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On convergence of solutions to variational-hemivariational inequalities
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Abstract. In this paper we investigate the convergence behavior of the solutions to the time-dependent variational—
hemivariational inequalities with respect to the data. First, we give an existence and uniqueness result for the problem, and
then, deliver a continuous dependence result when all the data are subjected to perturbations. A semipermeability problem
is given to illustrate our main results.
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1. Introduction

Variational-hemivariational inequalities represent a special class of inequalities which involve both con-
vex and nonconvex functions. Elliptic hemivariational and variational-hemivariational inequalities were
introduced by Panagiotopoulos in the 1980s and studied in many contributions, see [15,17] and the
references therein. Various classes of such inequalities have been recently investigated, for instance, in
[7,9,10,12,20,22]. They play an important role in describing many mechanical problems arising in solid
and fluid mechanics.

In this paper we study the following time-dependent variational-hemivariational inequality: find
u: Ry =[0,400) — X such that, for all t € Ry, u(t) € K and

(Au(t) — f(t),v —u(®)) x + @(u(t),v) — (u(t), u(t))
+7%u(t);v —u(t)) >0 foral wveK, (1)

where K is a nonempty, closed and convex subset of a reflexive Banach space X, A: X — X* and
p: K x K — R are given maps to be specified later, j7: X — R is a locally Lipschitz function, and
f: Ry — X* is fixed. The notation j%(u;v) stands for the generalized directional derivative of j at
point u € X in the direction v € X. The goal of the paper is to study the convergence of solution of the
variational-hemivariational inequality (1) when the data A, f, ¢, j and K are subjected to perturbations.

The dependence of solutions to elliptic variational-hemivariational inequalities on the data has been
studied only recently. For such inequalities the dependence with respect to functions ¢ and j was investi-
gated in [13], where A and K were not subjected to perturbations. A result on the dependence of solutions
to elliptic variational inequalities with respect to perturbations of the set K of a special form was studied
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n [19]. There, the data A, ¢ and f were independent of perturbations. For a class of elliptic history-
dependent variational-hemivariational inequalities studied in [21], the convergence result was obtained
in a case when ¢ depends on a history-dependent operator, and A does not depend on perturbations.
A result on the convergence with respect to the set of constraints K were studied for elliptic quasivari-
ational inequalities in [1]. In all aforementioned papers the convergence results were applied to various
mathematical models of deformable bodies in contact mechanics. Note that a result on the dependence
of solutions to evolution second order hemivariational inequalities with respect to perturbations of the
operators can be found in [8]. Furthermore, it is well known that the continuous dependence results are
of importance in optimal control and identification problems, see, e.g., [2,9,23].

The aim of the paper is twofold. First, we consider the class of abstract time-dependent variational—
hemivariational inequalities of the form (1) for which we study the dependence of the solution with
respect to the data A, f, ¢, 7 and K. Our hypotheses on ¢ and j are different than the one used in the
aforementioned papers. Moreover, the set of constraints is of a more general form.

Second, we illustrate the applicability of the convergence results in the study of a semipermeability
problem. Semipermeability problems were first considered in [5] for convex potentials (which lead to
monotone relations) and, later, in [11,16,17] for nonconvex superpotentials (leading to nonmonotone
relations). They concern the treatment of semipermeable membranes either in the interior or on the
boundary of the body and arise, for instance, in flow problems through porous media and heat conduction
problems. In the current paper we study a semipermeability problem involving simultaneously both
monotone and nonmonotone relations. Its weak formulation is a variational-hemivariational inequality.
Note that the convergence results for semipermeability problems are provided here for the first time.
Finally, we underline that our convergence results of Sect. 3 are also applicable to various problems
in contact mechanics like a nonlinear elastic contact problem with normal compliance condition with
unilateral constraint, and a contact problem with the Coulomb friction law in which the friction bound
is supposed to depend on the normal displacement, studied in, e.g., [1,6,13,19].

The rest of this paper is organized as follows. In Sect. 2, we will introduce some necessary prelim-
inary materials. Section 3 is devoted to the proofs of convergence results for the elliptic variational—
hemivariational inequality and its time-dependent counterpart. In Sect. 4, we apply the results to a
semipermeability problem.

2. Preliminaries

In this section we recall notation, basic definitions and a result on unique solvability of a variational—
hemivariational inequality.
Let (X,] - ||x) be a Banach space. We denote by X* its dual space and by (-,-)x the duality pairing
between X* and X. The strong and weak convergences in X are denoted by “ —" and “ —,” respectively.
Let C(R4; X) be the space of continuous functions defined on interval Ry = [0, 400) with values in
X. For a subset K C X the symbol C(R,; K') denotes the set of continuous functions on R, with values
in K. We also recall that the convergence of a sequence {z,, },>1 to the element z, in the space C'(Ry; X),
can be described as follows
Zn — ¢ in C(Ry; X), asn— oo if and only if
max ||z, (t) —z(t)[|x =0, asn—oo, forall keN. (2)
te[0,k]
We recall the definitions of the convex subdifferential, the (Clarke) generalized gradient and the
pseudomonotone single-valued operators, see [3,4].

