4.3 for the OP0 and OP1

respectively it is visible that the performance was increased among all subsets. �emost

drastic change occurred for subset E atW = 1024 as the F1 score of 0.33 increased to

0.73with the main reason being the increase in precision from 0.22 to 0.59. A sample

image from subset E is presented in Figure 4.2 (a).

4.3 Evaluation of the Body Part Detector

We determine the location and orientation of pigs in the images using two pose estimation

methods described in Section 3.11 1) our reimplementation of OpenPose by Cao et al.
161

for pigs, and 2) our Hybrid method involving the use of the embeddings. Both of these

methods begin with the estimation of the locations of pigs body parts (shoulder and tail,

but also left ear and right ear) - referred to as keypoints. Conceptually, elements of our

method involved in locating the keypoints in images are referred to as keypoint detector or

body part detector interchangeably.

It is important to note that the pose estimation methods will fail immediately if no

keypoints are detected in the image. �is imposes a desire to minimize the number of

false negative detections. On the other hand, the method’s complexity is lower-bound by

O(nshoulder · ntail) as the method always considers all possible combinations of pairing

detected shoulders with tails. �is imposes a desire to minimize the number false

positive detections due to performance. Similarly to the analysis of the foreground

detector in Section 4.2, we are usingF1 statistic as ametric that represents a compromise

between detection and rejection.

146

�is section is dedicated to performance evaluation of the keypoint detector using

PDD2019 data set containing three subsets train, test:seen, and test:unseen. Forward

inference of themodel is ran for each image in test:seen and test:unseen at multiple multiple

target widthsW , threshold values thkp, and smoothing parameter of the peak detector σ.

Model’s keypoint output heatmaps y′
kps
are then processed by the peak detector

parameterized by th and σ to produce output formatted like the ground truth annotation

data described in section 3.3. �e parameters used in evaluation are listed in Table 4.5.

�e non-maximum-suppression-based processing of the network’s output is described

in section 3.11.1.

Parameter Tested values OPModel UNETModel Description

σ 1, 3, . . . , 13, 15 1 1 Peak detector smoothing

W 368, 512, 736, 1024 1024 512 Target width

dmax 0, 1, . . . , 50 45 45 Maxmatch distance

th
fg

0, . . . , 1, with 0.01 step 0.67 0.01 Foreground detection threshold

th
kp

0, . . . , 1, with 0.01 step 0.34 0.45 Keypoint detection threshold

Table 4.5: Keypoint / inference evaluation parameters tested and determined experimen-

tally.

Section 4.3.2 shows the evaluation of the spatial error in the produced keypoint

location estimates for both models. Since the processing involves the non-maximum

suppression operation parametrized by the smoothing kernel width σ, section 4.3.3

shows the effect of σ on the PPV of the detector. For the OPmodel architecture, it is

important to determine the optimal input size parametrized byW , section 4.3.4 presents

a short evaluation of PPV with respect to variableW . Finally, in Section 4.3.1, author

presents the analysis with respect to the variable keypoint detection threshold that leads

to the selection of thkp for each model used in the further analysis.

147

4.3.1 Keypoint Detection�reshold

Similar to the process presented in Section 4.2 we used statistics defined in Section 4.1,

namely precision, recall, and F1 to determine the optimal threshold value thkp. To do so

we fixed the values of other parameters and varied only thkp ∈ {0, 0.01, . . . , 1} to

determine the value that maximizes the F1 score. We performed this evaluation for both

OP and UNETmodels. �e fixed parameter values are presented in table 4.5. Results for

the OP and UNETmodels are presented in Figure 4.3. Numerical results are presented in

Tables 4.6 and 4.7 for the OP and UNET networks respectively.

OPmodel performs better on the keypoint detection task on both sets. We chose to

use the thkp = 0.4 for this model based on the fact, that F1 score will still be greater than

0.7when using it on the images like in test:seen images, and will reach peak performance

against inputs like from test:unseen images. Looking at very low score of the UNETmodel

against test:unseen image subset (d), we decided to use th = 0.45 based on the

highest-ranking threshold for the test:seen subset.

Keeping the settings fixed as listed in table 4.5, a per-keypoint evaluation was ran for

OP and UNETmodels. Results are presented in tables 4.6 and 4.7 respectively. Observing

presented values it is safe to draw a conclusion that model C over-fit to the training data

as it performs significantly poorer against the unseen images than the seen ones.

Subset Keypoint Precision Recall F1

Test:seen Left ear 0.73 0.70 0.71
Test:seen Right ear 0.72 0.68 0.70
Test:seen Shoulder 0.82 0.84 0.83
Test:seen Tail 0.86 0.85 0.85
Test:seen Left ear 0.84 0.51 0.64
Test:seen Right ear 0.81 0.48 0.60
Test:seen Shoulder 0.86 0.72 0.78
Test:seen Tail 0.87 0.75 0.81
Test:unseen Left ear 0.66 0.34 0.45
Test:unseen Right ear 0.68 0.36 0.47
Test:unseen Shoulder 0.75 0.45 0.56
Test:unseen Tail 0.69 0.46 0.55

Table 4.6: OP model keypoint detection performance with respect to the type of kypoint

with fixed σ = 1,W = 1024, dmax = 45, and th = 0.34.

148

Subset Keypoint Precision Recall F1

Train Left ear 0.89 0.61 0.75
Train Right ear 0.87 0.56 0.74
Train Shoulder 0.92 0.66 0.86
Train Tail 0.79 0.94 0.86

Test:seen Left ear 0.48 0.61 0.54
Test:seen Right ear 0.47 0.56 0.51
Test:seen Shoulder 0.66 0.66 0.66
Test:seen Tail 0.63 0.71 0.67
Test:unseen Left ear 0.13 0.16 0.15
Test:unseen Right ear 0.18 0.22 0.20
Test:unseen Shoulder 0.17 0.12 0.14
Test:unseen Tail 0.15 0.17 0.16

Table 4.7: UNET model keypoint detection performance with respect to the type of key-

point with fixed σ = 1,W = 512, dmax = 45, and th = 0.45 for three subsets of PDD2019
data set: train, test:seen, and test:unseen.

4.3.2 Spatial Accuracy of Keypoint Detection andDistance�reshold

Evaluation starts with overview of ability to detect keypoints whenmatched to ground

truth using linear assignment. �e goal of this step is to determine useful distance

bounds for keypoint matching for further evaluation. Figures 4.4 show the numerical

results for the union of sets test:seen and test:unseen for OP and UNETmodels. Observing

the figure leads to the following observations:

• Neither of themodels provide reliable sub-pixel detection overall, as not even 1% of

keypoints is detected when distance threshold of 1 pixel is selected.

• �eOPmodel outperforms the UNETmodel in the overall ability to detect

keypoints. Caution is however advised as the analysis does not show ability to

reject.

• In both cases, selection of a distance threshold of 45 pixels seems justifiable. It is

however important to note, that spatial accuracy of described method is lower than

in,
160
which in case of the OPmodel can be justified by 8× upsampling.

149

4.3.3 Keypoint peak detector smoothing kernel size

In case of sharp responses generated by the neural networks - particularly in scenarios

when a single-pixel indicators are used instead as ground-truth of gaussian kernels, it

may be necessary to post-process keypoint heatmaps with additional Gaussian

smoothing parametrized by σ. Here, an effect of such smoothing is presented over entire

test subset of PDD2019 to determine if such smoothing is necessary.

Results presented in Figures 4.5 (a) and (b) show the ability to detect keypoints based

on PPV with respect to varying σ for twomodels: OP and UNET respectively. It is seen,

that using a post-processing smoothing parameter σ > 1 does not increase the

performance. �us the value of σ = 1 is used in further evaluation.

4.3.4 Scale (target width) selection based on the keypoint detection per-

formance

Presented UNETmodel operates with fixed target width parameterW = 512, but the OP

model is designed to accept images adjust to different widthsW . Please note that we

used a greedy approach to estimate the best parameters for our method. In Section 4.2

we determined optimalW = 1024 for the OPmodel based on the performance evaluated

using F1 in the task of foregroundmask estimation. Given how important the keypoint

estimation is for the overall performance of the method, a cautious choice needs to be

made regarding the choice of parameterW . In this section we are evaluating

Result is presented in Figure 4.6 and the highest PPV was achieved atW = 1024,

which will be selected for further analysis of models relying on the OP architecture.

150

(a) (b)

(c) (d)

(e) (f)

Figure 4.3: Optimal keypoint detection threshold based on F1 score curves for two models: OP

(left column) and UNET (right column) for subsets of PDD2019 data set: train (top row), test:seen

(middle row), and test:unseen (bottom row).

151

(a) (b)

Figure 4.4: Percentage of total matches and PPV (precision) for OP (a), and UNET (b) ar-

chitecture.

(a) (b)

Figure 4.5: PPV as a function of image smoothing parameter σ in peak detector with dis-
tance threshold dmax45 pixels (determined in previous section) for OP (a), and UNET (b)
models.

Figure 4.6: PPV as a function ofW ∈ {368, 512, 736, 1024} for OP model with dmax = 45
pixels.

152

4.4 Part Affinity Estimation Evaluation

Using the inference parameters for the foreground and keypoint detection established in

previous sections and listed in Table 4.5, both models were evaluated using dissimilarity

metric presented in Section 3.11, Equation 3.57, but here, the considered vector pairs are

consisting of: 1) the ground-truth orientation between keypoints, and 2) sampled (part

affinity fields, y′
paf
) feature maps produced by the neural network. We follow the same

sampling method as presented in Section 3.11.3.

(a) (b) (c) (d) (e)

Figure 4.7: Depiction of the part affinity field sampling inputs: original image (a), shoul-

der keypoint heatmap (b), tail keypoint heatmap (c), x component of the part affinity field
corresponding to the Shoulder→Tail part association (d), y component of the part affinity
field corresponding to the Shoulder→ Tail part association.

Our models produce localized outputs that are expected to only be valid between the

keypoints of interest without the penalty elsewhere. �us, when sampling y′
paf
on two

channels corresponding to x, y components of the direction vector, it is expected, that all

samples along the entire path between the keypoints will have similar values. Figures 4.7

(d) and (e) present an example of the two channels representing the x and y components

of the part affinity field between the shoulder and tail keypoints.

�us, the similarity measure is computed between the ground truth, normalized

direction vector, and normalized sampled values. �e ground truth vector is obtained as

the difference in pixel positions of the two considered keypoints as visible in Figures 4.7

(a), (b) and (c). Results of our evaluation are presented in Table 4.8. �e average

dissimilarity and standard deviation statistics are calculated over all images in the

subset, and all sampled points within those images, for all instances with annotated

153

keypoint pairs. We used the PDD2019 dataset for evaluation in this Section.

It is important to point out, that the cosine similarity (as presented in Equation 3.56)

produces values bounded by−1 for colinear vectors with opposite direction, and 1 for

colinear vectors with equal direction with 0 for perpendicular vectors. When comparing

the results in Tables 4.8 and 4.9, particularly assignments different than Shoulder→ Tail,

the OPmodel achieves higher performance - even for the test:unseen dataset. �e

Shoulder→ Tail assignment was expected to be problematic due to high spatial extend

and ease of confusion between those two keypoints - particularly when pig heads are

hidden in the feeder during eating.

It is also important to note, that the cardinality of Left ear→Right ear assignments is

the smallest among all in the training set, which corresponds to its lower score when

compared to Left ear→ Shoulder and Right ear→ Shoulder.

�e UNETmodel was also trained to produce part affinity fields. Evaluation results

for the UNETmodel are presented in table 4.9. Unfortunately, the UNETmodel performs

significantly poorer than the OPmodel in this task as the standard deviation of the

similarity is significant or higher with respect to the mean.

Subset Keypoint pair Average similarity Standard deviation Sample size

Train Left ear→ Right ear 0.91 0.24 11851
Train Left ear→ Shoulder 0.95 0.18 15273
Train Right ear→ Shoulder 0.95 0.18 15227
Train Shoulder→ Tail 0.86 0.47 20497
Train Total 0.91 0.32 62848

Test:seen Left ear→ Right ear 0.91 0.23 1532
Test:seen Left ear→ Shoulder 0.95 0.19 1848
Test:seen Right ear→ Shoulder 0.94 0.21 1845
Test:seen Shoulder→ Tail 0.84 0.51 2367
Test:seen Total 0.91 0.34 7592
Test:unseen Left ear→ Right ear 0.78 0.42 950
Test:unseen Left ear→ Shoulder 0.81 0.46 1266
Test:unseen Right ear→ Shoulder 0.77 0.50 1244
Test:unseen Shoulder→ Tail 0.52 0.77 1723
Test:unseen Total 0.70 0.60 5183

Table 4.8: Part Affinity Fields Prediction evaluation results for the OP model withW =
1024 and smax = 10.

