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Ultrasonic scattering in polycrystalline media is directly tied to microstructural features. As a result,

modeling efforts of scattering from microstructure have been abundant. The inclusion of beam

modeling for the ultrasonic transducers greatly simplified the ability to perform quantitative, fully

calibrated experiments. In this article, a theoretical scattering model is generalized to allow for arbi-

trary source and receiver configurations, while accounting for beam behavior through the total propa-

gation path. This extension elucidates the importance and potential of out-of-plane scattering modes

in the context of microstructure characterization. The scattering coefficient is explicitly written for

the case of statistical isotropy and ellipsoidal grain elongation, with a direct path toward expansion

for increased microstructural complexity. Materials with crystallites of any symmetry can be studied

with the present model; the numerical results focus on aluminum, titanium, and iron. The amplitude

of the scattering response is seen to vary across materials, and to have varying sensitivity to grain

elongation and orientation depending on the transducer configuration selected. The model provides a

pathway to experimental characterization of microstructure with optimized sensitivity to parameters

of interest. VC 2019 Acoustical Society of America. https://doi.org/10.1121/1.5139220

[MDV] Pages: 4413–4424

I. INTRODUCTION

The diffuse field of ultrasonic waves can be characterized

by scattering coefficients. Ultrasonic scattering coefficients are

defined as the total energy scattered in a given direction. The

scattering coefficients for metals with cubic crystallites were

first derived by extending flaw scattering models1,2 and reci-

procity relationships.3–5 Rose6 used Auld’s4 theory to derive

backscatter coefficients directly related to the signal observed

in an oscilloscope (backscatter refers to the signals scattered in

the backward direction from the incident wave). Margetan

et al.7 obtained equivalent expressions using the reciprocity

relations of Thompson and Gray.5 The models of Rose6 and

Margetan et al.7 have been modified to account for more com-

plex microstructures. Others considered titanium alloys with

multiple phases and grain elongation.8–11 Han et al.12 included

texture using Roe’s orientation distribution function13 and Li

and Thompson14 considered hexagonal crystallites. The mod-

els were later extended to include angular dependence of scat-

tering coefficients within the material.15 Lobkis et al.16,17

included duplex microstructure and elongated grains. Sha18

included grain size distributions while Li and Rokhlin22

accounted for macrotexture and grain elongation. Others

extended to texture and lower crystal symmetries.19–23

Ghoshal et al.24 established a mathematical formalism

within a multiple scattering framework that included transducer

modeling. The scattered response was given as a convolution

of the displacement fields’ Wigner transforms with an intensity

operator defined by the Bethe–Salpeter equation.24 This form

of the intensity operator (associated with the scattering coeffi-

cient) allows for a full expansion to multiple scattering with the

authors providing a solution for the singly-scattered response

(SSR).24 This formulation of the scattering response rigorously

accounts for the transducer beam energy as it passes through a

coupling fluid and into the solid, facilitating correlation with

experimental results. Some simplifying assumptions have been

made to obtain closed-form solutions of the SSR expression.

Multiple authors have explored the applicability of this solution

for extraction of microstructural features of polycrystalline

media.25–28 Ghoshal and Turner25 provided a solution for the

longitudinal backscatter response through a curved interface.

Hu et al. extended the model to in-plane mode-converted26 and

shear-to-shear27 scattering, which are advantageous for thinner

samples and detection of defects in the transverse direction.

Arguelles et al.28 then considered the mode-converted scatter-

ing model in the presence of grain elongation. In all these stud-

ies,25–28 the authors were successful at inverting ultrasonic data

to obtain characteristic grain sizes.

In this article, Ghoshal and Turner’s model25 is extended

to arbitrary wave propagation directions for the source and

receiver which can have longitudinal or shear incident and

scattered waves. A measurement model is included which

accounts for transmission and reflection at the interfaces as

well as full beam modeling for all configurations of source

and receiver. This result represents advancement over previ-

ous arbitrary scattering direction models,15 which accounted

only for scattering contributions within the material. First, a

review of the SSR model given by Ghoshal et al.24 is given in

Sec. II. In Sec. II A, the transducer fields are written in terms

of independent coordinate systems, which are then related toa)Electronic mail: arguelles@psu.edu
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the fixed coordinates used for the spatial integration of the

scattered energy. As presented in Sec. II B, the model given

herein is applicable to microstructures for which the spatial

component of the scattering coefficient can be separated from

the tensorial component; the tensorial term represents the var-

iations in the elastic constants of the medium. This model is

then reduced to the case of macroscopic isotropy, for which

the crystallites are assumed to be randomly oriented with a

closed-form expression given in Sec. II C. In Sec. III, the

effect of grain elongation on the scattering response is studied

in detail. Numerical results concentrate on the out-of-plane

shear-to-shear scattering, which is the primary extension to

other closed-form solutions of Ghoshal and Turner’s model.25

This generalized model will allow components with increased

microstructural complexity to be characterized.