Definition 1. A function f: X — R is said to be lower semicontinuous (l.s.c.) at u, if for any sequence
{tn}n>1 C X with w,, — u, we have f(u) < liminf f(u,). A function f is said to be Ls.c. on X, if f is
l.s.c. at every u € X.
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Definition 2. Let ¢: X — RU{+o00} be a proper, convex and l.s.c. function. The mapping dp.: X — 2X"
defined by

Opc(u) ={u" € X* | (v, v—u)x <o) —pu) forall ve X}
for u € X, is called the subdifferential of ¢. An element u* € d.¢(u) is called a subgradient of ¢ in w.

Definition 3. Given a locally Lipschitz function ¢: X — R, we denote by ¢"(u;v) the (Clarke) generalized
directional derivative of ¢ at the point u € X in the direction v € X defined by

Aluv) = Timsup p(C+A0) —p(Q)
A0+, C—u A

The generalized gradient of ¢ at u € X, denoted by dp(u), is a subset of X* given by
Op(u) = {u* € X* | " (u;v) > (u*,v)x forall ve X}

Furthermore, a locally Lipschitz function ¢: X — R is said to be regular (in the sense of Clarke) at u € X,
if for all v € X the directional derivative ¢ (u;v) exists, and for all v € X, we have ¢’ (u;v) = ©°(u;v).
The function is regular (in the sense of Clarke) on X if it is regular at every point in X.

Definition 4. A single-valued operator F': X — X* is said to be pseudomonotone, if it is bounded (sends
bounded sets into bounded sets) and satisfies the inequality

(Fu,u —v) <liminf(Fu,,u, —v)x forall veX,
where u,, = w in X with lim sup(Fu,, u, — u)x <0.
The following result provides a useful characterization of a pseudomonotone operator.

Lemma 5. (see [12, Proposition 1.3.66]) Let X be a reflexive Banach space and F: X — X* be a single-
valued operator. The operator F is pseudomonotone if and only if F' is bounded and satisfies the following
condition: if u, — win X and im sup(Fu,, u,—u)x <0, then Fu, — Fu in X* and im(Fu,, up—u)x =
0.

The following notion of the Mosco convergence of sets will be useful in the next sections. For the
definitions, properties and other modes of set convergence, we refer to [4, Chapter 4.7] and [14].

Definition 6. Let (X, || ||) be a normed space and {K,},~0 C 25\ {0}. We say that K, converge to K in
the Mosco sense, p — 0, denoted by K, M, K if and only if the two conditions hold
(ml) for each x € K, there exists {z,},>0 such that z, € K, and z, — z in X,

(m2) for each subsequence {z,},~0 such that z, € K, and z, = = in X, we have z € K.

For the following properties of the Mosco convergence, we refer to [14, p. 520].

Remark 7. Let K, M K. Then, K # () implies K, # () and the opposite is not true. Also, if K, is a
closed and convex set for all p > 0, then K is also closed and convex.

Finally, we recall a result on existence and uniqueness of solution to the following variational—
hemivariational inequality.

Problem 8. Find u € K such that
(Au— f,v —u)x + o(u,v) — p(u,u) + j%(u;v —u) >0 forall ve K, (3)

Problem 8 was studied in [13] where results on its unique solvability, continuous dependence on the
data and a penalty method were provided. We need the following hypotheses on the data of Problem 8.
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K is nonempty, closed and convex subset of X. (4)
feX™ (5)

A: X — X* is an operator such that
(a) A is pseudomonotone.
(b) there exists m4 > 0 such that
(Auy — Aug,ug —u2)x > ma llur —us2|%
for all uy,us € X.
(c) there exist aq > 0,1, a2 € R ug € K such that
(Au,u o) > aallull — axlullx - s

for all v € X.

p: K x K — R is a function such that
(a) p(u,-): K — R is convex and l.s.c. on K, for all u € K.
(b) there exists v, > 0 such that
e(u1,v2) — @(u1,v1) + (ug, v1) — p(uz, v2)

< ay flur — ual|x||vr — val|x

for all uy,us,v1,v9 € K.

j: X — R is a function such that
(a) j is locally Lipschitz.
(b) there exist ¢, c; > 0 such that
107 (u)|lx+ < o+ cr|lul|x for all ue X. (8)
(c) there exists a; > 0 such that

jO(U1;U2 —uy) +j0(u2;ul —up) < a llur — U2||§(

for all uy,us € X.

The following existence and uniqueness result was established in Theorem 18 of [13].
Theorem 9. Assume that (4)—(8) hold and the following smallness conditions are satisfied
ay,+a; <ma and o < ag. (9)

Then Problem 8 has a unique solution u € K.

3. Convergence of solutions

In this section we study the dependence of the solution to Problem 8 with respect to the operator A,
functions f, ¢ and j, and the constraint set K.

Continuous dependence for Problem 8 has been investigated earlier in some particular cases. For
example, it was studied in Theorem 23 in [13], where A and K are independent of p > 0 and the
hypotheses on the behavior of ¢, and j, are different than ours. Furthermore, the dependence of solution
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to an elliptic variational inequality with respect to perturbations of the set K, was studied in [19] under
the hypotheses j = 0, A, ¢ and f are independent of p, ¢ satisfies additional assumptions, and the
constraint sets K, satisfy the following hypothesis

K, = c(p)K + d(p)0 is such that
(a) K is a nonempty, closed and convex subset of X.
(b) O0x € K, and 0 is a given element of X. (10)
(¢) ¢: (0,+00) — R is such that ¢(p) — 1, as p — 0.
(d) d: (0, +oo) — R is such that d(p) — 0, as p — 0.

We make the following observation.