154

Subset Keypoint pair Average similarity Standard deviation Sample size

Train Left ear→ Right ear 0.56 0.70 11851
Train Left ear→ Shoulder 0.60 0.69 15273
Train Right ear→ Shoulder 0.60 0.69 15227
Train Shoulder→ Tail 0.65 0.70 20497
Train Total 0.61 0.70 62848

Test:seen Left ear→ Right ear 0.38 0.67 1532
Test:seen Left ear→ Shoulder 0.44 0.68 1848
Test:seen Right ear→ Shoulder 0.44 0.68 1845
Test:seen Shoulder→ Tail 0.67 0.61 2367
Test:seen Total 0.54 0.65 7592
Test:unseen Left ear→ Right ear 0.15 0.70 950
Test:unseen Left ear→ Shoulder 0.09 0.72 1266
Test:unseen Right ear→ Shoulder 0.05 0.73 1244
Test:unseen Shoulder→ Tail 0.19 0.76 1723
Test:unseen Total 0.18 0.73 5183

Table 4.9: Part Affinity Prediction evaluation results for the UNET model withW = 512
and smax = 10.

4.5 Embeddings Analysis

Both, the OP and UNET architectures were trained to produce embedding vectors using

two different loss functions: 1) direct-silhouette score maximization described in Section

3.9.2 and referenced using ssmax subscript, and 2) discriminative loss with parametric

margin described in Section 3.9.3 and referenced using margin subscript.

In both cases the embeddings were trained in a weakly-supervised fashion based on

pixel-level membership assignments represented as image (as described in Section 3.4)

with custom loss functions penalizing inter-instance mean closeness, andminimizing

the intra-instance spread of embedding values. It was expected, that suchmethod would

yield multi-channel feature maps suitable for instance-level segmentation based on

clustering alone. To be able to additionally bridge the gap between the pose estimation

and semantic segmentation tasks in the context of animal tracking, the embedding

vectors were anticipated to have the potential to augment the components of part

matching cost (as described in Section 3.11.4) or become the sole contributor to it.

First, in Section 4.5.1 we present the assessment of our models’ ability to produce

embedding features suitable for clustering using cohesion and separation metrics. �en,

in Section 4.5.2 we explain the learned embedding vectors in terms of intuitively

155

engineered features based on visual clues. We perform a correlation-based analysis while

acknowledging the homogeneous nature of the tracked objects (pigs). In Section 4.5.3 we

evaluate our method’s ability to estimate the number of foreground objects in the image

based on the embedding vectors using k-means clustering and silhouette score.

To finalize the performance evaluation of the embedding vectors, Section 4.6

presents the effect of incorporating them in the hybrid pose estimation method.

4.5.1 Within-instance and between-instances embedding analysis

�e first step of the analysis is to determine our loss functions described in Section 3.9

produce results in accord with our expectations; particularly if the embedding variation

within the instance (Equation 4.9) is smaller than Euclidean distances between instance

cluster means (Equation 4.10).

For all instances in the subsets test:seen and test:unseenwe calculated the average

per-instance mean of the difference between the cluster mean and the average

inter-instance distances. Use of those statistics is motivated by the silhouette score

commonly used in statistics to validate the number of clusters present in the data
176
and

the parts of theLmargin loss function described in Section 3.9.3.

�e followingmetrics are used in this analysis:

dwithin =
1

K

K−1∑
k=0

1

Pk

nk−1∑
j=0

‖µk − ŷemb,j‖ , (4.9)

whereK is the number of ground-truth instances, nk is the number of pixels belonging to

the instance k, µk is the average predicted embedding vector for instance k, ŷemb,j is the

pixel of predicted embedding feature map indexed by j such that it belongs to instance k.

dbetween =
1

K(K − 1)

K−1∑
k=0

K−1∑
j=0

1(j 6= k) · ‖µk − µj‖ , (4.10)

156

whereK is the number of instances, k, j are the indices of the instances, with

correspondingmean embedding vectorsmuk, µj.

�ose metrics are then calculated for each image in the PDD2019 dataset and

averaged to produce values in table 4.10. Small values of dwithin indicate good cohesion of

the produced clusters as the cluster members are close to the mean. High values of

dbetween indicate good separation as the means of the clusters are far apart. Additionally,

the average silhouette score ss (described in Section 3.9.1) is provided as an additional

measure for the quality of the clustering.

When observing the values in Table 4.10, it is visible, that the UNETmodel performs

remarkably better than our OPmodel in the task of producing multi-dimensional

embeddings suitable for easy clustering. It is worth to note, that OPmodel was able to

produce clusters with small dwithin in relation to dbetween but the low silhouette score

indicates that the clusters are poorly formed.

Model Subset avg. dwithin avg. dbetween avg. ss

OPssmax train 0.18 1.83 0.45
OPssmax test:seen 0.19 1.64 0.43
OPssmax test:unseen 0.22 1.12 0.30

OPmargin train 0.58 4.02 0.46
OPmargin test:seen 0.61 3.76 0.44
OPmargin test:unseen 0.62 2.77 0.36

UNETssmax train 0.08 3.11 0.89
UNETssmax test:seen 0.09 3.21 0.88
UNETssmax test:unseen 0.24 2.87 0.70

UNETmargin train 0.21 3.51 0.82
UNETmargin test:seen 0.22 3.54 0.82
UNETmargin test:unseen 0.42 3.19 0.63

Table 4.10: Average dwithin, dbetween and silhouette scores of the embeddings produced by
OP and UNETmodels over all instances in PDD2019 dataset.

To get a better understanding of the embedding vectors produced by both models,

additional evaluation step was performed to observe the relationship between the

number of instances presented in the image and presented performance metrics. �eir

correlation with respect to the number of instances is presented in Table 4.11.

157

Model Subset rwithin rbetween rss
OPssmax Train −0.07 0.54 −0.71
OPssmax Test:seen 0.19 0.74 −0.63
OPssmax Test:unseen −0.93 0.70 0.91
OPmargin Train −0.07 0.54 −0.71
OPmargin Test:seen 0.19 0.74 −0.63
OPmargin Test:unseen −0.93 0.70 0.91

UNETssmax Train −0.04 0.20 −0.74
UNETssmax Test:seen −0.11 0.12 −0.79
UNETssmax Test:unseen −0.94 −0.13 0.84
UNETmargin Train −0.68 0.73 −0.83
UNETmargin Test:seen −0.52 0.44 −0.81
UNETmargin Test:unseen −0.87 0.43 0.80

Table 4.11: Pearson’s correlation coefficients betweennumberof instances in the imageand

within cluster variation dwithin (rwithin), distance between cluster means dbetween (rbetween),
and silhouette score (rss) for OP and UNETmodels.

Ideally, the dwithin would not be correlated with the number of instances. �is would

mean, that the givenmethod can produce embeddings with high cluster cohesion for

each instance without overlapping with another instance. Also, it would be beneficial to

increase the spread among the cluster means as the number of instances in the image

increases.

�is would be confirmed by positive correlation between dinter and the number of

instances. Silhouette score should be unaffected or it should not decrease as the number

of instances increases.

When observing values presented in Table 4.11 it is visible that the rwithin assumes

mostly low values for the train and test:seen subsets for the OPmodel. Values for the

UNET architecture indicate that UNET produces clusters that decrease rwithin as the

number of instances increases which is the desired behavior. When looking at the rbetween

models tend to increase the separation between the clusters as the number of clusters

increases which is the desired behavior. When looking at the silhouette score it seems like

it does decrease as the number of clusters increases which indicates the difficulty in

separating instances whenmore of them are present.

158

(a) (b)

(c) (d)

(e) (f)

Figure 4.8: Performance of the OPmodels indicated by averages of dintra, dinter, and sswith
respect to the number of instances visible in the annotated images for all images (a), (b),

test:seen (c), (d), and test:unseen (e), (f). OPssmax presented in (a), (c), and (e), and OPmargin

in (b), (d), and (f).

159

(a) (b)

(c) (d)

(e) (f)

Figure 4.9: Performance of the UNET models indicated by averages of dintra, dinter, and ss
with respect to the number of instances visible in the annotated images for all images (a),

(b), test:seen (c), (d), and test:unseen (e), (f). UNETssmax presented in (a), (c), and (e), and

UNETmargin in (b), (d), and (f).

160

4.5.2 Correlationwith imageposition, orientation, size, and color prop-

erties

During preliminary evaluation, it was noticed that the embeddings trained in a

weakly-supervised fashion exhibit a tendency to capture the image position of the

represented instance. �is observation was one of the reasons of training the UNET

model as a different architecture than OP for which this property was observed.

Ideally, only some portion of the embedding vectors would be correlated to the

position and orientation and the rest would grasp other properties inherent to the

instance but potentially different among instances. Separation of the spatial properties

(location) frommore subtle ones (specific intricate features of the object itself) could

potentially yield a set of features allowing for distinguishing instances that appear

visually identical and provide a solution for tracking of homogeneous objects. In this

section we correlation coefficient to understand the properties of the per-instance mean

embedding vectors. We correlate the the mean embedding vector with the following

(arbitrarily selected) engineered features:

• posx, posy - Image position represented by x,y pixel coordinates scaled by the

inverse of image size to produce values between 0 and 1,

• orix, oriy - 2-dimensional normalized instance orientation vector (like described in

Section 3.6),

• size - Size of the instance represented by the norm of the vector between shoulder

and tail of the instance,

• col - Average color of the instance represented as average hue component of the

HSV-encoded part of the image image containing the instance,

• σH , σS, σV - standard deviations in the HSV color space as an attempt to capture

texture-dependent correspondences.

161

Choice of HSV encoding was motivated by its property of encapsulating chromatic

properties within a single property: hue, while separating it from the light intensity:

value, and saturation, which is not the case when using RGB encoding. Since this step of

evaluation explores values of the correlation coefficient, the scale of properties is not of

concern as it is taken into account during calculation. �us, no additional scaling is

required or applied.

Tables 4.12 through 4.15 contain the Pearson’s correlation coefficients extracted from

the correlation matrices formulated from concatenating the embedding vectors for OP

and UNETmodels’ outputs and properties listed above. In all cases it is apparent that the

embedding vectors correlate strongly with the position in the image. �e values with

maximummagnitude are highlighted in the presented Tables. Additionally, the

correlation matrices are presented in Figures 4.10 though 4.11. �e only exception is

visible in table 4.13, where emb0, emb2, and emb10 vectors correlate with the color feature

for the test:unseen dataset.

test:seen test:unseen

Figure 4.10: Correlation matrices of the embedding vectors concatenated with engi-

neered properties described in Section 4.5.2 for the OPmarginmodel two test subsets of the

PDD2019 dataset (test:seen, test:unseen).

We offer a visual inspection presented in Figure 4.12. We calculated the embeddings

162

posx posy orix oriy size col σH σS σV
emb0 0.12 0.71 −0.01 −0.07 0.15 0.05 0.24 0.11 0.07
emb1 0.25 0.76 −0.02 −0.13 −0.04 −0.04 0.20 0.09 0.00
emb2 −0.36 0.48 −0.06 −0.12 −0.15 −0.13 0.02 0.00 −0.10
emb3 0.00 -0.84 0.04 0.13 −0.01 0.04 −0.20 −0.10 −0.00
emb4 0.35 -0.71 0.06 0.12 −0.00 0.05 −0.13 −0.06 0.02
emb5 0.05 -0.80 0.05 0.14 0.07 0.08 −0.16 −0.08 0.03
emb6 -0.57 −0.37 −0.02 0.07 0.09 0.02 −0.13 −0.06 −0.01
emb7 0.11 0.78 −0.02 −0.09 0.10 0.03 0.23 0.11 0.05
emb8 0.60 0.24 0.03 −0.02 0.05 0.05 0.15 0.07 0.06
emb9 0.57 −0.25 0.04 0.00 −0.14 −0.01 −0.04 −0.02 −0.01
emb10 0.12 0.70 −0.01 −0.06 0.16 0.06 0.24 0.11 0.08
emb11 0.62 −0.26 0.05 0.04 −0.01 0.04 0.02 −0.00 0.03

Table 4.12: Section of the correlationmatrix between embeddings producedby theOPmargin

model and image properties of the instances for the test:seen subset.

posx posy orix oriy size col σH σS σV
emb0 0.01 0.36 −0.00 0.01 0.22 -0.54 −0.12 −0.14 −0.04
emb1 0.28 0.71 0.00 −0.08 0.10 0.05 0.11 0.08 0.02
emb2 −0.27 0.47 −0.00 −0.11 −0.08 0.49 0.15 0.13 0.04
emb3 0.07 -0.76 −0.00 0.09 −0.14 0.05 −0.04 −0.01 0.00
emb4 0.46 -0.61 −0.00 0.10 −0.07 −0.07 −0.02 0.01 0.00
emb5 0.07 -0.76 0.00 0.12 −0.04 −0.27 −0.13 −0.10 −0.04
emb6 -0.63 −0.33 0.00 0.03 −0.03 −0.13 −0.14 −0.14 −0.04
emb7 0.03 0.55 −0.00 −0.02 0.21 −0.39 −0.06 −0.09 −0.02
emb8 0.60 0.10 −0.01 0.05 0.11 −0.29 −0.00 −0.01 −0.00
emb9 0.66 −0.06 −0.00 0.00 −0.08 0.27 0.15 0.17 0.05
emb10 0.01 0.35 −0.00 0.01 0.23 -0.55 −0.12 −0.15 −0.05
emb11 0.67 −0.21 −0.01 0.07 0.02 −0.13 0.03 0.04 0.00

Table 4.13: Section of the correlationmatrix between embeddings produced by theOPmargin

model and image properties of the instances for the test:unseen subset.

test:seen test:unseen

Figure 4.11: Correlation matrices of the embedding vectors concatenated with engineered

properties described in Section 4.5.2 for the UNETmargin model two test subsets of the

PDD2019 dataset (test:seen, test:unseen).

