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Abstract. In this paper we investigate the convergence behavior of the solutions to the time-dependent variational–

hemivariational inequalities with respect to the data. First, we give an existence and uniqueness result for the problem, and

then, deliver a continuous dependence result when all the data are subjected to perturbations. A semipermeability problem

is given to illustrate our main results.
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1. Introduction

Variational–hemivariational inequalities represent a special class of inequalities which involve both con-
vex and nonconvex functions. Elliptic hemivariational and variational–hemivariational inequalities were
introduced by Panagiotopoulos in the 1980s and studied in many contributions, see [15,17] and the
references therein. Various classes of such inequalities have been recently investigated, for instance, in
[7,9,10,12,20,22]. They play an important role in describing many mechanical problems arising in solid
and fluid mechanics.

In this paper we study the following time-dependent variational–hemivariational inequality: find
u : R+ = [0,+∞) → X such that, for all t ∈ R+, u(t) ∈ K and

〈Au(t) − f(t), v − u(t)〉X + ϕ(u(t), v) − ϕ(u(t), u(t))

+ j0(u(t); v − u(t)) ≥ 0 for all v ∈ K, (1)

where K is a nonempty, closed and convex subset of a reflexive Banach space X, A : X → X∗ and
ϕ : K × K → R are given maps to be specified later, j : X → R is a locally Lipschitz function, and
f : R+ → X∗ is fixed. The notation j0(u; v) stands for the generalized directional derivative of j at
point u ∈ X in the direction v ∈ X. The goal of the paper is to study the convergence of solution of the
variational–hemivariational inequality (1) when the data A, f , ϕ, j and K are subjected to perturbations.

The dependence of solutions to elliptic variational–hemivariational inequalities on the data has been
studied only recently. For such inequalities the dependence with respect to functions ϕ and j was investi-
gated in [13], where A and K were not subjected to perturbations. A result on the dependence of solutions
to elliptic variational inequalities with respect to perturbations of the set K of a special form was studied
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in [19]. There, the data A, ϕ and f were independent of perturbations. For a class of elliptic history-
dependent variational–hemivariational inequalities studied in [21], the convergence result was obtained
in a case when ϕ depends on a history-dependent operator, and A does not depend on perturbations.
A result on the convergence with respect to the set of constraints K were studied for elliptic quasivari-
ational inequalities in [1]. In all aforementioned papers the convergence results were applied to various
mathematical models of deformable bodies in contact mechanics. Note that a result on the dependence
of solutions to evolution second order hemivariational inequalities with respect to perturbations of the
operators can be found in [8]. Furthermore, it is well known that the continuous dependence results are
of importance in optimal control and identification problems, see, e.g., [2,9,23].

The aim of the paper is twofold. First, we consider the class of abstract time-dependent variational–
hemivariational inequalities of the form (1) for which we study the dependence of the solution with
respect to the data A, f , ϕ, j and K. Our hypotheses on ϕ and j are different than the one used in the
aforementioned papers. Moreover, the set of constraints is of a more general form.

Second, we illustrate the applicability of the convergence results in the study of a semipermeability
problem. Semipermeability problems were first considered in [5] for convex potentials (which lead to
monotone relations) and, later, in [11,16,17] for nonconvex superpotentials (leading to nonmonotone
relations). They concern the treatment of semipermeable membranes either in the interior or on the
boundary of the body and arise, for instance, in flow problems through porous media and heat conduction
problems. In the current paper we study a semipermeability problem involving simultaneously both
monotone and nonmonotone relations. Its weak formulation is a variational–hemivariational inequality.
Note that the convergence results for semipermeability problems are provided here for the first time.
Finally, we underline that our convergence results of Sect. 3 are also applicable to various problems
in contact mechanics like a nonlinear elastic contact problem with normal compliance condition with
unilateral constraint, and a contact problem with the Coulomb friction law in which the friction bound
is supposed to depend on the normal displacement, studied in, e.g., [1,6,13,19].

The rest of this paper is organized as follows. In Sect. 2, we will introduce some necessary prelim-
inary materials. Section 3 is devoted to the proofs of convergence results for the elliptic variational–
hemivariational inequality and its time-dependent counterpart. In Sect. 4, we apply the results to a
semipermeability problem.

2. Preliminaries

In this section we recall notation, basic definitions and a result on unique solvability of a variational–
hemivariational inequality.

Let (X, ‖ · ‖X) be a Banach space. We denote by X∗ its dual space and by 〈·, ·〉X the duality pairing
between X∗ and X. The strong and weak convergences in X are denoted by “ →′′ and “ ⇀,′′ respectively.

Let C(R+;X) be the space of continuous functions defined on interval R+ = [0,+∞) with values in
X. For a subset K ⊂ X the symbol C(R+;K) denotes the set of continuous functions on R+ with values
in K. We also recall that the convergence of a sequence {xn}n≥1 to the element x, in the space C(R+;X),
can be described as follows

⎧
⎨

⎩

xn → x in C(R+;X), as n → ∞ if and only if

max
t∈[0,k]

‖xn(t) − x(t)‖X → 0, as n → ∞, for all k ∈ N.
(2)

We recall the definitions of the convex subdifferential, the (Clarke) generalized gradient and the
pseudomonotone single-valued operators, see [3,4].

Definition 1. A function f : X → R is said to be lower semicontinuous (l.s.c.) at u, if for any sequence
{un}n≥1 ⊂ X with un → u, we have f(u) ≤ lim inf f(un). A function f is said to be l.s.c. on X, if f is
l.s.c. at every u ∈ X.
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Definition 2. Let ϕ : X → R∪{+∞} be a proper, convex and l.s.c. function. The mapping ∂ϕc : X → 2X∗

defined by
∂ϕc(u) = {u∗ ∈ X∗ | 〈u∗, v − u〉X ≤ ϕ(v) − ϕ(u) for all v ∈ X }

for u ∈ X, is called the subdifferential of ϕ. An element u∗ ∈ ∂cϕ(u) is called a subgradient of ϕ in u.

Definition 3. Given a locally Lipschitz function ϕ : X → R, we denote by ϕ0(u; v) the (Clarke) generalized
directional derivative of ϕ at the point u ∈ X in the direction v ∈ X defined by

ϕ0(u; v) = lim sup
λ→0+, ζ→u

ϕ(ζ + λv) − ϕ(ζ)
λ

.

The generalized gradient of ϕ at u ∈ X, denoted by ∂ϕ(u), is a subset of X∗ given by

∂ϕ(u) = {u∗ ∈ X∗ | ϕ0(u; v) ≥ 〈u∗, v〉X for all v ∈ X }.

Furthermore, a locally Lipschitz function ϕ : X → R is said to be regular (in the sense of Clarke) at u ∈ X,
if for all v ∈ X the directional derivative ϕ′(u; v) exists, and for all v ∈ X, we have ϕ′(u; v) = ϕ0(u; v).
The function is regular (in the sense of Clarke) on X if it is regular at every point in X.