II. SINGLE SCATTERING RESPONSE MODEL

Ghoshal et al.,24 under the assumption of single scatter-

ing, derived an analytical expression for the spatial variance

of signals captured at various positions on a sample. This

time-dependent variance, SSR, is given by

UðtÞ ¼ cScR

ð
dx

ð2pÞ4
dkdk0dxdt0WR

bjðx; t� t0; k0;xÞ

� k0b
k0j

Kck
kk WS

ckðx; t0; k;xÞ; (1)

where cS and cR relate the displacement fields to the trans-

ducer voltages and are obtained through calibration experi-

ments. This general expression allows for arbitrary mode

types of the incident and scattered fields, given by k and k0,
respectively. Equation (1) is an integral of the inner product

of WS and WR with the intensity operator K associated

with the heterogeneous medium, and includes a temporal

convolution of WS and WR. WS and WR are the transducer

energy distributions, quantified by the four-fold Wigner

transform of the displacement fields created by the source

and receiving transducers, respectively. More specifically,

W represents the signal in the space-time (x, t) and wave

vector-frequency (k, x) domains simultaneously. Section

II A provides W for a piston transducer placed relative to a

sample in an arbitrary orientation and Sec. II B describes K

for different microstructures.

A. Wigner transform of piston transducer at arbitrary
angles

The four-fold Wigner transform can be written as

Wbj x; t; k;xð Þ ¼
ð
hWb xþ n=2; tþ s=2ð Þi

� hWj x� n=2; t� s=2ð Þi
� exp fik � nþ ixsgd3nds; (2)

where W is the displacement field and the angular brackets hi
denote the ensemble average. The Wigner transform was first

calculated for a piston transducer by Ghoshal et al.,24 and

explicitly written for longitudinal propagation at normal inci-

dence in Ghoshal and Turner25 and for shear oblique incidence

in Hu et al.26 Here, the expression for W is generalized for

arbitrary wave modes and propagation directions as depicted in

Fig. 1. The Wigner transform for the source becomes

WS
ckðx; t;k;xÞ

¼ T2
f vA2

0Sð2pÞ3
ffiffiffiffiffiffi
2p
p

rS
w2

0S

w1ðZSÞw2ðZSÞ

� exp � 2X2
S

w2
1ðZSÞ

� 2Y2
S

w2
2ðZSÞ

" #

� exp �2ZSðZS� 2tcvÞ
r2

Sc2
v

� 2avZS�
1

2
r2

S x�x0Sð Þ2
" #

� exp �2
t

rS

� �2
" #

d3ðk�k0Þêcêkðk̂ � n̂SÞ2; (3)

where a local coordinate system XS is used, as shown in Fig. 2.

The Wigner transform for the receiver WR can be cast in a sim-

ilar form using a local coordinate system XR and distinct wave

properties for the scattered wave, so that

WR
bjðx; t; k0;xÞ

¼ T2
v0f A

2
0Rð2pÞ4 w2

0R

w1ðZRÞw2ðZRÞ

� exp � 2X2
R

w2
1ðZRÞ

� 2Y2
R

w2
2ðZRÞ

" #

� exp � 2ZRðZR � 2tcv0 Þ
r2

Rc2
v0

� 2av0ZR

" #
d x� x0Rð Þ

� exp �2
t

rR

� �2
" #

d3ðk0 � k00Þê0bê0jðk̂
0 � n̂RÞ2: (4)

FIG. 1. (Color online) Schematic diagram of a pitch-catch transducer con-

figuration with non-coplanar source and receiver.
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In order to simplify later integrations, the receiving

transducer is assumed to have a single frequency x0R rather

than a Gaussian distribution of frequencies.24–26 In Eqs. (3)

and (4), the variables are designated as follows:

v, v0–wave type for incident and scattered waves,

A0–amplitude correction due to propagation in fluid,29

Tf v; Tv0f –transmission coefficients, fluid to sample and sam-

ple to fluid,

cL, cT–longitudinal and shear wave speeds,

aL, aT–longitudinal and shear wave attenuations,

rS, rR–pulse width for source and receiving transducers,

x0S; x0R–center frequencies for source and receiving

transducers,

k, k0–propagation direction vectors for the incident and

scattered waves,

ê; ê
0–displacement directions for the incident and scattered

waves,

n̂S; n̂R–unit vectors normal to the surface of the source and

receiving transducers.

Assuming a single Gaussian beam in space for the pis-

ton transducers,24

w0–initial beam width,

w1; w2–widths of the Gaussian profile along the propaga-

tion axis z,30

expressions for which are given in Appendix A. This approxima-

tion is applicable to both flat and focused transducers. Because

the spatial integration in Eq. (1) is written in the global coordi-

nate system x, a coordinate transformation from Xn to x is neces-

sary. As depicted in Fig. 2, a simple geometric relation given by

the refraction angle Hn and rotation angle /n can be written as

Xn ¼ x cos /n cos Hn þ y sin /n cos Hn

þ z sin Hn � dn cos Hn;

Yn ¼ �x sin /n þ y cos /n;

Zn ¼ �x cos /n sin Hn � y sin /n sin Hn

þ z cos Hn þ dn sin Hn: (5)

The subscript n is used to differentiate the transducers

(n ¼ S; R, source or receiver, respectively).

B. Intensity operator, K

Having characterized the transducer energy distributions

W, the next step is to define the intensity operator K in Eq.