163

posx posy orix oriy size col σH σS σV
emb0 0.58 0.58 −0.05 −0.13 0.02 0.04 0.19 0.10 0.08
emb1 −0.33 0.80 −0.01 −0.13 0.03 −0.05 0.18 0.10 0.04
emb2 -0.87 0.18 0.02 −0.07 0.04 −0.09 −0.05 −0.01 −0.04
emb3 0.07 -0.08 0.07 0.01 0.07 −0.03 −0.03 −0.01 −0.02
emb4 -0.79 0.17 0.06 −0.10 0.02 −0.11 0.02 −0.03 −0.09
emb5 0.87 −0.17 −0.05 0.09 −0.04 0.11 −0.02 0.03 0.06
emb6 −0.11 0.88 −0.05 −0.28 −0.01 −0.05 0.22 0.08 −0.03
emb7 −0.05 0.82 −0.06 −0.23 −0.03 −0.05 0.17 0.06 −0.05
emb8 −0.01 -0.15 0.04 −0.03 0.09 0.09 −0.06 −0.03 0.00
emb9 −0.08 −0.08 −0.04 0.01 −0.08 0.01 −0.05 −0.11 -0.15
emb10 -0.79 0.20 0.07 −0.06 0.03 −0.08 −0.07 0.03 −0.01
emb11 -0.60 −0.58 0.10 0.19 0.01 −0.05 −0.17 −0.07 −0.03

Table 4.14: Section of the correlation matrix between embeddings produced by the

UNETmarginmodel and image properties of the instances for the test:seen subset.

posx posy orix oriy size col σH σS σV
emb0 0.67 0.56 −0.02 −0.05 0.06 0.08 0.13 0.11 0.09
emb1 −0.30 0.76 0.07 −0.09 0.12 0.06 0.05 0.05 0.13
emb2 -0.89 0.14 0.14 −0.05 0.06 −0.02 −0.05 −0.07 −0.00
emb3 0.17 0.02 0.03 0.05 0.01 -0.19 −0.12 −0.11 −0.14
emb4 -0.83 0.12 0.08 −0.02 0.01 0.02 −0.05 −0.08 −0.05
emb5 0.89 −0.14 −0.12 0.03 −0.05 −0.01 0.03 0.06 0.01
emb6 −0.14 0.87 0.05 −0.16 0.04 0.10 0.03 0.02 −0.03
emb7 −0.07 0.82 0.04 −0.18 0.03 0.09 0.02 −0.00 −0.07
emb8 −0.10 −0.05 −0.02 −0.03 −0.02 0.20 0.12 0.13 0.18
emb9 -0.19 −0.08 −0.02 −0.03 −0.11 0.07 −0.02 −0.05 −0.13
emb10 -0.79 0.14 0.11 −0.07 0.07 −0.03 −0.07 −0.07 0.04
emb11 -0.68 −0.58 0.06 0.07 −0.03 −0.04 −0.08 −0.07 0.01

Table 4.15: Section of the correlation matrix between embeddings produced by the

UNETmarginmodel and image properties of the instances for the test:unseen subset.

for all animal instances in all images in the PIGSEG96 dataset using UNETmargin network.

We concatenated the obtained embedding vectors forming the n× C matrixAwith n

being the number of all instances andC = 12 being the number of embedding channels.

We treatedmatrixA as an ensemble of all embeddings in the set and performed Principal

Component Analysis using the covariance matrix. We used those principal components

to reduce the number of representation dimensions from 12 to 3 to encode it using RGB

color images and display the middle row of Figure 4.12.

�e goals was to illustrate what happens to the embeddings as we change the

position in the image. We introduce the change in position by rotating the image around

its center by 0◦, 45◦, and 90◦. As visible in Figure 4.12 the embeddings corresponding the

animal indicated with the green arrow change color from light green to light pink tomore

pronounced pink. �is indicates that the same instance is not globally encoded using our

164

(a) (b) (c)

No rotation 45◦ rotation 90◦ rotation

Figure 4.12: Illustrationof the embedding vectors following theposition in the imageusing

PrincipalComponentAnalysis andexample#1 fromthePIGSEG96dataset. In rows: the in-

put image (top), visualization of the embeddings using RGB color components via dimen-

sionality reduction using PCA (middle), ground-truth labels from the PIGSEG96 dataset

(bottom). In columns: original pen scenario with no clockwise rotation applied (a), im-

age and ground truthwith applied 45◦ clockwise rotation (b), and image and ground truth
with applied 90◦ degree rotation. We use green arrows to indicate the same instance in all
images.

method but rather expressed in relation to the image position or the environment. �is

finding confirms the previous observations based on Tables 4.12 through 4.15.

4.5.3 Number of Instances Estimation through Cluster Analysis of the

Embedding Vectors

When considering total reliance on embedding vectors produced by our neural networks

(OP and UNET) for instance segmentation, it is important to determine if those

embedding vectors can be properly clustered into the number of instances visible in the

images. Findings in Section 4.5.1 indicate the potential of the produced outputs to

165

generate separable instances using clustering. We decided to use k-means clustering in

our work due to its simplicity. Finding an optimal number of cluster centers (k) prior to

performing the actual clustering is a challenging and necessary task for certain

applications.
175
It is important to note that however accurate the automatic instance

counting is, the number of animals held in the pen was usually constant during the trials

for which the data used here was collected. �us, one could set the number of tracked

instances as a deployment-specific, fixed parameter. �e presence of occlusions however

affects the number of visible instances, thus making the automatic number of instances

estimation useful.

By design however, the method should be (at least partially) able to estimate the

number of clusters present in the embeddingmap y′
emb
. To determine if that is the case, a

post-clustering silhouette score-based method is used to determine the best number of

clusters. Four tiers are considered: Tier 0 requires the number of instances to be exactly

equal to the ground truth, Tier 1 allows for a difference of a single instance, Tier 2 allows

2, and Tier 3 allows mistakes of 3 instances. �e total number of samples is presented to

provide more context to the performance metric.

�e accuracy is assessed by the ratio of the number of images for which the

estimated number of instances lies within each tier to the total number of images

containing that true number of instances.

�e results are presented in Table 4.16 through 4.19. �e results are also presented in

Figures 4.13 through 4.14. Both models trained usingLmargin achieve higher tier 0

accuracy as visible in Figures 4.13 (c) and 4.14 (c). Results for the number of instances

higher than 15 for the test:seen subset indicate that the performance follows the

distribution of the number of instances in the dataset shown in Figure 3.3.

Our semantic instance segmentation method relies on how exact the estimation of

the number of instances is. When observing results presented in this Section we conclude

that we can rely on the selected method of estimation number of clusters reliably.

166

(a) (b)

(c) (d)

Figure 4.13: Accuracy of instance number estimation based on the silhouette score of the

labeling produced by applying the k-means algorithm to the embedding outputs of the OP

models: OPssmax on test:seen (a), OPssmax on test:unseen (b), OPmargin on test:seen (c), and

OPmargin on test:unseen (d).

167

(a) (b)

(c) (d)

Figure 4.14: Accuracy of instance number estimation based on the silhouette score of the

labeling produced by applying the k-means algorithm to the embedding outputs of the

UNET models: UNETssmax on test:seen (a), UNETssmax on test:unseen (b), UNETmargin on

test:seen (c), and UNETmargin on test:unseen (d).

168

Subset # of instances Tier 0 Tier 1 Tier 2 Tier 3 # of samples

Test:seen 14 0.09 0.19 0.39 0.51 57
Test:seen 6 0.00 0.00 0.00 0.00 36
Test:seen 11 0.04 0.11 0.25 0.29 28
Test:seen 15 0.05 0.24 0.33 0.38 21
Test:seen 8 0.00 0.06 0.06 0.06 18
Test:seen 4 0.00 0.00 1.00 1.00 12
Test:seen 29 0.14 0.29 0.43 0.57 7
Test:seen 20 0.00 0.20 0.20 0.40 5
Test:seen 9 0.00 0.00 0.25 0.25 4
Test:seen 30 0.00 0.00 0.33 0.67 3
Test:seen 13 0.00 0.00 0.00 0.00 2
Test:seen 10 0.00 0.00 0.00 0.00 1
Test:seen 5 0.00 0.00 0.00 1.00 1
Test:unseen 7 0.00 0.00 0.00 0.00 48
Test:unseen 10 0.00 0.06 0.17 0.30 47
Test:unseen 11 0.00 0.09 0.16 0.20 45
Test:unseen 8 0.00 0.00 0.03 0.20 30
Test:unseen 6 0.00 0.00 0.00 0.00 17
Test:unseen 5 0.00 0.00 0.00 1.00 4
Test:unseen 9 0.00 0.00 0.00 0.00 4

Table 4.16: Accuracy of estimation of the number of instances present in the image with

respect to the number of ground-truth instances separated into 4 tiers - sorted in the de-

scending order of the number of annotated samples. Clustering performed on embed-

dings produced by OPssmaxmodel.

Subset # of instances Tier 0 Tier 1 Tier 2 Tier 3 # of samples

Test:seen 4 0.00 0.00 1.00 1.00 12
Test:seen 5 0.00 0.00 0.00 1.00 1
Test:seen 6 0.00 0.00 0.00 0.00 36
Test:seen 8 0.00 0.00 0.00 0.28 18
Test:seen 9 0.00 0.25 0.50 0.50 4
Test:seen 10 0.00 0.00 1.00 1.00 1
Test:seen 11 0.07 0.10 0.10 0.41 29
Test:seen 13 0.00 0.00 0.00 0.00 2
Test:seen 14 0.05 0.20 0.27 0.47 60
Test:seen 15 0.05 0.14 0.48 0.71 21
Test:seen 20 0.20 0.40 0.60 0.60 5
Test:seen 29 0.00 0.00 0.14 0.29 7
Test:seen 30 0.00 0.00 0.00 0.33 3
Test:unseen 5 0.00 0.00 0.00 1.00 4
Test:unseen 6 0.00 0.00 0.00 0.00 17
Test:unseen 7 0.00 0.00 0.00 0.00 49
Test:unseen 8 0.00 0.10 0.20 0.40 30
Test:unseen 9 0.00 0.25 0.25 0.25 4
Test:unseen 10 0.06 0.06 0.11 0.21 47
Test:unseen 11 0.18 0.20 0.27 0.47 45

Table 4.17: Accuracy of estimation of the number of instances present in the image with

respect to the number of ground-truth instances separated into 4 tiers - sorted in the de-

scending order of the number of annotated samples. Clustering performed on embed-

dings produced by OPmarginmodel.

169

Subset # of instances Tier 0 Tier 1 Tier 2 Tier 3 # of samples

Test:seen 14 0.20 0.63 0.85 0.95 60
Test:seen 6 0.00 0.00 0.00 0.00 36
Test:seen 11 0.48 0.74 0.96 1.00 27
Test:seen 15 0.29 0.81 0.95 0.95 21
Test:seen 8 0.28 0.78 0.94 0.94 18
Test:seen 4 0.00 0.00 1.00 1.00 12
Test:seen 29 0.00 0.29 0.71 1.00 7
Test:seen 20 0.20 0.40 0.60 0.60 5
Test:seen 9 0.00 0.25 0.75 0.75 4
Test:seen 10 0.33 1.00 1.00 1.00 3
Test:seen 30 0.00 0.67 0.67 0.67 3
Test:seen 13 0.50 1.00 1.00 1.00 2
Test:seen 5 0.00 0.00 0.00 1.00 1
Test:seen 12 0.00 0.00 0.00 0.00 1
Test:unseen 7 0.00 0.00 0.00 0.00 50
Test:unseen 10 0.15 0.35 0.44 0.67 48
Test:unseen 11 0.29 0.47 0.67 0.78 45
Test:unseen 8 0.10 0.30 0.43 0.70 30
Test:unseen 6 0.00 0.00 0.00 0.00 17
Test:unseen 5 0.00 0.00 0.00 1.00 4
Test:unseen 9 0.00 0.25 0.25 0.50 4

Table 4.18: Accuracy of estimation of the number of instances present in the image with

respect to the number of ground-truth instances separated into 4 tiers - sorted in the de-

scending order of the number of annotated samples. Clustering performed on embed-

dings produced by UNETssmaxmodel.