Definition 4. A single-valued operator F : X → X∗ is said to be pseudomonotone, if it is bounded (sends
bounded sets into bounded sets) and satisfies the inequality

〈Fu, u − v〉 ≤ lim inf〈Fun, un − v〉X for all v ∈ X,

where un ⇀ u in X with lim sup〈Fun, un − u〉X ≤ 0.

The following result provides a useful characterization of a pseudomonotone operator.

Lemma 5. (see [12, Proposition 1.3.66]) Let X be a reflexive Banach space and F : X → X∗ be a single-
valued operator. The operator F is pseudomonotone if and only if F is bounded and satisfies the following
condition: if un ⇀ u in X and lim sup〈Fun, un−u〉X ≤ 0, then Fun ⇀ Fu in X∗ and lim〈Fun, un−u〉X =
0.

The following notion of the Mosco convergence of sets will be useful in the next sections. For the
definitions, properties and other modes of set convergence, we refer to [4, Chapter 4.7] and [14].

Definition 6. Let (X, ‖ · ‖) be a normed space and {Kρ}ρ>0 ⊂ 2X\{∅}. We say that Kρ converge to K in

the Mosco sense, ρ → 0, denoted by Kρ
M−→ K if and only if the two conditions hold

(m1) for each x ∈ K, there exists {xρ}ρ>0 such that xρ ∈ Kρ and xρ → x in X,

(m2) for each subsequence {xρ}ρ>0 such that xρ ∈ Kρ and xρ ⇀ x in X, we have x ∈ K.

For the following properties of the Mosco convergence, we refer to [14, p. 520].

Remark 7. Let Kρ
M−→ K. Then, K = ∅ implies Kρ = ∅ and the opposite is not true. Also, if Kρ is a

closed and convex set for all ρ > 0, then K is also closed and convex.

Finally, we recall a result on existence and uniqueness of solution to the following variational–
hemivariational inequality.

Problem 8. Find u ∈ K such that

〈Au − f, v − u〉X + ϕ(u, v) − ϕ(u, u) + j0(u; v − u) ≥ 0 for all v ∈ K, (3)

Problem 8 was studied in [13] where results on its unique solvability, continuous dependence on the
data and a penalty method were provided. We need the following hypotheses on the data of Problem 8.
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K is nonempty, closed and convex subset of X. (4)
f ∈ X∗. (5)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A : X → X∗ is an operator such that

(a) A is pseudomonotone.

(b) there exists mA > 0 such that

〈Au1 − Au2, u1 − u2〉X ≥ mA ‖u1 − u2‖2
X

for all u1, u2 ∈ X.

(c) there exist αA > 0, α1, α2 ∈ R, u0 ∈ K such that

〈Au, u − u0〉 ≥ αA‖u‖2
X − α1‖u‖X − α2

for all u ∈ X.

(6)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ : K × K → R is a function such that

(a) ϕ(u, ·) : K → R is convex and l.s.c. on K, for all u ∈ K.

(b) there exists αϕ > 0 such that

ϕ(u1, v2) − ϕ(u1, v1) + ϕ(u2, v1) − ϕ(u2, v2)

≤ αϕ ‖u1 − u2‖X‖v1 − v2‖X

for all u1, u2, v1, v2 ∈ K.

(7)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

j : X → R is a function such that

(a) j is locally Lipschitz.

(b) there exist c0, c1 ≥ 0 such that

‖∂j(u)‖X∗ ≤ c0 + c1‖u‖X for all u ∈ X.

(c) there exists αj ≥ 0 such that

j0(u1;u2 − u1) + j0(u2;u1 − u2) ≤ αj ‖u1 − u2‖2
X

for all u1, u2 ∈ X.

(8)

The following existence and uniqueness result was established in Theorem 18 of [13].

Theorem 9. Assume that (4)–(8) hold and the following smallness conditions are satisfied

αϕ + αj < mA and αj < αA. (9)

Then Problem 8 has a unique solution u ∈ K.

3. Convergence of solutions

In this section we study the dependence of the solution to Problem 8 with respect to the operator A,
functions f , ϕ and j, and the constraint set K.

Continuous dependence for Problem 8 has been investigated earlier in some particular cases. For
example, it was studied in Theorem 23 in [13], where A and K are independent of ρ > 0 and the
hypotheses on the behavior of ϕρ and jρ are different than ours. Furthermore, the dependence of solution
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to an elliptic variational inequality with respect to perturbations of the set Kρ was studied in [19] under
the hypotheses j ≡ 0, A, ϕ and f are independent of ρ, ϕ satisfies additional assumptions, and the
constraint sets Kρ satisfy the following hypothesis

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Kρ = c(ρ)K + d(ρ)θ is such that

(a) K is a nonempty, closed and convex subset of X.

(b) 0X ∈ Kρ and θ is a given element of X.

(c) c : (0,+∞) → R is such that c(ρ) → 1, as ρ → 0.

(d) d : (0,+∞) → R is such that d(ρ) → 0, as ρ → 0.

(10)

We make the following observation.

Remark 10. Note that if Kρ, for ρ > 0, is defined by (10), then Kρ
M−→ K, as ρ → 0. Indeed, for each

x ∈ K, we define xρ ∈ K by xρ = c(ρ)x + d(ρ)θ ∈ Kρ. From (10)(c) and (d), it follows that xρ → x in
X. Hence, the condition (m1) in Definition 6 holds. Moreover, for each subsequence {xρ}ρ>0 such that
xρ ∈ Kρ and xρ ⇀ x in X, there exists x′

ρ ∈ K such that xρ = c(ρ)x′
ρ + d(ρ)θ. Again, from (10)(c) and

(d), we infer that x′
ρ ⇀ x in X. Since K is closed and convex, it is weakly closed. Hence, x ∈ K which

implies that the condition (m2) in Definition 6 is satisfied.

Consider the following perturbed version of Problem 8.

Problem 11. Find uρ ∈ Kρ such that for all vρ ∈ Kρ, we have

〈Aρuρ − fρ, vρ − uρ〉X + ϕρ(uρ, vρ) − ϕρ(uρ, uρ) + j0
ρ(uρ; vρ − uρ) ≥ 0. (11)

We formulate the hypotheses needed for the continuous dependence result. Let ρ > 0.
⎧
⎪⎪⎨

⎪⎪⎩

K, Kρ are sets such that

(a) K, Kρ satisfy (4).

(b) Kρ
M−→ K, as ρ → 0.

(12)

⎧
⎪⎪⎨

⎪⎪⎩

f, fρ are functions such that

(a) f, fρ satisfy (5).

(b) fρ → f in X∗, as ρ → 0.

(13)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A, Aρ : X → X∗ are operators such that

(a) A,Aρ satisfy (6) with mA > 0, αA > 0, α1, α2 ∈ R, u0 ∈ K,

and mAρ
> 0, αAρ

> 0, α1ρ, α2ρ ∈ R, u0ρ ∈ Kρ, respectively.

