
University of Nebraska - Lincoln University of Nebraska - Lincoln 

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln 

Publications from USDA-ARS / UNL Faculty U.S. Department of Agriculture: Agricultural 
Research Service, Lincoln, Nebraska 

7-6-2019 

Structure and genetic diversity in wild and cultivated populations Structure and genetic diversity in wild and cultivated populations 

of Zapote mamey (Pouteria sapota, Sapotaceae) from of Zapote mamey (Pouteria sapota, Sapotaceae) from 

southeastern Mexico: its putative domestication center southeastern Mexico: its putative domestication center 

Jaime Martínez-Castillo 
Centro de Investigación Científica de Yucatán (CICY), jmartinez@cicy.mx 

Nassib H. Blancarte-Jasso 
Centro de Investigación Científica de Yucatán (CICY) 

Gabriel Chepe-Cruz 
Centro de Investigación Científica de Yucatán (CICY) 

Noemí G. Nah-Chan 
Centro de Investigación Científica de Yucatán (CICY) 

Matilde M. Ortiz-García 
Centro de Investigación Científica de Yucatán (CICY) 

See next page for additional authors 

Follow this and additional works at: https://digitalcommons.unl.edu/usdaarsfacpub 

Martínez-Castillo, Jaime; Blancarte-Jasso, Nassib H.; Chepe-Cruz, Gabriel; Nah-Chan, Noemí G.; Ortiz-
García, Matilde M.; and Arias, Renee S., "Structure and genetic diversity in wild and cultivated populations 
of Zapote mamey (Pouteria sapota, Sapotaceae) from southeastern Mexico: its putative domestication 
center" (2019). Publications from USDA-ARS / UNL Faculty. 2200. 
https://digitalcommons.unl.edu/usdaarsfacpub/2200 

This Article is brought to you for free and open access by the U.S. Department of Agriculture: Agricultural Research 
Service, Lincoln, Nebraska at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion 
in Publications from USDA-ARS / UNL Faculty by an authorized administrator of DigitalCommons@University of 
Nebraska - Lincoln. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UNL | Libraries

https://core.ac.uk/display/286685254?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/usdaarsfacpub
https://digitalcommons.unl.edu/usdaars
https://digitalcommons.unl.edu/usdaars
https://digitalcommons.unl.edu/usdaarsfacpub?utm_source=digitalcommons.unl.edu%2Fusdaarsfacpub%2F2200&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/usdaarsfacpub/2200?utm_source=digitalcommons.unl.edu%2Fusdaarsfacpub%2F2200&utm_medium=PDF&utm_campaign=PDFCoverPages


Authors Authors 
Jaime Martínez-Castillo, Nassib H. Blancarte-Jasso, Gabriel Chepe-Cruz, Noemí G. Nah-Chan, Matilde M. 
Ortiz-García, and Renee S. Arias 

This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/
usdaarsfacpub/2200 

https://digitalcommons.unl.edu/usdaarsfacpub/2200
https://digitalcommons.unl.edu/usdaarsfacpub/2200
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Abstract
Tropical fruit trees are an important component of the human diet; however, little is known about their genetic diversity levels.
Zapote mamey (Pouteria sapota) is a tree native to southeastern Mexico and Central America, and Mexico is the leading
producer in the world. Studies of the genetic diversity of Zapote mamey have been based on cultivated materials using morpho-
logical and biochemical characterization or dominant molecular markers. To gain a deeper understanding about the conservation
status of Zapote mamey in its center of origin and domestication, we collected 188 individuals from eight wild and five cultivated
populations in southeastern Mexico and characterized them using eight microsatellite loci. STRUCTURE, 3D-PCoA, and
neighbor-joining analyses showed three groups in the wild gene pool and one group in the cultivated gene pool. FST values
were significant between wild and cultivated gene pools, among the four groups observed and among the 13 populations
collected (0.13, 0.25, and 0.36, respectively). Overall, we found low levels of genetic diversity (A = 2.77, HO = 0.29, HE =
0.39), permutation tests did not show significant differences between wild and cultivated gene pools. The Garza–Williamson
index showed low values in both gene pools (wild = 0.16, cultivated = 0.11) and the Bottleneck program indicated a decrease in
genetic diversity in both gene pools (wild, P = 0.027; cultivated, P = 0.054); both analyses suggest a potential genetic bottleneck
within this species. This study can help to generate adequate sampling techniques and to develop effective management strategies
for Zapote mamey of southeastern Mexico.