(1). K is an eighth-rank tensor that quantifies the scattering

within the material, written here as

k0b
k0j

Kck
kk � ~gðk0 � kÞk0akdk0lkmNadbc

lmjk

¼ k02k2~gðk0k̂0 � kk̂Þk̂ 0ak̂dk̂
0
lk̂mNadbc

lmjk ; (6)

assuming the spatial and tensorial components are inde-

pendent of each other.31 The notation
k0b
k0j

Kck
kk denotes a

wave propagating in the k̂ direction that scatters into the

k̂
0

direction. The function ~gðk0 � kÞ is the spatial Fourier

transform of the two-point probability function giving the

likelihood that two randomly chosen positions will lie

within a given grain. Hence, ~g is a function of the differ-

ence between the incident and scattered wave vectors due

to the implicit assumption of statistical homogeneity.

Nadbc
lmjk is the elastic modulus covariance given by

Nadbc
lmjk ¼ hClmjkCadbci � hClmjkihCadbci, which represents the

second-order statistics of the spatial distribution of crys-

tal orientations responsible for the scattering. ~gðk0 � kÞ
is described in more detail for elongated grains in

Appendix B.

C. Generalized model

Now Eqs. (3), (4), and (6) can be substituted into Eq.

(1). Generally, transducers used for these experiments have

matched frequencies and pulse widths; hence, we can

assume rS ¼ rR ¼ r and x0S ¼ x0R ¼ x0 to obtain

FIG. 2. (Color online) Coordinate transformation diagram for non-coplanar source and receiver with respect to a fixed global coordinate system.
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UðtÞ ¼ cScRðTf vTv0f Þ2ðA0RA0SÞ2ð2pÞ3
ffiffiffiffiffiffi
2p
p

r
ð

w2
0Rw2

0S

w1ðZRÞw2ðZRÞw1ðZSÞw2ðZSÞ

� exp � 2X2
R

w2
1ðZRÞ

� 2Y2
R

w2
2ðZRÞ

� 2ZRðZR � 2ðt� t0Þcv0 Þ
r2c2

v0
� 2

t� t0

r

� �2
" #

� exp �2av0ZR �
1

2
r2 x� x0ð Þ2

� �
d3ðk0 � k00Þê0bê0jðk̂

0 � n̂RÞ2 � k02k2~gðk0k̂0 � kk̂Þk̂ 0ak̂dk̂
0
lk̂mNadbc

lmjk

� exp � 2X2
S

w2
1ðZSÞ

� 2Y2
S

w2
2ðZSÞ

� 2ZSðZS � 2t0cvÞ
r2c2

v
� 2

t0

r

� �2

� 2avZS

" #
d x� x0ð Þd3ðk� k0Þ

� êcêkðk̂ � n̂SÞ2dxdkdk0dxdydzdt0: (7)

Performing the integrations over t0, k, k0, and x, gives

UðtÞ ¼ cScRðTf vTv0f Þ2ðA0RA0SÞ2ð2pÞ4 x4
0

c2
vc2

v0
r2

ffiffiffi
2
p

4
�
ð

dxdydz
w2

0Rw2
0S

w1ðZRÞw2ðZRÞw1ðZSÞw2ðZSÞ
exp � 2X2

R

w2
1ðZRÞ

� 2X2
S

w2
1ðZSÞ

" #

� exp � 2Y2
R

w2
2ðZRÞ

� 2Y2
S

w2
2ðZSÞ

� 2av0ZR � 2avZS �
2ZRðZR � 2tcv0 Þ

r2c2
v0

� 2Z2
S

r2c2
v
� 2

t

r

� �2

þ 1

r2

ZS

cv
� ZR

cv0
þ t

� �2
" #

� ~g k0k̂
0
0 � kk̂0

� �
� k̂

0
ak̂dk̂

0
lk̂mNadbc

lmjk êcêkðk̂0 � n̂SÞ2ê0bê0jðk̂
0
0 � n̂RÞ2: (8)

The coefficients cn and A0n are given by

cS ¼ VS
max

2qf k
2
f rc2

f

Rff DSðx0Þ

ffiffiffi
2

p

r
wðzFSÞ

w2
0S

ðpw2
0SÞ

2
exp 2af zFSð Þ;

cR ¼ VR
max

2qf k
2
f rc2

f

Rff DRðx0Þ

ffiffiffi
2

p

r
wðzFRÞ

w2
0R

ðpw2
0RÞ

2
exp 2af zFRð Þ;

A0S ¼ �
exp ð�af zfSÞ

4pw2
0Sqf c

2
f rkf

ffiffiffi
p
p ;

A0R ¼ �
exp ð�af zfRÞ

4pw2
0Rqf c

2
f rkf

ffiffiffi
p
p ; (9)

where Vn
max are the maximum signal voltages for the individual

transducers (assuming reflection off a planar surface at normal

incidence). The water paths used during the calibration proce-

dure are given by zFS and zFR, which are the focal lengths

of the corresponding transducers. Details of the calibration pro-

cedure can be found elsewhere.25 The reflection coefficient

Rff ¼ ðqcL � qf cf Þ=ðqcL þ qf cf Þ and the diffraction constant

Dnðx0Þ ¼ j1� e�ð2pi=snÞ½J0ð2p=snÞ þ iJ1ð2p=snÞ�j32 where sn

¼ 4pcf zFn=x0w2
0n. Based on the unit vector relationships

depicted in Figs. 1 and 2, the inner products are given by

k̂0 � n̂S ¼ cos ðHS � hiSÞ and k̂
0
0 � n̂R ¼ �cos ðHR � hiRÞ.