(b) there exist cA > 0 and αρ > 0 with αρ → 0, as ρ → 0 such

that ‖Aρu − Av‖X∗ ≤ cA (αρ + ‖u − v‖X) for all u, v ∈ X

with ‖u‖X , ‖v‖X ≤ M, where M > 0 is independent of ρ.

(14)
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ : K × K → R, ϕρ : Kρ × Kρ → R are functions such that

(a) ϕ, ϕρ satisfy (7) with αϕ > 0 and αϕρ
> 0, respectively.

(b) for all uρ, vρ such that uρ, vρ ∈ Kρ for each ρ > 0 with

uρ ⇀ u in X and vρ → v in X, we have

lim sup (ϕρ(uρ, vρ) − ϕρ(uρ, uρ)) ≤ ϕ(u, v) − ϕ(u, u).

(c) there exists a nondecreasing function cϕ : R+ → R+ such

that for all u, v1, v2 ∈ Kρ, we have

ϕρ(u, v1) − ϕρ(u, v2) ≤ cϕ(‖u‖X)‖v1 − v2‖X .

(15)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

j, jρ : X → R are functions such that

(a) j, jρ satisfy (8) with αj ≥ 0, c0, c1 ≥ 0

and αjρ
≥ 0, c0ρ, c1ρ ≥ 0, respectively.

(b) for all uρ, vρ such that uρ, vρ ∈ Kρ for each ρ > 0 with

uρ ⇀ u in X and vρ → v in X,we have

lim sup j0
ρ(uρ; vρ − uρ) ≤ j0(u; v − u).

(16)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(a) there exist m0,m1,m2 > 0 such that for ρ > 0 sufficiently small

αϕρ
+ αjρ

≤ m0 < mAρ
and αϕρ

+ αjρ
≤ m1 < m2 ≤ αAρ

.

(b) there exists M0 > 0 such that for all ρ > 0 sufficiently small

max{α1ρ, α2ρ, c0ρ, c1ρ, ‖u0ρ‖} ≤ M0.

(17)

The following result ensures the existence, uniqueness and convergence of Problem 11.

Theorem 12. Assume that hypotheses (12)(a), (13)(a), (14)(a), (15)(a), (16)(a) and (17)(a) are satisfied.
Then,

(i) for each ρ > 0, Problem 11 has a unique solution uρ ∈ Kρ,

(ii) if, in addition, (9), (12)(b), (13)(b), (14)(b), (15)(b)(c), (16)(b), (17)(b) hold, then the sequence {uρ}
converges in X, as ρ → 0, to the solution u of Problem 8.

Proof. (i) The existence and uniqueness result for Problem 11 follows from Theorem 9.
(ii) Let ρ > 0 and uρ ∈ Kρ be the unique solution to Problem 11. First, we will show that there exists

a constant c > 0 independent of ρ such that for all ρ > 0 sufficiently small

‖uρ‖X ≤ c. (18)

From conditions (8) and (16)(a), we have

j0
ρ(uρ;u0ρ − uρ) = j0

ρ(uρ;u0ρ − uρ) + j0
ρ(u0ρ;uρ − u0ρ) − j0

ρ(u0ρ;uρ − u0ρ)

≤ αjρ
‖uρ − u0ρ‖2

X + |max{〈ζρ, uρ − u0ρ〉 | ζρ ∈ ∂jρ(u0ρ)}|

≤ αjρ
‖uρ − u0ρ‖2

X + (c0ρ + c1ρ‖u0ρ‖X)‖uρ − u0ρ‖X .
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Taking vρ = u0ρ ∈ Kρ in inequality (11), we obtain

αAρ
‖uρ‖2

X − α1ρ‖uρ‖X − α2ρ ≤ 〈Aρuρ, uρ − u0ρ〉X

≤ ϕρ(uρ, u0ρ) − ϕρ(uρ, uρ) + j0
ρ(uρ;u0ρ − uρ) + 〈fρ, uρ − u0ρ〉X

≤ (
ϕρ(uρ, u0ρ) − ϕρ(uρ, uρ) + ϕρ(u0ρ, uρ) − ϕρ(u0ρ, u0ρ)

)

+
(
ϕρ(u0ρ, u0ρ) − ϕρ(u0ρ, uρ)

)
+ j0

ρ(uρ;u0ρ − uρ) + 〈fρ, uρ − u0ρ〉X

≤ αϕρ
‖uρ − u0ρ‖2

X + αjρ
‖uρ − u0ρ‖2

X

+ (cϕ(‖u0ρ‖X) + c0ρ + c1ρ‖u0ρ‖X + ‖fρ‖X∗)‖uρ − u0ρ‖X .

Therefore, we have

(αAρ
− αϕρ

− αjρ
)‖uρ‖2

X

≤
(
(2αϕρ

+ 2αjρ
+ c1ρ)‖u0ρ‖X + cϕ(‖u0ρ‖X) + α1ρ + c0ρ + ‖fρ‖X∗

)
‖uρ‖X

+ (αϕρ
+ αjρ

+ c1ρ)‖u0ρ‖2
X + (cϕ(‖u0ρ‖X) + c0ρ + ‖fρ‖X∗)‖u0ρ‖X + α2ρ.

Hence, by hypothesis (17), we can find a constant c > 0 independent of ρ such that, for all ρ > 0
sufficiently small, condition (18) holds.

Exploiting (18) and the reflexivity of X, by passing to a subsequence if necessary, we may suppose
that the sequence {uρ}, uρ ∈ Kρ for each ρ > 0, converges weakly to some u ∈ X, as ρ → 0. By the
condition (m2) of Definition 6, we deduce that u ∈ K.

We will show that u ∈ K is a solution of Problem 8. From (m1) in Definition 6, we can find a sequence
{u′

ρ} such that u′
ρ ∈ Kρ and u′

ρ → u in X. Taking vρ = u′
ρ in (11) we have

〈Aρuρ − fρ, u
′
ρ − uρ〉 + ϕρ(uρ, u

′
ρ) − ϕρ(uρ, uρ) + j0

ρ(uρ;u′
ρ − uρ) ≥ 0.

Then, from (13)(b), (14)(b), (15)(b) and (16)(b), using the fact that Aρ is a bounded operator, we have

lim sup 〈Auρ, uρ − u〉
≤ lim sup 〈Auρ − Aρuρ, uρ − u〉 + lim sup 〈Aρuρ, uρ − u〉
≤ lim sup cA αρ ‖uρ − u‖ + lim sup 〈Aρuρ, uρ − u〉
≤ lim sup 〈Aρuρ, uρ − u′

ρ〉 + lim sup 〈Aρuρ, u
′
ρ − u〉

≤ lim sup
(〈fρ, uρ − u′

ρ〉 + ϕρ(uρ, u
′
ρ) − ϕρ(uρ, uρ) + j0

ρ(uρ;u′
ρ − uρ)

) ≤ 0.

