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Abstract 
Interreplicate variability—the spread in output values among units of the same sen-
sor subjected to essentially the same condition—can be a major source of uncertainty 
in sensor data. To investigate the interreplicate variability among eight electromag-
netic soil moisture sensors through a field study, eight units of TDR315, CS616, CS655, 
HydraProbe2, EC5, 5TE, and Teros12 were installed at a depth of 0.30 m within 3 m 
of each other, whereas three units of AquaSpy Vector Probe were installed within 3 
m of each other. The magnitude of interreplicate variability in volumetric water con-
tent (θv) was generally similar between a static period near field capacity and a dy-
namic period of 85 consecutive days in the growing season. However, a wider range 
of variability was observed during the dynamic period primarily because interrepli-
cate variability in θv increased sharply whenever infiltrated rainfall reached the sen-
sor depth. Interreplicate variability for most sensors was thus smaller if comparing 
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θv changes over several days that excluded this phenomenon than if comparing θv di-
rectly. Among the sensors that also reported temperature and/or apparent electrical 
conductivity, the sensors exhibiting the largest interreplicate variability in these out-
puts were characterized by units with consistently above or below average readings. 
Although manufacturers may continue to improve the technology in and the quality 
control of soil moisture sensors, users would still benefit from paying greater atten-
tion to interreplicate variability and adopting strategies to mitigate the consequences 
of interreplicate variability. 

Keywords: Apparent electrical conductivity, Precision, Soil water content, Standard 
deviation, Temperature, Uncertainty 

1. Introduction 

Soil moisture is an important property affecting the physics, chemistry, 
and biology of soils. In turn, moisture-driven changes in soil character-
istics and processes affect the urban, agricultural, and natural ecosys-
tems aboveground as well as local to global hydrological and meteoro-
logical cycles. Therefore, measuring soil moisture is of high interest for 
understanding and managing our world (Topp and Ferré, 2002). 

The past century witnessed the development of electromagnetic (EM) 
sensors that can serve as relatively convenient and inexpensive tools for 
continuously measuring soil moisture at fixed depths in fixed locations. 
Concurrently, accompanying research revealed gradually that the per-
mittivity-driven raw output of EM sensors does not exhibit the same re-
lationship with volumetric soil water content (θv) in all environments 
(Topp et al., 2000). Because site-specific θv calibration can be difficult 
and cost-prohibitive in many applications, studies have attempted to ac-
count for the influence of measurable soil properties (e.g., specific sur-
face area, temperature (T), salinity, bulk density, organic matter con-
tent) on θv calibrations using physically based dielectric mixing models 
(Dirksen and Dasberg, 1993; Or and Wraith, 1999; Schwartz et al., 2009) 
or empirical corrections (Jacobsen and Schjønning, 1993; Western and 
Seyfried, 2005; Kelleners et al., 2009b; Singh et al., 2019). 

However, the influence of measurable soil properties is not the only 
source of error in θv determination using EM sensors. Another source 
of error is interreplicate variability arising from inconsistencies in sen-
sor hardware and/or from sensitivity to microscale differences. On one 
hand, the dimensions and EM behavior of sensor components may vary 
among different units of the same EM sensor. The same permittivity 
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consequently results in different output values. On the other hand, even 
under uniform management, θv and/or other EM related soil proper-
ties may vary within the representative elementary volume (REV). If 
an EM sensor responds preferentially to the wetter zones (Logsdon, 
2009) and/or measures a volume smaller than the REV, output val-
ues will vary among identical units of that sensor depending on the 
microscale spatial distribution of θv and/or of other EM related soil 
properties. Although significant interreplicate variability can severely 
restrict the accuracy of EM sensors with and without site-specific cali-
bration, this type of error has received relatively little attention (Evett 
et al., 2006, 2009; Rosenbaum et al., 2010). Therefore, the objective 
of this study was to quantify the interreplicate variability of eight EM 
sensors under field conditions. 