Remark 10. Note that if K,, for p > 0, is defined by (10), then K, M, K, as p — 0. Indeed, for each
x € K, we define z, € K by z, = c¢(p)z + d(p)f € K,. From (10)(c) and (d), it follows that z, — x in
X. Hence, the condition (ml) in Definition 6 holds. Moreover, for each subsequence {z,},~¢ such that
z, € K, and z, — x in X, there exists x, € K such that z, = c(p)z}, + d(p)f. Again, from (10)(c) and
(d), we infer that 2/, — 2 in X. Since K is closed and convex, it is weakly closed. Hence, z € K which
implies that the condition (m2) in Definition 6 is satisfied.

Consider the following perturbed version of Problem 8.

Problem 11. Find u, € K, such that for all v, € K,, we have

(Apup = foyvp —up)x + @p(tp, vp) — 0p(up, up) +j2(up; vy —up) > 0. (11)

We formulate the hypotheses needed for the continuous dependence result. Let p > 0.

K, K, are sets such that
(a) K, K, satisfy (4). (12)

(b) K, MK, asp—0.

f, f, are functions such that

(a) f, f, satisty (5). (13)
(b) fp — f in X*, as p—0.

A, A,: X — X* are operators such that
(a) A, A, satisfy (6) with ma > 0,04 > 0,01, 0 € R, ug € K,
and my, > 0,4, > 0,0a1,, a2, € R, ug, € K, respectively.
(b) there exist c4 > 0 and «, > 0 with o, — 0, as p — 0 such
that ||[A,u — Av||x+ < ca(a, + |lu—v|x) forall u,veX

with |[Jullx,||v]|x < M, where M > 0 is independent of p.
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p: K xK =R, p,: K, x K, — R are functions such that

a) ¢, satisty with o, > 0 and «a,, > 0, respectively.
0, Yp isfy (7) with ap, > 0 and a,, >0 ivel

(b) for all u,,v, such that u,,v, € K, for each p > 0 with
u, — u in X and v, — v in X, we have
limsup (¢ (up, vp) = Pp(Up, up)) < (u,v) — p(u, u).

c) there exists a nondecreasing function ¢ : — suc

h i d ing f i ot Ry — Ry h

that for all u,v,v2 € K,, we have

©p(u,v1) = @p(u,v2) < cp(llullx)llvr — val x-

J, jp: X — R are functions such that
(a) 7, j, satisty (8) with o; > 0,¢9,¢1 >0
and «;, > 0,cop, 1, > 0, respectively.
(b) for all u,,v, such that u,,v, € K, for each p > 0 with

u, = u in X and v, — v in X, we have

limsup j9(up; v, —u,) < (w0 — u).

(a) there exist mg, m1, ma > 0 such that for p > 0 sufficiently small
ap, +aj, <mog<mga, and a,, +aj, <mp <mg < aa,.
(b) there exists My > 0 such that for all p > 0 sufficiently small

max{alpy 25, Cop, Clp; ||u0p||} < M0~

The following result ensures the existence, uniqueness and convergence of Problem 11.

Theorem 12. Assume that hypotheses (12)(a), (13)(a), (14)(a), (15)(a), (16)(a) and (17)(a) are satisfied.
Then,

(i) for each p >0, Problem 11 has a unique solution u, € K,

(i) if, in addition, (9), (12)(b), (13)(b), (14)(b), (15)(b)(c), (16)(b), (17)(b) hold, then the sequence {u,}
converges in X, as p — 0, to the solution u of Problem 8.

Proof. (i) The existence and uniqueness result for Problem 11 follows from Theorem 9.
(ii) Let p > 0 and u, € K, be the unique solution to Problem 11. First, we will show that there exists
a constant ¢ > 0 independent of p such that for all p > 0 sufficiently small

[upllx <c. (18)
From conditions (8) and (16)(a), we have
jg(up; Upp — up) = jg(%% Uop — up) + jg(UOp; Up — qu) - jg(qu; Up — UOp)
< aj, llup = uopl| % + [ max{(C,, u, —uop) | ¢ € jp(uop)}|

< O‘jp”“p - qu”%{ + (cop + c1plluopllx) 1wy — uopllx-
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Taking v, = ug, € K, in inequality (11), we obtain
aa,llupllk — arpllupllx — asy < (Apup, u, —uop) x
< ©p(Ups uop) — @pltp, up) +j2(up§ upp — up) + (fp, up — Uop) x
< (@0 (tp, u0p) = 0p(Up, up) + p(u0p, up) — p(Uop, Uop))
+(90p(u0mu0p) - Sﬁp(uomup)) + jg(uf);“Op —up) + (fp, up — uop) x
< O‘%”“p - “WH%{ + ajp||“p - qu”%{

+ (co(lluopllx) + cop + crplluopllx + [ follx<)llwp — uopllx-

Therefore, we have
(@, — ap, —aj,)u,l%

< ((2ay, + 205, + ep)lluo,llx + collluopll) +ary + cop + 11 llx- ) lupllx

+ (0, + aj, + c1p) uopllx + (co(lluo,llx) + cop + 1 follx+)

Hence, by hypothesis (17), we can find a constant ¢ > 0 independent of p such that, for all p > 0
sufficiently small, condition (18) holds.

Exploiting (18) and the reflexivity of X, by passing to a subsequence if necessary, we may suppose
that the sequence {u,}, u, € K, for each p > 0, converges weakly to some u € X, as p — 0. By the
condition (m2) of Definition 6, we deduce that v € K.