Since A is pseudomonotone, by Lemma 5, we infer

Auρ ⇀ Au in X∗ (19)

lim〈Auρ, uρ − u〉 = 0. (20)

Let w ∈ K. From hypothesis (12) and (m1) in Definition 6, we find a sequence {wρ} such that wρ ∈ Kρ

for each ρ > 0 and wρ → w in X, as ρ → 0. We set vρ = wρ in inequality (11), and obtain

〈Aρuρ − fρ, wρ − uρ〉 + ϕρ(uρ, wρ) − ϕρ(uρ, uρ) + j0
ρ(uρ;wρ − uρ) ≥ 0.

Since uρ ⇀ u in X, wρ → w in X, from (19) and (20), we have

lim〈Auρ, uρ − wρ〉 = lim〈Auρ, uρ − u〉 + lim〈Auρ, u − wρ〉 = 〈Au, u − w〉.
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Using the latter, from (13)(b), (14)(b), (15)(b) and (16)(b) again, we deduce that

〈Au, u − w〉 = lim sup 〈Auρ, uρ − wρ〉
≤ lim sup 〈Auρ − Aρuρ, uρ − wρ〉 + lim sup 〈Aρuρ, uρ − wρ〉
≤ lim sup cA αρ ‖uρ − wρ‖ + lim sup 〈Aρuρ, uρ − wρ〉
≤ lim sup

(〈fρ, uρ − wρ〉 + ϕρ(uρ, wρ) − ϕρ(uρ, uρ) + j0
ρ(uρ;wρ − uρ)

)

≤ 〈f, u − w〉 + ϕ(u,w) − ϕ(u, u) + j0(u;w − u).

Since w ∈ K is arbitrary, we have shown that

〈Au − f, w − u〉 + ϕ(u,w) − ϕ(u, u) + j0(u;w − u) ≥ 0 for all w ∈ K,

which implies that u ∈ K solves Problem 8. Since every subsequence of {uρ} converges weakly to the
same limit (u ∈ K is the unique solution to Problem 8), the whole sequence {uρ} converges weakly to
u ∈ K.

Finally, we show the strong convergence uρ → u in X, as ρ → 0. Since Kρ
M−→ K, as ρ → 0, by

condition (m1) of Definition 6, we can find a sequence {ũρ} such that ũρ ∈ Kρ for each ρ > 0 and ũρ → u,
as ρ → 0. Choosing vρ = ũρ in (11), we have

mAρ
‖uρ − ũρ‖2

X ≤ 〈Aρuρ − Aρũρ, uρ − ũρ〉X

= 〈Aρuρ, uρ − ũρ〉X + 〈Aρũρ, ũρ − uρ〉X

≤ ϕρ(uρ, ũρ) − ϕρ(uρ, uρ) + j0
ρ(uρ; ũρ − uρ) + 〈fρ − Aρũρ, uρ − ũρ〉X .

It follows from (14)(b) that

lim sup〈−Aρũρ, uρ − ũρ〉X

= lim sup〈Au − Aρũρ, uρ − ũρ〉X + lim sup〈−Au, uρ − ũρ〉X

≤ lim sup cA (αρ + ‖ũρ − u‖)‖uρ − ũρ‖ + lim sup〈−Au, uρ − ũρ〉X

= 0.

Passing to the upper limit, as ρ → 0, and exploiting (13)(b), (15)(b) and (16)(b), we deduce that
lim sup ‖uρ − ũρ‖2

X ≤ 0. Hence, we obtain ‖uρ − ũρ‖X → 0. Finally, we have

0 ≤ lim ‖uρ − u‖X ≤ lim ‖uρ − ũρ‖X + lim ‖ũρ − u‖X = 0,

which implies that uρ → u in X, as ρ → 0. This completes the proof.

We now consider the following time-dependent variational–hemivariational inequality.

Problem 13. Find a function u : R+ → X such that, for all t ∈ R+, u(t) ∈ K and

〈Au(t) − f(t), v − u(t)〉X + ϕ(u(t), v) − ϕ(u(t), u(t))

+ j0(u(t); v − u(t)) ≥ 0 for all v ∈ K. (21)

We have the following existence and uniqueness result.

Theorem 14. Assume that the hypotheses of Theorem 9 hold and f ∈ C(R+;X∗). Then, Problem 13 has
a unique solution u ∈ C(R+;K).

Proof. We apply Theorem 9 for any t ∈ R+. We deduce that Problem 13 has a unique solution u(t) ∈ K.
The fact u ∈ C(R+;K) can be proved from the proof of Theorem 5 in [21].
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The perturbed problem corresponding to Problem 13 reads as follows.

Problem 15. Find a function uρ : R+ → X such that, for all t ∈ R+, uρ(t) ∈ Kρ and

〈Aρuρ(t) − fρ(t), vρ − uρ(t)〉X + ϕρ(uρ(t), vρ) − ϕρ(uρ(t), uρ(t))

+j0
ρ(uρ(t); vρ − uρ(t)) ≥ 0 for all vρ ∈ Kρ. (22)

The following result concerns the pointwise convergence of solutions to Problem 15.

Theorem 16. Assume that the hypotheses of Theorem 12 are satisfied. Suppose that for all ρ > 0, fρ ∈
C(R+;X∗) and fρ(t) → f(t) in X∗ for all t ∈ R+, as ρ → 0. Then,

(i) for each ρ > 0, Problem 15 has the unique solution uρ ∈ C(R+;Kρ);

(ii) for each t ∈ R+, there is a subsequence {uρ} such that uρ(t) → u(t) in X, as ρ → 0, where u ∈
C(R+;K) is the unique solution to Problem 13.

Proof. By applying Theorems 12 and 14, we know that Problem 15 has a unique solution uρ ∈ C(R+;Kρ)
for all ρ > 0. Moreover, for each t ∈ R+, there is a subsequence {uρ} such that uρ(t) → u(t) in X, as
ρ → 0, where u ∈ C(R+;K) is the unique solution to Problem 13.

Finally, we conjecture that under additional hypotheses the convergence result of Theorem 16(ii) can
be strengthen to the uniform convergence of uρ → u in C(R+;X), as ρ → 0, which will be studied in the
future. We note that a convergence result for Problem 15 with j ≡ 0, A, f and ϕ independent of ρ, and
Kρ of the form (10) was provided in [1] under assumption that A is Lipschitz continuous and ϕ depends
on a history-dependent operator.

4. Semipermeability problem

In this section we consider a semipermeability problem to which our main results of Sect. 3 can be applied.
First, we state the classical formulation of the problem, then we provide its variational formulation, and
finally we obtain results on its weak solvability and convergence of solutions.

The motivation comes from semipermeability problems studied in [5, Chapter I] for monotone relations,
and in [15, Chapter 5.5.3] and [16] for nonmonotone relations which lead to variational and hemivari-
ational inequalities, respectively. We consider the stationary heat conduction problem with constraints
and both the interior and the boundary semipermeability relations. Nevertheless, similar problems can
be formulated in electrostatics and in flow problems through porous media, where the semipermeability
relations are realized by natural and artificial membranes of various types, see [5,11,15–17]. We will ana-
lyze a very general situation which leads to a variational–hemivariational inequality problem and provide
examples which satisfy our hypotheses.