2. Methods 

2.1. Sensors 

The eight EM sensors in this study were TDR315 (Acclima, Meridian, 
ID), CS616 (Campbell Scientific, Logan, UT), CS655 (Campbell Scientific, 
Logan, UT), HydraProbe2 (HP2; Stevens Water, Portland, OR), EC5 (ME-
TER Group, Pullman, WA), 5TE (METER Group, Pullman, WA), Teros12 
(METER Group, Pullman, WA), and Vector Probe (VP; AquaSpy, San Di-
ego, CA). Each of these sensors measures a property that is related to 
soil permittivity, which in turn is positively associated with θv. TDR315 
is a time domain reflectometer that generates its own EM pulses and an-
alyzes its own waveforms to obtain travel times (Schwartz et al., 2016). 
CS616 and CS655 are both water content reflectometers that count the 
average times per second the reflection of the previous generated EM 
pulse returns to the sensor head to trigger the next generated EM pulse 
(Seyfried and Murdock, 2001; Kelleners et al., 2005). However, CS655 
also measures apparent electrical conductivity (ECa) to adjust factory 
calculations of apparent permittivity (Caldwell et al., 2018; Kargas and 
Soulis, 2019). HP2 is an impedance sensor that determines real and 
imaginary permittivities (Seyfried and Murdock, 2004; Kelleners et al., 
2009a). EC5, 5TE, and Teros12 are capacitance sensors that use the sur-
rounding soil as the dielectric of a capacitor in their circuitry and mea-
sure the charge times of this capacitor (Bogena et al., 2007; Kizito et al., 
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2008; Rosenbaum et al., 2010, 2011). VP is a multisensor capacitance 
probe (Sloane, 2017) that reports scaled frequency at 0.10, 0.20, 0.30, 
0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 1.00, 1.10, and 1.20m depths. 

2.2. Experiments 

This study was composed of two experiments that were conducted in a 
medium textured soil under no-till corn-soybean rotation at the Univer-
sity of Nebraska–Lincoln West Central Research and Extension Center in 
North Platte, NE. In the 2018 experiment, two side-by-side rectangular 
pits (i.e., the west pit and the east pit) were excavated 1.06m apart. Each 
pit was 1.83m long in the north-south direction by 0.46m wide in the 
east-west direction by 0.41m deep. In each horizontal (i.e., northwest, 
southwest, northeast, southeast) quadrant of each pit, one unit each of 
TDR315, CS616, CS655, HP2, EC5, 5TE, and Teros12 was inserted hori-
zontally into the lengthwise (i.e., west/east) face of the pit at a depth of 
0.30m until the base of the sensor head was flush with the pit wall. The 
sensor spacing along the length of each pit was 0.13 m, and all sensors 
except HP2 (whose prongs are not coplanar) were oriented such that all 
prongs were on the same horizontal plane. The excavated soil was care-
fully backfilled so that the sensor cables were bending downward from 
the sensor heads before bending upward to exit the pits and so that the 
top of each pit was neither a mound nor a depression. The four units of 
TDR315, CS616, CS655, HP2, EC5, and 5TE in each pit were connected 
to the same CR1000 datalogger (Campbell Scientific, Logan, UT) for re-
cording sensor readings every 15 min. The four units of Teros12 in each 
pit were connected to the same EM60 G datalogger (METER Group, Pull-
man, WA) for recording sensor readings every 15 min and for upload-
ing data every six hours to the manufacturer’s website (https://zentra-
cloud.com) via telemetry. While sensor installation occurred on March 
14–15, planting occurred on May 10. Specifically, soybean seed product 
P25A12X (DuPont Pioneer, Johnston, IA) was planted by hand in 0.19m 
rows parallel with the length of the pits (i.e., along the north-south direc-
tion) at a seed spacing of 0.03m and at a depth of 0.03 m, and the previ-
ously removed corn residue was once again spread evenly over the site. 
The dense crop stand was intended to create a laterally homogeneous 
soil moisture distribution so that sensors with varying measurement 
volumes would be subjected to similar environments. 

https://zentracloud.com
https://zentracloud.com
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In the 2017 experiment, which was located 23m away from the 2018 
experiment, soybean seed product 2511NRR (Hoegemeyer Hybrids, 
Hooper, NE) was mechanically planted on May 25 in 0.76m rows along 
the north-south direction at a seed spacing of 0.03m and at a depth of 
0.05 m. On June 14, a total of three VPs were installed by the manufac-
turer in two adjacent crop rows such that the VPs formed the northwest, 
northeast, and southeast corners of a 3.0m long and 0.76m wide rectan-
gle. The VPs were set up to record their sensor readings every 15 min 
and to upload those readings periodically to the manufacturer’s website 
(https://agspy.aquaspy.com) via telemetry. 

For comparison, a 503DR neutron moisture meter (NMM; CPN In-
ternational, Concord, CA) was used in this study. From each corner of 
each pit in the 2018 experiment, an aluminum access tube was installed 
0.30m outward in the lengthwise direction and 0.06m outward in the 
widthwise direction. In the 2017 experiment, a total of three aluminum 
access tubes were installed in the same two rows as the VPs such that 
the tubes formed the northwest, northeast, and southeast corners of a 
2.1m long and 0.76m wide rectangle enclosed within the rectangle de-
fined by the three VPs. In both experiments, NMM readings were always 
centered at the depths of the EM sensors and were always taken for a 
count duration of 16 s. 