Keywords Bottleneck .Microsatellite markers . Sapotaceae . SSR . Yucatán Peninsula

Introduction

Perennial fruit species are a basic component of the human
diet (Haq et al. 2008; Schreckenberg et al. 2006). Tropical
regions in particular harbor a great diversity of fruit trees that
for centuries have provided food and medicine to the man-
kind; these trees include at least 1000 species reported in
America, 1200 in Africa, and 500 in Asia (Awodoyin et al.

2015; Normah et al. 2013; Paull and Duarte 2012). Despite
their great importance, little is known about the genetic diver-
sity of many tropical fruit trees (Jamnadass et al. 2009). Such
information is not only critical to understand the genetic vul-
nerability of these species, but also could be used to imple-
ment management and conservation strategies, particularly in
the centers of origin of the tropical fruit crops where wild and
cultivated populations coexist.

Zapote mamey (Pouteria sapota (Jacq.) H.E. Moore &
Stearn) is a Neotropical species of the family Sapotaceae.
The lowlands of southeastern Mexico and Central America
have been considered as its plausible center of domestication
(Azurdía 2006; Bruner and Morales-Payan 2011). The natural
habitat of Zapote mamey is the medium or high evergreen
forests at altitudes not exceeding 1300 m, located along the
Gulf ofMexico in the states of Veracruz and Tabasco, Mexico,
and along the Pacific, in the state of Jalisco, Mexico, extend-
ing through Panama (Azurdía 2006; León 1987). Zapote
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mamey is cross-pollinated (Villarreal-Fuentes et al. 2015) and,
although its specific pollinators are not known, it has been
reported that flowers of the genus Pouteria are pollinated by
bees and other insects (Pennington 1990; Ortiz and Cabello
1991; Knight et al. 1993). Among the dispersers of fruits and
seeds of Zapote mamey are listed mammals such as Agouti
paca nelsoni and Potos flavus prehensilis (Brewer and
Rejmanek 1999; Martínez-Gallardo and Sánchez-Cordero
1997). Zapote mamey can be propagated sexually or asexual-
ly, though in natural conditions, reproduction by seed is rare
due to animal foraging (Nava-Cruz and Ricker 2004). Under
cultivation, reproduction occurs by seed, by cuttings, or by
grafting, the latter being typically employed in small planta-
tions (Bruner and Morales-Payan 2011).

The fruit of the Zapote mamey is highly nutritious and has
distinct organoleptic characteristics, which increase its commer-
cial value (Gordon et al. 2011; Gulyas-Fekete et al. 2013; Moo-
Huchin et al. 2013; Murillo et al. 2011). Mexico is the leading
producer of Zapote mamey in the world (SIAP 2015), and it is
commonly grown in small plantations and orchards or harvest-
ed from wild trees when local people can distinguish between
wild and cultivated individuals based on fruit quality (Bruner
and Morales-Payan 2011). In 2014, 1651 ha of Zapote mamey
were planted in 15 states in Mexico, yielding a total production
of 17,586 t of fruit (SIAP 2015). More than 800 ha are planted
under commercial production in the state of Yucatán, aspect
that, in addition to the production in backyards in the Yucatán
Peninsula (Yucatán, Campeche, and Quintana Roo states) des-
tined for self-consumption or for local scale sale, converting
this region in the main producer of Zapote mamey in Mexico
(Villegas-Monter et al. 2016). Zapote mamey is currently cul-
tivated in other tropical areas such as Florida (United States of
America), Central America, Colombia, and the Caribbean
islands. Additionally, there is growing interest in cultivating it
in Australia, Israel, the Philippines, Vietnam, Spain, and
Venezuela (Balerdi and Crane 2015).

The study of the genetic diversity of Zapote mamey has been
mainly based on the morphological and biochemical character-
ization of cultivated materials (Bañuelos-Jimenez and Ochoa
2006; Espinosa-Zaragoza et al. 2005; Gaona-García et al.
2008; Nascimento et al. 2008). Previous studies have been con-
ducted on Zapote mamey usingmolecular markers to determine
the genetic relationships and geographic origin of the cultivated
plants applying dominant molecular markers such as AFLPs
and RAPDs (Arellano-Durán 2012; Carrara et al. 2004;
Ibarra-Estrada 2012; Rodríguez-Rojas et al. 2012). Crucially,
these studies did not include wild individuals in their analysis,
thus limiting its scope. Recently, the first microsatellite codom-
inant markers (SSR—simple sequence repeats) specific to
Zapote mamey were published by Arias et al. (2015). To deter-
mine the level of polymorphism and the potential utility of these
molecular markers, these authors tested 205 SSR loci in 20 wild
and nine cultivated individuals of Zapote mamey from

southeastern Mexico, reporting slightly higher levels of genetic
diversity in the cultivated gene pool, but also finding some
evidence of a bottleneck in this gene pool. Considering the
importance of Zapote mamey for Mexico, our goal was to eval-
uate the structure and genetic diversity of Zapote mamey of
southeastern Mexico, analyzing a large number of wild (115)
and cultivated (73) individuals with eight SSR loci reported as
polymorphic by Arias et al. (2015).