Let Ω be a bounded domain of Rd with Lipschitz continuous boundary ∂Ω = Γ which consists of two
disjoint measurable parts Γ1 and Γ2 such that m(Γ1) > 0. The classical model for the heat conduction
problem is described by the following boundary value problem.

Problem 17. Find a temperature u : Ω × R+ → R such that

− diva(x,∇u) = f̃(t, u) in Ω × R+, (23)

f̃(t, u) = f1(t) + f2(u), −f2(u) ∈ ∂h(x, u) in Ω × R+, (24)

u(t) ∈ U for t ∈ R+, (25)

u = 0 on Γ1 × R+, (26)

− ∂u

∂νa
∈ k(u)∂gc(x, u) on Γ2 × R+. (27)
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Now, we describe the problem (23)–(27). Equation (23) is the stationary heat equation related to the
nonlinear operator in divergence form, with the time-dependent heat source f̃ = f̃(t, u) where time plays
a role of a parameter. The function f̃ in (24) admits an additive decomposition on f1 = f1(t) which is
prescribed and independent of the temperature u, and f2 = f2(u) which is a multivalued function of u in
the Clarke subgradient term. Here h = h(x, r) is a function which is assumed to be locally Lipschitz in the
second argument. Condition (25) introduces an additional constraint for the temperature (or the pressure
of the fluid). The temperature u is constrained to belong to a convex, closed set U . For example, the
set U can represent a bilateral obstacle which means that we look for the temperature within prescribed
bounds in the domain Ω, see Example 24. The homogeneous (for simplicity) Dirichlet boundary condition
is supposed in (26). In the boundary condition (27) the expression ∂u

∂νa
= a(x,∇u) ·ν represents the heat

flux through the part Γ2, where ν denotes the outward unit normal on Γ. Here, g = g(x, r) is a prescribed
function, convex in its second argument, ∂cg stands for its convex subdifferential, and a given function
k is positive. Note that in (27) we deal with the nonlinearity which is determined by a law of the form
k∂cg. In such a case we cannot deal with a variational inequality since there is not, in general, a function
g1 with ∂cg1 = k∂cg.

We introduce the following spaces

V = { v ∈ H1(Ω) | v = 0 on Γ1 }, H = L2(Ω). (28)

Since m(Γ1) > 0, on V we can consider the norm ‖v‖V = ‖∇v‖L2(Ω)d for v ∈ V which is equivalent on V

to the H1(Ω) norm. By γ : V → L2(Γ) we denote the trace operator which is known to be linear, bounded
and compact. Moreover, by γv we denote the trace of an element v ∈ H1(Ω).

In order to study the variational formulation of Problem 17, we need the following hypotheses.
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a : Ω × R
d → R

d is such that

(a) a(·, ξ) is measurable on Ω for all ξ ∈ R
d,

and a(x, 0) = 0 for a.e. x ∈ Ω.

(b) a(x, ·) is continuous on R
d for a.e. x ∈ Ω.

(c) ‖a(x, ξ)‖ ≤ ma (1 + ‖ξ‖) for all ξ ∈ R
d, a.e. x ∈ Ω

with ma > 0.

(d) (a(x, ξ1) − a(x, ξ2)) · (ξ1 − ξ2) ≥ αa ‖ξ1 − ξ2‖2

for all ξ1, ξ2 ∈ R
d, a.e. x ∈ Ω with αa > 0.

(29)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h : Ω × R → R is such that

(a) h(·, r) is measurable on Ω for all r ∈ R and there

exists e ∈ L2(Ω) such that h(·, e(·)) ∈ L1(Ω).

(b) h(x, ·) is locally Lipschitz on R, a.e. x ∈ Ω.

(c) there exist c0, c1 ≥ 0 such that

|∂h(x, r)| ≤ c0 + c1|r| for all r ∈ R, a.e. x ∈ Ω.

(d) there exists αh ≥ 0 such that

h0(x, r1; r2 − r1) + h0(x, r2; r1 − r2) ≤ αh|r1 − r2|2
for all r1, r2 ∈ R, a.e. x ∈ Ω.

(30)
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g : Γ2 × R → R is such that

(a) g(·, r) is measurable on Γ2 for all r ∈ R.

(b) g(x, ·) is convex on Γ2, a.e. x ∈ Ω.

(c) there exists Lg > 0 such that

|g(x, r1) − g(x, r2)| ≤ Lg|r1 − r2|
for all r1, r2 ∈ R, a.e. x ∈ Γ2.

(31)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k : Γ2 × R → R+ is such that

(a) k(·, r) is measurable on Γ2 for all r ∈ R.

(b) there exists Lk > 0 such that

|k(x, r1) − k(x, r2)| ≤ Lk|r1 − r2|
for all r1, r2 ∈ R, a.e. x ∈ Γ2.

(c) k(x, 0) = 0 for a.e. x ∈ Ω.

(32)

U is a closed, convex subset of V, f1 ∈ C(R+;H). (33)

Below we provide examples of functions a and h.

Example 18. We provide an example of a function a : Ω × R
d → R

d which satisfies hypothesis (29). Let
a(x, ξ) = φ(x)ψ(‖ξ‖2)ξ for all ξ ∈ R

d, a.e. x ∈ Ω, where

{
φ : Ω → R is measurable and there are constants d1, d2 > 0
such that for a.e. x ∈ Ω, we have d1 ≤ φ(x) ≤ d2

(34)

and
⎧
⎨

⎩

ψ : R+ → R is piecewise continuously differentiable,
and there are constants d3, d4, d5 > 0 such that for
all r ≥ 0, we have |ψ(r)| ≤ d3, d4 ≤ ψ(r) + 2ψ′(r)r ≤ d5.

(35)

It is evident that (29)(a), (b) and (c) hold with ma = d2d3. We will verify the strong monotonicity
condition (29)(d). Let ξ1, ξ2 ∈ R

d and x ∈ Ω. For t ∈ [0, 1], we put ξ(t) = ξ2 + t(ξ1 − ξ2). We have

a(x, ξ1) − a(x, ξ2) = φ(x)ψ(‖ξ1‖2)ξ1 − φ(x)ψ(‖ξ2‖2)ξ2

= φ(x)

1∫

0

d
dt

(ψ(‖ξ(t)‖2)ξ(t)) dt

= φ(x)

1∫

0

(2ψ′(‖ξ(t)‖2)‖ξ(t)‖‖ξ1 − ξ2‖ξ(t) + ψ(‖ξ(t)‖2)(ξ1 − ξ2)) dt.
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Then

(a(x, ξ1) − a(x, ξ2)) · (ξ1 − ξ2)

= φ(x)

1∫

0

(
2ψ′(‖ξ(t)‖2)‖ξ(t)‖‖ξ1 − ξ2‖ ξ(t) · (ξ1 − ξ2)

+ψ(‖ξ(t)‖2)(ξ1 − ξ2) · (ξ1 − ξ2)
)
dt

= φ(x)

1∫

0

(
2ψ′(‖ξ(t)‖2)‖ξ(t)‖2 + ψ(‖ξ(t)‖2)

)‖ξ1 − ξ2‖2 dt

≥ d1d4‖ξ1 − ξ2‖2.