After the two experiments, two intact cylindrical soil cores of 0.04m 
diameter and 0.10m length centering at the sensor depth were collected 
for each sensor depth within the study areas using a hydraulic direct 
push soil probe (Giddings Machine Company, Windsor, CO). Textural 
composition and organic matter content were analyzed using the hy-
drometer and loss-on-ignition methods, respectively, by Ward Labora-
tories (Kearney, NE). The oven-dried weight of each core was divided 
by the original volume of that core to calculate bulk density. These soil 
properties were summarized in Table 1. 

2.3. Analyses 

In this study, interreplicate variability was quantified in terms of the 
sample standard deviation (SD; Eq. 1). This definition lumps together the 
impacts of sensor hardware irregularities and of microscale soil hetero-
geneities. Because users tend to leave the EM sensors under investiga-
tion in place for at least one growing season but tend to carry the same 

https://agspy.aquaspy.com
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NMM unit between measurement locations, users decrease their uncer-
tainty in sample means typically by increasing the number of EM sen-
sor units or by increasing the number of NMM access tubes. Thus, the 
different units of the same EM sensor were treated as replicates of that 
EM sensor, whereas the different NMM access tubes in the same exper-
iment were treated as replicates of NMM. 

SD = [Σn
i=1(Xi − X•)2 ÷ (n−1)]½                                   (1) 

where n = the number of replicates, i = the index for replicates, Xi = the 
variable of interest (i.e., T, ECa, θv, cumulative Δθv, or interval Δθv) as mea-
sured by replicate i of the given sensor at the given time, and X● =the in-
terreplicate mean of the variable of interest for the given sensor at the 
given time. 

The sole factory θv calibration was applied to TDR315, CS655, 5TE, 
and NMM, respectively. In contrast, the standard quadratic calibration 
for CS616, the default loam calibration for HP2, the mineral soil calibra-
tion for EC5, and the mineral soil calibration for Teros12 were selected 
from multiple factory θv calibrations. The manufacturer of the VP does 
not recommend any θv calibration, but each deviation from the interrep-
licate mean in scaled frequency (0–100 %) was multiplied by 0.005 to 
convert to a deviation from the interreplicate mean in θv (0-0.5 m3m−3) 
according to a graph of scaled frequency versus θv from a manufacturer 
representative (Sloane, 2017). 

A static assessment of interreplicate variability in θv focused on four 
instances, coinciding with measurement dates of NMM, when the sensor 
depths were near field capacity and were not experiencing root water 
uptake. For TDR315, CS616, CS655, HP2, EC5, 5TE, Teros12, and NMM, 

Table 1. Sand, silt, clay, organic matter (OM), and bulk density (ρb) at the sensor depths of this study. 

	 2018						      2017	

Depth (m)	 0.30 	 0.20	 0.30	 0.40	 0.50	 0.60	 0.70	 0.80	 0.90	 1.00	 1.10	 1.20

Sand (%)	 30	 35	 30	 29	 31	 38	 38	 38	 38	 36	 36	 34
Silt (%)	 41	 38	 41	 41	 41	 37	 35	 36	 36	 38	 39	 39
Clay (%)	 30	 27	 29	 30	 28	 26	 27	 26	 26	 27	 26	 28
OM (%)	 2.1	 1.9	 2.0	 2.4	 1.9	 1.9	 1.8	 1.8	 1.7	 1.5	 1.5	 1.5
ρb (g cm−3)	 1.36	 1.46	 1.35	 1.27	 1.18	 1.30	 1.28	 1.29	 1.27	 1.29	 1.32	 1.34
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these four instances were on April 19, April 30, May 4, and May 10 (all 
before germination) in the 2018 experiment. Here, the static assessment 
SD in θv for each of these sensors at each of the four dates included all 
eight replicates. For VP and NMM in the 2017 experiment, these four in-
stances were on July 7, July 10, July 12, and July 14 (root water uptake 
was occurring at shallow depths only). Here, the static assessment SD in 
θv for each of these sensors at each of the four dates included the equiv-
alent of nine replicates, pooling together the deviations from depth-spe-
cific interreplicate means at the 1.00, 1.10, and 1.20m depths among all 
three replicates of VP or NMM. 

A dynamic assessment of interreplicate variability in θv incorpo-
rated all sensor readings from a continuous period of 85 days during 
the growing season. The period from May 11 to August 3 in the 2018 
experiment included 18 NMM measurement times. For unknown rea-
sons, all four replicates of EC5 in the east pit of the 2018 experiment 
began to report nonsensical θv values from June 9 onward, so EC5 was 
excluded from the dynamic assessment. The dynamic assessment SD in 
θv for TDR315, CS616, CS655, HP2, 5TE, Teros12, or NMM at any given 
time in 2018 included all eight replicates. On the other hand, the pe-
riod from July 6 to September 28 in the 2017 experiment included 33 
NMM measurement times. The dynamic assessment SD in θv for VP or 
NMM at any given time in 2017 included all three replicates but was 
calculated separately at each of the 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 
0.80, and 0.90m depths. In all cases, missing or zero values were omit-
ted from SD calculations. 