Material and methods

Loci information

Eight SSR loci reported as polymorphics to Zapote mamey by
Arias et al. (2015) were used for the molecular characterization
(Table 1). Linkage disequilibrium (LD) analyses among pairs of
loci were done using a likelihood-ratio test, whose empirical
distribution is obtained by a permutation procedure (Slatkin and
Excoffier 1996). LD analyses were done with 1000 permuta-
tions using Arlequin 3.0 (Excoffier et al. 2005). Allele size
range (in base pairs—bp), number of alleles per locus (A),
and minor allele frequency (MAF) were calculated globally
across the entire data set of samples analyzed in GeneMapper
4.0 (Applied Biosystems, Foster City, CA) (Table 1).

Plant material

Eight wild and five cultivated populations of Zapote mamey
were collected in southeastern Mexico (Fig. 1). For the pur-
pose of this study, we defined a wild population as a group of
individuals growing in a localized site in their natural habitat
without human care, and a cultivated population as a group of
individuals under any level of human care within the same
town. In the case of wild populations, individuals collected
were more than 20 m apart and throughout the population
distribution area. For the cultivated populations, one individ-
ual was collected per orchard, trying to cover the entire town.
In total, 188 individuals were collected: 115 wild and 73 cul-
tivated individuals, with an average of 15 individuals from
each population.

DNA extraction and microsatellite technique

DNAwas extracted from young leaves using of ChargeSwitch
gDNA Plant Kit, following manufacturer instructions
(Invitrogen). The quality of extracted DNA was verified by
electrophoresis in gels of 1% agarose, stained with ethidium
bromide. DNA quantification was performed in a NanoDrop
1000 spectrophotometer (Thermo Scientific). DNA amplifica-
tion was done in 20-μL-volume polymerase chain reaction
(PCR) consisting of 10 × PCR buffer, 50 mM of MgCl2,
10 mM of dNTP mix, 10 mM of primers, 5 u/μL of Taq
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Table 1 Characteristics of the eight microsatellite loci used in the analysis of structure and genetic diversity of 13 populations of Zapote mamey
(Pouteria sapota) from southeastern Mexico

Locus code 5′ to 3′ Primer sequence TM Allele size range (bp) A MAF

280_a Forward
Reverse

TTCGAGTTTCTCACTTTGGTTTCC
AGTCGACTCTGTCGAATTGATGC

59° 140–158 4 0.313

588_a Forward
Reverse

CTCGGTAAAACTCGGCTCAAATAC
CTGACGAGTTCCTCCCTCCTC

59° 138–146 2 0.113

756_c Forward
Reverse

ACCAAGTCCTTCTCCTCTCCAAAC
ACAGGAGAAGAAAGGGAAAACCAG

59° 153–177 4 0.185

1078_a Forward
Reverse

GAACCACTTACCAAGCTCCAACTC
GGGTATTGGAAGTAAAGAAACCAGG

58° 89–95 2 0.092

2496_a Forward
Reverse

TGCAAAACTCTGTGCTAGTTGATTTC
ATATTCAAAGACTTTTGGGGAGGG

59° 110–125 3 0.211

2670_a Forward
Reverse

AGGGTTCTTATGACCTTTGCATTC
GGACAGATGGATGTTTCTATGTATG

58° 126–136 3 0.332

3313_a Forward
Reverse

TTCACTCTTTTCCGGAATCAAAAG
GTTTTCAACCTCCAATGTCAATCC

58° 160–170 2 0.085

3976_a Forward
Reverse

TTCGTAATGATTTGATAGTAGTTGTTGG
AAATTTCCCTATTGCAAGGAGATG

58° 125–133 4 0.209

TM, annealing temperature in °C; bp, base pairs; A, number of alleles per locus; MAF, minor allele frequency

Fig. 1 Collection area of the 13 populations of Zapote mamey (Pouteria
sapota) analyzed in the present study. Wild populations: Yajalon (1),
Ursula Galvan (2), Welib-Ha (3), Palenque (4), Jose Castillo (5), Agua
Azul (6), Penjamo (7), Nueva Palestina (8). Cultivated populations:

Oxcutzcab (9), Atasta (10), Chekubul (11), Tibolon (12), Dzidzantun
(13). Pie charts for each population show the results of the test of assign-
ment of individuals, based on K optimal = 4, using the STRUCTURE
program
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polymerase, and 10 ng of DNA. The PCR program consisted
of 35 cycles, each included a denaturing step of 2 min at
94 °C, an alignment step of 1 min (at a temperature of align-
ment depending on the primers employed), an extension step
of 5 min at 72 °C, and a final extension for 5 min at 72 °C. The
PCR amplification was performed in a thermocycler
GeneAmp PCR System 9700 (Applied Biosystems, Foster
City, USA). A volume of 5 μL of formamide containing
0.45% bromophenol blue and 0.25% xylene cyanol was added
to the PCR product and was denatured for a period of 5 min at
94 °C; then, 5 μL of this reaction product was loaded on 5%
polyacrylamide gels (19:1 acrylamide-bisacrylamide) con-
taining 5 M urea and 0.5 × Tris-borate EDTA (TBE) buffer.
Electrophoresis was performed at 60-W constant power for
45 min to 1 h (SQ3 sequencer, Hoeffer Scientific
Instruments, San Francisco, CA). The amplified products
were visualized with the silver staining technique Bassam
et al. 1991). The size of the fragments were determined visu-
ally in base pairs (bp), using as reference a 10-bp molecular
marker (Invitrogen, Life Technologies, Brazil).

Data analysis

Confidence of data

To verify the accuracy of the genotyping executed, SSR data
was analyzed using the MICRO-CHECKER program v.2.2.3
(Van Oosterhout et al. 2004). This program detects the pres-
ence of null alleles, alleles that failed to amplify during PCR;
stuttering, slight changes that have occurred in the allele size
during PCR; and dropout alleles, large alleles that do not am-
plify as efficiently as smaller alleles. Null alleles, stuttering,
and dropout alleles can affect the estimation of the diversity
and genetic structure of populations when utilizing the micro-
satellite technique. Also, considering the limitations of the
silver staining method used to determine the size of the bands
(alleles) observed in the polyacrylamide gels, we checked the
specific values (bp) of the alleles found in each of the 13
populations studied.

Genetic structure

To determine how the genetic diversity was organized in the
wild and cultivated populations of Zapote mamey studied,
data were analyzed using three grouping methods. The first
was a Bayesian approach implemented with the
STRUCTURE program (Pritchard et al. 2000), using the ad-
mixture model with correlated allele frequencies, with
100,000 as a period of burn-in and 200,000 iterations after
burn-in to allow the Markov chain to reach stationarity. Ten
independent simulations were run for each value ofK, ranging
fromK = 1 toK = 14, checking for consistency across outputs.

The outfiles of the STRUCTURE were used in the
STRUCTURE HARVESTER program (Earl and vonHoldt
2012) to obtain the optimal K value according to Evanno
et al. (2005). A summary of the ancestry coefficients generat-
ed by the STRUCTURE were displayed by making pie charts
for each of the sample sites, using theK optimal obtained (Fig.
1). The second approach utilized a three-dimensional principal
coordinate analysis (3-D PCoA); it was performed with the
computer package NTSYS-pc version 2.1 (Rohlf 2001). The
third approach used a neighbor-joining (N-J) tree of all indi-
viduals as implemented with the Populations 1. 2.30 software
(Langella 2002). The N-J was constructed using Nei’s stan-
dard genetic distance (Nei 1987). The tree topology was
displayed and edited with MEGA 6 software (Tamura et al.
2013). Then, genetic differentiation was assessed calculating
FST values between wild and cultivated gene pools, among
gene groups defined on the basis of the grouping methods
before mentioned, and among populations. For this, we ap-
plied 1000 permutations using Arlequin 3.5 (Excoffier et al.
2005). Finally, recent gene flow was estimated among gene
groups using BayesAss program (Wilson and Rannala 2003).
While the STRUCTURE uses a Bayesian probabilistic model
to assign individuals to clusters, the BayesAss estimates the
posterior probability of an individual’s migratory history and
thus allows estimating the rate and direction of recent dispers-
al. Unlike estimators of long-term gene flow, the BayesAss
makes relatively few assumptions about demography and can
be applied to populations that are not in the Hardy-Weinberg
equilibrium. The MCMC method was run for 20,000,000 it-
erations with a burn-in period of 1,000,000 and a sampling
frequency of 2000 iterations.