Subset # of instances Tier 0 Tier 1 Tier 2 Tier 3 # of samples

Test:seen 14 0.40 0.78 0.93 0.98 60
Test:seen 6 0.00 0.00 0.00 0.00 36
Test:seen 11 0.67 0.81 1.00 1.00 27
Test:seen 15 0.29 0.57 0.81 0.86 21
Test:seen 8 0.72 0.89 1.00 1.00 18
Test:seen 4 0.00 0.00 1.00 1.00 12
Test:seen 29 0.00 0.29 0.43 0.57 7
Test:seen 20 0.00 0.00 0.60 0.80 5
Test:seen 9 1.00 1.00 1.00 1.00 4
Test:seen 10 0.33 1.00 1.00 1.00 3
Test:seen 30 0.67 0.67 0.67 1.00 3
Test:seen 13 0.00 0.50 1.00 1.00 2
Test:seen 5 0.00 0.00 0.00 1.00 1
Test:seen 12 0.00 0.00 0.00 0.00 1
Test:unseen 7 0.00 0.00 0.00 0.00 50
Test:unseen 10 0.15 0.38 0.65 0.77 48
Test:unseen 11 0.20 0.51 0.64 0.89 45
Test:unseen 8 0.17 0.43 0.57 0.73 30
Test:unseen 6 0.00 0.00 0.00 0.00 17
Test:unseen 5 0.00 0.00 0.00 1.00 4
Test:unseen 9 0.00 0.00 0.00 0.75 4

Table 4.19: Accuracy of estimation of the number of instances present in the image with

respect to the number of ground-truth instances separated into 4 tiers - sorted in the de-

scending order of the number of annotated samples. Clustering performed on embed-

dings produced by UNETmarginmodel.

170

4.6 Pose Estimation Evaluation

Two strategies for Pose Estimation are presented in this work: 1) OpenPose-based

baseline method relying on body part detections and part-affinity fields, and 2) a hybrid

method based on OpenPose but substituting the Part Affinity Field-based cost for

embedding vector matching.

Let us recall that in the task of pose estimation the goal is to determine the location

and orientation of each instance (pig) in each given image. Although the models used in

this work were designed to detect four body parts: left ear, right ear, shoulder and tail,

only the last two are required to completely determine the necessary instance parameters.

�is decision is motivated by the results in Section 4.3.1 confirming that shoulder and tail

are the highest scoring keypoints and also, as mentioned in previous work establishing

the dataset used here,
160
special care was taken to ensure the quality of the annotation of

those keypoints specifically. Using such simplification, each (pig) instance is represented

by a pair of shoulder and tail coordinates, such that the instance matching is performed

over a set ofM estimated shoulder-tail pairs

{
(ŝ0, t̂0), . . . , (ŝM−1, t̂M−1)

}
, and a ground

truth set ofN annotations {(s0, t0), . . . , (sM−1, tM−1)}. An association method is

necessary here as the predicted pixel coordinates will not likely contain the exact same

values as the ground truth due to spatial inaccuracies as presented in section 4.3.2.

Statistics based on both HungarianMatching (HM) and Cross CheckMatching

(CCM)methods are used in the evaluation of the hybrid and baseline methods.

Unconstrained HungarianMatching (Section 3.11.2) allows for assignment between

far-away instances in order to minimize the global cost of the entire solution.
160
One way

to mitigate that would be to constrain the maximum allowed distance of matching based

on prior statistics but this would depend image scale and introduce additional

parameters. To avoid that, the CCM is used as in the work of Psota et al.
160
CCM is a strict

consistency metric, where the match between the ground truth instance and predicted

171

instance is established if and only if they are each others’ (respective) minimum cost

matches. Formally, two instances n andmmatch if and only if:

m = arg min
m∈{0,...,M−1}

(
‖sn − ŝm‖+

∥∥tn − t̂m∥∥) ,
n = arg min

n∈{0,...,N−1}

(
‖sn − ŝm‖+

∥∥tn − t̂m∥∥) , (4.11)

where ‖x‖ operation denotes the L2 norm.

4.6.1 Performance ceiling due to representation

To establish the numerical upper-bounds, and determine if the data representations

themselves contribute negatively to the methods’ performance, the OpenPose and Hybrid

methods were evaluated using ground-truth inputs instead of the predictions first.

We encode the keypoint locations as described in Section 3.3 and part affinity fields

like described in Section 3.6. We obtain the results by processing encoded keypoints

using non-maximum-suppression as described in Section 3.11.1 and part affinity fields

using the sampling procedure described in Section 3.11.3. We combine the shoulder and

tail keypoints using bipartite matching like described in Section 3.11.2 to obtain object

detections. Wematch the keypoints using twomethods: 1) using sampled part affinity

fields (PAF) and using equivalence of the identity labels (IDs). We use the identity labels

to simulate the behavior of theHybridmethod in the best case scenario. We thenmatch

those detections to the ground-truth using HungarianMatching and CCM.We run this

analysis for the three subsets of PDD2019 dataset: train, test:seen and test:unseen. �e

results for all three data sets are presented in Table 4.20.

Selected failure cases were picked to illustrate the sources of non-perfect

performance presented in table 4.20 and presented in figure 4.15. �e cases were selected

using visual inspection from the set of images contributing to the number of False

172

Set Matching TP FP FN Precision Recall F1

train OpenPose (baseline w. PAF), CCM 19831 181 511 0.991 0.975 0.983
train OpenPose (baseline w. PAF), HM 19991 21 351 0.999 0.983 0.991
train OpenPose (baseline w. IDs), CCM 19429 583 913 0.971 0.955 0.963
train OpenPose (baseline w. IDs), HM 19991 21 351 0.999 0.983 0.991

test:seen OpenPose (baseline w. PAF), CCM 2265 20 38 0.991 0.983 0.987
test:seen OpenPose (baseline w. PAF), HM 2284 1 19 1.000 0.992 0.996
test:seen OpenPose (baseline w. IDs), CCM 2232 53 71 0.977 0.969 0.973
test:seen OpenPose (baseline w. IDs), HM 2284 1 19 1.000 0.992 0.996
test:unseen OpenPose (baseline w. PAF), CCM 681 0 7 1.000 0.990 0.995
test:unseen OpenPose (baseline w. PAF), HM 681 0 7 1.000 0.990 0.995
test:unseen OpenPose (baseline w. IDs), CCM 680 1 8 0.999 0.988 0.993
test:unseen OpenPose (baseline w. IDs), HM 681 0 7 1.000 0.990 0.995

Table 4.20: Performance upper-bound due to encoding of representations as described in

chapter 3. Evaluation using ground-truth only.

Positives or False Negatives in table 4.20. In all cases the animals that are separated from

the group seem to be resolved with no problems, and the mismatches tend to occur in the

crowded areas of the image. Regardless if the Part Affinity Fields or IDs are used, the

method is still prone to failure in cluttered scenes due to the non-maximum-suppressor

(Section 3.11.1) combining detections as visible in the bottom line of images in figure 4.15.

Increasing image resolution and assuming less uncertainty thanks to higher quality

annotations would mitigate the problem at the level of ground-truth generation.

Currently our networks were processing images with the number of pixels in the longer

edge ofW = 512 for the UNET networks, andW = 1024 for the OP networks. Increase

in the amount of memory available on the GPUs will contribute positively to the ability of

processing significantly larger images.

4.6.2 Evaluation using predictions fromDeep CNNs

�e final result for both model architectures (OP and UNET) with embeddings trained

using two different criteria (Silhouette Score Maximization andMargin method), and

two different matching methods are presented table 4.21 in descending order of the F1

score.

When looking at the top positions for all three subsets, it becomes apparent, that the

use of HungarianMatching method tends to yield higher F1 values for all subsets. �is

173

Test:seen, #25 Test:seen, #176 Test:unseen, #111

PAF IDs PAF

HM HM CCM

(a) (b) (c)

(d) (e) (f)

Figure 4.15: Illustrations of problematic situations in which the selected method of

ground-truth encoding produces inputs causing the pose estimation method to fail. In
the color images (a, b, c), instances are represented using lines drawn across the back.

Green color represents the lines drawn using annotated data, and the red is reserved for

predictions. Bottom images (d, ,e, f) illustrate the corresponding keypoint encodings via

gaussian kernels, and the outputs of the non-maximum-suppressor by the red dots.

confirms the initial concerns presented in.
160
�us, the rest of the analysis will be

presented with respect to the CCM score.

Ignoring other factors than network architecture, it is visible that for test:seen and

training subsets the UNETmodel always places itself above the OP with respect to the F1

score. In case of test:unseen the results are however intertwined by all considered

architectures. Wematch the performance of Psota et al.
160
as visible when comparing

rows 18 and 34 of Table 4.21. It is worth to note that our UNETmodel is different than the

174

one by Psota et al. �emain differences include: 1) lack of max-unpooling layers, 2)

composite output containing foregroundmask and embeddings in addition to the

keypoint heatmaps and part affinity fields.

Model Set Matching TP FP FN Precision Recall F1

1 UNETmargin train EMB, HM 19352 105 990 0.995 0.951 0.972
2 UNETmargin train PAF, HM 19352 105 990 0.995 0.951 0.972
3 UNETssmax train EMB, HM 19264 175 1078 0.991 0.947 0.969
4 UNETssmax train PAF, HM 19264 175 1078 0.991 0.947 0.969
5 UNETmargin train EMB, CCM 18839 618 1503 0.968 0.926 0.947
6 UNETmargin train PAF, CCM 18761 696 1581 0.964 0.922 0.943
7 UNETssmax train EMB, CCM 18689 750 1653 0.961 0.919 0.940
8 UNETssmax train PAF, CCM 18589 850 1753 0.956 0.914 0.935
9 OPmargin train EMB, HM 16231 150 4111 0.991 0.798 0.884
10 OPmargin train PAF, HM 16231 150 4111 0.991 0.798 0.884
11 OPssmax train EMB, HM 15568 141 4774 0.991 0.765 0.864
12 OPssmax train PAF, HM 15568 141 4774 0.991 0.765 0.864
13 OPmargin train PAF, CCM 15226 1155 5116 0.929 0.749 0.829
14 OPssmax train PAF, CCM 14499 1210 5843 0.923 0.713 0.804
15 OPssmax train EMB, CCM 14110 1599 6232 0.898 0.694 0.783
16 OPmargin train EMB, CCM 14070 2311 6272 0.859 0.692 0.766
17 UNET

Psota et al.
train PAF, CCM 19999 13 743 0.964 0.999 0.981

18 UNETmargin test:seen EMB, HM 2205 18 98 0.992 0.957 0.974
19 UNETmargin test:seen PAF, HM 2205 18 98 0.992 0.957 0.974
20 UNETssmax test:seen EMB, HM 2192 40 111 0.982 0.952 0.967
21 UNETssmax test:seen PAF, HM 2192 40 111 0.982 0.952 0.967
22 UNETmargin test:seen EMB, CCM 2137 86 166 0.961 0.928 0.944
23 UNETmargin test:seen PAF, CCM 2118 105 185 0.953 0.920 0.936
24 UNETssmax test:seen EMB, CCM 2110 122 193 0.945 0.916 0.931
25 UNETssmax test:seen PAF, CCM 2105 127 198 0.943 0.914 0.928
26 OPmargin test:seen EMB, HM 1779 28 524 0.985 0.772 0.866
27 OPmargin test:seen PAF, HM 1779 28 524 0.985 0.772 0.866
28 OPssmax test:seen EMB, HM 1703 26 600 0.985 0.739 0.845
29 OPssmax test:seen PAF, HM 1703 26 600 0.985 0.739 0.845
30 OPmargin test:seen PAF, CCM 1647 160 656 0.911 0.715 0.801
31 OPssmax test:seen PAF, CCM 1553 176 750 0.898 0.674 0.770
32 OPssmax test:seen EMB, CCM 1521 208 782 0.880 0.660 0.754
33 OPmargin test:seen EMB, CCM 1542 265 761 0.853 0.670 0.750
34 UNET

Psota et al.
test:seen PAF, CCM 2273 1 94 0.960 1.000 0.980

35 UNETmargin test:unseen EMB, HM 656 84 32 0.886 0.953 0.919
36 UNETmargin test:unseen PAF, HM 656 84 32 0.886 0.953 0.919
37 UNETssmax test:unseen EMB, HM 671 107 17 0.862 0.975 0.915
38 UNETssmax test:unseen PAF, HM 671 107 17 0.862 0.975 0.915
39 UNETmargin test:unseen EMB, CCM 615 125 73 0.831 0.894 0.861
40 UNETssmax test:unseen EMB, CCM 627 151 61 0.806 0.911 0.855
41 UNETmargin test:unseen PAF, CCM 606 134 82 0.819 0.881 0.849
42 UNETssmax test:unseen PAF, CCM 622 156 66 0.799 0.904 0.849
43 OPmargin test:unseen EMB, HM 459 0 229 1.000 0.667 0.800
44 OPmargin test:unseen PAF, HM 459 0 229 1.000 0.667 0.800
45 OPssmax test:unseen EMB, HM 454 0 234 1.000 0.660 0.795
46 OPssmax test:unseen PAF, HM 454 0 234 1.000 0.660 0.795
47 OPmargin test:unseen PAF, CCM 424 35 264 0.924 0.616 0.739
48 OPssmax test:unseen PAF, CCM 403 51 285 0.888 0.586 0.706
49 OPmargin test:unseen EMB, CCM 402 57 286 0.876 0.584 0.701
50 OPssmax test:unseen EMB, CCM 396 58 292 0.872 0.576 0.694
51 UNET

Psota et al.
test:unseen PAF, CCM 1150 112 573 0.667 0.911 0.771

Table 4.21: Performance evaluation results for the OP andUNETmodels, for the OpenPose

(PAF) and Hybrid (EMB) method, with HM and CCMmatching for all three datasets.