We will show that v € K is a solution of Problem 8. From (m1) in Definition 6, we can find a sequence
{u},} such that uj, € K, and u,, — u in X. Taking v, = uj, in (11) we have

[uopllx + azp.

(Apu, — fp,u'p —up) + gop(up,u;) — pp(up, up) +j2(u,,; ufo —u,) > 0.
Then, from (13)(b), (14)(b), (15)(b) and (16)(b), using the fact that A, is a bounded operator, we have
limsup (Au,, u, — u)
< limsup (Au, — Apu,, u, —u) + limsup (A,u,, u, — u)
<limsup ca o, ||u, — || + limsup (A u,, u, — w)
< limsup (A,u,, u, — uy,) + limsup (A,u,, uj, — u)
< limsup ((fp,u, — up,) + @ (Ups u,) = @ p(tp,up) +j2(up; uj, — u,)) < 0.
Since A is pseudomonotone, by Lemma 5, we infer
Au, = Au in X* (19)
lim(Au,, u, —u) = 0. (20)

Let w € K. From hypothesis (12) and (m1) in Definition 6, we find a sequence {w, } such that w, € K,
for each p > 0 and w, — w in X, as p — 0. We set v, = w, in inequality (11), and obtain

(Apup = foswp = up) + 0p(up, wp) — @plup, up) +j2(up§ wp —up) > 0.
Since u, = u in X, w, — w in X, from (19) and (20), we have

lim(Au,, u, — w,) = lim(Au,, v, — u) + Iim(Au,, v — w,) = (Au, u — w).
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Using the latter, from (13)(b), (14)(b), (15)(b) and (16)(b) again, we deduce that
(Au,u — w) = limsup (Au,, u, — w,)
< limsup (Au, — A,u,, u, — w,) + limsup (A,u,, u, — wy)
<limsup ca o, ||u, — w,|| + limsup (A, u,, u, — w,)
< limsup (<fp’“p — W) + p(tp, wp) — Pp(up, up) "‘jg(“p?wp - up))
< (fou—w) +p(u,w) = p(u,u) + 5 (u;w — ).
Since w € K is arbitrary, we have shown that
(Au — f,w —u) + p(u,w) — p(u,u) + j°(u;w —u) >0 forall we K,

which implies that u € K solves Problem 8. Since every subsequence of {u,} converges weakly to the
same limit (v € K is the unique solution to Problem 8), the whole sequence {u,} converges weakly to
ue K.

Finally, we show the strong convergence u, — v in X, as p — 0. Since K, M, K, as p— 0, by
condition (m1) of Definition 6, we can find a sequence {1, } such that @, € K, for each p > 0 and @, — u,
as p — 0. Choosing v, = 1, in (11), we have

mApH“p - ﬁp”%{ < (Apup — Aplip,up — Up) x
= (Apup,up — Up) x + (Aplp, Uy — Up) x
< LPp(u,oaap) - (Pp(upaup) +j2(up§ Up — up) + <fp - Apapvup - 'ap>X-
It follows from (14)(b) that
limsup(—A,t,,u, — U,) x
= limsup(Au — A,t,, u, — U,) x + limsup(—Au, u, — U,) x

<limsupca (a, + ||a, — ul|)||u, — @, + limsup(—Au, u, — @,) x
=0.

Passing to the upper limit, as p — 0, and exploiting (13)(b), (15)(b) and (16)(b), we deduce that
limsup ||u, — @,||% < 0. Hence, we obtain |lu, — i,||x — 0. Finally, we have

0 <lim ||u, — u||x <lim |lu, — U,||x + lim ||@, — u||x =0,

which implies that u, — v in X, as p — 0. This completes the proof. []

We now consider the following time-dependent variational-hemivariational inequality.
Problem 13. Find a function u: Ry — X such that, for allt € Ry, u(t) € K and
(Au(t) — f(t),v —u(t))x + (u(t),v) — o(u(t), u(t))
+3%u(t);v —u(t)) >0 forall ve K. (21)
We have the following existence and uniqueness result.

Theorem 14. Assume that the hypotheses of Theorem 9 hold and f € C(Ry;X™*). Then, Problem 13 has
a unique solution u € C(Ry; K).

Proof. We apply Theorem 9 for any ¢t € R,. We deduce that Problem 13 has a unique solution u(t) € K.
The fact u € C(Ry; K) can be proved from the proof of Theorem 5 in [21]. ]
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The perturbed problem corresponding to Problem 13 reads as follows.

Problem 15. Find a function u,: Ry — X such that, for allt € Ry, u,(t) € K, and
(Apup(t) = fo(t),vp — up(t)) x + @p(up(t),vp) = pp(up(t), up(t))
+j2(up(t);vp —u,(t)) >0 forall v, € K,. (22)
The following result concerns the pointwise convergence of solutions to Problem 15.

Theorem 16. Assume that the hypotheses of Theorem 12 are satisfied. Suppose that for all p > 0, f, €
C(Ry; X*) and fy(t) — f(t) in X* for allt € Ry, as p — 0. Then,

(i) for each p > 0, Problem 15 has the unique solution u, € C(Ry; K,);

(i) for each t € Ry, there is a subsequence {u,} such that u,(t) — u(t) in X, as p — 0, where u €
C(Ry; K) is the unique solution to Problem 13.