Genetic diversity

Genetic diversity was estimated at four levels: (a) at species,
(b) within each of the wild and cultivated gene pools, (c)
within the different groups defined by the three grouping
methods, and (d) within each individual population. To allow
comparisons between groups and populations with different
sample size, the average number of alleles per locus (A) was
calculated using the rarefaction method implemented in HP-
Rare version 1 (Kalinowski 2005). Observed heterozygosity
(HO) and expected heterozygosity (HE) were calculated with a
level of polymorphism of 95% using Arlequin 3.0 (Excoffier
et al. 2005). In order to compareHO andHE between wild and
cultivated gene pools, the FSTAT program (Goudet 2002) was
used to compute a one-sided group comparison test with 1000
permutations. Finally, two methods were used to explore the
potential existence of a bottleneck in Zapote mamey: (1) the
modified Garza–Williamson index (M) (Garza and
Williamson 2001; Excoffier et al. 2005) computes the mean
ratio of the number of alleles at a given locus (k) with respect
to the range of allele size (r). Studies of several natural
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populations have shown thatM is greater than 0.82 for popu-
lations that have not suffered a known reduction in population
size and less than 0.70 for those that have undergone a bottle-
neck (Garza and Williamson 2001). This index was estimated
with the Arlequin 3.0 (Excoffier et al. 2005); (2) using the
Bottleneck program v1.2.02 (Luikart and Cornuet 1997), we
performed a Wilcoxon sign test (α = 0.05) to determine if a
significant number of loci featured an excess of heterozygos-
ity, which is indicative of a bottleneck, assuming a two-phase
mutation (TPM, model of microsatellite mutation) model and
using 1000 permutations.

Results

Loci information and confidence in the SSR data

The analysis of linkage disequilibrium between loci pairs
showed evidence of linkage only between loci 00756_c
and 01078_a (P = 0.165) and loci 00756_c-02496_a (P =
0.300). The number of alleles per locus (A) varied from
two at 588_a, 3313_a, and 1078_a loci, to four at 756_c
and 280_a loci; minor allele frequency (MAF) varied from
0.085 to 0.332 (Table 1).

The percentage of missing data was of 0.7%. Three popu-
lations showed evidence of null alleles in one of their loci
(1078_a locus in Atasta and Tibolon populations, and
2670_a locus in the Tibolon population); therefore, these loci
were excluded from the final analysis. None of the analyzed
populations showed evidence of stuttering or dropout alleles.
The vast majority of alleles found had a difference in size of 5
or more base pairs from each other, a result that gives reliabil-
ity to reading of the bands obtained by the silver staining
method used in this work.

Genetic structure and grouping pattern

The value of delta K was four, suggesting the existence of
only four genetic groups among the 13 populations sam-
pled and identified by their source location. The analysis
with the STRUCTURE showed that there were three
groups within the wild gene pool: red, yellow, and green
groups; all cultivated populations were grouped into the
blue group (Fig. 1). 3D-PCoA supported the existence of
the groups observed utilizing the STRUCTURE (Fig. 2).
The first dimension explained 34.04% of the total varia-
tion, the second 24.21%, and the third 22.62%. Together,
these three dimensions explained 80% of the total genetic
variation. The N-J analysis also showed the presence of
four groups (Fig. 3): nine individuals from the blue group
were included in the yellow group, while 16 individuals
from the yellow group were included in the blue group.
Four individuals from the red group and only one from

the green group were included in the blue group. No in-
dividuals from the blue group were included in the red
and green groups. Only one individual from the yellow
group was included in the green group. These three anal-
yses supported the closest genetic relationship between
the blue group (cultivated) and the yellow group (wild).
FST value between wild and cultivated gene pools was of
0.13. Among gene groups, FST was of 0.25: minor FST

was between the yellow and blue groups (0.15), major
FST was between the red and blue groups (0.36). Among
populations, FST was of 0.36: minor FST was between
Oxcutzcab- and Atasta-cultivated populations (0.07), ma-
jor FST was between Palenque wild population and
Tibolon-cultivated population (0.62). All P values obtain-
ed for the FST values were less than 0.05. Although very
low, the BayesAss indicated a recent gene flow, mainly
from the yellow to the blue group (m = 0.03).

Genetic diversity

The eight SSR loci used generated a total of 23 alleles. All
the loci were polymorphic in the wild gene pool, two loci
(588_a and 3313_a) were monomorphic in the cultivated
gene pool. The estimators of genetic diversity are shown
in Table 2. At the level of wild and cultivated gene pools,
the allelic richness (A) and the expected heterozygosity (HE)
were higher in the wild gene pool (A = 3.1, HE = 0.41) than
in the cultivated gene pool (A = 2.0, HE = 0.38). The ob-
served heterozygosity (HO) was very similar in both gene
pools (wild, HO = 0.29; cultivated HO = 0.30). When all
these diversity estimators were compared between wild
and cultivated gene pools using permutation tests, the P
values did not indicate significant differences between both
gene pools in any of the three evaluated estimators (P, A =
0.205; HO = 0.103; HE = 0.293). At the group level, the
highest A was observed in the green group (A = 3.89). The
green group also showed the highest HO (0.45) and HE