175

4.7 Semantic Instance Segmentation Evaluation

�is section describes the Semantic Instance Segmentation method as a purely

clustering-basedmethod relying only on foregroundmask, embedding vectors, and

known number of instances k. It was determined that attempts on guessing the number

of instances purely on the embedding vectors themselves does not yield satisfying results

as shown in Section 4.5.3. �us, a ground-truth number of instances is used instead.

Here, due to the fact that method produces labels spanning the spatial extent of the

image, no keypoint locations are estimated. �us, matching has to be done differently.

Our measure of accuracy for this task is based on the TPR (recall, Equation. 4.2). We use

the CCMmatching (Equation 4.11) method with respect to the Intersection Over Union

(IoU) threshold IoUth ∈ (0, 1). Numerical results are presented in Table 4.22 and in

Figures 4.16, 4.16, and 4.16.

When investigating the values in Table 4.22 it is visible that models trained using the

Lmargin achievedmarginally higher score for the training and test:seen subsets. When

comparing the models, UNET architecture significantly outperformed the OPmodel for

every subset. It is partially attributed to the fact that the OPmodel produces thinner

looking shapes in the foregroundmasks. Investigation of Figures 4.16 through 4.18

indicates that even the peak recall for the OPmodel does not exceed the values for UNET

at IoUth = 0.5. �is result can be attributed to fact that UNET is more suited for

segmentation tasks like indicated in the literature.

When comparing the results of the UNETmarginmodel for the training subset with

the results for the test:seen subset in Table 4.22, the values indicate that the model

generalized well for the task of semantic instance segmentation. Comparison with the

test:unseen dataset has to be made while keeping in mind the substantial difference

between the subsets.

Figure 4.19 depicts multiple selected cases of the output of our method when applied

176

Model Set TP TOTAL Recall

UNETmargin train 16866 20342 0.829
UNETssmax train 16795 20342 0.826
OPmargin train 7340 20342 0.361
OPssmax train 6651 20342 0.327

UNETmargin test:seen 1842 2303 0.800
UNETssmax test:seen 1841 2303 0.799
OPmargin test:seen 790 2303 0.343
OPssmax test:seen 707 2303 0.307

UNETssmax test:unseen 399 688 0.580
UNETmargin test:unseen 383 688 0.557
OPmargin test:unseen 230 688 0.334
OPssmax test:unseen 187 688 0.272

Table 4.22: Results of the semantic instance segmentation using clustering of the deep

multi-dimensional embeddings at IoUth = 0.5with known number of instances k.

Figure 4.16: Recall curve of Semantic Instance Segmentation method with respect to the

IoU threshold for the test:seen subset of PDD2019.

to the group-housed pigs. Figure 4.19 (a) shows the case of a rare texture on a big animal

which caused the foreground estimator to fail to produce the appropriate semantic

segmentation mask. Figure 4.19 (b) shows a successful case for the test:unseen with a

minor mask misalignment for the purple pig in the bottom-right corner. Figure 4.19 (c)

177

Figure 4.17: Recall curve of Semantic Instance Segmentation method with respect to the

IoU threshold for the test:unseen subset of PDD2019.

Figure 4.18: Recall curve of Semantic Instance Segmentation method with respect to the

IoU threshold for the training subset of PDD2019.

178

(a) test:unseen #51 (b) test:unseen # 54

(c) test:unseen # 12 (d) test:seen # 56

(e) test:seen # 28 (f) test:seen # 23

Figure 4.19: Selected cases of failure and success of our semantic instance segmentation of

group-housed pigs. Examples picked for visual inspection.

shows the utter failure of our method as the animals are barely visible due to the lighting

conditions. Figure 4.19 (d) shows another successful output, this time for the test:seen

subset. Figures 4.19 (e) and (f) indicate successful handling of partial occlusions thanks to

the embeddings as the instances indicated by the green arrow are properly identified.

179

CHAPTER 5

Conclusion

In this work we have presented a novel method of processing large scale, sparsely

annotated datasets using machine learning for the tasks of semantic segmentation,

object detection, pose estimation and semantic instance segmentation. We have shown

that the outputs of those tasks are essential in the context of multiple object tracking. �e

key factor contributing to our success was the use of deep convolutional neural network

to produce multi-dimensional embeddings which after minor post-processing can be

converted to unique per-pixel instance membership labels. �e use of embeddings was

also show successful in the task of pose estimation.

5.1 Challenges

One of the common challenges in the process of designing an application-specific

tracking method is the selection of proper equipment and data collection strategy. It was

witnessed in the literature that researchers struggled with processing images from

cameras with significant distortion introduced by wide angle lenses.
42

Tracking multiple objects usually depends heavily on either of the two clues:

appearance or motion. In our application we were faced with the task of tracking

homogeneous objects that move randomly. �us, a classic MOT approach using weak

appearance affinity measures was bound to fail.

180

Occlusions are themain challenge inMOT. Inmethods that heavily depend on object

detection, lack of thereof puts the entire responsibility of resolving trajectories on the

tracking algorithm and the affinity measure between the target before and after the

occlusion has happened. To overcome the problem of occlusions one can resort to

building a temporally global object descriptor that will retain the value specific to the

object and not its position or orientation in the image.

Novel methods of object detection including impressive Mask r-cnn
64
achieve

remarkable performance due to availability of high quality datasets like MPII
177
or

COCO.
8
�ose datasets target the general purpose methods and contain natural images.

In the context of our application however, existing methods are not well suited to handle

the specific properties of homogeneous object tracking. �e lack of domain-specific

datasets was another major challenge that this work overcame.

5.2 Approaches and contributions

We tackled the data collection problem by deploying a custom platform based around

Microsoft Kinect v2 camera allowing for simultaneous capture of color and depth image

pairs with relatively minimal distortion. We describe this process in Section 3.1.

We used deep-multi-dimensional embeddings as easy-to-cluster features to

produce per-pixel membership labels for the task of semantic instance segmentation of

group-housed animals that look very similar. �us, we produced a reliable object detector

with a mask descriptor suitable for multiple object tracking.

Due to the lack of z-ordering or depth information in our annotated dataset
160
we

resorted to producing ground-truth per-pixel labels in random order. We chose this

approach as an attempt to force the neural network to (stochastically) produce per-pixel

embeddings representing the true instance membership. We identified a few examples

of robustness against partial object occlusions. We attribute those successful examples to

181

the chosenmethod of ground-truth generation.

We based our method around pose estimation with additional features: embeddings

and foregroundmask. We used those features to be able to process sequences of video

using a tracker of arbitrary complexity to build datasets for tracking of group housed

pigs.

We confirm the findings from our previous contributions in
160
regarding the model

selection. Our UNETmodel trained using theLmargin loss function achieved 99%

precision and 96% recall in the task of bottom-up object detection using pose estimation

when exposed to examples matching the environments and lighting conditions of the

training set. It also achieved 87% precision and 95% recall on the subset containing

images with drastically different properties. Ourmethodmatches the performance of the

model by Psota et al.
160
on the test:seen subset but is more likely to produce false negative

results on the test:unseen.

We extend on the results presented in Psota et al.
160
by reporting 82% accuracy on

matching instances detected using our semantic instance segmentation technique at

intersection-over-union threshold of 0.5. Our method provides semantic instance

segmentation masks which (after manual inspection and adjustment) can be included in

the next revision of the Pig Part Detection dataset.
160

5.3 Recommendations

�e use of vast dataset of the color and depth image pairs was focused to the foreground

mask extraction. �e description of the method of obtaining those masks from

color-depth image pairs is a contribution that is believed to be a good starting point for

more challenging tasks, and introduces the reader to aspects of multi-view geometry.

Initial intuition which motivated the capture of depth images however was a correct

path. Use of Microsoft Kinect v2 allowed for capturing color images in 1920× 1080

182

resolution which ensured longevity of the collected datasets over the span of multiple

years. Author would like to recommend the use high-resolution, high quality image

sensors to the practitioners in the stage of initial data collection for product

development. Early attempts to instance-level segmentation on depth images did not

yield the sought impact at the time of completing this work when compared to working

with manually annotated sets. Author however believes that such approach should be

revisited in the future. Author would like to recommend exploring mesh processing and

instance extraction from depth images to the practitioners.

�e choice of TensorFlow
5
as the main computational framework was motivated by

its superior at the time abilities of symbolic operations definition, automatic differentiation,

ease of feeding the data, and very compelling Python interface with the ability to export

the graph for deployment. Support of Nvidia GPUs and quick response of the developers

to the CUDA framework made it an excellent choice. However, it lacks flexibility in the

sense of selective gradient application when using implemented solvers. Namely, in the

sense of Stochastic Gradient Descent, one would like to accumulate the gradient-based

corrections over the course of multiple training examples in a memory-efficient fashion,

and then apply it after multiple forward passes. TensorFlow implicitly allows for that

operation through the use of batches - as the inputs are conventionally formatted in a

B ×H ×W × C. Modern frameworks like PyTorch178 allow (and unfortunately require)

specification of gradient calculation and application explicitly.

5.4 Futurework

To tackle the problem of occlusions directly using machine learning, the author would

like to proceed with another attempt based on the synthetic dataset generation. Given

the input images and semantic instance segmentation masks produced by the method

presented in this work one could produce a set of plausible composition of instances with

183

known occlusion properties by injecting a foreign instance on top of the existing image.

Having known instance segmentation masks for the original image and the introduced

foreign object one can train a neural network to estimate the features indicating the

presence of occlusions. To produce convincing images author explored the concept of

blending images using Laplacian pyramids presented in Section A.1.

184

References

[1] Wenhan Luo, Junliang Xing, AntonMilan, Xiaoqin Zhang,Wei Liu, Xiaowei Zhao,

and Tae-Kyun Kim. Multiple object tracking: A literature review. arXiv preprint

arXiv:1409.7618, 2014.

[2] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification

with deep convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou,

and K. Q.Weinberger, editors, Advances in Neural Information Processing Systems 25,

pages 1097–1105. Curran Associates, Inc., 2012.

[3] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E

Howard,Wayne Hubbard, and Lawrence D Jackel. Backpropagation applied to

handwritten zip code recognition. Neural computation, 1(4):541–551, 1989.

[4] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross

Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional

architecture for fast feature embedding. arXiv preprint arXiv:1408.5093, 2014.

[5] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig

Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay

Ghemawat, Ian Goodfellow, AndrewHarp, Geoffrey Irving, Michael Isard,

Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg,

DandelionMané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike

Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul

185

Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete

Warden, MartinWattenberg, MartinWicke, Yuan Yu, and Xiaoqiang Zheng.

TensorFlow: Large-scale machine learning on heterogeneous systems, 2015.

Software available from tensorflow.org.

[6] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, SeanMa,

Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al.

Imagenet large scale visual recognition challenge. International Journal of Computer

Vision, 115(3):211–252, 2015.

[7] Mark Everingham, Luc Van Gool, Christopher KIWilliams, JohnWinn, and

Andrew Zisserman. �e pascal visual object classes (voc) challenge. International

journal of computer vision, 88(2):303–338, 2010.

[8] T.-Y. Lin, M.Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L.

Zitnick. Microsoft coco: Common objects in context. In European conference on

computer vision, pages 740–755. Springer, 2014.

[9] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. �e cifar-10 dataset. online:

http://www. cs. toronto. edu/kriz/cifar. html, 2014.

[10] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus

Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. �e

cityscapes dataset for semantic urban scene understanding. In Proceedings of the

IEEE conference on computer vision and pattern recognition, pages 3213–3223, 2016.

[11] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look

once: Unified, real-time object detection. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 779–788, 2016.

[12] Joseph Redmon and Ali Farhadi. Yolo9000: Better, faster, stronger. In Proceedings of

the IEEEConference on Computer Vision and Pattern Recognition, pages 7263–7271, 2017.

186

[13] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,

Cheng-Yang Fu, and Alexander C Berg. Ssd: Single shot multibox detector. In

European conference on computer vision, pages 21–37. Springer, 2016.

[14] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE international conference on

computer vision, pages 1440–1448, 2015.

[15] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time object

detection with region proposal networks. In Advances in neural information processing

systems, pages 91–99, 2015.

[16] CY Ren, VA Prisacariu, O Kähler, ID Reid, and DWMurray. Real-time tracking of

single andmultiple objects from depth-colour imagery using 3d signed distance

functions. International Journal of Computer Vision, 124(1):80–95, 2017.

[17] FAM Tuyttens, Sophie de Graaf, Jasper LT Heerkens, Leonie Jacobs, Elena Nalon,

Sanne Ott, Lisanne Stadig, Eva Van Laer, and Bart Ampe. Observer bias in animal

behaviour research: can we believe what we score, if we score what we believe?

Animal Behaviour, 90:273–280, 2014.

[18] PIC North America. Standard animal care: Daily routines. InWean to finishmanual,

pages 23–24, 2014.

[19] David Mellor. Updating animal welfare thinking: Moving beyond the “five

freedoms” towards “a life worth living”. Animals, 6(3):21, 2016.

[20] Christian Boessen, Georgeanne Artz, and Lee Schulz. A baseline study of labor

issues and trends in us pork production, 2018.