Finally, Eq. (8) becomes

UðtÞ ¼ U0B

ð
dxdydz

1

w1ðZRÞw2ðZRÞw1ðZSÞw2ðZSÞ
exp � 2X2

R

w2
1ðZRÞ

� 2X2
S

w2
1ðZSÞ

" #

� exp � 2Y2
R

w2
2ðZRÞ

� 2Y2
S

w2
2ðZSÞ

� 2Z2
R

r2c2
v0
� 2Z2

S

r2c2
v
þ 1

r2

ZS

cv
� ZR

cv0

� �2
" #

� exp
2

r2

ZS

cv
þ ZR

cv0

� �
t� t

r

� �2

� 2av0ZR � 2avZS

" #
(10)

where

U0 ¼
p
ffiffiffi
2
p

8
VS

maxVR
max

Tf vTv0f

Rff

� �2 1

qf c
2
f

 !2
wðzFSÞwðzFRÞ

DSðx0ÞDRðx0Þ

� cos 2 HS � hiSð Þ � cos 2 HR � hiRð Þ
� exp 2af ðzFS � zfSÞ þ 2af ðzFR � zfRÞ

	 

: (11)

U0 is a factor related to experiment calibration and B is the

scattering coefficient. The expression given by Eq. (10) is

applicable to materials with various microstructures. With

the previously stated assumptions of statistical homogeneity

and isotropy of the second-order statistics of the polycrystal,

the scattering coefficient may be written as

B ¼ x2
0

cvcv0

 !2

~g k0k̂
0
0 � kk̂0

� �
k̂
0
ak̂dê0bêck̂

0
lk̂mê0jêkN

adbc
lmjk :

(12)

Details of the inner product k̂
0
ak̂dê0bêck̂

0
lk̂mê0jêkN

adbc
lmjk in the

scattering coefficient are given in Appendix C for various
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incident-to-scattered wave combinations and arbitrary single

crystal symmetry. Equation (10) is the primary result of this

paper. This model allows for arbitrary transducer configura-

tions, which expands the capabilities of scattering measure-

ments for microstructure characterization. Although increasing

the complexity of the model, a clear understanding of the scat-

tering response for arbitrary transducer angles can improve

current techniques used to determine grain morphology. Given

the large number of variables in the generalized model, only

select examples of transducer configurations are considered in

Sec. III.

III. NUMERICAL RESULTS

The model given by Eq. (10) has a large number of possi-

ble configurations. In this section, a subset of those is numeri-

cally evaluated for select materials. The results presented

consider only shear-to-shear scattering where hiS and hiR are

greater than the first critical angle, hI, for each material. Both

in-plane (/S ¼ /R) and out-of-plane (/S 6¼ /R) scattering

configurations are considered. The foci of the transducers are

chosen to overlap by adjusting the water and material paths for

the source (zfS and zS) and the receiver (zfR and zR). For all

examples, the frequency, focal length, and element radius of

the source and receiver are fixed (f ¼ 8 MHz, F ¼ 50.8 mm,

and a ¼ 4.76 mm). The beam cross-section is assumed circular

in all cases, which is deemed acceptable for the small trans-

ducer radius. Parameters of interest for selected materials are

given in Table I. The fluid is selected to be ethylene glycol,

with cf ¼ 1660 m/s, qf ¼ 1115 kg/m3, and af ¼ 0:12� f 2

Np/m, where f is in hertz.33

Consider the following grain dimensions: ax ¼ 15 mm,

ay ¼ 60 mm, az ¼ 30 mm. Figure 3 is given to illustrate the

polar angles of the grain orientation, denoted by wg, with

respect to the transducer configuration, denoted by angles /S

and /R for the source and receiver, respectively. This two-

dimensional illustration corresponds with the x-y plane in

Fig. 1. For a grain that is elongated along its y-direction,

wg ¼ 0 and /S=R ¼ 0 correspond with wave propagation per-

pendicular to the direction of elongation. To simplify later

examples, primary grain elongation will be set along the

grain’s y-direction, and the source transducer will remain

fixed at /S ¼ 0�.

A. Time-dependent scattering response

Consider the case for which the incident and scattering

angles are equal, HS ¼ HR ¼ H; consequently, the material

paths for the source and receiver are equal, zS ¼ zR. For

ax ¼ 15 mm, ay ¼ 60 mm, az ¼ 30 mm, and wg ¼ 0�, the

time-dependent scattering response is calculated for a pulse-

echo (PE) configuration where /S ¼ /R ¼ 0� and for a pitch-

catch (PC) configuration where /S ¼ 0�; /R ¼ 90�. The

results are depicted in Fig. 4. The responses are normalized

by V2
max, the water path is set at 35 mm, and H ¼ 45� with

the angles in the fluid (hi) adjusted according to Snell’s law.