(0.47). At the population level, the greater HO occurred in
Palenque, Penjamo, and Dzidzantun (HO = 0.59, 0.48, and
0.47, respectively), where Palenque and Penjamo were wild
populations and Dzidzantun was cultivated. The highestHE

was found in Dzidzantun (cultivated) and Welib-Ha (wild)
(HE = 0.49 and 0.48, respectively). In relation to the possi-
ble existence of a bottleneck in Zapote mamey, the modified
Garza–Williamson index (M) was very low but similar for
the wild and cultivated gene pools, although the wild gene
pool showed a slightly higher value (M = 0.16 ± 0.09) than
the cultivated gene pool (M = 0.11 ± 0.09). The Bottleneck
program indicated an excess of heterozygosity in both gene
pools (wild, P = 0.02; cultivated, P = 0.05), but when this
program was run at the group level, only the blue group
(cultivated) showed an excess of heterozygosity.

Tree Genetics & Genomes (2019) 15: 61 Page 5 of 11 61



Discussion

Genetic structure

Various methods (STRUCTURE, 3D-PCoA, N-J, FST) were
used to analyze how the genetic diversity of Zapote mamey is
distributed in southeastern Mexico. Four groups were identi-
fied according to their genetic distances, three in the wild gene
pool, and one in the cultivated gene pool. Yajalon and Ursula
Galvan (red group), Palenque (green group), and Jose Castillo
(yellow group) wild populations were the ones with the lowest
degree of admixture of the 13 populations studied, perhaps
because these four populations were collected in highly con-
served vegetation areas. In the wild gene pool, eight popula-
tions were collected from a relatively small geographic area

(in the states of Chiapas and Tabasco, Mexico) with heteroge-
neous environmental conditions, which could explain the re-
sultant genetic variation in the three different genetic groups.
Understanding the distribution of genetic diversity in the wild
relatives of domesticated species is important to devise ade-
quate sampling techniques and to develop effective manage-
ment strategies (Hamrick 1983; Rao and Hodgkin 2002). All
of the cultivated populations (blue group) were collected from
the Yucatán Peninsula (in the states of Campeche and
Yucatán), the primary region of Zapote mamey production
in Mexico, where there are no wild populations reported of
this species. This pattern of clustering of the cultivated popu-
lations could be explained by a common origin of individuals
and their subsequent clonal propagation. Unfortunately, it was
not possible to verify the specific origin of each individual

Fig. 2 Three-dimensional principal coordinates analysis (3-D PCoA) of
13 populations of Pouteria sapota from southeastern Mexico, using eight
microsatellite loci. Wild populations: Yajalon (1), Ursula Galvan (2),
Welib-Ha (3), Palenque (4), Jose Castillo (5), Agua Azul (6), Penjamo

(7), Nueva Palestina (8). Cultivated populations: Oxcutzcab (9), Atasta
(10), Chekubul (11), Tibolon (12), Dzidzantun (13). Colors of the circles
correspond to those showed in Figs. 1 and 3
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collected in the Yucatán Peninsula since the owners of the
orchards from where the collections were made no longer
remembered that origin, or the orchards had been planted by
previous generations. Though, as indicated by Bruner and
Morales-Payan (2011), reproduction of Zapote mamey by
grafting is the typical method employed in small plantations.

We found low, but significant, genetic differences between
wild and cultivated gene pools of Zapote mamey in southeastern
Mexico. Arias et al. (2015), using the neighbor-joining and 3D-
PCoA methods, reported no clear separation between wild and
cultivated individuals of Zapote mamey. An important character-
istic that can affect the genetic variation between cultivated spe-
cies and their wild relatives is the mode of reproduction (Abbo
et al. 2014). Zapote mamey can be propagated sexually or

asexually (Nava-Cruz and Ricker 2004). In domesticated species
that can be clonally propagated, individuals with interesting traits
can result in rapid rates of change because these ones can be
selected and reproduced identically and in large numbers
(Mckey et al. 2010), favoring the genetic differentiation between
gene pools. However, this reproductive characteristic can also
limit the genetic differences between wild and cultivated plants
if human groups continue to favor the gene flow through the
movement of cuttings and the agricultural practice of grafting.
Test of assignment of individuals (STRUCTURE) applied in the
present study suggested the existence of a recent gene flow,
primarily between the yellow wild group and the cultivated gene
pool, finding was also supported for the PCoA and N-J analyses.
But the BayesAss program showed that this gene flow is very

Fig. 3 Neighbor-joining (N-J) analysis of 13 populations of Pouteria
sapota from southeastern Mexico, using eight microsatellite loci. Wild
populations: Yajalon (1), Ursula Galvan (2), Welib-Ha (3), Palenque (4),
Jose Castillo (5), Agua Azul (6), Penjamo (7), Nueva Palestina (8).