Hence, condition (29)(d) follows with αa = d1d4. We also observe that if ψ ≡ 1, then a(x, ξ) = φ(x)ξ for
all ξ ∈ R

d, a.e. x ∈ Ω which leads to the linear operator A in the divergence form.

Example 19. Consider the following example. Let h : R → R be defined by

h(r) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if r < 0,
r2

2 if r ∈ [0, 1),
− r2

2 + 3r − 3
2 if r ∈ [1, 3),

r2

2 − 3r + 15
2 if r ≥ 3.

Then, its subdifferential is given by

∂h(r) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 if r < 0,
r if r ∈ [0, 1),
[1, 2] if r = 1,

−r + 3 if r ∈ [1, 3),
r − 3 if r ≥ 3.

It can be proved that the function h satisfies condition (30) with c0 = 2, c1 = 1 and αh = 3. For more
examples of functions which satisfy this condition, we refer to Examples 16 and 17 in [13].

We turn to the variational formulation of Problem 17. Let v ∈ U and t ∈ R+. We multiply (23) by
v − u, use Green’s formula, decompose the surface integral on two parts on Γ1 and Γ2 and take into
account that v − u = 0 on Γ1.

∫

Ω

a(x,∇u) · ∇(v − u) dx −
∫

Γ2

(
∂u

∂νa
)(v − u) dΓ

=
∫

Ω

f1(t)(v − u) dx +
∫

Ω

f2(u)(v − u) dx. (36)

From (23), (24) and definitions of subgradients, we have

−f2(u) r ≤ h0(x, u; r) in Ω,

− ∂u

∂νa
(r − u) ≤ k(u)(g(x, r) − g(x, u)) on Γ2

for all r ∈ R. Using these inequalities in (36), we obtain the following variational–hemivariational in-
equality.
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Problem 20. Find u : R+ → U such that for all t ∈ R+
∫

Ω

a(x,∇u(t)) · ∇(v − u(t)) dx +
∫

Γ2

(
k(u(t))g(x, v) − k(u(t))g(x, u(t))

)
dΓ

+
∫

Ω

h0(x, u(t); v − u(t)) dx ≥
∫

Ω

f1(t)(v − u(t)) dx

for all v ∈ U .

The following result concerns the well posedness of Problem 20.

Theorem 21. Assume that (29)–(33) hold and the following smallness condition is satisfied

LkLg‖γ‖2 + αh < αa. (37)

Then, Problem 20 has a unique solution u ∈ C(R+;U).

Proof. We apply Theorem 14 in the following functional framework: X = V , K = U , f(t) = f1(t) for all
t ∈ R+ and

A : V → V ∗, 〈Au, v〉V =
∫

Ω

a(x,∇u) · ∇v dx for u, v ∈ V, (38)

ϕ : V × V → R, ϕ(u, v) =
∫

Γ2

k(u)g(v) dΓ for u, v ∈ V, (39)

j : V → R, j(v) =
∫

Ω

h(v) dx for v ∈ V. (40)

With this notation, we can see that Problem 20 is equivalent to Problem 13. We now check the
hypotheses of Theorem 14.

First, since V is a closed linear subspace of the Sobolev space H1(Ω), containing H1
0 (Ω), it is straight-

forward to prove that under hypotheses (29), the operator A is bounded and pseudomonotone, for details
see, e.g., [18, Theorem 4.6] or [24, Proposition 26.12]. It is clear that condition (29)(d) implies that opera-
tor A is strongly monotone with constant mA = αa. Using the strong monotonicity condition, for u0 ∈ K
and u ∈ V , we have

〈Au, u − u0〉 = 〈Au − Au0, u − u0〉 + 〈Au0, u − u0〉
≥ mA‖u − u0‖2

X − ‖Au0‖X∗‖u − u0‖X .

From the following elementary inequalities
∣
∣‖u‖X − ‖u0‖X

∣
∣ ≤ ‖u − u0‖X ,

‖Au0‖X∗‖u − u0‖X ≤ ‖Au0‖X∗‖u‖X + ‖Au0‖X∗‖u0‖X ,

we obtain

〈Au, u − u0〉 ≥ mA(‖u‖X − ‖u0‖X)2 − ‖Au0‖X∗‖u‖X − ‖Au0‖X∗‖u0‖X

= mA‖u‖2
X − (2mA‖u0‖X + ‖Au0‖X∗)‖u‖X + mA‖u0‖2

X − ‖Au0‖X∗‖u0‖X ,

which proves condition (6)(c) with αA = mA and α1, α2 ∈ R.
Next, hypothesis (8) is a consequence of (30), which holds with αj = αh, c0 = c0 and c1 = c1.
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Next, we will verify (7). Condition (31) implies (7)(a). To prove (7)(b), let u, v ∈ V . We have

ϕ(u1, v2) − ϕ(u1, v1) + ϕ(u2, v1) − ϕ(u2, v2)

=
∫

Γ2

(k(u1) − k(u2))(g(v1) − g(v2)) dΓ

≤
∫

Γ2

Lk|u1(x) − u2(x)|Lg|v1(x) − v2(x)|ds

≤ LkLg‖γ‖2‖u1 − u2‖V ‖v1 − v2‖V .

Hence, it follows that (7)(b) is satisfied with αϕ = LkLg‖γ‖2. The smallness conditions (9) are a conse-
quence of assumption (37).

Therefore, we deduce that all hypotheses of Theorem 14 are satisfied. By applying Theorem 14, we
conclude that Problem 20 has a unique solution u ∈ C(R+;U).

We now turn to the dependence of solution to Problem 20 on the perturbation of the mapping a,
functions k, g, h and f1, and the set U . We consider the following perturbation of Problem 20.

Problem 22. Find uρ : R+ → Uρ such that for all t ∈ R+

∫

Ω

aρ(x,∇uρ(t)) · ∇(vρ − uρ(t)) dx +
∫

Γ2

(kρ(uρ(t))gρ(x, vρ) − kρ(uρ(t))gρ(x, uρ(t))) dΓ

+
∫

Ω

h0
ρ(x, uρ(t); vρ − uρ(t)) dx ≥

∫

Ω

f1ρ(t)(vρ − uρ(t)) dx

for all vρ ∈ Uρ.

For the data of Problem 22, we introduce the following hypotheses.

U, Uρ are closed convex sets in V, and Uρ
M−→ U, as ρ → 0. (41)

f1, f1ρ ∈ C(R+;H) and f1ρ(t) → f1(t) in H for all t ∈ R+, as ρ → 0. (42)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a, aρ : Ω × R
d → R

d are functions such that

(a) a, aρ satisfy (29) with constants ma, αa > 0,

and maρ
, αaρ

> 0, respectively.

(b) there exist ca > 0 and βρ > 0 with βρ → 0, as ρ → 0 such that

‖aρ(x, ξ) − a(x,η)‖ ≤ ca(βρ + ‖ξ − η‖) for all ξ,η ∈ R
d with

‖ξ‖, ‖η‖ ≤ M1, a.e. x ∈ Ω, where M1 is independent of ρ.