First, consider the time dependence of the two configura-

tions. A sharper response in time is observed in PC when

compared with PE; the width in the time response is dictated

by the overlap region of the beam profiles at the focus, which

is largest in the PE configuration. The time dependence for

different polar scattering angles, /R, is similar to the PE con-

figuration only for angles 65� from /S ¼ 0�, then quickly

converges to the time dependence shown for the PC configu-

ration at all other angles, /R. The narrower focal region also

results in a later apparent arrival of the peak scattering

amplitude. When comparing the different materials, the

changes in arrival time result from the choice of a constant

water path, which leads to small differences in the material

path (or focal zone) due to wave speed differences between

the solids. Second, consider the differences in scattering

amplitudes. The scattering amplitude for the PE configura-

tion is over 3 times larger than the PC configuration. Such a

result is expected for wg ¼ 0� because fewer grain bound-

aries are encountered when the wave scatters along the direc-

tion of elongation (i.e., when /R ¼ 90�). In agreement with

longitudinal and mode-converted scattering results, the nor-

malized time-dependent responses for different materials are

similar with only a variation in amplitude. For the three

materials considered, aluminum exhibits the highest ampli-

tude followed by titanium and then iron. Although iron is

more highly scattering due to its anisotropy, the amplitude of

the scattering response is lowest due to losses at the inter-

face, i.e., the factor TTf TfT=Rff is more than 20 times larger

for aluminum than iron, and almost 4 times larger than tita-

nium. In Secs. III B and III C, the peak scattering amplitude

for aluminum is evaluated as a function of polar angle, ele-

vation angle, and grain morphology. The results presented

are expected to be similar for other materials.

TABLE I. Material properties for titanium, aluminum, and iron used for

numerical results (Ref. 36).

Material

Density

(kg/m3)

Elastic Constants (GPa) Critical Angle (deg)

c11 c12 c13 c33 c44 hI hII

Titanium 4506 160 90 66 181 46.5 15.97 32.01

Aluminum 2700 108 62 c12 c11 28.3 14.92 32.21

Iron 7874 230 135 c12 c11 117 15.99 29.55

FIG. 3. (Color online) Polar angle notation in the xy-plane for grain elonga-

tion direction wg, source transducer /S (depicted with an inward blue

arrow), and receiving transducer /R (depicted with an outward red arrow).
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B. Polar angle dependence

In this section, the maximum amplitude of the scattering

response as a function of polar angle is studied. The source

is fixed at /S ¼ 0� and the receiver angle is varied from

/R ¼ 0� (PE) through various PC configurations back to

/R ¼ 360� (PE). Experimentally, measurement of the scatter-

ing response at arbitrary polar angles may require the use of

special fixtures or configurations. These custom setups may

result in slight errors in the positioning of the source and

receiver, even when the intent is to maintain equal elevation

angles. To address the effect of such a scenario, small varia-

tions in the elevation angle for the source hiS and receiver hiR

are studied (depicted in Fig. 5). The angular dependence

remains approximately equal for small variations in elevation

angle. The differences are mainly observed in the amplitudes

in select scattering directions for the given elongation direction

(wg ¼ 0�). The largest deviations from the hiS ¼ hiR case are

observed around the backscatter (/R ¼ 0�) and the forward

scattering (/R ¼ 180�) directions. In these cases, the variation

can exceed 19%. For other elongation directions, however, the

error may manifest at different scattering angles. These results

illustrate the importance of ensuring the incidence angles of the

transducers are well controlled.

Assuming now that hiS ¼ hiR ¼ hi, the effect of eleva-

tion angle on peak scattering amplitude for three elongation

directions is given in Fig. 6. As expected, symmetry about

FIG. 4. (Color online) Time-dependent scattering response for three materials, aluminum, iron, and titanium with grain dimensions ax ¼ 15 mm; ay ¼ 60 mm;

az ¼ 30 mm, and wg ¼ 0�. Two transducer configurations are depicted: pulse-echo (PE) where /S ¼ /R ¼ 0� and pitch-catch (PC) where /S ¼ 0�; /R ¼ 90�.

FIG. 5. (Color online) Effect of small variations in the elevation angle of the source (hiS ) and receiver (hiR ) on the peak amplitude of the shear scattering

response in aluminum for a fixed grain elongation ratio (ax ¼ 15 mm; ay ¼ 60 mm; az ¼ 30 mm) and direction (wg ¼ 0�). The source is fixed at a polar angle

/S ¼ 0� and the amplitudes are given as a function of polar angle of the receiver /R.
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/R ¼ 0� 180� is observed when the grain is elongated along

the x or y directions (wg ¼ 0� and wg ¼ 90�). When consider-

ing the response as a function of polar angle, /R, a local maxi-

mum is observed for the PE transducer configuration

(corresponding with backscattered energy) for all grain orienta-

tions. This local maximum becomes more prominent at the

larger elevation angles, hi. Furthermore, the PE configuration

displays the largest change in amplitude for different elonga-

tion directions, regardless of elevation angle. Conversely, the

forward scattering (FS) energy (when /R ¼ 180�) has the larg-

est magnitude regardless of elongation direction but is the least

sensitive to the elongation direction. A local minimum is

observed for /R ¼ 90� when wg ¼ 0�, which corresponds

with scattering along the direction of primary elongation.