Cultivated populations: Oxcutzcab (9), Atasta (10), Chekubul (11),
Tibolon (12), Dzidzantun (13). Colors of the lines correspond to those
showed in Figs. 1 and 2
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low (less than 0.03) among all groups, although higher between
yellow and blue groups. Although not conclusive, our results
could be indicating that the ancestors of the Zapote mamey cur-
rently cultivated in the Yucatán Peninsula and sampled in this
study originated from materials of the wild populations of the
yellow group. Considering that there are no wild populations of
Zapote mamey in the Yucatán Peninsula, the gene flow we ob-
served was likely generated by an influx of seeds or cuttings,
presumably taken from wild populations originating from the
states of Chiapas, and transferred to the Yucatán Peninsula and
maintained or multiplied through clonal propagation. Many pe-
rennial species are highly heterozygous (Petit and Hampe 2006);
thus, while clonal propagation maintains the heterozygosity at
the individual level, it promotes genetic homogeneity at the pop-
ulation level (Zohary and Spiegel-Roy 1975). This phenomenon
was observed, in part, in our study, where some cultivated pop-
ulations had high levels of heterozygosity (Dzidzantun, HE =
0.49; HO = 0.47) compared with many of the wild populations;
however, all cultivated populations were part of the same genetic
group (blue). Future studies emphasizing sampling at the popu-
lation level, of both cultivated species and their wild relatives, as

considered in the present study, will shed light on the extent to
which genes are transferred between wild and cultivated peren-
nial crops clonally propagated.

Genetic diversity

In recent years, several studies within the Sapotaceae family
have reported high levels of genetic diversity in wild species
such as: Argania spinosa L. Skeels (HE = 0.67, Yatrib et al.
2017);Manilkara maxima (HE = 0.67, Ganzhorn et al. 2015);
Pouteria reticulata (Engl.) Eyma (HE = 0.71, Schroeder et al.
2014); Manilkara zapota (HE = 0.95, González–Hernández
et al. 2012); and Manilkara huberi (Ducke) Standl (HE =
0.86, Azevedo et al. 2007; HE = 0.78, Rennó 2007). These
studies suggest that the existence of high levels of genetic
diversity is a common pattern within the Sapotaceae family.
However, our study showed low genetic diversity for wild
P. sapota (HE = 0.41), similar to that reported by Toledo
(2009) for Sideroxylon portoricense subs. minutiflorum
(Pittier) (HE = 0.35), other species of Sapotaceae of Mexico.
Arias et al. (2015) also found low levels of genetic diversity
(HE = 0.35) in a sample of 20 wild individuals of seven wild
populations of P. sapota from southeastern Mexico. Although
these authors analyzed a low number of individuals, they in-
dicated that this low diversity is correctly estimated given the
large number of loci (205) analyzed and the accuracy of allele
calling (1 bp differences detected) when using capillary elec-
trophoresis. It should be noted that the individuals used by
these authors were also included in our work. A factor that
can explain the low levels of genetic diversity found in the
wild populations of Zapote mamey from southeastern Mexico
is the existence of a bottleneck due to genetic drift caused by
fragmentation of habitat due to natural and human causes. We
observed a low Garza–Williamson index value for the wild
gene pool of Zapote mamey (M = 0.16). As previously indi-
cated, studies of several natural populations have shown that
M is less than 0.70 for populations that have experienced a
bottleneck event (Garza and Williamson 2001). Also, the
Bottleneck program used in our study indicated an excess of
heterozygosity in this gene pool, plausibly indicating a bottle-
neck (Luikart and Cornuet 1997). Finally, we found evidence
of linkage disequilibrium between two pairs of loci. Although
linkage disequilibrium can be affected by both biological and
historical factors, one of these factors is the existence of a
bottleneck (Gaut and Long 2003). So, all this evidence sug-
gest the existence of a bottleneck in the wild gene pool of
Zapote mamey of southeastern Mexico. This result is crucial
when considering the development of conservation strategies
for this species when the region where the wild populations of
Zapote mamey were collected is a hot spot for potential spe-
cies extinction as a result of urbanization, agriculture, and
other land uses (De Baan et al. 2013).