To some users, the magnitudes of changes in θv (Δθv) are more im-
portant data than the actual values of θv. Therefore, the interreplicate 
variability in two types of Δθv was investigated for all sensors as a part 
of the dynamic assessment. The first type, cumulative Δθv, was Δθv from 
the first NMM measurement time to each of the latter measurement 
times. The second type, interval Δθv, was Δθv from each NMM mea-
surement time (except for the last one) to the very next NMM measure-
ment time. The 2018 and 2017 experiments included 17 and 32 inter-
vals, respectively. 

Some readers may be interested in how the factory calibrated re-
sults would change if adjusted using the local field thermogravimet-
ric θv calibration for the particular NMM unit, which achieved an R2 of 
0.98 and a resubstitution root mean square error of 0.010m3m−3 with 
54 soil cores from multiple depths. Specifically, SD values in θv and in 
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Δθv for each sensor were multiplied by the linear regression slope that 
was obtained after averaging among all replicates and then plotting lo-
cally calibrated NMM θv against factory calibrated θv from the sensor of 
interest (Table 2). Although this adjustment was admittedly imperfect 
(Schwartz et al., 2018; Rudnick et al., 2018), developing accurate site-
specific θv calibrations of each EM sensor under investigation could 
not be accomplished given the authors’ constraints. The adjusted re-
sults were arguably closer to reality than the factory calibrated results, 
but readers may choose to focus on the factory calibrated results and/
or the adjusted results. The observed ranges in θv by the NMM during 
this study are listed in Table 3. 

Finally, some users depend on EM sensors to determine not only θv 
but also T and ECa. Among the eight EM sensors in this study, TDR315, 
CS655, HP2, 5TE, Teros12, and VP reported T, whereas TDR315, CS655, 
HP2, and 5TE reported ECa. Thus, the interreplicate variability in T and 
in ECa for these sensors was assessed according to the above methodol-
ogy for the interreplicate variability in θv. However, in both the static and 
the dynamic assessments of interreplicate variability in ECa, SD from the 
2018 experiment included just seven replicates. Specifically, the north-
west quadrant of the east pit was excluded because the 5TE unit re-
ported nonsensical ECa values throughout the experiment for unknown 
reasons. 

For clarity, a summary of this subsection and an outline of the follow-
ing results and discussion section are provided in Table 4. 

3. Results and discussion 

3.1. Static assessment 

In the static assessment when the soil surrounding the sensors was 
near field capacity and was not experiencing root water uptake, all 
eight EM sensors under investigation exhibited larger interreplicate 
variability in factory and adjusted θv as compared with NMM (Table 
5). However, TDR315, CS655, VP, and NMM kept SD below 0.020m3m−3 
on all four dates with and without adjustment. In contrast, HP2 exhib-
ited relatively large interreplicate variability in factory and adjusted θv, 
keeping SD above 0.025 m3m−3 on all four dates. Adjustment changed 
the results noticeably for some sensors under evaluation. For example, 
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Table 2. Multiplicative adjustment factors—derived from the local thermogravimetric calibration for the neutron 
moisture meter (NMM) in this study—that were used to scale from factory calibrated results to adjusted results of 
standard deviation in θv and in Δθv for the sensors under investigation. 

Sensor	 NMM	 TDR315	 CS616	 CS655	 HP2	 EC5	 5TE	 Teros12	

Adj.	 1.28	 1.12	 1.06	 0.99	 1.10	 1.76	 2.07	 1.30
R2	 N/A	 0.98	 0.95	 0.98	 0.99	 0.94	 0.95	 0.98

VP	 0.20m	 0.30m	 0.40m	 0.50m	 0.60m	 0.70m	 0.80m	 0.90m	 1.00m	 1.10m	 1.20m

Adj.	 1.40	 1.31	 1.47	 1.65	 1.54	 1.52	 1.33	 1.18	 1.19	 1.24	 1.14
R2	 0.93	 0.87	 0.84	 0.86	 0.94	 0.88	 0.90	 0.94	 0.97	 0.98	 0.98

Table 3. Ranges in volumetric water content (m3m−3)—according to the neutron moisture meter (NMM) using its 
local thermogravimetric calibration—among neutron moisture meter (NMM) measurement times for the static 
and dynamic assessments of this study. 

	 2018		  2017	

Static	 0.30m	 1.00m	 1.10m	 1.20m
θv Range	 0.35-0.35	 0.27-0.27	 0.28-0.28	 0.28-0.29

	 2018	 2017	

Dynamic	 0.30m	 0.20m	 0.30m	 0.40m	 0.50m	 0.60m	 0.70m	 0.80m	 0.90m
θv Range	 0.19-0.37	 0.19-0.36	 0.19-0.35	 0.17-0.33	 0.16-0.32	 0.16-0.30	 0.15-0.28	 0.15-0.25	 0.15-0.25

Table 4. The order in which interreplicate variability results are presented in this paper and the number of 
replicates on which the assessment of each sensor was based for each variable of interest. 

