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RIEMANNIAN VECTOR BUNDLES

HAVE NO CANONICAL LINEAR CONNECTIONS

Abstract. We prove that Riemannian vector bundles have no canonical linear con-
nections.

Introduction

Given a vector bundle E → M , a Riemannian structure on E → M

is a map G : E ×M E → R such that for any x ∈ M the restriction Gx :
Ex×Ex → R of G is an inner product on the fiber Ex of E → M over x (i.e. it
is symmetric bilinear and positive define). For example, if E = TM → M is a
tangent bundle of a manifold M , then a Riemannian structure on TM → M

is called a Riemannian structure on M .

Given a vector bundle E → M , by a linear connection D on E → M we
mean an R-bilinear map D : X (M) × Γ(E) → Γ(E) such that

(i) DfXσ = fDXσ and
(ii) DXfσ = Xfσ + fDXσ

for any vector field X ∈ X (M) on M , any map f : M → R and any section
σ ∈ Γ(E) of E → M . For example, if E = TM → M is the tangent bundle
of a manifold M , then a linear connection on TM → M is called a classical
linear connection on M .

Example 1. Let g be a Riemannian structure on a manifold M . It is
well-known that there exist many classical linear connections ∇ on M such
that

(1) Zg(X, Y ) = g(∇ZX, Y ) + g(X,∇ZY )
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for any vector fields X, Y, Z on M . However, if ∇ satisfying the above
property (1) satisfies also an additional condition (depending canonically on
∇ and g) saying that

(2) ∇XY −∇Y X − [X, Y ] = 0

for any vector fields X, Y on M , then such connection ∇ is unique. This is
the well-known Levi-Civita connection of g.

Example 2. Let G be a Riemannian structure on a vector bundle
E → M . Similarly as in the Riemannian manifold case, there exist many
linear connections D on a E → M such that

(3) XG(σ, η) = G(DXσ, η) + G(σ, DXη)

for any vector field X ∈ X (M) and any sections σ, η ∈ Γ(E), see [4].

So, we have the following natural question.
Question 1. Whether there exists a condition

(4) C(G, D)

(canonically determined by G and D) such that D satisfying (3) and this
additional condition (4) is uniquely determined? In other words, whether
do Riemannian structures G on a vector bundle have (induce canonically)
linear connections (like Levi-Civita one)?

In this note we prove that the answer to the above question is negative.
In fact, we prove a more general result that there is no canonical condition

(5) C(G, D,∇)

determined by G, D and an additional classical linear connection ∇ on M

such that D satisfying (3) and condition (5) is uniquely determined.
All manifolds and maps are assumed to be smooth (of class C∞).

1. The main result

To present a mathematical formulation of the main result of the paper
we need the following definition being a particular case of a definition of
natural operators from [3].

Let VBm,n be the category of vector bundles with m-dimensional bases
and n-dimensional fibres and their (local) vector bundle isomorphisms.

Definition 1. A VBm,n-gauge natural operator A : C × Riem  Q is a
VBm,n-invariant family

A : Conclas(M) × Riem(E) → Con(E)

of operators for any VBm,n-object E → M , where Conclas(M) is the set of
all classical linear connections on M , Riem(E) is the set of all Riemannian
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structures on E → M and Con(E) is the set of all linear connections on
E → M . The invariance means that if (∇1, G1) ∈ Conclas(M1)×Riem(E1)
and (∇2, G2) ∈ Conclas(M2) × Riem(E2) are Φ-related by an VBm,n-map
Φ : E1 → E2 then so are A(∇1, G1) and A(∇2, G2).

Now, a negative answer of Question 1 follows (obviously) from the fol-
lowing theorem (which is the main result of the present note).

Theorem 1. There is no VBm,n-gauge natural operator A : C×Riem Q

transforming Riemannian structures G : E ×M E → R on vector bundles

E → M and classical linear connections ∇ on M into linear connections

A(∇, G) on E → M .

2. Preparations to the proof of Theorem 1

In the proof of Theorem 2 we will use the following well-known facts.

Proposition 1. ([2]) Let ∇ be a classical linear connection on a connected

manifold N . Then the group Aff(∇) of all ∇-affine isomorphisms is a Lie

group.

Proposition 2. ([4; Proposition 2.116]) Let ∇ be a classical linear con-

nection on a connected manifold N . Let f, g : N → N be ∇-affine maps. If

j1
xf = j1

xg at some point x ∈ N then f = g.

We will also use the following fact.

Proposition 3. ([1], [3]) Let D be a linear connection on a vector bundle

E → M and ∇ be a classical linear connection on M . Then there exists a

unique classical linear connection Γ = Γ(D,∇) on the total space E with the

following property

ΓXDY D = (∇XY )D, ΓXDsV = (DXs)V ,

ΓsV XD = 0, ΓsV σV = 0,

for all vector fields X, Y on M and all sections s, σ of E → M . Here

XD ∈ X (E) denotes the D-horizontal lift of X and sV ∈ X (E) means the

vertical lift of s, sV (e) = [e + ts(x)], e ∈ Ex, x ∈ M .

3. Proof of Theorem 1

Suppose that A : C×Riem Q is such a VBm,n-gauge natural operator.
Let E = R

m × R
n → R

m be the trivial vector bundle. Let Go ∈ Riem(E)
be the trivial Riemannian structure , i.e. Go

x =<, >: Rn × R
n → R for any

x ∈ R
m, where <, > is the standard scalar multiple on R

n. Let ∇o be the
usual flat classical linear connection on R

m. Then on E we can define a
classical linear connection

Θ = Γ(A(∇o, Go),∇o) ,
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where operator Γ is defined in Proposition 3. We have a group monomor-
phism (injection) I : C∞(Rm, O(n)) → Aut(Rm ×R

n), I(B) : Rm ×R
n →

R
m × R

n,
I(B)(x, y) = (x, B(x)y) ,

(x, y) ∈ R
m × R

n. Given B ∈ C∞(Rm, O(n)), I(B) preserves ∇o and
Bo. Then I(B) preserves A(∇o, Go) (because of the invariance of A) and
consequently I(B) preserves Θ (because of the invariance of the construction
Γ). Then (in fact) I : C∞(Rm, O(n)) → Aff(Θ) is a group inclusion. This
is a contradiction because Aff(Θ) is a Lie group (see Proposition 1) and
C∞(Rm, O(n)) is not finite dimensional.

4. Another proof of Theorem 1

Suppose that such operator A exists. We use the notations of Section 3.
In particular, Θ and I be as in Section 3. Consider B, C ∈ C∞(Rm, O(n))
such that B(0) = C(0) and B 6= C. Then I(B) and I(C) are Θ-affine
maps such that j1

(0,0)(I(B)) = j1
(0,0)(I(C)) and I(B) 6= I(C). Contradiction

because of Proposition 2.
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