Table 2 Genetic diversity estimators of Zapote mamey (Pouteria
sapota) from southeastern Mexico, using eight microsatellite loci

N A HO ± SD HE ± SD

Species 178 2.77 0.29 ± 0.06 0.39 ± 0.14

Gene pools

Wild 115 3.10 0.29 ± 0.12 0.41 ± 0.19

Cultivated 73 2.00 0.30 ± 0.09 0.38 ± 0.17

Groups

Red 30 1.98 0.30 ± 0.31 0.24 ± 0.17

Yellow 60 2.60 0.27 ± 0.09 0.37 ± 0.18

Green 25 3.89 0.45 ± 0.28 0.47 ± 0.20

Blue 73 2.00 0.30 ± 0.09 0.38 ± 0.17

Populations

Yajalon 15 1.96 0.44 ± 0.34 0.32 ± 0.17

Ursula Galvan 15 2.00 0.33 ± 0.31 0.27 ± 0.17

Welib-Ha 15 1.95 0.23 ± 0.21 0.48 ± 0.17

Palenque 10 2.00 0.59 ± 0.35 0.39 ± 0.17

José Castillo 15 2.53 0.37 ± 0.21 0.35 ± 0.18

Agua Azul 15 1.99 0.33 ± 0.22 0.31 ± 0.17

Penjamo 15 1.99 0.48 ± 0.29 0.43 ± 0.15

Nueva Palestina 15 3.00 0.28 ± 0.17 0.28 ± 0.17

Oxcutzcab 15 2.00 0.34 ± 0.19 0.33 ± 0.15

Atasta 15 2.00 0.41 ± 0.14 0.42 ± 0.09

Chekubul 15 1.91 0.24 ± 0.23 0.30 ± 0.25

Tibolon 13 1.86 0.23 ± 0.17 0.25 ± 0.21

Dzidzantun 15 2.60 0.47 ± 0.11 0.49 ± 0.11

N, sample size; A, average number of alleles per locus calculated using
rarefaction methods; HO, heterozigosity observed; HE heterozigosity ex-
pected; SD, standard deviation
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We found higher levels of genetic diversity in the wild gene
pool of Zapote mamey, compared with the cultivated one.
However, permutation tests did not indicate significant differ-
ences between both gene pools. Arias et al. (2015) found that
the cultivated gene pool of Zapote mamey had slightly higher
genetic diversity (9 individuals,HE = 0.41) than its wild counter-
part (20 individuals,HE = 0.35). Miller and Gross (2011) empha-
sized that higher levels of genetic diversity in cultivated popula-
tions, relative to their wild counterparts, could be due to (a)
insufficient sampling of wild populations; (b) cultivated popula-
tions that represent the descendants of controlled crosses between
geographically and genetically distinct individuals, yielding new
variants carrying novel combinations of alleles, not found in the
wild; (c) a loss, or extinction, of wild plants, following the estab-
lishment of cultivated populations due to habitat destruction or
other reasons; and (d) somatic mutations in clonally propagated
cultivars which contribute to elevated levels of genetic variation.
Another factor to explain our results is that Zapote mamey is in a
process of incipient domestication, which would help explain, in
part, not having found significant differences in genetic diversity
between the wild and the cultivated gene pools. Although in this
work we use only 8 loci, these loci were expected to be poly-
morphic and detect variations. The Garza–Williamson index and
Bottleneck program indicated a bottleneck in the cultivated gene
pool of Zapotemamey from southeasternMexico. This finding is
supported by the report of Arias et al. (2015) that (a) using the
Bottleneck software, they found a reduction in genetic diversity
in the cultivated gene pool; (b) at 62 SSR loci (of 205 analyzed),
one or more alleles were observed in the wild individuals that
were not detected in cultivated individuals. Considering the
strength of the population sampling of our study and the robust-
ness of the genomic sampling of Arias et al. (2015), all available
evidence supports the existence of a weak, but significant, bot-
tleneck in the cultivated Zapote mamey of southeastern Mexico.

Conclusions

Our study provides the first analysis at a population level
about the structure and genetic diversity of Zapote mamey
incorporating a broad sampling of wild and cultivated individ-
uals collected from southeastern Mexico, its putative domes-
tication area, and characterized using specific codominant
SSR markers. We found genetic differentiation between both
gene pools and evidence of a low recent gene flow between
cultivated populations from Yucatán Peninsula and wild pop-
ulations from Chiapas State. Our results indicated low levels
of genetic diversity in wild and cultivated populations of
Zapote mamey, but did not demonstrate significant differences
between both gene pools. The information provided in this
study can be used to determine adequate sampling techniques
and to develop effective management strategies for Zapote
mamey of southeastern Mexico.
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