(43)
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h, hρ : Ω × R → R are functions such that

(a) h, hρ satisfy (30) with αh > 0, c0, c1 ≥ 0

and αhρ
> 0, c0ρ, c1ρ ≥ 0, respectively.

(b) for all {rρ}, {sρ} ⊂ R with rρ → r and sρ → s, we have

lim sup h0
ρ(x, rρ; sρ) ≤ h0(x, r; s), a.e. x ∈ Ω.

(c) either h(x, ·) or − h(x, ·) is regular in the sense of Clarke

for a.e. x ∈ Ω.

(44)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

g, gρ : Γ2 × R → R are functions such that

(a) g, gρ satisfy (31) with Lg > 0 and Lgρ
> 0, respectively.

(b) for all {rρ}, {sρ} ⊂ R with rρ → r and sρ → s, we have

lim (gρ(x, rρ) − gρ(x, sρ)) = g(x, r) − g(x, s), a.e. x ∈ Γ2.

(45)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

k, kρ : Γ2 × R → R are functions such that

(a) k, kρ satisfy (32) with Lk > 0 and Lkρ
> 0, respectively.

(b) for all {rρ} ⊂ R with rρ → r ∈ R,

we have lim kρ(x, rρ) = k(x, r), a.e. x ∈ Γ2.

(46)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(a) there exist m0,m1 > 0 such that for all ρ > 0 sufficiently

small, we have LkLg‖γ‖2 + αh ≤ m0 < m1 ≤ ma.

(b) there exists M1 > 0 such that for all ρ > 0 sufficiently

small, we have max{Lkρ
, Lgρ

, c0ρ, c1ρ} ≤ M1.

(47)

We have the following convergence result for Problem 22.

Theorem 23. Assume that (37), (41), (42), (43), (44), (45), (46) and (47) are satisfied. Then for each
ρ > 0, Problem 22 has a unique solution uρ ∈ C(R+;Uρ) and for each t ∈ R+, there is a subsequence of
{uρ}, denoted by {uρ} again, such that uρ(t) → u(t) in V , as ρ → 0, where u ∈ C(R+;U) is the unique
solution to Problem 20.

Proof. First, we note that, by Theorem 21, for every ρ > 0, Problem 22 has a unique solution uρ ∈
C(R+;Uρ). Then, we shall apply Theorem 16 in the following framework: X = V , Kρ = Uρ, fρ(t) = f1ρ(t)
for all t ∈ R+ and

Aρ : V → V ∗, 〈Aρu, v〉 =
∫

Ω

aρ(x,∇u(x)) · ∇v(x) dx for u, v ∈ V, (48)

ϕρ : V × V → R, ϕρ(u, v) =
∫

Γ2

kρ(u(x))gρ(v(x)) dΓ for u, v ∈ V, (49)

jρ : V → R, jρ(v) =
∫

Ω

hρ(v(x)) dx for v ∈ V. (50)
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We now check the hypotheses of Theorem 16. It is clear that (13), (14)(a), (16)(a) and (17) follow from
(41), (43), (44)(a) and (47), respectively.

We now show that (14)(b) and (16)(b) are satisfied. For all u, v, w ∈ V , from hypothesis (43)(b), we
have

〈Aρu − Av,w〉 =
∫

Ω

(aρ(x,∇u(x)) − a(x,∇v(x))) · ∇w(x) dx

≤ ca

∫

Ω

(βρ + ‖∇u(x) − ∇v(x)‖)‖∇w(x)‖dx

≤ ca(
√

2βρ|Ω| + ‖u − v‖V )‖w‖V .

Then

‖Aρu − Av‖V ∗ ≤ ca(
√

2m(Ω)βρ + ‖u − v‖V ).

Hence, we deduce that (14)(b) holds.

Next, we prove condition (16)(b). Let {uρ}, {vρ} be such that uρ, vρ ∈ Uρ for each ρ > 0 with uρ ⇀ u
in V and vρ → v in V . Since the embedding V ⊂ H is compact, we get the strong convergences uρ → u
in H and vρ → v in H. Then, by passing to a subsequence, if necessary, we have uρ(x) → u(x) and
vρ(x) → v(x) for a.e. x ∈ Ω. On the other hand, we recall that for jρ and j, by [12, Theorem 3.47], we
have the following inequality

j0(v;w) ≤
∫

Ω

h0(x, v(x);w(x)) dx for all v, w ∈ V (51)

and if, in addition, (44)(c) is assumed, then (51) holds with equality. From (44)(b) and (51), by Fatou’s
lemma, we have

lim sup j0
ρ(uρ; vρ − uρ) ≤ lim sup

∫

Ω

h0
ρ(uρ(x); vρ(x) − uρ(x)) dx

≤
∫

Ω

lim sup h0
ρ(uρ(x); vρ(x) − uρ(x)) dx ≤

∫

Ω

h0(u(x); v(x) − u(x)) dx

= j0(u; v − u).

Hence, condition (16)(b) is verified.

Next, we verify (15). Condition (15)(a) is obvious. Assume that {uρ}, {vρ} are such that uρ, vρ ∈ Uρ

for each ρ > 0 with uρ ⇀ u in V and vρ → v in V . From the compactness of the trace operator, it
follows that γuρ → γu in L2(Γ) and γvρ → γv in L2(Γ). Then, at least for a subsequence, we have
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γuρ(x) → γu(x) and γvρ(x) → γv(x). Using (45)(b) and (46)(b), by Fatou’s lemma, we have

lim sup(ϕρ(uρ, vρ) − ϕρ(uρ, uρ))

= lim sup
∫

Γ2

kρ(γuρ(x))(gρ(γvρ(x)) − g(γuρ(x))) dΓ

≤
∫

Γ2

lim sup kρ(γuρ(x))(gρ(γvρ(x)) − gρ(γuρ(x))) dΓ

=
∫

Γ2

k(γu(x))(g(γv(x)) − g(γu(x))) dΓ

= ϕ(u, v) − ϕ(u, u).

Hence, condition (15)(b) holds.
Finally, we will prove that (15)(c) is satisfied. In fact, from (45)(a) and (46)(a), for all u, v1, v2 ∈ Uρ,

we have

ϕρ(u, v1) − ϕρ(u, v2)

=
∫

Γ2

kρ(γu(x))(gρ(γv1(x)) − gρ(γv2(x))) dΓ

=
∫

Γ2

(kρ(γu(x)) − kρ(0) + kρ(0))(gρ(γv1(x)) − gρ(γv2(x))) dΓ

≤
∫

Γ2

Lkρ
|γu(x)|Lgρ

|γv1(x) − γv2(x)|ds

≤ Lkρ
Lgρ

‖γ‖2‖u‖V ‖v1 − v2‖V

≤ M2
1 ‖γ‖2‖u‖V ‖v1 − v2‖V .