	 2018 								        2017 

Sensor	 NMM	 TDR315	 CS616	 CS655	 HP2	 EC5	 5TE	 Teros12	 NMM	 VP

Static Assessment 
1. θv	 8	 8	 8	 8	 8	 8	 8	 8	 9*	 9*
2. T	 –	 8	 –	 8	 8	 –	 8	 8	 –	 3
3. ECa	 –	 7	 –	 7	 7	 –	 7	 –	 –	 –
Dynamic Assessment 
4. T	 –	 8	 –	 8	 8	 –	 8	 8	 –	 3
5. ECa	 –	 7	 –	 7	 7	 –	 7	 –	 –	 –
6. θv	 8	 8	 8	 8	 8	 –	 8	 8	 3	 3
7. cumul. Δθv	 8	 8	 8	 8	 8	 –	 8	 8	 3	 3
8. interval Δθv	 8	 8	 8	 8	 8	 –	 8	 8	 3	 3

* 3 replicates each at 1.00, 1.10, and 1.20 m, respectively.
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among the EM sensors, 5TE showed the smallest interreplicate vari-
ability in factory θv but showed the third largest interreplicate vari-
ability in adjusted θv. 

The static assessment also examined interreplicate variability in T 
and ECa (Table 5). CS655, HP2, and 5TE exhibited relatively small inter-
replicate variability in T, maintaining SD below 0.4 °C on all four dates. 
On the other hand, CS655 showed the smallest interreplicate variabil-
ity in ECa, maintaining SD below 0.05 dSm−1 on all four dates. The excep-
tionally large interreplicate variability in both T and ECa for TDR315 was 
found to be characterized by substantial and persistent deviation of sev-
eral replicates from the interreplicate mean. Specifically, the southwest 
and northeast replicates in the west pit and the southwest replicate in 
the east pit reported much higher T values than the mean, whereas the 
southeast replicate in the east pit reported much lower T values than the 
mean. On the other hand, the northwest replicate in the west pit and the 
northeast and southeast replicates in the east pit reported much higher 
ECa values than the mean. 

3.2. Dynamic assessment 

3.2.1. Temperature and apparent electrical conductivity 
In agreement with the static assessment, the dynamic assessment 

found that interreplicate variability in T remained relatively small for 
CS655, HP2, 5TE, and Teros12 (Fig. 1). The 3rd quartile SD values of these 
four sensors were still lower than the minimum SD value for TDR315 
even though the SD values for TDR315 were already smaller in the dy-
namic assessment than in the static assessment. Although the 1st quar-
tile and median SD values were lowest for CS655, the range of SD values 

Table 5. Interreplicate standard deviation in factory calibrated volumetric water content (θv; m3m−3), adjusted θv 
(m3m−3), temperature (T; °C), and apparent electrical conductivity (ECa; dS m-1)—averaged among the four dates 
for the static assessment. 

	 2018								        2017	

Sensor	 NMM	 TDR315	 CS616	 CS655	 HP2	 EC5	 5TE	 Teros12	 NMM	 VP

Factory θv	 0.010	 0.013	 0.022	 0.017	 0.027	 0.017	 0.012	 0.015	 0.009	 0.013
Adj. θv	 0.013	 0.014	 0.023	 0.017	 0.030	 0.031	 0.025	 0.020	 0.012	 0.016
T	 N/A	 1.3	 N/A	 0.2	 0.2	 N/A	 0.2	 0.3	 N/A	 0.5
ECa	 N/A	 0.45	 N/A	 0.04	 0.07	 N/A	 0.06	 N/A	 N/A	 N/A
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was narrowest for 5TE, and almost all SD values for 5TE were below 0.3 
°C. Interreplicate variability in T was relatively large for VP (Fig. 1) and—
as identified earlier for TDR315—was also characterized by substantial 
and persistent deviation of particular replicates from the interreplicate 
mean. At the seven depths from 0.30m to 0.90 m, T was always highest 
for the southeast replicate and lowest for the northwest replicate. 

Also in agreement with the static assessment, the dynamic assess-
ment of interreplicate variability in ECa was the lowest for CS655 and 
highest for TDR315 (Fig. 1). Among the three core variables under in-
vestigation (i.e., T, ECa, and θv), the disparity between the most variable 
and least variable sensor was largest in ECa. The median, interquartile 
range, and total range of SD in ECa for TDR315 were all about 11 times 
those for CS655, with TDR315 being affected by substantial and persis-
tent deviation of some replicates from the interreplicate mean as noted 
in the static assessment. 