Proof. By applying Theorems 12 and 14, we know that Problem 15 has a unique solution u, € C(Ry; K,)
for all p > 0. Moreover, for each t € Ry, there is a subsequence {u,} such that u,(t) — u(t) in X, as
p — 0, where u € C(R,; K) is the unique solution to Problem 13.

Finally, we conjecture that under additional hypotheses the convergence result of Theorem 16(ii) can
be strengthen to the uniform convergence of v, — u in C(Ry; X), as p — 0, which will be studied in the
future. We note that a convergence result for Problem 15 with j =0, A, f and ¢ independent of p, and
K, of the form (10) was provided in [1] under assumption that A is Lipschitz continuous and ¢ depends
on a history-dependent operator.

4. Semipermeability problem

In this section we consider a semipermeability problem to which our main results of Sect. 3 can be applied.
First, we state the classical formulation of the problem, then we provide its variational formulation, and
finally we obtain results on its weak solvability and convergence of solutions.

The motivation comes from semipermeability problems studied in [5, Chapter I] for monotone relations,
and in [15, Chapter 5.5.3] and [16] for nonmonotone relations which lead to variational and hemivari-
ational inequalities, respectively. We consider the stationary heat conduction problem with constraints
and both the interior and the boundary semipermeability relations. Nevertheless, similar problems can
be formulated in electrostatics and in flow problems through porous media, where the semipermeability
relations are realized by natural and artificial membranes of various types, see [5,11,15-17]. We will ana-
lyze a very general situation which leads to a variational-hemivariational inequality problem and provide
examples which satisfy our hypotheses.

Let Q be a bounded domain of R? with Lipschitz continuous boundary 09 = I' which consists of two
disjoint measurable parts I'; and I's such that m(T';) > 0. The classical model for the heat conduction
problem is described by the following boundary value problem.

Problem 17. Find a temperature u: Q x Ry — R such that

—diva(x,Vu) = f(t,u) in Q xRy, (23)

ft,u) = f1(t) + fa(u), —folu) € Oh(x,u) in Q xRy, (24)
u(t) e U for teRy, (25)

u=0 on I't xRy, (26)

N b(w)dge(m,u) on Ty xR,. (27)

B v,
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Now, we describe the problem (23)—(27). Equation (23) is the stationary heat equation related to the
nonlinear operator in divergence form, with the time-dependent heat source f = f (t,u) where time plays
a role of a parameter. The function f in (24) admits an additive decomposition on f; = f1(¢) which is
prescribed and independent of the temperature u, and fa = fa(u) which is a multivalued function of u in
the Clarke subgradient term. Here h = h(ax, 7) is a function which is assumed to be locally Lipschitz in the
second argument. Condition (25) introduces an additional constraint for the temperature (or the pressure
of the fluid). The temperature u is constrained to belong to a convex, closed set U. For example, the
set U can represent a bilateral obstacle which means that we look for the temperature within prescribed
bounds in the domain 2, see Example 24. The homogeneous (for simplicity) Dirichlet boundary condition
is supposed in (26). In the boundary condition (27) the expression 387’2 = a(x, Vu) - v represents the heat
flux through the part I'y, where v denotes the outward unit normal on I'. Here, g = g(x,r) is a prescribed
function, convex in its second argument, O0.¢g stands for its convex subdifferential, and a given function
k is positive. Note that in (27) we deal with the nonlinearity which is determined by a law of the form
kd.g. In such a case we cannot deal with a variational inequality since there is not, in general, a function
g1 with .91 = kO.g.

We introduce the following spaces

V={veH Q) |v=00onT,}, H=L*Q). (28)

Since m(T'1) > 0, on V' we can consider the norm |[v[[y = || Vv||12(q)a for v € V which is equivalent on V'
to the H(Q2) norm. By v: V — L?(T") we denote the trace operator which is known to be linear, bounded
and compact. Moreover, by yv we denote the trace of an element v € H' ().
In order to study the variational formulation of Problem 17, we need the following hypotheses.
a: Q x R? — RY is such that
(a) a(-, &) is measurable on Q for all £ € RY,
and a(z,0) =0 for a.e. x € Q.

(b) a(z,-) is continuous on R? for a.e. x € Q.

(c) [la(z, &)|| < mq (1+|€]]) forall &€ €RY ae. xeQ 29
with m, > 0.
() (a(z,€) — a(x,&,)) - (&1 — &) = aa 61 — &
for all €,,&, € RY, ae. x € Q with o, > 0.
h: Q x R — R is such that
(a) h(-,r) is measurable on 2 for all » € R and there
exists € € L?(Q2) such that h(-,e(-)) € L*().
(b) h(x,-) is locally Lipschitz on R, a.e. & € Q.
(¢) there exist ¢y, ¢; > 0 such that (30)

|Oh(z, )| < Ty +Ci|r| for all r € R, a.e. & € (L
(d) there exists o, > 0 such that

hO(x,r1;7m0 — 1) + RO (2, o311 — 12) < aplry — 1af?

for all 71,72 € R, a.e. x € Q.



ZAMP On convergence of solutions to variational-hemivariational inequalities

g: I's x R — R is such that
(a) g(-,r) is measurable on T's for all r € R.
(b) g(x,-) is convex on I's, a.e. x € Q.
(c) there exists L, > 0 such that

lg(x,71) — g(x,72)| < Lg|ri — 7o

for all 71,72 € R, a.e. x € I's.

k:T9 x R — R, is such that
(a) k(-,r) is measurable on I's for all r € R.
(b) there exists Ly > 0 such that
|k(x, 1) — k(x,r2)| < Lglr1 — ra|
for all 1,72 € R, a.e. x € I's.