When the grain is rotated with respect to the transducers,

however, the local minimum shifts and becomes dependent

on elevation angle hi. Considering the scattering amplitude

as a function of elevation angle hi, multiple local maxima

are observed, most evidently for the PE and FS transducer

configurations. To understand this phenomenon further, the

response as a function of elevation angle for select trans-

ducer configurations is studied.

Figures 7–9 show results for (a) a PE configuration, (b)

a PC configuration with /R ¼ 90�, and (c) a PC forward

FIG. 6. (Color online) Peak amplitude of shear scattering response as a function of polar angle of the receiver /R (with /S ¼ 0) for a fixed grain elongation

ratio (ax ¼ 15 mm; ay ¼ 60 mm; az ¼ 30 mm) and varying elevation angle hi for aluminum.

FIG. 7. (Color online) Peak amplitude of the shear scattering response with /S ¼ 0� and (a) /R ¼ 0�, (b) /R ¼ 90�, and (c) /R ¼ 180� as a function of eleva-

tion angle hi for a fixed grain elongation ratio (ax ¼ 15 mm; ay ¼ 60 mm; az ¼ 30 mm) and various grain elongation directions wg in aluminum.
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scattering (FS) configuration where /R ¼ 180�. The maxi-

mum scattering amplitude as a function of elevation angle is

given in Fig. 7. For all scattering scenarios, a sharp increase

in the amplitude of the response occurs after the first critical

angle, hI. For PE in Fig. 7(a), the amplitude slightly

decreases before reaching a second local maximum near the

second critical angle, hII. The amplitude then sharply drops

to zero at hII. This response follows a trend similar to the

square of the transmission-reflection coefficient ratio given

by TfTTTf=Rff which multiplies the scattering response. The

FS response in Fig. 7(c) displays a similar trend with a

smaller change in the amplitude of the response as a function

of incident angle. Figure 7(c) also illustrates how small the

change in amplitude is for different grain orientations.

Contrary to PE, the FS amplitude is largest when the wave

propagates and scatters along the grain elongation direction.

For PC in Fig. 7(b), the response most resembles the mode-

converted scattering response dependence on angle of inci-

dence.28 The decrease in amplitude is gradual after the maxi-

mum near, hI. Note that the grain orientation angles depicted

are wg ¼ 45�; 90�, and 135� because the symmetry in the

response for this transducer configuration is about wg ¼ 45�

rather than wg ¼ 0� or 90� as shown later in Fig. 8. The

behavior near hI and hII may be of interest although it is

expected to be more complex due to contributions from other

modes of scattering; hence, it is beyond the scope of this

article.

C. Grain morphology dependence

Next, the effect of grain rotation about axis Yg is studied,

hereon referred to as grain tilt. The maximum amplitude of

the response as a function of angle wg is given in Fig. 8 for

various tilt angles, hg. The response for PE in Fig. 8(a)

FIG. 8. (Color online) Peak amplitude of the shear scattering response with /S ¼ 0� and (a) /R ¼ 0�, (b) /R ¼ 90�, and (c) /R ¼ 180� as a function of rota-

tion angle hg for a fixed grain elongation ratio (ax ¼ 15 mm; ay ¼ 60 mm; az ¼ 30 mm) and various grain elongation directions wg in aluminum.

FIG. 9. (Color online) Normalized peak amplitude of the shear scattering response with /S ¼ 0� and (a) /R ¼ 0�, (b) /R ¼ 90�, and (c) /R ¼ 180� as a func-

tion of aspect ratio of the elongated grains (assuming ax ¼ az and a constant grain volume of V ¼ 4500p mm3) in aluminum.
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follows the same trend as the mode-converted scattering

response;28 for no grain rotation, there is symmetry about

wg ¼ 90� that is disrupted in the presence of grain tilt. Such

an effect is anticipated by the fact that the effective cross-

sectional length along the direction of propagation is modi-

fied when the grains are tilted. Additionally, the absolute

amplitude of scattering is larger for the PE shear scattering

case than it is for mode-converted scattering.28 Some of the

contributing factors include changes in the transmission

coefficients at the fluid/solid interface and differences in the

propagation distances when maintaining a constant focal

depth. For PC in Fig. 8(b), the response is symmetric about

wg ¼ 45� which corresponds with the maximum amplitude

given the smallest cross-sectional area along the wave propa-

gation direction. The presence of grain tilt increases this

maximum amplitude more significantly than for the PE config-

uration. For FS in Fig. 8(c), as previously mentioned, the maxi-

mum is less prominent and occurs at wg ¼ 90� which

corresponds with elongation along the direction of wave propa-

gation. For FS, when the grains are rotated about Yg, not only

is the symmetry of the response about wg ¼ 90� disrupted, but

the magnitude of the scattering also increases significantly.

However, note that for a fixed grain rotation hg, the variation in

scattering amplitude as a function of wg is still significantly

smaller than for the other two transducer configurations. Note

that for the largest grain tilt, hg ¼ 45�, in the forward scattering

configuration selected (H ¼ 45�), the incident wave propa-

gates along ax and scatters along az. Although it is apparent

that for these fixed grain dimensions the ratio from maximum

to minimum scattering amplitude is largest for the /R ¼ 90�

configuration, the effect of grain elongation on scattering

amplitude is more clearly depicted in Fig. 9.