3.2.2. Volumetric water content 
At the NMM measurement times during the 2018 dynamic assess-

ment, TDR315, CS616, CS655, HP2, 5TE, and Teros12 all exhibited larger 
interreplicate variability in θv as compared with NMM (Fig. 2). The 1st 
quartile SD values of these six EM sensors were higher than the 3rd quar-
tile SD value of NMM with and without adjustment. Among these six EM 
sensors, the 1st quartile, median, and 3rd quartile SD values of TDR315 
were among the lowest with and without adjustment. However, the 

Fig. 1. Box-and-whisker plot of standard deviation values in temperature (T) and in 
apparent electrical conductivity (ECa) from 85 consecutive days of 15 min readings 
during the growing season. 



L o  e t  a l .  i n  A g r i c u lt u r a l  Wat e r  M a n ag e m e n t  2 3 1  ( 2 0 2 0 )        12

distribution of SD for TDR315 featured a relatively long upper tail, where 
maximum SD was 0.039 and 0.035m3m−3 with and without adjustment, 
respectively. SD values for HP2 and Teros12 also spanned relatively wide 
ranges. In contrast, all SD values for CS655 at the NMM measurement 
times stayed below 0.030m3m−3 with and without adjustment. Dynamic 
SD values were slightly higher than static SD values for CS655 and Te-
ros12, while the reverse was true for HP2. Nonetheless, static and dy-
namic SD values in θv were similar in magnitude overall based on the 
NMM measurement times in the 2018 experiment. 

On the other hand, VP did not exhibit consistently larger interrepli-
cate variability in θv than NMM did at the NMM measurement times dur-
ing the 2017 dynamic assessment (Fig. 2). At shallower depths with and 
without adjustment, SD values for VP were generally higher than those 

Fig. 2. Box-and-whisker plots of interreplicate standard deviation (SD) in factory and 
adjusted volumetric water content (θv) at the neutron moisture meter (NMM) mea-
surement times for the dynamic assessment. 
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for NMM. The opposite, however, tended to be true at deeper depths as 
SD values for NMM clearly increased with increasing depth. For both VP 
and NMM, adjusted SD values spanned a range wider than 0.03m3m−3 
at most depths. A smaller number of replicates (i.e., three as opposed to 
eight) but a larger number of NMM measurement times (i.e., 33 as op-
posed to 18) likely contributed to the greater diversity in SD values dur-
ing the 2018 dynamic assessment as compared with during the 2017 
dynamic assessment. 

The effects of wetting and drying on interreplicate variability in θv 
were examined from the entire 85 day time series (Fig. 3). Both for 
the EM sensors under investigation and for NMM, rain events that in-
creased θv triggered jumps in its SD. This behavior was likely caused by 
microscale nonuniformity in effective precipitation and subsequent per-
colation (i.e., preferential flow as opposed to piston flow). On the other 
hand, drying sequences generally preserved or steadily decreased SD, 
but sometimes replicates drifted apart as drying continued. Perhaps the 
rate and vertical distribution of root water uptake around the replicates 
were gradually diverging. Such drifting was found in the 1st quarter of 
the 2017 dynamic assessment at all VP and NMM depths except for 0.20 
m. In the 2nd quarter of the 2018 dynamic assessment, various extents 
of such drifting were found for TDR315, CS616, CS655, 5TE, and Te-
ros12 but not for HP2 and NMM. Rises in SD due to replicates drifting 
apart were not as abrupt as those due to percolating rainfall, but the for-
mer was still observed to roughly double SD values for VP and NMM in 
2017 and for CS655 in 2018. The time series graphs revealed addition-
ally that TDR315 and HP2 experienced obvious fluctuations in θv read-
ings. From one reading to another 15 min apart, TDR315 showed sud-
den and erratic spikes in θv whereas HP2 oscillated constantly. Filtering 
and smoothing procedures could be employed to enhance data preci-
sion amidst the noise. 

3.2.3. Change in volumetric water content 
Examining the interreplicate variability in Δθv would not only gener-

ate practical information to some users but also shed light into the na-
ture of the interreplicate variability in θv. If interreplicate variability in 
the starting value of θv was the overwhelming reason for interreplicate 
variability in θv, SD values in cumulative Δθv would be much smaller 
than SD values in θv. Median SD values in adjusted cumulative Δθv were 
0.010 and 0.006m3m−3 smaller than median SD values in adjusted θv for 
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CS616 and CS655, respectively (Figs. 2 and 4). However, minimal reduc-
tions were observed for other sensors in the 2018 experiment. SD values 
in cumulative Δθv were smaller than SD values in θv at some depths for 
VP and NMM in the 2017 experiment, whereas the opposite was true at 
some other depths. For NMM in the 2017 experiment, SD values in cu-
mulative Δθv did not increase with increasing depth as SD values in θv 
did. The lack of consistently smaller SD values in cumulative Δθv than 
in θv revealed that differences in the starting value of θv were not the 
dominant source of interreplicate variability during the 2018 and 2017 

Fig. 3. Temporal trends of interreplicate standard deviation in factory volumetric wa-
ter content (m3m−3) over 85 consecutive days during the growing season; each grey 
vertical line denotes a 12 h interval with at least 5mm of rainfall according to the North 
Platte 3SW weather station (Nebraska State Climate Office, personal communication). 