Hence, it follows that condition (15)(c) holds with the function cϕ(r) = M2
1 ‖γ‖2 r for r ∈ R+. From

Theorem 16, we deduce that uρ(t) → u(t) in V for all t ∈ R+, as ρ → 0. This completes the proof.

We conclude this section with the following examples.

Example 24. Hypothesis (41) is satisfied for the following constraint sets for a bilateral obstacle problem.

U = U(ψ1, ψ2) = { v ∈ V | ψ1 ≤ v ≤ ψ2 a.e. in Ω },

Uρ = U(ψ1ρ, ψ2ρ) = { v ∈ V | ψ1ρ ≤ v ≤ ψ2ρ a.e. in Ω },

where ψ1, ψ1ρ, ψ2, ψ2ρ ∈ V ∩ H2(Ω). It is clear that U and Uρ are closed convex subsets of V . We will
show that if (ψ1ρ, ψ2ρ) ⇀ (ψ1, ψ2) in (V ∩ H2(Ω)) × (V ∩ H2(Ω)), as ρ → 0, then

Uρ
M−→ U, as ρ → 0. (52)

In fact, let vρ ∈ Uρ be such that vρ ⇀ v in V , as ρ → 0. Since

Uρ = { z ∈ V | z ≥ ψ1ρ a.e. in Ω } ∩ { z ∈ V | z ≤ ψ2ρ a.e. in Ω },

we obtain vρ − ψ1ρ ∈ { z ∈ V | z ≥ 0 a.e. in Ω } and vρ − ψ2ρ ∈ { z ∈ V | z ≤ 0 a.e. in Ω }. Moreover,
since the sets { z ∈ V | z ≥ 0 a.e. in Ω } and { z ∈ V | z ≤ 0 a.e. in Ω } are weakly closed by Mazur’s



87 Page 18 of 20 B. Zeng, Z. Liu and S. Migórski ZAMP

theorem, we deduce that v − ψ1 ∈ { z ∈ V | z ≥ 0 a.e. in Ω } and v − ψ2 ∈ { z ∈ V | z ≤ 0 a.e. in Ω },
and hence, v ∈ U .

On the other hand, for any v ∈ U , there exist v1 ∈ { z ∈ V | z ≥ 0 a.e. in Ω } and v2 ∈ { z ∈ V | z ≤
0 a.e. in Ω } such that v = v1 + ψ1 = v2 + ψ2.

Using the compactness embedding theorem, it is clear that (ψ1ρ, ψ2ρ) → (ψ1, ψ2) in V × V . Put
vρ = v1 + ψ1ρ. Then, for ρ small enough, we get vρ ∈ Uρ. Hence, vρ = v1 + ψ1ρ → v1 + ψ1 = v2 + ψ2 = v
in V . Therefore, the convergence (52) holds.

Example 25. (i) Let a, aρ : Ω × R
d → R

d be functions defined by

a(x, ξ) = φ(x)ψ(‖ξ‖2)ξ, aρ(x, ξ) = φρ(x)ψ(‖ξ‖2)ξ

for all ξ ∈ R
d, a.e. x ∈ Ω with ρ > 0. Assume that φ and φρ satisfy condition (34) with constants d1,

d2 > 0 uniformly with respect to ρ, ψ satisfies condition (35) and the following condition is satisfied

{
there exist w ∈ L∞(Ω) and β̃ρ > 0 with β̃ρ → 0, as ρ → 0

such that |φρ(x) − φ(x)| ≤ β̃ρ w(x) for a.e. x ∈ Ω.
(53)

From Example 18 it is clear that (43)(a) is satisfied. We show that condition (43)(b) holds. To this end,
let M1 > 0, ξ, η ∈ R

d with ‖ξ‖ ≤ M1 and ‖η‖ ≤ M1, and t ∈ [0, 1]. We put ζ(t) = ξ + t(ξ − η). Then,
for a.e. x ∈ Ω, we have

‖aρ(x, ξ) − a(x,η)‖ = ‖φρ(x)ψ(‖ξ‖2)ξ − φ(x)ψ(‖η‖2)η‖
≤ ‖φρ(x)ψ(‖ξ‖2)ξ − φ(x)ψ(‖ξ‖2)ξ‖ + ‖φ(x)ψ(‖ξ‖2)ξ − φ(x)ψ(‖η‖2)η‖

≤ |φρ(x) − φ(x)||ψ(‖ξ‖2)|‖ξ‖ + |φ(x)|‖
1∫

0

d
dt

(ψ(‖ζ(t)‖2)ζ(t)) dt‖

= |φρ(x) − φ(x)||ψ(‖ξ‖2)|‖ξ‖

+ |φ(x)|‖
1∫

0

(2ψ′(‖ζ(t)‖2)(ζ(t) · (ξ − η))ζ(t) + ψ(‖ζ(t)‖2)(ξ − η)) dt‖

≤ |φρ(x) − φ(x)||ψ(‖ξ‖2)|‖ξ‖

+ |φ(x)|
1∫

0

(2ψ′(‖ζ(t)‖2)‖ζ(t)‖2 + ψ(‖ζ(t)‖2))‖ξ − η‖dt

≤ d3M1|φρ(x) − φ(x)| + d2d5‖ξ − η‖.

Here we have used the conditions d1 ≤ φ(x) ≤ d2 for a.e. x ∈ Ω and |ψ(r)| ≤ d3, d4 ≤ ψ(r)+2ψ′(r)r ≤ d5

for all r ≥ 0. From hypothesis (53), for a.e. x ∈ Ω, we deduce

‖aρ(x, ξ) − a(x,η)‖ ≤ ca (β̃ρ + ‖ξ − η‖)

for a.e. x ∈ Ω with ca > 0. Therefore, the condition (43)(b) is satisfied.
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(ii) Let h, hρ : Ω × R → R be functions defined by

h(x, r) = α(x)h(r), hρ(x, r) = αρ(x)h(r)

for all r ∈ R, a.e. x ∈ Ω. Suppose that the function h : R → R is such that h is locally Lipschitz,
|∂h(r)| ≤ c0h + c1h|r| for all r ∈ R with c0h, c1h ≥ 0, h(r1; r2 − r1) + h(r2; r1 − r2) ≤ α0h|r1 − r2|2 for all
r1, r2 ∈ R with α0h ≥ 0, and either h of −h is regular in the sense of Clarke. Moreover, let

0 < α0 ≤ α(x), αρ(x) ≤ α1 for a.e. x ∈ Ω.

If αρ(x) → α(x) for a.e. x ∈ Ω, as ρ → 0, then condition (44) is satisfied.

Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medi-
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Birkhäuser, Basel (1985)
[18] Simon, L.: Application of Monotone Type Operators to Nonlinear PDEs. Eötvös Loránd University Press, Budapest
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[20] Sofonea, M., Han, W., Migórski, S.: Numerical analysis of history-dependent variational inequalities with applications

to contact problems. Eur. J. Appl. Math. 26, 427–452 (2015)

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s00033-016-0750-z


87 Page 20 of 20 B. Zeng, Z. Liu and S. Migórski ZAMP
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