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REDUCTION FOR NATURAL OPERATORS
ON PROJECTABLE CONNECTIONS

Abstract. We present a very simple proof of a general reduction for natural operators
on torsion free projectable classical linear connections.

A reduction for natural operators on classical linear connections on man-
ifolds is a very old and known fact, but the known for the authors proof of
it (see e.g [1]) is very complicated. In the present paper we propose a very
simple proof of it in a more general than in [1] situation (namely, for natural
operators on projectable torsion free classical linear connections on fibred
manifolds).

We start with the following standard notions and definitions, see e.g. [1].

A fibred manifold is a surjective submersion p : Y — M between man-
ifolds. Given another fibred manifold p; : Y3 — My amap f:Y — Y is
called fibred iff there exists a (unique) underlying map f : M — M; such
that pjof = fop. All fibred manifolds and their fibred maps form a category
which is denoted by FM. A fibred manifold p : Y — M is of dimension
(m,n) iff Y is of dimension m+n and M is of dimension m. All fibred man-
ifolds of dimension (m,n) and their fibred embeddings (fibred maps which
are diffeomorphisms onto open subsets) form a category which is denoted by
F M.

We recall that a classical linear connection on a manifold N is an R-
bilinear map V : X(N) x X(N) — X(N) such that (1) VixY = fVxY
and (2) VxfY = XfY + fVxY for any map f : N — R and any vector
fields X,Y € X(N) on N. A classical linear connection V on N is called
torsion-free iff its torsion tensor field T' vanishes. (We recall that T is given
by T(X,Y) =VxY — VyX — [X,Y] for any X,Y € X(N).)
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Let p:Y — M be a fibred manifold. A classical linear connection V on
Y is called projectable (with respect to p) iff there exists a (unique) classical
linear connection V on M such that V is p-related to V. (The last condition
means that if X, Z € X(Y) and X, Z € X (M) are such that Tpo X = X op
and TpoZ =Zopthen TpoVxZ =VyxZop.)

A general concept of bundle functors and natural operators can be found
in [1]. In the present note we need only the following partial concepts.

DEFINITION 1. A bundle functor on (m,n)-fibred manifolds is a covariant
functor F': FM,, , — F.M satisfying the following properties:

(1) (Base preservation) B o F' = Tz, ., where B 1+ FM — Mf is
the base functor (B(¢ : Z — N) = N, B(g) = g) and T : FM — Mf
is the total space functor (7(p : Y — M) =Y, T(f) = f). Hence the
induced projections 7 : F(Y) — Y form the functor transformation 7 : F' —
T F Mo

(2) (Locality) If U C Y is an open subset then F(U) = 7, (U) and F(iy)
is the inclusion of F(U) onto 7y (U).

DEFINITION 2. Let F,G : FM,;,,, — FM be bundle functors. An
F M, p-natural operator D : G X Qr_proj ~ F' is a system of FM,, ;-
invariant regular operators (functions)

D:GY x Q‘rfpron — FY

for any FM,, ,-object p : Y — M, where FY (or GY) is the set of all
sections on FY — Y (or GY —Y) and Qr—pr;(Y) is the set of all torsion
free projectable classical linear connections on ¥ — M. The invariance
means that if 01 € GY1 and o2 € GY3 are W-related by an FM,, ,-map ¥ :
Y1 = Ys (ie. G¥ooy = 020¥) and Vi € Qr_proj (Y1) and Vo € Qr—proj(Y2)
are also WU-related (i.e. W is (Vy, Vy)-affine), then so are D(oy, V) and
D(02,V3) (i.e. F¥Y o D(01,V1) = D(o2,Va) o ¥). The regularity means
that D transforms smoothly parametrized families of pairs of sections and
connections into smoothly parametrized families of sections.

DEFINITION 3. We say that a natural operator D : G X Qr—ppoj ~ F'is of
finite order s if for any y € Y and any (0, V) € GY x Q7_proj(Y) the value
D(o,V)(y) depends only on the s-jet jj (o, V) of (0,V) at y.

We have the following simple examples of bundle functors and natural

operators of finite order in the sense of Definitions 1-3.

EXAMPLE 1. A very simple example of a bundle functor on (m,n)-fibred
manifolds is the identity functor idy,,, : FMy;n — FM sending any
F M n-object p 1 Y — M into 7 = idy : Y — Y and any FM,, ,-map
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f:Y = Yiinto f: Y — Y;. A simple example of a bundle functor on (m,n)-
fibred manifolds is the tangent bundle functor T7': F M, ,, — FM sending
any F M, n-object p : Y — M into the tangent bundle 7 : TY — Y of YV
and any FM,, ,-map f :Y — Y] into the tangent map T'f : TY — TY; of
f. Another simple example is the cotangent bundle functor T : FM,, , —
FM given by T*Y = (TY)* and T*f = (Tf~)* for any p: Y — M and
f:Y — Y, as above. A more complicated example of a bundle functor
on (m,n)-fibred manifolds is a bundle functor T%3 : FM,,,, — FM of
tensors of type (1,3) sending any FM,, n,-object p : Y — M into the bun-
dle T'3Y = ®3T*Y @ TY of tensors of type (1,3) and any F.M,, ,-map
f:Y — Y] into the induced map T™3f := @3T*f @ Tf : T3Y — T13Y;.