(¢) k(z,0) =0 for a.e. & € .

U is a closed, convex subset of V,  f; € C(Ry; H).

Below we provide examples of functions a and h.
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(31)

(32)

Ezxample 18. We provide an example of a function a: Q x R? — R? which satisfies hypothesis (29). Let

a(x, &) = o) (||€]|?)€ for all £ € RY, a.e. & € Q, where

¢: 2 — R is measurable and there are constants di,ds > 0
such that for a.e. € Q, we have d; < ¢(x) < ds

and

1: Ry — R is piecewise continuously differentiable,
and there are constants ds, d4,ds > 0 such that for
all » > 0, we have [¢(r)| < ds, dy <(r)+2¢'(r)r < ds.

(34)

(35)

It is evident that (29)(a), (b) and (c) hold with m, = dods. We will verify the strong monotonicity

condition (29)(d). Let &;, & € R? and = € Q. For t € [0, 1], we put £(¢) = &€, + (&5 — &,). We have

a(@, &) - a(,£) = o(@)0(1€ 7)€ — H@)0(1El*)E
— () [ 5 OIEOIE®)
0
— (@) [0 (EOIPEONE - EIED + bIEDIP)E - &)t
0
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Then
(a(x, &) —a(x,§,)) - (&1 — &2)

= o) [ (20" (IEOIHIEDNNE — E)EF) - (& — &)

—

m| @

+P([EDD (& — &) - (& — &) dt

=o(x) | (20" (EDOIHIEDI +DEDI) 1€, — Eall dt

o _

> dida|€; — &%

Hence, condition (29)(d) follows with o, = dyd4. We also observe that if ¢ = 1, then a(x, &) = ¢(x)€ for
all £ € R?, a.e. & € Q which leads to the linear operator A in the divergence form.

Ezample 19. Consider the following example. Let h: R — R be defined by

0 if r <0,
o if 0,1
h(r) = 2r2 . 1 7"6[, )s
—27 + 3r —155 if re [1,3),
5 =3r+3x if r>3.
Then, its subdifferential is given by

0 if r<0,

r if rel0,1),
Oh(r) =< 11,2] if r=

-r+3 if rell,3),

r—3 if r> 3.

It can be proved that the function h satisfies condition (30) with ¢y = 2, ¢ = 1 and «ap, = 3. For more
examples of functions which satisfy this condition, we refer to Examples 16 and 17 in [13].

We turn to the variational formulation of Problem 17. Let v € U and ¢t € Ry. We multiply (23) by
v — u, use Green’s formula, decompose the surface integral on two parts on I'y and I's and take into
account that v —u =0 on I'y.

From (23), (24) and definitions of subgradients, we have
—fo(u)r < W (x,u;7) in Q,
_ Ou
OVa

for all » € R. Using these inequalities in (36), we obtain the following variational-hemivariational in-
equality.

(r —u) <k(u)(g(®,r) — g(z,u)) on Iy
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Problem 20. Find u: Ry — U such that for allt € Ry

/ alz, Vu(t)) - V(o — u(t)) de + / (k(u(t))g(, v) — Ku(t))g(a, u(t))) 0

Q Iy

+ /ho(w,u(t);v —u(t)) dz > /fl(t)(v — ult)) de
Q Q
forallveU.

The following result concerns the well posedness of Problem 20.
Theorem 21. Assume that (29)—(33) hold and the following smallness condition is satisfied
LiLy |y + an < aq. (37)
Then, Problem 20 has a unique solution uw € C(Ry;U).

Proof. We apply Theorem 14 in the following functional framework: X =V, K = U, f(t) = f1(t) for all
t e Ry and

AV = V* <Au,v)vz/a(w7Vu)~Vvdx for u,v €'V, (38)
Q
p: VXV >R pu,v) = /k‘(u)g(v)dF for u,v € V, (39)
T2
j: V=R, j(v):/h(v)dx for v e V. (40)
Q

With this notation, we can see that Problem 20 is equivalent to Problem 13. We now check the
hypotheses of Theorem 14.

First, since V is a closed linear subspace of the Sobolev space H'(), containing H{ (€2), it is straight-
forward to prove that under hypotheses (29), the operator A is bounded and pseudomonotone, for details
see, e.g., [18, Theorem 4.6] or [24, Proposition 26.12]. It is clear that condition (29)(d) implies that opera-
tor A is strongly monotone with constant m4 = «,. Using the strong monotonicity condition, for ug € K
and v € V, we have

(Au,u — ugp) = (Au — Aug,u — ug) + (Aug, u — ug)

> mallu = uol% — [l Auo] x-

u— upl| x-
From the following elementary inequalities

llullx = lluoll x| < llu = uollx,

[ Augl| x- [l = uollx < [|Auol|x-|[ullx + [[Auoll x+ [luollx

we obtain

(Au,u — ug) > ma(llullx — [luollx)® — | Aug |l x-[lull x — || Auol|x- [luollx

Jullx +malluolk — [[Auolx-uollx,

= mallulk — @malluollx + | Auol x-)

which proves condition (6)(c) with aq = my4 and oy, as € R.
Next, hypothesis (8) is a consequence of (30), which holds with a; = ay,, cop =G and ¢1 = €.
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Next, we will verify (7). Condition (31) implies (7)(a). To prove (7)(b), let u, v € V. We have

o(ur, v2) — @(u1,v1) + @(u,v1) — p(uz, v2)

= /(k(ul) — k(u2))(g(v1) — g(ve))dl’

I'>
< [ Lifun(@) = wa(o)lLylon (@) - vafe)lds
Iy

< LiLg V[P lur = wallvlvs = vally-.