In order to study the effect of elongation ratio, grains with

circular cross-sections (i.e., ax¼ az) are elongated in the Ŷg direc-

tion maintaining a constant grain volume (V ¼ 4500p mm3).

The maximum amplitude of the response is normalized by the

maximum amplitude of the response for equiaxed grains

(ax ¼ ay ¼ az). Various rotation angles wg between 0� and

90� are considered for PE and FS (the circular cross-section

implies symmetry about wg ¼ 90�); and values between 45�

and 135� are considered for the PC setup. As shown in the pre-

vious two examples, the FS response in Fig. 9(c) has negligible

dependence on grain rotation. For FS, the deviation from the

equiaxed grain response to ay ¼ 50az is consistently around

20% for all values of wg considered. The PE and PC relative

amplitudes have a trend similar to the mode-converted scatter-

ing case; increased elongation increases the amplitude ratio

for perpendicular scattering directions (wg ¼ 0�/wg ¼ 90� and

wg ¼ 45�/wg ¼ 135�). The scattering amplitude when the

receiving transducer is perpendicular to the direction of elonga-

tion (wg ¼ 90� or wg ¼ 135�) rapidly decreases as a function

of aspect ratio. In addition, the difference in scattering ampli-

tude for wg angles approaching scattering perpendicular to

elongation quickly decreases as a function of aspect ratio.

Therefore, greater measurement sensitivity to elongation exists

for smaller ranges of wg when elongation ratios are large.

Lastly, the PC configuration in Fig. 9(b) exhibits the largest

deviation from the equiaxed grain scattering amplitude nearing

40% for ay ¼ 50az.

IV. SUMMARY

In this article, a generalized scattering model was derived

for arbitrary configurations of the source and receiving trans-

ducers. The scattering coefficient was explicitly given for sta-

tistically isotropic solids with aligned ellipsoidal grains. A

supplementary MATLAB code is provided to calculate the elastic

covariance for crystallites of any symmetry class, along with

the inner products for random wave propagation and displace-

ment directions.37 Numerical results were presented for out-of-

plane shear-to-shear scattering for Al, Fe, and Ti. Different

materials were shown to have comparable scattering responses

with only amplitude variations, which were dominated by the

reflection and transmission coefficients at the interface. The

importance of precise transducer placement was illustrated by

evaluating the amplitude of the scattering response; for 60.5�

variations in elevation, amplitude differences approaching 20%

were observed. Next, the effects of elevation angle and grain

morphology were evaluated. Depending on the transducer con-

figuration, varying sensitivity to grain orientation and size were

observed. One advantage of this generalized model is the abil-

ity to define experimental configurations with increased sensi-

tivity to microstructural parameters of interest. The given

formulation, which separates the scattering coefficient from the

parameters pertaining to transducer placement, provides a start-

ing point for studying increasingly complex microstructures.

To this end, the modification of the scattering coefficient to

include macroscopic texture would be a natural continuation of

the present work.

APPENDIX A: SINGLE GAUSSIAN BEAM
PARAMETERS

Restricting the analysis to planar samples, the single

Gaussian beam parameters are given by25,30

1

qnðZnÞ
¼ 1

RnðZnÞ
� i

2

kf w2
nðZnÞ

;

q1nðZnÞ ¼
cos2hrn

cos2hin

qnð0Þ þ zf n
	 


þ cv

cf
Zn;

q2nðZnÞ ¼ qnð0Þ þ zfn þ
cv

cf
Zn: (A1)

ZS and ZR are the source and receiver propagation axes,

respectively. hi is the angle of incidence of each transducer

in the fluid and hr is the refraction angle calculated

using Snell’s law (hrn ¼ Hn in Fig. 2). Rnð0Þ ¼ �Fn and

wnð0Þ ¼ w0n ¼ 0:7517an are the initial radius and beam

width of the wavefront, respectively, where F is the focal

length of the transducer in the fluid and a is the nominal

radius of the transducer element.30 kf ¼ x0=cf is the wave

number of the immersion fluid at the center frequency of the

transducer. The widths of the single Gaussian beam can now

be written as

w2
1ðZnÞ ¼ �

2

kf Im 1=q1nðZnÞ
� � ;

w2
2ðZnÞ ¼ �

2

kf Im 1=q2nðZnÞ
� � : (A2)
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Note that these expressions assume a circular cross-section

for the beam profile, which becomes ellipsoidal for oblique-

incidence.27

APPENDIX B: SPATIAL CORRELATION FUNCTION

The spatial correlation function g represents the proba-

bility that two randomly chosen positions lie within a given

grain. The spatial Fourier transform of the correlation func-

tion can be written in terms of the unit vectors k̂0 and k̂
0
0,

given in Fig. 1, or in terms of the global coordinate system

as

~g qð Þ ¼ ~g k0k̂
0
0 � kk̂0

� �
¼ ~g qxx̂ þ qyŷ þ qzẑ

� �
: (B1)