Fig. 4. Box-and-whisker plots of interreplicate standard deviation (SD) in cumulative 
and interval changes in adjusted volumetric water content (Δθv) at the neutron mois-
ture meter (NMM) measurement times for the dynamic assessment. 
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dynamic assessments. The close proximity of all replicates in this study 
was expected to reduce the observed magnitude of spatial variability in 
initial θv as compared with arrangements that scattered the replicates 
across a field. At the same time, divergences among replicates in effec-
tive precipitation, root water uptake, and/or sensor responses prevented 
the interreplicate differences in θv from remaining constant throughout 
the dynamic assessment. 

In contrast, interreplicate variability in Δθv over short intervals of ap-
proximately 2–7 days was substantially smaller than interreplicate vari-
ability in θv for all sensors except TDR315 (Figs. 2 and 4). The major-
ity of SD values in adjusted interval Δθv were below 0.01m3m−3, and the 
SD values for CS616 and VP were mostly comparable to those for NMM. 
Nevertheless, a strong right skew in the distribution of SD values was 
especially prevalent among EM sensors. Those relatively large SD val-
ues corresponded to the intervals that included or immediately followed 
infiltration to the sensor depths, which was associated earlier with in-
creases in interreplicate variability. 

4. Implications 

Soil moisture sensors are undoubtedly useful, but interreplicate vari-
ability poses a genuine challenge to the quantitative use of soil moisture 
sensor data. Even if the calibration is perfect, large interreplicate vari-
ability still prevents users from obtaining a confident value of T, ECa, or 
θv without deploying many replicates. In turn, data errors resulting from 
interreplicate variability of soil moisture sensors may propagate to the 
models to which users supply this data and to the decisions that users 
make based on this data. 

To reduce interreplicate variability, inconsistency in sensor hard-
ware should first be minimized through improved construction. Manu-
facturers can choose better parts and procedures that cause greater uni-
formity and durability in the mechanical and electrical characteristics 
affecting EM signal generation, transmission, reception, and interpreta-
tion. The inevitably remaining variability in sensor hardware can then 
be compensated through laboratory standardization of each individual 
unit (Rosenbaum et al., 2010) during factory calibration. Finally, inter-
nal and external damage to sensor hardware may occur after the prod-
uct leaves the manufacturer (i.e., during shipping, installation, usage, 
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removal, and storage), so users must be on the alert for obvious physi-
cal deformities and for nonsensical data to decide when sensor repair 
or replacement is necessary. 

Under field conditions, microscale differences in actual θv and in 
soil properties that alter the relationship between θv and sensor out-
put cannot be completely eliminated. Therefore, users desiring preci-
sion in exact θv are recommended to select soil moisture sensors that 
have been shown to exhibit small interreplicate variability and to be cau-
tious of sensors that are by design (e.g., operating physical principles, 
EM frequency, EM field uniformity) predisposed to high sensitivity to 
microscale differences (Evett et al., 2006, 2009). Furthermore, such us-
ers are advised to maximize the number of replicates under their par-
ticular labor and financial constraints and to avoid instantaneous, un-
filtered data. 

Differentiating the contribution of hardware inconsistency versus mi-
croscale heterogeneity on interreplicate variability among the EM sen-
sors was impossible using only the 2017 and 2018 field experiments 
data. Therefore, eight replicates of TDR315, CS616, CS655, HP2, EC5, 
5TE, and Teros12 were immersed one at a time in 10 °C acetone (Sun-
nyside Corporation, Wheeling, IL) indoors on October 30, 2019. Ace-
tone served as a suitable reference liquid because it is easily accessible, 
is not overly hazardous, and maintains a similar permittivity within the 

range of frequencies that 
are employed by the EM 
sensors under evaluation. 
VP was excluded from this 
laboratory test because no 
replicates were available. 
For the other seven EM 
sensors, the factory cali-
brated θv from a particu-
lar replicate was recorded 
once the entire measure-
ment volume of that rep-
licate was inside acetone 
(Fig. 5). 

Fig. 5. Factory calibrated volumetric water content (θv; m3m−3) from eight replicates 
of each sensor in 10 °C acetone. 