[21] S. G. Matthews, A. L. Miller, J. Clapp, T. Plötz, and I. Kyriazakis. Early detection of

health and welfare compromises through automated detection of behavioural

changes in pigs. �eVeterinary Journal, 217:43–51, November 2016.

187

[22] Abozar Nasirahmadi, Sandra A Edwards, and Barbara Sturm. Implementation of

machine vision for detecting behaviour of cattle and pigs. Livestock Science,

202:25–38, 2017.

[23] CMWathes, Helle Halkjær Kristensen, J-M Aerts, and Daniel Berckmans. Is

precision livestock farming an engineer’s daydream or nightmare, an animal’s

friend or foe, and a farmer’s panacea or pitfall? Computers and electronics in

agriculture, 64(1):2–10, 2008.

[24] �omasM Banhazi, H Lehr, JL Black, H Crabtree, P Schofield, M Tscharke, and

D Berckmans. Precision livestock farming: an international review of scientific

and commercial aspects. International Journal of Agricultural and Biological

Engineering, 5(3):1–9, 2012.

[25] E Tullo, I Fontana, andMGuarino. Precision livestock farming: an overview of

image and sound labelling. In European Conference on Precision Livestock Farming

2013:(PLF) EC-PLF, pages 30–38. KU Leuven, 2013.

[26] So-Hyeon Kim, Do-Hyeun Kim, and Hee-Dong Park. Animal situation tracking

service using rfid, gps, and sensors. In Computer andNetwork Technology (ICCNT),

2010 Second International Conference on, pages 153–156. IEEE, 2010.

[27] A. Stukenborg, I. Traulsen, B. Puppe, U. Presuhn, and J. Krieter. Agonistic

behaviour after mixing in pigs under commercial farm conditions. Applied Animal

Behaviour Science, 129(1):28–35, 2011.

[28] SMC Porto, C Arcidiacono, A Giummarra, U Anguzza, and G Cascone. Localisation

and identification performances of a real-time location system based on ultra wide

band technology for monitoring and tracking dairy cow behaviour in a semi-open

free-stall barn. Computers and electronics in agriculture, 108:221–229, 2014.

188

[29] Guerino Giancola, Ljubica Blazevic, Isabelle Bucaille, Luca De Nardis, M-G

Di Benedetto, Yves Durand, Gwillerm Froc, BegoñaMolinete Cuezva, J-B Pierrot,

Pekka Pirinen, et al. Uwbmac and network solutions for low data rate with

location and tracking applications. In 2005 IEEE International Conference on

Ultra-Wideband, pages 758–763. IEEE, 2005.

[30] Patrick E Clark, Douglas E Johnson, Mark A Kniep, Phillip Jermann, Brad Huttash,

AndrewWood, Michael Johnson, Craig McGillivan, and Kevin Titus. An advanced,

low-cost, gps-based animal tracking system. Rangeland Ecology &Management,

59(3):334–340, 2006.

[31] Mac Schwager, DeanM Anderson, Zack Butler, and Daniela Rus. Robust

classification of animal tracking data. Computers and Electronics in Agriculture,

56(1):46–59, 2007.

[32] K. Taylor. Cattle health monitoring using wireless sensor networks. In Proceedings

of the Communication and Computer Networks Conference, 2004.

[33] L. Ruiz-Garcia, L. Lunadei, P. Barreiro, and I. Robla. A Review ofWireless Sensor

Technologies and Applications in Agriculture and Food Industry: State of the Art

and Current Trends. Sensors, 9(6):4728–4750, June 2009.

[34] H. J. Escalante, S. V. Rodriguez, J. Cordero, A. R. Kristensen, and C. Cornou.

Sow-activity classification from acceleration patterns: a machine learning

approach. Computers and electronics in agriculture, 93:17–26, 2013.

[35] F. A. P. Alvarenga, I. Borges, L. Palkovič, J. Rodina, V. H. Oddy, and R. C. Dobos.

Using a three-axis accelerometer to identify and classify sheep behaviour at

pasture. Applied Animal Behaviour Science, 181:91–99, August 2016.

[36] Athanasios S Voulodimos, Charalampos Z Patrikakis, Alexander B Sideridis,

Vasileios A Ntafis, and Eftychia M Xylouri. A complete farmmanagement system

189

based on animal identification using rfid technology. Computers and electronics in

agriculture, 70(2):380–388, 2010.

[37] Jianying Feng, Zetian Fu, ZaiqiongWang, Mark Xu, and Xiaoshuan Zhang.

Development and evaluation on a rfid-based traceability system for cattle/beef

quality safety in china. Food control, 31(2):314–325, 2013.

[38] Raymond E Floyd. Rfid in animal-tracking applications. IEEE Potentials,

34(5):32–33, 2015.

[39] Mateusz Mittek, Eric T Psota, Lance C Pérez, Ty Schmidt, and BennyMote. Health

monitoring of group-housed pigs using depth-enabled multi-object tracking. In

Proceedings of Int Conf Pattern Recognit,Workshop on Visual observation and analysis of

Vertebrate And Insect Behavior, 2016.

[40] MateuszMittek, Eric T Psota, Jay D Carlson, Lance C Pérez, Ty Schmidt, and Benny

Mote. Tracking of group-housed pigs using multi-ellipsoid expectation

maximisation. IET Computer Vision, 12(2):121–128, 2017.

[41] Suresh Neethirajan. Recent advances in wearable sensors for animal health

management. Sensing and Bio-Sensing Research, 12:15–29, 2017.

[42] P. Ahrendt, T. Gregersen, and H. Karstoft. Development of a real-time computer

vision system for tracking loose-housed pigs. Computers and Electronics in

Agriculture, 76(2):169 – 174, 2011.

[43] Salah Sukkarieh, EduardoMario Nebot, and Hugh F Durrant-Whyte. A high

integrity imu/gps navigation loop for autonomous land vehicle applications. IEEE

Transactions on Robotics and Automation, 15(3):572–578, 1999.

[44] Hakan Ardö, Oleksiy Guzhva, Mikael Nilsson, and Anders HHerlin. Convolutional

neural network-based cow interaction watchdog. IET Computer Vision,

12(2):171–177, 2017.

190

[45] Miso Ju, Younchang Choi, Jihyun Seo, Jaewon Sa, Sungju Lee, Yongwha Chung,

and Daihee Park. A kinect-based segmentation of touching-pigs for real-time

monitoring. Sensors, 18(6):1746, 2018.

[46] Massimo Piccardi. Background subtraction techniques: a review. In Systems, man

and cybernetics, 2004 IEEE international conference on, volume 4, pages 3099–3104.

IEEE, 2004.

[47] Eric T Psota, Lance C Perez, MateuszMittek, and Ty Schmidt. Systems for tracking

individual animals in a group-housed environment, May 9 2019. US Patent App.

16/114,565.

[48] A. Nasirahmadi, U. Richter, O. Hensel, S. Edwards, and B. Sturm. Using machine

vision for investigation of changes in pig group lying patterns. Computers and

Electronics in Agriculture, 119:184–190, 2015.

[49] M. A. Kashiha, C. Bahr, S. Ott, C. PHMoons, T. A. Niewold, F. Tuyttens, and

D. Berckmans. Automatic monitoring of pig locomotion using image analysis.

Livestock Science, 159:141–148, 2014.

[50] Nobuyuki Otsu. A threshold selection method from gray-level histograms. IEEE

transactions on systems, man, and cybernetics, 9(1):62–66, 1979.

[51] Stephen GMatthews, Amy LMiller,�omas PlÖtz, and Ilias Kyriazakis.

Automated tracking to measure behavioural changes in pigs for health and welfare

monitoring. Scientific reports, 7(1):17582, 2017.

[52] Philipp Bergmann, TimMeinhardt, and Laura Leal-Taixe. Tracking without bells

and whistles. arXiv preprint arXiv:1903.05625, 2019.

[53] Wongun Choi. Near-online multi-target tracking with aggregated local flow

descriptor. In Proceedings of the IEEE International Conference on Computer Vision,

pages 3029–3037, 2015.

191

[54] Afshin Dehghan. Global data association for multiple pedestrian tracking. 2016.

[55] Joao F Henriques, Joao Carreira, Rui Caseiro, and Jorge Batista. Beyond hard

negative mining: Efficient detector learning via block-circulant decomposition. In

proceedings of the IEEE International Conference on Computer Vision, pages 2760–2767,

2013.

[56] Hedi Harzallah, Frédéric Jurie, and Cordelia Schmid. Combining efficient object

localization and image classification. In Computer Vision, 2009 IEEE 12th

International Conference on, pages 237–244. IEEE, 2009.

[57] Andrea Vedaldi, Varun Gulshan, Manik Varma, and Andrew Zisserman. Multiple

kernels for object detection. In Computer Vision, 2009 IEEE 12th International

Conference on, pages 606–613. IEEE, 2009.

[58] David S Bolme, J Ross Beveridge, Bruce A Draper, and Yui Man Lui. Visual object

tracking using adaptive correlation filters. In Computer Vision and Pattern Recognition

(CVPR), 2010 IEEEConference on, pages 2544–2550. IEEE, 2010.

[59] David S Bolme, Bruce A Draper, and J Ross Beveridge. Average of synthetic exact

filters. In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEEConference

on, pages 2105–2112. IEEE, 2009.

[60] João F Henriques, Rui Caseiro, Pedro Martins, and Jorge Batista. High-speed

tracking with kernelized correlation filters. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 37(3):583–596, 2015.

[61] Pierre Sermanet, David Eigen, Xiang Zhang, Michaël Mathieu, Rob Fergus, and

Yann LeCun. Overfeat: Integrated recognition, localization and detection using

convolutional networks. arXiv preprint arXiv:1312.6229, 2013.

192

[62] Pedro F Felzenszwalb, Ross B Girshick, David McAllester, and Deva Ramanan.

Object detection with discriminatively trained part-based models. IEEE

transactions on pattern analysis andmachine intelligence, 32(9):1627–1645, 2010.

[63] Siyu Tang, Bjoern Andres, Mykhaylo Andriluka, and Bernt Schiele. Multi-person

tracking by multicut and deepmatching. In European Conference on Computer Vision,

pages 100–111. Springer, 2016.

[64] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. arXiv

preprint arXiv:1703.06870, 2017.

[65] Zhe Cao, Tomas Simon, Shih-EnWei, and Yaser Sheikh. Realtimemulti-person 2d

pose estimation using part affinity fields. In CVPR, 2017.

[66] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask r-cnn. In Computer Vision

(ICCV), 2017 IEEE International Conference on, pages 2980–2988. IEEE, 2017.

[67] KaiqiangWei and Xu Zhao. Multiple-Branches Faster RCNN for Human Parts

Detection and Pose Estimation. In Asian Conference on Computer Vision, pages

453–462. Springer, 2016.

[68] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature

hierarchies for accurate object detection and semantic segmentation. In Proceedings

of the IEEE conference on computer vision and pattern recognition, pages 580–587, 2014.

[69] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards

real-time object detection with region proposal networks. IEEE transactions on

pattern analysis andmachine intelligence, 39(6):1137–1149, 2017.

[70] Gary R Bradski. Computer vision face tracking for use in a perceptual user

interface. 1998.

193

[71] Li Zhang, Yuan Li, and Ramakant Nevatia. Global data association for multi-object

tracking using network flows. In Computer Vision and Pattern Recognition, 2008. CVPR

2008. IEEEConference on, pages 1–8. IEEE, 2008.

[72] Y Bar-Shalom, T Fortmann, M Scheffe, and others. Joint probabilistic data

association for multiple targets in clutter. In Proc. Conf. on Information Sciences and

Systems, pages 404–409, 1980.

[73] Afshin Dehghan, ShayanModiri Assari, andMubarak Shah. Gmmcp tracker:

Globally optimal generalized maximummulti clique problem for multiple object

tracking. In Proceedings of the IEEEConference on Computer Vision and Pattern

Recognition, pages 4091–4099, 2015.

[74] Amir Roshan Zamir, Afshin Dehghan, andMubarak Shah. Gmcp-tracker: Global

multi-object tracking using generalized minimum clique graphs. In Computer

Vision–ECCV 2012, pages 343–356. Springer, 2012.

[75] Hamed Pirsiavash, Deva Ramanan, and Charless C Fowlkes. Globally-optimal

greedy algorithms for tracking a variable number of objects. In Computer Vision and

Pattern Recognition (CVPR), 2011 IEEEConference on, pages 1201–1208. IEEE, 2011.

[76] Jerome Berclaz, Francois Fleuret, Engin Turetken, and Pascal Fua. Multiple object

tracking using k-shortest paths optimization. IEEE transactions on pattern analysis

andmachine intelligence, 33(9):1806–1819, 2011.

[77] Laura Leal-Taixé, AntonMilan, Konrad Schindler, Daniel Cremers, Ian Reid, and

Stefan Roth. Tracking the Trackers: An Analysis of the State of the Art in Multiple

Object Tracking. arXiv preprint arXiv:1704.02781, 2017.

[78] Chanho Kim, Fuxin Li, Arridhana Ciptadi, and James M Rehg. Multiple hypothesis

tracking revisited. In Proceedings of the IEEE International Conference on Computer

Vision, pages 4696–4704, 2015.

194

[79] Donald Reid. An algorithm for tracking multiple targets. IEEE transactions on

Automatic Control, 24(6):843–854, 1979.