Hence, it follows that (7)(b) is satisfied with a, = Ly Ly|l7v]|?. The smallness conditions (9) are a conse-
quence of assumption (37).

Therefore, we deduce that all hypotheses of Theorem 14 are satisfied. By applying Theorem 14, we
conclude that Problem 20 has a unique solution u € C(Ry;U). L]

We now turn to the dependence of solution to Problem 20 on the perturbation of the mapping a,
functions k, g, h and f1, and the set U. We consider the following perturbation of Problem 20.

Problem 22. Find u,: Ry — U, such that for all t € R4

/ap(a:, V(1)) - V(vy — uy(t)) dv + /(kp(“p(t))gp(xavp) —kp(up(t))gp(x,uy(t))) dI

Q )
b [ W@ 050, uplt) do > [ (00, uple) ds
Q Q

for allv, € U,.

For the data of Problem 22, we introduce the following hypotheses.

U, U, are closed convex sets in V, and U, MU, as p—0. (41)

fi, ip € C(Ry; H) and  f1,(t) — f1(t) in H for all t € Ry, as p — 0. (42)

a,a,: ) x R? — R? are functions such that
(a) a,a, satisfy (29) with constants mg, o, > 0,
and mg,, aq, > 0, respectively.
b) there exist ¢, > 0 and 3, > 0 with 3, — 0, as p — 0 such that
I o P
lap(z, &) — a(@,n)|| < ca(B, + 1€ —nl|) for all €,n € R with
IEN, Il < My, ae. x € Q, where M is independent of p.
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h, hp: Q@ x R — R are functions such that
(a) h, h, satisty (30) with o, >0, G, ¢ >0
and ay, > 0, Cop, ¢1p > 0, respectively.
(b) for all {r,},{s,} C R with 7, — r and s, — s, we have (44)
lim sup hg(w,rp;sp) < ho(x,r;s), ae. x €.

(c) either h(x,-) or — h(z,-) is regular in the sense of Clarke

for a.e. & € Q.

g, gp: I'a x R — R are functions such that

(a) g, g, satisfy (31) with L, > 0 and L,, > 0, respectively.

(b) for all {r,},{s,} C R with 7, — r and s, — s, we have (45)

lim (g,(x,7,) — gp(x,5,)) = g(x,7) — g(x, 5), a.e. €Ty,
k, k,: I's x R — R are functions such that
(a) k, k, satisfy (32) with Ly > 0 and Ly, > 0, respectively. (46)
(b) for all {r,} C R with r, = r € R,
L we have lim k,(x,7,) = k(z,7), a.e. © € I's. )

(a) there exist mp, m; > 0 such that for all p > 0 sufficiently
small, we have Ly L||7v||* + an <o < M1 < my. (7)

(b) there exists M; > 0 such that for all p > 0 sufficiently
small, we have max{Lg,, L,,,Cop,C1,} < M.

We have the following convergence result for Problem 22.

Theorem 23. Assume that (37), (41), (42), (43), (44), (45), (46) and (47) are satisfied. Then for each
p >0, Problem 22 has a unique solution u, € C(R4;U,) and for each t € Ry, there is a subsequence of
{u,}, denoted by {u,} again, such that u,(t) — u(t) in 'V, as p — 0, where u € C(Ry;U) is the unique
solution to Problem 20.

Proof. First, we note that, by Theorem 21, for every p > 0, Problem 22 has a unique solution u, €
C(R4;U,). Then, we shall apply Theorem 16 in the following framework: X =V, K, = U, f,(t) = fi,(t)
for all t € Ry and

Ay V—=V* (Apu,v) = /ap(w, Vu(z)) - Vo(z)dz for u,v € V, (48)
Q

0 VXV =R, py(u,v) = /k:p(u(x))gp(v(x)) dr’ for u,v €V, (49)
T2

Jp V=R, j,(v)= /hp(v(:r)) dz forv e V. (50)

Q
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We now check the hypotheses of Theorem 16. It is clear that (13), (14)(a), (16)(a) and (17) follow from
(41), (43), (44)(a) and (47), respectively.

We now show that (14)(b) and (16)(b) are satisfied. For all u, v, w € V, from hypothesis (43)(b), we
have

(Aju— Av,w) = /(ap(m, Vu(z)) — a(z, Vu(x))) - Vw(z) dz
Q
<ca /(% + [ Vu(z) = Vo(@) )V ()| dz
Q
< ca(V2B,[Q + [lu — vlly) [w]lv-.

Then

[Apu = Aol < ca(V2m(Q)B, + [lu = v]lv).

Hence, we deduce that (14)(b) holds.