L o  e t  a l .  i n  A g r i c u lt u r a l  Wat e r  M a n ag e m e n t  2 3 1  ( 2 0 2 0 )        18

Regrettably, the eight replicates in this laboratory test could not be 
guaranteed to be exactly the same eight replicates in the 2018 field ex-
periment. Therefore, the results could not be applied to analyze further 
any systematic deviations from the interreplicate mean (i.e., whether a 
replicate that was routinely above/below average in the field was above/
below average in acetone) or to isolate definitively the sensor hardware 
effect from the microscale heterogeneity effect. Furthermore, readers 
must not overgeneralize results from eight replicates. Nevertheless, in-
terreplicate SD in factory θv for acetone was loosely compared to inter-
replicate SD in factory θv for the 2018 static assessment because the θv 
corresponding to the permittivity of acetone is similar to θv during the 
2018 static assessment. 

According to the interreplicate variability of the EM sensors in ace-
tone, hardware variability was low for CS616, CS655, and HP2; moder-
ate for TDR315, EC5, and Teros12; and high for 5TE (Table 6). On one 
hand, the high acetone:static ratio for TDR315 suggests that the poten-
tial for reducing its interreplicate variability lies predominantly in im-
proving hardware consistency. On the other hand, the low acetone: static 
ratio for HP2 suggests that the potential for reducing its interreplicate 
variability lies predominantly in lowering sensitivity to microscale het-
erogeneity. Such sensitivity of HP2 may be related to its small and con-
centrated measurement volume, implying that spatial precision and in-
terreplicate variability might sometimes be tradeoffs that need to be 
weighed depending on application. After all, interreplicate variability is 
only one of many important considerations. The user is ultimately re-
sponsible for selecting 1) the most scientifically and practically appro-
priate soil moisture sensors for a particular application, 2) the most op-
timal placement of those sensors given 3-D soil heterogeneity, and 3) the 
most reasonable approach to interpreting and using soil moisture data 
while accounting for the reality of interreplicate variability. 

Table 6. Interreplicate standard deviation (SD) in factory calibrated volumetric water content 
(m3m−3) for acetone and the ratio between the SD for acetone and SD for the static field 
assessment. 

Sensor	 TDR315	 CS616	 CS655	 HP2	 EC5	 5TE	 Teros12

Acetone (m3m−3)	 0.010	 0.002	 0.002	 0.002	 0.009	 0.017	 0.010

Acetone:Static Ratio	 0.77	 0.09	 0.11	 0.06	 0.53	 1.41	 0.69
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Users who do not absolutely require the knowledge of θv itself, how-
ever, may wish to reduce their exclusive reliance on the exact θv read-
ing from soil moisture sensors. For example, many irrigated agronomic 
crop producers who use soil moisture sensors monitor multiple depths 
at just one location per field. Without replication, scheduling irrigation 
strictly based on a fixed θv threshold would be difficult even in the ab-
sence of calibration error because SD values in θv of 0.02m3m−3, which 
were commonly observed in this study, are approximately between an 
eighth and a quarter of available water capacity in most soils. Addition-
ally, based on the overall similarity between SD values in θv and SD val-
ues in cumulative Δθv for the sensors in this study, it might not be easier 
to schedule irrigation strictly based on a fixed cumulative Δθv thresh-
old relative to an observational field capacity (Lo et al., 2017) value 
that is defined early in the season. This study suggests that the inter-
replicate variability for soil moisture sensors should not be blindly as-
sumed to consist mostly of constant offsets persisting throughout the 
growing season. 

From their experiences in this study and from their interactions 
with producers and industry, the authors have discerned the need to 
further research unconventional irrigation scheduling approaches that 
focus on the drying sequences in EM sensor data and integrate multiple 
data sources. For instance, at the beginning of each drying sequence, 
field capacity at each thoroughly wetted depth might be redefined 
as the output value corresponding to the end of nonlinear or night-
time decline (Starr and Paltineanu, 1998). Subsequently, the roughly 
linear and stair step-like daytime decline across depths might be re-
lated either to a known calibration or to expected rates of crop water 
use (Thompson et al., 2007). Finally, a comparison of active extraction 
depth against expected effective rooting depth (T. G. Smith, personal 
communication, 2014) and a comparison of current profile depletion 
against profile allowable depletion (Merriam, 1966) might be jointly 
considered to make irrigation decisions. By depending on the ability 
of EM sensors mainly to describe θv trends and to quantify Δθv within 
each drying sequence (Starr and Paltineanu, 1998; Singh et al., 2018), 
such an approach might be more accommodating of shortcomings in 
calibration and/or interreplicate variability. Future field studies that 
implement and evaluate this type of approach as well as complex en-
semble approaches combining soil moisture sensing, soil water balance 
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modeling, and thermal sensing/energy balance modeling (Barker et al., 
2018) would be greatly welcomed to overcome the challenge of rely-
ing solely on soil moisture sensor data. 
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