In this article, the case of ellipsoidal grains is considered, for

which the correlation function reduces to11,16,28,34

~g ¼ ~g qð Þ ¼
axayaz

p2 1þ a2
xq2

x þ a2
yq2

y þ a2
zq2

z

� �2
; (B2)

where ax; ay, and az define the radii of the ellipsoid in the x,

y, and z directions, respectively. This equation simplifies to

the case of equiaxed grains when ax ¼ ay ¼ az ¼ L. The

directions of unit vectors k̂0 and k̂
0
0 correspond with ZS and

�ZR, respectively, as seen in Fig. 2, such that

qx ¼ k0k̂
0
0 � kk̂0

� �
� x̂

¼ k0 cos /R sin HR þ k cos /S sin HS;

qy ¼ k0k̂
0
0 � kk̂0

� �
� ŷ

¼ k0 sin /R sin HR þ k sin /S sin HS; and

qz ¼ k0k̂
0
0 � kk̂0

� �
� ẑ ¼ �k0 cos HR � k cos HS; (B3)

which simplifies to the expressions given by Arguelles

et al.28 when /S ¼ /R ¼ 0�. Here k ¼ x0=cv is the wave

number of the incident wave and k0 ¼ x0=cv0 is the wave

number of the scattered wave, where v represents the wave

mode (longitudinal or shear). Hn and /n are the angles of the

source and receiver with respect to the global coordinate sys-

tem given by Eq. (5). A new coordinate system is defined for

the ellipsoidal grains in order to allow arbitrary directions of

elongation with respect to the transducer configuration; this

step is necessary for PC transducer configurations where

rotation of the transducers is not sufficient to describe tilt or

out-of-plane grain rotation. The relation between the global

axes (x,y,z) and the grain axes (Xg; Yg; Zg) can be specified

using three Euler angles wg, hg, and /g, as shown in Fig. 10.

For the rotation convention used, wg defines rotation about ẑ,

hg defines rotation about Ŷg, and /g defines rotation about

Ẑg. Note that there is redundancy in one angle when both the

grain and transducers are allowed to rotate in-plane, but this

definition facilitates illustration of numerical results. Now,

the coordinate transformation from Xg to x can be written as

Xg¼ rx where the transformation matrix r is given by

r ¼
cos wg cos hg cos /g � sin wg sin /g sin wg cos hg cos /g þ cos wg sin /g �sin hg cos /g

�cos wg cos hg sin /g � sin wg cos /g �sin wg cos hg sin /g þ cos wg cos /g sin hg sin /g

cos wg sin hg sin wg sin hg cos hg

0
BB@

1
CCA: (B4)

The vector q in Eq. (B1) can then be modified and written

with respect to the coordinate system of the elongated grains,

so that q ¼ qXg
X̂g þ qYg

Ŷg þ qZg
Ẑg. Because Xg ¼ rx

(Xgi
¼ rijxj), the following expressions are obtained:

qXg
¼ q � X̂g ¼ r11qx þ r12qy þ r13qz;

qYg ¼ q � Ŷg ¼ r21qx þ r22qy þ r23qz;

qZg
¼ q � Ẑg ¼ r31qx þ r32qy þ r33qz; (B5)

where the correlation function is now given by

~gðqÞ ¼ axayaz

p2 1þ a2
xq2

Xg
þ a2

yq2
Yg
þ a2

zq2
Zg

� �2
: (B6)

This form of the correlation function was first given by Arguelles

et al.28 for an in-plane PC transducer configuration. Note that the

presence of grain size distributions is ignored, which may have a

measurable effect on the scattering response.35

FIG. 10. (Color online) Euler angles used to define the grain coordinate sys-

tem relative to the fixed reference frame.
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APPENDIX C: COVARIANCE INNER PRODUCT

Because the medium is assumed to be statistically iso-

tropic, the inner products in Eq. (12) are defined assuming

random crystallographic orientations. In order to define the

inner products, the displacement vectors for the different

mode types must be defined. The graphical representation

for these vectors is given in Fig. 2. For the incident wave,

the propagation direction k̂ corresponds with ZS which

coincides with the displacement direction for a longitudi-

nal wave êL. The displacement of the shear vertical wave

êSV is set to correspond with XS and the displacement of

the shear horizontal wave êSH is set to correspond with

�YS, yielding

k̂ ¼ êL ¼ �cos /S sin HSx̂ � sin /S sin HSŷ þ cos HSẑ;

êSV ¼ cos /S cos HSx̂ þ sin /S cos HSŷ þ sin HSẑ;

êSH ¼ sin /Sx̂ � cos /Sŷ: (C1)

For the scattered wave, the propagation direction k̂
0

and dis-

placement direction of a longitudinal wave ê
0
L correspond

with �ZR. The displacement of the shear vertical wave ê
0
SV

corresponds with XR, and the displacement of the shear hori-

zontal wave ê
0
SH corresponds with �YR, yielding

k̂
0 ¼ ê

0
L ¼ cos /R sin HRx̂ þ sin /R sin HRŷ � cos HRẑ;

ê
0
SV ¼ cos /R cos HRx̂ þ sin /R cos HRŷ þ sin HRẑ;

ê
0
SH ¼ sin /Rx̂ � cos /Rŷ: (C2)

The inner product expressions for arbitrary wave propaga-

tion directions and arbitrary single crystal symmetry can be

calculated using the supplementary MATLAB code.37
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