[80] Ingemar J. Cox and Sunita L. Hingorani. An efficient implementation of Reid’s

multiple hypothesis tracking algorithm and its evaluation for the purpose of visual

tracking. IEEE Transactions on pattern analysis andmachine intelligence, 18(2):138–150,

1996.

[81] Dimitri J Papageorgiou andMichael R Salpukas. �emaximumweight

independent set problem for data association in multiple hypothesis tracking. In

Optimization and Cooperative Control Strategies, pages 235–255. Springer, 2009.

[82] Fred Glover. Tabu search: A tutorial. Interfaces, 20(4):74–94, 1990.

[83] Justin Domke and Yiannis Aloimonos. Deformation and Viewpoint Invariant Color

Histograms. In BMVC, pages 509–518, 2006.

[84] Siyu Tang, Bjoern Andres, Miykhaylo Andriluka, and Bernt Schiele. Subgraph

decomposition for multi-target tracking. In Proceedings of the IEEEConference on

Computer Vision and Pattern Recognition, pages 5033–5041, 2015.

[85] Margret Keuper, Evgeny Levinkov, Nicolas Bonneel, Guillaume Lavoué,�omas

Brox, and Bjorn Andres. Efficient decomposition of image andmesh graphs by

lifted multicuts. In Proceedings of the IEEE International Conference on Computer Vision,

pages 1751–1759, 2015.

[86] Sunil Chopra andMendu R Rao. �e partition problem. Mathematical Programming,

59(1-3):87–115, 1993.

[87] Amir Sadeghian, Alexandre Alahi, and Silvio Savarese. Tracking the untrackable:

Learning to track multiple cues with long-term dependencies. arXiv preprint

arXiv:1701.01909, 2017.

195

[88] Ashesh Jain, Amir R Zamir, Silvio Savarese, and Ashutosh Saxena.

Structural-RNN: Deep learning on spatio-temporal graphs. In Proceedings of the

IEEEConference on Computer Vision and Pattern Recognition, pages 5308–5317, 2016.

[89] AntonMilan, Stefan Roth, and Konrad Schindler. Continuous energy

minimization for multitarget tracking. IEEE transactions on pattern analysis and

machine intelligence, 36(1):58–72, 2014.

[90] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human

detection. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE

Computer Society Conference on, volume 1, pages 886–893. IEEE, 2005.

[91] StefanWalk, NikodemMajer, Konrad Schindler, and Bernt Schiele. New features

and insights for pedestrian detection. In Computer vision and pattern recognition

(CVPR), 2010 IEEE conference on, pages 1030–1037. IEEE, 2010.

[92] Min Hu, Saad Ali, andMubarak Shah. Detecting global motion patterns in

complex videos. In Pattern Recognition, 2008. ICPR 2008. 19th International Conference

on, pages 1–5. IEEE, 2008.

[93] Dirk Helbing and Peter Molnar. Social force model for pedestrian dynamics.

Physical review E, 51(5):4282, 1995.

[94] Andreas Ess, Bastian Leibe, Konrad Schindler, and Luc Van Gool. Robust

multiperson tracking from amobile platform. IEEE Transactions on Pattern Analysis

andMachine Intelligence, 31(10):1831–1846, 2009.

[95] Bo Yang and RamNevatia. An online learned CRFmodel for multi-target tracking.

In Computer Vision and Pattern Recognition (CVPR), 2012 IEEEConference on, pages

2034–2041. IEEE, 2012.

[96] Yaowen Guan, Xiaoou Chen, Deshun Yang, and YuqianWu. Multi-person

tracking-by-detection with local particle filtering and global occlusion handling. In

196

Multimedia and Expo (ICME), 2014 IEEE International Conference on, pages 1–6. IEEE,

2014.

[97] Caglayan Dicle, Octavia I Camps, andMario Sznaier. �e way they move: Tracking

multiple targets with similar appearance. In Proceedings of the IEEE International

Conference on Computer Vision, pages 2304–2311, 2013.

[98] Bogdan Alexe, Viviana Petrescu, and Vittorio Ferrari. Exploiting spatial overlap to

efficiently compute appearance distances between image windows. In Advances in

Neural Information Processing Systems, pages 2735–2743, 2011.

[99] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. Speeded-up robust

features (SURF). Computer vision and image understanding, 110(3):346–359, 2008.

[100] Aude Oliva and Antonio Torralba. Modeling the shape of the scene: A holistic

representation of the spatial envelope. International journal of computer vision,

42(3):145–175, 2001.

[101] Laura Leal-Taixé, Cristian Canton-Ferrer, and Konrad Schindler. Learning by

tracking: Siamese CNN for robust target association. In Proceedings of the IEEE

Conference on Computer Vision and Pattern RecognitionWorkshops, pages 33–40, 2016.

[102] Anton Andriyenko, Konrad Schindler, and Stefan Roth. Discrete-continuous

optimization for multi-target tracking. In Computer Vision and Pattern Recognition

(CVPR), 2012 IEEEConference on, pages 1926–1933. IEEE, 2012.

[103] Jure Zbontar and Yann LeCun. Stereo matching by training a convolutional neural

network to compare image patches. Journal ofMachine Learning Research, 17(1-32):2,

2016.

[104] M. Ren and R. S. Zemel. End-to-end instance segmentation with recurrent

attention. In Proceedings of the IEEEConference on Computer Vision and Pattern

Recognition, pages 6656–6664, 2017.

197

[105] Alireza Fathi, ZbigniewWojna, Vivek Rathod, PengWang, Hyun Oh Song, Sergio

Guadarrama, and Kevin PMurphy. Semantic instance segmentation via deep

metric learning. arXiv preprint arXiv:1703.10277, 2017.

[106] B. De Brabandere, D. Neven, and L. Van Gool. Semantic instance segmentation

with a discriminative loss function. InDeep Learning for Robotic Vision, workshop at

CVPR 2017, pages 1–2. CVPR, 2017.

[107] S. Kong and C. Fowlkes. Recurrent pixel embedding for instance grouping. arXiv

preprint arXiv:1712.08273, 2017.

[108] H. A. Alhaija, S. K. Mustikovela, L. Mescheder, A. Geiger, and C. Rother.

Augmented reality meets deep learning for car instance segmentation in urban

scenes. In BritishMachine Vision Conference (BMVC), 2017.

[109] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks

for semantic segmentation. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 3431–3440, 2015.

[110] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature

hierarchies for accurate object detection and semantic segmentation. In Proceedings

of the IEEE conference on computer vision and pattern recognition, pages 580–587, 2014.

[111] Y. Li, H. Qi, J. Dai, X. Ji, and Y.Wei. Fully convolutional instance-aware semantic

segmentation. In IEEEConf. on Computer Vision and Pattern Recognition (CVPR),

pages 2359–2367, 2017.

[112] B. Romera-Paredes and P. H. S. Torr. Recurrent instance segmentation. In

European Conference on Computer Vision, pages 312–329. Springer, 2016.

[113] S.-E.Wei, V. Ramakrishna, T. Kanade, and Y. Sheikh. Convolutional pose

machines. In CVPR, 2016.

198

[114] T. Simon, H. Joo, I. Matthews, and Y. Sheikh. Hand keypoint detection in single

images using multiview bootstrapping. In CVPR, 2017.

[115] Jonathan Taylor, Lucas Bordeaux,�omas Cashman, Bob Corish, Cem Keskin,

Toby Sharp, Eduardo Soto, David Sweeney, Julien Valentin, Benjamin Luff, et al.

Efficient and precise interactive hand tracking through joint, continuous

optimization of pose and correspondences. ACMTransactions on Graphics (TOG),

35(4):143, 2016.

[116] C Loop. Smooth subdivision surfaces based on triangles, master’s thesis. University

of Utah, Department ofMathematics, 1987.

[117] George Papandreou, Tyler Zhu, Liang-Chieh Chen, Spyros Gidaris, Jonathan

Tompson, and Kevin Murphy. Personlab: Person pose estimation and instance

segmentation with a bottom-up, part-based, geometric embeddingmodel. arXiv

preprint arXiv:1803.08225, 2018.

[118] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human

detection. In Proceedings of the 2005 IEEEComputer Society Conference on Computer

Vision and Pattern Recognition (CVPR’05) - Volume 1 - Volume 01, CVPR ’05, pages

886–893, Washington, DC, USA, 2005. IEEE Computer Society.

[119] F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A unified embedding for face

recognition and clustering. In Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 815–823, 2015.

[120] Sepp Hochreiter. �e vanishing gradient problem during learning recurrent neural

nets and problem solutions. International Journal of Uncertainty, Fuzziness and

Knowledge-Based Systems, 6(02):107–116, 1998.

[121] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and

Alan L Yuille. Deeplab: Semantic image segmentation with deep convolutional

199

nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern

analysis andmachine intelligence, 40(4):834–848, 2017.

[122] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D.Warde-Farley, S. Ozair,

A. Courville, and Y. Bengio. Generative adversarial nets. In Advances in neural

information processing systems, pages 2672–2680, 2014.

[123] Alexey Dosovitskiy and�omas Brox. Generating images with perceptual

similarity metrics based on deep networks. In Advances in Neural Information

Processing Systems, pages 658–666, 2016.

[124] Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaolei Huang, Xiaogang

Wang, and Dimitris Metaxas. Stackgan: Text to photo-realistic image synthesis

with stacked generative adversarial networks. In IEEE Int. Conf. Comput. Vision

(ICCV), pages 5907–5915, 2017.

[125] Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter

Abbeel. Infogan: Interpretable representation learning by information

maximizing generative adversarial nets. In Advances in Neural Information Processing

Systems, pages 2172–2180, 2016.

[126] Tim Salimans, Ian Goodfellow,Wojciech Zaremba, Vicki Cheung, Alec Radford,

and Xi Chen. Improved techniques for training gans. In Advances in Neural

Information Processing Systems, pages 2234–2242, 2016.

[127] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan. arXiv

preprint arXiv:1701.07875, 2017.

[128] Dorin Comaniciu and Peter Meer. Mean shift: A robust approach toward feature

space analysis. IEEE Transactions on Pattern Analysis &Machine Intelligence,

(5):603–619, 2002.

200

[129] Ke Li and Jitendra Malik. Amodal instance segmentation. In European Conference on

Computer Vision, pages 677–693. Springer, 2016.

[130] Qin Huang, Chunyang Xia, Siyang Li, YeWang, Yuhang Song, and C-C Jay Kuo.

Unsupervised clustering guided semantic segmentation. In 2018 IEEEWinter

Conference on Applications of Computer Vision (WACV), pages 1489–1498. IEEE, 2018.

[131] Peter J Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation

of cluster analysis. Journal of computational and appliedmathematics, 20:53–65, 1987.

[132] Yan Zhu, Yuandong Tian, Dimitris Metaxas, and Piotr Dollár. Semantic amodal

segmentation. In Proceedings of the IEEEConference on Computer Vision and Pattern

Recognition, pages 1464–1472, 2017.

[133] AntonMilan, Stefan Roth, and Konrad Schindler. Continuous energy

minimization for multitarget tracking. IEEE transactions on pattern analysis and

machine intelligence, 36(1):58–72, 2014.

[134] Y. Yang, S. Hallman, D. Ramanan, and C. Fowlkes. Layered object detection for

multi-class segmentation. In 2010 IEEEComputer Society Conference on Computer

Vision and Pattern Recognition, pages 3113–3120, June 2010.

[135] Y. Yang, S. Hallman, D. Ramanan, and C. C. Fowlkes. Layered object models for

image segmentation. IEEE Transactions on Pattern Analysis andMachine Intelligence,

34(9):1731–1743, Sept 2012.

[136] Y. T. Chen, X. Liu, andM. H. Yang. Multi-instance object segmentation with

occlusion handling. In 2015 IEEEConference on Computer Vision and Pattern

Recognition (CVPR), pages 3470–3478, June 2015.

[137] J. Uhrig, M. Cordts, U. Franke, and T. Brox. Pixel-level encoding and depth

layering for instance-level semantic labeling. In German Conference on Pattern

Recognition, pages 14–25. Springer, 2016.

201

[138] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. Vision meets robotics: �e kitti

dataset. �e International Journal of Robotics Research, 32(11):1231–1237, 2013.

[139] Siyang Li, Bryan Seybold, Alexey Vorobyov, Alireza Fathi, Qin Huang, and C-C Jay

Kuo. Instance embedding transfer to unsupervised video object segmentation.

arXiv preprint arXiv:1801.00908, 2018.

[140] NVIDIA Corporation. Nvidia cuda c programming guide, 2012. [Online; accessed

9-November-2018].

[141] Mizell, E. Gpus: �e key to cognitive computing, 2017. [Online; accessed

9-November-2018].

[142] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for

large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[143] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir

Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going

deeper with convolutions. In Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 1–9, 2015.

[144] Forrest N Iandola, Song Han, MatthewWMoskewicz, Khalid Ashraf, William J

Dally, and Kurt Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer

parameters and< 0.5 mbmodel size. arXiv preprint arXiv:1602.07360, 2016.

[145] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian QWeinberger.

Densely connected convolutional networks. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 4700–4708, 2017.