Next, we prove condition (16)(b). Let {u,}, {v,} be such that u,, v, € U, for each p > 0 with u, — u
in V and v, — v in V. Since the embedding V' C H is compact, we get the strong convergences u, — u
in H and v, — v in H. Then, by passing to a subsequence, if necessary, we have u,(x) — u(x) and
v,(x) — v(x) for a.e. © € Q. On the other hand, we recall that for j, and j, by [12, Theorem 3.47], we
have the following inequality

(v w) < /ho(m,v(x);w(x))dx for all v,weV (51)
)

and if, in addition, (44)(c) is assumed, then (51) holds with equality. From (44)(b) and (51), by Fatou’s
lemma, we have

lim sup jg(up; v, —Uup) < limsup/hg(up(a:); v,(x) —up(x)) de
Q

< /limsup hg(up(m); vp(x) —up(z))de < /ho(u(x); v(z) —u(x))de
Q Q

= %u;v — u).

Hence, condition (16)(b) is verified.

Next, we verify (15). Condition (15)(a) is obvious. Assume that {u,}, {v,} are such that u,, v, € U,
for each p > 0 with u, — w in V and v, — v in V. From the compactness of the trace operator, it
follows that yu, — ~yu in L?(T') and yv, — ~v in L?(T'). Then, at least for a subsequence, we have
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yup(x) — yu(x) and yv,(x) — yv(x). Using (45)(b) and (46)(b), by Fatou’s lemma, we have
lim sup (¢, (up, vp) = ©p(up, up))

= lim sup/k:p(wup(x))(gp(vvp(x)) —g(yup(x)))dl’
s

< / tim sup k, (v, (2)) (g, (0,(2)) — g (Y1, (x))) dT
Iz

_ / k(yu(w)) (g(yv(x)) — g(yu())) dT
= p(u,v) — p(u,u).

Hence, condition (15)(b) holds.
Finally, we will prove that (15)(c) is satisfied. In fact, from (45)(a) and (46)(a), for all u,vi,vs € U,
we have

‘Pp(uv vy) — gpp(u, v2)

- / ko () (9, (701 (2)) — g (yva())) AT

I

= [ (baruta)) = o (0) + Ka(0) gy (r02(2)) = gy (o)) T
I'>

< [ L hu@)ILy, lyer(z) = yea(a)lds
Ty

< Lig, Lg, [P llullv llor = vallv

< MP|lyIPullvllvr = vallv-

Hence, it follows that condition (15)(c) holds with the function c,(r) = MZ||y||*r for r € Ry. From
Theorem 16, we deduce that u,(t) — u(t) in V for all t € Ry, as p — 0. This completes the proof.  []

We conclude this section with the following examples.
Ezample 24. Hypothesis (41) is satisfied for the following constraint sets for a bilateral obstacle problem.
U=Ur,2) ={veV ]| <v<y ae in Q},
Up =UWh1p,12,) ={v eV |1, <v <), ae in Q},

where ¥y, V1,, V2, Y2, €V N H?(Q). Tt is clear that U and U, are closed convex subsets of V. We will
show that if (¢1,,12,) = (¥1,2) in (VN H?*(Q)) x (VN H*(Q)), as p — 0, then

U, 2L U, asp—o0. (52)
In fact, let v, € U, be such that v, = v in V, as p — 0. Since
Uy={z€V]|z>91, ae.in Q}N{zeV|z<1y, ae in Q},

we obtain v, — ¢y, € {z€V |[2>0 ae. in Q}and v, =1y, € {z€V |2<0 ae. in Q}. Moreover,
since the sets {z € V| 2>0 ae.in Q}and {z €V |2<0 ae. in Q} are weakly closed by Mazur’s
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theorem, we deduce that v —¢1 € {z€V |2>0 ae. in Q}andv—yY€{2€V|2<0 ae in Q},
and hence, v € U.

On the other hand, for any v € U, thereexist v € {z €V |2>0 ae.in Q}andvy e {zeV |2 <
0 a.e.in Q} such that v = v + ¥ = vo + s.

Using the compactness embedding theorem, it is clear that (¢1,,%2,) — (¥1,%2) in V x V. Put
v, = U1 + ¥1,. Then, for p small enough, we get v, € U,. Hence, v, =v1 + 491, = v1 + Y1 =va + P2 = v
in V. Therefore, the convergence (52) holds.

Ezample 25. (i) Let a, a,: 2 x R? — R? be functions defined by

a(z, &) = ¢(@)V([€17)E,  a,(x,€) = o, () (1€]*)€
for all £ € RY, a.e. € Q with p > 0. Assume that ¢ and ¢, satisfy condition (34) with constants d,

dy > 0 uniformly with respect to p, ¢ satisfies condition (35) and the following condition is satisfied

{there exist w € L®(Q) and (3, > 0 with 8, — 0, as p — 0 (53)

such that |¢,(x) — ¢(x)| < Bpw(sc) for a.e. x € Q.

From Example 18 it is clear that (43)(a) is satisfied. We show that condition (43)(b) holds. To this end,
let My >0, &, n € R? with ||£]| < M; and ||n|| < My, and ¢ € [0,1]. We put () = & + t(¢§ —n). Then,
for a.e. € 2, we have

lap(. ) = ala.m)| = 6, @)([€]2)€ = S]]
< oo (IEI)E = HIUIEIIEN + IoDuClEI)E =~ vl
< 19,(@) — o@D IIE] + lo@)l [ 3w de]
= [6,(@) - ¢><1:c>uw<||s|| el 0
o)l [ @ ICOIPE® - € - m)cte) + v(ICEIPE - m)d]
< Ile) - o VCIEIlE]

U (ICOIMHICOI + v (ICOI))IE — n