EXAMPLE 2. Let G = idyp : FMmpn — FMand F =T : FMypn —
FM be as in Example 1. A standard (well-known) example of an FM,, ,,-
natural operator D : G X Qr—_proj ~ F' is the curvature operator R sending
a projectable classical linear connection V on an FM,, ,-object p : ¥ —
M into the well-known curvature tensor R(V) of V (we note that in our
situation GY is the one-element set). Clearly, R is of order s = 1.

EXAMPLE 3. Let G =T : FM,,, = FM and F = T3 . FMpp — FM
be as in Example 1. Let p : ¥ — M be an FM,, ,-object. We define
D : GY X Qr—proj(Y) — FY by D(X,V) := VxR(V), the covariant V-
derivative of the curvature tensor R(V) of V in direction X € X(Y) = GY.
The family D : G X Qr—proj ~» F of functions D : GY X Qr_proj(Y) = FY
for any F M, n-object p: Y — M is an FM,, ,-natural operator of order
s =2.

To present a general example of an FM,, ,-natural operator D : G' x
Qr—proj ~ F' of finite order for arbitrary bundle functors F,G : FM,, , —
FM we use the following lemma (being an obvious generalization of the
well-known fact on the construction of normal coordinates for classical linear
connections on manifolds).

LEMMA 1. Let V be a torsion free projectable classical linear connection on
an F My, n-object p: Y — M covering V on M. Lety € Y, x € M.

(a) There exists a fibred normal coordinate system WY : (U,y) — (R™ x
R™,(0,0)) on Y of V with center y covering a normal coordinate system
v (U,z) — (R™,0) on M of ¥V with center x.

(b) If ©Y is another such fibred normal coordinate system then there exists
® € GL(m,n)(=the group of all fibred linear isomorphisms R™ x R" —
R™ x R"™) such that V¥ = & o UY near y.

Proof. The proof of Lemma 1 is standard and is presented in some previ-
ous papers (e.g. by the first author). (We propose to use the well-known
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construction (from the exponent) of normal coordinates of classical linear
connections on manifolds and next to to use a simple observation that if V
is a projectable torsion-free classical linear connection on p : Y — M with
the underlying connection V on M then the exponent Ezp, of V at y is
fibred over the exponent Expy,,) of V (this is a simple consequence of the
definition of the exponent and the fact that the p-projections of V-geodesics
are V-geodesics as p is a surjective submersion).) =

We are in position to present the following general (maybe known) ex-
ample of F M, ,-natural operator D : G X Qr—_proj ~ F.

EXAMPLE 4 (A general construction). Let s be a positive integer. Let
S (JGR™™)(g0) X Q° — F(o0)R™" be a GL(m,n)-invariant map, where
(J*GR™™) (90 is the space of all s-jets at (0,0) € R™ x R™ of sections
from GR™", R™" is the standard FM,, »,-object R™ x R" — R™ (the
usual projection) and Q* is the vector space of all s-jets j('5070)(V§k) of tor-
sion free projectable classical linear connections V on R™ x R — R™
with the Christoffell symbols V;k (i,j,k = 1,...,m + n) with respect to
the usual fiber coordinates z!, ..., 2™, ™! . 2™ on R™ x R" satisfying
271321 ;k(x)xjxk =0 fori=1,...,m+n or equivalently the usual coordi-
nates x!,...,2™™ are V-normal with center (0,0). (The equivalence of the
last two conditions can be obtained by applying the well-known differential
equations on geodesics and by using the fact that in normal coordinates the
geodesics passing by the centrum are straight lines.) Let p: Y — M be an
F My n-object. Let y € Yy, v € M. Let 0 € GY and V € Qr—pro;(Y). Let

UY be a fibred normal coordinate system from Lemma 1. We define
D%(a, V)(y) = F(¥*) " (S(j{y,0)(¥0), jf,0)(¥EV))) € FY,

where Yo = G(¥Y) o o o (U¥)~! is the image of o by ¥¥ and similarly
UYV is the image of V by W¥. If U¥ is another such fibred normal coordi-
nate system then (by Lemma 1 (2)) ¥{ = C o ¥¥ for some C' € GL(m,n).
By the GL(m,n)-invariance of S, the definition of D%(o, V)(y) is correct
(independent of the choice of W,). Then we have the resulting section
D%(o,V) € FY. Then we have the resulting operator (function) D° :
GY X Qr—proj(Y) — FY. The family D% : G x Qr—proj ~» F' of the above
functions D : GY x Qr—proj — FY for any FM,, ,-object p: Y — M is
an FM,, ,-natural operator of order s.

We have

THEOREM 2. Any F M, ,-natural operator D : G X Qr—_proj ~ F' of finite
order s is of the form D = D% for some uniquely determined GL(m,n)-
invariant map S : (J*GR™") g g) X Q% — F(g0R™".
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Proof. We must define S : (J°GR™") () X Q° — Fg0R™" by
S(5{0,0)93{0,0)V) = D(0, V)(0,0) € Fio0)R™" ,
Joo)V € Q*, o a section of GR™"™ — R"™". The definition of S is correct

because D is of order s. By the invariance of D and D® and Lemma 1(1)
we immediately see that D = D°. =

REMARK 1. For n = 0, we reobtained (in some another more geometrical
form) the main technical result from Section 28 in [1| (namely Proposition
28.9). It seem that our general proof is less complicated than the one of
Section 28 in [1]. This "trick" generalizes similar partial "tricks" applied in
previous papers, e.g. [2], [3] and others.
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