[146] François Chollet. Xception: Deep learning with depthwise separable convolutions.

In Proceedings of the IEEE conference on computer vision and pattern recognition, pages

1251–1258, 2017.

202

[147] Mark Sandler, AndrewHoward, Menglong Zhu, Andrey Zhmoginov, and

Liang-Chieh Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. In

Proceedings of the IEEEConference on Computer Vision and Pattern Recognition, pages

4510–4520, 2018.

[148] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition. In Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 770–778, 2016.

[149] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A Alemi.

Inception-v4, inception-resnet and the impact of residual connections on learning.

In�irty-First AAAI Conference on Artificial Intelligence, 2017.

[150] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An

extremely efficient convolutional neural network for mobile devices. In Proceedings

of the IEEEConference on Computer Vision and Pattern Recognition, pages 6848–6856,

2018.

[151] MathWorks. Pretrained deep neural networks, 2019. [Online; accessed

16-June-2019].

[152] DP Kingma and J Ba. Dp kingma and j. ba, adam: Amethod for stochastic

optimization, arxiv: 1412.6980. Adam: AMethod for Stochastic Optimization.

[153] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image

translation with conditional adversarial networks. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages 1125–1134, 2017.

[154] Alexey Dosovitskiy, Jost Tobias Springenberg, and�omas Brox. Learning to

generate chairs with convolutional neural networks. In Computer Vision and Pattern

Recognition (CVPR), 2015 IEEEConference on, pages 1538–1546. IEEE, 2015.

203

[155] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional

networks. In European conference on computer vision, pages 818–833. Springer, 2014.

[156] Augustus Odena, Vincent Dumoulin, and Chris Olah. Deconvolution and

checkerboard artifacts. Distill, 1(10):e3, 2016.

[157] Kevis-Kokitsi Maninis, Jordi Pont-Tuset, Pablo Arbeláez, and Luc Van Gool.

Convolutional oriented boundaries: From image segmentation to high-level tasks.

IEEE transactions on pattern analysis andmachine intelligence, 40(4):819–833, 2018.

[158] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. Segnet: A deep

convolutional encoder-decoder architecture for image segmentation. IEEE

transactions on pattern analysis andmachine intelligence, 39(12):2481–2495, 2017.

[159] Olaf Ronneberger, Philipp Fischer, and�omas Brox. U-net: Convolutional

networks for biomedical image segmentation. In International Conference onMedical

image computing and computer-assisted intervention, pages 234–241. Springer, 2015.

[160] Eric T Psota, Mateusz Mittek, Lance C Pérez, Ty Schmidt, and BennyMote.

Multi-pig part detection and association with a fully-convolutional network.

Sensors, 19(4):852, 2019.

[161] Zhe Cao, Gines Hidalgo, Tomas Simon, Shih-EnWei, and Yaser Sheikh. Openpose:

realtimemulti-person 2d pose estimation using part affinity fields. arXiv preprint

arXiv:1812.08008, 2018.

[162] Shuran Song and Jianxiong Xiao. Tracking revisited using rgbd camera: Unified

benchmark and baselines. In Proceedings of the IEEE international conference on

computer vision, pages 233–240, 2013.

[163] Phillip A Laplante. Electrical engineering dictionary. CRC Press LLC, 2000.

204

[164] Mykhaylo Andriluka, Leonid Pishchulin, Peter Gehler, and Bernt Schiele. 2d

human pose estimation: New benchmark and state of the art analysis. In IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), June 2014.

[165] R. I. Hartley and A. Zisserman. Multiple ViewGeometry in Computer Vision.

Cambridge University Press, ISBN: 0521540518, second edition, 2004.

[166] Wikipedia contributors. Hsl and hsv—Wikipedia, the free encyclopedia, 2018.

[Online; accessed 18-July-2018].

[167] Vincent Dumoulin and Francesco Visin. A guide to convolution arithmetic for deep

learning. arXiv preprint arXiv:1603.07285, 2016.

[168] Olatz Arbelaitz, Ibai Gurrutxaga, Javier Muguerza, JesúSM PéRez, and IñIgo

Perona. An extensive comparative study of cluster validity indices. Pattern

Recognition, 46(1):243–256, 2013.

[169] Renato Cordeiro de Amorim and Christian Hennig. Recovering the number of

clusters in data sets with noise features using feature rescaling factors. Information

Sciences, 324:126–145, 2015.

[170] sklearn.metrics.silhouette_score. [Online, accessed 11-August-2019].

[171] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for

online learning and stochastic optimization. Journal ofMachine Learning Research,

12(Jul):2121–2159, 2011.

[172] Alex Graves. Generating sequences with recurrent neural networks. arXiv preprint

arXiv:1308.0850, 2013.

[173] Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al. Gradient-based

learning applied to document recognition. Proceedings of the IEEE,

86(11):2278–2324, 1998.

205

[174] sklearn.cluster.kmeans. [Online, accessed 5-December-2019].

[175] Kuntal Chowdhury, Debasis Chaudhuri, Arup Kumar Pal, and Ashok Samal. Seed

selection algorithm through k-means on optimal number of clusters. Multimedia

Tools and Applications, pages 1–35, 2019.

[176] Peter J Rousseeuw and L Kaufman. Finding groups in data. Hoboken: Wiley Online

Library, 1990.

[177] Mykhaylo Andriluka, Leonid Pishchulin, Peter Gehler, and Bernt Schiele. 2d human

pose estimation: New benchmark and state of the art analysis. In Proceedings of the

IEEEConference on computer Vision and Pattern Recognition, pages 3686–3693, 2014.

[178] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,

Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.

Automatic differentiation in pytorch. 2017.

206

A.1 Imageblendingusing selective reconstructionof Lapla-

cian Pyramids

Given an image with dimensionsw, h (being the width and height of the image

respectively), represented by a h× wmatrix I, the Laplacian pyramid of this image at

level n∆n
I is a collection of:

∆n
I =

[
LnI , H

n
I , H

n−1
I , . . . , H0

I

]
, (1)

whereLnI , H
n
I are matrices representing respectively the low (

h
2n
× w

2n
) and high

(
h

2n−1 × w
2n−1) frequency components obtained on n− th level of decomposition such that:

L(I) = conv(I,K), (2)

conv(I,K) is the convolution operation over image I using Gaussian kernelK. In other

words,L

H(I) = I − conv−1(LI(I), K ∗ 4), (3)

where conv−1 is the deconvolution operation (also referred to as a convolution with

fractional stride), andK is the Gaussian kernel. Construction of the pyramid can be

described like in algorithm 4.

Once the Laplacian pyramid∆n
I is obtained for an image I, the image can be fully

reconstructed with the following operation:

Now, given two Laplacian representations∆n
A,∆

n
B, one of imageA and another of

imageB and a binary maskM indicating which parts of imageA should be replaced by

content of imageB, one could formulate a selective recomposition algorithm using a

modified version of algorithm 5 with the goal of obtaining smooth transition between the

207

Algorithm 4 Construct Laplacian pyramid ∆n
I for image I given n. Note operations:

L.append(e) adds element e to the listL in-place, L.reverse() reverses the order of elements
in the list in-place.

1: procedure LapConstruct(I, n)
2: pyramid = []

3: T = I
4: for i = [0, . . . , n− 1] do
5: LiI = conv(T,K)
6: H i

I = I − conv−1(LiI , K)
7: T = LnI
8: pyramid.append(H i

I)

9: pyramid.append(Ln−1I)

10: return pyramid.reverse()

Algorithm 5 Reconstruct original image I given its Laplacian pyramid∆n
I

1: procedure LapReconstruct(∆n
I , n)

2: I = ∆n
I [0] = LnI

3: for i = [1, 2, . . . , n− 1] do
4: I = conv−1(I,K) +Hn−i

I = conv−1(I,K) + ∆n
I [i]

5: return I

images yet preserving the high frequency content of both. Suchmethod is presented in

algorithm 6.

Algorithm 6 Create a composition of two images using their Laplacian pyramids∆n
A,∆

n
B

and a binary maskM

1: procedure LapCompose(∆n
A,∆

n
B, n,M)

2: f = 2n−1

3: IA = ∆n
A[0] = LnA

4: IB = ∆n
B[0] = LnB

5: m = downSampleByFactor(M, f)
6: I = (1−m)� IA +m� IB
7: for i = [1, 2, . . . , n− 1] do
8: f = 2n−i−1

9: m = downSampleByFactor(M, f)
10: IA = ∆n

A[i] = Hn−i
A

11: IB = ∆n
B[i] = Hn−i

B

12: H = (1−m)� IA +m� IB
13: I = conv−1(I,K) +H

14: return I

Observing the results presented in figure A.1 one could ask if this method is any

208

Figure A.1: Example of Laplacian decomposition (top part from left to right) and recom-

bination (bottom from right to left) using 4-level pyramid. Sample image taken from the

2017-04-19-21-30-25 subset of image-depth datasets listed in table 3.2.

more convincing than simply normalizing the smoothedmaskM and then composing

using the copy&paste method. Please note that the�emask is purposefully containing

fllor areas to illustrate difficulties associated with the blending task. A comparison of

three basic schemes is presented in figure A.1. It is visible, that simple copy and paste

operation is very sensitive to the tightness of the mask around the object and thus, most

likely creates artifacts. Blurring the mask does provide some level of smooth

transitioning but it is not dependent on the image content and does not favor detail

preservation. Laplacian-based blending yields most visually convincing results as there is

no ghosting present in the picture.

It is worth noting that when looking at the problematic areas (indicated by red circles)

of the composition presented in figure A.1, some artifacts still exist when using the

Laplacian method (c) - especially the features of the floor as they do contain

high-frequency content. �emask-dependency was however resolved in most visually

pleasing fashion among all three presented techniques.

209

Figure A.2: Example of Laplacian composition using algorithm 6 with pyramids repre-

sented like in algorithm 4. Instance indicated by red arrow is introduced to the original

image (top-left) using a mask indicated by blue arrow. Arguments are presented on the

top (left to right): A,B,M , and n = 4, and results at each level i = [4, 3, 2, 1, 0] are pre-
sented in the bottom part of figure.

(a) (b) (c)

Figure A.3: Focused visual comparison of the effect of three considered composition oper-

ations: naive copy and paste (a), mask blurring (b), and using Laplacian pyramid (c).

	Pixel-Level Deep Multi-Dimensional Embeddings for Homogeneous Multiple Object Tracking
	

	Introduction
	Multiple Object Tracking
	Motivation: Precision Livestock Farming

	Background
	A need for novel, automated approach to Precision Livestock Farming using Machine Vision
	State of the Art: attempts to track livestock using cameras
	Multiple Object Tracking
	Object Detection
	MOT as Data Association Problem
	Motion, appearance, interaction, and affinity measures

	Semantic Image Segmentation
	Pose Estimation using Keypoints and Part Affinity Fields
	Embeddings
	Convolutional processing of images
	Problem Statement

	Method
	(Big) Data collection
	Pig Detection Dataset

	Convention of image representation
	Representation of Body Part Locations (Keypoints)
	Sparse representation of keypoint locations
	Dense representation of keypoint location using heatmap images

	Pixel-level instance identification representation
	Small manually-annotated semantic instance segmentation evaluation set

	Class-level representation of foreground instances
	Small manually-annotated foreground mask evaluation set
	Multi-view alignment and foreground mask extraction from depth images

	Representation of Body Part Associations (Part Affinity Fields)
	Image Augmentations
	Augmentations in color space
	Augmentations in pixel coordinate space

	Models
	OP Model: A Very Deep Multiple-Objective Convolutional Neural Network
	Receptive Field

	UNET: A Deep, Symmetric Architecture with Skip-Connections

	Instance-Level Weakly-Supervised Multi-Dimensional Embeddings
	Silhouette Coefficient: Cohesion and Separation of Multi-Dimensional Embeddings
	Discriminative loss function for direct silhouette score maximization
	Discriminative loss function with parametric cluster margins
	Speed of Convergence Analysis using Silhouette Score
	Speed of convergence with respect to the number of clusters
	Speed of convergence with respect to the number of embedding channels

	Training using Backpropagation
	Pose Estimation using Body Part Detections and Part Affinity Fields
	Keypoint Detection using Non-Maximum Suppression
	Bipartite Matching
	Part Affinity Fields
	Augmentations of the Cost Metric

	Semantic Instance Segmentation using Embeddings

	Results
	Receiver Operating Characteristics
	Foreground Segmentation Evaluation
	Evaluation of the Body Part Detector
	Keypoint Detection Threshold
	Spatial Accuracy of Keypoint Detection and Distance Threshold
	Keypoint peak detector smoothing kernel size
	Scale (target width) selection based on the keypoint detection performance

	Part Affinity Estimation Evaluation
	Embeddings Analysis
	Within-instance and between-instances embedding analysis
	Correlation with image position, orientation, size, and color properties
	Number of Instances Estimation through Cluster Analysis of the Embedding Vectors

	Pose Estimation Evaluation
	Performance ceiling due to representation
	Evaluation using predictions from Deep CNNs

	Semantic Instance Segmentation Evaluation

	Conclusion
	Challenges
	Approaches and contributions
	Recommendations
	Future work

	References
	Appendices
	Image blending using selective reconstruction of Laplacian Pyramids

